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Lay Summary

Video motion magnification is a powerful technique used to amplify subtle movements

captured in video footage, making them more prominent and discernible to the human

eye. It enhances imperceptible motions, allowing for better analysis and interpretation

of dynamic phenomena in various applications. This process involves extracting and

amplifying motion signals from video frames, enabling the visualization of movements that

would otherwise go unnoticed. Video motion magnification finds wide-ranging applications

in fields such as healthcare, where it can aid in diagnosing medical conditions based on

subtle physiological cues, as well as in industrial settings for monitoring machinery and

detecting anomalies.

However, existing methods encounter significant challenges, including artifacts from

manual filters and computational complexities from deep learning approaches. These

obstacles hinder the accurate extraction of subtle movements from videos.

In this work, our aim is to address these challenges and develop e↵ective motion

magnification techniques that enable more reliable detection of subtle movements while

reducing artifacts and computational burden. All proposed approaches incorporate novel

state-of-the-art concepts, and our solution is qualitatively and quantitatively demonstrated

to achieve superior results compared to previous state-of-the-art methods.
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Abstract

Unveiling imperceptible motions in videos is a critical task with applications ranging

from industrial monitoring to healthcare diagnostics. However, State-Of-The-Art

(SOTA) methods in video motion magnification face challenges that impact their

e↵ectiveness. The primary identified problem lies in the trade-o↵s of existing techniques.

Hand-crafted bandpass filter-based approaches su↵er from the need for prior information,

ringing artifacts, and limited magnification. Conversely, deep learning-based methods,

while achieving higher magnification, introduce issues like artificially induced motion,

distortions, and computational complexity, making them unsuitable for real-time

applications.

To overcome these challenges, we propose a comprehensive solution. Our first

approach involves a novel deep learning-based lightweight model for motion magnification.

Leveraging feature sharing and an appearance encoder, our method enhances motion

magnification while minimizing artifacts.

Addressing the broader computational complexity challenge associated with SOTA

methods, we introduce a Knowledge Distillation-Based Latency-Aware Di↵erentiable

Architecture Search method (KL-DNAS). Instead of designing architecture by hand, we let

the network decide the best possible architecture under the given constraints. We use a

teacher network to search the network by parts using knowledge distillation. Further,

search among di↵erent receptive fields and multi-feature connections, are applied for

individual layers. Also, we use a novel latency loss is proposed to jointly optimize the

target latency constraint and output quality.

In the realm of magnifying small motions prone to noise and disturbances, we identify

a need for a balanced solution, which can exploit both deep learning and hand-crafted

based approaches. Introducing a phase-based deep network operating in both frequency

and spatial domains, we generate motion magnification from frequency domain phase

fluctuations and refine it spatially. With lightweight models a balance between

magnification and computational e�ciency is achieved, as evidenced by comparative

evaluations against SOTA methods.

However, this integration doesn’t fully utilize the steerable pyramid architecture of

hand-crafted based methods as it manipulate motion features in single scale. To further

enhance it, we integrate traditional techniques with deep learning. The proposed ��✓Net

model e↵ectively combines handcrafted intuition of complex steerable pyramid with deep

learning mechanisms, significantly improving motion magnification performance.

Additionally, in response to the sensitivity of video motion magnification to noise-related

distortions, we propose a hierarchical magnification network. It produces a more robust

performance with a multi-scale manipulator and a novel contrastive learning-based loss.

This approach e↵ectively mitigates distortions caused by noise and illumination changes
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while enhancing texture quality. It maintains a lightweight design, while maintaining its

e↵ectiveness.

Keywords: Video Motion Magnification, Knowledge Distillation (KD), Latency

Aware, Motion Manipulation, Neural Architecture Search (NAS), Contrastive Learning,

Lightweight networks.
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Chapter 1

Introduction

Within this chapter, we introduce the topic of video motion magnification. The

introduction to video motion magnification is given in Section 1.1 and the motivation

for this work is discussed in Section 1.2. Section 1.3 introduces industrial and healthcare

applications of video motion magnification. The research challenges in the field of video

motion magnification are discussed in Section 1.4. In Section 1.5, the main aim and

objectives of our research work are discussed. Section 1.6 defines the major contributions

of our work. Finally, Section 1.7 provides the overall structure and outline of the thesis.

1.1 Introduction

Real-life scenarios often entail subtle changes that remain imperceptible to the naked eye.

These minute variations encompass a wide spectrum, ranging from the barely detectable

muscle movements of athletes to the delicate expansion and contraction of the chest

during breathing, or even the subtle deformation of objects. However, the challenge lies in

discerning these subtle motions from the inherent noise levels present in the environment.

Despite their proximity to noise, these subtle vibration signals hold immense potential for

various applications across diverse domains.

The potential applications stemming from these subtle changes are extensive and diverse,

spanning various fields and industries. In industries such as rotating machinery, robotics,

and structural engineering, the ability to detect and analyze minute vibrations is crucial

for ensuring optimal performance, safety, and reliability. For instance, researchers have

utilized vibration analysis techniques in rotating machinery [1, 2, 3] and robotic devices

[4] to enhance performance and identify potential faults. Moreover, in fields like civil

engineering, monitoring tra�c-excited bridges [5] and structures or vehicles with variable

mass [6] necessitates precise detection and analysis of subtle structural changes. Similarly,

in aerospace engineering, the ability to monitor geometry-variable aerospace structures is

essential for ensuring structural integrity and aerodynamic e�ciency [7]. Additionally, in

healthcare, the measurement of vital signs through subtle body motions holds promise for

non-invasive monitoring and early detection of health conditions [8, 9].

To address the challenge of distinguishing these subtle motions from noise and enhancing

their visibility, video motion magnification-based algorithms have emerged as powerful
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Figure 1.1: (1) The first row displays a video of a gun, while (2) the second and (3) the
third row depict videos of a toy and a baby, respectively. The gun and toy videos exhibit
dynamic motion, whereas the baby video depicts static motion. IA, IB, and IC represent
the input frames, while MB and MC illustrate the magnified motion. In (1), the gun
video highlights the magnified complex motion of gun recoil, emphasized within the red
bounding box. In (2), the motion of the toy video is indicated by a red arrow, and a
zoomed-in version of the bounding box is provided. In (3), the baby video [27]showcases
subtle motion around the chest, with red arrows indicating the direction of the motion.

tools. These algorithms leverage advanced signal processing techniques to amplify subtle

changes captured in video footage, thereby making them clearly visible to the human eye.

By enhancing the visibility of these subtle dynamics, motion magnification techniques

o↵er invaluable insights and enable more accurate analysis and interpretation of real-world

phenomena.

1.2 Motivation and Applications

Magnification of subtle motions has many di↵erent computer vision applications [10, 11,

8, 12]. Motion magnification is used in micro-expression recognition [13, 14, 15, 16, 17].

These micro-expressions are generally present in 1/30th of video frames [13]. Analysis

of psychological disorders or inherent feelings of a person can be recognized with
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micro-expressions. Hence, motion magnification can facilitate e↵ective recognition of

micro-expressions and identification of inherent feelings. Fan et. al. [18] proposed the

use of motion magnification to separate pulsatile motion from non-pulsatile motion, which

helps them to locate vessels and neurovascular bundles in endoscopic prostatectomy videos.

This will help in endoscopic and robotic surgery.

Davis et al. [19] used video motion magnification to extract speech by measuring

micro-displacements in the objects (which are generated due to sound vibrations).

Dorkenwald et al. [20] utilized video motion magnification to measure posture deviation

between a healthy and impaired patient. Popek et al. [21, 22] employed video motion

magnification to extract mechanically induced micro-displacements. Kyrollos et al. [23]

measured respiratory rate from video motion magnification. Kim et al. [11] applied motion

magnification for the measurement of vibrations in the rails. Zhu et al. [24] used motion

magnification in measuring the location of the partial discharge in power cables. Hence

video motion magnification has significant importance in measuring subtle displacement

signals related to computer vision and biomedical signal/image processing problems.

Traditionally, measuring vibrations has relied on contact-based sensors like accelerometers

or non-contact laser vibrometers. However, attaching these sensors to small or lightweight

objects can introduce mass-loading e↵ects and alter the object’s dynamics. Additionally,

for large structures, the requirement of multiple sensors can escalate costs and labor.

Motion magnification o↵ers an alternative by amplifying vibration signals captured in

videos, thereby circumventing the limitations associated with traditional sensor-based

approaches [21, 22, 25]. This makes it a versatile and cost-e↵ective solution for measuring

subtle displacement signals in both computer vision and biomedical signal/image

processing domains.

1.3 Problem Formulation

Wu et al. and Wadhwa et al. [26, 27] define the problem of motion magnification as

follows. For an image I(x, t), it can be expressed as a function of motion such that

I(x, t) = f(x+ �(x, t)), where f(x) = I(x, 0) and �(x, t) is a function of motion field with

respect to spatial co-ordinates x at a time t. If video frames follow this assumption, then

the magnified frame can be expressed as,

I(x, t) = f(x+ (1 + ↵)�(x, t)) (1.1)

Magnification factor ↵ decides the amount of magnification. We avoid magnification of all

the motion signals in �(x, t) as it also contains non-meaningful motion signals like subtle

camera shake, photographic noise etc. Let’s take B(.) as an ideal signal selector that can

di↵erentiate between meaningful and non-meaningful motions. Then the motion magnified
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frame Ĩ(x, t) is defined as

Ĩ(x, t) = f(x+ (1 + ↵)B(�(x, t))) (1.2)

Many di↵erent proposed methods try to approximate B(.) e.g. [26, 27, 28] by using

temporal filters as a signal selector. We are using deep learning based techniques to

overcome the limitations of hand crafted methods for solving this problem. Our proposed

method learns the function B̃(.) as the network tries to approximate Ĩ(x, t) directly. It

can be expressed as the following

Ĩ(x, t) ⇡ fa(x+Mf ⇤ B̃(�(x, t))) (1.3)

In our approach, we simplify the architecture by providing two input frames fa and fb,

along with a magnification factor Mf . This simplification not only streamlines the network

complexity but also reduces the number of parameters involved.

1.4 Research Challenges

Motion magnification poses several significant research challenges, which include

addressing the following issues:

1. Ringing Artifacts in Output: Ringing artifacts, are unwanted oscillations that

occur in the output of motion magnification algorithms, particularly Eulerian-based

methods. These artifacts can distort the magnified motion, leading to inaccuracies

in the representation of subtle movements. They often appear as spurious

oscillations or halos around edges or regions of motion, in the magnified video

[29, 27, 26, 28, 30, 31, 32]. To address the issue of ringing artifacts, researchers

explore deep-learning based methods [29], and proposed a supervised learning based

training mechanism.

2. Noise Amplification: Noise amplification poses a significant challenge in motion

magnification, particularly in deep learning-based methods. Noise, whether

originating from sensor noise, compression artifacts, or environmental factors,

can be inadvertently magnified along with the desired motion signal during the

amplification process. This results in the presence of spurious artifacts and false

motion signals, compromising the accuracy and reliability of the magnified output.

E↵ectively addressing noise amplification requires the development of noise reduction

techniques [32] or the integration of noise-aware processing mechanisms into motion

magnification algorithms such as being done in deep-learning-based methods [29].

3. Dependency on Training Data: Deep learning-based unsupervised methods for
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motion magnification often exhibit a high degree of dependency on training data.

These methods rely on large datasets of annotated video sequences to learn the

complex relationships between input frames and their corresponding magnified

outputs. However, the e↵ectiveness of these models is contingent upon the similarity

between the training data and the testing scenarios [20]. In cases where the testing

scenarios deviate significantly from the training distribution, the performance of

the model may degrade, leading to suboptimal results. Addressing the dependency

on training data requires the development of robust and generalizable models that

can e↵ectively adapt to diverse real-world conditions without requiring extensive

retraining or fine-tuning.

4. Computational Complexity: Computational complexity presents a significant

challenge in motion magnification, particularly in methods that involve dense optical

flow estimation, spatial-temporal filtering, and deep learning-based approaches.

Dense optical flow estimation calculates motion vectors for every pixel in

consecutive frames, requiring intensive computation. Spatial-temporal filtering

involves analyzing both spatial and temporal dimensions of the video data, further

adding to the computational load. Deep learning methods, while o↵ering good

capabilities for motion magnification, often consist of a large number of parameters.

Additionally, di↵erent applications of motion magnification may have varying latency

requirements. For example, in medical imaging or surveillance applications, where

real-time analysis and response are critical, low latency is essential. On the other

hand, in post-processing applications such as video enhancement for film production,

latency may be less of a concern.

5. Small Magnification in Dynamic Scenarios: Handcrafted methods in motion

magnification often face limitations in dynamic scenarios, resulting in small

magnification of subtle motions [27, 26, 28, 30, 31, 32]. These methods typically

rely on predefined filters and processing techniques, which may struggle to

e↵ectively amplify motion in environments with rapid changes or complex dynamics.

Consequently, the magnification achieved in dynamic scenarios using handcrafted

methods may be insu�cient for capturing and highlighting subtle motions of interest.

Addressing this challenge requires the development of more adaptive and responsive

techniques that can accurately amplify motion across a wide range of dynamic

scenarios.

6. Distortions Generated by Deep Learning-Based Supervised Method: Deep

learning-based supervised training method, as demonstrated by the work of Oh et

al. [29], gives better magnification but may introduce various distortions in the

magnified output. While these methods o↵er significant potential for enhancing
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motion visibility, they are not without limitations.

They extract motion information from shape information to enhance the

network’s robustness to intensity changes. However, their approach to

separating shape information from texture may not always be e�cient, leading

to distorted intermediate features that can result in unwanted flickering or

spurious motion.

Texture features extracted by this method may sometimes deviate significantly

from the input textures, potentially causing blurry distortions in certain frames

of the magnified video.

1.5 Problem Statement

From the above observations, we have identified the following problems for video motion

magnification:

1. Texture distortions during magnification degrade the magnified output quality and

distort the motion.

2. Limited adaptability in terms of computational complexity across various

applications hampers the usability of video motion magnification techniques.

3. Real-time processing constraints impede practical deployment, urging the

development of e�cient algorithms and frameworks.

4. Noise interferes with the signal of interest and a↵ects the motion magnified output.

1.6 Aims and Objectives

From the identified problems in existing video motion magnification methods, we define

the aim and objective of our work as:

Aim: To propose novel solutions for resolving di↵erent problems in video motion

magnification.

Objectives:

1. To design a novel approach for video motion magnification aimed at reducing texture

distortions.

2. To introduce a novel approach for generating application-specific computational

complex tailored models for video motion magnification.

3. To present a novel lightweight network for video motion magnification.
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4. To propose a novel network to enhance noise robustness in video motion

magnification.

1.7 Main Contributions

This study is focused on deep learning based architectures for video motion magnification

task. The major contributions of this work are listed below:

A proxy model based regularization loss with feature sharing encoder and appearance

encoder is proposed to reduce the magnification of noise and other unwanted changes

in motion features.

A novel neural architecture search based approach for generating application-specific

computational models for video motion magnification is proposed.

A Multi Domain learning based e�cient light-weight network for video motion

magnification is proposed.

A Learnable Directional Scale Space Filters based network aimed at enabling

steerable direction space for video motion magnification.

A novel Hierarchical network with multi-scale manipulator and novel contrastive loss

is proposed for enhancing robustness against the noise-generated subtle motion for

video motion magnification architectures.

1.8 Thesis Structure

Chapter 1: Introduction and Motivation

– This chapter introduces video motion magnification and provides the motivation

behind the present work.

– It serves as the preface of the entire thesis, setting the stage for the subsequent

chapters.

Chapter 2: Literature Review

– This chapter discusses existing methods for video motion magnification and

their applications.

Chapter 3: Proxy Model Based Training for Texture Distortion

Reduction

– This chapter presents the proposed proxy model-based training approach aimed

at reducing texture distortions in motion magnification.
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Chapter 4: Neural Architecture Search for Application-Specific Models

– This chapter introduces a solution based on a neural architecture search for

generating application-specific computational models tailored for video motion

magnification.

Chapter 5: Multi-Domain Lightweight Network for Real-Time Motion

Magnification

– This chapter discusses a Multi-Domain based lightweight network aimed at

achieving real-time motion magnification.

Chapter 6: Learnable Directional Scale Space Filters for Motion

Magnification

– This chapter discusses a Learnable Directional Scale Space Filters based

lightweight network aimed at directional scale-space for video motion

magnification.

Chapter 7: Hierarchical Magnification Network for Noise Robustness

– This chapter delves into the proposed Hierarchical Magnification Network

designed to enhance the robustness of motion magnification networks to noise.

Chapter 8: Conclusion and Future Scope

– This chapter summarizes the findings and conclusions drawn from the thesis

work.

– It also explores potential future directions to further improve the performance of

video motion magnification and its applicability in various high-level computer

vision tasks.



Chapter 2

Literature Survey

In this chapter, existing hand-crafted and deep learning based approaches in the field of

video motion magnification are discussed.

2.1 Existing Approaches for Motion Magnification

The field of motion magnification has witnessed significant advancements with the

introduction of multiple methods aimed at highlighting small changes within videos.

These advancements reflect the evolving landscape of motion magnification techniques,

showcasing diverse approaches to address the complexities inherent in this area of research

[33, 31, 32, 26, 28, 27, 30, 34, 29, 20].

Broadly categorized into Eulerian and Lagrangian methods, these approaches o↵er distinct

strategies for motion magnification. Eulerian methods predominantly focus on the

utilization of hand-designed spatiotemporal filters, leveraging the inherent properties of

pixel-level changes across frames [32, 31, 26, 28, 27, 30]. This approach involves intricate

processing of spatial and temporal information to identify and amplify specific motion

characteristics within the video sequence. In contrast, Lagrangian methods rely on optical

flow techniques to track the movement of objects or features across frames [33]. By

computing the displacement of pixels between consecutive frames, Lagrangian approaches

enable the isolation and magnification of motion-related features.

Recent advancements in Eulerian-based methods have led to the development of techniques

capable of producing promising results across various scenarios, even in the presence

of significant motion [31, 30, 32]. These methods have demonstrated e↵ectiveness in

enhancing subtle motion cues while maintaining robustness in challenging environments.

2.2 Lagrangian approach

Liu et al. [33] proposed a Lagrangian based method, for motion magnification. It matches

the feature point across di↵erent frames to compute optical flow. The optical flow was

used to segment the background and motion of interest. Background motions were first

spatially registered and then the motion of interest was re-estimated and magnified. But

computing optical flow in this method is costly [35].

Pan et al. [36] proposed a model that takes a pair of video frames and a magnification

factor as input and generates a new pair of frames with the predicted optical flow magnified
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according to the specified factor. The model is trained using self-supervised learning,

meaning it can be trained solely on real unlabeled videos without requiring ground

truth annotations. During training, the optical flow estimator is used within the loss

function, but it is not required during testing. The simplicity and self-supervised nature

of this model o↵er several advantages over traditional approaches. The model can be

easily adapted at test time for improved performance on specific input videos and can

also be extended to magnify the motion of individual objects specified by user-provided

segmentation maps. But, it also has limitations. Firstly, the e↵ectiveness of the model

heavily relies on the quality and accuracy of the o↵-the-shelf optical flow networks used

for supervision. If the optical flow estimation is inaccurate or noisy, it may result

in suboptimal magnification results. Additionally, while the model can be fine-tuned

for improved performance on specific input videos, this process may require additional

manual intervention and the model is computationally complex, limiting its applicability

in real-world scenarios.

2.3 Eulerian approach

2.3.1 Hand-Crafted methods

Eulerian-based methods o↵er a distinctive approach to motion magnification by eschewing

explicit object tracking in favor of filter-based techniques. Initially, Wu et al. [27],

demonstrate that Eulerian spatio-temporal processing of standard monocular video

sequences can reveal nearly imperceptible changes in dynamic environments without

explicit motion estimation. The study provides an analysis of the relationship between

temporal filtering and spatial motion. Additionally, it presents a unified framework

capable of amplifying both spatial motion and purely temporal changes (e.g., heart pulse)

and allows adjustment for specific temporal frequencies, a capability not supported by

Lagrangian methods. In their proposed method, first, they extract input frames from a

video and decompose them spatially using a multi-scale Laplacian pyramid. Subsequently,

a temporal filter is applied to capture changes across pixel values over di↵erent frames. By

defining a specific frequency range, these methods selectively amplify the desired motion.

However their output is prone to large distortions due to the magnification of noise.

To solve this issue, Wadhwa et al. [26] proposed a phase variations based motion

magnification using complex steerable pyramids. It maintains an intricate balance between

the compactness of the transform representation and the magnitude of magnification

achievable in octave and sub-octave bandwidth pyramids. Moreover, it showcases the

capability to enhance extracted low-amplitude motion signals through spatial denoising of

phase signals within individual image subbands. This refinement process leads to superior

results in motion processing. However, their method cannot magnify color changes, works
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poorly in the presence of large motions, and is computationally complex [26].

To solve computational complexity later Wadhwa et al. [28] proposed the Riesz

pyramid for Eulerian phase-based video magnification, o↵ering comparable quality to

complex steerable pyramids but with reduced overcompleteness, enabling faster processing.

Constructed using an e�cient Laplacian replacement and approximate Riesz transform,

it avoids spatial artifacts by operating entirely in the spatial domain. E�cient

implementation is achieved through shared computation, filter symmetry, and minimal real

multiplies. The Riesz transform’s property as a steerable Hilbert transformer allows precise

phase-shifting, enhancing motion magnification. This novel representation supports

real-time processing and o↵ers advantages over existing methods, making it promising

for video magnification applications. However, it does not handle dynamic scenarios and

produces blurry distortions in the presence of dynamic motion.

Addressing the challenge of large motion, Zhang et al. [30] proposed a solution that

magnifies only non-linear motion under the assumption that large motion alters linearly

while small changes vary non-linearly. By disregarding linear variations, Zhang et al. [30]

successfully magnified subtle changes even in the presence of significant motion. However,

in scenarios involving fast-moving backgrounds or large non-linear motions, their approach

tends to blur the output.

Takeda et al. [31] enhance video magnification by isolating subtle changes amidst slow

and quick large motions. Leveraging jerk, which evaluates the smoothness of time series

data, the method distinguishes between subtle changes and quick large motions based on

their di↵ering smoothness characteristics. A jerk-aware filter is developed to selectively

pass subtle changes while suppressing artifacts caused by large motions. The method

e↵ectively integrates this filter into the acceleration method, yielding good magnification

results. Nonetheless, a limitation of their approach is the inability to distinguish between

quick large motions and subtle quick motions.

Despite the advancements achieved by these methods, they face challenges in

distinguishing between non-meaningful subtle motions, such as photographic noise, from

meaningful ones [32]. This limitation underscores the need for further refinement in motion

magnification techniques to enhance their ability to discern and amplify only the desired

motions accurately while suppressing irrelevant disturbances.

Di↵erent methods were suggested to improve the selectivity of the motion of interest.

Elgharib et. al. [37] introduced DVMAG (Dynamic Video Motion Magnification), aimed

at amplifying small motions within larger ones in video sequences. DVMAG employs a

layer-based approach, decomposing images into foreground, background, and an opacity

matte, facilitating the magnification of subtle motions while preserving surrounding areas.

The technique handles large motions by stabilizing the region of interest (ROI) before

magnification, reducing common artifacts observed in other methods. Additionally,
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DVMAG utilizes matting to focus on the ROI and texture synthesis to fill in any resulting

holes, ensuring high-quality magnified video output.

Whereas Verma et. al. [38] proposed amplifying subtle motions within videos, with

a specific focus on objects of interest. It utilizes a combination of techniques such

as object extraction, alpha matting, and Eulerian motion magnification to achieve its

objectives. Object extraction involves employing a kernel K-means approach to segregate

the object from the initial frame. Alpha matting utilizes automatic scribble drawing

with superpixels and Bezier curves [39] to generate a mask with a fuzzy boundary for

the object, facilitating motion magnification. Eulerian Motion Magnification is then

applied to enhance imperceptible motions within the video, particularly within the area

of interest. Together, these steps enable the magnification of motions that may not be

readily discernible to the human eye, rendering the method valuable for analyzing videos

with subtle movements.

Kooij et al. (2016) integrate depth information into their process, enabling selective

amplification of movements within specific depth ranges and enhancing resilience against

occlusions and large motions across di↵erent depths. Additionally, they propose an

extension to the bilateral filter, crucial for e↵ectively handling non-Gaussian filters and

treating pixels at various depth layers, minimizing potential inaccuracies. Integrating

depth information within the bilateral filter helps magnify tiny changes in the same

depth layer while ignoring motion in other areas. However, it’s essential to note that

depth sensors require specific environments to operate optimally, and without user input,

these methods may struggle to di↵erentiate between meaningful and non-meaningful subtle

motion

Other proposed solutions try to avoid human intervention. Verma et al. [40] suggested

the use of Fast Local Laplacian filter to generate edge-aware motion magnification while

reducing the amount of noise added to the output. In another method proposed by Wu

et al. [41], principal component analysis (PCA) was used to decompose the input frames.

After PCA decomposition, the component that has the most resemblance with the small

changes was taken. It was able to remove noise in the output but requires useful motion

to be more as compared to other miniature changes.

Takeda et al. [32] method incorporates Fractional Anisotropy (FA), drawn from

neuroscience, to di↵erentiate between meaningful subtle changes and non-meaningful

photographic noise. FA measures anisotropic di↵usion, emphasizing meaningful changes

over noise. Utilizing FA, [32] designs a Fractional Anisotropic Filter, selectively passing

meaningful subtle changes while disregarding noise, a significant improvement over

previous methods. Additionally, it introduces edge-ware regularization to refine motion

information, preserving edge details and mitigating noise amplification. However, their

assumption of the isotropic nature of noise does hold in di↵erent videos and produces
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magnification of noise.

Later, Takeda et al. [42] proposed Bilateral Video Magnification Filter (BVMF) method

which enhances frequency selectivity by utilizing new formulations to ensure that the

Laplacian of Gaussian (LoG) parameters are linked to the passband characteristics,

resulting in a peak gain unity at the target frequency, thus improving upon existing

methods. Additionally, BVMF achieves the exclusion of large motions by introducing a

Gaussian kernel that filters the intensity of the phase signal, excluding motions outside the

desired magnitude without making assumptions about motion dynamics. This approach is

simpler and more resilient compared to previous methods. Lastly, BVMF implements the

bilateral principle by applying two kernels simultaneously in the temporal and intensity

domains, akin to bilateral filters in spatial and intensity domains. However, these methods

use hand-crafted filters which are not optimum [29]. They are prone to ringing artifacts,

small magnification in the presence of large motion, and also magnify subtle camera shakes.

They require fine tuning of hyperparameters from video to video basis.

2.3.2 Deep Learning based approaches

Deep learning-based proposed solutions generate large magnifications. Oh et al. [29]

proposed a method with the aim to magnify the motion signal �(x, t) in input frames

I(x, t) by a factor ↵ to obtain magnified frames Î(x, t). To simplify training, they

focus on a two-frame input scenario, estimating the magnified frame from two input

frames with slight motion displacement. The network architecture consists of three

main components: encoder, manipulator, and decoder. The encoder extracts spatial

representations, including a shape representation capturing motion (M) and a texture

representation capturing intensity information (V ). The manipulator magnifies motion

by scaling the di↵erence between the shape representations of the two input frames by

↵. The decoder reconstructs the magnified output frame using the manipulated shape

representation and the original texture representation.

Due to the challenge of obtaining real motion-magnified video pairs, synthetic data is

used. Synthetic data o↵ers the advantage of scalability, but generating realistic small

motions requires careful consideration. The dataset is designed to ensure generalizability to

real-world scenarios. It combines foreground objects from the PASCAL VOC [43] dataset

with background images from the MS COCO dataset [44], simulating occlusion e↵ects

by pasting objects onto backgrounds. Each training sample contains 7 to 15 randomly

scaled foreground objects overlaid onto backgrounds to simulate occlusion e↵ects. Scaling

factors are limited to 2 to prevent blurry textures and motion direction and amount

are randomized for e↵ective learning of local motions. The magnification factor (↵)

is capped at 100 and input motions are sampled within a range of up to 10 pixels to

prevent magnified motion exceeding 30 pixels. To address issues of poor generalization
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Figure 2.1: Column A and B represent the input frames t � 1 and t, respectively, while
column C represents the magnified frame. Each row corresponds to a di↵erent scenario:
(1) Static scene with object motion, (2) only moving background, (3) Foreground and
background motion, (4) without any motion, and (5) Blurred background with foreground
motion.
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on low-contrast textures, examples with blurred backgrounds or only moving backgrounds

are included. Additionally, subsets with static scenes are incorporated to help the network

learn changes due to noise. The dataset comprises five parts, each with 20,000 samples

of 384 ⇥ 384 images. Parameters such as magnification factor and input motion are

carefully controlled to ensure learnability, with limited magnification factors to avoid

excessive motion. Subpixel motion is also incorporated into the process. This includes

reconstructing motion in frames prior to downsampling, and bicubic interpolation is used

for downsampling to minimize errors. To address rounding errors during quantization,

uniform quantization noise is introduced to each pixel, ensuring proportional rounding

based on its residual value.

The network is trained in an end-to-end manner on synthetic two-frame data using L1

losses on the output, along with regularizers to separate shape and texture, enabling

e↵ective motion magnification while maintaining realistic visual quality, even in the

presence of large motion. However, it exhibits artifacts and relies on temporal filters

for quality enhancement, which, when applied, result in patchy magnification and

ignore very small motion. Additionally, the method’s approach to extracting motion

information from shape information lacks e�ciency, occasionally leading to distorted

intermediate features and unwanted flickering or superfluous motion. Texture features

may also deviate significantly from input textures, potentially causing blurry distortions.

Moreover, computational complexity considerations are lacking, which is crucial for

real-time applications requiring low latency.

Dorkenwald et al. [20] proposes an unsupervised method to magnify subtle posture

variations across subjects in videos. The approach, embedded in an autoencoder

framework, separates posture from appearance, enabling transfer across subjects while

maintaining appearance fidelity. A novel loss function enforces e↵ective disentanglement

of posture and appearance despite appearance variations. The method integrates

magnification directly into the autoencoder training, utilizing real and synthesized

data without ground truth supervision. It employs two separate encoders to

encode posture and appearance, disentangles them through color transformations, and

introduces a disentanglement loss for meaningful representations. Magnification is

achieved by extrapolating posture encodings and combining them with appearance

encodings to generate realistic magnified images. The model is trained end-to-end,

leveraging synthesized magnifications, showcasing e↵ectiveness in magnifying subtle

posture deviations while preserving appearance across various datasets. However, it

requires a model to train on similar scenarios as a test video for motion magnification.

Chen et al. [34] introduces an “DeepMag” end-to-end deep learning framework for

video magnification, focusing on amplifying subtle color and motion signals from specific

sources, even amidst significant motions. [34] developed a novel deep neural network
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architecture based on gradient ascent and tailored it for automated magnification of

target signals like pulse and respiration in videos. Further, they adapt gradient ascent

for video magnification, leveraging a convolutional neural network (CNN) as a motion

discriminator, and integrating L1 normalization and sign correction for consistent and

accurate magnification based on the input magnification signal. DeepMag derives the

magnification signal by utilizing the L2 norm of the target signal’s first-order derivative

and subsequently denoising the resulting motion representation. But the magnification

produced by this method is small and it is specific to spacial videos [34].

The MagFormer method [45] presents an end-to-end video motion magnification network

featuring a two-branch module combining Eulerian and Lagrangian perspectives. The

Eulerian branch employs a convolutional neural network (CNN) to capture global motion

features from a camera-centered viewpoint, while the Lagrangian branch utilizes a

Transformer to capture local motion trajectories from an object-centered perspective.

Fusion blocks facilitate inter-branch interaction in a layer-by-layer fashion. Additionally,

a motion-guided attention module highlights motion areas and reduces artifacts, with

motion features separated from texture features by a dedicated feature separator. Optical

flow extraction is conducted using GMFlow [46], and a reconstruction module combines

texture and magnified motion features to generate the final output frames. This approach

integrates both global and local motion information, employs attention mechanisms, and

enables interaction between branches. But, it has a computationally complex pipeline.

The STB-VMM (Swin Transformer Based Video Motion Magnification) [47] method

proposes a novel architecture for video motion magnification, leveraging the Swin

Transformer. Its components include a shallow feature extractor for early local feature

extraction, a deep feature extractor comprising N Residual Swin Transformer Blocks

(RSTB), a manipulator that magnifies motion between frames by multiplying the

di↵erence in feature spaces by a user-defined factor↵, a Mixed Magnified Transformer

Block (MMTB) for coherent output processing, and a reconstructor to generate the

magnified frame from the processed feature space. The pipeline involves passing two input

frames through feature extractors, manipulating the feature space, processing it through

MMTB, and reconstructing the frame. The model is trained end-to-end on synthetic data

using L1 loss and regularization loss. It results in better performance but the method is

computationally heavy.

Feng et al. [48] introduces a method for amplifying nuanced 3D movements in scenes filmed

with mobile cameras, while enabling innovative view rendering. Notably, previous motion

magnification techniques were confined to 2D videos captured by stationary cameras. This

approach extends the capability to dynamic 3D environments by utilizing time-varying

neural radiance fields (NeRF) to represent scenes. The method applies the Eulerian

principle to enhance motion by magnifying variations in point embeddings over time.
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Also, it employs a small MLP to induce phase shifts in positional encoding functions, and

utilizes tri-plane learnable embedding functions for NeRF.

Meyer et al. [49] introduces Phase-NIVR, a novel neural implicit representation method

designed for videos, allowing manipulation of temporal dynamics. It extends the concept

of image-based implicit neural representation (INR) to videos by incorporating phase-shift

information into the Fourier-based positional encoding, facilitating the modeling of video

sequences. The model architecture comprises two main components: a Frame Generation

Module responsible for generating video frames from phase-shifted positional encodings,

and a Phase-Shift Generation Module that predicts phase-shift vectors for each time step.

Through end-to-end training on video data, the model learns to associate phase-shift

values with the mapping to video frames. Notably, the learned phase-shift vectors

capture meaningful temporal dynamics, enabling various motion manipulation e↵ects

such as temporal interpolation, motion filtering, magnitude magnification, and video loop

detection. But Nerf is data-specific and requires fine-tuning for each video, which makes

it less suitable for real-time application.
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Chapter 3

Proxy Model Based Training for

Texture Distortion Reduction

To address the problem of motion magnification initially, hand-design based approaches

were introduced. Many SOTA hand-crafted methods were based on temporal filters which

gave good results [27], [26], [28] on static scenarios but they cannot work in dynamic

scenarios. To mitigate this, later [30], [31] methods were proposed which can work in

both static and dynamic scenarios. But their outputs were prone to ringing artifacts or

small magnification etc. Also, their filters were not optimal [29]. To solve these issues

of hand-crafted filters, the deep learning-based method [29] was proposed. Even without

temporal filters, it shows some robustness to noise and produces higher magnification

without ringing artifacts. But it has some limitations.

They extract motion information from shape information to make the network robust

to intensity changes. But, their separation of shape information from texture, is

not e�cient. Sometimes it results in distorted intermediate features which produce

unwanted flickering or superious motion.

Their texture features sometimes deviate much from input textures and this might

be responsible for blurry distortions in some frames.

They did not take computational complexity into account. As real-time applications

like respiration rate monitoring, or in industries where time-constrained output is

needed, require low latency.

Currently deep learning based approaches in di↵erent tasks like deraining, deblurring,

object detection [50],[51], [52] etc show promise for real-time applications. Inspired by

this we propose a lightweight network for video motion magnification. Our proposed

lightweight method does not produce unwanted distortions like [29] and is sensitive toward

subtle motions. It produces more magnification than SOTA methods in both static and

dynamic scenarios. It has a simple yet e�cient architecture. Further, di↵erent experiments

are done to show the qualitative, and quantitative analysis, and physical accuracy of

the proposed method in comparison to SOTA methods. The main contributions of the

proposed work are as follows:

A lightweight deep learning model is proposed for video motion magnification.
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Table 3.1: Comparison with prior methods

Methods
Hand-crafted
Methods

Oh et al. [29] Proposed Model

Magnification in Static
Scenarios

High High High

Magnification in Dynamic
Scenarios or in presence

of large motion
Low High High

Noise Reduction
mechanism to reduce
distortions related
to magnification

Narrow bandpass
filters

Separate shape
and Texture
information

Feature sharing encoder,
Common appearance
encoder and Proxy
model based training

A feature sharing encoder module is proposed for motion magnification. This module

is responsible for appropriate feature map generations for motion extraction and for

reducing the e↵ect of the noise before magnification.

An appearance encoder is proposed to extract common appearance across the frames

with its output being restricted by input frames. This module is responsible for the

appropriate texture synthesis of the output.

A proxy model based regularization loss is proposed to reduce the magnification of

noise and other unwanted changes in motion features.

These solutions are explained in detail in the following sections.

3.1 Network Architecture

We propose a lightweight deep learning based network to magnify the subtle motions in

the videos. It consists of encoder-decoder based architecture. It uses two feature sharing

based encoders, to translate input frames from image space to feature space where motion

information can be extracted. Handcrafted methods [26], [28], [30], [31] use complex

steerable pyramids for the same task. Oh et al. [29] uses simple encoders and gives

its features to shape encoders to extract shape features. It extracts motion information

from the shape features. Separating shape information from image features is done using

regularization across the encoders to constrain the feature space. Instead of that, we let

the network decide the encoding feature space for motion extraction.

A major issue with motion magnification is to reduce the e↵ects of changes due to

noise, illumination etc while magnifying meaningful changes. This is a hard problem.

Hand-crafted methods [26], [28], [30], [31] depend on narrow band pass filter (which

require prior information about the frequency of interest). Oh et al. [29] method

presumes that noise, unwanted illumination etc changes are part of intensity changes
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Figure 3.1: (A) Proposed deep learning model for motion magnification. It consists of
a feature sharing encoder, appearance encoder, manipulator, and decoder. Ft and Ft�1

the two consecutive frames, with Mf as the magnification factor, are given as input to
the network. Fo is the magnified output frame. Residual Blocks with 3⇥3⇥48 show that
there is a 3 ⇥ 3 convolution filter with 48 channels, similarly for Residual Blocks with
3⇥3⇥24. Ea and Eb are the output features and E0

a and E0
b
are the intermediate features

of the feature sharing encoder. (B) Proxy model feature loss across the manipulator block.
Please zoom in for a clearer view.

and motion information is present in shape changes. So, they try to separate shape from

texture representation (intensity information). For this, while training the network they

provide intensity perturbed frames that have the same shape information as un-perturbed

frames. Then they take L1 loss across perturbed and un-perturbed frames features. They

assume that shape information across intensity change should remain the same. They

take the di↵erence between these shape features, magnify it, and add it to the texture

encoder features, but their method is not e�cient. It sometimes results in distorted

intermediate features which produce flickering or superious motion. The proposed method

uses feature sharing encoder for the motion extraction and proxy model based feature loss

with appearance encoder loss to reduce the e↵ects of noise before magnification. The

denoising signal in network training comes from three di↵erent places 1) from the final

predicted output, 2) common appearance based regularization loss 3) proxy model based

feature loss. Jointly optimizing across these losses helps to reduce the e↵ects of noise in

motion magnification (a detailed discussion is given in the section below). The manipulator

multiplies the motion features to the magnification factor (which decides the amount of

magnification), and applies non-linear transforms using residual blocks. The manipulator

output is added to the common appearance encoder output and given to the decoder. The

decoder converts intermediate features to image space and generates the final magnified

output. Figure 3.1 (A) describes the proposed model.
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Feature Sharing Encoder (E(.)): Feature Sharing Encoder is used to reduce the

e↵ect of noise before magnification (decoder is used to reduce the e↵ect of noise after

magnification). We assume di↵erent frames will have distinct noise. With concatenation

operation across features, each encoder will have information about the input frames and

improved features of the other encoder. The network can compute weighted averages to

decrease the e↵ects of illumination, noise etc. It’s also used to convert the input from image

space to feature space for motion extraction. Unlike [29], its output features (Ea, Eb) are

not restricted by regularization. Residual blocks [53] are used to map input frames to

a feature space where motion information is extracted by taking the feature di↵erences

as shown in Figure 3.2. Max-pooling is used to down-sample the features to reduce the

computation and increase the receptive field. The feature sharing encoder is illustrated in

Figure 3.1 (A).

Appearance Encoder (A(.)): Relevant texture content is required to combine with

motion information to generate the magnified frame. For generating texture content, [29]

proposes a regularization term to minimize the di↵erence in texture feature representation

between the frames. To satisfy this regularization term both texture encoders with

di↵erent inputs try to generate a common representation, but this representation can

deviate from the actual texture representation. We assume this can be the probable reason

for producing texture distortion (blurry distortions) sometimes. To solve this, we propose

an Appearance Encoder (A(.)). Generally, the magnified frame has a high correlation

with the input frames as most of the objects are still. In A(.) we exploited this fact for

appropriate texture generation. Loss between appearance encoder A(.) features and input

frames are used to extract common appearance features. This also prevents the learnable

parameters from generating features that deviate from Ft and Ft�1. For calculating this

loss, no noise is added to the ground truth (input frames). So, it will also force denoising

characteristics in common texture features. This will help in the better generation of the

output. Both encoder intermediate features E0
a and E0

b
(as shown in Figure 3.1 (A), as

the output of both encoders) are concatenated (⇣ represents the concatenation operation)

and is given as input to the appearance encoder. Then residual blocks are applied to them

for feature transformation to produce output A(⇣(E0
a, E

0
b
)). The regularization loss LA

between input frames Ft, Ft�1 and appearance encoder output A(⇣(E0
a, E

0
b
)) is defined in

Eq. (3.1)

LA = |�(A(⇣(E0
a, E

0
b)))� Ft)|1 + |�(A(⇣(E0

a, E
0
b)))� Ft�1)|1 (3.1)

where � represents the convolution operation with 3⇥ 3⇥ 3 filters and tanh activation.
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Figure 3.2: (a) depicts the input frames, (b) shows the motion features (after subtraction
of encoder features). These features highlight the object of motion.

Manipulator (M(.)): We assume motion information can be extracted from the

di↵erence in encoder features. This is somewhat di↵erent from [29] assumption, where

they presume motion information can be extracted from the di↵erence of encoder shape

features. The manipulator (M) gets the non-linear transformed encoder shared features of

Ea and Eb as input. It takes their di↵erence and multiplies them with the magnification

factor Mf . Then these features are given to residual blocks for non-linear transformations

to generate output M((Ea � Eb) ⇥Mf ) (the structure of manipulator is similar to [29]).

Figure 3.2 shows the di↵erent features of the feature sharing encoder block that highlight

the motion information.
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Decoder: The combined output of the appearance encoder and manipulator is given

to the decoder as shown in Figure 3.2. In the decoder, ten residual blocks before

up-sampling are used, as they decrease the computation requirements and increase the

receptive fields. The up-sampled features are passed through three residual blocks. In the

end, a convolution layer with 3⇥ 3 filter size and tanh activation is used to generate the

magnified output Fo (the structure of the decoder is similar to [29]).

Proxy Model Based Feature Loss: The proxy model has the same architecture as

the proposed model but it is trained without adding noise. The proxy model features (of

the noiseless image) are taken as the ideal features and the main model features (with

noisy input) should try to get close to it (It can also be viewed as teacher-student training

paradigm [54], [55], [56], where the teacher has the same network as a student, but teacher

network is used to pass denoising information to the student network in the feature space).

At the time of training of the main model, proxy model weights are fixed. For calculating

the distance between proxy model noiseless features and main model noisy features L1 loss

is used. This feature space loss is only sensitive to noise present in the motion information.

The appearance encoder loss term is sensitive to noise present in texture, and predicted

output loss terms are sensitive to the magnified noise (particularly which can cause large

variations after magnification). So, proxy model based feature loss will help to make

motion information more robust. Loss is taken in between the manipulator features after

subtraction and multiplication with magnification factor ((Ea � Eb) ⇥ Mf ) as shown in

Figure 3.1 (B). We assume that this will help to prevent any distortions that can be

generated due to magnification of noise, illumination changes etc. Proxy model based

feature loss can be defined as follows:

LM = |((E⇤
a � E⇤

b )⇥Mf )� ((Ea � Eb)⇥Mf )|1 (3.2)

where superscript notation ⇤, indicates the proxy model.

Final Loss Function: We consider the L1 loss, loss between edges (Ledge) and

Perceptual Loss (Lp) for bettering of output quality. The L1 loss computes the pixel

level di↵erence of predicted label ŷ and ground truth y. L1 loss is illustrated as

L1 =
X

|ŷ � y|1 (3.3)

In the motion magnification problem, the L1 loss is less sensitive to object motion because

most of the region in output frames does not have motion. Further, there may exist many

minima in L1 which produce blur output [57] around the motion parts (near the edges).

So, to put more focus on the edges of the output, we take the loss between the edges of
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Table 3.2: Comparison of the SOTA learning method [29] with the proposed base network
(M1) and the lightweight network (M2) in terms of number of parameters, FLOPS, and
run time. (Run time values are calculated at 720X720 resolution on NVIDIA 2080 RTX
for higher quality output).

Model Parameters GFLOPs Run Time

Oh et al. [29] 0.98M 268.6 95 ms

M1 1.10M 375.5 142 ms

M2 0.12 M 42.4 38 ms

the predicted and ground truth frames (Ledge), (as defined in [58] ). Ledge, helps to make

the model more sensitive towards the edges [58] of the reconstructed motion magnified

frames. Ledge is given as

Ledge =
X

|rby �ry|1 (3.4)

r shows the finite di↵erences in a horizontal and vertical direction [58] for computing

edges. Another issue with the texture of the moving object is that there still exist many

minima which can give low loss but with bad perceptual quality. For this, a loss in a higher

dimension is needed. Hence, to increase the perceptual quality of the motion magnified

frames, we use the perceptual loss (Lp) [59] along with the L1 and Ledge. The Lp is given

as

Lp =
X

|�i(by)� �i(y)|1 (3.5)

Where, �i represents the VGG-16 [60] feature space activations. The final loss of the

proposed network (Ltotal) is given in Eq. (7.4)

Ltotal = �1L1 + �2Lp + Ledge + LA + LM (3.6)

Where �1 and �2 are the weights for L1 loss and Perceptual Loss (Lp) [59] respectively.

�1 = 10.0, and �2 = 0.1 values are considered for the network training and they are

determined experimentally.

Dataset and Training: The proposed models, base model, and lightweight model are

trained on the training dataset provided by [29]. In the network, C channels are used in

primary layers, and after down-sampling C ⇥ 2 channels. For the base model, C = 24,

and for the lightweight model C = 8 is considered. For training, the learning rate is set to

.0001, and an ADAM optimizer is used. Models are trained for 47 epochs. The proposed

lightweight model has 7.6 ⇥ lesser parameters and 6.3 ⇥ lesser flops as compared to [29]

as shown in Table 7.1.
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Table 3.3: Parameters used for result generation. All the results are generated with
variables and steps given by the respective authors. The source code and pre-trained
model are downloaded from their o�cial page.

Methods Video Mf Frequency

Ours (M1,M2) Cat toy 15 N/A

Ours (M1,M2) Gun 15 N/A

Ours (M1,M2) Drill 10 N/A

Ours (M1,M2) Balloon 10 N/A

Ours (M1,M2) baby 20 N/A

Ours (M1,M2) guitar 4 N/A

Ours (M1,M2) Physical Accuracy 10 N/A

Ours(M1,M2) synthetic videos 50 N/A

Oh et al [29] Cat toy 10 N/A

Oh et al [29] Gun 10 N/A

Oh et al [29] Drill 10 N/A

Oh et al [29] Balloon 10 N/A

Oh et al [29] baby 20 2.5 Hz

Oh et al [29] synthetic videos 60 N/A

Jerk-Aware [31] Cat toy 10 3

Jerk-Aware [31] Gun 10 20

Jerk-Aware [31] Drill 25 3

Jerk-Aware [31] Balloon 25 3

Jerk-Aware [31] baby 50 2.5

Jerk-Aware [31] synthetic videos 200 15

Anisotropy [32] Cat toy 100 3

Anisotropy [32] Gun 100 20

Anisotropy [32] Drill 100 3

Anisotropy [32] Balloon 100 3

Anisotropy [32] Physical Accuracy 200 3

Anisotropy [32] synthetic videos 400 15

Acceleration [30] Cat toy 4 3

Acceleration [30] Gun 10 20

Acceleration [30] Drill 4 3

Acceleration [30] Balloon 4 3

Acceleration [30] Physical Accuracy 20 15

Acceleration [30] synthetic videos 200 15
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Figure 3.3: Balloon video: First frames from the video are shown and next to them
temporal slices taken from the red strip are illustrated for visualization of balloon burst
motion. Motion magnification can be perceived as more motion in the balloon (also
visible in the temporal slice) as compared to the input. While the other methods produce
distortions such as ringing artifacts, spurious motion etc (highlighted in the red box). The
proposed method produces better magnification with fewer distortions. (a) Input video,
(b) Acceleration based method [30], (c) Jerk-Aware method [31], (d) Anisotropy method
[32], (e) Oh et al. [29], (f) Ours Base model, and (g) Our lightweight model.

3.2 Experimental Results

The proposed model is evaluated qualitatively and quantitatively on real-life and synthetic

videos and is compared with the SOTA methods [31], [29], [30], [32] for motion

magnification (linear filter based method [26] is not considered for comparisons as they

produce distortions in dynamic scenarios). The details of parameters used for result

generation are shown in Table 6.3. Also, an ablation study is conducted to show di↵erent

aspects of the proposed method. With the least computational complexity, the proposed

lightweight model provides better results than SOTA methods. The detailed discussion is

given in the following subsections.

3.2.1 Analysis on Real Videos

Analysis on Balloon video: In the balloon video, a water cannon is fired on a balloon

to rupture it, as shown in Figure 3.3. Due to this, small motions are developed in the

balloon along with its large bursting motion. Our aim is to magnify the minute balloon

motion while producing minimum distortions due to sudden large motion. Figure 3.3 shows

the motion of the balloon at the red strip over time. Hand-crafted methods [31, 32, 30]

create ringing artifacts along the balloon (visible as white edges near the balloon and white
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Figure 3.4: A toy is vibrating and moving along the table from right to left. The
spatial-temporal slices from the respective methods are taken from the red strip. The
proposed method shows more magnification (also higher motion of the background is
highlighted in the red bounding boxes). (a) Input video, (b) Acceleration based method
[30], (c) Jerk-Aware method [31], (d) Anisotropy method [32], (e) Oh et al. [29], (f) Ours
Base model, and (g) Ours lightweight model.

Figure 3.5: Gun-shooting video: Visualizing the impact of gun recoil through the arm.
We take temporal slices at red strip to show the e↵ect of magnification on the forearm.
The proposed method output has the highest magnification (shown as more bending of
the forearm in the red box). (a) Input video, (b) Acceleration based method [30], (c)
Jerk-Aware method [31], (d) Anisotropy method [32], (e) Oh et al. [29], (f) Ours Base
model, and (g) Our lightweight model.

spikes in the temporal slices highlighted in the red boxes, in Figure 3.3 ). Further, Oh

et al. [29] produce blurry distortions in some frames (in the balloon and the background

object), visible as spikes in the temporal slice (illustrated in red bounding box in Figure 3.3

temporal slice). The proposed method shows better magnification with lesser distortions

around the balloon.

Analysis on Toy Video: The toy video is illustrated in Figure 6.5. In this video, the toy

is moving on the table along with vibrations. Our goal is to produce large magnification for

the toy’s subtle motions in the presence of the toy linear motion (moving along the table

from left to right). The Jerk-aware [31], Acceleration [30] and Anisotropy [32] methods

produce less magnification. Further, the Acceleration [30] and Oh et al. [29] produce

some blurriness in the output. Oh et al. [29] method produces good magnification but

causes spurious motion (visible in red box as sharp spikes in Figure 6.5 (e)). Our proposed

models produce better magnification of the vibrating toy as compared to [31], [30], [32],

[29].

Analysis on Gun-shooting Video: Figure 7.6 shows the results of di↵erent SOTA

methods on gun-shooting video. This video contains a large background movement due
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Figure 3.6: Drill Video: Comparison of proposed method with existing methods for
magnification of the drill rotational motion. First, output from respective methods and
then their spatio-temporal slices with respect to the red strip are shown. The proposed
method produces better results with fewer artifacts. (a) Input video, (b) Acceleration
based method [30], (c) Jerk-Aware method [31], (d) Anisotropy method [32], (e) Oh et al.
[29], (f) Ours Base model, and (g) Ours lightweight model.

to camera motion and quick gun recoil produces the foreground motion. Our aim is to

magnify the minute forearm motion in the presence of a large camera motion. Figure 7.6

shows the motion of the forearm using spatio-temporal slices at a red strip. Higher forearm

motion can be perceived as more bending in the temporal slice (shown in the red box of

Figure 7.6). Jerk-aware method [31], Anisotropy [32], Acceleration [30] methods produce

lower magnification as compared to the proposed method. Oh et al. method [29] induce

spurious motion in some frames and generate blurry distortions (visible as large spikes in

Oh et al. [29] temporal slice). The proposed method generates higher magnification of

subtle forearm movements with fewer distortions, even in the presence of large camera

motion as compared to SOTA methods.

Analysis on rotational motion: Figure 3.6 illustrates a hand drill producing

rotational motion along its axis. To analyze the e↵ects of magnification on rotational

motion a still video is taken. In 2D, hand drill rotational motion can be perceived as spiral

motion. Our aim is to increase the spiral motion (higher spiral motion is displayed as more

outwards extension of rod radius). The rotational motion of the hand drill is depicted in

spatial temporal slice of Figure 3.6. Hand design filter-based methods [31, 32, 30] generate

ringing artifacts around the rod (seen as white edges near the rod and white spikes in the

temporal slices in Figure 3.6 (b),(c),(d)). Oh et al. method [29] magnifies the motion but

delivers some distortions in the magnified frames (observable as white spikes in Figure

3.6(e) temporal slice). Our proposed models have better magnification and fewer artifacts
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Figure 3.7: Physical Accuracy: Comparison between our method and other SOTAmethods
output (in red) with the sensor signal (in blue) respectively. The direction of optical flow
in the patch region is computed to extract the magnified signal (in blue) from the video.
(a) Input, (b) Our base model (c) Our lightweight model, (d) Oh et al. method [29]
(e) Jerk-aware method [31], (f) Acceleration method [30] and (g) Anisotropy [32] method
respectively.

Table 3.4: Mean Absolute Error (MAE) on SOTA methods of Anisotropy [32], Jerk-aware
method [31], Acceleration method [30], Oh et al. method [29], Ours base method (M1),
and Ours lightweight model (M2). MAE is computed between the extracted signal from
the magnified video and sensor measured signal. The proposed method has the minimum
MAE values. (First best shown in bold and second best shown in italics.)

Methods [32] [31] [30] [29] M1 M2

MAE 0.146 0.149 0.146 0.144 0.121 0.131

in motion as compared to SOTA methods.

3.2.2 Physical Accuracy

Whether our magnified output is physically accurate? To verify the accuracy

of our approach, we conducted an experiment with the setup depicted in Figure 3.7.

We utilized a universal vibration apparatus to induce subtle up-and-down motions in a

mechanical rod, while simultaneously measuring the resulting signal using an ultrasonic

sensor. The rod vibrated at approximately 0.11 Hz with dimensions of 25.4 (W) x 12.7

(H) x 840 (L) mm. The video was captured using an iPhone X mounted on a tripod

at a resolution of 1080p, positioned 1 meter high and 2 meters away from the beam.

An HC-SR04 ultrasonic sensor connected to an Arduino captured motion signals at a

sampling rate of 30 Hz while recording the video. To extract motion signals from the

video, we computed optical flow across the magnified video, using frame t � 1 as the

reference frame and frame t as the current frame within the region marked by the red

bounding box in Figure 3.7. We then calculated the average direction of motion within

the image patch. Both optical flow and sensor signals were rescaled from 0 to 1, and

using these rescaled signals, we calculated the mean absolute error (MAE) for di↵erent

state-of-the-art (SOTA) methods. Our proposed method exhibited the lowest MAE,
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Figure 3.8: Di↵erent backgrounds used for generation of di↵erent synthetic videos for
quantitative analysis. Video 1-10

Figure 3.9: Di↵erent backgrounds used for generation of di↵erent synthetic videos for
quantitative analysis. Video 11-20.

confirming its superior accuracy.

3.2.3 Analysis on Synthetic Videos

To examine the proposed method’s e↵ectiveness in various scenarios, synthetic videos are

used. 25 synthetic videos with distinct backgrounds are created as shown in Figure 3.8,

3.9, 3.10. Circles of radius 40 pixels are utilized to simulate subtle movements. When

generating a sequence of input and ground truth frame pairs for motion magnification, it

is generally simpler to work with single motions (such as up-down or left-right movement

of a circle) compared to more complex motions (like random movement of the circle).

Therefore, in the setup, three circles with movement in horizontal, vertical, and diagonal

directions are used. The generated subtle movements are described as Asubtle ⇤ (�1)j , such
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Figure 3.10: Di↵erent backgrounds used for generation of di↵erent synthetic videos for
quantitative analysis. Video 20-25.

Table 3.5: Aggregate Mean Square Error (MSE) of synthetic videos with di↵erent
backgrounds on Acceleration method [30], Jerk-aware method [31], Anisotropy [32], Oh
et al. method [29] Ours base method (M1), and our lightweight model (M2) respectively.
The proposed method has the minimum error. (First best shown in bold and second best
shown in italics.)

Methods [32] [31] [30] [29] M1 M2

MSE 36.4 55.3 68.0 38.8 23.07 27.8

that Asubtle = 0.1 pixel and Asubtle = 10 pixel values are used for input and ground truth

movement generation, and j represents the frame number. To produce sub-pixel motion,

the input frame is up-sampled by a scaling factor Sf and the object is moved 1 pixel.

So, when the image is down-sampled, the motion becomes 1/Sf pixels. Gaussian noise is

used to mimic photographic noise. For di↵erent methods, we use di↵erent magnification

factors to ensure they produce the same motion as the ground truth. This allowed us

to examine and compare how di↵erent methods [31], [29], [32] and [30] magnify various

motions in distinct environments and their robustness. Each method needs to deliver

100⇥ magnification analogized to the input video to approximate the ground truth. With

such a large magnification, the e↵ects of distortions become more apparent and lead to

degraded output. For di↵erent methods, to generate the same amount of output motion,

their magnification factor is changed. Table 3.5 depicts the average MSE of 25 di↵erent

synthetic videos, on di↵erent SOTA methods [31], [29], [32], [30] and ours. The individual

values across each video is shown in Figure 3.12. Our method produces better results with

minimum aggregate MSE.

Noise Test, Sub-pixel Motion Test and e↵ects of change in magnification

factor: The tests evaluate the impact of noise variation and sub-pixel motion reduction

on video analysis. In Sub-pixel motion tests, the magnification factor is adjusted to

maintain consistent magnification levels across methods. The noise test assesses the

impact of increasing noise levels (sigma) in the input. Mean square error (MSE) is then

computed for predicted output against ground truth across 25 videos as shown in Figure

5.11. Additionally, the e↵ects of changing the magnification factor on various methods are

examined, with each method interpreting the magnification factor di↵erently. The chosen
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Figure 3.11: E↵ects of change in Magnification Factor on Acceleration based method
[30], Jerk-Aware method [31], Anisotropy method [32], Oh et al. [29], Ours Base model
(M1), and Ours lightweight model (M2). The magnification factor has a di↵erent meaning
in each respective method [29]. The values of the magnification factor are chosen such
that, they produce the same amount of output motion with di↵erent input motion (the
respective input motion values with output MSE are shown in Figure 5.11 (B) ). Average
mean square error (MSE) is computed across the predicted output and ground truth, over
25 di↵erent videos.

magnification factor values ensure consistent output motion levels despite varying input

motion, and the resulting MSE is averaged across the videos as shown in Figure 3.11.

3.2.4 Additional Experiments

Frequency selectivity: When the deep learning method is not trained directly with

temporal filters, using temporal filters on intermediate features can produce incorrect

results [29]. So to avoid that, video is first pre-processed with a temporal filter to

suppress unwanted motion. For this, [26] method’s output at a small magnification factor

( magnification factor=4) is given as an input to our method. Figure 3.14, shows the

intermediate features which highlight the motion parts. As di↵erent temporal filter inputs

feature, highlight di↵erent motion parts.

Visual e↵ects on change in magnification factor: Visual e↵ects of increasing

magnification factor vary across video analysis methods. The Acceleration method exhibits

distortions, particularly in dynamic scenarios (Figure 3.15 [30]). The Anisotropy method

shows subtle magnification changes with distortions, especially in dynamic settings (Figure
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Figure 3.12: Mean Square Error (MSE) of Anisotropy method, Jerk-aware method,
Acceleration method, Oh et al. method, and the proposed methods on 25 synthetically
generated videos containing di↵erent subtle motion of circles with various backgrounds.

Figure 3.13: Noise Test and Sub-pixel Motion Test: (A) shows the variation across the
increase of noise value (sigma) in input (noise test). (B) shows the e↵ects of a decrease
in input motion (sub-pixel motion test). The magnification factor is changed such that
it produces the same amount of magnification. In both cases, the average mean square
error (MSE) is computed across the predicted output and ground truth, over 25 di↵erent
videos. Comparison is done with the Anisotropy method, Jerk-aware method, Acceleration
method, Oh et al. method, the proposed base model M1, and lightweight model M2.

3.16 [32]). The Jerk-Aware method demonstrates minimal magnification alterations

with significant distortions, particularly in dynamic scenes (Figure 3.17 [31]). The

Phase-based method reveals substantial distortions in dynamic scenarios and ringing

artifacts in static scenes (Figure 4.16 [26]). Oh et al.’s method provides enhanced

magnification but introduces unwanted motion and blurry distortions, worsening with

higher magnification (Figure 4.18 [29]). Conversely, the Base model (M1) shows fewer

distortions with increasing magnification, while the lightweight model (M2) su↵ers

performance degradation, particularly at extreme magnification levels due to reduced

parameterization (Figure 7.12, Figure 7.13).
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Figure 3.14: Intermediate features (row-2,3 ) of our proposed lightweight network,
highlighting the motion in the red bounding box. (a) shows the baby video motion features.
Baby has a minute chest motion while breathing. (b )and (c) highlight the motion parts
E-string (82Hz), and A-string(110Hz) of the guitar. Hence, the proposed method is able
to capture the minute motions of the baby video and temporal filter guitar video.

3.2.5 Ablation Study

An ablation study is conducted on the proposed architecture to see the importance of

di↵erent modules. For this, five di↵erent models are trained (a) Without proxy model

based feature loss training (b) Without feature Sharing Encoder, (c) Without appearance

Encoder, (d) Without Ledge loss, and (e) Without Lp loss. We test them on synthetic

videos and give their aggregate MSE in Table 3.6. The proposed method shows the

minimum MSE value.

The proposed feature based proxy loss is used to reduce the magnification of unwanted

changes. Appearance encoder based loss helps to give a denoising signal to make the

network robust to illumination changes. Further, a feature sharing encoder is used to

reduce the e↵ects of noise. Also, the appearance encoder, Ledge and Lp loss help in the

generation of a magnified frame of appropriate quality. As shown in Table 3.6, after the
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Figure 3.15: E↵ects of change in Magnification Factor: Figure illustrates Acceleration
method [30] output. Di↵erent values of magnification factor in increasing order from
(a) 20, (b) 40, (c) 60, (d) 100, and (e) 200 are used to generate the output shown in the
respective column. An increase in magnification factor leads to more increase in distortions
than a small increment in magnification, especially in dynamic scenarios.

Figure 3.16: E↵ects of change in Magnification Factor: Figure illustrates Anisotropy
method [32] output. For columns, (a) 50, (b) 100, (c) 200, (d) 500, and (e) 1000, respective
magnification factor values are used to generate magnified output. As visible from the
figure, with an increase in magnification factor, there are minute changes in magnification
while increments in distortions (especially in dynamic scenarios).
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Figure 3.17: E↵ects of change in Magnification Factor: Figure illustrates Jerk-Aware
method [31]. Di↵erent values of magnification factor in increasing order from (a) 10, (b)
30, (c) 50, (d) 150, and (e) 400 are used to generate the output shown in the respective
column. As visible from the figure, with an increase in magnification factor, there are
minute changes in magnification while increments in distortions (especially in dynamic
scenarios).

Figure 3.18: E↵ects of change in Magnification Factor: Figure illustrates Phase based
method [26] output. Di↵erent values of magnification factor in increasing order from (a)
10, (b) 20, (c) 40, (d) 60, and (e) 100 for baby video and (a) 1, (b) 2, (c) 5, (d) 10, and
(e) 100 for gun video are used to generate the output shown in respective column (note:-
for other methods same values are used for both the videos). The linear methods are not
suitable for dynamic scenarios, as they are unable to ignore dynamic motion. So, they
produce large distortions in gun video (dynamic scenarios). Whereas in static scenario
(baby videos), with an increase in magnification factor there is increment in both, the
amount of magnification and ringing artifacts (visible as lines overlapping the edges of
motion objects) in the static scenario.
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Figure 3.19: E↵ects of change in Magnification Factor: Figure illustrates Oh et al. method
[29] output. Di↵erent values of the magnification factor in increasing order from (a) 10,
(b) 20, (c) 50 (d) 100, and (e) 200 are used to generate the output shown in the respective
column. It produces more magnification, (both in static and dynamic scenarios), but it also
produces some unwanted motion (visible as large spikes in the temporal slice) and blurry
distortions in the video. Distortions are increased with inclemently in the magnification
factor.

Figure 3.20: E↵ects of change in Magnification Factor: Figure illustrates our Base model
(M1) output. Di↵erent values of the magnification factor in increasing order from (a) 10,
(b) 20, (c) 50 (d) 100, and (e) 200 are used to generate the output shown in the respective
column. M1 shows fewer distortions while increasing the amount of magnification as
compared to other SOTA methods, both in static and dynamic scenarios.
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Figure 3.21: E↵ects of change in Magnification Factor: Figure illustrates our lightweight
model (M2) output. Di↵erent values of the magnification factor in increasing order from
(a) 10, (b) 20, (c) 50 (d) 100, and (e) 200 are used to generate the output shown in the
respective column. M2 also shows a good amount of magnification, but with an increase
in magnification factor, its performance degrades as compared to M1. This is expected
as M2 has much fewer parameters than M1, so their performance gap between becomes
observable in extreme scenarios.

Table 3.6: Aggregate Mean Square Error (MSE) computed across synthetic videos on (a)
Without proxy model based feature loss training, (b) Without feature sharing encoder,
(c) Without appearance Encoder, (d) Without Ledge loss, (e) Without Lp loss and (e)
Ours base model (M1) on synthetic videos. The proposed method has the minimum error.
(First best shown in bold.)

Methods M1 (a) (b) (c) (d) (e)

MSE 23.07 27.85 30.1 37.7 31.1 40.2

inclusion of all the modules and losses in the training process, the proposed method has

the minimum MSE value.

3.3 Summary

In this chapter, we discuss a deep learning based model for video motion magnification. It

consists of proxy model based feature loss, feature sharing based encoders, and appearance

encoder based regularization terms, to reduce the e↵ects of noise, illumination etc and

refine the motion features. The appearance encoder also helps to extract common

appearances in the input frames and combine them with the manipulator output, which

is given to the decoder to produce a magnified frame. Additionally, a lightweight model

with reduced computational complexity is proposed along with the base model. The

results of the proposed models are evaluated qualitatively and quantitatively on real
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and synthetic videos with SOTA methods. Results show that the proposed models

perform better than the existing methods both qualitatively and quantitatively for motion

magnification. However, various applications require di↵ering levels of computational

complexity. Therefore, there is a need for a versatile approach that can accommodate

application-specific computational models.



Chapter 4

A Knowledge Distillation Based

Latency Aware – Di↵erentiable

Architecture Search for Video

Motion Magnification

For healthcare applications like real-time heart rate and respiration rate monitoring, or in

industries where time constrained output is needed, current methods are computationally

heavy. Not much work is done to make the framework computationally cost-e↵ective.

Furthermore, applications of motion magnification are increasing day-by-day [61], [21],

[62], [18], [11], [63], [64], [65] etc. Di↵erent applications demand di↵erent latency

constraints, depending on their use, hardware etc. So, there is a need for a framework to

generate application-specific time constrained, motion magnification models. Nowadays,

hardware-aware Neural Architecture Search (NAS) based solutions are becoming popular

for searching computationally constrained CNN architectures [66],[67], [68], [69], [70], [71].

But these approaches mainly focus on image classification problems and very less work

has been done on image translation problems [51], [72], [73], [74]. Also, existing NAS

algorithms are not directly applicable to the motion magnification problem, due to the

following challenges:

They use a single stream encoder for training a super-net, so there is a need to

extend them for multiple streams for motion magnification problems [29]. But this

will increase the memory consumption of the super-net drastically.

Various applications of motion magnification require di↵erent latency constrained

solutions, so joint optimization of latency and accuracy is needed. The algorithm

should focus on finding the best architecture under fixed latency constrain rather

than further decreasing model latency than required, at the expense of output

accuracy.

Further, finding the optimum architecture under fixed latency constraints, requires

search space to be specifically tailored for video motion magnification problems.
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Search for Video Motion Magnification

Keeping these points into consideration, we propose a Knowledge Distillation Based

Latency Aware-Di↵erentiable Architecture Search (KL-DNAS) method to solve the latency

constrained motion magnification problem. The main contributions of this work are

summarized as follows:

We propose training a student super-net architecture by parts while using knowledge

distillation to transfer knowledge from the teacher model, to reduce memory

requirements for the architecture search, and to improve denoising characteristics

for motion magnification.

We use layer-wise network search and propose separate search spaces for di↵erent

parts of the student architecture. Further, NAS Layer-(R) and NAS Layer-(C)

are proposed to search among di↵erent receptive fields and feature connections

respectively.

A novel latency loss is proposed to jointly optimize network accuracy and target

latency in student architecture search.

Physical accuracy of the searched student model is evaluated and the results are

qualitatively and quantitatively analyzed. Further, the analysis shows that the

student model has achieved state-of-the-art results.

Teacher and searched student networks are trained on the dataset provided in [29] and,

compared qualitatively and quantitatively on di↵erent tasks with state-of-the-art methods

for motion magnification. Further, an ablation study is conducted to analyze the e↵ect of

di↵erent parts of the proposed method.

4.0.1 Neural Architecture Search (NAS)

Primarily, computationally expensive reinforcement learning based algorithms were

proposed for Neural Architecture Search (NAS) [75], [76]. Further, di↵erent methods

were proposed for a reduction in their computational costs [77], [78], [76]. Evolutionary

algorithms based network search is also able to give good results [79], [80],[81]. Moreover,

one shot based methods were proposed, for a reduction in the search cost of the network

[82], [83]. In this, the proposed super-net covers all the candidate architectures, so it

is trained only once. To train a large super-net, some methods sampled a single path

[84], [85] to reduce memory costs and used it as a performance estimator [66]. Whereas

DARTS [86] based methods [51], [72], [73] use gradient descent to jointly optimize weights

of super-net and parameters of network search. Even though, very few works are done on

the extension of NAS on other computer vision problems. Due to DARTS simplicity and

e↵ectiveness, it is used in di↵erent applications [87], [88], [89], [90], [51], [72], [73], [74]. In

our work, we try to extend DARTS based gradient descent network search for the video
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Figure 4.1: Teacher architecture for motion magnification. It consists of three main parts:
1) Encoders (ETa, ETb), 2) Manipulator MT and Appearance Encoder AT , and 3) Decoder
DT . Frames xt and xt�1, with mf as the magnification factor are given as input to the
network.

translation problem of motion magnification. Also, we have tried a random sampling of

the path, similar in [91], [92] to reduce memory cost but the model does not converge. So,

such techniques are not feasible for our problem.

Knowledge Distillation (KD) is a transfer of knowledge from the teacher network to the

student network [54]. KD is used to progressively train the student architecture from

the teacher for e�cient student training [93]. KD with NAS is preferred to increase

the capacity of the student model [94]. Li et al. [94] suggest knowledge of a teacher

model lies not only in the network parameters but also in the network architecture.

Li et al. [94] propose KD with NAS to blockwise search the architecture, for image

classification problems. It does not take into account the e�ciency of previous searched

blocks. Whereas, our work is di↵erent, as it searches by parts in a serial order. So, it

takes into account the feature e�ciency of previous search architecture blocks in the next

architecture search. Further, KD is employed to enforce denoising characteristics and

reduce memory requirements in network architecture search (see Section 4.1.2).

4.1 Proposed Framework

In the following subsections, we discuss the teacher model. Further, we explain our

approach in detail. We explain the search of the student model by parts from the teacher

network. Then we illustrate the layer-wise search space and define the latency loss for the

student architecture search.

4.1.1 Teacher Model

The teacher model consists of two-stream encoders to convert input frames to feature space,

in which motion information is enhanced and can be easily extracted. They are represented

as ETa and ETb (Subscripts T , S, denote teacher and student network, and symbol E, M ,
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A, D denote the encoder, manipulator, appearance encoder, and decoder respectively). It

uses manipulator MT (.) to extract the motion information and appearance encoder AT (.)

to get a common appearance between input frames. Decoder DT (.) combines the output of

the manipulator and appearance block to generate the magnified output. Residual blocks

are used to transform the features (A detailed diagram is shown in Figure 4.1).

Oh et al. [29] use color perturbation frames and regularization across the encoders to

separate shape and texture information from features generated by each encoder. This

also helps to reduce the e↵ects of the noise [29]. But their method sometimes produces

blurry distortions and artifacts. Where in the teacher model, to reduce noise, features

across both the encoders are shared among each other, and appearance encoder AT (.) is

used. Loss between AT (.) features and input frames is used to extract common appearance

features. For calculating loss across AT (.), no noise is added to the ground truth (input

frames). So, it will force denoising characteristics. The assumption is, that common

appearance features will have common information across frames where motion is not

present. As this information will be the same in the input and output, it will help in the

generation of the output.

L1 loss with edge loss and perceptual loss is used for teacher model training. The loss

function for teacher training is defined as Lmag(bYp, Ygt) in Eq. (6.9).

Lmag(bYp, Ygt) = �1(||bYp � Ygt||1) + �2(||rbYp �rYgt||1) + �3(||�i(bYp)� �i(Ygt)||1)

+||AT (ETa(xt�1), ETb(xt))� xt�1||1 + ||AT (ETa(xt�1), ETb(xt))� xt||1
(4.1)

where, bYp is predicted frame, Ygt is the ground-truth. r represents the finite di↵erences in

a horizontal and vertical direction for edge loss. �i illustrates the VGG-16 feature space

and used as perceptual loss [59]. �1 = 10.0, �2 = 1.0 and �3 = 0.1 values are used for

network training.

4.1.2 Proposed Method

For finding the motion magnification architecture, a super-net model is trained by parts

and knowledge distillation. For this, first, a teacher model is trained without adding noise

and is used to supervise the training of di↵erent parts of the student super-net. Training

by parts helps to reduce memory consumption and transfer knowledge from teacher model

to student [94]. So, the overall structure of the student network is similar to that of

the teacher network but each part of the student network has a di↵erent search space.

Also, the problem of video motion magnification is sensitive to noise, as both motion and

noise are minute in nature. We assume denoising characteristics can be forced in network

architecture search using KD by parts.

Instead of finding cells like [86], we search individual layers for each part of the student
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Figure 4.2: Training of student super-net by parts. Student: (a) Encoder architecture
search, (b) Manipulator and Appearance encoder architecture search, and (c) Decoder
architecture search training processes are shown respectively.

network. Layer-wise search space consists of a search among di↵erent receptive fields and

connections among various layer features. In the video motion magnification problem,

selecting optimum receptive fields for di↵erent parts of the network will help us to reduce

the network complexity, size etc. Layer-wise search gives the network the ability to change

the receptive field of each layer individually for better output. To facilitate the network in

finding relations among di↵erent features, the network has the option to decide whether

to add, concate(.), or have no connection with previous layer features. Moreover,

as network layers can also have a relation with more than one previous layer feature or

features from di↵erent frames, so here, we used serial connections (see Section 4.1.2). The

number of possible combinations of networks in the student supernet goes to 933 ⇡ 1031.

With such a large search space, a network can find residual blocks (used in [29]), or even

more optimum blocks for motion magnification.

Di↵erent applications of motion magnification require di↵erent computational complexity.

Instead of using the hit and trial method to achieve the desired latency, we propose latency

based loss. We specify the desired latency and jointly optimize it with accuracy. It prevents

any further decrease in latency at the expense of accuracy. Hence, the network can focus

on searching for an e�cient model under fixed target latency.

Knowledge Distillation Based Training by Parts

Searching a whole architecture directly for video motion magnification requires a lot of

memory. To overcome the memory issue, we propose an architecture training by parts.

Searching by part enables us to train the network until it converges. This helps to reduce
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Figure 4.3: Search space of (a) Student Encoder architecture block, (b): (b1) Student
Appearance encoder architecture block, (b2) Student Manipulator architecture block, (c)
Student Decoder architecture block, (d) NAS layers-(R), (e) NAS layers-(C) shows layers
search spaces.

the representation shift caused by shared parameters [94] and helps in the correct selection

of the candidate model. Student network is searched by taking latency constrain into

account. We use the teacher network to guide the search for the student model. The

teacher network is trained without adding noise, whereas the student architecture is being

searched with noisy input. KD further helps to enforce de-noising characteristics in student

architecture search. The student model search is divided into three parts to reduce the

memory requirements: 1) Encoder Architecture Search, 2) Manipulator and Appearance

Block Architecture Search, and 3) Decoder Architecture Search.

First, to search the encoder architecture, ETa and ETb, the output features of two stream

encoders of the teacher network are used to transfer knowledge (LE) as shown in Figure

4.2(a) and in Eq. (5.2).

LE = ||ETa(Xt�1)� ESa(xt�1)||1 + ||ETb(Xt)� ESb(xt)||1 (4.2)

Where, xt�1, xt and Xt�1, Xt are the input frames with noise and without noise

respectively. Also, ESa and ESb are the two stream encoder features of the student

super-net. Super-net encoder features are given to the teacher network during training

while freezing the teacher network weights, (also helps in transfer knowledge) as shown in

Figure 4.2(a) and in Eq. (5.8) to generate predictions (bY E
p ).

bY E

p = DT (MT (ESa(xt�1), ESb(xt),mf ), AT (ESa(xt�1), ESb(xt))) (4.3)
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The final loss function used for searching the encoder architecture block is defined as LE

in the following:

LE = LKD

mag(bY E

p , Ygt) + �4L
KD

E + Llat(�) (4.4)

�4= 0.1 value is used for training and Llat(�) is the proposed latency loss (Please see

section 4.1.2 for more detail) . Similarly, Knowledge distillation based loss (LM,A as shown

in Figure 4.2(b)) for a search of manipulator and appearance encoder block is defined as:

LM,A = ||AT (ETa(Xt�1), ETb(Xt))�AS(E
⇤
Sa(xt�1), E

⇤
Sb(xt))||1

+||MT (ETa(Xt�1), ETb(Xt),mf )�MS(E
⇤
Sa(xt�1), E

⇤
Sb(xt),mf )||1

(4.5)

Where mf is the magnification factor that decides the amount of magnification. The

searched encoder for the student network is used to generate features for the super-net

manipulator and appearance encoder as shown in Figure 4.2(b) (⇤ indicates the searched

architectures in the equations). Super-net appearance encoder A(.) and manipulator M(.)

search block features are given to the teacher decoder to generate predictions bY M,A
p , (also

helps in Knowledge distillation) as shown in Figure 4.2(b) and in the following:

bY M,A

p = DT (MS(E
⇤
Sa(xt�1), E

⇤
Sb(xt),mf ), AS(E

⇤
Sa(xt�1), E

⇤
Sb(xt))) (4.6)

Similarly, Eq. (4.7) defines the final loss LM,A for the student super-net appearance

encoder A(.) and manipulator M(.) search block.

LM,A = LKD

mag(bY M,A

p , Ygt) + �4L
KD

M,A + Llat(�) (4.7)

For Decoder D(.) search, architectures found for encoder, manipulator and appearance

encoder is used as the backbone, shown in Figure 4.2(c) to generate prediction bY D
p as

shown below:

bY D

p = DS(M
⇤
S(E

⇤
Sa(xt�1), E

⇤
Sb(xt),mf ), A

⇤
S(E

⇤
Sa(xt�1), E

⇤
Sb(xt))) (4.8)

The final loss for the student super-net decoder search block is illustrated as:

LD = Lmag(bY D

p , Ygt) + Llat(�) (4.9)

Gradient decent based search

Let O be a set of candidate operations (e.g., 3X3 Conv with rate, r 2 (1, 2, 4, 8) 5X5

Conv with rate, r 2 (1, 2, 4, 8) and no connection)) where each operation represents

some function o(.) to be applied to ith- layer output feature, x(i). To make the search
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space continuous, the categorical choice of a particular operation is relaxed to a softmax

over all possible operations:

ō(i,j)(x) =
X

o2O
((exp(↵i,j

o )/
X

o02O
exp(↵i,j

o0 ))o(x)) (4.10)

where ↵i,j
o is the weight of the jth layer output feature of operation o, applied on the input

feature of ith layer. At the end of the search, a discrete architecture can be obtained by

replacing each mixed operation ō(i,j) with o(i,j) = argmaxo2O (↵i,j
o ).

Search Space

Di↵erent search spaces are used for 1) Encoder, 2) Manipulator and Appearance module,

and 3) Decoder as shown in Figure 4.3 (a), (b), and (c) respectively. Each of the di↵erent

search spaces has two basic elements: NAS Layer-(R) (LR) and NAS Layer-(C) (LC).

Their structure is shown in Figure 4.3 (d), (e). In [31], [26], [28], [30] uses steerable

pyramids for high receptive fields. [29] depends on di↵erent numbers of residual blocks

in separate parts of the network for varying receptive fields. Selecting optimum receptive

fields in di↵erent parts of the motion magnification network will help to improve the

quality and reduce parameters. Layer-wise search through di↵erent receptive fields: NAS

Layer-(R) (LR), help us to achieve this. In LR, a higher dilation rate can make the

output blur, and expanding kernel size will increase the number of parameters. With

these constraints, we experimentally narrow down the LR search space to a total of

9 operations with di↵erent receptive fields (3X3 Conv with rate, r 2 (1, 2, 4, 8) 5X5

Conv with rate, r 2 (1, 2, 4, 8) and no connection) as shown in Figure 4.3 (d). It

takes one input feature and maps it to an output.

LC is used to find relationships among the previous layer features Layer(L) and features

coming from other preceding layers Layer(L�1)....Layer(L�n). It takes multiple inputs

and maps them to a single output tensor as shown in Figure 4.3 (e). Its search space

contains three di↵erent operations (No connection, Add, Concate(.)). Searching is

done one at a time e.g. first relation between Layer(L) and Layer(L � 1) is found, and

then their output’s (Output(L�n� 1)) relation with Layer(L� 2), is searched in a serial

order till it reaches Layer(L� n) and gives Output(L). This gives the network an option

to select more than one incoming feature with di↵erent operations. With this, the search

space increases to ⇡ 1031 and covers residual blocks, dense blocks, etc. Also, as shown in

Figure 4.3 (a) encoder architecture search block LC have incoming features from both the

encoders. This helps the network to find relations among input frame features. Whereas in

Figure 4.3 (b) appearance encoder, manipulator (b1, and b2) and (c) decoder respectively,

LC have no incoming features from parallel blocks. We assume that, if the search space

is large enough to cover the well known optimum blocks and architectures like teacher
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Table 4.1: Comparison of the state-of-the-art deep learning method [29],[47], the teacher
network, its variants, and our searched student networks in terms of the number of
parameters, latency, and FLOPS. Figure 4.4, 4.5, 4.6, 4.7 illustrates the teacher network,
its variants, and our searched student network architectures.

Model Parameters Latency GFLOPs

Oh et al. [29] 0.98 M 95 ms 268.6

STBVMM [47] 31.2 M 872 ms 1376.8

Ours Teacher Model(TM) 1.1 M 142 ms 375.5

Ours SM1 0.35 M 64 ms 93.1

Ours SM2 0.47 M 69 ms 123.9

Ours SM1� 7 0.8 M 91 ms 207.3

TM1 0.33M 73 ms 117.1

TM2 0.37M 69 ms 113.4

network, it will be able to find even more optimum networks for motion magnification

Latency Loss

Normally, hardware-aware NAS algorithms are used to find a model with low latency [92],

[66]. But, there is a trade-o↵ between output quality and latency. Since time constraints

vary with applications, and in previous methods latency weights need to be changed

manually in a hit and trial manner. Decreasing latency more than necessary can have

detrimental e↵ects on the quality of the output. To prevent this, we propose a novel

Llat(�) function as given in Eq. (4.11). Where, �target is the target latency value for

the model and ↵ is the model latency calculated from the lookup table, as done in [92].

In Llat(�), log modulus of ratio ↵/�target is taken. If the model latency deviates from

the target in the search process, Llat(�) value increases. So, super-net edge weights are

optimized to find the network producing better quality output, while maintaining the

target latency.

Llat(�) = |log(↵/�target)| (4.11)

4.2 Experimental Results

Two student models SM1 and SM2, with two slightly varying latency constraints of 23ms

and 25ms at 384X384 on Oh et al. [29] dataset are searched. Both SM1 and SM2 also

demonstrate the e↵ects of Llat(�). SM1 has 3.14X, 2.8X, and 89.1X fewer parameters

than the teacher model, Oh et al. [29], and STBVMM [47], respectively. When comparing

with the same models, SM2 has 2.34X, 2.08X, and 66.3X fewer parameters, as shown in
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Figure 4.4: Architecture of teacher model TM1

Figure 4.5: Architecture of teacher model TM2
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Figure 4.6: Architecture of searched student model SM1

Figure 4.7: Architecture of searched student model SM2
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Table 4.2: Parameters of di↵erent methods for motion magnified videos.

Methods Video Mf Frequency

Ours (SM1, SM2,teacher model) Gun 10 N/A
Ours (SM1, SM2,teacher model) Drill 10 N/A

Ours (SM1 ) Guitar 9 N/A
Ours (SM1, SM2,teacher model) Physical accuracy(rod video) 10 N/A
Ours (SM1, SM2,teacher model) synthetic videos 50 N/A

STBVMM [47] Gun 10 N/A
STBVMM [47] Drill 10 N/A
STBVMM [47] Physical Accuracy 10 N/A
STBVMM [47] synthetic videos 50 N/A

Oh et al. [29] Gun 10 N/A
Oh et al. [29] Drill 10 N/A
Oh et al. [29] Physical Accuracy 10 N/A
Oh et al. [29] synthetic videos 60 N/A

Acceleration [30] Gun 10 30
Acceleration [30] Drill 4 3
Acceleration [30] Physical Accuracy 20 15
Acceleration [30] synthetic videos 100 15

Jerk-Aware [31] Gun 10 20
Jerk-Aware [31] Drill 25 3
Jerk-Aware [31] Physical Accuracy 20 15
Jerk-Aware [31] synthetic videos 100 15

Anisotropy [32] Gun 100 20
Anisotropy [32] Drill 100 3
Anisotropy [32] Physical Accuracy 200 3
Anisotropy [32] synthetic videos 200 15

Phase Based [26] Gun 2 0.04-0.40
Phase Based [26] Drill 5 1.00-14.00
Phase Based [26] Physical Accuracy 5 1.00-14.00
Phase Based [26] synthetic videos 200 0.00-15.00

Euler [27] Gun 2 0.05-0.4
Euler [27] Drill 5 0.05-0.4
Euler [27] Physical Accuracy 5 0.05-0.4
Euler [27] synthetic videos 200 0.00-15.00

Table 7.1. Furthermore, our searched student networks have lower latency compared to

the teacher, Oh et al. [29], and STBVMM [47]. Latency values are calculated at 720X720

resolution on NVIDIA 2080 RTX for higher quality output. Searching by parts puts the

target latency on each part. Sometimes, networks prefer no connection, resulting in lower

latency than targeted. The di↵erence between the target value and the actual search part

latency is added to the target latency of the next part.

Training: All architectures are searched on NVIDIA 2080 RTX (8GB) in 200 hours. The

whole architecture is of 6.2M parameters with 461 GFLOPS, whereas by parts, it is (a)

2.6 M parameters with 197 GFLOPS for encoder (b) 2.4 M parameters with 181 GFLOPS

for appearance encoder and manipulator, (c) 1.3 M parameters with 102 GFLOPS for

decoder (at 384x384 resolution for SM1 search). For the training of the network Gaussian
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noise is added to the input.

In the following section, we compare the searched architecture to the state-of-the-art

methods [27], [26], [30], [31], [32], [29],[47] qualitatively and quantitatively. The details

of parameters used for result generation are shown in Table 4.2. Further, to check the

physical accuracy of the output, a separate experiment is carried out. An ablation study

is conducted to show the importance of various components in the architecture search.

4.2.1 Qualitative Analysis on Real Videos

Analysis on Gun-shooting Video Figure shows the results of state-of-the-art

methods on gun-shooting video. The video contains large translation motion due to the

movement of the camera and subtle motion in the forearm of the shooter due to gun

recoil. We aim to magnify the subtle motions in the forearm in the presence of large

camera motion. To show this, spatio-temporal slices at the forearm are taken as shown

in Figure , at the red strip. Phase-based [26], Eulerian [27], Jerk-aware method [31],

Anisotropy [32], Acceleration [30] methods have lower magnification as compared to the

search student networks (more motion in the forearm results in more bending of the arm,

in the temporal slice it is marked in black box). Oh et al. method [29] sometimes produces

spurious motion and causes blurriness distortions in some frames (they are visible as large

spikes in Oh et al. temporal slice). While STBVMM [47] shows promising results, but

it comes with high computational complexity. In contrast, our proposed NAS method

can search a student architecture which produces fewer distortions compared to Oh et al.,

achieve greater magnification than [31], [32], and [30], and maintain lower computational

complexity than [47], [29], even in dynamic scenarios (as seen in Figure 4.10 ).

Analysis on rotational motion Figure 4.9 shows the rotating hand drill, with

rotational motion along its axis. Rotational motion is di�cult to magnify, so a still video is

taken to analyze the impact of magnification. In 2D, this rotational motion is perceived as

a spiral motion. Our aim is to increase the spiral motion (increased spiral motion is shown

as more outwards extension of rod radius). This motion is shown in the spatial-temporal

slice in Figure 4.8. Hand design filter-based methods [26], [27], [31], [32], [30] produce

ringing artifacts around the rod (visible as white edges around the rod and white spikes in

the temporal slices in Figure 4.9 ). Ringing artifacts are produced due to phase ambiguity

[49]. Oh et al. can magnify the motion but produce some distortions. Its separation

of shape information from texture is not e�cient and sometimes it results in distorted

intermediate features which produce unwanted flickering (visible as white spikes in Figure

4.9 temporal slice). Whereas [47] has demonstrated favorable results, but it su↵ers from

significant computational complexity. Instead, the proposed NAS method is able to find

architectures that highlight the motion of interest with less distortions and computational
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Figure 4.8: Gun-shooting video: Visualizing the impact of gun recoil through the arm.
First, video frames are shown, and in the next row, the temporal slices taken from the red
strip are illustrated. The visual comparison is done between (a) Input, (b) Phase-based
[26] (c) Eulerian [27] (d) Acceleration based method [30], (e) Jerk-Aware method [31], (f)
Anisotropy method [32], (g) Oh et al. [29], (h) STBVMM [47], (i) Our SM1, (j) Ours
Teacher model and (k) Ours SM2 method output video frames and temporal slices are
shown respectively.

Figure 4.9: Hand Drill video: Visualizing the rotational motion of drill rod. In the first
row, frames from the video depicting the drill rod are shown, and in the next row, the
spatial temporal slices at the red strip are presented. The visual comparison is done
between (a) Input, (b) Phase-based [26] (c) Eulerian [27] (d) Acceleration based method
[30], (e) Jerk-Aware method [31], (f) Anisotropy method [32], (g) Oh et al. [29], (h)
STBVMM [47], (i) Our SM1, (j) Ours Teacher model and (k) Ours SM2 method output
video frames and temporal slices are shown respectively.
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Figure 4.10: For (a) input frame, features of (b) Ours SM1, (c) Ours SM2 search student
model are illustrated. These features highlight the areas which closely resemble the motion
parts.

complexity as shown in Figure 4.10.

4.2.2 Physical Accuracy of the model:

Is our model’s output is physically accurate or not? To answer this, we experiment

with set-up as shown in Figure 4.11 and compared video magnified signal with ultrasonic

sensor amplified signal. A mechanical rod is displaced from its position and an ultrasonic

sensor is used to measure the signal. Video of the mechanical rod is magnified and the rod

displacement signal is extracted and compared with the ultrasonic sensor signal as shown

in Figure 4.11 (for more details please see section 3.3.2). Both the sensor measured and the

computed magnified signal are rescaled from 0 to 1 and mean absolute error (MAE) values

are calculated across SOTA methods. Distortion produced by other methods (ringing

artifacts, flickering motion etc) leads to more error while measuring as compared to ours

(illustrated in Figure 4.12).

4.2.3 Quantitative Analysis

Quantitative Analysis on Synthetic Videos To assess proposed networks, synthetic

videos are used. Twenty-five videos with varied backgrounds are generated, with their

average Mean Squared Error (MSE) plotted in Figure 4.13. Circles with a 40-pixel radius

mimic subtle motions, including horizontal, vertical, and diagonal movements. Sub-pixel

motion is simulated via up-sampling, displacement, and Gaussian noise addition. Each

method’s magnification aligns with ground truth, revealing noise robustness (for more

details please see section 3.2.3). The magnification factor of di↵erent methods is changed

to produce the same amount of motion as in ground truth. This helps in analyzing

how individual methods [31], [32], [30], [29], [47] magnify di↵erent motions in separate

environments and their robustness towards the noise. Each method needs to produce

100X magnification as compared to the input video, to match the ground truth. With
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Figure 4.11: Physical Accuracy: Comparison between our method and other SOTA
methods output (in red) with the sensor signal(in blue) for (a) input, (b) SM1, (c)
SM2, (d) Oh et al. [29], (e) Jerk-aware [31], (f) STBVMM [47], (g) Acceleration [30],
(h) Anisotropy [32], (i) Euler [27], (j) Phase Based [26] and (k) Teacher model (TM).
The optical flow across the input frame and the magnified frame(of respective methods) is
computed to extract the motion signal. Then the average direction along the image patch
(marked in the bounding box in(a)) is calculated and shown above.

Figure 4.12: Mean Absolute Error (MAE) is computed between the extracted signal from
magnified video and sensor measured signal. The error values of SOTA methods (a) Phase
Based [26], (b) Euler [27], (c) Oh et al. [29], (d) Acceleration method [30], (e) Jerk-aware
[31], (f) Anisotropy [32], (g) STBVMM [47], and the proposed method SM1, SM2 and
TM are shown

.
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Figure 4.13: For comparision between (a) Eulerian [27], (b) Phase-based [26], (c)
Acceleration based method [30], (d) Jerk-Aware method [31], (e) Oh et al. [29], (f)
Anisotropy method [32], (g) STBVMM [47], our Teacher model TM1, TM2, TM , Ours
searched student model SM1, and SM2, average SSIM values are computed on 25
synthetically generated videos with di↵erent backgrounds, containing subtle motion of
circles.

Figure 4.14: SSIM values on Euler method [27], Phase based method [26], Anisotropy
method [32], Jerk-aware method [31], Acceleration method [30], Oh et al. method
[29], Transformer based method [47], teacher model, SM1 and SM2 on 25 synthetically
generated videos containing di↵erent subtle motion of circles with various backgrounds.

such a large magnification, the e↵ects of distortions become more apparent and lead to

degraded output. Figure 4.13 shows that the proposed method searched networks have

the highest SSIM values for the same amount of output motion as compared to SOTA

methods. Further, di↵erent teacher networks (TM1, TM2) with lesser latency are trained

for comparison and, their specification and results are shown in Table 7.1. From Figure

4.13, it can be seen that the searched networks are more e�cient.

4.3 Additional Experiments

Frequency selectivity: Deep learning methods lack direct training with temporal

filters, so applying temporal filters to intermediate features can result in inaccuracies

[29]. To address this challenge, we advocate for an initial pre-processing step involving

temporal filtering to mitigate unwanted motion artifacts. Drawing inspiration from [26], we

utilize the output obtained at a conservative magnification factor (magnification factor=4)

as input to our method. As depicted in Figure 4.15, our approach emphasizes relevant
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Figure 4.15: E↵ects of temporal filter: We first pre-processed the video with the temporal
filter to suppress unwanted motion. For this, [26] method’s output at a small magnification
factor ( magnification factor=4) is given as an input to the searched student network SM1.
Intermediate features (row-2,3) of the searched student model, highlighting the motion
in the red bounding box. (a), (b) and (c) highlight the motion parts E-string (80Hz),
A-string(108Hz), and D-string (144Hz) of the guitar.

motion characteristics within intermediate features. Notably, the variability in temporal

filter inputs leads to the highlighting of distinct motion attributes.

Visual e↵ects on change in magnification factor: Visual e↵ects of increasing

magnification factor vary across video analysis methods. The Acceleration method exhibits

distortions, particularly in dynamic scenarios (Figure 3.15 [30]). The Anisotropy method

shows subtle magnification changes with distortions, especially in dynamic settings (Figure

3.16 [32]). The Jerk-Aware method demonstrates minimal magnification alterations

with significant distortions, particularly in dynamic scenes (Figure 3.17 [31]). The

Phase-based method reveals substantial distortions in dynamic scenarios and ringing

artifacts in static scenes (Figure 4.16 [26]). Oh et al.’s method provides enhanced

magnification but introduces unwanted motion and blurry distortions, worsening with
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Figure 4.16: E↵ects of change in Magnification Factor: Figure illustrates Phase based
method [26] output. Di↵erent values of magnification factor in increasing order from (a)
10, (b) 20, (c) 40, (d) 60, and (e) 100 for baby video and (a) 1, (b) 2, (c) 5, (d) 10, and
(e) 100 for gun video are used to generate the output shown in the respective column.
The linear methods are not suitable for dynamic scenarios, as they are unable to ignore
dynamic motion. So, they produce large distortions in the gun video (dynamic scenarios).
Whereas in static scenario (baby videos), with an increase in magnification factor, there
is an increment in both, the amount of magnification and ringing artifacts (visible as lines
overlapping the edges of moving objects) in the static scenario.

Figure 4.17: E↵ects of change in Magnification Factor: Figure illustrates Euler based
method [27] output. Di↵erent values of magnification factor in increasing order from (a)
10, (b) 20, (c) 40, (d) 60, and (e) 100 for baby video and (a) 1, (b) 2, (c) 5, (d) 10, and
(e) 100 for gun video are used to generate the output shown in the respective column.
The linear methods are not suitable for dynamic scenarios, as they are unable to ignore
dynamic motion. So, they produce large distortions in a gun video (dynamic scenarios).
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Figure 4.18: E↵ects of change in Magnification Factor: Figure illustrates STBVMM [47]
method output. Di↵erent values of magnification factor in increasing order from (a) 10,
(b) 20, (c) 50 (d) 100, and (e) 200 are used to generate output for both videos. It produces
good magnification, (both in static and dynamic scenarios), but it starts to produce some
blurry distortions at higher magnification factors.

Figure 4.19: E↵ects of change in Magnification Factor: Figure illustrates SM1 model
output. Di↵erent values of magnification factor in increasing order from (a) 10, (b) 20,
(c) 50 (d) 100, and (e) 200 are used to generate output for both videos. SM1 shows fewer
distortions while increasing the amount of magnification as compared to other SOTA
methods, both in static and dynamic scenarios.

higher magnification (Figure 4.18 [29]). Conversely, the Base model (M1) shows fewer

distortions with increasing magnification, while the lightweight model (M2) su↵ers

performance degradation, particularly at extreme magnification levels due to reduced

parameterization (Figure 7.12, Figure 7.13).

4.3.1 Ablation Study

E↵ect of appearance encoder A(.) and manipulator M(.) in magnification:

To analyze the e↵ects, the appearance encoder and manipulator, are removed one at a

time in SM1 and trained. The appearance encoder helps to get a common appearance
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Figure 4.20: E↵ects of change in Magnification Factor: Figure illustrates our SM2 model
output. Di↵erent values of magnification factor in increasing order from (a) 10, (b) 20,
(c) 50 (d) 100, and (e) 200 are used to generate output for both videos.

Table 4.3: Di↵erent configurations of SM1 for ablation study. (Figure 4.6, S 4.7 represents
the architectures of searched student model SM1, SM2 and Figure 4.21, 4.22, 4.23, 4.24,
4.25, 4.26, 4.27 shows di↵erent architectures of student model SM1 used in ablation study.)

Model M(.) A(.) KDloss Lmag LR LC Llat(�)

SM1� 1 ⇥ X X X X X X
SM1� 2 X ⇥ X X X X X
SM1� 3 X X ⇥ X X X X
SM1� 4 X X X ⇥ X X X
SM1� 5 X X X X ⇥ X X
SM1� 6 X X X X X ⇥ X
SM1� 7 X X X X X X ⇥

SM1 X X X X X X X

and the manipulator helps in reducing the unwanted e↵ects of noise in di↵erent feature

maps. Their output is tested on the synthetic dataset and is shown in Table 4.3 and

Figure 4.13. Further, Figure 4.30 showcases the SSIM values of the teacher model with

and without feature sharing encoding and appearance encoder, revealing a decrease in

performance without these components. Figure 4.31 compares the average SSIM values

on synthetically generated videos with subtle motion circles, demonstrating the impact of

color perturbation versus appearance encoder on [29]. Lastly, Figure 4.32 illustrates the

e↵ects of motion on appearance encoder features, highlighting increased blur in regions of

motion as the input frame changes. Even without them deep learning can find reasonable

good weights, but they are not that much e�cient.

How does LKD
mag and LKD e↵ects? To see the e↵ects of LKD

mag and LKD, two di↵erent

architecture searches are done. One is without LKD and second is without LKD
mag. They are
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Figure 4.21: Architecture of student model SM1� 1 (without M(.)).

Figure 4.22: Architecture of student model SM1� 2 (without A(.)).
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Figure 4.23: Architecture of search student model SM1� 3 (without KDloss).

Figure 4.24: Architecture of search student model SM1� 4 (without Lmag).

Figure 4.25: Architecture of search student model SM1� 5 (without LR).
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Figure 4.26: Architecture of search student model SM1� 6 (without LC).

Figure 4.27: Architecture searched without Llat(�)
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Figure 4.28: For comparison between Our searched student networks SM1, and SM1 �
(1to7) (as mentioned in Table 4.3) average ssim values are computed on 25 synthetically
generated videos with di↵erent backgrounds, containing subtle motion of circles.

Figure 4.29: SSIM values on SM1, and SM1 � (1to7) method, on 25 synthetically
generated videos containing di↵erent subtle motions of circles with various backgrounds.

used to search the SM1. LKD forces denoising characteristics and LKD
mag helps in better

reconstruction. So, without either of them, there is a decrease in performance. Results of

the searched model evaluated on the synthetic dataset are shown in Table 4.3 and Figure

4.28. Figure 4.33 demonstrates the impact of varying the hyperparameter �4 on SSIM

values. Their is a trade o↵ between LKD
mag and LKD. LKD forces denoising characteristics

and LKD
mag helps in better reconstruction. So, without either of them, there is a decrease

in performance. We can control their e↵ects with the help of hyperparameter �4. As

there is an increase in value of �4, it puts more emphasis on noise free pseudo signal from

LKD loss, but after a particular point denoising characteristics can interfere with good

reconstruction e.g. if the model is learning to blur for denoising, then more blur will reduce

the sharpness and output quality. Higher values emphasize noise-free signals from LKD,

but excessive denoising can degrade reconstruction quality.

E↵ects of proposed layers in architecture search: To verify the e↵ects of LR

and LC in architecture search, two di↵erent search spaces are used. Without LR,

the receptive field is constrained to only one 3x3 convolution layer with rate 1 and no

connection. This helps to study the e↵ect of di↵erent receptive fields in architecture

search. Secondly, LC is removed from the search space to highlight the e↵ects of

di↵erent features in the search space. Both of these help in finding better layers,

and while constraining them there is a decrease in the performance of the searched
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Figure 4.30: Teacher Model Ablation: SSIM values of (a) Teacher model, (b) teacher
model without feature sharing encoding (c) teacher model without appearance encoder.
With either of them, there is a decrease in the performance of the teacher model. SSIM
values are computed across the synthetic dataset.

Figure 4.31: Color perturbation vs appearance encoder: Average SSIM values on 25
synthetically generated videos with di↵erent backgrounds, containing subtle motion of
circles on (a) Oh et al. [29], (b) Oh et al. [29] with appearance encoder instead of color
perturbation.

Figure 4.32: E↵ects of Motion on appearance encoder features: The features of the
appearance encoder, as Xt�1 input is fixed to frame t0 and Xt input is changed from
frame t0 to t9 lead to more blur on the regions of motion. (Please zoom in for a better
view ).

model. Their evaluated results are shown in Table 4.3 and Figure 4.28. Further,,

Figure 4.35 and 4.34 shows the internal weights of operations (3X3 Conv with rate,

r 2 (1, 2, 4, 8) 5X5 Conv with rate, r 2 (1, 2, 4, 8) and no connection) in the layer

LR (highlighted in red box in Figure 4.35) and operations ( No connection, Add,

Concate(.)) in the layer LC (highlighted in red box in Figure 4.34), respectively. In

Figure 4.34, first, relation between NASLayer(R3) and NASLayer(R2) output features

are found and their weights are shown in Figure 4.34 (b). It can be represented as

LC(NASLayer(R3), NASLayer(R2)) = Feature1. Then the relation between Feature1

and NASLayer(R1) output features are found and their weights are shown in Figure 4.34
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Figure 4.33: E↵ects of change in lambda (�4) with respect to SSIM values: A trade-o↵
exists between LKDmag and LKD: the former aids in reconstruction while the latter
enforces denoising characteristics. Adjusting �4 allows control over these e↵ects. Model
are searched with di↵erent values of � as (a) �4=0.0, (without LKD) (b) �4=0.01, (c)
�4=0.1, (d) �4=1.0, and (e) without LKD

mag loss.

Figure 4.34: Supernet model weights for operation selection: (a) shows the initial weights
and (b), (c), (d) shows the learned weights of operations after the training of NASLayer�
(C), highlighted in the red box. Operations (0) �� > No Connection, (1) �� >
Concate(.), (2) �� > Add are used in NASLayer � (C).

(c). It can be represented as LC(Feature1, NASLayer(R1)) = Feature2. In last, the

relation between Feature2 and Input features are found and their weights are shown in

Figure 4.34 (d). It can be represented as LC(Feature2, Input) = Feature3.

E↵ects of Llat(�): To study the e↵ects of latency constraints in the architecture search,

a model is trained without latency loss. Its evaluated results are shown in Table 4.3 and

Figure 4.28. Table 7.1 shows its memory requirement and latency. We consider without

latency loss SM1� 7 SSIM values as the highest values the searched network can achieve.

As, the latency values used in Llat(�) increases, SSIM values are improved. Figure 4.36
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Figure 4.35: Supernet model weights for operation selection: (a) shows the initial weights
and (b) shows the learned weights of operations after the training of NASLayer �
(R3) highlighted in the red box. Operations (0) �� > No Connection, (1) �� >
Concate(.), (2) �� > Add (3) �� > 3X3 Conv with rate 4, (4) �� > 3X3

Conv with rate 8, (5) �� > 5X5 Conv with rate 1, (6) �� > 5X5 Conv with

rate 2, (7) �� > 5X5 Conv with rate 4, (8) �� > 5X5 Conv with rate 8 are
used in NASLayer � (R).

illustrates the e↵ects of change in latency with respect to SSIM values. But values between

SM2 and SM1� 7 are pretty comparable, and it seems beyond SM2 model latency, the

improvement in SSIM values is stagnated. From the searched architectures (SM1, SM2,

and SM1 � 7), a clear trend emerges in the reduction of layers in encoder blocks. We

postulate that unlike [29], where the encoder separates shape and texture features, our

encoder is utilized to reduce the e↵ect of noise before magnification. As the output quality

relies on texture synthesis, which occurs on the decoder side, the training algorithm places

less emphasis on the encoder. Furthermore, we observe a general trend of selecting higher

receptive fields with deep networks when the latency constraints are loosened.

E↵ects of Teacher Model on student network search: Figure 4.37 demonstrates the
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Figure 4.36: E↵ects of change in latency with respect to SSIM values: (a), (b), (c), (d) are
models with latency constrain of 15, 18, 23, 25 respectively, and (e) is a model without
latency constrain. As, the last point (e) is computed without latency loss, assuming
it represents the highest SSIM value achievable by the NAS algorithm in searching the
student network. Near the highest latency point, SSIM improves less with further increases
in latency, indicating a saturation region. Conversely, at the lower latency end, SSIM
values start to decrease non-linearly.

Figure 4.37: E↵ects of Teacher Model with lesser parameters on student network search:
SSIM values of (a) Oh et al. [29], teacher model (TM), teacher model with lesser
parameters (TM �1, searched student model (SM1), (SM2) and searched student model
(SM � TM � 1) from TM � 1. SSIM values are computed across the synthetic dataset.
The proposed NAS method searched student model works better as compared to the [29].

Figure 4.38: E↵ects of Teacher Model trained on noisy data: (a) Searched student model
from teacher model trained on noisy data, TM teacher model trained on noise free data,
and the SM1 student model searched from TM .

impact of a teacher model with reduced parameters on the search for a student network.

It compares SSIM values of various models, including the teacher model (TM), a teacher

model with fewer parameters (TM � 1, with 0.645 M parameters and 211.8 GFLOPs),

two searched student models (SM1 and SM2), and a student model derived from the

teacher model with fewer parameters (SM � TM � 1) having 0.455M parameters and

118.2 GFLOPs from TM �1. The NAS method’s searched student model performs better
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compared to the reference model. In Figure 4.38, the e↵ects of a teacher model trained

on noisy data versus noise-free data on the performance of a searched student model are

explored.

4.4 Summary

In this chapter, we discussed a novel Knowledge Distillation based Latency aware-

Di↵erential Architecture Search (KL-DNAS) method to search latency constrained student

models under teacher network supervision for video motion magnification. Using the

teacher model, the student models are searched by parts with a similar structure as the

teacher model and improved denoising characteristics. Layer wise di↵erential architecture

search is used to find student networks. NAS Layer-(R) and NAS Layer-(C) layers help

to find di↵erent receptive fields and connections across features. Llat(�) is used to make

the architecture search process latency aware. Two di↵erent student models are searched.

The performance of the proposed networks is evaluated by qualitative and quantitative

analysis with state-of-the-art methods for motion magnification. Further, an experiment

is done to check the physical accuracy of the magnified videos. An extensive ablation

study is conducted to analyze various modules of the framework. The results demonstrate

that the two searched student models having fewer parameters than the teacher model

and Oh et al. model, give better results than state-of-the-art methods in terms of better

motion magnification with fewer distortions, blurriness, and artifacts. While our approach

has demonstrated promising results with the defined constrained, there are still areas for

further improvement and exploration. One potential direction is to leverage intuition

from hand-designed methods utilizing complex steerable pyramids, which were employed

to mitigate the e↵ect of noise during motion magnification and integrate them with deep

learning-based approaches to enhance their e�ciency further.



Chapter 5

Multi Domain Learning Based

Light-Weight Network for Video

Motion Magnification

5.1 Introduction

The traditional technique [27] comprises of handcrafted filter-based algorithms, that rely

on steerable pyramids for image decomposition and filters for motion magnification.

However, it produced noisy output. Through phase variations, [26] propose a complex

steerable pyramid for image decomposition and magnification. This resulted in improved

magnification while lowering the e↵ects of noise in the magnification process. However,

they function poorly in scenarios containing dynamic or large motion. Two di↵erent

approaches are proposed to tackle these issues: hand design filtering and deep learning

models. In the first approach, authors propose hand-design filters [30], [31],[32],[42]

compatible with earlier methods, to work both in static and dynamic scenarios. But,

they have a small amount of magnification and are prone to ringing artifacts. The second

technique is deep learning, which is based on the notion that deep convolutional networks

may produce a more optimal solution [29]. Oh et. al [29] proposed a deep network with

more magnification, compared to handcrafted methods but its solution is computationally

challenging and prone to distortions, artefacts, and texture generation-related problems.

We propose a phase-based deep network for video motion magnification to address these

concerns. It combines the handcrafted approach of phase-based motion magnification [26]

with deep learning-based spatial magnification [29] to overcome each other limitations. In

addition, for real-time applications, lightweight networks D1 and D2 are proposed. The

following are the key contributions:-

A novel multi-domain lightweight networks (D1 andD2) is proposed for video motion

magnification.

A frequency domain-based motion magnification block is proposed for motion

synthesis. It directly estimates the phase and amplitude changes for the

magnification according to the provided magnification factor. This helps to reduce
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Table 5.1: Conceptual di↵erences between the proposed approach and existing methods
for motion magnification

Methods Motion Manipulation Magnified Frame
Texture Generation

Hand-crafted Methods Phase-Variation Linear/Non-Linear Steerable Pyramid
[30, 31, 32, 42] filters (Frequency Domain) (wavelet-based reconstruction)

Deep-learning Method Shape Feature Di↵erences Residual blocks
[29] based learnable filters based simple decoder

(Spatial Domain operations) (learnable filters in spatial domain)

Proposed Method Phase and Spatial Variation Multi-scale texture
based learnable filters Correction block

(Frequency and Spatial Domain) (learnable filters in spatial domain)

noise e↵ects in the magnification process and generates motion (which depends on

phase variations).

A spatial domain-based multi-scale texture correction block is proposed to improve

the texture quality. It estimates the texture component at each scale using

information from input frames and magnified motion features in the spatial domain.

The proposed networks (D1 and D2) are evaluated qualitatively and quantitatively

on real-world and synthetic videos on di↵erent tasks. Additionally, an experiment is

conducted to check the physical accuracy of the proposed method. An ablation study is

also conducted to see the e↵ects of di↵erent parts of the proposed network.

5.2 Proposed Method

The proposed methods assume that subtle variations translated through phase changes are

more robust to noise[26] . So, by manipulating the phase, subtle motion can be enhanced.

In the following section, first, we discuss why phase-based motion magnification has the

upper hand and the challenges associated with it (for a better explanation we adapt similar

example scenarios as in [26], [49]). Then, we present the proposed solutions to overcome

those challenges. Later, the loss function and other implementation details are discussed.

5.2.1 Motivation

We consider a 1D case to give intuition on the working and challenges associated with

motion magnification through phase variation. Let f(x), a 1D signal at T = 0. The

signal at time step T = t is defined as the displaced version of f(x), f(x+ �(t)) where �(t)

represents the displacement function (not to be confused with a Dirac function). Then the

motion magnification signal is defined as f(x+ (1 + ↵)�(t)), where ↵ decides the amount

of magnification.
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Figure 5.1: Proposed phase based motion magnification method (as illustrated in Eq (6.9)
shows better output more similar to the true amplification. In comparison, the [29] 1 D
simplified output (as shown in Eq (5.2), deviates more with the increase in magnification
factor (↵). These results are calculated at small phase variations. The e↵ect of change
in input phase variations, for both methods, is shown at the same magnification factor in
(d).

For a sinusoid wave, y = A sin(!x+�), A, !, � represent its amplitude, angular frequency,

and phase respectively. By setting 1 D signal as sinusoid f(x) = A sin(!x), we get the

displaced signal f(x+�(t)) = A sin(!(x+�)) 8 t 2 [0, t] , where �(t) = !�. The magnified

signal can be written in terms of phase variations of the input signal as f(x+(1+↵)�(t)) =

A sin(!(x+(1+↵)�)). For two time instances t1 and t2, the proposed method approximate

�(t2) as !(�t2 � �t1), and the magnified signal can be written as

f(x+ (1 + ↵)�(t2)) ⇡ A sin(!(x+ (1 + ↵)(�t2 � �t1))) (5.1)

Similarly, 1 D approximation of the method discussed in [29] can be written as

f(x+ (1 + ↵)�(t2)) ⇡ A sin(!(x+ �t1))+

(1 + ↵)(A sin(!(x+ �t2))�A sin(!(x+ �t1)))
(5.2)
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Figure 5.2: For the small phase shift between two sinusoidal waves output magnified signal
is shown in green (on the left). When the shift becomes large (adding 2⇡), similar-looking
input produces a di↵erent magnified output in green (on the right). The phase shift based
magnification method needs to determine the correct output (between the dotted green
curve for the small phase shift and the green curve, the actual one).

Figure 5.1 illustrates the e↵ects of change in magnification factor and error with respect

to change in phase. Phase-variation based magnification has less error (from Figure 5.1).

Also, in phase based magnification, the noise is translated instead of amplified, making it

more robust to noise [26]. Let’s extend it to a complicated function S(x), by applying the

Fourier series, a signal at time t can be represented as:

S(x+ �(t)) =
1X

!=�1
A!e

j!(x+�t) (5.3)

Then the proposed method magnified signal at time t2 can be represented as :

S(x+ (1 + ↵)�(t2)) ⇡
1X

!=�1
A!e

j!(x+(1+↵)(�t2��t1 )) (5.4)

Phase-variation based magnification has some di�culties. For instance, as the phase

di↵erence becomes large, there is phase ambiguity. As shown in Figure 5.2 for

similar-looking sinusoidal waves, there are two di↵erent motion translations for the same

magnification factor. This causes ringing artifacts and blurriness in the output [49]. Also,

directly magnifying phase variation does not take occlusion into account. To resolve these

issues, the output is first magnified in the frequency domain and then improved in the

spatial domain.

5.2.2 Network Architecture

The proposed network takes only two frames at a time to produce a motion magnified

frame according to the given magnification factor. It has two main blocks 1) Frequency

domain-based motion magnification block (FDMM) and 2) Spatial domain-based
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Figure 5.3: Proposed multi-domain based network for motion magnification. First, input
frames (I1, I0) Fourier transform (z(.)) is taken and given to FDMM block. Then from
the output phase, �m and amplitude Am, intermediate magnified output Îm is generated
by taking inverse Fourier transform. SDMST block process Îm in the spatial domain, to
generate the final magnified output (Im).

Figure 5.4: Structure of Frequency Domain-based Motion Magnification Block (FDMM).
It consists of two parallel streams (a) Phase Manipulator and (b) Amplitude Manipulator.
Phase Manipulator takes input frames phase (�1,�0) and tries to estimate the magnified
frame phase (�m). Similarly, the amplitude manipulator tries to predict output frame
amplitudes (Am) from input frame amplitudes (A1, A0).

multi-scale texture correction block (SDMST). The architecture of the proposed model

is shown in Figure 5.3 and the details are discussed below

Frequency Domain-based Motion Magnification Block (FDMM)

Let, the input frames in color space as I1 and I2. First, Fourier transform (z) is applied

on both frames to separate phase (�) and amplitude (At) as shown below

z{I1, I0} = {{A1,�1}, {A0,�0}} (5.5)

Then, the di↵erences in phases and amplitude are processed in the FDMM block. To

make the network lightweight, we did not apply convolution operations before taking the

di↵erence, as even without that the proposed network achieved good results. In dynamic

scenarios, new information is getting into the image which results in a change of phase

and amplitude. [26] depends on steerable pyramids to tackle this non-periodicity. But

they produce distortions in dynamic scenarios. So, the FDMM block tries to estimate

both, amplitude and phase changes in two parallel streams 1) Phase Manipulator and 2)

Amplitude Manipulator as shown in Figure 5.3.

In the phase manipulator, first, it takes the di↵erence of input frames phases (�1,�0),
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Figure 5.5: Depicts the Spatial Domain Based Multi-Scale Texture Correction Block
(SDMST). It consists of two main parts (a) Residual Motion Texture Estimator Block
(RMTE), and (b) Multi-Scale Texture Generation Block (MSTG). RMTE block estimated
texture on magnified areas (Rm). While SDMST block is responsible for estimating the
texture correction features, which are added to Îm, to generate the magnified output (Im).

and then they are passed through the fixed concatenate blocks (FCB). Similarly, this is

done in an amplitude manipulator as shown in Figure 5.4. FCB takes two input features

(previous output and one fixed input), and concatenates them both to give it to a 3⇥3⇥f

convolution layer with Elu activation, (f represents the number of channels). FCB tries

to predict the residual components that are added to I1 features. So keeping I1 features

as fixed input to each layer helps in better estimation. The estimated output of the phase

manipulator (�m) and amplitude manipulator (Am) are used to generate intermediate

magnified output Îm, where Îm = z�1{Am,�m} ( z�1 is inverse Fourier transform).

Îm, ↵ and input frames I1, I0 are given as input to SDMST block to generate the final

magnified input Im as shown in Figure 5.3.

Spatial Domain Based Multi-Scale Texture Correction Block (SDMST)

SDMST block is used to improve the FDMM block output. Processing in the frequency

domain leads to blur, inappropriate motion manipulation, and distortions in the output

due to phase ambiguity and no-linear relation of phase changes between input and output.

Spatial domain processing helps to remove them. It consists of two parts, 1) Residual

Motion Texture Estimator Block (RMTE), and 2) Multi-Scale Texture Generation Block

(MSTG).

Residual Motion Texture Estimator Block (RMTE): It assumes that a spatial

manipulator can generate magnified motion features. The block structure is di↵erent

from [29] manipulator. Instead of feature space di↵erence (as in [29]), direct image

space di↵erence is taken. Also, to prevent distortions due to spatial magnification from

adding, Îm based di↵erence features are used as spatial attention features ( ̂) (shown in

Figure 5.5). This assumes that some distortions produced in both di↵erence features are
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orthogonal and will be canceled after multiplication. The final output of the RMTE block

can be expressed as follows

Rm = FCB⇥6{(↵ ⇤  ⇤ (FCB⇥2{(I1 � I0), I1}), I1} (5.6)

Multi-Scale Texture Generation Block (MSTG): Multi-Scale texture generation

helps in improving the quality of the magnified frame. Features are processed from the

lowest scale to the highest scale, like in U-net type architecture. However the encoder is

replaced by simple average pooling to reduce the number of parameters. This structure

di↵ers from [29] as they use a simple decoder where residual blocks are stacked together

to generate output. At each scale, a residual component is generated by di↵erence

between Ii�1
m/n

and I0/n, such that they match the motion component with respect to Rm/n

(where Ii�1
m/n

is the previous scale (i� 1)th magnified output, and n subscript depicts the

down-sampling rate). These features are processed with FCB and added to Îm/n features

to create magnified features Ii
m/n

. Then the magnified features are concatenated with I1/n

and given to the conv-transpose layer for up-sampling. The exact process is repeated in

the next scale, as shown in Figure 5.5. This assumes that the next scale blocks should

work on residual input features created from previous scale-magnified features. These

repeated estimations of texture components at each scale help in improving the prediction

of the final texture feature map which is added to Îm (output of FDMM) for generating

texture-corrected output. The magnified output at each scale can be defined as :

Ii
m/n

= Îm/n + FCB⇥6{(Ii�1
m/n

� I0/n +Rm/n), I1/n} (5.7)

for i = 0, I0
m/8 = Îm/8, where i 2 (0, 3). Texture in areas without motion is mostly similar

in input and magnified frames. We assume giving I1 information as fixed input in FCB

helps in improving texture in areas where motion is not present.

5.2.3 Dataset, Loss Function, and Training

Dataset: For training, a synthetic dataset provided by Oh et al. [29] is utilized. It

consists of 7,000 images of objects from the PASCAL VOC dataset [43] as foreground and

200,000 images of the MS COCO dataset [44] as background. Di↵erent foreground objects

are combined with distinct backgrounds at various positions to yield random motion. It

produces a total of 100,000 input pairs of 384 384 size.

Loss Function and Training: L1 loss across the predicted and magnified is taken

for training the network. To improve the edges’ quality and reduce blur, edge loss Le

[58] is used. These losses, penalize for each small deviation across the output, but some

deviations are acceptable as long as they are not perceptible. So, a perceptual loss (Lp) is
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Table 5.2: Parameters and GFOPs (measured at 720 X 720 resolution) of proposed
lightweight networks D1, D2 and [29] method.

Methods Oh et al. [29] D1 D2

Parameters 0.98 M 0.117 M 0.053 M

GFLOPs 268.6 65.4 30.4

also applied. Additionally, L1 loss across the phase and amplitude of the predicted frames

is used to train the FDMM block e�ciently. The final loss function is illustrated as

Lf = �1L1(Im, Igt) + �2Lp(Im, Igt)+

Le(Im, Igt) + L1(�m,�gt) + L1(Am, Agt)
(5.8)

where gt subscript indicates the ground truth. �1 = 10, �2 = 0.1, and an ADAM optimizer

with a learning rate set to 0.0001 is used for training. Gaussian noise is added to the

input to mimic noise. All the models are trained on NVIDIA 2080 RTX with 8GB GPU.

Di↵erent lightweight networks (D1, D2) are generated in the proposed pipeline by changing

the number of channels f , as shown in Table 6.2.

5.3 Experimental Results

The proposed method is compared on real-world and synthetic videos with state-of-the-art

methods Jerk-Aware [31], Anisotropic [32], Acceleration [30] and Oh et al. [29]. The details

of parameters used for result generation are shown in Table 6.3. Linear filter based methods

are not considered for comparisons as they produce distortions in dynamic scenarios. For

comparison, results of SOTA methods are generated for di↵erent videos from their o�cial

implementation receptively (for more details please see the supplementary material). The

following sub-sections include a detailed discussion of the qualitative and quantitative

comparison. Also, an additional experiment on physical accuracy is provided. Further, an

ablation study is performed to illustrate the significance of various parts of the network.

All the results of the proposed method are generated using consecutive frames (dynamic

mode in [29]) unless otherwise specified.

5.3.1 Qualitative Analysis on Real World Videos

We evaluate the proposed methods in a challenging set of scenarios, including rotating

objects (Hand Drill in Figure 5.7), in the presence of large motion (Balloon Burst in

Figure 5.8 ), and in dynamic motion (Gun Recoil in Figure 5.6). SOTA hand-crafted

methods produce small magnification in challenging scenarios, as a further increase in

magnification factor only leads to a rise in distortions like ringing artifacts, blurriness, etc.

(see supplementary material for details). [29] produces high magnification with flickering
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Figure 5.6: Gun Recoil: Video contains a large translation motion due to movement of the
camera from left to right and the subtle motion generated in the forearm due to gun recoil.
The target is to magnify the forearm motion in the dynamic scenario. Spatial-temporal
slice is taken from the red strip and illustrates how SOTA methods (b) Acceleration
method [30], (c) Jerk-aware [31], (d) Anisotropy [32], (e) Oh et al. [29], and the proposed
method (f) D1, (g) D2 magnify subtle motion. Hand-crafted methods [32], [31], [30] have
small magnification. But [29] produces more magnification but induces flickering motion
(visible as spikes in temporal slice (e)). The proposed network has the highest amount of
motion (highlighted in the red bounding box) with fewer distortions.

Figure 5.7: Hand Drill: Magnifying rotational motion is a di�cult task. So to evaluate
SOTA methods (b) Acceleration method [30], (c) Jerk-aware [31], (d) Anisotropy [32], (e)
Oh et al. [29], and the proposed method (f)D1, (g)D2, a video containing a hand drill with
rotational motion along its axis is used. In 2D, this motion is visible as a spiral motion. So,
magnification can be perceived as an increase in spiral motion (shown in spatial-temporal
slices taken from the red strip at the right part of the figure). Hand-crafted methods [32],
[31], [30] have small magnification (less outward radius in temporal slices) and produce
ringing artifacts (visible as white edges around the drill) and blurry spikes in the temporal
slices (b), (c), (d)). Oh et. al [29] induce flickering motion (seen as spikes in the temporal
slice (e)) and blurry distortions in some frames (visible in the frame (e)). The proposed
networks ( (f) D1 and (g) D2) produce better magnification with fewer distortions.



80
Chapter 5. Multi Domain Learning Based Light-Weight Network for Video Motion

Magnification

Table 5.3: Parameters used for result generation. All the results are generated with
variables and steps given by the respective authors.

Methods Video Mf Frequency

Ours (D1, D2) Gun 5 N/A

Ours (D1, D2) Drill 5 N/A

Ours (D1, D2) Balloon 5 N/A

Ours (D1, D2) Physical Accuracy 10 N/A

Ours(D1, D2) Circle videos with di↵erent backgrounds 60 N/A

Ohet al. [29] Gun 4 N/A

Ohet al. [29] Drill 10 N/A

Ohet al. [29] Balloon 10 N/A

Ohet al. [29] Physical Accuracy 5 N/A

Ohet al. [29] Circle videos with di↵erent backgrounds 60 N/A

Jerk-Aware [31] Gun 10 20

Jerk-Aware [31] Drill 25 3

Jerk-Aware [31] Balloon 25 3

Jerk-Aware [31] Physical Accuracy 20 15

Jerk-Aware [31] Circle videos with di↵erent backgrounds 200 15

Anisotropy [32] Gun 100 20

Anisotropy [32] Drill 100 3

Anisotropy [32] Balloon 100 3

Anisotropy [32] Physical Accuracy 200 3

Anisotropy [32] Circle videos with di↵erent backgrounds 400 15

Acceleration [30] Gun 10 20

Acceleration [30] Drill 4 3

Acceleration [30] Balloon 4 3

Acceleration [30] Physical Accuracy 20 15

Acceleration [30] Circle videos with di↵erent backgrounds 200 15

and superious motion in challenging scenarios. The proposed lightweight networks D1

and D2 generate good results. The D2 model gives good results in static scenarios

but its texture quality decreases compared to D1 in dynamic scenarios. In the static

scenario, most of the scenes of input images are same as in the output. But this changes

in dynamic scenarios, where occlusion plays a much more significant role and requires

good texture generation. We assume the network learns a better form of frame blending

to generate motion magnified frames. However the texture generation ability decreases

after a reduction in several parameters. Improving texture quality in dynamic scenarios
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Figure 5.8: Balloon Burst: In the video, a water canon raptures the balloon. Balloon
develops small and large motions as it bursts. The aim is to magnify subtle changes in the
balloon while in the presence of large motion. To illustrate this intermediate frames (in the
left part of the Figure) and spatial-temporal slices taken from the red strip (shown in the
right part of the Figure) are shown for SOTA methods (a) Anisotropy [32], (b) Jerk-aware
[31], (c) Acceleration method [30], (d) Oh et al. [29], and the proposed method D1,
D2. Hand-crafted techniques [32], [31], [30] have small magnification and generate ringing
artifacts around the balloon, visible as white edges around the balloon in the intermediate
frames and white spikes in the temporal slice (highlighted in the bounding boxed)). They
also have less magnification than the proposed method (see the bounding box). Whereas
[29] produces flickering motion (seen as white spikes across the whole temporal slice (e))
and blurry distortions in some frames (see (e) frame). The proposed networks have more
magnification with lesser distortions.

with less than 0.1M parameters is a challenging task. So, depending on the application,

they give users a good trade-o↵ between quality and the number of parameters. Despite

that, the proposed networks give reasonably good magnification with fewer distortions

than most SOTA methods, as shown in Figures 5.7, 5.8, 5.6.

5.3.2 Quantitative Analysis

Obtaining the actual ground truth of motion magnified videos in real-life scenarios are

challenging. Without the ground truth, quality estimation of the magnified frame is

di�cult. As the amount of magnification decreases, distortions become less and the output

becomes perceptible. But that will defeat the purpose of magnification. So, the analysis

requires accounting for both magnification and output quality. Considering these factors

synthetic videos with various backgrounds are generated. Di↵erent background videos will

help to test the adaptability of the proposed method in di↵erent scenarios. Circles with
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Figure 5.9: Average Mean Square Error (MSE) of 25 synthetically generated videos with
di↵erent backgrounds, containing subtle motion of circles on (a) Anisotropy [32], (b)
Jerk-aware [31] , (c) Acceleration method [30] , (d) Oh et al. [29], and the proposed
method D1, D2. The proposed networks (D1, D2) have the first and second best results
respectively.

Figure 5.10: Mean Square Error (MSE) of Anisotropy method [32], Jerk-aware method
[31], Acceleration method [30], Oh et al. method [29], Phase based method [26] and the
proposed methods on 25 synthetically generated videos containing di↵erent subtle motion
of circles with various backgrounds.

horizontal, vertical, and diagonal directions motion are used to mimic the subtle motion.

Input subtle motion is 0.1 pixels and the ground truth has 10-pixel motion (100 x more

than the input). Gaussian noise is added to mimic photographic noise in the videos (Please

see section 3.2.3 for more details). Di↵erent magnification factors are used to deliver the

same motion as ground truth (more details are given in supplementary material). Output

mean square error concerning ground truth for various SOTA methods [31], [32], [30], [29],

and the proposed method are shown in Figure 5.9. First, MSE values across all the frames

in a video are averaged, and then the average across 25 videos is calculated. Further,

figure 5.11 illustrates the impact of increasing noise levels (sigma) on the average mean

square error (MSE). From Figure 5.9 and 5.11, the proposed method has the minimum

error, as it produces better magnification with lesser distortions.
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Figure 5.11: E↵ects of increase in noise value (sigma) in input. The average mean square
error (MSE) is computed across the predicted output and ground truth, over 25 di↵erent
videos. Comparison is done with the Anisotropy method [32], Jerk-aware method [31],
Acceleration method [30], Oh et al. method [29], Phase based method [26], the proposed
model D1, D1-N7 , D1-N8 and D2. D1-N7 and D1-N8 are the D1 models trained without
amplitude and phase manipulator respectively.

Figure 5.12: Mean Absolute Error (MAE) is computed between the extracted signal from
magnified video and sensor measured signal. The error values of SOTA methods (a)
Anisotropy [32], (b) Jerk-aware [31] , (c) Acceleration method [30] , (d) Oh et al. [29],
and the proposed method D1, D2 are shown. The proposed networks (D1, D2) have the
first and second best results respectively.

5.3.3 Physical Accuracy

To check the physical accuracy of the magnified output an experiment with set-up, as

shown in Figure 5.13 (a), is conducted. Subtle motions (up and down) are generated

in the mechanical rod of the universal vibration apparatus. These motion signals are

recorded using an ultrasonic sensor and a video camera (Please see section 3.2.2 for more

details). The motion signal is extracted from the magnified videos and compared with

the ultrasonic sensor signal as shown in Figure 5.13. Both the sensor measured and the

computed magnified signal are rescaled to 0 to 1 and mean absolute error (MAE) values

are calculated across SOTA methods. As illustrated in Figure 5.12 the proposed method

has the minimum MAE values.
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Figure 5.13: Physical Accuracy: Comparison between our method and other SOTA
methods output (in red) with the sensor signal (in blue) respectively. The optical flow
across the input frame and the magnified frame (of respective methods) is computed to
extract the motion signal. Then the average direction along the image patch (marked in
the bounding box in (a)) is calculated and shown above.

5.3.4 Additional Experiments

E↵ects of increase in Magnification Factor: The figures 5.14, 5.15 depict the

e↵ects of varying magnification factors on the output of two proposed models, D1 and

D2. In Figure 5.14, D1 shows less distortion as magnification increases compared to other

state-of-the-art methods, both in static and dynamic scenarios. Figure 5.15 illustrates D2

model output, which also exhibits good magnification, but its performance degrades with

higher magnification factors compared to D1, attributed to D2 having fewer parameters.

These visualizations o↵er insights into model performance under varied magnification

factors, highlighting their robustness and limitations.

5.3.5 Ablation Study

An ablation study is conducted to verify the di↵erent aspects of the model, in contribution

to motion magnification. For this di↵erent ablation models are generated with assuming

D1 as the base model. First, (a) D1-N1 model is trained without FDMM block to analyze

the e↵ects of frequency domain operation in motion magnification. Further, D1-N2 is

trained without phase and amplitude loss to examine the influence of frequency domain

regularization terms. In both cases, there is a decrease in output quality (demonstrated

in Figure 5.16 in terms of an increase in error with respect to D1).

To analyze the di↵erent aspects of SDMST block (a) D1-N3 is trained without RMTE

block (b) D1-N4 without spatial attention  in RMTE block. To highlight the e�ciency

of MSTG block in texture synthesis (c) D1-N5 model with a simple U-net like decoder
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Figure 5.14: E↵ects of change in Magnification Factor: Figure illustrates proposed D1

model output. Di↵erent values of the magnification factor in increasing order from (a) 10,
(b) 20, (c) 50 (d) 100, and (e) 200 are used to generate the output shown in the respective
column. D1 shows fewer distortions while increasing the amount of magnification as
compared to other SOTA methods, both in static and dynamic scenarios.

Figure 5.15: E↵ects of change in Magnification Factor: Figure illustrates our D2 model
output. Di↵erent values of the magnification factor in increasing order from (a) 10, (b) 20,
(c) 50 (d) 100, and (e) 200 are used to generate the output shown in the respective column.
D2 also shows a good amount of magnification, but with an increase in magnification
factor, its performance degrades as compared toD1. This is expected asD2 has much fewer
parameters than D1, so their performance gap becomes observable in extreme scenarios.

with residual blocks instead of FCB, is used. Further, (d) D1-N6 is trained at single

scale texture generation block, instead of multi-scale texture generation block (MSTG)

to emphasize the consequences of multi-scale in the SDMST block. An increase in error

has been observed in the ablation models as compared to the proposed model D1 (refer
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Figure 5.16: Aggregate MSE values are computed across the same synthetic videos as in
5.3.2 for D1-N1 to D1-N6 models as defined in section 6.3.4. The proposed network (D1

has the minimum MSE values when compared with di↵erent ablation networks, which
indicates the importance of the proposed modules.

Figure 5.16). Furthermore, to analyze the e↵ects of di↵erent manipulators, Figure 5.11

shows the MSE of models trained without amplitude (D1-N7) and phase manipulators

(D1-N8) compared to the base model D1.

5.3.6 Summary

In this chapter, for video motion magnification, we suggest a multi-domain network that

combines frequency domain and spatial domain-based operation. The proposed network

first works in the Fourier domain and tries to predict phase and amplitude changes of

the magnified frame, according to the magnification factor. Then, the spatial domain

uses frequency domain output to generate appropriate motion magnified output. Further,

lightweight models are proposed, giving comparable results with SOTA methods. Results

are analyzed qualitatively and quantitatively on real-world and synthetic videos. Also,

an experiment is done to highlight the physical accuracy of the proposed networks. An

ablation study is conducted to show the e↵ects of di↵erent modules in the proposed network

pipeline. Results show that the proposed models (D1 and D2) perform better than SOTA

methods in terms of more magnification with less distortions. However, the proposed work

doesn’t fully utilize the steerable pyramid architecture of hand-crafted-based methods, as

it manipulates motion features at a single scale.



Chapter 6

Learnable Directional Scale

Space Filters for Video Motion

Magnification

Video motion magnification based techniques make subtle, minute, imperceptible changes

visible to the naked eye. But this is a di�cult task, as minute variations are generally

a↵ected by large motion, occlusion, illumination changes, noise, etc. Traditionally, this

problem is solved using scale and direction space by employing complex steerable pyramids

for motion representation and temporal filters for motion manipulation across di↵erent

scales and orientation features. By increasing the number of filters in scale and orientation

space their performance can be further improved at the expense of computation cost

[26]. However, these methods [31], [32], [42], [30] do not e↵ectively estimate the motion

variations due to steerable pyramid limitations and cause ringing artifacts. Further, the

presence of occlusion, dynamic scenarios, etc., complicates the input scenario and results

in small magnification.

Recently, deep learning based approaches have emerged to tackle these issues [20], [48],

[29], [95], [96]. Some approaches are scenario specific (require separate training for each

new scenario) [20], [48], while others are generalized (same weights can work for di↵erent

videos) [29], [95], [96]. First, [29] (LB-MM) proposed a supervised learning based training

to directly translate the pixel values. This results in higher magnification compared to

hand-crafted methods but is susceptible to distortions due to noise. The task of ignoring

noise while producing high magnification is quite challenging. To tackle this issue, di↵erent

approaches are proposed such as knowledge distillation [95] (LW-MM), or processing in

frequency and spatial domain [96] (MD-MM) for better discriminative features (which

makes subtle motion standout while reducing the e↵ect of noise). However, these solutions

sometimes produce artifacts and are not e�cient in ignoring noise for subtle motion

magnification.

To address these challenges, we propose a framework that combines insights from

both traditional and deep learning approaches. Leveraging scale and orientation space

characteristics, helps hand-crafted methods to generate improved motion features [26].

Whereas, previous deep learning based methods only focused on single scale based changes
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Table 6.1: Comparison between proposed and existing approaches.

Methods Hand-crafted Deep-learning Proposed
Methods Methods Method

Feature
Representation
for Motion
Manipulation

Multi-Scale
and Directional
Phase (Complex
Steerable
Pyramid)

Single Scale
Latent Feature
Representation

Multi-Scale
Directional Gaussian
Gradient Phase and
Magnitude

Motion
Manipulation

Linear/Non-Linear
Filters

Consecutive Frame
Feature Variation
Based Learnable
filters

Consecutive Frame
Feature Variation
Based Learnable
filters

without orientation consideration. Inspired by hand-crafted based method [26], we propose

a learnable scale and direction space based motion manipulator. It computes di↵erent

scale features of input frames using Gaussian functions with varying receptive fields

and standard deviations. Then, these features are combined to generate an e�cient

scale-space (�) feature. Further, it computes gradients of intermediate frames along

di↵erent directions (✓) and magnifies their magnitude and phase variations along each

direction. These angular features are weighted averaged to generate an optimum direction

(✓) magnified gradient feature. Also, these magnified gradient features are generated at

di↵erent resolutions and merged to produce the manipulator output features.

For texture synthesis, deep learning-based methods outperform traditional methods with

higher magnification through the utilization of learnable convolution filters. However,

deep learning-based methods tend to be computationally complex and result in texture

distortion. Designing a lightweight texture generation decoder is a di�cult task. To solve

this, we propose a multi-scale channel compression block. It uses information from multiple

scales using dilation convolution. Additionally, a channel compression block is used to

reduce the number of channels by varying ratios. We assume that by decreasing the number

of channels, we can minimize redundant information and achieve a denser representation.

Also, this helps to reduce the number of parameters. The final output is synthesized by

merging the magnified outputs at di↵erent resolutions. The main contributions of this

work are summarized as follows:

We propose a novel deep learning based lightweight (⇠ 0.084M) architecture for

video motion magnification.

We propose a motion manipulator block with learnable scale (�) and directional (✓)

spaces, to extract optimal motion features for video motion magnification.

We also propose a multi-scale channel compression decoder block with varying

compression ratios and receptive fields for generating motion magnified frames.



Chapter 6. Learnable Directional Scale Space Filters for Video Motion Magnification 89

Our results analysis demonstrates that the proposed method outperforms the

state-of-the-art (SOTA) methods both qualitatively and quantitatively, with less number

of parameters. Also, we conducted additional experiments to show frequency selectivity.

Additionally, an ablation study is performed to examine the e↵ects of di↵erent components

of the proposed method.

6.1 Related Works

Video motion magnification based algorithms have been classified into two approaches:

1) the Lagrangian approach and 2) the Eulerian approach. Lagrangian approach based

techniques depend on flow vectors and compute pixel displacements directly through

optical flow [33], [36], whereas Eulerian approaches estimate the intensity of the displaced

pixels, independent of flow vectors [27], [26], [48], [29], [95], [96]. Eulerian-based approaches

have gained popularity in the field of motion magnification. These techniques operate

in three steps: firstly, they decompose input images in scale and direction space using

steerable pyramids, then use temporal filters to manipulate motion, and finally reconstruct

the magnified frame. Earlier work focused on feature representation space for motion

manipulation. Wu et al. [27] employed Gaussian pyramids for image decomposition, albeit

producing noisy output. To address this, Wadhwa et al. [26] proposed the use of complex

steerable pyramids to extract local phase information for motion magnification, and

showed improved performance by increasing the number of filters in scale and orientation

space. Subsequent hand-designed methods [30], [31], [32], [42] are developed to handle

large motions. [30] presented a filter to magnify only non-linear changes. Further, [31]

proposed a jerk-aware filter to prevent the fast non-linear changes from getting magnified.

Also, to reduce the e↵ects of noise, [32] suggested the use of an anisotropic filter. They

assume meaningful motion is anisotropic in nature. Moreover, [42] proposed a bilateral

video magnification filter (BVMF) that o↵ers robust and more accurate temporal filtering.

However, these methods resulted in limited magnification, ringing artifacts, and failed to

account for occlusions etc.

Recent advancements in deep learning techniques have addressed the limitations of

handcrafted methods in video motion magnification. Oh et al. [29] (LB-MM) formulated

the motion magnification problem in a supervised manner and proposed a synthetic dataset

for it. In [29], encoder decoder architecture at a single resolution is used for motion

magnification. However, their method sometimes distorts the output motion. Later, Singh

et al. [95] (LW-MM) suggested the use of knowledge distillation to enhance the model’s

robustness but occasionally it distorts the shape and their high-performance model is

computationally complex. Furthermore, [96] (MD-MM), a robust and lightweight model

is introduced, leveraging frequency and spatial domain features. Multi-resolution features
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Figure 6.1: �-✓Net operates on two consecutive frames (It1 , It2) as input and generates a
magnified output Im. The motion manipulator block consists of learnable direction scale
space Gradients (a), (b), and (c), and the decoder block contains a Multi-Scale Channel
Compression Block (MSCC) (e). Firstly, (a) generates di↵erent scale space features by
employing a learnable Gaussian layer with varying kernel sizes. The gradients of weighted
average scale-space features are computed, and the phase (�) and magnitude (R) feature
representation across various orientations (✓i) are calculated. Next, (b) magnifies the
phase and magnitude information based on the magnification factor (↵) using a function
r(·). r(·) is implemented through depth-wise separable convolution blocks, (more details
are visible in (c) block). Afterward, the magnified � and R are utilized to reconstruct the

magnified gradient (r�,✓i
m ) along di↵erent directions. Further, the resultant features across

various directions are unified, to produce feature r�,✓
m . At the decoding end, (d) Adds

It2 within the manipulator motion features. Moreover, in MSCC (e), It2 is concatenated
with input features, followed by channel-wise compression using di↵erent dilation rate
convolutions to generate magnified features. Furthermore, MSCC block (e), is used for
the feature fusion of di↵erent resolution magnified features, to construct the final magnified
output.

are employed with up-samplers at the decoder, while single resolution features are used

in the manipulator block (RMTE). However, [96] feature fusion method is not e�cient,

as it incorporates global variations and distorts fast moving small objects. To address

these challenges, we integrate insights from traditional methods with a deep learning

approach, as depicted in Table 6.1. Our method incorporates multi-Gaussian scale spaces

in the manipulator and varied dilation rates and resolutions in decoder blocks, enhancing

noise-robustness.

6.2 Proposed Method

Inspired by the hand-crafted mechanism of steerable pyramids [26], in this work, we

propose the learnable scale (�) and directional (✓) spaces for the manipulation of motion

features. Initially, we extract learnable directional Gaussian gradient phase and magnitude
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of intermediate frames, then magnify changes across them. This helps to get better

discriminative features to ignore noise while magnifying the subtle motion. Further,

texture synthesis is done using channel compression with multi-scale features and fusing

them across di↵erent resolutions. This facilitates achieving higher magnification with

improved texture quality while simultaneously reducing the number of parameters. In the

following section, we provided a detailed discussion on motion manipulator and decoder

blocks.

6.2.1 Motion Manipulator

Motivation: Consider a video containingN frames, where the frame intensity is denoted

as I(x, t)|t 2 [0, N ], with x representing the spatial coordinate. Suppose, at any given time

t, the frame intensity can be expressed as I(x, t) = I(x + �(t), 0), where, �(t) represents

the displacement function. Then the motion magnified signal is defined as [27] I(x, t) =

I(x + (1 + ↵)�(t), 0), in which ↵ decides the amount of magnification. Conventional

methods [30], [31], [32], [42] use complex steerable pyramids ( �,✓) for local phase image

decomposition across di↵erent scales. These methods magnify phase changes through a

bandpass filter (↵ ⇤ B�(��,✓(x, t))) and reconstruct the magnified output based on the

phase changes (�̂�,✓(x, t)). Their relation can be defined as:

(I ⌦ �,✓)(x, t) = A�,✓(x, t)ei�
�,✓(x,t) (6.1)

�̂�,✓(x, t) = ��,✓(x, t) + ↵B�(��,✓(x, t)) (6.2)

These methods perform well in static environments, but their performance degrades in

dynamic scenarios. As in dynamic scenarios, �(t) can become highly non-linear and

complex as t increases. In deep learning-based methods, it is assumed that as t ! 0,

I(x, t) = I(x + �(t), 0) assumption holds in dynamic scenarios, such that �(t) can be

approximated from the change in consecutive frames [29]. So, by only considering two

consecutive frames (t1, t2) at a time, they are able to provide better results with higher

magnification in dynamic videos. Initially, [29] proposed an encoder (E) for feature

translation from the input image to the latent space, followed by the use of a manipulator

(M) to extract the motion features (using g(.), and h(.) convolution layers based non-linear

functions; see [29] for more details). A decoder is then employed to reconstruct the

magnified output based on the manipulator features. Hence, in deep learning based

architectures, the role of manipulator output features (Mt2), closely resembles the �(t2)

and can be represented as :

Mt2 = Et2 + h(↵ ⇤ g(Et2 � Et1)) (6.3)

Here, we conclude two basic intuitions: 1) Improving the representation of input
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features; and 2) Enhancing the manipulator’s capacity to leverage input representation

for extracting motion information, can help to generate robust motion features. Drawing

inspiration from hand-crafted based methods, we propose a learnable directional scale

space based phase and magnitude manipulator for motion manipulation (see Table 6.1).

Additionally, a multi-scale channel compression decoder block is used to generate magnified

output based on manipulator features.

Motion Manipulator Block with Learnable Directional Scale Spaces : First,

let’s consider a 2-D Gaussian function G(x, y), such that the nth order Gaussian derivative

can be represented as G(x, y)✓n, where ✓ represents the rotation. The first order derivative

of the Gaussian function at any arbitrary direction G✓
1, can be synthesized as a linear

combination of G0
1 and G90

1 [97] as :

G✓

1 = cos(✓)G0
1 + sin(✓)G90

1 (6.4)

Here G0
1, G

90
1 are the basis filters, which span the set of G✓

1 filters, and sin(✓), cos(✓) are

the interpolation functions for the basis function. As the convolution function is a linear

operation, we can filter any image (I) to generate a response r✓ (please note that here we

represent the gradient of an image I as r)

r✓ = r0 cos(✓) +r90 sin(✓) (6.5)

Di↵erent orientations can provide distinct image information. Also, given the random

nature of noise, it may vary with rotations. To find an optimal set of rotations that

mitigate noise while magnifying the subtle motions, we make the direction parameter (✓)

learnable. Without the learnable directional gradient, noise based distortions increase as

analysed in Figure 6.2.

Similarly, in the case of di↵erent scale-space, Gaussian functions with di↵erent receptive

fields and learnable standard deviations are utilized to generate e�cient scale features.

Afterward, these features are fused together to find the optimal feature. Let a Gaussian

kernel of size (mi ⇥mi) be convolved with the input image I, where mi = (2 ⇤ i) + 1. The

resultant features are then multiplied with the softmax attention weight (W �

i
), such that

i 2 {0, 1, 2, 3}, yielding the final scale features (I�) as:

I� = W �

0 ⇤ I +
3X

i=1

W �

i ⇤ (I ⌦Gmi⇥mi
) (6.6)

Combining Eq. 6.5 and Eq. 6.6 we obtain r�,✓, which represents gradient features at scale

� and direction ✓, such that ✓ 2 (0, 2⇡). Likewise, these features can be generated for any

two consecutive input frames It1 , It2 as r�,✓

t1
and r�,✓

t2
. The Sobel operator is utilized for
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Figure 6.2: In (a), a synthetic input with noise-based variations and no input motion, is
shown. The results of (b) the proposed model (�-✓Net), and (c) a model trained without
directional space in the manipulator (�-✓-Mb as mentioned in section 6.3.4) are showcased.
The proposed model (�-✓Net) exhibits minimal artifacts, as evident in the highlighted
patch (extracted from the bounding box) and the temporal slice (derived from the red
strip).

gradient computation. Each directional gradient phase (�) and magnitude (R) features

along particular orientation ✓i, are computed and given to function r(·) (more details are

present in the Figure 6.1 (c)) to generate the motion magnified features. These features

are merged with softmax attention weights (W ✓

i
) along all the directions. The magnified

gradient (M�,✓) at a particular resolution is given as

r�,✓
�m

=
8X

i=0

W ✓
i ⇤

⇣
r�,✓i

�t2
+ r

⇣
↵
⇣
r�,✓i

�t2
�r�,✓i

�t1

⌘
,r�,✓i

�t2

⌘⌘
(6.7)

r�,✓
Rm

=
8X

i=0

W ✓
i ⇤

⇣
r�,✓i

Rt2
+ r

⇣
↵
⇣
r�,✓i

Rt2
�r�,✓i

Rt1

⌘
,r�,✓i

Rt2

⌘⌘
(6.8)

M�,✓ = r�,✓

Rm
⇤ cos

⇣
r�,✓

�m

⌘
+r�,✓

Rm
⇤ sin

⇣
r�,✓

�m

⌘
(6.9)

Here, the parameter ↵ represents the magnification factor. The manipulator features

M�,✓ at di↵erent resolutions are fused to generate the final magnified motion features.

Experimentally, nine directions are considered in the manipulator block. Additionally,

detailed information about the manipulator block is depicted in Figure 6.1 (a), (b), (c).

The proposed learnable direction and scale based motion manipulator assist the network

in determining optimal features to minimize the e↵ects of noise in the motion feature map.

6.2.2 Decoder Block

The main role of the decoder block is to synthesize the magnified output with rich texture

from the manipulator motion features. To achieve this, the motion manipulator features

are first added to the input image It2 , and then given to the decoder block to generate the

motion magnified output. Texture synthesis in lightweight models is a di�cult problem. To
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solve this, we extract the multi-scale information using di↵erent dilation rate convolutions.

Here, we assume that with an increase in scale (dilation rate), less texture information

will be allowed to pass on. Hence, we can decrease the number of parameters by reducing

the input information beforehand with channel compression. Further, compression of

channel features encourages the network to retain only dense, meaningful representation,

so redundant information in the feature space (which includes artifacts) can be reduced.

Also, we assume that the output quality is dependent on how to exploit It2 , which is closer

to the magnified output as compared to It1 . For this, It2 is concatenated with the input

features and then given to the multi-scale channel compression block (MSCC) (as shown

in Figure 6.1 (e)). The magnified features using MSCC block are generated at di↵erent

resolutions. The lower-resolution features are utilized to reduce computation overhead,

while the higher-resolution magnified features are exploited to further enhance the output

texture quality. The detailed framework is illustrated in Figure 6.1 and is explained in the

section below.

Multi-Scale Channel Compression Block (MSCC): The block takes the latent

features (fl�1), concatenates (
J

) them with It2 , and feeds them into a convolutional layer

(C3⇥3⇥c(·)) with a 3⇥3 kernel size, featuring c channels, such that f̃l = C3⇥3⇥c(fl�1
J

It2).

In the block, parallel layers with distinct channel compression ratios (c/2i) are utilized,

with various convolutional layers Cd
3⇥3⇥c

(·) with dilation rates d = 2i, where i 2
{1, 2, 3}. To determine the optimal features among di↵erent dilation rates, we employed

softmax-based weights (W d

i
) for feature averaging to generate MSCC output (fl) as

fl = W d

0 ⇤ f̃l +
3X

i=1

W d

i ⇤ C2i
3⇥3⇥c(C3⇥3⇥(c/2i)(f̃l)) (6.10)

6.2.3 Training Details

Dataset: Our model training relies on the synthetic dataset provided by [29], which

consists of 7,000 images of objects from the PASCAL VOC dataset [43] as the foreground,

and 200,000 images from the MS COCO dataset [44] as the background. Various

foreground objects are combined with di↵erent backgrounds at di↵erent positions to

generate random motion. The training dataset comprises a total of 100,000 input-output

image pairs, each with a size of 384⇥ 384.

6.3 Results

Loss Function and Training: We employ the L1 loss function as it is sensitive to

individual pixels, emphasizing texture details. However, it can lead to blurring at the

edges of the object. To address this, we utilize the edge loss function LEL to make the
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Table 6.2: The parameters and GFLOPs, measured at 720 x 720 resolution, are compared
with LB-MM (ECCV-2018) [29], LW-MM [95] (WACV-2023), MD-MM (CVPR-2023) [96],
and the proposed �-✓Net.

Methods [29] [95] [96] �-✓Net

Parameters 0.98 M 1.1 M 0.117 M 0.085 M

GFLOPs 268.6 375.5 65.4 48.8

Table 6.3: Results were generated using parameters, and steps provided by the respective
authors. The source code and pre-trained models were obtained from the o�cial pages of
Jerk-Aware [31], Anisotropy [32], MD-MM [96], LB-MM [29], and LW-MM [95].

Methods Video Magnification Factor Frequency

Ours (�-✓Net) Gun 10 N/A

Ours (�-✓Net) Cat toy 10 N/A

Ours (�-✓Net) Drill 10 N/A

Ours (�-✓Net) guitar 10 N/A

Ours (�-✓Net) Quantitative analysis videos 50 N/A

MD-MM (CVPR-2023) Gun 10 N/A

MD-MM (CVPR-2023) Cat toy 10 N/A

MD-MM (CVPR-2023) Drill 10 N/A

MD-MM (CVPR-2023) Quantitative analysis videos 50 N/A

LW-MM (WACV-2023) Gun 10 N/A

LW-MM (WACV-2023) Cat toy 10 N/A

LW-MM (WACV-2023) Drill 10 N/A

LW-MM (WACV-2023) Quantitative analysis videos 50 N/A

LB-MM (ECCV-2018) Gun 10 N/A

LB-MM (ECCV-2018) Cat toy 10 N/A

LB-MM (ECCV-2018) Drill 10 N/A

LB-MM (ECCV-2018) Quantitative analysis videos 60 N/A

Jerk-Aware Gun 10 20

Jerk-Aware Cat toy 10 3

Jerk-Aware Drill 25 3

Jerk-Aware Quantitative analysis videos 200 15

Anisotropy Gun 100 20

Anisotropy Cat toy 100 3

Anisotropy Drill 100 3

Anisotropy Quantitative analysis videos 400 15

network more responsive to edges. Additionally, to enhance the perceptual quality of

the objects, we introduce the perceptual loss function LPL. The final loss function is

illustrated in Eq. 6.11
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Lloss = �1L1 + �2LEL + �3LPL (6.11)

�1=10, �2= 1, and �3=0.1 values are used for training [96]. The learning rate is set to

0.0001 and an ADAM optimizer is used. For training, the input images are normalized

from -1 to 1. Noise is added to the input, while training. In the network layers, the elu

non-linear activation function and in the final layer tanh activation function is used. In

the current framework, the proposed lightweight model �-✓Net has c = 12, number of

channels, and after down sampling, the number of channels of decoder MSCC block is

increased to 2 ⇤ c. The specifications of existing SOTA and the proposed �-✓Net are given

in Table 6.2.

Figure 6.3: Intermediate features (row-2,3) of our proposed �-✓Net network, highlighting
the motion.

The proposed framework magnifies subtle motion in di↵erent scenarios (static and

dynamic). Further, it is able to magnify motion in noisy environments. To evaluate

the proposed methods, qualitative and quantitative analysis is done in di↵erent scenarios

and compared with SOTA methods [29], [95], [96], [32]. The details of parameters used

for result generation are shown in Table 6.3. The qualitative analysis illustrates, how

the proposed method is able to highlight subtle motion in di↵erent scenarios (Figure 6.3
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Figure 6.4: Dynamic Scenario: In the upper section, a bullet shell is shown to highlight
challenges posed by a fast moving small object. The spatio-temporal slice helps to
visualize the magnification of subtle motion due to gun recoil. (a) Input, (b) Jerk-Aware
(CVPR-2018) [31], (c) Anisotropy (CVPR-2019) [32], (d) MD-MM (CVPR-2023) [96],
(e) LB-MM (ECCV-2018) [29], (f) LW-MM [95] (WACV-2023), and (g) the proposed
�-✓Net. The proposed method highlights the details of the gun shell while producing
good magnification on subtle motion generated by the gun recoil.

shows the intermediate motion features), while the quantitative analysis measures the

performance of the methods in noisy scenarios. Further, an experiment is conducted to

show frequency selectivity. In the end, a detailed ablation study is provided, to illustrate

the impact of di↵erent modules of the proposed method.

6.3.1 Qualitative Analysis

For qualitative analysis with the SOTA methods following di↵erent scenarios are

considered.

Dynamic Scenario: A Gun shooting video as depicted in Figure 6.4 is used. The

video contains a large background movement due to camera motion and a quick gun recoil

motion in the foreground. The objective is to magnify subtle movements such as forearm

motion generated due to the gun recoil, in the presence of large camera motion with fewer

artifacts.

Subtle Motion in Large Moving Object: For this, we take a toy video as illustrated

in Figure 6.5. In the video, the toy is moving along the table as indicated by the arrow,

while the toy moves, it produces minute vibrations. Our, goal is to magnify these subtle

changes even in the presence of large movements, with fewer texture artifacts.
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Figure 6.5: Subtle Motion in Large Moving Object: In the left, frames of the toy
video are presented where the arrow shows the direction of the toy movement, while on
the right, temporal slices extracted from the red strip are depicted. Results for (a) Input,
(b) Jerk-Aware (CVPR-2018) [31], (c) Anisotropy (CVPR-2019) [32], (d) LW-MM [95]
(WACV-2023), (e) LB-MM (ECCV-2018) [29], (f) MD-MM (CVPR-2023) [96], and (g)
the proposed �-✓Net are shown. The proposed method demonstrates minimal distortion
of shape while achieving substantial magnification, whereas other methods either produce
small magnification or produce artifacts (highlighted within the bounding box).

Figure 6.6: Rotational Motion: The top panels showcase enlarged image frames within
a yellow bounding box, while the bottom panels depict spatio-temporal slices along the red
line for (a) Input, (b) Jerk-Aware (CVPR-2018) [31], (c) Anisotropy (CVPR-2019) [32], (e)
LW-MM [95] (WACV-2023), (f) MD-MM (CVPR-2023) [96], and (g) the proposed �-✓Net.
Notably, the other methods either produce less magnification or distort the shape, whereas
the proposed method achieves good magnification with minimal artifacts.

Rotational Motion: Figure 6.6 shows a hand drill video. The hand drill has rational

motion along its axis. To analyze the rotational motion, we have taken a static video. In

2D, we perceive the drill rotational motion as a spiral motion. Our goal is to increase the

spiral motion (an increase in spiral motion is shown as more outwards extension of the

rod radius).

The Oh et al. [29] method distorts the motion, noticeable as spikes in spatio-temporal slices

in Figure 6.4, 6.5, 6.6. On the other hand, [31] and [32] produce minimal magnification.
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Figure 6.7: E↵ects of increase in noise with output SSIM is shown on Jerk-Aware
(CVPR-2018) [31], Anisotropy (CVPR-2019) [32], LB-MM (ECCV-2018) [29], LW-MM
[95] (WACV-2023), MD-MM (CVPR-2023) [96], and the proposed �-✓Net. (A) Shows the
average SSIM values computed across 25 synthetic videos with motion and (B) without
input motion magnified videos output.

Furthermore, methods like [95] and [96] distorts fast-moving small objects, as shown in

Figure 6.4, and sometimes introduce shape artifacts, as illustrated in Figure 6.5 (changes

in straight lines in the background) and Figure 6.6 (changes in shape as shown in the

frames). In contrast, the proposed network �-✓Net, yields good magnification with

minimal distortions, while being less computationally complex as compared to SOTA

methods (as shown in Table 6.2).

6.3.2 Quantitative Analysis

To evaluate the e�cacy of the proposed network across diverse scenarios in the presence

of noise, we conducted an experiment using synthetic videos [96]. The purpose of motion

magnification is to produce large motion with fewer artifacts. Better quality at smaller

magnification ignores the purpose of motion magnification. So, the synthetic input videos

have 0.1 pixels motion in the presence of noise, with respect to that the ground truth videos

have 10 pixel change. Each method is required to produce 100⇥ magnification compared

to the input video to match the ground truth. Further, to analyze the network’s ability to

ignore noise based changes, synthetic videos are created without motion, utilizing the same

scenario as described above. For this, input videos are considered as the ground truth.

Given the absence of motion in these videos, we expect the output to ideally be the same

as the input. The SSIM values are computed across videos both with and without motion

and are shown in Figure 6.7. From Figure 6.7 the proposed network �-✓Net exhibited the

highest SSIM values for the same amount of output motion with minimum parameters.
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Figure 6.8: For frequency selectivity, guitar strings in motion across di↵erent frequencies
are utilized. Motion is observed across the E, A, and D strings. Magnifying these motions
after temporal filter pre-processing helps in accentuating the specific features of motion
associated with each string, as illustrated above.

Figure 6.9: E↵ects of change in Magnification Factor Figure illustrates the proposed
model output. Di↵erent values of the magnification factor in increasing order from (a) 10,
(b) 20, (c) 50 (d) 100, and (e) 200 are used to generate the output.

6.3.3 Additional Experiment

Frequency selectivity: When using a deep learning method that is not directly trained

with temporal filters, applying temporal filters on intermediate features may lead to

inaccurate outcomes. To mitigate this issue, we initially preprocess the video using a

temporal filter to suppress undesired motion. In this context, we utilize the output of [26]

method at a small magnification factor, which is then fed as input to our method. Visual

results are shown in Fig 6.8.

E↵ects of increase in Magnification Factor: The figures 6.9, depict the e↵ects of

varying magnification factors on the output of the proposed models. These visualizations

o↵er insights into model performance under varied magnification factors, highlighting their

robustness and limitations.
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Figure 6.10: The SSIM values across a set of 25 synthetic videos, both (A) with motion
and (B) without motion. The results are shown for model �-✓-Ma to �-✓-Md and �-✓-Da

to �-✓-Dd. The model details are provided in the ablation section.

6.3.4 Ablation

To assess the contribution of various components within the proposed framework, we

conducted an ablation study. Di↵erent combinations of the model are trained and tested

on the same videos as mentioned in quantitative analysis. Initially, to measure the

e↵ectiveness of the proposed manipulator, we conducted experiments by training a model

�-✓-Ma without incorporating the learnable scale layer in the manipulator, followed by

another model �-✓-Mb trained without rotation space. This allows us to analyze the

individual contributions of scale and direction space in the proposed method. Additionally,

we also explored various combinations, such as �-✓-Mc without phase changes, and �-✓-Md

without magnitude changes. The results presented in Figure 6.10 demonstrate the superior

performance of the proposed method �-✓Net, compared to the other configurations.

To analyze the decoder, �-✓-Da a model is trained with the same dilation rate in the

decoder block to see the e↵ect of multi-scale, while another model �-✓-Db is trained

without channel compression, to highlight the e↵ectiveness of the dense representation.

Additionally, a model �-✓-Dc is trained with the residual block for establishing a standard

comparison, considering the widespread use of residual blocks in various image translation

tasks. Please note that the proposed channel compression block is di↵erent from the

squeeze and excitation block as proposed in [98]. �-✓-Dd model is trained with squeeze

and excitation block, to show the di↵erences. From the quantitative results analysis in

Figure 6.10, it is observed that the proposed decoder block of �-✓Net has the highest SSIM

values.



102Chapter 6. Learnable Directional Scale Space Filters for Video Motion Magnification

6.4 Summary

In this chapter, we introduce a novel learnable directional scale-space filters-based network,

�-✓Net, for video motion magnification. It consists of a motion manipulator block and

a decoder block. Our approach leverages learnable directional scale space phase and

magnitude information for motion manipulation. The decoder block employs channel

compression with varying compression ratios and incorporates di↵erent dilation rate

convolutions to integrate scale space. This facilitates the generation of good quality

magnified output while mitigating the impact of noise. The proposed method is evaluated

qualitatively and quantitatively on both real and synthetic videos. An additional

experiment is conducted to show the compatibility of the proposed method with frequency

selectivity. Furthermore, an ablation study is performed to examine di↵erent components

of the proposed approach. The results demonstrate that the proposed network �-✓Net

achieves better results qualitatively and quantitatively compared to the SOTA methods

for video motion magnification. However, in scenarios with high levels of noise, there’s

a demand for methods that exhibit robustness to noise while also possessing fewer

parameters.



Chapter 7

A Hierarchical Network Based

Approach for Video Motion

Magnification

Earlier video motion magnification methods [33, 26, 28, 27] perform well in static scenarios,

but they produce blurry results in dynamic scenarios. Later approaches [31, 32, 30] work

in static as well as in dynamic scenarios. However, they produce little magnification

with ringing artifacts. Oh et. al. [29], introduced a deep learning-based solution

that can construct results without ringing artifacts and high magnification in dynamic

scenarios. However, sometimes due to inadequate separation of shape and texture features,

magnification of input noise, illumination changes, or other unwanted changes, cause

spurious motion and blurry distortions. Later, di↵erent deep learning based approaches are

being proposed to mitigate this issue using transformers [47], proxy model based feature

loss [99],or processing in frequency and spatial domain [96] etc. However, these techniques

are either computationally complex or their output quality decreases with an increase in

input noise.

To address these limitations, we propose a hierarchical magnification network for video

motion magnification. LWVMM [99] employs residual blocks that are not specifically

tailored for reducing noise in motion features. Additionally, the proxy model solely

focuses on features from which distance should decrease; incorporating negative samples

could be useful. Also, it generates noise-robust motion features at a single scale and

does not exploit the hierarchical structure used in handcrafted methods. Due to these

design choices, [99] is sensitive to noise-induced changes. To mitigate these issues, we

propose a lightweight model that is more robust to noise compared to state-of-the-art

methods, producing e↵ective magnification and better quality. Moreover, the proposed

method relies on edge features instead of input features for motion extraction, eliminating

the need for encoders as used in [99] for feature separation. This design choice makes our

model lightweight and more memory-e�cient compared to [99], rendering it an appropriate

choice for various computer vision-based healthcare and industrial applications of motion

magnification. The main contributions of the work are as follows:
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A hierarchical magnification network with a multi-resolution decoder is proposed

for adequate magnification and reconstruction (from lower resolution to higher

resolution) of the output frame.

Multi-Scale Manipulator block is proposed with edge-based di↵erence input for

reduction of noise before magnification.

A novel contrastive loss is proposed for further enhancing the robustness of the

magnification process towards noise.

We have also done extensive qualitative and quantitative analysis for a more adequate

evaluation of the proposed method.

These solutions are explained in detail in the following sections.

7.1 Proposed Method

Handcrafted filter-based techniques, such as [30, 31, 32] take multiple frames as input,

use complex steerable pyramids for spatial feature decomposition and temporal filters

for motion manipulation. These methods rely on narrow bandpass filters to mitigate

the impact of noise. [29] puts regularization on encoders to separate shape information;

however, sometimes inadequate separation of shape features, along with the magnification

of noise, can lead to blurry distortions and superious motion. Similarly, [99] separates

appearance information from input using regularization. However, the proposed method

did not employ any regularization but instead utilized di↵erences in edge features of

the input frame for motion information extraction. This helps in the reduction of

complexity. We assume most of the noise is present in the texture area. So, using edge

features for extracting motion information allows reduction of noise before magnification

(i.e. before multiplication with the magnification factor). In this regard, we propose

a Multi-Scale Manipulator (MSM) block that processes the edge di↵erences and input

features. Additionally, the proposed feature-based contrastive loss assists in reducing the

impact of noise. Together, these elements help the proposed network to convey better

magnification results while mitigating the e↵ects of noise.

While [26, 27, 28] employ steerable pyramids to extract multi-scale features and

utilize temporal filters at individual levels to generate multi-level magnification, they

render the final output using a steerable reconstruction pyramid by merging the

multi-level magnification features. In contrast, [99] utilizes only single-level information

for reconstruction. Whereas, multi-level magnified features can help in the better

reconstruction of the output [26, 27, 28]. Drawing inspiration from [26, 27, 28] methods,

we propose the utilization of features from multi-scale manipulator (MSM) blocks with
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Figure 7.1: Our proposed architecture for motion magnification. It takes Framet,
Framet�1, and the magnification factor Mf as input. The MSM block is used to generate
motion manipulation features, and the MD block is used to reconstruct a magnified frame
based on these features. c describes the number of channels.

multi-resolution decoder (MD) features for adequate reconstruction and magnification of

the output frame, from lower resolution to higher resolution.

7.1.1 Hierarchical Magnification

The proposed network generates magnified features, progressing from lower to higher

resolutions. At each level, input features and edge di↵erences undergo processing through

the MSM and MD blocks to generate the appropriate magnified features. These are then

hierarchically merged to render the final magnified frame. Similar to the spatial pyramids,

di↵erent resolution magnified features aid in better output reconstruction. In contrast to

[99], where appearance features are generated, we utilize edge features, as they are more

robust to illumination changes (Sobel operator is used for edge extraction). At di↵erent

levels of the network, the MSM block uses di↵erent receptive fields to generate output

features. Dissimilar receptive fields will face di↵erent noises. So, each output feature of

the MSM block at distinct resolutions will have di↵erent denoising e↵ects. Merging these

features further improves the network’s robustness.

TheMSM block output holds the motion manipulation information, which is passed to the

magnification decoder MD block. The MD block develops suitable texture features from

the input features and adds them to the MSM output. It uses residual blocks to render

the combined features to appropriate magnified output according to MSM features. Also,



106Chapter 7. A Hierarchical Network Based Approach for Video Motion Magnification

Figure 7.2: Overview of the proposed Multi-Scale Manipulator Magnification (MSM)
Block, showing an increase in the receptive field from left to right

in the MD block, taking two frames as input aids in denoising the texture area. The MD

block’s output at each level is up-sampled and concatenated with the subsequent higher

level MD block’s output. This combined output is then provided to residual blocks to

reconstruct the final magnified output.

7.1.2 Multi-Scale Manipulator (MSM) Block

To lessen the e↵ects of the magnification of noise, multi-scale convolutions are applied to

di↵erent features. As noise is random in nature, it will a↵ect various parts of the image

di↵erently. So, a dilated convolution with varying receptive fields can see distinct samples

of noise for the same central element. Also, we assume that when higher receptive field

convolution is applied to pre-processed features from the lower receptive field, it can see

distinct values of noise for the same central element. To leverage these assumptions, the

receptive field is increased in a sequential order, such that the output of the previous

receptive field is set as input for the next higher receptive field. Thus, each layer can work

on pre-processed features of the previous layer and can reduce noise before magnification.

Whereas, in a parallel combination, each layer will see the same input, limiting its ability

to distinguish noise variations.

Figure 7.2 shows the structure of MSM block. Within this block, the first concatenation

operation, denoted as C(·), is applied to input features Em

d
, Fm

t , Fm
t�1. Whereas Em

d
2

Rh⇥w⇥c is the di↵erence and Fm
t , Fm

t�1 2 Rh⇥w⇥c are the input features of frame t and

t � 1 at level m 2 {1, 2, 3} such that m = 1 is for the highest resolution of 384 ⇥ 384,

m = 2 for 192⇥ 192, and m = 3 for the lowest resolution of 96⇥ 96. After concatenation

operation, convolution operation (⌦) is applied using kernel  r+1
3⇤3⇤(c⇤m), with kernel size

3 ⇥ 3 ⇥ (c ⇤ m) and dilation rate r such that (m, r) 2 {(1, 8), (2, 4), (3, 1)} and (c ⇤ m)

number of channels to generate output Fm,r as :

Fm,r+1 =  r+1
3⇤3⇤(c⇤m) ⌦ C(Em

d , Fm

t , Fm

t�1); m 2 {1, 2, 3}. (7.1)

The output of the first convolution layer, denoted as Fm,r+1, is passed to other layers
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Figure 7.3: MSM Block Features after Multiplication with Magnification Factor. (a) Input
frames of Balloon Video, Hand Drill Video, and Gun-shooting Video, respectively. (b),
(c), and (d) are the intermediate features that highlight the motion parts.

through concatenation. This is done to provide adequate input information to all the

layers. On Fm,r+1 features, � sigmoid activation, and ⇣ batchnorm are applied to highlight

features of interest. Batch normalization is used only in the MSM block to re-scale

the features. Further, element wise multiplication (�), and addition operations (�) are

performed on normalized features with Fm,r+1 as:

Wm,r+1 = Fm,r+1 �
�
Fm,r+1 � ⇣

�
�
�
Fm,r+1

���
. (7.2)

The output of Eq. (7.2) will act as base features, which will be further enhanced by the

subsequent layers. The remaining operations are depicted in Eq. (7.3) to produce output

Wm,r+4.

Wm,r+n+1 = Wm,r+1 �
⇣
Wm,r+1 � ⇣

⇣
�
⇣
 r+n+1

3⇥3⇥(c⇥m) ⌦ C
⌘
(Wm,r+n, Fm,r+1)

⌘⌘
;

n 2 {1, 2, 3}.
(7.3)

Where Wm,r+4 is multiplied by the magnification factor (Mf ), which controls the amount



108Chapter 7. A Hierarchical Network Based Approach for Video Motion Magnification

of magnification. Subsequently, the convolution layer and residual blocks are used to

generate the final motion manipulated features. Figure 7.3 the intermediate features of

MSM block.

7.1.3 Proposed Feature Based Contrastive Loss

Contrastive learning has been utilized to make input latent features get closer to the

positive samples while increasing their distance from the negative samples. Various

approaches have used positive and negative samples in the image space [100, 101, 102]

or its downstream representation on a network [103, 104]. However, these techniques

are hand-tailored for specific applications and cannot be applied directly to motion

magnification. For instance, [104] uses encoder representation to generate positive and

negative samples for image translation problems. Whereas for motion magnification, if

noiseless images are passed through the same network (trained for noisy input) to develop

positive samples, their representation will have some distortions due to denoising. To

solve this, the same network is trained from scratch without adding noise to the input.

It acts as a proxy network. So, positive samples are taken from the proxy model, and

MSM block features when a noiseless image is given as input. For negative samples,

using noisy image features from the proxy network is not beneficial. Since noise is already

added to the input while training, the network’s loss function will try to move away from

noisy representations. So, instead of that, previous epoch features of the MSM block are

taken as negative samples. The network will try to get away from its previous motion

manipulation features while trying to get closer to the proxy model motion manipulation

features. We assume that there are slightly di↵erent features from the previous epoch that

can cause similar losses. So, the network will oscillate across di↵erent minima to find a

more optimum minimum (as shown in the ablation study with the proposed contrastive

loss, which leads to improvements compared to the scenario where it is not used). However

training a network from scratch using this loss function can be noisy and may even prevent

its convergence. Instead, the network is fine-tuned to the best-trained weights. Also,

fine-tuning is done for a small number of epochs to make the process stable (as over-fitting

can otherwise make it unstable). This results in further improvement in the output quality.

The proposed contrastive loss (Closs(·)) is defined as:

Closs =
Lk(N(Fm,r

t
, Fm,r

t�1 )e �N⇤(Fm,r

t
, Fm,r

t�1 )k1
LkN(Fm,r

t
, Fm,r

t�1 )e �N(Fm,r

t
, Fm,r

t�1 )e�1k1
(7.4)

where N(Fm,r

t
, Fm,r

t�1 )e represents the multi-scale block (MSMm,r
e ) output features at eth

epoch for the input Fm,r

t
and Fm,r

t�1 , for m, r 2 {(1, 9), (2, 5), (3, 1)} and ⇤ indicates the

proxy model for the same. Lk · k1 represents the absolute di↵erence between the two

values.
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Table 7.1: Comparison of the state-of-the-art deep learning method STBVMM [47],
LWVMM [99], MDVMM [96] our base and lightweight model in terms of parameters
and FLOPs (calculated at 384⇥ 384 resolution).

Model Parameters GFLOPs

STBVMM [47] 31.2 M 1376.8

LWVMM [99] 1.10 M 375.5

Our Base Model (M1) 2.5 M 602.5

Our lightweight model (M2) 0.28 M 68.3

MDVMM [96] 0.117 M 65.4

7.1.4 Dataset

In our model training, we utilized the dataset provided by [29], maintaining consistency

in the experimental setup. This dataset consists of synthetic images, featuring

7,000 foreground objects sourced from the PASCAL VOC dataset [43] and 200,000

backgrounds from the MS COCO dataset [44]. The synthesis process involves merging

diverse foreground objects with various backgrounds at di↵erent positions, introducing a

controlled form of random motion. This procedure results in a comprehensive dataset

containing 100,000 sample pairs, each possessing a resolution of 384⇥ 384.

7.1.5 Loss Function and Training

We use the Lk · k1, Edge loss (LELk · k1), perceptual loss (LPLk · k1) with the proposed

contrastive loss. Lk ·k1 norm loss represents the absolute di↵erence between the predicted

and ground truth values. It is pixel sensitive and puts more emphasis on texture. But this

can blur the edges of the magnified object. To solve this, the Edge loss function (LELk ·k1)
[58] is used. But still, the perceptual quality of moving objects is not adequate. Hence, the

perceptual loss function (LPLk · k1) [59] is used. Thus, the final loss function is depicted

as

Lloss = �1Lk · k1 + �2LELk · k1 + �3LPLk · k1 + Closs(·) (7.5)

where �1=10, �2= 1 and �3=0.1 values are utilized for training. Additionally, Gaussian

noise is incorporated into the input to simulate noise. A base model with c = 24 and

a lightweight model with c = 8 are proposed. The networks are implemented in the

TensorFlow library and trained on an NVIDIA 2080 RTX GPU with 8GB of memory.

During the training process, the learning rate is configured to be 0.0001, and the ADAM

optimizer is employed. Training the base and lightweight models takes 192 and 96 GPU

hours, respectively. Both models are trained for 36 epochs and further fine-tuned for 15

epochs using the proposed contrastive loss. Their characteristics are summarized in Table
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Figure 7.4: Balloon video: Initially, frames from the video are presented, followed by
temporal slices extracted from the red strip to depict the motion of balloon bursts. Motion
magnification is evident through the enhanced motion observed in both the balloon itself
and the corresponding temporal slice, in comparison to the input. (a) Input video, (b)
Anisotropy method [32], (c) Jerk-Aware method [31], (d) MDVMM [96], (e) STBVMM
[47], (f) LWVMM [99], (g) Our base model, and (h) Our lightweight model, respectively.

7.1, with our lightweight model having the lowest FLOPs.

7.2 Experimental Results

The proposed method is evaluated both qualitatively and quantitatively, with

state-of-the-art methods such as Jerk-Aware [31], Anisotropic filter [32], STBVMM [47],

LWVMM [99], and MDVMM [96] using both natural and synthetic videos. The details of

parameters used for result generation are shown in Table 7.2. The following sub-sections

include an exhaustive discussion of the comparisons. Additionally, we conducted an

experiment to assess the physical accuracy of the proposed method. Furthermore, an

ablation study is performed to illustrate the significance of various parts of the network.

Results in the ablation study are based on lightweight models before fine-tuning with

contrastive loss unless otherwise specified.

7.2.1 Real world Videos

Balloon video In Figure 7.4, a water cannon is used to rupture the balloon, resulting

in both minute and large motion in the balloon. Figure 7.4 shows these motions as

spatial-temporal slices extracted from the red strip. We aim to magnify the fine-grained

motion of the balloon while minimizing the distortions caused by sudden, large motion.

Hand-crafted techniques [31, 32] create ringing artifacts close to the balloon. These
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Table 7.2: Parameters of di↵erent methods for motion magnified videos. All the results
are generated by following the steps given by the respective authors with parameters.

Methods Video Mf Frequency

Ours (M1,M2 ) Gun 10, 10 N/A

Ours (M1,M2 ) Drill 3,5 N/A

Ours (M1,M2 ) Balloon 9, 9 N/A

Ours (M1,M2 ) Physical accuracy 10, 10 N/A

Ours (M1,M2 ) synthetic videos 50, 50 N/A

Ours (ablation study) synthetic videos 50 N/A

LWVMM [99] Gun 10 N/A

LWVMM [99] Drill 10 N/A

LWVMM [99] Balloon 10 N/A

LWVMM [99] Physical accuracy 10 N/A

LWVMM [99] synthetic videos 50 N/A

MDVMM [96] Gun 10 N/A

MDVMM [96] Drill 10 N/A

MDVMM [96] Balloon 10 N/A

MDVMM [96] Physical accuracy 5 N/A

MDVMM [96] synthetic videos 50 N/A

STBVMM [47] Gun 10 N/A

STBVMM [47] Drill 10 N/A

STBVMM [47] Balloon 10 N/A

STBVMM [47] Physical accuracy 10 N/A

STBVMM [47] synthetic videos 50 N/A

Jerk-Aware [31] Gun 10 20

Jerk-Aware [31] Drill 25 3

Jerk-Aware [31] Balloon 25 3

Jerk-Aware [31] Physical accuracy 10 15

Jerk-Aware [31] synthetic videos 100 15

Anisotropy [32] Gun 100 20

Anisotropy [32] Drill 100 3

Anisotropy [32] Balloon 100 3

Anisotropy [32] Physical accuracy 200 3

Anisotropy [32] synthetic videos 200 15
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Figure 7.5: Drill Video: The proposed method is compared with state-of-the-art (SOTA)
methods for magnification of drill rotational motion. Firstly, the output from each
respective method is presented. Following that, spatio-temporal slices, taken from the
red strip, are displayed to facilitate a detailed comparative analysis. (a) Input video, (b)
Anisotropy method [32], (c) Jerk-Aware method [31], (d) MDVMM [96], (e) STBVMM
[47], (f) LWVMM [99], (g) Our base model, and (h) Our lightweight model, respectively.
respectively.

artifacts are highlighted in the red bounding box in Figure 7.4 (b),(c) and can be observed

as white edges close to the balloon and white spikes in the temporal slices. LWVMM [99]

and MDVMM [96] exhibit less magnification in comparison to the proposed method, while

[47] is noted for its computational complexity. Hence, the proposed approach has better

results with lesser complexity.

Rotational motion Magnifying rotational motion is a challenging task. To assess

the impact of magnification, we employ a stationary video featuring a hand drill with

rotational motion along the drill axis, as depicted in Figure 7.5. In a two-dimensional

context, this motion translates into a spiral pattern. Our objective is to enhance the

spiral movement, visually represented as a more outward extension of the rod radius in

the spatial-temporal slices presented in Figure 7.5. Approaches based on hand-designed

filters, such as [31] and [32], introduce ringing artifacts near the rod. These artifacts

are discernible as white edges in proximity to the rod and white spikes in the temporal

slices, as illustrated in Figure 7.5 (b) and (c). LWVMM [99], produces some blurriness

in the texture (observable in Figures 7.5 (f)) and MDVMM [96] has less magnification.

In contrast, STBVMM [47] has exhibited promising outcomes, however, it is hampered

by notable computational complexity. The proposed method delivers more spiral motion

with better quality compared to other methods.
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Figure 7.6: Gun-shooting video: Temporal slices taken from the red strip illustrate the
impact of gun recoil on the forearm and also facilitate the observation of changes induced
by motion magnification. (a) Input video, (b) Anisotropy method [32], (c) Jerk-Aware
method [31], (d) LWVMM [99], (f) MDVMM [96], (e) STBVMM [47], (g) Our base model,
and (h) Our lightweight model, respectively.

Gun-shooting Video The video captures two distinct forms of motion: the significant

translation motion induced by camera movement and the subtle movement in the forearm

of the shooter resulting from gun recoil. The objective is to amplify the nuanced motions

in the forearm despite the presence of substantial camera movements. The forearm

motion shown in the spatio-temporal slices is taken from the red strip and shown in

Figure 7.6. The heightened motion in the forearm manifests as increased bending in the

temporal slice, as highlighted in the red box of Figure 7.6. Comparative analyses with the

Jerk-aware method [31] and Anisotropy [32] reveal lower magnification levels compared

to the proposed method. LWVMM [99] exhibits less smooth forearm motion due to the

magnification of unwanted distortions, visible in Figure 7.6 (d). MDVMM [96] produces

modest magnification on the forearm compared to the proposed method. Although

STBVMM [47] demonstrates promising results, its high computational complexity is

noteworthy. The proposed method excels in generating superior magnification of subtle

forearm movements even in the presence of significant camera motion when compared to

state-of-the-art methods, and with less computational complexity.

Physically Accuracy To investigate this, an experiment was conducted using a

universal vibration apparatus as shown in Figure 7.7, inducing subtle up-and-down motions

in a mechanical rod. An ultrasonic sensor measured the resulting signal (for more details

please see section 3.2.2). Optical flow was computed between magnified and input videos

within a marked region. Optical flow used framet�1 as reference and framet from the



114Chapter 7. A Hierarchical Network Based Approach for Video Motion Magnification

Figure 7.7: Physical Accuracy: Comparing our method with the output of other
state-of-the-art (SOTA) methods, both are represented in red, alongside the sensor signal
depicted in blue. The computation of optical flow direction within the patch region is
performed to extract the magnified signal from the video (depicted in blue,). (a) Input,
(b) Our base model, (c) Our lightweight model, (d) STBVMM [47], (e) MDVMM [96], (f)
Anisotropy method [32], (g) Jerk-Aware method [31], and (h) LWVMM [99] respectively.

Figure 7.8: Mean Absolute Error (MAE) on SOTA methods of Our base model (M1), Our
lightweight model (M2), (d) STBVMM [47], (e) MDVMM [96], (b) Anisotropy method
[32], (a) Jerk-Aware method [31], and (h) LWVMM [99]. The MAE is calculated between
the signal measured by the sensor and the extracted signal from the magnified video.

magnified video. The average motion direction within the patch was computed. Both

optical flow and sensor signals were rescaled from 0 to 1 and mean absolute error (MAE)

values are calculated across SOTA methods. Distortion produced by other methods

(ringing artifacts, flickering motion etc) leads to more error while measuring as compared

to ours (illustrated in Figure 7.8).

7.2.2 Synthetic Videos

To evaluate the method, 25 synthetic videos with diverse backgrounds are created. These

videos feature circles with a 40-pixel radius, simulating subtle movements. Single-direction

movements are used for simplicity, with subtle motions. Further, Gaussian noise is

added to replicate photographic noise (Please see section 3.2.3 for more details). Varied
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Figure 7.9: E↵ects of increase in sigma (standard deviation of zero mean gaussian
distribution) with output MSE is shown on Anisotropy method [32], Jerk-aware method
[31], STBVMM [47], MDVMM [96], LWVMM [99][99], Our base model M1 and Our
lightweight model M2. The MSE is computed as an average across 25 di↵erent synthetic
videos.

Figure 7.10: Mean Square Error (MSE) of Anisotropy method [32], Jerk-aware method
[31], Acceleration method [30], Oh et al. method [29], Ours Base model M1 and Our
Lightweight model M2 on 25 synthetically generated videos containing di↵erent subtle
motion of circles with various backgrounds.

magnification factors are applied to di↵erent methods, including [31], [32], MDVMM [96],

LWVMM [99], and STBVMM [47], ensuring consistent motion generation akin to the

ground truth. This approach facilitates the examination and comparison of how di↵erent

methods magnify diverse motions in distinct environments, assessing their robustness.

Each method is required to achieve 100⇥ magnification, to approximate the ground truth.

Figure 7.14 (1) depicts the average Mean Squared Error (MSE) across 25 videos, while

Figure 7.9 illustrates the variation of output error with an increase in input noise in the

synthetic videos for di↵erent methods. From Figure 7.9, it is evident that the proposed

method produces the minimum error.

7.2.3 Additional Experiments

E↵ects of increase in Magnification Factor: The impact of magnification factor

increment is depicted in Figure 7.11, showing the resulting Mean Square Error (MSE)

across 25 videos in the presence of noise. Figures 7.12 and 7.13 illustrate visual changes

in the proposed base model (M1) and lightweight model (M2) respectively. The base
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Figure 7.11: E↵ects of increase in Magnification factor with output MSE (computed
average across 25 videos). Input videos contain di↵erent backgrounds with noise, without
any motion (or circle motion). Results are shown on Our base model M1, and Our
lightweight model M2

Figure 7.12: E↵ects of change in Magnification Factor: Figure illustrates proposed base
model output (M1). Di↵erent values of the magnification factor in increasing order from
(a) 10, (b) 20, (c) 50 (d) 100, and (e) 200 are used to generate the output shown in the
respective column.

Figure 7.13: E↵ects of change in Magnification Factor: Figure illustrates our lightweight
model output (M2). Di↵erent values of the magnification factor in increasing order from
(a) 10, (b) 20, (c) 50 (d) 100, and (e) 200 are used to generate the output shown in the
respective column.

model exhibits fewer distortions with increasing magnification in dynamic scenarios, while

the lightweight model shows decent magnification capabilities but su↵ers performance

degradation with higher magnification factors due to its reduced parameterization. These

visualizations o↵er insights into model performance under varied magnification factors,

highlighting their robustness and limitations.
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Figure 7.14: Average Mean Square Error (MSE) on 25 synthetically developed videos with
various backgrounds, containing subtle motion of circles. Quantitative Analysis: (1)
Our base model M1, Our lightweight model M2, (a) MDVMM [96], (b) LWVMM [99], (c)
STBVMM [47], (d) Anisotropy method [32], and (e) Jerk-Aware method [31]. Ablation
Study: (2) M1, M2, C(1to4), (3) M1, M2, C1, R(1to3), and (4) M1, M2, C1, H(1to5), where
R(1to3), C(1to4) and H(1to5) are defined in Section 7.2.4 respectively.

Figure 7.15: Mean Square Error (MSE) of Ours Base model M1, Ours Lightweight model
M2 and C(1to4) on 25 synthetically generated videos containing di↵erent subtle motion of
circles with various backgrounds.

Figure 7.16: Mean Square Error (MSE) of Ours Base model M1, Ours Lightweight model
M2 and C1, H(1to5), (as defined in Section 4.4 of main manuscript respectively) on 25
synthetically generated videos containing di↵erent subtle motion of circles with various
backgrounds.

Figure 7.17: Mean Square Error (MSE) of Ours Base model M1, Ours Lightweight model
M2 and C1, R(1to3) (as defined in Section 4.4 of main manuscript respectively) on 25
synthetically generated videos containing di↵erent subtle motion of circles with various
backgrounds.
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Figure 7.18: E↵ects of increase in � with output MSE (computed average across 25
di↵erent synthetic videos) is shown on Ours Base model fine tunned with a contrastive loss
M1, without fine tunned B1 and Ours Lightweight model fine tunned with a contrastive
loss M2, without fine tunned C1. With contrastive loss, there is an improvement in output
quality, especially in lower values of noise.

Figure 7.19: Loss curve of proxy model loss with number of epochs (training on C4).

Figure 7.20: Loss curve of proposed contrastive loss with number of epochs (training on
proposed lightweight network M2).

7.2.4 Ablation Study

How does the proposed contrastive loss a↵ect the model? To examine that

while keeping the overall architecture first, the C1 model is trained without fine-tuning

the proposed contrastive loss. Also, the C2 model is trained with the proposed contrastive

loss right from the start. Moreover, instead of contrastive loss, L1 loss with the proxy

model features is used to train the C3 model from scratch and fine-tune the C4 model,

respectively. This will show the e↵ects of the proxy model. The individual and aggregated

results over synthetic videos are shown in Figure 7.15 and 7.14 (2). Additionally, the e↵ect

of contrastive loss in noise robustness is illustrated in Figure 7.14. Further, Figure 7.19

and 7.20 shows the training data loss curve for C4 and the proposed M2 model.

E↵ect of MSM Block: To see the e↵ect of di↵erent receptive fields while keeping the
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same overall architecture, model R1 is trained with dilation rate 1 at all levels. Further,

to examine the aspect of serial processing of features in MSM , model R2 is trained with

parallel layers for m, r 2 {(1, 9), (2, 5), (3, 1)}. Also, a network R3 is trained with residual

blocks instead of the MSM block to analyze the overall e↵ect of the MSM block. All

these models are evaluated based and the individual and the aggregated MSE over 25

synthetic videos, as shown in Figure 7.16 and 7.14 (3).

E↵ects of Hierarchical Magnification and Other Network choices: To verify this

while keeping the same overall architecture, the H1 model is trained without MSM block

upsampled di↵erences features at various levels. Also, H2 and H3 models are trained with

m 2 (1, 2) and m = 1 levels, respectively, to show how magnified output generated from

di↵erent levels helps. Further MD blocks are trained without concatenation, with only

framet as an input in the H4 model. Additionally, to see the e↵ects of edge di↵erences,

the H5 model is trained by taking di↵erences directly from the input image. Figure 7.14

(4) and Figure 7.17 illustrate the average and individual values over synthetic videos.

7.3 Summary

In this chapter, we discussed a Multi-Scale Manipulator (MSM) block with edge

features alongside a novel contrastive loss for reducing noise e↵ects. Also, a hierarchical

magnification network with a multi-resolution decoder (MD) is used for better texture

generation. In the MSM block, edge di↵erences are preferred due to their robustness to

texture variations as compared to frame di↵erences. Furthermore, multi-receptive field

convolution features in the MSM block are scaled and fused with other resolutions of

MSM features to mitigate the impact of noise prior to magnification. MD is used to

generate magnified features from the fused MSM block features. The magnified features

are generated hierarchically, such that lower-level magnified features are combined with

the next higher-level features. Additionally, contrastive loss is proposed to fine-tune the

model to further improve its robustness. Within the proposed framework, both base and

lightweight models are introduced, and their performance is evaluated through qualitative

and quantitative analyses alongside state-of-the-art methods applied to both synthetic and

real-world videos. An in-depth ablation study is conducted to scrutinize the proposed

modules of the framework. The outcomes reveal that both the base and lightweight

models outperform state-of-the-art methods, showcasing superior motion magnification

with fewer artifacts. However, the proposed network and existing state-of-the-art methods

have certain limitations, such as color magnification and motion selection based on pixel

displacement, etc. that can be addressed in future research.
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Chapter 8

Conclusion and Future Scope

8.1 Conclusion

Motion magnification, a technique that enhances subtle movements in videos, has

garnered significant attention due to its wide-ranging applications across various fields.

By amplifying imperceptible motions captured in video footage, motion magnification

algorithms o↵er valuable insights and enable more accurate analysis of real-world

phenomena.

The main aim of this thesis work is to design and develop novel approaches for video

motion magnification. The major challenges like ringing artifacts, mitigating noise

amplification, managing computational complexity, achieving adequate magnification in

dynamic scenarios, and minimizing distortions introduced by deep learning-based methods

need to be tackled for video motion magnification. This work mainly focuses on analyzing

and designing di↵erent solutions for video motion magnification in the context of providing

the solution to the above-mentioned challenges.

For video motion magnification, the deep learning-based method extracts motion

information from shape information to enhance the network’s robustness to intensity

changes. However, its approach to separating shape information from texture may not

always be e�cient, leading to distorted intermediate features that can result in unwanted

flickering or spurious motion. Texture features extracted by this method may sometimes

deviate significantly from the input textures, potentially causing blurry distortions in

certain frames of the magnified video. To overcome this, a deep learning-based model

for video motion magnification is presented. It incorporates proxy model-based feature

loss, feature-sharing encoders, and appearance encoder-based regularization terms to

mitigate noise and illumination e↵ects while refining motion features. Additionally,

a lightweight model is proposed to balance accuracy and computational complexity.

Qualitative and quantitative evaluations against state-of-the-art methods demonstrate

superior performance.

However, di↵erent applications of video motion magnification require di↵ering levels of

computational complexity. Therefore, there is a need for a versatile approach that can

accommodate application-specific computational models. This work introduces a novel

Knowledge Distillation-based Latency-aware Di↵erential Architecture Search (KL-DNAS)
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Figure 8.1: The e↵ects of an increase in noise on output MSE are shown on the
known proxy model-based training method (LW -MM), Knowledge Distillation-based
Latency-aware Di↵erential Architecture Search (KL-DNAS), Multi-Domain-based
magnification (MD-MM), �-✓Net, and the hierarchical magnification network
(HM -MN). Results are computed across 25 synthetic videos.

method for video motion magnification. This approach optimizes student models under

teacher network supervision, leveraging di↵erential architecture search and latency-aware

mechanisms. Extensive evaluations reveal improved motion magnification quality with

fewer distortions and artifacts compared to existing methods.

But, there are still areas for further improvement. One potential avenue involves

leveraging insights from hand-designed methods that utilize complex steerable pyramids

to address noise e↵ects in motion magnification. Integrating these techniques with

deep learning-based approaches could further enhance their e�ciency and e↵ectiveness.

Additionally, we propose a multi-domain network that combines frequency and spatial

domain operations. Furthermore, we introduce lightweight models that yield comparable

results to state-of-the-art methods.

Whereas, the proposed work doesn’t fully utilize the steerable pyramid architecture of

hand-crafted-based methods, as it manipulates motion features at a single scale. We

introduce �-✓Net, a novel network for video motion magnification. Leveraging learnable

directional scale-space filters, it produces high-quality magnified output while reducing

noise impact. Our method outperforms state-of-the-art approaches both qualitatively and

quantitatively with reduced parameters, but further research is needed for robustness in

noisy scenarios with fewer parameters.

To solve this, a hierarchical magnification network with Multi-Scale Manipulator (MSM)

block with edge features and a contrastive loss is proposed to reduce noise e↵ects in motion

magnification. A hierarchical magnification network with a multi-resolution decoder (MD)

enhances texture generation by hierarchically combining magnified features. Additionally,

contrastive loss is proposed to fine-tune the model to further improve its robustness.

Within the proposed framework, both base and lightweight models are introduced.

The quantitative comparison of the proposed approaches for video motion magnification is
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provided in Figure 8.1. For MAE computation, the proposed synthetic dataset is used. The

proposed hierarchical magnification network HM -MN achieves state-of-the-art results,

whereas the �-✓Net depicts the best results with the least parameters.

8.2 Future Scope

The aim of this thesis is to address challenges in video motion magnification, including

noise amplification, computational complexity, and distortions. Novel approaches

are developed to mitigate these challenges, including a deep learning-based model

with feature refinement and a lightweight variant. Furthermore, a Knowledge

Distillation-based method is introduced for optimizing computational models, and insights

from hand-designed methods are leveraged for noise reduction. A multi-domain network

and a hierarchical magnification network with Multi-Scale Manipulator block are proposed

to enhance robustness and texture generation. The goal is to contribute solutions to these

challenges through comprehensive quantitative and qualitative evaluations.

In the future, we aim to integrate additional hand-designed methods, like complex steerable

pyramids, to enhance noise reduction and improve e�ciency in motion magnification

algorithms. Moreover, exploring advanced techniques for robustness to noise and

dynamic scenes, such as incorporating motion estimation algorithms, could lead to more

accurate and reliable magnification results. Additionally, investigating transformer-based

approaches to enhance output quality while reducing computational complexity seems

promising. Overall, future research endeavors should focus on refining and expanding the

capabilities of video motion magnification techniques to better meet the evolving needs of

various domains and applications.
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[58] Miika Aittala and Frédo Durand. Burst image deblurring using permutation invariant

convolutional neural networks. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 731–747, 2018.

[59] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer

and super-resolution. In European conference on computer vision, pages 694–711. Springer,

2016.

http://dx.doi.org/10.1016/j.knosys.2023.110493


132 References

[60] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

[61] Henrik Lauridsen, Selina Gonzales, Daniela Hedwig, Kathryn L Perrin, Catherine JA

Williams, Peter H Wrege, Mads F Bertelsen, Michael Pedersen, and Jonathan T

Butcher. Extracting physiological information in experimental biology via eulerian video

magnification. BMC biology, 17(1):1–26, 2019.

[62] Carlos I. Cardona, Hector A. Tinoco, Daniel A. Pereira, Jaime Buitrago-Osorio, Luis

Perdomo-Hurtado, Mateo Hurtado-Hernandez, and Juliana Lopez-Guzman. Vibration

shapes identification applying eulerian video magnification on co↵ee fruits to study the

selective harvesting. In 2020 19th International Conference on Mechatronics - Mechatronika

(ME), pages 1–8, 2020. doi: 10.1109/ME49197.2020.9286641.
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