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Abstract

Keywords: Interstellar Medium, Potential Energy Surface, Ab Initio Method, Cou-

pled Cluster method, Multipolar Expansion, Collisional De-excitation, Quantum Dy-

namics, Scattering Theory, Bound States, Pressure Broadening, Ultracold Chemistry.

In the past century, our understanding of the interstellar medium (ISM) has greatly

evolved. Initially thought of as empty space between stars, modern astrochemistry

has revealed a complex web of physical and chemical processes in various interstellar

environments. Around 300 molecules have been detected in interstellar space with

the help of spectroscopy so far that are dominated by H2 and He. Because of their

importance, several communities are working on experimental and theoretical astro-

chemistry to determine the spectroscopic properties. In ISM, the density is typically

low, and collisions occur rarely, making it challenging to maintain a local thermody-

namic equilibrium. Consequently, it becomes important to calculate the collisional

rate with key collisional partners like H2 and He. For calculating collisional rate co-

efficients, the first step is to define the potential energy surface (PES) of the colliding

system.

The work deals with the interaction of interstellar molecules CNNC and NCCP

with He and para-H2. New accurate ab initio PESs for CNNC-He, CNNC-H2, NCCP-

He and NCCP-H2 are generated using electronic structure calculations involving

coupled-cluster singles and doubles with perturbative triples with F12 approxima-

tion (CCSD(T)-F12) and augmented correlation consistent polarized valence triple

zeta (aVTZ) basis sets. To perform the dynamical calculations, the ground state

PESs are expanded in terms of Legendre polynomials. The time-independent ap-

proach of quantum dynamics is employed to study the collisional systems. Inelastic

cross-sections for the rotational de-excitations of all the studied systems have been

computed with a close-coupling method. The cross-sections are then thermally av-

eraged to calculate the collisional rate coefficients at interstellar temperatures. Only
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even ∆j transitions are allowed in the case of CNNC collisions, whereas both even

and odd ∆j transitions are present for NCCP. NCCP-para-H2 rates are determined to

be 1.5-4.5 times of NCCP-He.

A tremendous increase in the research on ion-molecule interactions is attributed

to their involvement in the synthesis of larger molecules in interstellar clouds. These

reactions become important as compared to neutral species interactions due to the

long-range electrostatic interactions occurring between ion and atom. In this context,

the interaction of ionic molecule COH+ in collision with He is studied considering its

possibility to form bound states. COH+-He has a global minimum of 836.55 cm−1 and

He approaches from H-side of COH+ in stable configuration. Inelastic and pressure

broadening (PB) cross-sections are calculated and compared for COH+-He, resulting

in some extra peaks in PB cross-sections. The obtained rotational rate coefficients

are consistent with the previously reported data for COH+-He.

Cooling molecules to ultracold temperatures has produced a new research area

of ultracold chemistry due to their applications in controlled chemical reactions and

ultrahigh-resolution molecular spectroscopy. In the ultracold study, rotational quench-

ing cross-sections and rate coefficients are computed for C2 in collision with C2-
3,4He.

The quenching cross-sections are found to obey Wigner’s threshold laws. The iso-

topic effect of He is analyzed by computing the scattering lengths and lifetime of

quasi bound states. Quenching rate coefficients suggest that C2 can be cooled with
4He buffer gas.
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Introduction

1.1 Background

It all began in the early days of spectroscopy when Joseph von Fraunhofer, an optician

and physicist, made a groundbreaking discovery about the solar system. He identi-

fied numerous fine dark absorption lines within the solar spectrum using telescopes

and lenses. These distinctive dark lines emerged as a result of elements absorbing

specific wavelengths emitted by the sun. This crucial discovery represented a no-

table milestone in spectroscopy, indicating that the composition of the sun and stars

matches that of Earth’s chemical constituents. It proved to be one of the most no-

table applications of spectroscopy to celestial bodies.1 Thereafter, the collaboration

between astrophysicists and spectroscopists started and aimed at attributing these

lines in the solar spectrum with atomic transitions, marking the beginning of what

is now acknowledged as modern astrophysics.2 Identifying these lines firmly estab-

lished spectroscopy as a potent analytical tool for investigating the chemical and

physical conditions of astronomical bodies. Excited about the possibilities offered by

spectroscopy, astrophysicists expressed that this technique would unveil a completely

unexplored domain, extending far beyond Earth and our solar system.

The teamwork between spectroscopists and astrophysicists has been found to be

consistently productive and captivating, resulting in the successful identification of

more than 300 diverse molecular species3 in both circumstellar envelopes and the

interstellar medium (ISM). These molecules vary from simpler diatomic molecules

like C2, H2, CH, N2, NP, CO, OH, etc., to more complex species with eight atoms

or more.4,5 Each molecule discovered provides valuable insights into the physics and

chemistry of the observed environment.6 Molecules are not confined only to the ISM

and circumstellar regions but are widespread in various celestial regions. This study

primarily concentrates on circumstellar and interstellar molecules. The exploration of

such species to understand the physical conditions in space has become a significant

trend, sparking increased interest in astrochemistry, astronomy, and related fields.7

1.1.1 An Introduction to the Interstellar Medium

In the early 20th century, interstellar space was commonly considered an empty vac-

uum spotted with black holes, planets, stars, and other celestial structures. But
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the discovery of various molecules, such as HNC, HCl, OH+, CO+, and COH+, etc.,

has led to the realization that this space between the stars consists of the biggest

storehouse of chemically bonded matter and concluded that this space is not empty.8

ISM is simply home to a lot of stuff or matter that exists between stars, including

dust, gases (in all their forms), and cosmic rays.9 The composition of the interstellar

medium is predominantly 99 percent gas and 1 percent dust. Concerning the gas in

the interstellar medium, 90 percent consists of hydrogen atoms, 8 percent of helium

atoms, and 2 percent comprises atoms of heavier elements than hydrogen and He,

such as carbon, nitrogen, oxygen, sulphur, etc. Interstellar dust primarily comprises

particles of heavier elements, mainly consisting of silicates, iron, carbon, and dirty ice.

The thermal and chemical states of the ISM are conventionally described in terms

of a number of distinct phases characterizing the temperature, ionization fractions,

and density.10 These phases are hot ionized medium, warm ionized and neutral

medium, and cold neutral medium. Due to the abundance of hydrogen, scientists

have classified various types of ISM clouds based on the type of hydrogen they con-

tain. The cold medium consists of hydrogen in the molecule form (H2), and this region

is called a molecular cloud. It is the densest region (103-106 cm−3) of the ISM and is

made up of H2 molecules with the lowest temperature of 10-20 K. It makes up a small

portion of the mass of ISM (25%). On the other hand, atomic hydrogen is present in

a cold neutral medium with a density of 3050 cm−3 and a temperature of ∼ 70-100

K. Among the various phases of ISM, molecular clouds hold particular significance in

the realm of interstellar chemistry.11 These clouds serve as the birthplace of 70% of

molecules, where their formation and detection occur. Among the molecular species

identified in space, 17 different elements are present, including the five most crucial

biogenic elements: N, C, P, H and O. 80% molecules are linear and organic in nature.12

1.1.2 Important tool for Interstellar Molecules: Molecular

Spectroscopy

Spectroscopy has now become an indispensable tool that enables astronomers to ex-

plore the universe, unveiling details such as physical characteristics, radial velocities,

and, chemical compositions of celestial objects.13 It has proven invaluable in measur-

ing the dark matter present in galaxies, determining the net mass of galaxy clusters

& stars, and estimating the rate of the Universe expansion. Molecules are identi-

fied in interstellar medium by analyzing their unique spectroscopic signatures.14 The
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distinctiveness of each molecule’s spectrum proves valuable in both terrestrial labora-

tories and the ISM for identifying the molecules. The primary method for detecting

molecules in the ISM involves comparing spectroscopic frequencies observed through

a radio telescope with spectral features derived either from laboratory experiments

or precise theoretical predictions.15,16 The gases in ISM emit detectable radiation,

making it readily accessible for astrochemists to study. The unique conditions of ISM

allow for the observation of forbidden lines, while in regular laboratory settings, less

probable transitions are considered “forbidden” because high energy states readily un-

dergo collisional de-excitation. In the ISM, the duration of collisions is typically far

greater than the lifespans of these excited states, especially for forbidden transitions.

This characteristic makes such transitions easily detectable and potentially dominant

in the spectrum. Molecules within the ISM exhibit rotational energy due to bodily

rotation around their centre of gravity, forming the basis of radio astronomy.

1.1.3 Why Rotational Spectroscopy?

Within the realm of high-resolution spectroscopic methods, rotational spectroscopy

(RS) is a paramount technique in ISM for identifying molecules.17 In contrast to

widely used spectroscopic techniques in analytical chemistry, such as NMR, IR, and

UV-spectroscopies, microwave spectroscopy has relatively few but distinctive appli-

cations. One notable application is its role in chemically examining the interstellar

medium. RS entails measuring the transition energy in the gas phase between two ro-

tational states of molecules.18 These rotational level changes stem from the rotation of

the molecule, causing a change in the permanent dipole moment. Transitions among

rotational levels are generally less energetic than transitions between electronic and

vibrational states. Consequently, rotationally excited states are more readily popu-

lated at the lower temperatures of ISM, and molecules exist in their vibrational and

electronic ground states. As a result, in the radio frequency and microwave regions,

the molecular cloud’s spectra will have sharp lines corresponding to rotational transi-

tions. Over 70% of all known interstellar molecular species, such as NP, CCP, HCCN,

CNCN, COH+, HCO+, NCCP, etc., have been identified based on their rotational

spectral characteristics using a spectrometer linked to a radio telescope, and helped

to determine their abundance and the physical conditions of the environment.6,7
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1.1.4 Role of Quantum Chemistry in Astrochemistry

Numerous molecules within the ISM have been detected through quantum chemistry

due to advancements in the accuracy of electronic structure calculations and quantum

chemical methods. After years of significant improvement in quantum theories and

development in the power of computational facilities, quantum chemical calculations

have reached a level where they can depict real systems with accuracy comparable

to experiments. These methodologies have emerged as the most viable option when

conducting experiments is impractical, expensive, hazardous, or simply unfeasible.

Quantum chemistry provides insights into the energy levels of molecules and the

transitions between these levels. Understanding these energy transitions is essential

for interpreting the observed spectral lines to determine the presence of molecules and

their accurate abundance in space.

The molecular clouds of our interest have the lowest temperature in the interstel-

lar medium, and due to the relatively low density of this region, collisions between

species are very rare that local thermodynamic equilibrium cannot be maintained7.

Consequently, it becomes essential to consider the competition between collisional and

radiative processes that determine the energy transfers leading to the distribution of

molecular energy levels. The radiative processes involving absorption and emission

are characterized by the values of Einstein coefficients that can be known easily exper-

imentally, but the analysis of the collisional processes (excitation and deexcitation)

requires information of the collisional rate coefficients. The data of collisional cross-

sections and rate coefficients predominantly relies on theoretical calculations, given

that laboratory experiments can only offer limited, specific data.19

Experimental cross-section studies are generally conducted at room temperature,

employing collisional gases like Ne, Ar, and N2, which are unsuitable for astrophysical

scenarios.20 Using heavier collisional partners in experiments simplifies the setup but

limits the analysis of inelastic rate coefficients for collisions involving astrophysical

species like H, H+, H2 and He. Therefore, theoretical cross-sections and rate coeffi-

cients are obtained assuming electronic and nuclear movements (Born-Oppenheimer

approximation)21 separately. In this approximation, cross-sections (and subsequently

rate coefficients) are derived by solving the motion of the nuclei on the electronic

potential energy surface. Studies that utilize advanced computational techniques to

address both electronic and nuclear motion issues have shown that the theory can

match the accuracy of experimental data. Many interstellar molecules have been
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studied in collision with H, H+, H2 and He theoretically. In essence, we can say that

quantum chemistry emerges as a valuable source of astrochemical data in situations

where experimental approaches face challenges.

1.2 Review of Molecular Systems in ISM

Interstellar chemistry primarily involves organic species. The vast majority of molecules

identified in interstellar and circumstellar environments contain at least one carbon

atom. These molecules are believed to play a role in the origins of life. Because of their

importance, they attract the attention of various scientific communities involved in

experimental and theoretical astrochemistry. These communities seek to understand

the collision rates of these molecules with the most abundant colliders, i.e., helium

and molecular hydrogen (H2). In our research, we focus on studying the dynamics

and spectroscopy of several interstellar molecules, CNNC, NCCP, and COH+. We

will provide a brief overview of these systems.

1.2.1 The Diisocyanogen CNNC

Carbon fragments were discovered in dense intermolecular clouds for the very first

time in 1970.22–24 Among them, nitriles (R−C≡N) and isonitriles (R−N≡C), are of

key importance in the field of astrochemistry because of their considerable existence

in the circumstellar and interstellar media.22,25–32 More than 30 cyano and 12 isocyano

molecules have been detected in ISM to date. The arrangement of cyanopolyynes,

H−(C≡C)n−C≡N merits unique consideration since it forms the biggest known inter-

stellar molecules.33 Cyanogen, NCCN being the simplest molecule of dicyanopolynne

series, has been studied extensively both theoretically34–36 and experimentally.37–40

NCCN has three other possible isomeric forms CNCN (isocyanogen), CNNC (diiso-

cyanogen) and CCNN (diaza-dicarbon), with relative stability order as NCCN >

CNCN > CNNC > CCNN.41

Diisocyanogen, the energetically higher-lying isomer of cyanogen and smallest

molecule of diisocyanopolyynes family has attracted considerable interest recently

both theoretically42–47 and experimentally.48–50 The taurus molecular cloud-1 (TMC-

1) and IRC+10216 are significant sources of abundance of various nitrile and isonitrile

molecules.25,32,51 In 1991, Kruger reported the first linear isocyano molecule (HCCNC)

having a column density 2.9 × 1012 cm−2 in TMC-1.28,29,52 NCCN and CNNC being
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centrosymmetric species remains undetected in cold ISM to date and both lack perma-

nent dipole moment whereas CNCN has some value of dipole moment and has been

found with few interstellar molecules towards the dense clouds L483.53,54 However,

in 1981 NCCN was found in the atmosphere of Titan and Comets through infrared

spectra.55,56 The detection of CNCN54, NCCNH+57 and various isocyano molecules

like HNC31, HCC-NC28, HC4NC25 represent absolute clue of presence of CNNC in

ISM. Thus, the presence of diisocyanogen in interstellar space can’t be ruled out. To

investigate the CNNC abundance in ISM and to understand the CNNC molecule,

indirect observations, and theoretical studies are required.

1.2.2 The Cyanophosphaethyne NCCP

IRC+10216 hosts numerous molecules dominated by carbon chain species like cyano-

polyyne and polyyne radicals58,59, along with carbon chains including silicon or sul-

phur,60–62 as well as exotic molecules consisting of phosphorus or metals.26,63 The

periodic table’s third-row elements are also found there but with low cosmic stan-

dards. Phosphorus (also known as a biogenic element) is one of them, which is found

to be less abundant. The chemistry of P differs significantly from that of the neigh-

boring second-row element. Phosphorous is released by Type II supernovae into the

interstellar medium64,65 and exists as P+ in the gas phase, showing little indications

of depletion in grains.29,66 PN was the first phosphorous molecule that was detected

more than 35 years ago in ISM by Turner and Bally67,68 and predicted to be most

abundant phosphorus molecule.

Phosphorous is mostly trapped in HCP (C-rich envelopes) or PO and PS (O-rich

envelopes), according to thermochemical equilibrium calculations.69,70 In astrophysi-

cal media, the accurate determination of abundances is required for the discovery of

new molecules. Without these data, one would have to rely on the physical condi-

tions of local thermodynamic equilibrium (LTE), which are extremely rare in space.

We have extended our research for P-bearing species in IRC+10216 to understand

more about the chemistry of phosphorous in circumstellar envelopes. Among them,

we are interested in NCCP, cyanophosphaethyne (chemical cousin of NCCN), which

is expected to be the source of phosphorus in interstellar space. NCCP is found to

be a linear molecule having singlet sigma (1Σ+) electronic ground state with a closed

shell. NCCP, being the stable isomer among its other possible isomers has been stud-

ied extensively.71–74 In the laboratory, the rotational spectrum of NCCP has been

described over a wide spectral range of 26-820 GHz.74 Agúndez et al. reported the 3
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mm line survey that showed 7 NCCPs rotational lines ranging from J=15 to J=21

in the temperature domain of 30-60 K and considered the presence of NCCP in as-

tronomical sources like IRC+10216.75 The column densities of CCP and NCCP are

1.2-2.9 × 1012 cm−2 63 and 7 × 1011 cm−2 75, respectively, in IRC+10216 suggesting

slightly very less abundance of NCCP than CCP. NCCP could be a viable candidate

for its discovery in space due to its reasonably significant value of dipole moment i.e.

3.44 D73 and could follow the following reaction path

HNC + CP → NCCP +H

for its formation having reactants with enough abundance in ISM.72 PN, CP, HCP,

OP, CCP, PH3 and OP+ are seven other P-containing molecules that have been suc-

cessfully discovered in ISM.24,63,67,68,70,75–79 NCCP is the 8th phosphorus molecule

that was identified tentatively and needs further supportive information to be con-

firmed. For instance, the collisional dynamical study of already discovered phospho-

rous molecules80–83 have been discussed with most abundant colliders, but NCCP

collisional data is not currently available.

1.2.3 The Isoformyl Cation COH+

Recently, there has been a significant increase in the study of simple ion-molecule reac-

tions. This is primarily driven by their crucial role in the synthesis of larger molecules

within interstellar clouds.8,84,85 These reactions become important as compared to

neutral species interactions due to the long-range electrostatic interactions occurring

between molecule and ion.86,87 The interstellar medium has revealed the presence of

over 50 ionic species, shedding light on the abundance of numerous other observed

species.84,85 Among the ionic molecules, COH+ and HCO+ are the only isomeric pairs

of ions observed in ISM so far.88 In the vast expanse of space, carbon monoxide plays

a significant role as one of the most abundant molecules, existing in two protonated

forms: the formyl cation (HCO+) and the isoformyl cation (COH+).7,89 The initial

discovery of HCO+90,91 in the interstellar medium led to extensive theoretical92–100

investigations, but the literature on COH+ is limited.

COH+, a metastable isomer of HCO+, was first observed in 1983.101 Both these

species are formed through the interaction of CO and H+
3 , but COH+ is more suscep-

tible to destruction by H2 due to its higher activation barrier, resulting in its quick

conversion to HCO+.102,103 The energy difference between the COH+ and HCO+ is
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found to be ∼163 kJ mol−1, which suggests the formation of the former cation in

the laboratory is rare.104,105 However, COH+ has been observed in interstellar space

where chemical reactions are collisionally controlled, although it is less abundant than

the formyl cation. The formation and destruction mechanisms of the isoformyl cation

and the abundance ratio of both cations have garnered significant interest.23,106,107

Observations of COH+ have been conducted in different molecular clouds, provid-

ing valuable insights into its characteristics. Two astronomical studies for COH+

have been performed, first by Woods et al. showing J=1→0101 transitions as fore-

most spectroscopic detection and second by Ziurys et al. for J=2→1 and J=3→2108

towards SgrB2. COH+ has been found in both diffuse109 and dense110 molecular

clouds. COH+ is an interesting molecule because it serves as a substitute tracer for

molecular H2.
111 Many collisional dynamical studies have been devoted to HCO+,

the most stable isomer of protonated carbon monoxide, determining the rate of rota-

tional transitions with the most abundant species, i.e., H2 and He,94–97,99,100 but the

collisional data of reactive ion, COH+ is limited.

1.3 Outcomes of Molecular Collisions

“In the dance of collisions, the Universe creates”

Nearly more than 300 molecules3 have been identified to date involving 16 different

elements that are colliding with each other. Understanding the outcomes of molec-

ular collisions in the interstellar medium is paramount for unravelling the possible

processes shaping our Universe. Within this vast expanse, where particles are sparse,

yet interactions are profound, molecular collisions play a pivotal role in dictating

the chemical composition, energy distribution, and evolutionary pathways of celestial

bodies.112 These collisions involve the exchange of energy, momentum, electrons, or

atoms and are broadly categorized into elastic, inelastic, and reactive collisions.113

Elastic collision only entails the exchange of momenta between the interacting part-

ners; there is no change in the internal energy after the collision. They remain in

the same energy state before and after the collision, whereas in an inelastic collision,

either they can excite or de-excite from their original energy state and hence would

change the energy level. The internal states of the colliding partners transform with-

out changes in their chemical identity. This includes rotational and vibrational exci-

tations or de-excitations. In contrast, reactive collisions involve chemical reactions,

dissociation, ionization, or charge transfer. Reactive collisions involve the formation
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of new molecules through bond breaking or formation, altering the chemical composi-

tion of the colliding species. The collisional cross-section, expressed in area units, is a

crucial parameter determining the rate of collision. The rate of collision between the

molecules determines the efficiency of energy transfer, which further affects the spec-

tral lines. Therefore, the calculation of the collisional rate coefficient with the most

abundant species is necessary for finding the accurate abundance of any molecule.

1.4 Objective of this Thesis

To explore the abundance of chemical species in the ISM, complexes are subjected

to theoretical studies. Spectroscopy is the primary tool used to investigate interstel-

lar molecules. Estimating molecular abundances requires rate coefficients involving

collision partners such as molecular hydrogen and helium. Therefore, obtaining pre-

cise measurements of rate coefficients is a crucial step in determining the physical

conditions present in molecular clouds. The main aim of this thesis is to compute

state-to-state cross-sections and rate coefficients under interstellar conditions. A step-

wise procedure will be followed to achieve this goal.

1. To compute the potential energy surface of CNNC, NCCP, COH+ and C2 with

the most abundant species: He and H2.

2. To expand the potential energy surface into the appropriate functional form

necessary for performing scattering dynamics, achieved using Legendre polyno-

mials.

3. To calculate the state-to-state cross-sections of complexes at low energies based

on potential energy surfaces.

4. To compute the rotational de-excitation rate coefficients at interstellar and ul-

tracold temperatures.

1.5 Outline of the Thesis

Ground state ab initio potential energy surfaces are computed for interstellar molecules

in collision with the most abundant species, i.e., He and H2. Inelastic collisions are

investigated and cross-sections are calculated for CNNC-He, CNNC-para-H2, NCCP-

He, NCCP-para-H2, C2-He and COH+-He systems. The close coupling approach is

followed to study the quantum dynamics using time-independent quantum mechanics
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for the collisional partners and rotational de-excitation rate coefficients are calculated

at cold temperatures. Rotational quenching rate coefficients are calculated by averag-

ing the cross-sections for C2-He at ultracold temperatures. Bound state and pressure

broadening calculations are performed for COH+-He complex. The thesis is struc-

tured into six chapters, which are outlined as follows:

Chapter 1 provides the introductory overview of the thesis chapter and the theoret-

ical background. This chapter briefly touches upon the interstellar medium and the

application of rotational spectroscopy in Astrochemistry, followed by a short intro-

duction to the outcomes of molecular collisions and the selection of molecular systems.

Chapter 2 of this thesis outlines the theoretical aspects underlying the methods em-

ployed for electronic structure and quantum scattering calculations. It covers a range

of methodologies, starting from the Born-Oppenheimer approximation and extending

to the determination of collisional rate coefficients using the close-coupling approach,

which is applicable to study inelastic collisions.

Chapter 3 is divided into two subsections. In the first subsection, collisions of CNNC

with He are discussed, starting with the computation of new ab initio potential energy

surface, extending to its quantum dynamics. The second subsection of Chapter 3 talks

about the interaction of CNNC with para-H2. The results of collisional cross-sections

and rate coefficients are discussed.

New potential energy surfaces of NCCP-He and NCCP-para-H2 are computed using a

coupled-cluster method discussed in Chapter 4 followed by their scattering dynamics

using CC method. Collisional rate coefficients are calculated for both systems and

propensity rules are discussed.

In Chapter 5, the interaction of ionic molecule COH+ in collision with He is studied

considering its possibility to form bound states. Inelastic and pressure-broadening

cross-sections are calculated for COH+-He.

In Chapter 6, inelastic cross-sections and quenching rate coefficients are computed

for C2 with 3He and 4He at cold and ultracold temperatures. We also studied the

isotopic effects of 3,4He at ultracold temperatures.

The study’s conclusion and the potential for future work are discussed in the last

chapter of the thesis.
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Methodology

2.1 Computational Insights into Molecular Detec-

tion in ISM

Scientific progress and advancements in computer technology have made it possible

to accomplish many tasks in interstellar chemistry using computational methods that

were traditionally carried out in laboratories. These methods offer remarkable ac-

curacy. These computational methods not only aid in guiding experimental work,

such as identifying new molecular species in ISM and comprehending their chemistry

but also facilitate the successful detection of such species within ISM. Conditions in

the ISM are characterized by low temperatures and pressures making computational

studies particularly suitable that are challenging to achieve in experimental laborato-

ries. Certain chemical species in the ISM, such as highly unstable radicals and ions,

pose significant challenges for synthesis and study in laboratories but computational

exploration can effectively address these challenges. Quantum chemical computations

are essential in this endeavor, as they help determine spectroscopic parameters cru-

cial for detecting these molecules. Electronic structure theory is a key field within

computational chemistry focused on studying the interaction of interstellar molecules

with colliders. Methods within electronic structure theory employ principles from

quantum mechanics to predict molecular structures and characteristics.

2.2 Born-Oppenheimer Approximation

2.2.1 Description of Molecular Hamiltonian

In quantum mechanics, every system is described by a wave function, and Hamiltonian

needs to be defined for this. The Hamiltonian operator involves the sum of electronic

and nuclear energies:

Ĥ(RA, ra) = T̂N(RA) + T̂e(ra) + V̂eN(RA, ra) + V̂ee(ra) + V̂NN(RA), (2.1)

where RA and ra are the nuclear and electronic coordinates, respectively, and T̂N(RA)

is the kinetic energy operator for the nuclei:

T̂N(RA) = −
N∑

A=1

ℏ2

2MA

∇2
A. (2.2)
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T̂ e(ra) is the kinetic energy operator for the electrons:

T̂e(ra) = − ℏ2

2me

n∑
a=1

∇2
a. (2.3)

V̂ ee(ra) is the potential energy operator for the electron-electron repulsion:

V̂ee(ra) =
n∑

a=1

n∑
b<a

e2

4πϵ0|ra − rb|
. (2.4)

V̂ eN(RA,ra) is the attractive potential energy operator for the electrons and nuclei:

V̂eN(ra) = −
n∑

a=1

N∑
A=1

ZAe
2

4πϵ0|ra −RA|
. (2.5)

V̂ NN(RA) is the potential energy operator for the nuclear-nuclear repulsion:

V̂NN(RA) =
N∑

A=1

N∑
A<B

ZAZBe
2

4πϵ0|RA −RB|
. (2.6)

where N and n are the number of nuclei and electrons, respectively. The Hamil-

tonian of the system in combined form can be described as:

Ĥ(RA, ra) = −
N∑

A=1

ℏ2

2MA

∇2
A−

ℏ2

2me

n∑
a=1

∇2
a+

n∑
a=1

n∑
b<a

e2

4πϵ0|ra − rb|
−

n∑
a=1

N∑
A=1

ZAe
2

4πϵ0|ra −RA|

+
N∑

A=1

N∑
A<B

ZAZBe
2

4πϵ0|RA −RB|
. (2.7)

It’s important to note that this Hamiltonian does not consider relativistic effects.

For a specific system, the time-independent Schrödinger equation can be written as:

Ĥ(RA, ra)ψ(RA, ra) = Eψ(RA, ra). (2.8)

Here, E denotes the total energy of the system associated with the total wave function

ψ(RA,ra). Solving the equation 2.8 for systems with more than 2 particles is prac-

tically unfeasible due to the Hamiltonian depending on both nuclear and electronic

coordinates, RA and ra. Consequently, it becomes necessary to take approximations

to solve the Schrödinger equation.
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The Born-Oppenheimer (BO) approximation21 is generally used to solve the Schrödinger

equation and relies on the significant differences in mass between nuclei and electrons,

resulting in a substantial difference in their velocities. The theory posits that nuclei

are relatively stationary compared to electrons, allowing us to treat electrons as mov-

ing within a constant nuclear potential energy field determined by the positions of

the nuclei. Consequently, the overall wave function can be expressed as the product

of a nuclear wave function and an electronic wave function:

ψ(RA; ra) = ψN(RA)ψe(RA; ra). (2.9)

Solution for the Schrödinger equation 2.9 can be derived by dividing into two

parts:

(a) To solve the electronic Schrödinger equation:

Ĥe(ra)ψ(RA; ra) = Eeψ(RA; ra), (2.10)

where He represents the electronic Hamiltonian and Ee corresponds to the eigen-

value of the electronic wave function and the electronic energy of the system.

Ĥe(ra) = V̂eN(RA, ra) + T̂e(ra) + V̂ee(ra). (2.11)

The nuclear kinetic energy term (T̂N) in equation 2.1 disappears because of the as-

sumption of fixed positions of nuclei, leaving only the nuclear potential energy term

(V̂ NN), which is determined solely by the nuclei’s positions and remains constant.

Consequently, the overall electronic energy is parametrically dependent on the nu-

clear coordinates (V̂ NN) and is given as:

Etot
e (RA) = Ee(RA) +

N∑
A=1

N∑
A<B

ZAZBe
2

4πϵ0|RA −RB|
(2.12)

Hence, the idea of solving equation 2.10 for a fixed set of nuclear coordinates results

in the generation of a potential energy surface which will be discussed in the following

section.

(b) Once we get the PES, we can solve the nuclear Schrödinger equation (SE)

by considering nuclear Hamiltonian:

ĤN = Etot
e (RA) + T̂N(RA), (2.13)
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ĤN(RA)ψ(RA; ra) = ENψ(RA; ra). (2.14)

The solution of the nuclear SE allows us to determine a large variety of molecular

properties.

2.3 Calculation of Potential Energy Surface

Potential energy surfaces hold significance as they help us visualize and understand

the graphical and mathematical relationship between potential energy and the unique

molecular geometry of a system. Stationary points are the most important features of

potential energy surfaces for understanding chemical reactions and reaction pathways.

Qualitatively, these points correspond to flat surfaces, and mathematically, these are

the points where the first derivative of the potential energy (PE) with respect to each

geometric parameter equals zero. These points can be further distinguished on the

basis of second derivatives of the PE according to the number of positive, negative,

and zero eigenvalues (Ev) of the Hessian matrix.

For a minimum point, along the geometric parameter, x:

∂2V

∂x2
> 0. (2.15)

For a transition state, one eigenvalue must be negative:

∂2V

∂x2
<> 0 and E1 < 0, Ev > 0 (v > 1). (2.16)

The lowest point on the potential energy surface corresponds to a stable configuration

and has the minimum energy.

2.3.1 Ab Initio Methods to Compute PES

PES is derived from fitting ab initio energies and aims to depict molecular energy

across varying intermolecular distances. We calculate the ab initio energies by solv-

ing the electronic Schrödinger equation represented in equation 2.10 and often referred

to as electronic structure calculation. Electronic structure methods have been used

to solve the above equation within BO approximation, and Hartree Fock (HF) is the
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most common and simplest method widely used. As the level of approximation is im-

proved, the wave function’s quality increases leading to more sophisticated solutions.

There are a number of Softwares, like MOLPRO,114 GAMESS, GAUSSIAN-16,115

etc., available to carry out the high-level electronic structure calculation where these

ab initio methods are available.

2.3.1.1 Hartree Fock Theory

HF method solves the electronic Schrödinger equation approximately and considers

that the electron faces the average repulsion of remaining electrons instead of explicit

repulsion. It presumes that only a single Slater determinant can approximate the

complete many-electron wave function and considers the ground state configuration

of the system:

ψtotal =
n∑

i=1

ciψi, (2.17)

ψHF = c0ψ0. (2.18)

In the HF method, we compute the set of spin orbitals that minimize the energy, pro-

viding us with the best single determinant possible satisfied with the Pauli principle.

A spin-orbital is the product of spin and spatial wave functions. HF method relies

on the variational theorem, which suggests that calculated energies are always higher

than the exact energy values. HF method recovers 99% of exact energy, the other 1%

plays a vital role in defining the chemistry of molecules. Thus, the correlation energy

(Ec) is defined as the remaining deviation from the exact energy:

Ec = Eexact − EHF. (2.19)

2.3.1.2 Coupled Cluster Method

The Coupled Cluster (CC) method is a post-Hartree-Fock method used to improve the

electron correlation. Additionally, this method simplifies the treatment of Coulombic

repulsion between electrons in an averaged manner, neglecting instantaneous electron

interactions. CC is known to be the most accurate method for solving the SE and

determining the ab initio energies. CC considers the basic HF method and constructs

a multi-reference wavefunction using the exponential cluster operator (T̂ ):

ΨCC = eT̂ΨHF, (2.20)
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where ΨHF denotes the reference HF wave function, while eT̂ represents an exponential

operator expanded through Taylor series:

eT = 1 + T̂ +
T̂ 2

2!
+
T̂ 3

3!
+ ... =

∞∑
k=0

T̂ k

k!
. (2.21)

Let us define the excitation cluster operator:

T̂ = T̂1 + T̂2 + ...+ T̂N . (2.22)

Here, N denotes the number of electrons in the molecular system. T̂1 represents the

single excitations operator, T̂2 denotes all double excitations operator, and so on.

The T̂i operator applied to ΨHF produces all possible Slater determinants correspond-

ing to the ith excited state.

T̂1ΨHF =
occ∑
i

vir∑
a

tai Ψ
a
i , (2.23)

T̂2ΨHF =
∑
i<j

∑
a<b

tabij Ψab
ij (2.24)

where tai and tabij indicate the single-excitation and double-excitation cluster coeffi-

cients of the various determinants. Putting equation 2.22 into 2.21, eT̂ can be written

as:

eT̂ = 1+T̂1+

(
T̂2 +

T̂ 2
1

2

)
+

(
T̂3 + T̂2T̂1 +

T̂ 3
1

6

)
+

(
T̂4 + T̂3T̂1 +

T̂ 2
2

2
+
T̂2T̂

2
1

2
+
T̂ 4
1

24

)
+...

(2.25)

It is noteworthy that different T̂N operators commute with each other. Here in equa-

tion 2.22, products of cluster operators like T̂2T̂1 or T̂ 2
1 /2 are known as disconnected

operators and T̂1 or T̂2 or T̂3 are connected operators.

The most common and widely used extension of this method is coupled-cluster singles,

doubles and triples (CCSDT) represented by,

T̂CCSDT = T̂1 + T̂2 + T̂3. (2.26)

Schrödinger equation can be written as:

Ĥe ΨCCSDT = ECCSDT ΨCCSDT, (2.27)
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Ĥe e
(T̂1+T̂2+T̂3) ϕHF = ECCSDT e

(T̂1+T̂2+T̂3) ϕHF, (2.28)

which leads to the energy:

ECCSDT =
⟨ϕHF| Ĥee

(T̂1+T̂2+T̂3) |ϕHF⟩
⟨ϕHF| e(T̂1+T̂2+T̂3) |ϕHF⟩

, (2.29)

ECCSDT = EHF + ∆ECCSDT (2.30)

.

∆ECCSDT is the correlation energy obtained from the coupled cluster calculation. The

above equations are solved iteratively. The CCSDT method yields results with enough

accuracy, yet it’s typically applicable only to very small systems due to its high com-

putational cost. Consequently, more convenient approaches have been incorporated

to alleviate computational costs without compromising accuracy. One such method is

CCSD(T),116 where triple excitations are treated perturbatively rather than exactly

as presented in the following equation:

ECCSD(T) = EHF + ∆ECCSD + ∆ET . (2.31)

Here, ∆ET is a perturbative triples correction term which is given as:

∆ET =
∑
i<j<k

∑
a<b<c

| ⟨Ψabc
ijk | Ĥ |ΨCCSD⟩ |2

ϵi + ϵj + ϵk − ϵa − ϵb − ϵc
, (2.32)

where ⟨Ψabc
ijk | represents the triple excitation determinant and |ΨCCSD⟩ is the coupled

cluster wave function obtained from the CCSD calculation and ϵi, ϵj, ϵk, ϵa, ϵb, ϵc are

the orbital energies from the reference Hartree-Fock calculation.

This method recovers about 95% of the correlation energy. CCSD(T) is widely em-

ployed in computational chemistry for its enhanced accuracy while offering reason-

able computational efficiency compared to more computationally demanding meth-

ods. CCSD(T) is a size-consistent method and has a computational complexity of N7

due to the inclusion of perturbative triples correction, which introduces higher-order

terms, where N is the number of interacting particles.

Further, there is another class of method, i.e., explicitly correlated CCSD(T)-F12
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method.117,118 The term F12 is known as a correlation factor and has a form of Slater

function which strongly improves the basis set convergence,

F12 =
1

γ
exp(−γ r12). (2.33)

Here, the parameter γ controls the width of the orbital and varies from molecule

to molecule, and r12 is the radial term. There are two approximations, CCSD(T)-

F12a and CCSD(T)-F12b, associated with CCSD(T)-F12 method which only differ

in energy expression:117,118

ECCSD(T)−F12 = ECCSD−F12 + ET . (2.34)

CCSD-F12 methods introduce additional terms to the electronic wave function to

account for electron correlation effects more accurately. In general, explicitly cor-

related methods stem from the observation that Slater determinants are inadequate

in accurately describing wave functions at close interelectronic distances. To ad-

dress this limitation, the wave function is explicitly represented in relation to these

interelectronic distances. CCSD(T)-F12a yields accurate reaction and correlation

energies with aVTZ basis set and the calculations are quite faster than standard

CCSD(T)/aug-cc-pV5Z.117

2.4 Basis Sets

Choosing the right ab initio method isn’t the sole factor influencing the accuracy of

PES calculation. The selection of a basis set (BS) also holds considerable impor-

tance in these calculations. In simple terms, BS is a mathematical representation of

the molecular orbitals in a specific molecule. It essentially defines the space within

which each electron is confined. As the basis set gets larger, fewer restrictions are

placed on the electrons, allowing for a more accurate approximation of the molecular

orbitals. However, larger basis sets require more computational time. The basis set

is an expansion of spatial/molecular orbitals as a linear combination of basis func-

tions/atomic orbitals. Basis functions are further combinations of Gaussian functions.

Let Φi represent the spatial orbitals and χk as basis functions:

Φi =
n∑

k=1

ckiχk, (2.35)
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where, cki are molecular orbital coefficients. There are primarily two types of basis

functions, also referred to as Atomic Orbitals (AO). These are the Slater-type orbitals

(STOs) and the Gaussian-type orbitals (GTOs). STOs typically involve spherical

harmonic functions, while GTOs are based on Gaussian functions. STOs are expressed

in polar coordinates as follows:

χSTO
α,n,l,m(r, θ, ϕ) = Nrn−1e−αrYl,m(θ, ϕ). (2.36)

Yl,m and N represent the spherical harmonic functions and normalization constant,

respectively. The GTO’s functional forms in terms of Cartesian and polar coordinates

are as follows:

χGTO
lx,ly ,lz(x, y, z) = Nxlxylyzl,ze−αr2 , (2.37)

χGTO
α,n,l,m(r, θ, ϕ) = Nr2n−2−le−αr2Yl,m(θ, ϕ). (2.38)

lx + ly + lz=l is a non-negative integer specifying the type of orbital. The key

difference between GTOs and STOs with respect to their radial dependence lies in

the functional forms used to describe how the wave function changes with distance

from the nucleus. GTOs have a r2 (e−αr2) and STOs have r (e−αr) dependence,

respectively, and GTOs decay more rapidly than STOs as r increases. The dependence

on r2 in the exponential function makes GTOs less effective than STOs in two aspects.

Firstly, at the nucleus, a GTO exhibits zero slope, whereas an STO shows a “cusp”

(discontinuous derivative), causing GTOs to struggle to represent behavior near the

nucleus accurately. Secondly, GTOs decay too rapidly when far from the nucleus

compared to STOs, resulting in poor representation of the wave function. While

both STOs and GTOs can form a complete basis, these considerations suggest that

more GTOs are required to achieve a certain level of accuracy compared to STOs. In

practical quantum chemistry calculations, both Gaussian and Slater basis functions

are employed, with Gaussian basis sets being more common due to their computational

efficiency.

2.4.1 Classification of Basis Sets

2.4.1.1 Minimal Basis Set

The basis sets are differentiated based on the number of basis functions used to ex-

press the atomic valence shells. The smallest basis sets utilize only one basis function

for each atomic orbital and are referred to as minimal basis sets. STO-nG, where
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n=2−6 represents minimal basis sets. The periodic table’s first row elements require

two s-functions (1s; 2s) and one set of p-functions. For e.g., carbon uses 5 basis func-

tions. Minimal basis sets are mostly employed for very large molecules because of

their low computational cost.

2.4.1.2 Correlation-Consistent Basis Set

For more accurate calculations, large basis sets are necessary. In double zeta (DZ)

basis sets, atomic orbitals are defined by two basis functions, whereas in triple zeta

(TZ) sets, there are three functions and so forth. A widely-used basis set developed

by Dunning and his group,119,120 known as aug-cc-pVnZ, is employed in our work.

“aug” indicates that diffuse functions are included in the basis set, while “cc” implies

correlation-consistent, meaning the functions are optimized for better performance in

correlated calculations. The “p” signifies polarization functions added to all atoms.

“V” denotes valence, indicating that valence orbitals are described by “n” functions,

with one function dedicated to describing core orbitals. aug-cc-pVTZ and aug-cc-

pVQZ basis set have 5s 4p 3d 2f and 6s 5p 4d 3f 2g orbitals, respectively, for carbon

or nitrogen atoms and 46 and 80 in total basis functions, respectively.

2.4.1.3 Complete Basis Set

Generally, in computational chemistry, electronic structure calculations are performed

using a finite set of basis functions. When the finite basis is expanded towards an

(infinite) complete set of functions, calculations using such a basis set are said to

approach the complete basis set (CBS) limit. CBS is not a basis set. Instead, it is an

extrapolated estimate of results obtained using any infinitely large basis set.

2.5 Basis Set Superposition Error

In the realm of quantum chemistry, a notable challenge arises in finite basis set calcu-

lations, giving rise to a significant phenomenon known as the basis-set superposition

error (BSSE). This error becomes apparent when considering the interaction energy

of a complex 12, which is defined as the difference:

∆Eint(12) = E(12)∗12 − E(1)∗1 + E(2)∗2, (2.39)
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where E(1)∗1 and E(2)∗2 represent the monomer 1 and monomer 2 at infinite separation,

respectively. ∆Eint(12) represents the interaction energy of the system. E(12)∗12

denotes the energy of the bimolecular complex. The interaction energy described

in equation 2.39 requires a correction for the BSSE. Boys and Bernardi introduced

the counterpoise correction method to address this issue.121 This correction involves

compensating for the artificial stabilization by allowing individual atoms to improve

their basis sets through the inclusion of functions from an empty basis set. To create

this empty basis set, a ”ghost” atom is introduced, possessing the basis set of the

corresponding atom but lacking electrons to occupy it. By applying this procedure

to both atoms involved, the BSSE can be effectively corrected. Thus, the interaction

energy with the counterpoise correction applied as follows:

∆ECP
int (12) = E(12)∗12 − E(1)∗12 − E(2)∗12, (2.40)

where E(1)∗12 and E(2)∗12 are the energy of monomers 1 and 2 in the presence of ghost

orbital of monomers 2 and 1, respectively. Alternatively, BSSE error can be rectified

by scaling or extrapolating the ab initio energies to reach the complete basis set limit.

2.6 Scattering Theory in Quantum Mechanics

In this section, we explain how the motion of the nuclei is addressed by solving the

nuclear component of the Schrödinger equation. Here, we focus on a simple case

involving a closed-shell diatomic molecule colliding with a structureless atom. The

discussion centers on pure rotational transitions, as interstellar temperatures typically

lead to the maximum population in the ground vibrational level in molecules. These

principles can be extended to diatom-diatom collisions by considering the interaction

between the angular momenta of the two molecules. Arthurs and Dalgarno were the

pioneers who initially introduced the quantum treatment of collisions in 1960.122

The colliding systems can be studied by either the Body Fixed (BF) frame or the

Space Fixed (SF) frame. Arthurs and Dalgarno122 used the SF framework, while Cur-

tiss and Adler123 employed the BF framework in their scattering theory. Even though

the BF coordinate system precedes the SF coordinate systems and both formulations

are comparable, most of the scattering calculations have used the SF formulation. BF

coordinate system represents a more convenient way to express the interaction po-

tential energy surface for collisional systems characterized by the strong anisotropic

nature of interaction potential. Additionally, in this representation, the intermolec-
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ular potential is block diagonal, simplifying the evaluation of matrix elements. On

the other hand, the SF frame is preferable in calculations as it eliminates the need

for coordinate transformations. However, the choice between coordinate systems ul-

timately yields equivalent results in scattering with identical values of cross-sections.

Let us begin scattering theory by considering the inelastic collision between a rigid

rotor XY and a collider Z within the space-fixed coordinate system, as depicted in

Figure 2.1. R represents the distance from the center of mass of XY molecule to the

Figure 2.1: Space-fixed coordinate system

collider Z and r is the internuclear distance of XY molecule. θ, ϕ and Θ, φ are polar

angles of the rotor and collider, respectively. V (R, θ′) is denoted as the potential

energy of the system and explains the potential within rigid rotor approximation,

keeping r fixed at its optimized value in the Jacobi coordinate system θ′ and R.

The kinetic energy operator (T̂N in atomic units) can be written in terms of polar

coordinates:

T̂N(R, θ, ϕ,Θ, φ) = ĤXY (θ, φ) − 1

2µ
∇R

2, (2.41)

where µ =mXYmZ/(mXY+mZ) represents the reduced mass.

ĤXY (θ, φ) =
ĵ2

2I
. (2.42)
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ĤXY is the Hamiltonian operator of molecule XY and I is moment of inertia of XY

molecule with (ĵ) its angular momentum. The kinetic energy term for the relative

motion of both partners XY and Z can be divided into two parts: radial with only

dependence on R and angular part and can be represented as:122

−∇R
2

2µ
= − 1

2µR

∂2

∂R2
R +

l̂2

2µR2
(2.43)

Here, l̂ denotes the angular momentum of atom Z.

The time-independent Schrödinger equation is:

HΨ(R, θ, ϕ,Θ, φ) = EΨ(R, θ, ϕ,Θ, φ). (2.44)

After substituting 2.41, 2.42 and 2.43 into 2.44, we get:[
− 1

2µR

∂2

∂R2
R +

l̂2

2µR2
+
ĵ2

2I
+ V (R, θ′) − E

]
Ψ(R, θ, ϕ,Θ, φ) = 0. (2.45)

During the collision, the sum of j+l=J represents the overall angular momentum and

M=ml+mj indicates its projection along the z-axis, and ρ denotes the total parity,

which remains constant. Consequently, the combined wave function can be written

as a linear combination of wave functions as a function of J , ρ and M :

Ψ(R, θ, ϕ,Θ, φ) =
∑
J,M,ρ

CJρΨ
JMρ(R, θ, ϕ,Θ, φ). (2.46)

J , ρ and M ensure the right boundary conditions for the complete wave function and

this wave function can also be written into two parts (angular and radial) in the form

of J2, ĵ2, Jz, jz and ρ:

ΨJMρ(R, θ, ϕ,Θ, φ) =
∑
j,l

1

R
GJM

jl (R)χJM
jl (θ, ϕ,Θ, φ), (2.47)

where χJM
jl (θ, ϕ,Θ, φ) is the angular part described by spherical harmonics, which is

further given as follows:122

χJM
jl (θ, ϕ,Θ, φ) =

+l∑
ml=−l

+j∑
mj=−j

⟨jlmjml|JM⟩Ylml
(θ, φ)Yjmj

(ϕ,Θ), (2.48)
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where ⟨jlmjml|JM⟩ is the Clebsch-Gordan Coefficient expressing the coupling be-

tween j and l and GJM
jl (R) describes the radial part of the wavefunction which only

depends on R. After substituting the equation 2.47 into equation 2.45, we get the

nuclear SE as:

∑
j,l

[
− 1

2µR

∂2

∂R2
R +

l̂2

2µR
+
ĵ2

2I
+ V (R, θ′) − E

]
1

R
GJM

jl (R)χJM
jl (θ, ϕ,Θ, φ) = 0.

(2.49)

The values of l̂2 and ĵ2 operator acting on angular part is given as:

ĵ2 |jlJM⟩ = j(j + 1) |jlJM⟩ , (2.50)

l̂2 |jlJM⟩ = l(l + 1) |jlJM⟩ . (2.51)

Equation 2.49 can be represented as:

∑
j,l χ

JM
jl (θ, ϕ,Θ, φ)

[
1
R

∂2

∂R2R− l(l+1)
R2 + 2µE − 2µ

2I
j(j + 1)

]
= 2µ

∑
j,l

1

R
GJM

jl (R)V (R, θ′)χJM
jl (θ, ϕ,Θ, φ). (2.52)

Expressing kj as the channel wave number such that,

kj = [2µ(E − Ej)]
1
2 , (2.53)

where E-Ej=Ek denotes the kinetic energy of the incident particle and Ej = ℏ2
2I
j(j+1)

is the free rotational energy.

The final SE becomes:[
∂2

∂R2
− l(l + 1)

R2
+ k2j

]
= 2µ

∑
j′,l′

⟨j′l′JM |V (R, θ) |jlJM⟩GJM
j′l′ (R). (2.54)

⟨j′l′JM |V (R, θ) |jlJM⟩ expresses the matrix elements of potential energy surface.

The boundary conditions for the equation 2.54 are as follows:

lim
R→0

GJM
jl (R) = 0, (2.55)
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and

lim
R→∞

GJM
jl (R) = δjj′δll′exp

[
−i
(
kjR− 1

2
lπ

)]
−
(
kj
kj′

) 1
2

SJ(jl; j′l′)exp

[
i(kj′jR− 1

2
l′π)

]
.

(2.56)

SJ(jl; j′l′) is the scattering matrix containing all the information related to the colli-

sion.

T J(jl; j′l′) represents the transitions matrix element associated with SJ
jj′ll′ as:122

T J(jl; j′l′) = δjj′δll′ − SJ
jj′ll′ . (2.57)

Once the S-matrix elements are known, the differential and integral cross-sections can

be calculated by averaging over mj and summing over mj′ :

dσ(j; j′|θ) =
1

k2j (2j + 1)

∞∑
J1=0

J1+j∑
l1=|J1−j|

J1+j′∑
l′1=|J1−j′|

∞∑
J2=0

J2+j∑
l2=|J2−j|

J2+j′∑
l′2=|J2−j′|

(i)−l1+l′1+l2−l′2

× T J1(j′l′1; jl1) ∗ T J2(j′l′2; jl2)K(J1l
′
1l1; J2l

′
2l2; j

′j|θ)dϕ, dΘ, (2.58)

where

K(J1l
′
1l1; J2l

′
2l2; j

′j |θ⟩) = (2l1 + 1)
1
2 (2l2 + 1)

1
2π

×
+j∑

mj=−j

+j′∑
mj′=−j′

+J1∑
M1=−J1

+J2∑
M2=−J2

+l1∑
Ml′1=−l′1

+l′2∑
Ml′2=−l′2

(jl1mj0|jl1J1M1)(jl2mj0|jl2J2M2)

× (j′l′1mj′ml′1
|j′l′1J1M1)(j

′l′2mj′ml′2
|j′l′2J2M2)Yl′1m′

1
(ρ)Yl′2ml′2

(ϕ,Θ). (2.59)

The integral scattering cross-section for the transition j → j′ may be written in

the simplest form as

σ(j; j′) =
π

(2j + 1)k2j

∞∑
J=0

J+j∑
l=|J−j|

J+j′∑
l′=|J−j′|

|δjj′δll′ − SJ
jj′ll′(Ek)|2(2J + 1), (2.60)

where j and j′ are the molecule’s initial and final rotational quantum states. We

have used the close-coupling approach for calculating the integral cross-sections, and

in this, the only approximation made is the truncation of rotational energy levels of

molecule XY. A maximum value limits rotational states with j as jmax.
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2.7 Collisional Rate Coefficients

The rate coefficients employed for modeling molecular spectra can be calculated by

averaging the integral cross-sections using Boltzmann’s Distribution principle. The

collisional rate coefficient is defined as the product of the integral cross-section σ(j; j′)

and relative velocity (v) of incoming atom (Z) to molecule XY:

k(j; j′) = σ(j; j′) × v. (2.61)

With the experimental constraint of obtaining rate coefficients at constant tem-

perature, the state-to-state rate coefficients k(j; j′) are thermally averaged. This

averaging is achieved by utilizing the Maxwellian speed distribution function f(v)dv

with respect to velocity (v) and the averaged rate coefficients are deduced as:

k(j; j′)(T ) =

√
8kBT

πµ
(kBT )−2

∫ ∞

0

σ(j; j′)(Ek)Ek exp

(
−Ek

kBT

)
dEk, (2.62)

where kB presents the Boltzmann constant and kinetic energy Ek corresponds to

kinetic energy, µ is the reduced mass of the van der Waals complex, and T stands for

temperature.
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3.1 Potential Energy Surface of CNNC Collision

with He

3.1.1 Adiabatic Potential Energy Curves

The calculations have been carried out by an efficient coupled cluster method involving

perturbative triple excitations, i.e., the CCSD(T)-F12a method117,118 and aug-cc-

pVTZ is used as basis set119,120 in the MOLPRO114 package. Initially, CNNC has

been optimized, and the ground state geometry of CNNC is found to be linear in

a structure having the optimized C-N distance rCN and N-N distance rNN, which is

labeled in Figure 3.1 with an X1Σ+ electronic ground state configuration.

Figure 3.1: Optimized structure of CNNC.

The optimized bond parameters have been obtained for CNNC, CNCN and NCCN

using CCSD(T)/aVTZ and CCSD(T)-F12a/aVTZ level and the available experimen-

tal parameters are reported in Table 3.1.

Table 3.1: Optimized bond parameters of CNNC, CNCN and NCCN molecules. Bond
lengths are in Å.

CNNC CNCN NCCN
rCN rNN rCN rNC rCN rNC rCC

CCSD(T)/aVTZ 1.186 1.285 1.188 1.318 1.166 1.169 1.375
CCSD(T)-F12a/aVTZ 1.182 1.282 1.183 1.314 1.160 1.160 1.388
Experimental124 - - 1.180 1.311 1.158 1.1578 1.383

The potential energy surface computed for this work models the interactions be-

tween a linear entity, CNNC, and atomic helium, and the rigid rotor approximation122

is used. Here, calculations are performed by fixing the molecule’s internuclear dis-

tances. For studying rotational transitions of CNNC by atomic He, we have deduced a

two-dimensional potential energy surface (2D-PES) using the CCSD(T)-F12a method
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with an aug-cc-pVTZ basis set. This computational approach is effective and accu-

rate in constructing the potential energy surface of weakly bound complexes. This

CNNC-He complex has been presented using the fixed Jacobi coordinate system rij

(rCN, rNN), R and θ (Figure 3.2), where rij are internuclear distance in the CNNC

molecule. R goes for the internuclear distance between the neutral He atom and the

Figure 3.2: Jacobi coordinates of CNNC-He system

center of mass of the CNNC molecule and θ denotes the angle between the molecule

bond vector and R. θ equals to 0◦ corresponds to collinearity of the CNNC-He sys-

tem. Afterward, the size inconsistency of the CCSD(T)-F12a method is resolved by

adjusting the global potential to the value of the potential at R equal to 100 Å and

thus, the potential is allowed to decay to zero asymptotically. In addition, the coun-

terpoise procedure of Boys & Bernardi121 was used to correct the errors generated by

the basis set superposition (see equation 3.1):

V (R, θ) = ECNNC−He(rij, R, θ) − ECNNC(rij,∞) − EHe(∞). (3.1)

Here, in these calculations, the internuclear distances were frozen at the optimized

values rCN = 1.182 Å and rNN = 1.282 Å. 41 values are assigned to the radial scattering

coordinate (R) ranging from 2.5 to 100 Å using irregular grid. For 2.5 ≤ R ≤ 4.5,

the grid is set to 0.1 Å, for 4.7 ≤ R ≤ 6.5 to 0.2 Å, for 7.0 ≤ R ≤ 10.0 to 0.5

Å. In addition, R= 20.0, 50.0, 100.0 are also calculated and the angular scattering

coordinate θ is varied from 0◦ to 90◦ with 10◦ interval. The curves of potential energy

for θ having values of 0◦, 30◦, 60◦ and 90◦ are shown in Figure 3.3. Due to symmetry

and uniformity in CNNC [D∞h
] molecule, the collisional studies are conducted from

θ=0◦ to 90◦, which would be a mirror reflection for the remaining surface (θ=90◦ to
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Figure 3.3: Potential energy curves of CNNC-He system for θ=0◦, 30◦, 60◦, 90◦.
Bond lengths are in Å.

180◦). This potential energy surface has a potential well-depth of -69.46 cm−1 at θ=

90◦ having a value of R = 3.0 Å as shown in Figures 3.4 (Surface) and 3.5 (Contour).125

Like other systems associated with the cyano-He van der Waals system, i.e., NCCN-

Figure 3.4: Potential energy surface of CNNC-He.
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Figure 3.5: Contour plot of CNNC-He 2D-PES system. Energy values are in cm−1.

He,126 CNCN-He,127 CCN-He,128 CNNC system also has T-shaped geometry. Using

the method of cubic spline, the potential energy surface is fitted. After comparing

CNNC surface with the surfaces of other isomers, we get to know that NCCN129

collisions with He have well-depth value of -50 cm−1 at R = 3.2 Å and CNCN127

collision with He has well-depth value of -56.42 cm−1 at R equals to 3.1 Å at θ = 90◦.

3.1.2 Analytical Fit

For scattering calculations, the 2D-PES is expanded in terms of Legendre polynomial

in an attempt to conduct the dynamical calculations for atom-linear rigid collisional

partners as:

V (θ, R) =
∑
λ

Vλ(R)Pλ(cosθ), (3.2)

where Pλ corresponds to Legendre polynomial functions of order λ and Vλ(R) are

radial functions. λmax equals to 18. In ab-initio grid of angles, Pλ represents the

number of θ. Due to the symmetric nature of CNNC, this molecule does not have a

fixed dipole. Therefore, only even Vλ’s exist for this collisional van der Waals complex,

which has also been noticed for other few symmetric systems like NCCN,126 C3,
130–132

CO2
133 etc. Vλ plot is reported in Figure 3.6.
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Figure 3.6: Plot of radial coefficients (λ=0-18) versus R associated with CNNC-He
2D-PES.

Here, the radial coefficients corresponding to λ = 0 and 2 strongly outweigh the

others, and their potential wells exist in the attractive region of the plot, which further

reduce at higher V
′

λs. Further, the accuracy of analytical fit is checked, and the mean

difference between the ab initio calculations and analytical fit calculations is less than

0.4% over the entire grid. The impact of the predominance of two radial coefficients

is further shown on plots of the cross-sections and rate coefficients.

3.1.3 Rotational De-excitation of CNNC Collision with He

3.1.3.1 State-to-State Cross-Sections

In an attempt to find the integral-state-to-state inelastic cross-section, the analytical

expansion of CNNC-He potential energy surface is further subsumed into quantum

dynamical computations. The CC method developed by Arthurs and Dalgarno122 is

incorporated for calculating the cross-sections using the MOLSCAT134 quantum pack-

age. It is worth mentioning that coupled equation calculations are performed using

modified diabatic log derivative/AIRY propagator of Manolopoulos and Alexander.135

In this CC approach, the rotational Hamiltonian is used as:
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Hrot = B0J
2- D0J

4

where B0, D0 and J correspond to rotational constant, distortion constant and ro-

tational angular momentum operator, respectively. CNNC is linear with electronic

state (X1Σ+) has spectroscopic constant values B0= 0.1857 cm−1 and D0 = 2.77×10−8

cm−1. B0 has a relatively small value, resulting in dense rotational levels of CNNC.

The cross-sections are computed using the scattering matrix SJ
jj′ll′ :

σj→j′(Ek) =
π

k2j (2j + 1)

∑
J=0

J+j∑
l=|J−j|

J+j′∑
l′=|J−j′|

×|δjj′δll′ − SJ
jj′ll′(Ek)|2 × (2J + 1), (3.3)

where J=j+l involves the rotational angular momentum of CNNC molecule and

orbital angular momentum of the van der Waals complex, and l and l′ denote the ini-

tial and final orbital angular momentum, respectively. The kinetic energy Ek is equal

to E-Ej where Ej= B0j(j+1)-D0j
2(j+1)2 is the energy of rotation and kj=

√
2µEk/ℏ

denotes the wave vector for the channel. In rotational de-excitation, scattering com-

putations are performed for total energy between 0.5 and 1000 cm−1 using varying

step size to ensure all the resonances at low values of total energy and the contribu-

tions correctly include when the corresponding rates are evaluated. The integration

parameters are set to Rmin= 2.5 Å and Rmax= 20 Å. The STEPS (step size for short-

range propagator) parameter is set large enough to create a low-energy fine integration

grid. Typically, STEPS=20 corresponds to energy ≤ 120 cm−1 and 10 for the rest of

total energy inputs up to 1000 cm−1. For instance, jmax sets to 20 for E -value ≤ 60

cm−1 and progressively stepped up till jmax=50 for energy values upto 1000 cm−1 to

yield converged cross-sections. Inelastic opacities have been computed as a function

of l, i.e., total angular momentum is reported in Figure 3.7.125 The convergence is

guaranteed at l = 181 when the energy value is 500 cm−1. Due to symmetry in the

structure of the molecule, CNNC shows transitions corresponding to only even ∆j

values. Diisocyanogen has the same nuclear spin statistics as in N2 because of the

bosonic characteristics of 12C(I=0) and 14N(I=1) and comprises both odd and even j

rotational levels in the diisocyanogen molecule.

Here, only even to even and odd to odd rotational transitions are allowed as presented

in Figures 3.8(a) and 3.8(b), respectively. Odd to even and even to odd rotational

transitions are forbidden. Close examination of rotational de-excitation cross-sections

of CNNC-He depicts numerous resonances (Feshbach resonance and shape)136 with

prominent peaks below the energy value of 30 cm−1. Feshbach resonances are the con-
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Figure 3.7: Computed opacities varying with angular momentum for cross-sections
with E = 500 cm−1.

(a) (b)

Figure 3.8: Plot of rotational de-excitation inelastic cross-sections of CNNC-He with
Et for ∆j=-2 where (a) even j and (b) odd j.

sequence of quasi-bound states of a closed channel when the helium gets trapped into

the interaction well, whereas the shape resonances can be described as quasi-bound

states that result from tunneling occurred by the centrifugal barrier of energy of an

open channel. In the van der Waals potential well, the temporarily trapped CNNC-He

system induces narrow spikes or dips in the value of cross-sections.136,137 Concerning

the propensity rules, we observe that transitions corresponding to even ∆j values are
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preferred for cross-sections, as shown in Figures 3.8(a) and 3.8(b). Figures 3.9(a) and

3.9(b) present the variation of rotational excitation and de-excitation cross-sections

for j=0→j′ and j′→j=0 transition, respectively. Similar excitation plots for even and

(a) (b)

Figure 3.9: Excitation and de-excitation cross-sections of CNNC-He complex for
transitions (a) j=0→j′ and (b) j→j′=0, respectively.

odd values of j are shown in Figures 3.10(a) and 3.10(b). The value of cross-sections

(a) (b)

Figure 3.10: Rotational excitation cross-sections of CNNC-He complex for (a) even
j and (b) odd j transitions.

fluctuates at lower total energies attaining a maximum. Further, the magnitude of

cross-sections decreases with the rise in energy and the plateau is achieved. For tran-

sitions corresponding to ∆j=-2, the maxima in cross-sectional value for rotational
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de-excitation is higher compared to those for ∆j=-4, -6 as shown in Figure 3.9(b)

illustrating the total energy dependence of the collisional de-excitation cross-sections.

The cross-sections as a variation of initial state j are presented in Figure 3.11 at var-

ious energies. In addition, with increasing j, the cross-section trend shows an overall

increase, which is a normal pattern for rotational de-excitation.

Figure 3.11: Plot of the CNNC cross-sections with initial j and ∆j=-2 for E=250, 400
and 700 cm−1.

3.1.3.2 Rotational Rate Coefficients of CNNC-He

These rotationally inelastic cross-sectional values obtained from the present CC cal-

culations are thermally averaged aiming to compute the rate coefficients of CNNC

due to He impact. The temperature range is kept at 1-200 K for further measurement

of rate coefficients. The equation for the rate coefficient from one state j to another

state j′ is associated with the inelastic cross-section by the Boltzmann average as:

kj→j′(T ) =

√
8kBT

πµ
(kBT )−2

∫ ∞

0

σj→j′(Ek)Ek exp

(
−Ek

kBT

)
dEk, (3.4)

where kB presents the Boltzmann constant and kinetic energy Ek=E-Ej, where Ej

corresponds to rotational energy, µ is the reduced mass of the van der Waals complex

and T stands for temperature. The trend of rate coefficients for even and odd values

of j can be analyzed correctly from Figures 3.12(a) and 3.12(b), respectively.
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Figure 3.12: Rate coefficients for de-excitation rotational transitions of CNNC colli-
sion with atomic He from 1-200 K for (a) even value of j and (b) odd value of j for
∆j=-2.

As expected from the trends of cross-section data, rate coefficient values are higher

for transitions relating to ∆j=-2 compared to the other higher order (∆j=-4,-6) tran-

sitions, as presented in Figure 3.13. In Figure 3.14, we depict the rate coefficients with

respect to the initial rotational level j. As expected from the rotational de-excitation

trend, it is mentioned that the value of coefficients of rate falls off with the decrease

in j value.
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Figure 3.13: Rate coefficients of CNNC-He complex for j→j′=0 for upto 200 K.

Figure 3.14: Plot of the CNNC rate coefficients with initial j and ∆j=-2 for T=45K,
75K and 125K.

Collisional de-excitation studies of this system have been compared with the rate

coefficients of dipole non-active C2-He collision adapted from Najar’s et al. work.138

Both systems have comparable order and similar behavior, which could be explained

based on the dipole property of weakly bound species. The information provided in

this paper will be very useful for future astrophysical research.
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3.2 Potential energy surface of CNNC collision para-

H2

3.2.1 Adiabatic Potential Energy Surface

The potential energy surface is based on the interaction between two linear molecules,

specifically CNNC and H2 in their ground electronic state (X1Σ+). The PES calcula-

tions treat both molecules as rigid or inflexible rotors. In a recent study, Faure et al.

demonstrated that state-averaged geometries for the CO-H2 system produced scat-

tering results that are very similar to those of full-dimensional calculations.139 Thus,

the length of the H2 bond is kept constant, i.e., ⟨rHH⟩ =0.766 Å at its experimentally

averaged vibrational distance. The geometry of CNNC-H2 is represented using the

Jacobi coordinate system depicted in Figure 3.15.

Figure 3.15: Jacobi coordinates of CNNC-H2 system

The configuration of H2 and CNNC is defined concerning a body-fixed system

and characterized by the intermolecular distance R and three angles (θ, θ′ and ϕ).

The R-value defines the separation between the center of mass for CNNC and H2,

whereas θ & θ′ represent the rotations of CNNC and H2, respectively. Additionally,

the symbol ϕ represents the dihedral angle that describes the relative orientation

between CNNC and H2. The monomer CNNC is kept fixed at optimized bond dis-

tances: rCN=1.181 Å and rNN=1.282 Å. Various CCSD(T)-F12117,118 approximations

and basis sets are tested for choosing the appropriate level of theory and the respective

errors with respect to CCSD(T)/CBS in Table 3.2. Among these, the combination of

CCSD(T)-F12a and aug-cc-pVTZ119,120 yields the closest results to CCSD(T)/CBS.
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Table 3.2: Values of well-depths at global minimum for θ=90◦, θ′=90◦, ϕ=0◦ and R
= 3.1 Å using various levels of theory.

Level of Theory Well-Depth (cm−1) Relative Error (%)
CCSD(T)/aVQZ 215.19 2.60
CCSD(T)/aV5Z 218.59 1.09
CCSD(T)/CBS 221.02 -

CCSD(T)-F12a/aVTZ (CP) 221.38 0.16
CCSD(T)-F12a/aVQZ (CP) 220.38 0.28
CCSD(T)-F12b/aVTZ (CP) 217.91 1.4
CCSD(T)-F12b/aVQZ (CP) 219.34 0.76

Therefore, we have chosen to continue the PES calculations using this particular com-

bination. All calculations are conducted using MOLPRO114 package. To simplify the

close-coupling calculations for a complete 4D surface, which is difficult due to low

rotational constant of CNNC(B0 = 0.1857 cm−1), the surface is simplified by con-

densing it to 2D data by averaging 3 orientations (θ′, ϕ) of H2 molecule to consider

the collision with para-H2(jp=0). It is occasionally possible to obtain a fair estimate

of the collisional rate coefficients with para-H2 from scattering calculations that do

not include coupling with jp > 0 levels of H2. In fact, for collisions at low to moderate

temperatures, the probability of rotational excitation of H2 is low (the energy spacing

between the j = 0 and j = 2 levels in para-H2 is 510 K). Consequently, it becomes

possible to confine H2 to its lowest rotational level. In such instances, the interaction

PES is derived by averaging over the angular motions of the H2 molecule.

The values for the intermolecular distance R vary between 2.5 and 20 Å, and

there are 10 values of θ in the grid, varying from 0◦ to 90◦ in steps of 10◦. We have

accounted three different H2 orientations corresponding to each combination of R

and θ which are given as:- (θ′=0◦, ϕ=0◦), (θ′=90◦, ϕ=0◦), (θ′=90◦, ϕ=90◦). Three

different 2DPES, each of which is constructed similar to the CNNC-He over a grid in

R and θ coordinates. The collinear arrangement of CNNC···H-H corresponds to the

geometry when θ is equal to 0◦ and θ′ is also equal to 0◦. We applied the common

Boys & Bernardi procedure to correct the basis set superposition error in all surface

computations:121

V (R, θ, θ′, ϕ) = ECNNC−H2(R, θ, θ
′, ϕ) − ECNNC (rCNNC,∞) − EH2 (rH2 ,∞) . (3.5)

Figure 3.16 displays the computed PESs. Panel (a) illustrates the interaction when

H2 is parallel to the z-axis, and panel (b) shows the PES where H2 in the y-z plane
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and perpendicular to the z-axis. In Panel (c), the PES is presented with H2 lying

in both the x-z plane and perpendicular to the z-axis and y-z plane, and panel (d)

shows the spherically averaged 2D surface. These four plots discuss the variations

in anisotropies and potential wells among different configurations of counterpoise-

corrected PESs. The most pronounced of these is the global minimum of 221.38

cm−1 found at θ=90◦ & R = 3.1 Å for V(R, θ, θ′=90◦, ϕ=0◦). In comparison, all
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Figure 3.16: Contour plots for 3 configurations (ϕ,θ′): plot (a) depicts (0◦,0◦) con-
figuration, plot (b) corresponds to (0◦,90◦), plot (c) shows for (90◦,90◦) and plot (d)
for spherically averaged 2DPES with θ ranging from 0◦ to 180◦.
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other orientations exhibit lower well-depth. Specifically, a well with a depth of 168.95

cm−1 is located at R = 3.1 Å and θ=90◦ for V(R, θ, θ′=90◦, ϕ=90◦). Another

configuration, V(R, θ=0◦, θ′=0◦, ϕ=0◦) has a minimum at 130.45 cm−1 when R =

5.31 Å.140 Consequently, the spherically averaged 2DPES takes the shape of V(R, θ,

θ′=90◦, ϕ=0◦). However, it’s important to note that the location of the potential well

is at [R, θ] = [3.2 Å, 90◦] and the well-depth is determined to be 143.38 cm−1. It is

interesting to compare the similarities and differences between our computed reduced

PES for CNNC-H2 and the PES for CNNC-He obtained using a similar theoretical

approach.141 Both PESs exhibit similar overall behavior, with global minima at an

angle of 90◦, but the depth of the well for CNNC-He was 69.46 cm−1 at R = 3.0 Å,

which differs from reduced CNNC-H2. This well-depth value of CNNC-para-H2 also

aligns with the reduced well-depth value of NCCN-para-H2, which is 113 cm−1.142

3.2.2 Analytical Fit

To obtain the fundamental data required for quantum dynamic calculations, cubic

spline interpolation is employed on a specific mathematical function known as the Leg-

endre polynomial function. The average value of the interaction potential (Vav(θ,R))

is calculated by taking the mean of the overall potential energy surface based on the

angular motion (θ′, ϕ) of the hydrogen molecule:

Vav(θ, R) =
∑
λ

Vλ(R)Pλ(cosθ). (3.6)

This allows us to include up to 18 different radial (Vλ) coefficients in the expansion of

the reduced 2D-PES and Pλ are Legendre polynomial functions.140 We estimate the

reduced potential energy surface by taking an average of the three potential energy

surfaces using equipoise averaging:

Vav(θ, R) =
1

3
(V1 + V2 + V3), (3.7)

where V1=V(R, θ, θ′:0◦, ϕ:0◦), V2=V(R, θ, θ′:90◦, ϕ:0◦), V3=V(R, θ, θ′:90◦, ϕ:90◦).

Due to the symmetric nature of CNNC, only even Vλ values persist. The plot of

multipole expansion coefficients as a function of radial coordinates is presented in

Figure 3.17. The accuracy of the resulting fit has been checked by regenerating the

potential and comparing directly with the ab initio computed energies. The Legendre

polynomials reproduced the ab initio values with 0.3% . These calculations provide

valuable insights into the rates of rotational de-excitation during CNNC-H2 collisions.
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Figure 3.17: Multipolar expansion coefficients (λ=0-4) versus radial coordinate, R.
Solid curves: CNNC-H2 2DPES and dashed curves: CNNC-He.

3.2.3 Collision Dynamics of CNNC Collision with para-H2

3.2.3.1 State-to-State Cross-Sections

The CC method122 is used to calculate the integral-state-to-state inelastic cross-

section for a CNNC-H2 system using the MOLSCAT quantum package.134 The cal-

culations utilize the AIRY propagator, which was developed by Manolopoulos and

Alexander.135 The collisional problem is reduced to a rigid rotor by ignoring the H2

molecule’s rotational motion and the CNNC molecule’s vibrational motion. The to-

tal energy range for the dynamical calculations of the collisional system is set to

be between 0.5-1000 cm−1. The parameters used in the propagator are Rmin= 2.5

Å and Rmax= 20 Å. The rotational de-excitation scattering computations are done

with a step size of ∆Et=0.1 cm−1 for total energies up to 50 cm−1, ∆Et=0.2 cm−1

for 50-100 cm−1, ∆Et=0.5 cm−1 for 100-150 cm−1, ∆Et=1 cm−1 for 150-200 cm−1,

∆Et=5 cm−1 for 200-250 cm−1, ∆Et=50cm−1 for 250-600 cm−1 and ∆Et=100 cm−1

for 600-1000 cm−1. A value of STEPS=20 is used for total energy levels below 100

cm−1 and STEPS=10 for Et levels above 100 cm−1. The rotational basis, symbolized

by jmax, is set at a high enough level to include all coupling coefficients in dynamical

measurements. For example, to ensure that the cross-section is converged, the value

of jmax is set to 20 when dealing with energy values up to 60 cm−1 and is gradually

raised to 90 for energy values up to 1000 cm−1. In this optimization, the tolerance
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for inelastic and elastic transitions is fixed to OTOL=0.001 Å2 and DTOL=0.01 Å2,

respectively. CNNC has rotational energy levels that include both odd and even j val-

ues. Figures 3.18(a) and (b) illustrate how the rotational de-excitation cross-sections

of CNNC change when it collides with the perturber, H2 with respect to the total

energy (Et).
140 The analysis reveals that rotational transitions are limited to only
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Figure 3.18: Plot of rotational de-excitation inelastic cross-sections of CNNC-H2 with
Et for ∆j=-2 where (a) even j and (b) odd j.

even-to-even and odd-to-odd transitions. Both panels show the presence of Feshbach

and shape resonances136 at energies up to Et=200 cm−1. The Feshbach resonances

have large amplitudes at low energies (Et)≤80 cm−1 but decrease as the total energy

increases, eventually disappearing above 200 cm−1. It should be emphasized that the
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shapes of the cross-sections shown in this study resemble CNNC-He.141 Furthermore,

as the value of j increases, the trend for the cross-sections is a general rise, which is

typical behavior for rotational de-excitation. Figures 3.18(a) and (b) illustrate the

dependence of rotational de-excitation cross-sections on the energy of CNNC for both

even-even and odd-odd transitions among the six rotational levels with ∆j=-2. The

trend remains consistent for both even and odd transitions, regardless of whether j

is odd or even. In both cases, the cross-sections exhibit an increase as the transi-

tion order (j) increases (for example, from j = 2 to 6 and 3 to 7), as depicted in

Figures 3.18(a) and (b), respectively. The information of variation of different ∆j

de-excitations and j to j′=0 transitions are provided in Figure 3.19. Here, the 2→0

transition is the most prominent among the other two (4→0 and 6→0) throughout

the entire energy range. This preference will also be evident in the rotational rate

coefficients.
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Figure 3.19: Inelastic cross-sections of CNNC-H2 complex for j→j′=0

3.2.3.2 Rate Coefficients of CNNC-para-H2

The rate coefficients of CNNC resulting from para-H2 impact are obtained at different

temperatures from CC calculations. The rate coefficients are calculated from 1 to 100

K. The rate coefficients calculated from the cross-sections are shown in Figure 3.20 as

a temperature-dependent function for the transitions. The observed trends confirm

the expected presence of even ∆j transitions.

During de-excitation, the highest rate occurs when transitioning from j=6 to j’=4

in Figure 3.20(a) and j=7 to j’=5 in Figure 3.20(b) and the rate decreases consistently
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Figure 3.20: Rate coefficients of rotational de-excitation of CNNC-para-H2 for ∆j=-2
in the temperature range of 1-100 K for (a) even j values and (b) odd j values.

as the value of j decreases as expected. Both transitions, j=6 to j’=4 and j=7 to j’=5

exhibit similar rate coefficients. Figure 3.21 displays de-excitations (j to 0), where 2

to 0 rotational transition stands out in comparison to 4 to 0 and 6 to 0, reinforcing

the previously observed trend in the cross-sections.140 Furthermore, the obtained rate

coefficients of CNNC by para-H2 (jp=0) are compared with previous rate coefficients

for de-excitation of CNNC by helium. It is commonly assumed that the rate coeffi-

cients for para-H2 (jp=0) can be deduced from the He coefficients by using a scaling

factor (SF) that accounts for the difference in reduced masses between H2 and helium.

The scaling factor for CNNC is found to be 1.38, which can be calculated using the
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equation:

SF =
kH2

kHe

=

√
µCNNC−He

µCNNC−H2

=

√
3.7142

1.9408
= 1.38. (3.8)

A similar methodology to the one employed in this study is used to compute a PES for

CNNC-He. Figures 3.20 and 3.21 provide a comparison of rate coefficient data, con-

trasting the obtained results for CNNC-He with the corresponding values for CNNC-

H2. At lower temperatures, the rate coefficients for de-excitation of CNNC by He are

lower compared to those with H2. However, at higher temperatures, the rate coeffi-

cients with He surpass those for para-H2. The dominant factor causing this occurrence

is the anisotropy of the potential, which is more pronounced in the CNNC-He inter-

action compared to the CNNC-H2 interaction. This anisotropy is significant within

the well-depth region but relatively small in the long-range region, applying to both

systems. This anisotropy arises from the distinct positions and well-depths of different

orientations, leading to a variation in the 2DPES and a discrepancy between CNNC-

He and CNNC-H2 potentials, as shown in Figure 3.17. Since inelastic transitions

primarily depend on the short-range region of potentials for higher temperatures, we

expect that the calculated rate coefficients will be greater for CNNC-He compared to

CNNC-H2.

A similar pattern is observed in another symmetric molecule, specifically C2-H2
143,144

where kHe dominates over kH2 at higher temperatures. In order to gain a deeper un-
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Figure 3.21: Rate coefficients of CNNC-para-H2 complex for j →j′=0 upto 100 K.
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derstanding of the differences discussed above, a comparison is compiled in Table 3.3.

The ratios of the rate coefficients (kj→j′), i.e., (CNNC-para-H2(jp=0)/CNNC-He), are

Table 3.3: Ratio (kH2/kHe) of the rate coefficients (in 10−10 cm3 molecule−1 s−1) for
CNNC colliding with para-H2 versus He at T=10, 35 and 50 K.

j→j’ T=10 K T=35 K T=50 K
6→4 1.29 1.05 0.91
4→2 1.26 1.00 0.88
2→0 1.36 0.94 0.85
4→0 2.81 1.56 1.32
6→0 2.14 1.33 1.10
7→5 1.07 1.10 0.98
5→3 1.03 0.91 0.87
3→1 1.36 0.94 0.89

mentioned in this table. Table 3.3 reveals that this ratio is not constant and fluctu-

ates between 0.85 and 2.81 at T=10 K, 35 K, and 50 K.140 At lower temperatures,

this ratio is approximately 1.38 for lower-order transitions, but as the temperature

increases, the deviation from this expected ratio between the two sets of coefficients

becomes more pronounced. This deviation highlights the importance of considering

the radial terms in the potential expansion for accurate prediction of reaction rates.

Based on the effect of collisional reduced mass, the data indicating para-H2 with the

rotational quantum number jp=0 should show higher rate coefficients compared to

He, which is consistent with our findings at low temperatures. These newly deter-

mined rate coefficients in astrophysics could potentially lead to a reassessment of the

estimated abundance of CNNC in molecular clouds.

3.3 Summary

1. Modeling CNNC abundance in interstellar medium requires collisional rate co-

efficients with the most abundant colliders, i.e., helium and hydrogen. Quantum

dynamical data is highly sensitive to interaction potentials of colliding species,

which is developed for the collision between CNNC and H2 & CNNC and He.

These data are obtained by first generating the potential energy surface using

accurate quantum methods. Ab initio PESs for collision between CNNC and

He & CNNC and H2 are computed using CCSD(T)-F12a/aug-cc-pVTZ.

2. The 4DPES of CNNC-H2 is averaged to 2DPES using three different angular

orientations for the angles ϕ and θ′ at (0◦,0◦), (0◦,90◦), and (90◦,90◦), respec-
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tively. The averaged CNNC-H2 PES has a global minimum of 143.38 cm−1,

which is deeper than the minimum energy of 69.46 cm−1 for the CNNC-He col-

lision, and the well-depth is found at 90◦ for both systems. When expanded

for multipole fitting, both systems show similar trends and shapes. The deeper

minimum energy of the CNNC-H2 collision leads to a larger isotropic term v0

by ∼ 20 cm−1.

3. Further, rotational de-excitation cross-sections have been calculated for both

systems using the CC method. The range of resonances in the CNNC-para-

H2 collision is broader, extending up to approximately 150 cm−1, whereas the

CNNC-He collision only covers a range up to 40 cm−1. The effect of these

differences is also clearly observed in rate coefficient plots. In both cases, only

even ∆j transitions are allowed. The values of the rotational de-excitation cross-

section for the transition 2→0 dominate over 4→0 and 6→0. Similar trends have

been observed in the case of rate coefficients.

4. The scaling factor for both systems is calculated to be 1.38, but deviations

from this value are observed at higher temperatures. Overall, CNNC-H2 rate

coefficients are found to be 0.90-2.95 times those of CNNC-He rate coefficients.

It is important to note that the scaling factor is not a reliable approximation for

modeling para-H2 collisions and can only be used for low-temperature conditions.

A comparison between the present rate coefficients of CNNC-para-H2 and scaled

CNNC-He rate coefficients reveals discrepancies and suggests avoiding the fact

of using He as a template for para-H2. Despite this, similar trends and shapes

of results are observed in both cases. The collision rates and other dynamical

attributes computed at cold temperatures will facilitate the modeling of CNNC

abundance in ISM.
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4.1 Potential Energy Surface of NCCP Collision

with He

4.1.1 Ab Initio Calculations and PES

NCCP, a phosphorous species, is tentatively discovered in astronomical IRC+10216.75

NCCP, being the most stable isomer among its other possible isomers, has been stud-

ied extensively both theoretically71,72 and experimentally.73,74 Geometry optimization

is performed for NCCP using CCSD(T)-F12a/aug-cc-pVTZ in MOLPRO114 software.

The optimized NCCP molecule is found to be linear in structure with N-C distance

rNC, C-C distance rCC and C-P distance rCP. Various calculations are performed for

the optimization of NCCP molecule using different levels of theory by other groups,

and our bond distances match the reported and experimental results quite well, as

shown in Table 4.1.

Table 4.1: Optimized bond distances of NCCP molecule

rNC(Å) rCC(Å) rCP(Å)

B3LYP/6-311G(2d)71 1.159 1.368 1.544
CCSD(T)/6-311++G(d,p)72 1.175 1.389 1.561
CCSD(T)-F12a/aug-cc-pVTZ 1.160 1.380 1.550
Experimental72 1.159 1.378 1.554

This NCCP-He complex has been presented using the fixed Jacobi coordinate

system R and θ in Figure 4.1. R denotes the vector between the two partners, i.e.,

Figure 4.1: Jacobi parameters for the NCCP-He complex.
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the center of mass of NCCP molecule and helium, (rNC,rCC,rCP) are the internuclear

distances of NCCP and θ represents the angle between the R vector and NCCP axis.

The He atom approaching the P-end is represented by θ = 0◦. The linear NCCP

molecule is considered here as rigid rotor and is kept rigid with its bond distances rNC

= 1.160 Å, rCC = 1.380 Å, rCP = 1.550 Å. R is varied from 2.5−26 Å using uniform

grid with the stepsize of 0.1 Å. Uniform angular grid of 10◦ is choosen for θ from 0◦

to 180◦. To remove the size inconsistency of the method, CCSD(T)-F12a at every

geometry, the basis set superposition error is corrected with the help of counterpoise

procedure121 (see equation 4.1):

V (R, θ) = ENCCP−He(R, θ) − ENCCP(r,∞) − EHe(∞). (4.1)

The PES cuts for θ= 0◦, 90◦, 110◦ and 180◦ are depicted in Figure 4.2.

Figure 4.2: PES cuts for the NCCP-He complex for selected geometries.

With the change in orientation of He with respect to NCCP, the value of well-depth

changes steadily, which can be observed in Figure 4.3. The PES cuts at θ = 90◦ and

180◦ have well-depth of -32.52 cm−1 and -21.87 cm−1, respectively.145 The resulting

PES and contour plot are presented in Figures 4.4(a) and 4.4(b), respectively. From

these figures, it is clear that this surface possesses a deeper well-depth of -46.40 cm−1

at R = 3.5 Å, θ = 110◦. We have compared our surface with P-associated surfaces

such as PN80 and HPO146 collisions with He. The well-depth of the PN-He system is

-67.26 cm−1 at linearity towards the P-end and well-depth of the HPO-He system is

-53.22 cm−1 at θ = 70◦.
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Figure 4.3: The variation of well-depth with the change in orientation θ.

(a) (b)

Figure 4.4: Potential energy surface and contour plot as a function of θ and R.

4.1.2 Analytical Fit

For the calculations of quantum dynamics, the surface is expanded in the form of

multipolar coefficients as:

V (θ, R) =
∑
λ

Vλ(R)Pλ(cosθ), (4.2)
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where Pλ’s are the Legendre functions of order λ. Radial coefficients are calculated for

λ = 0−18. The average difference between the analytical fit and ab initio calculations

is less than 0.4 % over the entire grid. λ varies between 0 and 3, and Vλ varies as a

function of R as shown in Figure 4.5. The concavity of the curves is pointed downward

Figure 4.5: Radial coefficients as a function of R.

for λ = 1 and 3, whereas it is pointed upward for λ = 0 and 2. Similar findings are

found in the works of Bop and his group81 and Nkem’s group.147 The resulting Vλ’s

are utilized for the determination of collisional properties.

4.1.3 Rotational De-excitation of NCCP Collision with He

4.1.3.1 State-to-State Cross-Sections

The rotational inelastic de-excitation cross-sections are computed using the fitted

NCCP−He PES. Transitions from an initial rotational state (j) to a final rotational

state (j′) have rotational cross-sections that can be described in the form of the scat-

tering matrix Sjj′ll′ using the equation 3.3. The molecular scattering code MOLSCAT

is used to perform the quantum dynamics for this study.134 The CC equations are

integrated by adopting the modified Airy propagator of Alexander and Manolopou-

los.135 The rotational levels of NCCP are computed using the rigid rotor assumption

rectified by including the centrifugal distortion (D0). Rotational energy, Ej, is defined

as Ej = B0j(j+ 1)−D0j
2(j+ 1)2. The value of rotational and distortion constants74

used in the calculations are given in Table 4.2.



60 4.1. Potential Energy Surface of NCCP Collision with He

Table 4.2: MOLSCAT parameters for the scattering calculations

B0 = 0.0902 cm−1 D0 = 6.708 × 10−9 cm−1

jmax = 20,30,35,45,50,60 µ = 3.7831 a.m.u.
Rmin = 2.5 Å Rmax = 26 Å
OTOL = 0.001 Å2 DTOL = 0.01 Å2

The non-reactive scattering calculations between NCCP and He are considered for

total energies from 0.5 to 550 cm−1. The energy grid between consecutive calculations

increases as the energy increases: 0.1 for 0.5−120 cm−1, 1 cm−1 for 120−160 cm−1,

2 cm−1 for 160−200 cm−1, 10 cm−1 for 200−500 cm−1, 50 cm−1 for 500−550 cm−1.

The rotational basis jmax is fixed to 20 for E up to 50 cm−1 and successively increased

to jmax = 60 for 550 cm−1 energy. Moreover, for inelastic (elastic) rotational transi-

tions, the off-diagonal (diagonal) tolerance is set to OTOL = 0.001 Å2 (DTOL = 0.01

Å2). This complex comprises of both even and odd j rotational transitions. Figures

4.6 and 4.7 present the rotational cross-sections of NCCP-He collisions showing their

dependence on total energy (E) for ∆j = -1 and 5→j’ transitions, respectively.

Usually, cross-sections decrease for de-excitations when the total energy increases.

Figure 4.6: Dependence of cross-sections (σj→j′) on the total energy (E) for ∆j=-1
transitions.

Several shape resonances can be noticed for total energies less than 80 cm−1. This

trend relates to the decay of quasi-bound states that result from tunneling via a

centrifugal energy barrier. These resonances vanish at higher energies. A similar

behavior is also noticed in recent works80–82 and NCCP-He system.125 Furthermore,
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Figure 4.7: Dependence of cross-sections (σj→j′) on the total energy (E) for j=5→j’
transitions.

the cross-sections for ∆j=-1 and ∆j=-2 transitions rise as the value of j increases,

as shown in figure 4.6. It is obvious from figure 4.7 that the cross-sections (σj→j′)

for j=5→j’ transitions diminish as ∆j increases. Cross-sections for 5→3 transitions

predominate over 5→2, 5→1 and 5→0. The value of cross-sections decreases when

the energy increases and it decreases upon decreasing the j value.

4.1.3.2 Rotational Rate Coefficients of NCCP-He

The collisional rate coefficients are computed by integrating the kinetic energy (Ek)

dependence of the cross-sections (σj→j′) at temperature T using the equation 3.4.

Figures 4.8 and 4.9 display the rotational rate coefficients over a range of 3−200 K

temperatures. The rate coefficients (kj→j′) are higher for ∆j=-1 rotational transi-

tions as compared to other rotational transitions (∆j=-2, -3, -4 and -5). For ∆j=-1,

the 1 → 0 transition has a minimum rate as shown in Figure 4.8, and it increases with

increasing rotational level j. The comparison of present results with that of PN and

HPO collisions with He80,146 shows that PN has higher rate (∼ 10−11 cm3 molecule−1

s−1) than that of NCCP and HPO (∼ 10−12 cm3 molecule−1 s−1).
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Figure 4.8: Rate coefficients with respect to change in temperature for ∆j = -1
transitions.

Figure 4.9: Plot of rate coefficients with respect to change in temperature for j=5→j’
transitions.

4.2 Potential Energy Surface of NCCP collision

para-H2

4.2.1 Adiabatic Potential Energy Curves and Analytical Fit

In this study, we focus on rotational collisions between NCCP and para-H2 at inter-

stellar temperatures. Both molecules, NCCP and H2 are treated as rigid rotors during
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the PES calculations. According to a recent investigation by Faure et al.,139 using

state-averaged geometries yield scattering data for the CO-H2 system that is similar

to data obtained through full-dimensional calculations. Therefore, we fix the H2 bond

length at the ground vibrational level’s average distance, ⟨rHH⟩ =0.766 Å. For NCCP,

we use the experimental equilibrium distance72 with its bond distances rNC=1.160 Å,

rCC=1.380 Å, rCP=1.550 Å. The geometric parameters of the NCCP-H2 system are

described using certain angles (θa, θb, and δ) and a distance parameter (R), which

represents the separation between the center of mass of both NCCP and H2 as shown

in Figure 4.10.

Figure 4.10: Jacobi coordinates for the NCCP-H2.

The θa and θb denote the rotations of NCCP and H2, respectively, relative to the

z-axis and the symbol δ indicates the dihedral angle that describes the relative orien-

tation between NCCP and H2. The adiabatic 4DPES, which relies on the parameters

θa, θb, δ and R is computed using CCSD(T)-F12a method described by Adler, Knizia

and Werner117,118 employing an aVTZ basis set.119,120 In the F12 calculations, F12

integrals are computed using density fitting (DF) approximations. We have used the

ri basis= aVTZ/MP2FIT in PES calculations. We present a comparison in Table 4.3

where we have examined different CCSD(T)-F12 approximations and basis sets. The

errors with respect to CCSD(T)/CBS are evaluated and presented in a table. It is

observed that CCSD(T)-F12a/aVTZ proved to be sufficiently accurate in describing

van der Waals intermolecular interactions.7,148

All calculations are conducted using MOLPRO114 package. The values of R ranges

from 3.0 to 26 Å and there are 19 discrete values of θa in the grid, ranging from 0◦

to 180◦ in increments of 10◦. For each combination of R and θa, we consider three

distinct orientations of H2 molecules, which are given as:- (θb=0◦, δ=0◦), (θb=90◦,
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Table 4.3: Well-depth values attained for θa=180◦, θb=0◦, δ=0◦ and R = 5.7 Å at
different levels of theory (LoT).

LoT Well-Depth (cm−1) Error (%)
CCSD(T)/aVQZ 188.805 1.57
CCSD(T)/aV5Z 190.244 0.82
CCSD(T)/CBS 191.820 -

CCSD(T)-F12a/aVTZ (CP) 191.281 0.28
CCSD(T)-F12a/aVQZ (CP) 190.915 0.47
CCSD(T)-F12b/aVTZ (CP) 189.465 1.22
CCSD(T)-F12b/aVQZ (CP) 191.089 0.38

δ=0◦), (θb=90◦, δ=90◦). Consequently, 2964 geometries are computed for the NCCP-

H2 system in the Cs symmetry group, represented by (R, θa, θb, and δ). In all surface

computations, we apply the standard Boys & Bernardi approach to rectify the basis

set superposition error:121

V (R, θa, θb, δ) = ENCCP−H2(R, θa, θb, δ) − ENCCP (rNCCP,∞) − EH2 (rH2 ,∞) . (4.3)

The collinear configuration of NCCP···H-H occurs when θa is equal to 0◦ and θb is

also equal to 0◦ and H-H···NCCP corresponds to the configuration when θa=180◦ and

θb=0◦. Figures 4.11 display the one-dimensional potential energy curves of NCCP-H2

concerning the variable R. It illustrates these curves for three different orientations

of H2 at θa = 0◦, 90◦, and 180◦. As evident from this figure, the potential exhibits

strong anisotropy due to the orientation of H2. The most favourable interaction arises

from a collinear (H and N head-to-head) configuration of H-H NCCP (θa = 180◦ and

θb = 0◦), which is influenced by the H2 quadrupole and NCCP dipole orientations. In

the linear arrangement with angles θa = 0◦ and θb = 0◦, the interaction is weaker due

to a repulsive long-range electrostatic force between the unfavourable NCCP dipole

and H2 quadrupole orientations. When θa = 90◦, the interaction potential shows

minor dependency on the rotation of the H2. Since our objective involves solving the

CC equations to analyze scattering phenomena, expanding the PES function, V , at

a given R value using angular functions is necessary. In the context of scattering

between two linear rigid rotors, the potential can be represented as follows:149,150

V (R, θa, θb, δ) =
∑
l1l2µ

vl1l2µ(R) × Pl1l2µ (θa, θb, δ) , (4.4)
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Figure 4.11: Plots depict the potential energy of NCCP-H2 w.r.t. R are presented
for various orientations, namely (δ, θb) = (0◦, 0◦), (0◦, 90◦), and (90◦, 90◦). Plot (a)
illustrates the case when θa=0◦, plot (b) for θa at 90◦, and plot (c) when θa is 180◦.

where

Pl1l2µ (θa, θb, δ) = 4π [2 (δµ0 + 1)]−1/2 [Yl1µ(θa, 0)Yl2−µ (θb, δ) +Yl1−µ(θa, 0)Yl2µ (θb, δ)] ,

(4.5)

with µ ≤ min (l1, l2). Here, indexes l1 and l2 are connected, respectively, with the
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rotational motion of NCCP and H2. Specifically, index l2 is even, reflecting the

homonuclear geometry of the molecule H2. In specific scenario of collisions involving

para-H2 molecules (where jp = 0), with l2 = 0, and reduced mass µ = 0, the corre-

sponding wave function simplifies to Y00 (θb, δ) = 4× π−1/2. The expectation value of

the potential is then deduced by averaging the total potential energy surface over the

angular motion (θb, δ) of the H2 entity:

Vav (R, θa) = ⟨Y00|V |Y00⟩ =
∑
l

vl1(R)Pl1(cos θa), (4.6)

where Pl1 denotes the Legendre polynomials. Equation 4.6 has the appropriate form

to expand the interaction potential between the fixed rotor and spherical projectile.

As mentioned earlier, in the context of low-energy rotational excitation, the impact

of the jp≥2 channels of H2 are ignored. Additionally, the energy difference between

jp=0 and jp
′=2 levels (510 K) is significantly larger than the thermal kinetic energy

(T≤150 K), suggesting that the influence of closed channels (jp=0) on cross-sections is

expected to be minor. Therefore, we have chosen to work with the minimal rotational

basis of jp=0 for para hydrogen. The PES for NCCP-H2 (jp=0) is simplified into a

2DPES, Vav, computed by averaging the total PES over angles θb and δ,

Vav(θa, R) =
1

3
(Va + Vb + Vc), (4.7)

where

Va=V(R, θa, θb:0
◦, δ:0◦), Vb=V(R, θa, θb:90◦, δ:0◦), Vc=V(R, θa, θb:90◦, δ:90◦).

The spherically averaged 2DPES has a global minimum of -125.40 cm−1 at θa =

110◦ and R = 3.6 Å.151 It is interesting to contrast the differences and similarities be-

tween the PES for NCCP-He and our computed reduced PES for NCCP-H2.
145 The

overall behavior of both PESs is similar, with global minima at 110◦, but reduced

NCCP-H2 has a deeper well measuring -46.40 cm−1 at R=3.5 Å. Figure 4.12 presents

the spherically averaged 2D contour plot for NCCP-H2. For fitting the averaged sur-

face, we have included 29 different radial (vl1) coefficients. The multipole expansion

coefficients are presented in Figure 4.13 as a function of radial coordinates. Due to the

asymmetric nature of NCCP, both even and odd vl1 values persist. These calculations

offer insightful information regarding the rotational de-excitation rates in NCCP-H2

collisions.
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Figure 4.12: Spherically averaged 2D contour plot for NCCP-H2 as function of θa
and R.
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Figure 4.13: Multipolar expansion coefficients versus R for NCCP-H2 at λ=0-3.

4.2.2 Collision Dynamics of NCCP Collision with para-H2

4.2.2.1 Computational Details and De-excitation Cross-Sections

The CC method formulated by Arthurs, Dalgarno & Bates122 is employed for the de-

termination of the integral inelastic cross-section between different quantum states for

NCCP-para-H2 system using the MOLSCAT quantum package.134 The calculations
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are done using the AIRY propagator.135 The NCCP possesses spectroscopic attributes

denoted as B0 (0.0902 cm−1) and D0 (6.708×10−9 cm−1), and it has a linear configura-

tion in its electronic state (X1Σ+). The collisional problem is limited to a rigid rotor

by disregarding the H2 rotational motion and the NCCP vibrational motion. The

range of total energy considered for the dynamic computations spans from 0.5 to 600

cm−1, encompassing all resonances. The parameters of the propagator are adjusted

to strike a balance between accuracy and computational efficiency. Notably, Rmin

is set at 3.0 Å while Rmax is set at 26 Å. Typically, STEPS=10 is set for Et levels

greater than 100 cm−1, and STEPS=20 is used for Et levels less than 100 cm−1. The

parameter jmax is initially configured at 20 for energy levels ranging up to 60 cm−1,

with a gradual increment to 60 for energy levels extending up to 600 cm−1. Figures

4.14(a) and 4.14(b) indicate the de-excitation cross-section variation with respect to

the total energy when it interacts with the perturber, H2. The analysis discloses that

rotational shifts are feasible for transitions of even-to-even, odd-to-odd, odd-to-even,

and even-to-odd nature. The molecular asymmetry of NCCP results in transitions

that produce both even and odd ∆j values, and its energy levels allow both odd and

even j values. Both illustrations reveal the presence of shape and Feshbach resonances

(FR) within energy limits up to Et=300 cm−1.136 The FR are pronounced at Et≤130

cm−1 but wane as Et rises, disappearing past 300 cm−1. Quasi-bound states are de-

tected as a consequence of the H2 projectile being confined within a potential well.

This confinement gives rise to FR, which persists until the H2 possesses sufficient

energy to escape the trap.

In contrast, shape resonances emerge as a result of tunneling effects that enable

the H2 projectile to pass through the centrifugal barrier. Moreover, as the j value

increases, the cross-section trend generally ascends, consistent with typical rota-

tional de-excitation behaviour. Figures 4.14(a) and 4.14(b) depict the rotational

de-excitation cross-sections for both ∆j=-1 and ∆j=-2 transitions among the eight

rotational levels. As j rises (from j=1 to 4 for ∆j=-1 and 3 to 5 for ∆j=-2), the

cross-sections in both cases show an increase.151 The information on the variation of

the final state (j’) concerning cross-sections is provided in Figure 4.15. These results

demonstrate a notable inclination towards favoring even values of ∆j compared to

odd ones. The same propensity is observed in other phosphorus-containing systems

such as PN-H2
83 and HPO-He,146 where ∆j=-2 favours.
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Figure 4.14: Plot of inelastic cross-sections of NCCP-H2 with Et where (a) ∆j=-1
and (b) ∆j=-2.

4.2.2.2 Rate Coefficients of NCCP-para-H2 and Comparison with NCCP-

He

The NCCP-para-H2 interaction rate coefficients are calculated using equation 3.4 by

thermally averaging the cross-sections obtained from CC calculations at various tem-
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Figure 4.15: Propensities for the excitation of NCCP for Et=100, 200 and 400 cm−1

from j=0 to j’.

peratures. The temperature range used for the measurements is 5-200 K. Figure

4.16 illustrates the rate coefficients of interest as a function of temperature. The ob-
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Figure 4.16: Rate coefficients of rotational de-excitation of NCCP-para-H2 for selected
transitions at 5-200 K.

served trends confirm the same propensity that favours even ∆j=-2 transitions over

∆j=-1 transitions. The obtained values of kj→j′(T ) for NCCP-para-H2 are compared

with previously determined rate coefficients of NCCP-He. The scaling factor (SF) for
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NCCP can be determined using the following equation:

SF =
kH2

kHe

=

√
µNCCP−He

µNCCP−H2

=

√
3.7831

1.9587
= 1.38. (4.8)

The above approximation suggests that the cross-sections involving para-H2 (jp=0)

and He are the same and this scaling factor of 1.38 is only attributed to the reduced

mass factor incorporated in equation 3.4, which determines the associated rate coef-

ficients. Since a limited number of systems have been examined with both He and

H2, it’s necessary to verify the accuracy of this approximation. Figure 4.17 provides

a comparison of kj→j′(T ) data, comparing the results for NCCP-He with NCCP-H2.

This indicates that accurate collisional rate coefficients using helium collision can-
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Figure 4.17: Rate coefficients of NCCP-para-H2 and NCCP-He for ∆j=-1 transitions.

not be achieved for para-H2 interactions. The observed differences in the results are

expected due to the difference in the well-depth of both NCCP-He and NCCP–H2.

NCCP-H2 has three times deeper well than NCCP-He, resulting in a different range

of resonances presented in Figure 4.14. The ratios of the kj→j′(T ), i.e., (NCCP-para-

H2(jp=0)/NCCP-He), are tabulated in Table 4.4. Table 4.4 shows that the ratio is

inconsistent and exhibits fluctuations at T=10 K and T=50 K.

At low-temperature values, the differences between the two sets of systems are

more pronounced, and as the temperature rises further, the correspondence between

the two sets of coefficients would likely become quite favorable. The outcomes align

with the earlier research by Lique et al.152 concerning collisions involving SO and H2.

In an attempt to examine these differences, we have also graphed the rate coefficients

for various transitions at T=10 K and T=50 K as illustrated in Figure 4.18.
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Table 4.4: Calculated values of kj→j′(T ) (in 10−11 cm3 s−1 molecule−1 ) for NCCP-
para-H2 and NCCP-He and their ratio.

j→j’ T=10 K T=50 K
kH2 kHe kH2/kHe kH2 kHe kH2/kHe

5→3 3.41 0.75 4.54 1.71 0.52 3.28
4→2 2.90 1.04 2.78 1.55 0.68 2.27
3→1 2.23 0.84 2.65 1.21 0.59 2.05
2→0 0.91 0.41 2.21 0.54 0.30 1.80
4→3 1.76 0.68 2.58 0.85 0.45 1.88
3→2 1.46 0.58 2.51 0.73 0.40 1.82
2→1 0.99 0.46 2.15 0.52 0.29 1.79
1→0 0.35 0.22 1.59 0.19 0.13 1.46

The estimated abundance of NCCP in molecular clouds could have been revised

in light of these recently calculated rate coefficients. The bending frequency (v2)
71

for NCCP is found to be 206 cm−1, but the infrared intensities of the vibrational tran-

sitions of linear NCCP are all very small, almost negligible due to very less polarity

in the NCCP bonds. Strictly speaking, our dynamical calculations for rigid model

NCCP are valid for energies lower than the lowest frequency (bending) of NCCP

molecule, i.e., <206 cm−1. Nonetheless, several benchmarks on molecules colliding

with H2 or He demonstrated that a complete consideration of vibrational degrees of

freedom is not needed to account for the effect of vibration.153–155 With the exception

of a few cases, such as quasi floppy molecule which is linear (e.g., C3),
154,156 where

minor differences between rigid and nonrigid models were found, almost identical re-

sults were obtained without and with considering the vibrations. This should be the

case for the NCCP molecule.

4.3 Summary

1. NCCP has been tentatively detected in the interstellar medium. Modeling of

NCCP molecular emission from interstellar clouds requires the data of collisional

rates. These useful data are obtained by generating PES and rotational cross-

sections using highly accurate quantum methods. Ab initio PESs for collision

between NCCP & He and NCCP & H2 are computed using CCSD(T)-F12a/aug-

cc-pVTZ.
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Figure 4.18: Comparison of rate coefficients of NCCP with para-H2 and He along
with the scaling factor (1.38) at T= 10 K and 50 K.

2. The 4DPES of NCCP-H2 is averaged to 2DPES using three different angular

orientations for the angles δ and θb at (0◦,0◦), (0◦,90◦), and (90◦,90◦), respec-

tively. θa is varied from 0◦ to 180◦. The averaged NCCP-H2 PES has a global

minimum of -125.40 cm−1, which is deeper than the minimum energy of -46.40

cm−1 for the NCCP-He collision, and the well-depth is found at 110◦ for both

systems. When expanded for multipole fitting, both systems show similar trends

and shapes.

3. Rotational de-excitation cross-sections have been calculated for both systems
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using the CC method. Furthermore, the spectrum of resonances in the NCCP-

para-H2 collision spans a wide range, extending to around 200 cm−1. In contrast,

the NCCP-He collision’s range only encompassed approximately 50 cm−1. In

both cases, both even and odd ∆j transitions are allowed. The effect of these

differences is also clearly observed in rate coefficient plots.

4. Comparing the newly calculated kj→j′(T ) for NCCP-para-H2 collisions with the

existing NCCP-He rate coefficients reveals notable distinctions, particularly at

lower temperatures. The rate coefficients for collisions with He appear to provide

a plausible model for interactions with para-H2 at moderately higher temper-

atures. It’s crucial to highlight that the scaling factor cannot be deemed a

dependable approach for replicating para-H2 collisions. Analyzing the data, it

becomes evident that the rate coefficients for NCCP-H2 collisions are 1.5 to 4.5

times greater than those for NCCP-He collisions.
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5.1 Potential Energy Surface of COH+ in Collision

with He

5.1.1 Computational Details and PES

The studied charged complex in this chapter consists of a linear COH+ and a neutral

spherical He atom. The linear COH+ molecule is considered here as a rigid rotor in its

ground vibrational state and is kept rigid with its bond distances rCO = 1.158 Å and

rOH = 0.990 Å. Two Jacobi coordinates are described to characterize the COH+-He

system as shown in Figure 5.1.

Figure 5.1: Jacobi parameters for the COH+-He complex.

R stands for the distance between the two partners, i.e., the center of mass of

COH+ molecule and helium, r (rCO, rOH) for the intermolecular distance of COH+,

and α for the angle between the R vector and COH+ axis. The ground state struc-

ture of the COH+ molecule is linear concerning C-O and O-H distances according to

the optimization of the COH+ molecule. COH+ is found to be in a 1Σ+ electronic

ground state with a closed shell. Other groups performed several calculations for the

optimization of the COH+ molecule using various levels of theory and Table 5.1 shows

that the optimized bond distances calculated in this work match the reported results

quite well. Our research starts with a thorough examination of the PES of the COH+

and He complex. Ab initio calculations are performed using the MOLPRO package114

with the method of coupled cluster involving single, double and perturbative triple ex-

citations (CCSD(T))160 and a basis set of augmented correlation consistent polarised

valence quadruple zeta (aug-cc-pVQZ)120 which has been observed to be the most
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Table 5.1: Optimized bond distances of COH+ molecule

rCO (Å) rOH (Å)

CCSD(T)/aug-cc-pVQZ157 1.158 0.990

CCSD(T)/cc-pVQZ98 1.157 0.990

CCSD(T)-F12a/aug-cc-pVTZ158 1.158 0.991

CCSD(T)-F12a/aug-cc-pVQZ158 1.158 0.990

Experimental values159 1.154 0.990

CCSD(T)/aug-cc-pVQZ (This work) 1.158 0.990

accurate to CCSD(T)/CBS (complete basis set) method as shown in Table 5.2.

Table 5.2: Well-depth values attained at different levels of theory (LoT).

LoT α= 0◦, R = 2.9 Å α= 90◦, R = 3.0 Å
CCSD(T)/aVTZ 811.34 120.76
CCSD(T)/aVQZ 836.55 131.39
CCSD(T)/CBS 840.45 133.74

CCSD(T)-F12a/aVTZ 848.97 139.70
CCSD(T)-F12b/aVQZ 849.18 140.96

R is varied from 1.5−30 Å using uniform grid with the stepsize of 0.1 Å. Addi-

tionally, R= 50.0 and 100.0 Å are calculated to check on the asymptotic behaviour.

Uniform angular grid of 10◦ is chosen for α from 0◦ to 180◦. The He atom approaching

the H-end (COH+· · ·He) is represented by α = 0◦ and He· · ·COH+ shows an approach

for α = 180◦. The three cuts of the PES for α= 0◦, 90◦ and 180◦ are depicted in Fig-

ure 5.2. The variation of well-depth with respect to angle (α) is shown in Figure 5.3.

The resulting COH+-He contour and surface plots are presented in Figures 5.4 and

5.5, respectively, as a function of R and α.161 From these figures, it is clear that this

surface possesses a well-depth of -836.55 cm−1 at R = 2.9 Å, α = 0◦. The PES cuts

at α = 90◦ and 180◦ have well-depth of -131.39 cm−1 and -50.29 cm−1, respectively.

Reported global minimum of COH+-He162 has a value of -853.49 cm−1. This variation

in well-depth is probably due to the difference in bond lengths of COH+ and different

methods used for calculations. Santander et al. used CCSD(T)-F12b/aug-cc-pVQZ

level of theory. We have also compared our surface with its stable isomer HCO+-He

surface of Buffa and his coworkers95 and recent work of Lique’s group100 on HCO+-He

complex. The well-depth of the former complex is -277.4 cm−1 at linearity towards
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Figure 5.2: PES cuts for COH+-He complex for selected geometries.

Figure 5.3: Variation of well-depth with orientation α for COH+-He.

the H-end and that of the latter complex is -279.7 cm−1 at α=0◦ and R=3.6 Å. Since

COH+-He has three times larger well-depth than HCO+-He, the scattering attributes

will be expected to differ from the latter complex. In order to carry out the scattering

study, the surface is expanded in the form of multipolar coefficients using equation

5.1:

V (R,α) =
∑
λ

Vλ(R)Pλ(cosα), (5.1)

where Pλ are the Legendre functions of order λ. Radial coefficients are calculated for
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Figure 5.4: 2D Contour plot as a function of R and α for COH+-He collision.

Figure 5.5: Potential energy surface as a function of R and α for COH+-He collision.

λ = 0−28. The plot of λ corresponding to 0, 1, and 2 and Vλ varies as a function of

R is shown in Figure 5.6. Due to the unsymmetric nature of COH+, both odd and

even λ′s exist for this charged complex. λ = 1 and 3 strongly outweigh the λ = 0

and 2 and its potential well exists in the attractive region. The dominance of such a

term may have a consequence on the behaviour of the dynamic results. The average

difference between the analytical fit and ab initio calculations is less than 0.3% over

the entire grid.
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5.2 Bound-state Calculations and Pressure Broad-

ening Cross-sections

Bound state calculations serve as a crucial accuracy assessment for potential energy

surfaces. Bound-state spectroscopy is used to determine the PES-shape-related in-

formation. We have calculated the bound state energies despite this system’s lack of

experimental data, which will necessitate further experimental testing. Furthermore,

the configuration of bound states significantly influences the emergence of scatter-

ing Feshbach resonances. We have used the BOUND163,164 program to compute the

bound state energies for this complex. The values of reduced mass (µ), rotational

and distortion constants are given in Table 5.3. We have carried out the calculations

Table 5.3: MOLSCAT parameters for the scattering calculations

Be = 1.492 cm−1 De = 3.8 × 10−6 cm−1

jmax = 30, 35, 40, 45 µ = 3.51719 a.m.u.
Rmin = 1.5 Å Rmax = 50 Å
OTOL = 0.001 Å2 DTOL = 0.01 Å2

for the first 30 rotational levels using a log-derivative propagator in the energy range

from 0 to -840 cm−1. Table 5.4 lists the difference in computed energies between

the two states of COH+−He and its isomeric pair HCO+−He100 that are radiatively
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connected. This study calculates the rotational inelastic de-excitation cross-sections

Table 5.4: Computed rotational transitions (j→j’ ) of COH+−He complex. All quan-
tities are given in MHz.

j j′ COH+−He HCO+−He100

0 1 24685.72 17381.45

1 2 49369.90 34755.08

2 3 74050.85 52104.04

3 4 98726.83 69454.38

4 5 123396.09 86754.36

5 6 148056.93 104023.15

6 7 172707.89 121235.50

7 8 197347.44 138402.60

8 9 221975.15 155532.41

9 10 246583.58 172563.47

10 11 271176.19 189540.72

11 12 295749.22 206444.76

12 13 320300.42 223231.25

as a function of total energy using the fitted COH+−He PES. The time-independent

equations of the CC method were introduced by Arthurs and his group122 in the field

of molecular collisions. In this CC approach, the rotational Hamiltonian is given as:

Hrot = BeJ
2 −DeJ

4. (5.2)

The Alexander-Manolopoulos Airy (AIRY) propagator is adopted to solve the CC

equations135 and is implemented in the molecular scattering code MOLSCAT134. The

important parameters required to perform the MOLSCAT calculations are given in

Table 5.3. The limits of integration of MOLSCAT calculations are set to Rmin= 1.5

Å and Rmax= 50 Å. The total energy and the STEPS parameter are inversely pro-

portional to the integration step. The STEPS parameter is therefore set to 20 for

total energy lower than 110 cm−1 and 10 for higher than & equal to 110 cm−1. The

value of rotational (Be) and distortion (De) constants used98 are provided in Table

5.3. The non-reactive scattering computations between COH+ and He are done for

total energies ranging from 0.5 to 250 cm−1 considering the bending frequency (249

cm−1)165 of COH+ molecule. The energy grid between consecutive calculations is

spanned as: 0.1 for 0.5−110 cm−1, 1 cm−1 for 110−150 cm−1, 5 cm−1 for 150−200
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cm−1, 10 cm−1 for 200−250 cm−1. The rotational basis denoted by jmax is fixed to

30 for total energy (Et) up to 100 cm−1 and successively increased to jmax = 45 up

to 250 cm−1 energy. Rotational transitions from an initial state (j) to a final state

(j′) are characterized and cross-sections are computed using the equation 3.3. The

centrifugal distortion (De) is included while computing the rotational levels of COH+

under the rigid rotor assumption. The formula for rotational energy, Ej, is Ej =

Bej(j + 1) −Dej
2(j + 1)2. It is observed that the cross-section calculations indicate

the existence of (shape and Feshbach) resonances due to the small energy step that is

used here, and the complex comprises of both even and odd j rotational transitions.

The perturber (helium) is stuck in the potential well, resulting in quasi-bound states

of the COH+−He system, which causes the Feshbach resonances and shape resonances

to occur from tunneling resulting from the centrifugal energy barrier. The rotational

cross-sections of COH+-He collisions are shown in Figure 5.7 with their dependency

on total energy (Et) for the ∆j=-1 and various j→0 transitions. Cross-sections for de-
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Figure 5.7: Dependence of cross-sections (σj→j′) on the total energy (Et) for j→j’
transitions for COH+-He complex.

excitations often decrease as total energy rises.166 Several resonances can be noticed

for total energies less than 110 cm−1. These resonances disappear at higher energies.

Similar trend and behaviour of plots are also noticed in recent work and HCO+-He

system.100 Additionally, Figure 5.7 illustrates how the cross-sections for ∆j=-1 transi-

tions increase as the value of j increases and as ∆j rises, the cross-sections (σj→j′) for
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j→j′=0 transitions become smaller. Cross-sections for 1→0 transitions predominate

over 2→0 and 3→0. Compared to recent data of cross-sections of COH+-He,162 the

results are approximately the same. The small differences observed may be because of

differences in reported well-depth values or Be value that they took into consideration.

Pressure-broadening calculations of the rotational spectra of molecular ions at low

temperatures are of great interest due to their close relation with rotationally inelas-

tic cross-sections. While state-to-state cross-sections are responsible for only inelastic

collisions, pressure broadening depends on both elastic (∆j=0) and inelastic colli-

sions (∆j ̸=0). Such a study was carried out for CO colliding with helium by Palma,

et al. (1986)167 Yang et al.168 and by Ball & De Lucia (1998).169 We have calculated

the broadening cross-sections by obtaining the S-matrices from the scattering calcu-

lations.100,134,170 The calculations of these cross-sections involve both upper and lower

examined states having the same kinetic energy but different values of total energies.

Pressure broadening cross-section calculations result in two parts: the real part de-

scribes the pressure broadening coefficient (γ), and the imaginary part describes the

pressure shift coefficient (s) for a given transition. Figures 5.8(a) and (b) illustrate

the trend of real and imaginary cross-sections, respectively, over the kinetic energy

showing the resonances in the low energy range and that is more pronounced for the

lowest rotational transition (j=0→1).161 These cross-sections must be thermally av-

eraged in order to be compared to the experiment, where collisions usually take place

at a variety of collision (kinetic) energy following the Maxwell-Boltzmann distribu-

tion, and that can be done using equation 5.3:171

σ(T ) = (kBT )−2

∫
Ec exp

(
−Ec

kBT

)
σ(Ec)dEc, (5.3)

where T denotes the temperature in kelvin and is set to 88 K for the sake of

comparison with its isomer HCO+.172 The values of integrated real and imaginary

cross-sections at 88 K are presented in Table 5.5. We have calculated the broadening

and state-to-state cross-sections and compared their peaks for 0→1 transition and

found some extra peaks in pressure broadening cross-sections’ curve corresponding to

elastic collisions that are absent in case of inelastic collisions as shown in Figure 5.9.
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Figure 5.8: Variation of (a) real and (b) imaginary cross-sections (σj→j′) with energy
(Et) for ∆j=1 transitions for COH+-He complex.

5.2.1 Pressure Broadening and Shift Coefficients

We have reported the results of pressure broadening (PB) coefficients of COH+ in He

gas at a temperature of 88 K in this paper. PB coefficients define the half-width-

at-half-maximum (HWHM) of the spectroscopic line with a Lorentzian shape. Its

expression is normalized per helium atmosphere as given in the equation: 5.4173,174

γ − is = nvσ(T ) =
56.6915√

µT
σ(T ), (5.4)
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Figure 5.9: Comparison between pressure broadening cross-section (solid) and in-
elastic cross-section (dotted) for j=0→1 transition. Red arrows show the peaks for
pressure broadening that are absent for inelastic collisions.

Table 5.5: Computed real and imaginary broadening cross-section for the COH+−He
at 88 K obtained by integration over the energy.

j → j′ Real σ(Å2) Imaginary σ(Å2)

0→1 112.099 0.602

1→2 109.348 0.197

2→3 108.341 1.093

3→4 106.135 1.268

4→5 104.223 2.474

5→6 101.040 2.761

where γ and s are given in cm−3 atm−1, v=(8kBT/πµ)1/2 is average velocity, σ(T ) is

the thermally averaged broadening cross-section in Å2, n denotes the number density

of the perturbing gas, µ, reduced mass in a.m.u. and T is temperature at 88 K. The

values of γ and s are calculated with the help of thermal averaged broadening cross-

sections, i.e., σ(T ). The product of v and σ(T ), averaged over a Maxwell-Boltzmann

distribution is known as the rate coefficient. Results of γ and s for this complex and

HCO+−He are given in Table 5.6. From these results, it is inferred that the results
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Table 5.6: Computed values of pressure broadening (γ) and shift coefficients (s) for
COH+-He and comparison with the reported data of its stable isomer.

j → j′ This work HCO+−He100

γ
(MHz/Torr)

s
(MHz/Torr)

γ
(MHz/Torr)

s
(MHz/Torr)

0→1 14.330 0.037 14.37 0.172
1→2 13.978 0.012 13.58 0.153
2→3 13.849 0.068 13.23 0.134
3→4 13.567 0.079 12.85 0.206
4→5 13.323 0.015 12.52 0.302
5→6 12.916 0.017 12.26 0.343

of COH+-He are in the same order with the HCO+-He100 in magnitude. The minor

differences are being observed due to the difference in value of the well-depth of the

isomeric system (HCO+-He=-279.7 cm−1 and COH+-He=-836.5 cm−1).

5.3 Rate Coefficients

By integrating the cross-sections, the collisional rate coefficients (equation 3.4) from

the state-to-state cross-sections at temperature T . Figure 5.10 shows the plots of

rotational rate coefficients over a range of 5−60 K temperatures.
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Figure 5.10: Rates with respect to change in temperature for j→j’ transitions for
COH+-He complex.

Looking at the propensity, we observe that ∆j=-1 are favoured over other ∆j
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(∆j=-2 and -3) transitions. For ∆j=-1, 2→1 transition has maximum rate as shown in

Figure 5.10 and it decreases with decreasing rotational level j. The Langevin theory’s

prediction for ion-neutral interactions is reflected at higher temperatures, where all

rate coefficients become almost temperature-independent. The comparison of present

results with that of HCO+-He95,100 shows that both isomers have comparable rate

(∼ 10−10 cm3 molecule−1 s−1) and similar behaviour. We have also compared our rate

coefficients data with Santander et al.162 in the Table 5.7 (right panel), and our data is

found to be in the same order with very negligible differences. The small differences

Table 5.7: Comparison of rate coefficients (in 10−10 cm3 molecule−1 s−1) data with
the reported work of Santander et al.

Temperature (K) This work Reported Data162

2→1 1→0 2→1 1→0
10 1.32 1.28 1.60 0.95
20 1.47 0.93 1.42 0.84
30 1.28 0.73 1.32 0.80

are suspected to be due to different well-depth values and different procedures of

analytical fitting.

5.4 Summary

1. PES of protonated carbon monoxide molecule with He is computed at CCSD(T)/aug-

cc-pVQZ. We have reported the well-depth of the surface as -836.55 cm−1 at

α=0◦ and R = 2.9 Å. In contrast, Santander et al. presented a PES with a well-

depth of -853.49 cm−1 at the same R value. This disparity in the well-depth

values can be attributed to the variations in the bond lengths of COH+ and the

use of different [CCSD(T)-F12b/aug-cc-pVQZ] calculation methods. Further,

the expanded potential energy surface is used to perform quantum dynamical

studies.

2. The rotational frequencies of the bound states with j in the range 0-19 have

been computed for this system. CC calculations are performed for calculating

the broadening cross-sections for kinetic energies up to 150 cm−1. In addition,

the comparison between the broadening and the inelastic cross-sections pre-

dicts that some extra peaks are available in the former that are absent in the

case of inelastic cross-sections. The complex comprises of both even and odd j

rotational transitions.
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3. The state-to-state rate coefficients have been calculated for the COH+−He com-

plex and the data has been compared with the reported COH+−He work at

three different temperatures. The obtained rate coefficients are generally con-

sistent with the previously reported data for COH+-He, with minor variations

primarily attributed to differences in the potential energy surface well-depths

for both systems. We expect that this work will encourage more experiments

on COH+ collision with He and the data presented here will be very beneficial

for astrophysical observations in ISM as well as for experiments.
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Rotational quenching of C2 with 3He and 4He

6.1 Introduction to Ultracold Molecules and Ul-

tracold Chemistry

Over the last few years, preparing the reactants and controlling products with quan-

tum state precision has become the ultimate goal. This promise is fulfilled by ultra-

cold chemistry, a novel and rapidly expanding area in which reactants are created in

a single quantum state.175–180 The term ultracold in atomic and molecular physics

refers to collisions that take place below 1 mK temperature. Applications for ultra-

cold atoms and molecules include quantum simulation of spin-lattice models, testing

fundamental symmetries of nature, molecular spectroscopy, and chemically controlled

reactions.7,175

Experiments for cooling and trapping molecules have significantly progressed over

the last decade. A wide variety of direct and indirect methods came into consideration

to generate ultracold molecules.181–183 Helium buffer gas cooling,184–186 sympathetic

cooling187 and Stark Deceleration188,189 techniques which are the direct methods in-

volve removing kinetic energy from pre-existing molecules and indirect methods, which

include photoassociation190,191 and magnetoassociation192–194 rely on fusing ultracold

atoms that have been previously cooled. Buffer gas cooling is a relatively effective and

good approach for trapping and cooling molecules and here, excess energy is trans-

ferred to the helium gas. Meijer and co-workers demonstrated the approach of Stark

Deceleration by cooling ammonia molecules to about 350 mK195 and metastable CO

molecules to 4 mK temperature.196

The performance of buffer gas and sympathetic cooling is mainly determined by

the values of the scattering cross-section. Internal energy transfer in cold diatomic

molecules colliding with cold 3He and 4He buffer gases are of significant interest.

Several investigations have already been done on ro-vibrational energy transfer colli-

sions.125,129,197–199 To our knowledge, diatomic molecules such as Nitrogen (N2),
200–202

oxygen (O2),
203 carbon monosulphide (CS)198 and carbon monoxide (CO)204–206 have

been studied having collision with 3,4He and their collisions are also pretty crucial

with 4He in astrophysics. Also, the ultracold collisional study of O2 and N2 consider-

ing the isotopic effect of He was subjected to numerous experimental and theoretical

research. The cross-sections of these systems follow the Wigner threshold law below a
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threshold kinetic energy. The controlling molecular interactions in the same manner

as atomic interactions are of great importance.207

In this work, we concentrate on the rotational quenching of C2 with 3He and
4He. This system was chosen because of the recent chemical synthesis of diatomic

C2.
208 Also, a theoretical study of C2 has indicated that C2 has a quadruple bond

with a singlet biradical character in the ground state.209 Since C2 has no permanent

dipole moment, this molecule cannot be cooled with the technique of Stark Deceler-

ation,188,189 instead, we will need to use helium buffer gas cooling.210

6.2 Potential Energy Surface of C2 with He

6.2.1 PES and Analytical fit

The accurate description of the van der Waals interaction between the C2 molecule

and He gas needs the use of a higher-order electron correlation method and basis set.

The geometry optimization of C2 molecule is performed in the MOLPRO package

using the CCSD(T)/aug-cc-pVQZ level of theory and further, we have performed

explicitly coupled CCSD(T)-F12 computations to investigate its accuracy. Among

the different approximations of CCSD(T)-F12 correlation energies, the CCSD(T)-

F12b117,118 approximation with scaled triples has been shown to correspond well with

CCSD(T) having a large-basis. The ab initio PES computed for this work describes

the interactions between a linear entity C2 and an atomic helium keeping the C2 fixed

at equilibrium distance, r=1.246 Å. We have computed a two-dimensional PES for C2-

Figure 6.1: Optimized C2 Molecule

He using the CCSD(T)-F12b method associating with aug-cc-pVQZ. We find a weak

van der Waals complex that is most conveniently described using the three Jacobi

coordinates r, R and θ as defined in Figure 6.2. Here R presents the internuclear

separation between helium and the C2 molecule’s center of mass. θ is the angle

between R and molecule bond vector, r. Najar et al. reported the ground and the first

excited state PES for C2-He using MRCI+Q and concluded that there exists no conical
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Figure 6.2: Jacobi coordinates of C2-He system

intersection between the two electronic states.138 To ensure the size consistency, basis

set superposition errors are computed using the method of counterpoise:121

V (R, θ) = EC2−He(R, θ) − EC2(r,∞) − EHe(∞). (6.1)

Separation between the C2 and He is varied from 2.5 to 25 Å with the step size of 0.1

Å and θ is varied from 0◦ to 180◦ degrees. The potential energy curves for this van

der Waals complex are shown in Figure 6.3. This weak van der Waals He-C2 system’s

Figure 6.3: Potential energy curves for C2-He.
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well-depth at its global minimum is -20.3 cm−1 at R=4.0 Å and θ=0◦ and r=1.246 Å

as shown in Figures 6.4 and 6.5. These values are in good accordance with those of

Najar et al. that is 19.6 cm−1 at R= 3.95 and θ=0◦.138

Figure 6.4: Polar contour plot of C2(X
1Σ+

g )-He(1S) system at r=1.246 Å.

The PES is interpolated analytically in terms of multipolar coefficients for carrying

out the dynamical calculations according to

V (R, θ) =
∑
λ

Vλ(R)Pλ(cosθ), (6.2)

where Pλ(x) is the Legendre polynomial of order λ and Vλ(R) are radial strengths. We

have included the λ’s up to λmax=18. Due to the symmetric nature of C2, only even

terms contribute. The radial coefficients Vλ for λ=0, 2 and 4 are plotted in Figure

6.6. The λ=0 strength has a minimum energy at around -19 cm−1.
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Figure 6.5: 2D contour plot of C2-He.
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6.3 Rotational Quenching of C2 with 3He-C2 and
4He-C2

6.3.1 Computational Details

The MOLSCAT134 code is used to calculate the cross-sections using the CC method.

We have used CC wave function expansion in terms of products of the diatoms ro-

tational eigenfunctions and spherical harmonics for the rotation of He around the

center of mass of C2.
122 We have labeled the diatomic states by angular momentum

j and the C2-He rotational states by orbital angular momentum or partial wave l.

Here, we have used the AIRY propagator135 for integrating coupled-channels equa-

tions. State-to-state cross-sections are computed with the help of scattering matrix

SJ
jj′ll′ and

σj→j′(Ek) =
π

k2j (2j + 1)

∑
J=0

J+j∑
l=|J−j|

J+j′∑
l′=|J−j′|

×|δjj′δll′ − SJ
jj′ll′(Ek)|2 × (2J + 1). (6.3)

J is the conserved total angular momentum. The prime quantities j′ and l′ describe

the final states after the quenching. kj=
√

2µEk/ℏ represents the wave vector for

C2 rotational channel j with kinetic energy Ek and reduced mass µ. The total de-

excitation (quenching) cross-section from a initial j state is:

σtot
j =

∑
j′

σj→j′ . (6.4)

The scattering cross-section may represent the scattering length in the limit of zero

kinetic (collision) energy. When scattering occurs in a single channel, the scattering

length is real, but when two or more channels remain open in the case of inelastic

scattering, the scattering length becomes imaginary. Complex scattering length, a

can be denoted as (α -iβ), where β and α represent the imaginary and real parts of

scattering length, a. In the limit of zero energy, the elastic cross-section is

σj→j(Ek→ 0)= 4π(α2
j+β

2
j), where imaginary part is:

βj = lim
kj→0

kjσ
tot
j (E)

4π
. (6.5)

The quenching rate coefficient comes finite and is given by rj(T → 0) = 4πβjℏ/µ.211

The quenching rate coefficient, rj→j′(T ) at temperature T from j to j′ is:
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rj→j′(T ) =

√
8kBT

πµ
(kBT )−2

∫ ∞

0

σj→j′(Ek) × Ek exp

(
−Ek

kBT

)
dEk. (6.6)

Finally, we compute the predissociation lifetime from the imaginary part βj using the

expression:211

τj =
µ|a|4

2ℏαjβj
. (6.7)

6.3.2 Close Coupling Calculations at Low and Ultralow En-

ergies

Cross-section calculations are performed in the energy domain of 10−6 cm−1-1000

cm−1 for both isotopes of helium (4He and 3He). The input parameters used in the

MOLSCAT calculations are rotational constant, Be= 1.8201 cm−1 and reduced mass,

µ=2.6795 a.m.u. (3He-C2) and µ=3.4309 a.m.u. (4He-C2). The step size in energy

is 0.1 cm−1 for energy less than 20 cm−1, 0.5 cm−1 from 20-50 cm−1, 1 cm−1 from

50-100 cm−1, 10 cm−1 from 100-200 cm−1 and 100 cm−1 from 200-1000 cm−1. We

obtain state-to-state cross-sections for j=8 to j′=0, 2, 4 and 6 as shown in Figure 6.7.

Figure 6.7: Integral rotational cross-sections as functions of kinetic energy for C2

colliding with 3He (solid curves) and 4He (dotted curves) from j=8 to j′=6,4,2 and 0.
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Only even rotational transitions are present due to the symmetric nature of C2 and

nuclear spin statistics. The C2 + 4He collision leads to approximately one order of

magnitude larger cross-sections than the lighter 3He case. This similar behaviour

of difference in the values of the cross-section between 3He and 4He is shown by

some diatomic (N2-He,212 MgH-He,213 CS-He198) and symmetric (NCCN-He129) sys-

tems. Among all the results shown in Figure 6.7, the transition from j=8 to j′=6

has the largest cross-sections and transition ∆=-2 dominates. Two isotopes of helium

quenched from j=2 to j′=0 vary a little after 10−1 cm−1 and 4He has more value of

cross-sections initially, as presented in Figure 6.8. Figure 6.8 follows the same trend
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Figure 6.8: Integral rotational cross-sections as functions of kinetic energy for C2

colliding with 3He (black curve) and 4He (red curve) from j=2 to j′=0.

for cross-sections in case of 4He as that of Najar et al.138 for ∆j=±2. Both the plots

show resonances below 100 cm−1 and above 100 cm−1, the value of cross-sections

keeps on increasing. In Figure 6.8, it is inferred that the value of cross-sections de-

creases with the increase in kinetic energy below 10−1 cm−1 following the Wigner’s

threshold law at ultralow kinetic energies. The cross-section increases with kinetic

energies above 100 cm−1. The cross-sections for two isotopic forms of He lie close to

each other and the resonances in the plots are caused by the formation of van der

Waals complex in the energy scale of 1 cm−1 to 40 cm−1 for the transition occurring

from j=2 to j′=0.
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Further, we have studied the scattering length of both the isotopes of He colliding

with C2. The values of βj for 3He and 4He are 0.0069 Å and 0.637 Å, respectively. The

total cross-sections for rotational transitions of C2 with 3He and 4He as a function of

kinetic energy for j=8 are shown in Figure 6.9.

Figure 6.9: Total cross-sections for rotational transitions of C2 collisions with 3He
(black curve) and 4He (red curve) as function of kinetic energy for j=8.

6.3.3 Collisional Quenching Rate Coefficients

Using the equation 6.6, we have computed the rate coefficients of quenching as a

function of temperature by averaging the cross-sections for the initial rotational level

(j) to all final possible energy levels (j′). We have computed the rate coefficients in

the temperature domain of 10−8 K to 100 K. Rate coefficients from j=2 to j′=0 for
3He and 4He are shown in Figure 6.10 and for initial level j=8 to final level j′=6,4,2

and 0 are plotted in Figure 6.11. We observe only even ∆j transitions for our system

and among them, j=8 to j′=6 have maximum value of quenching rate coefficients in

the sub-Kelvin regime. The value of cross-sections (Figure 6.12) and rate coefficient

increase with the increase in j value. Total rate coefficients are calculated by summing

over all final states j′ from a particular jth level. The total rate coefficient for initial

quantum number j=8 is plotted in Figure 6.13. Above 10−1 K, the rate value for

heavier isotope matches the lighter one, but in the ultracold regime, the value of
4He dominates the 3He. This trend matches the case of N2 colliding with 3He and
4He.212 Zero temperature quenching rate coefficients are estimated to be 2.059×10−12
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Figure 6.10: Rotational quenching rate coefficients of C2 collisions with from j=2 to
j′=0 with 3He and 4He.
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Figure 6.11: Rotational quenching rate coefficients of C2 collisions with from j=8 to
j′=6,4,2 and 0 with 3He and 4He.

cm−3s−1 and 1.482×10−11 cm−3s−1 computed using the equation 6.7 for 3He and 4He,

respectively, and the lifetime of quasi bound state is calculated using equation 6.7 for
3He-C2 (2.75 ns) and is found to be larger than 4He-C2 (0.04 ns).
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Figure 6.13: Total rotational rate coefficient for quenching of C2 molecule with 3He
and 4He for j=8.
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6.4 Summary

1. In this chapter ab initio potential energy surface is computed for C2 in collision

with He using rigid rotor approximation. The calculations are carried out using

the computed 2D-PES at CCSD(T)-F12b/aug-cc-pVQZ level of theory, keeping

the C2 fixed at r=1.246 Å. The PES has a well-depth of -20.30 cm−1 at R=4.0

Å and θ=0◦.

2. Inelastic integral and total cross-sections and corresponding rotational rate co-

efficients are computed for C2 quenching with 3He and 4He at ultracold (10−8

K) up to intermediate (100 K) temperatures. CC approach is used to determine

the collisional state-to-state cross-sections.

3. Inelastic cross-sections show a decreasing trend with the increase in kinetic en-

ergy in the ultralow energy regime, validating Wigner’s threshold law. Concern-

ing the propensity trend, only even ∆j transitions are favoured over odd ones.

The cross-sections and quenching rate coefficients for heavier isotope 4He-C2

are larger than that for the lighter isotope 3He-C2 and thus 4He-C2 is a better

rotational cooler for the C2 molecule.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

The summary and conclusions of the thesis, along with future research prospects

are outlined in this chapter. Our work has commenced with the computation of

global potential energy surfaces, a crucial step for investigating quantum dynamics

and spectroscopy. The first two chapters are introductory chapters. In the third

chapter, potential energy surface is computed for CNNC-He and CNNC-H2 using

the CCSD(T)-F12a/aug-cc-pVTZ level of theory. The averaged CNNC-H2 PES has

a well-depth of -143.38 cm−1, which is almost two times the minimum energy of -

69.46 cm−1 for the CNNC-He collision. Both surfaces are T-shaped. Both systems

show similar trends and shapes upon multipolar expansion. CNNC-H2 collision has a

larger isotropic term v0 by ∼ 20 cm−1in comparison to CNNC-He. Additionally, state-

to-state cross-sections are calculated using close coupling method and the range of

resonances in the CNNC-para-H2 collision is broader, extending up to approximately

150 cm−1, whereas the CNNC-He collision only covers a range up to 40 cm−1. Only

even ∆j transitions are allowed due to the symmetric nature of CNNC. CNNC-para-

H2 rate coefficients are found to be 0.90-2.95 times those of CNNC-He rate coefficients.

The 4th chapter, PESs are computed for NCCP-He and NCCP-H2 using the CCSD(T)-

F12a/aug-cc-pVTZ level of theory. For averaged NCCP-H2 PES, a global energy

minimum of -125.40 cm−1 is observed which is approximately 2.5 times of NCCP-He

(-46.40 cm−1) collision. Upon expansion of PES, both systems demonstrate analo-

gous trends and shapes. The isotropic term v0 increases by about ∼ 20 cm−1 due

to the lower minimum energy of the NCCP-H2 collision. Furthermore, the range of

resonances in the NCCP-para-H2 collision observes up to 200 cm−1, while it persists
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up to 50 cm−1 in the case of NCCP-He. The molecular asymmetry of NCCP results

in transitions that produce both even and odd ∆j values. The rate coefficients for

NCCP-para-H2 are found to be 1.5 to 4.5 times greater than those for NCCP-He

collision. Modeling the NCCP abundance in the ISM will be simpler owing to new

insights into collision rates and other dynamic properties between H2/He and NCCP.

5th chapter discusses the interaction of the ionic molecule COH+ in collision with

He starting with PES at CCSD(T)/aug-cc-pVQZ level of theory. COH+-He has a

global minimum of -853.49 cm−1 at α=0◦ and R = 2.9 Å. The inelastic cross-sections

as a function of energy are calculated in the energy range of 0.5-250 cm−1 using the

CC method. Both even and odd ∆j transitions are allowed due to the asymmetric

nature of COH+. ∆j=-1 transitions are favoured over other ∆j transitions. The ro-

tational frequencies of the bound states with j in the range 0-19 have been computed

for this system. CC calculations are further performed for calculating the broadening

cross-sections for kinetic energies up to 150 cm−1. The comparison between the broad-

ening and the inelastic cross-sections predicts that some extra peaks are available in

the former that are absent in the case of inelastic cross-sections. The state-to-state

rate coefficients have been calculated for the COH+−He complex and the results are

consistent with the previously reported data for COH+-He, with minor variations pri-

marily attributed to differences in the potential energy surface well depths for both

systems.

In the last chapter, the interaction of C2 with 3He and 4He is studied at ultracold

temperatures. ab initio PES has a well-depth of -20.30 cm−1 at R=4.0 Å and θ=0◦.

Inelastic integral and total cross-sections are calculated in the energy domain of 10−6

cm−1-1000 cm−1 for both 3He-C2 and 4He-C2. and corresponding rotational rate coef-

ficients are computed for C2 quenching with 3He and 4He at ultracold (10−8 K) up to

intermediate (100 K) temperatures. CC approach is used to determine the collisional

state-to-state cross-sections. We obtain state-to-state cross-sections for j=8 to j’=0,

2, 4 and 6 and j=2 to j’=0. The value of cross-sections decreases with the increase in

kinetic energy below 10−1 cm−1 following Wigner’s threshold law at ultralow kinetic

energies. Quenching rate coefficients are calculated in the temperature domain of

10−8 K to 100 K. Above 10−1 K, the rate value for heavier isotope matches with the

lighter one, but in the ultracold regime, the value of 4He dominates the 3He. Zero

temperature quenching rate coefficients are estimated to be 2.059×10−12 cm−3s−1

and 1.482×10−11 cm−3s−1 computed for 3He and 4He, respectively, and the lifetime

of quasi bound state is calculated for 3He-C2 (2.75 ns). It is found to be larger than
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4He-C2 (0.04 ns). Further, the value of scattering length (SL) is calculated for both

the isotopes of He colliding with C2. The values of SL for 3He and 4He are 4.48 Å

and 4.67 Å, respectively. 4He-C2 is a better rotational cooler for the C2 molecule.

7.2 Future Directions

1. The interaction of COH+ has been studied solely with He using time-independent

quantum dynamics by our group and Santander et al. In cold ISM, H2, H+ and

He are the most abundant colliders. The collisional dynamical study may be

incorporated with ortho-H2 and para-H2 using a similar methodology.

2. Our study considers the few orientations of angular motion of H2 molecule for

quantum dynamics in studying the collision of CNNC and NCCP with para-H2.

All possible orientations can be considered in order to study and compare the

effect of ortho-H2 on CNNC and NCCP collision with para-H2.

3. We have studied the rotational energy transfer in C2 dimer undergoing collision

with He using rigid rotor approximation. One can perform vibrational studies for

this complex and calculate vibrational inelastic cross-sections with the relaxation

of C-C intermolecular bond.
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Appendix A

Fortran Code for Finding Pressure

Broadening Cross-sections as a

Function of Temperature for

COH+ System

IMPLICIT REAL*8(A-H, O-Z)

PARAMETER(N=218, M=1)

DIMENSION SIGMA(N), e(N), SUM(M), LOGSUM(M)

OPEN(UNIT=1, FILE=‘01.dat’)

OPEN(UNIT=40, FILE=‘k01.dat’)

BOLTZ=1.380658D-23

DO I=1,N

READ(1,*) E(I), SIGMA(I)

ENDDO

DO I=1,N

E(I)=E(I)*1.9865D-23

ENDDO

TP=88.D0

DO J=1,M

CONST=(1/BOLTZ/TP)**2

PRINT*,‘TP, CONST’

PRINT*, TP, CONST

SM=0.D0

DO I=1,N
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EXPONT=DEXP(-E(I)/BOLTZ/TP)

SM=SM+(SIGMA(I)*E(I)*EXPONT)

CONTINUE

SUM(J)=CONST*SM

SUM(J)=SUM(J)/6.023D23

WRITE(40,*)TP, SUM(J)

TP=TP+2.D0

CONTINUE

PRINT*,CONST

STOP

END



Appendix B

Fortran Code for Finding Pressure

Broadening Coefficient for COH+

System

IMPLICIT REAL*8(A-H, O-Z)

PARAMETER(N=218,M=1)

DIMENSION SIGMA(N), e(N), SUM(M), LOGSUM(M)

OPEN(UNIT=1, FILE=‘01.dat’)

OPEN(UNIT=40, FILE=‘k01.dat’)

AKBOLTZ=1.380658D-23

PI=DACOS(-1.D0)

xH=1.00797D0

xC=12.0107D0

xO=15.9999D0

xHe=4.002602D0

REDM=((xC+xO+xH)*xHe)/(xH+xC+xO+xHe)

PRINT*,REDM

AMU=REDM*1.6605402D-27

DO I=1,N

READ(1,*) E(I), SIGMA(I)

ENDDO

DO I=1,N

SIGMA(I)=SIGMA(I)*1.D-20

DO I=1,N

E(I)=E(I)*1.9865D-23
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ENDDO

TP=88.D0

DO J=1,M

RELVEL=DSQRT(8.D0*AKBOLTZ*TP/PI/AMU)

CONST1=RELVEL*(1/AKBOLTZ/TP)**2

CONST2=(1/(2*PI*AKBOLTZ*TP))

CONST3=133.322*1.D-6

PRINT*,‘RELVEL, AKBOLTZ, TP, CONST1’

PRINT*,RELVEL, AKBOLTZ, TP, CONST1

SM=0.D0

DO I=1,N

EXPONT=DEXP(-E(I)/AKBOLTZ/TP)

SM=SM+(SIGMA(I)*E(I)*EXPONT)

CONTINUE

SUM(J)=CONST1*CONST2*CONST3*SM*1.D1

SUM(J)=SUM(J)/6.023D23

WRITE(40,*)TP, SUM(J)

TP=TP+2.d0

CONTINUE

PRINT*,CONST1, CONST2, EXPONT, AMU, AKBOLTZ

STOP

END
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