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Lay Summary

This thesis presents a comprehensive analysis for finding approximate solutions to

boundary value problems associated with the interaction of water waves and various

configurations of thick porous structures, namely (i) porous structure extending from the

bottom to the free surface, (ii) bottom-standing porous structure, (iii) surface-piercing

porous structure, and (iv) submerged porous structure, designed to protect coastal

infrastructure, such as very large floating structure (VLFS) and sea wall. Under suitable

assumptions, the physical problems of water wave interaction are modeled mathematically.

The resulting boundary conditions are linearized using small amplitude wave theory. The

boundary value problems are solved using eigenfunction expansions in conjunction with

the orthogonality of eigenfunctions, giving rise to a system of equations that are solved

numerically. The numerical values of physical quantities of reflection, transmission, and

dissipation coefficients, force on the porous structure and force on the sea wall, free

surface elevation, plate deflection, shear force, and strain are obtained and plotted for

different parameters. These physical quantities play a significant role in Ocean and

Marine Engineering for constructing coastal structures such as VLFS, sea walls, and

breakwaters. These porous structures mentioned above are essential for protecting ports,

harbors, floating bridges, floating storage bases, floating buildings, sea walls, and more

from natural calamities such as tsunamis, cyclones, red tides, harmful algal blooms, and

rising sea levels. These structures can be built at offshore, parallel to the coastline, to

mitigate the impact of incoming wave loads, thereby reducing coastal erosion and ensuring

the safety of coastal infrastructures and facilities near the shoreline. Clearly, studying

wave-structure interaction problems is of immense importance in ocean engineering for

various applications.
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Abstract

This thesis presents a comprehensive analysis of a class of water wave problems pertinent

to Ocean and Marine Engineering, particularly focusing on the interaction of water waves

with thick porous structures designed to protect coastal infrastructure, such as VLFS and

sea walls. The physical phenomena related to water wave propagation are mathematically

modeled, assuming that the fluid is homogeneous, inviscid, incompressible, and exhibits

irrotational and harmonic motion over time. Additionally, the wave motion is considered

to be influenced by gravity, with the free surface deviations from its horizontal position

assumed to be small enough to justify the application of linearized water wave theory.

The objective of this thesis is to focus on a specific class of wave-structure interaction

problems, emphasizing the following key areas: (i) reducing the wave impact on an elastic

plate by employing thick porous structure(s), (ii) minimizing wave impact on sea wall

when an elastic plate and thick porous structure are present, and (iii) investigating the

role of submerged porous structure in reducing wave load on sea wall in a step type bottom

topography. In Case (i) and Case (ii), the porous structure is a vertical porous structure

extended from top to bottom or bottom-standing or surface-piercing. When formulating

the physical problems, the governing partial differential equation is the Laplace equation

for the case of normal incidence of surface waves, while it is the Helmholtz equation

for the oblique incidence of surface water waves. The combined dynamic and kinematic

boundary condition at the free surface is of the Robin type, and the impermeable

boundary condition at the bottom is of the Neumann type. The elastic plate is modeled

by using the thin plate theory, while the flow past the thick porous structure is modeled by

using the Sollit and Cross model. Furthermore, far-field conditions are imposed at infinite

fluid boundaries to ensure the uniqueness of the solution. The resulting boundary value

problems are linearized using small amplitude water wave theory. The boundary value

problem is transformed into a system of algebraic equations by employing eigenfunction

expansions and leveraging the orthogonality of eigenfunctions. These equations are then

solved numerically using the Gauss-Elimination method with the help of MATLAB. For

each physical problem, the energy identity is derived using Green’s integral theorem,

and verifying this identity ensures the accuracy of the numerical results obtained for the

physical quantities. Also, the present numerical results are compared with those available

in the literature to validate each model. Additionally, in some problems, the convergence

on the number of evanescent modes in the eigenfunction series expansions is evaluated

numerically. To study the effectiveness of the above thick porous structure(s) in reducing

the wave load on the elastic plate/sea wall, the quantities such as reflection, transmission

and dissipation coefficients, force on the porous structure, force on the sea wall, and free

surface elevation, plate deflection, shear force and strain are calculated numerically. The

variations of these quantities with various system and wave parameters are analyzed and

illustrated through different graphs. These problems provide information to safeguard

essential coastal structures such as VLFS and sea walls. Hence, the study in this thesis

play an essential role in the field of ocean and marine engineering, particularly towards
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the protection of coastal infrastructure.

Keywords: Water wave scattering; Linearized water wave theory; Eigenfunction

expansion method; Sollit and Cross model; Thin plate theory; Energy balance relation;

Reflection coefficient; Transmission coefficient; Dissipation coefficient; Elastic plate

deflection; Shear force on the elastic plate; Strain on the elastic plate; Force experienced on

the sea wall; Free surface elevation; Force on the porous structure; Coastal infrastructure.
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Chapter 1

Introduction

1.1 Preamble

In the modern era characterized by rapid population growth, the scarcity of land has

become an urgent issue. Very Large Floating Structures (VLFS), which are artificial

structures constructed on the sea’s surface, have emerged as a promising solution for

nations having extensive coastal areas, which can provide an alternative solution for the

shortage of land. Also, VLFS offers a cost-effective and environment-friendly alternative,

driving infrastructure development such as bridges, docks, and floating airports. This

advancement has also facilitated exploring and utilizing offshore resources like oil fields

and minerals, leading to increased marine transportation activities. It is important to

note that wave impacts can cause damage to this VLFS. Hence, not only the construction

of VLFS but also its safety and stability are important.

Like VLFS, rigid vertical sea walls also play an important role in coastal environments.

It has been seen that the rigid vertical sea wall is constructed near the shoreline to protect

the backland. In some locations, potential hazard happens due to shore erosion; for

example, the road or buildings near the shoreline are about to fall into the water due to

shore erosion. Hence, constructing a sea wall provides an alternative approach to coastal

protection. Further, it may be noted that the sea wall may collapse due to wave impact.

These waves not only affect the sea wall but also move the sand away from the base of the

sea wall. Hence, the structural safety and stability of the sea wall should be considered

when designing offshore structures.

Breakwaters play a crucial role in protecting coastal infrastructure by reducing wave

impacts. Traditional rigid barriers, commonly used as breakwaters, face challenges when

exposed to extreme climatic conditions, as they reflect a large amount of incident wave

energy, leading to increased loads and potential collapse, thus reducing the serviceability

of VLFS, sea wall, ports, and harbors. Porous structures have been introduced to

dissipate wave energy to mitigate the impact of wave loads and prolong the service life of

existing rigid vertical structures. Additionally, vertical flexible porous structures have been

proposed as wave barriers due to their lightweight nature and quick deployment compared

to fixed rigid barriers. Their structural flexibility and porosity significantly reduce wave

forces. Horizontal breakwaters are also effective in protecting harbors, marinas, and

shorelines, as they cause minimal interference with water circulation, sediment flow, and

aquatic life movement. However, to use and understand the performance of thick porous

structures requires a comprehensive analysis of various physical parameters, including
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wave reflection, transmission, and energy dissipation. These parameters are influenced by

factors such as height, porosity of the porous structure, water depth, incident wave height,

crest width, breakwater slope, and wave period.

In the past, analyses of wave-structure interaction were primarily focused on rigid

structures, considering physical phenomena such as refraction, diffraction, reflection,

shoaling, breaking, and large-scale vortex formation and shedding, which are associated

with wave parameters like wave height, direction, period, and phase lag. However,

including structural permeability and flexibility has made these physical problems

more complex, rendering theoretical analyses of wave-structure interaction challenging.

Nevertheless, advancements in high-speed computers in recent decades have led to

significant progress in the numerical modeling of wave-structure interaction problems.

In this thesis, to study the sustainability and resilience of VLFS and the sea wall, six

problems are taken and each problem is formulated as a mixed boundary value problem

(BVP), where the governing partial differential equation is Laplace’s equation for normal

incidence or the Helmholtz equation for oblique incidence in wave. This governing equation

is coupled with a mixed boundary condition at the free surface, condition at the porous

structure, conditions within the gap, conditions on the thin elastic plate representing

VLFS, condition at the sea wall, and condition at the bottom. Since the fluid region

extends infinitely, the far-field condition is used for problem uniqueness. To solve each

problem, the eigenfunction expansion method is used to leverage the orthogonality of

free surface eigenfunctions. This coins to a system of algebraic equations, which are

solved using the Gauss-elimination method by using MATLAB. Once the system of

equations is solved numerically, the physical quantities like reflection, transmission, and

dissipation coefficients are obtained. We examine how these coefficients vary with different

physical parameters, presenting graphical analyses. Additionally, the forces on the thick

porous structure and the sea wall, free surface elevation, plate deflection, shear force, and

strain on the elastic plate are investigated for various wave and structural parameters.

Some problems involve deriving the energy identity using Green’s integral theorem, an

important relation involving reflection, transmission, and dissipation coefficients in water

wave scattering problems. This identity verifies the accuracy of numerical results. In each

problem, the results are compared with existing literature, aiming to progress towards

practical applications in Mathematical Sciences and Engineering.

1.2 Brief History and Motivation

Wave-structure interaction problems require understanding fluid dynamics in contact with

the atmosphere and the structure’s behavior in contact with the fluid. Additionally, it is

essential to comprehend the phenomena of wave propagation. In Book II, Prop. XLV

of Principia, 1687, Sir Isaac Newton first attempted the development of the theory of

water waves (see Craik [1]). This work inspired scientists such as Euler and French

mathematicians Laplace, Lagrange, Poisson, and Cauchy, who made significant theoretical
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advances in the linear theory of water waves. Later, between 1830 and 1850, Russel,

Green, Kelland, Airy, and Earnshaw further contributed to the development of linear

water wave theory. The books by Lamb [2], Rahman [3] and Dean and Dalrymple [4], along

with the literature cited within, provide comprehensive details on the various phenomena

associated with water wave propagation. Further, research on wave interaction with

various structures has been progressing, which are briefed in the following subsections.

1.2.1 Water Wave Scattering by Thick Porous Structure

The scattering of water waves by thick porous structures is a vital area of research in coastal

engineering. Thick vertical porous structures, which have been increasingly proposed over

the past few decades, play a crucial role in managing wave dynamics in ports and harbors.

These structures are designed to dissipate wave energy through their porous nature,

effectively reducing wave height and energy before reaching the shore. By scattering

and absorbing the energy of incoming waves, thick porous structures help to protect

coastal infrastructure and mitigate erosion. To analyze the usefulness of thick porous

structures, it is essential to conduct a detailed study of physical parameters such as wave

reflection, wave transmission, and wave energy dissipation. The key factors influencing

the hydrodynamic performance of thick porous breakwaters include their height, porosity,

water depth, incident wave height, crest width, slope of the structures, and wave period.

Many researchers have examined water waves interaction with thick porous structures

of finite width, such as rubble-mound breakwaters, through the fulfillment of Lorentz’s

equivalent work condition, as detailed in Sollitt and Cross [5]. This model introduces a

complex dispersion relation to analyze wave motion within the porous medium. Using

this model, several researchers studied the water wave interaction with thick porous

structures (see McIver [6], Zhu [7], Behera and Sahoo [8], Venkateswarlu and Karmakar

[9] and literature cited therein). Madsen [10] provided a solution for the reflection and

transmission for normally incident water waves interacting with a complete rectangular

porous structure which is extended from top to bottom. To extend this work, Dalrymple

et al. [11] examined the oblique wave characteristics past a complete rectangular porous

structure of finite width and investigated the plane wave as well as the long wave solutions.

Using the Boundary Element Method (BEM), Sulisz [12] investigated the wave scattering

performance of rubble mound breakwaters. These results were validated with experimental

data, and the comparative study concluded that the numerical and experimental results

showed a reasonably acceptable correlation for the wave transmission coefficient. Lee

[13] utilized the boundary element model to study wave interactions with a porous

structure and validated the model’s accuracy by comparing the results with analytic

solutions. Further, Liu and Li [14] developed a new analytical solution for water wave

motion through a porous structure using velocity potential decompositions in the porous

structure and matched eigenfunction expansions. Das and Bora [15, 16] analyzed the

impact of water waves on a complete porous structure placed on an elevated horizontal

bottom in the presence of a rigid vertical wall. Due to the high costs associated with
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this complete porous structure, truncated porous structures such as bottom-standing and

surface-piercing porous structures are preferred for material efficiency. Dattatri et al.

[17] conducted laboratory measurements to test impermeable and permeable structures

of various shapes. Their study reported and analyzed wave transmission by trapezoidal,

rectangular, semi-trapezoidal, and vertical barrier-type breakwaters. Losada et al. [18]

examined the scattering properties of bottom-standing submerged porous structures, while

Koley et al. [19], Behera et al. [20], Tabssum et al. [21], Kaligatla et al. [22], Athul Krishna

et al. [23] investigated the usefulness of bottom-standing and surface-piercing porous

structures to dissipated the incident wave energy.

1.2.2 Water Wave Scattering by Multiple Porous Structures

Recently, coastal engineers have concentrated on multiple permeable barriers to enhance

wave energy trapping, taking advantage of the multiple confined regions they create.

Researchers have explored the wave damping and trapping performance of multiple porous

breakwaters using analytical, numerical, and experimental methods (see Losada et al.

[24], Hsu et al. [25], Twu and Liu [26], Liu et al. [27], Behera and Ng [28], Liu et al.

[29], Guo et al. [30], Vijay et al. [31], Tran et al. [32], Tsai et al. [33]). These studies

have shown that multiple porous structures significantly improve energy dissipation and

reduce wave reflection compared to a single barrier. The confined regions between the

barriers facilitate better wave energy absorption. Khan and Behera [34] studied the

interactions of water waves with double rectangular porous structures installed at the

bottom. Working in a similar direction, Cao et al. [35] examined the scattering of water

waves by double trapezoidal submerged porous structures. However, Twu and Lin [36]

observed that a wave absorber with more than two porous plates is more effective than

one plate or two plates, and arranging these plates with decreasing material constants

from front to back results in a significantly lower reflection coefficient. Hsu et al. [37]

conducted wave flume experiments to investigate Bragg reflection using three different

shapes of artificial bars: rectangular, triangular, and rectified sinusoidal geometries. The

results indicated that rectangular bars produced a higher reflection coefficient compared

to the other two shapes. Moreover, Tsai et al. [38] employed experimental as well as

theoretical methods to investigate the behavior of water waves interacting with multiple

composite artificial bars of different shapes. Zhao et al. [39] investigated the scattering of

water waves generated by multiple submerged porous bars placed in front of a vertical wall,

employing the EEM for their analysis. Rambabu and Mani [40] presented results from

a numerical model study on the transmission characteristics of submerged breakwaters,

aiming to determine the effects of submergence depth, crest width, initial wave conditions,

and material properties on its performance. Liu et al. [41] examined water waves

interacting with multiple submerged semi-circular breakwaters and observed that the peak

reflection coefficient significantly increases with the number of bars while the corresponding

bandwidth decreases. Venkateswarlu and Karmakar [42] studied wave transformation

in the presence of stratified porous block with a sea wall, considering flat, elevated,
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and stepped seabed scenarios. Their research revealed that the stepped seabed reduced

wave force on the leeward wall more effectively than the uniform and elevated seabeds

when a stratified porous block is present. Further, Venkateswarlu and Karmakar [43]

investigated the wave dissipation performance of multiple fully extended porous blocks,

focusing on both the leeward unbounded region and the confined region or leeward wall.

The most common finding from the various studies is that emerged structures of finite

thickness can achieve nearly zero transmission due to enhanced wave damping. However,

bottom-mounted structures effectively distribute incident wave energy among reflection,

transmission, and energy-damping coefficients.

1.2.3 Water Wave Scattering by VLFS

The concept of VLFS was first introduced by the renowned French novelist and one of

the pioneers of science fiction, Jules Verne [44], in his book “L’̂ıle à hélice”, where he

described a floating island. Later, Armstrong [45] proposed the idea of constructing

multiple floating islands at regular intervals to facilitate the landing and refueling of

airplanes during transatlantic flights. As the population grows and urban development

intensifies, land-scarce island nations such as the Netherlands, Singapore, and Japan, as

well as countries with extensive coastlines, turn to land reclamation from the ocean to

alleviate pressure on their heavily utilized land. So, engineers and researchers proposed

that VLFS can be an alternative solution to these problems. These VLFS have been built

to use ocean space for various humanitarian purposes, such as floating airports, bridges,

wind farms, storage facilities, etc. (see Wang et al. [46]), and at the same time, these VLFS

have a minimal effect on aquatic habitats, tidal current flows. In some situations, VLFS

is assumed to behave elastically as the localized deflection/vibration of the long structure

becomes significant due to the continuous excitation of small amplitude waves, although

the motion of the whole body is small compared to its length (see Ohkusu and Namba

[47] and Sahoo [48]). Moreover, there are analogies between models of VLFS and ice floes

in the polar regions, as the wave-induced responses of ice floes exhibit elastic behavior

similar to that of VLFS under ocean waves. Although the research objectives in these two

fields differ, the mathematical modeling and solution methodologies used to analyze these

systems are quite similar. One of the earliest studies in this direction was reported by

Greenhill [49], who proposed characterizing ice as a thin elastic beam, deriving a dispersion

equation, and incidentally mentioned that the first-ever experimental determination of

Young’s modulus was performed on ice. Fox and Squire [50] modeled sea ice as a thin elastic

plate and studied the interaction of water waves with an ice-covered surface by utilizing the

eigenfunction expansion method (EEM). Meylan [51] employed a solution methodology by

combining the coupled boundary element method and finite element method to investigate

the scattering and wave-induced forces on ice floes with arbitrary geometries. Since then,

several researchers have utilized the thin elastic plate model to study how ocean waves

interact with sea ice (Kerr [52], Fox and Squire [53], Meylan and Squire [54], Manam

et al. [55], Mohapatra and Bora [56], Maiti et al. [57], Meylan et al. [58], Stepanyants and
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Sturova [59], and the works cited therein).

On the other hand, a considerable amount of research has been conducted on

the interaction between water waves and VLFS. Significant contributions in this area

include works by Kashiwagi [60], Namba and Ohkusu [61], Watanabe et al. [62], Taylor

[63], Evans and Porter [64], Xu and Lu [65], Naskar et al. [66] and literature cited

there in. In these studies, VLFS is modeled using thin plate theory to investigate

their interactions with water waves. Due to the substantial size of the structure poses

a significant computational challenge, making the analysis difficult. To address this

issue, Kagemoto et al. [67] as well as Sahoo et al. [68] assumed that the structure is

semi-infinitely long relative to the wavelength of the incident wave. Takagi [69] utilized

the parabolic approximation to determine the elastic deformation of a thin semi-infinite

quarter plate. Further, to reduce the computational burden, Hermans [70] considers a

finite floating elastic plate instead of the infinitely or semi-infinitely long floating elastic

plate. Gerostathis et al. [71] employed the modal expansion method to investigate how

changing bathymetry affects the hydroelastic analysis of three-dimensional floating VLFS.

Recently, Koley [72] employed the multi-domain boundary element method (MBEM)

to investigate how variable bottom topography influences the structural response of a

floating flexible porous plate. Meanwhile, Tsubogo [73] utilized the boundary element

method to examine the responses of floating elastic plates under the shallow water wave

approximation. Using the modal expansion method, Gerostathis et al. [71] studied

the effect of variable bathymetry on hydroelastic analysis of three-dimensional floating

VLFS. The challenges within contemporary hydroelasticity, along with their evolution,

mathematical methodologies, and analytical aspects, are outlined in the review article

authored by Korobkin et al. [74].

1.2.4 Water Wave Scattering by VLFS in the Presence of Breakwater

The primary goal in the hydroelastic analysis of VLFS is to minimize the hydroelastic

response on VLFS, which is crucial for optimal system performance. Reducing this

response enhances safety and elevates the serviceability standards of VLFS. Researchers

have suggested several methodologies to achieve this reduction in hydroelastic response

for floating structures. The most conventional approach involves enhancing the structural

stiffness of VLFS, as demonstrated by Andrianov and Hermans [75]. However, higher

structural stiffness necessitates increased material usage and incurs higher costs, making

it less cost-effective for VLFS. An intriguing alternative is to construct breakwaters around

VLFS. Takagi et al. [76] proposed anti-motion devices placed on the edge or bottom surface

of the floating structure. Ohta et al. [77] investigated the effect of attaching a horizontal or

vertical plate on the wave response of VLFS. Watanabe et al. [78] performed hydroelastic

analyses on VLFS featuring a submerged horizontal plate attached to the fore-end of the

structure. Cheng et al. [79] experimentally analyzed VLFS with submerged horizontal

plates at the edges. Cheng et al. [80] studied the fluid-structure interaction of irregular

waves with VLFS equipped with dual inclined perforated plates, using time-domain
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theory and employing a hybrid finite element-boundary element method along with the

eigenfunction matching method. Ohmatsu [81] studied the hydroelastic behavior of VLFS

in the presence of a thin vertical breakwater. Yang [82] developed a hybrid active and

passive control method to reduce structural vibrations, enhancing the serviceability of the

controlled VLFS. Singla et al. [83] investigated the effectiveness of vertical porous barriers

in mitigating the hydroelastic response of VLFS. Pu and Lu [84] extended this work by

using a vertical porous flexible barrier connected to a VLFS instead of a porous barrier.

Recently, Singla et al. [85, 86] analyzed the effectiveness of a thin horizontal permeable

plate or box-type porous structure in dissipating wave energy impacting the elastic plate.

To the best of our knowledge, mitigating the wave response of the elastic plate by

the thick porous structure has not been investigated so far. Hence, this research aims to

reduce the structural response of an elastic plate in the presence of various configurations

of single or multiple thick porous structure(s).

1.2.5 Water Wave Scattering by Sea Wall in the Presence of Breakwater

The interaction between waves and sea walls is a critical aspect of coastal engineering,

influencing coastal protection, wave energy dissipation, and shoreline stability. Sea walls

are designed to withstand wave forces and protect coastal areas from erosion and flooding.

However, it is important to note that wave impacts can cause the sea walls to collapse.

These powerful waves threaten the sea wall and erode sand from its base. Therefore, the sea

walls’ structural safety and stability must be carefully considered when designing offshore

structures. In this direction, Hsu and Wu [87] developed the boundary element method

and utilized it to analyze the heave and sway behavior of a floating rectangular structure

in water with finite depth, considering the presence of a vertical sea wall. Zheng et al. [88]

studied the radiation and diffraction of water waves using a rectangular floating structure

positioned near a sidewall. Evans and Porter [89] conducted a hydrodynamic analysis

on an oscillating water column containing a vertical surface-piercing barrier adjacent to a

vertical wall. Wu et al. [90] addressed wave reflection from a vertical wall using a horizontal

submerged porous plate through eigenfunction expansion methodology. Liu et al. [91]

investigated wave interaction with a perforated breakwater to reduce wave reflection and

wave force on seawalls. Schay et al. [92] examined the hydrodynamic performance of a

heaving point absorber positioned close to a stationary vertical wall. Sahoo et al. [93]

studied the trapping of waves by partial thin porous barriers near the wall and this was

further extended by Yip et al. [94], who used the flexible porous structure to examine the

trapping phenomena of waves. Moreover, Koley and Sahoo [95] investigated the trapping

of water waves by a vertical permeable membrane barrier located near a sea wall. However,

natural sea bottoms are irregular. Bhattacharjee and Soares [96] studied the wave loads

exerted on a floating rectangular box located near a wall in a step-type bottom undulations.

Behera et al. [97] examined the problem of wave trapping by a porous barrier over an

arbitrary bottom topography using a modified mild-slope equation and the eigenfunction

expansion method. By using the same method, Kaligatla et al. [98] analyzed the usefulness
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of a dual porous barrier to protect a sea wall over an arbitrary bottom topography.

To the best of our knowledge, mitigating the wave load on a sea wall by a thick

porous structure in the presence of an elastic plate has not been investigated so far.

Hence, this research aims to minimize the wave load on a sea wall using a thick porous

structure in combination with an elastic plate, contributing to advancements in coastal

infrastructure applications. Furthermore, the effectiveness of a submerged thick porous

structure, which is neither bottom-standing nor surface-piercing, in protecting sea walls

represents a valuable addition to the application of effective breakwaters, which has been

examined in this study.

The following section presents a concise overview of the thesis’s aims and objectives.

1.3 Aims and Objectives

This thesis primarily focuses on tackling a specific set of challenges concerning the

interaction between gravity waves with the elastic plate and the thick porous structures of

different configurations, such as complete porous structure (extended from top to bottom),

truncated porous structure such as bottom-standing and surface-piercing porous structure,

whether in the presence of a sea wall or without it. Also, the interaction of gravity waves

with a submerged porous structure in the presence of a sea wall over two steps is examined.

The analysis employs the matched eigenfunction expansion method as a key analytical tool

to find the solution to each problem. The emphasis is given to:

• To reduce the wave impact on the elastic plate by employing the thick porous

structures.

• Minimizing wave impact on the sea wall in the presence of the elastic plate and thick

porous structure.

• Analyzing reflection, transmission, and dissipation coefficients for different values of

structural and wave parameters.

• Analyzing the elastic plate’s shear force, strain, and deflection in the presence of a

thick porous structure.

• Analyzing the force exerted on the sea wall.

1.4 Basic Mathematical Equations in Water Wave Theory

Modeling real-life physical problems is inherently challenging. However, certain physical

assumptions can be made to develop acceptable mathematical models for these problems.

Many physical problems in Ocean Engineering/Coastal Engineering are analyzed using

the linear theory of water waves, which applies when the motion under the action of

gravity is small (that means the velocity components together with their derivatives

are quantities of first order of smallness so that their squares, products and higher
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powers can be neglected) and the wave elevation is also small compared to some physical

length. Various models involving wave-structure interaction have been developed based

on the geometric configurations of the structures. This section briefly discusses the basic

equations associated with wave propagation without structure (see Chapter 3 of Dean and

Dalrymple [4]) and associated with wave interactions by thick porous structure/elastic

plate, as found in various textbooks and research articles. These details are included to

make the thesis self-explanatory.

1.4.1 Governing Equation

A rectangular Cartesian coordinate system is chosen where the xz-plane lies along the

undisturbed free surface, and the y-axis points vertically upward. The fluid occupies the

region −∞ < x <∞, −∞ < z <∞,−h ≤ y ≤ 0, with the bottom surface represented by

y = −h as shown in Figure 1.1. The fluid is assumed to be inviscid, incompressible, and its

motion is considered to be irrotational and simple harmonic in time and propagates with

an angle θ with respect to the x-axis. Given the irrotational nature of the motion, there

exists a velocity potential Φ(x, y, z, t) such that the fluid velocity (V⃗ ) can be expressed as

V⃗ = (u, v, w) = ∇Φ, (1.1)

where u, v, w are the components of V⃗ along x, y, z-direction, respectively and Φ represents

the velocity potential.

The continuity equation for an inviscid and incompressible fluid is

∇ · V⃗ = 0. (1.2)

y = −h

y = 0

Wave direction

Rigid bottom

Figure 1.1: Schematic diagram for wave propagation.

Hence, Equations (1.1) and (1.2) give rise to the Laplace’s equation

∂2Φ

∂x2
+
∂Φ2

∂y2
+
∂2Φ

∂z2
= 0, in the fluid region. (1.3)
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1.4.2 Free Surface Boundary Condition

In this subsection, we briefly outline the combined free surface boundary condition.

Dynamic free surface boundary condition:

The Euler’s equation of motion is

∂V⃗

∂t
+ (V⃗ · ∇)V⃗ = g − 1

ρ
∇p (1.4)

where p is the fluid pressure, ρ is the fluid density, and g is the acceleration due to gravity.

After integration and simplification, Euler’s equation of motion (1.4) becomes (see

Dean and Dalrymple [4])

∂Φ

∂t
+

1

2

[(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2
]
+
p

ρ
+ gy = 0 (1.5)

which is known as Bernoulli’s equation. The pressure at the free surface y = η(x, z, t)

must equal the atmospheric pressure, which is assumed to be constant (taken as zero

here). Therefore, Equation (1.5) becomes

∂Φ

∂t
+

1

2

[(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2

+

(
∂Φ

∂z

)2
]
+ gη = 0, on y = η(x, z, t) (1.6)

which is known as the dynamic free surface boundary condition.

Kinematic free surface boundary condition:

The vertical velocity component is equal to the rate of rise of the water surface at

any point, resulting in the condition (see Dean and Dalrymple [4])

∂Φ

∂y
=
∂η

∂t
+
∂η

∂x

∂Φ

∂x
+
∂η

∂z

∂Φ

∂z
, on y = η(x, z, t) (1.7)

which is known as the kinematic free surface boundary condition.

Linearized free surface condition:

Under the assumption of linear water wave theory, the velocity components and

the free surface displacement, along with their partial derivatives, are small quantities.

Therefore, their squares, higher powers, and products can be neglected. As a result,

Equations (1.6) and (1.7) simplify to

∂Φ

∂t
+ gη = 0 on y = η(x, z, t) (1.8)
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and
∂Φ

∂y
=
∂η

∂t
on y = η(x, z, t). (1.9)

Further, by employing Taylor’s series expansion and neglecting terms of the second order

and higher order, the relations (1.8) and (1.9) simplify the linearized boundary conditions:

∂Φ

∂t
+ gη = 0 on y = 0 (1.10)

and
∂Φ

∂y
=
∂η

∂t
on y = 0. (1.11)

By eliminating η between Equations (1.10) and (1.11) yields the linearized combined free

surface boundary condition as

∂2Φ

∂t2
+ g

∂Φ

∂y
= 0, on y = 0. (1.12)

1.4.3 Bottom Boundary Condition

In the entire thesis, the seabed is considered to be flat and impermeable. As a result, there

is no fluid flow across the rigid bottom, leading to the following condition on the bottom

surface:
∂Φ

∂y
= 0, on y = −h. (1.13)

The governing equation (1.3), in conjunction with the boundary conditions Equations

(1.12) and (1.13), constitutes the fundamental equations of linearized water wave theory.

1.4.4 Boundary Value Problem for Water Wave Propagation

Since the motion is assumed to be simple harmonic in time with an angular frequency ω,

the velocity potential Φ(x, y, z, t) is expressed as

Φ(x, y, z, t) = Re{ϕ(x, y)ei(µz−ωt)}, (1.14)

where µ = k0 sin θ, k0 is the wavenumber of the propagating wave, Re{.} denotes the

real part of a complex-valued function and ϕ(x, y) represents the spatial expression of the

velocity potential. Therefore, by substituting Equation (1.14) into Equations (1.3), (1.12)

and (1.13), we obtain the following equations(
∂2

∂x2
+

∂2

∂y2
− µ2

)
ϕ=0, in the fluid region, (1.15)

∂ϕ

∂y
−Kϕ = 0, on y = 0, (1.16)

∂ϕ

∂y
= 0, on y = −h, (1.17)
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where K = ω2/g. For the normal incidence (θ = 0◦) case, the mathematical formulation

of the problem can be expressed as

∂2ϕ

∂x2
+
∂ϕ2

∂y2
= 0, in the fluid region, (1.18)

∂ϕ

∂y
−Kϕ = 0, on y = 0, (1.19)

∂ϕ

∂y
= 0, on y = −h. (1.20)

In this context, Laplace’s equation (1.18), coupled with boundary conditions (1.19)

and (1.20), yields two types of solutions: wave-like solutions and non-wave-like solutions.

Solution for the velocity potential:

Using the separation of variables, we can obtain the solution to the BVP Equations

(1.18)-(1.20) as

ϕ(x, y) =

A0e
−ik0xψ0 +

∑∞
m=1Ame

−ikmxψm(y) for x < 0

B0e
ik0xψ0 +

∑∞
m=1Bme

ikmxψm(y) for x > 0
(1.21)

where ψm(y) = cosh km(h+y)
cosh kmh (m = 0, 1, 2, . . . ), are the eigenfunctions of the above BVP

and k0 is known as wavenumber and is the real and positive root of the dispersion relation

expressed in terms of k, given by

K − k tanh kh = 0, (1.22)

km(m = 1, 2, 3, . . . ) are the purely imaginary roots (known as the evanescent modes)

of the dispersion relation (1.22), A0, B0 are the unknown constants associated with the

amplitudes of the plane progressive waves and Am, Bm,m = 1, 2, 3, . . . are the unknown

constants associated with the evanescent modes. The expansion formulae for ϕ(x, y) as in

Equation (1.21) is known as Havelock’s expansion formula in finite water depth and was

initially derived by Havelock [99]. It can be easily derived that the eigenfunctions ψm(y)

satisfy the orthogonal inner product

⟨ψm(y), ψn(y)⟩ =
∫ 0

−h
ψm(y)ψn(y)dy = δmnN (km) (1.23)

where

N (km) =
sinh 2kmh+ 2kmh

4km cosh2 kmh
(1.24)

and

δmn = 1 for m = n,

δmn = 0 for m ̸= n.
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The eigenfunction expansion method has been applied to many different problems of water

wave mechanics (see Losada et al. [100], Yu [101], Lee and Chwang [102] and literature

cited therein). Here it may be noted that the eigenfunction expansion method is possible

due to the nature of the bottom which is flat type. If the bottom is not flat, then instead of

eigenfunction expansion method, some other technique such as Boundary element method

(see Lee [13], Kashiwagi et al. [103], Zheng et al. [104] and literature cited therein) and

Green function approach (see Renzi et al. [105], Choudhary and Martha [106], Hao et al.

[107] and literature cited therein) can be used.

y = −h

y = 0

Wave direction

R1 R2 R3

Figure 1.2: Schematic diagram of wave past by thick porous medium.

1.4.5 Basic Equation for Flow Past a Porous Medium (Sollitt and Cross

Model)

The wave motion past the thick porous breakwater is modeled using the well-known

Sollitt and Cross [5] model in this study. This model characterizes wave motion within a

homogeneous isotropic porous medium under the continuum hypothesis. The equation

of continuity for incompressible fluid and irrotational flow in the porous medium is

represented by (see Sollitt and Cross [5])

∇.V⃗ = 0 ⇒ ∇2Φ = 0, (1.25)

where V⃗ is of the seepage fluid velocity.

Further, the equation of motion includes resistance forces described by Forchheimer’s

model and an additional term that evaluates the added resistance caused by the added

mass of discrete grains within the porous medium (Sollitt and Cross [5], Dalrymple et al.

[11]) and this equation may be written as

mp
∂V⃗

∂t
= −1

ρ
∇ (P + ρgy)−

(
νp
Rp

ϵpV⃗ + Cf

ϵ2p
Rp

V⃗
∣∣∣V⃗ ∣∣∣) , (1.26)

where P is the dynamic pore pressure, ρ is the fluid density, g is the acceleration due
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to gravity, Rp is the intrinsic permeability, νp is the kinematic viscosity, Cf is the

dimensionless turbulent resistance coefficient, ϵp is the porosity and mp is the inertia

coefficient of the structure. The parameter mp is often assumed to be unity in practice,

although Sulisz [12] reports a better correlations with laboratory data with values

approaching 2.

Assuming time-harmonic motion, with the same angular frequency as the waves ω,

Equation (1.26) may be linearized on the basis of Lorentz’s principle of equivalent work,

the dissipative stress term is replaced by a linear stress term as follows:

νp
Rp

ϵpV⃗ + Cf

ϵ2p
Rp

V⃗
∣∣∣V⃗ ∣∣∣ ≃ fpωV⃗ , (1.27)

where fp is the dimensionless friction coefficient. Now, by using Equation (1.27), the

Equation (1.26) reduces to

mp
∂V⃗

∂t
= −1

ρ
∇ (P + ρgy)− fpωV⃗ . (1.28)

By using V⃗ = ∇Φ and integrating Equation (1.28), the linearized Bernoulli equation for

flow within the porous medium becomes

mp
∂Φ

∂t
+
P

ρ
+ gy + fpωΦ = 0. (1.29)

Condition at the free-surface y = η(x, t)) in the porous medium:

According to the Sollitt and Cross model, the derivation of linearized free-surface

conditions for waves in a homogeneous isotropic porous medium is similar to those derived

for the open water region. By applying same assumptions as taken for the derivation of

dynamic free surface boundary condition on the open water region, the linearised form of

Equation (1.29) from y = η to y = 0 can be written as

mp
∂Φ

∂t
+ gη + fpωΦ = 0 on y = 0. (1.30)

The linearized kinematic free surface boundary condition will be the same as mentioned

in Equation (1.11).

So, by substituting Equation (1.11) into Equation (1.30), the linearized combined free

surface condition in the porous medium is obtained as

mp
∂2Φ

∂t2
+ g

∂Φ

∂y
+ fpω

∂Φ

∂t
= 0 on y = 0. (1.31)

Further, by using Equation (1.14), the linearized combined free surface condition (1.31)
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for porous medium reduces to

∂ϕ

∂y
−K(mp + ifp)ϕ = 0 on y = 0. (1.32)

Matching boundary conditions:

Let us consider V⃗1 and V⃗2 to be the velocities of a fluid at any point within the water

region R1 and porous region R2 (see Figure 1.2), respectively. Then the following relation

holds

V⃗i = ∇Φi, i = 1, 2. (1.33)

The potential Φi is assumed to be harmonic in time. So the dynamic pressure and velocity

potential can be written as

Pi = Re{pie−iωt}, (1.34)

Φi = Re{ϕie−iωt}. (1.35)

By using Equations (1.34) and (1.35), in Equations (1.5) and (1.29), the linearized

equations for the dynamic pressures p1 in the region R1 and the pressure p2 in the porous

region R2, are given by

p1 = iρωϕ1 − gy (1.36)

and

p2 = −ρω(fp − imp)ϕ2 − gy. (1.37)

Now, along the vertical boundary between the water region R1 and porous region R2, the

continuity of pressure (p1 = p2) from Equations (1.36) and (1.37) results in the following

matching condition

ϕ1 = (mp + ifp)ϕ2. (1.38)

The mass flux per unit volume and unit time inside the porous region is ρϵpV⃗2, and the

same inside the water region is ρV⃗1. So, along the vertical boundary, the continuity of

mass flux implies

ϕ1x = ϵpϕ2x. (1.39)

Similarly, the matching conditions along the vertical boundary between regions R2 and

R3 can be derived.

1.4.6 Basic Equations and Edge Conditions for Thin Elastic Plate

In this subsection, we briefly outline the boundary condition on the elastic plate. The finite

elastic plate is floating at y = 0. Assuming no cavitation occurs between the elastic plate

and the ocean, the linearized kinematic and dynamic conditions, in the absence of surface
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tension, on the elastic plate at y = 0 are given by (see Timoshenko et al. [108], Sahoo [48])

∂Φ

∂y
=
∂η

∂t
on y = 0 (1.40)

and
∂Φ

∂t
+
P

ρ
+ gη = 0 on y = 0, (1.41)

where η represents the lateral displacement of the elastic plate, ρ denotes the density of

the fluid, and P stands for the surface pressure due to the atmosphere, the static pressure

of the elastic plate, and the dynamic pressure due to the inertia and stiffness, etc. of the

elastic plate.

y = −h

y = 0

Wave direction

R1 R3R2

Elastic plate

Figure 1.3: Schematic diagram of wave past by elastic plate.

Under the assumption that the plate is a thin, uniform elastic material with consistent

mass density ρs and thickness h0 assumed to be small, the displacement η is connected to

the differential pressure Ps of the elastic plate through the condition (see Fox and Squire

[109])

Ps = EI∇4
xzη +ms

(
∂2η

∂t2
+ g

)
on y = 0, (1.42)

where EI is the flexural rigidity of the plate, E is the effective Young’s modulus of the

elastic plate, I =
h3
0

12(1−ν2)
, ν is Poisson’s ratio, ms = ρsh0 is the density of the elastic

plate. When the surface pressure P in the linearized dynamic condition (1.41) equals to

Ps, we find that the velocity potential must satisfy the relation(
EI∇4

xz +ms
∂2

∂t2
+ ρg

)
∂Φ

∂y
+ ρ

∂2Φ

∂t2
= 0 on y = 0, (1.43)

Further, by using Equation (1.14), the boundary condition (1.43) on the elastic plate

reduces to [
D

(
∂2

∂x2
− µ2

)2

+ 1− ϵeK

]
ϕy −Kϕ = 0 on y = 0, (1.44)

where D = EI/ρg is the flexural rigidity of the plate with ϵe = ρsh0/ρ.

Further, assuming the elastic plate moves freely, the conditions for the vanishing of bending
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moment and shear force at the ends of the plate are described as (see Fox and Squire [109])(
∂2

∂x2
− νµ2

)
∂ϕ

∂y
= 0 and

∂

∂x

(
∂2

∂x2
− (2− ν)µ2

)
∂ϕ

∂y
= 0. (1.45)

To achieve the objectives outlined in Section 1.3, six problems are considered, which are

outlined in the following section.

1.4.7 Outline of the Thesis

This thesis consists of eight chapters, with Chapters 2 to 7 as primary chapters focusing

on investigating six problems, Chapter 1 as an introductory chapter, and Chapter 8 as the

summary and future scope.

Chapter 1 provides a discussion on previous research followed by an overview of

essential principles and key equations in the linearized theory of water waves. It also

outlines the aims and objectives of this study.

Chapter 2 deals with the usefulness of the vertical porous structure, which is extended

from the rigid bottom to the free surface of finite width placed at a finite distance from

the elastic plate to mitigate the hydrodynamic response of the elastic plate. The elastic

plate is modeled using the thin plate theory, and the wave past the thick porous structure

is based on Sollitt and Cross model. Based on the small-amplitude water wave theory

and with the aid of the eigenfunction expansion method, the associated boundary value

problem is reduced to a system of linear algebraic equations and the system of equations

is solved to obtain the numerical values of the hydrodynamic coefficients. The accuracy of

the computational results is checked in two ways: (i) by verifying energy identity relation

and (ii) by comparing with results from the literature. The effectiveness of the vertical

porous structure in minimizing the structural impact on the elastic plate is analyzed by

examining plate deflection, free surface elevation, as well as reflection, transmission, and

dissipation coefficients. These analyses are presented graphically across various values of

structural and wave parameters.

In Chapter 3, the problem involving the reduction of wave load on a sea wall by a

vertical porous structure (extended from top to bottom) in the presence of an elastic plate

is examined for its solution. The resulting mixed BVP is solved using the eigenfunction

expansion method to obtain the reflection and dissipation coefficients. Using Green’s

identity, the energy balance relation is derived and used to check the accuracy of the

computational results. The present study reveals that the force on the wall shifted to the

left as the width and frictional factor of the vertical porous structure increased. It is also

found that in the presence of a higher value of length and flexural rigidity of the elastic

plate, the force acting on the wall is low. Furthermore, it is observed that the vertical

porous structure effectively minimizes the free surface elevation in the region between the

elastic plate and the wall.

In a few situations, the vertical porous structure, which is extended from top

to bottom, is not useful due to high costs, material requirements, and environmental
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considerations associated with vertical porous structure. Hence, truncated porous

structures are often preferred. In Chapter 4, we have made an effort to study the

usefulness of the truncated porous structure of finite width placed at a finite distance

from the elastic plate to mitigate the hydrodynamic response of the elastic plate. Two

different configurations of the porous structure, namely bottom-standing porous structure

and surface-piercing porous structure, are analyzed. With the aid of the eigenfunction

expansion method, the associated boundary value problem is reduced to a system of

linear algebraic equations, which is solved to identify the hydrodynamic coefficients such as

reflection, transmission and dissipation coefficients. For both cases, the energy identity is

derived and verified to check the accuracy of the computational results. In this study, it is

observed that as the structural length, porosity, and friction factor of the porous structure

increase, both plate deflection and free surface elevation decrease. Also, it is found that the

wave energy dissipation and amplitude in wave reflection by the surface-piercing porous

structure is higher than that of the bottom-standing porous structure case.

Chapter 5 proposes a model composed of either a bottom-standing porous structure

or a surface-piercing porous structure in combination with an elastic plate placed at

a distance from one another to protect a sea wall. The study uses the eigenfunction

expansion and orthogonality of eigenfunction to coin a system of equations, and the system

of equations is solved to identify the hydrodynamic coefficients, such as reflection and

dissipation coefficients. The impact of the truncated porous structure in reducing the

wave load on the sea wall in the presence of the elastic plate is analyzed by examining the

force experienced on the wall, free surface elevation, reflection, and dissipation coefficients

through graphs for different values of structural and wave parameters. The results of this

study demonstrate that the surface-piercing porous structure is more effective in reducing

harsh wave impact on the sea walls compared to the bottom-standing porous structure.

Chapter 6 investigates the role of a submerged thick porous structure, which is neither

bottom-standing nor surface-piercing porous structure, to safeguard a sea wall in the

presence of two steps. Leveraging the governing equation and boundary conditions, a

system of equations is derived and subsequently solved to determine force, reflection, and

dissipation coefficients. Compared to the scenario without steps, the present study results

in a 57% reduction of force experienced by the wall. Observations suggest that varying

the submergence depth (ranging from 0.1 to 0.3) and length (ranging from 0.1 to 0.6)

of the submerged thick porous structure leads to wave reflection and force on the wall

approximately less than 54% and 59%, respectively.

Chapter 7 deals with the interaction of normal incident water waves by multiple

bottom-standing porous structures and the elastic plate. The study develops the Laplace

equation as the governing equation and mixed boundary conditions under the framework

of potential flow theory. The study uses the eigenfunction expansion and orthogonality of

eigenfunction coin to a system of equations. These equations are then solved to analyze

various factors, including plate deflection, shear force and strain on the elastic plate, and

reflection, transmission, and dissipation coefficients. The accuracy of the computational
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results is verified by comparing them with the results from the literature. In this study, the

primary peak of wave reflection occurs when the wavenumber is 0.25, and its magnitude

enhances as the number of bottom-standing porous structures increases, often interpreted

as Bragg reflection with a corresponding bandwidth. Afterward, the wave reflection

experiences a peak in its oscillatory behavior and reduces to low values, attributed to

changes in wave damping. When the number of bottom-standing porous structures n = 1

and n = 2, no subharmonic peaks are situated between the two harmonic peaks in wave

reflection. However, for other n values, the number of subharmonic peaks between two

harmonic peaks is n− 2. A configuration with four bottom-standing porous structures is

highlighted for its exceptional wave-damping capacity, achieving nearly 65%.

At the end, the concluding Chapter 8 contains the summary of the results discussed

in the aforementioned main chapters of the thesis. It also highlights the scope of future

investigations.
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Chapter 2

Mitigation of Structural Response

on an Elastic Plate by a Vertical

Porous Structure

2.1 Introduction

This chapter analyzes the effect of a porous structure (PS), which is extended from bottom

to free surface (see Figure 2.1), on mitigating hydroelastic response on an elastic plate

(EP). The focus is on using PS to reduce the wave-induced structural response of EP

when PS is positioned at a finite distance from EP. The fluid flow inside PS is modeled

using the Sollitt and Cross model, while EP is modeled by using the thin plate theory. An

eigenfunction expansion method is applied to solve the boundary value problem associated

with the physical problem. The study aims to determine the optimal distance between

PS and EP to achieve maximum wave dissipation by PS, thereby reducing the wave

loads on EP. Scattering coefficients such as reflection coefficient, transmission coefficient,

dissipation coefficient and various hydrodynamic factors such as wave forces on the porous

structure, free surface elevation, plate deflection, shear force, and strain, are analyzed for

various wave and structural parameters of PS and EP. The energy identity for the given

problem is derived and used to verify the accuracy of the computational results and to

obtain quantitative information about wave energy dissipation. A major part of the work

presented in this chapter has been published in Sahoo and Martha [110].

2.2 Mathematical Formulation

Scattering of oblique ocean waves by a floating EP in the presence of homogeneous and

isotropic PS as shown in Figure 2.1 is solved, where y-axis is directed vertically upward,

and xz-plane represents the free surface of the fluid. PS with width b is placed at L1

distance from EP and is infinitely long along the z− axis. The PS is extended from

bottom to free surface, and it is situated at 0 ≤ x ≤ b, −h ≤ y ≤ 0. EP position is y = 0,

c ≤ x ≤ d, (i.e., L2 = c−d is the length of EP). The entire fluid domain is divided into five

regions as mentioned in Figure 2.1. It is assumed that the fluid is inviscid, incompressible

and the motion is irrotational. The wave motion is considered to be simple harmonic in

time with angular frequency ω and the wave propagates with an angle θ with respect to
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the x-axis. So there exists a velocity potential Φj(x, y, z, t) = Re{ϕj(x, y)ei(µz−ωt)} in each

region j=1,2,3,4,5. Hence, the equation of continuity becomes the Laplace’s equation in

Φj , which further gives rise to the modified Helmholtz equation in the spatial potential ϕj

as given by (see Dalrymple et al. [11])

(
∂2

∂x2
+

∂2

∂y2
− µ2

)
ϕj = 0, in the region j = 1, 2, 3, 4, 5, (2.1)

where µ = k0 sin θ, k0 is the wavenumber of the incident wave.

EP

Rigid bottom

x = 0 x = b x = c x = d

1 2 3 4 5

P
S

y = −h

y = 0

Figure 2.1: PS is located at a finite distance from EP.

It may be noted that, in the z-direction, the variations of solution in each region are

considered the same to satisfy the matching conditions at vertical interfaces (by Snell’s

law, see Dalrymple et al. [11]).

The linearized free surface boundary condition, which is the combination of linearized

kinematic free surface condition and Bernoulli’s equation, is given by

ϕjy −Kϕj = 0, on y = 0, for j = 1, 3, 5, (2.2)

with K = ω2/g, g is the acceleration due to gravity. In PS region 2, the condition at the

top surface is expressed by

ϕ2y −K(mp + ifp)ϕ2 = 0 on y = 0, (2.3)

with mp and fp are the non-dimensionalized inertial coefficient and frictional coefficient,

respectively.

The flat rigid bottom condition is given by

ϕjy = 0, on y = −h, for j = 1, 2, 3, 4, 5. (2.4)
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In EP region 4 (y = 0, c ≤ x ≤ d), EP condition is given by[
D

(
∂2

∂x2
− µ2

)2

+ 1− ϵeK

]
ϕ4y −Kϕ4 = 0 on y = 0, (2.5)

where D = EI/ρg is the flexural rigidity of the plate, with E being Young’s modulus,

I = h30/12(1− ν2), ν is the Poisson’s ratio, ρ is the density of the fluid, h0 is the thickness

of EP assumed to be small, ϵe = ρsh0/ρ and ρs is the density of EP. Further, by assuming

that EP is floating freely on the water’s surface, the edges of EP give rise to the conditions(
∂2

∂x2
− νµ2

)
∂ϕ4
∂y

= 0 and
∂

∂x

(
∂2

∂x2
− (2− ν)µ2

)
∂ϕ4
∂y

= 0 at (c, 0), (d, 0). (2.6)

The continuity of pressure and velocity at PS interfaces (x = 0 and x = b) yield

ϕ1 = (mp + ifp)ϕ2, ϕ1x = ϵpϕ2x on x = 0, −h ≤ y ≤ 0, (2.7)

ϕ3 = (mp + ifp)ϕ2, ϕ3x = ϵpϕ2x on x = b, −h ≤ y ≤ 0, (2.8)

where ϵp denotes the porosity of PS.

The continuity conditions for pressure and velocity at EP interfaces (x = c and x = d)

are given as

ϕ3 = ϕ4, ϕ3x = ϕ4x on x = c, −h ≤ y ≤ 0, (2.9)

ϕ4 = ϕ5, ϕ4x = ϕ5x on x = d, −h ≤ y ≤ 0. (2.10)

The far-field condition is expressed as follows:

ϕ1(x, y) ≃
(
ig

ω

)
cosh k0(y + h)

cosh k0h
{eik0xx +R0e

−ik0xx} as x→ −∞, (2.11)

ϕ5(x, y) ≃
(
ig

ω

)
T0

cosh k0(y + h)

cosh k0h
eik0x(x−d) as x→ ∞, (2.12)

where R0 and T0 denote the unknown complex constants associated with the reflected

and transmitted wave, respectively, to be determined here, k0x =
√
k20 − µ2, and k0 is

the wavenumber of the incident wave, which is the positive real root for m = 0 of the

transcendental equation in km as given by

K − km tanh kmh = 0. (2.13)

2.3 Method of Solution

By using the method of separation of variables in each region, the spatial velocity potential

functions are expressed as series solutions in terms of eigenfunctions. The spatial velocity

potentials in the open water regions 1, 3, and 5 satisfying Equations (2.1), (2.2), (2.4),
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(2.11) and (2.12) are expressed in the forms

ϕ1 =

(
ig

ω

)[
eik0xxψ0 +

∞∑
m=0

Rme
−ikmxxψm

]
for −∞ < x ≤ 0, −h ≤ y ≤ 0, (2.14)

ϕ3 =

(
ig

ω

) ∞∑
m=0

[
Ame

ikmx(x−b) +Bme
−ikmx(x−c)

]
ψm for b ≤ x ≤ c, −h ≤ y ≤ 0,

(2.15)

ϕ5 =

(
ig

ω

) ∞∑
m=0

Tme
ikmx(x−d)ψm for d ≤ x <∞, −h ≤ y ≤ 0, (2.16)

where

ψm =
cosh km(y + h)

cosh kmh
, m = 0, 1, 2 . . . , (2.17)

Rm, Am, Bm and Tm are unknown constants, kmx =
√
k2m − µ2 and k0 is the positive real

root and km, m = 1, 2, 3 . . . are the purely imaginary roots of the dispersion relation

(2.13).

Here, the eigenfunction ψm(y), m = 0, 1, 2, . . . , in −h ≤ y ≤ 0 satisfies the orthogonality

relation given by ∫ 0

−h
ψm(y)ψn(y)dy = δmnN (km) (2.18)

where

N (km) =
sinh 2kmh+ 2kmh

4km cosh2 kmh
(2.19)

and

δmn = 1 for m = n,

δmn = 0 for m ̸= n.

The spatial velocity potential in the porous region 2 satisfying Equations (2.1), (2.3) and

(2.4) is expressed in the form

ϕ2 =

(
ig

ω

) ∞∑
m=0

[
Cme

iqmxx +Dme
−iqmx(x−b)

]
Pm for 0 ≤ x ≤ b, −h ≤ y ≤ 0, (2.20)

where

Pm =
cosh qm(y + h)

cosh qmh
, m = 0, 1, 2 . . . (2.21)

Cm and Dm are unknown constants, qmx =
√
q2m − µ2 and qm, m = 0, 1, 2 . . . are the

complex roots of the dispersion relation

K(mp + ifp)− qm tanh qmh = 0. (2.22)

Finally, in EP region 4, the spatial velocity potential satisfies Equations (2.1), (2.4) and



Chapter 2. Mitigation of Structural Response on an Elastic Plate by a Vertical Porous
Structure 25

(2.5) is expressed in the form

ϕ4 =

(
ig

ω

) ∞∑
m=−2

[
Eme

iαmx(x−c) +Hme
−iαmx(x−d)

]
Gm for c ≤ x ≤ d, −h ≤ y ≤ 0

(2.23)

where

Gm =
coshαm(y + h)

coshαmh
, m = −2, −1, 0, 1, 2 . . . , (2.24)

Em and Hm are unknown constants, αmx =
√
α2
m − µ2 and αm are the complex roots of

the form ±a+ ib for m = −2,−1, positive real root for m = 0 and purely imaginary roots

for m = 1, 2, 3, . . . (see Fox and Squire [50], Sahoo et al. [68]) of the equation

(Dα4
m + 1− ϵeK)αm tanhαmh = K. (2.25)

Utilizing Equations (2.14)-(2.16), (2.20) and (2.23) along with orthogonality of ψm in

matching conditions (2.7)-(2.10), we have

U0n +
∞∑

m=0

RmUmn −
∞∑

m=0

(mp + ifp)Vmn(Cm +Dme
iqmxb) = 0, (2.26)

ik0xU0n −
∞∑

m=0

ikmxRmUmn −
∞∑

m=0

iϵpqmxVmn(Cm −Dme
iqmxb) = 0, (2.27)

∞∑
m=0

(Am +Bme
−ikmx(b−c))Umn −

∞∑
m=0

[(mp + ifp)Vmn(Cme
iqmxb +Dm) = 0, (2.28)

∞∑
m=0

ikmx(Am −Bme
−ikmx(b−c))Umn −

∞∑
m=0

iϵppmxVmn(Cme
iqmxb −Dm) = 0, (2.29)

∞∑
m=0

(Ame
ikmx(c−b) +Bm)Umn −

∞∑
m=−2

(Em +Hme
−iαmx(c−d))Wmn = 0, (2.30)

∞∑
m=0

ikmx(Ame
ikmx(c−b) −Bm)Umn −

∞∑
m=−2

iαmx(Em −Hme
−iαmx(c−d))Wmn = 0, (2.31)

∞∑
m=−2

(Eme
iαmx(d−c) +Hm)Wmn −

∞∑
m=0

TmUmn = 0, (2.32)

∞∑
m=−2

iαmx(Eme
iαmx(d−c) −Hm)Wmn −

∞∑
m=0

ikmxTmUmn = 0. (2.33)

where

Umn =

∫ 0

−h
ψmψndy, Vmn =

∫ 0

−h
Pmψndy, Wmn =

∫ 0

−h
Gmψndy. (2.34)
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Further, free-edge conditions in Equation (2.6) give rise to

∞∑
m=−2

αm(α2
mx + νµ2)(Em +Hme

−iαmx(b−c)) tanhαmh = 0, (2.35)

∞∑
m=−2

iαmxαm(α2
mx + (2− ν)µ2)(Em −Hme

−iαmx(b−c)) tanhαmh = 0, (2.36)

∞∑
m=−2

αm(α2
mx + νµ2)(Eme

iαmx(c−b) +Hm) tanhαmh = 0, (2.37)

∞∑
m=−2

iαmxαm(α2
mx + (2− ν)µ2)(Eme

iαmx(c−b) −Hm) tanhαmh = 0. (2.38)

For the determination of the unknowns Rm, Tm, Am, Bm, Cm, Dm, Em and Hm, a

system of linear equations of size (8N + 12)× (8N + 12) is obtained after truncating the

infinite sum in each of the Equations (2.26)-(2.33) and (2.35)-(2.38) and solved numerically

by using the Gauss-Elimination method with the help of MATLAB. The effectiveness of

PS to mitigate the structural response on EP can be studied through reflection coefficient

|R0|, transmission coefficient |T0| and dissipation coefficient kd, where kd is given by the

relation (2.55).

Force on PS: The horizontal force induced by the wave train impinging with PS is

evaluated by integrating the pressure distribution along the front face and the rear face

of PS. So, the non-dimensionalised force (kf1) on the front face of the structure at x = 0

and the force (kf2) on the rear face of the structure at x = b can be respectively written

as (see Koley [111])

kf1 =

∣∣∣∣ iωgh2
∫ 0

−h
ϕ1(0

−, y)dy

∣∣∣∣, (2.39)

kf2 =

∣∣∣∣ iωgh2
∫ 0

−h
ϕ3(b

+, y)dy

∣∣∣∣. (2.40)

Plate deflection: Using the linearised kinematic condition, the plate deflection of the

floating EP is calculated by using the formula

η4 =
i

ω

∂ϕ4
∂y

∣∣∣∣
y=0

. (2.41)

Free surface elevation: Using the linearised kinematic condition, the free surface

elevation in the respective open water regions is computed by using the formula

ηj =
i

ω

∂ϕj
∂y

∣∣∣∣
y=0

, j = 1, 3, 5. (2.42)

Shear force and strain: The shear force Sf and strain St on EP are calculated for the

normal incident (θ = 0◦) of surface waves by using the formulas (see Bhattacharjee and
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Soares [112])

Sf =
D

ωh

∣∣∣∣ ∂4ϕ4∂x3∂y

∣∣∣∣
y=0

, (2.43)

St =
h0
2ω

∣∣∣∣ ∂3ϕ4∂x2∂y

∣∣∣∣
y=0

. (2.44)

2.4 Energy Balance Relation

In the present problem, apart from the reflection and transmission of waves, a major part

of wave energy is dissipated by PS. Thus, for a better understanding of the quantitative

behavior of wave reflection, transmission, and dissipation, an energy identity is derived.

The energy identity relation can be derived using the Green’s identity, which is given by∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds = 0,

where ϕ∗ corresponds to complex conjugate of ϕ and ∂
∂n corresponds to the outward normal

derivative to the boundary C. Consider C = C1∪C2∪C3, where C1={x = −X, −h ≤ y ≤ 0;

y = −h, −X ≤ x ≤ 0; x = 0, −h ≤ y ≤ 0; y = 0, −X ≤ x ≤ 0}, C2={x = 0, −h ≤ y ≤ 0;

y = −h, 0 ≤ x ≤ b; x = b, −h ≤ y ≤ 0; y = 0, 0 ≤ x ≤ b} and C3={x = b, −h ≤ y ≤ 0;

y = −h, b ≤ x ≤ X; x = X, −h ≤ y ≤ 0; y = 0, d ≤ x ≤ X ; y = 0, c ≤ x ≤ d ;

y = 0, b ≤ x ≤ c }. Due to no flow condition on the bottom bed, the contribution from

the boundaries y = −h, −X ≤ x ≤ 0; y = −h, 0 ≤ x ≤ b and y = −h, b ≤ x ≤ X

is zero. The contribution from the lines y = 0, −X ≤ x ≤ 0; y = 0, b ≤ x ≤ c and

y = 0, d ≤ x ≤ X is zero because of free surface condition.

Due to EP condition, the contribution from the boundary y = 0, c ≤ x ≤ d yields

I =

∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds =

∫ d

c

(
ϕ4
∂ϕ∗4
∂y

− ϕ∗4
∂ϕ4
∂y

)
dx

=
1

K

∫ d

c

(
∂ϕ∗4
∂y

[
D

(
∂2

∂x2
− µ2

)2

+ 1− ϵeK

]
∂ϕ4
∂y

− ∂ϕ4
∂y

[
D

(
∂2

∂x2
− µ2

)2

+ 1− ϵeK

]
∂ϕ∗4
∂y

)
dx

(by using EP condition (2.5))

=
D

K

∫ d

c

(
∂ϕ∗4
∂y

[(
∂4

∂x4
− 2µ2

∂2

∂x2

)]
∂ϕ4
∂y

− ∂ϕ4
∂y

[(
∂4

∂x4
− 2µ2

∂2

∂x2

)]
∂ϕ∗4
∂y

)
dx

=
D

K
(I1 − I2),

(2.45)

where

I1 =

∫ d

c

(
∂ϕ∗4
∂y

[(
∂4

∂x4
− 2µ2

∂2

∂x2

)]
∂ϕ4
∂y

)
dx

=
∂ϕ∗4
∂y

∂4ϕ4
∂x3∂z

∣∣∣∣x=d

x=c

− 2µ2
∂ϕ∗4
∂y

∂2ϕ4
∂x∂z

∣∣∣∣x=d

x=c

− νµ2
∂2ϕ∗4
∂x∂z

∂ϕ4
∂y

∣∣∣∣x=d

x=c
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+

∫ d

c

(
∂3ϕ∗4
∂x2∂z

∂3ϕ4
∂x2∂z

)
dx+ 2µ2

∫ d

c

(
∂2ϕ∗4
∂x∂z

∂2ϕ4
∂x∂z

)
dx

(by integration by parts and using edge condion (2.6)).

(2.46)

and

I2 =

∫ d

c

(
∂ϕ4
∂y

[(
∂4

∂x4
− 2µ2

∂2

∂x2

)]
∂ϕ∗4
∂y

)
dx

=
∂ϕ4
∂y

∂4ϕ∗4
∂x3∂z

∣∣∣∣x=d

x=c

− 2µ2
∂ϕ4
∂y

∂2ϕ∗4
∂x∂z

∣∣∣∣x=d

x=c

− νµ2
∂2ϕ4
∂x∂z

∂ϕ∗4
∂y

∣∣∣∣x=d

x=c

+

∫ d

c

(
∂3ϕ∗4
∂x2∂z

∂3ϕ4
∂x2∂z

)
dx+ 2µ2

∫ d

c

(
∂2ϕ4
∂x∂z

∂2ϕ∗4
∂x∂z

)
dx.

(by integration by parts and using edge condion (2.6)).

(2.47)

Now, by substituting Equations (2.46) and (2.47) in Equation (2.45) , we get

I =
D

K

{[
∂ϕ∗4
∂y

∂4ϕ4
∂x3∂z

− 2µ2
∂2ϕ4
∂x∂z

∂ϕ∗4
∂y

+ νµ2
∂2ϕ4
∂x∂z

∂ϕ∗4
∂y

]∣∣∣∣x=d

x=c

−
[
∂ϕ4
∂y

∂4ϕ∗4
∂x3∂z

− 2µ2
∂2ϕ∗4
∂x∂z

∂ϕ4
∂y

+ νµ2
∂2ϕ∗4
∂x∂z

∂ϕ4
∂y

]∣∣∣∣∣
x=d

x=c

}

=
D

K

{
∂ϕ∗4
∂y

[
∂4ϕ4
∂x3∂z

− (2− ν)µ2
∂2ϕ4
∂x∂z

]∣∣∣∣x=d

x=c

− ∂ϕ4
∂y

[
∂4ϕ∗4
∂x3∂z

− (2− ν)µ2
∂2ϕ∗4
∂x∂z

]∣∣∣∣∣
x=d

x=c

}
=0 (by using edge condion Eq. (2.6)).

(2.48)

The line x = 0, −h ≤ y ≤ 0 contributes∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds =

∫ 0

−h

(
[ϵp(mp + ifP )− 1]ϕ2ϕ

∗
2x − [ϵp(mp − ifp)− 1]ϕ∗2ϕ2x

)
x=0

dy.

(2.49)

The line x = b, −h ≤ y ≤ 0 contributes∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds =

∫ 0

−h

(
[ϵp(mp − ifp)− 1]ϕ∗2ϕ2x − [ϵp(mp + ifp)− 1]ϕ2ϕ

∗
2x

)
x=b

dy.

(2.50)

The line y = 0, 0 ≤ x ≤ a contributes∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds =

∫ b

0

−2iKfp|ϕ2|2dx. (2.51)

The contribution from the line x = −X, −h ≤ y ≤ 0 is∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds = (1− |R0|2)

ik0x

cosh2 k0h

(
sinh(2k0h) + 2k0h

2k0

)
. (2.52)

The contribution from the line x = X, −h ≤ y ≤ 0 is∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds = −(|T0|2)

ik0x

cosh2 k0h

(
sinh(2k0h) + 2k0h

2k0

)
. (2.53)

Adding all the contributions from C1, C2 and C3, the energy balance relation is derived as

|R0|2 + |T0|2 + kd = 1 (2.54)
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where

kd =
2k0 cosh

2 k0h

ik0x(sinh 2k0h+ 2k0h)

[∫ 0

−h

(
[ϵp(mp + ifp)− 1]ϕ2ϕ

∗
2x − [ϵp(mp − ifp)− 1]ϕ∗2ϕ2x

)
x=0

dy

+

∫ 0

−h

(
[ϵp(mp − ifp)− 1]ϕ∗2ϕ2x − [ϵp(mp + ifp)− 1]ϕ2ϕ

∗
2x

)
x=b

dy

−
∫ b

0

(
2iKfp|ϕ2|2

)
y=0

dx

]
.

(2.55)

2.5 Results and Discussion

In this section, for different values of structural parameters, the hydrodynamic quantities,

namely reflection coefficient (|R0|), transmission coefficient (|T0|), dissipation coefficient

(kd), hydrodynamic forces on PS (kf1 and kf2), EP deflection (η4), Free surface elevation

(η1, η3 and η5 ), shear force (Sf ) and strain (St) are calculated. The values of the

non-dimensional parameters k0h = 1, mp = 1, fp = 0.5, ϵp = 0.55, b/h = 0.6, L1/h = 4,

D/h4 = 102, ϵe/h = 0.01, L2/h = 5, and θ = 20◦ are kept fixed in this investigation unless

otherwise mentioned. Several computations are performed to investigate the effect of

various structural parameters, but few results are shown in this section to avoid repetition.

2.5.1 Convergence Study for N

The convergence on the number of evanescent modes N is studied in Table 2.1. The

values of |R0| and |T0| are tabulated against various values of k0h for various N = 2, 4, 6

and 8. Here, it is noticed that the accuracy of |R0| and |T0| is achieved up to the fourth

decimal point for N = 6 for all values of k0h. Hence, N = 6 is considered throughout this

study.

k0h N = 2 N = 4 N = 6 N = 8

|R0| |T0| |R0| |T0| |R0| |T0| |R0| |T0|
0.25 0.1147 0.9324 0.1145 0.9326 0.1144 0.9328 0.1144 0.9328

0.5 0.1328 0.8831 0.1324 0.8831 0.1324 0.8831 0.1324 0.8831

0.75 0.2788 0.7591 0.2785 0.7593 0.2784 0.7595 0.2784 0.7595

1 0.2045 0.7451 0.2048 0.7453 0.2049 0.7453 0.2049 0.7453

1.25 0.4774 0.3425 0.4767 0.3429 0.4766 0.3430 0.4766 0.3430

1.5 0.6572 0.1363 0.6570 0.1362 0.6569 0.1361 0.6569 0.1361

Table 2.1: Convergence on N through |R0| and |T0|.
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2.5.2 Order of Convergence

Let xk be an approximation to R0. Then, from the definition of order of convergence

(Refer Section 2.5, Chapter 2 of Jain et al. [113]), we can write

|Ek+1| ≈ A|Ek|C , (2.56)

where C is the positive real number called the order of convergence, for which there exists

a finite constant A ≠ 0, and |Ek+1| = |xk+1 − xk|. Similarly, we can write

|Ek+2| ≈ A|Ek+1|C . (2.57)

Now, dividing Equation (2.57) by Equation (2.56), we will get

|Ek+2|
|Ek+1|

≈ |Ek+1|C
|Ek|C

(2.58)

Applying logarithmic on both sides, we will get

C ≈
log

|Ek+2|
|Ek+1|

log
|Ek+1|
|Ek|

. (2.59)

⇒ C ≈
log

|xk+2−xk+1|
|xk+1−xk|

log
|xk+1−xk|
|xk−xk−1|

( using definition |Ek+1| = |xk+1 − xk|). (2.60)

To find the order of convergence, we first find the numerical values of |R0| for various

values of N=2,4,6,8,10 and 12, denoted as |R0|N , N=2,4,6, 8,10,12 and for various values

of k0h which are tabulated in Table 2.2. Hence, following the Equation (2.60), we define

the order of convergence ‘C’ for the number of evanescent modes N through the reflection

coefficient |R0|, by the formula

C =
log
∣∣∣ |R0|N+4−|R0|N+2

|R0|N+2−|R0|N

∣∣∣
log
∣∣∣ |R0|N+2−|R0|N
|R0|N−|R0|N−2

∣∣∣ , N = 4, 6, 8. (2.61)

From Table 2.2, it is concluded that the order convergence lies between 0.5 and 1.

k0h N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

|R0| C |R0| C |R0| C |R0| C |R0| C |R0| C

0.25 0.1143687434 - 0.1143664624 0.6689 0.1143659158 0.7536 0.1143657056 0.8048 0.1143656033 - 0.1143655460 -

0.5 0.1323497521 - 0.1323534729 0.6808 0.1323544386 0.7625 0.1323548241 0.8094 0.1323550155 - 0.1323551241 -

0.75 0.2783717262 - 0.2783561425 0.6626 0.2783526462 0.7476 0.2783513475 0.7999 0.2783507281 - 0.2783503855 -

1 0.2045156244 - 0.2048334305 0.6691 0.2049107688 0.7559 0.2049408108 0.8052 0.2049555103 - 0.2049637770 -

1.25 0.4773742207 - 0.4767347252 0.6673 0.4765816966 0.7543 0.4765227703 0.8042 0.4764940832 - 0..4764780037 -

1.5 0.6572077968 - 0.6569386337 0.6702 0.6568766009 0.7534 0.6568534018 0.8025 0.6568423439 - 0.6568362426 -

Table 2.2: Order of convergence for various value of N .
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Figure 2.2: Validation of present results with results of (a) Hermans [70] and Dalrymple
et al. [11].

2.5.3 Validation

To validate the present methodology and results, it may be noticed that this problem is

reduced to the work by Hermans [70] in the absence of PS (i.e., mp = 1, fp = 0, ϵp = 1).

Figure 2.2a illustrates the numerical values of |R0| and |T0| by the present method for

D/h4 = 10−3, θ = 0◦, L2/h = 30 which are well-matched with the results of Hermans [70].

As a second validation, in the absence of EP (i.e., D/h4 = 0, ϵe = 0), the present study

reduces to scattering of water waves by PS ( Dalrymple et al. [11]). Figure 2.2b illustrates

the present results of |R0| for Kh = 0.2012, ϵp = 0.4, fp = 1 and b/h = 1 in the absence

of EP which are well-matched with the results of Dalrymple et al. [11]. Further, to verify

the energy identity derived in Section 2.4 and given in relation (2.54), |R0|, |T0|, and kd
values are determined numerically and tabulated in Table 2.3 for different values of k0h.

The last two columns of Table 2.3 reveal that the energy identity is satisfied, showing the

accuracy of the present numerical computations.

k0h |R0| |T0| 1 − |R0|2 − |T0|2 kd

0.25 0.1144 0.9328 0.1168 0.1168

0.5 0.1323 0.8828 0.2031 0.2032

0.75 0.2785 0.7607 0.3438 0.3445

0.1 0.1971 0.7410 0.4141 0.4147

1.25 0.4908 0.3316 0.6497 0.6501

1.5 0.6622 0.1373 0.5497 0.5503

Table 2.3: Verification of energy identity.
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2.5.4 Effect of Various Parameter on Reflection Coefficient (|R0|),
Transmission Coefficient (|T0|) and Dissipation Coefficient (kd)

Figure 2.3 illustrates the behavior of |R0|, |T0| and kd versus the wavenumber k0h for

different values of width b/h of PS extended from top to bottom. It is illustrated that as the

width b/h increases, |R0| decreases, |T0| decreases, and kd increases because more incident

wave energy is dissipated and less incident wave energy is reflected and transmitted by a

wider PS. It is also observed that with the increase in k0h, the dissipation coefficient kd

increases, and the transmission coefficient |T0| decreases.
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Figure 2.3: |R0|, |T0| and kd vs k0h for b/h = 0.4, 0.6, 0.8 with θ = 45◦.
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Figure 2.4: |R0|, |T0| and kd vs k0h for ϵp = 0.4, 0.6, 0.8 with b/h = 1.

Figure 2.4 reveals the behavior of |R0|, |T0| and kd versus the wavenumber k0h for

different values of porosity ϵp of PS. |R0|, |T0| and kd show the same behavior with an

increase in k0h as in Figure 2.3. As the porosity ϵp increases, more waves are transmitted

and dissipated by PS, due to which there is a decrease in wave reflection, as observed in

Koley and Panduranga [114].

Figures 2.5, 2.6 and 2.7 illustrate the behavior of |R0|, |T0| and kd versus L1/h for

different values of width b/h, frictional coefficient fp and porosity ϵp, respectively. In

these figures, |R0|, |T0| and kd show a periodic and oscillatory pattern with L1/h. The

occurrence of optima in wave reflection due to the resonating interaction of waves in a
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confined zone is referred to as the trapping of waves, which has significant importance in

creating calm zones in the coastal environment, as discussed by Koley et al. [115]. It is

also noted from Figures 2.5 and 2.6 that with an increase in b/h and fp, more water waves

are dissipated by PS, and consequently, fewer waves are reflected and transmitted by PS.

Because with increases in b/h and fp, more incident waves are dissipated by PS, and as a

consequence, fewer waves are transmitted and reflected by PS. As observed in Figure 2.4,

Figure 2.7 shows that the energy dissipation coefficient kd and transmission coefficient |T0|
increase but reflection coefficient |R0| decreases with an increase in ϵp, however moderate

porosity (not producing high transmission) will be helpful for the requirement of creating

a calm zone towards the lee side of EP.
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Figure 2.5: |R0|, |T0| and kd vs L1/h for b/h = 0.4, 0.6, 0.8 with θ = 45◦.
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Figure 2.6: |R0|, |T0| and kd vs L1/h for fp = 0.25, 0.5, 0.75 with θ = 45◦.

Figure 2.8 demonstrates the behavior of |R0|, |T0| and kd versus L2/h (length of EP)

for different values of width b/h. The figure shows that the reflection coefficient |R0|,
transmission coefficient |T0|, and dissipation coefficient kd follow a periodic and oscillatory

pattern with EP length. With an increase in b/h, the wave reflection and transmission

decrease, but the energy dissipation increases as in Figures 2.3 and 2.5.

Figure 2.9 depicts the behavior of |R0|, |T0| and kd versus L2/h for different values

of flexural rigidity D/h4. With the increase in flexural rigidity D/h4 of EP, the formation
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of the number of maxima and minima for 0 < L2/h < 32, in |R0|, |T0| and kd curves are

decreased. This may be due to the formation of the standing wave. From Figures 2.9a and

2.9b, it is noted that as D/h4 increases, wave reflection increases and wave transmission

decreases. This is due to the reduced flexure of EP, making EP more rigid, which makes

more incident waves reflected by EP and fewer waves transmitted. Figure 2.9c shows

that as D/h4 increases, the energy dissipation increases. Here, it is also noted that with

an increase in L2/h, the local maximum value in wave reflection and energy dissipation

increase. However, after a certain length, the local maximum values of the |R0| and kd

become constant. The opposite behavior is noted in transmission coefficient |T0|.
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Figure 2.7: |R0|, |T0| and kd vs L1/h for ϵp = 0.2, 0.5, 0.8 with b/h = 1.5, L2/h = 8,
k0h = 1.1.
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Figure 2.8: |R0|, |T0| and kd vs L2/h for b/h = 0.4, 0.6, 0.8 with D/h4 = 10, θ = 36◦,
ϵp = 0.5.

Figure 2.10 depicts the behavior |R0|, |T0| and kd versus θ for different values of width

b/h. Figures 2.10a and 2.10c show that with an increase in θ, the reflection coefficient

decreases and the dissipation coefficient increases except for specific local optima for 0◦ <

θ < 82◦. However, there is a sudden rise in wave reflection and a sudden fall in energy

dissipation for various values of b/h when the wave’s angle of incidence is close to 82◦.

Furthermore, from Figure 2.10b, it is clear that wave transmission is decreasing in an

oscillatory pattern for 0◦ < θ < 27◦ and at close to θ = 27◦, there is a sharp fall in |T0|
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and it became zero when θ > 65◦. This local optima in these hydrodynamic quantities

may be due to the change of phase of the incident wave and reflected wave in the presence

of PS and EP.
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Figure 2.9: |R0|, |T0| and kd vs L2/h for D/h4 = 10, 102, 104 with b/h = 1, L1/h = 6,
k0h = 0.83, θ = 10◦.
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Figure 2.10: |R0|, |T0| and kd vs θ for b/h = 0.4, 0.6, 0.8.

2.5.5 Effect of Various Parameters on Force (kf1 and kf2) Experienced

on PS, Plate Deflection (Re(η4)), Free Surface Elevation (Re(ηj), j =

1, 3, 5), Shear Force (Sf) and Strain (St)

Figure 2.11 shows the behavior of force kf1 (on the front face) and kf2 (on the rear face) of

PS versus k0h for different values of fp. From the figure, it is found that the wave force kf1

and kf2 decrease in an oscillatory pattern with an increase in k0h. Further, Figure 2.11a

shows that the wave forces kf1 increase with an increase in fp, but from Figure 2.11b, it

is found that the wave force kf2 decreases with an increase in fp.

In Figure 2.12, the behavior of forces kf1 (on the front face) and kf2 (on the rear face)

of PS versus L1/h for different values of b/h are investigated. Here, both the wave forces

show a periodic and oscillatory pattern with the increase in L1/h as shown in Figure 2.5

for the scattering coefficients with L1/h. Further, Figure 2.12a shows that with an increase
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in b/h, the wave force kf1 increases, but the wave force kf2 in Figure 2.12b, decreases,

which may be due to PS with a larger width leads to more wave damping as discussed by

Singla et al. [86].
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Figure 2.11: kf1 and kf2 vs k0h for fp = 0.25, 0.5, 0.75.
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Figure 2.12: kf1 and kf2 vs L1/h for b/h = 0.4, 0.6, 0.8.

From Figure 2.13 it is observed that the elevation η5 is significantly less (creating calm

zone) as compared to η1 for fixed values of fp and ϵp, due to the fact that PS dissipates

a major part of the wave energy. Furthermore, Figure 2.13a depicts that EP deflection

decreases as fp increases. This is due to, as fp increases, more wave energy is dissipated by

PS, and less wave energy is transmitted towards the lee side of EP as observed in Figure

2.6. Figure 2.13b depicts that with an increase in ϵp, plate deflection increases. From

these graphs, the higher value of friction coefficient and moderated value of porosity of PS

can effectively mitigate the structural response of EP by reducing plate deflection.
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Figure 2.13: Plate deflection and free surface elevation Re(ηj) for (a) fp = 0.25, 0.5, 0.75
with L2/h = 30, b/h = 5, L1/h = 20 , (b) ϵp = 0.1, 0.3, 0.9 with D/h4 = 10, L2/h = 30,
L1/h = 20, b/h = 2.
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Figure 2.14: Sf and St for fp = 0.25, 0.5, 0.75 with θ = 0◦ and L2/h = 30.

Figure 2.14 depicts the graphs of the shear force Sf and strain St for different values

of fp. Due to the assumption of free edge behavior, Sf and St are zero at both ends of

EP. Further, the variation of Sf and St follows an oscillatory pattern, and their values

decrease as the value of fp increases. This is because with an increase in fp, more wave

energy is dissipated by PS, implying less impact of wave load in EP.

In Figure 2.15, Sf and St are plotted for absence of PS (i.e. mp = 1, fp = 0 and

ϵp = 1) and the present work ( mp = 1, fp = 0.5 and ϵp = 0.55). The figure shows that

shear force and strain in the presence of PS extended from top to bottom are less compared

to the absence of PS, implying a reduction in structural response on EP. Hence, it reflects
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that PS extended from top to bottom is useful to mitigate the structural response of EP

from wave load.
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Figure 2.15: Sf and St for in the absence of PS, and Present work with Kh = 1, L1/h = 4,
b/h = 0.6 with θ = 0◦ and L2/h = 30.

2.6 Conclusion

This chapter analyzes the hydroelastic response of an oblique incident water wave on

EP in the presence of PS extending from top to bottom. The matching conditions on

interfaces and orthogonality of eigenfunctions are used. A system of linear algebraic

equations is solved to determine the value of the reflection and transmission coefficients.

The dissipation coefficient is derived through energy identity. These coefficients are plotted

through different graphs. The study found that with an increase in the width and frictional

coefficient of PS, the wave reflection and transmission decrease as PS dissipates a major

part of the incident wave. Further, with an increase in the frictional coefficient, plate

deflection, free surface elevation, shear force, and strain decrease, causing a reduction

in wave load on EP. In addition, a moderate porosity value of PS is preferable for this

problem. The wave forces on PS follow a periodic and oscillatory pattern with the distance

between PS and EP. However, it is reduced in an oscillatory pattern with the variation of

the angle of incident. Thus, a suitable arrangement of EP and PS of specific configurations

can provide a long-term and cost-effective solution to diminish the hydroelastic response

of EP, which will be helpful for coastal engineering applications.



Chapter 3

Mitigation of Wave Load on a Sea

Wall by a Vertical Porous Structure

in the Presence of an Elastic Plate

3.1 Introduction

In Chapter 2, the effectiveness of PS (extended from bottom to top) on mitigating

structural response on EP was analyzed. Since the sea wall plays a crucial role in coastal

engineering, so in this chapter, we focus on examining the effectiveness of PS in reducing

wave loads on the sea wall in the presence of EP. The PS is placed at a finite distance from

EP, and EP is positioned at a finite distance from the sea wall to reduce wave loads on the

sea wall. The problem is examined for obliquely incident waves, assuming small amplitude

and linear water wave theory. Thin plate theory is used to model the flow past EP, while

Sollitt and Cross theory is used to model the flow past PS. The eigenfunction expansion

method is employed to solve the boundary value problem, which coins to a system of

equations that has been solved to determine the reflection and transmission coefficients.

The study aims to determine the optimal distances between the PS and EP and between

EP and the sea wall to achieve maximum wave dissipation by the PS, thereby reducing

wave loads on the sea wall. Scattering coefficients and various hydrodynamic parameters

related to wave scattering, such as wave force experienced on the sea wall, free surface

elevation, plate deflection, shear force, and strain, are analyzed for various wave and

structural parameters of PS and EP. The energy balance relation is derived and verified

for the accuracy of the computational results and to provide quantitative information

about wave energy dissipation. A major part of the work presented in this chapter has

been published in Sahoo et al. [116].

3.2 Mathematical Formulation

In a three-dimensional Cartesian coordinate system, the wave interaction with a rigid wall

in the presence of EP and PS is investigated by selecting the y-axis as vertically upward

and the undisturbed water surface is denoted as the xz-plane. The whole fluid domain

is divided into 5 regions, and y = −h represents the flatbed, as shown in Figure 3.1. EP

with length L2 is retained at a distance L3 from the stiff wall, while PS with width b is
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positioned at L1 distance from it. Along the z-axis, PS is indefinitely long. To satisfy the

matching constraints at vertical interfaces, the solution variations in each region are taken

into consideration to be the same (by Snell’s law). The fluid is inviscid, incompressible

and the flow is irrotational. Let the propagation of time harmonic wave with angular

frequency ω move at an angel θ with respect to x-axis. In each region j = 1, 2, 3, 4 and 5,

the velocity potential Φj(x, y, z, t) = Re{ϕj(x, y)ei(µz−ωt)}, where ϕj satisfying the partial

differential equation (
∂2

∂x2
+

∂2

∂y2
− µ2

)
ϕj = 0, in each region j, (3.1)

where µ = k0 sin θ, k0 is the wavenumber of the incident wave.

EP

Rigid bottom

x = 0 x = b x = c x = d x = p

1 2 3 4 5

P
S Se
a
w
al
l

y = −h

y = 0

Figure 3.1: Schematic representation of the physical problem.

The no-flow condition on the bottom is given by

ϕjy = 0, on y = −h for j = 1, 2, 3, 4, 5. (3.2)

In the open water regions, the free surface boundary condition is expressed by

ϕjy −Kϕj = 0 on y = 0, for j = 1, 3, 5. (3.3)

In PS region 2, the free surface boundary condition in porous medium is given by

ϕ2y −K(mp + ifp)ϕ2 = 0 on y = 0, (3.4)

withK = ω2/g, g is the acceleration due to gravity, mp and fp are the non-dimensionalized

inertial coefficient and friction factor respectively.

At EP the condition is[
D

(
∂2

∂x2
− µ2

)2

+ 1− ϵeK

]
ϕ4y −Kϕ4 = 0 on y = 0. (3.5)
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where D = EI/ρg is the flexural rigidity of the plate with E being Young’s modulus,

I = h31/12(1 − ν2), h1 is the thickness of EP, ν is the Poisson’s ratio, ϵe = ρeh1/ρ, ρe is

the density of EP and ρ is the density of the fluid.

The shear force and bending moment at the plate’s edges vanish when EP is assumed to

be floating freely on the water’s surface, which gives rise to(
∂2

∂x2
− νµ2

)
ϕ4y = 0 and

∂

∂x

(
∂2

∂x2
− (2− ν)µ2

)
ϕ4y = 0 at (c, 0), (d, 0). (3.6)

Since the solution must be continuous at each interface, the continuity of pressure and

velocity at PS interfaces and EP interfaces yield

ϕ1 = (mp + ifp)ϕ2, ϕ1x = ϵpϕ2x on x = 0,−h ≤ y ≤ 0, (3.7)

ϕ3 = (mp + ifp)ϕ2, ϕ3x = ϵpϕ2x on x = b,−h ≤ y ≤ 0, (3.8)

ϕ3 = ϕ4, ϕ3x = ϕ4x on x = c,−h ≤ y ≤ 0, (3.9)

ϕ4 = ϕ5, ϕ4x = ϕ5x on x = d,−h ≤ y ≤ 0, (3.10)

where ϵp denotes the porosity of PS. The condition at rigid wall located at x = p condition

is given by

ϕ5x = 0 on x = p,−h ≤ y ≤ 0. (3.11)

Finally, the far-field condition is provided by

ϕ1(x, y) ≃
(
ig

ω

)
cosh k0(y + h)

cosh k0h
{eik0xx +R0e

−ik0xx} as x→ −∞. (3.12)

where R0 denotes the unknown constant associated with the reflected wave to be

determined here, k0x =
√
k20 − µ2, and k0 is the wavenumber of the incident wave, which

is the positive real root for m = 0 of the transcendental equation in km as given by

K − km tanh kmh = 0. (3.13)

3.3 Method of Solution

By using the method of separation of variables in each region, the spatial velocity potential

functions are expressed as series solutions in terms of eigenfunctions. The spatial velocity

potentials in the open water regions 1, 3 and 5 satisfying Equations (3.1), (3.2), (3.3),

(3.11) and (3.12) can be written as

ϕ1 =

(
ig

ω

)[
eik0xxΨ0 +

∞∑
m=0

Rme
−ikmxxΨm

]
for −∞ < x ≤ 0, −h ≤ y ≤ 0, (3.14)



42
Chapter 3. Mitigation of Wave Load on a Sea Wall by a Vertical Porous Structure in

the Presence of an Elastic Plate

ϕ3 =

(
ig

ω

) ∞∑
m=0

[
Ame

ikmx(x−b) +Bme
−ikmx(x−c)

]
Ψm for b ≤ x ≤ c,−h ≤ y ≤ 0,

(3.15)

ϕ5 =

(
ig

ω

) ∞∑
m=0

Tm cos kmx(x− p)Ψm for d ≤ x ≤ p,−h ≤ y ≤ 0, (3.16)

where

Ψm =
cosh km(z + h)

cosh kmh
, m = 0, 1, 2, . . . (3.17)

Rm, Am, Bm and Tm (m = 0, 1, 2, . . . ) are unknown complex constants, kmx =
√
k2m − µ2

and km (m = 1, 2, 3, . . . ) are purely imaginary roots of the dispersion relation (3.13).

Again, the velocity potential in the PS region 2 satisfying Equations (3.1), (3.2) and (3.4)

can be written as

ϕ2 =

(
ig

ω

) ∞∑
m=0

[
Cme

iqmxx +Dme
−iqmx(x−b)

]
Fm for 0 ≤ x ≤ b, −h ≤ y ≤ 0, (3.18)

where

Fm =
cosh qm(z + h)

cosh qmh
, m = 0, 1, 2, . . . (3.19)

Cm and Dm (m = 0, 1, 2, . . . ) are unknown complex constants, qmx =
√
q2m − µ2 and

qm, m = 0, 1, 2 . . . are the complex roots of the dispersion relation

K(mp + ifp)− qm tanh qmh = 0. (3.20)

Finally, in EP region 4, the velocity potential satisfying Equations (3.1), (3.2) and (3.5)

can be written as

ϕ4 =

(
ig

ω

) ∞∑
m=−2

[
Eme

iαmx(x−c) +Hme
−iαmx(x−d)

]
Gm for c ≤ x ≤ d, −h ≤ y ≤ 0

(3.21)

where

Gm =
coshαm(z + h)

coshαmh
m = −2,−1, 0, 1, 2, . . . , (3.22)

Em and Hm (m = −2,−1, 0, 1, 2, . . . )are unknown complex constants, αmx =
√
α2
m − µ2

and αm are the complex roots of the form ±a+ ib for m = −2,−1, positive real roots for

m = 0 and purely imaginary roots for m = 1, 2, . . . for the equation

(Dα4
m + 1− ϵeK)αm tanhαmh = K. (3.23)

Utilizing Equations (3.14)-(3.16), (3.18) and (3.21) along with orthogonality of Ψm in

matching conditions (3.7)-(3.10), we have

U0n +

∞∑
m=0

RmUmn −
∞∑

m=0

(mp + ifp)(Cm +Dme
iqmxb)Vmn = 0, (3.24)
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ik0xU0n −
∞∑

m=0

ikmxRmUmn −
∞∑

m=0

iϵpqmx(Cm −Dme
iqmxb)Vmn = 0, (3.25)

∞∑
m=0

(Am +Bme
−ikmx(b−c))Umn −

∞∑
m=0

(mp + ifp)(Cme
iqmxb +Dm)Vmn = 0, (3.26)

∞∑
m=0

ikmx(Am −Bme
−ikmx(b−c))Umn −

∞∑
m=0

iϵpqmx(Cme
iqmxb −Dm)Vmn = 0, (3.27)

∞∑
m=0

(Ame
ikmx(c−b) +Bm)Umn −

∞∑
m=−2

(Em +Hme
−iαmx(c−d))Wmn = 0, (3.28)

∞∑
m=0

ikmx(Ame
ikmx(c−b) −Bm)Umn −

∞∑
m=−2

iαmx(Em −Hme
−iαmx(c−d))Wmn = 0, (3.29)

∞∑
m=−2

(Eme
iαmx(d−c) +Hm)Wmn −

∞∑
m=0

Tm cos kmx(d− p)Umn = 0, (3.30)

∞∑
m=−2

iαmx(Eme
iαmx(d−c) −Hm)Wmn +

∞∑
m=0

Tmkmx sin kmx(d− p)Umn = 0. (3.31)

where

Umn =

∫ 0

−h
ΨmΨndy, Vmn =

∫ 0

−h
FmΨndy, Wmn =

∫ 0

−h
GmΨndy. (3.32)

Further, from edge conditions (3.6), we have

∞∑
m=−2

αm(α2
mx + νµ2)(Em +Hme

−iαmx(c−d)) tanhαmh = 0, (3.33)

∞∑
m=−2

iαmxαm(α2
mx + (2− ν)µ2)(Em −Hme

−iαmx(c−d)) tanhαmh = 0, (3.34)

∞∑
m=−2

αm(α2
mx + νµ2)(Eme

iαmx(d−c) +Hm) tanhαmh = 0, (3.35)

∞∑
m=−2

iαmxαm(α2
mx + (2− ν)µ2)(Eme

iαmx(d−c) −Hm) tanhαmh = 0. (3.36)

In Equations (3.24)-(3.31) and (3.33)-(3.36) keeping up to m = N (i.e. truncating

the series after N +1), we get 8N +12 equations with 8N +12 unknowns and the system

is solved numerically by using the Gauss-Elimination method with the help of MATLAB.

In this study, the plane wave solution is applied (as considered in Sharma et al. [117]),

because for almost all the practical cases, the plane wave approximation is sufficient to

describe the wave behaviour as described in Dalrymple et al. [11]. The efficiency of PS

and EP to mitigate the wave impact on the sea wall can be studied through wave force

(Fw) on the rigid wall, reflection coefficient (|R0|) and dissipation coefficient (kd) given by

Equation (3.44).
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Force on rigid wall: The wave force Fw on the rigid wall can be computed using the

formula given by

Fw =

∣∣∣∣−iωgh2

∫ 0

−h
ϕ5(p, y)dy

∣∣∣∣. (3.37)

Water elevation in region 5: The water elevation in region 5 is computed by using the

formula

η5 =
i

ω

∂ϕ5
∂y

∣∣∣∣
y=0

. (3.38)

3.4 Energy Balance Relation

In the present problem, apart from the reflection of waves, a major part of wave energy is

dissipated by PS. Thus, for a better understanding of the quantitative behavior of wave

reflection and dissipation, an energy identity is derived. The energy identity is derived

using the Green’s identity which is given by∫
C

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds = 0,

where ψ corresponds to complex conjugate of ϕ and ∂
∂n corresponds to the outward normal

derivative to the boundary C. Consider C = C1∪C2∪C3, where C1={x = −X ,−h ≤ y ≤ 0;

y = −h,−X ≤ x ≤ 0; x = 0,−h ≤ y ≤ 0; y = 0,−X ≤ x ≤ 0}, C2={x = 0,−h ≤ y ≤ 0;

y = −h, 0 ≤ x ≤ b; x = b,−h ≤ y ≤ 0; y = 0, 0 ≤ x ≤ b} and C3={x = b,−h ≤ y ≤ 0;

y = −h, b ≤ x ≤ p; x = p,−h ≤ y ≤ 0; y = 0, d ≤ x ≤ p ; y = 0, c ≤ x ≤ d ;

y = 0, b ≤ x ≤ c }. The contribution from the bottom bed y = −h,−X ≤ x ≤ 0;

y = −h, 0 ≤ x ≤ b and y = −h, b ≤ x ≤ p is zero. The contribution from the free

surface y = 0,−X ≤ x ≤ 0; y = 0, b ≤ x ≤ c and y = 0, d ≤ x ≤ p is zero. Due to EP

condition and rigid wall condition the contributions from the lines y = 0, c ≤ x ≤ d and

x = p,−h ≤ y ≤ 0 are zero.

The line x = 0,−h ≤ y ≤ 0 contributes

∫
C

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds =

[∫ 0

−h

(
[ϵp(mp + ifP )− 1]ϕ2ψ2x − [ϵp(mp − ifp)− 1]ψ2ϕ2x

)
dy

]
x=0

.

(3.39)

The line x = b,−h ≤ y ≤ 0 contributes

∫
C

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds =

[∫ 0

−h

(
[ϵp(mp − ifp)− 1]ψ2ϕ2x − [ϵp(mp + ifp)− 1]ϕ2ψ2x

)
dy

]
x=b

.

(3.40)

The line y = 0, 0 ≤ x ≤ b contributes∫
C

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds =

∫ b

0
−2iKfp|ϕ2|2dx. (3.41)
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The contribution from the line x = −X ,−h ≤ y ≤ 0 is

∫
C

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds = (1− |R0|2)

ik0x

cosh2 k0h

(
sinh(2k0h) + 2k0h

2k0

)
. (3.42)

Adding all the contributions from C1, C2 and C3, the energy balance relation is

|R0|2 + kd = 1 (3.43)

where

kd =
2k0 cosh

2 k0h

ik0x(sinh 2k0h+ 2k0h)

[∫ 0

−h

(
[ϵp(mp + ifp)− 1]ϕ2ψ2x − [ϵp(mp − ifp)− 1]ψ2ϕ2x

)
x=0

dy

+

∫ 0

−h

(
[ϵp(mp − ifp)− 1]ψ2ϕ2x − [ϵp(mp + ifp)− 1]ϕ2ψ2x

)
x=b

dy −
∫ b

0

(
2iKfp|ϕ2|2

)
y=0

dx

]
.

(3.44)

k0h |R0| 1 − |R0|2 kd

0.2 0.8455 0.2851 0.2851

0.4 0.4846 0.7653 0.7652

0.6 0.5972 0.6439 0.6434

0.8 0.6857 0.5306 0.5309

1 0.6730 0.5481 0.5489

Table 3.1: Verification of energy identity.
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Figure 3.2: Verification of energy identity.
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3.5 Results and Discussion

In this section, the efficiency of a thick PS to lessen the wave impact on the rigid wall

in the presence of EP is investigated through graphs on wave force (Fw) experienced on

rigid wall, reflection coefficient (|R0|), dissipation coefficient (kd) as defined in Equation

(3.44) and free surface elevation (η5). In the present study, the value of the parameter mp

is taken as 1 and the values of fp range from 0 to 1, as considered in Dalrymple et al. [11].

Unless otherwise specified, the values of the non-dimensional parameters k0h = 1, b/h = 1,

mp = 1, fp = 0.6, ϵp = 0.5, θ = 250, L1/h = 8, D/h4 = 50, ϵe/h = 0.01, L2/h = 10 and

L3/h = 12 are fixed in this investigation.
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Figure 3.3: Validation of the present results.

3.5.1 Validation

To validate the present numerical results, the energy identity (3.43) involving reflection

and dissipation coefficients is verified numerically. The values of kd and 1 − |R0|2 are

tabulated for different values of k0h in Table 3.1 and plotted in Figure 3.2 against k0h.

From the Table 3.1 and Figure 3.2, it is found that the values of kd and 1 − |R0|2 are

well matched. Hence, the energy balance relation is satisfied, showing the accuracy of

the present numerical computations. Further, the present problem reduces to the work

of Hermans [70] in the absence of wall and PS and this particular case is illustrated in

Figure 3.3a in which the results on |R0| are well matched with the results of Hermans [70].

In the absence of wall and EP, the present study reduces to scattering of water waves by

the thick PS ( Dalrymple et al. [11]) and this particular case is illustrated in Figure 3.3b

in which the results of |R0| are well matched with the results of Dalrymple et al. [11].
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Figure 3.4: Fw vs θ for different values of (a) b/h (k0h = 0.2) and (b) fp (k0h = 0.2).
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Figure 3.5: Fw vs L1/h for different values of (a) D/h4 (k0h = 1.2) and (b) L2/h
(k0h = 1.2).

3.5.2 Effect of Various Parameter on Force (Fw) Experienced on the

Wall, Reflection Coefficient (|R0|), Dissipation Coefficient (kd) and

Free Surface Elevation (Re(η5))

In Figure 3.4, the results of Fw versus angle of incident θ are plotted for different values

of b/h and fp. From the figure, it is observed that Fw exhibits an oscillatory trend for

0◦ < θ < 80◦ then after that the oscillatory pattern vanishes and it drops down to zero for

θ = 90◦ (θ = 80◦ is called as the critical angle here). Also, it is seen that the wave force on

the sea wall reduces as b/h (or fp) value increases. This is because, with the increase in

b/h (or fp), PS dissipated more wave energy, and less wave energy is transmitted towards

the wall; hence, less wave force is experienced by the wall. It is also observed that in the



48
Chapter 3. Mitigation of Wave Load on a Sea Wall by a Vertical Porous Structure in

the Presence of an Elastic Plate

presence of PS, the force on the wall is less as compared to the case of absence of PS (i.e.

fp = 0 and ϵp = 1).

The variations in force Fw versus the gap L1/h between PS and EP for various values

of flexural rigidity D/h4 and length L2/h of EP values are depicted in Figure 3.5. It

is observed that force displays an oscillatory and periodic as a function of L1/h. The

occurrence of wave force optima is due to the wave trapping between PS and EP, which

is important for creating calm zones in the marine environment. Figure 3.5a shows that

the force exerted on the wall decreases as the flexural stiffness D/h4 of EP increases,

which is due to more reflection, less transmission of wave by EP and dissipation quality of

PS. According to Figure 3.5b, the force experienced by the vertical wall reduces as EP’s

length L2/h increases. A long EP enhances wave reflection, resulting in less force being

experienced on the wall.
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Figure 3.6: Fw vs L1/h for different values of (a) b/h and (b) fp.

Figure 3.6 shows the force Fw versus the gap L1/h between PS and EP for different

width b/h and frictional factor fp values of PS. It is found that the force is oscillatory and

periodic as a function of L1/h. Figures 3.6a and 3.6b show that the force Fw on the wall

decreases as b/h and fp increase, which is similar to the behavior observed in Figures 3.4a

and 3.4b. It is also noted that, Fw is shifted towards the left with an increase in b/h (or

fp). This may be due to the fact that PS with the higher value of b/h (or fp) dissipates

the incident energy more effectively, and also, a major portion of the incident energy is

trapped between PS and EP.

The variations in the force Fw vs the gap L3/h between EP and the wall for various

D/h4 and L2/h values are shown in Figure 3.7. As a function of L3/h, Fw is oscillatory

and periodic in nature which is due to the trapping of wave in between EP and the

wall. Figure 3.7a shows that as D/h4 increases, the maxima attained by Fw decrease. In

Figure 3.7b, it is found that as the length of EP increases, the maxima in Fw decreases.

It is also noted that the amplitude in the force Fw curve reduces significantly for EP with
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higher flexural rigidity D/h4 (or length L2/h). It is apprehended by the fact that with an

increase in flexural rigidity D/h4 (or length L2/h) of EP, more incident wave is reflected

back by EP and less wave is trapped between EP and wall, thereby exerting lesser force

on the wall. Further, it is observed in Figure 3.7a that there is a shift towards the right

in the force with an increase in D/h4 and it is noted in Figure 3.7b that there is a shift

towards left in the force curves with an increase in L2/h. The reason for this behavior

could be the constructive/destructive interference of incoming waves and reflected waves.
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Figure 3.7: Fw vs L3/h for different values of (a) D/h4 (b/h = 4, k0h = 0.5) and (b)
L2/h.
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Figure 3.8: Fw vs L3/h for (a) b/h=0.5, 1, 1.5 and (b) fp=0.2, 0.5, 0.8.

The variations in the force Fw versus the gap L3/h between EP and the wall for

different width b/h and friction factor fp values of PS are shown in Figure 3.8. It is

depicted that Fw exhibits a periodic oscillatory pattern as a function of L3/h. In both
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Figures 3.8a and 3.8b, it is noted that, Fw decreases with an increase in b/h (or fp), as in

Figure 3.4. Moreover, with an increase in b/h (or fp), Fw is shifted towards the left due to

a part of energy being dissipated by PS and a part of it being trapped between the gaps

between the structures involved in the system.
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Figure 3.9: |R0| and kd vs θ for fp = 0.4, 0.6, 0.8 with k0h = 0.5.
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Figure 3.10: |R0| and kd vs k0h for b/h = 0.5, 1, 1.5.

In Figure 3.9, |R0| and kd are plotted against angle of incident θ for various values of

fp. It is found that |R0| and kd follow an oscillatory pattern with an increase in θ, except

θ ∼ 52◦, where |R0| and kd curve is not smooth but when θ ∼ 80◦, there is a sudden

rise in |R0| and a sudden fall in kd ( θ = 80◦ is called as the critical angle, as noticed in

Figure 3.4). At θ = 90◦, |R0| becomes unity and kd becomes zero. It is also noted that

|R0| decreases and kd increases with an increase in fp. This is due to the fact that with

the increase in fp, more incident wave energy is dissipated by PS and PS reflects less wave
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energy. As with the increase in fp, more waves are dissipated by PS; fewer waves will

transmit through PS towards the wall; hence the wave force experienced by the wall will

be less, which is similar to the observation noticed in Figure 3.4b.

Figure 3.10 shows the fluctuations in reflection coefficient |R0| and dissipation

coefficient kd versus wavenumber k0h for various values of width b/h of PS. From

Figure 3.10a, it is noted that when k0h varies from 0 to 1.1, |R0| decreases in an

oscillatory pattern with sharp oscillations and the minima in the reflection coefficient

is also decreasing. When k0h is small, the wavelength is large, so the distribution of the

energy is more along the water depth. Thus, the mutual interactions of the incoming and

the outgoing waves between the wall, EP and PS are influencing the oscillatory behaviour

of the reflected wave as observed in the plot. But when k0h ∼ 1.1, the curve is not smooth.

Further, with an increase in k0h, the minima in |R0| are increasing, and the oscillations

become small. Figure 3.10b shows that with the increase in k0h (0 < k0h < 1.1) , kd

increases in an oscillatory pattern with sharp peaks. It is noted that the maxima in kd

increases as k0h increases. But when k0h ∼ 1.1, the curve is not smooth, similar to the

observation made in Figure 3.10a. As k0h further increases, kd decreases with a decrease

in oscillations as well. However, with an increase in b/h, more wave energy is dissipated,

and less wave energy is reflected.
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Figure 3.11: |R0| and kd vs L1/h for b/h = 0.5, 1, 1.5 with k0h = 0.75.

Reflection coefficient |R0| and dissipation coefficient kd are depicted graphically

against length L1/h of EP for various values of width b/h of PS in Figure 3.11. From

the figure, it is found that with an increase in b/h, the wave reflection |R0| decreases, and
energy dissipation kd increases. This is due to the fact that as the width of PS increases,

more wave energy is dissipated by PS, and fewer waves are reflected back. Also, it is

found that with an increase in b/h, reflection coefficient |R0| and dissipation coefficient

kd are shifted towards the left, which is similar to the behavior of Force Fw on the wall

found in Figure 3.6a. Furthermore, for higher value of b/h (i.e. for b/h=1.5), energy
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dissipation by PS becomes nearly 100% and the wave reflection becomes nearly zero when

L1/h = (1.4 + n× 4.6), n = 0, 1, 2, . . . .
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Figure 3.12: |R0| and kd vs L3/h for fp = 0.25, 0.5, 0.75.
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Figure 3.13: Re(η5) for (a) fp = 0.2, 0.5 and 0.8 and (b)D/h4 = 1, 10 and 50 with
b/h = 5, L2/h = 30, L1/h = 30 and L3/h = 20.

The effect of the gap L3/h between EP and the wall on reflection coefficient |R0| and
dissipation coefficient kd for different values of width fp of PS is plotted on Figure 3.12.

From the figure, it is noted that the wave reflection decreases and energy dissipation kd

increases, with an increase in fp. Also, from both Figures 3.12a and 3.12b, it is found that

with an increase in fp, the curves are slightly shifted towards the left, which is similar

to the behavior of Force Fw on the wall found in Figure 3.6b. It is also found that for a

higher value of fp (i.e. fp=0.5 and 0.75), the maxima value of kd is nearly 1.

Figure 3.13 shows the behavior of free surface elevation η5 in region 5 for different
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values of fp and D/h4. From the Figure 3.13a it is observed that with an increase in fp,

the amplitude of free surface elevation η5 decreases. This is due to the fact that with an

increase in fp, more waves are dissipated by PS, and fewer waves are transmitted towards

the wall. Hence, less force is exerted on the wall. Figure 3.13b depicted that with an

increase in D/h4, the amplitude of free surface elevation η5 decreases. This is due to the

fact that with an increase in D/h4, EP becomes more rigid and more waves are reflected

back by EP and fewer waves are transmitted towards the wall. Hence, the wall experiences

less force. Thus, PS with a higher fp value and EP width with a higher D/h4 value are

helpful in creating a tranquility zone for safe navigation.

3.6 Conclusion

In order to safeguard the sea wall, the scattering of oblique water waves by EP placed

next to a rigid wall in the presence of PS is investigated in this work. The study uses the

governing equation and the boundary conditions to coin a system of equations that can

be solved numerically. Plotting the findings for force on the wall, reflection coefficient,

dissipation coefficient, and free surface elevation provides a description of the wave motion

past the structures. The study shows that the gap between the structures plays a vital

role in protecting the sea wall from wave load. It is also found that in the presence of

a higher value of length and flexural rigidity of EP, the force acting on the wall is low.

In relation to the gaps between PS and EP, and EP and the wall, it is noticed that the

force on the wall, the reflection and dissipation coefficients oscillate and follow periodic

patterns. From the qualitative behavior of forces acting on the sea wall, the force on

the wall shifted to the left due to the effect of the width and frictional factor of PS.

Furthermore, for a higher value of the width of PS (i.e., for b/h=1.5), energy dissipation

by PS becomes nearly 100%, and the wave reflection becomes nearly zero when the gap

between PS and EP L1/h = (1.4+ n× 4.6), n = 0, 1, 2, . . . . It is also noticed that the free

surface elevation between EP and the wall, which aids in the creation of a calm zone, is

significantly influenced by the structural characteristics of PS and EP. This study can be

very useful in order to build floating structures that can withstand rough wave situations

and lessen the impact of waves close to the shore.
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Chapter 4

Mitigation of Structural Response

on an Elastic Plate by a Truncated

Porous Structure

4.1 Introduction

In Chapters 2 and 3, the effectiveness of PS, which extends from top to bottom, in reducing

wave response on EP and the sea wall was analyzed. However, in some situations, a

full-height porous structure is not practical due to high costs, material requirements,

and environmental considerations. As a result, truncated porous structures, such as

bottom-standing porous structures (BSPS) and surface-piercing porous structures (SPPS),

are often preferred. Therefore, in this chapter, we focus on examining the effectiveness

of BSPS and SPPS in reducing the structural response of EP. With the aid of the

eigenfunction expansion method, the associated boundary value problem is reduced to a

system of linear algebraic equations, which is solved numerically. For both configurations,

the effects of various system parameters, such as wavenumber and angle of incidence,

are analyzed. The energy balance relation for the given problem is derived to verify

the accuracy of the computational results. The study aims to determine the optimal

distance between the porous structure and the EP to achieve maximum wave dissipation,

thereby reducing the structural response on the EP. The impacts of structural parameters,

such as the length, width, porosity, and frictional coefficient of the porous structure,

are investigated through graphs of the reflection coefficient, transmission coefficient,

dissipation coefficient, free surface elevation, elastic plate deflection, shear force, and strain.

A major part of the work presented in this chapter has been published in Sahoo et al.

[118].

4.2 Mathematical Formulation

In the contemporary study, scattering of oblique surface gravity wave by EP in the presence

of truncated thick porous structures is inspected in the Cartesian coordinate, where y-axis

is positive vertically upward, and xz-plane represents the undisturbed free surface of water.

The fluid domain is −∞ < x < ∞,−∞ < z < ∞, −h ≤ y ≤ 0, other than EP as shown

in Figure 4.1. In this study, the two configurations of homogeneous and isotropic porous
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structure, namely, BSPS and partially immersed SPPS, are considered. The notation Lb,

Lg, and Lw represent the length of the porous structure, gap, and submerged interface of

the structure, respectively. For BSPS Lb = (0 ≤ x ≤ b,−h ≤ y ≤ −h + a); Lg = (0 ≤
x ≤ b,−h + a ≤ y ≤ 0) and Lw = (0 ≤ x ≤ b, y = −h + a) and for SPPS Lb = (0 ≤
x ≤ b,−a ≤ y ≤ 0); Lg = (0 ≤ x ≤ b,−h ≤ y ≤ −a) and Lw = (0 ≤ x ≤ b, y = −a),
both the structures are assumed to be infinitely long along z-axis and a is the length and

b is the width of the porous structure. The porous structure is placed at a L1 distance

from EP in both cases. The position of EP is c ≤ x ≤ d, y = 0, so that the length of EP

becomes L2 = d− c. By assuming that the incident wave is propagating along the x-axis

with an angel θ, the fluid is incompressible and the flow is irrotational, inviscid and simple

harmonic in time with angular frequency ω, the dependence of the potential function in

z-direction is chosen to be harmonic throughout, then in each region j there exists the

velocity potential of the form Φj(x, y, z, t) = Re{ϕj(x, y)ei(µz−ωt)}, satisfying(
∂2

∂x2
+

∂2

∂y2
− µ2

)
ϕj = 0, in the region j, (4.1)

where µ = k0 sin θ, k0 is the wavenumber of the incident wave.

The no-flow condition on the rigid bottom is expressed by

∂ϕj
∂y

= 0, on y = −h for j = 1, 3, 4, 5, 6. (4.2)

The free-surface condition on the mean free surface is expressed by

∂ϕj
∂y

−Kϕj = 0 on y = 0, (4.3)

where j = 1, 2, 4, 6 for BSPS and j = 1, 4, 6 for SPPS.

For SPPS, the free surface condition in the region 2

∂ϕ2
∂y

−K(mp + ifp)ϕ2 = 0 on y = 0, (4.4)

withK = ω2/g, g is the acceleration due to gravity, mp and fp are the non-dimensionalized

inertial coefficient and frictional coefficient respectively.

The boundary condition on the floating EP is expressed by[
D

(
∂2

∂x2
− µ2

)2

+ 1− ϵeK

]
ϕ5y −Kϕ5 = 0 on y = 0, (4.5)

where D = EI/ρg is the flexural rigidity of EP, with E being the young’s modulus,

I = h30/12(1− ν2), ν is the Poisson’s ratio, ρ is density of the fluid, h0 is thickness of EP

assumed to be small, ϵe = ρsh0/ρ and ρs is density of EP.

By assuming that EP is freely floating on the surface of water, the vanishing of bending
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moment and shear force at the edges of the EP yield(
∂2

∂x2
− νµ2

)
∂ϕ5
∂y

= 0 and
∂

∂x

(
∂2

∂x2
− (2− ν)µ2

)
∂ϕ5
∂y

= 0 at (c, 0), (d, 0). (4.6)

EP

Rigid bottom

x = 0 x = b x = c x = d

1

3

4 5 6

y
=
−h

y = 0

2

y
=
−h

+
a

(a)

EP

Rigid bottom

x = 0 x = b x = c x = d

1

3

4 5 6

y
=
−h

y = 0

2

y = −a

(b)

Figure 4.1: Schematic representation of the physical problem (a) BSPS with EP and (b)
SPPS with EP.

The boundary conditions on Lw are expressed by

for BSPS: ϕ2 = (mp + ifp)ϕ3,
∂ϕ2
∂y

= ϵp
∂ϕ3
∂y

on y = −h+ a, 0 < x < b, (4.7)

for SPPS: ϕ3 = (mp + ifp)ϕ2,
∂ϕ3
∂y

= ϵp
∂ϕ2
∂y

on y = −a, 0 < x < b, (4.8)

where ϵp is a non-dimensionalized quantity denoting the porosity of the porous structure.

The conditions of continuity of pressure and velocity along the interfaces between the
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regions for BSPS and SPPS are respectively given by

ϕj =

ϕ2 y ∈ Lg

(mp + ifp)ϕ3 y ∈ Lb

and
∂ϕj
∂x

=


∂ϕ2

∂x y ∈ Lg

ϵp
∂ϕ3

∂x y ∈ Lb,
(4.9)

ϕj =

ϕ3 y ∈ Lg

(mp + ifp)ϕ2 y ∈ Lb

and
∂ϕj
∂x

=


∂ϕ3

∂x y ∈ Lg

ϵp
∂ϕ2

∂x y ∈ Lb,
(4.10)

where j = 1 on x = 0 and j = 4 on x = b.

The conditions of continuity of velocity and pressure along the interfaces (x = c, x = d) of

EP region are expressed as

ϕ4 = ϕ5,
∂ϕ4
∂x

=
∂ϕ5
∂x

on x = c, 0 < y < h, (4.11)

ϕ5 = ϕ6,
∂ϕ5
∂x

=
∂ϕ6
∂x

on x = d, 0 < y < h. (4.12)

The far-field condition is given by

ϕ1(x, y) ≃
(
ig

ω

)
cosh k0(h+ y)

cosh k0h
{eik0xx +R0e

−ik0xx} as x→ −∞, (4.13)

ϕ6(x, y) ≃
(
ig

ω

)
T0

cosh k0(h+ y)

cosh k0h
eik0x(x−d) as x→ ∞, (4.14)

R0, and T0 denote the unknown constants associated with reflected and transmitted waves,

respectively to be determined here, where k0x =
√
k20 − µ2, k0 is the wavenumber of the

incident wave, and it is the positive real root for n = 0 of the transcendental equation in

kn as given by

K − kn tanh knh = 0. (4.15)

In this problem, the 1/3 singularity (Mandal and Chakrabarti [119]) at the tip of

BSPS/SPPS is not considered. This is because the primary interactions occur along the

length of the barrier, and the effects of the tip singularity are minimal compared to the

overall scattering process. In the next section, the present problem will be solved by

utilizing the method of eigenfunction expansion which was used in the work of Sollitt

and Cross [5], Dalrymple et al. [11], Losada et al. [18], and Koley et al. [19], where the

singularity at the tip of a thick barrier was not taken.

4.3 Method of Solution

For finding the solution of the above boundary value problem, the method of separation

of variable is applied in each region and the spatial potential functions are expressed as

series solutions in terms of eigenfunctions. The spatial velocity potentials in the open

water regions 1, 4 and 6 satisfying Equations (4.1), (4.2), (4.3), (4.13) and (4.14) are
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expressed in the forms

ϕ1 =

(
ig

ω

)[
eik0xxψ0 +

∞∑
n=0

Rne
−iknxxψn

]
for −∞ < x ≤ 0, −h ≤ y ≤ 0, (4.16)

ϕ4 =

(
ig

ω

) ∞∑
n=0

[
Bne

iknx(x−b) + Cne
−iknx(x−c)

]
ψn for b ≤ x ≤ c,−h ≤ y ≤ 0, (4.17)

ϕ6 =

(
ig

ω

) ∞∑
n=0

Tne
iknx(x−d)ψn for d ≤ x <∞,−h ≤ y ≤ 0, (4.18)

where

ψn =
cosh kn(h+ y)

cosh knh
n = 0, 1, 2 . . . . (4.19)

Rn, Bn, Cn and Tn are unknown constants, knx =
√
k2n − µ2 with k0 is the positive real

root for n = 0 and kn for n = 1, 2, 3, . . . are purely imaginary roots of the dispersion

relation (4.15).

Again, the spatial velocity potentials in the regions 2 and 3 for BSPS satisfying Equations

(4.1), (4.2), (4.3) and (4.7) are expressed in the forms

ϕ2 =

(
ig

ω

) ∞∑
n=0

[
Gne

ipnxx +Hne
−ipnx(x−b)

]
Mn for 0 ≤ x ≤ b, −h+ a ≤ y ≤ 0, (4.20)

ϕ3 =

(
ig

ω

) ∞∑
n=0

[
Gne

ipnxx +Hne
−ipnx(x−b)

]
Pn for 0 ≤ x ≤ b, −h ≤ y ≤ −h+ a, (4.21)

whereas for SPPS the spatial velocity potentials satisfying Equations (4.1), (4.2), (4.4)

and (4.8) are expressed in the forms

ϕ2 =

(
ig

ω

) ∞∑
n=0

[
Gne

ipnxx +Hne
−ipnx(x−b)

]
Mn for 0 ≤ x ≤ b, −a ≤ y ≤ 0, (4.22)

ϕ3 =

(
ig

ω

) ∞∑
n=0

[
Gne

ipnxx +Hne
−ipnx(x−b)

]
Qn for 0 ≤ x ≤ b, −h ≤ y ≤ −a, (4.23)

where

Mn =
cosh pn(h+ y)− Fn sinh pn(h+ y)

cosh pnh− Fn sinh pnh
n = 0, 1, 2 . . . , (4.24)

Pn =
(1− Fn tanh pna) cosh pn(h+ y)

(mp + ifp)(cosh pnh− Fn sinh pnh)
n = 0, 1, 2 . . . , (4.25)

Qn =
(mp + ifp)[1− Fn tanh pn(h− a)] cosh pn(h+ y)

(cosh pnh− Fn sinh pnh)
n = 0, 1, 2 . . . , (4.26)

Fn =


(1−G) tanh pna

1−G tanh2 pna
for BSPS

(1−G) tanh pn(h−a)

tanh2 pn(h−a)−G
for SPPS

, G =
ϵp

mp + ifp
(4.27)

Gn and Hn are unknown constants, pnx =
√
p2n − µ2 and pn, n = 0, 1, 2 . . . are the
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complex roots of the dispersion relation

for BSPS: K − pn tanh pnh− Fn(K tanh pnh− pn) = 0, (4.28)

for SPPS: K(mp + ifp)− pn tanh pnh− Fn[K(mp + ifp) tanh pnh− pn] = 0. (4.29)

Finally, the spatial velocity potential in EP region 5 satisfying Equations (4.1), (4.2) and

(4.5) is expressed in the form

ϕ5 =

(
ig

ω

) ∞∑
n=−2

[
Dne

iαnx(x−c) + Ene
−iαnx(x−d)

]
Gn for c ≤ x ≤ d, −h ≤ y ≤ 0 (4.30)

where

Gn =
coshαn(h+ y)

coshαnh
n = 0, 1, 2 . . . , (4.31)

Dn and En are unknown constants, αnx =
√
α2
n − µ2 and as in αn are the complex roots

of the form ±a + ib for n = −2,−1, positive real root for n = 0 and purely imaginary

roots for n = 1, 2, 3, . . . of the equation

(Dα4
n + 1− ϵeK)αn tanhαnh = K. (4.32)

For BSPS, utilizing Equations (4.16)-(4.18), (4.20), (4.21) and (4.30) along with

orthogonality of ψn in matching conditions (4.9)-(4.12), we have

X0m +

∞∑
n=0

RnXnm −
∞∑
n=0

[Ynm + (mp + ifp)Znm](Gn +Hne
ipnxb) = 0, (4.33)

ik0xXom −
∞∑
n=0

iknxRnXnm −
∞∑
n=0

ipnx[Ynm + ϵpZnm](Gn −Hne
ipnxb) = 0, (4.34)

∞∑
n=0

(Bn + Cne
−iknx(b−c))Xnm −

∞∑
n=0

[Ynm + (mp + ifp)Znm](Gne
ipnxb +Hn) = 0, (4.35)

∞∑
n=0

iknx(Bn − Cne
−iknx(b−c))Xnm −

∞∑
n=0

ipnx[Ynm + ϵpZnm](Gne
ipnxb −Hn) = 0, (4.36)

∞∑
n=0

(Bne
iknx(c−b) + Cn)Xnm −

∞∑
n=−2

(Dn + Ene
−iαnx(c−d))Wnm = 0, (4.37)

∞∑
n=0

iknx(Bne
iknx(c−b) − Cn)Xnm −

∞∑
n=−2

iαnx(Dn − Ene
−iαnx(c−d))Wnm = 0, (4.38)

∞∑
n=−2

(Dne
iαnx(d−c) + En)Wnm −

∞∑
n=0

TnXnm = 0, (4.39)

∞∑
n=−2

iαnx(Dne
iαnx(d−c) − En)Wnm −

∞∑
n=0

iknxTnXnm = 0. (4.40)
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For SPPS, among Equations (4.33) and (4.40), the Equations (4.33)-(4.36) will be replaced

by the following equations

X0m +

∞∑
n=0

RnXnm −
∞∑
n=0

[Vnm + (mp + ifp)Unm](Gn +Hne
ipnxb) = 0, (4.41)

ik0xXom −
∞∑
n=0

iknxRnXnm −
∞∑
n=0

ipnx[Vnm + ϵpUnm](Gn −Hne
ipnxb) = 0, (4.42)

∞∑
n=0

(Bn + Cne
−iknx(b−c))Xnm −

∞∑
n=0

[Vnm + (mp + ifp)Unm](Gne
ipnxb +Hn) = 0, (4.43)

∞∑
n=0

iknx(Bn − Cne
−iknx(b−c))Xnm −

∞∑
n=0

ipnx[Vnm + ϵpUnm](Gne
ipnxb −Hn) = 0, (4.44)

where

Xnm =

∫ 0

−h
ψnψmdy, Ynm =

∫ 0

−h+a
Mnψmdy, Znm =

∫ −h+a

−h
Pnψmdy,

Wnm =

∫ 0

−h
Gnψmdy, Vnm =

∫ 0

−a
Qnψmdy and Unm =

∫ −a

−h
Mnψmdy.

(4.45)

Further, substituting Equation (4.30) in the free edge conditions given by Equation (4.6),

we have
∞∑

n=−2

αn(α
2
nx + νµ2)(Dn + Ene

−iαnx(c−d)) tanhαnh = 0, (4.46)

∞∑
n=−2

iαnxαn(α
2
nx + (2− ν)µ2)(Dn − Ene

−iαnx(c−d)) tanhαnh = 0, (4.47)

∞∑
n=−2

αn(α
2
nx + νµ2)(Dne

iαnx(d−c) + En) tanhαnh = 0, (4.48)

∞∑
n=−2

iαnxαn(α
2
nx + (2− ν)µ2)(Dne

iαnx(d−c) − En) tanhαnh = 0. (4.49)

After keeping upto n = N (i.e. truncating the series after N + 1) in each relation, a

system with (8N + 12) number of equations with (8N + 12) number of unknowns given

in Equations (4.33)-(4.40) and (4.46)-(4.49) is solved for BSPS where as the system with

(8N + 12) number of equations with (8N + 12) number of unknowns given in Equations

(4.37)-(4.40), (4.41)-(4.44) and (4.46)-(4.49) is solved for SPPS. Here, this system of

equations is solved by the Gauss elimination method with the help of MATLAB. The

effectiveness of the porous structure to mitigate the structural response of EP can be

studied through reflection coefficient |R0|, transmission coefficient |T0| and dissipation

coefficient kd given by Equation (4.63).

Force on porous structure: The horizontal wave force kf1 on the front face and wave

force kf2 on the rear face of the porous structure are computed by the respective formulas
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given by

kf1 =

∣∣∣∣−iωgh2

∫ −h+a

−h
[ϕ1(0

−, y)]dy

∣∣∣∣, (4.50)

kf2 =

∣∣∣∣−iωgh2

∫ −h+a

−h
[ϕ4(b

+, y)]dy

∣∣∣∣, (4.51)

for BSPS and

kf1 =

∣∣∣∣−iωgh2

∫ 0

−a
[ϕ1(0

−, y)]dy

∣∣∣∣, (4.52)

kf2 =

∣∣∣∣−iωgh2

∫ 0

−a
[ϕ4(b

+, y)]dy

∣∣∣∣, (4.53)

for SPPS.

Plate deflection: The plate deflection is calculated by using the formula

η5 =
i

ω

∂ϕ5
∂y

∣∣∣∣
y=0

. (4.54)

Free surface elevation: The free surface elevation in the respective open water region

is computed by using the formula

ηj =
i

ω

∂ϕj
∂y

∣∣∣∣
y=0

, j = 1, 2, 4, 6 for BSPS (4.55)

j = 1, 4, 6 for SPPS.

Shear force and strain: The shear force Sf and strain St on EP are calculated for the

normal incident (θ = 0◦) of surface waves by using the formulas

Sf =
D

ωh

∣∣∣∣ ∂4ϕ5∂x3∂y

∣∣∣∣
y=0

, (4.56)

St =
h0
2ω

∣∣∣∣ ∂3ϕ5∂x2∂y

∣∣∣∣
y=0

. (4.57)

4.4 Energy Balance Relation

In the present problem, apart from the reflection and transmission of waves, a major part

of wave energy is dissipated by BSPS/SPPS. Thus, for a better understanding of the

quantitative behavior of wave reflection, transmission, and dissipation, an energy identity

is derived. The energy identity for the current problem can be derived using the Green’s

identity, which is given by ∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds = 0,

where ϕ∗ is the complex conjugate of ϕ and ∂
∂n is the outward normal derivative to the

boundary C, C = C1 ∪ C2, where for BSPS C1={x = −X,−h ≤ y ≤ 0; y = −h,−X ≤
x ≤ 0; x = 0, y ∈ Lb; Lw; x = b, y ∈ Lb; y = −h, b ≤ x ≤ X; x = X,−h ≤ y ≤ 0;
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y = 0, d ≤ x ≤ X; y = 0, c ≤ x ≤ d; y = 0,−X ≤ x ≤ c}, C2={ x = 0, y ∈ Lb; Lw;

x = b, y ∈ Lb; y = −h, 0 ≤ x ≤ b }. Due to the no-flow condition, the contributions from

the boundary y = −h,−X ≤ x ≤ 0; y = −h, b ≤ x ≤ X is zero. The contributions from

the boundary y = 0, d ≤ x ≤ X and y = 0,−X ≤ x ≤ c are zero because of free surface

condition. Due to EP condition, the contribution from the boundary y = 0, c ≤ x ≤ d is

zero. The line x = 0, y ∈ Lb contributes

∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds =

∫
Lb

(
[ϵp(mp + ifp)− 1]ϕ3ϕ

∗
3x − [ϵp(mp − ifp)− 1]ϕ∗3ϕ3x

)
x=0

dy.

(4.58)

The line x = b, y ∈ Lb contributes

∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds =

∫
Lb

(
[ϵp(mp − ifp)− 1]ϕ∗3ϕ3x − [ϵp(mp + ifp)− 1]ϕ3ϕ

∗
3x

)
x=b

dy.

(4.59)

The line Lw contributes

∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds =

∫
Lw

(
[ϵp(mp − ifp)− 1]ϕ∗3ϕ3y − [ϵp(mp + ifp)− 1]ϕ3ϕ

∗
3y

)
dx. (4.60)

The contribution from the line x = −X,−h ≤ y ≤ 0 :

∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds = (1− |R0|2)

ik0x

cosh2 k0h

(
sinh(2k0h) + 2k0h

2k0

)
. (4.61)

The contribution from the line x = X,−h ≤ y ≤ 0 :

∫
C

(
ϕ
∂ϕ∗

∂n
− ϕ∗

∂ϕ

∂n

)
ds = −(|T0|2)

ik0x

cosh2 k0h

(
sinh(2k0h) + 2k0h

2k0

)
. (4.62)

Adding all contributions from C1 and C2, the energy identity is found as

|R0|2 + |T0|2 + kd = 1 (4.63)

where

kd =
2k0 cosh

2 k0h

ik0x(sinh 2k0h+ 2k0h)

[∫
Lb

(
[ϵp(mp + ifp)− 1]ϕ3ϕ

∗
3x − [ϵp(mp − ifp)− 1]ϕ∗3ϕ3x

)
x=0

dy

+

∫
Lb

(
[ϵp(mp − ifp)− 1]ϕ∗3ϕ3x − [ϵp(mp + ifp)− 1]ϕ3ϕ

∗
3x

)
x=b

dy

+

∫
Lw

(
[ϵp(mp − ifp)− 1]ϕ∗3ϕ3y − [ϵp(mp + ifp)− 1]ϕ3ϕ

∗
3y

)
dx

]
.

(4.64)
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Similarly, by taking the suitable choice of contour along SPPS, the energy identity can be

derived as |R0|2 + |T0|2 + kd = 1, where

kd =
2k0 cosh

2 k0h

ik0x(sinh 2k0h+ 2k0h)

[∫ b

0
−2iKfp|ϕ2|2dx

+

∫
Lb

(
[ϵp(mp + ifp)− 1]ϕ2ϕ

∗
2x − [ϵp(mp − ifp)− 1]ϕ∗2ϕ2x

)
x=0

dy

+

∫
Lb

(
[ϵp(mp − ifp)− 1]ϕ∗2ϕ2x − [ϵp(mp + ifp)− 1]ϕ2ϕ

∗
2x

)
x=b

dy

+

∫
Lw

(
[ϵp(mp + ifp)− 1]ϕ2ϕ

∗
2y − [ϵp(mp − ifp)− 1]ϕ∗2ϕ2y

)
dx

]
.

(4.65)

4.5 Results and Discussion

In this section, the usefulness of BSPS/SPPS to reduce the structural response on

Ep is studied through the reflection coefficient (|R0|), transmission coefficient (|T0| ),

dissipation coefficient (kd), hydrodynamics forces on the porous structure (kf1 and kf2),

plate deflection (Re(η5)), shear force (Sf ) and strain (St) on EP. The structural and

system parameters are non-dimensionalized using the length scale of water depth (h).

The values of the non-dimensional parameters D/h4 = 102, ϵe/h = 0.01, L2/h = 5,

L1/h = 4, a/h = 0.5, b/h = 0.6, fp = 0.5 and mp = 1 are kept fixed in this investigation

unless otherwise mentioned. Several computational results are performed to investigate

the effect of various structural parameters, but in this section, few results are shown to

avoid the repetition.

BSPS SPPS
k0h N = 4 N = 5 N = 6 N = 4 N = 5 N = 6

|R0| |T0| |R0| |T0| |R0| |T0| |R0| |T0| |R0| |T0| |R0| |T0|
0.2 0.0092 0.9977 0.0092 0.9977 0.0092 0.9977 0.0479 0.9633 0.048 0.9633 0.048 0.9633

0.4 0.0291 0.9951 0.0292 0.9951 0.0291 0.9951 0.0932 0.9673 0.0931 0.9671 0.0931 0.9671

0.6 0.0902 0.9908 0.0902 0.9907 0.0902 0.9907 0.1717 0.9525 0.1718 0.9525 0.1718 0.9525

0.8 0.2094 0.9671 0.2095 0.9671 0.2095 0.9671 0.24 0.9519 0.2392 0.9516 0.2392 0.9516

1 0.4151 0.9020 0.4152 0.9020 0.4152 0.9020 0.5893 0.7807 0.5882 0.78 0.5882 0.78

1.2 0.5187 0.8467 0.5188 0.8467 0.5188 0.8467 0.3727 0.8654 0.3789 0.8701 0.3789 0.8701

Table 4.1: Convergence for N through |R0| and |T0| for BSPS and SPPS with ϵp = 0.437,
a/h = 0.2, fp = 0.25 and θ = 00.

4.5.1 Convergence Study for N

From the Table 4.1, the convergence of series is studied where the value of |R0| and |T0|
are tabulated against wavenumber k0h for various values of N = 4, 5 and 6 with fixed

value of ϵp = 0.437, a/h = 0.2, fp = 0.25 and θ = 00. Here it is observed from the table

that the accuracy upto 4th decimal point is achieved in the values of |R0| and |T0| for
N = 5 for all values of k0h. However, in the present study, all the graphs are generated
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for N = 0 (as considered in Sharma et al. [117]), because for almost all the practical cases,

the plane wave approximation is sufficient to describe the wave behaviour as described in

Dalrymple et al. [11].

k0h N = 1 N = 3 N = 5 N = 7 N = 9 N = 11

|R0| C |R0| C |R0| C |R0| C |R0| C |R0| C

0.9 0.3218749541 - 0.3221564263 1.1019 0.3222401146 0.5527 0.3222621048 1.1159 0.3222726105 - 0.3222772176 -

1 0.4145041116 - 0.4151271186 0.5272 0.4152389381 1.1037 0.4152926222 0.7624 0.4153165071 - 0.4153293889 -

1.1 0.4745089758 - 0.4750188686 0.8772 0.4751482654 05321 0.4751871250 1.1702 0.4752135192 - 0.4752249201 -

Table 4.2: Order of convergence for various value of N for BSPS.

To find the order of convergence, we first find the numerical values of |R0| for various values
of N=1,3,5,7,9 and 11, denoted as |R0|N , N=1,3,5,7,9, 11 and for various values of k0h

which are tabulated in Table 4.2. As given by Equation (2.61), the order of convergence

denoted by ‘C’ can be defined by the formula

C =
log
∣∣∣ |R0|N+4−|R0|N+2

|R0|N+2−|R0|N

∣∣∣
log
∣∣∣ |R0|N+2−|R0|N
|R0|N−|R0|N−2

∣∣∣ , N = 3, 5, 7. (4.66)

From Table 4.2, it is concluded that the order convergence lies between 0.5 and 1.2.

4.5.2 Validation

To validate the present methodology and results, it may be noted that the present problem

reduces to the work of Hermans [70] on considering the parameter value as mp = 1, fp = 0,

ϵp = 1 (absence of porous structure) and D/h4 = 10−3. Figure 4.2a illustrates, the present

results for |R0| and |T0| are well matched with the results of Hermans [70]. In the absence

of EP (i.e. D/h4 = 0, ϵe = 0), the present study reduces to scattering of water waves

by the porous structure. Figure 4.2b illustrates, the present results of |R0| and |T0| for
BSPS (k0h = 0.68, ϵp = 0.4, b/h = 1, fp = 0.5 and a/h = 0.3) are well-matched with

the results of Losada et al. [18]. Figure 4.2c illustrates the present results of |R0| for
SPPS (Kh = 0.2012, ϵp = 0.4, b/h = 1, fp = 1 and a/h = 1) in the absence of EP are

well-matched with the results of Dalrymple et al. [11]. When the length a/h of the porous

structure is equal to 1, the present problem reduces to the problem of Chapter 2. From

the Figure 4.2d it is observed that the results of |R0| are well-matched with the results

of Chapter 2 (Figure 2.3a). Further, to verify the energy identity given in relation (4.63),

the values of kd and 1 − |R0|2 − |T0|2 are tabulated for different values of k0h in Table

4.3 for both the cases of BSPS and SPPS and plotted in Figure 4.3 against k0h for the

case of BSPS. From the Table 4.3 and Figure 4.3, it is found that the values of kd and

1−|R0|2−|T0|2 are well matched. Hence, the energy balance relation is satisfied, showing

the accuracy of the present numerical computations.
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Figure 4.2: Validation of present results with results of (a) Hermans [70] (b) Losada et al.
[18], (c) Dalrymple et al. [11] and (d) Chapter 2.

4.5.3 Effect of BSPS on Reflection Coefficient (|R0|), Transmission

Coefficient (|T0|), Dissipation Coefficient (kd), Force Experienced

on BSPS (kf1 and kf2), Plate Deflection (Re(η5)) and Free Surface

Elevation (Re(ηj), j = 1, 2, 4, 6)

In this section, the influence of BSPS on |R0|, |T0|, kd, kf1, kf2, Re(η5) and Re(ηj), j =

1, 2, 4, 6 is studied through different graphs for different parameters as described below.

Figure 4.4, gives the behaviour of |R0|, |T0| and kd versus the wavenumber k0h for

different values of flexural rigidity D/h4. From the figure, it is observed that as the k0h

value increases, the reflection coefficient |R0| and dissipation coefficient kd increase, while

the transmission coefficient |T0| decreases. It is also observed that with an increase in

flexural rigidity, the reflection coefficient increases. This is because as flexural rigidity

increases, the rigidity of the structure increases, and more waves are reflected.
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k0h BSPS SPPS
|R0| |T0| 1− |R0|2 − |T0|2 kd |R0| |T0| 1− |R0|2 − |T0|2 kd

0.2 0.0245 0.9876 0.024 0.024 0.0490 0.9266 0.1389 0.1384
0.4 0.0599 0.9770 0.0418 0.0418 0.3158 0.8338 0.2051 0.2051
0.6 0.1426 0.9472 0.0825 0.0825 0.4193 0.7367 0.2814 0.2819
0.8 0.3877 0.8854 0.0657 0.0658 0.246 0.7629 0.3575 0.3562
1 0.4556 0.8537 0.0634 0.0636 0.3332 0.6439 0.4743 0.478
1.2 0.5075 0.7492 0.1805 0.1811 0.54 0.4729 0.4848 0.4852

Table 4.3: Verification of energy identity with ϵp = 0.55 and θ = 100.
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Figure 4.3: Verification of energy identity for BSPS case with ϵp = 0.55, θ = 100.

0 1 2 3

0

0.2

0.4

0.6

0.8

1

(a)

0 1 2 3

0

0.2

0.4

0.6

0.8

1

(b)

0 1 2 3

0

0.05

0.1

0.15

0.2

0.25

(c)

Figure 4.4: |R0|, |T0| and kd vs k0h for different values of D/h4 = 10, 102 and 104 with
ϵp = 0.437, θ = 100.

Figures 4.5 - 4.6, give the behaviour of |R0|, |T0| and kd versus the wavenumber k0h

for different values of structural length a/h and width b/h, respectively. Both the figures

depict that the behavior of |R0|, |T0| and kd values are the same with respect to k0h as

observed in Figure 4.4 for D/h4 = 102. With the increase in length a/h and width b/h,

energy dissipation by BSPS increases, and consequently, there is a decrease in reflection

coefficient |R0| and transmission coefficient |T0|.
Figures 4.7 - 4.8, give the behaviour of |R0|, |T0| and kd versus distance L1/h between



68
Chapter 4. Mitigation of Structural Response on an Elastic Plate by a Truncated Porous

Structure

BSPS and EP for different values of structural length a/h and width b/h, respectively. It

is observed that wave reflection, transmission and dissipation are periodic and oscillatory.

The maximum/minimum of wave reflection may be due to the constructive/destructive

interface of the incident and reflected waves.
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Figure 4.5: |R0|, |T0| and kd vs k0h for different values of a/h = 0.2, 0.5 and 0.8 with
ϵp = 0.437, θ = 100.
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Figure 4.6: |R0|, |T0| and kd vs k0h for different values of b/h = 0.4, 0.6 and 0.8 with
ϵp = 0.437, θ = 100.

Figure 4.9 gives the behavior of |R0|, |T0| and kd versus L1/h for different values of

porosity ϵp. It is observed that as the porosity of the structure increases, more wave energy

is dissipated by the structure, causing the values of reflection and transmission coefficients

to decrease.

Figure 4.10 shows the behavior of |R0|, |T0| and kd versus L1/h for different values

of flexural rigidity D/h4. It is noted that as the rigidity of the structure increases,

the reflection coefficient increases and the transmission coefficient decreases. This is

because as the rigidity of the structure increases, it becomes rigid, and most of the wave

energy concentrated on the free surface is reflected back by EP, and less wave energy is

transmitted.

Figure 4.11 gives the behavior of |R0|, |T0| and kd versus L1/h for different values

of frictional coefficient fp. The reflection, transmission, and dissipation coefficients
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are periodic and oscillatory, as observed in Figure 4.10. Further, with an increase in

the frictional coefficient, the reflection and transmission coefficients decrease, and the

dissipation coefficient increases.
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Figure 4.7: |R0|, |T0| and kd vs L1/h for different values of a/h = 0.2, 0.5 and 0.8 with
ϵp = 0.437, θ = 200, Kh = 1.5.
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Figure 4.8: |R0|, |T0| and kd vs L1/h for different values of b/h = 0.4, 0.6 and 0.8 with
ϵp = 0.437, θ = 450, Kh = 1.
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Figure 4.9: |R0|, |T0| and kd vs L1/h for different values of ϵp = 0.4, 0.6 and 0.8 with
D/h4 = 10, θ = 200, b/h = 2, Kh = 1.5.
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Figure 4.10: |R0|, |T0| and kd vs L1/h for different values of D/h4 = 10, 102 and 104 with
ϵp = 0.437, θ = 100, Kh = 0.5.
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Figure 4.11: |R0|, |T0| and kd vs L1/h for different values of fp = 0.25, 0.5 and 0.75 with
ϵp = 0.55, θ = 200, Kh = 1.
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Figure 4.12: |R0|, |T0| and kd vs L2/h for different values of a/h = 0.2, 0.5 and 0.8 with
ϵp = 0.55, θ = 100, Kh = 1.

Figures 4.12 - 4.13 give the behavior of |R0|, |T0| and kd versus L2/h for different

values of structural length a/h and width b/h. From the figures, it is noted that the

maxima of the reflection coefficient increases as the length of EP increases, but after a

certain EP length, the maximum value of the reflection coefficient becomes constant. In
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the transmission case, the opposite behavior is observed.
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Figure 4.13: |R0|, |T0| and kd vs L2/h for different values of b/h = 0.4, 0.6 and 0.8 with
ϵp = 0.55, θ = 100, Kh = 1.
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Figure 4.14: |R0|, |T0| and kd vs L2/h for different values of D/h4 = 10, 102 and 104 with
ϵp = 0.437, θ = 100, Kh = 0.5.
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Figure 4.15: |R0|, |T0| and kd vs θ for different values of fp = 0.25, 0.5 and 0.75 with
ϵp = 0.437, Kh = 0.5.

Figure 4.14 gives the behavior of |R0|, |T0| and kd versus L2/h for different values of

flexural rigidity D/h4. In this figure, it is observed that the number of nodes and antinodes
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in |R0|, |T0| and kd are decreased with an increase in D/h4 value of EP, this may be due

to the formation of standing wave. In addition, it is observed that as the flexural rigidity

increases, the reflection coefficient increases and the transmission coefficient decreases.

In Figure 4.15, the behavior of |R0|, |T0| and kd versus θ for different values of frictional
coefficient fp is presented. Here, optima in wave reflection and wave transmission are

observed due to the change in the phase of the incident and reflected waves. Moreover, as

the frictional coefficient fp increases, the dissipation coefficient also increases.
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Figure 4.16: |R0|, |T0| and kd vs b/h for different values of a/h = 0.2, 0.5 and 0.8 with
ϵp = 0.437, θ = 100, Kh = 0.5.
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Figure 4.17: |R0|, |T0| and kd vs b/h for different values of fp = 0.25, 0.5 and 0.75 with
ϵp = 0.437, θ = 100, Kh = 0.5.

Figures 4.16 - 4.17 give the behaviour of |R0|, |T0| and kd versus structural width b/h

for different values of structural length a/h and frictional coefficient fp respectively. It is

observed that the reflection coefficient decreases in an oscillating pattern with an increase

in structural width. Further, for the higher values of structural width, the reflection

coefficient becomes constant. Here, the phenomenon of the resonating pattern may be

due to the multiple wave interaction between BSPS and EP. It is also observed that the

transmission coefficient decreases with an increase in structural width, and dissipation of

energy increases with an increase in structural width.

The behavior of force kf1 acting on the front face and force kf2 acting on the rear
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face of BSPS vs L1/h for different values of structural length a/h and structural width

b/h respectively are investigated in Figures 4.18 - 4.19. From the figure, it is noted that

the wave forces kf1 and kf2 increase with an increase in the structural length a/h. With

an increase in structural width b/h, the wave force kf1 is increasing, but the force kf2 is

decreasing.
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Figure 4.18: kf1 and kf2 vs L1/h for different values of a/h = 0.2, 0.5 and 0.8 with
ϵp = 0.437, θ = 100, Kh = 0.5.
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Figure 4.19: kf1 and kf2 vs L1/h for different values of b/h with ϵp = 0.437, θ = 100,
Kh = 0.5.

Figure 4.20 depicts the graphs of the free surface elevation η1, η2, η4, η6, and plate

deflection η5, for different values of length a/h, porosity ϵp and frictional coefficient fp of

BSPS. Figure 4.20a shows that as structural length a/h increases, the free surface elevation

in regions 2, 4 and 6 and EP deflection decrease significantly. This is because as BSPS
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length increases, most of the incident wave energy is dissipated, yielding to lesser energy

transmitted by EP. Hence, a decrease in EP deflection and free surface elevation in the

lee side of the structure is observed. Figure 4.20b shows that as porosity ϵp increases, the

free surface elevation and EP deflection decrease. This is primarily due to the increased

dissipation of wave energy with an increase in porosity ϵp values. Hence, a structure

with large porosity ϵp effectively attenuates the structural response of EP by reducing

EP deflection. Figure 4.20c shows that as the frictional coefficient fp increases, the free

surface elevation and EP deflection decrease. The observation and the related reasons are

similar as observed in Figure 4.20b.

-20 0 20 53 88 108

-1.5

-1

-0.5

0

0.5

1

1.5

(a)

-30 0 20 53 88 108

-1.5

-1

-0.5

0

0.5

1

1.5

(b)

-30 0 20 53 88 108

-1.5

-1

-0.5

0

0.5

1

1.5

(c)

Figure 4.20: Free surface elevation Re(ηj), j = 1, 2, 4, 6 and plate deflection Re(η5) for
different values of (a) a/h = 0.2, 0.5 and 0.8 (Kh = 0.25) , (b) ϵp = 0.4, 0.6 and 0.8
(D/h4 = 10, Kh = 0.5) and (c) fp = 0.25, 0.5 and 0.75 (Kh = 0.5) with b/h = 20,
L1/h = 33, L2/h = 35, ϵp = 0.437, θ = 200.
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Figure 4.21: Sf and St in the absence of BSPS (fp = 0, ϵp = 1, a/h = 0) and presence
of BSPS for different values of a/h with fp = 0.5, ϵp = 0.5, θ = 00, Kh = 1, L1/h = 4,
L2/h = 30.

Figure 4.21 gives the shear force Sf and strain St for different values of structural
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length a/h of BSPS. From this figure, it is noted that at the ends of EP the shear force

and the strain are zero which is due to the assumption of free edge behaviour at both the

ends of EP and the variation of shear force Sf & strain St follows an oscillatory pattern.

Further, it is depicted that the Sf and St for the case of absence of BSPS (fp = 0, ϵp = 1,

a/h = 0) is more as compared to the other cases where BSPS is present ( fp = 0.5 and

ϵp = 0.55). Thus BSPS is highly effective in reducing the Sf and St experienced by EP. As

the structural length a/h increases amplitude of the shear force and strain of EP decrease.

This is due to the fact that as the structural length a/h increases, more wave energy is

dissipated by BSPS, as observed in Figure 4.7c.
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Figure 4.22: |R0|, |T0| and kd vs k0h for different values of D/h4 = 10, 102 and 104 with
ϵp = 0.437, θ = 100.

4.5.4 Effect of SPPS on Reflection Coefficient (|R0|), Transmission

Coefficient (|T0|), Dissipation Coefficient (kd), Force Experienced

on SPPS (kf1 and kf2), Plate Deflection (Re(η5)) and Free Surface

Elevation (Re(ηj), j = 1, 4, 6)

In this section, the numerical results for |R0|, |T0|, kd, kf1, kf2, Re(η5) and Re(ηj), j =

1, 4, 6 are plotted through graphs for different parameters by replacing BSPS with SPPS.

In Figure 4.22, the behavior of |R0|, |T0| and kd versus wavenumber k0h for different

values of flexural rigidity D/h4 is presented. In Figure 4.22a, it is observed that with

an increase in flexural rigidity D/h4, the wave reflection is increasing. This is because

as flexural rigidity D/h4 increases, EP becomes rigid, causing more reflection. It is also

observed that as flexural rigidity D/h4 increases, oscillation in reflection decreases. In

Figure 4.22b, it is observed that the wave transmission decreases as flexural rigidity D/h4

increases. Figure 4.22c shows that as flexural rigidity D/h4 increases, the dissipation

coefficient increases. This is due to an increased mutual interaction between SPPS and

EP, which increases the dissipation of energy. As compared to BSPS case, more wave

energy is dissipated in SPPS case.

The behavior of |R0|, |T0| and kd versus distance L1/h between SPPS and EP

are examined for different values of structural length a/h, width b/h and porosity ϵp,
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respectively in Figures 4.23, 4.24 and 4.25. It is noted that the behavior of the curves is

similar to the behavior of BSPS as in Figures 4.7, 4.8 and 4.9. But, the wave reflection

and transmission in SPPS case are less as compared to BSPS case. This is due to the fact

that SPPS dissipates more wave energy, which is concentrated near the free surface, than

BSPS.
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Figure 4.23: |R0|, |T0| and kd vs L1/h for different values of a/h = 0.2, 0.5 and 0.8 with
ϵp = 0.437, θ = 200, Kh = 1.5.
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Figure 4.24: |R0|, |T0| and kd vs L1/h for different values of b/h = 0.4, 0.6 and 0.8 with
ϵp = 0.437, θ = 450, Kh = 1.

Figure 4.26 gives the behavior of |R0|, |T0| and kd versus L2/h for different values of

flexural rigidity D/h4. From Figure 4.26a, it is observed that as flexural rigidity D/h4

increases, reflection of the wave energy increases. Further, the number of oscillations

decreases as flexural rigidity D/h4 increases. This is due to reduced flexure of EP caused

by increased flexural rigidity D/h4 values. Moreover, an opposite behaviour is observed

in transmission of wave energy in Figure 4.26b. As flexural rigidity D/h4 increases,

transmission decreases. Figure 4.26c shows that as flexural rigidity D/h4 increases,

dissipation of energy increases. This is because, SPPS dissipates wave energy more

efficiently that is concentrated near the free surface.

Figure 4.27 gives the behavior of |R0|, |T0| and kd versus θ for different values of

frictional coefficient fp. The general shape and the behavior of the plots of |R0|, |T0| and
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kd are similar to that of Figure 4.15. However, the wave reflection and the wave dissipation

are more by SPPS as compared to BSPS in Figure 4.15.
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Figure 4.25: |R0|, |T0| and kd vs L1/h for different values of ϵp = 0.4, 0.6 and 0.8 with
D/h4 = 10, θ = 200, b/h = 2, Kh = 1.5.
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Figure 4.26: |R0|, |T0| and kd vs L2/h for different values of D/h4 = 10, 102 and 104 with
ϵp = 0.437, θ = 100, Kh = 0.5.
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Figure 4.27: |R0|, |T0| and kd vs θ for different values of fp = 0.25, 0.5 and 0.75 with
ϵp = 0.437, Kh = 0.5.

Figure 4.28 shows the behaviour of |R0|, |T0| and kd versus structural width b/h
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for different values of frictional coefficient fp. From the figure, it is revealed that the

behavior of curves is similar to that of Figure 4.17. The oscillatory pattern in the reflection

coefficient decreases with an increase in structural width, and for the higher value of

structural width, the reflection coefficient becomes constant. However, the number of

oscillations is less as compared to BSPS. Further as frictional coefficient fp increases,

reflection and transmission decrease which is similar to Figure 4.17. In Figure 4.28c, it

is observed that as the frictional coefficient fp increases, the dissipation of wave energy

increases.
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Figure 4.28: |R0|, |T0| and kd vs b/h for different values of fp = 0.25, 0.5 and 0.75 with
ϵp = 0.437, θ = 100, Kh = 0.5.
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Figure 4.29: kf1 and kf2 vs L1/h for different values of a/h = 0.2, 0.5 and 0.8 with
ϵp = 0.437, θ = 100, Kh = 1.

Figure 4.29 presents the behaviour of wave force kf1 acting on the front face and wave

force kf2 acting on the rear face vs L1/h for different values of structural length a/h. It

is revealed that wave forces kf1 and kf2 are both periodic and oscillatory, as observed in

Figure 4.18 for BSPS. Further, it is also observed that with an increase in length a/h of
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SPPS, kf1 and kf2 increases. This may be due to the fact that with an increase in a/h,

more wave energy interacts with SPPS.

Figure 4.30 gives the free surface elevation and plate deflection for different values of

length a/h, porosity ϵp and frictional coefficient fp of SPPS. Similar behavior is noticed

as in Figure 4.20. Fig 4.30a depicts that plate deflection and free surface elevation in the

lee side decreases with increase in structural length a/h. Fig 4.30b shows that with an

increase in porosity ϵp, plate deflection and free surface elevation in the lee side decrease.

Figure 4.30c shows that as frictional coefficient fp increases, plate deflection and free

surface elevation in the lee side decrease.
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Figure 4.30: Free surface elevation Re(ηj), j = 1, 2, 4, 6 and plate deflection Re(η5) for
different values of (a) a/h = 0.2, 0.5 and 0.8 (θ = 200, Kh = 0.7), (b) ϵp = 0.4, 0.6 and
0.8 (D/h4 = 10, θ = 100, Kh = 0.5) and (c) fp = 0.25, 0.5 and 0.75 (θ = 200, Kh = 0.5)
with b/h = 5, L1/h = 30, L2/h = 30, ϵp = 0.437.
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Figure 4.31: Sf and St for in the absence SPPS (a/h = 0, fp = 0 and ϵp = 1) and in
the presence of SPPS ( fp = 0.5 and ϵp = 0.55) for different values of a/h with , θ = 00,
Kh = 1, L1/h = 4, L2/h = 30.

In Figure 4.31, the shear force Sf and strain St for different values of length a/h of



80
Chapter 4. Mitigation of Structural Response on an Elastic Plate by a Truncated Porous

Structure

SPPS are presented. Here also, as in Figure 4.21, it is observed that Sf and St experienced

by EP in the absence of SPPS (i.e. a/h = 0, fp = 0 and ϵp = 1) is more as compared to

the case of in the presence of SPPS ( fp = 0.5 and ϵp = 0.55). Further, the amplitude of

shear force/strain is less in SPPS as compared to BSPS.

4.6 Conclusion

The ability to reduce the oblique surface wave impact on EP by a truncated thick porous

structure located at a finite distance from EP is analyzed. The related boundary value

problem gives rise to a system of linear algebraic equations by using the eigenfunction

expansion method and orthogonality of eigenfunction, which is solved numerically to

determine the unknown constants corresponding to reflection and transmission coefficients.

The dissipation coefficient related to wave energy dissipation is determined through the

energy balance relation. This study shows that as the length, porosity, and frictional

factor of BSPS/SPPS increase, energy dissipation increases, resulting in a decrease in

wave reflection and transmission. With an increase in the width of the porous structure,

the reflection coefficient decreases in an oscillating pattern, and for the higher value

of structural width, the reflection coefficient becomes constant. The porous structure’s

structural length, porosity, and friction factors play an important role in reducing plate

deflection and free surface elevation on the lee side of EP. With an increase in structural

length the shear force and strain on EP decrease. The effect of the wavenumber of incident

waves, the gap between the porous structure and elastic plate, and flexural rigidity and

length of EP are also analyzed. It is found that SPPS dissipates more wave energy which

is concentrated near the free surface, as compared to the BSPS case. Therefore, it can

be concluded that with suitable adjustment on truncated thick porous structure and EP,

a better coastal protection system can be designed by coastal engineers to diminish the

wave impact structural response of EP.



Chapter 5

Mitigation of Wave Load on a

Sea Wall by a Truncated Porous

Structure in the Presence of an

Elastic Plate

5.1 Introduction

In Chapter 4, the mitigation of the structural response of EP in the presence of BSPS and

SPPS was analyzed. In Chapter 5, we have extended the problem of Chapter 4 to examine

the effectiveness of BSPS/SPPS in reducing wave load on a sea wall in the presence of

EP. The physical problem is formulated mathematically and the boundary value problem

is solved using the eigenfunction expansion method, which coins to a system of equation

through the application of orthogonality of eigenfunctions associated to the free surface

region. This system of equations are solved numerically to determine the reflection and

dissipation coefficients. The energy identity derived and verified numerically to check the

accuracy of the numerical results. The wave response on the wall is analyzed through the

wave force experienced by the wall, as well as the reflection and dissipation coefficients.

The influence of structural and wave parameters is examined through various graphs. A

major part of the work presented in this chapter has been published in Sahoo et al. [120].

5.2 Mathematical Formulation

The problem is formulated in the three-dimensional Cartesian coordinate system under

the assumption that the fluid is inviscid, incompressible and the flow is irrotational and

simple harmonic in time with angular frequency ω. The y-axis is chosen vertically upward

and xz-plane represents the undisturbed free surface of the fluid. The whole fluid region

is divided into 6 regions, as in Figure 5.1. The EP (c ≤ x ≤ d and y = 0) of length

L2 = d − c is placed at a distance L1 from the porous structure and at a distance L3

from the rigid wall. Here two types of configuration of porous structure, namely (a)

BSPS and (b) SPPS, which are isotropic and homogeneous in nature are considered. The

areas covered by the porous structure and the gap regions are denoted by Lp and Lg,

respectively and the submerged interface of the porous structure represent by Lm where
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for BSPS Lp = (0 ≤ x ≤ b, −h ≤ y ≤ −h + a), Lg = (0 ≤ x ≤ b, −h + a ≤ y ≤ 0)

and Lm = (0 ≤ x ≤ b, y = −h + a) and for SPPS Lp = (0 ≤ x ≤ b, −a ≤ y ≤ 0),

Lg = (0 ≤ x ≤ b, −h ≤ y ≤ −a) and Lm = (0 ≤ x ≤ b, y = −a). To make sure

that the matching conditions at vertical interfaces are satisfied, it is considered that the

solution variations in each region are identical (using Snell’s law). Since the motion is

time harmonic, it can be expressed by Φj(x, y, z, t) = Re{ϕj(x, y)ei(µz−ωt)}, satisfying

(
∂2

∂x2
+

∂2

∂y2
− µ2

)
ϕj = 0, in each region j, (5.1)

where µ = k0 sin θ and k0 is the wavenumber of the propagating wave, which make an

angle θ with the x-axis.
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Figure 5.1: Schematic representation of the physical problem in the presence of (a) BSPS
and (b)SPPS.
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The rigid bottom condition is given as

∂ϕj
∂y

= 0, on y = −h for j = 1, 3, 4, 5, 6. (5.2)

The condition on the free-surface is represented by

∂ϕj
∂y

−Kϕj = 0 on y = 0, (5.3)

with K = ω2/g, g is the acceleration due to gravity, j = 1, 2, 4, 6 for BSPS and j = 1, 4, 6

for SPPS.

For SPPS, the free-surface condition in region 2 is represented by

∂ϕj
∂y

−K(mp + ifp)ϕj = 0 on y = 0, for j = 2, (5.4)

where the non-dimensionalized parameters mp and fp stand for the inertial coefficient and

frictional factor, respectively.

The boundary condition on EP is used to express by[
D

(
∂2

∂x2
− µ2

)2

+ 1− ϵeK

]
ϕ5y −Kϕ5 = 0 on y = 0, (5.5)

where D = EI/ρsg is the flexural rigidity of the plate, E is the young’s modulus, I =

h31/12(1 − ν2), h1 is thickness of EP assumed to be small, ν is the Poisson’s ratio, ϵe =

ρeh1/ρs, ρs is density of the fluid and ρe is density of EP.

By considering EP to be floated freely on the water’s surface, the bending moment and

shear force at EP’s edges will vanish, which yield(
∂2

∂x2
− νµ2

)
∂ϕ5
∂y

= 0 and
∂

∂x

(
∂2

∂x2
− (2− ν)µ2

)
∂ϕ5
∂y

= 0 at (c, 0) and (d, 0). (5.6)

The expression for boundary conditions on Lm are given as,

for BSPS: ϕ2 = (mp + ifp)ϕ3,
∂ϕ2
∂y

= ϵp
∂ϕ3
∂y

on y = −h+ a, 0 ≤ x ≤ b, (5.7)

for SPPS: ϕ3 = (mp + ifp)ϕ2,
∂ϕ3
∂y

= ϵp
∂ϕ2
∂y

on y = −a, 0 ≤ x ≤ b, (5.8)

where ϵp is the porosity of BSPS/SPPS. The pressure and velocity continuity conditions,

along the interfaces at x = 0 and x = b are given as

for BSPS: ϕj =

ϕ2, y ∈ Lg

(mp + ifp)ϕ3, y ∈ Lp

and
∂ϕj
∂x

=


∂ϕ2

∂x , y ∈ Lg

ϵp
∂ϕ3

∂x , y ∈ Lp,
(5.9)

for SPPS: ϕj =

ϕ3, y ∈ Lg

(mp + ifp)ϕ2, y ∈ Lp

and
∂ϕj
∂x

=


∂ϕ3

∂x , y ∈ Lg

ϵp
∂ϕ2

∂x , y ∈ Lp,
(5.10)
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where j = 1 at x = 0 and j = 4 at x = b.

For both BSPS and SPPS, the conditions for continuity of pressure and velocity along

interfaces at x = c and x = d in the EP region are expressed as

ϕ4 = ϕ5,
∂ϕ4
∂x

=
∂ϕ5
∂x

on x = c, −h ≤ y ≤ 0, (5.11)

ϕ5 = ϕ6,
∂ϕ5
∂x

=
∂ϕ6
∂x

on x = d, −h ≤ y ≤ 0. (5.12)

The rigid wall causes the horizontal velocity component to vanish, which results in

∂ϕ6
∂x

= 0 on x = p, −h ≤ y ≤ 0. (5.13)

The radiation condition is expressed as

ϕ1(x, y) ∼
(
ig

ω

)
cosh k0(h+ y)

cosh k0h
{eik0xx +R0e

−ik0xx} as x→ −∞, (5.14)

where k0x =
√
k20 − µ2, R0 is the unknown complex constant associated with reflective

wave. In this problem, the singularity at the tip of BSPS/SPPS is not considered.

5.3 Method of Solution

Using the variable separable method to the Helmholtz equation in conjunction with rigid

bottom condition and free surface condition, the velocity potential in each region is

expressed in terms of eigenfunctions. The velocity potential in regions 1, 4 and 6, satisfying

Equations (5.1), (5.2), (5.3), (5.13) and (5.14) can be formulated as follows:

ϕ1 =

(
ig

ω

)[
eik0xxψ̂0 +

∞∑
m=0

Rme
−ikmxxψ̂m

]
for −∞ < x ≤ 0, −h ≤ y ≤ 0, (5.15)

ϕ4 =

(
ig

ω

) ∞∑
m=0

[
Cme

ikmx(x−b) +Dme
−ikmx(x−c)

]
ψ̂m for b ≤ x ≤ c, −h ≤ y ≤ 0, (5.16)

ϕ6 =

(
ig

ω

) ∞∑
m=0

Tm cos kmx(x− p)ψ̂m for d ≤ x ≤ p, −h ≤ y ≤ 0, (5.17)

where

ψ̂m =
cosh km(h+ y)

cosh kmh
, m = 0, 1, 2, . . . , (5.18)

are the eigenfunctions in the free surface region, Rm, Cm,Dm and Tm are unknown complex

constants, kmx =
√
k2m − µ2 and k0 is the positive real root and km, m = 1, 2, 3 . . . are

the purely imaginary roots of the dispersion relation

K − km tanh kmh = 0. (5.19)
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For BSPS, in regions 2 and 3, the velocity potential ϕ2 and ϕ3 can be given in the forms

ϕ2 =

(
ig

ω

) ∞∑
m=0

[
Fme

ipmxx +Gme
−ipmx(x−b)

]
Qm for 0 ≤ x ≤ b, −h+ a ≤ y ≤ 0, (5.20)

ϕ3 =

(
ig

ω

) ∞∑
m=0

[
Fme

ipmxx +Gme
−ipmx(x−b)

]
Mm for 0 ≤ x ≤ b, −h ≤ y ≤ −h+ a,

(5.21)

where as for SPPS, these ϕ2 and ϕ3 can be expressed in the forms

ϕ2 =

(
ig

ω

) ∞∑
m=0

[
Fme

ipmxx +Gme
−ipmx(x−b)

]
Qm for 0 ≤ x ≤ b, −a ≤ y ≤ 0, (5.22)

ϕ3 =

(
ig

ω

) ∞∑
m=0

[
Fme

ipmxx +Gme
−ipmx(x−b)

]
Pm for 0 ≤ x ≤ b, −H ≤ y ≤ −a, (5.23)

where

Qm =
cosh pm(h+ y)−Am sinh pm(h+ y)

cosh pmh−Am sinh pmh
, m = 0, 1, 2, . . . , (5.24)

Mm =
(1−Am tanh pma) cosh pm(h+ y)

(mp + ifp)(cosh pmh−Am sinh pmh)
, m = 0, 1, 2, . . . , (5.25)

Pm =
(mp + ifp)[1−Am tanh pm(h− a)] cosh pm(h+ y)

(cosh pmh−Am sinh pmh)
, m = 0, 1, 2, . . . , (5.26)

Am =


(1−G) tanh pma

1−G tanh2 pma
for BSPS

(1−G) tanh pm(h−a)

tanh2 pm(h−a)−G
for SPPS

, G =
ϵp

mp + if
, (5.27)

Fm and Gm are unknown complex constants, pmx =
√
p2m − µ2 and pm, m = 1, 2, 3, . . .

are complex roots of the of the equation:

for BSPS: K − pm tanh pmh−Am(K tanh pmh− pm) = 0, (5.28)

for SPPS: K(mp + ifp)− pm tanh pmh−Am[K(mp + ifp) tanh pmh− pm] = 0. (5.29)

Finally, in EP region 5, the velocity potential satisfying Equations (5.1), (5.2) and (5.5)

can be expressed in the form

ϕ5 =

(
ig

ω

) ∞∑
m=−2

[
Bme

iαmx(x−a)+Eme
−iαmx(x−d)

]
Fm for c ≤ x ≤ d, −h ≤ y ≤≤ 0 (5.30)

where

Fm =
coshαm(h+ y)

coshαmh
, m = −2,−1, 0, 1, 2, . . . , (5.31)

Bm and Em are unknown constants, αmx =
√
α2
m − µ2 and αm are the complex roots of

the form ±a1 + ia2 for m = −2,−1, positive real root for m = 0 and purely imaginary
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roots for m = 1, 2, 3, . . . of the dispersion relation given by

(Dα4
m + 1− ϵeK)αm tanhαmh = K. (5.32)

For BSPS, utilizing Equations (5.15)-(5.17), (5.20), (5.21) and (5.30) along with

orthogonality of ψ̂m in matching conditions (5.9)-(5.12), we have

U0n +
∞∑

m=0

RmUmn −
∞∑

m=0

[Vmn + (mp + ifp)Ymn](Fm +Gme
ipmxb) = 0, (5.33)

ik0xU0n −
∞∑

m=0

RmikmxUmn −
∞∑

m=0

ipmx[Vmn + ϵpYmn](Fm −Gme
ipmxb) = 0, (5.34)

∞∑
m=0

(Cm +Dme
−ikmx(b−c))Umn −

∞∑
m=0

[Vmn + (mp + ifp)Ymn](Fme
ipmxb +Gm) = 0, (5.35)

∞∑
m=0

ikmx(Cm−Dme
−ikmx(b−c))Umn−

∞∑
m=0

ipmx[Vmn+ϵpYmn](Fme
ipmxb−Gm) = 0, (5.36)

∞∑
m=0

(Cme
ikmx(c−b) +Dm)Umn −

∞∑
m=−2

(Bm + Eme
−iαmx(c−d))Xmn = 0, (5.37)

∞∑
m=0

ikmx(Cme
ikmx(c−b) −Dm)Umn −

∞∑
m=−2

iαmx(Bm − Eme
−iαmx(c−d))Xmn = 0, (5.38)

∞∑
m=−2

(Bme
iαmx(d−c) + Em)Xmn −

∞∑
m=0

Tm cos kmx(d− p)Umn = 0, (5.39)

∞∑
m=−2

iαmx(Bme
iαmx(d−c) − Em)Xmn +

∞∑
m=0

kmxTm sin kmx(d− p)Umn = 0. (5.40)

For SPPS, among Equations (5.33) and (5.40), the Equations(5.33)-(5.36) will be replaced

by

U0n +

∞∑
m=0

RmUmn −
∞∑

m=0

[Zmn + (mp + ifp)Wmn](Fm +Gme
ipmxb) = 0, (5.41)

U0n −
∞∑

m=0

RmikmxUmn −
∞∑

m=0

ipmx[Zmn + ϵpWmn](Fm −Gme
ipmxb) = 0, (5.42)

∞∑
m=0

(Cm+Dme
−ikmx(b−c))Umn−

∞∑
m=0

[Zmn+(mp+ ifp)Wmn](Fme
ipmxb+Gm) = 0, (5.43)

∞∑
m=0

ikmx(Cm−Dme
−ikmx(b−c))Umn−

∞∑
m=0

ipmx[Zmn+ϵpWmn](Fme
ipmxb−Gm) = 0, (5.44)
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where

Umn =

∫ 0

−h
ψ̂mψ̂n, Vmn =

∫ 0

−h+a
Qmψ̂ndy, Ymn =

∫ −h+a

−h
Mmψ̂ndy,

Xmn =

∫ 0

−h
Fmψ̂ndy, Zmn =

∫ 0

−a
Pmψ̂ndy and Wmn =

∫ −a

−h
Qmψ̂ndy.

(5.45)

Moreover, by using Equation (5.30) in Equation (5.6) (free edge conditions of EP), we

have
∞∑

m=−2

αm(α2
mx + νµ2)(Bm + Eme

−iαmx(c−d)) tanhαmh = 0, (5.46)

∞∑
m=−2

iαmxαm(α2
mx + (2− ν)µ2)(Bm − Eme

−iαmx(c−d)) tanhαmh = 0, (5.47)

∞∑
m=−2

αm(α2
mx + νµ2)(Bme

iαmx(d−c) + Em) tanhαmh = 0, (5.48)

∞∑
m=−2

iαmxαm(α2
mx + (2− ν)µ2)(Bme

iαmx(d−c) − Em) tanhαmh = 0. (5.49)

After keeping upto m = N (i.e. truncating the series after N + 1), a system with

(8N + 12) number of equations with (8N + 12) number of unknowns given in Equations

(5.33)-(5.40) and (5.46)-(5.49) is solved for BSPS where as the system with (8N + 12)

number of equations with (8N+12) number of unknowns given in Equations (5.37)-(5.40),

(5.41)-(5.44) and (5.46)-(5.49) is solved for SPPS. Here, these equations are solved by

Gauss elimination method with the help of MATLAB. In this study, plane wave solution

is applied (as considered in Sharma et al. [117]), because for almost all the practical cases

the plane wave approximation is sufficient to describe the wave behaviour as described in

Dalrymple et al. [11]. Once the unknowns are determined, utilizing the velocity potential

in the respective region, the force experienced by the wall, EP deflection and free surface

elevation can be obtained by the following formulas.

Force experienced by the wall: The wave-induced force Fw on the rigid wall is

computed using the integral given by

Fw =

∣∣∣∣−iωgh2

∫ 0

−h
ϕ6(p, y)dy

∣∣∣∣. (5.50)

Plate deflection: The formula for calculating EP deflection is given by

η5 =
i

ω

∂ϕ5
∂y

∣∣∣∣
y=0

. (5.51)
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Free surface elevation: The formula for calculating free surface elevation is given by

ηj =
i

ω

∂ϕj
∂y

∣∣∣∣
y=0

, j = 1, 2, 4, 6 for BSPS (5.52)

j = 1, 4, 6 for SPPS.

5.4 Energy Balance Relation

In the present problem, apart from the reflection of waves, a major part of wave energy is

dissipated by BSPS/SPPS. Thus, for a better understanding of the quantitative behavior

of wave reflection and dissipation, an energy identity is derived. Using the Green’s identity,

the energy identity for this study can be determined which is represented by

∫
C

(
ϕ
∂ϕ̂

∂n
− ϕ̂

∂ϕ

∂n

)
ds = 0, (5.53)

where ϕ̂ is the complex conjugate of ϕ and ∂
∂n is the outward normal derivative to the

boundary C, C = C1 ∪C2, where for BSPS C1={x = −X,−h ≤ y ≤ 0; y = −h,−X ≤ x ≤ 0;

x = 0, y ∈ Lp; Lm; x = b, y ∈ Lp; y = −h, b ≤ x ≤ p; x = p,−h ≤ y ≤ 0; y = 0, d ≤ x ≤ p;

y = 0, c ≤ x ≤ d; y = 0,−X ≤ x ≤ c}, C2={ x = 0, y ∈ Lp; Lm; x = b, y ∈ Lp;

y = −h, 0 ≤ x ≤ b }. The contribution from C1 and C2 (except the line x = p,−h ≤ y ≤ 0)

will be same as in Section 4.4. The line x = p,−h ≤ y ≤ 0 contributes

∫
C

(
ϕ
∂ϕ̂

∂n
− ϕ̂

∂ϕ

∂n

)
ds = 0. (5.54)

By combining all the contributions from C1 and C2, the energy identity is derived as

|R0|2 + kd = 1 (5.55)

where

kd =
2k0 cosh

2 k0h

ik0x(sinh 2k0h+ 2k0h)

[∫
Lp

(
[ϵp(mp + ifp)− 1]ϕ3ϕ

∗
3x − [ϵp(mp − ifp)− 1]ϕ∗3ϕ3x

)
x=0

dy

+

∫
Lp

(
[ϵp(mp − ifp)− 1]ϕ∗3ϕ3x − [ϵp(mp + ifp)− 1]ϕ3ϕ

∗
3x

)
x=b

dy

+

∫
Lm

(
[ϵp(mp − ifp)− 1]ϕ∗3ϕ3y − [ϵp(mp + ifp)− 1]ϕ3ϕ

∗
3y

)
dx

]
.

(5.56)

Similarly, by selecting the appropriate contour along SPPS, the energy identity can be
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found as |R0|2 + kd = 1, where

kd =
2k0 cosh

2 k0h

ik0x(sinh 2k0h+ 2k0h)

[∫ r

0
−2iKfp|ϕ2|2dx

+

∫
Lp

(
[ϵp(mp + ifp)− 1]ϕ2ϕ

∗
2x − [ϵp(mp − ifp)− 1]ϕ∗2ϕ2x

)
x=0

dy

+

∫
Lp

(
[ϵp(mp − ifp)− 1]ϕ∗2ϕ2x − [ϵp(mp + ifp)− 1]ϕ2ϕ

∗
2x

)
x=b

dy

+

∫
Lm

(
[ϵp(mp + ifp)− 1]ϕ2ϕ

∗
2y − [ϵp(mp − ifp)− 1]ϕ∗2ϕ2y

)
dx

]
.

(5.57)

5.5 Results and Discussion

In this section, the usefulness of a thick porous structure to minimize the wave effect

on a rigid wall in the presence of EP is studied through reflection coefficient |R0|,
dissipation coefficient kd, wave force (Fw) experienced by the wall, free surface elevation

(Re(η1), Re(ηj) and plate deflection (η5). Unless otherwise specified, the non-dimensional

parameters k0h = 1, b/h = 0.6, a/h = 0.5, mp = 1, fp = 0.5, ϵp = 0.5, θ = 200, L1/h = 4,

ϵe/h = 0.01, L2/h = 5, D/h4 = 50 and L3/h = 6 will remain fixed throughout this study.

In this section, several computations are done, but to avoid repetition, few results are

presented.

5.5.1 Convergence Study for N

Within the context of our study, Table 5.1 investigates the convergence of the number of

evanescent modes, denoted as N . The table provides a detailed record of |R0| associated
with various values of k0h, considering different N values, specifically N = 0, 2, 4, 6,

and 8. Significantly, a consistent trend emerges wherein the precision of |R0| calculations
extends reliably up to the fourth decimal point when N is fixed at 4, regardless of the

chosen k0h values. But in Figure 5.2, it is observed that the behavior of the curve for the

reflection coefficient corresponding to plane wave solution is similar to the curve for the

full wave solution for N = 4. Since the plane-wave approximation is sufficient to describe

the wave behavior as mentioned by Dalrymple et al. [11], we have taken N = 0 for plotting

all graphs.

k0h N=0 N=2 N=4 N=6 N=8

0.25 0.9979 0.9973 0.9973 0.9973 0.9973

0.5 0.9933 0.9913 0.991 0.991 0.991

0.75 0.9947 0.9936 0.9935 0.9935 0.9935

1 0.9956 0.9945 0.9944 0.9944 0.9944

1.25 0.9791 0.9726 0.9717 0.9717 0.9717

1.5 0.9942 0.9920 0.9918 0.9918 0.9918

Table 5.1: Convergence of N through |R0| with fp = 0.25 and a/h = 0.2.
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Figure 5.2: Comparison between plane wave solution (N = 0) and full wave solution
(N = 4) with fp = 0.25 and a/h = 0.2.

5.5.2 Validation

For the validation of the current numerical results with the existing literature, it is noted

that without the presence of EP, the present problem is equivalent to the work by Koley

et al. [19]. Table 5.2 and Figure 5.3a depicts the outcomes of the current problem without

the presence of EP (i.e. D/h4 = 0, ϵe/h = 0) with ϵp = 0.437, a/h = 0.2, fp = 0.5, θ = 100

and L/λ = 1 (L = L1 + L2 + L3 and λ = 2π/k0), which shows a close agreement with

the results of Koley et al. [19]. It may be noted that when the length a/h of the porous

structure is equal to 1, the present problem reduces to the problem of Chapter 3. From

the Figure 5.3b it is observed that the results of |R0| are well-matched with the results

of Chapter 3 (Figure 3.12a). Further, to verify the energy identity given by Equation

(5.55), the values of kd and 1− |R0|2 are calculated numerically for various values of k0h

and tabulated in Table 5.3. It is revealed from Table 5.3 that the energy identity relation

holds with close agreement for both cases (BSPS and SPPS).

N a/h Koley et al. (2015) (|R0|) Present Study (|R0|)
1 0.2 0.99870 0.999

0.5 0.99288 0.996
0.8 0.96334 0.965

3 0.2 0.99917 0.9993
0.5 0.99462 0.9939
0.8 0.96483 0.965

5 0.2 0.99918 0.9991
0.5 0.99623 0.9968
0.8 0.965 0.965

Table 5.2: Comparison of present results with Koley et al. [19] for |R0| for a porous
structure in the presence of a sea wall and in the absence of elastic plate for different
values of a/h.
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Figure 5.3: Validation of the numerical results with results of (a) Koley et al. [19] with
ϵp = 0.437, a/h = 0.2, fp = 0.5, θ = 100 and L/λ = 1 (L = L1 + L2 + L3 and λ = 2π/k0)
and (b) Chapter 3 with k0h = 1, a/h = 1, b/h = 1, mp = 1, fp = 0.5, ϵp = 0.5, θ = 250,
L1/h = 8, D/h4 = 50, ϵe/h = 0.01, L2/h = 10 and L3/h = 12.

k0h BSPS SPPS
|R0| 1− |R0|2 kd |R0| 1− |R0|2 kd

0.25 0.9867 0.0263 0.0263 0.8962 0.1968 0.1968
0.5 0.9546 0.0887 0.0887 0.8054 0.3513 0.3512
0.75 0.9629 0.0729 0.0728 0.7180 0.4845 0.4843
1 0.9670 0.0649 0.0647 0.7383 0.4549 0.4547

1.25 0.8833 0.2194 0.2192 0.6660 0.5565 0.5562
1.5 0.9468 0.1032 0.1031 0.7415 0.4502 0.4500

Table 5.3: Verification of energy identity.
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Figure 5.4: Force Fw versus wavenumber k0h for various values of a/h of BSPS with
b/h = 1.
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5.5.3 Effect of BSPS on Force (Fw) Experienced on the Wall, Reflection

Coefficient (|R0|), Dissipation Coefficient (kd), Plate Deflection

(Re(η5)) and Free Surface Elevation (Re(ηj), j = 1, 2, 4, 6)

In this section, the influence of BSPS on Fw, |R0|, kd, Re(η5) and ηj , j = 1, 2, 4, 6 is studied

through different graphs for different parameters as described below.

Figure 5.4 shows the behavior of the force Fw experienced by the wall versus

wavenumber k0h for various values of length a/h of BSPS. The figure shows that with an

increase in k0h, the force Fw experienced by the wall decreases in an oscillatory pattern.

It is also noted that with an increase in a/h, the force Fw decreases. This may be because,

as a/h increases, more wave energy is dissipated and reflected by BSPS, and fewer waves

are transmitted toward the wall.

Figure 5.5a shows the force Fw versus L1/h variations for different flexural rigidity

D/h4 values. It is viewed that the force experienced by the vertical wall diminishes as EP’s

flexural rigidity increases. This is because the increase in flexural rigidity of EP makes it

more rigid, implying more incident waves are reflected back and less incident waves are

transmitted below EP (as observed in Sahoo et al. [68]), causing less force experienced by

the wall. Figure 5.5b shows the force Fw versus L1/h for different lengths L2/h of EP.

It is observed that with an increase in L2/h, the force experienced by the wall decreases.

This may be because the longer EP reflects more incident waves, causing less wave impact

on the wall. Furthermore, in both the Figures 5.5a and 5.5b, force shows oscillatory and

periodic patterns with respect to L1/h. The occurrence of optima in wave force may be

due to the of constructive and destructive interference between the incident wave and

reflective wave, as discussed by Koley et al. [19].
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Figure 5.5: Force Fw versus gap L1/H between BSPS and EP for various values of (a)
flexural rigidity D/h4 (θ = 100) and (b) length L2/h of EP (θ = 100).

Figures 5.6a and 5.6b show the force Fw versus L1/h for different lengths (a/h) and

widths (b/h) of BSPS, respectively. The force Fw demonstrates an oscillatory and periodic
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pattern with varying L1/h, as illustrated in Figure 5.5. It is observed that as a/h (or b/h)

increases, the force Fw on the wall decreases. This is because when a/h (or b/h) increases,

energy dissipation by the porous structure increases; thereby, the transmission of energy

towards the wall decreases, implying less force experienced by the wall; hence the wall is

protected. Further, it is highlighted that the minima in wave force Fw are observed when

the gap (L1) between BSPS and EP is approximately an odd integral multiple of the depth

of water (h).
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Figure 5.6: Force Fw versus gap L1/H between BSPS and EP for various values of (a)
length a/h (k0h = 1.7 and D/h4 = 100) and (b) width b/h of BSPS (k0h = 1.5 and
D/h4 = 100).
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Figure 5.7: Force Fw versus gap L1/h between BSPS and Ep for various values of (a)
frictional factor fp (k0h = 1.5) and (b) porosity ϵp of BSPS (k0h = 1.5 and b/h = 3.5).

Figures 5.7a and 5.7b show the force Fw versus L1/h for different frictional coefficient
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fp and porosity ϵp values of BSPS, respectively. From both the Figures 5.7a and 5.7b,

it is observed that the force Fw exhibits oscillatory and periodic behavior with respect

to L1/h and the minima in wave force Fw on the vertical wall are observed when the

gap (L1) between the porous structure and EP is approximately odd integral multiple of

depth of water (h), as seen in Figure 5.6. It is also found that the force experienced by

the wall diminishes as fp (or ϵp) increases because the porous structure dissipates more

energy as fp (or ϵp) increases, which results in less energy being transmitted towards the

wall, yielding less force experienced by the wall.
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Figure 5.8: Force Fw versus gap L3/h between EP and sea wall for various values of (a)
flexural rigidity D/h4 (L1/h = 6) and (b) length L2/h of EP (θ = 00 and D/h4 = 10).

Figures 5.8a and 5.8b depict the variations in force Fw versus L3/h for different

flexural rigidity D/h4 and length L2/h values of EP, respectively. It is observed that

the Force Fw is oscillatory and periodic in nature with respect to the gap L3/h between

EP and the wall. Figure 5.8a shows that as D/h4 increases, the maximum value of Fw

decreases. However, the maxima are shifted towards the right for an increase in D/h4

values. In Figure 5.8b, it is found that as the length of EP increases, the maximum value

of Fw decreases. It is also noted that the amplitude of force Fw reduces significantly for

EP with higher flexural rigidity D/h4, which is supported by the fact that as D/h4 value

increases, the plate behaves more like a rigid plate, thereby reflecting more wave energy

and thus reducing the force experienced by the wall. When L2/h (length of EP) increases,

more wave energy is reflected back by EP and less wave energy is transmitted towards the

wall.

Figures 5.9a and 5.9b show force Fw versus L3/h variations for different fp and ϵp

values, respectively. Force Fw follows an oscillatory and periodic pattern with respect to

L3/h, as found in Figure 5.8. From both Figures 5.9a and 5.9b, it is noted that as fp

(or ϵp) increases, force Fw is slightly reduced. This may be with an increase in fp (or

ϵp), a major part of the wave energy is dissipated by the porous structure. Hence less
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wave trapped in between EP and vertical wall. Additionally, by observing Figure 5.9b, it

becomes evident that the force experienced by the wall is greater when there is no porous

structure (ϵp = 1 and fp = 0) compared to when a porous structure is present.
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Figure 5.9: Force Fw versus gap L3/h between EP and sea wall for various values of (a)
frictional factor fp (D/h4 = 10 and θ = 00) and (b) porosity ϵp of BSPS.
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Figure 5.10: Force Fw versus width b/h for various values of a/h of BSPS with k0h = 1.2.

Figure 5.10 shows the variation of Fw versus b/h for different values of a/h. From the

figure it is found that with an increase in b/h, force Fw on the rigid wall decreases and for

higher values of b/h, force Fw goes to zero. This may be due to the fact that the porous

structure with higher width b/h absorbs all the incident waves and no wave is transmitted

towards the wall. It is also found that for smaller values of a/h the oscillatory pattern in

Fw appears upto certain values of b/h and for higher values of a/h the oscillatory pattern

vanishes.

Figure 5.11 depicts the variations in reflection coefficient |R0| and dissipation
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coefficient kd versus wavenumber k0h for different values of porosity ϵp. From Figure

5.11a, it is noted that with the increase in k0h (0 < k0h < 1.7), |R0| decreases in an

oscillatory pattern and the amplitude of oscillation increases. But when k0h ∼ 1.7, the

curve is not smooth. After that, with the increase in k0h, |R0| increases in an oscillatory

pattern and the amplitude of oscillations decreases. Figure 5.11b shows that when k0h

varies from 0 to 1.7, kd increases in an oscillatory pattern and amplitude oscillation also

increases. But when k0h ∼ 1.7, the curve is not smooth, as in Figure 5.11a. After that,

with the increase in k0h, kd decreases and the amplitude of oscillations also decreases.

However, with an increase in ϵp more wave energy is dissipated and less wave energy is

reflected.
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Figure 5.11: Reflection coefficient |R0| and dissipation coefficient kd versus wave number
k0h for various values of porosity ϵp of BSPS.

Figure 5.12 illustrates the behavior of |R0| and kd versus L1/h for various values of

a/h. In this figure, |R0| and kd show an oscillatory and periodic pattern with L1/h, similar

to the pattern of force Fw versus L1/h, as in Figure 5.6a. This optimum in wave reflection

may be due to the resonating interaction of waves in a confined zone between BSPS and

EP. Further, it is highlighted that minima in wave reflection |R0| are observed when the

distance L1 between BSPS and EP is approximate to the odd integral multiple of the

depth of water (h). In addition, the wave reflection |R0| (and dissipation kd) reaches a

minimum value in between two maximum values. It is also noted that with an increase in

a/h, the wave reflection decreases and dissipation increases. Comparing Figure 5.6a with

Figure 5.12a, it is found that the optimum in wave reflection corresponds to optima in

wave force experienced by the wall.

The distribution of reflection coefficient |R0| and dissipation coefficient kd against

L3/h for different values of fp are plotted in Figures 5.13a and 5.13b, respectively. In

these figures, |R0| and kd follow a periodic and oscillatory pattern with L3/h, similar to

the pattern of force Fw versus L3/h, as in Figure 5.9a. The optimum in wave reflection
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may be due to the constructive and destructive interference between the incident wave

and the reflected wave. It is also found that with an increase in fp, the porous structure

dissipates more wave energy; consequently, wave reflection decreases.
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Figure 5.12: Reflection coefficient |R0| and dissipation coefficient kd versus gap L1/h
between BSPS and EP for various values of length a/h of BSPS with k0h = 1.7 and
D/h4 = 100.
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Figure 5.13: Reflection coefficient |R0| and dissipation coefficient kd versus gap L3/h
between EP and sea wall for various values of frictional coefficient fp of BSPS.

In Figure 5.14, reflection coefficient |R0| and dissipation coefficient kd versus angle

of incidence θ are plotted for different values for b/h. The figure illustrates that for

00 < θ < 600 (close to 600), |R0| and kd follow an oscillatory pattern. When θ ∼ 600,

there is a sudden fall in |R0| and a sudden rise in kd. However, when θ ∼ 870, there is a

sudden rise in |R0| and it becomes unity when θ = 900 for all values of b/h. Also, there is
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a sudden fall in kd for θ ∼ 870 and kd becomes zero when θ = 900 for all values of b/h. The

angle θ = 870, where the reflection coefficient reaches its global minimum, is identified as

the critical angle. Further, the figure shows that the global minima of |R0| decreases and
the global maxima of kd increases with an increase in b/h.
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Figure 5.14: Reflection coefficient |R0| and dissipation coefficient kd versus angle of incident
θ for width b/h of BSPS.
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Figure 5.15: Plate deflection (Re(η5)) and free surface elevation (Re(ηj), j = 1, 2, 4, 6) for
various values of (a) porosity ϵp (D/h4 = 10) and (b) frictional factor fp (ϵp = 0.437,
D/h4 = 102) with b/h = 10, L1/h = 32 , L2/h = 34, L3/h = 22.

Figures 5.15a and 5.15b show the behavior of plate deflection (Re(η5)) and free surface

elevation (Re(ηj), j = 1, 2, 4, 6) for different values of ϵp and fp, respectively. From these

figures, it is noted that the free surface elevation (Re(η6)) in Region 6 and the EP deflection

(Re(η5)) in Region 5 are less than the free surface elevation (η1) in Region 1 for fixed
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values of ϵp and fp due to the fact that the porous structure dissipates a major part of the

wave energy and less wave energy is transmitted towards EP and vertical wall. Further,

from Figure 5.15a, it is noted that as ϵp increases, the amplitude of free surface elevation

(Re(η6)) is reduced in the region 6 between EP and wall, creating a calm zone for safe

navigation. From Figure 5.15b, it is noted that as fp increases, the amplitude of oscillation

is reduced in Region 6 between EP and wall, thus creating a calm zone for the marine

environment.
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Figure 5.16: Re(η6) for various values of (a) length a/h and (b) flexural rigidity D/h4

with b/h = 10, L1/h = 32, L2/h = 34 and L3/h = 26.
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Figure 5.17: Force Fw versus wavenumber k0h for various values of b/h of SPPS.

Figure 5.16 show the variations of free surface elevation Re(η6) in region 6 for different

a/h and D/h4. In Figures 5.16a and 5.16b, the patterns observed here are oscillatory and

periodic. In Figure 5.16a, it is found that with an increase in a/h, Re(η6) decreases.

This is because with an increase in a/h, dissipation of wave energy by porous structure
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increases and less wave energy is transmitted towards the vertical wall, which creates a

calm zone for safe navigation. Further, in Figure 5.16b, it is found that as D/h4 value

increases, Re(η6) decreases, and thus a calm zone is created in region 6. This is due to

the fact that as D/h4 value increases, EP becomes more rigid, thus more wave energy is

reflected by EP and less wave energy is transmitted towards the vertical wall. Therefore,

an EP with higher value flexural rigidity helps in creating a tranquility zone, which is the

objective of the study. From these Figures 5.15 and 5.16, it can be concluded that the

porous structure with higher values of ϵp, fp, a/h and EP with higher values of D/h4 plays

a significant role in protecting the rigid wall.

5.5.4 Effect of SPPS on Force (Fw) Experienced on the Wall, Reflection

Coefficient (|R0|), Dissipation Coefficient (kd), Plate Deflection

(Re(η5)) and Free Surface Elevation (Re(ηj), j = 1, 4, 6)

In this section, the numerical results for Fw, |R0|, kd, Re(η5) and Re(ηj), j = 1, 4, 6 are

plotted through graphs for different parameters by replacing BSPS with SPPS.

Figure 5.17 shows the behavior of the force Fw experienced by the wall versus

wavenumber k0h for various values of width b/h of SPPS. From the figure, it can be

found that Fw decreases in an oscillatory pattern with an increase in k0h, as observed for

the case of BSPS (see Figure 5.4). Further, it is observed that with an increase in b/h,

the force experienced by the wall decreases. This may be due to the fact that with an

increase in b/h, more wave energy is reflected and dissipated by the SPPS.
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Figure 5.18: Force Fw versus gap L1/h between SPPS and EP for various values of (a)
length L2/h (D/h4 = 100) and (b) porosity ϵp (k0h = 1.5, b/h = 3.5).

Figure 5.18 gives the behavior of force Fw versus L1/h for different values of L2/h and

ϵp. From the Figures 5.18a and 5.18b, it is observed that with respect to L1/h, force Fw

follows an oscillatory and periodic pattern and also found that with an increase in L2/h

(or ϵp), the force Fw on the wall decreases, which is similar to the results in the presence
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of BSPS, as in Figures 5.5b and 5.7b. Comparing Figure 5.7b with Figure 5.18b, it can

be seen that wave force Fw on the wall is less in the case of SPPS in comparison to the

case of BSPS. This may be due to, SPPS dissipating more wave energy concentrated at

the free surface as compared to BSPS.
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Figure 5.19: Force Fw versus gap L3/h between EP and sea wall for various values of (a)
flexural rigidity D/h4 (L1/h = 6) and (b) frictional factor fp.
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Figure 5.20: Force Fw versus width b/h of SPPS for various values of length a/h with
k0h = 1.2.

Figure 5.19 shows the force Fw versus L3/h variations for differentD/h4 and fp values.

It is observed that with respect to L3/h, the force is oscillatory and periodic in nature. In

Figure 5.19a, the maximum value of the force Fw on the wall decreases as D/h4 increases.

Further, there is a shift towards the right with an increase in D/h4 which may be due

to as D/h4 increases, more wave energy is reflected by EP and another amount of wave

energy is trapped between EP and vertical wall, as in Figure 5.8a. However, Figure 5.19b
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shows that as fp increases, the force Fw experienced by the wall is slightly reduced.

Force Fw versus b/h for different values of a/h is plotted in Figure 5.20. It depicts

that when b/h increases, the force Fw on the wall slowly decreases and becomes zero for

higher values of b/h. But, by comparing Figure 5.10 with Figure 5.20, it can be seen that

for protecting the vertical wall, SPPS is more effective as compared to BSPS, and it is

also noted that with an increase in a/h, the force Fw on the wall decreases.
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Figure 5.21: Reflection coefficient |R0| and dissipation coefficient kd versus wave number
k0h for various values of width b/h.
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Figure 5.22: Reflection coefficient |R0| and dissipation coefficient kd versus gap L1/h
between SPPS and EP for various values of porosity ϵp with b/h = 3.5.

The behavior of reflection coefficient |R0| and dissipation coefficient kd versus k0h

are examined for different values of b/h in Figure 5.21. From the figure it is found

that when k0h increases, wave reflection decreases in an oscillatory pattern but the wave
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energy dissipation increases in an oscillatory pattern. As k0h increases the amplitude of

oscillations increases in both cases. However, with an increase in b/h, |R0| increases and
kd decreases. This is due to the fact that the porous structure dissipates more incident

wave energy as its width b/h increases and less wave energy is reflected back.
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Figure 5.23: Reflection coefficient |R0| and dissipation coefficient kd versus gap L3/h
between SPPS and EP and sea wall for various values of frictional coefficient fp.
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Figure 5.24: Reflection coefficient |R0| and dissipation coefficient kd versus angle of incident
θ for width b/h.

Figure 5.22 shows the variations in reflection coefficient |R0| and dissipation coefficient

kd versus L1/h for different ϵp. From Figure 5.22a, it is noted that as ϵp increases, wave

reflection decreases in an oscillatory and periodic pattern. Further, the occurrence of zero

minima is observed for ϵp=0.8, this may be due to the π-phase shift between the incident

wave and reflected wave. Figure 5.22b shows the variations in kd versus L1/h for different
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ϵp values. As ϵp increases, the wave dissipation increases in an oscillatory and periodic

pattern, and this behavior is opposite to that observed for the reflection coefficient.

Figure 5.23 shows the variations in reflection coefficient |R0| and dissipation coefficient

kd versus L3/h for various values of fp. From Figure 5.23a, it is observed that as fp

increases, wave reflection decreases in an oscillatory and periodic pattern, where the

maxima are shifting towards the left for a higher value of fp which may be due to the

porous structure is dissipating a large amount of wave energy and another amount of may

be trapped between EP and wall. Figure 5.23b shows the variations in kd versus L3/h

for different fp values. As fp increases, the wave dissipation increases with a significant

increase in the amplitude of oscillation.

Figure 5.24 shows the variations in reflection coefficient |R0| and dissipation coefficient

kd versus θ for different values of b/h. It is found that |R0| decreases and kd increases in

an oscillatory pattern for 00 ≤ θ ≤ 600, then there is a sudden fall in |R0| and a sudden

rise in kd when θ ∼ 600, as in Figure 5.14. However, when θ ∼ 700, there is a sudden rise

in |R0| and a sudden fall in kd. Here, the angle θ = 700 is termed as the critical angle,

where the reflection coefficient reaches its global minimum. Comparison between Figure

5.14 and Figure 5.24 depicts that the wave dissipation is more and wave reflection is less

by SPPS as compared to BSPS. From Figure 5.18b and Figure 5.24 it can be concluded

that SPPS is more useful in protecting the rigid wall as compared to BSPS.
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Figure 5.25: Plate deflection (Re(η5)) and free surface elevation (Re(ηj), j = 1, 2, 4, 6) for
various values of (a) length a/h (L1/h = 30) and (b) frictional factor fp (L1/h = 32,
θ = 100) with b/h = 5, L2/h = 30, L3/h = 20.

Figures 5.25a and 5.25b show the variations in Plate deflection (Re(η5)) and free

surface elevation (Re(ηj), j = 1, 2, 4, 6) for different a/h and fp, respectively. In these

figures, it is noted that the free surface elevation (η6) in Region 6 and plate deflection (η5)

in Region 5 are less than the free surface elevation (η1) in Region 1 for fixed values of a/h

and fp due to the fact that the porous structure dissipates a major part of the wave energy
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and transmits less amount of wave energy, which is similar to the observation obtained

in Figure 5.15. From Figures 5.25a and 5.25b, it is noted that as a/h (or fp) increases,

the amplitude of free surface elevation (η6) is reduced in the region 6 between EP and the

wall. Thus a calm zone is created for safe navigation.

Figure 5.26 shows the behavior of free surface elevation in region 6 for different a/h

and D/h4. Figures 5.26a and 5.26b depict that with an increase in a/h and D/h4, the η6

curves decrease in an oscillatory and periodic pattern, as observed in Figure 5.16. Thus,

the porous structure with a higher a/h value and EP with a higher D/h4 value are helpful

in creating a tranquility zone for safe navigation.
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Figure 5.26: Re(η6) for various values of (a) length a/h and (b) flexural rigidity D/h4

with b/h = 5, L1/h = 30, L2/h = 30 and L3/h = 20.

Figure 5.27a and Figure 5.27b, respectively, show the behavior of force Fw experienced

by the wall and energy dissipation coefficient kd versus k0h for the three cases namely,

(i) EP alone, (ii) BSPS and EP and (iii) SPPS and EP. Analysis of Figure 5.27a reveals

that Fw is higher in the presence of EP alone (i.e. in the absence of BSPS and SPPS)

as compared to the presence of BSPS/SPPS with EP. Moreover, at k0h = 0.85, Fw is

60% lower in the presence of SPPS than in the presence of BSPS. This observation can

be attributed to the fact that in the absence of a porous structure, the energy dissipation

coefficient kd is zero and significant changes in the kd are obtained after introducing the

truncated porous structure. The installation position of the porous structure such as

bottom standing or surface piercing plays an evident role in dissipating the wave energy.

EP with SPPS shows the ultimate wave damping (nearly 90%) with increasing harmonic

oscillatory pattern against the k0h (Figure 5.27b). Consequently, a smaller portion of the

wave is transmitted towards the wall and the wall experiences minimal force, as depicted in

Figure 5.27b. The wave-damping performance of BSPS is evident when compared with the

EP alone. However, the higher wave damping is obtained by SPPS as compared to BSPS,

and the variation between them is 50% at k0h = 0.85 because the 80% of incident wave
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energy is concentrated near the first 10% of the water depth as mentioned in Venkateswarlu

and Karmakar [9]. Thus the present study strongly suggests an SPPS with EP to control

the wave force experienced by vertical rigid wall.
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Figure 5.27: Comparison between three cases such as absence of BSPS and SPPS (i.e.,
EP alone), presence of BSPS (b/h=2) and presence of SPPS (b/h=2) for (a) Fw and (b)
kd vs k0h.

5.6 Conclusion

In this paper, the interaction of oblique water waves by EP placed near a sea wall in

the presence of a porous structure (BSPS/SPPS) is studied for the protection of the sea

wall. The expressions in terms of eigenfunction expansion for velocity potentials coin the

boundary value problem into an algebraic system which is solved numerically. The wave

motion past the structures is characterized by plotting the results for force experienced by

the wall, reflection and dissipation coefficients. From this study, it is found that when the

distance between BSPS and EP is an odd multiple of the depth of water, the wave force

experienced by the wall is minimum and this minimum value of the wave force corresponds

to the minimum value of the reflection coefficient. Also, periodic harmonic oscillations are

observed in the reflection coefficient, dissipation coefficient and force experienced by the

wall with respect to variation of the gap length between PS and EP and also gap length

between EP and vertical wall. There is a 60% reduction in force and 50% enhancement

in damping coefficient after installing the SPPS when compared with the BSPS. Hence,

from the cost-effective viewpoint, SPPS is suggested over BSPS in the presence of EP to

protect the rigid wall against unprecedented gravity waves.



Chapter 6

Mitigation of Wave Load on a

Sea Wall by a Submerged Porous

Structure in the Presence of Step

Type Bottom

6.1 Introduction

In Chapters 3 and 5, the effectiveness of thick porous structures of different configurations,

such as (i) complete porous structure extending from top to bottom, (ii) bottom-standing

porous structure, and (iii) surface-piercing porous structure, is analyzed to mitigate the

wave load on a sea wall. However, these three types of configurations may not be practical

in some situations. The complete and surface-piercing porous structures may not be useful

for creating safe navigation channels or harbors in natural environments. In addition,

the construction of a bottom-mounted porous structure is challenging in some situations.

Therefore, we propose the use of a submerged thick porous structure with a finite width

that is neither bottom-standing nor surface-piercing. This novel structure could be a

valuable addition to breakwater types and offer solutions to various ocean engineering

challenges. To model mathematically, Sollitt and Cross model is used to model the flow

past submerged porous structure (SPS). The eigenfunction expansion method along with

orthogonality of eigenfunction is developed to solve the boundary value problem. The

energy balance relation is derived to verify the accuracy of the computational results

and to provide quantitative information about wave energy dissipation. Additionally,

the present results are validated against known results produced by Koley et al. [19].

Hydrodynamic factors such as wave force experienced on the wall, reflection coefficient,

dissipation coefficient, and free surface elevation are analyzed for various wave and

structural parameters. A major part of this work is communicated to a journal for

publication.

6.2 Mathematical Formulation

In this section, we present a problem that involves the scattering of oblique waves by

thick submerged porous structure (SPS) within the context of a step-type bottom in the
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presence of a sea wall under the linear water wave theory. The problem is formulated

within a three-dimensional Cartesian coordinate system, where it is assumed that the

fluid is inviscid and incompressible and that the flow is irrotational and simple harmonic

in time with an angular frequency ω. The y-axis is oriented in a vertically upward direction

and the xz-plane is designated as the undisturbed water surface. This problem considers

that SPS is to be fixed at a submergence depth a, following submerged thick rigid structure

work by Kanoria et al. [121]. Also, this structure can be fixed by using the method of

mooring lines (see Karmakar and Soares [122]), although this aspect is not considered in

the current situation. SPS (0 ≤ x ≤ l and −b ≤ y ≤ −a) with width l is placed at a

distance L1 = r1 − l from the first step (see Figure 6.1). SPS is assumed to be infinitely

long along the z-axis. The two successive steps, each characterized by heights s1 = h−H1

and s2 = h −H2, and widths L2 = r2 − r1 and L3 = r3 − r2, are respectively positioned

at depths H1 and H2, as shown in Figure 6.1. The entire fluid region is divided into 7

regions. The whole fluid domain is divided into 7 regions R1, R2, R3, R4, R5, R6 and R7

as mentioned in Figure 6.1.
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Figure 6.1: SPS kept at a finite distance from the sea wall over two stepped bottom.

The fluid motion can be described by the velocity potential Φj(x, y, z, t) =

Re{ϕj(x, y)ei(ßz−ωt)}, satisfying(
∂2

∂x2
+

∂2

∂y2
− ß2

)
ϕj = 0, in each region Rj , (6.1)

where ß = k sin θ and k representing the wavenumber of the incidence wave and θ

representing the angle between the wave’s direction and the x-axis.
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The rigid bottom condition is given by

∂ϕj
∂y

= 0 on y = −h for j = 1, 4, 5, (6.2)

∂ϕ6
∂y

= 0 on y = −H1, (6.3)

∂ϕ7
∂y

= 0 on y = −H2. (6.4)

In the free-surface, the undisturbed water surface condition is expressed by

∂ϕj
∂y

−Kϕj = 0 on y = 0 for j = 1, 2, 5, 6, 7, (6.5)

with K = ω2/g, g is the acceleration due to gravity.

The conditions for continuity of pressure and velocity along the interfaces of SPS are

expressed as

ϕ2 = (m+ if)ϕ3,
∂ϕ2
∂y

= ϵ
∂ϕ3
∂y

on y = −a, 0 ≤ x ≤ l, (6.6)

ϕ4 = (m+ if)ϕ3,
∂ϕ4
∂y

= ϵ
∂ϕ3
∂y

on y = −b, 0 ≤ x ≤ l, (6.7)

ϕ1 = (m+ if)ϕ3,
∂ϕ1
∂x

= ϵ
∂ϕ3
∂x

on x = 0, −b ≤ y ≤ −a, (6.8)

ϕ5 = (m+ if)ϕ3,
∂ϕ5
∂x

= ϵ
∂ϕ3
∂x

on x = l, −b ≤ y ≤ −a, (6.9)

where the non-dimensionalized quantities m, f and ϵ respectively represent the inertial

coefficient, frictional factor and porosity of SPS.

The conditions for continuity of pressure and velocity along the mutual vertical interfaces

at x = 0 and x = l are expressed as

ϕj =

ϕ2,−a ≤ y ≤ 0

ϕ4,−h ≤ y ≤ −b
and

∂ϕj
∂x

=


∂ϕ2

∂x ,−a ≤ y ≤ 0

∂ϕ4

∂x ,−h ≤ y ≤ −b
(6.10)

where j = 1 on x = 0 and j = 5 on x = l.

The continuity of pressure and velocity along the mutual interfaces x = r1 and x = r2 are

used to express by

ϕ5 = ϕ6,
∂ϕ5
∂x

=
∂ϕ6
∂x

on x = r1, −H1 ≤ y ≤ 0, (6.11)

ϕ6 = ϕ7,
∂ϕ6
∂x

=
∂ϕ7
∂x

on x = r2, −H2 ≤ y ≤ 0. (6.12)

The conditions at the steps are expressed as

∂ϕ5
∂x

= 0 on x = r1, −h ≤ y ≤ −H1, (6.13)

∂ϕ6
∂x

= 0 on x = r2, −H1 ≤ y ≤ −H2. (6.14)
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The condition on the rigid sea wall at x = r3 is expressed as

∂ϕ7
∂x

= 0 on x = r3, −H2 ≤ y ≤ 0. (6.15)

The far-field condition is given by

ϕ1(x, y) ≃
(
ig

ω

)
cosh k(h+ y)

cosh kh
{eikxx +R0e

−ikxx} as x→ −∞, (6.16)

where |R0| is commonly referred as the reflection coefficient and kx =
√
k2 − ß2 , k is the

positive real root of the transcendental equation in k given by

K − k tanh kh = 0. (6.17)

In this problem, the singularity at the tip of SPS is not considered.

6.3 Method of Solution

In the study, the Helmholtz equation is solved using the variable separable method. This

approach enables to write the expression of the velocity potential in each region in terms

of eigenfunctions. The study also utilizes the plane wave solution, which is similar to the

approach taken in the Sharma et al. [117]. The spatial potential in the region R1, R5, R6

and R7, satisfying Equations (6.1)-(6.5) and (6.13)-(6.16), can be expressed in the form

ϕ1 =

(
ig

ω

)[
eikxx +R0e

−ikxx
]
F1(y) for −∞ < x ≤ 0, −h ≤ y ≤ 0, (6.18)

ϕ5 =

(
ig

ω

)[
Aeikx(x−l) +Be−ikx(x−r1)

]
F1(y) for l ≤ x ≤ r1, −h ≤ y ≤ 0, (6.19)

ϕ6 =

(
ig

ω

)[
Ceiq1x(x−r1) +De−iq1x(x−r2)

]
F2(y) for r1 ≤ x ≤ r2, −H1 ≤ y ≤ 0, (6.20)

ϕ7 =

(
ig

ω

)
E cos q2x(x− r3)F3(y) for r2 ≤ x ≤ r3, −H2 ≤ y ≤ 0, (6.21)

where

F1(y) =
cosh k(h+ y)

cosh kh
,F2(y) =

cosh q1(H1 + y)

cosh q1H1
,F3(y) =

cosh q2(H2 + y)

cosh q2H2
, (6.22)

R0, A, B, C, D and E are unknown complex constants, q1x =
√
q21 − ß2 and q2x =√

q22 − ß2 with q1 and q2 are the positive real roots of the relations respectively given by

K − q1 tanh q1H1 = 0 and K − q2 tanh q2H2 = 0. (6.23)

In regions R2, R3 and R4, satisfying Equations (6.1)-(6.7), can be expressed in the form

ϕ2 =

(
ig

ω

)[
Geipxx +He−ipx(x−l)

]
M(y) for 0 ≤ x ≤ l, −b ≤ y ≤ 0, (6.24)
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ϕ3 =

(
ig

ω

)[
Geipxx +He−ipx(x−l)

]
P (y) for 0 ≤ x ≤ l, −c ≤ y ≤ −b, (6.25)

ϕ4 =

(
ig

ω

)[
Geipxx +He−ipx(x−l)

]
Q(y) for 0 ≤ x ≤ l, −h ≤ y ≤ −c, (6.26)

where

M(y) =
(1− αβ) cosh p(h+ y)− (β − αγ) sinh p(h+ y)

(1− αβ) cosh ph− (β − αγ) sinh ph
, (6.27)

P (y) =
[1− β tanh p(h− a)][cosh p(h+ y)− α sinh p(h+ y)]

(m+ if)[(1− αβ) cosh ph− (β − αγ) sinh ph]
, (6.28)

Q(y) =
[1− β tanh p(h− a)][1− α tanh p(h− b)] cosh p(h+ y)

(1− αβ) cosh ph− (β − αγ) sinh ph
, (6.29)

α =
(1−G) tanh p(h− b)

tanh2 p(h− b)−G
, β =

(1−G) tanh p(h− a)

1−G tanh2 p(h− a)
, (6.30)

γ =
tanh2 p(h− a)−G

1−G tanh2 p(h− a)
, G =

ϵ

(m+ if)
, (6.31)

G and H are unknown complex constants, px =
√
p2 − ß2 and p is the complex root for

the most progressive mode (least damped, see Dalrymple et al. [11]) of the relation given

by

[p(1− αβ) +K(β − αγ)] tanh ph− p(β − αγ)−K(1− αβ) = 0. (6.32)

It may be noted that in the absence of SPS (i.e. whenm = 1, ϵ = 1 and f = 0, then G = 1,

α = 0, β = 0 and γ = −1), Equation (6.32) reduces to the free surface transcendental

equation in p, given by K − p tanh ph = 0, which is same as Equation (6.17).

Now, by utilizing the conditions given in Equations (6.8)-(6.14) and taking advantage of

the orthogonality of the eigenfunction F1(y) in −h ≤ y ≤ 0, we can arrive at the following

set of equations

(1 +R)Z1 − [U + (m+ if)V +W ](G +Heipxl) = 0, (6.33)

ikx(1−R)Z1 − ipx[U + ϵV +W ](G −Heipxl) = 0, (6.34)

[U + (m+ if)V +W ](Geipxl +H)− [A+Be−ikx(l−r1)]Z1 = 0, (6.35)

ipx[U + ϵV +W ](Geipxl −H)− ikx[A−Be−ikx(l−r1)]Z1 = 0, (6.36)

[Aeikx(r1−l) +B]Z2 − [C +De−iq1x(r1−r2)]X1 = 0, (6.37)

ikx[Ae
ikx(r1−l) −B]Z1 − iq1x[C +De−iq1x(r1−r2)]X1 = 0, (6.38)

[Ceiq1x(r2−r1) +D]X2 − T cos q2x(r2 − r3)Y = 0, (6.39)

iq1x[Ce
iq1x(r2−r1) +D]X1 + q2xT sin q2x(r2 − r3)Y = 0, (6.40)
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where

Z1 =

∫ 0

−h
F1(y)F1(y)dy, U =

∫ 0

−b
M(y)F1(y)dy, V =

∫ −b

−c
P (y)F1(y)dy, (6.41)

X =

∫ −c

−H
Q(y)F1(y)dy, Z2 =

∫ 0

−H1

F1(y)F1(y)dy, X1 =

∫ 0

−H1

F2(y)F1(y)dy,

X2 =

∫ 0

−H2

F2(y)F1(y)dy and Y =

∫ 0

−H2

F3(y)F1(y)dy.

Thus, we obtain a system of 8 equations with 8 unknowns R0, A, B, C, D, E, G and

H. This system has been solved numerically using the Gauss-Elimination method with

the help of MATLAB. The reflection coefficient (|R0|), energy dissipation coefficient kd

(see Equation (6.50)) in Section 6.4 by SPS and force (Fw) experienced by the wall can

be determined.

Force experienced by the wall: The wave-induced force Fw by the rigid wall is

computed using the integral given by

Fw =

∣∣∣∣−iωgh2

∫ 0

−h
ϕ7(r3, y)dy

∣∣∣∣. (6.42)

6.4 Energy Balance Relation

In the present problem, apart from the reflection of waves, a major part of wave energy is

dissipated by SPS. Thus, for better understanding of the quantitative behaviour of wave

reflection and dissipation, an energy identity is derived. By employing Green’s identity,

the energy identity for this study can be determined, which is expressed by

∫
C

(
ϕj
∂ϕ̂j
∂n

− ϕ̂j
∂ϕj
∂n

)
ds = 0, (6.43)

where ϕ̂j represents the complex conjugate of ϕj and ∂
∂n denotes the outward normal

derivative to the boundary C, C = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5, where C1={x = −X,−h ≤ y ≤ 0;

y = −h,−X ≤ x ≤ 0; x = 0,−h ≤ y ≤ 0; y = 0,−X ≤ x ≤ 0;}, C2={ x = 0,−a ≤ y ≤ 0;

y = −a, 0 ≤ x ≤ l; x = l,−a ≤ y ≤ 0; y = 0, 0 ≤ x ≤ l }, C3={ x = 0,−b ≤ y ≤ −a;
y = −b, 0 ≤ x ≤ l; x = l,−b ≤ y ≤ −a; y = −a, 0 ≤ x ≤ l }, C4={ x = 0,−h ≤ y ≤ −b;
y = −h, 0 ≤ x ≤ l; x = l,−h ≤ y ≤ −b; y = −b, 0 ≤ x ≤ l } and C5={ x = l,−h ≤ y ≤ 0;

y = −h, l ≤ x ≤ r1; x = r1,−h ≤ y ≤ −H1; y = −H1, r1 ≤ x ≤ r2; x = r2,−H1 ≤ y ≤
−H2; y = −H2, r2 ≤ x ≤ r3; x = r3,−H2 ≤ y ≤ 0; y = 0, l ≤ x ≤ r3. The contribution

from the flat bottom y = −h,−X ≤ x ≤ 0; y = −h, 0 ≤ x ≤ l; y = −h, l ≤ x ≤ r1 is zero.

Due to the steps,the contribution from the steps x = r1,−h ≤ y ≤ −H1; y = −H1, r1 ≤
x ≤ r2; x = r2,−H1 ≤ y ≤ −H2; y = −H2, r2 ≤ x ≤ r3 are zero. Due to the free surface

condition, the contribution from the boundary y = 0,−X ≤ x ≤ 0, y = 0, 0 ≤ x ≤ l and

y = 0, l ≤ x ≤ r3 is zero. The contribution from the sea wall x = r3,−H2 ≤ y ≤ 0 is zero.
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Due to SPS, the vertical line x = 0,−b ≤ y ≤ −a contributes∫
C

(
ϕj
∂ϕ̂j
∂n

− ϕ̂j
∂ϕj
∂n

)
ds =

∫ −a

−b

(
[ϵ(m+ if)− 1]ϕ3ϕ

∗
3x − [ϵ(m− if)− 1]ϕ∗3ϕ3x

)
x=0

dy (6.44)

and on x = l,−b ≤ y ≤ −a∫
C

(
ϕj
∂ϕ̂j
∂n

− ϕ̂j
∂ϕj
∂n

)
ds =

∫ −a

−b

(
[ϵ(m− if)− 1]ϕ∗3ϕ3x − [ϵ(m+ if)− 1]ϕ3ϕ

∗
3x

)
x=l

dy. (6.45)

Similarly, on the horizontal line y = −a, 0 ≤ x ≤ l∫
C

(
ϕj
∂ϕ̂j
∂n

− ϕ̂j
∂ϕj
∂n

)
ds =

∫ l

0

(
[ϵ(m− if)− 1]ϕ∗3ϕ3y − [ϵ(m+ if)− 1]ϕ3ϕ

∗
3y

)
y=−a

dx (6.46)

and on y = −b, 0 ≤ x ≤ l

∫
C

(
ϕj
∂ϕ̂j
∂n

− ϕ̂j
∂ϕj
∂n

)
ds =

∫ l

0

(
[ϵ(m+ if)− 1]ϕ3ϕ

∗
3y − [ϵ(m− if)− 1]ϕ∗3ϕ3y

)
y=−b

dx. (6.47)

On the line x = −X,−h ≤ y ≤ 0∫
C

(
ϕj
∂ϕ̂j
∂n

− ϕ̂j
∂ϕj
∂n

)
ds = (1− |R0|2)

ik

cosh2 kh

(
sinh(2kh) + 2kh

2k

)
. (6.48)

By consolidating all contributions from C1, C2, C3, C4 and C5, the energy identity is deduced

as

|R0|2 + kd = 1 (6.49)

where

kd =
2k cosh2 kh

ik(sinh 2kh+ 2kh)

[∫ −a

−b

(
[ϵ(m+ if)− 1]ϕ3ϕ

∗
3x − [ϵ(m− if)− 1]ϕ∗3ϕ3x

)
x=0

dy

+

∫ −a

−b

(
[ϵ(m− if)− 1]ϕ∗3ϕ3x − [ϵ(m+ if)− 1]ϕ3ϕ

∗
3x

)
x=l

dy

+

∫ l

0

(
[ϵ(m− if)− 1]ϕ∗3ϕ3y − [ϵ(m+ if)− 1]ϕ3ϕ

∗
3y

)
y=−a

dx

+

∫ l

0

(
[ϵ(m+ if)− 1]ϕ3ϕ

∗
3y − [ϵ(m− if)− 1]ϕ∗3ϕ3y

)
y=−b

dx

]
.

(6.50)

6.5 Results and Discussion

In this section, the study evaluates how well SPS and the bottom steps mitigate the wave

load on the sea wall. The investigation centers on multiple parameters, specifically Fw,

|R0| and kd. The values of non-dimensional factors such as kh = 1, a/h = 0.2, d/h = 0.45,

l/h = 2, L1/h = 8, L2/h = 7, L3/h = 6, s1/h = 0.2, s2/h = 0.4, and the other parameters

m = 1, f = 0.6, ϵ = 0.5 and θ = 25◦ are kept fixed throughout the investigation unless

stated otherwise. While several computations are performed, only selected results are

presented to prevent redundancy.
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6.5.1 Validation

For the validation of the current numerical results with the existing literature, it is noted

that without the presence of steps (i.e. when H1 = H2 = h) and the gap between SPS

and bottom is zero (i.e. c = h − b = 0), the present problem is equivalent to the work

“interaction of water waves with bottom-standing porous structure in the presence of a

wall” by Koley et al. [19]. For the fixed value of d/h = 0.5, ϵ = 0.437, f = 0.25, θ = 10◦

and L/λ = 1 (L = L1 + L2 + L3), Figure 6.2 shows a close agreement with the results

of Koley et al. [19]. In addition to this, to verify the energy identity derived in Equation

(6.49), the numerical data of kd and 1−|R0|2 for different kh values are tabulated in Table

6.1, which demonstrates a consistent agreement between kd and 1 − |R0|2 validating the

energy identity.
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Figure 6.2: Validation of the present results with Koley et al.[19].

kh |R0| 1 − |R0|2 kd

0.2 0.9367 0.1226 0.1226

0.4 0.9865 0.0265 0.0269

0.6 0.9634 0.0719 0.0722

0.8 0.7852 0.3835 0.3837

1 0.8203 0.3271 0.3275

Table 6.1: Verification of energy identity.

6.5.2 Effect of Various Parameters on Force (Fw) Experienced by the

Wall

Figure 6.3 explores a surface plot depicting the force experienced by the wall Fw across

different a/h and d/h values. Within the ranges of 0.1 < a/h < 0.3 and 0.1 < d/h < 0.6,

the wave force consistently remains below 59%. However, at a/h = 0.1 and d/h = 0.6, the
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wave force is notably lower, recorded as 37%, but the implication of a SPS with a/h = 0.1,

indicating the SPS’s proximity to the free surface, potentially obstructing vessel movement,

underscores the need to avoid such configurations. Based on these findings, this study

advocates for the selection of a/h = 0.2 alongside d/h = 0.45, because this combination

yields a force of approximately 52%, balancing mitigation of wave load on the wall and

preserving optimal vessel maneuverability.

Figure 6.3: Surface plot of Force Fw versus d/h and a/h.

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

Figure 6.4: Force Fw versus L1/h for different values of d/h.

Figure 6.4 shows the behavior of Fw versus gap L1/h between SPS and steps for

different values of d/h. The figure shows that with respect to L1/h, Fw follows an

oscillatory and periodic pattern, with periodicity L1/h = 3.4. The optimum value may be

due to the constructive and destructive interface between the incident and reflected wave.

It is found that with an increase in d/h from 0.3 to 0.6, Fw decreases. This may be with

an increase in the length d/h of SPS, more wave energy is dissipated by SPS. Moreover, it

has been observed that for certain values of L1/h, Fw curves reach maxima for d/h = 0.3
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and 0.45, whereas at the same L1/h points, minima are attained for d/h = 0.6. Similarly,

there are certain values of L1/h, the Fw curves achieve minima for d/h = 0.3 and 0.45,

while for d/h = 0.6, maxima are observed at the same points of L1/h. This may be due

to the different phase angle between the incident wave and reflected wave for the cases of

lower and higher values of d/h.
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Figure 6.5: Force Fw versus L1/h for different values of (a) f and (b) ϵ.
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Figure 6.6: Force Fw versus L1/h for different values of (a) s1/h and (b) s2/h.

Figure 6.5 demonstrates the behavior of Fw versus gap L1/h between SPS and steps

for different values of frictional coefficient f and porosity ϵ of SPS. Form the figure, Fw

follows an oscillatory and periodic pattern with respect to L1h, as observed in Figure 6.4.

In Figure 6.5a, it is observed that Max Fw decreases from 75% to 55% as f increases

from 0.4 to 0.7, and the Fw curve shifts towards the right. These trends in Fw may be

attributed to the rise in the dissipation coefficient as f increases. It is noticed that when

f varies from 0.55 to 0.7, Min Fw will be in between 55% to 48%, which is in the desired

range of Fw. From Figure 6.5b, it is evident the same effect, an increase in ϵ from 0.3 to

0.7 corresponds to a decrease in Max Fw from 75% to 60%. This phenomenon is likely
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a consequence of the heightened dissipation coefficient as ϵ increases, leading to reduced

interaction of waves with the wall. Furthermore, it has been observed that for some points

of L1/h, the minima values of Fw are attained which do not change with the increase in

ϵ value, however, there is a decrease in the maxima values of Fw. For values of porosity

falling between 0.5 and 0.7, where Fw is within the range of 52% to less than 65%, advising

to take for a moderate porosity. In the rest of the computations, ϵ = 0.5 is chosen as it

ensures here Min Fw 52% and f = 0.6 is chosen as it ensures here Min Fw 55%, where

both are less than 60%, the feasible range to protect the wall.
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Figure 6.7: Force Fw versus L2/h for different values of f with fixed value l/h = 8.

Figure 6.6 illustrates the behavior of Fw versus gap L1/h between SPS and steps for

different values of steps height s1/h or s2/h. As observed in Figure 6.4, here, Fw also

follows an oscillatory and periodic versus L1/h. From the figure, it is also concluded that

as step height s1/h (or s2/h) increases, Fw decreases. This may be with an increase in

s1/h (or s2/h), the step reflects more wave energy, and the wall experiences less wave

force.

Figure 6.7 illustrates the variation in Fw versus the width L2/h of step-1 for different

values of f . The graph reveals that Fw follows an oscillatory and periodic trend with a

periodicity of L2/h = 3.1. The optimal points in Fw can be attributed to constructive

and destructive interference between the incident and reflected waves. From the figure, it

has been observed that certain values of L2/h result in Fw curves reaching their maxima,

similarly, there exist certain values of L2/h where the opposite behavior is observed. Thus,

it can be concluded that the value of L2/h plays an important role. Also, it is found that

with the increase in f , the amplitude of Fw oscillations decreases. This phenomenon could

be attributed to SPS effectively dissipating a significant portion of the wave energy while

another portion becomes trapped within the trapping chamber.

In Figure 6.8, the variation of Fw with width L3/h of step-2 is graphically represented

for different values of d/h and ϵ. The figure demonstrates that Fw exhibits an oscillatory

and periodic behavior as L3/h changes, with a periodicity of L3/h = 2.7. The optimal
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points in Fw are a result of constructive and destructive interference between incident and

reflected waves. As observed in Figure 6.7, Fw attains maxima for certain values of L3/h

and there exist certain values of L3/h, where it attains minima, implying the width of

L3/h of step-2 also plays an important role in reducing the value of Fw. Additionally, it

is observed that an increase in d/h from 0.3 to 0.6 leads to a decrease in Max Fw from

97% to 20% and for an increases in ϵ from 0.3 to 0.7 leads to a decrease in Max Fw from

76% to 49%. Further, it is also observed that with the increase in d/h (or ϵ), there is a

reduction in the amplitude of the curve of Fw. This phenomenon could be attributed to

SPS effectively dissipating a significant portion of the wave energy while another portion

becomes trapped within the trapping chamber.
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Figure 6.8: Force Fw versus L3/h for different values of (a) d/h and (b) ϵ with fixed value
l/h = 8.
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Figure 6.9: Force Fw versus θ for different values of (a) f with fixed l/h = 10 and (b) ϵ
with fixed l/h = 8.

Figure 6.9 illustrates the relationship between Fw and θ for various values of f and

ϵ. The figure reveals that for all values of f and ϵ, in the range 0◦ < θ < 30◦ the force
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Fw experienced on the wall decreases gradually whereas in the range 30◦ < θ < 65◦ the

force Fw is an oscillatory pattern and after this range of θ it decreases monotonically and

reaches to zero at θ = 90◦. Fw shows a harmonic peak at θ = 38◦ and θ = 61◦. Hence it

is observed that for 0◦ ≤ θ ≤ 30◦, Fw is less than 60%.

Figure 6.10 depicts the relationship between Fw and width l/h of SPS for various

values of s1/h and s2/h. With respect to the width l/h, Fw exhibits an oscillatory

pattern for smaller l/h values, which diminishes as l/h increases. Subsequently, it decreases

monotonically and approaches zero for higher l/h values. This may be due to the fact that

for larger values of l/h, nearly all wave energy is dissipated by SPS. It’s observed that

for higher l/h values, Fw value remains constant regardless of s1/h and s2/h value. This

suggests that with a larger width of SPS, the influence of step height becomes negligible.
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Figure 6.10: Force Fw versus l/h for different values of (a) s1/h and (b) s2/h.

Figure 6.11: Surface plot of Reflection coefficient |R0| versus d/h and a/h.
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6.5.3 Effect of Various Parameter on Reflection Coefficient (|R0|) and

Dissipation Coefficient (kd)

Figure 6.11 presents a surface plot depicting |R0| across different a/h and d/h values.

Analysis of the depicted data reveals a clear trend: within the ranges of 0.1 < a/h < 0.3

and 0.1 < d/h < 0.6, wave reflection consistently registers at less than 54%. However, at

a/h = 0.1 and d/h = 0.6, wave reflection is notably lower at 21%. It’s crucial to highlight

that a/h = 0.1 implies SPS is positioned close to the free surface, potentially hindering

vessel movement. Thus, configurations with a/h = 0.1 should be avoided. Based on

these observations from Figures 6.3 and 6.11, this study advocates for selecting a/h = 0.2

alongside d/h = 0.45, as this combination yields a wave reflection of approximately 45%,

balancing reflection of incident wave energy and preserving optimal vessel maneuverability.
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Figure 6.12: (a) Reflection coefficient |R0| and (b) dissipation coefficient kd versus L1/h
for different values ϵ.

In Figure 6.12, the behavior of the reflection coefficient |R0| and dissipation coefficient

kd is presented with respect to L1/h for various values of ϵ. The results reveal an oscillatory

and periodic pattern in both |R0| and kd with respect to L1/h, with periodicity L1/h = 3.4,

as observed in Figure 6.4. The maxima in wave reflection and minima in wave dissipation

are attributed to constructive interference between the incident and reflected waves, while

the minima in wave reflection and maxima in wave dissipation result from destructive

interference between these waves. It is noteworthy that an increase in ϵ correlates with

a decrease in the reflection coefficient |R0| and an increase in the dissipation coefficient

kd. This trend can be explained by the heightened porosity ϵ of SPS, leading to increased

wave energy dissipation and reduced wave interaction with the wall. Thus less wave is

reflected back by the wall. Furthermore, it is observed that as ϵ increases, |R0| and kd

curves shifted towards the right. Notably, the Max |R0| decreases from 64% to 49% and

Max kd increases from 70% to 74% for an increase in ϵ values from 0.5 to 0.7.

In Figure 6.13, the graph illustrates the relationship between the reflection coefficient

|R0| and the dissipation coefficient kd concerning L2/h for various d/h values of SPS.
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The findings showcase an oscillatory and periodic (with a periodicity L2/h = 3.1) pattern

in both |R0| and kd. Peaks in wave reflection and troughs in wave dissipation result

from constructive interference between incident and reflected waves, while troughs in wave

reflection and peaks in wave dissipation stem from destructive interference. Notably, an

increase in d/h corresponds to a decrease in the reflection coefficient |R0| and an increase

in the dissipation coefficient kd. This behavior is rationalized by the heightened length

(d/h) of SPS, leading to enhanced wave energy dissipation and diminished wave reflection

by the wall. Further, it is also noted that for the higher value d/h = 0.45 and 0.6, the

minima of the curves |R0| and the maxima of the curve kd shifted towards the right, while

for smaller value d/h = 0.3, the maxima of the curves |R0| and the minima of the curve

kd shifted towards the left.
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Figure 6.13: (a) Reflection coefficient |R0| and (b) dissipation coefficient kd versus L2/h
for different values of d/h.
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Figure 6.14: (a) Reflection coefficient |R0| and (b) dissipation coefficient kd versus L3/h
for different values of f .

In Figure 6.14, the graph depicts the correlation between the reflection coefficient
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|R0| and the dissipation coefficient kd with L3/h for various f values of SPS. As observed

in Figure 6.8, with respect to L3/h, a repetitive and oscillatory pattern is also observed

in both |R0| and kd curves, with periodicity L3/h = 2.7. Peaks in wave reflection and

troughs in wave dissipation arise from constructive interference between incident and

reflected waves, while troughs in wave reflection and peaks in wave dissipation result from

destructive interference. Additionally, an increase in the frictional coefficient f corresponds

to a decrease in the reflection coefficient |R0| and an increase in the dissipation coefficient

kd. This trend can be explained by a higher value of f , leading to higher wave energy

dissipation and reduces wave reflection by the wall. Moreover, it is also noted that for

the smaller values f = 0.4 and 0.55, the maxima in wave reflection and minima in wave

dissipation are shifted towards the left.
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Figure 6.15: (a) Reflection coefficient |R0| and (b) dissipation coefficient kd versus θ for
different values of ϵ.
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Figure 6.16: (a) Reflection coefficient |R0| and (b) dissipation coefficient kd versus l/h for
different f .

In Figure 6.15, the graph illustrates the relationship between the reflection coefficient
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|R0| and the dissipation coefficient kd with respect to θ for various ϵ values of SPS. The

figure demonstrates that as θ increases from 0◦ to 67◦, the reflection coefficient |R0| follows
a diminishing oscillatory pattern, while the dissipation coefficient kd exhibits an increasing

oscillatory trend. At θ = 67◦, the SPS dissipates almost all wave energy, particularly for

higher values of ϵ = 0.5 and 0.7, resulting in significantly reduced wave reflection. However,

beyond θ = 67◦, there is a sudden increase in wave reflection, reaching unity at θ = 90◦,

and a simultaneous abrupt decrease in energy dissipation to zero at θ = 90◦, regardless of

SPS parameter values. Here, θ = 67◦ is referred to as the critical angle.

Figure 6.16 shows the variation of the reflection coefficient |R0| and the dissipation

coefficient kd with respect to l/h for various f values of SPS. The figure shows that

|R0| decreases sharply and kd increases sharply for the range 0 < l/h < 2.5. But both

coefficients follow an oscillatory pattern for the range 2.5 < l/h < 15. Moreover, it has

been observed that with a higher width l/h > 12 and f = 0.4, 0.55, 0.7, almost 100% of the

incident wave energy is dissipated by SPS, thereby preventing the incident wave energy

from transmitting towards the wall.
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Figure 6.17: Force Fw vs (a) L1/h and (b) L3/h ( θ = 20◦, d/h = 0.5).

6.5.4 Comparison Study

Figure 6.17a demonstrates the effect of force Fw versus L1/h, for three cases: (A1) in the

absence of two steps, (A2) in the absence of one step and (A3) present study. From the

figure, it has been observed that certain values of L1/h result in Fw curves reaching their

maxima for Case A1, but they result minima for Cases A2 and A3. However, there exist

certain values of L1/h where the opposite behavior is observed: minima are attained for

Case A1, whereas maxima are achieved for Cases A2 and A3. This may be because the

phase angle between the incident wave and reflected wave for Cases A2 and A3 differs from

Case A1. This figure further suggests that Fw experiences a reduction of approximately

37% by Case A2, while the reduction in Fw is about 57% by Case A3, as compared to Case

A1. Hence, it can be concluded that Case A3 mitigates wave action more than Cases A1
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and A2 by reflecting more wave energy. Figure 6.17b demonstrates the effect of force Fw

versus L3/h for two cases: (B1) in the absence of SPS and (B2) present study. The figure

indicates that Fw experiences a reduction of approximately 26% by Case B2, as compared

to Case B1. Thus, from this study, it can be concluded that both SPS and the two steps

play a crucial role in reducing the wave load on the sea wall.

6.6 Conclusion

To safeguard the sea wall, this paper investigates the interaction of oblique water waves

with SPS near a sea wall and also in the presence of two steps. The related boundary

value problem gives rise to a system of linear algebraic equations by using the eigenfunction

expansion method and orthogonality of eigenfunction, which is solved numerically. From

the study, it is observed that within the ranges of 0.1 < a/h < 0.3 and 0.1 < d/h < 0.6

with fixed value of kh = 1, l/h = 2, L1/h = 8, L2/h = 7, L3/h = 6, s1/h = 0.2, s2/h = 0.2,

m = 1, f = 0.6, ϵ = 0.5 and θ = 25◦, the wave reflection and force experienced on the wall

consistently register at less than 54% and 59%, respectively. For fixed values of a/h = 0.2

and d/h = 0.45, the wave reflection and force experienced on the wall are nearly 45% and

52%, respectively. Further, it is suggested that SPS with the porosity from 0.5 to 0.7 with

fixed kh = 1, a/h = 0.2, d/h = 0.45, l/h = 2, L2/h = 7, L3/h = 6, s1/h = 0.2, s2/h = 0.2,

m = 1 and θ = 25◦, Fw decreases from 65% to 52% and with the frictional coefficient from

0.55 to 0.7, Min Fw decreases from 55% to 48% with respect to L1/h. Moreover, periodic

harmonic oscillations are noted in hydrodynamic coefficients of engineering significance

concerning variations in the confined water region between SPS and the steps, as well as

the width of step-1 and step-2. Also, it is found that at angles θ = 38◦ and θ = 61◦, force

on the wall exhibits harmonic peaks, and for the reflection coefficient and the dissipation

coefficient, θ = 67◦ is denoted as the critical angle. Further, Compared to when SPS is

not present, the present study recorded 26% reduction in the force experienced on the

wall. Compared to the absence of both steps, the problem with SPS and wall over one

step reduces the force on the wall by 37%, and the problem with SPS and wall over two

steps reduces the force by 57%. The effect of the steps’ height becomes negligible for a

larger width of SPS.



Chapter 7

Mitigation of Wave Response on

an Elastic Plate by Multiple

Bottom-Standing Porous Structure

7.1 Introduction

In Chapters 2-5, we examine the effectiveness of various configurations of a single thick

porous structure such as PS extended from top to bottom, BSPS and SPPS, to mitigate the

wave response on an elastic plate (EP) or on a sea wall in the presence of EP, whereas in

Chapter 6, we examine the effectiveness of a thick submerged porous structure (SPS)

to mitigate the wave response on the sea wall in the presence of two steps bottom.

In this chapter, we focus on analyzing the effectiveness of multiple bottom-standing

porous structures (BSPS) in reducing the wave response on a floating elastic plate. The

study formulates the governing equation and boundary conditions within the potential

flow theory framework. Though this problem may be handled by employing scattering

matrix approach as in Biggs and Porter [123] (who examined wave acattering by an

array of periodic barriers) but we have solved it here by utilizing the eigenfunction

expansion method along with orthogonality of eigenfunctions which gives rise to a system

of algebraic equations. These equations are subsequently solved to examine several factors,

including plate deflection, shear force, strain of EP, and coefficients related to reflection,

transmission, and dissipation. The investigation underscores the significance of BSPS

parameters, such as length, porosity, and frictional coefficient, in reducing plate deflection,

shear force, and strain on the EP. Additionally, the present results are validated against

known results produced by Losada et al. [18] and Hermans [70]. The major part of this

work is communicated to a journal for publication.

7.2 Mathematical Formulation

The current investigation examines the scattering of surface gravity waves by a floating

elastic structure in the presence of multiple bottom-standing porous structures within a

Cartesian coordinate system. The elastic plate (EP) thickness is assumed to be small.

The fluid domain is −∞ < x < ∞, −h ≤ y ≤ 0, other than EP as shown in Figure 7.1.

This study considers n number of BSPS denoted by PSm, m = 1, 2, 3, . . . , n counted
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from left to right. The notation LPm, represents the position of PSm, defined by LPm :

dm ≤ x ≤ bm,−h ≤ y ≤ −h + am (m = 1, 2, 3, . . . , n), where as lm = dm+1 − bm

(m = 1, 2, 3, . . . , n − 1) denotes the gap between mth and (m + 1)th of BSPS and

cm = bm − dm is the width of BSPS. The position of EP is bn+1 ≤ x ≤ bn+2, y = 0,

so that the length of EP becomes L = bn+2 − bn+1 and the gap between PSn and EP

becomes ln = bn+1 − bn. Assuming the incident wave travels at an angle θ = 0◦ along

the x-axis, and considering an incompressible, inviscid fluid with the irrotational and

simple harmonic flow in time with angular frequency ω, within each region denoted by

Rj (j = 3m − 2, 3m − 1, 3m (m = 1, 2, 3, . . . , n), 3n + 1, 3n + 2, 3n + 3) as

described in Figure 7.1, there exists a velocity potential expressed in the form Φj(x, y, t) =

Re{ϕj(x, y)e−iωt}, satisfying(
∂2

∂x2
+

∂2

∂y2

)
ϕj = 0, in the region Rj . (7.1)

y = −h

y = 0 L

x = b1 x = b2 x = bn x = bn+1 x = bn+2

c1 c2

y = −h+ a1
y = −h+ a2

x = d1 x = d2 x = dn

R1 R2

R3

R4 R5

R6

R3n−1

R3n

R3n+1 R3n+2 R3n+3

y = −h+ an

cn

R7 R3n−2

Figure 7.1: Schematic representation of scattering of water wave in the presence of multiple
BSPS and EP.

The impermeable bottom condition is given by

∂ϕj
∂y

= 0, on y = −h for j = 3m−2, 3m (m = 1, 2, 3, . . . , n), 3n+1, 3n+2, 3n+3. (7.2)

The free-surface condition is expressed by

∂ϕj
∂y

−Kϕj = 0 on y = 0 for j = 3m−2, 3m−1 (m = 1, 2, 3, . . . , n), 3n+1, 3n+3, (7.3)

with K = ω2/g, and g is the acceleration due to gravity.



Chapter 7. Mitigation of Wave Response on an Elastic Plate by Multiple
Bottom-Standing Porous Structure 127

The boundary condition on the floating EP is expressed by[
D
∂4

∂x4
+ 1− ϵeK

]
∂ϕ3n+2

∂y
−Kϕ3n+2 = 0 on y = 0, (7.4)

where D = EI/ρg is the flexural rigidity of EP, with E being the Young’s modulus,

I = h30/12(1 − ν2), ν is the Poisson’s ratio, ρ is the density of the fluid, ϵe = ρsh0/ρ, h0

is the thickness of EP assumed to be small and ρs is the density of EP. It may be noted

that in the absence of EP (i.e. D = 0 and ϵe = 0), the Equation (7.4) reduces to the free

surface condition in ϕ3n+2, given by ∂ϕ3n+2

∂y −Kϕ3n+2 = 0.

By assuming that EP is freely floating on the surface of water, the vanishing of bending

moment and shear force at the edges of EP yield

∂3ϕ3n+2

∂x2∂y
→ 0 and

∂4ϕ3n+2

∂x3∂y
→ 0 at (bn+1, 0) and (bn+2, 0). (7.5)

Due to the continuity of pressure and velocity along the mutual interfaces of PSm, (m =

1, 2, 3,. . . , n) are expressed by

ϕ3m−1 = (sm + ifm)ϕ3m,
∂ϕ3m−1

∂y
= ϵm

∂ϕ3m
∂y

on y = −h+ am, dm ≤ x ≤ bm, (7.6)

ϕ3m−2 = (sm + ifm)ϕ3m,
∂ϕ3m−2

∂x
= ϵm

∂ϕ3m
∂x

on x = dm, −h ≤ y ≤ −h+ am, (7.7)

ϕ3m+1 = (sm + ifm)ϕ3m,
∂ϕ3m+1

∂x
= ϵm

∂ϕ3m
∂x

on x = bm, −h ≤ y ≤ −h+ am, (7.8)

where sm, fm and ϵm are the inertial coefficient, frictional coefficient and porosity of the

permeable material PSm, respectively.

The conditions of continuity of pressure and velocity along the vertical interfaces at x = dm

and x = bm are expressed as

ϕ3m−2 = ϕ3m−1,
∂ϕ3m−2

∂x
=
∂ϕ3m−1

∂x
on x = dm, −h+ am ≤ y ≤ 0, (7.9)

ϕ3m−1 = ϕ3m+1,
∂ϕ3m−1

∂x
=
∂ϕ3m+1

∂x
on x = bm, −h+ am ≤ y ≤ 0. (7.10)

The conditions of continuity for pressure and velocity along the interfaces of R3n+2 (EP

is present) are given as

ϕ3n+1 = ϕ3n+2,
∂ϕ3n+1

∂x
=
∂ϕ3n+2

∂x
on x = bn+1, −h ≤ y ≤ 0, (7.11)

ϕ3n+2 = ϕ3n+3,
∂ϕ3n+2

∂x
=
∂ϕ3n+3

∂x
on x = bn+2, −h ≤ y ≤ 0. (7.12)

The far-field condition is given by

ϕ1(x, y) ≃
(
ig

ω

)
cosh k(h+ y)

cosh kh
{eik(x−d1) +R0e

−ik(x−d1)} as x→ −∞, (7.13)

ϕ3n+3(x, y) ≃
(
ig

ω

)
T0

cosh k(h+ y)

cosh kh
eik(x−bn+2) as x→ ∞, (7.14)
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where R0 and T0 denote the unknown constants associated with reflected and transmitted

wave, respectively to be determined here. In this problem, the singularity at the tip of

each BSPS is not considered.

7.3 Method of Solution

To solve the boundary value problem described above, the method of separation of

variables is employed within each region, expressing the spatial potential functions in

terms of eigenfunctions. The spatial velocity potentials in the open water regions R1,

R3n+3 and R3m+1 (m = 1, 2, 3, . . . , n) satisfying Equations (7.1), (7.2), (7.3), (7.13) and

(7.14) are expressed in the forms

ϕ1 =

(
ig

ω

)[
eik(x−d1) +R0e

−ik(x−d1)
]
ψ(y) for −∞ < x ≤ 0, −h ≤ y ≤ 0, (7.15)

ϕ3n+3 =

(
ig

ω

)
T0e

ik(x−bn+2)ψ(y) for bn+2 ≤ x <∞,−h ≤ y ≤ 0, (7.16)

ϕ3m+1 =

(
ig

ω

)[
Ame

ik(x−bm) +Bme
−ik(x−dm+1)

]
ψ(y) for bm ≤ x ≤ dm+1,−h ≤ y ≤ 0,

(7.17)

where

ψ(y) =
cosh k(h+ y)

cosh kh
. (7.18)

R0, Am, Bm and T0 are unknown constants and k is the positive real root of the dispersion

relation

K − k tanh kh = 0. (7.19)

Again, the spatial velocity potentials in the porous regions R3m−1 and R3m (m =

1, 2, 3, . . . , n) satisfying Equations (7.1), (7.2), (7.3) and (7.6) are expressed in the forms

ϕ3m−1 =

(
ig

ω

)[
Eme

ipm(x−dm) +Hme
−ipm(x−bm)

]
Pm(y) for dm ≤ x ≤ bm, −h+ am ≤ y ≤ 0,

(7.20)

ϕ3m =

(
ig

ω

)[
Eme

ipm(x−dm) +Hme
−ipm(x−bm)

]
Qm(y) for dm ≤ x ≤ bm, −h+ am ≤ y ≤ 0,

(7.21)

where

Pm(y) =
cosh pm(h+ y)−Fm sinh pm(h+ y)

cosh pmh−Fm sinh pmh
, (7.22)

Qm(y) =
(1−Fm tanh pmam) cosh pm(h+ y)

(sm + ifm)(cosh pmh−Fm sinh pmh)
, (7.23)

Fm =
(1−Gm) tanh pmam

1−Gm tanh2 pmam
, Gm =

ϵm
sm + ifm

, (7.24)
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Em and Hm, are unknown constants and pm are the complex root of the dispersion relation

K − pm tanh pmh−Fm(K tanh pmh− pm) = 0, (7.25)

corresponding to PSm. Finally, the spatial velocity potential in the region R3n+2 (EP is

present) is satisfying Equations (7.1), (7.2) and (7.4) is expressed in the form

ϕ3n+2 =

(
ig

ω

) 0∑
q=−2

[
Cqeiαq(x−bn+1)+Dqe

−iαq(x−bn+2)
]
Gq(y) for bn+1 ≤ x ≤ bn+2, −h ≤ y ≤ 0

(7.26)

where

Gq(y) =
coshαq(h+ y)

coshαqh
q = −2,−1, 0, (7.27)

Cq and Dq are unknown constants and αq are the complex roots of the form ±β1 + iβ2 for

q = −1,−2 and positive real root for q = 0 of the equation

(Dα4
q + 1− ϵeK)αq tanhαqh = K. (7.28)

Using matching conditions as given in Equations (7.7)-(7.12), in conjunction with the

orthogonality of eigenfunctions ψ(y) in −h ≤ y ≤ 0, we have for m = 2, 3, 4, . . . , n

(1 +R0)X − [Y1 + (s1 + if1)Z1](E1 +H1e
−ip1(d1−b1)) = 0, (7.29)

ik(1−R0)X − ip1[Y1 + ϵ1Z1](E1 −H1e
−ip1(d1−b1)) = 0, (7.30)

(A1 +B1e
−ik(b1−d2))X − [Y1 + (s1 + if1)Z1](E1e

ip1(b1−d1) +H1) = 0, (7.31)

ik(A1 −B1e
−ik(b1−d2))X − ip1[Y1 + ϵ1Z1](E1e

ip1(b1−d1) −H1) = 0, (7.32)

(Am−1e
ik(dm−bm−1)+Bm−1)X− [Ym+(sm+ ifm)Zm](Em+Hme

−ipm(dm−bm)) = 0, (7.33)

ik(Am−1e
ik(dm−bm−1) −Bm−1)X − ipm[Ym + ϵmZm](Em −Hme

−ipm(dm−bm)) = 0, (7.34)

(Am+1+Bm+1e
−ik(bm−dm+1))X− [Ym+(sm+ ifm)Zm](Eme

ipm(bm−dm)+Hm) = 0, (7.35)

ik(Am+1 −Bm+1e
−ik(bm−dm+1))X − ipm[Ym + ϵmZm](Eme

ipm(bm−dm) −Hm) = 0, (7.36)

(An+1e
ik(bn+1−bn) +Bn+1)X −

0∑
q=−2

(Cq +Dqe
−iαq(bn+1−bn+2))Wq = 0, (7.37)

ik(An+1e
ik(bn+1−bn) −Bn+1)X −

0∑
q=−2

iαq(Cq −Dqe
−iαq(bn+1−bn+2))Wq = 0, (7.38)

0∑
q=−2

(Cqeiαq(bn+2−bn+1) +Dq)Wq − T0X = 0, (7.39)

0∑
q=−2

iαq(Cqeiαq(bn+2−bn+1) −Dq)Wq − ikT0X = 0, (7.40)
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where

X =

∫ 0

−h
ψ(y)ψ(y)dy, Ym =

∫ 0

−h+am

Pm(y)ψ(y)dy,

Zm =

∫ −h+am

−h
Qm(y)ψ(y)dy, Wq =

∫ 0

−h
Gq(y)ψ(y)dy.

(7.41)

Further, the free edge conditions (7.5), gives

0∑
q=−2

α3
q(Cq +Dqe

−iαq(bn+1−bn+2)) tanhαqh = 0, (7.42)

0∑
q=−2

iα4
q(Cq −Dqe

−iαq(bn+1−bn+2)) tanhαqh = 0, (7.43)

0∑
q=−2

α3
q(Cqeiαq(bn+2−bn+1) +Dq) tanhαqh = 0, (7.44)

0∑
q=−2

iα4
q(Cqeiαq(bn+2−bn+1) −Dq) tanhαqh = 0. (7.45)

Equations (7.29)-(7.45) represents a system of (4n + 12) equations for the

determination of (4n + 12) unknowns R0, T0, Am, Bm, Em, Hm, Cq and Dq (m =

1, 2, . . . , n), which is solved numerically by Gauss elimination method with the help of

MATLAB. The effectiveness of thick porous structure to mitigate the structural response

of EP can be studied through the plate deflection, shear force, strain, reflection coefficient

|R0|, transmission coefficient |T0| and dissipation coefficient KD = 1− |R0|2 − |T0|2.
Plate deflection: The plate deflection is calculated by using the formula

ηE =
i

ω

∂ϕ3n+2

∂y

∣∣∣∣
y=0

. (7.46)

Shear force and strain: The shear force SF and strain ST on EP surface are calculated

by

SF =
D

hω

∣∣∣∣∂4ϕ3n+2

∂x3∂y

∣∣∣∣
y=0

, (7.47)

ST =
h0
2ω

∣∣∣∣∂3ϕ3n+2

∂x2∂y

∣∣∣∣
y=0

. (7.48)

7.4 Results and Discussion

In this section, the usefulness of n number of BSPS to minimize the wave effect on EP

is studied through plate deflection (Re(ηE)), shear force (SF ), strain (ST ) reflection

coefficient |R0|, transmission coefficient |T0| and dissipation coefficient KD. Unless

otherwise specified, the non-dimensional parameters kh = 1, am/h = 0.5, cm/h = 1,

sm = 1, fm = 0.5, ϵm = 0.5, l1/h = 4, lm/h = 8, ϵe/h = 0.01, D/h4 = 100 and L/h = 20
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will remain fixed throughout this study. In this section, several computations are done,

but few results are presented to avoid repetition. The analysis is carried out to mitigate

high wave load on EP in the presence of different combinations of BSPS such as (i) one

BSPS, (ii) two BSPS, (iii) three BSPS and (iv) four BSPS.

7.4.1 Validation

To validate the present methodology and results, it is noted that for n = 1 and without

the presence of EP, the present problem is equivalent to the work “interaction of water

waves with a single BSPS” by Losada et al. [18]. Figure 7.2a shows the results of the

present problem in the absence of EP (i.e. D/h4 = 0, ϵe/h = 0) and with kh = 0.68,

ϵ1 = 0.4, f1 = 0.5, a1/h = 0.3, which are well matched with the result of Losada et al.

[18]. Further, on considering the parameter value as sm = 1, fm = 0, ϵm = 1 (absence of

porous structures) and D/h4 = 10−3, the present problem reduces to the work “scattering

of water waves in the presence of EP” by Hermans [70]. Figure 7.2b illustrates the results

on |R0| and |T0|, which are also well matched with the results of Hermans [70].
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Figure 7.2: Validation of the numerical code for (a) Presence of one BSPS only and (b)
Presence of EP only.

7.4.2 Effect of Two BSPS on Plate Deflection (Re(ηE)), Shear Force (SF ),

Strain (ST ), Reflection Coefficient (|R0|), Transmission Coefficient

(|T0|) and Dissipation Coefficient (KD)

Figure 7.3 illustrates the variations in plate deflection (ηE) concerning different values of

the length a1/h and the frictional coefficient (f1) of PS1. Figure 7.3a shows that with an

increase in the length a1/h, there is a notable decrease in plate deflection. This decline

can be attributed to the heightened dissipation of incident wave energy as the length of

PS1 increases, resulting in diminished energy transmission towards EP. Consequently, a
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reduction in the plate deflection is evident. In Figure 7.3b, the relationship between f1

and plate deflection is examined. It is evident that as f1 increases, there is a corresponding

decrease in plate deflection. This phenomenon can be primarily attributed to the amplified

dissipation of wave energy associated with higher values of f1. Consequently, PS1,

characterized by a larger frictional coefficient (f1), effectively mitigates the structural

response of EP by reducing plate deflection.
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Figure 7.3: Re(ηE) for different values of a1/h and f1 with cm/h = 10, l1/h = 15,
l2/h = 20, D/h4 = 75 and L/h = 40.
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Figure 7.4: Re(ηE) for different values of ϵ2 and f2 with cm/h = 10, l1/h = 15, l2/h = 20,
D/h4 = 75 and L/h = 40.

Figure 7.4 illustrates the plate deflection (ηE) across various values of the porosity

(ϵ2) and the frictional coefficient (f2) of PS2. Figure 7.4a shows that an increase in

ϵ2 significantly decreases plate deflection, as a result of change in the wave damping.



Chapter 7. Mitigation of Wave Response on an Elastic Plate by Multiple
Bottom-Standing Porous Structure 133

The porous structures offer minimal wave damping for low values of BSPS porosity

(Venkateswarlu et al. [124]), and it increases after increasing the BSPS porosity.

Figure 7.4b examines the relationship between the f2 and plate deflection. It is observed

that an increase in the f2 corresponds to a decrease in plate deflection. This decrease can

be attributed to the heightened dissipation of incident wave energy as ϵ2 and f2 of PS2

increases, reducing energy transmission towards EP. Consequently, it effectively mitigates

the structural response of EP by reducing plate deflection. In both cases (Figure 7.4a

and Figure 7.4b), the plate deflection pattern is oscillatory, and the magnitude is highly

influenced by ϵ2 and f2 due to change in wave damping.
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Figure 7.5: SF for different values of f1 and a2/h with cm/h = 10, l1/h = 15, l2/h = 20,
D/h4 = 75 and L/h = 40.
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Figure 7.6: ST for different values of a1/h and ϵ1 with cm/h = 10, l1/h = 15, l2/h = 20,
D/h4 = 75 and L/h = 40.
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In Figure 7.5, the shear force (SF ) is presented to illustrate the influence of frictional

coefficient f1 of PS1 and the length a2/h of PS2, on the structural response of EP. Notably,

the shear force at the ends of EP is zero, aligning with the assumption of free edge

behavior. Additionally, the variation of SF exhibits an oscillatory pattern, indicating

dynamic changes in the structural response. Interestingly, as both f1 of PS1 and a2/h of

PS2 increase, there is a decrease in the amplitude of the shear force of EP. This trend

suggests that heightened values of these parameters contribute to reduced SF and enhanced

damping characteristics of the system. Such behavior is attributed to the increased wave

energy dissipation by PS1 and PS2, as observed and analyzed in Figure 7.3.

Figure 7.6 provides a comprehensive analysis of strain (ST ) dynamics across a range

of values for both the length (a1/h) and the porosity (ϵ1) within PS1. Noteworthy is the

observation that the strain is zero at the ends of EP, aligning with the assumed free edge

behavior. Additionally, the variation of strain ST is characterized by an oscillatory pattern,

suggesting dynamic fluctuations in the structural response. Furthermore, an intriguing

correlation emerges between the increase in both a1/h and ϵ1 and the subsequent decrease

in strain amplitude within EP. This fascinating phenomenon underscores the heightened

wave energy dissipation facilitated by PS1, as analyzed in Figures 7.3 and 7.5.
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Figure 7.7: |R0|, |T0| and KD vs l1/h for different values of ϵ1.

The graphical representations in Figure 7.7 illustrate the variations in reflection

coefficient |R0|, transmission coefficient |T0| and dissipation coefficient KD with respect to

l1/h for various porosity levels ϵ1 of PS1. These figures reveal a periodic and oscillatory

behavior of |R0|, |T0| and KD as l1/h changes. The presence of peaks and troughs in wave

reflection suggests the occurrence of constructive and destructive interference between

incident and reflected waves, respectively. Additionally, an increase in ϵ1 of PS1 leads to

greater wave energy dissipation within the PS1, as analyzed in Figure 7.6b, consequently

resulting in decreased wave reflection and transmission. This observation underscores

the crucial role of porosity in influencing wave energy dissipation and subsequent wave

reflection and transmission properties. The role of BSPS is significant in dissipating the

incident wave energy, and the remaining wave energy i.e., transmitted from the second

porous structure is being reflected by EP, as it is fixed near the free surface. This
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phenomenon amplifies the fluid resonance, which may lead to standing wave formation

as a result of wave-wave interaction in the gap region.

Several authors (Vijay et al. [31]; Dhanunjaya et al. [125]) reported that the maximum

part of wave energy is focused near the free surface (approximately 80%). Thus, the

selection of breakwater length is partially dependent upon the level of EP protection.

An attempt has been made in the present study to understand the fluid behavior against

BSPS length. Figure 7.8 presents the distribution of reflection coefficient |R0|, transmission

coefficient |T0| and dissipation coefficient KD across different values of the length a2/h of

PS2 plotted against l1/h. These figures reveal a periodic and oscillatory trend in |R0|, |T0|
and KD as l1/h varies, consistent with the patterns observed in Figure 7.7. Moreover, it

is noted that an increase in a2/h of PS2 induces greater wave energy dissipation by PS2,

as evidenced in Figure 7.5b. Consequently, this amplified dissipation leads to a decrease

in wave reflection and transmission.
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Figure 7.8: |R0|, |T0| and KD vs l1/h for different values of a2/h.
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Figure 7.9: |R0|, |T0| and KD vs l2/h for different values of f1.

Figure 7.9 illustrates the variations in the reflection coefficient |R0|, transmission

coefficient |T0| and dissipation coefficient KD across different frictional coefficient (f1) of

PS1 plotted against l2/h. These plots reveal a periodic and oscillatory pattern in |R0|,
|T0| and KD as l2/h changes. Additionally, it is observed that increasing the value of f1
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of PS1 results in higher wave energy dissipation by PS1, as demonstrated in Figures 7.3b

and 7.5a. Consequently, this heightened dissipation leads to a reduction in wave reflection

and transmission.

Figure 7.10 depicts the variations in the reflection coefficient |R0|, transmission

coefficient |T0| and dissipation coefficient KD across the different length (a1/h) of PS1

plotted against l2/h. These plots exhibit a periodic and oscillatory trend in |R0|, |T0| and
KD as l2/h varies. Moreover, it is noted that increasing a1/h of PS1 results in increased

wave energy dissipation by PS1, and magnitude of harmonic oscillations as evidenced in

Figures 7.3a and 7.6a. Consequently, this heightened dissipation leads to a decrease in

wave reflection and transmission. Particularly, when BSPS length approaches a1/h = 0.8,

the value of wave transmission is below 0.6, which strongly suggests an optimal protection

of EP against the incident wave stroke.
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Figure 7.10: |R0|, |T0| and KD vs l2/h for different values of a1/h.
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Figure 7.11: |R0|, |T0| and KD vs L/h for different values of D/h4.

Figure 7.11 showcases the fluctuations of the reflection coefficient |R0|, transmission

coefficient |T0| and dissipation coefficient KD across various flexural rigidity values (D/h4)

plotted against L/h. These graphs reveal an oscillatory pattern in |R0|, |T0| and KD as

L/h changes. Additionally, it’s worth noting that as D/h4 rises, the reflection coefficient

increases while the transmission coefficient decreases. This trend occurs because as the
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structure becomes more rigid, more wave energy is reflected back by EP, resulting in

reduced transmission of wave energy through the structure.

Figure 7.12 illustrates the dynamic changes in the reflection coefficient |R0|,
transmission coefficient |T0| and dissipation coefficient KD across different frictional

coefficient values (f2) plotted against L/h. These plots unveil an oscillatory behavior in

|R0|, |T0| and KD as L/h undergoes variation, same with the observations in Figure 7.11.

Moreover, an escalation in f2 leads to heightened dissipation of incident wave energy,

consequently resulting in decreased values of |R0| and |T0|. The predicted values of |T0|
at each of the harmonic troughs are evident while designing the BSPS to secure the EP

and shore-side regions against the incident wave stroke.
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Figure 7.12: |R0|, |T0| and KD vs L/h for different values of f2.
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Figure 7.13: |R0|, |T0| and KD vs c1/h for different values of f1.

Figure 7.13 illustrates the relationship between |R0|, |T0| and KD in relation to the

BSPS width c1/h across various frictional coefficient values f1 of PS1. The depicted

trend reveals that |R0| follows an oscillating pattern and this oscillating pattern decreases

as the width of PS1 expands. This phenomenon of resonating patterns may be due to

the multiple wave interactions between BSPS and EP. Additionally, it is evident from

the figures that both the reflection and transmission coefficients decrease as the width

increases, while concurrently, there is a notable increase in energy dissipation. In this
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case, the role of EP is evident, as the reflection starts nearly |R0| = 0.48 when BSPS

width c1/h = 0.1. The transmission coefficient is observed to be |T0| < 0.5 when c1/h = 4

and f1 = 0.7. Here, it is concluded that the BSPS with width c1/h = 4 along with length

a1/h = 0.5 gives |T0| < 0.5, which agrees with the results of Venkateswarlu et al. [126] who

reported that c1/h = 2 is sufficient to obtain |T0| < 0.5 as the breakwater is fully extended

from the bottom to the free surface (a1/h = 1). In the present case, the length of the

breakwater is a1/h = 0.5, which is 50% in the fully extended breakwater. This concludes

that the primary cost of construction is less affected as the quantity of rock required to

develop BSPS is less in line with the fully extended breakwater. The additional advantage

of BSPS is that this kind of breakwater experiences minimal fluid force compared to the

fully extended breakwater.
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Figure 7.14: |R0|, |T0| and KD vs c2/h for different values of D/h4.

Figure 7.14 depicts the behavior of |R0|, |T0| and KD concerning the width c2/h of

PS2 across various values of the flexural rigidity D/h4. The figure demonstrates that

the reflection coefficient decreases in an oscillating pattern with an increasing width c2/h

of PS2. This resonating behavior likely arises from the intricate interactions of incident

waves between BSPS and EP. Moreover, it is also observed that both the reflection and

transmission coefficients decrease as the width expands, leading to increased dissipation

of energy, consistent with the findings in Figure 7.13. Additionally, it is noteworthy that

with higher structural rigidity, the transmission coefficient decreases while the reflection

coefficient increases for smaller c2/h and minor increases for larger c2/h.

7.4.3 Effect of Three BSPS on Plate Deflection (Re(ηE)), Shear Force

(SF ), Strain (ST ), Reflection Coefficient (|R0|), Transmission

Coefficient (|T0|) and Dissipation Coefficient (KD)

Figure 7.15a illustrates the impact of varying lengths (a3/h) of PS3 on plate deflection

(ηE), revealing a significant decrease in deflection with increasing values of a3/h.

Meanwhile, Figure 7.15b explores the correlation between the porosity (ϵ3) of PS3 and

ηE , observing a decrease in deflection as ϵ3 increases. This trend is attributed to the

increased dissipation of incident wave energy as both a3/h and ϵ3 of PS3 rise, reducing



Chapter 7. Mitigation of Wave Response on an Elastic Plate by Multiple
Bottom-Standing Porous Structure 139

energy transmission towards EP. Consequently, this mechanism effectively mitigates the

structural response of EP by diminishing plate deflection.

Figure 7.16 presents an analysis of shear force (SF ) showcasing the impact of the

length a3/h and the frictional coefficient f3 of PS3 on the behavior of EP. Notably, the

SF remains zero at the ends of EP, consistent with the assumption of free edge behavior.

Moreover, SF exhibits a distinct oscillatory pattern. Remarkably, an increase in both f3

and a3/h corresponds to a noticeable reduction in the amplitude of the SF of EP. This

trend suggests that higher values of these parameters contribute to decrease SF . This

behavior is attributed to the enhanced wave energy dissipation by PS3, as evidenced and

analyzed in Figure 7.15.
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Figure 7.15: Re(ηE) for different values of a3/h and ϵ3 with cm/h = 10, l1/h = 15,
l2/h = 15, l3/h = 20, D/h4 = 75 and L/h = 40.

Figure 7.17 depicts the strain (ST ) across different values of the porosity (ϵ3) and

frictional coefficient (f3) of PS3. Notably, at the ends of EP, ST is zero, reflecting the

assumption of free edge behavior. Additionally, the variation of ST follows an oscillatory

pattern. Furthermore, an increase in both ϵ3 and f3 correlates with a decrease in the

amplitude of the strain of EP. This phenomenon is attributed to the enhanced wave energy

dissipation by PS3, as analyzed in Figures 7.15 and 7.16.

Figure 7.18 illustrates the changes in the reflection coefficient |R0|, transmission

coefficient |T0| and dissipation coefficient KD across varying frictional coefficient (f3) of

PS3 plotted against l3/h. These graphs display a periodic and oscillatory pattern in

|R0|, |T0|, and KD as l3/h changes, which is due to the presence of free-gap regions.

Additionally, it’s observed that increasing the frictional coefficient f3 of PS3 leads to

greater wave energy dissipation by PS3. Consequently, this heightened dissipation results

in a reduction in both wave reflection and transmission. BSPS experience minimal wave

force when the |R0|, and |T0| are minimum, and this condition is obtained at each of the

harmonic trough, which would enhance the working period of BSPS.
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Figure 7.16: SF for different values of a3/h and f3 with cm/h = 10, l1/h = 15, l2/h = 15,
l3/h = 20, D/h4 = 75 and L/h = 40.
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Figure 7.17: ST for different values of ϵ3 and f3 with cm/h = 10, l1/h = 15, l2/h = 15,
l3/h = 20, D/h4 = 75 and L/h = 40.

Figure 7.19 depicts the correlation between |R0|, |T0| and KD concerning the width

c3/h across various length values a3/h of PS3. The illustrated pattern shows that |R0|
exhibits oscillations and this oscillatory behavior diminishes as c3/h of PS3 expands. This

resonance phenomenon is likely attributable to the complex interactions between BSPS

and EP waves. Furthermore, the figures suggest that both |R0| and |T0| decrease as c3/h

increases, accompanied by a notable rise in energy dissipation. Moreover, an increase in

the length a3/h of PS3 leads to a higher dissipation coefficient, resulting in decreased |R0|
and |T0|.
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Figure 7.18: |R0|, |T0| and KD vs l3/h for different values of f3.
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Figure 7.19: |R0|, |T0| and KD vs c3/h for different values of a3/h.

7.4.4 Comparative Study Between Multiple BSPS with EP

A comparative study is conducted to evaluate the mitigation of the structural response of

EP in the presence of different number of BSPS.

Figure 7.20 illustrates the relationship between the reflection coefficient (|R0|) and

the wavenumber (kh) for various numbers of BSPS, where (a) considers cases where n is

an odd number and (b) considers cases where n is even. It is found that for n = 1, the

harmonic peak magnitude decreases with an increase in kh, but for the n = 2, 3, 4, 5, 6,

within the range of 0.1 < kh < 1 there are three peaks, which may be treated as a major

peak followed by multiple minor peaks. The major peak magnitude is more than all the

other minor peaks, and the second peak magnitude is less than the third peak, but within

the range of 1 < kh < 3, the magnitude of the harmonic peak decreases with an increase

in kh. It is also noted that n = 1 and n = 2 have no sub-harmonic peak between the two

harmonic peaks. But for other values of n, there are n−2 numbers of sub-harmonic peaks

between two harmonic peaks. However, the bandwidth of each harmonic peak (major and

minor) is observed to be the same, which may be due to the presence of multiple gap

regions. Now from Figure 7.20a, by comparing the curves for n = 3 and n = 5, it is noted

that the harmonic peaks for n = 5 show a right shift for the first, third, fifth, seventh and
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ninth number of harmonic peaks and a left shift for the second, fourth, sixth and eighth

number of harmonic peaks. Similar observations are also identified in Figure 7.20b for

n = 4 and n = 6. As a comparison, when EP is placed far away from a single BSPS,

|R0| is highly oscillatory and bandwidth is almost identical. The multiple zero minima are

observed after each of the harmonic peaks against the relative wavenumber. But, in the

presence of two BSPS, the oscillations are non-identical and the sub-peaks are identified

in |R0| pattern. Almost 100% increment of |R0| is observed in the presence of two BSPS

when compared with the presence of one BSPS with EP, which may be due to the change

in wave damping. Thus the present study suggests an even number of BSPS for enhanced

reflection and an odd number of BSPS for well-balanced scattering coefficients. Further,

from the |R0| pattern, it is identified that with an increase in n, |R0| increases. This may

be because as the number of BSPS increases, more incident wave energy is reflected back

by the BSPS.
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Figure 7.20: |R0| vs kh for number of BSPS (a) n = 1, 3 and 4 and (b) n = 2, 4 and 6
(with am/h = 0.5, cm/h = 5,fm = 1, ϵm = 0.1 l4/h = 5 and L/h = 20 ).

Figures 7.21a and 7.21b present the dynamics of the energy dissipation coefficient

KD and plate deflection Re(ηE), respectively, for five distinct scenarios: (i) EP alone, (ii)

one BSPS with EP, (iii) two BSPS with EP, (iv) three BSPS with EP, and (v) four BSPS

with EP. An analysis of Figure 7.21a indicates that KD is lower in the sole presence of EP

(without BSPS) compared to other configurations with BSPS and EP. Moreover, KD is

nearly 21%, 37%, 53%, and 65% in configurations with one, two, three, and four BSPS with

EP, respectively. This difference highlights the significant impact of BSPS introduction

on altering KD, as KD is zero in the absence of BSPS. This disparity underscores the

substantial impact of BSPS installations on enhancing wave energy dissipation. Notably,

the number of BSPS installations significantly influences KD, with the setup involving

four BSPS achieving the highest wave damping (nearly 65%). Consequently, a smaller

portion of the wave energy is transmitted towards EP, resulting in minimal plate deflection,



Chapter 7. Mitigation of Wave Response on an Elastic Plate by Multiple
Bottom-Standing Porous Structure 143

as depicted in Figure 7.21b. The effectiveness of BSPS in wave damping is clearly

demonstrated when contrasted with EP alone. Furthermore, the superior wave damping

capability is evident with four BSPS and EP compared to scenarios involving fewer BSPS

installations, with differences of nearly 36%, 18%, and 8% observed for configurations

with one, two, and three BSPS with EP, respectively. Overall, the number BSPS is purely

dependent upon the level of protection of EP against incident wave stroke.
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Figure 7.21: (a) KD and (b) Re(ηE) for the cases where only EP (absence of BSPS), EP
with one BSPS, EP with two BSPS, EP with three BSPS and EP with four BSPS (with
cm/h = 10, l1/h = 15, l2/h = 20, l3/h = 15, l4/h = 20, D/h4 = 75 and L/h = 40).
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Figure 7.22: (a) SF and (b) ST for the cases where only EP (absence of BSPS), EP
with one BSPS, EP with two BSPS, EP with three BSPS and EP with four BSPS (with
cm/h = 10, l1/h = 15, l2/h = 20, l3/h = 15, l4/h = 20, D/h4 = 75 and L/h = 40).

Figures 7.22a and 7.22b present shear force SF and strain ST , respectively, for five
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distinct scenarios: (i) EP alone, (ii) EP with one BSPS, (iii) EP with two BSPS, (iv) EP

with three BSPS, and (v) EP with four BSPS. Analysis of these figures reveals that SF and

ST are more in the absence of BSPS (EP alone) compared to the presence of BSPS and EP.

Furthermore, SF is approximately 49%, 74%, 88%, and 94% lower in configurations with

one, two, three, and four BSPS with EP, respectively, compared to EP alone. However, ST

is approximately 48%, 72%, 86%, and 92% lower in configurations with one, two, three,

and four BSPS with EP, respectively, compared to EP alone. This observation can be

attributed to the fact that in the absence of BSPS, the energy dissipation coefficient KD

is zero, and significant changes in KD occur after introducing the BSPS, as observed in

Figure 7.21a. The effectiveness of BSPS in damping waves is evident when compared to

EP alone. However, SF and ST achieved the lowest with four BSPS and EP compared

to one BSPS with EP, two BSPS with EP, and three BSPS with EP. Thus, the number

of BSPS installations plays a crucial role in mitigating the structural response on EP by

dissipating a large amount of incident waves by BSPS. From Figures 7.21 and 7.22, it is

recommended that three BSPS with EP will be suitable to secure the shoreside regions

against the incident wave stroke.
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Figure 7.23: |R0|, |T0| and KD vs kh for different values of n (with am/h = 0.5, cm/h =
5,fm = 1, ϵm = 0.1 l4/h = 5 and L/h = 20 ).

Figures 7.23a, 7.23b and 7.23c shows the variation of wave reflection |R0|, transmission

|T0| and energy dissipation KD against the relative wavelength kh for EP in the presence

of multiple BSPS. The scattering coefficients are compared with the EP alone to verify the

significance of BSPS in dissipating the incident waves. The minor peak in |R0|, followed
by a major peak with a larger bandwidth, is observed when EP is installed alone. After

introducing the BSPS the pattern of |R0| is highly oscillatory due to the presence of

free-gap regions. The primary peak is observed near kh = 0.25, and the magnitude of

the peak is observed to be increasing after increasing the number of BSPS. The intense

peak of wave reflection is generally treated as Bragg reflection, and the bandwidth is

complimentary. In the present scenario, the Bragg reflection is observed with a minor

change in the bandwidth when compared with the given range as discussed in Liu et al. [41].

Thereafter, the |R0| obtains a peak in oscillatory behavior and reduces to low values due to
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the change in the wave damping. The |T0| is higher for EP alone, as the wave damping is

zero, and the |T0| approaches to desirable value after introducing the multiple BSPS. It is

repeatedly mentioned that the |T0| should be less than 0.5 for optimal protection of the side

region, and this case may be satisfied after installing either three or four BSPS with EP.

The zero KD is observed when the EP is installed without BSPS, and the KD approaches

20% after introducing the single BSPS, and the maximum wave dissipation KD = 0.7

is obtained for four BSPS with EP. The level of protection against the incident waves is

always site-specific. Thus the number of BSPS may be fixed based on the requirement in

the reduction of wave height and the corresponding cost of construction.

7.5 Conclusion

This paper investigates the interaction between water waves and an EP structure amidst

multiple BSPS configurations, aiming to reduce the structural response of EP. Utilizing

eigenfunction expansion, velocity potential expressions are used to formulate the solution

of the boundary value problem, subsequently solved numerically as an algebraic system.

From this study it is found that the configuration featuring four BSPS achieves the highest

wave damping, reaching almost 65%. Additionally, the superiority in wave damping

capability is evident when comparing setups with four BSPS and EP to those with

fewer BSPS installations. Notably, approximately 21%, 37%, and 53% wave damping

are observed for configurations with one, two, and three BSPS with EP, respectively. The

lowest values of shear force and strain are attained when utilizing four BSPS and EP, in

contrast to configurations involving one, two, or three BSPS with EP. It is found that

the Bragg reflection is identified when kh = 0.25, and the magnitude of R0 enhances

along with the corresponding bandwidth after increasing the number of BSPS. Afterward,

the reflection coefficient experiences a peak in its oscillatory behavior and reduces to low

values, attributed to changes in wave damping. Remarkably, in cases where n equals 1 or

2, no subharmonic peaks are found between the two harmonic peaks in wave reflection.

Conversely, for other values of n = 3, 4, 5 and 6, the count of subharmonic peaks between

two harmonic peaks amounts to n − 2. The zero minima of wave reflection is obtained

due to the formation of standing waves. Overall, from the cost effective point of view,

this study recommends three BSPS (wave damping capacity is almost 55%) of length

am/h = 0.5, porosity ϵm = 0.5, fm = 0.5 and width cm/h = 10 will be suitable to secure

the EP and shore-side regions against the incident wave attack.
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Chapter 8

Summary and Future Work

In this chapter, the first section provides an overall summary of the research conducted in

this thesis. The subsequent section highlights the scope of future work.

8.1 Summary of the Present Work

The research conducted is presented across different chapters in this thesis, with the main

conclusions drawn at the end of each chapter. The problems addressed in this thesis

are solved using the eigenfunction expansion method and leveraging the orthogonality of

eigenfunctions. However, a brief summary of the research work carried out in this thesis

is as follows:

In Chapter 2, the study on gravity wave interaction with a vertical porous structure

extending from the bottom to the free surface in the presence of an elastic plate

demonstrates that the porous structure is highly effective in reducing the free-surface

elevation on the lee side of the elastic plate. Notably, the plate deflection, shear force,

and strain on the elastic plate decrease significantly with an increase in the frictional

coefficient. Further, it is found that with an increase in the width of the porous structure,

the wave reflection and transmission decrease as the porous structure dissipates a major

part of the incident wave. In addition, a moderate porosity value of the porous structure

is preferable for this problem.

In Chapter 3, the problem for mitigation of wave load on a sea wall by a vertical

porous structure extending from the bottom to the free surface in the presence of an

elastic plate is carried out. The study depicts that the gap between the structures plays a

vital role in protecting the sea wall from wave load. It is also found that in the presence

of a higher value of length and flexural rigidity of the elastic plate, the force acting on

the wall is low. From the qualitative behavior of forces acting on the sea wall, the force

on the wall shifted to the left due to the effect of the width and frictional factor of the

porous structure. Furthermore, for a higher value of the width of PS (i.e., for b/h=1.5),

energy dissipation by PS becomes nearly 100%, and the wave reflection becomes nearly

zero when the gap between PS and EP L1/h = (1.4 + n × 4.6), n = 0, 1, 2, . . . . It is also

noticed that the free surface elevation between the elastic plate and sea wall, which aids

in the creation of a calm zone, is significantly influenced by the structural characteristics

of the porous structure and elastic plate.

In Chapter 4, wave scattering by truncated thick porous structures of two different

configurations, (i) a bottom-standing porous structure and (ii) a surface-piercing porous
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structure in the presence of an elastic plate is examined. The study reveals that since the

porous structure dissipates a significant portion of wave energy, consequently, increasing

the length, porosity, and frictional factor of the porous structure decreases the wave

reflection and transmission. With an increase in the width of the porous structure,

the reflection coefficient decreases in an oscillating pattern, and the reflection coefficient

becomes constant for the higher value of structural width. The structural length, porosity

and friction factor of the porous structure play an important role in reducing the plate

deflection and the free surface elevation on the lee side of the elastic plate. It is found that

the wave dissipation by the surface-piercing porous structure is more as compared to the

bottom-standing porous structure case.

In Chapter 5, the problem involving mitigation of wave load on a sea wall by a

truncated thick porous structure of two different configurations, (i) a bottom-standing

porous structure and (ii) a surface-piercing porous structure in the presence of an elastic

plate is investigated. The study depicts that when the distance between the porous

structure and elastic plate is an odd multiple of the depth of water, the wave force

experienced by the wall is minimum and this minimum value of the wave force corresponds

to the minimum value of the reflection coefficient. Also, periodic harmonic oscillations are

observed in the reflection coefficient, dissipation coefficient, and wave force experienced by

the wall with respect to the variation of the gap length between the porous structure and

elastic plate and also the gap length between the elastic plate and sea wall. There is a 60%

reduction in force experienced by the wall and 50% enhancement in damping coefficient

after installation of SPPS for wavenumber k0h = 0.85, porosity ϵp = 0.5, frictional factor

fp = 0.5 when compared with the BSPS.

In Chapter 6, the interaction of oblique water waves with thick submerged porous

structure near a sea wall over two steps bottom profile is examined. The study reveals

that within the ranges of submergence depth between 0.1 to 0.3 and length 0.1 to 0.6 of

the porous structure, the wave reflection and force experienced on the wall consistently

register at less than 54% and 59%, respectively. Moreover, periodic harmonic oscillations

are noted in the reflection coefficient, dissipation coefficient, and wave force experienced by

the wall with respect to the variation of the gap length between the water region between

SPS and the steps, as well as the width of step-1 and step-2. Further, it is found that force

on the wall exhibits harmonic peaks at angles θ = 38◦ and θ = 61◦. Also, it is found that

θ = 67◦ is the critical angle for the reflection coefficient and the dissipation coefficient.

In Chapter 7, the interaction between water waves and an elastic plate in the presence

of multiple bottom-standing porous structures is investigated. The study reveals that

the configuration featuring four bottom-standing porous structures achieves the highest

wave damping, reaching almost 65%. Approximately 21%, 37%, and 53% wave damping

are observed for configurations with one, two, and three BSPS with EP, respectively.

It is found that the Bragg reflection is identified at wavenumber kh = 0.25, and the

magnitude of the reflection coefficient enhances along with the corresponding bandwidth

after increasing the number of bottom-standing porous structures. Remarkably, in cases
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where n equals 1 or 2, no subharmonic peaks are found between the two harmonic peaks in

wave reflection. Conversely, for other values of n = 3, 4, 5 and 6, the count of subharmonic

peaks between two harmonic peaks amounts to n− 2.

The study presented in this thesis is expected to enhance the knowledge of the ocean

engineering community for mitigating wave response on elastic plate/sea walls.

8.2 Scope of Future Work

This section highlights the future scope of the research conducted in this thesis. As an

extension of our results, the following problems can be taken up.

• The time-domain analysis can be studied by using the Fourier transform technique

to capture the hydrodynamic behavior of the problems assumed in the thesis.

• The problems involving water wave interaction with thick porous structures of

arbitrary shapes over an arbitrary bottom topography can be considered. This

problem may be solved by applying the Boundary element method coupled with the

eigenfunction expansion method.

• The problems involving water wave interaction with submerged porous structure in

the presence of arbitrary bottom topography can be examined for its approximate

solution, where the arbitrary bottom topography can be approximated by steps so

that the eigenfunction expansion method can be used in each step regions.

• The problems involving water wave interaction with thick porous structures of

different configurations in the presence of elastic plate can be studied in a

three-dimensional context.
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