
PARALLEL & DISTRIBUTED DATA

ANALYTICS FOR TIME-SENSITIVE

APPLICATIONS ON FOG/EDGE

ARCHITECTURES

A Thesis Submitted

in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by

Mansi Sahi

(2017csz0010)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROPAR

June, 2024

ii

Mansi Sahi: Parallel & Distributed Data Analytics for Time-sensitive Applications on

Fog/Edge Architectures

Copyright ©2024, Indian Institute of Technology Ropar

All Rights Reserved

iii

Dedicated to my family

iv

Declaration of Originality

I hereby declare that the work which is being presented in the thesis entitled Parallel

& Distributed Data Analytics for Time sensitive Applications on Fog/Edge

Architectures has been solely authored by me. It presents the result of my own

independent investigation/research conducted during the time period from January

2017 to February 2024 under the supervision of Dr. Nitin Auluck, Associate Professor,

Department of Computer Science and Engineering Indian Institute of Technology

Ropar, Punjab. To the best of my knowledge, it is an original work, both in terms

of research content and narrative, and has not been submitted or accepted elsewhere,

in part or in full, for the award of any degree, diploma, fellowship, associateship, or

similar title of any university or institution. Further, due credit has been attributed to

the relevant state-of-the-art and collaborations (if any) with appropriate citations and

acknowledgments, in line with established ethical norms and practices. I also declare

that any idea/data/fact/source stated in my thesis has not been fabricated/ falsified/

misrepresented. All the principles of academic honesty and integrity have been followed.

I fully understand that if the thesis is found to be unoriginal, fabricated, or plagiarized,

the Institute reserves the right to withdraw the thesis from its archive and revoke the

associated Degree conferred. Additionally, the Institute also reserves the right to appraise

all concerned sections of society of the matter for their information and necessary action

(if any). If accepted, I hereby consent for my thesis to be available online in the Institute’s

Open Access repository, inter-library loan, and the title & abstract to be made available

to outside organizations.

Signature

Name: Mansi Sahi

Entry Number: 2017CSZ0010

Program: PhD

Department: Computer Science and Engineering

Indian Institute of Technology Ropar

Rupnagar, Punjab 140001

Date: 14th June 2024

v

Acknowledgement

I would like to thank my supervisor, Dr. Nitin Auluck, for his support, encouragement,

and insightful feedback. I am deeply grateful for his patience in guiding me through the

complexities of the research process, and the constructive discussions that have enriched

the quality of this dissertation. I consider myself incredibly fortunate to have a supervisor

who demonstrated such genuine concern for my work and consistently provided swift

responses to my questions and inquiries.

I am also grateful to my doctoral committee members: Dr. Apurva Mudgal, Dr. Balwinder

Sodhi, Dr. M. Prabhakar, and Dr. Anshu Jayal for evaluating my research work

periodically and for their support. I am indebted to IIT Ropar for providing me with

all the necessary facilities for this research.

Last but not the least, I express my special gratitude to my family & friends for providing

me with unfailing support and continuous encouragement throughout my years of study.

This accomplishment would not have been possible without all of you. Thank you.

Mansi Sahi

Indian Institute of Technology Ropar

vi

Certificate

This is to certify that the thesis entitled Parallel & Distributed Data Analytics for

Time-sensitive Applications on Fog/Edge Architectures, submitted by Mansi

Sahi(2017csz0010) for the award of the degree of Doctor of Philosophy of Indian

Institute of Technology Ropar, is a record of bonafide research work carried out under my

guidance and supervision. To the best of my knowledge and belief, the work presented

in this thesis is original and has not been submitted, either in part or full, for the award

of any other degree, diploma, fellowship, associateship or similar title of any university or

institution.

In my opinion, the thesis has reached the standard fulfilling the requirements of the

regulations relating to the Degree.

Signature of the Supervisor

Dr. Nitin Auluck

Department of Computer Science and Engineering

Indian Institute of Technology Ropar

Rupnagar, Punjab 140001

Date: 14th June 2024

vii

Lay Summary

Substantial delays in data transmission between users and remote cloud servers can impede

the timely execution of real-time tasks with deadlines. Employing fog nodes to handle

such tasks can mitigate this delay. Fog computing entails deploying multiple nodes

or micro data centers in close proximity to users and data sources, aiming to reduce

propagation delays between these sources and the central cloud data center. This approach

addresses performance gaps in the traditional cloud-to-thing architecture by bringing

computing capabilities closer to the data source. The architecture of fog nodes may adopt

a hierarchical structure to accommodate the varied execution requirements of real-time

applications. The primary objectives and contributions of this research are outlined as

follows:

• We propose a framework for e�ciently partitioning machine learning model splits

for online training on edge networks, considering their safety constraints and

requirements. The framework aims to minimize training time and communication

latency, ensuring that ML models are reliably trained and updated on edge devices

without compromising safety, performance, or resource utilization.

• The proposed FCAFE-BNET approach improves the multi-class IDS performance

by exploiting various pre-processing steps that help in identifying various attack

patterns correctly. The proposed FCAFE-BNET algorithm takes into account

dynamic network conditions before allocating the tasks to di↵erent fog layers i.e.

Cloud/cluster/fog device. Moreover, the use of the early-exit mechanism in the

local fog device speed up the inference by reducing the number of computations,

without adversely a↵ecting the performance.

• The proposed D2 � TONE algorithm utilizes data-driven task o✏oading in order

to predict the o✏oading cost on heterogeneous multi-edge networks. The proposed

framework significantly reduces the training time of DNN model by updating model

parameters in a parallel and distributed manner on various edge devices without

sacrificing the performance of the trained model.

• ML models were trained on the specific non-linear time series dataset with HR

and IBP parameters to predict patients’ survival outcome, ICU stay, and hospital

stay, determining risks following cardiac surgery. The results demonstrated that a

combination of ensemble ML models and refined feature engineering could accurately

predict patient mortality.

viii

Abstract

Fog computing expands upon the conventional cloud computing model, typically

integrating fog nodes at the network edge for computing and storage purposes. By

situating these edge devices close to users, it enhances application response times and

alleviates the burden on the central cloud server. Additionally, fog computing o↵ers

computational, storage, and networking services bridging the gap between users and

traditional cloud computing data centers.

This thesis proposes four di↵erent frameworks for ML model partitioning on fog

architecture, Intrusion Detection System on Fog Architecture, Data-Driven Deep Neural

Network Task O✏oading on Edge Networks, real-time outcomes prediction in cardiac

surgery.

In the first work, we propose a framework that intelligently partitions ML models into

smaller sub-models that can be safely executed across multiple edge devices, leveraging

their parallel computing capabilities. Further, to enhance the safety and reliability of the

online model training process, our approach incorporates the Triple Modular Redundancy

(TMR) technique for trusted computation.

The second work proposes a lightweight distributed Intrusion Detection System (IDS)

framework, called FCAFE-BNET (Fog based Context Aware Feature Extraction using

BranchyNET). The proposed FCAFE-BNET approach considers versatile network

conditions, such as varying bandwidth and data load before allocating inference tasks on

Cloud/Edge resources. Early exit DNN is used to obtain faster inference generation at

the edge. The proposed FCAFE-BNET framework works for both Network-based and

Host-based IDS.

In the third work, we propose a D2–TONE (Data-driven Deep Neural Network

Task O✏oading on the Network Edge), an approach that employs Machine Learning

algorithms for accurately estimating o✏oading delays, such as computational and

transmission delays. D2–TONE holistically adapts to dynamic network situations and

provides optimal/near-optimal o✏oading solutions in real-time. In addition, the proposed

algorithm employs distributed execution of DNN tasks on edge devices/cloud data

centers.

The fourth work aims to develop artificial intelligence models based on non-linear

time-series data of blood pressure and heart rate to predict the ICU stay, hospital stay,

and survival outcome of cardiac surgical patients. Specifically, we aim to construct an

end-to-end real-time data analysis pipeline that incorporates artifact removal, non-linear

noise reduction, and features engineering. We have performed model predictions on an

edge device, so that the alerts to the doctor can be transmitted in real-time.

This thesis also provides a detailed description of the fog computing paradigm. It

summarises the state-of-the-art work in the field of ML model partitioning on fog

architecture, Intrusion Detection System on Fog Architecture, Data-Driven Deep Neural

Network Task O✏oading on Edge Networks, and real-time outcomes prediction in cardiac

ix

surgery. Finally, this thesis discusses future research directions in this field.

Keywords: Optimized scheduling; Edge computing; Fog computing; cloud computing;

real-time scheduling; Distributed Machine Learning; Network Intrusion Detection

Systems; Host Intrusion Detection Systems

x

List of Publications

Journal

[1] S. Konar, N. Auluck, R. Ganesan, A. Goyal, T. Kaur, M. Sahi, T. Samra, S. Thingnam,

and G. D. Puri, ”A non-linear time series based artificial intelligence model to predict

outcome in cardiac surgery”, Health and Technology, Springer, 2022.

[2] M. Sahi, N. Auluck, A. Azim, M. Maruf, “Dynamic Hierarchical Intrusion Detection

task o✏oading in IoT Edge Networks”, Journal of Software: Practice and Experience,

Wiley, 2024.

[3] M. Maruf, A. Azim, N. Auluck, and M. Sahi, ”Pipeline Dnn Model Parallelism for

Improving Performance of Embedded Applications.”, Journal of Parallel and Distributed

Computing, Elsevier, 2024.

[4] N. Auluck, R. Ganesan, T. Kaur, A. Mittal, M. Sahi, S. Konar, T. Samra, G. Puri,

and S. Thingnum. ”Application of concept Drift Detection and Adaptive Framework for

Non-Linear Time Series Data from Cardiac Surgery.”, Computational Intelligence, Wiley,

2024.

[5] M. Sahi, N. Auluck, A. Azim, M. Maruf, “Data-Driven Deep Neural Network Task

O✏oading on Edge Networks”, IEEE Transactions on Network and Service Management,

2023. (Under review)

[6] T. Kaur, R. Ganesan, M. Sahi, G. Puri, S. Konar, A. Mittal, T. Samra, S. Thingnum,

S. Maheshwar, and N. Auluck, ”Neural network-based non-linear time series forecasting

for cardiac surgery applications.”, Journal of Medical Engineering & Technology, 2024.

(Submitted)

Conference Proceedings

[1] M. Sahi and N. Auluck, ”An IoT-based Intelligent Irrigation Management System”, The

Twenty-Sixth International Conference on Advanced Computing and Communications

(ADCOM), December 16-18, Silchar, Assam, 2020.

[2] M. Sahi, M. Maruf, A. Azim and N. Auluck, ”A framework for partitioning support

vector machine models on edge architectures”, The Fourth International IEEE Workshop

on Deep Learning on Edge for Smart Health and Wellbeing Applications (EDGE-DL),

Irvine, CA, USA, August 23, 2021.

xi

[3] M. Sahi, M. Soni, and N. Auluck, ”Intrusion detection system on fog architecture”, The

Fourth International Workshop on Smart Living with IoT, CLoud and Edge Computing

(SLICE 2021), Denver, USA, October 4-7, 2021.

[4] Md. Al-Maruf, Mansi Sahi, Nitin Auluck, and Akramul Azim, ”Towards Safe Online

Machine Learning Model Training and Inference on Edge Networks”, The 22nd IEEE

International Conference on Machine Learning and Applications (ICMLA), Jacksonville,

USA, December, 2023.

xii

Contents

Declaration iv

Acknowledgement v

Certificate vi

Lay Summary vii

Abstract viii

List of Publications x

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 Fog Computing . 2

1.1.1 Fog Computing Architecture . 2

1.1.2 Necessity for Fog Computing . 3

1.1.3 Applications . 4

1.1.4 Challenges in Fog Computing . 7

1.2 Research Objectives . 7

1.3 Contributions . 8

1.4 Organization of the Thesis . 9

2 Related Work 11

2.1 Partitioning ML models on edge architectures 12

2.2 Intrusion Detection System on Fog Architectures 13

2.3 Data-Driven DNN Task O✏oading on Edge Networks 18

2.4 Non-linear time-series based AI model to predict outcomes in cardiac surgery 20

3 A Framework for Partitioning ML Models on Edge Architectures 23

3.1 Introduction . 23

3.2 Problem Statement . 25

3.2.1 Optimization Problem . 25

3.2.2 Constraints . 26

3.3 Contributions . 27

3.4 Part A - Partitioning SVM Models on Edge Architectures 28

3.4.1 System Model . 28

xiii

xiv Contents

3.4.2 Proposed Approach . 29

3.4.2.1 Partitioned Training Algorithm 29

3.4.2.2 Partitioned Testing Algorithm 32

3.4.3 Experimental Results & Analysis . 32

3.4.3.1 Implementation setup . 32

3.4.3.2 Dataset . 33

3.4.4 Results & Discussion . 33

3.4.4.1 E↵ect of Number of edge devices on accuracy & training

time . 33

3.4.4.2 Comparison of the proposed partitioning approach with

non-partitioning and random partitioning approaches . . . 35

3.4.4.3 E↵ect of varying number of data-points on Accuracy &

training time . 35

3.4.4.4 E↵ect of varying number of features on Accuracy &

training time . 36

3.5 Part B - Towards Safe Online ML Model Training and Inference on Edge

Networks . 37

3.5.1 System Model & Assumptions . 37

3.5.1.1 Assumptions . 37

3.5.2 Proposed Approach & Methodology 38

3.5.2.1 Model Partitioning . 38

3.5.2.2 Algorithm Overview . 41

3.5.2.3 Dispatching Partitioned Models 42

3.5.2.4 Safe Integration using TMR 42

3.5.3 Experimental Results & Analysis . 43

3.5.3.1 Analysis of ML Model Parallel Computing on Edge 44

3.5.3.2 Accuracy . 44

3.5.3.3 Training and Inference Time 45

3.5.3.4 Comparing Net Training Time and Communication Latency 46

3.5.3.4.1 Net Training Time . 46

3.5.3.4.2 Communication Latency and TMR Overhead 46

3.5.3.5 Resource Utilization Comparison: 46

3.5.3.5.1 Scenario 1: Single-edge training (no split) 46

3.5.3.5.2 Scenario 2: Training with two edge devices (4 splits) 47

3.5.3.5.3 Scenario 3: Training with three edge devices (6 splits) . . . 47

3.5.4 Threats to Validity . 47

3.6 Conclusion . 48

4 An Intrusion Detection System on Fog Architecture 49

4.1 Introduction . 49

4.2 Problem Statement . 51

4.3 Contributions . 51

Contents xv

4.4 Part A - An Intrusion Detection System on Fog Architecture 52

4.4.1 Proposed Framework . 52

4.4.1.1 Feature Extraction . 52

4.4.1.2 Feature Selection . 54

4.4.1.3 Selecting Machine Learning Models 54

4.4.1.4 Deploying Model . 55

4.4.2 Experimental Setup . 55

4.4.2.1 Fog Setup . 56

4.4.2.2 Cloud Setup . 56

4.4.3 Evaluation Metrics & Dataset . 56

4.4.3.1 Evaluation Metrics . 57

4.4.3.2 Dataset . 57

4.4.4 Results & Discussion . 57

4.4.4.1 Finding the best values of n-grams & top ’m’ features . . . 57

4.4.4.2 E↵ect of Data Processing on performance 58

4.4.4.3 Evaluating performance on di↵erent ML Models 59

4.4.4.4 Performance Evaluation on the Cloud 59

4.4.4.5 Performance Evaluation on the fog Cluster 61

4.5 Part B - Dynamic Hierarchical Intrusion Detection task o✏oading in IoT

Edge Networks . 62

4.5.1 Motivation . 62

4.5.2 System Model . 62

4.5.3 Proposed Work . 64

4.5.4 Feature Extraction . 65

4.5.4.1 Feature Extraction of NIDS 65

4.5.4.2 Feature Extraction of HIDS 67

4.5.5 Feature Selection . 67

4.5.6 Data Normalization . 68

4.5.7 Feature Transformation . 68

4.5.8 Proposed algorithms . 69

4.5.9 Results . 73

4.5.9.1 Multi-class classification performance: 74

4.5.9.2 Binary-class classification performance: 76

4.5.9.3 E↵ect of Entropy threshold on FCAFE-BNET performance: 77

4.6 Conclusion . 78

5 Data Driven DNN Task O✏oading on Edge Networks 79

5.1 Introduction . 79

5.2 Contributions . 81

5.3 Motivation . 82

5.4 System Model . 83

5.5 Problem Formulation . 85

xvi Contents

5.5.1 Proposed DNN Task O✏oading Framework 87

5.5.2 Predicting o✏oading cost . 87

5.5.3 MIP scheduling problem . 87

5.5.3.1 Optimization problem . 88

5.6 Proposed Algorithms . 89

5.6.1 Proposed D2 � TONE algorithm . 89

5.6.2 Distributed DNN learning algorithm 91

5.7 Experimental setup . 92

5.7.1 Data Collection & Profiling . 92

5.7.2 Baseline approaches & Dataset used 93

5.7.3 Evaluation Metrics . 94

5.8 Results & Discussion . 96

5.8.1 ML models for o✏oading cost prediction 96

5.8.2 E↵ect of o✏oading costs estimation approach on ATTV 97

5.8.3 Comparative analysis of DNN task processing time. 98

5.8.4 E↵ect of data size on DPR . 99

5.8.5 E↵ect of data size on training time of DNN model 100

5.8.6 E↵ect of deadline value on DPR . 101

5.8.7 E↵ect of number of devices on TGOS 102

5.8.8 Comparison of baseline approaches for crowd counting application . 103

5.9 Conclusion . 104

6 A non-linear time-series based AI model to predict outcomes in cardiac

surgery 105

6.1 Introduction . 105

6.2 Methodology . 107

6.2.1 Data Collection . 107

6.2.2 Data Pre-Processing . 107

6.2.3 Feature Engineering . 108

6.2.4 Defining Datasets . 108

6.2.5 Train-Test Split for Regression Model 109

6.2.6 Handling Imbalance for Classification Model 109

6.2.7 Selecting ML Model . 109

6.2.8 Optimization and Training . 109

6.2.9 Feature Importance . 110

6.2.10 Performance metrics . 110

6.3 Results . 112

6.3.1 Sociodemographic and Clinical Determinants 112

6.3.2 Performance evaluation of Survival outcomes 113

6.3.3 Performance evaluation of Hospital Stay 114

6.3.4 Performance evaluation of ICU Stay 116

6.4 Discussion . 116

Contents xvii

6.5 Conclusion . 118

7 Conclusion and Future Work 119

7.1 Future Work . 120

7.2 Implications of This Thesis . 121

References 123

xviii Contents

List of Figures

1.1 Fog Computing . 2

3.1 Flowchart of Proposed framework. 28

3.2 (a) Accuracy comparison for di↵erent datasets, (b) Training time

comparison for di↵erent datasets . 34

3.3 Comparison of model partitioning approaches (non-partitioning, proposed

partitioning and random partitioning) using SVM 34

3.4 E↵ect of varying number of data points on di↵erent datasets 35

3.5 E↵ect of varying number of features on di↵erent datasets 36

3.6 Machine learning-enabled edge networks . 38

3.7 Proposed framework for ML model Partitioning 39

3.8 (a) SVM model partition for parallel computing, (b) RF model partition

for parallel computing . 42

3.9 (a)Training accuracy for online model training with input size 200

(b)Training time for di↵erent training instances (c) Inference time for

di↵erent training instances . 44

3.10 (a)Training time for di↵erent number of model splits (b)Communication

time and TMR overhead for di↵erent numbers of splits(c) CPU and memory

usage (%) for SVM model training . 45

4.1 Graphical representation of our work in steps 53

4.2 Original Class Distribution . 55

4.3 Deployed Web Application . 56

4.4 Varying size of top selected features for di↵erent n-grams 58

4.5 N-gram combinations with their Performance 58

4.6 Varying n-components of PCA . 59

4.7 Before and after SMOTE(Oversampling) . 59

4.8 Evaluating di↵erent ML models . 60

4.9 Upload Speed . 61

4.10 Latency from Cloud . 61

4.11 Inference time of di↵erent approaches on AlexNet under varying bandwidths. 63

4.12 Pre-processing steps for HIDS dataset . 65

4.13 Pre-processing steps for NIDS datasets . 65

4.14 RGB images obtained after pre-processing steps for NSL-KDD dataset . . . 69

4.15 RGB images obtained after pre-processing steps for CICIDS2017 dataset . . 69

4.16 Final RGB images obtained for UNSW-NB15 dataset 69

4.17 Final RGB images obtained for ToN IoT dataset 70

xix

xx List of Figures

4.18 RGB images obtained after pre-processing steps for ADFA LD dataset . . . 70

4.19 Workflow of the proposed BNET algorithm 73

4.20 Performance comparison on NSL-KDD dataset. 74

4.21 Performance comparison on CICIDS 2017 dataset. 75

4.22 Performance comparison on ADFA LD dataset. 75

4.23 Performance comparison on UNSW-NB15 dataset. 76

4.24 Performance comparison on ToN IoT dataset. 76

5.1 System architecture for crowd counting application. 80

5.2 Experiment analysis on a) Processing speed for varying hardware types and b)

Transmission time for varying network conditions. 83

5.3 Workflow of Proposed framework. 86

5.4 Distributed Deep Neural Network Learning framework. 90

5.5 Number of simulations corresponding to Actual train time variation (ATTV) for

SE-MIP, RFR+MLP and DT+SVM solutions. 96

5.6 Cumulative Distribution Function (CDF) vs ATTV 97

5.7 DNN task process time for various approaches. 98

5.8 Queuing Backlog vs. Training time. 99

5.9 E↵ect of Data size on DPR. 100

5.10 E↵ect of data size on train time. 100

5.11 E↵ect of deadline factor on DPR. 101

5.12 E↵ect of the number of devices on TGOS. 102

5.13 Number of parameter updates vs. Optimality gap. 103

5.14 Plot of MSE versus training time. 103

5.15 Performance of SE�MIP , HEO and D2�TONE approaches in crowd counting

application. 104

6.1 Methodology of the proposed framework . 106

6.2 Flow chart depicting that inoperative data of total 6064 patients was

captured by the AIMS system. Data of 4987 patients was excluded from

the final analysis, based upon inclusion/exclusion criteria. Data from 1077

patients was used for the final analysis. 107

6.3 Feature Importance - HR . 110

6.4 Feature Importance - IBPM . 110

6.5 AUC Comparison . 114

List of Tables

2.1 Comparison of our approach with di↵erent techniques in the literature . . . 14

2.2 Comparison of various methodologies with the Proposed Technique. 17

2.3 Comparison of various o✏oading approaches. 20

3.1 Notations . 29

3.2 Details of di↵erent datasets . 32

3.3 Symbols and their descriptions . 39

4.1 Types of attacks . 57

4.2 Evaluation Metrics for all Classes . 60

4.3 Time and Cost Comparison . 62

4.4 Datasets with Data Type and sample data. 67

4.5 Dataset description. 72

4.6 Total inference time comparison for various techniques on NIDS based

datasets. 72

4.7 Total inference time comparison for various techniques on HIDS dataset. . . 73

4.8 Total inference time comparison for various techniques on IoT based NIDS

datasets. 74

4.9 Performance of FCAFE-BNET with 3 exit points on NSL-KDD dataset

with varying Entropy threshold . 77

5.1 Estimated computation o✏oading cost (C) 82

5.2 Symbols and Notations . 84

5.3 Features used for estimating computation (Processing speed) o✏oading cost 88

5.4 Features used for estimating Transmission time o✏oading cost 88

5.5 Computation o✏oading cost prediction results using various ML models . . 96

6.1 Sociodemographic and clinical determinants of patients 112

6.2 Prediction of Survival Outcome . 113

6.3 Prediction of Hospital Stay . 115

6.4 Prediction of ICU Stay . 116

xxi

xxii List of Tables

Chapter 1

Introduction

Internet of Things (IoT) devices are producing ever-growing volumes of data that require

analytics within designated time constraints, as emphasized in [1, 2]. The data produced

by these IoT applications is typically analyzed using remote Cloud servers. According to

CISCO’s reports [3], the number of connected devices is projected to reach 29.3 billion

by 2024, a significant increase from the 18.4 billion recorded in 2018. The number of

active IoT devices is expected to double by 2030. With the rapid proliferation of IoT

applications, there’s a projection that the amount of generated data will surpass the

current network bandwidth capabilities [4]. Also, there are inherent network delays

between IoT devices and the remote Cloud. Due to the above reasons, o✏oading

latency-sensitive tasks to a Cloud server may adversely a↵ect the Quality of Service (QoS)

[5, 6] of the applications. In these applications, data analysis needs to be accomplished

within a predefined time-frame, to satisfy user expectations. Instances of such systems

encompass real-time gaming, control systems, internet streaming of audio/video content,

smart vehicles, etc. In the context of smart vehicles, for instance, even a single instance

of missing a deadline could lead to a system failure.

The Internet of Things (IoT) is widely recognized as a primary contributor to the

generation of Big Data, given its ability to link numerous smart devices that consistently

transmit their status [7]. While the IoT concept emphasizes the connectivity and

interaction of physical objects, its genuine potential lies not in the objects themselves, but

in the extraction of valuable insights from the data they produce. Essentially, the Internet

of Things revolves around data, rather than the physical entities. In this regard, Machine

Learning (ML) serves as a valuable tool for processing the generated data and converting

it into information, knowledge, predictions, insights, and automated decisions [8]. The

incorporation of ML techniques in the IoT introduces various challenges, particularly in

terms of their computational demands. Earlier, these ML tasks were sent to remote cloud

servers for processing, due to the limited computing capacities of these available day-to-day

devices. However, the computational power and storage capabilities of contemporary

devices have seen substantial growth in the past few years. These improvements in our

day-to-day gadget hardware have given rise to the concept of “Edge/Fog Computing” [6].

2 Chapter 1. Introduction

1.1 Fog Computing

Fog computing is a new and emerging computing model that o↵ers computing resources

situated between end-user devices and cloud servers. This approach o↵ers numerous

benefits to end-users and cloud computing servers. Fog computing is a distributed

computing system designed to enhance cloud computing functionalities, particularly

for the Internet of Things (IoT) environment. The objective is to move intelligence,

storage, and processing closer to the edge of the network, facilitating faster and more

localized computing services for the interconnected smart devices constituting the IoT.

It minimizes the storage and computing load on cloud servers by analyzing incoming

data and applications in closer proximity to IoT devices. “Edge computing” is a term

closely related to fog computing. To be more precise, in edge computing, the networking

infrastructure, computing, and storage are consistently within one step away from the

data source. In contrast, fog computing [9] represents a computing paradigm where the

networking infrastructure, computing, and storage can be positioned anywhere between

IoT devices and cloud data centers, not necessarily limited to being just one step away

from the IoT devices [6, 10].

Figure 1.1: Fog Computing

1.1.1 Fog Computing Architecture

The architecture of Fog computing comprises both physical and logical elements,

represented by hardware and software, to establish an Internet of Things (IoT) network

[11]. As illustrated in Figure 1.1, it encompasses IoT devices, edge nodes, fog nodes,

and remote cloud servers. Now, we delve into the components of the fog computing

architecture:

• IoT devices: These devices are linked within the IoT network, through a variety

Chapter 1. Introduction 3

of wireless and wired technologies. These devices consistently generate substantial

amounts of data. Multiple wireless technologies, such as Zigbee, RFID, Bluetooth,

etc., are employed in IoT, along with protocols like IPv4, IPv6, MQTT, and others.

• Edge nodes: The IoT devices are directly connected to edge nodes, where the

generated data is collected and pre-processed. Such edge nodes are typically

employed in applications with lower resource demands, because the devices

responsible for data collection and processing have restricted capabilities [12]. An

example of this is predictive maintenance, where edge computers, embodied as

sensors, assist manufacturers in analyzing the condition of plant equipment, and

identifying alterations before a breakdown occurs. Industrial Internet of Things

(IIoT) sensors continually observe the health of equipment and employ analytics to

provide alerts about upcoming maintenance requirements.

• Fog nodes: A fog node is any device equipped with computing, storage, and

network connectivity. Multiple fog nodes are distributed across extensive regions

to o↵er assistance to end devices. Their installation occurs at diverse locations,

based on distinct applications [13]. Fog nodes are commonly utilized in time-critical

applications demanding extensive, resource-intensive data processing derived from

a widely distributed network of devices. For instance, the e�cient management

of smart grids necessitates the processing of substantial volumes of real-time data.

The multitude of sensors and other edge devices employed in these applications

are both numerous and widely distributed. Consequently, fog nodes are employed

to simultaneously process data without compromising response times. Fog nodes

encompass devices such as switches, controllers, cameras, routers, etc. These fog

nodes handle the processing of highly sensitive data.

• Cloud server: The cloud is interconnected with all aggregated fog nodes. Data

that is not time-sensitive or of lower sensitivity undergoes processing, analysis, and

storage in the cloud. Data Analysis that can a↵ord to wait for an extended duration,

whether it be hours, days, or weeks, can be processed at the cloud. Such data is

transmitted to the cloud for storage and future analysis.

1.1.2 Necessity for Fog Computing

Cloud computing is an innovative technology that brings numerous advantages to several

applications, such as the ability to scale resources, flexibility in managing IT infrastructure,

and cost-e↵ective pay-as-you-go models. However, there are also various drawbacks

associated with cloud computing that present challenges to real-time applications [14].

These disadvantages encompass:

• Internet Connectivity: Applications solely rely on internet connectivity to

access cloud computing services. However, if there is an internet outage or weak

connectivity, it can lead to service interruptions and increased delays. Consequently,

4 Chapter 1. Introduction

one of the primary criticisms of cloud computing is its significant reliance on the

availability and quality of internet connectivity.

• Security and Privacy: Transmitting sensitive operational data from the edge to

the cloud poses a threat to both the data and to the edge devices. To safeguard this

information in an IoT system, it is crucial to implement various layers of security

to guarantee the secure transfer of data to cloud storage systems. Conducting data

processing at the edge serves as a preventive measure against data breaches, and

facilitates quicker responses.

• Latency: Transferring an application’s entire device data to the cloud for processing

and analytics can span from a brief few minutes to several days [15]. In

time-sensitive applications like Industrial IoT, immediate processing of device data

is crucial for prompt corrective actions. The fog computing model, in contrast to

the cloud computing model, can significantly reduce latency and facilitate rapid

decision-making.

• Data-Transfer and Bandwidth Cost: Sending substantial amounts of data from

the network edge to a cloud server can incur exorbitant expenses [16]. Additionally,

the ongoing daily cost of transferring such data may result in unsustainable

communication expenses over time.

1.1.3 Applications

Fog computing can be a viable paradigm for applications with real-time demands. Below

are examples of applications where Fog computing can prove advantageous:

• Heathcare: Cloud computing optimizes and distributes resources e�ciently. It

operates independent of location, allowing users to access cloud services from any

place and device with an internet connection [17]. The vast and varied data generated

by IoT can be e�ciently accessed through cloud computing. The amalgamation of

cloud and IoT minimizes costs and facilitates the aggregation of substantial data.

In the healthcare sector, cloud computing serves as a means to monitor patients,

maintain records, and e↵ectively manage illnesses by analyzing the accumulated

data. Nevertheless, the cloud may not be well-suited for time-critical applications

due to various challenges associated with high bandwidth demands, concerns related

to safety and security, and intermittent delays. Real-time monitoring, essential

for healthcare applications, may not be e↵ectively addressed by the cloud, as it

may not meet the immediate response requirements. The transfer of data to the

cloud and its subsequent return to the application introduces delays. In healthcare,

where timely and accurate responses are crucial for saving lives, these issues become

particularly critical. Fog Computing can prove to be instrumental in addressing

numerous challenges within the healthcare system. It can e�ciently manage tasks

at the network edge, allowing for the delegation of certain functions to cloud

Chapter 1. Introduction 5

data centers. This capability extends to facilitating big data analytics. Moreover,

crucial operations can be carried out at the network edge, ensuring that vital and

sensitive data can be accessed within milliseconds, when needed. The system is

equipped to promptly alert the hospital or emergency services in case of any detected

abnormalities, ensuring swift response to serious issues.

• Privacy and security: Fog computing enables real-time analysis and response,

accelerating the identification and resolution of security risks. It achieves this while

safeguarding user privacy through the containment of sensitive data within secure

environments. In this thesis, we have explored two applications in this domain:

– Intrusion detection in IoT network: Cloud computing can be utilized for

attack monitoring; however, the high latency associated with the cloud-based

processing poses challenges in achieving real-time network monitoring [18].

Additionally, the continuous deployment and operation of a model on the

cloud can incur substantial costs. To address these issues and enable

real-time monitoring of attacks in IoT networks, the fog computing paradigm

is introduced. In this approach, data generated by end devices, such as sensors,

is processed by fog and edge nodes situated nearby. This significantly reduces

latency, ensuring a real-time experience for the user. The tasks associated with

the Network Intrusion Detection system are time-sensitive and are expected to

operate continuously, safeguarding the privacy of data. Detecting attacks at

the earliest possible stage can significantly enhance server security, and the fog

architecture is instrumental in achieving this objective. Employing a locally

executed Machine Learning (ML) algorithm plays a crucial role in this process.

Our focus is on addressing the intrusion detection challenges prevalent in IoT

networks, where IoT devices are susceptible to various network attacks such as

flooding attacks, man-in-the-middle attacks, and port scanning. To identify and

thwart these attacks, a Network Intrusion Detection System (NIDS) is deployed

at fog nodes that are strategically positioned throughout the network. These

fog nodes scrutinize the network tra�c from all connected devices, comparing

it with patterns from previous tra�c categorized as an attack [19]. Upon

detecting a match, the administrator is promptly notified to initiate further

action. The primary objective is to identify and respond to such attacks as soon

as they attempt to compromise the system. Fog nodes, which can range from

routers and switches to cameras and industrial controllers, may not possess high

computational power. Therefore, a lightweight NIDS is imperative for e↵ective

intrusion detection.

– Face detection: Numerous cloud-based APIs, such as Google’s Cloud Vision

and AWS Rekognition, o↵er people counting or face detection capabilities.

Nevertheless, these services necessitate a consistent and dependable internet

connection. Facial recognition-enabled security cameras are capable of real-time

6 Chapter 1. Introduction

identification and tracking of individuals. This technology is employed in

various public settings like airports and other areas to bolster security measures

and surveil potential risks. People counting or face detection application

requires real-time processing [20]. Often, huge volumes of data is transmitted

through cameras in a short span of time. In addition, transmitting huge

volumes of data to the cloud server for processing is likely to be expensive. Fog

computing can help us to address above issues, by analyzing data at the edge

of the network, rather than sending it out to remote servers for processing.

This paradigm helps not only in reducing costs, but also in improving the

responsiveness of the application. Utilizing strategically positioned people

counting devices in a retail store allows for the collection of valuable customer

data [21]. Interpreting this data provides managers with insights into the store’s

performance and highlights areas that may require improvement. The retail

stores may be benefited in the following ways:

∗ Optimize sta↵ scheduling: Utilizing a door counter to gauge store tra�c

enables the store to identify peak hours and days, ensuring adequate sta�ng

to assist customers during those busy times. Conversely, by analyzing foot

tra�c data, one can pinpoint periods with the lowest in-store visitors, and

schedule only the necessary employees during those times.

∗ Customer behavior: Installing a cost-e↵ective door counter near a store’s

entrance o↵ers valuable insights into the number of customers entering

on specific days and peak times. Examining foot tra�c data provides a

customer-centric perspective of a business. For example, one might observe

consistent store tra�c on weekdays with increased activity on weekends,

or discover more visitors during midday compared to the afternoon.

Empowered by this data, one can enact necessary modifications, such as

hiring extra sta↵, or making adjustments to the store’s operating hours.

∗ Leasing Valuation: A precise people counting solution provides one with

the count of individuals entering and exiting malls, highlights popular and

well-performing zones, and identifies frequently visited areas by customers.

This data becomes instrumental in persuading tenants of the fairness of the

rent, substantiating lease valuation claims with concrete numbers. One can

leverage this information during lease negotiations and gain insights into

how external factors, such as public holidays, impact consumer behavior.

∗ Plan ahead: A customer counter serves as a crucial instrument for strategic

planning in a retail enterprise. By identifying peak hours, days, and even

weeks, one can proactively prepare to make those periods as smooth and

stress-free as possible for both the store and its customers.

Apart from these, fog computing can be advantageous in various other domains including

smart vehicles, Smart Cities, Smart Buildings, Manufacturing, smart farming, Industry,

Chapter 1. Introduction 7

Ubiquitous Computing, and more.

1.1.4 Challenges in Fog Computing

While fog computing o↵ers numerous benefits, it also presents certain challenges that must

be addressed, in order to enhance its feasibility [22]:

• Reliability and Fault tolerance: Edge devices are susceptible to malfunctions,

sporadic connectivity, and interruptions in the network [23]. Developing resilient

fault-tolerant mechanisms to manage device failures, network disruptions, and

ensuring the continuous provision of services becomes essential in fog computing

environments.

• Interoperability and Standardization: The fog computing environment consists

of various devices, protocols, and platforms [24]. Ensuring compatibility among

distinct vendor-specific solutions and communication protocols, standardizing

interfaces, and APIs poses a challenge, impeding the smooth collaboration and

integration within the fog ecosystem.

• Limited resource capability: The computing and storage capabilities of edge

resources are constrained in comparison to conventional data centers [25]. It is

essential to utilize these resources e�ciently to attain the highest possible overall

system utilization.

• Privacy and Security: Given the distributed nature of the infrastructure in

fog computing, emerging security and privacy concerns pose significant challenges

[26]. Ensuring data integrity, safeguarding communication channels, preventing

unauthorized access, and addressing privacy issues become crucial tasks in fog

computing environments.

• Resource Management and Orchestration: E↵ectively coordinating and

overseeing resources and services across diverse fog nodes presents a challenge

[27]. Careful attention is required to address dynamic resource provisioning, load

balancing, service discovery, and e�cient task scheduling to guarantee optimal

resource utilization and performance.

1.2 Research Objectives

Our overall objective in this thesis is to explore parallel and distributed Machine Learning

model training and inference on edge networks. This objective ties together all the research

problems in this thesis. The objectives of this dissertation are as follows -

• To perform partitioned training and testing of Machine learning models

on edge architectures: In case of online model training and inference in

edge networks requires a safe and reliable parallel computing architecture to

8 Chapter 1. Introduction

achieve improved performance with optimal resource utilization. To address this

challenge, we propose an e�cient machine learning model partitioning algorithm

that considers the safety constraint and requirements of edge networks, and includes

the triple-modular redundancy (TMR) technique for trusted computation.

• To investigate dynamic hierarchical Intrusion Detection task o✏oading

in IoT Edge Networks: As the web of IoT is growing, more concerns about its

security and privacy are becoming prevalent. IoT devices are endangered by various

types of attacks, such as port scanning and man-in-the-middle attacks. Monitoring

attacks using traditional intrusion detection approaches is computationally intensive,

and requires significant storage space. IoT devices, being resource-constrained, may

not be able to store data and analyze attacks in real time using these traditional

intrusion detection approaches. We have proposed a lightweight intrusion detection

system which is applicable for resource-constrained edge devices.

• To perform data-driven Deep Neural Network task o✏oading on edge

networks: Deep Neural Networks (DNN) have exhibited good performance in

the case of image-based classification, and regression problems. One of the main

concerns of training these models well is the usage of a huge amount of data for

learning. However, edge devices, being resource constrained by definition, may not

be able to handle huge DNN workloads. Hence, the training of the DNN model

needs to be done in a distributed manner in the edge network, so that the data

is processed in real-time. We propose a framework for the optimal computation

o✏oading of application data-points on various edge devices by proposing a Mixed

Integer Programming (MIP) based approach, which minimizes the training time of

the given workload, and maximizes the data-point processing ratio

• To predict outcomes in cardiac surgery using AI models based on

non-linear time series data: The patients prediction tasks need to be performed

in real-time, so that the medical sta↵ can take immediate action. But, sending out

data to a remote server or Cloud for analysis may introduce unwanted delays. Hence,

we have performed the data analysis on an edge device which facilitated in rapid

decision-making.

1.3 Contributions

This thesis proposes four fog network based algorithms, one for each above mentioned

objectives.

The first work discusses the partitioning of training and testing algorithms for ML

models on Edge architecture. The e�ciency of the proposed work has been demonstrated

in the result section by comparing the proposed PSVM-EA (Partitioning Support

Vector Machine on Edge Architectures) framework with a non-partitioned and random

partitioned approach on various datasets. In order to enhance the safety and reliability

Chapter 1. Introduction 9

of the online model training process, the Triple Modular Redundancy (TMR) technique

has been incorporated for trusted computation.

In the second work, a fog based lightweight intrusion detection system FC-IDS (Fog

Cluster-based Intrusion Detection System) is discussed. The experiments demonstrate

that the proposed FC-IDS framework has recorded a very low response time and cost

of deployment, in comparison to the remote Cloud server. The FC-IDS framework

is meant for binary classification (i.e. attack or normal). Next, we have discussed

the FCAFE-BNET framework which can perform multi-class classification. The

detailed performance analysis of FCAFE-BNET has been done with respect to various

state-of-the-art techniques.

The third work introduces the D2 � TONE algorithm which considers the network

conditions and computational capacity of edge devices before o✏oading the tasks on the

edge network. The computational and transmission times have been estimated using ML

models based on certain features, which significantly improves D2 � TONE algorithm

performance in comparison to other approaches.

The last work discusses the methodology of predicting outcomes in cardiac surgery based

on non-linear time series data is discussed. These tasks need to be performed in real-time,

so that the medical sta↵ can take immediate action. But, sending out data to a remote

server or Cloud for analysis may introduce unwanted delays, hence the data analysis has

been performed on an edge device.

1.4 Organization of the Thesis

The thesis comprise of seven chapters. The chapter 2 reviews the literature on partitioned

training and testing of Machine learning models on edge architectures, intrusion detection

systems on fog architecture, various task o✏oading techniques on edge networks, and

real-time analysis of patient health during cardiac surgery.

Chapters 3, 4, and 5 are dedicated to addressing partitioned training and testing

of Machine learning models, intrusion detection systems, and various task o✏oading

techniques on the proposed Fog computing frameworks respectively. The structure of

these chapters follows a consistent pattern. Initially, each chapter provides a formal

description of the problem statement, accompanied by an explanation of the motivation

behind the proposed framework. The contributions of the framework are then outlined in

the context of the challenges it addresses. Following this, a comprehensive methodology

is presented. Each chapter also includes details about the experimental setup, datasets,

and baseline algorithms used for performance comparison. Finally, the outcomes of the

experiments are presented and analyzed across di↵erent settings and parameters.

10 Chapter 1. Introduction

Chapter 6 discusses, the real-time analysis of patient health during cardiac surgery. The

structure of the chapter is described as follows: firstly, the chapter provides the motivation

behind the proposed framework. Followed by a detailed methodology comprising of data

collection, pre-processing, feature engineering, and feature importance. Lastly, the results

section discusses the performance metrics, sociodemographic and Clinical Determinants,

and performance evaluation of the proposed framework with other ML models.

The last chapter highlights the conclusion that we draw from our work. It discusses the

di↵erent areas in Fog networks where scheduling plays an important role in maximizing

system utilization and reducing the cost, as compared to using traditional remote data

centers. It also emphasizes on the possible future extensions of this work.

Chapter 2

Related Work

The main goal of this thesis is to explore parallel and distributed Machine Learning

model training and inference on edge networks. The idea is to leverage the edge for

executing these ML tasks in a parallel and distributed manner, resulting in quicker

training and inference. Specifically, security and healthcare have been selected as the

application domains where our proposed algorithms have been tested. With this as the

overall goal, this chapter provides a concise overview of cutting-edge advancements in the

domain of fog computing, specifically focusing on Partitioning ML models, lightweight

Intrusion Detection System, Data-Driven DNN Task O✏oading, and real-time edge based

analysis of patient health during cardiac surgery. It outlines the fundamental principles,

constraints, and enhancements associated with these pivotal contributions in the field.

Dividing machine learning (ML) models for training on edge nodes is a method that

includes spreading the training tasks among various devices or nodes, typically positioned

at the network’s periphery. This proves advantageous in situations where the data is

scattered or when the model exceeds the capacity of a single device. In the past, researchers

have tried to partition the ML model using various techniques, such as: data partitioning,

model partitioning, and federated learning. When segmenting models for edge training, it

is crucial to strike a balance between communication overhead, computational e�ciency,

and the overall performance of the training process. Experimentation and a thorough

analysis of the particular use case are vital for determining the most e�cient partitioning

strategy. Below are some primary benefits of partitioning ML models on edge nodes for

training and inference(testing):

• Real-Time Adaptation: Edge nodes facilitate the immediate adjustment of models in

response to alterations in data distribution. This can proves especially advantageous

in dynamic environments where the attributes of the data can change over time.

• Scalability: Edge nodes allow for decentralized training, even when a constant

network connection is unavailable. Nodes have the capability to function

autonomously and coordinate updates once connectivity is reestablished, enhancing

the resilience of the training process.

• Resilience to Network Outages: Edge nodes support scalable training by distributing

the workload among numerous devices. This promotes the e↵ective utilization of

resources and facilitates the incorporation of extra-edge devices, as required.

12 Chapter 2. Related Work

• Low-Latency Inference: As models are trained at the edge, they can be locally

deployed for inference, resulting in predictions with minimal latency. This is essential

for applications that demand real-time or near-real-time responses.

2.1 Partitioning ML models on edge architectures

A number of researchers [28, 29, 30] have proposed partitioning Deep Neural Networks

(DNN) for speeding up ML model training. Guanghui Zhu et al. [31] propose Forest-Layer,

which is a scalable and e�cient partitioning mechanism for deep forests. The Ray platform

was used to implement this distributed task-parallel system. The authors introduced a

few optimization techniques at the system level in order to improve parallelization. Li

Zhou et al. [32] proposed an algorithm which finds the optimal partitions of the network

model for execution on the edge devices. The system recalculates the points of optimal

partitions at certain intervals. The selection of the recalculation interval is crucial, as

it can degrade the system’s performance by increasing the rescheduling overhead. In

addition, Md Maruf et al. propose a machine learning-based prediction for task o✏oading

to minimize the task overload and meet the application requirements [33],[34]. The

convolution split algorithm proposed by Shengyu Fan et al. [30] takes into account the

size of the kernel, and then expands its feature map accordingly. Moreover, the use of

sparse matrix-vector (SpMV) multiplication has improved the performance by increasing

the speed and decreasing the memory consumption, while calculating the convolution layer.

Recent studies [35, 36, 37] explore a diverse array of techniques employed in optimizing

machine learning models for edge networks. Table 2.1 shows the comparison of

various methods, ranging from federated learning to multi-agent systems, focusing on

computational speed-up, energy e�ciency, and data privacy. Despite these advancements,

there is less discussion on model safety and reliability during execution in edge networks,

which we strive to address in this work. For example, Tan et al.[38] utilized a GPU-based

parallel implementation of an SVM model, resulting in significant speed-ups in training

times. However, the necessity for GPUs may not be realistic for edge networks, given

their resource constraints and cost implications.

Likewise, Li et al. [39] implemented a federated learning approach that emphasizes

privacy preservation by training a global model with local data. This method investigates

collaborative data sharing in vehicular edge networks (VENs) with AI-empowered

mobile/multi-access edge computing (MEC) servers. Furthermore, Zhou et al.[40]

proposed FedACA, an adaptive, communication-e�cient learning algorithm to reduce

communication overhead in federated learning on edge devices. These methods, though

remarkable, do not explicitly address safety and reliability during model partitioning.

Another study is the work of Zhao et al. [41], which designed a collaborative mobile

Chapter 2. Related Work 13

edge computing system involving multiple unmanned aerial vehicles (UAVs) and edge

clouds (ECs). Despite its impressive results in minimizing execution delays and energy

consumption, it largely overlooks the safety and reliability concerns inherent to model

partitioning and integration.

Regarding safe execution, Gu et al.[42] present a ‘Safe Fail’ technique for machine learning

models in cyber-physical systems, emphasizing safer decisions based on out-of-distribution

(OOD) instance detection. In parallel, Hilbrich[43] proposes a ‘correctness by construction’

approach that safely utilizes task parallelism in multi-core embedded systems.

The majority of research in the literature concentrates on partitioning Deep Neural

Networks (DNN), with limited emphasis on partitioning other fundamental machine

learning algorithms. It is important to highlight that deep learning models have

demonstrated superior e↵ectiveness in numerous scenarios, particularly those involving

image, audio, and text data. Nevertheless, traditional machine learning approaches

remain relevant and may be preferred under specific applications like: Fraud Detection,

Recommender Systems, Text Classification, etc. In contrast to these existing works, our

proposed approach seeks to integrate the benefits of computational e�ciency and safe

execution by employing optimal MLModel Partitioning with TMR on edge systems. Triple

Modular Redundancy (TMR) is a robust method employed in safety-critical contexts to

attain elevated levels of fault tolerance and reliability. Through the replication of crucial

elements and the comparison of their outputs, it guarantees consistent functionality even

when faults or failures occur. This redundancy strategy is indispensable in sectors where

the repercussions of system breakdowns can be dire, potentially safeguarding lives and

averting catastrophic incidents.

2.2 Intrusion Detection System on Fog Architectures

Security concerns in edge networks are noteworthy because of the decentralized and

distributed nature of edge computing. It is crucial to establish secure communication

between edge devices and cloud services, encompassing safeguarding data during transit,

and ensuring the integrity of communication channels. Edge networks may face

vulnerability to Distributed Denial of Service (DDoS) attacks, where a substantial volume

of tra�c can inundate the network, leading to disruptions. Employing strategies to

mitigate DDoS attacks is imperative to sustain service availability. Security measures need

to be integrated into edge cloud environments to guard against data breaches, unauthorized

access, and various other cyber threats. In the ongoing evolution of edge computing,

maintaining a vigilant and proactive approach to addressing security issues is essential for

preserving the overall integrity of edge networks.

Edge networks encompass communication among devices and potentially with central

servers or the cloud. An IDS actively monitors network tra�c, discerns suspicious

patterns, and aids in averting unauthorized access, thereby bolstering overall network

14 Chapter 2. Related Work

Table 2.1: Comparison of our approach with di↵erent techniques in the literature

Paper Parallel
Computing
Technique

Devices Safety/
Reliability

ML
Models

Performance Evaluation

Tan et al.
[38]

CUDA and
OpenMP

GPUs No SVM Speedup of 18.5× in training,
81.9× in testing

Li et al. [39] Federated
Learning

MECSs Implicit DQN Fast convergence, optimal data
sharing, privacy protection

Zhou et al.
[40]

FedACA CPUs Implicit CNN,
ResNet-18

Outperformed FedAsync by
4.20% to 8.04%

Zhao et al..
[41]

MATD3 UAVs No MATD3
with two
hidden
layers

E�cient task splitting and
o✏oading, faster convergence

Hilbrich et
al.. [43]

Multi-function
integration

No Resource
validation

N/A Improved resource assignment,
task scheduling, system
reliability

Thaha et al.
[37]

DNN
Partitioning
and O✏oading

Fog
Nodes

No DNNs
(e.g.,
AlexNet,
VGG)

Latency decrease 40%-60%,
acceleration of 2.6 to 4.2 times

Proposed
approach

Optimal
ML Model
Partitioning

CPUs TMR
(safety &
Reliability)

SVM and
RF

Speedup of 56.3%, Accuracies:
85%-90% (SVM), 82%-93% (RF)

Chapter 2. Related Work 15

security. In the event of a security breach, an IDS furnishes crucial information for incident

response, aiding in the identification of the intrusion’s source and nature. This enables

organizations to implement suitable measures to mitigate the impact. Given the real-time

processing demands of edge computing, an IDS at the edge is adept at swiftly detecting and

mitigating security threats, averting potential disruptions and ensuring the uninterrupted

functioning of critical applications. Unlike traditional IDS systems, which may strain

resources and induce performance issues on resource-limited edge devices, tailor-made IDS

solutions for edge computing can be devised to operate e�ciently within the constraints of

these devices. Recognizing the dynamic nature of edge environments, where devices may

operate in diverse conditions, an IDS designed for edge computing can exhibit adaptability,

accommodating the unique characteristics of edge devices and the ever-changing landscape

of edge networks.

There are two primary types of Intrusion Detection Systems (IDS): Network-based

Intrusion Detection Systems (NIDS), and Host-based Intrusion Detection Systems (HIDS).

Each type has a specific role in monitoring and detecting potential security threats.

Network-based Intrusion Detection Systems (NIDS) are created to observe and scrutinize

network tra�c to identify suspicious activities or patterns indicative of a security threat.

Operating in a passive mode, NIDS analyze network packets, searching for anomalies or

recognized attack signatures. They are commonly positioned at strategic locations within

a network, such as network gateways or subnets. This placement allows NIDS to provide

a consolidated perspective on network activity, enhancing their e↵ectiveness in detecting

attacks spanning multiple hosts or devices.

Host-based Intrusion Detection Systems (HIDS) concentrate on observing actions on

individual hosts or devices, searching for indications of unauthorized access or irregular

behavior. HIDS are directly installed on individual computers or servers, observing

user activities, system logs, and file integrity. They can identify uncommon patterns

or deviations from typical behavior. This a↵ords an intricate perspective on activities on

particular hosts, proving e�cacious in identifying localized attacks and insider threats.

Several intrusion detection systems (IDS) have been proposed in recent years for

monitoring attacks in the IoT network. Various ML techniques have been employed in

order to improve IDS performance. Often, these systems experience poor performance

because of a variety of reasons, which we discuss later in this section. Li et al. in

[44] proposed an IDS using a cluster of Neural Networks (NN). The IDS uses Anomaly

Behaviour Analysis (ABA-IDS) for ensuring secured fog node availability in the IoT

network. The adaptive scheme has a high detection rate for various anomalies, like system

glitches, cyber-attacks, and misuses with low overheads. In [45], authors proposed an

Enhanced Hybrid IDS (EHIDS) to find the optimal set of weights and biases of Artificial

NN (ANN) using a genetic algorithm. After obtaining the trained ANN, the model is

deployed to the fog network for classifying attacks. The framework is verified using

UNSW-NB15 and ToN IoT datasets.

In [46], the authors proposed a multi-attack classification model ICNN-FCID for fog

16 Chapter 2. Related Work

networks by integrating Long-Short Term Memory (LSTM) with Convolutional NN

(CNN). The ICNN-FCID approach has been verified using the benchmark NSL-KDD

dataset. The IDS framework proposed in [47] has been developed by hybridizing

various Machine Learning (ML) algorithms like KNN, Random Forest, Decision tree, and

XGBoost. The proposed technique uses user behavior patterns for securing smart homes.

The authors used NSL-KDD and CSE-CICIDS 2018 datasets for experimentation. In [48],

the authors proposed an attack detection system named CPS-NIDS for a Cyber-Physical

Network. The Principal Component Analysis has been used in order to select features.

The authors used several ML models like SVM, Random forest, and Logistic regression

on extracted features for detecting attacks. The proposed framework has been evaluated

on various NIDS-based datasets, like WSN-DS, KDD-Cup-1999, CICIDS 2017, SDN-IoT,

and UNSW-NB15. In [49], the authors have proposed a framework using the Persistent

regularization algorithm. The Cholesky Factorization is applied using Online Sequential

Extreme Learning Machines (CF-OSELM). The proposed approach has been utilized to

detect IoT-based attacks in fog devices, sending the attack report to the centralized cloud

for detailed analysis.

An ensemble based IDS has been proposed in [50] using Naive Bayes, Logistic Regression,

and Decision trees. The CICIDS 2017 dataset has been used for evaluating the proposed

technique for binary and multi-class classification. In [51], the authors employed

Explainable AI techniques, such as Shapley Additive exPlanations (SHAP), RuleFit, and

LIME in order to explain the classifier’s decision. The classifier used for IDS was a Deep

Learning NN. They have analyzed the proposed framework using the following datasets:

UNSW-NB15 and NSL-KDD. In order to detect R2L (Remote to Local) and U2R (User

to Root) attacks, the authors have used Bi-directional LSTM (Bi-DLSTM) [52]. The

benchmark NSL-KDD dataset has been used for validating the proposed model. In [53],

the authors have used the Gorilla Troops optimizer (GTO) method along with Bird Swarm

algorithm (BSA) for feature selection. The proposed GTO-BSA has been used for finding

the optimal solution of features. The authors have compared the performance of GTO-BSA

with other meta-heuristic algorithms along with the GTO algorithm [54]. The study shows

that the GTO-BSA approach outperforms all of the other meta-heuristic algorithms.

In [55], the authors have proposed a host-based intrusion detection system using

Multi-Layer Perceptron (MLP). The feature space has been reduced using n-gram

transformation based on vector space representation. The proposed model has been tested

on ADFA-LD and ADFA-WD. The experimentation has been carried out using raspberry

pi as a fog device. The power consumption of fog devices has been estimated using

voltage and current demand. In [56], the authors have used multiple fog nodes in a local

area network for detecting attacks using ML algorithms. The ML tasks are o✏oaded

to the fog cluster for faster inference. The experiments were conducted using various ML

algorithms, and the best results were obtained using the XGBoost model. The experiments

show that the latency and cost of deployment of the raspberry pi cluster are much less

than that of the cloud server. The authors have validated the framework performance

Chapter 2. Related Work 17

Table 2.2: Comparison of various methodologies with the Proposed Technique.

Methodology
Edge-cloud
collaboration

Network
conditions
considered

Applicable
for

HIDS/NIDS

Applicable
for real-time
applications

Binary/
Multi-class
classification

FCAFE-BNET
(Proposed)

Yes Yes
Both

HIDS & NIDS
Yes Multi-class

EHIDS [45] No No NIDS Yes Binary

ABA-IDS[44] No No HIDS No Binay

CF-OSLEM [49] No No HIDS No Binary

ICNN-FCID [46] No No NIDS No Multi-class

CPS-NIDS [48] No No NIDS No Binary

Ensemble IDS [50] No No NIDS No Multi-class

BiDLSTM-IDS [52] No No NIDS No Multi-class

Explainable-IDS [51] No No NIDS No Binary

LW-MLP [55] No No HIDS Yes Binary

FC-XGB [56] No No HIDS Yes Binary

18 Chapter 2. Related Work

on the ADFA-LD dataset. In [57], the authors combined various ML classifiers such as

Random forest, KNN, and Decision trees in order to build an IDS. The anomaly detection

has been done on fog devices, whereas the attack classification has been carried out on the

cloud server. The authors used KDDTest-21 and KDDTest+ for analyzing the proposed

approach. In [58], the authors used the Random forest model for classifying attacks in a

network. The features were analyzed and selected manually, based on the characteristics

of the attacks. The performance of the classifier was validated using NSL-KDD and

KDD-Cup99. In [59], the authors proposed a real-time IDS, using auto-encoder and

isolation forest. The Auto-IF technique has been tested on fog devices using NSL-KDD

for binary-class classification settings.

In Table 2.2, we compare our proposed approach (FCAFE-BNET) with some of the recent

state-of-the-art techniques. Despite the fact that various ANN based IDS approaches have

been proposed in the past few years, the above discussed methodologies have the following

shortcomings that need to be addressed:

• The feature selection approach adopted by these methodologies, such as the wrapper

method, and the filter method are quite outdated and fail to capture various

sensitive features. Due to this, the classifier gives a poor performance on multi-class

classification.

• The previous Intrusion detection work are either applicable to NIDS or HIDS.

• The methodologies proposed previously do not consider network conditions and

network congestion. Also, the recent methodologies use either a fog device or the

cloud for identifying attacks.

2.3 Data-Driven DNN Task O✏oading on Edge Networks

Task o✏oading is one of the most crucial decisions in an edge network. Several o✏oading

approaches have been proposed in the past, which can be broadly classified into two

categories: (a) Mathematical optimization, and (b) Artificial intelligence (AI) based

algorithms. The mathematical optimization approach can be carried out in the following

ways: i) Mixed integer programming (MIP), ii) Game theory, and iii) Heuristics. A

comparison of various o✏oading approaches is given in Table 2.3. The MIP approach helps

in optimizing multi-objective functions having di↵erent o✏oading constraints like energy

consumption, communication delay, and latency, based on the underlying motivation

for research [60], [61]. The MIP approach helps in finding the optimal o✏oading

solution satisfying given constraints. In [62], the author’s objective is to minimize the

energy consumption of mobile devices with latency constraints in a multi-user system.

The MIP objective in [63] includes network delay and processing time for IoT-based

mission-critical applications. Similarly, in [64], the authors schedule real-time vehicular

tasks based on deadlines on appropriate processors with the objective of minimizing

communication delay. In [65], the authors o✏oaded real-time tasks based on security

Chapter 2. Related Work 19

and deadline constraints. In [66], the authors proposed dynamic user allocation in

stochastic edge networks using Lyapunov optimization algorithm. However, the authors

did not consider various communication/transmission aspects (like packet loss, jitter),

which are very crucial in real-world scenarios. The MIP approaches assist in providing

optimal or near-optimal solutions for o✏oading tasks. However, all the above approaches

fail to consider dynamic network conditions while making o✏oading decisions. As the

above-discussed approaches use static estimating techniques for modeling the inputs in

the Mixed integer programming approach, inaccurate estimations might degrade the

o✏oading decisions over time. In [67], [68] and [69], the authors employed game theory

for optimizing the revenue for edge/cloud providers, maximizing e�ciency of resource

allocation, and maximizing spectrum e�ciency respectively. However, the game theory

approach is incapable of handling dynamic network conditions. Also, when the number

of users increases significantly, then the game theory approach increases in complexity.

Various heuristic-based approaches for task o✏oading have been proposed in recent years.

The heuristic o✏oading approach proposed in [70] uses the transmission channel properties

and energy consumption models of transmission and computation to find the o✏oading

scheme. The authors consider energy and time constraints for solving the computational

o✏oading problem. In [71], the authors have used an o✏oading algorithm that tries

to adapt the dynamic behavior of the edge network by taking into account the residual

energy of mobile devices present in the network. However, the proposed approach fails

to minimize the o✏oading cost. In [72], authors used the Markov random field approach

for balancing the workload and lowering energy consumption in edge networks. However,

the proposed approach fails to accurately estimate user density, which can be resolved by

integrating ML techniques. Also, the framework su↵ers from scalability issues. In [73],

authors equally distribute the data-points to all the devices present in the network, for

performing distributed Stochastic Gradient Descent (SGD) in a synchronous manner. In

this approach, the author trains the ML model in a distributed manner using Synchronous

SGD, without considering the heterogeneity of the edge devices. The authors in [74] claim

to provide an e↵ective workload balancing solution for an IoT network with homogeneous

servers using the balls and bins theory. Though the cost of o✏oading is low, the approach

does not address the heterogeneity of mobile devices. In addition, the binary decision

of o✏oading is too simplistic to capture the complexities of the edge network. Though

the overhead of handling user requests in the case of the heuristic approach is negligible,

the performance exhibited by various heuristic algorithms varies drastically in dynamic

edge environments. Therefore, this approach needs to be investigated carefully for finding

optimal o✏oading solutions for the edge paradigm.

The mathematical task o✏oading approaches discussed so far may fail to handle

dynamic network situations while allocating tasks to edge resources. Specifically, these

mathematical solutions may be incapable of capturing varying conditions in the end-to-end

network model. Therefore, many ML-based approaches like linear regression and logistic

regression have been proposed to make o✏oading decisions by using historical data to learn

20 Chapter 2. Related Work

Table 2.3: Comparison of various o✏oading approaches.

useful behaviors and patterns of the dynamic network [75], [76]. Resource monitoring tools

have been used for collecting huge amounts of data in cloud and edge environments. In

[77], the authors have used support vector machines for e�ciently utilizing energy in a

cloud environment. The Deep learning approach has been used in [78] in order to minimize

the o✏oading time and the computation overhead in a given network. In [79], the authors

employ the K-Nearest Neighbour scheme for reducing latency and energy consumption in

the cloud. These ML approaches help to provide o✏oading solutions in real-time, but may

fail to provide an optimal solution in multi-edge networks.

In order to holistically adapt dynamic network situations and provide long-term

optimal/near-optimal o✏oading solutions in real-time, we employ ML algorithms for

enhancing the mathematical task o✏oading optimization solution with various constraints

in a multi-edge environment. However, the MIP-driven approach may be expensive

for large-scale scenarios [80]. In order to address this shortcoming, we have used a

branch-and-bound based solution, due to which the feasible o✏oading solution is generated

in real-time.

2.4 Non-linear time-series based AI model to predict

outcomes in cardiac surgery

In cardiac surgery, outcome prediction tools can be beneficial in ensuring continuity of

care and planning resource allocation. As medical information systems and artificial

intelligence technologies have advanced, ML algorithms have become increasingly valuable

for individualised medicine [81]. If the outcome could be predicted accurately, clinicians

could o↵er more e↵ective treatment strategies to patients following cardiac surgery.

Chapter 2. Related Work 21

Cardiovascular surgery is considered a challenging operation to perform, as it adversely

a↵ects circulation and physiology [82]. In cardiac surgery, there has been an increasing

interest in risk prediction models for clinical use. European decision-making guidelines cite

several risk stratification methods, although these scores cannot replace clinical judgment

and multidisciplinary discussions. The original EuroSCORE, EuroSCORE II, and STS

scores are the most widely used scores for predicting mortality after cardiac surgery.

However, some studies have shown that these scores have limitations in some surgeries

or patient groups [83].

Rather that executing these prediction tasks on third party cloud service providers, the

tasks for predicting patient outcomes can be performed on private edge devices, leading

to quicker prediction times. Doing so would also address the privacy issues involved with

a third party public cloud provider.

Many studies have examined mid-term or long-term mortality after cardiac surgery. Wu et

al. [84] developed a risk score that predicted mortality following isolated CABG surgery

with a C-statistic ranging from 0.768 to 0.783 for mortality at 1, 3, 5, and 7 years of

follow-up. The application of ML approaches has been increasing due to the need for

more precise prediction models. A recent meta-analysis of 15 studies indicated that ML

models provide better discrimination when compared with conventional LR models when

predicting operative mortality after cardiac surgery [85].

Models with ML show potential for capturing non-linear relationships and interactions

among features without the need to specify all interactions manually, as with LR.

Furthermore, ML algorithms are more e�cient than traditional statistical methods because

they do not rely on assumptions about data distribution and can perform more complex

calculations. ML-based clinical models predicting short-term mortality in cardiac surgery

have demonstrated AUC values between 0.74 and 0.79 [83]. In cardiac surgical operations,

Zhou et al. [86] and Ong et al. [87] discovered that RF models predict short-term mortality

better than other models. Furthermore, multiple investigations found that the XGBoost

technique outperformed other ML algorithms in predicting surgical or in-hospital mortality

[83]. S.Angraal et al. [88] predicted the mortality and hospitalisation in heart failure by

using various ML models. The best AUC (0.72) is achieved in their work by using the

RF model. Some of the features used by the model for predicting mortality over 3-years

are blood urea nitrogen (BUN) level and body mass index. The RF model achieved a

recall value of 0.70 for mortality. In [89], Koponen et al. have used various statistical

analysis techniques, such as t-test and z-test, for comparing patient characteristics and

clinical characteristics of outcome groups to assess mortalities. The proposed statistical

approach achieves an AUC value of 0.70 for mortality up to 1-year. Ruan et al. [90]

have proposed a general-purpose representation approach using RNN based denoising

autoencoder (RNN-DAE) to summarise electronic health records. By using the RNN-DAE

method, the proposed approach achieves an AUC (0.78), accuracy (0.77) and an F1 score

(0.44).

All the work discussed for mortality prediction su↵ers from the following limitations.

22 Chapter 2. Related Work

Firstly, the work present in the literature uses either statistical techniques or classical

non-linear ML models like SVM, RF, DT, and XGB. However, researchers have not

examined linear ML models (probabilistic models). Secondly, the discussed approaches

have used patient characteristics or clinical characteristics, i.e. static data, to classify

the patient’s mortality. Lastly, the discussed approaches have used either oversampling

or undersampling techniques for handling imbalance. In our proposed approach, we have

examined Linear ML models (probabilistic algorithms), such as GNB, BNB, LDA, and

LR, and classical non-linear models. It was found that probabilistic algorithms o↵er

better performance than non-linear models. Further, we used time-series data instead of

just clinical test reports (static data) for mortality prediction. Also, we have examined

the performance of classifiers with combined oversampling (SMOTE) and undersampling

(Near-Miss) techniques. The proposed approach has shown significant improvement in the

performance of the classifier. The improvement was because probabilistic algorithms like

GNB and LR are critical to handling uncertainties caused due to insu�cient data. Thus,

these algorithms have a high potential to perform well in an imbalanced classification

problem.

Chapter 3

A Framework for Partitioning ML

Models on Edge Architectures

3.1 Introduction

Current IoT applications generate huge volumes of complex data that requires agile

analysis in order to obtain deep insights, often by applying Machine Learning (ML)

techniques. A support vector machines (SVM) is one such ML technique that has

been used in object detection, image classification, text categorization, and Pattern

Recognition. However, training even a simple SVM model on big data takes a significant

amount of computational time. Due to this, the model is unable to react and adapt in

real-time. There is an urgent need to speedup the training process. Since organizations

typically use the cloud for this data processing, accelerating the training process has

the advantage of bringing down costs. In this work, we propose a model partitioning

approach that partitions the tasks of Stochastic Gradient Descent based Support Vector

Machines (SGD-SVM) on various edge devices for concurrent computation, thus reducing

the training time significantly. The proposed partitioning mechanism not only brings down

the training time, but also maintains the approximate accuracy over the centralized cloud

approach. With a goal of developing a smart objection detection system, we conduct

experiments to evaluate the performance of the proposed method using SGD-SVM on an

edge based architecture. The results illustrate that the proposed approach significantly

reduces the training time by 47%, while decreasing the accuracy by 2%, and o↵ering an

optimal number of partitions.

With the increasing demand for edge computing in cyber-physical system (CPS)

applications, ensuring the safety and reliability of machine learning models running on

edge devices during online model training and inference is essential. Although data and

model parallelism o↵er significant advantages for large machine learning model training,

adopting parallel computing architecture in edge networks is challenging. It introduces

safety concerns while splitting and integrating machine learning models over di↵erent

computing nodes, which can pose risks to the integrity and reliability of the system.

Therefore, online model training and inference in edge networks requires a safe parallel

computing architecture to achieve improved performance with optimal resource utilization.

To address this challenge, we propose an e�cient machine learning model partitioning

algorithm that considers the safety constraint and requirements of edge networks,

24 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

and includes the triple-modular redundancy (TMR) technique for trusted computation.

Compared to the non-partitioning approach, our proposed approach achieves a significant

speedup of approximately 56.3% in net training time, making it more e�cient and suitable

for real-time applications in edge networks.

Recent advancements in edge networks have led to a paradigm shift in data processing

across various CPS applications, such as robotics, health monitoring, and autonomous

driving systems [91]. The significant increase in machine learning (ML) use, known for its

real-time decision-making and cost reduction attributes, has established an essential role

for edge networks in facilitating ML algorithms, such as Support Vector Machines (SVM),

Random Forests (RF), and Deep Neural Networks (DNNs) for continuous adaptation

in CPS applications [92]. Simultaneously, the complex task of online model training

presents substantial challenges, including model parallelization/workload partitioning,

safety concerns from splitting ML models across edge devices, and legacy single-core

processor designs [93]. These challenges complicate the acceleration of ML model

performance, and potentially risk system integrity and reliability, thus emphasizing

the need for safe parallel computing architectures for e�cient model partitioning and

integration across edge devices.

Recent studies have explored various techniques to optimize edge-based machine learning

model training for CPS applications [35]. While these approaches o↵er promising solutions,

they primarily focus on data and model parallelism, without adequately addressing the

safety and reliability concerns associated with ML model partitioning. Furthermore, in

the works of Wen Sun et al., [94], Guangxu et al. [95], and Sina et al. [96], the primary

emphasis is on reducing training time and o✏oading training; however, these solutions

have less discussion in the context of safety and reliability of the online model training

process. Additionally, these approaches do not comprehensively address the issues of

ML model distribution across edge devices, leading to potential resource ine�ciency and

system vulnerabilities. In this context, an approach that establishes optimal model splits,

ensures safety and reliability, and aligns with safety standards like IEC 61508, ISO 26262,

and UL 4600 is essential.

This paper proposes a framework for e�ciently partitioning machine learning model splits

for online training on edge networks, considering their safety constraints and requirements.

Our framework aims to minimize training time and communication latency, ensuring

that ML models are reliably trained and updated on edge devices without compromising

safety, performance, or resource utilization. The framework includes an algorithm that

intelligently partitions ML models into smaller sub-models that can be safely executed

across multiple edge devices, leveraging their parallel computing capabilities.

Further, to enhance the safety and reliability of the online model training process, our

approach incorporates the TMR [97] (Triple Mode Redundancy) technique for trusted

computation. TMR is an established Single Event Upset (SEU) technique that replicates

the processing of each sub-model across three separate devices, allowing for error detection

and correction in the event of any discrepancies between their outputs. By employing

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 25

TMR, the proposed algorithm ensures that the system maintains its integrity and

reliability, even in the presence of potential faults, hardware compromises, or other safety

issues. The framework dynamically manages resources and minimizes training time and

latency to optimize performance, while ensuring safety and reliability in edge networks.

We evaluate the e↵ectiveness of our proposed approach through extensive experimentation

and analysis, demonstrating significant improvements in system performance, safety, and

reliability for online model training and inference in edge networks. We conduct a case

study on SVM and RF multi-class classifiers by splitting the models into multiprocessor

edge devices. The experimental results demonstrate a significant reduction in training

time and increased system throughput, without compromising accuracy. The results

highlight the potential of combining model partitioning and TMR to address the challenges

associated with safe online ML model training on edge networks, paving the way for further

exploration and development of safe and reliable edge computing solutions in the evolving

landscape of cyber-physical systems.

3.2 Problem Statement

In the context of online model training in edge networks, our goal is to optimize the

partitioning of the machine learning model splits across edge devices, balancing the

trade-o↵s between training time, communication latency, and TMR time.

3.2.1 Optimization Problem

The optimization problem can be written as:

min
sk2S,8k

X

mi2sk

tmi + �
X

mi2sk

lmi + �
3X

k=1

TTMRk,mi
(3.1)

The equation 3.1 has three components. The first term in the optimization problem

represents the total training time for all splits assigned to edge devices in each partitioning

strategy. The second term denotes the total communication latency for all splits assigned

to edge devices in every partition, capturing the costs associated with transmitting data

between devices. The third term corresponds to the total time spent on TMR, which

ensures the system’s reliability by incorporating redundancy into the distributed ML

model. We introduce two weighting factors, � and �, to balance the trade-o↵s between

these components:

• �: This weighting factor balances the importance of communication latency in the

optimization problem. A higher value of � emphasizes minimizing latency, whereas

a lower value focuses more on minimizing training time.

• �: This weighting factor balances the importance of TMR time in the optimization

problem. A higher value of � emphasizes minimizing TMR time, whereas a lower

value focuses on balancing training time and communication latency.

26 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

3.2.2 Constraints

• Model Partition Constraint: This constraint ensures that the ML model is

properly partitioned across the edge devices.

m[

i=1

sk,i = M ; 8k = 1, . . . , |S| (CT1)

Constraint (CT1) ensures that the union of all model splits across all partitions and

edge devices covers the entire set of model splits, which is equal to the full model

M .

S = {s1, s2, . . . , sn} : sk 2 S, k = 1, . . . , n (CT2)

Here, sk represents the kth partition assigned to di↵erent edge devices. The set S

contains all possible assignments of partitions to edge devices. For our example with

6 model splits (m1, m2, m3, m4, m5,m6) and 3 edge devices, the set S could contain

the following possible partitions:

S = {({m1,1,m2,1}, {m3,2,m4,2}, {m5,3,m6,3}),

({m1,1,m2,1,m3,1}, {m4,2}, {m5,3,m6,3}),
...,

({m1,1,m2,1}, {m3,2,m4,2,m5,2}, {m6,3})}

So, tuple sk = (sk,1, sk,2, ..., sk,e), where e is the number of edge devices, and sk,i

is the set of model splits assigned to the ith edge device in the kth partition. The

optimization problem aims to find the best assignment of partitions (sk 2 S) to

minimize the total training time and communication latency, while considering TMR.

• Processing Capability Constraints:

These constraints ensure that the requirements of assigned model splits (processing,

memory, and bandwidth) do not exceed each edge device’s capability.

X

m2sk,i

wm  pi; 8k = 1, . . . , |S|; i 2 n (CT3)

Constraint (CT3) ensures that the processing requirements (wm) of assigned model

splits do not exceed a device’s processing power (pi).

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 27

X

m2sk,i

Rm  RMi ; 8k = 1, . . . , |S|; i 2 n (CT4)

X

m2sk,i

bm  bBi ; 8k = 1, . . . , |S|; i 2 n (CT5)

Constraint (CT4) guarantees that memory requirements (Rm) of assigned model

splits do not exceed a device’s memory capacity (RMi). Similarly, Constraint (CT5)

makes sure that the bandwidth requirements (bm) for transmitting assigned model

splits do not exceed a device’s bandwidth capacity (bBi).

• TMR and Safety Constraint:

eX

k=1

xk,j,mi = 1; j = 1, . . . , 3 (CT6)

In this constraint, xk,j,mi represents the binary decision variable for the mi-th model

split assigned to the kth edge device in the jth TMR instance. The constraint ensures

that exactly one edge device is assigned to each TMR instance for the mi-th model

split, which is important for ensuring the reliability of the TMR configuration and

preventing errors or failures, contributing to the system’s overall safety by minimizing

the likelihood of incorrect or damaging outputs.

eX

k=1

xk,j,miTTMRk,mi
 Tfail,mi (CT7)

The constraint CT7 ensures that the total time for training the redundant models

and performing TMR in each TMR instance for the mi-th model split does not

exceed the specified failure threshold Tfail,mi , determined by system designers or

domain experts.

3.3 Contributions

The contributions of this chapter can be summarised as follows:

• The proposed framework partitions the weight update operation on multiple edge

nodes, in order to train the SGD-SVM model in a parallel and distributed manner.

This significantly reduces the training time, without significantly a↵ecting the

accuracy.

28 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

Training Phase

Testing Phase

Performing
Batch

gradient
descent

Load
Dataset

Feature Scaling

Pre-process dataset

Feature Extraction

 Sub-gradient

 Sub-gradient

 Sub-gradient

Split

Sum-up
Partial

gradients

Reduce

Update
weight
vector

.........

.........

.........

Input
Query

(Xq)

Feature
Extraction

:::::

:::::

:::::

Forming Sub-queries

.........

Split Reduce

Decision
Making

Function

Model
Evaluation

Predicted
Label

Figure 3.1: Flowchart of Proposed framework.

• The testing of the proposed approach is done in a parallel manner by partitioning

the vector multiplication of all the features on the edge architecture.

• The proposed model partitioning approach has been analyzed on various data-sets

in order to determine the extent to which various characteristics of the dataset a↵ect

the training accuracy, test accuracy, and run-time.

• A machine learning model partitioning algorithm that determines the optimal

number of model splits while considering the safety constraints and requirements of

edge networks, ensuring e�cient and secure parallel execution of ML models across

multiple edge devices.

• The integration of the TMR technique to enhance the safety and reliability of the

online model training process by incorporating only trusted computation into the

model during the execution of partitioned sub-models on edge devices.

3.4 Part A - Partitioning SVM Models on Edge

Architectures

3.4.1 System Model

Consider a dataset D = {xi, yi}Ni=1, where xi 2 Rd is an input data instance, and yi 2
{1, . . . , C} is a class label for C classes. The SGD-SVM model denoted by M is trained

on input data D. This thesis aims to design a framework for partitioning the SGD-SVM

model on an edge architecture for parallelization and faster computation. Therefore, this

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 29

Table 3.1: Notations

⇡ Hyperplane / decision boundary
R Number of edge devices
wi Weight of ith feature
M Machine learning model
↵ Learning rate
� Regularization constant
⇠ Cost variable
Ei Number of epochs
D Dataset
xi Input data
yi Class label for ith instance
To Class label for test dataset
Do class label for train dataset

wedge R Weight updation at Rth edge device
Dedge R Sub-query result at Rth edge device

thesis problem statement is to partition the training and testing of the model M, on ‘R’

edge nodes, for which the training time is minimized and the model accuracy is maximized.

Notations used throughout this work are defined in Table 3.1

The dataset is first pre-processed by scaling and extracting various features. Then, this

processed data is split into training and testing datasets. As shown in Figure 3.1, the model

is partitioned and then trained and tested on various edge devices. The partitioning of

weight updation tasks is carried out to balance the load among all the edge nodes. This

reduces the training and testing time significantly. The partitioned training and testing

of SGD-SVM model is discussed in section 3.4.2.1 .

3.4.2 Proposed Approach

This section discusses in detail the partitioned training and testing of the proposed

SGD-SVM model on edge architectures.

3.4.2.1 Partitioned Training Algorithm

The objective of training the SVM model by partitioning it on various edge devices with
0n0 features is to distinctly classify all the data points present in the dataset using an n-D

hyperplane. The hyperplane is basically a decision boundary which separates the data into

two classes. The number of features used in the model defines the dimensionality of the

hyperplane. There might exist many such hyperplanes which separate the data into two

classes. However, the motivation is to find that optimal hyperplane ⇡ which minimizes

the following loss function:

L(w,b) = min
w⇤,b⇤

nX

i=1

max(0, 1� yi(w
T.xi + b))+�. k w k2

subject to ⇠i � 0.

(3.2)

30 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

Here, � is the regularization constant & ⇠i = max(0, 1 � yi(wT .xi + b)). Basically, � is a

hyper-parameter. A very low value of � leads to over-fitting of the trained model. Next,

we take the partial derivatives of the loss function with respect to the weights, as shown

by the following equation:

@L

@wR
=

@

@wR
�. k w k2 + @

@wR
(1� yi(w

Txi + b)) (3.3)

Algorithm 1: Partitioning Training Algorithm for SGD-SVM Model
Input : Dataset D, Train out Do, Number of epochs N , No Of EdgeNodes R
Output: Machine Learning Model M
Model, M = Parameter lists Wi, i 2 0, 1,, n

Initialize Wi = 0, ↵ = 0.001, � = 2 ⇤ 1/epochs
Procedure Splitter(D, M)

while epochs � N do
yi =

Pp
i=0Wi ⇤ xi

mul = yi ⇤Doi

j=0
for each data point j in Dataset D do

if mul � 1 then
cost 0
wedge 1 =

Pn/R
i=1 wi � ↵ ⇤ (� ⇤ wi)

wedge 2 =
P2n/R

i=n/R+1wi � ↵ ⇤ (� ⇤ wi)

...

wedge R =
PRn/R

i=(R�1)n/R wi � ↵ ⇤ (� ⇤ wi)

else
cost 1�mul

fij= xij .Doj

wedge 1 =
Pn/R

i=1 wi + ↵.(fij � �.wi)

wedge 2 =
P2n/R

i=n/R+1wi + ↵.(fij � �.wi)

...

wedge R =
PRn/R

i=(R�1)n/R wi + ↵.(fij � �.wi)

end
j = j + 1

end
epoch = epoch+ 1

end

The partial derivative of the regularization part is represented by the following equation:

@

@wR
�. k w k2= 2.�.wR (3.4)

The partial derivative of the penalty part is represented by the following equation:

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 31

@

@wR
(1� yi(w

Txi + b)) =

8
<

:
0, if yi(wT .xi + b) � 1

�yi.xiR, else
(3.5)

Algorithm 2: Partitioning Testing Algorithm for SGD-SVM Model
Input : Test Dataset Dtest, Test out To Machine Learning Model M ,

No Of EdgeNodes R
Output: Accuracy L
Model, M = Parameter lists Wi , i 2 0, 1,, n
class=[]
Procedure DecisionFunc(D, M)

for Xq 2 Dtest do

Dedge 1 =
Pn/R

i=1 wi ⇤ xqi
Dedge 2 =

P2n/R
i=n/R+1wi ⇤ xqi

...
Dedge R =

PRn/R
i=(R�1)n/R wi ⇤ xqi

DReduce = Dedge 1 +Dedge 2 + . . .+Dedge R

if DReduce > 1 then
class.append(1)

else
class.append(-1)

end
if To == class[i] then

po = po+ 1
else

ne = ne+ 1
end

end

acc =
po

po+ ne
⇤ 100

return

In case the model predicts the class of the query point correctly, we need to update the

weights with the regularization gradient (equation 3.4) only. The following equation shows

the weight updation for correctly classified points:

w = w � ↵.(2�w) (3.6)

In case the model predicts the class of the query point incorrectly, we need to update the

weights with the regularization gradient (equation 3.4) and the loss gradient (equation

3.5). The following equation shows the weight updation for misclassified points:

w = w � ↵.(2�w � yi.xi) (3.7)

The weight updation process is carried out on various available edge nodes (as shown in

Algorithm 1). For a given dataset, this process of updating weights is carried out in a

parallel and distributed manner for several epochs until we get an optimized SVM model.

32 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

Table 3.2: Details of di↵erent datasets

Dataset Name Instances Features Format No. of classess
Iris [98] 154 4 Text 3

Tra�c signs [99] 39,209 3x32x32 Images 43
CIFAR-10 [100] 60,000 3x32x32 Images 10
Fruits [101] 10,901 3x110x110 Images 6

The next section discusses about deploying the above trained model on di↵erent edge

nodes for testing the trained SGD-SVM model.

3.4.2.2 Partitioned Testing Algorithm

After training using the proposed approach, the SVM model is used to predict future query

data ‘X 0
q 2 Dtest. The model’s testing is done in a parallel and distributed manner. Vector

multiplication is done among the query data and respective weights of the feature on ‘R0

edge devices (shown in Algorithm 2). These sub results on each edge node are represented

as Dedge 1, Dedge 2,......,Dedge R. The sub results reduce to ‘D0
Reduce, after summation. If

this value is greater than 1, then the data point is classified as a positive (+1) class.

Otherwise, if the reduced value ‘D0
Reduce is less than 1, then the data point is classified as

a negative (-1) class. In order to calculate the accuracy of the model while testing, the

following formula is used:

acc =
po

po+ ne
⇤ 100 (3.8)

Here, po depicts the correctly classified data points in the test data, and ne depicts the

misclassified data points in the test data.

3.4.3 Experimental Results & Analysis

3.4.3.1 Implementation setup

All the experiments were conducted on five raspberry pi 4GB devices acting as edge nodes.

Each raspberry pi is equipped with 4 GB RAM, quad core Cortex-A72 (ARM v8) 64-bit

SoC along with a 1.5GHz processor frequency. The proposed method was implemented

using Python language (version 3), and the MXNET frameworK [102] has been used for

processing the ML tasks in a parallel and distributed manner. The built-in socket class of

python has been used for networking. Pandas is used for analyzing, cleaning, exploring,

and manipulating data. The Sklearn library is used for machine learning and statistical

modeling including classification, regression, and dimensionality reduction. MatPlotLib

is used for creating high-quality visualizations and graphs. Whereas, Numpy is used to

perform a wide variety of mathematical operations on arrays.

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 33

3.4.3.2 Dataset

Experiments have been performed using four datasets listed in Table 3.2. All the datasets

vary in terms of dimensionality, size, number of classes, and similarity between the present

classes. These datasets are as follows: Iris dataset [98], Tra�c signs dataset [99],

CIFAR-10 dataset [100], and Fruits dataset [101]. We now describe each dataset briefly.

• Iris Dataset: This dataset consists of 150 instances. The number of attributes for

each instance are 4 - sepal length, petal length, sepal width, petal width. There are

3 classes, and each class has 50 instances. The task is to classify the plant based on

its 4 attributes.

• Tra�c Dataset : The classes in this dataset are unevenly distributed. Some classes

have 250 instances, while other classes have 2500 instances. Due to this, the dataset

is highly imbalanced. Each instance is a 32 x 32 tiny colour image.

• CIFAR-10 Dataset: This dataset has 10 classes, such as - birds, cats, ships, horses,

trucks etc. Therefore, the dataset consists of mutually exclusive, and very distinct

classes.

• Fruits Dataset: This dataset consists of 110 x 110 colour images of fruits. The task

is to classify whether the fruit present in the image is fresh or rotten. This dataset

comprises of 6 classes.

3.4.4 Results & Discussion

3.4.4.1 E↵ect of Number of edge devices on accuracy & training time

This experiment shows how well the proposed approach performs against di↵erent sizes of

datasets. The proposed method’s behaviour for the SVM model is investigated using the

four datasets that are specified in Table 3.2. This experiment runs the SVM model after

partitioning it into di↵erent edge nodes, starting from one to five, for ten epochs. Figure 3.2

demonstrates the corresponding results for accuracy and training time for partitioning the

model incorporating the proposed approach. In Figure 3.2 (a), it is observed that the

model training accuracy slightly varies for the di↵erent number of partitions, for all the

datasets. But, if we look into the corresponding dataset training times in Figure 3.2 (b),

we can see as the number of partitions (Edge nodes) increases, the training time decreases

significantly. Although the training time does not change much for small-size datasets,

the large-size datasets may benefit using the proposed approach. Hence, the experimental

results depict the e�cacy of the model partitioning approach in terms of reducing the

training time, and maintaining a decent accuracy simultaneously.

34 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

(a) (b)

Figure 3.2: (a) Accuracy comparison for di↵erent datasets, (b) Training time comparison
for di↵erent datasets

Figure 3.3: Comparison of model partitioning approaches (non-partitioning, proposed partitioning
and random partitioning) using SVM

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 35

(a) Train Accuracy vs fraction
of training data

(b) Test Accuracy vs fraction of
training data

(c) Training time vs fraction of
training data

Figure 3.4: E↵ect of varying number of data points on di↵erent datasets

3.4.4.2 Comparison of the proposed partitioning approach with

non-partitioning and random partitioning approaches

This experiment shows how the SVM model’s partitioning a↵ects the model training time

over the Iris dataset, the tra�c signs dataset, and the CIFAR-10 dataset. The proposed

approach uses a fixed number of edge devices arrived at after theoretical analysis. The

partitioned units of the model are distributed to these five available edge devices that

can compute in parallel. Moreover, we compare the results of the proposed model with

non-partitioning and random partitioning approaches. The non-partitioning approach is

the regular model that runs on a single edge device without a model partition, where the

random partitioning approach partitions the model randomly between 1 to 5 edge devices.

Figure 3.3 shows the comparison of training time for di↵erent approaches. The number

of epochs is set to 300 for the Iris dataset, 100 for the Tra�c and CIFAR-10 datasets.

The number of partitions in the proposed approach is estimated prioritizing the accuracy

over training time. In the case of the non-partitioning approach, the training time for

the SVM model is higher than any other approach for achieving maximum accuracy.

However, the proposed partitioning approach o↵ers lower training times for Iris and Tra�c

signs datasets, over random and non-partitioning approaches. The proposed approach

considers the number of partitions for all datasets as 5. On the other hand, the random

partitioning approach considers the number of partitions for Iris, Tra�c, and CIFAR-10

datasets as 4, 3, and 5, respectively. The required training times using the proposed

approach are 3.8000s, 112.4300s, and 107.3243s for the above datasets. Although the

random partitioning approach for the CIFAR-10 dataset o↵ers a shorter training time

than the proposed approach, a high accuracy is achieved in the proposed approach. This

shows the necessity of finding the optimal number of partitions, which we plan to explore

in our future work.

3.4.4.3 E↵ect of varying number of data-points on Accuracy & training time

In this experiment, the performance of proposed partitioning algorithm has been measured

when the number of data points are reduced to 75%, 50% & 25% respectively (as shown in

figure 3.4). When the training examples are reduced to 75% (i.e. Train data frac=0.75),

36 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

(a) Training Accuracy vs
fraction of features

(b) Test Accuracy vs fraction of
features

(c) E↵ect of varying number of
features on di↵erent datasets

Figure 3.5: E↵ect of varying number of features on di↵erent datasets

then the test and train accuracy of all the datasets are not a↵ected much. But, the training

time is reduced for all datasets due to less number of computations. When the data points

are reduced to 50%, then the performance of the proposed approach was observed to be

good for the Iris and Fruits datasets, because they have less classes and therefore, a large

number of data points of all the classes are available for model learning. Iris performed

well in all cases because it has linearly separable data with 4 dimensions. The tra�c

dataset shows the worst performance when the training dataset is reduced beyond 75%,

because it has a large number of classes (i.e. 43). So, the training examples available

for each class in the training data are less. The poor quality of images and imbalance

of data points for certain classes have contributed to the poor performance of the tra�c

dataset. As the data points are reduced, the training time experiences a reduction as well.

The best results for all the datasets were recorded for Train data frac=0.75, because it

records almost equivalent training accuracy with good generalization performance (test

accuracy), and reduced training time, as compared to the case when all the data points

in the datasets were considered.

3.4.4.4 E↵ect of varying number of features on Accuracy & training time

In this section, the performance of the proposed approach was recorded when the number

of features were reduced to 75%, 50% and 25%. The fruits dataset performed well,

even when the features were reduced to 50% (as shown in figure 3.5). This is due

to high dimensionality and good resolution of the images (i.e. good image quality).

The CIFAR-10 and tra�c datasets o↵ered a sub-par performance when 50% of the

features were used. This is because both datasets have 32x32 tiny colour images of

poor resolution. Even though CIFAR-10 and tra�c datasets have the same resolution of

images, CIFAR-10 performed well in comparison because all the classes belong to di↵erent

domains. CIFAR-10 contains images of dogs, birds, trucks, ships, horses etc. Therefore,

features needed to represent each class are very di↵erent. For instance, if there are images

of trucks and dogs in the dataset, it will be easy to correctly classify them with less

number of features. In the Tra�c dataset, in order to identify tra�c signs, all features

are important because 10 km speed limit sign is very similar to 70 km speed limit sign.

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 37

Therefore, missing few features could lead to misclassification.

In conclusion, when the ML tasks (i.e. weights updation operation) are performed in

parallel and distributed manner then the training time is reduced significantly without

much a↵ecting the accuracy. While in case of datasets having less number of classes, the

data points used for training the SVM model can be reduced significantly without much

a↵ecting the training/test accuracy. Due to this the training time of the model reduces

significantly. On the other hand, when the dataset comprise of diverse classes, then the

dimensionality of the dataset (i.e. number of features) can be reduced significantly without

a↵ecting the accuracy performance. The dimensionality reduction results in reduced

number of computations and hence the time taken for training the model is reduced.

3.5 Part B - Towards Safe Online ML Model Training and

Inference on Edge Networks

3.5.1 System Model & Assumptions

We consider an autonomous vehicle system application requiring real-time decision-making

in tasks such as object detection, which is facilitated by online ML model training. The

system comprises edge devices, including onboard computers and individual processors

within multiprocessor embedded systems, alongside a centralized server responsible for

model training and management. Edge devices communicate with each other and the

server via wired and wireless networks. The server can also link with external units like

Roadside Units (RSUs) to distribute model training tasks e�ciently. By employing edge

devices, tasks are performed closer to the data source, reducing latency and boosting

system performance [103]. Figure 3.6 illustrates this architecture. In this setup, an initial

pre-trained model, based on a representative dataset, is updated incrementally as new

data arrives. Symbols used throughout this work are defined in Table 3.3.

3.5.1.1 Assumptions

• The system generates real-time data from various sensors like cameras, lidars, radars,

and GPS.

• It uses supervised machine learning models, SVM and RF, for decision-making.

• Edge networks, ranging from single to multiprocessor systems, have each processor

acting as an edge device, sharing data, instructions, and synchronization signals.

• The server manages model training tasks, workload distribution among edge devices,

and result aggregation.

• Safety and Reliability: Safety encompasses the prevention of undesirable

consequences resulting from vulnerabilities or incorrect predictions, whereas

38 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

Figure 3.6: Machine learning-enabled edge networks

reliability pertains to maintaining consistent performance and accurate ML models

during continuous updates.

3.5.2 Proposed Approach & Methodology

The proposed framework presents a parallel computing architecture that splits an ML

model into di↵erent processing units on edge networks, ensuring safe execution. Figure 3.7

shows the detailed workflow of the proposed framework, where the optimal split decision

is taken by minimizing the net training time. The split decision module implements

a partitioning algorithm that determines how the model should be split and where the

partitioned models should be run, accelerating the application performance. We discuss

the various steps of our proposed approach as follows:

3.5.2.1 Model Partitioning

Given edge devices’ computational constraints, we propose Algorithm 3 to find the

optimal partitioning s⇤, and mapping of model splits to edge devices. This algorithm

accommodates the computational needs of models like SVM and RF, that have been used

in this study.

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 39

Table 3.3: Symbols and their descriptions

Symbol Description
sk kth partition strategy of ML model (refers to a tuple of model splits)
S Set of all possible partitions of the machine learning model.
mi The ith split in the machine learning model.
tmi Training time for split mi.
lmi Communication latency for split mi.

TTMRk,mi
Training time required for TMR for the mi-th split of kth partition.

sk,i Set of model splits assigned to ith edge device in the kth partition.
s⇤ Optimal partition
e Number of edge devices
di Edge devices i
pi Processing capacity of edge devices di
m Submodel which refers to sk,i
✏ Convergence threshold for the objective function improvement

Tfail,mi Worst case or failure time for the ith model split

Figure 3.7: Proposed framework for ML model Partitioning

40 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

Algorithm 3: Optimal Model Partitioning and Mapping for Edge Networks
Input: ML model M , edge devices processing capability pi for device di, 8i 2 n, �,

�, communication latency lmi , training data
Output: Optimal partitioning s⇤ and mapping of model splits to edge devices
/* Initialize search space randomly */

S s1, s2, . . . , sk
while �f(sk) � ✏ do

/* Evaluate the obj function for each sk */

for each partitioning sk 2 S do
f(sk) evaluateObjectiveFunction(sk) based on Equation (3.1)

end
/* Update the search space */

S S ±�sk to improve f(sk)
Sort edge devices: sort(P, pi)
/* Assign model splits to edge devices */

for each submodel m do
pmin argmin

pi2P
pi s.t. (CT3)

/* Update the available capacity */

pmin pmin � wm

end
Calculate lmi for each model split mi

Sort model splits based on lmi : sort(M, lmi)
/* Schedule mi 2 m on edge & update time */

for each model split mi do
dj : dj dj [mi; s.t. to (CT6) and (CT7)
tmi calculateTrainingTime(mi, dj)
TMRmi calculateTMRTime(mi)

end

Calculate �f(sk) = f(soldk) - f(snewk)
end
/* Select the best partitioning */

Select s⇤ = argmin
sk2S

f(sk)

Train split mi on edge device with training data
For each model split mi, perform TMR: ymi majority(y1mi

, y2mi
, y3mi

)
return s⇤, mapping of model splits to edge devices

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 41

3.5.2.2 Algorithm Overview

The proposed algorithm iteratively explores the solution space S with a set of random

model partitionings s1, s2, . . . , sk. It evaluates each partitioning based on an objective

function, and updates the search space to improve the function value. The search process

continues until the change in the objective function�f(sk) is below a threshold ✏. For each

partitioning sk 2 S, the algorithm evaluates the objective function f(sk) using Equation

(3.1), and updates the search space accordingly.

Edge Device Mapping: Post identifying the optimal partitioning, the algorithm maps each

model split to an edge device, based on its processing power. It sorts edge devices by

processing capacity (sort(P, pi)), and assigns each sub-model m to the edge device with

the least available capacity (pmin), in line with Constraint (CT3), updating the device’s

available capacity.

Scheduling and TMR Constraints: The algorithm schedules model splits for training on

edge devices, considering communication latency lmi and TMR constraints. Model splits,

ordered by their communication latency, are scheduled on assigned edge devices (dj),

optimizing training time, while adhering to TMR constraints. Training and TMR times

for each model split mi on edge device dj are computed and updated.

Training and TMR Integration: After selecting the optimal partitioning s⇤, the framework

conducts online training for each model split mi on assigned edge devices, enabling

real-time adaptation. Concurrently, it implements TMR for each mi by selecting the

output with at least two matching instances. The framework then returns the optimal

partitioning s⇤ and model-to-device mapping. This optimal partition minimizes training

time, while ensuring worst-case execution or failure threshold Tfail is not exceeded, and

the processor utilization remains within acceptable limits. This problem is solved using

mixed integer linear programming (MILP), allowing continuous model improvement in a

dynamic context.

Time Complexity Analysis of Algorithm 3: The time complexity of Algorithm 3 is driven

by its key operations. The initialization of the search space S takes constant time, O(1).

The main loop, iterates over the total number of possible partitions, nS , until the objective

function change (�f(sk)) is below a threshold ✏, has time complexity O(E · nS) for the

evaluation of the objective function and O(U ·nS) for updating the search space, where E

is the time taken by objective function evaluation, and U represents the time consumed

in updating the search space. Sorting and assignment of edge devices and model splits

result in complexities of O(e log e) and O(nm · e) respectively, where e is the number of

edge devices, and nm is the number of model splits. Finally, the calculation of latency

and scheduling of model splits add complexities O(nm log nm) and O(nm), respectively.

The overall time complexity can be approximated as O(E · nS + U · nS + e log e + nm ·
e + nm log nm + nm). This explains the algorithm’s scalability and e�ciency with larger

datasets and complex partitioning scenarios.

SVM on Edge Devices: SVMs can be e↵ectively deployed on edge devices by

partitioning the training dataset and training multiple binary classifiers in parallel. For

42 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

(a) SVM model partition for parallel computing (b) RF model partition for parallel computing

Figure 3.8: (a) SVM model partition for parallel computing, (b) RF model partition for
parallel computing

multi-class classification, one-vs-one or one-vs-rest approaches can be adopted, each binary

classifier distinguishing between class pairs or one class against the rest, respectively. The

partitioned classifiers can be assigned to di↵erent edge devices. After individual classifier

training, outputs are combined using majority voting or other ensemble techniques to

determine the final class label. This parallel structure, illustrated in Figure 3.8a, allows

for scalable, e�cient SVM deployment on edge devices.

RF on Edge Devices: Training RF models on edge devices involves dividing decision

trees and allocating them to di↵erent devices dj . This method reduces the overall training

time by leveraging the combined processing power of the edge devices. After training,

outputs from individual trees are combined for the final prediction, as shown in Figure 3.8b.

3.5.2.3 Dispatching Partitioned Models

This step assigns partitioned models to edge devices, maintaining execution order via

associated threads. We use a global queue to join all processes and return the trained

models to the master edge device. The master device combines all models to predict the

training input. During partitioned model training, the master device ensures the correct

integration of all processes.

3.5.2.4 Safe Integration using TMR

Safe execution is essential when partitioning models across edge devices. To counter

issues like resource unavailability, aging, hardware compromise, data corruption, and

side-channel attacks that may cause edge devices to produce incorrect results, we propose

the integration of the TMR technique. This proven method enhances system reliability

in edge network machine learning training. TMR, implemented in parallel on three

devices, uses a majority voting system to eliminate single failure points. To ensure trusted

computation, we calculate the training module’s reliability. The reliability for training

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 43

a partitioned model mi at time t can be calculated using Equation 3.9, where R is the

reliability of correct execution.

R(t) = R3(mi, t) + 3(1�R(mi, t)) ⇤R2(mi, t)

R(t) = 3R2(mi, t)� 2R3(mi, t)
(3.9)

In the above Equation 3.9, R3(mi, t) represents the probability that all three edge devices

produce the correct output, and 3(1�R(mi, t)) ⇤R2(mi, t) is the probability that two out

of the three edge devices produce the correct output, while one fails. The final equation

simplifies this computation.

3.5.3 Experimental Results & Analysis

To evaluate the e↵ectiveness of our proposed framework, we conducted di↵erent

experiments on parallel computing architecture, for multi-class classification problems

using SVM and RF. We investigate the performance of the model partitioning algorithm

for minimizing the net training time.

Dataset: The dataset employed in this study, titled “Tra�c, Driving Style, and Road

Surface Condition” [104], was sourced from Kaggle and initially used by Ruta et al. [105]

to develop machine learning models for Internet of Things (IoT) applications. The data,

comprising 24,957 data points, were collected from two vehicles, a Peugeot 207 1.4 HDi,

and an Opel Corsa 1.3 HDi, using an OBD device paired with a smartphone. The dataset

encompasses 14 features such as “altitude change”, “engine load”, “speed variance”, “fuel

consumption”, etc. A comprehensive feature list and descriptions are available at [105].

The dataset is categorized into three sub-problems: road surface conditions, road tra�c

conditions, and driving style.

Environment: The experiments were conducted on multiprocessor systems,

representative of advanced edge networks, with a shared network, and a Linux

5.1.0-52-generic (x86 64) kernel integrated into the Ubuntu 20.04 LTS operating system.

The multiprocessor systems consist of four Xeon(R) CPU E5-2623 v4 @ 2.60GHz

processors, each endowed with eight cores, 4 GB of RAM, a 256 KiB L1 cache, and a

2 MiB L2 cache. This configuration provides a total of 16 GB RAM across the system,

accommodating the SVM and RF models employed in our study. Additionally, the shared

network o↵ers su�cient bandwidth to meet the data flow requirements of our setup.

We opted for multiprocessor systems as an edge network to emulate modern edge devices’

multicore structure. This allows us to explore parallel processing, resource allocation, and

crucial inter-processor communication. This choice makes our study reflective of current

edge capabilities, and ensures relevance for real-world edge computing scenarios.

44 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

(a) (b) (c)

Figure 3.9: (a)Training accuracy for online model training with input size 200 (b)Training
time for di↵erent training instances (c) Inference time for di↵erent training instances

3.5.3.1 Analysis of ML Model Parallel Computing on Edge

In this experiment, we used a pre-trained model as the basis for online model training.

This initial model was trained on a dataset of 10,000 samples, which captured the general

characteristics of the problem. For the online training phase, we utilized a batch size

of 200 for partial model training, applying a learning rate of 0.001. The Algorithm 3

determined the optimal model splits by considering the communication latency and

processing capability of each processor in the multiprocessor system. This approach

enabled the e�cient distribution of the model into four partitions across two edge devices

or processors. For the training and testing datasets, the input feature shapes were: (19965,

14) and (4992, 14). The online model training process incrementally updated the model

using the remaining 9,965 samples beyond the initial 10,000 samples, allowing the model

to adapt to new data patterns, over time.

3.5.3.2 Accuracy

The SVM and RF algorithms were evaluated based on their training accuracy. From

Figure 3.9a, it can be observed that the SVM model has a stable performance over the

RF model. The SVM accuracy ranges from approximately 85% to 90%, while the RF

accuracy ranges from around 82% to 93%. The performance improvement in the SVM

model can be attributed to its ability to find an optimal hyperplane that maximizes the

margin between di↵erent classes, making it well-suited for high-dimensional datasets, like

the one used in this experiment.

The learning rate (0.001) in this experiment impacts model training by modulating weight

updates. Lower learning rates promote thorough solution space exploration, potentially

increasing model accuracy, despite slower convergence. Conversely, higher rates may

lead to faster convergence, risking model accuracy due to the potential overshooting of

the optimal solution. Our chosen rate of 0.001 seems to strike a balance between fast

convergence and accuracy.

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 45

(a) (b) (c)

Figure 3.10: (a)Training time for di↵erent number of model splits (b)Communication time
and TMR overhead for di↵erent numbers of splits(c) CPU and memory usage (%) for SVM
model training

3.5.3.3 Training and Inference Time

We analyzed the online model training time for both SVM and RF algorithms, which were

used to process a batch size of 200 for the remaining 9,965 training samples on top of the

pre-trained model. The training time for SVM and RF exhibited di↵erent trends, as shown

in Figure 3.9b. For the SVM, the training process utilizes the One vs. All (OVA) approach

for multi-class classification. This enables the training of multiple binary classifiers in

parallel, which results in reduced training time. On the other hand, the RF algorithm

constructs an ensemble of 100 random decision trees, which can be computed in parallel by

distributing the trees evenly among the available processors. The optimization algorithm

finds the optimal distribution of the trees in a for loop parallelization, minimizing the

overall training time.

Both classifiers were implemented using the sklearn library with default hyper-parameters,

ensuring consistent configurations across the models. During the training process, the

model split was executed on a separate processor, and the inter-processor communication

time was recorded to assess the impact of parallel computation. We observe that the SVM

generally takes less time in training than the RF. This di↵erence can be attributed to the

e�ciency of the OVA approach in SVM training, which allows for faster parallelization and

computation compared to the RF’s decision tree construction and aggregation process.

Furthermore, we examined the inference times for 100 sample test inputs using the trained

SVM and RF models. The inference times for both SVM and RF models are illustrated

in Figure 3.9c. It is apparent that both SVM and RF algorithms typically exhibited lower

inference times. However, the RF model tended to have faster inference times compared

to SVM. The maximum inference time for SVM was approximately 30.5 ms, whereas

RF had an inference time of about 24.9 ms. In real-world CPS applications, inference

time is crucial in determining the system’s responsiveness, particularly when real-time

decision-making is essential.

46 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

3.5.3.4 Comparing Net Training Time and Communication Latency

3.5.3.4.1 Net Training Time

In this experiment, we analyzed the net training time for di↵erent numbers of model splits,

using both SVM and RF. We considered five di↵erent scenarios: no split (0), 2 splits, 3

splits, 4 splits, 5 splits, and 6 splits. For the no-split case (model split zero), the model

is trained as a single unit, without any partitioning. From split 2 onwards, the model is

divided into the respective number of splits.

As illustrated in Figure 3.10a, training time generally decreased with increasing splits,

with exceptions noted for SVM, at 5 and 6 splits. This indicates that the workload

distribution across sub-models reduced training time siginficantly, up to 4 splits. Beyond

this, no significant improvements were observed, while additional communication latency

was incurred. The optimal split number for both SVM and RF was found to be 4, resulting

in net training times of 60.48 and 123.5 seconds, respectively.

3.5.3.4.2 Communication Latency and TMR Overhead

As shown in Figure 3.10b, communication latency and TMR overhead were analyzed for

various model splits. Communication latency tended to increase with the number of splits.

This increase in communication latency can negatively a↵ect the optimal number of model

partitioning splits, as it can o↵set the benefits of reduced training time achieved through

parallelization.

For the optimal number of splits (in this case, 4), SVM and RF models exhibited total

latencies of 1.9784 and 3.58 seconds, respectively. Corresponding TMR overheads were

1.2785 and 1.6424 seconds, respectively. By integrating TMR into model training and

operating devices in parallel, we ensured reliability, without significant delays in model

training.

3.5.3.5 Resource Utilization Comparison:

In this experiment, we compared resource utilization across three SVM model training

scenarios. Each considers di↵erent splits, and we measure CPU usage, memory usage, and

training time with online training data (see Figure 3.10c).

• Scenario 1: Single-edge device training (no split).

• Scenario 2: Training with two edge devices (4 splits).

• Scenario 3: Training with three edge devices (6 splits).

3.5.3.5.1 Scenario 1: Single-edge training (no split)

Training was conducted on a single-edge device, utilizing one core. The remaining cores

handled TMR configurations. CPU usage was observed to be 37.5% (3 cores out of 8),

and memory usage was 33%, for 4GB. As only one core was active, training took longer

Chapter 3. A Framework for Partitioning ML Models on Edge Architectures 47

(138.35 seconds), which may not always be e�cient for real-time applications. This delay

could impede real-time applications, highlighting the need for more e�cient multi-core

processing solutions.

3.5.3.5.2 Scenario 2: Training with two edge devices (4 splits)

In this scenario, the model was divided into four splits, and trained on two devices. Each

edge device used two of its cores to run two model splits in parallel, and allocated the

other cores for TMR.

As the number of utilized cores increased, the CPU usage rose, from 37.5% to 75%, and

memory usage rose to 70.2%,for 8GB. However, due to parallel processing, training time

reduced to 60.48 seconds, showing a 56.3% improvement over Scenario 1. This approach

allows for more e�cient and suitable training for real-time applications.

3.5.3.5.3 Scenario 3: Training with three edge devices (6 splits)

With six model parts assigned across three devices, more cores were used, leading to 93.2%

CPU usage, and 90% memory usage. Training time reduced further to 64.48 seconds, this

was observed to be slightly longer than Scenario 2. This indicates that while more edge

devices and model splits can increase resource usage, the improvement in training time

may not necessarily scale proportionally.

In summary, optimal balance in device count, model splits, and resource utilization is key

for e�cient training in real-time applications. Scenario 2 appears to be the most e�cient,

but the optimal configuration will depend on specific application needs, and edge device

resources.

3.5.4 Threats to Validity

Suitability of edge networks for real-time applications: While training machine learning

models on edge networks o↵ers distinct advantages such as: privacy preservation, reduced

overhead, and quicker decision-making, it may not be universally suitable for all real-time

applications. The practicality and e�cacy of our approach can vary depending on the

application’s unique requirements and constraints. However, edge-based training can

provide substantial benefits for applications requiring low-latency responses, such as

autonomous vehicles, drones, and industrial IoT systems.

Impact of learning rate on online machine learning model training: The learning rate

directly a↵ects resource e�ciency, adaptability, convergence speed, and overall model

performance in edge networks. Balancing the learning rate is key for resource utilization

and convergence. Future work will focus on learning rate optimization for edge-based

training.

Generalizability of the proposed approach: We chose SVM and RF models for our initial

investigation, due to their distinctive learning algorithms and wide usage in various

applications. Although these models often exhibit a manageable computational footprint

48 Chapter 3. A Framework for Partitioning ML Models on Edge Architectures

for lower-resource devices, their complexity and demands can vary substantially depending

on the problem and dataset specifics. This research showcases our approach’s potential

with these models, and future studies will extend it to more complex machine learning

models, such as DNNs, to test its broad applicability and performance.

3.6 Conclusion

With the growing demand for data processing, ML models have become more complex, and

may exceed the computational power of individual machines. As a result, training large ML

models necessitates optimal model partitioning to enable parallel computing architectures

in edge networks. Our proposed framework tackles this by distributing partitioned models

across these networks. To ensure safety, our architecture uses the TMR technique for

trusted computation, enhancing system reliability.

Chapter 4

An Intrusion Detection System on

Fog Architecture

4.1 Introduction

Due to advancements in technology, electrical appliances are now increasingly

inter-connected. The goal of Internet -of-things (IoT) is to access every appliance or device

through the Internet. This is done in order to operate these gadgets from remote locations.

The goal is to improve our day-to-day life. However, this technology raises serious privacy

and security issues. As IoT devices are resource-constrained, it is impractical to secure

them using traditional approaches. Hence, a light-weight Intrusion detection system (IDS)

is required. In this work, we implement a machine learning based Network Intrusion

Detection (NID) system in a multi-node fog environment using a Raspberry Pi cluster

on a local area network. The proposed Pi-IDS system has been evaluated on ADFA-LD

datasets. These datasets comprise of new generation system calls for various attacks

on di↵erent applications. The proposed fog architecture o↵ers significant advantages in

terms of latency, energy consumption and cost over traditional cloud or dedicated personal

computer systems. The experiments show that we are able to achieve a Recall of 89%in

ADFA-LD with the XGBoost model. The proposed system was able to predict intrusions

with an inference time 130 ms, in comparison to Cloud-based inference time of 735 ms,

with an estimated running cost of 201 INR/month, in comparison to the Cloud cost of

2051 INR/month.

Further, to enhance the performance in the case of multi-class intrusion attacks, we

implemented a lightweight distributed IDS framework, called FCAFE-BNET (Fog based

Context Aware Feature Extraction using BranchyNET). The proposed FCAFE-BNET

approach considers versatile network conditions, such as varying bandwidth and data load

before allocating inference tasks on Cloud/Edge resources. Early exit DNN has been used

to obtain faster inference generation at the edge. As in many cases, the weights that

the model learns in the initial layer may be qualified enough to perform the required

task, such as classification. Instead of increasing the computational complexity by using

subsequent layers of Deep Neural Network (DNN) for generating the inference, we have

used the early-exit mechanism in DNN. The mechanism of DNN with early-exit layers

helps to predict a wide range of testing samples through these early-exit branches when

they cross the threshold, which maintains the confidence values corresponding to the

50 Chapter 4. An Intrusion Detection System on Fog Architecture

inference. By employing this approach, we achieve a faster inference with significantly

high accuracy. The proposed FCAFE-BNET framework works for both Network-based

and Host-based IDS: NIDS and HIDS. Our experiments demonstrate that, in comparison

to recent approaches, the proposed FCAFE-BNET approach has achieved a 39.12% -

50.23% reduction in total inference time on benchmark real-world datasets: NSL-KDD,

UNSW-NB 15, ToN IoT, ADFA LD.

Internet-of-Things (IoT) interconnect our day-to-day devices through many

communication channels [106]. These channels can be in numerous forms, such as

the Internet, GPS or Bluetooth. The main goal is to gather information from multiple

sources, and use it smartly for various purposes. As the web of IoT is growing, more

concerns about its security and privacy are becoming prevalent [107]. IoT devices are

endangered by various types of attacks, such as port scanning and man-in-the-middle

attacks. Monitoring attacks using traditional intrusion detection approaches is

computationally intensive, and requires significant storage space. IoT devices, being

resource-constrained, may not be able to store data and analyze attacks in real time.

Therefore, these computationally intensive intrusion detection tasks are sent to the cloud

for performing inference. The number of IoT applications is increasing rapidly, and

sending huge amounts of data for attack monitoring may be overwhelming for present

network capabilities. So, in order to reduce the network latency and monitor the attacks

in real time, the edge computing paradigm may be employed.

Edge computing may be used to monitor attacks at the circumference of the network,

within the proximity of the source generating the data. By placing the computing device

closer to the point of data generation, the attacks in the network may be monitored

in real-time, which in turn protects the network from security threats. Edge devices

are crucial in scenarios where real-time tasks demand adequate computing and storage

capabilities, as they help reduce latency by fast processing of data within the network.

Hence it can be inferred that Edge computing is well suited for IoT security [108]. It is

highly reliable and solves the high network latency issue that the cloud lacks.

Network Intrusion Detection Systems (NIDS) are installed at numerous nodes within an

IoT network periphery to detect these attacks [109]. These nodes are chosen to cover

the entire network. NIDS installed at various points keep observing the network tra�c

passing through. The administrator is notified if the observed tra�c matches any previous

malicious tra�c. These nodes can be in various forms, such as routers, cameras, or other

electronic controllers. For instance, in order to monitor and track the flow of the network

from di↵erent sources, the IDS deployment can be done on the gateways, so that other

connected clients & hosts can be monitored, regardless of their firmware and operating

system. These nodes are less robust computationally, so we need a lightweight NIDS.

In order to reduce the computation, we have used an early-exit mechanism in DNN, to

obtain faster inferences. The early-exit mechanism accelerates the inferences by generating

output at the initial layers of the DNN, thus reducing the computational complexity of

the mission-critical tasks. The early-exit mechanism in DNN leads to an accuracy-latency

Chapter 4. An Intrusion Detection System on Fog Architecture 51

trade-o↵ i.e. the overall inference latency is reduced using the early-exit approach, but

it might adversely a↵ect the inference accuracy. In the proposed work, we have tried

to balance out latency and accuracy, while executing tasks on edge-cloud synergy. The

performance of the proposed framework has been evaluated on benchmark datasets of

NIDS, like NSL-KDD [110], and CICIDS2017 [111]. The proposed framework is evaluated

on new-generation IoT and Industrial IoT based NIDS datasets, such as UNSW-NB15

[112], and ToN IoT [113]. These datasets have gathered various cyber-attacks and normal

events from telemetry data of Industrial IoT and IoT sensors. The data collection is

done on a large-scale real-life IoT network with three layers: Cloud, Edge/Fog, and IoT

devices. The proposed technique aims to extend globally to recent and older NIDS datasets

and other IDS, such as Host Intrusion Detection Systems (HIDS) [114]. To achieve this

objective, we have converted the given datasets to 2-Dimensional (2D) vectors (i.e. 2D

images). The pre-processing method for the above task (i.e. image conversion) is di↵erent

for each dataset, in order to obtain the best results. The results are validated on a

benchmark dataset of HIDS, such as ADFA-LD [115]. Most of the researchers in the past

have worked on binary classification (i.e. attack or not attack), without considering the

nature of the attack. A few researchers proposed methods for multi-class classification, but

the performance of these frameworks was not up to the mark. We observe that decoding

the type of attack, along with the presence of the attack can help to deal with the attack.

In this work, we have proposed a noble feature extraction technique, which performs well

in the case of multi-class classification.

4.2 Problem Statement

Assuming that our application needs to meet its deadlines, but can bear moderate accuracy

losses, we need to balance out the accuracy and the latency. So, in our work, we have

optimized the DNN right-sizing such that the inference accuracy is maximized within the

defined latency requirement. In upcoming sections, we discuss in detail how we optimise

the above latencies in order to make our system fast as well as robust under various

dynamic environments.

4.3 Contributions

The major contributions of our proposed work in this chapter can be summarized as under:

• The training and testing of ML models has been done in a distributed manner, using

a Raspberry pi cluster as a fog environment.

• In order to study the performance of the proposed technique on cloud and fog

infrastructure, The trained model has been deployed on the cloud, as well as on

the pi-cluster. The experiments show that the pi-cluster (fog) took less time for

inference, as compared to the cloud.

52 Chapter 4. An Intrusion Detection System on Fog Architecture

• In order to deal with class imbalance, the SMOTE technique is applied, which has

improved the performance of the proposed approach significantly. Feature reduction

is performed using PCA. This reduces the computations significantly, and thus

reduces the training & testing time of the model, without a↵ecting the accuracy

much.

• The proposed FCAFE-BNET framework optimizes DNN right sizing (i.e. early-exit

mechanism) for maximizing the accuracy within the given latency requirement

through edge-cloud collaboration. The e�cacy of the proposed approach is

demonstrated on the test-bed using network traces of real-world datasets.

• The proposed FCAFE-BNET framework considers network versatile environments

(i.e. varying bandwidth, data load) for better performance in real-world scenarios.

For performing fast inferences in case of low bandwidth, the inference task is

performed on fog-cluster/fog-device with reduced computational complexity, instead

of o✏oading it to the Cloud.

• The proposed data transformation and feature extraction method distinguishes the

various attack patterns e↵ectively and significantly improves the multi-class IDS

performance.

4.4 Part A - An Intrusion Detection System on Fog

Architecture

4.4.1 Proposed Framework

As shown in Figure 4.1, the proposed framework comprises of four phases: feature

extraction, feature selection, selecting the machine learning model, deploying and

evaluating the trained model on a Raspberry Pi Cluster and the Cloud.

4.4.1.1 Feature Extraction

The considered dataset consists of system call traces. There are di↵erent files which

consist of a number of system call traces. Each file is labelled according to the class it

belong to, such as : Add-User, Hydra-FTP, Normal etc. We use the modified vector

space representation technique on system call traces for generating our dataset, upon

which we apply various Machine Learning algorithms for predicting potential attacks.

The n-gram frequency technique is used for feature extraction. N-gram is a sequence of

‘n’ consecutive system calls, each system call being one word. We generate all possible

n-grams, then we calculate the frequency of each unique n-gram. Next, we select the

top-m occurring n-grams as our features for the dataset. The values of ‘n’ and ‘m’ has

been finalized through experimentation. Each system call trace present in the data serves

as single instance in the generated dataset. Once the features have been extracted from

all the available traces (both “normal” and “attack”), for each trace (file) available in

Chapter 4. An Intrusion Detection System on Fog Architecture 53

Figure 4.1: Graphical representation of our work in steps

54 Chapter 4. An Intrusion Detection System on Fog Architecture

the dataset, the selected features are searched. The frequency of occurrence of selected

features in the given trace serves as an instance in the dataset. The label is the same as

the trace name (filename). The data is converted from system call sequence to a tabular

format, where each row depicts the particular system call trace and each column depicts

the selected n-gram feature or label.

Algorithm 4: Fog-cluster Inference Algorithm

Input: 0M 0 Trained model , 0n0 system call traces, 0k0 worker fog nodes
Output: Inference time 0T 0, labels
At Master Fog Node:

• Deploy trained model 0M 0

• 0n0 System call instances

for each worker fog node 2 k:

• Master node sends 0n/k0 instances & Model 0M 0

• Inference results from all 0k0 fog worker nodes is sent back to master node

Return: Inference Time & Predicted Labels

4.4.1.2 Feature Selection

Now that the dataset is built in csv format, we apply standard data cleaning and

pre-processing techniques. In the data cleaning phase, we use an anomaly detection

technique called the Interquartile Range Method[116] to remove extreme outliers, which

might a↵ect the accuracy of our model. We also convert the dataset to be of binary

classes, i.e we classify all attacks under category attack and normal instances as category

normal. The distribution of the dataset is still biased, with 90 percent of the instances

belonging to the normal category. The distribution of the training data is shown in Figure

4.2(a).

To deal with data imbalance, we applied SMOTE(Synthetic Minority Oversampling

Technique)[117]. This is an oversampling technique which increases the number of

instances of the minority class. SMOTE works with the concept of drawing a line between

close minority class data points, and generating points on the line. We apply this technique

only on our train data, to make our model more sensitive to the ’attack’ class of data. The

class distribution of train data after SMOTE is present in Figure 4.2(b). The Principal

Component Analysis (PCA) technique has been used for dimensionality reduction. This

projects the data into axes of maximum variance, thus helping in reducing the number of

selected features from our data, while holding maximum information possible.

4.4.1.3 Selecting Machine Learning Models

On the processed dataset, we have trained various Machine Learning models, namely:

Decision Tree, Random Forest, KNN, SVM, & XG Boost classifier. In order to find the

Chapter 4. An Intrusion Detection System on Fog Architecture 55

Figure 4.2: Original Class Distribution

best parameters to maximize the performance, GridCV search was used. After comparing

the results obtained by GridCV search, the best model has been selected for deployment

on both cloud and pi cluster for further experimentation.

4.4.1.4 Deploying Model

We used Microsoft Azure cloud services for deploying our model. Specifically, we created

a web application instance on the cloud, and deployed our model in the back-end of the

web application. The web page is accessible by the user, and the user can upload the data

file to get the classification, and would also be notified of the time taken by the model to

do the classification. The total time can be calculated using following equation:

Inferencet = Uploadt +Runt +Downloadt + 2 ⇤ latency (4.1)

The trained model has been deployed on the master fog node along with the processed

data. The job of the master fog node is to distribute the process (trained model) and data

to all the worker fog nodes (as shown in Algorithm 4). The total run-time is calculated

by summing the time taken to send the data along with the trained model, running the

classification algorithm , and receiving the processed data (results).

4.4.2 Experimental Setup

We conducted our experiments under two environments: fog & cloud. This section

discusses the setup for both the environments, metrics used to evaluate the performance,

and the dataset used for experimentation.

56 Chapter 4. An Intrusion Detection System on Fog Architecture

Figure 4.3: Deployed Web Application

4.4.2.1 Fog Setup

The experiments were conducted on a cluster formed by two Raspberry Pi 4 Model B, and

one Raspberry Pi 3 Model B. Each raspberry pi 4 has Cortex-A72 (ARM v8) 64-bit SoC,

along with 4 GB RAM and quad core with 1.5GHz processor frequency. The raspberry

Pi 3 is equipped with 1GB of RAM. The networking was done using a network switch

with 100 Mbps bandwidth, and three Ethernet cables. Three 32 GB Class 10 Micro SD

Cards have been used as internal storage for raspberry pi OS and various files. The

Distributed Machine Learning Cluster was implemented on each device using Apache

Spark and Hadoop. All the three Raspberry Pis acted as edge devices. Among the three,

one Raspberry Pi 3 was considered to be the master node, and two raspberry pi 4s acted

as worker nodes. The two worker nodes did all the training and classification, and sent

the results back to the master node.

4.4.2.2 Cloud Setup

In order to deploy our model on the cloud, we selected Microsoft Azure Cloud service. We

created a web application on Azure in order to create an interactive Web Page to send

test data and receive classifications. The configuration of our Cloud machine was: B2

Category Machine 200 with total ACU and 3.5 GB RAM. The server selected for cloud

machine was in Central India (Pune). The estimated cost for this cloud machine was 2051

INR/Month. The software requirement of our Cloud was: Flask framework to create the

Web Application, Python 3.8 for back-end machine learning, and HTML and JavaScript

for front-end web pages. This creates a website where the user can select and upload data,

and get classification predictions directly on the web page. The user also gets information

about the time it took for the cloud machine to run the classification task (as shown in

Figure 4.3).

4.4.3 Evaluation Metrics & Dataset

We have evaluated the inference time for both fog cluster and Cloud. Also, we have

compared the cost of deployment for both fog cluster and cloud. The impact of varying

n-components of PCA and oversampling on performance parameters (i.e. precision, recall

and accuracy) is discussed. The performance of various ML algorithms in terms of

precision, recall and f1-score is discussed in detail.

Chapter 4. An Intrusion Detection System on Fog Architecture 57

Table 4.1: Types of attacks

4.4.3.1 Evaluation Metrics

The metrics used to evaluate the performance of the framework were: Precision =
TP

TN+FP , Recall = TP
TP+FN , and Accuracy = TP+TN

TN+TP+FN+FP . Recall tells us how many

attacks we are able to detect out of the total number of attacks. An attack which goes

unnoticed can do much more harm than some normal instances classified as attacks, which

makes recall an important metric here. At the same time, we cannot ignore other metrics

completely, so we also keep a tab on other metrics, while giving more importance to Recall.

4.4.3.2 Dataset

The ADFA-LD (Australian National Defence Force Linux Dataset)[118] was created by the

Australian National Defence Force Academy. It is a host-level intrusion detection dataset

currently used widely for testing of intrusion detection products. The dataset comprises

of system-call traces generated on Ubuntu Linux 11.04 version with certain categories of

attacks carried out on the system, which are labelled accordingly. The data consists of

hundreds of text files with continuous system call traces, labelled through its name as

its class. As shown in Table 4.1, the dataset comprises of six di↵erent types of network

attacks performed on Linux systems.

4.4.4 Results & Discussion

4.4.4.1 Finding the best values of n-grams & top ’m’ features

We conducted experiments to study how the selection of top ‘m’ n-gram features a↵ects the

training accuracy of the proposed model. As shown in Figure 4.4, the maximum training

accuracy is reported at m = 150, for 3-gram features. In case of 2-gram features, the

maximum training accuracy is reported at m = 60. The best training accuracy for 1-gram

features is reported at m = 45. The 1-gram and 2-gram features o↵er poor performance

for m less than 15, while 3-gram has poor performance for m ranging from 10 to 75.

In order to further investigate the test performance of the selected features, we have

trained the proposed model with 1-gram, 2-gram, 3-gram features separately, as well as in

combinations (1+2-grams and 1+2+3-Grams) with ‘m’ corresponding to maximum value

58 Chapter 4. An Intrusion Detection System on Fog Architecture

Figure 4.4: Varying size of top selected features for di↵erent n-grams

Figure 4.5: N-gram combinations with their Performance

of training accuracy reported (as shown in Figure 4.5). The test data comprises of 90%

normal data, and 10% attack data.

As shown in Figure 4.5, all the n-gram combinations reported very high accuracy. But,

as the data is highly imbalanced, accuracy may not be a good measure, as it gives biased

results due to the class with more instances. So, in order to deal with class imbalance

while testing, Recall may be a better measure. Figure 4.5 depicts that the best recall

for attacks corresponds to 1+2+3-Grams. So, we have used 1-gram, 2-gram and 3-gram

features collectively with m = 45, 60 and 150 respectively. Therefore, the total number of

features extracted is 255 (i.e. m = 255).

4.4.4.2 E↵ect of Data Processing on performance

As shown in Figure 4.6, the maximum Recall, Precision and Accuracy is reported when the

83 Principle components (i.e. n-components = 83) are selected. The initial dimensionality

of the dataset is 255, as shown in the previous section. Now, after applying PCA,

it has reduced to 83. The inference time of the model before PCA is 443 ms, while

after applying PCA, it has reduced to 130 ms. Due to a reduction in dimensionality,

the computational and communication time has reduced significantly. Before applying

SMOTE on the XGBoost model, we obtained a Recall of 79 percent, and a Precision of

92 percent (as shown in Figure 4.7). However, after applying SMOTE, the performance

(recall) of the model improved significantly. This occurred because the model was trained

Chapter 4. An Intrusion Detection System on Fog Architecture 59

Figure 4.6: Varying n-components of PCA

Figure 4.7: Before and after SMOTE(Oversampling)

better on the minority class, and was able to better classify it, thus increasing the Recall.

4.4.4.3 Evaluating performance on di↵erent ML Models

For evaluating the performance based on the evaluation metrics discussed, we trained

all the discussed models. The best hyper-parameter values were selected for training all

the ML models based on GridCV search. We plotted the performance of all the models

on the finalized dataset for attacks, see Figure 4.8 for the results. Table 4.2 depicts the

performance for both “attack” and “normal” cases. Here, we see that Support Vector

Classification o↵ered best Recall, but the Precision was quite low. The Random Forest

model o↵ered a good balance between precision and recall with 96 percent accuracy. The

best recall was seen in XGBoost model, with good precision and accuracy. So, we selected

the Gradient Boosting technique (XGBoost) model to be deployed on both the cluster and

the cloud.

4.4.4.4 Performance Evaluation on the Cloud

After finalizing the Machine Learning model, we used the setup Web Application on the

Microsoft Azure Cloud to calculate the time required for classification. The inference

time was calculated using Equation (4.1). The calculation of upload time and download

time were done with the help of the upload speed and download speed of the available

60 Chapter 4. An Intrusion Detection System on Fog Architecture

Figure 4.8: Evaluating di↵erent ML models

Table 4.2: Evaluation Metrics for all Classes

Attack Normal

Models Precision Recall F1 Precision Recall F1

DTree 74 81 77 97 95 96

RF 86 86 86 98 98 98

KNN 86 87 88 98 98 98

SVC 65 94 77 99 92 95

XGB 83 89 86 98 97 98

cloud machine (as shown in Figure 4.9). We calculated the speeds and latency of the

cloud using the web-application provided by Microsoft. We calculated the latency using

Microsoft Azure website, as shown in Figure 4.10. Here, we ping the server selected

location (Pune, India), and return the latency. We took the average of the latency, which

came out to be 169 ms. The upload time was calculated using the size of our file, and the

upload speed to the Central India server (Figure 4.9), which came out to be 2.57 MB/s.

This factor may vary from place to place, and places with bad/unstable internet

connections might su↵er from much higher inference time, because of this factor. The

upload time calculated using this speed came out to be 260 ms, for 684 KB of uploaded

data. The download time of the data (classifications of the instances) was calculated using

the download speed, which was 5 MB/s. The download time came out to be 1.4 ms, for

7.5 KB of downloaded data. The run time was calculated using a python script, which

ran along the code and displayed the time in the output of the web app, see Figure 4.3 for

the result. This came out to be 136 ms. The total inference time was 735.6 ms. The

experimentation has been done using a batch size of 1000 instances: the smaller is the

batch size, the more is the advantage o↵ered by the fog infrastructure, because of reduced

latency. The cost of the cloud as estimated by Azure was 2051 INR/Month.

Chapter 4. An Intrusion Detection System on Fog Architecture 61

Figure 4.9: Upload Speed

Figure 4.10: Latency from Cloud

4.4.4.5 Performance Evaluation on the fog Cluster

When we ran the ML job on the cluster, the inference time came out to be 130 ms. The

inference time was averaged out of one thousand runs, and was run on the same data as

was run on the cloud. When we ran inference for only a single run, the inference time was

close to 300-450 ms, but under a continuous load, the connections and data pipelines

were already built, which brought down the average run time. The cost calculations of the

cluster were done considering the maximum load on all the Raspberry Pis. We calculated

the power consumption as follows:

Power = V oltage usage ⇤ Current usage (4.2)

The standard Voltage consumed by the Raspberry pi 4 model B is 5V. The current required

by the device varies with the peripherals attached to it. We connected a Keyboard and

an HDMI cable, which required approximately 400 mA of current. The Energy consumed

by the fog device was calculated using:

Energy consumption = Power ⇤ CPU time (4.3)

Using the above equations, the maximum total power consumption of our system came

out to be 40 Watts. Considering the rate of electricity in the place of experimentation,

the total cost for one month of running the system came out to be INR 201.6. This is

the maximum possible cost of the entire cluster. This is far less than the estimated cloud

cost, even if we extend our fog architecture by a few nodes or change in electricity cost

rate. The fog & cloud comparison is shown in Table 4.3.

62 Chapter 4. An Intrusion Detection System on Fog Architecture

Table 4.3: Time and Cost Comparison

Infrastructure Inference Time Cost
Fog Cluster 130 ms 201 INR/Month
Cloud 735 ms 2051 INR/Month

4.5 Part B - Dynamic Hierarchical Intrusion Detection task

o✏oading in IoT Edge Networks

4.5.1 Motivation

Data present in the network is often critical, and its privacy must be protected. IoT server

security can be increased multi-fold if we can identify the attacks timely, as the delay in

attack detection may lead to serious repercussions. Delays can be exploited by malicious

attackers to achieve unauthorized entry into the sensitive information transmitted through

IoT devices. Furthermore, postponed identification can provide attackers with the

opportunity to intensify their assaults, extending their influence to di↵erent segments of

the network, compromising additional devices, and inflicting extended harm. Figure 4.11

depicts the graph between latency (i.e. transmission delay and processing delay) for various

approaches: device-only, edge-only, and cloud-only, for varying network bandwidths. In

this experiment, a raspberry pi, a laptop, and a Microsoft Azure virtual machine have

been employed to emulate IoT device, edge device, and the cloud respectively. As shown

in the figure, the end-to-end latency (inference time) varies significantly for the di↵erent

approaches with varying network bandwidths. Therefore, network bandwidth plays a

significant role in determining the end-to-end latency. Instead of solely executing on the

cloud/edge/IoT device, we need to define a framework that can interplay between the

three layers (i.e. cloud, edge, and IoT devices), harnessing their individual merits based

on the dynamic network conditions, so that the attacks can be detected in real-time.

Moreover, as the dataset contains numerical/categorical values with vast ranges,

identifying patterns may be quite di�cult. Wide variations in numerical data can

magnify the influence of noise present in the dataset. This noise has the potential to

conceal authentic patterns, ultimately resulting in the emergence of false findings or

misinterpretations. The sensitivity of di↵erent ML algorithms can be a↵ected by the

distribution and scale of the data. Extensive ranges may necessitate extra pre-processing

or adjustments to enhance the e�cacy of these techniques. A more robust approach

needs to be formulated and developed. This will help in multi-class IDS performance

improvement, while maintaining the context.

4.5.2 System Model

In this section, we discuss our system model and various assumptions. We have considered

an IoT device based network. Our model considers a region having numerous resource

constrained devices that are linked with each other on the network. The network maintains

Chapter 4. An Intrusion Detection System on Fog Architecture 63

Figure 4.11: Inference time of di↵erent approaches on AlexNet under varying bandwidths.

the flow of data as well as other sequential information required for data communication.

Below, we provide a formal description of the necessary parameters with respect to our

considered model.

We need to minimize the inference time IT in order to reduce the attack detection latency

so as to make it real-time. IT depends on data processing delay and data transmission

delay, which make up the overall latency of the system.

Data processing delay(PT) depends on multiple factors. In simple terms, the processing

is related to the computation power of the node. It may not be feasible to have access

to high Computational nodes at all time, due to, for example, economics. Our approach

tends to complete the provided task (i.e. inference instances) using Cloud/edge resources,

o↵ering satisfactory performance.

The data processing delay is defined using the following equation:

PT = PRT +MT (4.4)

Here, PRT is the data instance pre-processing time, and MT is the model prediction time.

In order to reduce the processing delay when the bandwidth is low and the number of data

points for inference are high, we process the data points on the local cluster (discussed in

Algorithm 5). In the case of multiple processing nodes, the concept of parallelism helps

in improving performance, while trading-o↵ some extra resources. However, in case of low

bandwidth and less number of data points, processing happens on a single edge device.

We have further tried to reduce the above processing latencies by performing “dynamic

right-sizing” of the deep neural network (i.e. Early-exit mechanism). Specifically, the

exit point for the neural network is decided based on the entropy calculation, which is

computed using following formula:

Entropy = y ⇤ log(y) (4.5)

In above equation, y is the output vector. High entropy signifies no confidence (i.e. low

accuracy), and low entropy signifies high confidence (i.e. high accuracy). So, the threshold

value of entropy will define the exit-point of DNN. If the threshold value is set as high,

then the DNN model may exit at early layers with low latency, with sub-optimal accuracy.

64 Chapter 4. An Intrusion Detection System on Fog Architecture

If the threshold value is set as low, then the DNN model will exit at later layers with high

confidence output, but high latency.

Data transmission delay(DT) depends on network tra�c and the undergoing network

bandwidth. DT is computed using following equation:

DT = Instance size/Bandwidth (4.6)

In order to minimize the transmission delay, we are making use of a local cluster in case of

high tra�c with low bandwidth. The contribution of DT to the detection latency becomes

less significant in the case of high bandwidth. Considering the above delays we can write

the final inference time as below:

IT = DT + PT (4.7)

Here, IT gives the overall inference latency.

Problem Definition : Assuming that our application needs to meet its deadlines, but

can bear moderate accuracy losses, we need to balance out accuracy and latency. So, in

our work, we have optimized the DNN right-sizing such that the inference accuracy is

maximized within the defined latency requirement. In upcoming sections, we discuss in

detail how we optimise the above latencies in order to make our system fast as well as

robust under various dynamic environments.

4.5.3 Proposed Work

In the proposed work, we consider two types of IDS: NIDS and HIDS. The datasets used

in experimentation under the NIDS domain are: NSL-KDD [110], CICIDS 2017 [111],

ToN IoT [113], and UNSW-NB15 [112]. In the case of HIDS, we have used the benchmark

ADFA-LD dataset [115]. The proposed work comprises of two phases: Data pre-processing

phase and inference task allocation phase. The data pre-processing is discussed in this

section, while the inference task allocation algorithms are discussed in Section 4.5.8.

The data pre-processing is carried out in four steps: feature extraction, selecting features,

data normalization, and feature transformation. Even though we followed a consistent

procedure for all IDS datasets, the specific instructions within each step depend on the type

of IDS i.e. NIDS or HIDS. The graphical representation of this procedure can be found in

Figures 4.12 & 4.13, illustrating the sequence of steps involved. After applying the above

pre-processing steps, we obtain an RGB image which is given as input to BranchyNet.

RGB images were created due to the following reasons:

• As the dataset contains numerical/categorical values with vast ranges, identifying

patterns manually using n-grams may be quite di�cult, and may miss some

useful patterns. This may ultimately result in the emergence of false findings or

misinterpretations, which may lead to the poor performance of the models in terms

of multi-class classification.

Chapter 4. An Intrusion Detection System on Fog Architecture 65

Feature
Extraction

Feature
Selection
using ERT

HIDS

Dataset

Pre-processing steps in HIDS

Data
Normalization

using
Quantile

Tranformation

RGB
Image

ADFA-LD Feature
Transformation

Figure 4.12: Pre-processing steps for HIDS dataset

Feature
Selection
using ERT

NIDS

Datasets

Pre-processing steps for NIDS

Data
Normalization

using
Quantile

Transformation

RGB
Image

NSL-KDD

CICIDS2017
Feature

Extraction

Feature
Selection

using
SKB

Feature
TransformationToN_IoT

UNSW-NB 15

Figure 4.13: Pre-processing steps for NIDS datasets

• Utilizing multiple convolutional and pooling layers allows DNNs to e�ciently capture

the spatial correlations and patterns in the images.

• Through numerous iterations, DNNs can autonomously learn object features,

removing the need for manual feature-engineering tasks.

The upcoming sections will provide an explanation of the pre-processing steps employed.

4.5.4 Feature Extraction

The procedure of feature extraction varies for each IDS (i.e. HIDS and NIDS) and is

described individually. This distinction is necessary due to the unique context found in

the collected data of each IDS.

4.5.4.1 Feature Extraction of NIDS

As stated in Table 4.4, all NIDS datasets used in our work i.e. NSL-KDD, CICIDS2017,

UNSW-NB15, and ToN IoT comprise of numerical & categorical features. Considering

this, the feature is depicted as single or multiple pixels. In general, the features have

either non-negative or nominal numerical values. Given the heterogeneous nature of the

features, it is more advantageous to employ a feature extraction approach to unify each

input feature. Categorical features are treated as a single pixel and computed using

equation (4.8).

fc =
ac ⇤ 255

cm
(4.8)

Here, ac represents the actual feature value, while cm signifies the category’s maximum

66 Chapter 4. An Intrusion Detection System on Fog Architecture

value. Categorical features present in the datasets can take either discrete or symbolic

values. If the original dataset includes symbolic features, they are converted into discrete

values.

The numerical values may exhibit continuous characteristics without specific limits. Due to

the substantial variation in maximum values across various features, we opted to distribute

these values across multiple pixels instead of consolidating them into single pixel. Our

initial step involved examining the maximum values of each feature independently within

the training dataset. In total, two distinct procedures are employed. The first procedure

involves calculating the pixel count and their corresponding values for numerical features,

using equations (4.9) & (4.10).

NoP =

8
<

:

ac
255 , ac  25, 500

ac
2552 , ac > 25, 500.

(4.9)

V (NoP) = (NoP � bNoP c) ⇤ 255 (4.10)

In this scenario, NoP represents the total count of pixels allocated for the numeric values.

NoP is further broken down into the integer part, denoted as bNoP c, representing the

count of pixels set to 255. Additionally, V (NoP) denotes the value of the (bNoP c+ 1)th

pixel. Any remaining pixels, if applicable, are assigned a value of 0. The overall pixel count

for each feature is determined by rounding up NoP to the nearest integer value, which

corresponds to the maximum value of the feature. To prevent computational slowdown

caused by features with excessively large values, we opted to divide features that have

maximum values exceeding 25,500 by 2552. This precautionary measure is particularly

crucial in the case of the CICIDS 2017 dataset, which contains larger values.

The second approach for handling numerical values follows the same principle as described

in equations (4.9) & (4.10). However, it is specifically implemented for features that

represent data size, such as destination bytes and source bytes. Given that the range of

values for these features is considerably greater than that of others, relying solely on the

previous method would be ine�cient. As a result, we devised a di↵erent approach for these

features. We assigned a total of 16 pixels to represent this feature, which were divided

into four quadruple sections. The initial four pixels depict the samples with data sizes

below 1 Kilobyte, the next four pixels depict the samples having data size ranging from 1

Kilobyte to 1 Megabyte, the next four pixels represent samples ranging from 1 Megabyte

to 1 Gigabyte, and the final four pixels represent samples with data sizes exceeding 1

Gigabyte. The calculation of pixel values still follows equations (4.9) & (4.10), but in this

case, the data is converted into the appropriate data size measurement prior to computing

the pixel values. The advantage of distributing the feature value across multiple pixels, as

opposed to a single pixel, is that it helps prevent the normalization step from diminishing

the influence of other features with lower values. This is important because such features

might have a more significant contribution to the classification of a particular intrusion.

Chapter 4. An Intrusion Detection System on Fog Architecture 67

Table 4.4: Datasets with Data Type and sample data.

DATASET TYPE OF
DATA

SAMPLE DATA

NSL-KDD NUMERICAL/
CATEGORICAL

1, udp, http data, SF, 443, 0, 0, 1, 0, 0, 001, 1, 0,
0, ...

CICIDS2017 NUMERICAL/
CATEGORICAL

3445, 111,745,690, 34, 16, 6445, 1152, 405, 0, 201.5,
204.7242045, 72...

ADFA LD CATEGORICAL 6,5,43,6,45,123,6,195,120,6,6,134,145,1,1,251,243,
245,1,0,0,1...

UNSW-NB15 NUMERICAL/
CATEGORICAL

0.000011 udp – INT 2 0 496 0 90909.093750 254
. . . 1 2 0 0 0 1 2 0 normal 0

ToN IOT NUMERICAL/
CATEGORICAL

1554198358 3.122.49.24 1883 192.168.1.152 529 tcp
- 80549.53 1762852 41933215...

4.5.4.2 Feature Extraction of HIDS

In the case of HIDS, we have used the ADFA-LD dataset, which consists of system call

traces of varying lengths, that cannot be directly utilized. The dataset is created by

capturing the system calls in a Ubuntu Linux 11.04 operating system that has been fully

patched [119]. This particular Linux version is built on kernel v2.6 which comes with 326

system calls by default. However, for our specific requirements, we opted to employ a

feature vector with a size of 350 to accommodate potential custom system calls. Each

element within this feature vector corresponds to a unique system call, and its value

represents the ratio of that system call’s occurrence to the overall size of the trace, as

defined in equation (4.11).

CRj =
|Cj |
|ST |

8j, 1  j  350 (4.11)

In this context, CRj denotes the ratio of the jth system call within the final feature vector.

|Cj | represents the total count of occurrences of the jth system call in the given trace, while

|ST | represents the size of the trace. The subsequent step of our pre-processing procedure

involves removing redundant or less significant features from the samples, as discussed in

the next subsection.

4.5.5 Feature Selection

By determining the feature set prior to inputting it into BranchyNet, we save additional

processing time that would otherwise be spent on the DNN learning features that may

have less relevance compared to other important features for the ultimate classification.

Consequently, feature selection helps reduce the feature space, leading to improved

performance and classification time [120]. The feature selection method employed

remained the same for all datasets, with the only variation being the order in which

it was performed. For NIDS datasets, feature selection was conducted before feature

extraction to achieve optimal results. However, for the HIDS datasets, feature selection

68 Chapter 4. An Intrusion Detection System on Fog Architecture

was carried out after the feature extraction step. In our study, we employed two feature

selection methods, namely Extremely Randomized Trees (ERT) [121] and Select K-Best

(SKB) along with Chi-squared score function, utilizing the classification tools provided

by scikit-learn [122]. A score is assigned to each feature using these feature selection

methods, indicating its importance relative to other features. Notably, the ERT classifier

demonstrated superior performance and was primarily utilized in this research. SKB, on

the other hand, was exclusively applied to the NIDS datasets following feature extraction.

Its purpose was to eliminate unessential pixels (features) that may have a lesser impact

on classification, thereby improving performance, while simultaneously reducing the input

size. ERT, or Extremely Randomized Trees, constructs an ensemble model that builds

upon the conventional top-down decision tree approach. However, it incorporates two key

distinctions. Firstly, the splitting of nodes within ERT is carried out in a completely

random manner, di↵ering from other decision-tree based classifiers. Secondly, ERT

employs the entire training data during the node splitting process, as opposed to using a

bootstrap replica. The number of features to be eliminated is determined based on the

feature importance score, as discussed earlier, while also taking into account the desired

shape of the image. The optimal size of the image is determined through an iterative

process of trial and error while training the network. To illustrate, in the case of the

ADFA-LD dataset, which initially consists of 350 features and a final image size of 10 by

10 pixels, we would need to eliminate the 250 features with the lowest ranking. In the case

of NIDS datasets, we have subsequently decreased the resolution of the resulting samples

by applying the SKB feature selection process to all pixels. This particular step proved

beneficial in reducing the pixel count by 30-50%, resulting in improved classification time

and enhanced accuracy of the IDS.

4.5.6 Data Normalization

To ensure consistency with the pixel value range of images, which typically spans from 0 to

255, it is necessary to normalize the network data within the same scale. Two commonly

utilized normalization techniques are: min-max normalization and quantile normalization,

both of which aim to convert data values to a standardized range. However, due to the

limitations of min-max normalization in handling outliers, the proposed framework [123]

adopts quantile normalization instead. This method transforms the feature distribution

into a normal distribution and recalculates the values of all features based on this

distribution. Consequently, the majority of variable values tend to cluster around the

median values, thereby providing e↵ective handling of outliers.

4.5.7 Feature Transformation

To enhance the data representation, we expanded the existing dataset by introducing

two additional layers, e↵ectively transforming a single sample into an RGB image. The

e↵ectiveness of RGB encoding, as opposed to grayscale encoding, has been explored in

a separate study [124]. The findings revealed a significant improvement in the accuracy

Chapter 4. An Intrusion Detection System on Fog Architecture 69

Figure 4.14: RGB images obtained after pre-processing steps for NSL-KDD dataset

Figure 4.15: RGB images obtained after pre-processing steps for CICIDS2017 dataset

of the trained model, while utilizing RGB encoding. In our study, the RGB channels

generation is done in 4 steps. The initial step involves reshaping the original data into a

2D vector. Subsequently, for the second channel, we horizontally mirror the original 2D

data. The third channel is created simply by subtracting the value of each pixel from the

maximum value of the current sample. Once all channels are generated, we append the

standard deviation of each column and row to the corresponding column and row. After

the generation of all three channels, these channels are combined and reshaped into an N

x M x 3 vector suitable for DNN input. The RGB images obtained after pre-processing

steps for NSL-KDD, CICIDS2017, UNSW-NB15, ToN IoT, and ADFA LD datasets are

shown in Figure 4.14, Figure 4.15, Figure 4.16, Figure 4.17, and Figure 4.18 respectively.

4.5.8 Proposed algorithms

The previous section focused on the feature preprocessing and transformation for obtaining

the RGB image corresponding to each data instance. We will now demonstrate the

necessary models that will carry out the inferences, along with their location, as per

the dynamic network conditions. Specifically, we propose a dynamic algorithm called

FCAFE�BNET (), that o↵ers the location (Cloud/edge-cluster/edge-device) of inference

in such a manner that will lead to the least trade-o↵ between inference latency and

Figure 4.16: Final RGB images obtained for UNSW-NB15 dataset

70 Chapter 4. An Intrusion Detection System on Fog Architecture

Figure 4.17: Final RGB images obtained for ToN IoT dataset

Figure 4.18: RGB images obtained after pre-processing steps for ADFA LD dataset

corresponding accuracy. The pseudo-code for FCAFE � BNET () is given in Algorithm

5. As discussed in our system model, we consider a network of IoT devices consisting

of a continuous flow of data containing system calls and other networking parameters

necessary for flow control and data transmission. The proposed algorithm monitors the

network tra�c in order to avoid any malicious attacks in real-time. For a given interval,

we collect the data instances from the network tra�c, along with the bandwidth details.

Next, we need to generate inferences within a given latency constraint. To do that, we

check whether the value of IT i.e. total inference time (discussed in section 4, system

model) is within the latency requirement represented as LR in Algorithm 5. In Algorithm

5, we defined two thresholds: TBA and TNI , which are the threshold of bandwidth and

the number of data instances, respectively. If the recorded bandwidth (BA) exceeds the

defined threshold TBA, it implies that we can execute that instance on the cloud without

violating the latency requirements. Upon failing the above condition, we proceed by the

density of data instances. When the density of data instances is high, the number of

current instances (NI) exceeds TNI , so we send the instances collected to the master node

of the cluster executor, discussed in Algorithm 6 (i.e. Local � Cluster � Executor()).

This ensures that inferencing of a large number of instances is performed within given

latency constraints, when the recorded bandwidth is not su�cient for execution on the

cloud executor. When the number of instances does not violate the imposed threshold,

we prefer the local executor for the generation of inference, as discussed in Algorithm

7 (i.e. BNETalgorithm). Next, we discuss the functioning of modules BNET () and

Local � Cluster � Executor(), which are responsible for local and cluster execution of

data instances, respectively.

We have defined about the need for Local�Cluster�Executor() earlier in Section 4.5.8.

Now, we will demonstrate how it handles the instances while generating the inferences.

There is a master node whose job is to carry out the instance partitioning among the worker

Chapter 4. An Intrusion Detection System on Fog Architecture 71

nodes. Upon receiving the instance set, the master nodes distributes it equally over the

cluster, in order to obtain fast inferencing. The data instances IC are first pre-processed

and transformed into an RGB image, using the steps stated in section V. This is done

on each cluster node. All the nodes contain the model that carries out the prediction,

after obtaining the RGB images. Upon inference generation, the results are added into

IR, which is maintained by the master node. The master node then sends the inference

report back to the network administrator, who analyzes the results and takes necessary

action such as blocking the suspicious nodes.

Algorithm 5: FCAFE-BNET(BA, IC)

Require: Bandwidth and Network Tra�c
BA: Bandwidth recorded after t time interval
IC : Instance-Collector()
NI : Number of instances(IC)
IT : Total inference time
LR: Latency Requirement

Ensure: Location of inference generation
1: while IT  LR do
2: if BA > TBA then
3: Execute on cloud
4: else if BA <= TBA AND NI > TNI then
5: Run on Local-Cluster-Executor(IC)
6: else
7: /* Run on local Edge device using Algorithm 7 */
8: BNET(IC)
9: end if

10: end while

Algorithm 6: Local-Cluster-Executor (IC)

Require: Data Instances, IC
N : Sizeof(IC)
K: Number of worker nodes in the local cluster

Ensure: Inference Result, IR
Send data instances to the master node
for each worker nodes : do
PPI : Preprocess(IC) using steps discussed in Section V
TI : Transform(PPI) into RGB image using steps discussed in Section V-D
Process N/K data instances using trained model
Keep on appending the results into IR

end for
Return IR

The pseudo-code and workflow of the proposed BNET algorithm is represented in

Algorithm 7 and Figure 4.19. In the case of BNET , the model is deployed on the

local fog device. So, it needs to perform fast inferencing, as it only contains a single

computation node. Firstly, all the data instances are pre-processed and transformed into

RGB images on the fog node, using the steps stated in Section V. We have used the

72 Chapter 4. An Intrusion Detection System on Fog Architecture

Algorithm 7: BNET (IC)

Require: Data Instances
N : Number of exit points

Ensure: Inference Result
for i in IC do
PPI : Preprocess(IC) using steps discussed in Section V
TPP : Transform(PPI) into RGB image using steps discussed in Section V-D
for j 1 to N do
X FExitj(TPP)
Y Softmax�Activation(X)
E Entropy(Y)
if E < T then
add label(argmax(Y)) to IR
Break

end if
end for

end for
Return IR

Branchynet framework of deep neural networks in the BNET algorithm. Unlike usual

deep neural network models, branchynet consists of multiple exit points. These multiple

exit points help in balancing the latency-accuracy requirements. Here, we iterate over

each data instance and calculate the value of entropy corresponding to each instance in

the output vector. If the value of entropy is below the defined threshold (T), then we

output the data instance from that exit point itself. Otherwise, we proceed with further

exit points. Similar to Local � Cluster � Executor(), here also we keep on adding the

inferences to the output vector IR. The threshold T imposed on the exit points has been

defined experimentally, and it varies with the nature and complexity of the input dataset.

Table 4.5: Dataset description.

Test Data Points Train Data Points
Datasets

Attack Non-Attack Attack Non-Attack
ToN IoT 74512 73022 210311 103198
UNSW NB15 45332 37000 119341 56000
CICIDS2017 33626 136219 78217 318087
NSL-KDD 12833 9711 58630 67343
ADFA-LD 104 3398 422 563

Table 4.6: Total inference time comparison for various techniques on NIDS based datasets.

Dataset FCAFE-BNET (Proposed) FC-XGB CAFE-CNN GTO BSA GTO
NSL-KDD 11.41 145.50 47.71 10205.83 9719.66
CICIDS-2017 45.31 170.34 87.68 2270.91 6988.46

Chapter 4. An Intrusion Detection System on Fog Architecture 73

Figure 4.19: Workflow of the proposed BNET algorithm

Table 4.7: Total inference time comparison for various techniques on HIDS dataset.

Dataset FCAFE-BNET (Proposed) LW-MLP FC-XGB CAFE-CNN
ADFA-LD 15.36 817 650 49.72

4.5.9 Results

In order to evaluate the performance of our proposed FCAFE � BNET algorithm, we

have deployed a prototype using Azure cloud and Raspberry Pis. The cloud setup has

been done using Microsoft Azure cloud service, with 16GB RAM. The local cluster has

been deployed using five Raspberry Pi 4s Model B, having 4GB RAM and Cortex-A72

ARMv8 processor having quad core with processing frequency of 1.5GHz. Each Raspberry

Pi is installed with 32 GB MicroSD cards fro internal storage. In the cluster comprising of

five Raspberry Pis, one Raspberry Pi acts as a master node, and rest of the four Raspberry

Pis act as worker nodes. The networking of the cluster has been done using ethernet, and

a network switch with 100 Mbps bandwidth. Apache Hadoop and Spark [125] frameworks

have been employed in order to harness the distributed ML cluster. A single Raspberry

Pi 4 has been used as the local fog device. In order to incorporate Branchy DNN for multi

branch DNN training, we have used Chainer [126] and BranchyNet [127] frameworks on

local fog devices. The AlexNet [128] model with three exit points has used for training

over various IDS datasets. The AlexNet comprises of eight layers, out of which the first

five layers are convolutional layers and last three layers are fully connected layers. We have

selected the odd convolutional layers as the three exit points. The description of training

set and test set of all the datasets used in the study is given in Table 4.5. The ADFA-LD,

UNSW-NB 15, and ToN IoT datasets have been evaluated for binary class classification.

The evaluation metrics used are: Accuracy, Precision, Recall, F1-score [129], and total

inference time (IT , described in section 4.5.2). The NSL-KDD and CICIDS 2017 datasets

have been evaluated for multi-class classification, so we have used the weighted average of

74 Chapter 4. An Intrusion Detection System on Fog Architecture

the precision, recall, F1-score [129], and Accuracy along with total inference time.

Table 4.8: Total inference time comparison for various techniques on IoT based NIDS
datasets.

Dataset FCAFE-BNET (Proposed) EHIDS CF-OSELM ABA-IDS ICNN-FCID
ToN IoT 9.76 16.68 19.94 20 22.42
UNSW-NB 15 17.9 29.89 35.73 35.85 40.19

4.5.9.1 Multi-class classification performance:

The performance of FCAFE-BNET has been compared with various other approaches

discussed in Chapter 2, Section 2.2, for the multi-class classification problem on NSL-KDD,

CICIDS 2017, and ADFA LD datasets. As shown in figure 4.20, in case of the NSL-KDD

dataset, FCAFE-BNET performs well in comparison to the latest proposed approaches.

The performance boost is due to it’s unique pre-processing steps that convert the data into

RGB images, which helps the DNN in extracting various patterns useful to detect di↵erent

classes of attacks. Also, the performance of FCAFE-BNET is better than CAFE-CNN

due to fine-tunning the pre-trained model (i.e. AlexNet in our case) on given NSL-KDD

dataset, instead of using untrained CNN in the case of CAFE-CNN and starting from

scratch. Meta-heuristic algorithms, such as GTO-BSA and GTO have performed well

because of finding the optimal feature set using optimization algorithms. But, as shown

in Table 4.6, the total inference time is quite high, for both GTO-BSA and GTO. This is

because both of the optimization algorithms take a long time to figure out the best solution.

Hence, these approaches may not be suitable for real-time applications, like intrusion

detection in IoT networks. Comparatively, our proposed approach takes significantly less

amount of time to generate inferences.

Figure 4.20: Performance comparison on NSL-KDD dataset.

As shown in Table 4.6, the inference generation time is the least in the case of

FCAFE-BNET, because of two reasons. Firstly, FCAFE-BNET helps in locating

the appropriate inference generation location, depending upon the dynamic network

conditions. In addition, the low inference time is due to the use of the early-exit mechanism

in the local fog device. This reduces the computation by exiting the output from early

layers with a certain confidence interval, instead of traversing the complete DNN for the

output. The poor performance of FC-XGB in terms of inference time is observed, because

Chapter 4. An Intrusion Detection System on Fog Architecture 75

Figure 4.21: Performance comparison on CICIDS 2017 dataset.

Figure 4.22: Performance comparison on ADFA LD dataset.

it always o✏oads the inference task on the local cluster, without considering the dynamic

network condition.

As shown in Figure 4.21, in case of the CICIDS 2017 dataset, FCAFE-BNET approach

has outperformed other recent approaches in terms of the weighted average of accuracy,

precision, recall, and F1-score. This is because the RGB images obtained for di↵erent

attacks after performing pre-processing steps (discussed in Section 4.5.3) are very di↵erent

from each other, as shown in Figure 4.15. Due to this, the DNN correctly classifies di↵erent

attacks. The CAFE-CNN has performed equally well in terms of all the scores, due to the

use of CNN. But, as shown in Table 4.6, the inference time of an instance using CAFE-CNN

is quite high as compared to FCAFE-BNET, due to the latter’s early-exit mechanism. The

number of computations is reduced significantly due to early-exit mechanism. Hence, the

resource constraint fog device can quickly perform inference tasks without compromising

the accuracy score.

As shown in Figure 4.22, in the case of ADFA LD, FCAFE-BNET has performed the best

in terms of all scores, because of adopting a good feature extraction and transformation

method, discussed in section 4.5.3. Also, using a pre-trained DNN model i.e. AlexNet has

significantly enhanced the performance. The performance of LW-MLP and FC-XGB is

observed to be the worst, because of selecting the features manually by using the n-gram

technique. Also, in case of the LW-MLP, the authors have used a shallow MLP model for

inference, which resulted in poor performance of the LW-MLP approach. The XGboost

model performed well in the case of tabular data, but as the ADFA LD dataset comprises

of system call files, due to which the FC-XGB approach did not o↵er optimal results. As

shown in Table 4.7, the proposed FCAFE-BNET o↵ers the best results in the case of total

76 Chapter 4. An Intrusion Detection System on Fog Architecture

inference time as well. This is because in the case of LW-MLP, the experiments were

carried out on a single local fog device. Whereas, in the case of FC-XGB, the inference

task is always o✏oaded on the local cluster. However, both of the approaches did not

take into consideration the network conditions and task load for inference generation task

allocation. CAFE-CNN o↵ers better performance due to the use of GPU resourced local

device for experimentation, but the authors have not considered a fog based environment

in their work. The proposed FCAFE-BNET o↵ers the least total inference time, due to

locating the right inference generation location using Algorithm 5.

Figure 4.23: Performance comparison on UNSW-NB15 dataset.

Figure 4.24: Performance comparison on ToN IoT dataset.

4.5.9.2 Binary-class classification performance:

In this section, the proposed FCAFE-BNET approach has been compared for binary class

classification problem with EHIDS [45], ABA-IDS [44], ICNN-FCID [46], and CF OSLEM

[49] approaches, using benchmark UNSW-NB 15 and ToN IoT datasets. As shown in

Figure 4.23 & 4.24, the ABA-IDS o↵ers the worst performance in the case of all the

scores, for both datasets. In ABA-IDS, node profiling was done before passing it to ANN.

However, these collected node attributes do not help much in correctly classifying the

attacks, thus showing the worst performance in comparison to other recent approaches.

Both CF-OSELM and ICNN-FCID approaches have shown moderate performance in terms

of all the scores for both datasets, shown in Figure 4.23 & 4.24. In both approaches, the

authors did not adopt any feature selection method, which resulted in poor performances

of CF-OSLEM and ICNN-FCID. In comparison to the recent approaches, the proposed

FCAFE-BNET has performed well in terms of all the scores for both datasets. This is

Chapter 4. An Intrusion Detection System on Fog Architecture 77

because of refining the data by pre-processing, and transforming it before passing it to

the DNN. The EHIDS has performed equally well because of using genetic algorithms for

optimizing ANN weights and biases. However, as shown in Table 4.8, the EHIDS approach

has taken a longer time to generate inference than the proposed FCAFE-BNET. This is

because of FCAFE-BNET’s policy of allocating the inference task to the right location

i.e. fog device/ local cluster/ Cloud, instead of always allocating to the fog device. The

ABA-IDS approach took a long time to generate the inference, because node profiling is a

time consuming process. Finally, ICNN-FCID records the highest inference time for both

UNSW-NB 15 and ToN IoT. This is because the approach integrates two computational

intensive models i.e. CNN and LSTM, for generating inference.

Table 4.9: Performance of FCAFE-BNET with 3 exit points on NSL-KDD dataset with
varying Entropy threshold

Entropy Threshold (T) Accuracy (%) Time (s)
Exit (%)

Exit pt 1 Exit pt 2 Exit pt 3
0.00001 95.02 4.454 0.0 0.0 100.0
0.0001 94.78 4.445 0.0 7.0 93.0
0.001 94.54 4.180 0.0 17.55 82.45
0.05 94.08 3.743 4.37 30.18 65.45
0.01 93.95 3.134 10.34 32.32 57.34
0.75 93.83 3.234 23.65 17.66 58.69
1.5 92.75 2.945 48.45 6.21 45.34
2.5 84.64 2.457 57.34 2.43 40.23
5.0 69.45 2.005 68.14 1.52 30.34
10.0 54.43 1.045 99.5 0.5 0

4.5.9.3 E↵ect of Entropy threshold on FCAFE-BNET performance:

In this section, we discuss the e↵ect of the entropy threshold on the performance of the

proposed FCAFE-BNET, in terms of accuracy and inference time. The experiments were

conducted on the benchmark NSL-KDD dataset by varying the entropy threshold value,

represented as 0T 0 in Algorithm 7. The Branchy AlexNet comprises of three exit points

represented as: Exit pt. 1, Exit pt. 2, and Exit pt. 3, respectively. Here, Exit pt. 1

depicts early exiting from the first convolutional layer, whereas Exit pt. 2 depicts early

exiting from the third convolutional layer, and Exit pt. 3 depicts exiting from the last

convolutional layer (i.e. complete AlexNet network). As shown in Table 4.9, when the

value of 0T 0 is very low, a large number of data points exit from Exit pt. 3 (i.e. exit

from the last layer). Correspondingly, the accuracy recorded by the inference model is

the maximum. However, note that the inference time corresponding to this case is high

as well, because of exiting from the last layer. In case of setting a very high entropy

threshold, a large number of data points exit from Exit pt. 1. Here, the DNN model

exits the outputs at an early layer, with comparatively lower confidence. Therefore, the

inference time recorded by the inference model is extremely low, with low accuracy. On

the other hand, when the value of 0T 0 is set to 1.5, then both the performance metrics i.e.

78 Chapter 4. An Intrusion Detection System on Fog Architecture

accuracy and inference time are balanced. This is because approximately 55% of the data

points exit from early layers, due to which the inference time recorded is low. Also, the

accuracy recorded is high, because the DNN model exits the outputs from both early and

last layers, based on the entropy threshold.

4.6 Conclusion

IoT applications are vulnerable to various attacks, due to which many researchers

have proposed di↵erent Intrusion Detection Systems (IDS) that can secure the IoT

network. Often, these approaches fail to detect various classes of attack e�ciently. The

poor performance is the result of adopting outdated feature selection, extraction, and

transforming methods. In addition, these approaches do not take into account versatile

network conditions. The proposed FCAFE-BNET approach improves the multi-class

IDS performance by exploiting various pre-processing steps that help in identifying

various attack patterns correctly. The proposed FCAFE-BNET algorithm takes into

account dynamic network conditions before allocating the tasks to di↵erent fog layers

i.e. Cloud/cluster/fog device. Moreover, the use of the early-exit mechanism in the local

fog device speeds up the inference by reducing the number of computations, without

adversely a↵ecting the performance. The proposed technique is not only applicable to

NIDS and HIDS datasets, but can be extended to other forms of IDS as well, by making

minor changes in the pre-processing step. The fog-edge architecture is a promising way to

deal with various attacks. Through experimentation, we observe that both the cost and

latency (inference time) of the fog (Pi Cluster) is less than a similar powered Cloud web

application. In future work, we plan to consider other critical evaluation metrics for IoT

systems, such as storage e�ciency and energy consumption.

Chapter 5

Data Driven DNN Task O✏oading

on Edge Networks

5.1 Introduction

Edge computing aims to reduce bandwidth bottleneck and latency by performing

computation close to the end-users, making it a viable option for application o✏oading.

Due to its limited computational capacity, the edge may need to be considered with

the cloud for o✏oading. Computation o✏oading of tasks is challenging, as it depends

on: the availability of limited resources, dynamically changing network conditions, and

concurrent user access. Mathematical task o✏oading approaches may be incapable of

capturing dynamic network situations in large end-to-end network models. We propose

D2�TONE (Data-driven Deep Neural Network Task O✏oading on the Network Edge), an

approach that employs Machine Learning algorithms for accurately estimating o✏oading

delays, such as computational and transmission delays. D2 � TONE holistically adapts

to dynamic network situations, and provides optimal/near-optimal o✏oading solutions in

real time. In addition, the proposed algorithm employs distributed execution of DNN

tasks on edge devices/cloud data centers. Experiments reveal that D2 � TONE reduces

the training time by 1.55 to 2.77 times, compared to baseline approaches. In addition, the

edge-based D2� TONE o↵ers an improvement of 55-76% in the data processing ratio, in

comparison to other o✏oading approaches.

The emergence of Internet-of-things (IoT) has led to the generation of huge volumes of

data. There are several real-time IoT-based applications, like smart cities [130], self-driven

cars [131], and industrial monitoring [132], for which the generated data needs to be

processed within a given deadline [133]. The data generated through these IoT applications

is usually processed using a Cloud data center (CDC). Due to the rapid increase in IoT

applications, it is estimated that the volume of data generated by such applications will

exceed today’s network bandwidth capacity [134]. In addition, the computation capacity

of modern gadgets has increased significantly in recent years. These advancements in user

device hardware have led to the emergence of the “Edge Computing” paradigm.

Edge computing [135] helps in processing data near its point of generation, rather than

sending the complete data to the remote cloud for processing. As the data gets processed

in the proximity of users, the response time is reduced, leading to an improved user

experience, enabling di↵erent real-time applications, such as vehicle OTA. Generally,

80 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Figure 5.1: System architecture for crowd counting application.

user devices have limited resources with respect to task load [136]. Hence, computation

o✏oading is carried out in order to balance the load among edge devices. The main

goal of o✏oading is to distribute the task partitions among the nearby edge devices, so

that the computation time and energy consumption of the system may reduce [137]. The

major challenge exists in utilizing these finite heterogeneous user devices or edge resources

e�ciently. Mathematically optimized task o✏oading approaches need to appropriately

model the inputs, such as: available resources, transmission delay, computational delay,

task distribution size, and end users, according to certain objectives, such as minimizing

the delays or energy consumption of mobile devices. In order to do this, an accurate

estimation of these inputs is required. Misleading estimations may degrade the task

o✏oading performance over time. The estimation of the computational time itself is a

non-trivial task, as it requires application profiling software, which may be incompatible

with the heterogeneous resources in the edge network. Moreover, edge networks are highly

prone to disruptions and noise. Estimating transmission time is a tedious task, as the

standard network measurement techniques fail to capture the complexities in the network.

In order to address the above shortcomings, we use data-driven estimation approaches

such as machine learning algorithms. This approach provides more accurate estimates,

and hence, helps in e�cient o✏oading of tasks in a multi-edge environment.

Recently, there has been an increase in the usage of surveillance cameras in various

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 81

public places for safety and security. This has brought the problem of crowd analysis

to the fore. The crowd counting problem aims at detecting faces in order to estimate the

number of people present in a given location. Crowd analysis has applications in several

domains: monitoring safety and security, early detection of overcrowding, appropriate

crowd management, and movement in public spaces. ML techniques have been used in

order to extract useful information from huge volumes of data generated through IoT

devices. Among various ML algorithms, Deep Neural Networks (DNN) have exhibited

good performance in the case of image-based classification, and regression problems [138].

One of the main concerns of training these models well is the usage of a huge amount of

data for learning [139]. However, edge devices, being resource constrained by definition,

may not be able to handle huge DNN workloads. Hence, the training of the DNN model

needs to be done in a distributed manner in the edge network, so that the data is processed

in real-time [140].

In this work, we consider the people counting (face detection) application for shopping

malls and retail stores [141]. Several advantages exist in installing tra�c counter devices

in malls and stores: optimizing sales, improving store operations, evaluating new ad

campaign e↵ectiveness, and visitor analytics [142]. All of the above factors have a direct

impact on the profitability of the retail store [143]. There are several cloud-based APIs

that are available for face detection, like Google’s Cloud Vision and AWS Rekognition.

However, these services require reliable and stable internet connectivity. The edge

computing use case for crowd counting is shown in Figure 5.1. The data in the form of

video streams/images is transmitted from cameras to nearby edge devices for processing

and storage. If the local edge device is incapable of processing the received data in a given

deadline, then the data is sent to the master node/ server for processing. The Master

node decides if the data needs to be processed on a remote cloud, or on the Cloudlet

(Edge network), based on the tasks deadlines. If the deadline constraint is hard (i.e.,

real-time tasks), then the Master node sends the partitioned data to edge devices present

in the Cloudlet. Otherwise, the data may be sent to the remote cloud for storage and

processing. This use case faces various challenges: computing resource heterogeneity,

device-to-server ratio, congested, and noisy networks. These challenges make it di�cult

to accurately estimate the o✏oading cost. Moreover, the complexities of such networks

can not be e↵ectively handled by static network profiling approaches, as these approaches

can degrade the o✏oading performance over time with ine�cient task scheduling.

5.2 Contributions

The major contributions of the proposed work are:

• We propose data-driven machine learning techniques for estimating the computation

and transmission o✏oading costs for edge networks. These techniques are based on

various dataset parameters, ML parameters, and hardware/network parameters for

dynamic workloads. This leads to more accurate predictions of o✏oading costs as

82 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Table 5.1: Estimated computation o✏oading cost (C)

ED
J

j1 j2 . . . jl

1 C(1, j1) C(1, j2) . . . C(1, jl)
2 C(2, j1) C(2, j2) . . . C(2, jl)
...

...
...

...
...

n C(n, j1) C(n, j2) . . . C(n, jl)

compared to static estimation methods.

• We propose a framework for the optimal computation o✏oading of application

data-points on various edge devices by proposing a Mixed Integer Programming

(MIP) based approach, which minimizes the training time of the given workload,

and maximizes the data-point processing ratio.

• The proposed framework significantly reduces the training time of DNN model by

updating model parameters in a parallel and distributed manner on various edge

devices, without sacrificing the performance of the trained model.

5.3 Motivation

We conducted an experiment to measure the processing speed and transmission time

for varying network conditions and hardware types, the results of which are shown in

Figure 5.2. The computation time depends on the processing speed of the hardware

(i.e. computation time = Number of frames
Processing speed(infps)). However, accurately estimating the

processing speed is not a trivial task in a large heterogeneous network. As shown in

Figure 5.2a, the processing speed varies tremendously with di↵erent hardware types. The

benchmark used in our study is a face recognition application [144], where the processing

speed for all CPUs is considered to be static (i.e., 11 frames per second). Similarly, in

Figure 5.2b, the theoretical (transmission time = Data size
Bandwidth) transmission time estimates

are much lower than the actual (measured) transmission time. The inaccuracy is due

to merely relying on the link bit rate (Mbps) for estimating the transmission time. In

the real world, this depends on dynamic network conditions. Therefore, if these static

computation and transmission time estimating techniques are used to model the inputs

of mathematical optimization task o✏oading approaches (like MIP), then the inaccurate

estimations might degrade the o✏oading decisions over time. Hence, for providing a

more accurate estimation of computation and transmission times, we propose data-driven

estimation approaches (machine learning algorithms), which help in optimizing task

o✏oading in a multi-edge-cloud environment.

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 83

Figure 5.2: Experiment analysis on a) Processing speed for varying hardware types and b)
Transmission time for varying network conditions.

5.4 System Model

We now discuss our proposed system model. The key notations are depicted in Table

5.2. We consider 0n0 heterogeneous edge devices, such that ED = {1, 2, ..., n}, where each

edge device e 2 ED may have diverse computational capacities. The data point batch jx

comprises of images/frames that need to be processed. The set of all data point batches

is represented by: J = j1, j2, ..., jl, such that the data size of j1 < j2 < ... < jl. The

computation o✏oading cost of 0j0q data batch, where jq 2 J on edge device 0e0, e 2 ED is

represented by C(e, jq). The computation o✏oading cost C(e, jq) defines the time taken

to process data batch jq on edge device e. Table 5.1 shows the estimated computation

o✏oading cost C(e, jq), where e 2 ED & jq 2 J . The data-points batch jq, jq 2 J

selected for processing on edge device 0e0, e 2 ED is termed as local dataset 0D0
e for device

e. Similarly, the local dataset for all the 0n0 edge devices e 2 ED are represented as

D1, D2, ..., De, ..., Dn. The training time taken to finish the given task 0D0
e on edge device

e 2 ED is computed using the following equation:

U(e,De) = C(e,De) + tt(De, em, e), 8e, em 2 ED (5.1)

Here, C(e,De) is the estimated computation o✏oading cost of edge device 0e0 on its local

dataset De. Next, tt(De) represents the estimated transmission time of dataset De from

master edge device em to e. The transmission time tt(De, em, e) comprises of data transfer

time and propagation delay. The training time taken to finish the given task is:

U(e,De) = C(e,De) +
s(De)

bw(em, e)
+ pd(em, e), 8e, em 2 ED (5.2)

Here, s(De)
bw(em,e) denotes the data-transfer time, where s(De) is the data size of De, and

bw(em, e) is the bandwidth of network connectivity between the edge devices em and

e. Next, pd(em, e) represents the propagation delay. As the edge nodes have limited

processing capability in comparison to cloud CD, therefore, queuing of tasks (data-points)

may occur when large data-points batches (tasks) are o✏oaded on edge devices. Hence, we

84 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Table 5.2: Symbols and Notations

Sets:
J Set of data point batches
ED Set of edge devices
Variables:
� Continuous positive variable that depicts the deadline.
⇠(e, jc) Binary variable assigned 1 if data point batch jc 2 J is allocated to

device e 2 ED, and 0 otherwise.
U(e,De) Continuous positive variable that denotes the time taken to train the

DNN model with the assigned data-points batch De at edge device
e 2 ED.

U(ED,D) Continuous positive variable that denotes the total time taken to
train the DNN model with all data-points in the dataset (D) assigned
to edge devices ED.

Parameters:
C(e, jc) Estimated computation o✏oading cost of batch jc at device e 8jc 2

J, e 2 ED.
D Number of data-points in Dataset (Dataset size).
n Number of available edge devices.
tt(jc) Transmission time of batch jc.
pd(jc) Propagation delay of batch jc.
lk(w) loss function defined on the weight vector w and sample data k.
Le(w) Local loss function defined on the weight vector w at node 0e0.
L(w) Global loss function defined on the weight vector. w
W l

e(T) Local parameter for each node e with iteration index T = 0, 1, 2, ..,
and so on.

W g(T) Global parameter at master node with iteration index T = 0, 1, 2, ..,
and so on.

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 85

consider that all edge devices maintain an individual data-points queue to bu↵er the DNN

tasks. The cloud CD is computationally rich, so it has no queuing delays, as tasks are

scheduled immediately. The queuing delay of the o✏oaded task depends on the computing

speed of the edge device and the current state of the assigned queue. So, if the queue bu↵er

is congested with a large number of DNN tasks (data-points), then it might lead to a long

queuing delay. However, another factor that highly governs the queuing delay is the

computation capacity of the device. For example, if the computing capacity of the edge

is high, then more data-points will be processed in less amount of time, which results in

shorter queuing delays and a high service rate. The queue backlog of edge device e at

t+ 1th time instance, is defined as follows:

b(e, t+ 1) = |b(e, t)�⇥(e, t) + a(e, t)| (5.3)

Here, b(e, t) is the queue length/backlog of e at tth instance. ⇥(e, t) denotes the DNN tasks

that left the queue of e at tth instance, after being processed by e. The number of DNN

tasks that arrived at tth instance on edge device e is represented by a(e, t). The estimated

queuing delay (time taken to process the queue backlog) is added to the training time of

the DNN model. The queuing delay is represented by qd(e). Hence, the total training

time taken to finish the given DNN task after including all delays, is defined as follows:

U(e,De) = C(e,De) +
s(De)

bw(em, e)
+ pd(em, e) + qd(e) (5.4)

The real-time task 0D0
e assigned to edge device 0e0, where e 2 ED, must complete its

computation within the given deadline �.

U(e,De)  �, 8e 2 ED (5.5)

Therefore, if all the edge devices e 2 ED complete the assigned task 0D0
e in the given

deadline 0�0, the total training time 0U(e,De)0 to process all the tasks / data-points in the

complete dataset 0D0 such that
Pn

e=1De = D is :

U(ED,D)  � (5.6)

5.5 Problem Formulation

The crowd counting use case involves o✏oading of facial recognition tasks from end devices

like cameras to nearby cloudlets/servers. The inherent challenges in this multi-edge

scheduling are as follows: (a) accurate o✏oading cost estimation in varying network

conditions, (b) limited storage and computational capabilities of end devices, (c) poor

o✏oading decisions may introduce network congestion, and (d) availability of limited

o✏oading resources for computation and processing. We now discuss the problem

formulation of our proposed scheme that attempts to mitigate the above concerns.

86 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Figure 5.3: Workflow of Proposed framework.

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 87

5.5.1 Proposed DNN Task O✏oading Framework

The proposed D2 � TONE (Data Driven DNN Task O✏oading on Network Edge)

framework can be used for scheduling applications such as face detection on multi-edge

architectures. In order to deal with inaccurate estimations made by traditional

computational and transmission o✏oading cost measuring techniques, we employ

data-driven ML models trained on historical device data for computation and transmission

o✏oading cost prediction. The trained ML model helps in predicting device performance

more accurately, which in turn helps in optimizing the task o✏oading schedules on edge

networks. An overview of proposed framework is shown in Figure 5.3. First, in the data

collection phase, the profiling of the device and network parameters is carried out. Next,

these parameters are used by the ML models as input features for predicting computation

and transmission o✏oading costs. Next, the o✏oading cost predictions are used by the

optimization module for deriving the task o✏oading schemes. On the basis of the task

o✏oading schedule given by the optimization module, the tasks are dispatched to the edge

devices present in the network. After the data is o✏oaded to the edge devices, the training

of the DNN model is initiated in a distributed manner, with local datasets. Finally, the

aggregation of local parameter updates is carried out on the master edge device, and the

final trained DNN model is obtained.

5.5.2 Predicting o✏oading cost

In order to determine/predict the computation and transmission o✏oading cost of

edge devices with varying computation capacity (i.e., hardware configuration), network

conditions and dataset characteristics, we have exploited various ML models such as:

Decision tree, Linear regression, Support vector machines, Random forest, Multi-layer

perceptron, and K-Nearest Neighbour. These models help us to determine the approximate

computation and transmission time for each edge device in the face of varying network

conditions. This allows the varying task load/data size to get processed on di↵erent

edge devices, according to their computational capacity. The features that have been

considered for training ML models, for predicting computation o✏oading cost C(e, jc),

and transmission o✏oading cost tt(jc, em, e), where e, em 2 ED & jc 2 J , are listed in

Table 5.3 and Table 5.4, respectively. Further, the performance of various ML models used

for estimating computation & transmission o✏oading costs is discussed in section 5.8.1

5.5.3 MIP scheduling problem

The optimization problem is formulated using 0n0 heterogeneous edge devices, where each

edge device e 2 ED has a di↵erent computational capacity. The dataset comprises of
0d0 data-points. The training algorithm needs to run for 0v0 number of epochs. The

total number of data-points that need to be processed is D = v.d. Table 5.1 shows the

computation o✏oading cost C(e, jc), 8e 2 ED, jc 2 J . This has been computed using

a data-driven approach, as discussed in Section 5.5.2. We begin our scheduling problem

88 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Table 5.3: Features used for estimating computation (Processing speed) o✏oading cost

data Attributes:
• Image Height (Pixels) • Image Width (Pixels)
• Data Size (bytes) • No. of features
• No. of data-points
ML Attributes:
• Number of Epochs • Number of model parameters
• Number of neurons per layer • Learning rate
• Number of layers
H/W Features::
• Processor Speed (Mhz) • RAM (KB)
• Storage (KB) • Switch Bandwidth (Mbps)
• LAN operating freq. (Mhz) • Ethernet cable (feets)

Table 5.4: Features used for estimating Transmission time o✏oading cost

data Attributes:
• Image Height (Pixels) • Image Width (Pixels)
• Data Size (bytes) • No. of features
• No. Of data-points
H/W Features:
• Bitrate (Mb/sec) • Ethernet cable (feets)
• Packet Loss (%) • Mean RTT (sec)
• LAN operating freq. (Mhz) • Jitter (sec)

formulation by defining various variables, constraints, and parameters. The first binary

variable is defined as follows:

⇠(e, jc) =

8
<

:
1, if batch jc is assigned at device e.

0, otherwise.
(5.7)

Here, jc 2 J , c = (1, 2, .., l), e 2 ED, and J is the set of all data-points batches.

5.5.3.1 Optimization problem

The optimization problem that needs to be solved is represented as:

Minimize U(e,D), 8e 2 ED (5.8a)

subject to
lX

c=1

⇠(e, jc)  1, 8e 2 ED (C1)

nX

e=1

lX

c=1

⇠(e, jc).jc = D, 8jc 2 J, 8e 2 ED (C2)

U(e,D)  �, 8e 2 ED (C3)

The constraint C1 ensures that at most one batch of data-points jc 2 J is allocated to each edge

device. The C2 constraint ensures that the summation of data-points allocated to all edge devices

is equal to the total number of data-points present in the dataset. D denotes the number of

data-points present in the dataset and n = |ED| (number of edge devices), where ED is the set

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 89

of all edge devices. The continuous positive variable U(e, jc) depicts the time taken to finish the

assigned batches at edge device 0e0.

U(e, jc) = (C(e, jc) + tt(jc, em, e) + qd(jc)).⇠(e, jc),

8e, em 2 ED, jc 2 J
(5.9)

Here, C(e, jc) is the total computation o✏oading cost of batch 0j0c at edge device 0e0, the

transmission time of data batch jc from master edge device em to e is represented by tt(jc, em, e).

The queuing delay of batch jc is represented by qd(jc). The continuous variable U(e,D) in

constraint C3 depicts the total time taken to process data-points 0D0 at various edge devices

e 2 ED. Finally, we introduce the continuous variable 0�0 that depicts the maximum training time

among all the edge devices. The following constraint holds:

U(ED,D)  � (5.10)

We have adopted the Mixed Integer Programming (MIP) method to solve equation (5.8a), which

is a well known NP-hard problem. We have used the IBM ILOG CPLEX v12.10.0 optimizer to

find optimal o✏oading solutions by solving equation (5.8a). Since the problem is NP-hard, it

takes a long time to generate the o✏oading solution. In order to reduce the o✏oading solution

generation time, we have reduced the complexity of algorithm using a branch-and-bound method

(i.e. optimality gap), discussed in section 5.7.3.

5.6 Proposed Algorithms

5.6.1 Proposed D
2 � TONE algorithm

We now discuss the steps of the proposed D2 � TONE algorithm (Algorithm 8). First, the

training time on the local edge device (Ulocal) is estimated using ML models. If the training time

of assigned data-points in dataset D on the local device is within the assigned deadline, then all

the data-points/tasks are scheduled on the local edge device. Otherwise, the training time for each

edge device in the network is estimated using ML models. If the total training of all edge devices

present in the network having an equal number of data-points (represented by UEN) is less than the

specified deadline, the data-points are scheduled on all such edge devices. If the local edge device

and edge devices with equal data-points do not meet the deadline condition, then the total training

time of the cloud (Ucloud) is checked to see if it is within the deadline. If the above conditions do

not satisfy, then the optimal o✏oading solution is provided by solving the optimization equation

discussed in section 5.5.3.1. In order to reduce the o✏oading solution generation time, we have used

the optimization equation in the worst-case scenario. By introducing this heuristic, the complexity

of the algorithm reduces significantly, without violating deadline constraints. Additionally, in order

to deal with the complexity of optimization problem, we opted for a branch and bound solution of

the optimization problem with a 1-2% optimality gap. The results in Section 5.8.7 show that the

o✏oading solution generation time reduces significantly after introducing the branch and bound

solution, without significantly a↵ecting the performance.

90 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Algorithm 8: D2 � TONE Algorithm
Require: D := Data points in the dataset.
� := Deadline.
Ulocal := Total training time to process data-points in D on the local edge device.
UEN := Total training time on edge network with each edge device having an equal
number of data-points.
UCloud := Total training time to process data-points in D on remote Cloud server.

Ensure: So := O✏oading Schedule.
if Ulocal  � then
Schedule dataset ’D’ on local edge device.

else if UEN  � then
Schedule data-points 0D0 on edge network having local dataset D1 = D2 = ... = Dn

&
Pn

e=1De = D
else if UCloud  � then
Schedule on cloud architecture

else
Schedule data-points 0D0 on edge network based on o✏oading solution provided by
optimization equation (5.8a)

end if
return So

Partition 1

Partition N

Partition 2

Global
Parameters

........

DFS

Master Edge
Node

Resource
Manager

Worker Edge
Node

Partition N & Global
parametersUpdated

Weights

Worker Edge
Node
Local

Parameters

Worker Edge
Node

Worker Edge
Node
Local

Parameters
Local

Parameters

Figure 5.4: Distributed Deep Neural Network Learning framework.

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 91

5.6.2 Distributed DNN learning algorithm

The D2 � TONE algorithm decides the local dataset for each edge device, based upon which the

distributed DNN learning takes place. The Distributed Deep neural network learning framework

is shown in Figure 5.4. The machine learning model is learned using training data. The sample

data 0k0 used for training comprises of two parts. The first part is the features/Input vector 0x0
k

of the ML model (i.e., image pixels). The second part is the label/Output scalar 0y0k (i.e., value

in case of regression problem). The learning of the ML model is facilitated using a loss function,

which is defined on the weight vector 0w0 corresponding to its sample data 0k0. The model training

process aims to minimize this prediction error (i.e., minimizing the loss function) on a given set

of sample training data 0k0. The loss function is denoted by 0l(w, xk, yk)0. In short, we represent

l(w, xk, yk) as lk(w). The loss function which we consider for the regression problem is the Mean

Square Error (MSE). So, when the lk(w) is the MSE, then it is represented as:

lk(w) =
1

2
||yk �WTxk||2 (5.11)

Let the number of edge nodes selected by D2 � TONE algorithm be 0M 0. Their local datasets

are given as: D1, D2, ..., De, ..., DM . The local dataset for each edge device e is based upon the

D2 � TONE algorithm. The loss function at node 0e0 with sub-dataset 0D0
e is represented as

follows:

Le(w) =
1

|De|
X

k2De

lk(w) (5.12)

Here, |De| represents the size of the dataset at node 0e0. The global local function is computed

using all the distributed datasets such that De \De0 = ; for e 6= e0 and D =
PM

i=1 De. The global

loss function is defined as:

L(w) =

P
k2[eDe

fk(w)

|
S

e De|
=

PM
e=1 DeLe(w)

D
(5.13)

The value of L(w) (i.e., the global loss function) is computed by distributing the complete

information (dataset) among 0M 0 nodes. The main goal of learning the DNN model is to minimize

L(W) (i.e., global loss function), which can be represented as:

w⇤ = argminL(w) (5.14)

The solution to Equation (5.14) is computed using the Gradient-descent method for a distributed

environment, as computing close-form solution for Equation (5.14) is inherently complex in

distributed settings. So, we use the distributed DNN learning approach that exploits the gradient

learning technique in order to solve Equation(5.14) in a distributed manner.

The local parameter for each node e is depicted by W l
e(T), where T = 0, 1, 2, ... represents the

iteration index. When T = 0, the same local parameter values are assigned to all the nodes. But

when T > 0, the local loss function (Le(w)) is used to update the local parameters (W l
e(T)) of edge

node 0e0, depending upon the parameter values at T � 1 on each node 0e0. This updation of local

parameters using Le(w) and local data-points/dataset De is termed as local update. The master

node will perform global aggregation after several local updates. In order to synchronize the local

parameter of each node e at time interval 0T 0, the global parameter at time 0T 0 is assigned to the

local parameter of each worker node. Usually, the local parameter at each worker node changes

after a global update/aggregation (i.e. W l
e(T) W g(T)), which takes place after time interval

92 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Algorithm 9: Master Node Update(k, S�, �)

Require: k := Training Data points.
� := Maximum training time.
J := Data points batches from xk & yk.
a := Time after which global parameters sync.
S� := The dictionary of selected edge devices e 2 ED with their corresponding data
points batches De = jc, 8 jc 2 J using D2 � TONE Scheduling algorithm.

Ensure: W g := Trained global parameters of the DNN model. {Initialize global
parameters}

1: w(t) Initialization of weights
2: Wepoch w(t)
3: S� he, ji8ed 2 ED, j 2 J
4: Master node sends the data-points batches/partitions 0D0

ed to edge nodes ei 2 S�

according to D2 � TONE scheduling algorithm.
5: while (Train time  �) do
6: if T is not multiple of a then
7: {Local parameter updates}
8: for all Edge devices e 2 S� in parallel do
9: W l

e(T) Worker Node Update(e,W l
e(T), De)

10: T T + 1
11: end for
12: else
13: {Global parameter update}
14: W g

e
P

8e2S�

1
S�

. W e
epoch+1

15: T T + 1
16: end if
17: end while
18: W g W g

e

19: return W g

0a0 (as shown in Algorithm 9). The Local updation (Algorithm 10) of parameters at all the edge

nodes e is done using the following rule:

W l
e(T) = W l

e(T � 1)� ↵.�Le(W (T � 1)) (5.15)

Here ↵ > 0, depicts the step size. The global update is performed after every 0a0 time interval,

using the following equation:

W g(T) =

PM
e=1 DeWe(T)

D
(5.16)

The global parameter W g(T) is computed by taking the weighted average of local parameters of all

the nodes. These local and global updates take place until the time limit 0�0 (deadline) is reached.

5.7 Experimental setup

5.7.1 Data Collection & Profiling

In order to determine the computation C(e,De) and transmission tt(De) o✏oading cost for

the crowd count application [145], the sub-sampling of images with varying image resolution

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 93

Algorithm 10: Worker Node Update(e, W, De)

Require: e := Worker edge device in D2 � TONE Schedule.
De := The data points batch associated with given worker edge device e.
W := Updated global weights.
↵ := Learning rate.

Ensure: W l := Trained local parameters of the DNN model.
{Initialize local parameters}

1: Wl W
2: B := split De into sub-batches
3: for all Edge devices e 2 S� in parallel do
4: for all batch b 2 B in parallel do
5: W l

e(T) W l
e(T � 1)� ↵.�L(W l

e(T � 1))
6: end for
7: end for
8: return W l

e 8e 2 ED to Master edge node.

(480x640, 1024x684), with 200 images per resolution group has been done. For capturing the

ground-truth computation and transmission cost of the face detection application, a varying

number of data-points (data sizes) were executed on edge devices. For dynamically estimating

computation and transmission costs, we have used the Scikit-learn machine learning library

in Python for di↵erent batches having varying numbers of data-points. The computation

and transmission o✏oading cost was measured in seconds. The profiling of RAM, processor

freq, storage, switch bandwidth, & operating frequency values has been done while measuring

the computation o✏oading cost. We employed three types of machines with heterogeneous

computational characteristics: Raspberry Pi v4 (3 nodes), Raspberry Pi v3 (2 nodes) & Intel-core

i5 (2 nodes). The total number of samples recorded for computation o✏oading cost estimation

was 1000. The features used for predicting C(e,De) are listed in Table 5.3. The features used for

predicting transmission time are listed in Table 5.4. The mean Round trip time (RTT) and Bit

rate are important in determining the speed and capacity of the connection. On the other hand,

jitter and packet loss determine the connection interruptions. The LAN operating frequency and

cable length determine the strength of the link/connection. The total number of samples recorded

for transmission cost estimation was 1000.

5.7.2 Baseline approaches & Dataset used

We compare our proposed approach with the following baseline approaches:

• Static Estimate with MIP (SE-MIP): In [64], the static computation and transmission

techniques have been used to model the inputs in MIP formulation using equation (5.8a).

In order to statically estimate the computation cost C(e,D), the following formula has been

used:

C(e,D) =
D

Ps
(5.17)

Here, D is the number of frames (data-points), and Ps is the average speed of

processing/computing data-points. The processing/computation speed (Ps) is measured

in data-points per second. The value of (Ps) is taken to be 11 frames per second, which is

attained from benchmark results [144]. In order to statically estimate transmission time the

94 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

following formula has been used:

tt(jc) =
Data size(jc)

Bandwidth
(5.18)

• Homogeneous Edge Only (HEO): In [73], all the devices present in the edge network receive

an equal amount of data-points (DNN tasks). The heterogeneity factor is not considered

while o✏oading DNN tasks, i.e., all the devices are considered to have the same processing

speed.

• Centralized: In [146], the data-points (DNN workload) are processed only on the local edge

device.

• Cloud only: in this approach, we have sent the entire DNN workload to the cloud for

processing.

• Random: in this approach, the data-points batches are distributed uniformly either to the

set of edge devices, or the cloud, at random.

In order to evaluate the performance of our proposed D2 � TONE algorithm on the regression

problem, we have used the crowd counting dataset [145], which includes 2000 RGB images - frames

in a given video. The images with a resolution of 480x680 resolution were collected after placing

a webcam in a mall. The number of persons (objects) varies in every image/frame. We need to

determine the number of persons in each frame.

5.7.3 Evaluation Metrics

In order to evaluate the performance of the proposed approach, the following parameters have been

used in our experiments:

• Actual Train Time Variation (ATTV): The solution to D2�TONE is compared when

the actual (ground-truth) values of C(e,D) and tt(De) are known with the solution to

D2 � TONE when C(e,D) and tt(De) are either predicted using ML models or statically

estimated with Static Est. (SE-MIP). The actual (ground-truth) value of computation and

transmission o✏oading costs are obtained by actually processing the data point batches

on edge devices. When the actual value of computation and transmission o✏oading costs

are used in the D2 � TONE algorithm, we refer to U as UActual. When computation

and transmission o✏oading costs are statically estimated in D2 � TONE, we refer to U

as USE�MIP - the statically estimated solution. Lastly, in case of data-driven approach,

we have used two best pairs of ML models (from Table 5.5) for estimating computation

and transmission o✏oading costs, which are represented as RFR+MLP and DT+SVM. In

case of RFR+MLP, Random Forest Regressor and Multi-layer perceptron models are used

for estimating C(e,D) and tt(De) respectively. In case of DT+SVM, Decision tree and

Support vector machine models are used for estimating C(e,D) and tt(De) respectively.

When computation and transmission o✏oading costs are predicted using RFR+MLP &

DT+SVM approaches in D2�TONE algorithm, we refer to U as: URFR+MLP & UDT+SVM

solutions respectively.

The Actual Train Time Variation (ATTV) is calculated by measuring the variation

percentage for URFR+MLP , UDT+SVM , and USE�MIP solutions w.r.t the actual solution

(UActual). Hence, ATTV is defined as:

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 95

ATTV =
|UActual � UApproach|

UActual
⇤ 100 (5.19)

Here, Approach 2{RFR+MLP, DT+SVM, SE-MIP.}

• Data-points Processing Ratio (DPR): The input, i.e., the DNN tasks consist of a set

of data point batches. The DPR is defined as the percentage of data-points that finish

processing before their deadline (denoted by D’) divided by the total number of data-points

scheduled on the edge/cloud (denoted by D), so as to train the DNN model in a distributed

manner. DPR is calculated using the following equation:

DPR =
D

0

D
⇤ 100 (5.20)

• Mean Square Error (MSE): We use mean square error (MSE) as the loss function for

the regression problem, where the prediction is a scalar value. This function helps us to

estimate the performance of the trained DNN model using various approaches. The MSE is

calculated by taking the mean of the squared di↵erence between actual and predicted values:

MSE =
1

n

nX

i=1

(yi � y
0

i)
2 (5.21)

Here, n is the number of data-points, yi is the actual value (i.e., the actual number of

persons in the frame), and y
0

i is the predicted/estimated value (i.e., predicted number of

persons in the frame using given approach). The model/approach with the least value of

MSE is considered to be the best.

• Queue Backlog: This is the average number of DNN tasks (data-points) that are queued

per edge device during the given simulation period. More is the queue backlog; more is the

queuing delay.

• Deadline Factor: This is used to measure the real-time performance of the proposed

algorithm. A smaller deadline indicates tight deadline (real-time tasks), whereas a large

deadline value indicates a looser deadline (batch processing) [147],[65]. The average real-time

value of face recognition varies from 400-800ms in [148], [149]. The resulting value for 0d0

(deadline factor) is taken as 400ms. In our experiments, we measure the performance of

various approaches when the deadline factor ‘d’ increases and decreases by 25% and 50%

(represented as 1.25d, 1.50d, 0.75d, and 0.50d respectively).

• Number of Parameter Updates: In the Gradient descent method, several parameter

update steps are performed on various edge devices, using equation (5.15). These parameter

updates are performed in order to satisfy equation (5.14). In general, a larger number of

parameter updates performed on data-points results in fine-tuning of the model on the given

dataset, and hence a good performance of the trained model.

• Time to Generate O✏oading Solution (TGOS): This is the time required to obtain

the o✏oading solution using the D2 � TONE algorithm.

• Optimality Gap: The optimality gap helps in reducing TGOS. We have used the IBM

CPLEX optimizer in order to find optimal o✏oading solutions by solving the equation (5.8a).

The CPLEX solver sometimes obtains good integer solutions very quickly, but keeps on

examining several additional solutions in order to demonstrate that the provided solution is

96 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Table 5.5: Computation o✏oading cost prediction results using various ML models

Approach Computation
time (RMSE)

Transmission time
(RMSE)

Decision Tree (DT) 0.243 ± 0.851 0.543 ± 0.461
Linear Regression (LR) 0.794 ± 0.134 0.944 ± 0.851
Support vector machine (SVM) 0.494 ± 0.243 0.394 ± 0.451
Multi-layer Perceptron (MLP) 0.347 ± 0.034 0.343 ± 0.340
Random forest (RFR) 0.234± 0.044 0.422 ± 0.144
K-Nearest Neighbour (KNN) 0.444 ± 0.094 0.843 ± 0.781
Static Estimate(SE) 10.243 ± 3.851 14.134 ± 0.649

Figure 5.5: Number of simulations corresponding to Actual train time variation (ATTV) for
SE-MIP, RFR+MLP and DT+SVM solutions.

optimal. So, in order to speed up the TGOS, we have introduced “optimality tolerance”.

An optimality gap of X% means that the CPLEX solver will stop immediately on obtaining

a feasible integer solution that is confirmed to be within X% of the optimal solution.

5.8 Results & Discussion

5.8.1 ML models for o✏oading cost prediction

In this experiment, we evaluated the performance of the static estimation approach with other

ML algorithms for predicting the computation C(e,De) and transmission tt(De) o✏oading costs.

The aim of the experiment is to select the best approach that can predict the computation and

transmission costs with high accuracy i.e. low Root Mean Square Error (RMSE). As shown in

Table 5.5, the RMSE value is very high for the static estimation technique (Static Estimate) in

comparison to other ML based algorithms. Thus, the data-driven approach (ML algorithms) for

predicting the computation and transmission o✏oading cost is more beneficial than statically

estimating the computation and transmission o✏oading cost (Static Est). The ML models

evaluated were: Decision tree, Linear regression, Support vector machines, Random forest,

Multi-layer perceptron, and K-Nearest Neighbours. The evaluation results of all ML models with

RMSE values are shown in Table 5.5. The ML model with the least value of RMSE would be

preferred.

The Random Forest Regressor (RFR) approach o↵ers the best results for computation o✏oading

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 97

cost C(e,De) with low root mean square error(RMSE) values and low variance. The low variance

is due to the voting of several decision trees, which are trained on varying sub-sets of data

present in the given dataset. Due to this bagging (voting) technique, the variance and bias of

the trained model are reduced significantly. The next best performance for computation o✏oading

cost C(e,De) is o↵ered by the Decision tree, as it is capable of capturing complex relationships

of variables/features using fine-grained decision boundaries/branches. However, its variance is

quite high compared to that of Random forest. A single instance of the decision tree has been

considered, whereas, in the case of RFR, several decision trees take decisions, which reduces the

variance significantly. The ML model that performed the best in the case of estimating transmission

o✏oading cost was Multi-Layer Perceptron (MLP), followed by Support vector machines (SVM).

The MLP model has performed well due to its capability to detect complex patterns and trends

from complicated data. SVM has performed well due to its good generalization ability, i.e., the

ability to perform well in the case of unseen data.

Figure 5.6: Cumulative Distribution Function (CDF) vs ATTV .

5.8.2 E↵ect of o✏oading costs estimation approach on ATTV

In order to study the e↵ect of o✏oading cost estimation approach (Static Estimate or ML based)

on D2 � TONE, we ran 150 simulations of task o✏oading using D2 � TONE with SE-MIP (i.e.,

Static Estimate), RFR+MLP, and DT+SVM models. Figure 5.5 shows the histograms for these

models/solutions. The histogram depicts the number of simulations (counts) corresponding to

di↵erent Actual train time variations (ATTV), which has been defined earlier in section 5.7.3. As

shown in Figure 5.5(b), for RFR+MLP, there are 99 simulations (i.e. approximately 66 % of the

simulations) out of 150 in which URFR+MLP is the same as Actual train time UActual i.e. ATTV=

0%. However, for DT+SVM, there are 52 simulations (i.e. approximately 34 % of the simulations)

out of 150 in which UDT+SVM is the same as Actual train time UActual i.e. ATTV= 0%. This

indicates that the selection of an appropriate ML model for predicting C(e,D) and tt(D) is of

prime importance. The worst performance is shown by SE-MIP (shown in Figure 5.5(a)), as a

very small number of simulations were completed within AATV= 10 %. This is because SE-MIP

considers the average processing speed for varying hardware types to be static, i.e., 11 frames

per second, and the processing speed is highly correlated with the hardware configuration and

image resolutions. In addition, SE-MIP fails to capture dynamic network conditions. This set of

experiments shows that the proposed data-driven approach (D2�TONE) with RFR+MLP model

98 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

o↵ers a better performance.

Figure 5.6 shows the cumulative distribution function for ATTV. From the figure, we observe that

about 99% of the simulations finished within 0-7% of actual train time variation (ATTV), when the

RFR+MLP approach was used for predicting C(e,D) and tt(D) in D2 � TONE. However, when

the DT+SVM approach was employed, only 78% of the simulations completed within AATV= 10

%. Interestingly, the remaining 22% took 3-4 times (approx. ATTV = 100%) training time w.r.t

actual training time UActual. Finally, the SE-MIP approach recorded the worst performance, as

approximately 55% of the simulations took ten times more training time w.r.t actual training time

(i.e., ATTV= 800-1000%).

5.8.3 Comparative analysis of DNN task processing time.

In this experiment, we have examined the DNN task processing time, which consists of computation

time, transmission time (data transfer time + network latency), and queuing delay, for di↵erent

approaches. As shown in Figure 5.7, the lowest computation time is recorded in the case of

the Cloud only approach. This is due to the high computation power of the device deployed in

the cloud data center. The worst computation time is recorded in the case of the Centralized

approach, in which all the data-points which need to be processed are queued on the local edge

device. Due to the limited computation capacity of the edge device, the time taken to execute

the given data-points batch is quite high. The proposed D2 � TONE algorithm o↵ers reduced

computation time in comparison to the SE-MIP, HEO, and centralized approach. This is because

the data-points are o✏oaded to the edge/cloud based on their computational capacity, which results

in a good performance for D2 � TONE.

Figure 5.7: DNN task process time for various approaches.

The transmission delay comprises of the data transfer time and the network delay (propagation

delay). The worst performance in terms of transmission delay is observed in the case of the

Cloud Only approach. This is due to the high latency caused because of network tra�c in the

wide area network. Also, when more devices are connected through the internet, it results in

bandwidth reduction. All these reasons contribute to the poor performance of the Cloud only

approach. In comparison, negligible transmission delay is experienced in the case of the Centralized

approach. Here, the data is not transmitted to the network and is processed on the local edge

device. However, due to a high computation time, the overall performance of the centralized

approach is not acceptable for a real-time scenario. The proposed D2 � TONE approach o↵ers

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 99

significantly reduced transmission times along with computational times, as compared to SE-MIP,

HEO, centralized and Cloud only approaches. The reason for D2�TONE’s performance in terms

of transmission delay is due to precisely estimating the network delays based on the dynamic

network conditions and o✏oading the DNN tasks accordingly. Due to this, the assigned DNN

tasks get processed in less amount of time, which results in faster training of the given DNN

model. In the case of SE-MIP, the transmission delays of DNN tasks are estimated using static

techniques, which do not capture the dynamic condition in the network. This results in poor

o✏oading decisions. Similarly, in the case of HEO, an equal amount of DNN tasks are o✏oaded to

all the devices available in the network, which results in network congestion. Hence, training time

increases significantly due to poor o✏oading decisions. The best overall performance is o↵ered by

D2 � TONE because it intelligently o✏oads the DNN tasks in the network.

Figure 5.8: Queuing Backlog vs. Training time.

Figure 5.8 depicts the device queue backlog for the compared approached. Initially, the queuing

backlog is observed to be less in the case of the Centralized approach. Unlike other approaches, no

transmission delays are involved in the Centralized approach, so processing of the data-points takes

place fairly quickly. However, after a certain time duration, the performance of the Centralized

and Random approaches in terms of queue backlog deteriorates. In the case of the Centralized

approach, this is due to an increase in the unprocessed data-points in the edge device queue, which

is in turn due to the limited computing capacity of a single edge device. In the case of the Random

approach, the high queue backlog is due to uniformly o✏oading data-points to randomly selected

edge devices without considering their computation capacity. While employing D2 � TONE, the

number of unprocessed data-points in the edge device queue is quite less in comparison to other

approaches. This is because D2 � TONE o✏oads the data-points according to the computing

capacity of the devices in the network.

5.8.4 E↵ect of data size on DPR

In this experiment, we observe the e↵ect of data size on the data-points processing ratio (DPR)

that has been defined earlier in section 5.7.3. The results are shown in Figure 5.9. As shown in

the Figure 5.9, we increased the data-point load on edge devices by varying the data size to be

processed on the edge from 100KB to 500KB, and observed its corresponding e↵ects on DPR. As

the data size increases, more data-points are left unprocessed, which results in low DPR values.

This trend is applicable for all approaches: SE-MIP, HEO, Cloud, D2 � TONE & Centralized.

100 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Figure 5.9: E↵ect of Data size on DPR.

Figure 5.10: E↵ect of data size on train time.

However, with the proposed data-driven D2 � TONE approach, more data-points are processed

(for gradients updates) within a given deadline in comparison to other approaches. This is due to

assigning the tasks according to device processing speeds and dynamic network conditions. On the

other hand, in the HEO approach, tasks/data-points are distributed equally in the edge network

without consideration of hardware configuration (processing speeds). Therefore, the number of

gradient updates (tasks) performed within a given deadline on the edge network is less, which

results in low DPR. When the data size is 100KB (few data-points), then the DPR is observed to

be high for the Centralized approach as compared to the HEO approach. This is because a small

number of data-points can easily be processed on a single-edge device. However, when the data

size increases in the Centralized approach, the number of data-points processed on a single-edge

device becomes low due to limited processing capacity. This results in a low DPR value for this

approach.

5.8.5 E↵ect of data size on training time of DNN model

In this experiment, we examined the e↵ect of data size on the training time of DNN model

using various approaches. As shown in Figure 5.10, we have increased the DNN task (i.e.,

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 101

data-points) load on the network by varying the data size from 100KB to 500KB and observed its

corresponding e↵ects on training time. When the data size is 100KB and 200KB, then the best

performance is o↵ered by the Centralized approach. This is because the computational capacity

of the local edge device is su�cient to handle such small data sizes. However, when the data

size increases significantly, then the centralized approach shows the worst performance due to its

limited computational capacity. All the distributed training approaches (i.e., SE-MIP, HEO, and

D2 � TONE) perform well in comparison to the centralized approach when the DNN task load is

high. This is due to reduced queuing delay and distributed execution of DNN tasks. D2� TONE

performs particularly well on both small and large data sizes. However, a noticeable performance

di↵erence can be observed when we considered data sizes greater than 300KB. The reason for a

reduced training time in the case of D2 � TONE is due to carrying out the training process in

a distributed manner and utilizing the limited edge resources to their full capacity, by accurately

estimating computational and transmission delays using the best ML models (RFR+MLP). In

SE-MIP and HEO, the training is performed in a distributed manner, but the training time is

quite high in both scenarios. The reason for high training time in the case of SE-MIP is due to

inaccurate estimations of various delays made using static techniques. On the other hand, HEO

shows poor performance because, in this approach, heterogeneity factor of edge resources are not

considered, due to which queuing backlogs increases on slower devices and faster devices remain idle

after processing the assigned DNN tasks. Therefore, the available resources are not fully utilized

in the case of SE-MIP and HEO. Finally, the Cloud Only approach took significant time to train

the DNN model using the same amount of data-points. This is because of the huge transmission

delays introduced by the network tra�c.

Figure 5.11: E↵ect of deadline factor on DPR.

5.8.6 E↵ect of deadline value on DPR

In this experiment, we varied (increased/decreased) the Deadline Factor (DF) and observed its

corresponding e↵ect on the Data-points Processing Ratio (DPR). The DF value of the assigned

data-points was increased/decreased by 25% & 50%. As shown in Figure 5.11, as the DF increases,

more data-points are processed. Therefore, the DPR value corresponding to DF=‘1.25d’ &

DF=‘1.50d’ (i.e. when deadline factor is increased 25% & 50% respectively) increases significantly.

When DF=‘1.50d’ (DF is increased by 50%), then the DPR values for all the approaches are

observed to quite high, except for the centralized approach. This leads to the processing of almost

102 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

all the data-points (i.e., DPR=100%). The poor performance of the Centralized approach is due

to the limited computing capacity of the local edge device. However, when DF decreases by 25%

& 50%, the proposed D2 � TONE o↵ers a higher DPR as compared to all other approaches. The

superior performance of D2 � TONE is due to the incorporation of dynamic network conditions

and computational capacities of the edge devices present in the edge network before assigning

data-points. Thus, the task scheduling using D2 � TONE helps in handling interactive tasks

within the specified deadlines, hence, improving the DPR. When DF decreases by 25% & 50%,

the worst DPR value is recorded when all the DNN tasks (data-points) are sent to the cloud for

processing. This is due to the high network latency , which results in a low DPR value.

Figure 5.12: E↵ect of the number of devices on TGOS.

5.8.7 E↵ect of number of devices on TGOS

In this experiment, we explore the e↵ect of an increase in the number of edge devices on time to

generate o✏oading solutions (TGOS), defined earlier in section 5.7.3. The results are shown in

Figure 5.12. Solving the optimization problem using equation (5.8a) for actual training time

(Uactual) is NP-Hard and complex, even for a moderately sized edge network of 25-30 nodes

with heterogeneous computing capacities. In order to deal with this complexity, we opted for

a branch-and-bound solution of the optimization problem with a 1-2 % optimality gap. Here, we

use the IBM Cplex optimizer. As shown in Figure 5.12, due to this branch and bound approach, the

optimization problem solution scales well. The 1-2% optimality gap solution to the optimization

problem has been generated earlier than the cut-o↵ time. The optimal / near-optimal solution is

provided in a lesser amount of time because the CPLEX solver will stop immediately on obtaining

a feasible integer solution that is within 1-2% of optimal. Since solving the optimization problem

takes a significantly lesser amount of time, more time will be available for training the model,

before the deadline expires. Therefore, the number of parameter updates will increase significantly

with an increased training time, which results in superior learning in a distributed environment.

Figure 5.13 depicts the increase in parameter updates when the 1-2 % optimality gap is introduced.

As shown in Figure 5.13, the parameter updates increased significantly when the 1-2% optimality

gap has been introduced in the D2 � TONE algorithm in comparison to when the optimization

problem using equation (5.8a) is solved for 0% optimality gap.

Chapter 5. Data Driven DNN Task O✏oading on Edge Networks 103

Figure 5.13: Number of parameter updates vs. Optimality gap.

5.8.8 Comparison of baseline approaches for crowd counting application

In this experiment, we used the crowd counting dataset [145] to compare the performance of our

proposed D2 � TONE approach with the SE-MIP and HEO (equal data-points distribution in

the network) approaches. The results are shown in Figure 5.15. As shown in Figure 5.15(a),

the predicted person count varies significantly with the actual person count in the case of the

SE-MIP approach. This happens because very few parameter updates took place on the edge

network, due to the use of static estimation techniques for computation and transmission time

estimation, resulting in poor model training. The HEO approach with an equal distribution of

data-points on various edge devices performed better than the SE-MIP approach. Here, more

parameter updates took place versus the SE-MIP approach. However, the HEO approach could

not perform well when the person count exceeded 20. As shown in Figure 5.15(c), the proposed

D2 � TONE approach records the best performance among all the approaches, due to a large

number of parameter updates taking place, resulting in superior model learning. This increase in

the parameter updates occurs due to o✏oading the tasks (data-points) according to the hardware

configuration of the edge devices present in the heterogeneous edge network.

Figure 5.14: Plot of MSE versus training time.

However, the proposed framework D2 � TONE does not perform well when the person count

104 Chapter 5. Data Driven DNN Task O✏oading on Edge Networks

Figure 5.15: Performance of SE �MIP , HEO and D2 � TONE approaches in crowd counting
application.

exceeds 35 per frame. This is due to partly occluded objects. As shown in Figure 5.14, The

Mean Square Error (MSE) of the Centralized approach doesn’t decrease much with training time,

as very limited parameter updates take place on an edge device. The poor performance (i.e.

high Mean Square Error) of cloud is because of high transmission delay, due to which very less

time is available for training the DNN model. The performance of the HEO approach is better

than the SE-MIP approach, but the best performance is o↵ered by the D2 � TONE approach.

This is because D2 � TONE takes into consideration the number of parameters, layers, epochs,

and processing capability of the hardware for estimating the o✏oading cost and schedules the

data-points accordingly on the network.

5.9 Conclusion

Accurate o✏oading cost estimation in the face of varying network conditions is a challenging

problem. The proposed D2 � TONE approach utilizes data-driven task o✏oading in order to

predict the o✏oading cost on heterogeneous multi-edge networks. We investigated several classical

ML models for predicting o✏oading costs and discussed the importance of model selection on

D2 � TONE’s performance. Extensive experiments revealed that the proposed D2 � TONE

approach provides near-optimal o✏oading solutions. Moreover, the proposed solution is scalable

for moderately sized networks, with a 1-2% optimality gap. D2 � TONE has been observed to

perform well in terms of maximizing DPR and minimizing MSE in comparison to other approaches.

This is due to a larger number of parameter updates taking place while training the DNN model in

a distributed manner, within a given deadline. We also studied the e↵ect of various data sizes on

D2 � TONE’s performance. The experiments revealed that the proposed D2 � TONE approach

o↵ers significantly smaller training times in comparison to other approaches. In the future, we

would like to extend our work to a wireless network setting.

Chapter 6

A non-linear time-series based AI

model to predict outcomes in

cardiac surgery

6.1 Introduction

Adverse lifestyles have led to increased cardiac complications, further accelerating the burden of

cardiac surgeries in tertiary care hospitals. For optimum management of cardiac surgical patients

in the hospital, it is essential to have an accurate idea regarding the patients’ expected ICU

stay and hospital stay. Additionally, the forecasting of the survival outcome of patients is also

essential for ICU management. This study aims to develop artificial intelligence models based

on non-linear time-series data of blood pressure and heart rate to predict the ICU stay, hospital

stay, and survival outcome of cardiac surgical patients. The intraoperative heart rate and blood

pressure data of 1077 patients undergoing cardiac surgeries at a single tertiary care hospital were

recorded every minute. The raw data was processed to remove artifacts. Next, feature engineering

and oversampling were performed. Then, various classification and regression models were trained

and tested. The prediction results were evaluated on the following performance metrics: area

under the curve (AUC), accuracy, F1-score, RMSE, and R2-score. The Gaussian Naive Bayes +

Logistic Regression (GNB+LR) model is the best model for survival analysis, having the highest

AUC of 0.72, Accuracy of 83%, and an F1-score of 0.86. The Gradient boosting (GB) model

is the best model for the analysis of hospital stay, o↵ering the highest R2-score (0.023). The

XGBoost regressor is the best model for ICU stay analysis, o↵ering the highest R2-score (0.125).

Artificial intelligence models based upon the intraoperative time series data were developed to

analyze outcomes in cardiac surgery with high accuracy. These models can be used in cardiac

surgeries to predict the ICU stay, hospital stay, and overall survival of the patients for better ICU

management at the hospital.

Cardiovascular disease has become the prominent cause of morbidity and mortality in India during

the past decades. Genetic factors and acquired modern lifestyle risk factors seem to be the

primary cause of high incidence. Cardiovascular disease is managed by contemporary methods,

like percutaneous coronary revascularization and surgical methods. Coronary artery bypass graft

surgery (CABG) was first performed in India in 1975, about 13 years after its advent in 1962. In the

mid-1990s, some 10,000 CABG surgeries were performed annually in India. At present, the annual

number is about 60,000 [150]. The usual challenges faced by clinicians are predicting the duration

of hospital stay or ICU stay and the overall survival outcomes post-surgery. The ability to obtain

accurate predictions of survival outcomes can improve the e�cacy of healthcare institutions in

allocating, coordinating, and expending limited healthcare resources for treating new patients[151].

Since every patient has a di↵erent clinical history, demographic profiles, predisposing risk factors,

106
Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac

surgery

Figure 6.1: Methodology of the proposed framework

and traditional methods cannot o↵er accurate and reliable predictions for survival outcomes. [152].

Artificial intelligence (AI) and machine learning (ML) are evolving techniques in healthcare.

Several models are available that take the static parameters of cardiac patients as input and, using

inbuilt algorithms, give an accurate idea about the survival outcomes. Among all these models,

the most accepted are EuroSCORE II and STS Score. These models predict the survival outcomes

based on static parameters like age, sex, ventricle dysfunction, creatinine clearance, pulmonary

hypertension and surgical intervention [153]. Since existing models predict the survival outcomes

based upon static parameters at the preoperative stage, the accuracy of such models is challenging

in the case where complications arise during intraoperative or postoperative stages.

Apart from static parameters, a considerable amount of physiological time series data is generated

in cardiac surgeries, which could be used to predict the survival outcomes. [154]. Since invasive

blood pressure (IBP) and heart rate (HR) data are available in the intraoperative stage, this time

series data could be used to predict the survival outcomes. The present study aims to develop a

model which uses intraoperative non-linear time-series data of IBP and HR to predict the ICU

stay, hospital stay, and survival outcome in cardiac surgeries. Specifically, we aim to construct an

end-to-end data analysis pipeline which incorporates artefacts removal, non-linear noise reduction

and feature engineering. We also adopt the synthetic minority oversampling technique (SMOTE)

and NearMiss technique to alleviate the inadequate classification generated by imbalanced data.

Last but not least, we aim to evaluate the performance of di↵erent ML models and ensemble models

by optimizing their hyperparameters in the prediction of survival outcome, ICU stay and hospital

stay.

Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac
surgery 107

Figure 6.2: Flow chart depicting that inoperative data of total 6064 patients was captured
by the AIMS system. Data of 4987 patients was excluded from the final analysis, based
upon inclusion/exclusion criteria. Data from 1077 patients was used for the final analysis.

6.2 Methodology

The overall methodology followed in developing the model is shown in Figure 6.1. First, a data

preprocessing mechanism that incorporates artefacts removal, normalization, and noise filtering

was implemented for HR and IBP non-linear time series. Afterwards, a feature engineering

procedure that includes features construction from various in-built libraries, anomaly detection, and

normalization was performed for classification and regression analysis of the time series. Hereafter,

SMOTE and NearMiss techniques were applied to alleviate the poor classification produced by the

imbalanced data. Finally, for classification analysis, the balanced data samples were combined with

hyperparameter optimization in classification ML models to generate the final survival outcome

of Death and Discharge. However, for regression analysis, samples with Discharge as a survival

outcome were combined with hyperparameter optimization in regression ML models to predict the

duration of hospital stay and ICU stay.

6.2.1 Data Collection

This was an observational study collecting data from a single tertiary care hospital over three years,

from April 2019 to March 2022. Anaesthesia Information management system (AIMS) installed

at the cardiac surgical operation theatre in the host institute captured the time series data from

patients intraoperatively. The patient-specific parameters utilized for the study include HR and

IBP, captured at time intervals of 1 minute. The data was stored centrally in the servers.

6.2.2 Data Pre-Processing

The pre-processing of data consists of the following steps: removal of artefacts, data normalization,

and non-linear noise reduction (see Figure 6.2). The data was cleaned based on the IBP feature.

108
Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac

surgery

All rows of data consisting of IBP values lower than 20 were removed. Further, context-based

labelling was performed to label the data that was not missing at random correctly. Data

missing before attaching monitors to the patient was labelled as “-9999”, data missing between

arterial cross-clamping and declamping was labelled as “-8888”, and all other data missing during

cardiopulmonary bypass was labelled as “-7777”. If a row had both HR and IBP missing outside

the context, i.e. data was missing at random, the entire row was removed. For normalization of

data, RobustScaler [155] was used. RobustScaler removes the median and scales the data according

to the quartile range. The nonlinear time series might su↵er from noise caused by the device or the

environment where the measurements are performed. Noise a↵ects the interpretability and should

be removed and not be considered for further data analysis. Thus, we have used a function called

“lazy” from the Tisean package, for nonlinear noise reduction [156]. It performs simple nonlinear

noise reduction by replacing the middle coordinate of each embedding vector with the local average

of this coordinate.

6.2.3 Feature Engineering

We now discuss the various libraries that have been used to construct features from the time

series data. The first library is TSFEL. This python library depends on Numpy and SciPy, which

provide e�cient numerical functions for multivariate time series data. The TSFEL features can be

grouped into three di↵erent domains, which are: temporal, statistical, and spectral [157]. Some of

the features considered in the TSFEL library are “unique”, which returns the percentage of unique

values in the time series data, “Wentropy(S)”, which computes the Shannon entropy of the time

series data using wavelets, and “Negative Turning”, which returns the number of negative turning

points of the time series data. The second library is tsfresh. Tsfresh is a python package that

automatically computes hundreds of related time series features, and studies the properties of the

series by incorporating 72 time-series feature functions for each fixed time window [158]. Series

data, “longest strike above mean”, which returns the length of the longest consecutive sub-sequence

in the time series that is bigger than the mean of time series data, and “count below mean”, which

returns the number of values in time series that are lower than the mean. The third library is

Tisean. Tisean incorporates several functions for non-linear time series analysis. Moreover, this

package includes an algorithm for stationarity/non-stationarity testing, non-linear noise reduction,

and non-linear time series prediction. Some of the features investigated in the Tisean package are:

the Lyapunov exponent, which computes the largest Lyapunov exponent (LLE) of time series data

to indicate the chaotic nature of time series, fsle (finite-size Lyapunov exponents), which measures

the divergence of nearby trajectories to resolve predictability, and order entropy, which computes

the unpredictability of fluctuations in a time series [156].

6.2.4 Defining Datasets

The input datasets include the HR and IBP time-series parameters. The survival outcome has

been considered an output data for classification analysis. The outcomes were labelled either as

discharge or death. For regression analysis, ICU stay and hospital stay have been considered as

output for the patient datasets with discharge as the survival outcome. In addition, the patients

whose ICU and Hospital stay duration was detected as an outlier were removed from the regression

analysis using the interquartile (IQR) method. The IQR [159] method is the di↵erence between

the third quartile (Q3) and first quartile (Q1) of the time series data. The upper limit has been

evaluated as Q3 + 1.5 x IQR, and the lower limit has been evaluated as Q1 - 1.5 x IQR. A patient

Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac
surgery 109

is considered an outlier if their data is beyond these limits.

6.2.5 Train-Test Split for Regression Model

Data leakage during model evaluation can create bias; therefore, we split the data into the train

and test data sets. Out of 1077 cases, 781 were used to train the model, and the remaining 296

cases were used to test the model. There were 57 death cases and 724 discharge cases in the train

data. There were 29 death cases and 267 discharge cases in the test data.

6.2.6 Handling Imbalance for Classification Model

Data imbalance was observed in our data due to the high number of discharge cases and a

low number of death cases. To address this data imbalance, we used the synthetic minority

oversampling technique (SMOTE), which creates synthetic data samples associated with the

minority death class along with the line segments which join the nearest neighbours of the minority

class. This technique minimizes the classifier over-fitting issue by enlarging the minority class

decision region [160]. We also employed the Near-Miss under-sampling technique, which increases

the spacing between the two classes by removing the instances of the majority class with the

smallest distance from the minority class. For the final model testing, we used SMOTE and

Near-Miss techniques. A death discharge ratio of 1:3 was obtained by oversampling the death

cases by 20%, and undersampling the discharge cases by 30%. Finally, we obtained 144 death

cases and 434 discharge cases for classification model testing.

6.2.7 Selecting ML Model

The extracted features of HR and IBP non-linear time series have been used to predict the survival

outcome (Death & Discharge), Hospital stay, and ICU stay. We have explored various Linear and

Non-linear ML models for predicting survival outcomes. The Non-Linear models explored are as

follows: Decision Tree (DT) Classifier [161], K Nearest Neighbor (KNN) Classifier [162]. Moreover,

ensemble learning-based models such as Random forest (RF) Classifier [163], AdaBoost Classifier

[164], Gradient Boosting Machine (GBM) Classifier [165], and XGBoost (XGB) Classifier [166]

have been used. In addition, linear ML models such as Logistic Regression (LR)[167], Linear

Discriminant Analysis (LDA), Gaussian Naive Bayes (GNB) and Bernoulli Naive Bayes (BNB)

were also considered for predicting survival outcomes.

The models used for predicting ICU stay and hospital stay of the patients are linear Regression (LR)

[168], Lasso Regression [169], Ridge Regression [170], K Neighbors Regressor [171], DT Regressor

[172], RF Regressor [173], GB Regressor [174], XGB Regressor [175], Support Vector Regressor

(SVR)[176], and Huber Regressor [177].

6.2.8 Optimization and Training

Grid search (GS) is the most commonly used technique for optimizing the hyperparameters of

ML models. It adjusts the parameters based on the step size within the specified range and then

evaluates the model’s performance for each combination of hyperparameters [178]. Moreover, the

k-fold cross-validation (CV) algorithm has been adopted to enhance the robustness and avoid

overfitting. In this model, a 5-fold GridsearchCV has been adopted, in which the entire dataset is

split into five groups. The evaluation scores are accumulated for each group and then summarized

110
Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac

surgery

Figure 6.3: Feature Importance - HR

Figure 6.4: Feature Importance - IBPM

at the end to evaluate the model performance. Thereby, a subset of hyperparameters with the best

accuracy and performance are selected for model training of the present dataset.

6.2.9 Feature Importance

The ML frameworks o↵er minimal insights on the influence of various features employed for

prediction due to the black-box nature of their operations. Thus, for the correct interpretation

of the ML model for prediction, the Shapash library has been adopted in our proposed model to

analyze the feature importance [179]. Figures 6.3 and 6.4 depict the respective contribution of the

top 20 features in predicting HR and IBP. It can be observed that positive spectral turning is the

topmost significant feature for both HR and IBP.

6.2.10 Performance metrics

This section discusses the performance metrics for evaluating both classification and regression

ML models. The area under the curve (AUC) is the most intuitive metric that has been utilised

to evaluate the classification models. It is a measure of the ability of a classifier to di↵erentiate

among classes and is used as a summary of the receiver operating characteristic (ROC) curve.

Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac
surgery 111

The higher the AUC, the better the model’s performance di↵erentiating between the death and

discharge classes. In addition, accuracy, confusion matrix, recall, precision, and F1-score have also

been used to estimate the overall model performance [180].

The accuracy metric outlines the performance of a classification model as the number of accurate

predictions divided by the entire set of predictions. The accuracy is expressed by equation (6.1)

below.

Accuracy =
TP + TN

TP + FP + TN + FN
(6.1)

Here TP is the number of True Positives, FP is the number of False Positives, TN is the number

of True Negatives, and FN is the number of False Negatives.

The precision or specificity evaluation metric depicts the percentage of patients associated correctly

with the discharge class, as predicted by the models. In contrast, recall or sensitivity shows the

percentage of patients associated correctly with death class, as predicted by the models. Both the

precision and recall are expressed in equations (6.2) and (6.3), respectively.

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

Furthermore, the confusion Matrix is an N x N matrix utilised to estimate the interpretation of a

classification model, where N is the number of target classes. It analyses the actual values with

those predicted by the ML models. The F1-Score is the harmonic mean of precision and recall, as

given in equation (6.4). It considers both FP and FN , and provides equal weightage to precision

and recall. Thereby, it executes well on an imbalanced dataset.

F1� Score = 2 ⇤ Precision ⇤Recall

Precision+Recall
(6.4)

Next, mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE),

and coe�cient of determination (R2 score or R-squared) metrics [181] were used to estimate

the forecasting errors and analyse the performance of regression ML models. These metrics are

expressed in terms of the following equations:

MAE =
1

m

mX

i=1

kXi � Yik (6.5)

MSE =
1

m

mX

i=1

(Xi � Yi)
2 (6.6)

RMSE =

vuut 1

m

mX

i=1

(Xi � Yi)2 (6.7)

R2score = 1�
Pm

i=1(Xi � Yi)2Pm
i=1(Y � Yi)2

(6.8)

Y =
1

m

mX

i=1

Yi (6.9)

Here, Xi is the predicted ith value, Yi is the actual ith value, and m is the total number of test

samples.

Normalised values of MAE, MSE, and RMSE nearer to zero, along with an R2 score nearer to

112
Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac

surgery

Table 6.1: Sociodemographic and clinical determinants of patients

Variable Sub domain Mean ± SD, or N (%)
Age 46.47 ± 15.58 years
Sex Male 644 (59.80%)

Female 432 (40.11%)
Sex Unspecified 1 (0.09%)

Previous Cardiac Surgery 6 (0.55%)
Serum Creatinine 0.90 ± 0.62 mg/dL
Unstable Angina 40 (3.71%)
LV Ejection <30% 42 (3.89%)

30-50% 304 (28.26%)
>50% 190 (17.64%)

Pulmonary Hypertension Mild 31 (2.87%)
Moderate 47 (4.36%)
Severe 46 (4.27%)

Urgency Elective 730 (67.78%)
Emergency 347 (32.22%)

Surgical Procedures CABG 248 (23.03%)
CABG+AVR 22 (2.04%)
CABG+DVR 6 (0.56%)
CABG+MVR 12 (1.11%)
ASD 52 (4.83%)
AVR 112 (10.40%)
DVR 81 (7.52%)
MVR 184 (17.08%)
TVR 3 (0.28%)
Surgery on thoracic aorta 67 (6.22%)
Other Cardiac Surgeries 160 (14.86%)
Non cardiac thoracic surgeries 130 (12.07%)

Post infract septal rupture 13 (1.20%)
Outcome Death 86 (7.99%)

Discharge 991 (92.01%)
ICU Stay 5.48 ± 6.52 days
Hospital Stay 11.67 ± 8.36 days

unity, are the primary measures to select the best model with the lowest prediction error for ICU

stay and hospital stay.

6.3 Results

6.3.1 Sociodemographic and Clinical Determinants

The mean age of the patients in the present study was 46.47 ± 15.58 years. The sex ratio was

skewed towards males, with male to female sex ratio of 1.49. There were 6 (0.55%) patients

that revealed a history of previous cardiac surgery. The mean creatinine level was 0.90 ± 0.62

mg/dL. Unstable angina was documented in 40 (3.71%) patients. LV ejection was < 30% in

42 (3.89%) patients, 30-50% in 304 (28.26%) patients, and > 50% in 190 (17.64%) patients.

There were 46 (4.27%) patients that exhibited severe pulmonary hypertension, whereas moderate

Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac
surgery 113

Table 6.2: Prediction of Survival Outcome

Pipeline Models AUC F1-ScoreAcc
Precision Recall

PC NC PC NC
DT 0.46 0.73 0.78 0.93 0.08 0.67 0.35

KNN 0.58 0.83 0.78 0.94 0.13 0.82 0.35
Remove artifacts
RF 0.50 0.82 0.81 0.94 0.13 0.85 0.29
Scaling
(Robustscaler)
ADA 0.61 0.80 0.73 0.95 0.13 0.76 0.37
Features
Extraction
GBM 0.62 0.81 0.76 0.95 0.15 0.79 0.32
Scaling
(Robustscaler)
XGB 0.62 0.84 0.80 0.94 0.15 0.84 0.35
Handle
Imbalance
(SMOTE +
Near-Miss)

GNB 0.67 0.84 0.83 0.94 0.14 0.89 0.30

#
Hyper-parameter
Optimization

BNB 0.58 0.76 0.69 0.94 0.11 0.70 0.41

#
Prediction LDA 0.56 0.80 0.79 0.93 0.09 0.86 0.18

LR 0.64 0.78 0.71 0.95 0.11 0.73 0.44

GNB
+ LR

0.72 0.86 0.83 0.94 0.16 0.88 0.43

DT=Decision Tree, KNN= K Nearest Neighbors, RF=Random Forest, ADA= Adaboost, GBM=
Gradient Boosting Machine,XGB= XGBoost, GNB= Gaussian Naive Bayes,BNB= Bernoulli Naive Bayes,
LDA= Linear Discriminant Analysis, LR= Logistic Regression, AUC= Area under the curve,Acc=
Accuracy, PC= Discharge Class, NC= Death Class

and mild pulmonary hypertension was there in 47 (4.36%) and 35 (2.87%) patients, respectively.

Among total surgeries, 730 (67.78%) were elective surgeries, whereas 347 (32.22%) were emergency

surgeries. Surgical procedure adopted include CABG in 248 (23.03%) patients, CABG+aortic valve

replacement(AVR) in 22 (2.04%) patients, CABG+double valve replacement(DVR) in 6 (0.56%)

patients, CABG+ mitral valve replacement(MVR) in 12 (1.11%) patients, Surgery on thoracic

aorta in 67 (6.22%) patients, atrial septal defect closure(ASD) in 52 (4.83%) patients, AVR in

112 (10.40%) patients, DVR in 81 (7.52%) patients, MVR in 184 (17.08%) patients, and tricuspid

valve replacement in 3 (0.28%) patients. Next, 160 (14.86%) were other cardiac surgeries, 130

(12.07%) were non-cardiac thoracic surgeries, and 13 (1.20%) patients had post infract septal

rupture. A total of 991 (92.01%) patients were discharged successfully, whereas mortality occurred

in 86 (7.99%) patients. The mean ICU stay was 5.48 ± 6.52 days, and the mean hospital stay was

11.67 ± 8.36 days, as shown in Table 6.1.

6.3.2 Performance evaluation of Survival outcomes

For the classification models to predict survival outcomes, the maximum AUC value was recorded

for GNB+LR (0.72), followed by GNB (0.67), LR (0.64), XGB (0.62), GBM (62), BNB (0.59),

and RF (0.50). As shown in Figure 6.5, GNB+LR has shown a very balanced sensitivity and

114
Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac

surgery

Figure 6.5: AUC Comparison

specificity for di↵erent values of FPR. Therefore, the performance of GNB+LR is more robust

compared to any other model. As shown in Table 6.2, the highest F1-score has been recorded by

GNB+LR (0.86), followed by GNB (0.84) and XGB (0.84). The highest accuracy was achieved

by both GNB+LR (0.83) and GNB (0.83). All the models o↵ered good precision values for the

Discharge class. However, all the models recorded low precision values for the Death class, which

resulted in false warnings. The best precision value for Death was recorded for GNB+LR (0.16),

whereas the worst precision value for Death was recorded for DT (0.08) and LDA (0.09). The best

test recall value for the Discharge class was recorded for GNB (0.89), followed by GNB+LR (0.88),

and LDA(0.86). The best test recall value for the Death class was recorded for LR (0.44), followed

by GNB+LR (0.43) and BNB (0.41). GNB+LR o↵ers the best overall performance in terms of

AUC, F1-score, accuracy, recall, and precision.

6.3.3 Performance evaluation of Hospital Stay

Table 6.3 depicts the experimental results for the regression models to predict the hospital stay,

where the performance of these models has been evaluated using various performance evaluation

metrics such as MAE, MSE, RMSE, and R2 score. For predicting hospital stay, the lowest RMSE

was achieved using GB regressor (5.238), followed by XGB regressor (5.354), RF regressor (5.504),

Ridge regression (5.568), K neighbours regressor (5.576), DT regressor (5.678), Lasso regression

(5.847), SVR regressor (5.915), Linear regression (11.197), and Huber regressor (12.765). The

highest performance for hospital stay analysis was registered using the metrics MSE and RMSE,

obtained by the GB regressor.

When evaluated using both MAE and R2-score, the GB regressor was the best model for the

analysis of hospital stay, with values of 3.548 and 0.023, respectively. The least performing

algorithms, in this case, were linear regression and Huber regressor, with R2-score values of -3.461

and -4.799, respectively.

Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac
surgery 115

Table 6.3: Prediction of Hospital Stay

Pipeline ML Models MAE MSE RMSE R2 Score

Linear
Regression

4.764 125.379 11.197 -3.461

Lasso
Regression

3.856 34.194 5.847 -0.216

Remove artifacts Ridge
Regression

3.651 31.005 5.568 -0.103

#
Scaling
(Robustscaler)

K Neighbors
Regressor

3.717 31.102 5.576 -0.106

#
Features
Extraction

DT Regressor 3.841 32.241 5.678 -0.147

#
Outlier Detection
(IQR)

RF Regressor 3.820 30.302 5.504 -0.078

#
Scaling
(Robustscaler)

GB Regressor 3.548 27.446 5.238 0.023

#
Hyper-parameter
Optimization

XGB
Regressor

3.615 28.671 5.354 -0.020

#
Prediction SVR(kernel

=rbf)
3.856 34.994 5.915 -0.245

Huber
Regressor

11.610 162.96 12.765 -4.799

DT=Decision Tree, RF=Random Forest, GB= Gradient Boosting,XGB= XGBoost, MAE=Mean
Absolute Error,MSE=Mean Square Error, RMSE= Root MSE

116
Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac

surgery

Table 6.4: Prediction of ICU Stay

Pipeline ML Models MAE MSE RMSE R2 Score

Linear
Regression

12.360 21710 147.34 -4149.1

Lasso
Regression

3.247 545.87 23.363 -103.34

Remove artifacts Ridge
Regression

2.927 374.75 19.358 -70.635

#
Scaling
(Robustscaler)

K Neighbors
Regressor

1.659 5.340 2.310 -0.020

#
Features
Extraction

DT Regressor 1.690 5.536 2.352 -0.058

#
Outlier Detection
(IQR)

RF Regressor 1.634 4.994 2.234 0.045

#
Scaling
(Robustscaler)

GB Regressor 1.582 4.551 2.133 0.129

#
Hyper-parameter
Optimization

XGB
Regressor

1.536 4.577 2.139 0.125

#
Prediction SVR(kernel

=rbf)
1.876 7.0 2.645 -0.338

Huber
Regressor

5.432 271.06 16.463 -50.814

DT=Decision Tree, RF=Random Forest, GB= Gradient Boosting, XGB = XGBoost, MAE=Mean
Absolute Error,MSE=Mean Square Error, RMSE= Root MSE

6.3.4 Performance evaluation of ICU Stay

Table 6.4 presents the experimental results for the regression models to predict the ICU stay, where

the performance of these models has been evaluated using various performance evaluation metrics

such as MAE, MSE, RMSE, and R2 score. For predicting ICU stay, the lowest RMSE was achieved

using KN regressor (3.28) followed by SVR rbf (5.29), RF regressor (5.60) followed by GB regressor

(5.62), DT regressor (5.92), Ridge regressor (6.66), SVR Linear (6.84), Lasso regressor (6.95) and

LR (7.57). The highest performance for ICU stay analysis was registered using the metrics MSE,

and RMSE, obtained by the GB regressor.

When evaluated using both MAE and R2-score, the XGB regressor was the best model for the

analysis of ICU stay, with values of 1.536 and 0.125, respectively. The models with the least

performance were Lasso regression and Linear regression, with R2-score values of -103.34 and

-4149.1, respectively.

6.4 Discussion

Several earlier studies had predicted the length of hospital stay and ICU stay post cardiac surgery.

Tsai et al. [182] developed an artificial neural network (ANN) based model to predict the length

Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac
surgery 117

of stay in the pre-admission stage for inpatients diagnosed with heart failure. Using ANN and

linear regression, the study predicted hospital stay correctly with MAE values of 3.83 and 3.76,

respectively. However, no other performance criteria were mentioned. Another study proposed

by Triana et al. [183] developed a model to predict the post-surgery length of stay for patients

who undergo coronary artery bypass grafting (CABG). ANN was the best performing model for

predicting the length of stay, achieving an RMSE of 3.342, an MAE of 1.853, and an R2-score of

0.212. Furthermore, Fang et al. [184] used a Bayesian Neural Network (BNN) model to predict

the length of stay on the eICU-CRD (collaborative research database). With prior knowledge of

the weights of NN, BNN achieves an MAE of 1.955044 and an R2-score of 0.097909 for ICU stay

prediction. Moreover, another study conducted by Kadri et al. [185] introduced a novel approach

based on a deep learning-driven generative adversarial network (GAN) model for predicting the

patient length of stay in the emergency department (ED). The GAN model was the best performing

model among all the deep learning models, achieving an RMSE of 100.309 and an MAE of 61.722.

The developed model in the present study can e↵ectively predict the length of hospital stay, and

ICU stay after cardiac surgery. By referring to Table 6.3, we observe that the highest performance

for hospital stay analysis was registered using the metrics MAE (3.548), RMSE (5.238), and

R2-score (0.023), obtained by the IQR+GB regressor model. GB randomly samples the train

datasets to obtain sample subsets of datasets and then trains the learner to reduce the residuals

created by the previous learner. As a result, GB forces the prediction value close to the actual

value, which improves the regression performance for the final integration. When comparing the

performance of all regression models for ICU stay analysis, as displayed in Table 6.4, it was observed

that the highest performance was registered using the metrics MSE (4.551) and RMSE (2.133),

obtained by the IQR+GB regressor model. However, the model developed with IQR and XGB

happened to be the best model in terms of MAE (1.536) and R2-score (0.125) for ICU stay analysis.

XGB includes significant adaptation techniques such as shrinkage and instances subsampling which

alleviates the over-fitting problem. A positive R2-score in both hospital stay and ICU stay analysis

indicates that IQR is an e↵ective method to detect anomalous observations in non-linear time

series data. Thus, adopting the IQR outlier detection method in the present study enhances the

regression performance of both hospital stay and ICU stay. Hence, the present study achieved a

high prediction accuracy for both hospital stay and ICU stay analysis, compared to the models

adopted in previous studies.

The performance of various Linear and Non-linear ML models has been evaluated using metrics

like accuracy, precision, recall, F1-score, and AUC. However, as the data in our case is highly

imbalanced, accuracy alone may not be a reliable metric for evaluating the performance of various

trained ML classifiers/models. For example, the ML model has been tested on a dataset having

12% of “Death” cases. So, the classifier/model achieves an accuracy of 0.88, even if the model

consistently predicted the “Discharge” outcome. Therefore, balancing the data and selecting the

right metrics for evaluating the ML models/classifiers is essential.

We used the performance metrics for selecting the optimal model/classifier: Recall (Sensitivity)

and AUC. It is essential to identify “Death” cases (i.e., high-risk patients). Therefore, we focus

more on having a high recall of the “Death” class and an acceptable recall of the “Discharge”

class. However, in real-world warning systems, it is desirable to have a high value of specificity

(Precision) to avoid false warnings. We note that the count of positive samples (“Death” class)

is much less than the count of negative samples (“Discharge” class). Due to this, even a small

value of FPR brings about a large number of false warnings (FP), which results in a low precision

value. Therefore, in the case of imbalanced datasets, it is hard to obtain an acceptable precision

(specificity) value and high recall (sensitivity). Hence, it is essential to balance the specificity

118
Chapter 6. A non-linear time-series based AI model to predict outcomes in cardiac

surgery

and sensitivity criteria. The ROC curve (AUC) helps graphically visualise the trade-o↵ between

specificity and sensitivity for a given classifier. Also, the AUC measure is not dependent on

data imbalance. Hence, it provides an unbiased evaluation parameter for the model/classifier’s

performance.

A strength of the present study is that it implemented a non-linear time series based artificial

intelligence machine learning model for predicting the outcome of cardiac surgeries. To the best

of our knowledge, no study has used the intraoperative blood pressure and heart rate data as an

input to an AI model to predict patient outcomes. Recently, Fernandes et al, used intraoperative

hypotension, vasopressor-inotropes, and cardiopulmonary bypass to predict mortality post cardiac

surgery. The XGB model was found to predict mortality better with area under the receiver

operating characteristic curve, 95% confidence interval (CI): 0.88(0.83-0.94); positive predictive

value, 0.10(0.06-0.15); specificity 0.85 (0.83-0.87), and sensitivity 0.75 (0.57-0.90) [186].

There were a few limitations in our research, which we now discuss. To begin with, we used

data from a single tertiary care institution. A multicenter registry and prospective investigations

may be required to corroborate these findings. Second, our findings are on adult cardiac surgical

patients; they cannot be applied to other groups, such as children or non-cardiac surgical patients.

Finally, we did not incorporate other static parameters which could improve model performance.

Future work could be based on the addition of static parameters and a distributed framework

for data engineering, model training, and validation. The distributed framework will provide the

advantage of scaling the solution for big data analysis and real-time response. Furthermore, RNNs

cannot handle the long-term dependencies due to vanishing/exploding gradient problem. LSTM

is a good option for such sequences that have long term dependencies, and is powerful when the

data contains time series.

6.5 Conclusion

In this study, several ML models were trained on the specific non-linear time series dataset

with HR and IBP parameters to predict patients’ survival outcome, ICU stay, and hospital stay,

determining risks following cardiac surgery. By applying the SMOTE and Near-Miss techniques,

hyper-parameter optimisation algorithms, and 10-fold cross-validation, the performance of

hybrid classifiers for survival outcome identification was systematically investigated. From the

experiments, the GNB+LR ensemble model was the best model for survival analysis, o↵ering the

highest AUC of 0.72, an accuracy of 0.83, and an F1 score of 0.86. The GB regressor was found

to be the best model for the analysis of hospital stay, having the lowest RMSE (5.238). The XGB

regressor was the best model for ICU stay analysis o↵ering the highest R2-score (0.125). The

results demonstrated that a combination of ensemble ML models and refined feature engineering

could accurately predict patient mortality.

Chapter 7

Conclusion and Future Work

The thesis explores parallel and distributed AI/ML on the edge. Specifically, security and

healthcare have been picked as the use cases. The first work explores ML model partitioning on

the edge, the second one predicts intrusion detection on edge. The third work performs DNN task

o✏oading on edge, and the fourth works predicts outcomes of cardiac surgery patients on the edge.

We hold the view that fog computing o↵ers advantages to applications necessitating swift response

times and can concurrently reduce the volume of tra�c directed towards cloud data centers. This

thesis addresses four distinct research challenges, namely: Partitioning Machine Learning Models

on Edge Architectures, Intrusion Detection System on Fog Architecture, Data-Driven Deep Neural

Network Task O✏oading on Edge Networks, and non-linear time-series based AI model to predict

outcomes in cardiac surgery.

In the Chapter 3, we proposed a PSVM-EA (Partitioning Support Vector Machine on Edge

Architectures) framework that partitions the weight update operation on multiple edge nodes,

in order to train the SGD-SVM (Stochastic Gradient Descent based Support Vector Machines)

model in a parallel and distributed manner. This significantly reduces the training time, without

majorly a↵ecting the accuracy. The testing of the proposed approach was done in a parallel manner

by partitioning the vector multiplication of all the features on the edge architecture. Further, to

enhance the safety and reliability of the online model training process, we incorporated the Triple

Modular Redundancy (TMR) technique for trusted computation. TMR is an established Single

Event Upset (SEU) technique that replicates the processing of each sub-model across three separate

devices, allowing for error detection and correction in the event of any discrepancies between their

outputs. By employing TMR, our proposed algorithm ensures that the system maintains its

integrity and reliability, even in the presence of potential faults, hardware compromises, or other

safety issues. The Optimal ML Model Partitioning framework dynamically manages resources and

minimizes training time and latency to optimize performance, while ensuring safety and reliability

in edge networks. We conducted a case study on SVM and RF multi-class classifiers, by splitting

the models into multiprocessor edge devices.The experimental results demonstrate a significant

reduction in training time, and increased system throughput, without compromising accuracy.

Our proposed approach achieves a significant speedup of approximately 56.3% in net training time

compared to the non-partitioning approach, making it more e�cient and suitable for real-time

applications in edge networks.

An Intrusion Detection System on Fog Architecture is presented in Chapter 4. The FC-IDS (Fog

Cluster-based Intrusion Detection System) framework comprises four phases: feature extraction,

feature selection, selecting the machine learning model, deploying and evaluating the trained model

on a Raspberry Pi Cluster and the Cloud. The training and testing of ML models have been done

in a distributed manner, using a Raspberry pi cluster as a fog environment. The experiments

show that the pi-cluster (fog) took less time for inference as compared to the cloud. In order to

deal with class imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied,

which improved the performance of the proposed approach significantly. Feature reduction was

120 Chapter 7. Conclusion and Future Work

performed using Principal Component Analysis (PCA). This reduces the computation significantly,

in turn, reducing the training & testing time of the model, without a↵ecting the accuracy by much.

The proposed FC-IDS system has been evaluated on the Australian Defence Force Academy Linux

Datasets (ADFA-LD). These datasets comprise new generation system calls for various attacks

on multiple applications. The proposed fog architecture o↵ers significant advantages in terms

of latency, energy consumption, and cost over traditional cloud or dedicated personal computer

systems. Further, to enhance the performance in the case of multi-class intrusion attacks, we

used a context-aware feature extraction approach. The proposed feature extraction approach is

applicable to both HIDS and NIDS. In addition, the FCAFE-BNET algorithm exploits the early

exit mechanism, due to which exiting the DNN from intermediate layers is possible after the desired

result is obtained, instead of passing through the entire model, in order to reduce the processing

time. The proposed algorithm has been examined using various IDS datasets, like NSL-KDD,

ADFA LD, UNSW-NB, and ToN-IoT. Our proposed technique has recorded a significant reduction

in the total inference time, as compared to other state-of-the-art techniques.

In Chapter 5, we propose a data-driven task o✏oading algorithm that combines Mixed Integer

Programming (MIP) and Machine Learning (ML) approaches to find optimal/near-optimal

o✏oading solutions, which helps in migrating the computation to available edge devices in the

network, based on network conditions and computational capacities. The proposed D2 � TONE

algorithm o↵ers superior performance due to its adaptation to the dynamic network conditions,

while o✏oading the tasks. The experiments show that the training time is reduced significantly

by using the proposed D2 � TONE approach, in comparison to other state-of-the-art techniques.

In chapter 6, our work aims to develop a model that uses intraoperative non-linear time-series

data of IBP and HR to predict the ICU stay, hospital stay, and survival outcome in cardiac

surgeries. Specifically, we aim to construct an end-to-end data analysis pipeline that incorporates

artifact removal, non-linear noise reduction, and features engineering. We also adopt the

synthetic minority oversampling (SMOTE), and NearMiss techniques to alleviate the inadequate

classification generated by imbalanced data. Finally, we aim to evaluate the performance of

di↵erent ML models and ensemble models by optimizing their hyperparameters in the prediction

of survival outcome, ICU stay, and hospital stay.

7.1 Future Work

The potential future directions of the work done in this thesis are as follows:

• In the Chapter 3, we have proposed approaches that partitions the SVM and RF models

on edge architectures. The future work could be to extend this work for various other ML

algorithms. Also, the experiments were performed on CPUs in the present work, which could

be extended further to GPUs.

• One interesting future work of Chapter 4 could be considering other critical evaluation

metrics for IoT systems, such as storage e�ciency and energy consumption. In the present

work, the proposed framework has been evaluated based on accuracy, recall, F1-score, and

inference time.

• In Chapter 5, the distributed DNN model learning is carried out on edge devices, which

were connected using switch and ethernet cables. But, in order to make our research more

realistic, we would like to extend our work to a wireless network setting.

• Future work in case of Chapter 6 could be incorporating other static parameters, which

Chapter 7. Conclusion and Future Work 121

could improve model performance. Another exciting work could be introducing a distributed

framework for data engineering, model training, and validation. The distributed framework

would provide the advantage of scaling the solution for big data analysis, and real-time

response.

7.2 Implications of This Thesis

The rationale behind this thesis and the issues it tackles are highly pertinent within the realm

of Fog/Edge Computing, which is gaining traction notably due to the proliferation of Internet of

Things (IoT) devices within networks. The substantial influx of data stemming from these IoT

devices poses a significant challenge in data management. Moreover, leveraging the computational

and storage capabilities inherent in these IoT devices o↵ers potential advantages, particularly

in facilitating rapid response times for users by processing data at the network’s edge. This

thesis puts forth various algorithms aimed at: Partitioning Machine Learning Models on Edge

Architectures, Intrusion Detection System on Fog Architecture, Data-Driven Deep Neural Network

Task O✏oading on Edge Networks, and non-linear time-series based AI model to predict outcomes

in cardiac surgery.

One significant outcome of this thesis is to lay the foundations for developing a general framework

for Intrusion Detection System on fog architecture. The proposed framework exploits context-aware

feature extraction approach which helps in detecting various types of intrusions. The adaptation

to the dynamic network conditions while o✏oading the tasks is also addressed in the proposed

framework. Another key objective of this thesis is to optimize the utilization of fog resources based

on the latency demands of the application. Applications with lower latency requirements will be

assigned resources closer to the network, and so on.

This thesis o↵ers a comprehensive depiction of the fog computing paradigm, encompassing a

synopsis of the cutting-edge contributions of di↵erent DNN task o✏oading on edge networks,

ML task partitioning on Edge Architectures, Intrusion Detection System on Fog Architecture, and

real-time outcomes prediction in cardiac surgery. The foundational principles and constraints,

as well as the enhancements made to these foundational contributions, have been underscored.

Additionally, this thesis introduces potential avenues for future research that are worth exploring.

122 Chapter 7. Conclusion and Future Work

References

[1] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep learning for the internet

of things with edge computing. IEEE network, 32(1):96–101, 2018.

[2] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. Proceedings of

the IEEE, 107(8):1655–1674, 2019.

[3] U Cisco. White paper: Cisco annual internet report (20182023). 2020.

[4] Mohammed Laroui, Boubakr Nour, Hassine Moungla, Moussa A Cherif, Hossam Afifi, and

Mohsen Guizani. Edge and fog computing for iot: A survey on current research activities &

future directions. Computer Communications, 180:210–231, 2021.

[5] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali, Amirreza

Niakanlahiji, Jian Kong, and Jason P Jue. All one needs to know about fog computing and

related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98:

289–330, 2019.

[6] Koustabh Dolui and Soumya Kanti Datta. Comparison of edge computing implementations:

Fog computing, cloudlet and mobile edge computing. In 2017 Global Internet of Things

Summit (GIoTS), pages 1–6. IEEE, 2017.

[7] PJ Escamilla-Ambrosio, A Rodŕıguez-Mota, E Aguirre-Anaya, R Acosta-Bermejo, and

M Salinas-Rosales. Distributing computing in the internet of things: cloud, fog and edge

computing overview. In NEO 2016: Results of the Numerical and Evolutionary Optimization

Workshop NEO 2016 and the NEO Cities 2016 Workshop held on September 20-24, 2016 in

Tlalnepantla, Mexico, pages 87–115. Springer, 2018.

[8] Khaja Mannanuddin, Srinivas Aluvala, Y Sneha, E Kumaraswamy, E Sudarshan, and

K Mahender. Confluence of machine learning with edge computing for iot accession. In

IOP Conference Series: Materials Science and Engineering, volume 981, page 042003. IOP

Publishing, 2020.

[9] Babatunji Omoniwa, Riaz Hussain, Muhammad Awais Javed, Safdar Hussain Bouk, and

Shahzad A Malik. Fog/edge computing-based iot (feciot): Architecture, applications, and

research issues. IEEE Internet of Things Journal, 6(3):4118–4149, 2018.

[10] Xiang Sun and Nirwan Ansari. Edgeiot: Mobile edge computing for the internet of things.

IEEE Communications Magazine, 54(12):22–29, 2016.

[11] Michele De Donno, Koen Tange, and Nicola Dragoni. Foundations and evolution of modern

computing paradigms: Cloud, iot, edge, and fog. Ieee Access, 7:150936–150948, 2019.

[12] Ola Salman, Imad Elhajj, Ayman Kayssi, and Ali Chehab. Edge computing enabling the

internet of things. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pages

603–608. IEEE, 2015.

123

124 References

[13] Simar Preet Singh, Anand Nayyar, Rajesh Kumar, and Anju Sharma. Fog computing: from

architecture to edge computing and big data processing. The Journal of Supercomputing, 75:

2070–2105, 2019.

[14] Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito, and Omer Rana. Fog

computing for the internet of things: A survey. ACM Transactions on Internet Technology

(TOIT), 19(2):1–41, 2019.

[15] Mithun Mukherjee, Lei Shu, and Di Wang. Survey of fog computing: Fundamental, network

applications, and research challenges. IEEE Communications Surveys & Tutorials, 20(3):

1826–1857, 2018.

[16] Gohar Rahman and Chuah Chai Wen. Fog computing, applications, security and challenges,

review. International Journal of Engineering & Technology, 7(3):1615–1621, 2018.

[17] S Mohan Kumar and Darpan Majumder. Healthcare solution based on machine learning

applications in iot and edge computing. International Journal of Pure and Applied

Mathematics, 119(16):1473–1484, 2018.

[18] Pietro Spadaccino and Francesca Cuomo. Intrusion detection systems for iot: opportunities

and challenges o↵ered by edge computing and machine learning. arXiv preprint

arXiv:2012.01174, 2020.

[19] Prabhat Kumar, Govind P Gupta, and Rakesh Tripathi. A distributed ensemble design based

intrusion detection system using fog computing to protect the internet of things networks.

Journal of ambient intelligence and humanized Computing, 12:9555–9572, 2021.

[20] Sung In Cho and Suk-Ju Kang. Real-time people counting system for customer movement

analysis. IEEE Access, 6:55264–55272, 2018.

[21] Valério Nogueira, Hugo Oliveira, José Augusto Silva, Thales Vieira, and Krerley Oliveira.

Retailnet: A deep learning approach for people counting and hot spots detection in retail

stores. In 2019 32nd SIBGRAPI conference on graphics, patterns and images (SIBGRAPI),

pages 155–162. IEEE, 2019.

[22] Haochen Hua, Yutong Li, Tonghe Wang, Nanqing Dong, Wei Li, and Junwei Cao. Edge

computing with artificial intelligence: A machine learning perspective. ACM Computing

Surveys, 55(9):1–35, 2023.

[23] Ali T Atieh. The next generation cloud technologies: a review on distributed cloud, fog and

edge computing and their opportunities and challenges. ResearchBerg Review of Science and

Technology, 1(1):1–15, 2021.

[24] H Sabireen and VJIE Neelanarayanan. A review on fog computing: Architecture, fog with

iot, algorithms and research challenges. Ict Express, 7(2):162–176, 2021.

[25] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: concepts, applications and

issues. In Proceedings of the 2015 workshop on mobile big data, pages 37–42, 2015.

[26] Ahmed M Alwakeel. An overview of fog computing and edge computing security and privacy

issues. Sensors, 21(24):8226, 2021.

References 125

[27] Cosmin Avasalcai, Ilir Murturi, and Schahram Dustdar. Edge and fog: A survey, use cases,

and future challenges. Fog Computing: Theory and Practice, pages 43–65, 2020.

[28] Juyong Kim, Yookoon Park, Gunhee Kim, and Sung Ju Hwang. Splitnet: Learning to

semantically split deep networks for parameter reduction and model parallelization. In

International Conference on Machine Learning, pages 1866–1874, 2017.

[29] Emad MalekHosseini, Mohsen Hajabdollahi, Nader Karimi, Shadrokh Samavi, and Shahram

Shirani. Splitting convolutional neural network structures for e�cient inference, 2020.

[30] Shengyu Fan, Hui Yu, Dianjie Lu, Shuai Jiao, Weizhi Xu, Fangai Liu, and Zhiyong Liu.

Cscc: Convolution split compression calculation algorithm for deep neural network. IEEE

Access, 7:71607–71615, 2019.

[31] Guanghui Zhu, Qiu Hu, Rong Gu, Chunfeng Yuan, and Yihua Huang. Forestlayer: E�cient

training of deep forests on distributed task-parallel platforms. Journal of Parallel and

Distributed Computing, 132:113–126, 2019.

[32] Li Zhou, Mohammad Hossein Samavatian, Anys Bacha, Saikat Majumdar, and Radu

Teodorescu. Adaptive parallel execution of deep neural networks on heterogeneous edge

devices. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, pages

195–208, 2019.

[33] Md Al Maruf and Akramul Azim. Extending resources for avoiding overloads of

mixed-criticality tasks in cyber-physical systems. IET Cyber-Physical Systems: Theory &

Applications, 5(1):60–70, 2019.

[34] Md Al Maruf and Akramul Azim. Requirements-preserving design automation for

multiprocessor embedded system applications. Journal of Ambient Intelligence and

Humanized Computing, 12:821–833, 2021.

[35] Md Maruf and Akrumal Azim. Optimizing DNNs Model Partitioning for Enhanced

Performance on Edge Devices. Proceedings of the Canadian Conference on Artificial

Intelligence, jun 5 2023. https://caiac.pubpub.org/pub/ly32gqd5.

[36] M. Sahi, M. A. Maruf, A. Azim, and N. Auluck. A framework for partitioning support

vector machine models on edge architectures. In 2021 IEEE International Conference on

Smart Computing (SMARTCOMP), pages 293–298, 2021.

[37] T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco. Distributed inference

acceleration with adaptive dnn partitioning and o✏oading. In IEEE INFOCOM 2020-IEEE

Conference on Computer Communications, pages 854–863, 2020.

[38] K. Tan, J. Zhang, Q. Du, and X. Wang. Gpu parallel implementation of support vector

machines for hyperspectral image classification. In IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 8(10):4647–4656, 2015.

[39] X. Li, L. Cheng, C. Sun, K. Lam, X. Wang, and F. Li. Federated-learning-empowered

collaborative data sharing for vehicular edge networks. IEEE Network, 35(3):116–124, 2021.

[40] S. Zhou, Y. Huo, S. Bao, B. Landman, and A. Gokhale. Fedaca: An adaptive

communication-e�cient asynchronous framework for federated learning. In IEEE

126 References

International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS),

pages 71–80, 2022.

[41] N. Zhao, Z. Ye, Y. Pei, Y. Liang, and D. Niyato. Multi-agent deep reinforcement learning

for task o✏oading in uav-assisted mobile edge computing. IEEE Transactions on Wireless

Communications, 21(9):6949–6960, 2022.

[42] X. Gu and A. Easwaran. Towards safe machine learning for cps: infer uncertainty

from training data. In Proceedings of the 10th ACM/IEEE International Conference on

Cyber-Physical Systems, pages 249–258, 2019.

[43] R. Hilbrich. How to safely integrate multiple applications on embedded many-core systems

by applying the “correctness by construction” principle. Advances in Software Engineering,

2012.

[44] Jesus Pacheco, Victor H Benitez, Luis C Felix-Herran, and Pratik Satam. Artificial neural

networks-based intrusion detection system for internet of things fog nodes. IEEE Access, 8:

73907–73918, 2020.

[45] Doaa Mohamed and Osama Ismael. Enhancement of an iot hybrid intrusion detection system

based on fog-to-cloud computing. Journal of Cloud Computing, 12(1):1–13, 2023.

[46] K Kalaivani and M Chinnadurai. A hybrid deep learning intrusion detection model for fog

computing environment. Intelligent Automation & Soft Computing, 30(1), 2021.

[47] Faisal Alghayadh and Debatosh Debnath. A hybrid intrusion detection system for smart

home security based on machine learning and user behavior. Advances in Internet of Things,

11(1):10–25, 2021.

[48] Vinayakumar Ravi, Rajasekhar Chaganti, and Mamoun Alazab. Recurrent deep

learning-based feature fusion ensemble meta-classifier approach for intelligent network

intrusion detection system. Computers and Electrical Engineering, 102:108156, 2022.

[49] Narendra Mohan et al. A novel intrusion detection technique based on fog computing using

cholesky factorization based online sequential extreme learning machines with persistent

regularization. International Journal of Control and Automation, 12(6):117 – 126, Dec.

2019. URL http://sersc.org/journals/index.php/IJCA/article/view/2026.

[50] Adeel Abbas, Muazzam A Khan, Shahid Latif, Maria Ajaz, Awais Aziz Shah, and Jawad

Ahmad. A new ensemble-based intrusion detection system for internet of things. Arabian

Journal for Science and Engineering, pages 1–15, 2021.

[51] Zakaria Abou El Houda, Bouziane Brik, and Lyes Khoukhi. “why should i trust your ids?”:

An explainable deep learning framework for intrusion detection systems in internet of things

networks. IEEE Open Journal of the Communications Society, 3:1164–1176, 2022.

[52] Yakubu Imrana, Yanping Xiang, Liaqat Ali, and Zaharawu Abdul-Rauf. A bidirectional

lstm deep learning approach for intrusion detection. Expert Systems with Applications, 185:

115524, 2021.

[53] Saif S Kareem, Reham R Mostafa, Fatma A Hashim, and Hazem M El-Bakry. An e↵ective

feature selection model using hybrid metaheuristic algorithms for iot intrusion detection.

Sensors, 22(4):1396, 2022.

http://sersc.org/journals/index.php/IJCA/article/view/2026

References 127

[54] Benyamin Abdollahzadeh, Farhad Soleimanian Gharehchopogh, and Seyedali Mirjalili.

Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global

optimization problems. International Journal of Intelligent Systems, 36(10):5887–5958, 2021.

[55] Belal Sudqi Khater, Ainuddin Wahid Bin Abdul Wahab, Mohd Yamani Idna Bin Idris,

Mohammed Abdulla Hussain, and Ashraf Ahmed Ibrahim. A lightweight perceptron-based

intrusion detection system for fog computing. applied sciences, 9(1):178, 2019.

[56] Mansi Sahi, Mahip Soni, and Nitin Auluck. An intrusion detection system on fog architecture.

In 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS),

pages 591–596. IEEE, 2021.

[57] Poulmanogo Illy, Georges Kaddoum, Christian Miranda Moreira, Kuljeet Kaur, and Sahil

Garg. Securing fog-to-things environment using intrusion detection system based on ensemble

learning. In 2019 IEEE wireless communications and networking conference (WCNC), pages

1–7. IEEE, 2019.

[58] Deepa Rani and Narottam Chand Kaushal. Supervised machine learning based network

intrusion detection system for internet of things. In 2020 11th International Conference

on Computing, Communication and Networking Technologies (ICCCNT), pages 1–7. IEEE,

2020.

[59] Kishwar Sadaf and Jabeen Sultana. Intrusion detection based on autoencoder and isolation

forest in fog computing. IEEE Access, 8:167059–167068, 2020.

[60] Chenmeng Wang, Chengchao Liang, F Richard Yu, Qianbin Chen, and Lun Tang.

Computation o✏oading and resource allocation in wireless cellular networks with mobile

edge computing. IEEE Transactions on Wireless Communications, 16(8):4924–4938, 2017.

[61] Yiming Liu, F Richard Yu, Xi Li, Hong Ji, and Victor CM Leung. Distributed resource

allocation and computation o✏oading in fog and cloud networks with non-orthogonal

multiple access. IEEE Transactions on Vehicular Technology, 67(12):12137–12151, 2018.

[62] Changsheng You, Kaibin Huang, Hyukjin Chae, and Byoung-Hoon Kim. Energy-e�cient

resource allocation for mobile-edge computation o✏oading. IEEE Transactions on Wireless

Communications, 16(3):1397–1411, 2016.

[63] Zhaolong Ning, Peiran Dong, Xiangjie Kong, and Feng Xia. A cooperative partial

computation o✏oading scheme for mobile edge computing enabled internet of things. IEEE

Internet of Things Journal, 6(3):4804–4814, 2018.

[64] Nitin Auluck, Akramul Azim, and Kaneez Fizza. Improving the schedulability of real-time

tasks using fog computing. IEEE Transactions on Services Computing, 2019.

[65] Nitin Auluck, Omer Rana, Surya Nepal, Andrew Jones, and Anil Singh. Scheduling real

time security aware tasks in fog networks. IEEE Transactions on Services Computing, 2019.

[66] Phu Lai, Qiang He, Xiaoyu Xia, Feifei Chen, Mohamed Abdelrazek, John Grundy, John G

Hosking, and Yun Yang. Dynamic user allocation in stochastic mobile edge computing

systems. IEEE Transactions on Services Computing, 2021.

128 References

[67] Yang Liu, Changqiao Xu, Yufeng Zhan, Zhixin Liu, Jianfeng Guan, and Hongke Zhang.

Incentive mechanism for computation o✏oading using edge computing: A stackelberg game

approach. Computer Networks, 129:399–409, 2017.

[68] Quoc-Viet Pham, Tuan Leanh, Nguyen H Tran, Bang Ju Park, and Choong Seon Hong.

Decentralized computation o✏oading and resource allocation for mobile-edge computing: A

matching game approach. IEEE Access, 6:75868–75885, 2018.

[69] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. E�cient multi-user computation

o✏oading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24

(5):2795–2808, 2015.

[70] Keqin Li. Heuristic computation o✏oading algorithms for mobile users in fog computing.

ACM Transactions on Embedded Computing Systems (TECS), 20(2):1–28, 2021.

[71] Min Guo, Xing Huang, Wei Wang, Bing Liang, Yanbing Yang, Lei Zhang, and Liangyin

Chen. Hagp: A heuristic algorithm based on greedy policy for task o✏oading with reliability

of mds in mec of the industrial internet. Sensors, 21(10):3513, 2021.

[72] Marios Avgeris, Dimitrios Spatharakis, Dimitrios Dechouniotis, Aris Leivadeas, Vasileios

Karyotis, and Symeon Papavassiliou. Enerdge: Distributed energy-aware resource allocation

at the edge. Sensors, 22(2):660, 2022.

[73] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting

distributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

[74] Shuang Lai, Xiaochen Fan, Qianwen Ye, Zhiyuan Tan, Yuanfang Zhang, Xiangjian He, and

Priyadarsi Nanda. Fairedge: A fairness-oriented task o✏oading scheme for iot applications

in mobile cloudlet networks. IEEE Access, 8:13516–13526, 2020.

[75] Yaser Jararweh, Manar Bani Issa, Mustafa Daraghmeh, Mahmoud Al-Ayyoub, and

Mohammad A Alsmirat. Energy e�cient dynamic resource management in cloud computing

based on logistic regression model and median absolute deviation. Sustainable Computing:

Informatics and Systems, 19:262–274, 2018.

[76] Fahimeh Farahnakian, Pasi Liljeberg, and Juha Plosila. Lircup: Linear regression based

cpu usage prediction algorithm for live migration of virtual machines in data centers. In

2013 39th Euromicro conference on software engineering and advanced applications, pages

357–364. IEEE, 2013.

[77] Rongdong Hu, Jingfei Jiang, Guangming Liu, and Lixin Wang. Cpu load prediction using

support vector regression and kalman smoother for cloud. In 2013 IEEE 33rd International

Conference on Distributed Computing Systems Workshops, pages 88–92. IEEE, 2013.

[78] Shuai Yu, Xin Wang, and Rami Langar. Computation o✏oading for mobile edge computing:

A deep learning approach. In 2017 IEEE 28th Annual International Symposium on Personal,

Indoor, and Mobile Radio Communications (PIMRC), pages 1–6. IEEE, 2017.

[79] Fahimeh Farahnakian, Tapio Pahikkala, Pasi Liljeberg, and Juha Plosila. Energy aware

consolidation algorithm based on k-nearest neighbor regression for cloud data centers. In 2013

IEEE/ACM 6th International Conference on Utility and Cloud Computing, pages 256–259.

IEEE, 2013.

References 129

[80] Firdose Saeik, Marios Avgeris, Dimitrios Spatharakis, Nina Santi, Dimitrios Dechouniotis,

John Violos, Aris Leivadeas, Nikolaos Athanasopoulos, Nathalie Mitton, and Symeon

Papavassiliou. Task o✏oading in edge and cloud computing: A survey on mathematical,

artificial intelligence and control theory solutions. Computer Networks, 195:108177, 2021.

[81] Holger Fröhlich, Rudi Balling, Niko Beerenwinkel, Oliver Kohlbacher, Santosh Kumar,

Thomas Lengauer, Marloes H Maathuis, Yves Moreau, Susan A Murphy, Teresa M

Przytycka, et al. From hype to reality: data science enabling personalized medicine. BMC

medicine, 16(1):1–15, 2018.

[82] Atila Kara, Sakir Akin, and Can Ince. Current opinion the response of the microcirculation

to cardiac surgery. Curr Opin Anesthesiol, 28, 2015.

[83] Yue Yu, Chi Peng, Zhiyuan Zhang, Kejia Shen, Yufeng Zhang, Jian Xiao, Wang Xi, Pei

Wang, Zhichao Jin, and Zhinong Wang. Machine learning methods for predicting long-term

mortality in patients after cardiac surgery. Front Cardiovasc Med, 2021.

[84] Chuntao Wu, Fabian T Camacho, Andrew S Wechsler, Stephen Lahey, Alfred T Culliford,

Desmond Jordan, Je↵rey P Gold, Robert SD Higgins, Craig R Smith, and Edward L Hannan.

Risk score for predicting long-term mortality after coronary artery bypass graft surgery.

Circulation, 125(20):2423–2430, 2012.

[85] Umberto Benedetto, Arnaldo Dimagli, Shubhra Sinha, Lucia Cocomello, Ben Gibbison,

Massimo Caputo, Tom Gaunt, Matt Lyon, Chris Holmes, and Gianni D Angelini. Machine

learning improves mortality risk prediction after cardiac surgery: systematic review and

meta-analysis. The Journal of Thoracic and Cardiovascular Surgery, 2020.

[86] Ying Zhou, Si Chen, Zhenqi Rao, Dong Yang, Xiang Liu, Nianguo Dong, and Fei Li.

Prediction of 1-year mortality after heart transplantation using machine learning approaches:

A single-center study from china. International Journal of Cardiology, 339:21–27, 2021.

[87] Chin Siang Ong, Erik Reinertsen, Haoqi Sun, Philicia Moonsamy, Navyatha Mohan, Masaki

Funamoto, Tsuyoshi Kaneko, Prem S Shekar, Stefano Schena, Jennifer S Lawton, et al.

Prediction of operative mortality for patients undergoing cardiac surgical procedures without

established risk scores. The Journal of Thoracic and Cardiovascular Surgery, 2021.

[88] Suveen Angraal, Bobak J Mortazavi, Aakriti Gupta, Rohan Khera, Tariq Ahmad, Nihar R

Desai, Daniel L Jacoby, Frederick A Masoudi, John A Spertus, and Harlan M Krumholz.

Machine learning prediction of mortality and hospitalization in heart failure with preserved

ejection fraction. JACC: Heart Failure, 8(1):12–21, 2020.

[89] Timo Koponen, Johanna Karttunen, Tadeusz Musialowicz, Laura Pietiläinen, Ari Uusaro,

and Pasi Lahtinen. Vasoactive-inotropic score and the prediction of morbidity and mortality

after cardiac surgery. British journal of anaesthesia, 122(4):428–436, 2019.

[90] Tong Ruan, Liqi Lei, Yangming Zhou, Jie Zhai, Le Zhang, Ping He, and Ju Gao.

Representation learning for clinical time series prediction tasks in electronic health records.

BMC medical informatics and decision making, 19(8):1–14, 2019.

[91] J. M. G. Sánchez, N. Jörgensen, and M. Törngren. Edge computing for cyber-physical

systems. ACM Trans. Cyber-Phys. Syst., 2022.

130 References

[92] S. Hamdan, S. Almajali, M. Ayyash, H. B. Salameh, and Y. Jararweh. An

intelligent edge-enabled distributed multi-task learning architecture for large-scale iot-based

cyber–physical systems. Simulation Modelling Practice and Theory, 122:102685, 2023.

[93] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger, P. B.

Gibbons, and M. Zaharia. Pipedream: generalized pipeline parallelism for dnn training. In

Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages 1–15, 2019.

[94] W. Sun, J. Liu, and Y. Yue. Ai-enhanced o✏oading in edge computing: When machine

learning meets industrial iot. IEEE Network, 33(5):68–74, 2019.

[95] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang. Toward an intelligent edge: Wireless

communication meets machine learning. IEEE communications magazine, 58(1):19–25, 2020.

[96] S. Shahhosseini, D. Seo, A. Kanduri, T. Hu, S. Lim, B. Donyanavard, A. M. Rahmani, and

N. Dutt. Online learning for orchestration of inference in multi-user end-edge-cloud networks.

ACM Transactions on Embedded Computing Systems, 21(6):1–25, 2022.

[97] T. Arifeen, A. S. Hassan, and J. Lee. Approximate triple modular redundancy: A survey.

IEEE Access, 8:139851–139867, 2020.

[98] Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of

eugenics, 7(2):179–188, 1936.

[99] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel.

Detection of tra�c signs in real-world images: The german tra�c sign detection benchmark.

In The 2013 international joint conference on neural networks (IJCNN), pages 1–8. IEEE,

2013.

[100] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not

imagenet or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

[101] Fruits dataset kaggle. Sriram Reddy Kalluri. https://www.kaggle.com/sriramr/

fruits-fresh-and-rotten-for-classification. [Online; Last accessed 24 Oct 2020].

[102] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing

Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and e�cient machine learning

library for heterogeneous distributed systems, 2015.

[103] M. A. Maruf, A. Singh, A. Azim, and N. Auluck. Faster fog computing based over-the-air

vehicular updates: A transfer learning approach. IEEE Transactions on Services Computing,

2021.

[104] Kaggle. Tra�c, driving style, and road surface condition, 2023. Available online:

https://www.kaggle.com/datasets/gloseto/tra�c-driving-style-road-surface-condition

(accessed on 20 March 2023).

[105] M. Ruta, F. Scioscia, G. Loseto, A. Pinto, and E. Di Sciascio. Machine learning in the

internet of things: A semantic-enhanced approach. Semantic Web, 10(1):183–204, 2019.

[106] Eryk Schiller, Andy Aidoo, Jara Fuhrer, Jonathan Stahl, Michael Ziörjen, and Burkhard

Stiller. Landscape of iot security. Computer Science Review, 44:100467, 2022.

https://www.kaggle.com/sriramr/%20fruits-fresh-and-rotten-for-classification
https://www.kaggle.com/sriramr/%20fruits-fresh-and-rotten-for-classification

References 131

[107] Eric Gyamfi and Anca Jurcut. Intrusion detection in internet of things systems: A review on

design approaches leveraging multi-access edge computing, machine learning, and datasets.

Sensors, 22(10):3744, 2022.

[108] Santosh Kumar Das and Vikash Kumar. Iot security enhancement system: A review

based on fusion of edge computing and blockchain. Constraint Decision-Making Systems

in Engineering, pages 204–218, 2023.

[109] Rami J Alzahrani and Ahmed Alzahrani. A novel multi algorithm approach to identify

network anomalies in the iot using fog computing and a model to distinguish between iot

and non-iot devices. Journal of Sensor and Actuator Networks, 12(2):19, 2023.

[110] NSL-KDDdataset,https://www.unb.ca/cic/datasets/nsl.html.

[111] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward generating a new

intrusion detection dataset and intrusion tra�c characterization. ICISSp, 1:108–116, 2018.

[112] Nour Moustafa and Slay Jill. The evaluation of network anomaly detection systems:

Statistical analysis of the unsw-nb15 data set and the comparison with the kdd99 data

set. Information Security Journal: A Global Perspective25, (1-3):18–31, 2016.

[113] ToN_IoTdatasets(2020),https://www.unsw.adfa.edu.au/unsw-canberra-cyber/

cybersecurity/ADFA-ton-iot-Datasets/.

[114] Victor Chang, Lewis Golightly, Paolo Modesti, Qianwen Ariel Xu, Le Minh Thao Doan, Karl

Hall, Sreeja Boddu, and Anna Kobusińska. A survey on intrusion detection systems for fog

and cloud computing. Future Internet, 14(3):89, 2022.

[115] ADFA-LDdataset,https://github.com/verazuo/a-labelled-version-of-the-ADFA-LD-dataset.

[116] Credit fraud detector. https://www.kaggle.com/janiobachmann/

credit-fraud-dealing-with-imbalanced-datasets.

[117] Smote for imbalanced classification with python. https://machinelearningmastery.com/

smote-oversampling-for-imbalanced-classification/.

[118] a-labelled-version-of-the-adfa-ld-dataset. https://github.com/verazuo/

a-labelled-version-of-the-ADFA-LD-dataset.

[119] Frances Osamor and BrianaWellman. Deep learning-based hybrid model for e�cient anomaly

detection. International Journal of Advanced Computer Science and Applications, 13(4),

2022.

[120] Tansel Dokeroglu, Ayça Deniz, and Hakan Ezgi Kiziloz. A comprehensive survey on recent

metaheuristics for feature selection. Neurocomputing, 2022.

[121] Amin Aminifar, Matin Shokri, Fazle Rabbi, Violet Ka I Pun, and Yngve Lamo. Extremely

randomized trees with privacy preservation for distributed structured health data. IEEE

Access, 10:6010–6027, 2022.

[122] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. ”

O’Reilly Media, Inc.”, 2022.

https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets
https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://github.com/verazuo/a-labelled-version-of-the-ADFA-LD-dataset
https://github.com/verazuo/a-labelled-version-of-the-ADFA-LD-dataset

132 References

[123] Siti-Farhana Lokman, Abu Talib Othman, Muhamad Husaini Abu Bakar, and Shahrulniza

Musa. The impact of di↵erent feature scaling methods on intrusion detection for in-vehicle

controller area network (can). In Advances in Cyber Security: First International Conference,

ACeS 2019, Penang, Malaysia, July 30–August 1, 2019, Revised Selected Papers 1, pages

195–205. Springer, 2020.

[124] Taejoon Kim, Sang C Suh, Hyunjoo Kim, Jonghyun Kim, and Jinoh Kim. An encoding

technique for cnn-based network anomaly detection. In 2018 IEEE International Conference

on Big Data (Big Data), pages 2960–2965. IEEE, 2018.

[125] Akaash Vishal Hazarika, G Jagadeesh Sai Raghu Ram, and Eeti Jain. Performance

comparision of hadoop and spark engine. In 2017 International Conference on I-SMAC

(IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pages 671–674. IEEE, 2017.

[126] Seiya Tokui, Ryosuke Okuta, Takuya Akiba, Yusuke Niitani, Toru Ogawa, Shunta Saito,

Shuji Suzuki, Kota Uenishi, Brian Vogel, and Hiroyuki Yamazaki Vincent. Chainer: A

deep learning framework for accelerating the research cycle. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages

2002–2011. ACM, 2019.

[127] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast

inference via early exiting from deep neural networks. In 2016 23rd international conference

on pattern recognition (ICPR), pages 2464–2469. IEEE, 2016.

[128] Zheng-Wu Yuan and Jun Zhang. Feature extraction and image retrieval based on alexnet. In

Eighth International Conference on Digital Image Processing (ICDIP 2016), volume 10033,

pages 65–69. SPIE, 2016.

[129] Joseph A. Cottam, Natalie C. Heller, Christopher L. Ebsch, Rahul Deshmukh, Patrick

Mackey, and George Chin. Evaluation of alignment: Precision, recall, weighting and

limitations. In 2020 IEEE International Conference on Big Data (Big Data), pages

2513–2519. IEEE, 2020. doi: 10.1109/BigData50022.2020.9378064.

[130] Johan Barthélemy, Nicolas Verstaevel, Hugh Forehead, and Pascal Perez. Edge-computing

video analytics for real-time tra�c monitoring in a smart city. Sensors, 19(9):2048, 2019.

[131] Md. Al Maruf, Anil Singh, Akramul Azim, and Nitin Auluck. Faster fog computing based

over-the-air vehicular updates: A transfer learning approach. IEEE Transactions on Services

Computing, pages 1–1, 2021. doi: 10.1109/TSC.2021.3099897.

[132] Gustavo Caiza, Morelva Saeteros, William Oñate, and Marcelo V Garcia. Fog computing at

industrial level, architecture, latency, energy, and security: A review. Heliyon, 6(4):e03706,

2020.

[133] Mainak Adhikari, Mithun Mukherjee, and Satish Narayana Srirama. Dpto: A deadline and

priority-aware task o✏oading in fog computing framework leveraging multilevel feedback

queueing. IEEE Internet of Things Journal, 7(7):5773–5782, 2019.

[134] Ola Salman, Imad Elhajj, Ali Chehab, and Ayman Kayssi. Iot survey: An sdn and fog

computing perspective. Computer Networks, 143:221–246, 2018.

References 133

[135] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. A survey on

mobile edge computing: The communication perspective. IEEE Communications Surveys &

Tutorials, 19(4):2322–2358, 2017.

[136] Mingjin Gao, Rujing Shen, Jun Li, Shihao Yan, Yonghui Li, Jinglin Shi, Zhu Han, and

Li Zhuo. Computation o✏oading with instantaneous load billing for mobile edge computing.

IEEE Transactions on Services Computing, 2020.

[137] Jie Zhang, Hongzhi Guo, Jiajia Liu, and Yanning Zhang. Task o✏oading in vehicular

edge computing networks: A load-balancing solution. IEEE Transactions on Vehicular

Technology, 69(2):2092–2104, 2019.

[138] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerating deep neural

network inference via edge computing. IEEE Transactions on Wireless Communications, 19

(1):447–457, 2019.

[139] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen. Evolving deep convolutional neural

networks for image classification. IEEE Transactions on Evolutionary Computation, 24(2):

394–407, 2019.

[140] Yakun Huang, Xiuquan Qiao, Pei Ren, Ling Liu, Calton Pu, Schahram Dustdar, and Junliang

Chen. A lightweight collaborative deep neural network for the mobile web in edge cloud.

IEEE Transactions on Mobile Computing, 2020.

[141] Qian Huang, Kane Rodriguez, Nicholas Whetstone, and Steven Habel. Rapid internet of

things (iot) prototype for accurate people counting towards energy e�cient buildings. J. Inf.

Technol. Constr., 24:1–13, 2019.

[142] Sami Abdulla Mohsen Saleh, Shahrel Azmin Suandi, and Haidi Ibrahim. Recent survey on

crowd density estimation and counting for visual surveillance. Engineering Applications of

Artificial Intelligence, 41:103–114, 2015.

[143] Vishwanath A Sindagi and Vishal M Patel. A survey of recent advances in cnn-based single

image crowd counting and density estimation. Pattern Recognition Letters, 107:3–16, 2018.

[144] Y. an, j. wu, and c. yue, “cnns for face detection and recognition,”

https://github.com/fusio-wu/cs231a project, 2017.

[145] Crowd counting dataset :. https://www.kaggle.com/fmena14/crowd-counting.

[146] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[147] Mithun Mukherjee, Vikas Kumar, Qi Zhang, Constandinos X Mavromoustakis, and Rakesh

Matam. Optimal pricing for o✏oaded hard-and soft-deadline tasks in edge computing. IEEE

Transactions on Intelligent Transportation Systems, 2021.

[148] Yitu Wang and Takayuki Nakachi. A privacy-preserving learning framework for face

recognition in edge and cloud networks. IEEE Access, 8:136056–136070, 2020.

[149] Anis Koubaa, Adel Ammar, Anas Kanhouch, and Yasser AlHabashi. Cloud versus edge

deployment strategies of real-time face recognition inference. IEEE Transactions on Network

Science and Engineering, 9(1):143–160, 2021.

https://www.kaggle.com/fmena14/crowd-counting
http://www.deeplearningbook.org

134 References

[150] Shi-Jer Lou, Ming-Feng Hou, Hong-Tai Chang, Hao-Hsien Lee, Chong-Chi Chiu,

Shu-Chuan Jennifer Yeh, and Hon-Yi Shi. Breast cancer surgery 10-year survival prediction

by machine learning: A large prospective cohort study. Biology, 11(1):47, 2021.

[151] Douglas Kondziolka, Phillip V Parry, L Dade Lunsford, Hideyuki Kano, John C Flickinger,

Susan Rakfal, Yoshio Arai, Jay S Loe✏er, Stephen Rush, Jonathan PS Knisely, et al. The

accuracy of predicting survival in individual patients with cancer. Journal of neurosurgery,

120(1):24–30, 2014.

[152] Upendra Kaul and Vineet Bhatia. Perspective on coronary interventions & cardiac surgeries

in india. The Indian journal of medical research, 132(5):543, 2010.

[153] Niv Ad, Sari D Holmes, Jay Patel, Graciela Pritchard, Deborah J Shuman, and Linda Halpin.

Comparison of euroscore ii, original euroscore, and the society of thoracic surgeons risk score

in cardiac surgery patients. The Annals of thoracic surgery, 102(2):573–579, 2016.

[154] Kristien Van Loon, F Guiza, Geert Meyfroidt, J-M Aerts, Jan Ramon, Hendrik Blockeel,

Maurice Bruynooghe, Greta Van den Berghe, and Daniel Berckmans. Prediction of clinical

conditions after coronary bypass surgery using dynamic data analysis. Journal of medical

systems, 34(3):229–239, 2010.

[155] DK Thara, BG PremaSudha, and Fan Xiong. Auto-detection of epileptic seizure events using

deep neural network with di↵erent feature scaling techniques. Pattern Recognition Letters,

128:544–550, 2019.

[156] Rainer Hegger, Holger Kantz, and Thomas Schreiber. Practical implementation of nonlinear

time series methods: The tisean package. Chaos: An Interdisciplinary Journal of Nonlinear

Science, 9(2):413–435, 1999.

[157] Maŕılia Barandas, Duarte Folgado, Let́ıcia Fernandes, Sara Santos, Mariana Abreu, Patŕıcia

Bota, Hui Liu, Tanja Schultz, and Hugo Gamboa. Tsfel: Time series feature extraction

library. SoftwareX, 11:100456, 2020.

[158] Maximilian Christ, Nils Braun, Julius Neu↵er, and Andreas W Kempa-Liehr. Time

series feature extraction on basis of scalable hypothesis tests (tsfresh–a python package).

Neurocomputing, 307:72–77, 2018.

[159] Jihao You, Edmond Lou, Mohammad Afrouziyeh, Nicole M Zukiwsky, and Martin J

Zuidhof. A supervised machine learning method to detect anomalous real-time broiler breeder

body weight data recorded by a precision feeding system. Computers and Electronics in

Agriculture, 185:106171, 2021.

[160] Jiayao Chen, Hongwei Huang, Anthony G Cohn, Dongming Zhang, and Mingliang Zhou.

Machine learning-based classification of rock discontinuity trace: Smote oversampling

integrated with gbt ensemble learning. International Journal of Mining Science and

Technology, 2021.

[161] Bahzad Charbuty and Adnan Abdulazeez. Classification based on decision tree algorithm

for machine learning. Journal of Applied Science and Technology Trends, 2(01):20–28, 2021.

[162] Lishan Wang. Research and implementation of machine learning classifier based on knn. In

IOP Conference Series: Materials Science and Engineering, volume 677, page 052038. IOP

Publishing, 2019.

References 135

[163] Nejdet Dogru and Abdulhamit Subasi. Tra�c accident detection using random forest

classifier. In 2018 15th learning and technology conference (L&T), pages 40–45. IEEE, 2018.

[164] Siji Chen, Bin Shen, Xin Wang, and Sang-Jo Yoo. A strong machine learning classifier and

decision stumps based hybrid adaboost classification algorithm for cognitive radios. Sensors,

19(23):5077, 2019.

[165] Alexey Natekin and Alois Knoll. Gradient boosting machines, a tutorial. Frontiers in

neurorobotics, 7:21, 2013.

[166] Amal Asselman, Mohamed Khaldi, and Souhaib Aammou. Enhancing the prediction of

student performance based on the machine learning xgboost algorithm. Interactive Learning

Environments, pages 1–20, 2021.

[167] Simon Nusinovici, Yih Chung Tham, Marco Yu Chak Yan, Daniel Shu Wei Ting, Jialiang

Li, Charumathi Sabanayagam, Tien Yin Wong, and Ching-Yu Cheng. Logistic regression

was as good as machine learning for predicting major chronic diseases. Journal of clinical

epidemiology, 122:56–69, 2020.

[168] Dastan Maulud and Adnan M Abdulazeez. A review on linear regression comprehensive in

machine learning. Journal of Applied Science and Technology Trends, 1(4):140–147, 2020.

[169] R Muthukrishnan and R Rohini. Lasso: A feature selection technique in predictive modeling

for machine learning. In 2016 IEEE international conference on advances in computer

applications (ICACA), pages 18–20. IEEE, 2016.

[170] Julianna D Ianni, Zhipeng Cao, and William A Grissom. Machine learning rf shimming:

Prediction by iteratively projected ridge regression. Magnetic resonance in medicine, 80(5):

1871–1881, 2018.

[171] Oliver Kramer. K-nearest neighbors. In Dimensionality reduction with unsupervised nearest

neighbors, pages 13–23. Springer, 2013.

[172] Shikder Shafiul Bashar, Md Sazal Miah, AHM Zadidul Karim, and Md Abdullah Al Mahmud.

Extraction of heart rate from ppg signal: a machine learning approach using decision tree

regression algorithm. In 2019 4th International Conference on Electrical Information and

Communication Technology (EICT), pages 1–6. IEEE, 2019.

[173] Xudong Zhou, Xinkai Zhu, Zhaodi Dong, Wenshan Guo, et al. Estimation of biomass in

wheat using random forest regression algorithm and remote sensing data. The Crop Journal,

4(3):212–219, 2016.

[174] Upma Singh, Mohammad Rizwan, Muhannad Alaraj, and Ibrahim Alsaidan. A machine

learning-based gradient boosting regression approach for wind power production forecasting:

A step towards smart grid environments. Energies, 14(16):5196, 2021.

[175] Ali Shehadeh, Odey Alshboul, Rabia Emhamed Al Mamlook, and Ola Hamedat. Machine

learning models for predicting the residual value of heavy construction equipment: An

evaluation of modified decision tree, lightgbm, and xgboost regression. Automation in

Construction, 129:103827, 2021.

[176] Fan Zhang and Lauren J O’Donnell. Support vector regression. In Machine Learning, pages

123–140. Elsevier, 2020.

136 References

[177] Yunlong Feng and Qiang Wu. A statistical learning assessment of huber regression. Journal

of Approximation Theory, 273:105660, 2022.

[178] BH Shekar and Guesh Dagnew. Grid search-based hyperparameter tuning and classification

of microarray cancer data. In 2019 second international conference on advanced

computational and communication paradigms (ICACCP), pages 1–8. IEEE, 2019.

[179] Carlos Matias Scavuzzo, Juan Manuel Scavuzzo, Micaela Natalia Campero, Melaku

Anegagrie, Aranzazu Amor Aramendia, Agust́ın Benito, and Victoria Periago. Feature

importance: Opening a soil-transmitted helminth machine learning model via shap.

Infectious Disease Modelling, 7(1):262–276, 2022.

[180] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond accuracy, f-score and

roc: a family of discriminant measures for performance evaluation. In Australasian joint

conference on artificial intelligence, pages 1015–1021. Springer, 2006.

[181] Davide Chicco, Matthijs J Warrens, and Giuseppe Jurman. The coe�cient of determination

r-squared is more informative than smape, mae, mape, mse and rmse in regression analysis

evaluation. PeerJ Computer Science, 7:e623, 2021.

[182] Pei-Fang Jennifer Tsai, Po-Chia Chen, Yen-You Chen, Hao-Yuan Song, Hsiu-Mei Lin,

Fu-Man Lin, and Qiou-Pieng Huang. Length of hospital stay prediction at the admission

stage for cardiology patients using artificial neural network. Journal of healthcare engineering,

2016, 2016.

[183] Austin J Triana, Rushikesh Vyas, Ashish S Shah, and Vikram Tiwari. Predicting length of

stay of coronary artery bypass grafting patients using machine learning. Journal of Surgical

Research, 264:68–75, 2021.

[184] Jiansheng Fang, Junlin Zhu, and Xiaoqing Zhang. Prediction of length of stay on the intensive

care unit based on bayesian neural network. Journal of Physics: Conference Series, 1631(1):

012089, 2020.

[185] Farid Kadri, Abdelkader Dairi, Fouzi Harrou, and Ying Sun. Towards accurate prediction

of patient length of stay at emergency department: a gan-driven deep learning framework.

Journal of Ambient Intelligence and Humanized Computing, pages 1–15, 2022.

[186] Marta Priscila Bento Fernandes, Miguel Armengol de la Hoz, Valluvan Rangasamy, and

Balachundhar Subramaniam. Machine learning models with preoperative risk factors and

intraoperative hypotension parameters predict mortality after cardiac surgery. Journal of

Cardiothoracic and Vascular Anesthesia, 35(3):857–865, 2021.

