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Lay Summary

Substantial delays in data transmission between users and remote cloud servers can impede
the timely execution of real-time tasks with deadlines. Employing fog nodes to handle
such tasks can mitigate this delay. Fog computing entails deploying multiple nodes
or micro data centers in close proximity to users and data sources, aiming to reduce
propagation delays between these sources and the central cloud data center. This approach
addresses performance gaps in the traditional cloud-to-thing architecture by bringing
computing capabilities closer to the data source. The architecture of fog nodes may adopt
a hierarchical structure to accommodate the varied execution requirements of real-time
applications. The primary objectives and contributions of this research are outlined as

follows:

e We propose a framework for efficiently partitioning machine learning model splits
for online training on edge networks, considering their safety constraints and
requirements. The framework aims to minimize training time and communication
latency, ensuring that ML models are reliably trained and updated on edge devices

without compromising safety, performance, or resource utilization.

e The proposed FCAFE-BNET approach improves the multi-class IDS performance
by exploiting various pre-processing steps that help in identifying various attack
patterns correctly. The proposed FCAFE-BNET algorithm takes into account
dynamic network conditions before allocating the tasks to different fog layers i.e.
Cloud/cluster/fog device. Moreover, the use of the early-exit mechanism in the
local fog device speed up the inference by reducing the number of computations,

without adversely affecting the performance.

e The proposed D? — TONE algorithm utilizes data-driven task offloading in order
to predict the offloading cost on heterogeneous multi-edge networks. The proposed
framework significantly reduces the training time of DNN model by updating model
parameters in a parallel and distributed manner on various edge devices without

sacrificing the performance of the trained model.

e ML models were trained on the specific non-linear time series dataset with HR
and IBP parameters to predict patients’ survival outcome, ICU stay, and hospital
stay, determining risks following cardiac surgery. The results demonstrated that a
combination of ensemble ML models and refined feature engineering could accurately

predict patient mortality.
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Abstract

Fog computing expands upon the conventional cloud computing model, typically
integrating fog nodes at the network edge for computing and storage purposes. By
situating these edge devices close to users, it enhances application response times and
alleviates the burden on the central cloud server. Additionally, fog computing offers
computational, storage, and networking services bridging the gap between users and
traditional cloud computing data centers.

This thesis proposes four different frameworks for ML model partitioning on fog
architecture, Intrusion Detection System on Fog Architecture, Data-Driven Deep Neural
Network Task Offloading on Edge Networks, real-time outcomes prediction in cardiac
surgery.

In the first work, we propose a framework that intelligently partitions ML models into
smaller sub-models that can be safely executed across multiple edge devices, leveraging
their parallel computing capabilities. Further, to enhance the safety and reliability of the
online model training process, our approach incorporates the Triple Modular Redundancy
(TMR) technique for trusted computation.

The second work proposes a lightweight distributed Intrusion Detection System (IDS)
framework, called FCAFE-BNET (Fog based Context Aware Feature Extraction using
BranchyNET). The proposed FCAFE-BNET approach considers versatile network
conditions, such as varying bandwidth and data load before allocating inference tasks on
Cloud/Edge resources. Early exit DNN is used to obtain faster inference generation at
the edge. The proposed FCAFE-BNET framework works for both Network-based and
Host-based IDS.

In the third work, we propose a D?-TONE (Data-driven Deep Neural Network
Task Offloading on the Network Edge), an approach that employs Machine Learning
algorithms for accurately estimating offloading delays, such as computational and
transmission delays. D?-TONE holistically adapts to dynamic network situations and
provides optimal /near-optimal offloading solutions in real-time. In addition, the proposed
algorithm employs distributed execution of DNN tasks on edge devices/cloud data
centers.

The fourth work aims to develop artificial intelligence models based on non-linear
time-series data of blood pressure and heart rate to predict the ICU stay, hospital stay,
and survival outcome of cardiac surgical patients. Specifically, we aim to construct an
end-to-end real-time data analysis pipeline that incorporates artifact removal, non-linear
noise reduction, and features engineering. We have performed model predictions on an

edge device, so that the alerts to the doctor can be transmitted in real-time.

This thesis also provides a detailed description of the fog computing paradigm. It
summarises the state-of-the-art work in the field of ML model partitioning on fog
architecture, Intrusion Detection System on Fog Architecture, Data-Driven Deep Neural

Network Task Offloading on Edge Networks, and real-time outcomes prediction in cardiac
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surgery. Finally, this thesis discusses future research directions in this field.

Keywords: Optimized scheduling; Edge computing; Fog computing; cloud computing;
real-time scheduling; Distributed Machine Learning; Network Intrusion Detection

Systems; Host Intrusion Detection Systems
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Chapter 1

Introduction

Internet of Things (IoT) devices are producing ever-growing volumes of data that require
analytics within designated time constraints, as emphasized in [1, 2]. The data produced
by these IoT applications is typically analyzed using remote Cloud servers. According to
CISCO'’s reports [3], the number of connected devices is projected to reach 29.3 billion
by 2024, a significant increase from the 18.4 billion recorded in 2018. The number of
active IoT devices is expected to double by 2030. With the rapid proliferation of IoT
applications, there’s a projection that the amount of generated data will surpass the
current network bandwidth capabilities [4]. Also, there are inherent network delays
between IoT devices and the remote Cloud. Due to the above reasons, offloading
latency-sensitive tasks to a Cloud server may adversely affect the Quality of Service (QoS)
[5, 6] of the applications. In these applications, data analysis needs to be accomplished
within a predefined time-frame, to satisfy user expectations. Instances of such systems
encompass real-time gaming, control systems, internet streaming of audio/video content,
smart vehicles, etc. In the context of smart vehicles, for instance, even a single instance

of missing a deadline could lead to a system failure.

The Internet of Things (IoT) is widely recognized as a primary contributor to the
generation of Big Data, given its ability to link numerous smart devices that consistently
transmit their status [7]. While the IoT concept emphasizes the connectivity and
interaction of physical objects, its genuine potential lies not in the objects themselves, but
in the extraction of valuable insights from the data they produce. Essentially, the Internet
of Things revolves around data, rather than the physical entities. In this regard, Machine
Learning (ML) serves as a valuable tool for processing the generated data and converting
it into information, knowledge, predictions, insights, and automated decisions [8]. The
incorporation of ML techniques in the IoT introduces various challenges, particularly in
terms of their computational demands. Earlier, these ML tasks were sent to remote cloud
servers for processing, due to the limited computing capacities of these available day-to-day
devices. However, the computational power and storage capabilities of contemporary
devices have seen substantial growth in the past few years. These improvements in our

day-to-day gadget hardware have given rise to the concept of “Edge/Fog Computing” [6].
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1.1 Fog Computing

Fog computing is a new and emerging computing model that offers computing resources
situated between end-user devices and cloud servers. This approach offers numerous
benefits to end-users and cloud computing servers. Fog computing is a distributed
computing system designed to enhance cloud computing functionalities, particularly
for the Internet of Things (IoT) environment. The objective is to move intelligence,
storage, and processing closer to the edge of the network, facilitating faster and more
localized computing services for the interconnected smart devices constituting the IoT.
It minimizes the storage and computing load on cloud servers by analyzing incoming
data and applications in closer proximity to IoT devices. “Edge computing” is a term
closely related to fog computing. To be more precise, in edge computing, the networking
infrastructure, computing, and storage are consistently within one step away from the
data source. In contrast, fog computing [9] represents a computing paradigm where the
networking infrastructure, computing, and storage can be positioned anywhere between
IoT devices and cloud data centers, not necessarily limited to being just one step away
from the IoT devices [6, 10].
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Figure 1.1: Fog Computing

1.1.1 Fog Computing Architecture

The architecture of Fog computing comprises both physical and logical elements,
represented by hardware and software, to establish an Internet of Things (IoT) network
[11]. As illustrated in Figure 1.1, it encompasses IoT devices, edge nodes, fog nodes,
and remote cloud servers. Now, we delve into the components of the fog computing

architecture:

e 10T devices: These devices are linked within the IoT network, through a variety
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of wireless and wired technologies. These devices consistently generate substantial
amounts of data. Multiple wireless technologies, such as Zigbee, RFID, Bluetooth,
etc., are employed in IoT, along with protocols like IPv4, IPv6, MQTT, and others.

e Edge nodes: The IoT devices are directly connected to edge nodes, where the
generated data is collected and pre-processed. Such edge nodes are typically
employed in applications with lower resource demands, because the devices
responsible for data collection and processing have restricted capabilities [12]. An
example of this is predictive maintenance, where edge computers, embodied as
sensors, assist manufacturers in analyzing the condition of plant equipment, and
identifying alterations before a breakdown occurs. Industrial Internet of Things
(IToT) sensors continually observe the health of equipment and employ analytics to

provide alerts about upcoming maintenance requirements.

e Fog nodes: A fog node is any device equipped with computing, storage, and
network connectivity. Multiple fog nodes are distributed across extensive regions
to offer assistance to end devices. Their installation occurs at diverse locations,
based on distinct applications [13]. Fog nodes are commonly utilized in time-critical
applications demanding extensive, resource-intensive data processing derived from
a widely distributed network of devices. For instance, the efficient management
of smart grids necessitates the processing of substantial volumes of real-time data.
The multitude of sensors and other edge devices employed in these applications
are both numerous and widely distributed. Consequently, fog nodes are employed
to simultaneously process data without compromising response times. Fog nodes
encompass devices such as switches, controllers, cameras, routers, etc. These fog

nodes handle the processing of highly sensitive data.

e Cloud server: The cloud is interconnected with all aggregated fog nodes. Data
that is not time-sensitive or of lower sensitivity undergoes processing, analysis, and
storage in the cloud. Data Analysis that can afford to wait for an extended duration,
whether it be hours, days, or weeks, can be processed at the cloud. Such data is

transmitted to the cloud for storage and future analysis.

1.1.2 Necessity for Fog Computing

Cloud computing is an innovative technology that brings numerous advantages to several
applications, such as the ability to scale resources, flexibility in managing IT infrastructure,
and cost-effective pay-as-you-go models. However, there are also various drawbacks
associated with cloud computing that present challenges to real-time applications [14].

These disadvantages encompass:

e Internet Connectivity: Applications solely rely on internet connectivity to
access cloud computing services. However, if there is an internet outage or weak

connectivity, it can lead to service interruptions and increased delays. Consequently,
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one of the primary criticisms of cloud computing is its significant reliance on the

availability and quality of internet connectivity.

e Security and Privacy: Transmitting sensitive operational data from the edge to
the cloud poses a threat to both the data and to the edge devices. To safeguard this
information in an IoT system, it is crucial to implement various layers of security
to guarantee the secure transfer of data to cloud storage systems. Conducting data
processing at the edge serves as a preventive measure against data breaches, and

facilitates quicker responses.

e Latency: Transferring an application’s entire device data to the cloud for processing
and analytics can span from a brief few minutes to several days [15]. In
time-sensitive applications like Industrial IoT, immediate processing of device data
is crucial for prompt corrective actions. The fog computing model, in contrast to
the cloud computing model, can significantly reduce latency and facilitate rapid

decision-making.

e Data-Transfer and Bandwidth Cost: Sending substantial amounts of data from
the network edge to a cloud server can incur exorbitant expenses [16]. Additionally,
the ongoing daily cost of transferring such data may result in unsustainable

communication expenses over time.

1.1.3 Applications

Fog computing can be a viable paradigm for applications with real-time demands. Below

are examples of applications where Fog computing can prove advantageous:

e Heathcare: Cloud computing optimizes and distributes resources efficiently. It
operates independent of location, allowing users to access cloud services from any
place and device with an internet connection [17]. The vast and varied data generated
by IoT can be efficiently accessed through cloud computing. The amalgamation of
cloud and ToT minimizes costs and facilitates the aggregation of substantial data.
In the healthcare sector, cloud computing serves as a means to monitor patients,
maintain records, and effectively manage illnesses by analyzing the accumulated
data. Nevertheless, the cloud may not be well-suited for time-critical applications
due to various challenges associated with high bandwidth demands, concerns related
to safety and security, and intermittent delays. Real-time monitoring, essential
for healthcare applications, may not be effectively addressed by the cloud, as it
may not meet the immediate response requirements. The transfer of data to the
cloud and its subsequent return to the application introduces delays. In healthcare,
where timely and accurate responses are crucial for saving lives, these issues become
particularly critical. Fog Computing can prove to be instrumental in addressing
numerous challenges within the healthcare system. It can efficiently manage tasks

at the network edge, allowing for the delegation of certain functions to cloud
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data

centers. This capability extends to facilitating big data analytics. Moreover,

crucial operations can be carried out at the network edge, ensuring that vital and

sensitive data can be accessed within milliseconds, when needed. The system is

equipped to promptly alert the hospital or emergency services in case of any detected

abnormalities, ensuring swift response to serious issues.

e Privacy and security: Fog computing enables real-time analysis and response,

accelerating the identification and resolution of security risks. It achieves this while

safeguarding user privacy through the containment of sensitive data within secure

environments. In this thesis, we have explored two applications in this domain:

Intrusion detection in IoT network: Cloud computing can be utilized for
attack monitoring; however, the high latency associated with the cloud-based
processing poses challenges in achieving real-time network monitoring [18].
Additionally, the continuous deployment and operation of a model on the
cloud can incur substantial costs. To address these issues and enable
real-time monitoring of attacks in IoT networks, the fog computing paradigm
is introduced. In this approach, data generated by end devices, such as sensors,
is processed by fog and edge nodes situated nearby. This significantly reduces
latency, ensuring a real-time experience for the user. The tasks associated with
the Network Intrusion Detection system are time-sensitive and are expected to
operate continuously, safeguarding the privacy of data. Detecting attacks at
the earliest possible stage can significantly enhance server security, and the fog
architecture is instrumental in achieving this objective. Employing a locally
executed Machine Learning (ML) algorithm plays a crucial role in this process.
Our focus is on addressing the intrusion detection challenges prevalent in IoT
networks, where IoT devices are susceptible to various network attacks such as
flooding attacks, man-in-the-middle attacks, and port scanning. To identify and
thwart these attacks, a Network Intrusion Detection System (NIDS) is deployed
at fog nodes that are strategically positioned throughout the network. These
fog nodes scrutinize the network traffic from all connected devices, comparing
it with patterns from previous traffic categorized as an attack [19]. Upon
detecting a match, the administrator is promptly notified to initiate further
action. The primary objective is to identify and respond to such attacks as soon
as they attempt to compromise the system. Fog nodes, which can range from
routers and switches to cameras and industrial controllers, may not possess high
computational power. Therefore, a lightweight NIDS is imperative for effective

intrusion detection.

Face detection: Numerous cloud-based APIs, such as Google’s Cloud Vision
and AWS Rekognition, offer people counting or face detection capabilities.
Nevertheless, these services necessitate a consistent and dependable internet

connection. Facial recognition-enabled security cameras are capable of real-time
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identification and tracking of individuals. This technology is employed in
various public settings like airports and other areas to bolster security measures
and surveil potential risks. People counting or face detection application
requires real-time processing [20]. Often, huge volumes of data is transmitted
through cameras in a short span of time. In addition, transmitting huge
volumes of data to the cloud server for processing is likely to be expensive. Fog
computing can help us to address above issues, by analyzing data at the edge
of the network, rather than sending it out to remote servers for processing.
This paradigm helps not only in reducing costs, but also in improving the
responsiveness of the application. Utilizing strategically positioned people
counting devices in a retail store allows for the collection of valuable customer
data [21]. Interpreting this data provides managers with insights into the store’s
performance and highlights areas that may require improvement. The retail

stores may be benefited in the following ways:

x Optimize staff scheduling: Utilizing a door counter to gauge store traffic
enables the store to identify peak hours and days, ensuring adequate staffing
to assist customers during those busy times. Conversely, by analyzing foot
traffic data, one can pinpoint periods with the lowest in-store visitors, and

schedule only the necessary employees during those times.

x Customer behavior: Installing a cost-effective door counter near a store’s
entrance offers valuable insights into the number of customers entering
on specific days and peak times. Examining foot traffic data provides a
customer-centric perspective of a business. For example, one might observe
consistent store traffic on weekdays with increased activity on weekends,
or discover more visitors during midday compared to the afternoon.
Empowered by this data, one can enact necessary modifications, such as

hiring extra staff, or making adjustments to the store’s operating hours.

x Leasing Valuation: A precise people counting solution provides one with
the count of individuals entering and exiting malls, highlights popular and
well-performing zones, and identifies frequently visited areas by customers.
This data becomes instrumental in persuading tenants of the fairness of the
rent, substantiating lease valuation claims with concrete numbers. One can
leverage this information during lease negotiations and gain insights into

how external factors, such as public holidays, impact consumer behavior.

x Plan ahead: A customer counter serves as a crucial instrument for strategic
planning in a retail enterprise. By identifying peak hours, days, and even
weeks, one can proactively prepare to make those periods as smooth and

stress-free as possible for both the store and its customers.

Apart from these, fog computing can be advantageous in various other domains including

smart vehicles, Smart Cities, Smart Buildings, Manufacturing, smart farming, Industry,
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Ubiquitous Computing, and more.

1.1.4 Challenges in Fog Computing

While fog computing offers numerous benefits, it also presents certain challenges that must

be addressed, in order to enhance its feasibility [22]:

¢ Reliability and Fault tolerance: Edge devices are susceptible to malfunctions,
sporadic connectivity, and interruptions in the network [23]. Developing resilient
fault-tolerant mechanisms to manage device failures, network disruptions, and
ensuring the continuous provision of services becomes essential in fog computing

environments.

e Interoperability and Standardization: The fog computing environment consists
of various devices, protocols, and platforms [24]. Ensuring compatibility among
distinct vendor-specific solutions and communication protocols, standardizing
interfaces, and APIs poses a challenge, impeding the smooth collaboration and

integration within the fog ecosystem.

e Limited resource capability: The computing and storage capabilities of edge
resources are constrained in comparison to conventional data centers [25]. It is
essential to utilize these resources efficiently to attain the highest possible overall

system utilization.

e Privacy and Security: Given the distributed nature of the infrastructure in
fog computing, emerging security and privacy concerns pose significant challenges
[26]. Ensuring data integrity, safeguarding communication channels, preventing
unauthorized access, and addressing privacy issues become crucial tasks in fog

computing environments.

e Resource Management and Orchestration: Effectively coordinating and
overseeing resources and services across diverse fog nodes presents a challenge
[27]. Careful attention is required to address dynamic resource provisioning, load
balancing, service discovery, and efficient task scheduling to guarantee optimal

resource utilization and performance.

1.2 Research Objectives

Our overall objective in this thesis is to explore parallel and distributed Machine Learning
model training and inference on edge networks. This objective ties together all the research

problems in this thesis. The objectives of this dissertation are as follows -

e To perform partitioned training and testing of Machine learning models
on edge architectures: In case of online model training and inference in

edge networks requires a safe and reliable parallel computing architecture to
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achieve improved performance with optimal resource utilization. To address this
challenge, we propose an efficient machine learning model partitioning algorithm
that considers the safety constraint and requirements of edge networks, and includes

the triple-modular redundancy (TMR) technique for trusted computation.

e To investigate dynamic hierarchical Intrusion Detection task offloading
in IoT Edge Networks: As the web of IoT is growing, more concerns about its
security and privacy are becoming prevalent. IoT devices are endangered by various
types of attacks, such as port scanning and man-in-the-middle attacks. Monitoring
attacks using traditional intrusion detection approaches is computationally intensive,
and requires significant storage space. IoT devices, being resource-constrained, may
not be able to store data and analyze attacks in real time using these traditional
intrusion detection approaches. We have proposed a lightweight intrusion detection

system which is applicable for resource-constrained edge devices.

e To perform data-driven Deep Neural Network task offloading on edge
networks: Deep Neural Networks (DNN) have exhibited good performance in
the case of image-based classification, and regression problems. One of the main
concerns of training these models well is the usage of a huge amount of data for
learning. However, edge devices, being resource constrained by definition, may not
be able to handle huge DNN workloads. Hence, the training of the DNN model
needs to be done in a distributed manner in the edge network, so that the data
is processed in real-time. We propose a framework for the optimal computation
offloading of application data-points on various edge devices by proposing a Mixed
Integer Programming (MIP) based approach, which minimizes the training time of

the given workload, and maximizes the data-point processing ratio

e To predict outcomes in cardiac surgery using AI models based on
non-linear time series data: The patients prediction tasks need to be performed
in real-time, so that the medical staff can take immediate action. But, sending out
data to a remote server or Cloud for analysis may introduce unwanted delays. Hence,
we have performed the data analysis on an edge device which facilitated in rapid

decision-making.

1.3 Contributions

This thesis proposes four fog network based algorithms, one for each above mentioned
objectives.

The first work discusses the partitioning of training and testing algorithms for ML
models on Edge architecture. The efficiency of the proposed work has been demonstrated
in the result section by comparing the proposed PSVM-EA (Partitioning Support
Vector Machine on Edge Architectures) framework with a non-partitioned and random

partitioned approach on various datasets. In order to enhance the safety and reliability
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of the online model training process, the Triple Modular Redundancy (TMR) technique

has been incorporated for trusted computation.

In the second work, a fog based lightweight intrusion detection system FC-IDS (Fog
Cluster-based Intrusion Detection System) is discussed. The experiments demonstrate
that the proposed FC-IDS framework has recorded a very low response time and cost
of deployment, in comparison to the remote Cloud server. The FC-IDS framework
is meant for binary classification (i.e. attack or normal). Next, we have discussed
the FCAFE-BNET framework which can perform multi-class classification.  The
detailed performance analysis of FCAFE-BNET has been done with respect to various

state-of-the-art techniques.

The third work introduces the D? — TONE algorithm which considers the network
conditions and computational capacity of edge devices before offloading the tasks on the
edge network. The computational and transmission times have been estimated using ML
models based on certain features, which significantly improves D? — TONE algorithm

performance in comparison to other approaches.

The last work discusses the methodology of predicting outcomes in cardiac surgery based
on non-linear time series data is discussed. These tasks need to be performed in real-time,
so that the medical staff can take immediate action. But, sending out data to a remote
server or Cloud for analysis may introduce unwanted delays, hence the data analysis has

been performed on an edge device.

1.4 Organization of the Thesis

The thesis comprise of seven chapters. The chapter 2 reviews the literature on partitioned
training and testing of Machine learning models on edge architectures, intrusion detection
systems on fog architecture, various task offloading techniques on edge networks, and

real-time analysis of patient health during cardiac surgery.

Chapters 3, 4, and 5 are dedicated to addressing partitioned training and testing
of Machine learning models, intrusion detection systems, and various task offloading
techniques on the proposed Fog computing frameworks respectively. The structure of
these chapters follows a consistent pattern. Initially, each chapter provides a formal
description of the problem statement, accompanied by an explanation of the motivation
behind the proposed framework. The contributions of the framework are then outlined in
the context of the challenges it addresses. Following this, a comprehensive methodology
is presented. Each chapter also includes details about the experimental setup, datasets,
and baseline algorithms used for performance comparison. Finally, the outcomes of the

experiments are presented and analyzed across different settings and parameters.
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Chapter 6 discusses, the real-time analysis of patient health during cardiac surgery. The
structure of the chapter is described as follows: firstly, the chapter provides the motivation
behind the proposed framework. Followed by a detailed methodology comprising of data
collection, pre-processing, feature engineering, and feature importance. Lastly, the results
section discusses the performance metrics, sociodemographic and Clinical Determinants,

and performance evaluation of the proposed framework with other ML models.

The last chapter highlights the conclusion that we draw from our work. It discusses the
different areas in Fog networks where scheduling plays an important role in maximizing
system utilization and reducing the cost, as compared to using traditional remote data

centers. It also emphasizes on the possible future extensions of this work.



Chapter 2

Related Work

The main goal of this thesis is to explore parallel and distributed Machine Learning
model training and inference on edge networks. The idea is to leverage the edge for
executing these ML tasks in a parallel and distributed manner, resulting in quicker
training and inference. Specifically, security and healthcare have been selected as the
application domains where our proposed algorithms have been tested. With this as the
overall goal, this chapter provides a concise overview of cutting-edge advancements in the
domain of fog computing, specifically focusing on Partitioning ML models, lightweight
Intrusion Detection System, Data-Driven DNN Task Offloading, and real-time edge based
analysis of patient health during cardiac surgery. It outlines the fundamental principles,

constraints, and enhancements associated with these pivotal contributions in the field.

Dividing machine learning (ML) models for training on edge nodes is a method that
includes spreading the training tasks among various devices or nodes, typically positioned
at the network’s periphery. This proves advantageous in situations where the data is
scattered or when the model exceeds the capacity of a single device. In the past, researchers
have tried to partition the ML model using various techniques, such as: data partitioning,
model partitioning, and federated learning. When segmenting models for edge training, it
is crucial to strike a balance between communication overhead, computational efficiency,
and the overall performance of the training process. Experimentation and a thorough
analysis of the particular use case are vital for determining the most efficient partitioning
strategy. Below are some primary benefits of partitioning ML models on edge nodes for

training and inference(testing):

e Real-Time Adaptation: Edge nodes facilitate the immediate adjustment of models in
response to alterations in data distribution. This can proves especially advantageous

in dynamic environments where the attributes of the data can change over time.

e Scalability: Edge nodes allow for decentralized training, even when a constant
network connection is unavailable.  Nodes have the capability to function
autonomously and coordinate updates once connectivity is reestablished, enhancing

the resilience of the training process.

e Resilience to Network Outages: Edge nodes support scalable training by distributing
the workload among numerous devices. This promotes the effective utilization of

resources and facilitates the incorporation of extra-edge devices, as required.
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e Low-Latency Inference: As models are trained at the edge, they can be locally
deployed for inference, resulting in predictions with minimal latency. This is essential

for applications that demand real-time or near-real-time responses.

2.1 Partitioning ML models on edge architectures

A number of researchers [28, 29, 30] have proposed partitioning Deep Neural Networks
(DNN) for speeding up ML model training. Guanghui Zhu et al. [31] propose Forest-Layer,
which is a scalable and efficient partitioning mechanism for deep forests. The Ray platform
was used to implement this distributed task-parallel system. The authors introduced a
few optimization techniques at the system level in order to improve parallelization. Li
Zhou et al. [32] proposed an algorithm which finds the optimal partitions of the network
model for execution on the edge devices. The system recalculates the points of optimal
partitions at certain intervals. The selection of the recalculation interval is crucial, as
it can degrade the system’s performance by increasing the rescheduling overhead. In
addition, Md Maruf et al. propose a machine learning-based prediction for task offloading
to minimize the task overload and meet the application requirements [33],[34]. The
convolution split algorithm proposed by Shengyu Fan et al. [30] takes into account the
size of the kernel, and then expands its feature map accordingly. Moreover, the use of
sparse matrix-vector (SpMV) multiplication has improved the performance by increasing

the speed and decreasing the memory consumption, while calculating the convolution layer.

Recent studies [35, 36, 37] explore a diverse array of techniques employed in optimizing
machine learning models for edge networks. Table 2.1 shows the comparison of
various methods, ranging from federated learning to multi-agent systems, focusing on
computational speed-up, energy efficiency, and data privacy. Despite these advancements,
there is less discussion on model safety and reliability during execution in edge networks,
which we strive to address in this work. For example, Tan et al.[38] utilized a GPU-based
parallel implementation of an SVM model, resulting in significant speed-ups in training
times. However, the necessity for GPUs may not be realistic for edge networks, given

their resource constraints and cost implications.

Likewise, Li et al. [39] implemented a federated learning approach that emphasizes
privacy preservation by training a global model with local data. This method investigates
collaborative data sharing in vehicular edge networks (VENs) with Al-empowered
mobile/multi-access edge computing (MEC) servers. Furthermore, Zhou et al.[40]
proposed FedACA, an adaptive, communication-efficient learning algorithm to reduce
communication overhead in federated learning on edge devices. These methods, though

remarkable, do not explicitly address safety and reliability during model partitioning.

Another study is the work of Zhao et al. [41], which designed a collaborative mobile
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edge computing system involving multiple unmanned aerial vehicles (UAVs) and edge
clouds (ECs). Despite its impressive results in minimizing execution delays and energy
consumption, it largely overlooks the safety and reliability concerns inherent to model
partitioning and integration.

Regarding safe execution, Gu et al.[42] present a ‘Safe Fail’ technique for machine learning
models in cyber-physical systems, emphasizing safer decisions based on out-of-distribution
(OOD) instance detection. In parallel, Hilbrich[43] proposes a ‘correctness by construction’

approach that safely utilizes task parallelism in multi-core embedded systems.

The majority of research in the literature concentrates on partitioning Deep Neural
Networks (DNN), with limited emphasis on partitioning other fundamental machine
learning algorithms. It is important to highlight that deep learning models have
demonstrated superior effectiveness in numerous scenarios, particularly those involving
image, audio, and text data. Nevertheless, traditional machine learning approaches
remain relevant and may be preferred under specific applications like: Fraud Detection,
Recommender Systems, Text Classification, etc. In contrast to these existing works, our
proposed approach seeks to integrate the benefits of computational efficiency and safe
execution by employing optimal ML Model Partitioning with TMR on edge systems. Triple
Modular Redundancy (TMR) is a robust method employed in safety-critical contexts to
attain elevated levels of fault tolerance and reliability. Through the replication of crucial
elements and the comparison of their outputs, it guarantees consistent functionality even
when faults or failures occur. This redundancy strategy is indispensable in sectors where
the repercussions of system breakdowns can be dire, potentially safeguarding lives and

averting catastrophic incidents.

2.2 Intrusion Detection System on Fog Architectures

Security concerns in edge networks are noteworthy because of the decentralized and
distributed nature of edge computing. It is crucial to establish secure communication
between edge devices and cloud services, encompassing safeguarding data during transit,
and ensuring the integrity of communication channels. Edge networks may face
vulnerability to Distributed Denial of Service (DDoS) attacks, where a substantial volume
of traffic can inundate the network, leading to disruptions. Employing strategies to
mitigate DDoS attacks is imperative to sustain service availability. Security measures need
to be integrated into edge cloud environments to guard against data breaches, unauthorized
access, and various other cyber threats. In the ongoing evolution of edge computing,
maintaining a vigilant and proactive approach to addressing security issues is essential for
preserving the overall integrity of edge networks.

Edge networks encompass communication among devices and potentially with central
servers or the cloud. An IDS actively monitors network traffic, discerns suspicious

patterns, and aids in averting unauthorized access, thereby bolstering overall network
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Table 2.1: Comparison of our approach with different techniques in the literature

Paper Parallel Devices | Safety/ ML Performance Evaluation
Computing Reliability | Models
Technique
Tan et al. | CUDA and | GPUs No SVM Speedup of 18.5x in training,
[38] OpenMP 81.9x in testing
Li et al. [39] | Federated MECSs Implicit DQN Fast convergence, optimal data
Learning sharing, privacy protection
Zhou et al. | FedACA CPUs Implicit CNN, Outperformed FedAsync by
[40] ResNet-18 | 4.20% to 8.04%
Zhao et al.. | MATD3 UAVs No MATD3 Efficient task splitting and
[41] with two | offloading, faster convergence
hidden
layers
Hilbrich et | Multi-function | No Resource N/A Improved resource assignment,
al.. [43] integration validation task scheduling, system
reliability
Thaha et al. | DNN Fog No DNNs Latency  decrease  40%-60%,
[37] Partitioning Nodes (e.g., acceleration of 2.6 to 4.2 times
and Offloading AlexNet,
VGG)
Proposed Optimal CPUs TMR SVM and | Speedup of 56.3%, Accuracies:
approach ML Model (safety & | RF 85%-90% (SVM), 82%-93% (RF)
Partitioning Reliability)




Chapter 2. Related Work 15

security. In the event of a security breach, an IDS furnishes crucial information for incident
response, aiding in the identification of the intrusion’s source and nature. This enables
organizations to implement suitable measures to mitigate the impact. Given the real-time
processing demands of edge computing, an IDS at the edge is adept at swiftly detecting and
mitigating security threats, averting potential disruptions and ensuring the uninterrupted
functioning of critical applications. Unlike traditional IDS systems, which may strain
resources and induce performance issues on resource-limited edge devices, tailor-made IDS
solutions for edge computing can be devised to operate efficiently within the constraints of
these devices. Recognizing the dynamic nature of edge environments, where devices may
operate in diverse conditions, an IDS designed for edge computing can exhibit adaptability,
accommodating the unique characteristics of edge devices and the ever-changing landscape
of edge networks.

There are two primary types of Intrusion Detection Systems (IDS): Network-based
Intrusion Detection Systems (NIDS), and Host-based Intrusion Detection Systems (HIDS).
Each type has a specific role in monitoring and detecting potential security threats.
Network-based Intrusion Detection Systems (NIDS) are created to observe and scrutinize
network traffic to identify suspicious activities or patterns indicative of a security threat.
Operating in a passive mode, NIDS analyze network packets, searching for anomalies or
recognized attack signatures. They are commonly positioned at strategic locations within
a network, such as network gateways or subnets. This placement allows NIDS to provide
a consolidated perspective on network activity, enhancing their effectiveness in detecting
attacks spanning multiple hosts or devices.

Host-based Intrusion Detection Systems (HIDS) concentrate on observing actions on
individual hosts or devices, searching for indications of unauthorized access or irregular
behavior. HIDS are directly installed on individual computers or servers, observing
user activities, system logs, and file integrity. They can identify uncommon patterns
or deviations from typical behavior. This affords an intricate perspective on activities on
particular hosts, proving efficacious in identifying localized attacks and insider threats.
Several intrusion detection systems (IDS) have been proposed in recent years for
monitoring attacks in the IoT network. Various ML techniques have been employed in
order to improve IDS performance. Often, these systems experience poor performance
because of a variety of reasons, which we discuss later in this section. Li et al. in
[44] proposed an IDS using a cluster of Neural Networks (NN). The IDS uses Anomaly
Behaviour Analysis (ABA-IDS) for ensuring secured fog node availability in the IoT
network. The adaptive scheme has a high detection rate for various anomalies, like system
glitches, cyber-attacks, and misuses with low overheads. In [45], authors proposed an
Enhanced Hybrid IDS (EHIDS) to find the optimal set of weights and biases of Artificial
NN (ANN) using a genetic algorithm. After obtaining the trained ANN, the model is
deployed to the fog network for classifying attacks. The framework is verified using
UNSW-NB15 and ToN_IoT datasets.

In [46], the authors proposed a multi-attack classification model ICNN-FCID for fog
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networks by integrating Long-Short Term Memory (LSTM) with Convolutional NN
(CNN). The ICNN-FCID approach has been verified using the benchmark NSL-KDD
dataset. The IDS framework proposed in [47] has been developed by hybridizing
various Machine Learning (ML) algorithms like KNN, Random Forest, Decision tree, and
XGBoost. The proposed technique uses user behavior patterns for securing smart homes.
The authors used NSL-KDD and CSE-CICIDS 2018 datasets for experimentation. In [48],
the authors proposed an attack detection system named CPS-NIDS for a Cyber-Physical
Network. The Principal Component Analysis has been used in order to select features.
The authors used several ML models like SVM, Random forest, and Logistic regression
on extracted features for detecting attacks. The proposed framework has been evaluated
on various NIDS-based datasets, like WSN-DS, KDD-Cup-1999, CICIDS 2017, SDN-IoT,
and UNSW-NB15. In [49], the authors have proposed a framework using the Persistent
regularization algorithm. The Cholesky Factorization is applied using Online Sequential
Extreme Learning Machines (CF-OSELM). The proposed approach has been utilized to
detect IoT-based attacks in fog devices, sending the attack report to the centralized cloud
for detailed analysis.

An ensemble based IDS has been proposed in [50] using Naive Bayes, Logistic Regression,
and Decision trees. The CICIDS 2017 dataset has been used for evaluating the proposed
technique for binary and multi-class classification. In [51], the authors employed
Explainable AT techniques, such as Shapley Additive exPlanations (SHAP), RuleFit, and
LIME in order to explain the classifier’s decision. The classifier used for IDS was a Deep
Learning NN. They have analyzed the proposed framework using the following datasets:
UNSW-NB15 and NSL-KDD. In order to detect R2L (Remote to Local) and U2R (User
to Root) attacks, the authors have used Bi-directional LSTM (Bi-DLSTM) [52]. The
benchmark NSL-KDD dataset has been used for validating the proposed model. In [53],
the authors have used the Gorilla Troops optimizer (GTO) method along with Bird Swarm
algorithm (BSA) for feature selection. The proposed GTO-BSA has been used for finding
the optimal solution of features. The authors have compared the performance of GTO-BSA
with other meta-heuristic algorithms along with the GTO algorithm [54]. The study shows
that the GTO-BSA approach outperforms all of the other meta-heuristic algorithms.

In [55], the authors have proposed a host-based intrusion detection system using
Multi-Layer Perceptron (MLP). The feature space has been reduced using n-gram
transformation based on vector space representation. The proposed model has been tested
on ADFA-LD and ADFA-WD. The experimentation has been carried out using raspberry
pi as a fog device. The power consumption of fog devices has been estimated using
voltage and current demand. In [56], the authors have used multiple fog nodes in a local
area network for detecting attacks using ML algorithms. The ML tasks are offloaded
to the fog cluster for faster inference. The experiments were conducted using various ML
algorithms, and the best results were obtained using the XGBoost model. The experiments
show that the latency and cost of deployment of the raspberry pi cluster are much less

than that of the cloud server. The authors have validated the framework performance
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Table 2.2: Comparison of various methodologies with the Proposed Technique.

Network Applicable Applicable Binary/

Methodology C(E)Jl?flf;ftliljn conditions for for real-time = Multi-class
considered  HIDS/NIDS  applications classification
FCAFE-BNET Both .
(Proposed) Yes Yes HIDS & NIDS Yes Multi-class
EHIDS [45] No No NIDS Yes Binary
ABA-IDS[44] No No HIDS No Binay
CF-OSLEM [49] No No HIDS No Binary
ICNN-FCID [46] No No NIDS No Multi-class
CPS-NIDS [48] No No NIDS No Binary
Ensemble IDS [50] No No NIDS No Multi-class
BiDLSTM-IDS [52] No No NIDS No Multi-class
Explainable-IDS [51] No No NIDS No Binary
LW-MLP [55] No No HIDS Yes Binary

FC-XGB [56] No No HIDS Yes Binary
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on the ADFA-LD dataset. In [57], the authors combined various ML classifiers such as
Random forest, KNN, and Decision trees in order to build an IDS. The anomaly detection
has been done on fog devices, whereas the attack classification has been carried out on the
cloud server. The authors used KDDTest-21 and KDDTest+ for analyzing the proposed
approach. In [58], the authors used the Random forest model for classifying attacks in a
network. The features were analyzed and selected manually, based on the characteristics
of the attacks. The performance of the classifier was validated using NSL-KDD and
KDD-Cup99. In [59], the authors proposed a real-time IDS, using auto-encoder and
isolation forest. The Auto-IF technique has been tested on fog devices using NSL-KDD
for binary-class classification settings.

In Table 2.2, we compare our proposed approach (FCAFE-BNET) with some of the recent
state-of-the-art techniques. Despite the fact that various ANN based IDS approaches have
been proposed in the past few years, the above discussed methodologies have the following

shortcomings that need to be addressed:

e The feature selection approach adopted by these methodologies, such as the wrapper
method, and the filter method are quite outdated and fail to capture various
sensitive features. Due to this, the classifier gives a poor performance on multi-class

classification.
e The previous Intrusion detection work are either applicable to NIDS or HIDS.

e The methodologies proposed previously do not consider network conditions and
network congestion. Also, the recent methodologies use either a fog device or the

cloud for identifying attacks.

2.3 Data-Driven DNN Task Offloading on Edge Networks

Task offloading is one of the most crucial decisions in an edge network. Several offloading
approaches have been proposed in the past, which can be broadly classified into two
categories: (a) Mathematical optimization, and (b) Artificial intelligence (AI) based
algorithms. The mathematical optimization approach can be carried out in the following
ways: 1) Mixed integer programming (MIP), ii) Game theory, and iii) Heuristics. A
comparison of various offloading approaches is given in Table 2.3. The MIP approach helps
in optimizing multi-objective functions having different offloading constraints like energy
consumption, communication delay, and latency, based on the underlying motivation
for research [60], [61]. The MIP approach helps in finding the optimal offloading
solution satisfying given constraints. In [62], the author’s objective is to minimize the
energy consumption of mobile devices with latency constraints in a multi-user system.
The MIP objective in [63] includes network delay and processing time for IoT-based
mission-critical applications. Similarly, in [64], the authors schedule real-time vehicular
tasks based on deadlines on appropriate processors with the objective of minimizing

communication delay. In [65], the authors offloaded real-time tasks based on security
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and deadline constraints. In [66], the authors proposed dynamic user allocation in
stochastic edge networks using Lyapunov optimization algorithm. However, the authors
did not consider various communication/transmission aspects (like packet loss, jitter),
which are very crucial in real-world scenarios. The MIP approaches assist in providing
optimal or near-optimal solutions for offloading tasks. However, all the above approaches
fail to consider dynamic network conditions while making offloading decisions. As the
above-discussed approaches use static estimating techniques for modeling the inputs in
the Mixed integer programming approach, inaccurate estimations might degrade the
offloading decisions over time. In [67], [68] and [69], the authors employed game theory
for optimizing the revenue for edge/cloud providers, maximizing efficiency of resource
allocation, and maximizing spectrum efficiency respectively. However, the game theory
approach is incapable of handling dynamic network conditions. Also, when the number
of users increases significantly, then the game theory approach increases in complexity.
Various heuristic-based approaches for task ofloading have been proposed in recent years.
The heuristic offloading approach proposed in [70] uses the transmission channel properties
and energy consumption models of transmission and computation to find the offloading
scheme. The authors consider energy and time constraints for solving the computational
offloading problem. In [71], the authors have used an offloading algorithm that tries
to adapt the dynamic behavior of the edge network by taking into account the residual
energy of mobile devices present in the network. However, the proposed approach fails
to minimize the offloading cost. In [72], authors used the Markov random field approach
for balancing the workload and lowering energy consumption in edge networks. However,
the proposed approach fails to accurately estimate user density, which can be resolved by
integrating ML techniques. Also, the framework suffers from scalability issues. In [73],
authors equally distribute the data-points to all the devices present in the network, for
performing distributed Stochastic Gradient Descent (SGD) in a synchronous manner. In
this approach, the author trains the ML model in a distributed manner using Synchronous
SGD, without considering the heterogeneity of the edge devices. The authors in [74] claim
to provide an effective workload balancing solution for an IoT network with homogeneous
servers using the balls and bins theory. Though the cost of offloading is low, the approach
does not address the heterogeneity of mobile devices. In addition, the binary decision
of offloading is too simplistic to capture the complexities of the edge network. Though
the overhead of handling user requests in the case of the heuristic approach is negligible,
the performance exhibited by various heuristic algorithms varies drastically in dynamic
edge environments. Therefore, this approach needs to be investigated carefully for finding
optimal offloading solutions for the edge paradigm.

The mathematical task offloading approaches discussed so far may fail to handle
dynamic network situations while allocating tasks to edge resources. Specifically, these
mathematical solutions may be incapable of capturing varying conditions in the end-to-end
network model. Therefore, many ML-based approaches like linear regression and logistic

regression have been proposed to make offloading decisions by using historical data to learn



20 Chapter 2. Related Work

Table 2.3: Comparison of various offloading approaches.

MIP ML Heuristics Game Proposed
theory (MIP+ML)
Low v v v
complexity
Optimality v v 4
Real-Time v v V4 v
Decision
Capture
Dynamic
Network v 4
Conditions
Long-term
solution v 4

useful behaviors and patterns of the dynamic network [75], [76]. Resource monitoring tools
have been used for collecting huge amounts of data in cloud and edge environments. In
[77], the authors have used support vector machines for efficiently utilizing energy in a
cloud environment. The Deep learning approach has been used in [78] in order to minimize
the offloading time and the computation overhead in a given network. In [79], the authors
employ the K-Nearest Neighbour scheme for reducing latency and energy consumption in
the cloud. These ML approaches help to provide offloading solutions in real-time, but may
fail to provide an optimal solution in multi-edge networks.

In order to holistically adapt dynamic network situations and provide long-term
optimal/near-optimal offloading solutions in real-time, we employ ML algorithms for
enhancing the mathematical task offloading optimization solution with various constraints
in a multi-edge environment. However, the MIP-driven approach may be expensive
for large-scale scenarios [80]. In order to address this shortcoming, we have used a
branch-and-bound based solution, due to which the feasible offloading solution is generated

in real-time.

2.4 Non-linear time-series based AI model to predict

outcomes in cardiac surgery

In cardiac surgery, outcome prediction tools can be beneficial in ensuring continuity of
care and planning resource allocation. As medical information systems and artificial
intelligence technologies have advanced, ML algorithms have become increasingly valuable
for individualised medicine [81]. If the outcome could be predicted accurately, clinicians

could offer more effective treatment strategies to patients following cardiac surgery.
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Cardiovascular surgery is considered a challenging operation to perform, as it adversely
affects circulation and physiology [82]. In cardiac surgery, there has been an increasing
interest in risk prediction models for clinical use. European decision-making guidelines cite
several risk stratification methods, although these scores cannot replace clinical judgment
and multidisciplinary discussions. The original EuroSCORE, EuroSCORE II, and STS
scores are the most widely used scores for predicting mortality after cardiac surgery.
However, some studies have shown that these scores have limitations in some surgeries
or patient groups [83].

Rather that executing these prediction tasks on third party cloud service providers, the
tasks for predicting patient outcomes can be performed on private edge devices, leading
to quicker prediction times. Doing so would also address the privacy issues involved with
a third party public cloud provider.

Many studies have examined mid-term or long-term mortality after cardiac surgery. Wu et
al. [84] developed a risk score that predicted mortality following isolated CABG surgery
with a C-statistic ranging from 0.768 to 0.783 for mortality at 1, 3, 5, and 7 years of
follow-up. The application of ML approaches has been increasing due to the need for
more precise prediction models. A recent meta-analysis of 15 studies indicated that ML
models provide better discrimination when compared with conventional LR models when
predicting operative mortality after cardiac surgery [85].

Models with ML show potential for capturing non-linear relationships and interactions
among features without the need to specify all interactions manually, as with LR.
Furthermore, ML algorithms are more efficient than traditional statistical methods because
they do not rely on assumptions about data distribution and can perform more complex
calculations. ML-based clinical models predicting short-term mortality in cardiac surgery
have demonstrated AUC values between 0.74 and 0.79 [83]. In cardiac surgical operations,
Zhou et al. [86] and Ong et al. [87] discovered that RF models predict short-term mortality
better than other models. Furthermore, multiple investigations found that the XGBoost
technique outperformed other ML algorithms in predicting surgical or in-hospital mortality
[83]. S.Angraal et al. [88] predicted the mortality and hospitalisation in heart failure by
using various ML models. The best AUC (0.72) is achieved in their work by using the
RF model. Some of the features used by the model for predicting mortality over 3-years
are blood urea nitrogen (BUN) level and body mass index. The RF model achieved a
recall value of 0.70 for mortality. In [89], Koponen et al. have used various statistical
analysis techniques, such as t-test and z-test, for comparing patient characteristics and
clinical characteristics of outcome groups to assess mortalities. The proposed statistical
approach achieves an AUC value of 0.70 for mortality up to l-year. Ruan et al. [90]
have proposed a general-purpose representation approach using RNN based denoising
autoencoder (RNN-DAE) to summarise electronic health records. By using the RNN-DAE
method, the proposed approach achieves an AUC (0.78), accuracy (0.77) and an F1 score
(0.44).

All the work discussed for mortality prediction suffers from the following limitations.



22 Chapter 2. Related Work

Firstly, the work present in the literature uses either statistical techniques or classical
non-linear ML models like SVM, RF, DT, and XGB. However, researchers have not
examined linear ML models (probabilistic models). Secondly, the discussed approaches
have used patient characteristics or clinical characteristics, i.e. static data, to classify
the patient’s mortality. Lastly, the discussed approaches have used either oversampling
or undersampling techniques for handling imbalance. In our proposed approach, we have
examined Linear ML models (probabilistic algorithms), such as GNB, BNB, LDA, and
LR, and classical non-linear models. It was found that probabilistic algorithms offer
better performance than non-linear models. Further, we used time-series data instead of
just clinical test reports (static data) for mortality prediction. Also, we have examined
the performance of classifiers with combined oversampling (SMOTE) and undersampling
(Near-Miss) techniques. The proposed approach has shown significant improvement in the
performance of the classifier. The improvement was because probabilistic algorithms like
GNB and LR are critical to handling uncertainties caused due to insufficient data. Thus,
these algorithms have a high potential to perform well in an imbalanced classification

problem.



Chapter 3

A Framework for Partitioning ML
Models on Edge Architectures

3.1 Introduction

Current IoT applications generate huge volumes of complex data that requires agile
analysis in order to obtain deep insights, often by applying Machine Learning (ML)
techniques. A support vector machines (SVM) is one such ML technique that has
been used in object detection, image classification, text categorization, and Pattern
Recognition. However, training even a simple SVM model on big data takes a significant
amount of computational time. Due to this, the model is unable to react and adapt in
real-time. There is an urgent need to speedup the training process. Since organizations
typically use the cloud for this data processing, accelerating the training process has
the advantage of bringing down costs. In this work, we propose a model partitioning
approach that partitions the tasks of Stochastic Gradient Descent based Support Vector
Machines (SGD-SVM) on various edge devices for concurrent computation, thus reducing
the training time significantly. The proposed partitioning mechanism not only brings down
the training time, but also maintains the approximate accuracy over the centralized cloud
approach. With a goal of developing a smart objection detection system, we conduct
experiments to evaluate the performance of the proposed method using SGD-SVM on an
edge based architecture. The results illustrate that the proposed approach significantly
reduces the training time by 47%, while decreasing the accuracy by 2%, and offering an
optimal number of partitions.

With the increasing demand for edge computing in cyber-physical system (CPS)
applications, ensuring the safety and reliability of machine learning models running on
edge devices during online model training and inference is essential. Although data and
model parallelism offer significant advantages for large machine learning model training,
adopting parallel computing architecture in edge networks is challenging. It introduces
safety concerns while splitting and integrating machine learning models over different
computing nodes, which can pose risks to the integrity and reliability of the system.
Therefore, online model training and inference in edge networks requires a safe parallel
computing architecture to achieve improved performance with optimal resource utilization.
To address this challenge, we propose an efficient machine learning model partitioning

algorithm that considers the safety constraint and requirements of edge networks,
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and includes the triple-modular redundancy (TMR) technique for trusted computation.
Compared to the non-partitioning approach, our proposed approach achieves a significant
speedup of approximately 56.3% in net training time, making it more efficient and suitable
for real-time applications in edge networks.

Recent advancements in edge networks have led to a paradigm shift in data processing
across various CPS applications, such as robotics, health monitoring, and autonomous
driving systems [91]. The significant increase in machine learning (ML) use, known for its
real-time decision-making and cost reduction attributes, has established an essential role
for edge networks in facilitating ML algorithms, such as Support Vector Machines (SVM),
Random Forests (RF), and Deep Neural Networks (DNNs) for continuous adaptation
in CPS applications [92]. Simultaneously, the complex task of online model training
presents substantial challenges, including model parallelization/workload partitioning,
safety concerns from splitting ML models across edge devices, and legacy single-core
processor designs [93]. These challenges complicate the acceleration of ML model
performance, and potentially risk system integrity and reliability, thus emphasizing
the need for safe parallel computing architectures for efficient model partitioning and
integration across edge devices.

Recent studies have explored various techniques to optimize edge-based machine learning
model training for CPS applications [35]. While these approaches offer promising solutions,
they primarily focus on data and model parallelism, without adequately addressing the
safety and reliability concerns associated with ML model partitioning. Furthermore, in
the works of Wen Sun et al., [94], Guangxu et al. [95], and Sina et al. [96], the primary
emphasis is on reducing training time and offloading training; however, these solutions
have less discussion in the context of safety and reliability of the online model training
process. Additionally, these approaches do not comprehensively address the issues of
ML model distribution across edge devices, leading to potential resource inefficiency and
system vulnerabilities. In this context, an approach that establishes optimal model splits,
ensures safety and reliability, and aligns with safety standards like IEC 61508, ISO 26262,
and UL 4600 is essential.

This paper proposes a framework for efficiently partitioning machine learning model splits
for online training on edge networks, considering their safety constraints and requirements.
Our framework aims to minimize training time and communication latency, ensuring
that ML models are reliably trained and updated on edge devices without compromising
safety, performance, or resource utilization. The framework includes an algorithm that
intelligently partitions ML models into smaller sub-models that can be safely executed

across multiple edge devices, leveraging their parallel computing capabilities.

Further, to enhance the safety and reliability of the online model training process, our
approach incorporates the TMR [97] (Triple Mode Redundancy) technique for trusted
computation. TMR is an established Single Event Upset (SEU) technique that replicates
the processing of each sub-model across three separate devices, allowing for error detection

and correction in the event of any discrepancies between their outputs. By employing
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TMR, the proposed algorithm ensures that the system maintains its integrity and
reliability, even in the presence of potential faults, hardware compromises, or other safety
issues. The framework dynamically manages resources and minimizes training time and
latency to optimize performance, while ensuring safety and reliability in edge networks.

We evaluate the effectiveness of our proposed approach through extensive experimentation
and analysis, demonstrating significant improvements in system performance, safety, and
reliability for online model training and inference in edge networks. We conduct a case
study on SVM and RF multi-class classifiers by splitting the models into multiprocessor
edge devices. The experimental results demonstrate a significant reduction in training
time and increased system throughput, without compromising accuracy. The results
highlight the potential of combining model partitioning and TMR to address the challenges
associated with safe online ML model training on edge networks, paving the way for further
exploration and development of safe and reliable edge computing solutions in the evolving

landscape of cyber-physical systems.

3.2 Problem Statement

In the context of online model training in edge networks, our goal is to optimize the
partitioning of the machine learning model splits across edge devices, balancing the

trade-offs between training time, communication latency, and TMR time.

3.2.1 Optimization Problem

The optimization problem can be written as:

3
min Z tm, + 5 Z I, + ’VZTTMR;C,W (3.1)
k=1

spESVk
m;ESk m;ESg

The equation 3.1 has three components. The first term in the optimization problem
represents the total training time for all splits assigned to edge devices in each partitioning
strategy. The second term denotes the total communication latency for all splits assigned
to edge devices in every partition, capturing the costs associated with transmitting data
between devices. The third term corresponds to the total time spent on TMR, which
ensures the system’s reliability by incorporating redundancy into the distributed ML
model. We introduce two weighting factors, 8 and -, to balance the trade-offs between

these components:

e (. This weighting factor balances the importance of communication latency in the
optimization problem. A higher value of S emphasizes minimizing latency, whereas

a lower value focuses more on minimizing training time.

e 7: This weighting factor balances the importance of TMR time in the optimization
problem. A higher value of v emphasizes minimizing TMR time, whereas a lower

value focuses on balancing training time and communication latency.
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3.2.2 Constraints

o Model Partition Constraint: This constraint ensures that the ML model is

properly partitioned across the edge devices.

Usei=M; ve=1,...,[9] (CT1)
i=1

Constraint (CT1) ensures that the union of all model splits across all partitions and

edge devices covers the entire set of model splits, which is equal to the full model
M.

S={s1,82,...,8n} s, €S k=1,...,n (CT2)

Here, s;, represents the k" partition assigned to different edge devices. The set S
contains all possible assignments of partitions to edge devices. For our example with
6 model splits (m1, ma, ms, ma, ms,mg) and 3 edge devices, the set S could contain

the following possible partitions:

S ={({mi,1,ma1},{m32,mas}, {ms3,me3}),
({ml,la m?,l? m3,1}7 {m4,2}7 {m5,37 m6,3})7
:7

({mi,1,ma1}, {msz 2, ma2, ms2}, {me3s})}

So, tuple s = (sk,1,Sk2, .-, Sk,e), Where e is the number of edge devices, and si ;
is the set of model splits assigned to the i** edge device in the k*" partition. The
optimization problem aims to find the best assignment of partitions (s € S) to

minimize the total training time and communication latency, while considering TMR.

e Processing Capability Constraints:

These constraints ensure that the requirements of assigned model splits (processing,

memory, and bandwidth) do not exceed each edge device’s capability.
Zwmgpi; VE=1,...,|S|; i€n (CT3)
meESsk i

Constraint (CT3) ensures that the processing requirements (wy,) of assigned model

splits do not exceed a device’s processing power (p;).
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> Rn<Ry; Vk=1,...,[8; ien (CT4)
meESsk ;

> bm<bp; Vk=1,...,|S i€n (CT5)
MESk,;

Constraint (CT4) guarantees that memory requirements (R,,) of assigned model
splits do not exceed a device’s memory capacity (Rpz,). Similarly, Constraint (CT5)
makes sure that the bandwidth requirements (b,,) for transmitting assigned model

splits do not exceed a device’s bandwidth capacity (bg,).

¢ TMR and Safety Constraint:

e
Y wpjm=1 j=1,...,3 (CT6)
k=1

In this constraint, y, j.,, represents the binary decision variable for the m;-th model
split assigned to the k" edge device in the j** TMR instance. The constraint ensures
that exactly one edge device is assigned to each TMR instance for the m;-th model
split, which is important for ensuring the reliability of the TMR, configuration and
preventing errors or failures, contributing to the system’s overall safety by minimizing

the likelihood of incorrect or damaging outputs.

e
Z Tk,jm; LTMRy, 1, < Taitm; (CT7)
k=1

The constraint CT7 ensures that the total time for training the redundant models
and performing TMR in each TMR instance for the m;-th model split does not
exceed the specified failure threshold T’y m,;, determined by system designers or

domain experts.

3.3 Contributions

The contributions of this chapter can be summarised as follows:

e The proposed framework partitions the weight update operation on multiple edge
nodes, in order to train the SGD-SVM model in a parallel and distributed manner.
This significantly reduces the training time, without significantly affecting the

accuracy.
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Figure 3.1: Flowchart of Proposed framework.

e The testing of the proposed approach is done in a parallel manner by partitioning

the vector multiplication of all the features on the edge architecture.

e The proposed model partitioning approach has been analyzed on various data-sets
in order to determine the extent to which various characteristics of the dataset affect

the training accuracy, test accuracy, and run-time.

e A machine learning model partitioning algorithm that determines the optimal
number of model splits while considering the safety constraints and requirements of
edge networks, ensuring efficient and secure parallel execution of ML models across

multiple edge devices.

e The integration of the TMR technique to enhance the safety and reliability of the
online model training process by incorporating only trusted computation into the

model during the execution of partitioned sub-models on edge devices.

3.4 Part A - Partitioning SVM Models on Edge

Architectures

3.4.1 System Model

Consider a dataset D = {xi,yi}i]il, where z; € R? is an input data instance, and y; €
{1,...,C} is a class label for C classes. The SGD-SVM model denoted by M is trained
on input data D. This thesis aims to design a framework for partitioning the SGD-SVM

model on an edge architecture for parallelization and faster computation. Therefore, this
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Table 3.1: Notations

T Hyperplane / decision boundary

R Number of edge devices

w; Weight of i feature

M Machine learning model

o} Learning rate

A Regularization constant

19 Cost variable

E; Number of epochs

D Dataset

x; Input data

i Class label for i** instance

T, Class label for test dataset

D, class label for train dataset
Wedge g | Weight updation at R™ edge device
Dedge_r | Sub-query result at R™* edge device

thesis problem statement is to partition the training and testing of the model M, on ‘R’
edge nodes, for which the training time is minimized and the model accuracy is maximized.
Notations used throughout this work are defined in Table 3.1

The dataset is first pre-processed by scaling and extracting various features. Then, this
processed data is split into training and testing datasets. As shown in Figure 3.1, the model
is partitioned and then trained and tested on various edge devices. The partitioning of
weight updation tasks is carried out to balance the load among all the edge nodes. This
reduces the training and testing time significantly. The partitioned training and testing
of SGD-SVM model is discussed in section 3.4.2.1 .

3.4.2 Proposed Approach

This section discusses in detail the partitioned training and testing of the proposed
SGD-SVM model on edge architectures.

3.4.2.1 Partitioned Training Algorithm

The objective of training the SVM model by partitioning it on various edge devices with
'n’ features is to distinctly classify all the data points present in the dataset using an n-D
hyperplane. The hyperplane is basically a decision boundary which separates the data into
two classes. The number of features used in the model defines the dimensionality of the
hyperplane. There might exist many such hyperplanes which separate the data into two
classes. However, the motivation is to find that optimal hyperplane m which minimizes

the following loss function:

L(w,b) = min > max(0,1 —yi(w'.x + b))+ || w|?
w*, i=1 (32)

subject to & > 0.
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Here, ) is the regularization constant & & = maxz(0,1 — y;(w’.z; +b)). Basically, A is a
hyper-parameter. A very low value of A leads to over-fitting of the trained model. Next,
we take the partial derivatives of the loss function with respect to the weights, as shown

by the following equation:

oL 0

0
2 [ J—
8w 8w — A | w |+ (1 yz(w x; + b)) (3.3)

ow

Algorithm 1: Partitioning Training Algorithm for SGD-SVM Model

Input : Dataset D, Train_out D,, Number_of_epochs N, No_Of_EdgeNodes R
Output: Machine_Learning Model M

Model, M = Parameter lists W;,7 € 0,1, ......,n

Initialize W; = 0, a = 0.001, A = 2 % 1/epochs

Procedure Splitter (D, M)
while epochs < N do

Yi = Zf:o Wi * x;

mul = y; * Dy;

j=0

for each data point j in Dataset D do
if mul > 1 then

cost< 0

Wedge 1 = ZZ 1 wz—a*()\*wi)
2n/R

Wedge 2 = Zzné/RJ’_l — Q% ()\ * wz)

Rn/R
Wedge R = E (/R /R Wi = Q% (A * w;)

else
cost <~ 1 — mul
fij= ®ij.-Doj

R
Wedge 1 = Z?/l w; + a.(fij — A\w;)

2n/R
Wedge 2 = Zizé/R+1 w; + Oé.(fij — Aw;)

Rn/R
Wedge R = Z (/R n/R w; + Oz.(fij — )\wz)

end
j=7+1
end
epoch = epoch + 1

end

The partial derivative of the regularization part is represented by the following equation:

aa)\ | w|*= 2. \wg (3.4)

The partial derivative of the penalty part is represented by the following equation:
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o 0, if y;(wh .z +0) > 1
a—(l — yi(wai +0b)) = ( ) (3.5)
WR —yi.Tir, else

Algorithm 2: Partitioning Testing Algorithm for SGD-SVM Model

Input : Test Dataset Dyeq, Test_out T, Machine Learning Model M,
No_Of EdgeNodes R

Output: Accuracy L

Model, M = Parameter lists W; , i€ 0,1, ......,n

class=]]

Procedure DecisionFunc(D, M)

for X, € Dycst do

Dedger = S0 1 wi + g

2n/R
Degge 2 = Zizn/R—&-l W; * Tgs

Dedge,R = Zf;n(/]:?,l)n/R Wi * Tgi
DReduce = Dedge,l + Dedge,Q +.. .+ Dedge,R
if Dpgeduce > 1 then

‘ class.append(1)

else
‘ class.append(-1)
end
if T, == class]i] then
| po=po+1
else
| ne=ne+1
end
end
acc = * 100
po + ne
return

In case the model predicts the class of the query point correctly, we need to update the
weights with the regularization gradient (equation 3.4) only. The following equation shows

the weight updation for correctly classified points:

w=w— a.(2\w) (3.6)

In case the model predicts the class of the query point incorrectly, we need to update the
weights with the regularization gradient (equation 3.4) and the loss gradient (equation

3.5). The following equation shows the weight updation for misclassified points:

w=w— a.(2\w — y;.z;) (3.7)

The weight updation process is carried out on various available edge nodes (as shown in
Algorithm 1). For a given dataset, this process of updating weights is carried out in a

parallel and distributed manner for several epochs until we get an optimized SVM model.
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Table 3.2: Details of different datasets

Dataset Name Instances | Features | Format | No. of classess
Iris [98] 154 4 Text 3
Traffic signs [99] | 39,209 3x32x32 | Images 43
CIFAR-10 [100] 60,000 3x32x32 Images 10
Fruits [101] 10,901 | 3x110x110 | Images 6

The next section discusses about deploying the above trained model on different edge
nodes for testing the trained SGD-SVM model.

3.4.2.2 Partitioned Testing Algorithm

After training using the proposed approach, the SVM model is used to predict future query
data ‘X (’] € Diest- The model’s testing is done in a parallel and distributed manner. Vector
multiplication is done among the query data and respective weights of the feature on ‘R’
edge devices (shown in Algorithm 2). These sub results on each edge node are represented
as Dedge 1, Dedge2y-ee--- 'Dedge_r- The sub results reduce to ‘D', y,0e, after summation. If
this value is greater than 1, then the data point is classified as a positive (41) class.
Otherwise, if the reduced value ‘D',_,,... is less than 1, then the data point is classified as
a negative (-1) class. In order to calculate the accuracy of the model while testing, the

following formula is used:

po
po + ne

acc =

%100 (3.8)

Here, po depicts the correctly classified data points in the test data, and ne depicts the

misclassified data points in the test data.

3.4.3 Experimental Results & Analysis
3.4.3.1 Implementation setup

All the experiments were conducted on five raspberry pi 4GB devices acting as edge nodes.
Each raspberry pi is equipped with 4 GB RAM, quad core Cortex-A72 (ARM v8) 64-bit
SoC along with a 1.5GHz processor frequency. The proposed method was implemented
using Python language (version 3), and the MXNET frameworK [102] has been used for
processing the ML tasks in a parallel and distributed manner. The built-in socket class of
python has been used for networking. Pandas is used for analyzing, cleaning, exploring,
and manipulating data. The Sklearn library is used for machine learning and statistical
modeling including classification, regression, and dimensionality reduction. MatPlotLib
is used for creating high-quality visualizations and graphs. Whereas, Numpy is used to

perform a wide variety of mathematical operations on arrays.
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3.4.3.2 Dataset

Experiments have been performed using four datasets listed in Table 3.2. All the datasets
vary in terms of dimensionality, size, number of classes, and similarity between the present
classes. These datasets are as follows: Iris dataset [98], Traffic signs dataset [99],
CIFAR-10 dataset [100], and Fruits dataset [101]. We now describe each dataset briefly.

e Iris Dataset: This dataset consists of 150 instances. The number of attributes for
each instance are 4 - sepal length, petal length, sepal width, petal width. There are
3 classes, and each class has 50 instances. The task is to classify the plant based on

its 4 attributes.

e Traffic Dataset : The classes in this dataset are unevenly distributed. Some classes
have 250 instances, while other classes have 2500 instances. Due to this, the dataset

is highly imbalanced. Each instance is a 32 x 32 tiny colour image.

e CIFAR-10 Dataset: This dataset has 10 classes, such as - birds, cats, ships, horses,
trucks etc. Therefore, the dataset consists of mutually exclusive, and very distinct

classes.

e Fruits Dataset: This dataset consists of 110 x 110 colour images of fruits. The task
is to classify whether the fruit present in the image is fresh or rotten. This dataset

comprises of 6 classes.

3.4.4 Results & Discussion

3.4.4.1 Effect of Number of edge devices on accuracy & training time

This experiment shows how well the proposed approach performs against different sizes of
datasets. The proposed method’s behaviour for the SVM model is investigated using the
four datasets that are specified in Table 3.2. This experiment runs the SVM model after
partitioning it into different edge nodes, starting from one to five, for ten epochs. Figure 3.2
demonstrates the corresponding results for accuracy and training time for partitioning the
model incorporating the proposed approach. In Figure 3.2 (a), it is observed that the
model training accuracy slightly varies for the different number of partitions, for all the
datasets. But, if we look into the corresponding dataset training times in Figure 3.2 (b),
we can see as the number of partitions (Edge nodes) increases, the training time decreases
significantly. Although the training time does not change much for small-size datasets,
the large-size datasets may benefit using the proposed approach. Hence, the experimental
results depict the efficacy of the model partitioning approach in terms of reducing the

training time, and maintaining a decent accuracy simultaneously.
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Figure 3.4: Effect of varying number of data points on different datasets

3.4.4.2 Comparison of the proposed partitioning approach with

non-partitioning and random partitioning approaches

This experiment shows how the SVM model’s partitioning affects the model training time
over the Iris dataset, the traffic signs dataset, and the CIFAR-10 dataset. The proposed
approach uses a fixed number of edge devices arrived at after theoretical analysis. The
partitioned units of the model are distributed to these five available edge devices that
can compute in parallel. Moreover, we compare the results of the proposed model with
non-partitioning and random partitioning approaches. The non-partitioning approach is
the regular model that runs on a single edge device without a model partition, where the
random partitioning approach partitions the model randomly between 1 to 5 edge devices.
Figure 3.3 shows the comparison of training time for different approaches. The number
of epochs is set to 300 for the Iris dataset, 100 for the Traffic and CIFAR-10 datasets.
The number of partitions in the proposed approach is estimated prioritizing the accuracy
over training time. In the case of the non-partitioning approach, the training time for
the SVM model is higher than any other approach for achieving maximum accuracy.
However, the proposed partitioning approach offers lower training times for Iris and Traffic
signs datasets, over random and non-partitioning approaches. The proposed approach
considers the number of partitions for all datasets as 5. On the other hand, the random
partitioning approach considers the number of partitions for Iris, Traffic, and CIFAR-10
datasets as 4, 3, and 5, respectively. The required training times using the proposed
approach are 3.8000s, 112.4300s, and 107.3243s for the above datasets. Although the
random partitioning approach for the CIFAR-10 dataset offers a shorter training time
than the proposed approach, a high accuracy is achieved in the proposed approach. This
shows the necessity of finding the optimal number of partitions, which we plan to explore

in our future work.

3.4.4.3 Effect of varying number of data-points on Accuracy & training time

In this experiment, the performance of proposed partitioning algorithm has been measured
when the number of data points are reduced to 75%, 50% & 25% respectively (as shown in
figure 3.4). When the training examples are reduced to 75% (i.e. Train_data_frac=0.75),



36 Chapter 8. A Framework for Partitioning ML Models on Edge Architectures

10 10 250

Qusta 2" FRE ST U e | A e jma
Y os| EooN e AN 30810 W\ AN gm
byl Pl ﬁ BN & /§ S NEAR \ i § F
SN BN BN BN s N BN BN BN \
sl AN BN BN A Eal § NBA RN & '
OB BN BN BN WA B A A 0 \ A
025 O.S%im-fracws 100 025 D‘SDDim-fraCOJS 100 025 U‘SODim-fraCOJS 100

(a) Training Accuracy vs (b) Test Accuracy vs fraction of (c¢) Effect of varying number of
fraction of features features features on different datasets

Figure 3.5: Effect of varying number of features on different datasets

then the test and train accuracy of all the datasets are not affected much. But, the training
time is reduced for all datasets due to less number of computations. When the data points
are reduced to 50%, then the performance of the proposed approach was observed to be
good for the Iris and Fruits datasets, because they have less classes and therefore, a large
number of data points of all the classes are available for model learning. Iris performed
well in all cases because it has linearly separable data with 4 dimensions. The traffic
dataset shows the worst performance when the training dataset is reduced beyond 75%,
because it has a large number of classes (i.e. 43). So, the training examples available
for each class in the training data are less. The poor quality of images and imbalance
of data points for certain classes have contributed to the poor performance of the traffic
dataset. As the data points are reduced, the training time experiences a reduction as well.
The best results for all the datasets were recorded for Train_data_frac=0.75, because it
records almost equivalent training accuracy with good generalization performance (test
accuracy), and reduced training time, as compared to the case when all the data points

in the datasets were considered.

3.4.4.4 Effect of varying number of features on Accuracy & training time

In this section, the performance of the proposed approach was recorded when the number
of features were reduced to 75%, 50% and 25%. The fruits dataset performed well,
even when the features were reduced to 50% (as shown in figure 3.5). This is due
to high dimensionality and good resolution of the images (i.e. good image quality).
The CIFAR-10 and traffic datasets offered a sub-par performance when 50% of the
features were used. This is because both datasets have 32x32 tiny colour images of
poor resolution. Even though CIFAR-10 and traffic datasets have the same resolution of
images, CIFAR-10 performed well in comparison because all the classes belong to different
domains. CIFAR-10 contains images of dogs, birds, trucks, ships, horses etc. Therefore,
features needed to represent each class are very different. For instance, if there are images
of trucks and dogs in the dataset, it will be easy to correctly classify them with less
number of features. In the Traffic dataset, in order to identify traffic signs, all features

are important because 10 km speed limit sign is very similar to 70 km speed limit sign.
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Therefore, missing few features could lead to misclassification.

In conclusion, when the ML tasks (i.e. weights updation operation) are performed in
parallel and distributed manner then the training time is reduced significantly without
much affecting the accuracy. While in case of datasets having less number of classes, the
data points used for training the SVM model can be reduced significantly without much
affecting the training/test accuracy. Due to this the training time of the model reduces
significantly. On the other hand, when the dataset comprise of diverse classes, then the
dimensionality of the dataset (i.e. number of features) can be reduced significantly without
affecting the accuracy performance. The dimensionality reduction results in reduced

number of computations and hence the time taken for training the model is reduced.

3.5 Part B - Towards Safe Online ML Model Training and

Inference on Edge Networks

3.5.1 System Model & Assumptions

We consider an autonomous vehicle system application requiring real-time decision-making
in tasks such as object detection, which is facilitated by online ML model training. The
system comprises edge devices, including onboard computers and individual processors
within multiprocessor embedded systems, alongside a centralized server responsible for
model training and management. Edge devices communicate with each other and the
server via wired and wireless networks. The server can also link with external units like
Roadside Units (RSUs) to distribute model training tasks efficiently. By employing edge
devices, tasks are performed closer to the data source, reducing latency and boosting
system performance [103]. Figure 3.6 illustrates this architecture. In this setup, an initial
pre-trained model, based on a representative dataset, is updated incrementally as new

data arrives. Symbols used throughout this work are defined in Table 3.3.

3.5.1.1 Assumptions

e The system generates real-time data from various sensors like cameras, lidars, radars,
and GPS.

e [t uses supervised machine learning models, SVM and RF, for decision-making.

e Edge networks, ranging from single to multiprocessor systems, have each processor

acting as an edge device, sharing data, instructions, and synchronization signals.

e The server manages model training tasks, workload distribution among edge devices,

and result aggregation.

e Safety and Reliability: Safety encompasses the prevention of undesirable

consequences resulting from vulnerabilities or incorrect predictions, whereas
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reliability pertains to maintaining consistent performance and accurate ML models

during continuous updates.

3.5.2 Proposed Approach & Methodology

The proposed framework presents a parallel computing architecture that splits an ML
model into different processing units on edge networks, ensuring safe execution. Figure 3.7
shows the detailed workflow of the proposed framework, where the optimal split decision
is taken by minimizing the net training time. The split decision module implements
a partitioning algorithm that determines how the model should be split and where the
partitioned models should be run, accelerating the application performance. We discuss

the various steps of our proposed approach as follows:

3.5.2.1 Model Partitioning

Given edge devices’ computational constraints, we propose Algorithm 3 to find the
optimal partitioning s*, and mapping of model splits to edge devices. This algorithm
accommodates the computational needs of models like SVM and RF, that have been used

in this study.
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Table 3.3: Symbols and their descriptions

Symbol | Description
Sk, k™ partition strategy of ML model (refers to a tuple of model splits)
S Set of all possible partitions of the machine learning model.
m; The " split in the machine learning model.
tm,; Training time for split m;.
I, Communication latency for split m;.
TTMR,,,, | Training time required for TMR for the my-th split of k" partition.
Sk.i Set of model splits assigned to i edge device in the k™ partition.
s* Optimal partition
e Number of edge devices
d; Edge devices i
Di Processing capacity of edge devices d;
m Submodel which refers to sy ;
€ Convergence threshold for the objective function improvement
Thait,m; Worst case or failure time for the i*" model split
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Algorithm 3: Optimal Model Partitioning and Mapping for Edge Networks

Input: ML model M, edge devices processing capability p; for device d;, Vi € n, 3,
v, communication latency [,,,, training data

Output: Optimal partitioning s* and mapping of model splits to edge devices

/* Initialize search space randomly */
S<—81,82,...,Sk
while Af(s;) > € do

/* Evaluate the obj function for each s */

for each partitioning s;, € S do
‘ f(sk) < evaluateObjectiveFunction(sy) based on Equation (3.1)
end
/* Update the search space x/
S < S + Asy, to improve f(sg)
Sort edge devices: sort(P, p;)
/* Assign model splits to edge devices */
for each submodel m do

Pmin < argminp; s.t. (CT3)
piEP

/* Update the available capacity */
Pmin £ Pmin — Wm
end
Calculate [,,,, for each model split m;
Sort model splits based on l,,;: sort(M, l,,,)
/* Schedule m; € m on edge & update time x/
for each model split m; do
d;: dj < dj Umy; s.t. to (CT6) and (CT7)
tm, < calculateTrainingTime(m;, d;)
TMR,,, < calculateTMRTime(m;)

end

Calculate Af(sg) = f(szld) _ f(s;{:lew)
end
/* Select the best partitioning ./
Select s* = arg min f(sy)

SLES
Train split m; on edge device with training data
For each model split m;, perform TMR: y,,, < majority(y#ﬂ y%wyg%)
return s*, mapping of model splits to edge devices
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3.5.2.2 Algorithm Overview

The proposed algorithm iteratively explores the solution space S with a set of random
model partitionings si, so,...,s;. It evaluates each partitioning based on an objective
function, and updates the search space to improve the function value. The search process
continues until the change in the objective function A f(sy) is below a threshold e. For each
partitioning s; € S, the algorithm evaluates the objective function f(sy) using Equation
(3.1), and updates the search space accordingly.

Edge Device Mapping: Post identifying the optimal partitioning, the algorithm maps each
model split to an edge device, based on its processing power. It sorts edge devices by
processing capacity (sort(P,p;)), and assigns each sub-model m to the edge device with
the least available capacity (pmin), in line with Constraint (CT3), updating the device’s
available capacity.

Scheduling and TMR Constraints: The algorithm schedules model splits for training on
edge devices, considering communication latency [,,, and TMR constraints. Model splits,
ordered by their communication latency, are scheduled on assigned edge devices (d;),
optimizing training time, while adhering to TMR constraints. Training and TMR times
for each model split m; on edge device d; are computed and updated.

Training and TMR Integration: After selecting the optimal partitioning s*, the framework
conducts online training for each model split m; on assigned edge devices, enabling
real-time adaptation. Concurrently, it implements TMR for each m; by selecting the
output with at least two matching instances. The framework then returns the optimal
partitioning s* and model-to-device mapping. This optimal partition minimizes training
time, while ensuring worst-case execution or failure threshold T, is not exceeded, and
the processor utilization remains within acceptable limits. This problem is solved using
mixed integer linear programming (MILP), allowing continuous model improvement in a
dynamic context.

Time Complexity Analysis of Algorithm 3: The time complexity of Algorithm 3 is driven
by its key operations. The initialization of the search space S takes constant time, O(1).
The main loop, iterates over the total number of possible partitions, ng, until the objective
function change (Af(sg)) is below a threshold e, has time complexity O(E - ng) for the
evaluation of the objective function and O(U - ng) for updating the search space, where E
is the time taken by objective function evaluation, and U represents the time consumed
in updating the search space. Sorting and assignment of edge devices and model splits
result in complexities of O(eloge) and O(n,, - €) respectively, where e is the number of
edge devices, and n,, is the number of model splits. Finally, the calculation of latency
and scheduling of model splits add complexities O(n,, logn,,) and O(n,,), respectively.
The overall time complexity can be approximated as O(E - ng + U - ng + eloge + ny, -
e + Ny log Ny + nyy,). This explains the algorithm’s scalability and efficiency with larger
datasets and complex partitioning scenarios.

SVM on Edge Devices: SVMs can be effectively deployed on edge devices by

partitioning the training dataset and training multiple binary classifiers in parallel. For
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Figure 3.8: (a) SVM model partition for parallel computing, (b) RF model partition for
parallel computing

multi-class classification, one-vs-one or one-vs-rest approaches can be adopted, each binary
classifier distinguishing between class pairs or one class against the rest, respectively. The
partitioned classifiers can be assigned to different edge devices. After individual classifier
training, outputs are combined using majority voting or other ensemble techniques to
determine the final class label. This parallel structure, illustrated in Figure 3.8a, allows
for scalable, efficient SVM deployment on edge devices.

RF on Edge Devices: Training RF models on edge devices involves dividing decision
trees and allocating them to different devices d;. This method reduces the overall training
time by leveraging the combined processing power of the edge devices. After training,

outputs from individual trees are combined for the final prediction, as shown in Figure 3.8b.

3.5.2.3 Dispatching Partitioned Models

This step assigns partitioned models to edge devices, maintaining execution order via
associated threads. We use a global queue to join all processes and return the trained
models to the master edge device. The master device combines all models to predict the
training input. During partitioned model training, the master device ensures the correct

integration of all processes.

3.5.2.4 Safe Integration using TMR

Safe execution is essential when partitioning models across edge devices. To counter
issues like resource unavailability, aging, hardware compromise, data corruption, and
side-channel attacks that may cause edge devices to produce incorrect results, we propose
the integration of the TMR technique. This proven method enhances system reliability
in edge network machine learning training. TMR, implemented in parallel on three
devices, uses a majority voting system to eliminate single failure points. To ensure trusted

computation, we calculate the training module’s reliability. The reliability for training
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a partitioned model m; at time ¢ can be calculated using Equation 3.9, where R is the

reliability of correct execution.

R(t) = R3(m4,t) + 3(1 — R(my, t)) * R*(m;, t)

(3.9)
R(t) = 3R?(my, t) — 2R3 (m;, 1)

In the above Equation 3.9, R3(m;,t) represents the probability that all three edge devices
produce the correct output, and 3(1 — R(m;,t)) x R?(m;, t) is the probability that two out
of the three edge devices produce the correct output, while one fails. The final equation

simplifies this computation.

3.5.3 Experimental Results & Analysis

To evaluate the effectiveness of our proposed framework, we conducted different
experiments on parallel computing architecture, for multi-class classification problems
using SVM and RF. We investigate the performance of the model partitioning algorithm

for minimizing the net training time.

Dataset: The dataset employed in this study, titled “Traffic, Driving Style, and Road
Surface Condition” [104], was sourced from Kaggle and initially used by Ruta et al. [105]
to develop machine learning models for Internet of Things (IoT) applications. The data,
comprising 24,957 data points, were collected from two vehicles, a Peugeot 207 1.4 HDi,
and an Opel Corsa 1.3 HDi, using an OBD device paired with a smartphone. The dataset
encompasses 14 features such as “altitude change”, “engine load”, “speed variance”, “fuel
consumption”, etc. A comprehensive feature list and descriptions are available at [105].
The dataset is categorized into three sub-problems: road surface conditions, road traffic
conditions, and driving style.

Environment: The experiments were conducted on multiprocessor systems,
representative of advanced edge networks, with a shared network, and a Linux
5.1.0-52-generic (x86_64) kernel integrated into the Ubuntu 20.04 LTS operating system.
The multiprocessor systems consist of four Xeon(R) CPU E5-2623 v4 @ 2.60GHz
processors, each endowed with eight cores, 4 GB of RAM, a 256 KiB L1 cache, and a
2 MiB L2 cache. This configuration provides a total of 16 GB RAM across the system,
accommodating the SVM and RF models employed in our study. Additionally, the shared
network offers sufficient bandwidth to meet the data flow requirements of our setup.

We opted for multiprocessor systems as an edge network to emulate modern edge devices’
multicore structure. This allows us to explore parallel processing, resource allocation, and
crucial inter-processor communication. This choice makes our study reflective of current

edge capabilities, and ensures relevance for real-world edge computing scenarios.
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3.5.3.1 Analysis of ML Model Parallel Computing on Edge

In this experiment, we used a pre-trained model as the basis for online model training.
This initial model was trained on a dataset of 10,000 samples, which captured the general
characteristics of the problem. For the online training phase, we utilized a batch size
of 200 for partial model training, applying a learning rate of 0.001. The Algorithm 3
determined the optimal model splits by considering the communication latency and
processing capability of each processor in the multiprocessor system. This approach
enabled the efficient distribution of the model into four partitions across two edge devices
or processors. For the training and testing datasets, the input feature shapes were: (19965,
14) and (4992, 14). The online model training process incrementally updated the model
using the remaining 9,965 samples beyond the initial 10,000 samples, allowing the model

to adapt to new data patterns, over time.

3.5.3.2 Accuracy

The SVM and RF algorithms were evaluated based on their training accuracy. From
Figure 3.9a, it can be observed that the SVM model has a stable performance over the
RF model. The SVM accuracy ranges from approximately 85% to 90%, while the RF
accuracy ranges from around 82% to 93%. The performance improvement in the SVM
model can be attributed to its ability to find an optimal hyperplane that maximizes the
margin between different classes, making it well-suited for high-dimensional datasets, like

the one used in this experiment.

The learning rate (0.001) in this experiment impacts model training by modulating weight
updates. Lower learning rates promote thorough solution space exploration, potentially
increasing model accuracy, despite slower convergence. Conversely, higher rates may
lead to faster convergence, risking model accuracy due to the potential overshooting of
the optimal solution. Our chosen rate of 0.001 seems to strike a balance between fast

convergence and accuracy.
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Figure 3.10: (a)Training time for different number of model splits (b)Communication time
and TMR overhead for different numbers of splits(c) CPU and memory usage (%) for SVM
model training

3.5.3.3 Training and Inference Time

We analyzed the online model training time for both SVM and RF algorithms, which were
used to process a batch size of 200 for the remaining 9,965 training samples on top of the
pre-trained model. The training time for SVM and RF exhibited different trends, as shown
in Figure 3.9b. For the SVM, the training process utilizes the One vs. All (OVA) approach
for multi-class classification. This enables the training of multiple binary classifiers in
parallel, which results in reduced training time. On the other hand, the RF algorithm
constructs an ensemble of 100 random decision trees, which can be computed in parallel by
distributing the trees evenly among the available processors. The optimization algorithm
finds the optimal distribution of the trees in a for loop parallelization, minimizing the

overall training time.

Both classifiers were implemented using the sklearn library with default hyper-parameters,
ensuring consistent configurations across the models. During the training process, the
model split was executed on a separate processor, and the inter-processor communication
time was recorded to assess the impact of parallel computation. We observe that the SVM
generally takes less time in training than the RF. This difference can be attributed to the
efficiency of the OVA approach in SVM training, which allows for faster parallelization and

computation compared to the RF’s decision tree construction and aggregation process.

Furthermore, we examined the inference times for 100 sample test inputs using the trained
SVM and RF models. The inference times for both SVM and RF models are illustrated
in Figure 3.9c. It is apparent that both SVM and RF algorithms typically exhibited lower
inference times. However, the RF model tended to have faster inference times compared
to SVM. The maximum inference time for SVM was approximately 30.5 ms, whereas
RF had an inference time of about 24.9 ms. In real-world CPS applications, inference
time is crucial in determining the system’s responsiveness, particularly when real-time

decision-making is essential.
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3.5.3.4 Comparing Net Training Time and Communication Latency
3.5.3.4.1 Net Training Time

In this experiment, we analyzed the net training time for different numbers of model splits,
using both SVM and RF. We considered five different scenarios: no split (0), 2 splits, 3
splits, 4 splits, 5 splits, and 6 splits. For the no-split case (model split zero), the model
is trained as a single unit, without any partitioning. From split 2 onwards, the model is
divided into the respective number of splits.

As illustrated in Figure 3.10a, training time generally decreased with increasing splits,
with exceptions noted for SVM, at 5 and 6 splits. This indicates that the workload
distribution across sub-models reduced training time siginficantly, up to 4 splits. Beyond
this, no significant improvements were observed, while additional communication latency
was incurred. The optimal split number for both SVM and RF was found to be 4, resulting

in net training times of 60.48 and 123.5 seconds, respectively.

3.5.3.4.2 Communication Latency and TMR Overhead

As shown in Figure 3.10b, communication latency and TMR overhead were analyzed for
various model splits. Communication latency tended to increase with the number of splits.
This increase in communication latency can negatively affect the optimal number of model
partitioning splits, as it can offset the benefits of reduced training time achieved through
parallelization.

For the optimal number of splits (in this case, 4), SVM and RF models exhibited total
latencies of 1.9784 and 3.58 seconds, respectively. Corresponding TMR overheads were
1.2785 and 1.6424 seconds, respectively. By integrating TMR into model training and
operating devices in parallel, we ensured reliability, without significant delays in model

training.

3.5.3.5 Resource Utilization Comparison:

In this experiment, we compared resource utilization across three SVM model training
scenarios. Each considers different splits, and we measure CPU usage, memory usage, and

training time with online training data (see Figure 3.10c).

e Scenario 1: Single-edge device training (no split).
e Scenario 2: Training with two edge devices (4 splits).

e Scenario 3: Training with three edge devices ( 6 splits).

3.5.3.5.1 Scenario 1: Single-edge training (no split)

Training was conducted on a single-edge device, utilizing one core. The remaining cores
handled TMR configurations. CPU usage was observed to be 37.5% (3 cores out of 8),

and memory usage was 33%, for 4GB. As only one core was active, training took longer
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(138.35 seconds), which may not always be efficient for real-time applications. This delay
could impede real-time applications, highlighting the need for more efficient multi-core

processing solutions.

3.5.3.5.2 Scenario 2: Training with two edge devices (4 splits)

In this scenario, the model was divided into four splits, and trained on two devices. Each
edge device used two of its cores to run two model splits in parallel, and allocated the
other cores for TMR.

As the number of utilized cores increased, the CPU usage rose, from 37.5% to 75%, and
memory usage rose to 70.2%.for 8GB. However, due to parallel processing, training time
reduced to 60.48 seconds, showing a 56.3% improvement over Scenario 1. This approach

allows for more efficient and suitable training for real-time applications.

3.5.3.5.3 Scenario 3: Training with three edge devices (6 splits)

With six model parts assigned across three devices, more cores were used, leading to 93.2%
CPU usage, and 90% memory usage. Training time reduced further to 64.48 seconds, this
was observed to be slightly longer than Scenario 2. This indicates that while more edge
devices and model splits can increase resource usage, the improvement in training time
may not necessarily scale proportionally.

In summary, optimal balance in device count, model splits, and resource utilization is key
for efficient training in real-time applications. Scenario 2 appears to be the most efficient,
but the optimal configuration will depend on specific application needs, and edge device

resources.

3.5.4 Threats to Validity

Suitability of edge networks for real-time applications: While training machine learning
models on edge networks offers distinct advantages such as: privacy preservation, reduced
overhead, and quicker decision-making, it may not be universally suitable for all real-time
applications. The practicality and efficacy of our approach can vary depending on the
application’s unique requirements and constraints. However, edge-based training can
provide substantial benefits for applications requiring low-latency responses, such as
autonomous vehicles, drones, and industrial IoT systems.

Impact of learning rate on online machine learning model training: The learning rate
directly affects resource efficiency, adaptability, convergence speed, and overall model
performance in edge networks. Balancing the learning rate is key for resource utilization
and convergence. Future work will focus on learning rate optimization for edge-based
training.

Generalizability of the proposed approach: We chose SVM and RF models for our initial
investigation, due to their distinctive learning algorithms and wide usage in various

applications. Although these models often exhibit a manageable computational footprint
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for lower-resource devices, their complexity and demands can vary substantially depending
on the problem and dataset specifics. This research showcases our approach’s potential
with these models, and future studies will extend it to more complex machine learning

models, such as DNNs, to test its broad applicability and performance.

3.6 Conclusion

With the growing demand for data processing, ML, models have become more complex, and
may exceed the computational power of individual machines. As a result, training large ML
models necessitates optimal model partitioning to enable parallel computing architectures
in edge networks. Our proposed framework tackles this by distributing partitioned models
across these networks. To ensure safety, our architecture uses the TMR technique for

trusted computation, enhancing system reliability.



Chapter 4

An Intrusion Detection System on

Fog Architecture

4.1 Introduction

Due to advancements in technology, electrical appliances are now increasingly
inter-connected. The goal of Internet -of-things (IoT) is to access every appliance or device
through the Internet. This is done in order to operate these gadgets from remote locations.
The goal is to improve our day-to-day life. However, this technology raises serious privacy
and security issues. As IoT devices are resource-constrained, it is impractical to secure
them using traditional approaches. Hence, a light-weight Intrusion detection system (IDS)
is required. In this work, we implement a machine learning based Network Intrusion
Detection (NID) system in a multi-node fog environment using a Raspberry Pi cluster
on a local area network. The proposed Pi-IDS system has been evaluated on ADFA-LD
datasets. These datasets comprise of new generation system calls for various attacks
on different applications. The proposed fog architecture offers significant advantages in
terms of latency, energy consumption and cost over traditional cloud or dedicated personal
computer systems. The experiments show that we are able to achieve a Recall of 89%in
ADFA-LD with the XGBoost model. The proposed system was able to predict intrusions
with an inference time 130 ms, in comparison to Cloud-based inference time of 735 ms,
with an estimated running cost of 201 INR/month, in comparison to the Cloud cost of
2051 INR/month.

Further, to enhance the performance in the case of multi-class intrusion attacks, we
implemented a lightweight distributed IDS framework, called FCAFE-BNET (Fog based
Context Aware Feature Extraction using BranchyNET). The proposed FCAFE-BNET
approach considers versatile network conditions, such as varying bandwidth and data load
before allocating inference tasks on Cloud/Edge resources. Early exit DNN has been used
to obtain faster inference generation at the edge. As in many cases, the weights that
the model learns in the initial layer may be qualified enough to perform the required
task, such as classification. Instead of increasing the computational complexity by using
subsequent layers of Deep Neural Network (DNN) for generating the inference, we have
used the early-exit mechanism in DNN. The mechanism of DNN with early-exit layers
helps to predict a wide range of testing samples through these early-exit branches when

they cross the threshold, which maintains the confidence values corresponding to the
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inference. By employing this approach, we achieve a faster inference with significantly
high accuracy. The proposed FCAFE-BNET framework works for both Network-based
and Host-based IDS: NIDS and HIDS. Our experiments demonstrate that, in comparison
to recent approaches, the proposed FCAFE-BNET approach has achieved a 39.12% -
50.23% reduction in total inference time on benchmark real-world datasets: NSL-KDD,
UNSW-NB 15, ToN_IoT, ADFA_LD.

Internet-of-Things (IoT) interconnect our day-to-day devices through many
communication channels [106]. These channels can be in numerous forms, such as
the Internet, GPS or Bluetooth. The main goal is to gather information from multiple
sources, and use it smartly for various purposes. As the web of IoT is growing, more
concerns about its security and privacy are becoming prevalent [107]. IoT devices are
endangered by various types of attacks, such as port scanning and man-in-the-middle
attacks. Monitoring attacks using traditional intrusion detection approaches is
computationally intensive, and requires significant storage space. IoT devices, being
resource-constrained, may not be able to store data and analyze attacks in real time.
Therefore, these computationally intensive intrusion detection tasks are sent to the cloud
for performing inference. The number of IoT applications is increasing rapidly, and
sending huge amounts of data for attack monitoring may be overwhelming for present
network capabilities. So, in order to reduce the network latency and monitor the attacks

in real time, the edge computing paradigm may be employed.

Edge computing may be used to monitor attacks at the circumference of the network,
within the proximity of the source generating the data. By placing the computing device
closer to the point of data generation, the attacks in the network may be monitored
in real-time, which in turn protects the network from security threats. Edge devices
are crucial in scenarios where real-time tasks demand adequate computing and storage
capabilities, as they help reduce latency by fast processing of data within the network.
Hence it can be inferred that Edge computing is well suited for IoT security [108]. It is
highly reliable and solves the high network latency issue that the cloud lacks.

Network Intrusion Detection Systems (NIDS) are installed at numerous nodes within an
IoT network periphery to detect these attacks [109]. These nodes are chosen to cover
the entire network. NIDS installed at various points keep observing the network traffic
passing through. The administrator is notified if the observed traffic matches any previous
malicious traffic. These nodes can be in various forms, such as routers, cameras, or other
electronic controllers. For instance, in order to monitor and track the flow of the network
from different sources, the IDS deployment can be done on the gateways, so that other
connected clients & hosts can be monitored, regardless of their firmware and operating

system. These nodes are less robust computationally, so we need a lightweight NIDS.

In order to reduce the computation, we have used an early-exit mechanism in DNN, to
obtain faster inferences. The early-exit mechanism accelerates the inferences by generating
output at the initial layers of the DNN, thus reducing the computational complexity of

the mission-critical tasks. The early-exit mechanism in DNN leads to an accuracy-latency
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trade-off i.e. the overall inference latency is reduced using the early-exit approach, but
it might adversely affect the inference accuracy. In the proposed work, we have tried
to balance out latency and accuracy, while executing tasks on edge-cloud synergy. The
performance of the proposed framework has been evaluated on benchmark datasets of
NIDS, like NSL-KDD [110], and CICIDS2017 [111]. The proposed framework is evaluated
on new-generation IoT and Industrial IoT based NIDS datasets, such as UNSW-NB15
[112], and ToN_IoT [113]. These datasets have gathered various cyber-attacks and normal
events from telemetry data of Industrial IoT and IoT sensors. The data collection is
done on a large-scale real-life IoT network with three layers: Cloud, Edge/Fog, and IoT
devices. The proposed technique aims to extend globally to recent and older NIDS datasets
and other IDS, such as Host Intrusion Detection Systems (HIDS) [114]. To achieve this
objective, we have converted the given datasets to 2-Dimensional (2D) vectors (i.e. 2D
images). The pre-processing method for the above task (i.e. image conversion) is different
for each dataset, in order to obtain the best results. The results are validated on a
benchmark dataset of HIDS, such as ADFA-LD [115]. Most of the researchers in the past
have worked on binary classification (i.e. attack or not attack), without considering the
nature of the attack. A few researchers proposed methods for multi-class classification, but
the performance of these frameworks was not up to the mark. We observe that decoding
the type of attack, along with the presence of the attack can help to deal with the attack.
In this work, we have proposed a noble feature extraction technique, which performs well

in the case of multi-class classification.

4.2 Problem Statement

Assuming that our application needs to meet its deadlines, but can bear moderate accuracy
losses, we need to balance out the accuracy and the latency. So, in our work, we have
optimized the DNN right-sizing such that the inference accuracy is maximized within the
defined latency requirement. In upcoming sections, we discuss in detail how we optimise
the above latencies in order to make our system fast as well as robust under various

dynamic environments.

4.3 Contributions

The major contributions of our proposed work in this chapter can be summarized as under:

e The training and testing of ML models has been done in a distributed manner, using

a Raspberry pi cluster as a fog environment.

e In order to study the performance of the proposed technique on cloud and fog
infrastructure, The trained model has been deployed on the cloud, as well as on
the pi-cluster. The experiments show that the pi-cluster (fog) took less time for

inference, as compared to the cloud.
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e In order to deal with class imbalance, the SMOTE technique is applied, which has
improved the performance of the proposed approach significantly. Feature reduction
is performed using PCA. This reduces the computations significantly, and thus
reduces the training & testing time of the model, without affecting the accuracy

much.

e The proposed FCAFE-BNET framework optimizes DNN right sizing (i.e. early-exit
mechanism) for maximizing the accuracy within the given latency requirement
through edge-cloud collaboration. The efficacy of the proposed approach is

demonstrated on the test-bed using network traces of real-world datasets.

e The proposed FCAFE-BNET framework considers network versatile environments
(i.e. varying bandwidth, data load) for better performance in real-world scenarios.
For performing fast inferences in case of low bandwidth, the inference task is
performed on fog-cluster/fog-device with reduced computational complexity, instead
of offloading it to the Cloud.

e The proposed data transformation and feature extraction method distinguishes the
various attack patterns effectively and significantly improves the multi-class IDS

performance.

4.4 Part A - An Intrusion Detection System on Fog

Architecture

4.4.1 Proposed Framework

As shown in Figure 4.1, the proposed framework comprises of four phases: feature
extraction, feature selection, selecting the machine learning model, deploying and

evaluating the trained model on a Raspberry Pi Cluster and the Cloud.

4.4.1.1 Feature Extraction

The considered dataset consists of system call traces. There are different files which
consist of a number of system call traces. Each file is labelled according to the class it
belong to, such as : Add-User, Hydra-FTP, Normal etc. We use the modified vector
space representation technique on system call traces for generating our dataset, upon
which we apply various Machine Learning algorithms for predicting potential attacks.
The n-gram frequency technique is used for feature extraction. N-gram is a sequence of
‘n’ consecutive system calls, each system call being one word. We generate all possible
n-grams, then we calculate the frequency of each unique n-gram. Next, we select the
top-m occurring n-grams as our features for the dataset. The values of ‘n” and ‘m’ has
been finalized through experimentation. Each system call trace present in the data serves
as single instance in the generated dataset. Once the features have been extracted from

all the available traces (both “normal” and “attack”), for each trace (file) available in
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Figure 4.1: Graphical representation of our work in steps
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the dataset, the selected features are searched. The frequency of occurrence of selected
features in the given trace serves as an instance in the dataset. The label is the same as
the trace name (filename). The data is converted from system call sequence to a tabular
format, where each row depicts the particular system call trace and each column depicts

the selected n-gram feature or label.

Algorithm 4: Fog-cluster Inference Algorithm

Input: ‘M’ Trained model , 'n’ system call traces, 'k’ worker fog nodes
Output: Inference time 'T’, labels
At Master Fog Node:

e Deploy trained model M’

e 'n’ System call instances
for each worker fog node € k:
o Master node sends 'n/k" instances € Model ' M’
e Inference results from all 'k’ fog worker nodes is sent back to master node

Return: Inference Time & Predicted Labels

4.4.1.2 Feature Selection

Now that the dataset is built in csv format, we apply standard data cleaning and
pre-processing techniques. In the data cleaning phase, we use an anomaly detection
technique called the Interquartile Range Method[116] to remove extreme outliers, which
might affect the accuracy of our model. We also convert the dataset to be of binary
classes, i.e we classify all attacks under category attack and normal instances as category
normal. The distribution of the dataset is still biased, with 90 percent of the instances
belonging to the normal category. The distribution of the training data is shown in Figure
4.2(a).

To deal with data imbalance, we applied SMOTE(Synthetic Minority Oversampling
Technique)[117]. This is an oversampling technique which increases the number of
instances of the minority class. SMOTE works with the concept of drawing a line between
close minority class data points, and generating points on the line. We apply this technique
only on our train data, to make our model more sensitive to the ’attack’ class of data. The
class distribution of train data after SMOTE is present in Figure 4.2(b). The Principal
Component Analysis (PCA) technique has been used for dimensionality reduction. This
projects the data into axes of maximum variance, thus helping in reducing the number of

selected features from our data, while holding maximum information possible.

4.4.1.3 Selecting Machine Learning Models

On the processed dataset, we have trained various Machine Learning models, namely:
Decision Tree, Random Forest, KNN, SVM, & XG Boost classifier. In order to find the
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best parameters to maximize the performance, GridCV search was used. After comparing
the results obtained by GridCV search, the best model has been selected for deployment

on both cloud and pi cluster for further experimentation.

4.4.1.4 Deploying Model

We used Microsoft Azure cloud services for deploying our model. Specifically, we created
a web application instance on the cloud, and deployed our model in the back-end of the
web application. The web page is accessible by the user, and the user can upload the data
file to get the classification, and would also be notified of the time taken by the model to

do the classification. The total time can be calculated using following equation:

Inferencey = Uploady + Runy + Download; + 2 * latency (4.1)

The trained model has been deployed on the master fog node along with the processed
data. The job of the master fog node is to distribute the process (trained model) and data
to all the worker fog nodes (as shown in Algorithm 4). The total run-time is calculated
by summing the time taken to send the data along with the trained model, running the

classification algorithm , and receiving the processed data (results).

4.4.2 Experimental Setup

We conducted our experiments under two environments: fog & cloud. This section
discusses the setup for both the environments, metrics used to evaluate the performance,

and the dataset used for experimentation.
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Figure 4.3: Deployed Web Application

4.4.2.1 Fog Setup

The experiments were conducted on a cluster formed by two Raspberry Pi 4 Model B, and
one Raspberry Pi 3 Model B. Each raspberry pi 4 has Cortex-A72 (ARM v8) 64-bit SoC,
along with 4 GB RAM and quad core with 1.5GHz processor frequency. The raspberry
Pi 3 is equipped with 1GB of RAM. The networking was done using a network switch
with 100 Mbps bandwidth, and three Ethernet cables. Three 32 GB Class 10 Micro SD
Cards have been used as internal storage for raspberry pi OS and various files. The
Distributed Machine Learning Cluster was implemented on each device using Apache
Spark and Hadoop. All the three Raspberry Pis acted as edge devices. Among the three,
one Raspberry Pi 3 was considered to be the master node, and two raspberry pi 4s acted
as worker nodes. The two worker nodes did all the training and classification, and sent

the results back to the master node.

4.4.2.2 Cloud Setup

In order to deploy our model on the cloud, we selected Microsoft Azure Cloud service. We
created a web application on Azure in order to create an interactive Web Page to send
test data and receive classifications. The configuration of our Cloud machine was: B2
Category Machine 200 with total ACU and 3.5 GB RAM. The server selected for cloud
machine was in Central India (Pune). The estimated cost for this cloud machine was 2051
INR/Month. The software requirement of our Cloud was: Flask framework to create the
Web Application, Python 3.8 for back-end machine learning, and HTML and JavaScript
for front-end web pages. This creates a website where the user can select and upload data,
and get classification predictions directly on the web page. The user also gets information
about the time it took for the cloud machine to run the classification task (as shown in
Figure 4.3).

4.4.3 Evaluation Metrics & Dataset

We have evaluated the inference time for both fog cluster and Cloud. Also, we have
compared the cost of deployment for both fog cluster and cloud. The impact of varying
n-components of PCA and oversampling on performance parameters (i.e. precision, recall
and accuracy) is discussed. The performance of various ML algorithms in terms of

precision, recall and fl-score is discussed in detail.
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Table 4.1: Types of attacks

Class Attack Type Number of Instances

Adduser Adds new sudo user 91

Meterpreter Access of interactive shell o |75
aftacker

Java_Meterpreter Java based interactive shell | 124

Webshel Web Server based attack | 118

Hydra_FTP Brute Force on FTP server | 162

Hydra_SSH Brute Force on SSH server | 176

4.4.3.1 Evaluation Metrics

The metrics used to evaluate the performance of the framework were: Precision =

TP _ _ TP _ TP+TN
TNiFp: Lecall = 75, and Accuracy = TNrrprrniFp- Recall tells us how many

attacks we are able to detect out of the total number of attacks. An attack which goes

unnoticed can do much more harm than some normal instances classified as attacks, which
makes recall an important metric here. At the same time, we cannot ignore other metrics

completely, so we also keep a tab on other metrics, while giving more importance to Recall.

4.4.3.2 Dataset

The ADFA-LD (Australian National Defence Force Linux Dataset)[118] was created by the
Australian National Defence Force Academy. It is a host-level intrusion detection dataset
currently used widely for testing of intrusion detection products. The dataset comprises
of system-call traces generated on Ubuntu Linux 11.04 version with certain categories of
attacks carried out on the system, which are labelled accordingly. The data consists of
hundreds of text files with continuous system call traces, labelled through its name as
its class. As shown in Table 4.1, the dataset comprises of six different types of network

attacks performed on Linux systems.

4.4.4 Results & Discussion

4.4.4.1 Finding the best values of n-grams & top 'm’ features

We conducted experiments to study how the selection of top ‘m’ n-gram features affects the
training accuracy of the proposed model. As shown in Figure 4.4, the maximum training
accuracy is reported at m = 150, for 3-gram features. In case of 2-gram features, the
maximum training accuracy is reported at m = 60. The best training accuracy for 1-gram
features is reported at m = 45. The 1-gram and 2-gram features offer poor performance
for m less than 15, while 3-gram has poor performance for m ranging from 10 to 75.
In order to further investigate the test performance of the selected features, we have
trained the proposed model with 1-gram, 2-gram, 3-gram features separately, as well as in

combinations (1+2-grams and 14-243-Grams) with ‘m’ corresponding to maximum value
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of training accuracy reported (as shown in Figure 4.5). The test data comprises of 90%
normal data, and 10% attack data.

As shown in Figure 4.5, all the n-gram combinations reported very high accuracy. But,
as the data is highly imbalanced, accuracy may not be a good measure, as it gives biased
results due to the class with more instances. So, in order to deal with class imbalance
while testing, Recall may be a better measure. Figure 4.5 depicts that the best recall
for attacks corresponds to 14-2+3-Grams. So, we have used 1-gram, 2-gram and 3-gram
features collectively with m = 45, 60 and 150 respectively. Therefore, the total number of
features extracted is 255 (i.e. m = 255).

4.4.4.2 Effect of Data Processing on performance

As shown in Figure 4.6, the maximum Recall, Precision and Accuracy is reported when the
83 Principle components (i.e. n-components = 83) are selected. The initial dimensionality
of the dataset is 255, as shown in the previous section. Now, after applying PCA,
it has reduced to 83. The inference time of the model before PCA is 443 ms, while
after applying PCA, it has reduced to 130 ms. Due to a reduction in dimensionality,
the computational and communication time has reduced significantly. Before applying
SMOTE on the XGBoost model, we obtained a Recall of 79 percent, and a Precision of
92 percent (as shown in Figure 4.7). However, after applying SMOTE, the performance

(recall) of the model improved significantly. This occurred because the model was trained
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better on the minority class, and was able to better classify it, thus increasing the Recall.

4.4.4.3 Evaluating performance on different ML Models

For evaluating the performance based on the evaluation metrics discussed, we trained
all the discussed models. The best hyper-parameter values were selected for training all
the ML models based on GridCV search. We plotted the performance of all the models
on the finalized dataset for attacks, see Figure 4.8 for the results. Table 4.2 depicts the
performance for both “attack” and “normal” cases. Here, we see that Support Vector
Classification offered best Recall, but the Precision was quite low. The Random Forest
model offered a good balance between precision and recall with 96 percent accuracy. The
best recall was seen in XGBoost model, with good precision and accuracy. So, we selected
the Gradient Boosting technique (XGBoost) model to be deployed on both the cluster and
the cloud.

4.4.4.4 Performance Evaluation on the Cloud

After finalizing the Machine Learning model, we used the setup Web Application on the
Microsoft Azure Cloud to calculate the time required for classification. The inference
time was calculated using Equation (4.1). The calculation of upload time and download

time were done with the help of the upload speed and download speed of the available
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Table 4.2: Evaluation Metrics for all Classes

‘ ‘ Attack ‘ Normal ‘
‘ Models ‘ Precision ‘ Recall ‘ F1 ‘ Precision ‘ Recall ‘ F1 ‘
| DTree | 74 | 8 | 77| 97 | 95 |9 |
| RF | 8 | 8 |8 | 98 | 98 |98 |
| KNN | 8 | 87 |8 | 98 | 98 | 98|
| svCc | 65 | 94 |77| 99 | 92 |95 |
| XGB | 8 | 8 |8 | 98 | 97 | 98|

cloud machine (as shown in Figure 4.9). We calculated the speeds and latency of the
cloud using the web-application provided by Microsoft. We calculated the latency using
Microsoft Azure website, as shown in Figure 4.10. Here, we ping the server selected
location (Pune, India), and return the latency. We took the average of the latency, which
came out to be 169 ms. The upload time was calculated using the size of our file, and the
upload speed to the Central India server (Figure 4.9), which came out to be 2.57 MB/s.

This factor may vary from place to place, and places with bad/unstable internet
connections might suffer from much higher inference time, because of this factor. The
upload time calculated using this speed came out to be 260 ms, for 684 KB of uploaded
data. The download time of the data (classifications of the instances) was calculated using
the download speed, which was 5 MB/s. The download time came out to be 1.4 ms, for
7.5 KB of downloaded data. The run time was calculated using a python script, which
ran along the code and displayed the time in the output of the web app, see Figure 4.3 for
the result. This came out to be 136 ms. The total inference time was 735.6 ms. The
experimentation has been done using a batch size of 1000 instances: the smaller is the
batch size, the more is the advantage offered by the fog infrastructure, because of reduced

latency. The cost of the cloud as estimated by Azure was 2051 INR/Month.
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Figure 4.10: Latency from Cloud

4.4.4.5 Performance Evaluation on the fog Cluster

When we ran the ML job on the cluster, the inference time came out to be 130 ms. The
inference time was averaged out of one thousand runs, and was run on the same data as
was run on the cloud. When we ran inference for only a single run, the inference time was
close to 300-450 ms, but under a continuous load, the connections and data pipelines
were already built, which brought down the average run time. The cost calculations of the
cluster were done considering the maximum load on all the Raspberry Pis. We calculated

the power consumption as follows:

Power = Voltage_usage x Current_usage (4.2)

The standard Voltage consumed by the Raspberry pi 4 model B is 5V. The current required
by the device varies with the peripherals attached to it. We connected a Keyboard and
an HDMI cable, which required approximately 400 mA of current. The Energy consumed

by the fog device was calculated using;:

Energy_consumption = Power x CPU _time (4.3)

Using the above equations, the maximum total power consumption of our system came
out to be 40 Watts. Considering the rate of electricity in the place of experimentation,
the total cost for one month of running the system came out to be INR 201.6. This is
the maximum possible cost of the entire cluster. This is far less than the estimated cloud
cost, even if we extend our fog architecture by a few nodes or change in electricity cost

rate. The fog & cloud comparison is shown in Table 4.3.
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Table 4.3: Time and Cost Comparison

Infrastructure | Inference Time | Cost
Fog Cluster 130 ms 201 INR/Month
Cloud 785 ms 2051 INR/Month

4.5 Part B - Dynamic Hierarchical Intrusion Detection task
offloading in IoT Edge Networks

4.5.1 Motivation

Data present in the network is often critical, and its privacy must be protected. IoT server
security can be increased multi-fold if we can identify the attacks timely, as the delay in
attack detection may lead to serious repercussions. Delays can be exploited by malicious
attackers to achieve unauthorized entry into the sensitive information transmitted through
IoT devices. Furthermore, postponed identification can provide attackers with the
opportunity to intensify their assaults, extending their influence to different segments of
the network, compromising additional devices, and inflicting extended harm. Figure 4.11
depicts the graph between latency (i.e. transmission delay and processing delay) for various
approaches: device-only, edge-only, and cloud-only, for varying network bandwidths. In
this experiment, a raspberry pi, a laptop, and a Microsoft Azure virtual machine have
been employed to emulate IoT device, edge device, and the cloud respectively. As shown
in the figure, the end-to-end latency (inference time) varies significantly for the different
approaches with varying network bandwidths. Therefore, network bandwidth plays a
significant role in determining the end-to-end latency. Instead of solely executing on the
cloud/edge/IoT device, we need to define a framework that can interplay between the
three layers (i.e. cloud, edge, and IoT devices), harnessing their individual merits based
on the dynamic network conditions, so that the attacks can be detected in real-time.

Moreover, as the dataset contains numerical/categorical values with vast ranges,
identifying patterns may be quite difficult. Wide variations in numerical data can
magnify the influence of noise present in the dataset. This noise has the potential to
conceal authentic patterns, ultimately resulting in the emergence of false findings or
misinterpretations. The sensitivity of different ML algorithms can be affected by the
distribution and scale of the data. Extensive ranges may necessitate extra pre-processing
or adjustments to enhance the efficacy of these techniques. A more robust approach
needs to be formulated and developed. This will help in multi-class IDS performance

improvement, while maintaining the context.

4.5.2 System Model

In this section, we discuss our system model and various assumptions. We have considered
an [oT device based network. Our model considers a region having numerous resource

constrained devices that are linked with each other on the network. The network maintains
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Figure 4.11: Inference time of different approaches on AlexNet under varying bandwidths.

the flow of data as well as other sequential information required for data communication.
Below, we provide a formal description of the necessary parameters with respect to our
considered model.

We need to minimize the inference time I in order to reduce the attack detection latency
so as to make it real-time. I7 depends on data processing delay and data transmission
delay, which make up the overall latency of the system.

Data processing delay(Pr) depends on multiple factors. In simple terms, the processing
is related to the computation power of the node. It may not be feasible to have access
to high Computational nodes at all time, due to, for example, economics. Our approach
tends to complete the provided task (i.e. inference instances) using Cloud/edge resources,
offering satisfactory performance.

The data processing delay is defined using the following equation:
Pr = Prr + Mr (4.4)

Here, Prr is the data instance pre-processing time, and My is the model prediction time.
In order to reduce the processing delay when the bandwidth is low and the number of data
points for inference are high, we process the data points on the local cluster (discussed in
Algorithm 5). In the case of multiple processing nodes, the concept of parallelism helps
in improving performance, while trading-off some extra resources. However, in case of low
bandwidth and less number of data points, processing happens on a single edge device.

We have further tried to reduce the above processing latencies by performing “dynamic
right-sizing” of the deep neural network (i.e. Early-exit mechanism). Specifically, the
exit point for the neural network is decided based on the entropy calculation, which is

computed using following formula:

Entropy = y * log(y) (4.5)

In above equation, y is the output vector. High entropy signifies no confidence (i.e. low
accuracy ), and low entropy signifies high confidence (i.e. high accuracy). So, the threshold
value of entropy will define the exit-point of DNN. If the threshold value is set as high,

then the DNN model may exit at early layers with low latency, with sub-optimal accuracy.
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If the threshold value is set as low, then the DNN model will exit at later layers with high
confidence output, but high latency.
Data transmission delay(D7) depends on network traffic and the undergoing network

bandwidth. Dr is computed using following equation:
Dy = Instance_size/ Bandwidth (4.6)

In order to minimize the transmission delay, we are making use of a local cluster in case of
high traffic with low bandwidth. The contribution of D7 to the detection latency becomes
less significant in the case of high bandwidth. Considering the above delays we can write

the final inference time as below:
It = Dy + Pr (47)

Here, I gives the overall inference latency.

Problem Definition : Assuming that our application needs to meet its deadlines, but
can bear moderate accuracy losses, we need to balance out accuracy and latency. So, in
our work, we have optimized the DNN right-sizing such that the inference accuracy is
maximized within the defined latency requirement. In upcoming sections, we discuss in
detail how we optimise the above latencies in order to make our system fast as well as

robust under various dynamic environments.

4.5.3 Proposed Work

In the proposed work, we consider two types of IDS: NIDS and HIDS. The datasets used
in experimentation under the NIDS domain are: NSL-KDD [110], CICIDS 2017 [111],
ToN_IoT [113], and UNSW-NBI15 [112]. In the case of HIDS, we have used the benchmark
ADFA-LD dataset [115]. The proposed work comprises of two phases: Data pre-processing
phase and inference task allocation phase. The data pre-processing is discussed in this
section, while the inference task allocation algorithms are discussed in Section 4.5.8.

The data pre-processing is carried out in four steps: feature extraction, selecting features,
data normalization, and feature transformation. Even though we followed a consistent
procedure for all IDS datasets, the specific instructions within each step depend on the type
of IDS i.e. NIDS or HIDS. The graphical representation of this procedure can be found in
Figures 4.12 & 4.13, illustrating the sequence of steps involved. After applying the above
pre-processing steps, we obtain an RGB image which is given as input to BranchyNet.

RGB images were created due to the following reasons:

e As the dataset contains numerical/categorical values with vast ranges, identifying
patterns manually using n-grams may be quite difficult, and may miss some
useful patterns. This may ultimately result in the emergence of false findings or
misinterpretations, which may lead to the poor performance of the models in terms

of multi-class classification.
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Figure 4.13: Pre-processing steps for NIDS datasets

e Utilizing multiple convolutional and pooling layers allows DNNs to efficiently capture

the spatial correlations and patterns in the images.

e Through numerous iterations, DNNs can autonomously learn object features,

removing the need for manual feature-engineering tasks.

The upcoming sections will provide an explanation of the pre-processing steps employed.

4.5.4 Feature Extraction

The procedure of feature extraction varies for each IDS (i.e. HIDS and NIDS) and is
described individually. This distinction is necessary due to the unique context found in
the collected data of each IDS.

4.5.4.1 Feature Extraction of NIDS

As stated in Table 4.4, all NIDS datasets used in our work i.e. NSL-KDD, CICIDS2017,
UNSW-NB15, and ToN_IoT comprise of numerical & categorical features. Considering
this, the feature is depicted as single or multiple pixels. In general, the features have
either non-negative or nominal numerical values. Given the heterogeneous nature of the
features, it is more advantageous to employ a feature extraction approach to unify each
input feature. Categorical features are treated as a single pixel and computed using

equation (4.8). -
*
fc = e — (48)

Cm

Here, a. represents the actual feature value, while ¢,, signifies the category’s maximum
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value. Categorical features present in the datasets can take either discrete or symbolic
values. If the original dataset includes symbolic features, they are converted into discrete

values.

The numerical values may exhibit continuous characteristics without specific limits. Due to
the substantial variation in maximum values across various features, we opted to distribute
these values across multiple pixels instead of consolidating them into single pixel. Our
initial step involved examining the maximum values of each feature independently within
the training dataset. In total, two distinct procedures are employed. The first procedure
involves calculating the pixel count and their corresponding values for numerical features,
using equations (4.9) & (4.10).

2 a. < 25,500

NoP = { 2% - (4.9)
2‘5%, a. > 25,500.
V(NoP) = (NoP — [ NoP]) * 255 (4.10)

In this scenario, NoP represents the total count of pixels allocated for the numeric values.
NoP is further broken down into the integer part, denoted as | NoP ]|, representing the
count of pixels set to 255. Additionally, V(NoP) denotes the value of the (|NoP| + 1)t
pixel. Any remaining pixels, if applicable, are assigned a value of 0. The overall pixel count
for each feature is determined by rounding up NoP to the nearest integer value, which
corresponds to the maximum value of the feature. To prevent computational slowdown
caused by features with excessively large values, we opted to divide features that have
maximum values exceeding 25,500 by 2552. This precautionary measure is particularly
crucial in the case of the CICIDS 2017 dataset, which contains larger values.

The second approach for handling numerical values follows the same principle as described
in equations (4.9) & (4.10). However, it is specifically implemented for features that
represent data size, such as destination bytes and source bytes. Given that the range of
values for these features is considerably greater than that of others, relying solely on the
previous method would be inefficient. As a result, we devised a different approach for these
features. We assigned a total of 16 pixels to represent this feature, which were divided
into four quadruple sections. The initial four pixels depict the samples with data sizes
below 1 Kilobyte, the next four pixels depict the samples having data size ranging from 1
Kilobyte to 1 Megabyte, the next four pixels represent samples ranging from 1 Megabyte
to 1 Gigabyte, and the final four pixels represent samples with data sizes exceeding 1
Gigabyte. The calculation of pixel values still follows equations (4.9) & (4.10), but in this
case, the data is converted into the appropriate data size measurement prior to computing
the pixel values. The advantage of distributing the feature value across multiple pixels, as
opposed to a single pixel, is that it helps prevent the normalization step from diminishing
the influence of other features with lower values. This is important because such features

might have a more significant contribution to the classification of a particular intrusion.



Chapter 4. An Intrusion Detection System on Fog Architecture

Table 4.4: Datasets with Data Type and sample data.

67

DATASET | TYPE OF | SAMPLE DATA
DATA

NSL-KDD NUMERICAL/ | 1, udp, http_data, SF, 443, 0, 0, 1, 0, 0, 001, 1, O,
CATEGORICAL| O, ...

CICIDS2017 | NUMERICAL/ | 3445, 111,745,690, 34, 16, 6445, 1152, 405, 0, 201.5,
CATEGORICAL| 204.7242045, 72...

ADFA_LD CATEGORICAL| 6,5,43,6,45,123,6,195,120,6,6,134,145,1,1,251,243,

245,1,0,0,1...

UNSW-NB15| NUMERICAL/ | 0.000011 udp — INT 2 0 496 0 90909.093750 254
CATEGORICAL| ...120001 20 normal 0

ToN_IOT NUMERICAL/ | 1554198358 3.122.49.24 1883 192.168.1.152 529 tcp
CATEGORICAL| - 80549.53 1762852 41933215...

4.5.4.2 Feature Extraction of HIDS

In the case of HIDS, we have used the ADFA-LD dataset, which consists of system call
traces of varying lengths, that cannot be directly utilized. The dataset is created by
capturing the system calls in a Ubuntu Linux 11.04 operating system that has been fully
patched [119]. This particular Linux version is built on kernel v2.6 which comes with 326
system calls by default. However, for our specific requirements, we opted to employ a
feature vector with a size of 350 to accommodate potential custom system calls. Each
element within this feature vector corresponds to a unique system call, and its value
represents the ratio of that system call’s occurrence to the overall size of the trace, as
defined in equation (4.11).

_ ¢

o v, 1 <7 <350

CR; = 1St

(4.11)
In this context, C'R; denotes the ratio of the j th system call within the final feature vector.
|C}| represents the total count of occurrences of the jth system call in the given trace, while
|S7| represents the size of the trace. The subsequent step of our pre-processing procedure
involves removing redundant or less significant features from the samples, as discussed in

the next subsection.

4.5.5 Feature Selection

By determining the feature set prior to inputting it into BranchyNet, we save additional
processing time that would otherwise be spent on the DNN learning features that may
have less relevance compared to other important features for the ultimate classification.
Consequently, feature selection helps reduce the feature space, leading to improved
performance and classification time [120]. The feature selection method employed
remained the same for all datasets, with the only variation being the order in which
it was performed. For NIDS datasets, feature selection was conducted before feature

extraction to achieve optimal results. However, for the HIDS datasets, feature selection
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was carried out after the feature extraction step. In our study, we employed two feature
selection methods, namely Extremely Randomized Trees (ERT) [121] and Select K-Best
(SKB) along with Chi-squared score function, utilizing the classification tools provided
by scikit-learn [122]. A score is assigned to each feature using these feature selection
methods, indicating its importance relative to other features. Notably, the ERT classifier
demonstrated superior performance and was primarily utilized in this research. SKB, on
the other hand, was exclusively applied to the NIDS datasets following feature extraction.
Its purpose was to eliminate unessential pixels (features) that may have a lesser impact
on classification, thereby improving performance, while simultaneously reducing the input
size. ERT, or Extremely Randomized Trees, constructs an ensemble model that builds
upon the conventional top-down decision tree approach. However, it incorporates two key
distinctions. Firstly, the splitting of nodes within ERT is carried out in a completely
random manner, differing from other decision-tree based classifiers. Secondly, ERT
employs the entire training data during the node splitting process, as opposed to using a
bootstrap replica. The number of features to be eliminated is determined based on the
feature importance score, as discussed earlier, while also taking into account the desired
shape of the image. The optimal size of the image is determined through an iterative
process of trial and error while training the network. To illustrate, in the case of the
ADFA-LD dataset, which initially consists of 350 features and a final image size of 10 by
10 pixels, we would need to eliminate the 250 features with the lowest ranking. In the case
of NIDS datasets, we have subsequently decreased the resolution of the resulting samples
by applying the SKB feature selection process to all pixels. This particular step proved
beneficial in reducing the pixel count by 30-50%, resulting in improved classification time

and enhanced accuracy of the IDS.

4.5.6 Data Normalization

To ensure consistency with the pixel value range of images, which typically spans from 0 to
255, it is necessary to normalize the network data within the same scale. Two commonly
utilized normalization techniques are: min-max normalization and quantile normalization,
both of which aim to convert data values to a standardized range. However, due to the
limitations of min-max normalization in handling outliers, the proposed framework [123]
adopts quantile normalization instead. This method transforms the feature distribution
into a normal distribution and recalculates the values of all features based on this
distribution. Consequently, the majority of variable values tend to cluster around the

median values, thereby providing effective handling of outliers.

4.5.7 Feature Transformation

To enhance the data representation, we expanded the existing dataset by introducing
two additional layers, effectively transforming a single sample into an RGB image. The
effectiveness of RGB encoding, as opposed to grayscale encoding, has been explored in

a separate study [124]. The findings revealed a significant improvement in the accuracy
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Figure 4.14: RGB images obtained after pre-processing steps for NSL-KDD dataset
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Figure 4.15: RGB images obtained after pre-processing steps for CICIDS2017 dataset
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of the trained model, while utilizing RGB encoding. In our study, the RGB channels
generation is done in 4 steps. The initial step involves reshaping the original data into a
2D vector. Subsequently, for the second channel, we horizontally mirror the original 2D
data. The third channel is created simply by subtracting the value of each pixel from the
maximum value of the current sample. Once all channels are generated, we append the
standard deviation of each column and row to the corresponding column and row. After
the generation of all three channels, these channels are combined and reshaped into an N
x M x 3 vector suitable for DNN input. The RGB images obtained after pre-processing
steps for NSL-KDD, CICIDS2017, UNSW-NB15, ToN_IoT, and ADFA_LD datasets are
shown in Figure 4.14, Figure 4.15, Figure 4.16, Figure 4.17, and Figure 4.18 respectively.

4.5.8 Proposed algorithms

The previous section focused on the feature preprocessing and transformation for obtaining
the RGB image corresponding to each data instance. We will now demonstrate the
necessary models that will carry out the inferences, along with their location, as per
the dynamic network conditions. Specifically, we propose a dynamic algorithm called
FCAFE—-BNET(), that offers the location (Cloud/edge-cluster/edge-device) of inference

in such a manner that will lead to the least trade-off between inference latency and

normal attack

Figure 4.16: Final RGB images obtained for UNSW-NB15 dataset
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Figure 4.17: Final RGB images obtained for ToN_IoT dataset
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Figure 4.18: RGB images obtained after pre-processing steps for ADFA_LD dataset

corresponding accuracy. The pseudo-code for FCAFE — BNET() is given in Algorithm
5. As discussed in our system model, we consider a network of IoT devices consisting
of a continuous flow of data containing system calls and other networking parameters
necessary for flow control and data transmission. The proposed algorithm monitors the
network traffic in order to avoid any malicious attacks in real-time. For a given interval,
we collect the data instances from the network traffic, along with the bandwidth details.
Next, we need to generate inferences within a given latency constraint. To do that, we
check whether the value of I i.e. total inference time (discussed in section 4, system
model) is within the latency requirement represented as Lp in Algorithm 5. In Algorithm
5, we defined two thresholds: T4 and Ty, which are the threshold of bandwidth and
the number of data instances, respectively. If the recorded bandwidth (B4) exceeds the
defined threshold Tz 4, it implies that we can execute that instance on the cloud without
violating the latency requirements. Upon failing the above condition, we proceed by the
density of data instances. When the density of data instances is high, the number of
current instances (Ny) exceeds Ty, so we send the instances collected to the master node
of the cluster executor, discussed in Algorithm 6 (i.e. Local — Cluster — Ezecutor()).
This ensures that inferencing of a large number of instances is performed within given
latency constraints, when the recorded bandwidth is not sufficient for execution on the
cloud executor. When the number of instances does not violate the imposed threshold,
we prefer the local executor for the generation of inference, as discussed in Algorithm
7 (i.e. BNETalgorithm). Next, we discuss the functioning of modules BNET() and
Local — Cluster — Executor(), which are responsible for local and cluster execution of
data instances, respectively.

We have defined about the need for Local — Cluster — Executor() earlier in Section 4.5.8.
Now, we will demonstrate how it handles the instances while generating the inferences.

There is a master node whose job is to carry out the instance partitioning among the worker
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nodes. Upon receiving the instance set, the master nodes distributes it equally over the
cluster, in order to obtain fast inferencing. The data instances Io are first pre-processed
and transformed into an RGB image, using the steps stated in section V. This is done
on each cluster node. All the nodes contain the model that carries out the prediction,
after obtaining the RGB images. Upon inference generation, the results are added into
IR, which is maintained by the master node. The master node then sends the inference
report back to the network administrator, who analyzes the results and takes necessary

action such as blocking the suspicious nodes.

Algorithm 5: FCAFE-BNET(By4, I¢)
Require: Bandwidth and Network Traffic
B4: Bandwidth recorded after t time interval
I¢: Instance-Collector()
Np: Number of instances(I¢)
I7: Total inference time
Lp: Latency Requirement
Ensure: Location of inference generation
1: while I < Ly do
if By > T then
3 Execute on cloud
4 else if B4y <=1Tp4 AND N; > Ty then
5: Run on Local-Cluster-Executor(/¢)
6
7
8

N

else
/* Run on local Edge device using Algorithm 7 */
BNET(I¢)
9: end if
10: end while

Algorithm 6: Local-Cluster-Executor (I¢)
Require: Data Instances, I
N: Sizeof(I¢)
K: Number of worker nodes in the local cluster
Ensure: Inference Result, I
Send data instances to the master node
for each worker nodes : do
PPr: Preprocess(I¢) using steps discussed in Section V
Tr: Transform(PPr) into RGB image using steps discussed in Section V-D
Process N/K data instances using trained model
Keep on appending the results into Ip
end for
Return I

The pseudo-code and workflow of the proposed BNFET algorithm is represented in
Algorithm 7 and Figure 4.19. In the case of BNET, the model is deployed on the
local fog device. So, it needs to perform fast inferencing, as it only contains a single
computation node. Firstly, all the data instances are pre-processed and transformed into

RGB images on the fog node, using the steps stated in Section V. We have used the
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Algorithm 7: BNET (I¢)
Require: Data Instances
N: Number of exit points
Ensure: Inference Result
for i in I do
PPr: Preprocess(I¢) using steps discussed in Section V
Tpp: Transform(PPy) into RGB image using steps discussed in Section V-D
for j < 1to N do
X < FFExit; (Tpp)
Y < Softmax — Activation(X)
E « Entropy(Y)
if £ <T then
add label(argmax(Y)) to Ig
Break
end if
end for

end for
Return I

Branchynet framework of deep neural networks in the BN ET algorithm. Unlike usual
deep neural network models, branchynet consists of multiple exit points. These multiple
exit points help in balancing the latency-accuracy requirements. Here, we iterate over
each data instance and calculate the value of entropy corresponding to each instance in
the output vector. If the value of entropy is below the defined threshold (7°), then we
output the data instance from that exit point itself. Otherwise, we proceed with further
exit points. Similar to Local — Cluster — Executor(), here also we keep on adding the
inferences to the output vector Igr. The threshold 71" imposed on the exit points has been

defined experimentally, and it varies with the nature and complexity of the input dataset.

Table 4.5: Dataset description.

Datasets Test Data Points Train Data Points
Attack | Non-Attack | Attack | Non-Attack
ToN_IoT 74512 | 73022 210311 | 103198
UNSW NB15 | 45332 | 37000 119341 | 56000
CICIDS2017 | 33626 | 136219 78217 | 318087
NSL-KDD 12833 | 9711 58630 | 67343
ADFA-LD 104 3398 422 563

Table 4.6: Total inference time comparison for various techniques on NIDS based datasets.

Dataset FCAFE-BNET (Proposed) | FC-XGB | CAFE-CNN | GTO_BSA | GTO

NSL-KDD 11.41 145.50 47.71 10205.83 9719.66

CICIDS-2017 | 45.31 170.34 87.68 2270.91 6988.46
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Figure 4.19: Workflow of the proposed BNET algorithm

Table 4.7: Total inference time comparison for various techniques on HIDS dataset.

Dataset FCAFE-BNET (Proposed) | LW-MLP | FC-XGB | CAFE-CNN
ADFA-LD | 15.36 817 650 49.72

4.5.9 Results

In order to evaluate the performance of our proposed FCAFE — BNET algorithm, we
have deployed a prototype using Azure cloud and Raspberry Pis. The cloud setup has
been done using Microsoft Azure cloud service, with 16GB RAM. The local cluster has
been deployed using five Raspberry Pi 4s Model B, having 4GB RAM and Cortex-AT72
ARMvS8 processor having quad core with processing frequency of 1.5GHz. Each Raspberry
Pi is installed with 32 GB MicroSD cards fro internal storage. In the cluster comprising of
five Raspberry Pis, one Raspberry Pi acts as a master node, and rest of the four Raspberry
Pis act as worker nodes. The networking of the cluster has been done using ethernet, and
a network switch with 100 Mbps bandwidth. Apache Hadoop and Spark [125] frameworks
have been employed in order to harness the distributed ML cluster. A single Raspberry
Pi 4 has been used as the local fog device. In order to incorporate Branchy DNN for multi
branch DNN training, we have used Chainer [126] and BranchyNet [127] frameworks on
local fog devices. The AlexNet [128] model with three exit points has used for training
over various IDS datasets. The AlexNet comprises of eight layers, out of which the first
five layers are convolutional layers and last three layers are fully connected layers. We have
selected the odd convolutional layers as the three exit points. The description of training
set and test set of all the datasets used in the study is given in Table 4.5. The ADFA-LD,
UNSW-NB 15, and ToN_IoT datasets have been evaluated for binary class classification.
The evaluation metrics used are: Accuracy, Precision, Recall, Fl-score [129], and total
inference time (I, described in section 4.5.2). The NSL-KDD and CICIDS 2017 datasets

have been evaluated for multi-class classification, so we have used the weighted average of
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the precision, recall, F1-score [129], and Accuracy along with total inference time.

Table 4.8: Total inference time comparison for various techniques on IoT based NIDS
datasets.

Dataset FCAFE-BNET (Proposed) | EHIDS | CF-OSELM | ABA-IDS | ICNN-FCID
ToN_IoT 9.76 16.68 19.94 20 22.42
UNSW-NB 15 | 17.9 29.89 35.73 35.85 40.19

4.5.9.1 Multi-class classification performance:

The performance of FCAFE-BNET has been compared with various other approaches
discussed in Chapter 2, Section 2.2, for the multi-class classification problem on NSL-KDD,
CICIDS 2017, and ADFA_LD datasets. As shown in figure 4.20, in case of the NSL-KDD
dataset, FCAFE-BNET performs well in comparison to the latest proposed approaches.
The performance boost is due to it’s unique pre-processing steps that convert the data into
RGB images, which helps the DNN in extracting various patterns useful to detect different
classes of attacks. Also, the performance of FCAFE-BNET is better than CAFE-CNN
due to fine-tunning the pre-trained model (i.e. AlexNet in our case) on given NSL-KDD
dataset, instead of using untrained CNN in the case of CAFE-CNN and starting from
scratch. Meta-heuristic algorithms, such as GTO-BSA and GTO have performed well
because of finding the optimal feature set using optimization algorithms. But, as shown
in Table 4.6, the total inference time is quite high, for both GTO-BSA and GTO. This is
because both of the optimization algorithms take a long time to figure out the best solution.
Hence, these approaches may not be suitable for real-time applications, like intrusion
detection in IoT networks. Comparatively, our proposed approach takes significantly less

amount of time to generate inferences.

NSL-KDD Dataset

1.00
=== FCAFE-BNET
W FC-XGB
=== GTO-BSA
0.95 == GO

mmm CAFE-CNN

0.80

Accuracy Precision Recall F1-Score

Figure 4.20: Performance comparison on NSL-KDD dataset.

As shown in Table 4.6, the inference generation time is the least in the case of
FCAFE-BNET, because of two reasons. Firstlyy, FCAFE-BNET helps in locating
the appropriate inference generation location, depending upon the dynamic network
conditions. In addition, the low inference time is due to the use of the early-exit mechanism
in the local fog device. This reduces the computation by exiting the output from early
layers with a certain confidence interval, instead of traversing the complete DNN for the

output. The poor performance of FC-XGB in terms of inference time is observed, because
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Figure 4.21: Performance comparison on CICIDS 2017 dataset.

ADFA_LD Dataset

mmm FCAFE-BNET
s LW-MLP
B FC-XGB
mmm CAFE-CNN

Accuracy Precision Recall F1-Score

1.00

0.95

Scores

0.90

0.85

Figure 4.22: Performance comparison on ADFA_LD dataset.

it always offloads the inference task on the local cluster, without considering the dynamic
network condition.

As shown in Figure 4.21, in case of the CICIDS 2017 dataset, FCAFE-BNET approach
has outperformed other recent approaches in terms of the weighted average of accuracy,
precision, recall, and Fl-score. This is because the RGB images obtained for different
attacks after performing pre-processing steps (discussed in Section 4.5.3) are very different
from each other, as shown in Figure 4.15. Due to this, the DNN correctly classifies different
attacks. The CAFE-CNN has performed equally well in terms of all the scores, due to the
use of CNN. But, as shown in Table 4.6, the inference time of an instance using CAFE-CNN
is quite high as compared to FCAFE-BNET, due to the latter’s early-exit mechanism. The
number of computations is reduced significantly due to early-exit mechanism. Hence, the
resource constraint fog device can quickly perform inference tasks without compromising
the accuracy score.

As shown in Figure 4.22, in the case of ADFA_LD, FCAFE-BNET has performed the best
in terms of all scores, because of adopting a good feature extraction and transformation
method, discussed in section 4.5.3. Also, using a pre-trained DNN model i.e. AlexNet has
significantly enhanced the performance. The performance of LW-MLP and FC-XGB is
observed to be the worst, because of selecting the features manually by using the n-gram
technique. Also, in case of the LW-MLP, the authors have used a shallow MLP model for
inference, which resulted in poor performance of the LW-MLP approach. The XGboost
model performed well in the case of tabular data, but as the ADFA_LD dataset comprises
of system call files, due to which the FC-XGB approach did not offer optimal results. As
shown in Table 4.7, the proposed FCAFE-BNET offers the best results in the case of total
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inference time as well. This is because in the case of LW-MLP, the experiments were
carried out on a single local fog device. Whereas, in the case of FC-XGB, the inference
task is always offloaded on the local cluster. However, both of the approaches did not
take into consideration the network conditions and task load for inference generation task
allocation. CAFE-CNN offers better performance due to the use of GPU resourced local
device for experimentation, but the authors have not considered a fog based environment
in their work. The proposed FCAFE-BNET offers the least total inference time, due to

locating the right inference generation location using Algorithm 5.
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Figure 4.23: Performance comparison on UNSW-NB15 dataset.
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Figure 4.24: Performance comparison on ToN_IoT dataset.

4.5.9.2 Binary-class classification performance:

In this section, the proposed FCAFE-BNET approach has been compared for binary class
classification problem with EHIDS [45], ABA-IDS [44], ICNN-FCID [46], and CF_OSLEM
[49] approaches, using benchmark UNSW-NB 15 and ToN_IoT datasets. As shown in
Figure 4.23 & 4.24, the ABA-IDS offers the worst performance in the case of all the
scores, for both datasets. In ABA-IDS, node profiling was done before passing it to ANN.
However, these collected node attributes do not help much in correctly classifying the
attacks, thus showing the worst performance in comparison to other recent approaches.
Both CF-OSELM and ICNN-FCID approaches have shown moderate performance in terms
of all the scores for both datasets, shown in Figure 4.23 & 4.24. In both approaches, the
authors did not adopt any feature selection method, which resulted in poor performances
of CF-OSLEM and ICNN-FCID. In comparison to the recent approaches, the proposed
FCAFE-BNET has performed well in terms of all the scores for both datasets. This is
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because of refining the data by pre-processing, and transforming it before passing it to
the DNN. The EHIDS has performed equally well because of using genetic algorithms for
optimizing ANN weights and biases. However, as shown in Table 4.8, the EHIDS approach
has taken a longer time to generate inference than the proposed FCAFE-BNET. This is
because of FCAFE-BNET’s policy of allocating the inference task to the right location
i.e. fog device/ local cluster/ Cloud, instead of always allocating to the fog device. The
ABA-IDS approach took a long time to generate the inference, because node profiling is a
time consuming process. Finally, ICNN-FCID records the highest inference time for both
UNSW-NB 15 and ToN_IoT. This is because the approach integrates two computational

intensive models i.e. CNN and LSTM, for generating inference.

Table 4.9: Performance of FCAFE-BNET with 3 exit points on NSL-KDD dataset with
varying Entropy threshold

Entropy Threshold (T) | Accuracy (%) | Time (s) Exit pt 1 Ej;ls S?% Fxit pt 3
0.00001 95.02 4.454 0.0 0.0 100.0
0.0001 94.78 4.445 0.0 7.0 93.0

0.001 94.54 4.180 0.0 17.55 82.45
0.05 94.08 3.743 4.37 30.18 65.45
0.01 93.95 3.134 10.34 32.32 57.34
0.75 93.83 3.234 23.65 17.66 58.69
1.5 92.75 2.945 48.45 6.21 45.34
2.5 84.64 2.457 57.34 2.43 40.23
5.0 69.45 2.005 68.14 1.52 30.34
10.0 94.43 1.045 99.5 0.5 0

4.5.9.3 Effect of Entropy threshold on FCAFE-BNET performance:

In this section, we discuss the effect of the entropy threshold on the performance of the
proposed FCAFE-BNET, in terms of accuracy and inference time. The experiments were
conducted on the benchmark NSL-KDD dataset by varying the entropy threshold value,

represented as T’

in Algorithm 7. The Branchy AlexNet comprises of three exit points
represented as: Exit pt. 1, Exit pt. 2, and Exit pt. 3, respectively. Here, Exit pt. 1
depicts early exiting from the first convolutional layer, whereas Exit pt. 2 depicts early
exiting from the third convolutional layer, and Exit pt. 3 depicts exiting from the last
convolutional layer (i.e. complete AlexNet network). As shown in Table 4.9, when the
value of "T" is very low, a large number of data points exit from Exit pt. 3 (i.e. exit
from the last layer). Correspondingly, the accuracy recorded by the inference model is
the maximum. However, note that the inference time corresponding to this case is high
as well, because of exiting from the last layer. In case of setting a very high entropy
threshold, a large number of data points exit from Exit pt. 1. Here, the DNN model
exits the outputs at an early layer, with comparatively lower confidence. Therefore, the
inference time recorded by the inference model is extremely low, with low accuracy. On

the other hand, when the value of "T” is set to 1.5, then both the performance metrics i.e.
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accuracy and inference time are balanced. This is because approximately 55% of the data
points exit from early layers, due to which the inference time recorded is low. Also, the
accuracy recorded is high, because the DNN model exits the outputs from both early and
last layers, based on the entropy threshold.

4.6 Conclusion

IoT applications are vulnerable to various attacks, due to which many researchers
have proposed different Intrusion Detection Systems (IDS) that can secure the IoT
network. Often, these approaches fail to detect various classes of attack efficiently. The
poor performance is the result of adopting outdated feature selection, extraction, and
transforming methods. In addition, these approaches do not take into account versatile
network conditions. The proposed FCAFE-BNET approach improves the multi-class
IDS performance by exploiting various pre-processing steps that help in identifying
various attack patterns correctly. The proposed FCAFE-BNET algorithm takes into
account dynamic network conditions before allocating the tasks to different fog layers
i.e. Cloud/cluster/fog device. Moreover, the use of the early-exit mechanism in the local
fog device speeds up the inference by reducing the number of computations, without
adversely affecting the performance. The proposed technique is not only applicable to
NIDS and HIDS datasets, but can be extended to other forms of IDS as well, by making
minor changes in the pre-processing step. The fog-edge architecture is a promising way to
deal with various attacks. Through experimentation, we observe that both the cost and
latency (inference time) of the fog (Pi Cluster) is less than a similar powered Cloud web
application. In future work, we plan to consider other critical evaluation metrics for IoT

systems, such as storage efficiency and energy consumption.



Chapter 5

Data Driven DNN Task Offloading
on Edge Networks

5.1 Introduction

Edge computing aims to reduce bandwidth bottleneck and latency by performing
computation close to the end-users, making it a viable option for application offloading.
Due to its limited computational capacity, the edge may need to be considered with
the cloud for offloading. Computation offloading of tasks is challenging, as it depends
on: the availability of limited resources, dynamically changing network conditions, and
concurrent user access. Mathematical task offloading approaches may be incapable of
capturing dynamic network situations in large end-to-end network models. We propose
D?-TONE (Data-driven Deep Neural Network Task Offloading on the Network Edge), an
approach that employs Machine Learning algorithms for accurately estimating offloading
delays, such as computational and transmission delays. D? — TONE holistically adapts
to dynamic network situations, and provides optimal /near-optimal offloading solutions in
real time. In addition, the proposed algorithm employs distributed execution of DNN
tasks on edge devices/cloud data centers. Experiments reveal that D> — TONE reduces
the training time by 1.55 to 2.77 times, compared to baseline approaches. In addition, the
edge-based D? — TONE offers an improvement of 55-76% in the data processing ratio, in
comparison to other offloading approaches.

The emergence of Internet-of-things (IoT) has led to the generation of huge volumes of
data. There are several real-time IoT-based applications, like smart cities [130], self-driven
cars [131], and industrial monitoring [132], for which the generated data needs to be
processed within a given deadline [133]. The data generated through these IoT applications
is usually processed using a Cloud data center (CDC). Due to the rapid increase in IoT
applications, it is estimated that the volume of data generated by such applications will
exceed today’s network bandwidth capacity [134]. In addition, the computation capacity
of modern gadgets has increased significantly in recent years. These advancements in user

device hardware have led to the emergence of the “Edge Computing” paradigm.

Edge computing [135] helps in processing data near its point of generation, rather than
sending the complete data to the remote cloud for processing. As the data gets processed
in the proximity of users, the response time is reduced, leading to an improved user

experience, enabling different real-time applications, such as vehicle OTA. Generally,
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Figure 5.1: System architecture for crowd counting application.

user devices have limited resources with respect to task load [136]. Hence, computation
offloading is carried out in order to balance the load among edge devices. The main
goal of offloading is to distribute the task partitions among the nearby edge devices, so
that the computation time and energy consumption of the system may reduce [137]. The
major challenge exists in utilizing these finite heterogeneous user devices or edge resources
efficiently. Mathematically optimized task offloading approaches need to appropriately
model the inputs, such as: available resources, transmission delay, computational delay,
task distribution size, and end users, according to certain objectives, such as minimizing
the delays or energy consumption of mobile devices. In order to do this, an accurate
estimation of these inputs is required. Misleading estimations may degrade the task
offloading performance over time. The estimation of the computational time itself is a
non-trivial task, as it requires application profiling software, which may be incompatible
with the heterogeneous resources in the edge network. Moreover, edge networks are highly
prone to disruptions and noise. Estimating transmission time is a tedious task, as the
standard network measurement techniques fail to capture the complexities in the network.
In order to address the above shortcomings, we use data-driven estimation approaches
such as machine learning algorithms. This approach provides more accurate estimates,
and hence, helps in efficient offloading of tasks in a multi-edge environment.

Recently, there has been an increase in the usage of surveillance cameras in various



Chapter 5. Data Driven DNN Task Offloading on Edge Networks 81

public places for safety and security. This has brought the problem of crowd analysis
to the fore. The crowd counting problem aims at detecting faces in order to estimate the
number of people present in a given location. Crowd analysis has applications in several
domains: monitoring safety and security, early detection of overcrowding, appropriate
crowd management, and movement in public spaces. ML techniques have been used in
order to extract useful information from huge volumes of data generated through IoT
devices. Among various ML algorithms, Deep Neural Networks (DNN) have exhibited
good performance in the case of image-based classification, and regression problems [138].
One of the main concerns of training these models well is the usage of a huge amount of
data for learning [139]. However, edge devices, being resource constrained by definition,
may not be able to handle huge DNN workloads. Hence, the training of the DNN model
needs to be done in a distributed manner in the edge network, so that the data is processed
in real-time [140].

In this work, we consider the people counting (face detection) application for shopping
malls and retail stores [141]. Several advantages exist in installing traffic counter devices
in malls and stores: optimizing sales, improving store operations, evaluating new ad
campaign effectiveness, and visitor analytics [142]. All of the above factors have a direct
impact on the profitability of the retail store [143]. There are several cloud-based APIs
that are available for face detection, like Google’s Cloud Vision and AWS Rekognition.
However, these services require reliable and stable internet connectivity. The edge
computing use case for crowd counting is shown in Figure 5.1. The data in the form of
video streams/images is transmitted from cameras to nearby edge devices for processing
and storage. If the local edge device is incapable of processing the received data in a given
deadline, then the data is sent to the master node/ server for processing. The Master
node decides if the data needs to be processed on a remote cloud, or on the Cloudlet
(Edge network), based on the tasks deadlines. If the deadline constraint is hard (i.e.,
real-time tasks), then the Master node sends the partitioned data to edge devices present
in the Cloudlet. Otherwise, the data may be sent to the remote cloud for storage and
processing. This use case faces various challenges: computing resource heterogeneity,
device-to-server ratio, congested, and noisy networks. These challenges make it difficult
to accurately estimate the offloading cost. Moreover, the complexities of such networks
can not be effectively handled by static network profiling approaches, as these approaches

can degrade the offloading performance over time with inefficient task scheduling.

5.2 Contributions

The major contributions of the proposed work are:

e We propose data-driven machine learning techniques for estimating the computation
and transmission offloading costs for edge networks. These techniques are based on
various dataset parameters, ML parameters, and hardware/network parameters for

dynamic workloads. This leads to more accurate predictions of offloading costs as
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Table 5.1: Estimated computation offloading cost (C)
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compared to static estimation methods.

e We propose a framework for the optimal computation offloading of application
data-points on various edge devices by proposing a Mixed Integer Programming
(MIP) based approach, which minimizes the training time of the given workload,

and maximizes the data-point processing ratio.

e The proposed framework significantly reduces the training time of DNN model by
updating model parameters in a parallel and distributed manner on various edge

devices, without sacrificing the performance of the trained model.

5.3 Motivation

We conducted an experiment to measure the processing speed and transmission time
for varying network conditions and hardware types, the results of which are shown in

Figure 5.2. The computation time depends on the processing speed of the hardware

Number_of _frames )

(i.e. computation time = Processing speed(infps)

However, accurately estimating the
processing speed is not a trivial task in a large heterogeneous network. As shown in
Figure 5.2a, the processing speed varies tremendously with different hardware types. The
benchmark used in our study is a face recognition application [144], where the processing

speed for all CPUs is considered to be static (i.e., 11 frames per second). Similarly, in

Data_size
Bandwidth

are much lower than the actual (measured) transmission time. The inaccuracy is due

Figure 5.2b, the theoretical (transmission_time = ) transmission time estimates
to merely relying on the link bit rate (Mbps) for estimating the transmission time. In
the real world, this depends on dynamic network conditions. Therefore, if these static
computation and transmission time estimating techniques are used to model the inputs
of mathematical optimization task offloading approaches (like MIP), then the inaccurate
estimations might degrade the offloading decisions over time. Hence, for providing a
more accurate estimation of computation and transmission times, we propose data-driven
estimation approaches (machine learning algorithms), which help in optimizing task

offloading in a multi-edge-cloud environment.
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Figure 5.2: Experiment analysis on a) Processing speed for varying hardware types and b)
Transmission time for varying network conditions.

5.4 System Model

We now discuss our proposed system model. The key notations are depicted in Table
5.2. We consider 'n’ heterogeneous edge devices, such that ED = {1,2,...,n}, where each
edge device e € ED may have diverse computational capacities. The data point batch j,
comprises of images/frames that need to be processed. The set of all data point batches
is represented by: J = ji, 92, ..., Ji, such that the data size of j; < jo < ... < j;. The
computation offloading cost of ’j; data batch, where j, € J on edge device 'e’, e € ED is
represented by C(e, j;). The computation offloading cost C(e, j;) defines the time taken
to process data batch j, on edge device e. Table 5.1 shows the estimated computation
offloading cost C'(e, jq), where e € ED & j, € J. The data-points batch jg, j, € J
selected for processing on edge device ¢/, e € ED is termed as local dataset ' D’ for device
e. Similarly, the local dataset for all the 'n’ edge devices e € ED are represented as
Dy, D, ..., De, ..., D,. The training time taken to finish the given task ‘D’ on edge device

e € ED is computed using the following equation:

U(e,D.) = C(e, D) + tt(De, em, €), Ve, em € ED (5.1)

Here, C(e, D,) is the estimated computation offloading cost of edge device ‘¢’ on its local
dataset D.. Next, tt(D,) represents the estimated transmission time of dataset D, from
master edge device e, to e. The transmission time tt(De, €,,, €) comprises of data transfer

time and propagation delay. The training time taken to finish the given task is:

s(D
U(e,D.) =C(e,D.) + bw((enj,)e) + pd(em, €), Ve, em € ED (5.2)
Here, bqigf;)e) denotes the data-transfer time, where s(D.) is the data size of D., and

bw(epm,e) is the bandwidth of network connectivity between the edge devices e, and
e. Next, pd(en,e) represents the propagation delay. As the edge nodes have limited
processing capability in comparison to cloud CD, therefore, queuing of tasks (data-points)

may occur when large data-points batches (tasks) are offloaded on edge devices. Hence, we
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Table 5.2: Symbols and Notations

Sets:

J Set of data point batches

ED Set of edge devices

Variables:

B Continuous positive variable that depicts the deadline.

(e, Je) Binary variable assigned 1 if data point batch j. € J is allocated to
device e € ED, and 0 otherwise.

Ule, De) Continuous positive variable that denotes the time taken to train the
DNN model with the assigned data-points batch D, at edge device
ee€ ED.

U(ED,D) Continuous positive variable that denotes the total time taken to
train the DNN model with all data-points in the dataset (D) assigned
to edge devices ED.

Parameters:

C(e, je) Estimated computation offloading cost of batch j. at device e Vj. €
Jee€ ED.

D Number of data-points in Dataset (Dataset size).

n Number of available edge devices.

tt(je) Transmission time of batch je.

pd(jc) Propagation delay of batch j.

Ik (w) loss function defined on the weight vector w and sample data k.

L.(w) Local loss function defined on the weight vector w at node ’¢’.

L(w) Global loss function defined on the weight vector. w

WHT) Local parameter for each node e with iteration index T'= 0,1, 2, ..,
and so on.

WI(T) Global parameter at master node with iteration index T'=0,1,2, ..,
and so on.
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consider that all edge devices maintain an individual data-points queue to buffer the DNN
tasks. The cloud CD is computationally rich, so it has no queuing delays, as tasks are
scheduled immediately. The queuing delay of the offloaded task depends on the computing
speed of the edge device and the current state of the assigned queue. So, if the queue buffer
is congested with a large number of DNN tasks (data-points), then it might lead to a long
queuing delay. However, another factor that highly governs the queuing delay is the
computation capacity of the device. For example, if the computing capacity of the edge
is high, then more data-points will be processed in less amount of time, which results in
shorter queuing delays and a high service rate. The queue backlog of edge device e at

t + 1*" time instance, is defined as follows:

ble,t+ 1) = |b(e,t) — O(e,t) + ale,t)] (5.3)

Here, b(e, t) is the queue length /backlog of e at t** instance. ©(e,t) denotes the DNN tasks

that left the queue of e at tt"

tth

instance, after being processed by e. The number of DNN
tasks that arrived at instance on edge device e is represented by a(e,t). The estimated
queuing delay (time taken to process the queue backlog) is added to the training time of
the DNN model. The queuing delay is represented by ¢d(e). Hence, the total training

time taken to finish the given DNN task after including all delays, is defined as follows:

s(De
U(e,D.) =C(e,D.) + bw((em,)e) + pd(em, €e) + qd(e) (5.4)
The real-time task ‘D! assigned to edge device '¢/, where e € ED, must complete its

computation within the given deadline f.

U(e,D.) < B,VYe € ED (5.5)

Therefore, if all the edge devices e € ED complete the assigned task ‘D’ in the given
deadline ', the total training time 'U(e, D.)’ to process all the tasks / data-points in the
complete dataset ‘D’ such that > | D, = D is :

U(ED,D) < 3 (5.6)

5.5 Problem Formulation

The crowd counting use case involves offloading of facial recognition tasks from end devices
like cameras to nearby cloudlets/servers. The inherent challenges in this multi-edge
scheduling are as follows: (a) accurate offloading cost estimation in varying network
conditions, (b) limited storage and computational capabilities of end devices, (c¢) poor
offloading decisions may introduce network congestion, and (d) availability of limited
offloading resources for computation and processing. We now discuss the problem

formulation of our proposed scheme that attempts to mitigate the above concerns.
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Figure 5.3: Workflow of Proposed framework.
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5.5.1 Proposed DNN Task Offloading Framework

The proposed D?> — TONE (Data Driven DNN Task Offloading on Network Edge)
framework can be used for scheduling applications such as face detection on multi-edge
architectures. In order to deal with inaccurate estimations made by traditional
computational and transmission offloading cost measuring techniques, we employ
data-driven ML models trained on historical device data for computation and transmission
offloading cost prediction. The trained ML model helps in predicting device performance
more accurately, which in turn helps in optimizing the task offloading schedules on edge
networks. An overview of proposed framework is shown in Figure 5.3. First, in the data
collection phase, the profiling of the device and network parameters is carried out. Next,
these parameters are used by the ML models as input features for predicting computation
and transmission offloading costs. Next, the offloading cost predictions are used by the
optimization module for deriving the task offloading schemes. On the basis of the task
offloading schedule given by the optimization module, the tasks are dispatched to the edge
devices present in the network. After the data is offloaded to the edge devices, the training
of the DNN model is initiated in a distributed manner, with local datasets. Finally, the
aggregation of local parameter updates is carried out on the master edge device, and the
final trained DNN model is obtained.

5.5.2 Predicting offloading cost

In order to determine/predict the computation and transmission offloading cost of
edge devices with varying computation capacity (i.e., hardware configuration), network
conditions and dataset characteristics, we have exploited various ML models such as:
Decision tree, Linear regression, Support vector machines, Random forest, Multi-layer
perceptron, and K-Nearest Neighbour. These models help us to determine the approximate
computation and transmission time for each edge device in the face of varying network
conditions. This allows the varying task load/data size to get processed on different
edge devices, according to their computational capacity. The features that have been
considered for training ML models, for predicting computation offloading cost C(e, jc),
and transmission offloading cost tt(j., em,e), where e,e,, € ED & j. € J, are listed in
Table 5.3 and Table 5.4, respectively. Further, the performance of various ML models used

for estimating computation & transmission offloading costs is discussed in section 5.8.1

5.5.3 MIP scheduling problem

The optimization problem is formulated using 'n’ heterogeneous edge devices, where each
edge device e € ED has a different computational capacity. The dataset comprises of
'd" data-points. The training algorithm needs to run for v/ number of epochs. The
total number of data-points that need to be processed is D = v.d. Table 5.1 shows the
computation offloading cost C(e, j.), Ve € ED,j. € J. This has been computed using

a data-driven approach, as discussed in Section 5.5.2. We begin our scheduling problem
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Table 5.3: Features used for estimating computation (Processing speed) offloading cost

data Attributes:
e Image Height (Pixels) e Image Width (Pixels)
e Data Size (bytes) e No. of features

e No. of data-points
ML Attributes:

e Number of Epochs e Number of model parameters
e Number of neurons per layer |e Learning rate

e Number of layers
H/W Features::
e Processor Speed (Mhz) e RAM (KB)

e Storage (KB) e Switch Bandwidth (Mbps)
e LAN operating freq. (Mhz) |e Ethernet cable (feets)

Table 5.4: Features used for estimating Transmission time offloading cost

data Attributes:
e Image Height (Pixels) e Image Width (Pixels)
e Data Size (bytes) e No. of features

e No. Of data-points
H/W Features:

e Bitrate (Mb/sec) e Ethernet cable (feets)
e Packet Loss (%) e Mean RTT (sec)

e LAN operating freq. (Mhz) |e Jitter (sec)

formulation by defining various variables, constraints, and parameters. The first binary

variable is defined as follows:

_ 1, if batch j. is assigned at device e.
&(e, je) = (5.7)

0, otherwise.

Here, j. € J, c=(1,2,..,1), e € ED, and J is the set of all data-points batches.

5.5.3.1 Optimization problem

The optimization problem that needs to be solved is represented as:

Minimize Ul(e,D), Vee ED (5.8a)
1
subject to Z{(e,jc) <1, VeeED (C1)
c=1
n l
> > é&leje)je=D, Vi€ J,Ve € ED (C2)
e=1c=1
U(e,D)< B, VYeeED (C3)

The constraint C1 ensures that at most one batch of data-points j. € J is allocated to each edge
device. The C2 constraint ensures that the summation of data-points allocated to all edge devices
is equal to the total number of data-points present in the dataset. D denotes the number of

data-points present in the dataset and n = |ED| (number of edge devices), where ED is the set
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of all edge devices. The continuous positive variable Ul(e, j.) depicts the time taken to finish the

assigned batches at edge device 'e’.

Ule, je) = (Cle;je) + tt(je, emy €) + qd(je))-§ (e, je), (5.9)

Ve,em € ED, j. € J '
Here, C(e,j.) is the total computation offloading cost of batch ’j. at edge device ‘e’, the
transmission time of data batch j. from master edge device e,, to e is represented by tt(j., em,e).
The queuing delay of batch j. is represented by ¢d(j.). The continuous variable U(e, D) in
constraint C3 depicts the total time taken to process data-points D’ at various edge devices
e € ED. Finally, we introduce the continuous variable '3’ that depicts the maximum training time

among all the edge devices. The following constraint holds:

U(ED,D) < (5.10)

We have adopted the Mixed Integer Programming (MIP) method to solve equation (5.8a), which
is a well known NP-hard problem. We have used the IBM ILOG CPLEX v12.10.0 optimizer to
find optimal offloading solutions by solving equation (5.8a). Since the problem is NP-hard, it
takes a long time to generate the offloading solution. In order to reduce the offloading solution
generation time, we have reduced the complexity of algorithm using a branch-and-bound method

(i.e. optimality gap), discussed in section 5.7.3.

5.6 Proposed Algorithms

5.6.1 Proposed D? — TONE algorithm

We now discuss the steps of the proposed D? — TONE algorithm (Algorithm 8). First, the
training time on the local edge device (Ujpeqr) is estimated using ML models. If the training time
of assigned data-points in dataset D on the local device is within the assigned deadline, then all
the data-points/tasks are scheduled on the local edge device. Otherwise, the training time for each
edge device in the network is estimated using ML models. If the total training of all edge devices
present in the network having an equal number of data-points (represented by Ug ) is less than the
specified deadline, the data-points are scheduled on all such edge devices. If the local edge device
and edge devices with equal data-points do not meet the deadline condition, then the total training
time of the cloud (Ugouq) is checked to see if it is within the deadline. If the above conditions do
not satisfy, then the optimal offloading solution is provided by solving the optimization equation
discussed in section 5.5.3.1. In order to reduce the ofloading solution generation time, we have used
the optimization equation in the worst-case scenario. By introducing this heuristic, the complexity
of the algorithm reduces significantly, without violating deadline constraints. Additionally, in order
to deal with the complexity of optimization problem, we opted for a branch and bound solution of
the optimization problem with a 1-2% optimality gap. The results in Section 5.8.7 show that the
offloading solution generation time reduces significantly after introducing the branch and bound

solution, without significantly affecting the performance.
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Algorithm 8: D? — TONE Algorithm
Require: D := Data points in the dataset.
[ := Deadline.
Ujocal := Total training time to process data-points in D on the local edge device.
Ugn := Total training time on edge network with each edge device having an equal
number of data-points.
Uciouq := Total training time to process data-points in D on remote Cloud server.
Ensure: S, := Offloading Schedule.
if Uiocal < B then
Schedule dataset 'D’ on local edge device.
else if Ugy < 5 then
Schedule data-points D’ on edge network having local dataset Dy = Dy = ... = D,
&>y De=D
else if Ugjoug < B then
Schedule on cloud architecture
else
Schedule data-points D’ on edge network based on offloading solution provided by
optimization equation (5.8a)
end if
return S,

Master Edge
Node
Partition 1 Global
= Parameters
Partition 2
: Resource
[PertitionN] || anager
DFS
A
artition N & Global
Update parameters
Weights
\

Worker Edge Worker Edge Worker Edge
NOde NOde ------------------ NOde
Local Local Local

Parameters Parameters Parameters

Figure 5.4: Distributed Deep Neural Network Learning framework.
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5.6.2 Distributed DNN learning algorithm

The D? — TONE algorithm decides the local dataset for each edge device, based upon which the
distributed DNN learning takes place. The Distributed Deep neural network learning framework
is shown in Figure 5.4. The machine learning model is learned using training data. The sample
data 'k’ used for training comprises of two parts. The first part is the features/Input vector 'z,
of the ML model (i.e., image pixels). The second part is the label/Output scalar 'y, (i.e., value
in case of regression problem). The learning of the ML model is facilitated using a loss function,
which is defined on the weight vector ‘w’ corresponding to its sample data 'k’. The model training
process aims to minimize this prediction error (i.e., minimizing the loss function) on a given set
of sample training data 'k’. The loss function is denoted by 'I(w, zk, yx)’. In short, we represent
l(w, zk,yr) as lx(w). The loss function which we consider for the regression problem is the Mean
Square Error (MSE). So, when the [;(w) is the MSE, then it is represented as:

1
be(w) = S llys = Wyl ® (5.11)

Let the number of edge nodes selected by D? — TONE algorithm be 'M’. Their local datasets
are given as: Dy, Ds,..., D, ..., Dy;. The local dataset for each edge device e is based upon the
D? — TONE algorithm. The loss function at node ‘e’ with sub-dataset ‘D’ is represented as

follows:

1

Lo(w) = == 3 ly(w) (5.12)
D]

keD.

Here, |D,.| represents the size of the dataset at node ’e’. The global local function is computed
using all the distributed datasets such that D, N D, = () for e # ¢’ and D = Zi\il D.. The global

loss function is defined as:

~ Ykeup, frw) M DeLe(w)
L) = =05 =D

(5.13)

The value of L(w) (i.e., the global loss function) is computed by distributing the complete
information (dataset) among ‘M’ nodes. The main goal of learning the DNN model is to minimize

L(W) (i.e., global loss function), which can be represented as:

w* = argminL(w) (5.14)

The solution to Equation (5.14) is computed using the Gradient-descent method for a distributed
environment, as computing close-form solution for Equation (5.14) is inherently complex in
distributed settings. So, we use the distributed DNN learning approach that exploits the gradient
learning technique in order to solve Equation(5.14) in a distributed manner.

The local parameter for each node e is depicted by W!(T), where T = 0,1,2,... represents the
iteration index. When T = 0, the same local parameter values are assigned to all the nodes. But
when T > 0, the local loss function (L. (w)) is used to update the local parameters (W!(T)) of edge
node ’¢’, depending upon the parameter values at T — 1 on each node ’¢’. This updation of local
parameters using L.(w) and local data-points/dataset D, is termed as local update. The master
node will perform global aggregation after several local updates. In order to synchronize the local
parameter of each node e at time interval “T”, the global parameter at time "T” is assigned to the
local parameter of each worker node. Usually, the local parameter at each worker node changes

after a global update/aggregation (i.e. W'(T) < W9(T)), which takes place after time interval
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Algorithm 9: Master_Node_Update(k, Sy, )
Require: k := Training Data points.
B := Maximum training time.
J := Data points batches from xj & y.
a := Time after which global parameters sync.
Sy = The dictionary of selected edge devices e € EF'D with their corresponding data
points batches D, = j., V j. € J using D?> — TONE Scheduling algorithm.
Ensure: W9 := Trained global parameters of the DNN model. {Initialize global
parameters }
w(t) < Initialization of weights
Wepoch < w<t)
0 Sy (e,j)Ved e ED,j e J
: Master node sends the data-points batches/partitions "D/, to edge nodes e; € Sy
according to D?> — TONE scheduling algorithm.
while (Train_time < () do
if T is not multiple of a then
{Local parameter updates}
for all Edge devices e € Sy in parallel do
WHT) < Worker_Node_Update(e, W{(T), D.)
10: T+ T+1
11: end for
12:  else
13: {Global parameter update}
14: Weg — ZVeGS¢ Siqb Weepoch+1
15: T+ T+1
16:  end if
17: end while
18: W9 « W4
19: return W9

! 7

a’ (as shown in Algorithm 9). The Local updation (Algorithm 10) of parameters at all the edge

nodes e is done using the following rule:

WHT) = WY T - 1) — a. AL (W (T — 1)) (5.15)

Here o > 0, depicts the step size. The global update is performed after every ‘a’ time interval,

using the following equation:

_ oL, DW(T)
D

The global parameter W9(T') is computed by taking the weighted average of local parameters of all

W(T) (5.16)

the nodes. These local and global updates take place until the time limit '3’ (deadline) is reached.

5.7 Experimental setup

5.7.1 Data Collection & Profiling

In order to determine the computation C(e,D.) and transmission tt(D.) offloading cost for

the crowd count application [145], the sub-sampling of images with varying image resolution
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Algorithm 10: Worker Node_Update(e, W, D,)

Require: e := Worker edge device in D?> — TONE Schedule.
D, := The data points batch associated with given worker edge device e.
W .= Updated global weights.
« := Learning rate.
Ensure: W' := Trained local parameters of the DNN model.
{Initialize local parameters}

1. W« W

2: B := split D, into sub-batches

3: for all Edge devices e € Sy in parallel do

4:  for all batch b € B in parallel do

5: WHT) « WHT - 1) — a.AL(WYT — 1))
6: end for

7: end for

8:

return W! Ve € ED to Master edge node.

(480x640, 1024x684), with 200 images per resolution group has been done. For capturing the
ground-truth computation and transmission cost of the face detection application, a varying
number of data-points (data sizes) were executed on edge devices. For dynamically estimating
computation and transmission costs, we have used the Scikit-learn machine learning library
in Python for different batches having varying numbers of data-points. The computation
and transmission offloading cost was measured in seconds. The profiling of RAM, processor
freq, storage, switch bandwidth, & operating frequency values has been done while measuring
the computation offloading cost. We employed three types of machines with heterogeneous
computational characteristics: Raspberry Pi v4 (3 nodes), Raspberry Pi v3 (2 nodes) & Intel-core
i5 (2 nodes). The total number of samples recorded for computation offloading cost estimation
was 1000. The features used for predicting C/(e, D, ) are listed in Table 5.3. The features used for
predicting transmission time are listed in Table 5.4. The mean Round trip time (RTT) and Bit
rate are important in determining the speed and capacity of the connection. On the other hand,
jitter and packet loss determine the connection interruptions. The LAN operating frequency and
cable length determine the strength of the link/connection. The total number of samples recorded

for transmission cost estimation was 1000.

5.7.2 Baseline approaches & Dataset used

We compare our proposed approach with the following baseline approaches:

e Static Estimate with MIP (SE-MIP): In [64], the static computation and transmission
techniques have been used to model the inputs in MIP formulation using equation (5.8a).
In order to statically estimate the computation cost C(e, D), the following formula has been

used:

D
Cle,D)=— 5.17
(e’ ) Ps ( )
Here, D is the number of frames (data-points), and P, is the average speed of
processing/computing data-points. The processing/computation speed (Ps) is measured
in data-points per second. The value of (Ps) is taken to be 11 frames per second, which is

attained from benchmark results [144]. In order to statically estimate transmission time the
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following formula has been used:

_ Data_size(j.)

tt(j.) = - 5.18
(e Bandwidth ( )

Homogeneous Edge Only (HEO): In [73], all the devices present in the edge network receive
an equal amount of data-points (DNN tasks). The heterogeneity factor is not considered
while offloading DNN tasks, i.e., all the devices are considered to have the same processing

speed.

Centralized: In [146], the data-points (DNN workload) are processed only on the local edge

device.

Cloud_only: in this approach, we have sent the entire DNN workload to the cloud for

processing.

Random: in this approach, the data-points batches are distributed uniformly either to the

set of edge devices, or the cloud, at random.

In order to evaluate the performance of our proposed D? — TONE algorithm on the regression

problem, we have used the crowd counting dataset [145], which includes 2000 RGB images - frames

in a given video. The images with a resolution of 480x680 resolution were collected after placing

a webcam in a mall. The number of persons (objects) varies in every image/frame. We need to

determine the number of persons in each frame.

5.7.3 Evaluation Metrics

In order to evaluate the performance of the proposed approach, the following parameters have been

used in our experiments:

e Actual Train_Time_Variation (ATTV): The solution to D> —~TONE is compared when

the actual (ground-truth) values of C(e, D) and tt(D.) are known with the solution to
D? — TONE when C(e, D) and tt(D,) are either predicted using ML models or statically
estimated with Static_Est. (SE-MIP). The actual (ground-truth) value of computation and
transmission offloading costs are obtained by actually processing the data point batches
on edge devices. When the actual value of computation and transmission offloading costs
are used in the D?> — TONE algorithm, we refer to U as Ugcrua. When computation
and transmission offloading costs are statically estimated in D? — TONE, we refer to U
as Usp_nrp - the statically estimated solution. Lastly, in case of data-driven approach,
we have used two best pairs of ML models (from Table 5.5) for estimating computation
and transmission offloading costs, which are represented as RFR+MLP and DT+SVM. In
case of RFR+MLP, Random Forest Regressor and Multi-layer perceptron models are used
for estimating C(e, D) and tt(D.) respectively. In case of DT+SVM, Decision tree and
Support vector machine models are used for estimating C(e, D) and t¢(D,.) respectively.
When computation and transmission offloading costs are predicted using RFR+MLP &
DT+SVM approaches in D? —TON E algorithm, we refer to U as: Urrrinmrp & Uprisviu
solutions respectively.

The Actual Train Time Variation (ATTV) is calculated by measuring the variation
percentage for Urprynmrp, Uprisvi, and Usg_prrp solutions w.r.t the actual solution
(Uactual). Hence, ATTV is defined as:



Chapter 5. Data Driven DNN Task Offloading on Edge Networks 95

|UActual - UAppToachI %

ATTV = 100 (5.19)

UActual

Here, Approach e{RFR+MLP, DT+SVM, SE-MIP.}

e Data-points Processing Ratio (DPR): The input, i.e., the DNN tasks consist of a set
of data point batches. The DPR is defined as the percentage of data-points that finish
processing before their deadline (denoted by D’) divided by the total number of data-points
scheduled on the edge/cloud (denoted by D), so as to train the DNN model in a distributed

manner. DPR is calculated using the following equation:

’

D
DPR = 7 %100 (5.20)

e Mean Square Error (MSE): We use mean square error (MSE) as the loss function for
the regression problem, where the prediction is a scalar value. This function helps us to
estimate the performance of the trained DNN model using various approaches. The MSE is

calculated by taking the mean of the squared difference between actual and predicted values:

n

MSE = % > (i — ) (5.21)
i=1
Here, n is the number of data-points, y; is the actual value (i.e., the actual number of
persons in the frame), and y; is the predicted/estimated value (i.e., predicted number of
persons in the frame using given approach). The model/approach with the least value of
MSE is considered to be the best.

¢ Queue Backlog: This is the average number of DNN tasks (data-points) that are queued
per edge device during the given simulation period. More is the queue backlog; more is the

queuing delay.

e Deadline Factor: This is used to measure the real-time performance of the proposed
algorithm. A smaller deadline indicates tight deadline (real-time tasks), whereas a large
deadline value indicates a looser deadline (batch processing) [147],[65]. The average real-time
value of face recognition varies from 400-800ms in [148], [149]. The resulting value for 'd’
(deadline factor) is taken as 400ms. In our experiments, we measure the performance of
various approaches when the deadline factor ‘d’ increases and decreases by 25% and 50%
(represented as 1.25d, 1.50d, 0.75d, and 0.50d respectively).

e Number of Parameter Updates: In the Gradient descent method, several parameter
update steps are performed on various edge devices, using equation (5.15). These parameter
updates are performed in order to satisfy equation (5.14). In general, a larger number of
parameter updates performed on data-points results in fine-tuning of the model on the given

dataset, and hence a good performance of the trained model.

e Time to Generate Offloading Solution (TGOS): This is the time required to obtain
the offloading solution using the D> — TONE algorithm.

e Optimality Gap: The optimality gap helps in reducing TGOS. We have used the IBM
CPLEX optimizer in order to find optimal offloading solutions by solving the equation (5.8a).
The CPLEX solver sometimes obtains good integer solutions very quickly, but keeps on

examining several additional solutions in order to demonstrate that the provided solution is
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Table 5.5: Computation offloading cost prediction results using various ML models

Approach Computation| Transmission time
time (RMSE) (RMSE)
Decision Tree (DT) 0.243 £+ 0.851 0.543 £ 0.461
Linear Regression (LR) 0.794 £ 0.134 0.944 £ 0.851
Support vector machine (SVM) {0.494 £ 0.243 0.394 £ 0.451
Multi-layer Perceptron (MLP) [0.347 £+ 0.034 0.343 £+ 0.340
Random forest (RFR) 0.234+ 0.044 0.422 £+ 0.144
K-Nearest Neighbour (KNN)  |0.444 £+ 0.094 0.843 £ 0.781
Static_Estimate(SE) 10.243 £ 3.851 14.134 £ 0.649
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a) Histogram for SE-MIP solution.  b) Histogram for RFR+MLP solution. ) Histogram for DT+SVM solution.

Figure 5.5: Number of simulations corresponding to Actual train time variation (ATTV) for
SE-MIP, REFER+MLP and DT+SVM solutions.

optimal. So, in order to speed up the TGOS, we have introduced “optimality tolerance”.
An optimality gap of X% means that the CPLEX solver will stop immediately on obtaining

a feasible integer solution that is confirmed to be within X% of the optimal solution.

5.8 Results & Discussion

5.8.1 ML models for offloading cost prediction

In this experiment, we evaluated the performance of the static estimation approach with other
ML algorithms for predicting the computation C(e, D) and transmission tt(D.) offloading costs.
The aim of the experiment is to select the best approach that can predict the computation and
transmission costs with high accuracy i.e. low Root Mean Square Error (RMSE). As shown in
Table 5.5, the RMSE value is very high for the static estimation technique (Static_Estimate) in
comparison to other ML based algorithms. Thus, the data-driven approach (ML algorithms) for
predicting the computation and transmission offloading cost is more beneficial than statically
estimating the computation and transmission offloading cost (Static_Est). The ML models
evaluated were: Decision tree, Linear regression, Support vector machines, Random forest,
Multi-layer perceptron, and K-Nearest Neighbours. The evaluation results of all ML models with
RMSE values are shown in Table 5.5. The ML model with the least value of RMSE would be
preferred.

The Random Forest Regressor (RFR) approach offers the best results for computation offloading
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cost C'(e, D.) with low root mean square error(RMSE) values and low variance. The low variance
is due to the voting of several decision trees, which are trained on varying sub-sets of data
present in the given dataset. Due to this bagging (voting) technique, the variance and bias of
the trained model are reduced significantly. The next best performance for computation ofoading
cost C'(e, D,) is offered by the Decision tree, as it is capable of capturing complex relationships
of variables/features using fine-grained decision boundaries/branches. However, its variance is
quite high compared to that of Random forest. A single instance of the decision tree has been
considered, whereas, in the case of RFR, several decision trees take decisions, which reduces the
variance significantly. The ML model that performed the best in the case of estimating transmission
offloading cost was Multi-Layer Perceptron (MLP), followed by Support vector machines (SVM).
The MLP model has performed well due to its capability to detect complex patterns and trends
from complicated data. SVM has performed well due to its good generalization ability, i.e., the

ability to perform well in the case of unseen data.
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Figure 5.6: Cumulative Distribution Function (CDF) vs ATTV.

5.8.2 Effect of offloading costs estimation approach on ATTV

In order to study the effect of offloading cost estimation approach (Static_Estimate or ML based)
on D? — TONE, we ran 150 simulations of task offloading using D? — TONE with SE-MIP (i.e.,
Static_Estimate), RFR+MLP, and DT+SVM models. Figure 5.5 shows the histograms for these
models/solutions. The histogram depicts the number of simulations (counts) corresponding to
different Actual train time variations (ATTV), which has been defined earlier in section 5.7.3. As
shown in Figure 5.5(b), for RFR+MLP, there are 99 simulations (i.e. approximately 66 % of the
simulations) out of 150 in which Ugrpgryarrp is the same as Actual train time Ugcpyer i.6. ATTV=
0%. However, for DT4+SVM, there are 52 simulations (i.e. approximately 34 % of the simulations)
out of 150 in which Uprisyas is the same as Actual train time Ugepyar i-6. ATTV= 0%. This
indicates that the selection of an appropriate ML model for predicting C(e, D) and tt(D) is of
prime importance. The worst performance is shown by SE-MIP (shown in Figure 5.5(a)), as a
very small number of simulations were completed within AATV= 10 %. This is because SE-MIP
considers the average processing speed for varying hardware types to be static, i.e., 11 frames
per second, and the processing speed is highly correlated with the hardware configuration and
image resolutions. In addition, SE-MIP fails to capture dynamic network conditions. This set of
experiments shows that the proposed data-driven approach (D? —TON E) with RFR+MLP model
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offers a better performance.

Figure 5.6 shows the cumulative distribution function for ATTV. From the figure, we observe that
about 99% of the simulations finished within 0-7% of actual train time variation (ATTV), when the
RFR-+MLP approach was used for predicting C(e, D) and tt(D) in D?> — TON E. However, when
the DT+SVM approach was employed, only 78% of the simulations completed within AATV= 10
%. Interestingly, the remaining 22% took 3-4 times (approx. ATTV = 100%) training time w.r.t
actual training time Ugcpyqr- Finally, the SE-MIP approach recorded the worst performance, as
approximately 55% of the simulations took ten times more training time w.r.t actual training time
(i.e., ATTV= 800-1000%).

5.8.3 Comparative analysis of DNN task processing time.

In this experiment, we have examined the DNN task processing time, which consists of computation
time, transmission time (data transfer time + network latency), and queuing delay, for different
approaches. As shown in Figure 5.7, the lowest computation time is recorded in the case of
the Cloud_only approach. This is due to the high computation power of the device deployed in
the cloud data center. The worst computation time is recorded in the case of the Centralized
approach, in which all the data-points which need to be processed are queued on the local edge
device. Due to the limited computation capacity of the edge device, the time taken to execute
the given data-points batch is quite high. The proposed D? — TONE algorithm offers reduced
computation time in comparison to the SE-MIP, HEO, and centralized approach. This is because
the data-points are offloaded to the edge/cloud based on their computational capacity, which results

in a good performance for D> — TONE.
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Figure 5.7: DNN task process time for various approaches.

The transmission delay comprises of the data transfer time and the network delay (propagation
delay). The worst performance in terms of transmission delay is observed in the case of the
Cloud_Only approach. This is due to the high latency caused because of network traffic in the
wide area network. Also, when more devices are connected through the internet, it results in
bandwidth reduction. All these reasons contribute to the poor performance of the Cloud_only
approach. In comparison, negligible transmission delay is experienced in the case of the Centralized
approach. Here, the data is not transmitted to the network and is processed on the local edge
device. However, due to a high computation time, the overall performance of the centralized

approach is not acceptable for a real-time scenario. The proposed D? — TONE approach offers
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significantly reduced transmission times along with computational times, as compared to SE-MIP,
HEO, centralized and Cloud_only approaches. The reason for D? — TON E’s performance in terms
of transmission delay is due to precisely estimating the network delays based on the dynamic
network conditions and offloading the DNN tasks accordingly. Due to this, the assigned DNN
tasks get processed in less amount of time, which results in faster training of the given DNN
model. In the case of SE-MIP, the transmission delays of DNN tasks are estimated using static
techniques, which do not capture the dynamic condition in the network. This results in poor
offloading decisions. Similarly, in the case of HEO, an equal amount of DNN tasks are offloaded to
all the devices available in the network, which results in network congestion. Hence, training time
increases significantly due to poor offloading decisions. The best overall performance is offered by
D? — TONE because it intelligently offloads the DNN tasks in the network.

500 e D? - TONE
—— SE-MIP
—— HEO
400 Centralized
o)}
°
¥ 300
]
m
]
2 200
=
(]
100
[ ]
0 {

0 200 400 600 800
Training Time (in milliseconds)

Figure 5.8: Queuing Backlog vs. Training time.

Figure 5.8 depicts the device queue backlog for the compared approached. Initially, the queuing
backlog is observed to be less in the case of the Centralized approach. Unlike other approaches, no
transmission delays are involved in the Centralized approach, so processing of the data-points takes
place fairly quickly. However, after a certain time duration, the performance of the Centralized
and Random approaches in terms of queue backlog deteriorates. In the case of the Centralized
approach, this is due to an increase in the unprocessed data-points in the edge device queue, which
is in turn due to the limited computing capacity of a single edge device. In the case of the Random
approach, the high queue backlog is due to uniformly offloading data-points to randomly selected
edge devices without considering their computation capacity. While employing D? — TONE, the
number of unprocessed data-points in the edge device queue is quite less in comparison to other
approaches. This is because D?> — TONE offloads the data-points according to the computing

capacity of the devices in the network.

5.8.4 Effect of data size on DPR

In this experiment, we observe the effect of data size on the data-points processing ratio (DPR)
that has been defined earlier in section 5.7.3. The results are shown in Figure 5.9. As shown in
the Figure 5.9, we increased the data-point load on edge devices by varying the data size to be
processed on the edge from 100KB to 500KB, and observed its corresponding effects on DPR. As
the data size increases, more data-points are left unprocessed, which results in low DPR values.
This trend is applicable for all approaches: SE-MIP, HEO, Cloud, D? — TONE & Centralized.
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Figure 5.10: Effect of data size on train time.

However, with the proposed data-driven D? — TONE approach, more data-points are processed
(for gradients updates) within a given deadline in comparison to other approaches. This is due to
assigning the tasks according to device processing speeds and dynamic network conditions. On the
other hand, in the HEO approach, tasks/data-points are distributed equally in the edge network
without consideration of hardware configuration (processing speeds). Therefore, the number of
gradient updates (tasks) performed within a given deadline on the edge network is less, which
results in low DPR. When the data size is 100KB (few data-points), then the DPR is observed to
be high for the Centralized approach as compared to the HEO approach. This is because a small
number of data-points can easily be processed on a single-edge device. However, when the data
size increases in the Centralized approach, the number of data-points processed on a single-edge
device becomes low due to limited processing capacity. This results in a low DPR value for this

approach.

5.8.5 Effect of data size on training time of DNN model

In this experiment, we examined the effect of data size on the training time of DNN model

using various approaches. As shown in Figure 5.10, we have increased the DNN task (i.e.,
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data-points) load on the network by varying the data size from 100KB to 500KB and observed its
corresponding effects on training time. When the data size is 100KB and 200KB, then the best
performance is offered by the Centralized approach. This is because the computational capacity
of the local edge device is sufficient to handle such small data sizes. However, when the data
size increases significantly, then the centralized approach shows the worst performance due to its
limited computational capacity. All the distributed training approaches (i.e., SE-MIP, HEO, and
D? —TONE) perform well in comparison to the centralized approach when the DNN task load is
high. This is due to reduced queuing delay and distributed execution of DNN tasks. D? —TONE
performs particularly well on both small and large data sizes. However, a noticeable performance
difference can be observed when we considered data sizes greater than 300KB. The reason for a
reduced training time in the case of D?> — TONE is due to carrying out the training process in
a distributed manner and utilizing the limited edge resources to their full capacity, by accurately
estimating computational and transmission delays using the best ML models (RFR+MLP). In
SE-MIP and HEO, the training is performed in a distributed manner, but the training time is
quite high in both scenarios. The reason for high training time in the case of SE-MIP is due to
inaccurate estimations of various delays made using static techniques. On the other hand, HEO
shows poor performance because, in this approach, heterogeneity factor of edge resources are not
considered, due to which queuing backlogs increases on slower devices and faster devices remain idle
after processing the assigned DNN tasks. Therefore, the available resources are not fully utilized
in the case of SE-MIP and HEO. Finally, the Cloud_Only approach took significant time to train
the DNN model using the same amount of data-points. This is because of the huge transmission

delays introduced by the network traffic.
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Figure 5.11: Effect of deadline factor on DPR.

5.8.6 Effect of deadline value on DPR

In this experiment, we varied (increased/decreased) the Deadline Factor (DF) and observed its
corresponding effect on the Data-points Processing Ratio (DPR). The DF value of the assigned
data-points was increased/decreased by 25% & 50%. As shown in Figure 5.11, as the DF increases,
more data-points are processed. Therefore, the DPR value corresponding to DF='1.25d" &
DF=1.50d’ (i.e. when deadline factor is increased 25% & 50% respectively) increases significantly.
When DF=1.50d’ (DF is increased by 50%), then the DPR values for all the approaches are

observed to quite high, except for the centralized approach. This leads to the processing of almost
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all the data-points (i.e., DPR=100%). The poor performance of the Centralized approach is due
to the limited computing capacity of the local edge device. However, when DF decreases by 25%
& 50%, the proposed D? — TONE offers a higher DPR as compared to all other approaches. The
superior performance of D?> — TONE is due to the incorporation of dynamic network conditions
and computational capacities of the edge devices present in the edge network before assigning
data-points. Thus, the task scheduling using D?> — TONE helps in handling interactive tasks
within the specified deadlines, hence, improving the DPR. When DF decreases by 25% & 50%,
the worst DPR value is recorded when all the DNN tasks (data-points) are sent to the cloud for

processing. This is due to the high network latency , which results in a low DPR value.
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Figure 5.12: Effect of the number of devices on TGOS.

5.8.7 Effect of number of devices on TGOS

In this experiment, we explore the effect of an increase in the number of edge devices on time to
generate offloading solutions (TGOS), defined earlier in section 5.7.3. The results are shown in
Figure 5.12. Solving the optimization problem using equation (5.8a) for actual training time
(Uactuar) is NP-Hard and complex, even for a moderately sized edge network of 25-30 nodes
with heterogeneous computing capacities. In order to deal with this complexity, we opted for
a branch-and-bound solution of the optimization problem with a 1-2 % optimality gap. Here, we
use the IBM Cplex optimizer. As shown in Figure 5.12, due to this branch and bound approach, the
optimization problem solution scales well. The 1-2% optimality gap solution to the optimization
problem has been generated earlier than the cut-off time. The optimal / near-optimal solution is
provided in a lesser amount of time because the CPLEX solver will stop immediately on obtaining
a feasible integer solution that is within 1-2% of optimal. Since solving the optimization problem
takes a significantly lesser amount of time, more time will be available for training the model,
before the deadline expires. Therefore, the number of parameter updates will increase significantly

with an increased training time, which results in superior learning in a distributed environment.

Figure 5.13 depicts the increase in parameter updates when the 1-2 % optimality gap is introduced.
As shown in Figure 5.13, the parameter updates increased significantly when the 1-2% optimality
gap has been introduced in the D? — TONE algorithm in comparison to when the optimization

problem using equation (5.8a) is solved for 0% optimality gap.
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Figure 5.13: Number of parameter updates vs. Optimality gap.

5.8.8 Comparison of baseline approaches for crowd counting application

In this experiment, we used the crowd counting dataset [145] to compare the performance of our
proposed D? — TONE approach with the SE-MIP and HEO (equal data-points distribution in
the network) approaches. The results are shown in Figure 5.15. As shown in Figure 5.15(a),
the predicted person count varies significantly with the actual person count in the case of the
SE-MIP approach. This happens because very few parameter updates took place on the edge
network, due to the use of static estimation techniques for computation and transmission time
estimation, resulting in poor model training. The HEO approach with an equal distribution of
data-points on various edge devices performed better than the SE-MIP approach. Here, more
parameter updates took place versus the SE-MIP approach. However, the HEO approach could
not perform well when the person count exceeded 20. As shown in Figure 5.15(c), the proposed
D? — TONE approach records the best performance among all the approaches, due to a large
number of parameter updates taking place, resulting in superior model learning. This increase in
the parameter updates occurs due to offloading the tasks (data-points) according to the hardware

configuration of the edge devices present in the heterogeneous edge network.
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Figure 5.14: Plot of MSE versus training time.

However, the proposed framework D? — TONE does not perform well when the person count
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Figure 5.15: Performance of SE — MIP, HEO and D? — TONE approaches in crowd counting
application.

exceeds 35 per frame. This is due to partly occluded objects. As shown in Figure 5.14, The
Mean Square Error (MSE) of the Centralized approach doesn’t decrease much with training time,
as very limited parameter updates take place on an edge device. The poor performance (i.e.
high Mean Square Error) of cloud is because of high transmission delay, due to which very less
time is available for training the DNN model. The performance of the HEO approach is better
than the SE-MIP approach, but the best performance is offered by the D? — TONE approach.
This is because D? — TONE takes into consideration the number of parameters, layers, epochs,
and processing capability of the hardware for estimating the offloading cost and schedules the

data-points accordingly on the network.

5.9 Conclusion

Accurate offloading cost estimation in the face of varying network conditions is a challenging
problem. The proposed D? — TONE approach utilizes data-driven task offloading in order to
predict the offloading cost on heterogeneous multi-edge networks. We investigated several classical
ML models for predicting offloading costs and discussed the importance of model selection on
D? — TONE’s performance. Extensive experiments revealed that the proposed D? — TONE
approach provides near-optimal offloading solutions. Moreover, the proposed solution is scalable
for moderately sized networks, with a 1-2% optimality gap. D? — TONE has been observed to
perform well in terms of maximizing DPR and minimizing MSE in comparison to other approaches.
This is due to a larger number of parameter updates taking place while training the DNN model in
a distributed manner, within a given deadline. We also studied the effect of various data sizes on
D? — TONE’s performance. The experiments revealed that the proposed D?> — TONE approach
offers significantly smaller training times in comparison to other approaches. In the future, we

would like to extend our work to a wireless network setting.
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A non-linear time-series based Al
model to predict outcomes in

cardiac surgery

6.1 Introduction

Adverse lifestyles have led to increased cardiac complications, further accelerating the burden of
cardiac surgeries in tertiary care hospitals. For optimum management of cardiac surgical patients
in the hospital, it is essential to have an accurate idea regarding the patients’ expected ICU
stay and hospital stay. Additionally, the forecasting of the survival outcome of patients is also
essential for ICU management. This study aims to develop artificial intelligence models based
on non-linear time-series data of blood pressure and heart rate to predict the ICU stay, hospital
stay, and survival outcome of cardiac surgical patients. The intraoperative heart rate and blood
pressure data of 1077 patients undergoing cardiac surgeries at a single tertiary care hospital were
recorded every minute. The raw data was processed to remove artifacts. Next, feature engineering
and oversampling were performed. Then, various classification and regression models were trained
and tested. The prediction results were evaluated on the following performance metrics: area
under the curve (AUC), accuracy, Fl-score, RMSE, and R2-score. The Gaussian Naive Bayes +
Logistic Regression (GNB+LR) model is the best model for survival analysis, having the highest
AUC of 0.72, Accuracy of 83%, and an Fl-score of 0.86. The Gradient boosting (GB) model
is the best model for the analysis of hospital stay, offering the highest R2-score (0.023). The
XGBoost regressor is the best model for ICU stay analysis, offering the highest R2-score (0.125).
Artificial intelligence models based upon the intraoperative time series data were developed to
analyze outcomes in cardiac surgery with high accuracy. These models can be used in cardiac
surgeries to predict the ICU stay, hospital stay, and overall survival of the patients for better ICU
management at the hospital.

Cardiovascular disease has become the prominent cause of morbidity and mortality in India during
the past decades. Genetic factors and acquired modern lifestyle risk factors seem to be the
primary cause of high incidence. Cardiovascular disease is managed by contemporary methods,
like percutaneous coronary revascularization and surgical methods. Coronary artery bypass graft
surgery (CABG) was first performed in India in 1975, about 13 years after its advent in 1962. In the
mid-1990s, some 10,000 CABG surgeries were performed annually in India. At present, the annual
number is about 60,000 [150]. The usual challenges faced by clinicians are predicting the duration
of hospital stay or ICU stay and the overall survival outcomes post-surgery. The ability to obtain
accurate predictions of survival outcomes can improve the efficacy of healthcare institutions in
allocating, coordinating, and expending limited healthcare resources for treating new patients[151].

Since every patient has a different clinical history, demographic profiles, predisposing risk factors,
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Figure 6.1: Methodology of the proposed framework

and traditional methods cannot offer accurate and reliable predictions for survival outcomes. [152].

Artificial intelligence (AI) and machine learning (ML) are evolving techniques in healthcare.
Several models are available that take the static parameters of cardiac patients as input and, using
inbuilt algorithms, give an accurate idea about the survival outcomes. Among all these models,
the most accepted are EuroSCORE II and STS Score. These models predict the survival outcomes
based on static parameters like age, sex, ventricle dysfunction, creatinine clearance, pulmonary
hypertension and surgical intervention [153]. Since existing models predict the survival outcomes
based upon static parameters at the preoperative stage, the accuracy of such models is challenging

in the case where complications arise during intraoperative or postoperative stages.

Apart from static parameters, a considerable amount of physiological time series data is generated
in cardiac surgeries, which could be used to predict the survival outcomes. [154]. Since invasive
blood pressure (IBP) and heart rate (HR) data are available in the intraoperative stage, this time
series data could be used to predict the survival outcomes. The present study aims to develop a
model which uses intraoperative non-linear time-series data of IBP and HR to predict the ICU
stay, hospital stay, and survival outcome in cardiac surgeries. Specifically, we aim to construct an
end-to-end data analysis pipeline which incorporates artefacts removal, non-linear noise reduction
and feature engineering. We also adopt the synthetic minority oversampling technique (SMOTE)
and NearMiss technique to alleviate the inadequate classification generated by imbalanced data.
Last but not least, we aim to evaluate the performance of different ML models and ensemble models
by optimizing their hyperparameters in the prediction of survival outcome, ICU stay and hospital

stay.
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Figure 6.2: Flow chart depicting that inoperative data of total 6064 patients was captured
by the AIMS system. Data of 4987 patients was excluded from the final analysis, based
upon inclusion/exclusion criteria. Data from 1077 patients was used for the final analysis.

6.2 Methodology

The overall methodology followed in developing the model is shown in Figure 6.1. First, a data
preprocessing mechanism that incorporates artefacts removal, normalization, and noise filtering
was implemented for HR and IBP non-linear time series. Afterwards, a feature engineering
procedure that includes features construction from various in-built libraries, anomaly detection, and
normalization was performed for classification and regression analysis of the time series. Hereafter,
SMOTE and NearMiss techniques were applied to alleviate the poor classification produced by the
imbalanced data. Finally, for classification analysis, the balanced data samples were combined with
hyperparameter optimization in classification ML models to generate the final survival outcome
of Death and Discharge. However, for regression analysis, samples with Discharge as a survival
outcome were combined with hyperparameter optimization in regression ML models to predict the

duration of hospital stay and ICU stay.

6.2.1 Data Collection

This was an observational study collecting data from a single tertiary care hospital over three years,
from April 2019 to March 2022. Anaesthesia Information management system (AIMS) installed
at the cardiac surgical operation theatre in the host institute captured the time series data from
patients intraoperatively. The patient-specific parameters utilized for the study include HR and

IBP, captured at time intervals of 1 minute. The data was stored centrally in the servers.

6.2.2 Data Pre-Processing

The pre-processing of data consists of the following steps: removal of artefacts, data normalization,

and non-linear noise reduction (see Figure 6.2). The data was cleaned based on the IBP feature.
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All rows of data consisting of IBP values lower than 20 were removed. Further, context-based
labelling was performed to label the data that was not missing at random correctly. Data
missing before attaching monitors to the patient was labelled as “-9999”, data missing between
arterial cross-clamping and declamping was labelled as “-8888”, and all other data missing during
cardiopulmonary bypass was labelled as “-7777”. If a row had both HR and IBP missing outside
the context, i.e. data was missing at random, the entire row was removed. For normalization of
data, RobustScaler [155] was used. RobustScaler removes the median and scales the data according
to the quartile range. The nonlinear time series might suffer from noise caused by the device or the
environment where the measurements are performed. Noise affects the interpretability and should
be removed and not be considered for further data analysis. Thus, we have used a function called
“lazy” from the Tisean package, for nonlinear noise reduction [156]. It performs simple nonlinear
noise reduction by replacing the middle coordinate of each embedding vector with the local average

of this coordinate.

6.2.3 Feature Engineering

We now discuss the various libraries that have been used to construct features from the time
series data. The first library is TSFEL. This python library depends on Numpy and SciPy, which
provide efficient numerical functions for multivariate time series data. The TSFEL features can be
grouped into three different domains, which are: temporal, statistical, and spectral [157]. Some of
the features considered in the TSFEL library are “unique”, which returns the percentage of unique
values in the time series data, “Wentropy(S)”, which computes the Shannon entropy of the time
series data using wavelets, and “Negative Turning”, which returns the number of negative turning
points of the time series data. The second library is tsfresh. Tsfresh is a python package that
automatically computes hundreds of related time series features, and studies the properties of the
series by incorporating 72 time-series feature functions for each fixed time window [158]. Series
data, “longest strike above mean”, which returns the length of the longest consecutive sub-sequence
in the time series that is bigger than the mean of time series data, and “count below mean”, which
returns the number of values in time series that are lower than the mean. The third library is
Tisean. Tisean incorporates several functions for non-linear time series analysis. Moreover, this
package includes an algorithm for stationarity /non-stationarity testing, non-linear noise reduction,
and non-linear time series prediction. Some of the features investigated in the Tisean package are:
the Lyapunov exponent, which computes the largest Lyapunov exponent (LLE) of time series data
to indicate the chaotic nature of time series, fsle (finite-size Lyapunov exponents), which measures
the divergence of nearby trajectories to resolve predictability, and order entropy, which computes

the unpredictability of fluctuations in a time series [156].

6.2.4 Defining Datasets

The input datasets include the HR and IBP time-series parameters. The survival outcome has
been considered an output data for classification analysis. The outcomes were labelled either as
discharge or death. For regression analysis, ICU stay and hospital stay have been considered as
output for the patient datasets with discharge as the survival outcome. In addition, the patients
whose ICU and Hospital stay duration was detected as an outlier were removed from the regression
analysis using the interquartile (IQR) method. The IQR [159] method is the difference between
the third quartile (Q3) and first quartile (Q1) of the time series data. The upper limit has been
evaluated as Q3 + 1.5 x IQR, and the lower limit has been evaluated as Q1 - 1.5 x IQR. A patient
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is considered an outlier if their data is beyond these limits.

6.2.5 Train-Test Split for Regression Model

Data leakage during model evaluation can create bias; therefore, we split the data into the train
and test data sets. Out of 1077 cases, 781 were used to train the model, and the remaining 296
cases were used to test the model. There were 57 death cases and 724 discharge cases in the train

data. There were 29 death cases and 267 discharge cases in the test data.

6.2.6 Handling Imbalance for Classification Model

Data imbalance was observed in our data due to the high number of discharge cases and a
low number of death cases. To address this data imbalance, we used the synthetic minority
oversampling technique (SMOTE), which creates synthetic data samples associated with the
minority death class along with the line segments which join the nearest neighbours of the minority
class. This technique minimizes the classifier over-fitting issue by enlarging the minority class
decision region [160]. We also employed the Near-Miss under-sampling technique, which increases
the spacing between the two classes by removing the instances of the majority class with the
smallest distance from the minority class. For the final model testing, we used SMOTE and
Near-Miss techniques. A death discharge ratio of 1:3 was obtained by oversampling the death
cases by 20%, and undersampling the discharge cases by 30%. Finally, we obtained 144 death

cases and 434 discharge cases for classification model testing.

6.2.7 Selecting ML Model

The extracted features of HR and IBP non-linear time series have been used to predict the survival
outcome (Death & Discharge), Hospital stay, and ICU stay. We have explored various Linear and
Non-linear ML models for predicting survival outcomes. The Non-Linear models explored are as
follows: Decision Tree (DT) Classifier [161], K Nearest Neighbor (KNN) Classifier [162]. Moreover,
ensemble learning-based models such as Random forest (RF) Classifier [163], AdaBoost Classifier
[164], Gradient Boosting Machine (GBM) Classifier [165], and XGBoost (XGB) Classifier [166]
have been used. In addition, linear ML models such as Logistic Regression (LR)[167], Linear
Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB) and Bernoulli Naive Bayes (BNB)
were also considered for predicting survival outcomes.

The models used for predicting ICU stay and hospital stay of the patients are linear Regression (LR)
[168], Lasso Regression [169], Ridge Regression [170], K Neighbors Regressor [171], DT Regressor
[172], RF Regressor [173], GB Regressor [174], XGB Regressor [175], Support Vector Regressor
(SVR)[176], and Huber Regressor [177].

6.2.8 Optimization and Training

Grid search (GS) is the most commonly used technique for optimizing the hyperparameters of
ML models. It adjusts the parameters based on the step size within the specified range and then
evaluates the model’s performance for each combination of hyperparameters [178]. Moreover, the
k-fold cross-validation (CV) algorithm has been adopted to enhance the robustness and avoid
overfitting. In this model, a 5-fold GridsearchCV has been adopted, in which the entire dataset is

split into five groups. The evaluation scores are accumulated for each group and then summarized



Chapter 6. A non-linear time-series based Al model to predict outcomes in cardiac
110 surgery

Features Importance - HR

HR(BPM)cid_c
HR(BPM)spectral_positive_turning|
HR(BPM)longest_strike_above_mean|
HR(BPM)count_above_mean
HR(BPM)positive_turning

HR(BPM)lyapunov_exponent
HR(BPM)permutation_entrop:
HR(BPM)spectral_distanc

HR(BPM)mean_abs_di
HR(BPM)longest_strike_below_mean
0 0.005 0.01 0.015

Figure 6.3: Feature Importance - HR

Features Importance - IBPM

IBPMspectral_positive_turning;
IBPMsum_value:
IBPMspectral_distance
IBPMwentropy_sui
IBPMauc|
IBPMrm:
IBPMcount_below_mean|
IBPMcentroid
IBPMsrd
IBPMlongest_strike_below_mean
IBPMwavelet_entrop
IBPMlempel_ziv_complexif
IBPMnegative_turning
IBPMdistance
IBPMStdNthDe
IBPMnumber_cwt_peal
IBPMpositive_turning
IBPMfirst_location_of_maximum
IBPMcid_ce
IBPMStatA
0 0.005 0.01 0.015

Figure 6.4: Feature Importance - IBPM

at the end to evaluate the model performance. Thereby, a subset of hyperparameters with the best

accuracy and performance are selected for model training of the present dataset.

6.2.9 Feature Importance

The ML frameworks offer minimal insights on the influence of various features employed for
prediction due to the black-box nature of their operations. Thus, for the correct interpretation
of the ML model for prediction, the Shapash library has been adopted in our proposed model to
analyze the feature importance [179]. Figures 6.3 and 6.4 depict the respective contribution of the
top 20 features in predicting HR and IBP. It can be observed that positive spectral turning is the
topmost significant feature for both HR and IBP.

6.2.10 Performance metrics

This section discusses the performance metrics for evaluating both classification and regression
ML models. The area under the curve (AUC) is the most intuitive metric that has been utilised
to evaluate the classification models. It is a measure of the ability of a classifier to differentiate

among classes and is used as a summary of the receiver operating characteristic (ROC) curve.
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The higher the AUC, the better the model’s performance differentiating between the death and
discharge classes. In addition, accuracy, confusion matrix, recall, precision, and F1-score have also
been used to estimate the overall model performance [180].

The accuracy metric outlines the performance of a classification model as the number of accurate
predictions divided by the entire set of predictions. The accuracy is expressed by equation (6.1)

below.
Tp+ Ty

Tp+Fp+ TN+ Fn

Accuracy = (6.1)

Here Tp is the number of True Positives, Fp is the number of False Positives, T is the number
of True Negatives, and Fly is the number of False Negatives.

The precision or specificity evaluation metric depicts the percentage of patients associated correctly
with the discharge class, as predicted by the models. In contrast, recall or sensitivity shows the
percentage of patients associated correctly with death class, as predicted by the models. Both the

precision and recall are expressed in equations (6.2) and (6.3), respectively.

Tp

Precision = — 6.2

recision To t Fr (6.2)
Tp

Recall = ————— 6.3

eca Tt T (6.3)

Furthermore, the confusion Matrix is an N x N matrix utilised to estimate the interpretation of a
classification model, where N is the number of target classes. It analyses the actual values with
those predicted by the ML models. The F1-Score is the harmonic mean of precision and recall, as
given in equation (6.4). It considers both Fp and Fy, and provides equal weightage to precision

and recall. Thereby, it executes well on an imbalanced dataset.

Precision * Recall
F1-S8 =2 6.4
core * Precision + Recall (6-4)

Next, mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE),
and coefficient of determination (R? score or R-squared) metrics [181] were used to estimate
the forecasting errors and analyse the performance of regression ML models. These metrics are

expressed in terms of the following equations:

1 m
MAE = — X, -Y, )
m 2| || (6.5)
1 m
MSE = — X; - Y;)? )
SB =12 (X=X (6.6)
1 m
- | = V)2
RMSE - ;:1()(2 Y;) (6.7)

Yo (Xi —Y3)?

R2score =1 — &= (6.8)
2im (Y = Yi)?
vy L iy (6.9)
om i=1 l .

Here, X; is the predicted i*" value, Y; is the actual i** value, and m is the total number of test
samples.

Normalised values of MAE, MSE, and RMSE nearer to zero, along with an R? score nearer to
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Table 6.1: Sociodemographic and clinical determinants of patients
Variable Sub domain Mean + SD, or N (%)
Age 46.47 £ 15.58 years
Sex Malo 644 (59.80%)
Female 432 (40.11%)
Sex Unspecified 1 (0.09%)
Previous Cardiac Surgery 6 (0.55%)
Serum Creatinine 0.90 £+ 0.62 mg/dL
Unstable Angina 40 (3.71%)
LV Ejection <30% 2 (3.89%)
30-50% 304 (28.26%)
~50% 190 (17.64%)
Pulmonary Hypertension | Mild 1 (2.87%)
Moderate 47 (4.36%)
Severe 46 (4.27%)
Urgency Elective 730 (67.78%)
Emergency 347 (32.22%)
Surgical Procedures CABG 248 (23.03%)
CABG+AVR 22 (2.04%)
CABGDVR (o 56%)
CABGMVR 12 (1.11%)
ASD 52 (4.83%)
AVR 112 (10.40%)
DVR 1 (7.52%)
MVR 184 (17.08%)
TVR 3 (0.28%)
Surgery on thoracic aorta 67 (6.22%)
Other Cardiac Surgeries 160 (14.86%)
Non cardiac thoracic surgeries | 130 (12.07%)
Post infract septal rupture 3 (1.20%)
Outcome Death 86 (7.99%)
Discharge 991 (92.01%)
ICU Stay 5.48 £ 6.52 days
Hospital Stay 11.67 + 8.36 days

unity, are the primary measures to select the best model with the lowest prediction error for ICU

stay and hospital stay.

6.3 Results

6.3.1

The mean age of the patients in the present study was 46.47 +

Sociodemographic and Clinical Determinants

15.58 years. The sex ratio was

skewed towards males, with male to female sex ratio of 1.49. There were 6 (0.55%) patients
that revealed a history of previous cardiac surgery. The mean creatinine level was 0.90 £+ 0.62
mg/dL. Unstable angina was documented in 40 (3.71%) patients. LV ejection was < 30% in
42 (3.89%) patients, 30-50% in 304 (28.26%) patients, and > 50% in 190 (17.64%) patients.

There were 46 (4.27%) patients that exhibited severe pulmonary hypertension, whereas moderate
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Table 6.2: Prediction of Survival Outcome

. Precision Recall
Pipeline Models AUC F1-Scordcc PO NC e NC
DT 0.46 073 078 093 0.08 0.67 0.35

KNN 0.58 0.83 0.78 0.94 0.13 0.82 0.35
Remove artifacts
1 RF 0.50 0.82 0.81 0.94 0.13 0.85 0.29
Scaling
(Robustscaler)
1 ADA 0.61 0.80 0.73 0.95 0.13 0.76 0.37
Features
Extraction
1 GBM 0.62 0.81 076 095 0.15 079 0.32
Scaling
(Robustscaler)
I XGB 0.62 0.84 080 094 0.15 084 0.35
Handle
Imbalance
(SMOTE + GNB 0.67 084 083 094 0.14 089 0.30
Near-Miss)
I
Hyper-parameter  BNB 0.58 0.76 0.69 0.94 0.11 0.70 0.41
Optimization
J
Prediction LDA 0.56 0.80 0.79 0.93 0.09 0.86 0.18

LR 0.64 078 071 095 0.11 0.73 0.44

GNB 0.72 086 083 094 016 088 043
+ LR

DT=Decision Tree, KNN= K Nearest Neighbors, RF=Random Forest, ADA= Adaboost, GBM=
Gradient Boosting Machine, XGB= XGBoost, GNB= Gaussian Naive Bayes, BNB= Bernoulli Naive Bayes,
LDA= Linear Discriminant Analysis, LR= Logistic Regression, AUC= Area under the curve,Acc=
Accuracy, PC= Discharge Class, NC= Death Class

and mild pulmonary hypertension was there in 47 (4.36%) and 35 (2.87%) patients, respectively.
Among total surgeries, 730 (67.78%) were elective surgeries, whereas 347 (32.22%) were emergency
surgeries. Surgical procedure adopted include CABG in 248 (23.03%) patients, CABG+-aortic valve
replacement(AVR) in 22 (2.04%) patients, CABG+double valve replacement(DVR) in 6 (0.56%)
patients, CABG+ mitral valve replacement(MVR) in 12 (1.11%) patients, Surgery on thoracic
aorta in 67 (6.22%) patients, atrial septal defect closure(ASD) in 52 (4.83%) patients, AVR in
112 (10.40%) patients, DVR in 81 (7.52%) patients, MVR in 184 (17.08%) patients, and tricuspid
valve replacement in 3 (0.28%) patients. Next, 160 (14.86%) were other cardiac surgeries, 130
(12.07%) were non-cardiac thoracic surgeries, and 13 (1.20%) patients had post infract septal
rupture. A total of 991 (92.01%) patients were discharged successfully, whereas mortality occurred
in 86 (7.99%) patients. The mean ICU stay was 5.48 £ 6.52 days, and the mean hospital stay was
11.67 4+ 8.36 days, as shown in Table 6.1.

6.3.2 Performance evaluation of Survival outcomes

For the classification models to predict survival outcomes, the maximum AUC value was recorded
for GNB+LR (0.72), followed by GNB (0.67), LR (0.64), XGB (0.62), GBM (62), BNB (0.59),
and RF (0.50). As shown in Figure 6.5, GNB+LR has shown a very balanced sensitivity and
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specificity for different values of FPR. Therefore, the performance of GNB+LR is more robust
compared to any other model. As shown in Table 6.2, the highest F1-score has been recorded by
GNB+LR (0.86), followed by GNB (0.84) and XGB (0.84). The highest accuracy was achieved
by both GNB+LR (0.83) and GNB (0.83). All the models offered good precision values for the
Discharge class. However, all the models recorded low precision values for the Death class, which
resulted in false warnings. The best precision value for Death was recorded for GNB+LR (0.16),
whereas the worst precision value for Death was recorded for DT (0.08) and LDA (0.09). The best
test recall value for the Discharge class was recorded for GNB (0.89), followed by GNB+LR (0.88),
and LDA(0.86). The best test recall value for the Death class was recorded for LR (0.44), followed
by GNB+LR (0.43) and BNB (0.41). GNB+LR offers the best overall performance in terms of

AUC, Fl-score, accuracy, recall, and precision.

6.3.3 Performance evaluation of Hospital Stay

Table 6.3 depicts the experimental results for the regression models to predict the hospital stay,
where the performance of these models has been evaluated using various performance evaluation
metrics such as MAE, MSE, RMSE, and R2_score. For predicting hospital stay, the lowest RMSE
was achieved using GB regressor (5.238), followed by XGB regressor (5.354), RF regressor (5.504),
Ridge regression (5.568), K neighbours regressor (5.576), DT regressor (5.678), Lasso regression
(5.847), SVR regressor (5.915), Linear regression (11.197), and Huber regressor (12.765). The
highest performance for hospital stay analysis was registered using the metrics MSE and RMSE,
obtained by the GB regressor.

When evaluated using both MAE and R2-score, the GB regressor was the best model for the
analysis of hospital stay, with values of 3.548 and 0.023, respectively. The least performing
algorithms, in this case, were linear regression and Huber regressor, with R2-score values of -3.461

and -4.799, respectively.
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Table 6.3: Prediction of Hospital Stay

Pipeline

ML Models MAE MSE RMSE  R2 Score

Remove artifacts

+
Scaling

(Robustscaler)

+

Features
Extraction

1

Outlier Detection
(IQR)

I

Scaling
(Robustscaler)

+
Hyper-parameter
Optimization

N

Prediction

Linear 4.764 125.379 11.197  -3.461
Regression
Lasso 3.856 34.194  5.847 -0.216
Regression
Ridge 3.651 31.005  5.568 -0.103
Regression

K Neighbors 3.717 31.102  5.576 -0.106
Regressor

DT Regressor  3.841 32.241  5.678 -0.147

RF Regressor  3.820 30.302  5.504 -0.078

GB Regressor  3.548 27.446  5.238 0.023

XGB 3.615 28.671  5.354 -0.020
Regressor

SVR(kernel 3.856 34.994 5915 -0.245
=rbf)

Huber 11.610 162.96 12.765 -4.799
Regressor

DT=Decision Tree, RF=Random Forest, GB= Gradient Boosting, XGB= XGBoost, MAE=Mean
Absolute Error, MSE=Mean Square Error, RMSE= Root MSE
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Table 6.4: Prediction of ICU Stay

Pipeline ML Models MAE MSE RMSE  R2 Score
Linear 12.360 21710 147.34  -4149.1
Regression
Lasso 3.247 545.87  23.363  -103.34
Regression

Remove artifacts ~ Ridge 2.927 374.75  19.358  -70.635
Regression

K

Scaling K Neighbors 1.659 5.340 2.310 -0.020

(Robustscaler) Regressor

K

Features DT Regressor 1.690 5.536 2.352 -0.058

Extraction

K

Outlier Detection RF Regressor  1.634 4.994 2.234 0.045

(IQR)

3

Scaling GB Regressor  1.582 4.551 2.133 0.129

(Robustscaler)

N

Hyper-parameter XGB 1.536 4.577 2.139 0.125

Optimization Regressor

K

Prediction SVR(kernel 1.876 7.0 2.645 -0.338
=rbf)
Huber 5.432 271.06 16.463 -50.814
Regressor

DT=Decision Tree, RF=Random Forest, GB= Gradient Boosting, XGB = XGBoost, MAE=Mean
Absolute Error, MSE=Mean Square Error, RMSE= Root MSE

6.3.4 Performance evaluation of ICU Stay

Table 6.4 presents the experimental results for the regression models to predict the ICU stay, where
the performance of these models has been evaluated using various performance evaluation metrics
such as MAE, MSE, RMSE, and R2_score. For predicting ICU stay, the lowest RMSE was achieved
using KN regressor (3.28) followed by SVR rbf (5.29), RF regressor (5.60) followed by GB regressor
(5.62), DT regressor (5.92), Ridge regressor (6.66), SVR Linear (6.84), Lasso regressor (6.95) and
LR (7.57). The highest performance for ICU stay analysis was registered using the metrics MSE,
and RMSE, obtained by the GB regressor.

When evaluated using both MAE and R2-score, the XGB regressor was the best model for the
analysis of ICU stay, with values of 1.536 and 0.125, respectively. The models with the least
performance were Lasso regression and Linear regression, with R2-score values of -103.34 and

-4149.1, respectively.

6.4 Discussion

Several earlier studies had predicted the length of hospital stay and ICU stay post cardiac surgery.
Tsai et al. [182] developed an artificial neural network (ANN) based model to predict the length
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of stay in the pre-admission stage for inpatients diagnosed with heart failure. Using ANN and
linear regression, the study predicted hospital stay correctly with MAE values of 3.83 and 3.76,
respectively. However, no other performance criteria were mentioned. Another study proposed
by Triana et al. [183] developed a model to predict the post-surgery length of stay for patients
who undergo coronary artery bypass grafting (CABG). ANN was the best performing model for
predicting the length of stay, achieving an RMSE of 3.342, an MAE of 1.853, and an R2-score of
0.212. Furthermore, Fang et al. [184] used a Bayesian Neural Network (BNN) model to predict
the length of stay on the eICU-CRD (collaborative research database). With prior knowledge of
the weights of NN, BNN achieves an MAE of 1.955044 and an R2-score of 0.097909 for ICU stay
prediction. Moreover, another study conducted by Kadri et al. [185] introduced a novel approach
based on a deep learning-driven generative adversarial network (GAN) model for predicting the
patient length of stay in the emergency department (ED). The GAN model was the best performing
model among all the deep learning models, achieving an RMSE of 100.309 and an MAE of 61.722.
The developed model in the present study can effectively predict the length of hospital stay, and
ICU stay after cardiac surgery. By referring to Table 6.3, we observe that the highest performance
for hospital stay analysis was registered using the metrics MAE (3.548), RMSE (5.238), and
R2-score (0.023), obtained by the IQR+GB regressor model. GB randomly samples the train
datasets to obtain sample subsets of datasets and then trains the learner to reduce the residuals
created by the previous learner. As a result, GB forces the prediction value close to the actual
value, which improves the regression performance for the final integration. When comparing the
performance of all regression models for ICU stay analysis, as displayed in Table 6.4, it was observed
that the highest performance was registered using the metrics MSE (4.551) and RMSE (2.133),
obtained by the IQR+GB regressor model. However, the model developed with IQR and XGB
happened to be the best model in terms of MAE (1.536) and R2-score (0.125) for ICU stay analysis.
XGB includes significant adaptation techniques such as shrinkage and instances subsampling which
alleviates the over-fitting problem. A positive R2-score in both hospital stay and ICU stay analysis
indicates that IQR is an effective method to detect anomalous observations in non-linear time
series data. Thus, adopting the IQR outlier detection method in the present study enhances the
regression performance of both hospital stay and ICU stay. Hence, the present study achieved a
high prediction accuracy for both hospital stay and ICU stay analysis, compared to the models
adopted in previous studies.

The performance of various Linear and Non-linear ML models has been evaluated using metrics
like accuracy, precision, recall, Fl-score, and AUC. However, as the data in our case is highly
imbalanced, accuracy alone may not be a reliable metric for evaluating the performance of various
trained ML classifiers/models. For example, the ML model has been tested on a dataset having
12% of “Death” cases. So, the classifier/model achieves an accuracy of 0.88, even if the model
consistently predicted the “Discharge” outcome. Therefore, balancing the data and selecting the
right metrics for evaluating the ML models/classifiers is essential.

We used the performance metrics for selecting the optimal model/classifier: Recall (Sensitivity)
and AUC. It is essential to identify “Death” cases (i.e., high-risk patients). Therefore, we focus
more on having a high recall of the “Death” class and an acceptable recall of the “Discharge”
class. However, in real-world warning systems, it is desirable to have a high value of specificity
(Precision) to avoid false warnings. We note that the count of positive samples (“Death” class)
is much less than the count of negative samples (“Discharge” class). Due to this, even a small
value of FPR brings about a large number of false warnings (FP), which results in a low precision
value. Therefore, in the case of imbalanced datasets, it is hard to obtain an acceptable precision

(specificity) value and high recall (sensitivity). Hence, it is essential to balance the specificity
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and sensitivity criteria. The ROC curve (AUC) helps graphically visualise the trade-off between
specificity and sensitivity for a given classifier. Also, the AUC measure is not dependent on
data imbalance. Hence, it provides an unbiased evaluation parameter for the model/classifier’s
performance.

A strength of the present study is that it implemented a non-linear time series based artificial
intelligence machine learning model for predicting the outcome of cardiac surgeries. To the best
of our knowledge, no study has used the intraoperative blood pressure and heart rate data as an
input to an Al model to predict patient outcomes. Recently, Fernandes et al, used intraoperative
hypotension, vasopressor-inotropes, and cardiopulmonary bypass to predict mortality post cardiac
surgery. The XGB model was found to predict mortality better with area under the receiver
operating characteristic curve, 95% confidence interval (CI): 0.88(0.83-0.94); positive predictive
value, 0.10(0.06-0.15); specificity 0.85 (0.83-0.87), and sensitivity 0.75 (0.57-0.90) [186].

There were a few limitations in our research, which we now discuss. To begin with, we used
data from a single tertiary care institution. A multicenter registry and prospective investigations
may be required to corroborate these findings. Second, our findings are on adult cardiac surgical
patients; they cannot be applied to other groups, such as children or non-cardiac surgical patients.
Finally, we did not incorporate other static parameters which could improve model performance.
Future work could be based on the addition of static parameters and a distributed framework
for data engineering, model training, and validation. The distributed framework will provide the
advantage of scaling the solution for big data analysis and real-time response. Furthermore, RNNs
cannot handle the long-term dependencies due to vanishing/exploding gradient problem. LSTM
is a good option for such sequences that have long term dependencies, and is powerful when the

data contains time series.

6.5 Conclusion

In this study, several ML models were trained on the specific non-linear time series dataset
with HR and IBP parameters to predict patients’ survival outcome, ICU stay, and hospital stay,
determining risks following cardiac surgery. By applying the SMOTE and Near-Miss techniques,
hyper-parameter optimisation algorithms, and 10-fold cross-validation, the performance of
hybrid classifiers for survival outcome identification was systematically investigated. From the
experiments, the GNB+LR ensemble model was the best model for survival analysis, offering the
highest AUC of 0.72, an accuracy of 0.83, and an F1 score of 0.86. The GB regressor was found
to be the best model for the analysis of hospital stay, having the lowest RMSE (5.238). The XGB
regressor was the best model for ICU stay analysis offering the highest R2-score (0.125). The
results demonstrated that a combination of ensemble ML models and refined feature engineering

could accurately predict patient mortality.



Chapter 7

Conclusion and Future Work

The thesis explores parallel and distributed AI/ML on the edge. Specifically, security and
healthcare have been picked as the use cases. The first work explores ML model partitioning on
the edge, the second one predicts intrusion detection on edge. The third work performs DNN task
offloading on edge, and the fourth works predicts outcomes of cardiac surgery patients on the edge.
We hold the view that fog computing offers advantages to applications necessitating swift response
times and can concurrently reduce the volume of traffic directed towards cloud data centers. This
thesis addresses four distinct research challenges, namely: Partitioning Machine Learning Models
on Edge Architectures, Intrusion Detection System on Fog Architecture, Data-Driven Deep Neural
Network Task Offloading on Edge Networks, and non-linear time-series based Al model to predict
outcomes in cardiac surgery.

In the Chapter 3, we proposed a PSVM-EA (Partitioning Support Vector Machine on Edge
Architectures) framework that partitions the weight update operation on multiple edge nodes,
in order to train the SGD-SVM (Stochastic Gradient Descent based Support Vector Machines)
model in a parallel and distributed manner. This significantly reduces the training time, without
majorly affecting the accuracy. The testing of the proposed approach was done in a parallel manner
by partitioning the vector multiplication of all the features on the edge architecture. Further, to
enhance the safety and reliability of the online model training process, we incorporated the Triple
Modular Redundancy (TMR) technique for trusted computation. TMR is an established Single
Event Upset (SEU) technique that replicates the processing of each sub-model across three separate
devices, allowing for error detection and correction in the event of any discrepancies between their
outputs. By employing TMR, our proposed algorithm ensures that the system maintains its
integrity and reliability, even in the presence of potential faults, hardware compromises, or other
safety issues. The Optimal ML Model Partitioning framework dynamically manages resources and
minimizes training time and latency to optimize performance, while ensuring safety and reliability
in edge networks. We conducted a case study on SVM and RF multi-class classifiers, by splitting
the models into multiprocessor edge devices.The experimental results demonstrate a significant
reduction in training time, and increased system throughput, without compromising accuracy.
Our proposed approach achieves a significant speedup of approximately 56.3% in net training time
compared to the non-partitioning approach, making it more efficient and suitable for real-time
applications in edge networks.

An Intrusion Detection System on Fog Architecture is presented in Chapter 4. The FC-IDS (Fog
Cluster-based Intrusion Detection System) framework comprises four phases: feature extraction,
feature selection, selecting the machine learning model, deploying and evaluating the trained model
on a Raspberry Pi Cluster and the Cloud. The training and testing of ML models have been done
in a distributed manner, using a Raspberry pi cluster as a fog environment. The experiments
show that the pi-cluster (fog) took less time for inference as compared to the cloud. In order to
deal with class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied,

which improved the performance of the proposed approach significantly. Feature reduction was
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performed using Principal Component Analysis (PCA). This reduces the computation significantly,
in turn, reducing the training & testing time of the model, without affecting the accuracy by much.
The proposed FC-IDS system has been evaluated on the Australian Defence Force Academy Linux
Datasets (ADFA-LD). These datasets comprise new generation system calls for various attacks
on multiple applications. The proposed fog architecture offers significant advantages in terms
of latency, energy consumption, and cost over traditional cloud or dedicated personal computer
systems. Further, to enhance the performance in the case of multi-class intrusion attacks, we
used a context-aware feature extraction approach. The proposed feature extraction approach is
applicable to both HIDS and NIDS. In addition, the FCAFE-BNET algorithm exploits the early
exit mechanism, due to which exiting the DNN from intermediate layers is possible after the desired
result is obtained, instead of passing through the entire model, in order to reduce the processing
time. The proposed algorithm has been examined using various IDS datasets, like NSL-KDD,
ADFA_LD, UNSW-NB, and ToN-IoT. Our proposed technique has recorded a significant reduction
in the total inference time, as compared to other state-of-the-art techniques.

In Chapter 5, we propose a data-driven task offloading algorithm that combines Mixed Integer
Programming (MIP) and Machine Learning (ML) approaches to find optimal/near-optimal
offloading solutions, which helps in migrating the computation to available edge devices in the
network, based on network conditions and computational capacities. The proposed D? — TONE
algorithm offers superior performance due to its adaptation to the dynamic network conditions,
while offloading the tasks. The experiments show that the training time is reduced significantly
by using the proposed D? — TONE approach, in comparison to other state-of-the-art techniques.
In chapter 6, our work aims to develop a model that uses intraoperative non-linear time-series
data of IBP and HR to predict the ICU stay, hospital stay, and survival outcome in cardiac
surgeries. Specifically, we aim to construct an end-to-end data analysis pipeline that incorporates
artifact removal, non-linear noise reduction, and features engineering. We also adopt the
synthetic minority oversampling (SMOTE), and NearMiss techniques to alleviate the inadequate
classification generated by imbalanced data. Finally, we aim to evaluate the performance of
different ML models and ensemble models by optimizing their hyperparameters in the prediction

of survival outcome, ICU stay, and hospital stay.

7.1 Future Work

The potential future directions of the work done in this thesis are as follows:

e In the Chapter 3, we have proposed approaches that partitions the SVM and RF models
on edge architectures. The future work could be to extend this work for various other ML
algorithms. Also, the experiments were performed on CPUs in the present work, which could
be extended further to GPUs.

e One interesting future work of Chapter 4 could be considering other critical evaluation
metrics for IoT systems, such as storage efficiency and energy consumption. In the present
work, the proposed framework has been evaluated based on accuracy, recall, F1-score, and

inference time.

e In Chapter 5, the distributed DNN model learning is carried out on edge devices, which
were connected using switch and ethernet cables. But, in order to make our research more

realistic, we would like to extend our work to a wireless network setting.

e Future work in case of Chapter 6 could be incorporating other static parameters, which
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could improve model performance. Another exciting work could be introducing a distributed
framework for data engineering, model training, and validation. The distributed framework
would provide the advantage of scaling the solution for big data analysis, and real-time

response.

7.2 Implications of This Thesis

The rationale behind this thesis and the issues it tackles are highly pertinent within the realm
of Fog/Edge Computing, which is gaining traction notably due to the proliferation of Internet of
Things (IoT) devices within networks. The substantial influx of data stemming from these IoT
devices poses a significant challenge in data management. Moreover, leveraging the computational
and storage capabilities inherent in these IoT devices offers potential advantages, particularly
in facilitating rapid response times for users by processing data at the network’s edge. This
thesis puts forth various algorithms aimed at: Partitioning Machine Learning Models on Edge
Architectures, Intrusion Detection System on Fog Architecture, Data-Driven Deep Neural Network
Task Offloading on Edge Networks, and non-linear time-series based Al model to predict outcomes
in cardiac surgery.

One significant outcome of this thesis is to lay the foundations for developing a general framework
for Intrusion Detection System on fog architecture. The proposed framework exploits context-aware
feature extraction approach which helps in detecting various types of intrusions. The adaptation
to the dynamic network conditions while offloading the tasks is also addressed in the proposed
framework. Another key objective of this thesis is to optimize the utilization of fog resources based
on the latency demands of the application. Applications with lower latency requirements will be
assigned resources closer to the network, and so on.

This thesis offers a comprehensive depiction of the fog computing paradigm, encompassing a
synopsis of the cutting-edge contributions of different DNN task offloading on edge networks,
ML task partitioning on Edge Architectures, Intrusion Detection System on Fog Architecture, and
real-time outcomes prediction in cardiac surgery. The foundational principles and constraints,
as well as the enhancements made to these foundational contributions, have been underscored.

Additionally, this thesis introduces potential avenues for future research that are worth exploring.
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