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Abstract

It is well-known that minimal surfaces over convex domains are always globally
area-minimizing, which is not necessarily true for minimal surfaces over non-convex
domains. Recently, M. Dorff, D. Halverson, and G. Lawlor proved that minimal
surfaces over a bounded linearly accessible domain D of order 3 for some g € (0, 1)
must be globally area-minimizing, provided a certain geometric inequality is satisfied
on the boundary of D. We prove sufficient conditions for a sense-preserving harmonic
function f = h+7g to be linearly accessible of order 5. Then, we provide a method to
construct harmonic polynomials which map the open unit disk |z| < 1 onto a linearly
accessible domain of order 3. Using these harmonic polynomials, we construct one
parameter families of globally area-minimizing minimal surfaces over non-convex

domains.

We explore odd univalent harmonic mappings, focusing on coefficient estimates,
growth and distortion theorems. Odd univalent analytic functions played an
instrumental role in the proof of the celebrated Bieberbach conjecture. Motivated by
the unresolved harmonic analog of the Bieberbach conjecture, we investigate specific
subclasses of odd functions in 8%, the class of sense-preserving univalent harmonic
functions. We provide sharp coefficient bounds for odd univalent harmonic functions
exhibiting convexity in one direction and extend our findings to a more generalized
class, including the major geometric subclasses of odd functions in 8%. Additionally,
we analyze the inclusion of these functions in Hardy spaces and broaden the range
of p for which they belong. In particular, the results enhance understanding and
highlight analogous growth patterns between odd univalent harmonic functions and
the harmonic Bieberbach conjecture. We also propose two conjectures and possible

scope for further study as well.

We prove sufficient conditions for a mnormalized complex-valued harmonic
function f defined on the unit disk to be univalent and convex in one
direction/close-to-convex. Using the geometric properties of convex in one direction
or close-to-convex function, we obtain sufficient conditions for univalency in terms
of certain integral inequalities. With the help of an integral inequality, we prove a
sharp coefficient criterion for f to be convex in one direction. As an application,
we finally generate families of univalent harmonic mappings convex in one direction

using Gaussian hypergeometric functions.

Lastly, our attention is directed towards the zeros of the harmonic polynomials.
In their groundbreaking work, Khavinson and Swiatek proved Wilmshurst’s

conjecture, establishing a sharp upper bound on the number of zeros of harmonic



xii

polynomials of the form h(z) — Z, where h(z) is an analytic polynomial of degree
greater than one. Recent studies by Dorff et al. and Liu et al. further determined the
number of zeros and the compact region containing all zeros of harmonic trinomials,
respectively. Our research takes a leap further in identifying the precise compact
region encompassing all zeros of general harmonic polynomials. Moreover, we utilize
the harmonic analog of the argument principle to explore the distribution of zeros

of these polynomials, offering insightful examples for clarification.

Keywords:  Univalent functions; harmonic functions; odd functions;
area-minimization; minimal surfaces; linearly accessible domains; growth problems;
coefficient estimate; integral means; Hardy spaces; harmonic polynomials;
zero inclusion regions; Argument principle for harmonic functions; convex;

close-to-convex; convex in one direction.
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Chapter 1

Introduction

1.1 An overview of univalent analytic functions

An analytic function f defined in a domain D C C (complex-plane) is said to
be univalent if it is one-to-one, i.e., f(21) = f(29) implies z; = 2. For some
2o € D, the condition f’(z9) # 0 is both necessary and sufficient for an analytic
function f to be locally univalent at zy (i.e., univalent in some neighbourhood of
2p). A function that preserves angle both in magnitude and direction is said to be
conformal. Consequently, an analytic function that is (locally) univalent is referred
to as a conformal map. Certain authors used to assume that the function was
univalent throughout the whole domain when defining conformal maps. We hold
the same conviction, and when we say a function is conformal, we mean that it is

one-to-one in that domain.

Conformal mappings were initially developed as a method for solving engineering
and physics problems. Typically, issues that can be described using functions in
C, but involve complicated geometries, can be simplified by selecting a suitable
conformal mapping. An example of a difficulty is calculating the electric field
generated by a point charge located near the corner of two conducting planes that
are aligned at a specific angle. This problem is highly challenging to address in
its current state. Nevertheless, by employing a conventional conformal mapping, it
is possible to convert the intersection point of the two planes into a straight line.
Within this novel context, the problem possesses a very simple solution, which may
subsequently be mapped back to the original domain via a composition with the
chosen conformal map. Conformal mappings are commonly employed in the study

of boundary value problems for liquid confined within a container.

An essential issue in the theory of analytic functions is the study of the class of
conformal mappings between two simply connected domains in the complex plane C.
In this direction, there is a well-known theorem by Riemann, known as the Riemann

Mapping Theorem. It can be stated as follows:

Theorem A (Riemann mapping theorem). Let D # C be a simply connected
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domain and let zg € D. Then there exists a unique function f, analytic and univalent
in D, which maps D onto the open unit disk D = {z € C: |z| < 1} in such a way
that f (z9) = 0 and f"(z) > 0.

By utilizing the Riemann Mapping Theorem, we may simplify the study of
conformal maps between two arbitrary proper simply connected domains to the
study of conformal maps from an open unit disk D to any simply connected domain
D # C. Let § be the set of analytic and univalent functions in the unit disk D,
which are normalized by the conditions f(0) = 0 = f/(0) — 1. Therefore, a function

f € S has the power series representation
o0

f(z)=z+ Zanz”, z € D.
n=2

The sum of two functions in class & need not be univalent. Nevertheless, class S is
preserved under a number of elementary transformations. If a function f € S, then
the functions f(Z) (conjugation), e~ f(e?’z), # € R, (rotation), r~f(rz),0 < r < 1,
(dilation), 1/ f(22) (square-root transformation) and so on, also belong to the class

S. The Koebe function
k(z)=z2/(1—2)* =2+ an”
n=2

is the leading example of a function of class S, which maps the unit disk D onto the
entire plane minus the slit (—oo, —1/4]. The Koebe function serves as an extremal
function in numerous problems associated with class S. In 1916, Bieberbach [3]
proved that if f € S, then |ay| < 2, with equality if and only if f is the Koebe
function k(z) or some of its rotation. The inequality |as| < 2 has many implications,
one of which is the Koebe One-Quarter Theorem [36], which states that the range of
every function of class S contains the disk {w : |w| < 1/4}. The Koebe function and
its rotations are the only functions in & which omit a value of modulus 1/4. This led
Bieberbach to propose a conjecture, famously known as the Bieberbach conjecture,

which is stated as follows:

Conjecture A. [3] If f € S, then |a,| < n for all n > 2. Furthermore, |a,| = n
for all n if and only if f is the Koebe function k(z), or its rotations.

The conjecture remained unresolved for many years. In 1925, Littlewood [42]
made substantial progress by establishing the inequality |a,| < en, which ensures
the Bieberbach conjecture has the correct order of magnitude. Over time, the

constant e was gradually substituted with a series of smaller constants, although
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a comprehensive proof remained difficult to find. Also, the conjecture was verified
for n = 3,4,5,6 through increasingly complicated methods. Ultimately, in 1985, de
Branges [11] fully resolved the conjecture, which had originated 69 years before.

The mathematicians’s attempt to solve the Bieberbach conjecture resulted in the
emergence of several significant subclasses inside class §. These subclasses include
convex, starlike, close-to-convex and convex in one direction functions. Now, we are

going to explore each of these classes individually.

Definition 1.1. A domain D C C is said to be convex if the line segment joining
any two points of D lies entirely in D. A function f € S is said to be convex if f(ID)

is a convex domain.

Let K denote the class of convex functions. The functions in class K have the

following analytic characterization:

Theorem B. [17, Theorem 2.11] Let f be analytic in D with f(0) =0 = f'(0) — 1.
Then f € KC if and only if

2f"(2)
f'(2)

Re<1+ )>O, z € D.

The convex function [(z) = z/(1 — z) maps the unit disk D onto the half-plane
Re{w} > —1/2 and serves as an extremal in problems associated with class K.
In 1952, Umezawa [61] generalized the analytic condition given in Theorem B and
introduced a new class of functions called convex functions of order /3, denoted by

KC(). The following is the analytic characterization of the functions in class K(f):

Definition 1.2. Let f be an analytic function in D, normalized by the conditions
f(0)=0= f'(0) — 1. Then f € K(5), —1/2 < 5 < 1, if f is locally univalent in D

and satisfies the condition

2f"(2)
f'(2)

Re(1+ )>B, z € D.
Clearly, K£(0) = K and K(8) C K£(0) = K for all 5 € (0,1). For —1/2 < 5 < 0,
the functions f € IC(f) are not convex, but still have nice geometric properties.

Umezawa [61] studied these functions and referred to them as functions convex in

one direction.

Definition 1.3. A domain D C C is called convex in the direction o (0 < o < ) if
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every line parallel to the line through 0 and e has a connected or empty intersection
with D. A function f € S is said to be convex in the direction « if f(ID) is convex

in the direction a.

A function f is said to be convex in one direction if there exist some « (0 < v < )
such that f is convex in the direction «. Clearly, a convex function is convex in the
direction « for every a € [0, 7). Therefore, the functions convex in one direction are
a natural generalization of convex functions. Another generalization of the class of

convex functions is the class of starlike functions, which can be described as follows:

Definition 1.4. A domain D C C is said to be starlike with respect to a point
20 € D if the line segment joining zy to an arbitrary point z € D lies entirely in D
i.e., every point of D is visible from zj. If zg = 0, then the domain is called a starlike

domain and a function f € § is said to be starlike if f(ID) is a starlike domain.

Let S§* denote the class of starlike functions. The functions in class S* have the

following analytic characterization:

Theorem C. [17, Theorem 2.10] Let f be analytic in D with f(0) =0 = f'(0) — 1.

Then f € S* if and only if Re <Z]{ES)> >0, zeD.

The Koebe function k(z) is a starlike function but not a convex function,
indicating that K C &*. Alexander noted that there exists a one-to-one
correspondence between the class of convex functions and the class of starlike

functions, which may be expressed in the following manner:

Theorem D. [17, Theorem 2.12] Let f be analytic in D with f(0) =0 = f'(0) — 1.
Then, f(z) € K if and only if zf'(z) € S*.

Now we will discuss the most fascinating geometric subclass of &, which is the

class of close-to-convex functions, denoted by C.

Definition 1.5. A domain D C C is said to be close-to-convex if the complement
of D can be written as a union of non-crossing half lines. A function f € S is said
to be close-to-convex if f(ID) is a close-to-convex domain.

Kaplan gave the following analytic characterization of a close-to-convex function:

Theorem E. [17, Theorem 2.18] Let f be analytic and locally univalent in D. Then
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f 1s univalent close-to-convex if and only if

0> "
/01 Re<1+z]{/(g))d0>—w, z=re? (0<r<1),

for each r and for each pair of real numbers 01 and 0y with 6, < 05.

There is an alternate way to define a close-to-convex function. A normalized
analytic function defined on D is said to be close-to-convex if there is a univalent
convex function g (need not be normalized) such that Re(f'(2)/¢'(z)) > 0, z € D.
By applying this criterion, it is straightforward to prove that every close-to-convex
function is univalent. The inclusion £ C S* C C can be simply verified [17].
Moreover, functions convex in one direction are also close-to-convex. For more
details on univalent functions and these geometric subclasses, one could refer to the

monographs of Duren [17], Goodman [24, 25|, and Pommerenke [52].

As previously stated, conformal mappings have extensive applications in physics
and engineering. However, in many physical problems, the requirement for a
solution to be a conformal map is a highly severe condition. In numerous physical
problems involving fluid flow and electrostatics, a weaker condition on the function
being a harmonic function will aid in the solution. For example, considering the
Dirichlet’s problem of steady-state temperature distribution in a thin, homogeneous
semi-infinite solid plate in the x,y-plane, it was demonstrated how harmonic
functions are used to solve such boundary value problems in a simply connected
domain. This thesis explores the properties of univalent harmonic functions from a
geometric function theoretic perspective and establishes connections between these
functions and minimal surfaces. In the following section, we will explore the
basic definitions and fundamental concepts of minimal surfaces. In Section 1.3,
we shall provide a comprehensive discussion on univalent harmonic functions and

their connections with the minimal surfaces.

1.2 Minimal Surfaces

A surface M is a minimal surface if it locally minimizes its area. In other words,
M is a minimal surface if for each sufficiently small simple closed curve C' on M,
the portion of M enclosed by C' has the minimum area among all surfaces spanning
C. An example in real life is the creation of minimal surfaces by immersing a wire
frame into a solution of soap. This process results in the formation of a soap film
as shown in Figure 1.1 (Source: Internet), which is a minimal surface that has the

wire frame as its boundary. The minimal surface formed in this manner is actually
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an area-minimizing minimal surface. We will study such type of surfaces in detail
in Chapter 2. Some renowned minimal surfaces are the plane, Scherk’s surface (by
Scherk in 1835), the catenoid (by Euler in 1740), and the helicoid (by Meusnier in
1776).

Figure 1.1: Soap film minimal surface with wire frame boundary

Remark 1.1. The term “minimal surface” was used to refer to surfaces which
originally minimized total surface area subject to some constraint. However, the
term “minimal surface” is now used in a more general sense so that the surfaces

may self-intersect or do not have constraints.

The geometric interpretation for a minimal surface in R® can be given in the
following way: A surface M C R? is minimal if and only if its mean curvature is
equal to zero at all points. Here, mean curvature is the average of maximum and
minimum curvature k(T) = dT/ds, where T ranges over all directions in the tangent

space.

There exist multiple equivalent definitions of minimal surface in R3. One of
them is represented inside the framework of a differential equation and is given as:
A surface M C R? is minimal if and only if it can be locally expressed as the graph
of a solution of

(14 2ty — 2uatiytiny + (1 + U )tz = 0. (1.1)

The partial differential equation (1.1) was originally found in 1762 by Lagrange,
and Jean discovered in 1776 that it implied a vanishing mean curvature. These
equivalences demonstrate that minimal surface theory is at the intersection of many
branches of mathematics, including differential geometry, complex analysis, and

mathematical physics.

Minimal surfaces have received significant attention in scientific research,
particularly in the fields of molecular engineering and materials science. In the
domains of general relativity and Lorentzian geometry, apparent horizons, which

are specific extensions and variations of the concept of minimal surface, hold
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great importance. Unlike the event horizon, they represent a curvature-centric
methodology for grasping the boundaries of black holes. Moreover, minimal
surfaces are a component of the generative design toolkit employed by modern
designers. Tensile structures, closely associated with minimum surfaces, have
garnered significant attention in the field of architecture. Prominent instances can
be observed in the creations of world-renowned architects Frei Otto (a German
architect), Shigeru Ban (a Japanese architect), and Zaha Hadid (an Iraqi-British
architect). Frei Otto drew inspiration from soap surfaces when designing the Munich
Olympic Stadium. Another remarkable instance, again designed by Frei Otto, is the

German Pavilion at Expo 67 in Montreal, Canada.

1.3 Univalent harmonic functions

In this thesis, we use the word “harmonic function” to refer specifically to
complex-valued harmonic functions, unless stated otherwise. Furthermore, it is usual
in contemporary literature to use the terms “harmonic mapping” and “harmonic

function” interchangeably.

A complex-valued function f = wu + v is called complex harmonic if u and
v are real-valued harmonic functions (not necessarily harmonic conjugates). Each
analytic function is complex harmonic, but the converse is not true. Once analyticity
is discarded, significant challenges emerge. Analytic functions are preserved under
composition, but harmonic functions are not. The square or reciprocal of a harmonic
function may not necessarily be harmonic. Moreover, the inverse of a harmonic
mapping may not always be harmonic. It is worth noting that if f is harmonic and
g is analytic then the composition f o g, whenever well-defined, is harmonic. By
utilizing this composition rule, together with the Riemann Mapping Theorem and
the following well-known finding of Radd, we may simplify the study of univalent
harmonic maps between two arbitrary simply connected domains to the study of
univalent harmonic maps from an open unit disk D to any simply connected domain

D #C.

Theorem F. [14, p. 24] There is no univalent harmonic function which maps D
onto C.

Every complex-valued harmonic function f on a simply connected domain D has
a representation f = h+g, where h and ¢ are analytic in D, and this representation is
unique up to an additive constant. We call i and g as the analytic and co-analytic

parts of f. The Jacobian of a complex-valued harmonic function f = h 4+ g is
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defined as J;(2) = |f.(2)|* = | fz(2)]* = [ (2)]* — |¢'(2)|*. In Section 1.1, it has been
mentioned that for an analytic function f, the condition f’(z) # 0 is both necessary
and sufficient for f to be locally univalent. This is equivalent to say that for a locally
univalent analytic function f, the Jacobian J; is non-vanishing, as J; = |f'(2)|?. In

1936, Lewy [41] showed that a similar result holds for harmonic mappings.

Theorem G. Let f = h+ g be a harmonic function defined on D C C and locally
univalent at zy € D, then J(zy) # 0.

The Jacobian of a locally univalent harmonic function, being continuous, has
the same sign within a given domain. We say that a harmonic function f is
sense-preserving in a domain D if J¢(z) > 0 for all z € D and it is sense-reversing if
Ji(2) < 0 for all z € D. If f is sense-reversing then f is sense-preserving. Therefore,
it is possible to focus on harmonic functions that are sense-preserving, without any
loss of generality. The analytic function w(z) = ¢'(2)/h/(2) is called the dilatation

of f and |w(z)] < 1 on D, whenever f is sense-preserving on D.

Although harmonic mappings are natural generalizations of conformal mappings,
they were studied originally by differential geometers because of their role in
parameterizing minimal surfaces. The work was initiated by Karl Weierstrass
and Alfred Enneper after they gave Weierstrass-Enneper representation of minimal

surfaces.

Theorem H. [14, p. 177, Theorem| If a minimal graph {(u, v, F(u,v)) : u+iv € Q}
18 parameterized by sense-preserving isothermal parameters z = x + iy € D, the
projection onto its base plane defines a univalent harmonic function w = u + v =
f(2) of D onto Q2 whose dilatation is the square of an analytic function. Conversely,
if f = h4+7 is a sense-preserving univalent function of D onto some Q with dilatation

w =g /N =q* for some function q analytic in D, then the formulas

u=Re(f(2), ©=Tm(f(2)) t—zlm(/ozq<<>h'<c>d<)

define using isothermal parameters, a minimal graph whose projection is f. Except
for the choice of sign and an arbitrary additive constant in the third coordinate

function, this is the only such surface.

This relationship between the minimal surface and the corresponding univalent
harmonic function attracted widespread interest for planar harmonic mappings
among complex analysts. The catalyst was a landmark paper by Clunie and

Sheil-Small [8] in 1984, pointing out that many of the classical results for conformal
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mappings have clear analogs for harmonic mappings. In this paper, they proved the
analogy for many well-known classical results. They proved many necessary and

sufficient conditions for a complex-valued harmonic function to be univalent.

Let H denote the class of all complex-valued normalized harmonic functions
f = h+g in unit disk D, such that h(0) = ¢g(0) = 2’(0) — 1 = 0. Denote by Sy, the
class of all sense-preserving univalent harmonic mappings f = h +g € H, where h

and g have the following series representations:
h(z)=z+ Zanz” and g¢(z) = anzn, 2 eD. (1.2)
n=2 n=1

It is known that Sy is a normal family, but not compact. The class 8% defined by
Sy ={f=h+7€Sy:g(0)=0}is a compact normal family. This characteristic
makes SY; more favorable than Sy as a “correct” generalization of the class S of all
analytic univalent functions. There is a correspondence between the class S% and
the class Sy. Indeed, if f € Sy, then |b;| < 1 and the function
— b,
fo= | bfg

is in S%. In contrast, the function f = fo + by fo is in Sz, whenever fy € S% and
|b1] < 1. Therefore, studying the class S is enough, as the properties of class Sy
may be derived from the properties of §%. Several important subclasses of the class
SY include the class of starlike, convex, close-to-convex functions, denoted by S,
CY%, and KY%, respectively, and convex in one direction functions. Functions in the
classes S3P, K%, C% and convex in one direction map the unit disk I onto starlike,
convex, close-to-convex, and convex in one direction domains, respectively. The

leading example of the class 8% is the harmonic Koebe function

which maps D onto the entire plane minus the real interval (—oo, —1/6]. The
analytic Koebe function k(z) plays a crucial role in the construction of harmonic
Koebe function using the “shear construction” method developed by Clunie and
Sheil-Small. Shear construction can be further used to construct more univalent
harmonic functions (with prescribed dilatation) in D. This technique is extensively

used throughout the thesis. It can be stated as follows:

Theorem 1. [8] Let f = h + g be harmonic and locally univalent in the unit disk

D. Then, f is univalent and its range is convex in the direction of o if and only if
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h — €*g has the same properties.

In particular, with the help of Theorem I, one can construct harmonic functions
convex in one direction, hence univalent. For instance, the necessary steps to

construct univalent harmonic functions convex in the real direction, are as follows:

(i) Choose a function ¢ € S such that ¢ maps D onto a domain convex in the

real direction. Then, set h — g = ¢.
(ii) Choose an analytic function w in D with |w(z)| < 1 for all z € D.

(iii) Solve the relations
hW—¢g=¢ and wh'—g¢g =0
to find h and g.

(iv) This gives

h(z) = Ozi;?g§ggdc and  g(=) = () — h(2).

(v) The desired harmonic function is

f(2) = h(z) + g(2) = 2Re(h(2)) — ¢(2).

The same procedure can be employed to generate functions that are convex in
an arbitrary direction. The choices ¢ = k(z) and w(z) = z led to the formation of
harmonic Koebe function K(z). For more details on univalent harmonic functions,
one could refer to the article of Clunie and Sheil-Small [8], the monograph of Duren

[14], and the survey article of Bshouty and Hengartner [5].

The following harmonic analog of the Bieberbach conjecture due to Clunie and
Sheil-Small has been the driving force behind the development of univalent harmonic

mappings in the plane.

Conjecture B. [8] Suppose f = h+7 € SY, with the series representation as given
n (1.2). Then, for alln > 2,

2n+1 —1)(2n—1
o < IVEED ) < OZDEZD e [pnl] <

The bounds are attained for the harmonic Koebe function K.
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The conjecture has been verified for several subclasses of SY%, including starlike,
convex, close-to-convex, and convex in one direction functions (see, [8], [59], [62]).
The inequality |bs| < % has been fully verified. However, the problem remains open
for the whole class S%. Abu Muhana et al. [1] established the most recent bound
of |as| < 21. Knowing the exact upper bounds for the coefficient modulus values
will lead to solutions for many open problems. Even though many classical results
have been extended to the class S%, many basic questions remain unsolved for the

well-known geometric subclasses of SY.

1.4 Outline of the thesis

The thesis contains five chapters, with the initial chapter serving as an introduction.
This chapter includes basic definitions and results from the existing literature, which

contribute to the development of the thesis.

In the second chapter, our main aim is to determine a geometric condition under
which a locally univalent harmonic mapping f defined on the unit disk D is univalent,
and maps D onto a linearly accessible domain of order 5 for some g € (0,1).
A linearly accessible domain (a non-convex domain) is important because, under
certain sufficient conditions stated by Dorff et al. [12], minimal graphs over these
domains are area-minimizing. As a consequence, we derive sufficient conditions for
f to map D onto a linearly accessible domain of order (3, in the form of a convolution
result, and a coefficient inequality. By extending the ideas of Dorff et al. [12], we
construct one parameter families of globally area-minimizing minimal surfaces over
a linearly accessible domain of order 5. Finally, by using a convolution technique,

we generate some more globally area-minimizing minimal surfaces.

In the third chapter, we explore the properties of odd univalent harmonic
functions. Our starting point of investigation is to obtain the sharp coefficient
estimates, growth and distortion theorems, for odd univalent functions exhibiting
convexity in one direction. We then advance our investigation to more generalized
classes, including major geometric subclasses of sense-preserving univalent harmonic
mappings. We examine the growth pattern of odd univalent harmonic functions and
extend the range of ‘p’ for which these functions belong to the Hardy space h”. Our
results, in particular, add to the understanding of the growth pattern between odd

univalent harmonic functions and the harmonic Bieberbach conjecture.

In the fourth chapter, we continue to investigate harmonic mappings convex
in one direction, close-to-convex harmonic mappings through their geometric

properties.  Our starting point of investigation is to obtain certain integral
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inequalities, where the integrand is the rate of change of slope of the tangent of
a harmonic function f or its absolute value. Applying these integral inequalities,
we prove sufficient conditions for a normalized complex-valued harmonic function f
defined on unit disk ID to be convex in one direction or close-to-convex and hence

univalent in D.

In the final chapter, we deal with the fundamental problem of determining the
location of the zeros of complex-valued harmonic polynomials. The best-known
results available in this direction are up to harmonic trinomials only. The exploration
of the zeros of a general harmonic polynomial has been limited due to various
challenges. Here, we determine the regions encompassing the zeros of a general
harmonic polynomial of arbitrary degree using various techniques, such as the matrix
method and certain other matrix inequalities. The various regions obtained in this
analysis may offer enhancements over one another based on specific assumptions
about the coefficients. Additionally, we employ the harmonic analog of the argument
principle to examine the distribution of zeros, which we demonstrate through

illustrative examples.



Chapter 2

Univalent Harmonic Functions and

Minimal Surfaces

Interfaces in materials are often modeled by area-minimizing minimal surfaces, such
as the soap films on wire frames. As minimal surface minimizes the area locally,
every minimal surface need not be a globally area-minimizing surface. However, it is
well-known that minimal surfaces over convex domains are globally area-minimizing,
which is not necessarily true for the minimal surfaces over non-convex domains [48, p.
67, 6.1]. Recently, Michael Dorff et al. [12] proved some sufficient conditions under
which a minimal surface over a non-convex domain is globally area-minimizing.
These conditions are shown to hold for some subsurfaces of Enneper’s surface, the
singly periodic Scherk surface, and the associated surfaces of the doubly periodic
Scherk surface. For more examples of such globally area-minimizing minimal graphs,
one can look at the article [26]. Fascinatingly, all these aforementioned subsurfaces
are surfaces over a particular type of non-convex domains, the domains having a
nice complementary set of rays. Moreover, in [12, Theorem 2.5] the authors proved
that a compact domain with a piecewise smooth connected boundary has a nice
complementary set of rays if and only if it is linearly (or angularly) accessible of
order f3 for some 3 € (0,1).

The objective of this chapter is to establish a geometric criterion that determines
when a locally univalent harmonic mapping f, defined on the unit disk D), is
both univalent and maps D onto a linearly accessible domain of order [ for some
g € (0,1). This has been done in Theorem 2.1. Consequently, we establish
the sufficient conditions for the function f to map D onto a linearly accessible
domain of order 3, in the form of a convolution result, and a coefficient inequality,
which are given as Theorems 2.2 and 2.3, respectively. Building upon the concepts
introduced by Michael Dorff et al. [12], we construct 1 parameter families of globally
area-minimizing minimal surfaces over a linearly accessible domain of order 5 (a
non-convex domain). Ultimately, by the implementation of a convolution technique,

we are able to produce further minimal surfaces that are globally area-minimizing.
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2.1 Linearly accessible domains

As already mentioned in definition (1.5), a domain is said to be a close-to-convex
domain if its complement can be written as the union of non-crossing rays. A domain
Q2 is said to be linearly accessible of order /3, 5 € [0, 1], if it is the complement of
the union of non-crossing rays such that every ray is the bisector of a sector of
angle (1 — )7 which lies fully in the complement of Q. For § = 1, the domain is
called strictly linearly accessible. A univalent analytic/harmonic function f is said
to be close-to-convex (or linearly accessible of order § in D) if the range f(D) is a

close-to-convex domain (or linearly accessible domain of order f3).

In [40], Lewandowski showed that an analytic function f is close-to-convex in D
if and only if its range f(ID) is linearly accessible. In fact, it is well-known that a
function f is close-to-convex of order g, for 5 € [0, 1] if and only if f(D) is linearly
accessible of order 5. For § > 0, an analytic function f is said to be close-to-convex
of order f3 if for some normalized convex function ¢ and some constant ¢ with |c| = 1,
we have cf’(z) = p(2)°¢/(z) for all z € D, where p(z) with |p(0)] = 1, is an analytic
function which has positive real part in ID. For more information on close-to-convex
functions of order #, § € [0,1], we refer to the article by Koepf [37]. In [54],
Maxwell proved the analytic characterization of close-to-convex functions of order
for 5 € [0, 1], which generalizes the result of Kaplan [31] on close-to-convex functions
of order 1. In [32, Theorem 1], Kaplan proved Theorem J for the case f = 1. We
have verified that an analogous result holds true for an arbitrary 8 € [0, 1]. We omit

the proof of Theorem J as Kaplan’s proof technique will establish the result.
Theorem J. Let f be locally univalent in the unit disk D and let a branch of arg f'(z)
be chosen in . Then the following conditions are equivalent for B € [0,1] :

(a) [ is close-to-convex of order 3, 5 € [0,1] in Dy

(b)

2> 0 £ 60
/ Re 1+L(776) o > —pr, 0<r<1, 0 <0y <6+ 2m,
0 f'(re)

(c) arg f" is bounded in D and

62 ez’&f//(eiﬁ)
/ Re(1l+ ———= d0>—ﬁﬂ', 91<92<91+27T, 91,92€Ef,
9, f/(eza)
where set Ey N [0,27] has linear measure 2m. (As arg f'(z) is bounded, it

has radial limit as r — 17 for almost all 0 and hence lim,_,,- arg f'(re¥) =
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arg f'(e), for all 0 € E).

For a harmonic function f = h + g, the operator Df is defined as Df(z) =
zh'(2)—zg'(z) and D*f(z) = D(Df(2)). In [53], Ponnusamy et al. gave the following
sufficient condition for a sense-preserving harmonic function to be univalent and

close-to-convex in D.

Theorem K. Suppose that f € H is sense-preserving and D f(z) # 0 for z € D\{0}.
If f satisfies

02 DZf(rezH)
_— — 1 2
/91 Re(Df(re29)>d9> m, 0<r<l1, 6; <0y <6 +2m,

then f is univalent and close-to-convex in D.

Even though the geometric interpretation of the definition of a close-to-convex
function of order [ and linearly accessible domain of order [ are different, the
following theorem shows that close-to-convex harmonic mapping of order § having

hereditary property must be linearly accessible harmonic mapping of order .

Theorem 2.1. Suppose that f = h+79 € H is a sense-preserving bounded function
such that Df(z) # 0 for all z € D\ {0}. For some B € [0,1], if f satisfies

02 D2f(7”ei0)
/91 RG<W>CZ9>—BW, 0<r<l, 91<92<91+27T, (21)

then f is univalent and linearly accessible of order [ in D.

Proof. From Theorem K, it follows that f is univalent in D and f(D) is a
close-to-convex domain. Now, we shall show that f(ID) is a linearly accessible domain
of order f.

For p € (0,1), define f,(2) = (1/p)f(pz). With some simple computations we

can see that f,(z) also satisfies (2.1) i.e.,

62 D2f(7"e739)
Re | —22— ") df > — 0 1, 0 <0y <8, +2 2.2
/91 e(Dfp(rew)) > —fr, <r<l, 6 <ty <6+ 2m, (2.2)

which is equivalent to

0 ,
i g(f,(re)

0 ,
arg%(fp(rew)) ” > —fmr, 0<r<l1, 6 <0y <6 +27.

Let f,(D) = Q,, and then f,(D) = Q,. As €, is a simply connected domain,
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which is not equal to C, the Riemann Mapping Theorem assures the existence of
a univalent analytic function g, from D onto €, with g,(0) = 0 and g,(0) > 0.
Using Carathéodory Extension Theorem [17, Page 12], g, can be extended to a
homeomorphism of D onto Q_p. Therefore, corresponding to every two points e
and €™ on the unit circle which are mapped to f,(e"') and f,(e™), respectively
under the map f,, we can set points €1 = g, (f(e")) and e = g, (fo(e")),

respectively. Therefore, the condition (2.2) implies that

0

arg o 0,(c)| — ors

y 8 %(gp(ew))

> —Bm, 0] <0, <0+ 2m,
1

which is equivalent to

04 zeg//( )
/ Re 1+p— df > —Pm, 6] <6, <6+ 2.
04 gp(e )

As a consequence of Theorem J, we can conclude that g, is a close-to-convex function
of order  and hence linearly accessible function of order 5. Equivalently, we can say
that g,(D) = Q, is a linearly accessible domain of order . Setting p, = 1 — (1/n),
for n > 2, we see that the domains @, — € as n — oco. Therefore, by applying
the Carathéodory Convergence Theorem [17, Page 78], we obtain that there exists
an analytic function g on ID such that g,, — ¢ uniformly on each compact subset
of D and g(D) = Q. Since the functions g,, are linearly accessible of order 5 and
the convergence is uniform, we deduce that g must be a linearly accessible function
of order 8. Hence the domain g(D) = Q is a linearly accessible domain of order .

This completes the proof of the theorem. n

For two analytic functions H and G defined on D, the Hadamard product or
convolution of H and G denoted by H * G is defined by

(H*G)(z ZABZ whenever H(z ZAZ and G(z ZBz

n=0 n=0

Theorem 2.2. Suppose that f = h+ g € H with ¢'(0) = 0 is sense-preserving and
Df(z) #0 for all z € D\ {0}. For some 8 € [0,1], if

h(z)* Ac(2) + g(2) ¥ Be(2) 0 forall |C|=1,0< |2| <1, (2.3)

where

(2+B)z+ (20— B)z?
(1—2)°

(20— B)z+ (2+ B)2”

Ac(z) = 1= 2P :

and B(z) =
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then f is univalent and linearly accessible of order 3.

Proof. From Theorem 2.1, it is clear that if f satisfies

2(2'(2))" + 2(29'(2)) B 0
Re — ——, forall z=re"” in D\ {0},
< 2W(2) — zg'(2) ) ~ 73 MO

then f is univalent and linearly accessible of order 3. The aforementioned inequality

is equivalent to

2(zh/ (2)) +2(z9' (2))’
Re 2h(2)—zg' (2) ( ﬁ/2)

—(=5/2)

>0, forall z=re?inD)\ {0}. (2.4)

The function (z(zh/(2))' +2(2¢'(2))) /(2 (2) — z¢(z)) has a limit value of 1 at z = 0.
Furthermore, the function w(¢) = ((—1)/(¢+1) maps the unit disk |{| < 1 and the
unit circle || = 1, where ¢ # —1, to the left half-plane Re(w) < 0 and to the vertical
axis Re(w) = 0, respectively. In view of the preceding discussion, an equivalent form

of inequality (2.4) can be given as

z(zh (2))' +2(z9'(2))’
20 (2)—2g' (2) ( B/2>

—(=5/2)

A routine computation gives that

¢—1
¢+ 1’

0 # (CHD[(h(2)) +2(2¢/(2)] + (1 + 8 = )2l (2) — 29'(2)]
ol ]
_ h<2>*2[<2+6)25§525_1) } {% ﬁzl—_cz) -1 ]
_ h(z)*{(2+6>(zl+_(z2><3—5>22}+m*[(24 ﬁ(lzj;;w) }

which is the required condition (2.3). O

Theorem 2.3. Suppose that f = h+q € H, where h and g have series representation
as in (1.2). Furthermore, ¢'(0) = 0 and Df(z) # 0 for all z € D\ {0}. For some

peloa], i

S5 ()OS () 05 ()

(2.5)

then f is univalent and linearly accessible of order 3. Moreover, the bound is sharp.
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Proof. From Theorem 2.2, we can infer that it is sufficient to prove that condition
(2.3) holds for f = h + g, whenever f satisfies the inequality (2.5). Consider the
quantity

e+ [ N

i MHZKW)Mw(g)(%_m}m
+ (3)e e
Pero(5)e-s
)+ (5) e+ )|l |"1]
(37 e ((15) - ()] +2) e
O-C1NA o) ]

(2+6>z+(2<—ﬁ)z2} e {(2Z—B)z+(2+ﬂ)22] ‘

\Y
E

|n—1

2+ ) — Z

|an||2

> |4

(24 5) - fj(
(

- i(’z(?) + 5

= [Z2+06)|1-

CS(ED ) @)

The last expression is non negative, whenever the condition (2.5) holds. In

particular, for 5 = 0, condition (2.5) reduces to

> nPlag| + ) n’lb) < 1, (2.6)
n=2 n=2

which is a well-known sufficient condition for a harmonic function f to be convex in
D. To show the sharpness of the inequality (2.5), let us consider the sense-preserving
univalent harmonic functions f,(2) = z + az*, where a € [1/9,1/5] is fixed. For the
function f,(2),

Re D?f(e®)\ 1—27a®+ 6acos40
Df.(e®) ] 1+ 9a2 —6acosdd

A usual but tedious computation gives that

(DQfa(ew)) _ 1—6a—27d’

in R . ,
fo2n  \ Df(e) 1+ 6a + 9a2

0€]0,27]
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Now, setting 8 = —2(1 — 6a — 27a®)/(1 + 6a + 9a?), we see that f,(z) satisfies
inequality (2.5) with the equality. This proves that the result is sharp. ]

2.2 Harmonic polynomials
The Gaussian hypergeometric function o Fi(a, b; c; z) is defined as

a

(n.

oFi(a,b;c;2) := F(a,b;c; 2) Z

n=0

L2 <1, (2.7)

where a,b,c € C, ¢ # 0,—1,—2, ....., and (a), is the Pochhammer symbol defined
by (a)o =1 and (a), = ala+1)(a+2)...(a+n —1) (n € N). For |z| < 1, the series
(2.7) is convergent. It is also convergent for |z| < 1if Re(¢) > Re(a+b). The proofs

of our results in this section require the following well-known results.

I'(e)l'(¢c—a—Db)

Fla,byc;1) = T(c—a)l(c—b)

< oo for Re(c) > Re(a + b). (2.8)

Lemma A. [60] Let a,b > 0. Then we have the following

(a) Forc>a+b+1,

> n(0)n Tl (c—a—-b-1
Z nn' ) = (F)(C(_a)r<c_b))(ab—l—c—a—b—l).

n=0

(b) Forc>a+b+2,

= n+1 a)n(b)n  T'(c)I'(c—a—Db) (a)a(b)s 3ab
Z nn' " I'(c—a)l(c—0) (c—a—b—2)2+c—a—b—1

n=0

Theorem 2.4. Let m be a positive integer, ¢ be a positive real number and 5 € [0, 1].
Suppose that f(z) = h(z) + g(2), where h(z) = zF(a,b; c; z) with a = b = —m and
g'(2) = 2290/ (2) for some positive integer q. If

4 T()(c+2m) [ ((—=m)y)? N 3m?
245 (I(c+m))?2 [(c+2m—2)y c+2m—1

+1 (2.9)

4q T(e)(c+2m —1)
2408 ([(c+m))?
then f is a harmonic polynomial and f(D) is a linearly accessible domain of order

3.

+ (c+m?+2m—1) <2,

+1f.
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Proof. From the definitions of h and g, we see that

m+1 —m)p_1)? . m+2q+1 )21 2(n _9 .
h(z) = Z %z , and g¢(z)= Z 72((6)71_)211_1(”1 T 161))'2 ‘

n=1

n=2q+1

From Theorem 2.3, we infer that the function f = h + 7 is linearly accessible of

order 3, whenever
m—+1

2 B
Z{2+B”Q+2+ﬁn}

n=2

((=m)n-1)?
(¢)p_1(n —1)!

m+2q+1 9 5
py [2+ﬁ”2_2+6n}

n=2q+1

<1

((=m)n-24-1)*>  (n—2q) ‘
(€)n—2g-1(n —2q — 1)! n

The L.H.S of the above inequality is equivalent to

L O L TEmP] B [(em)?
~ 2ty [(c)n<n)!}+2+ﬂz( “)[«:)n(n!}

n=1

which reduces to condition (2.9), using Lemma A. This completes the proof. O]

2.3 Families of linearly accessible domains with

globally area-minimizing minimal graphs

In the preceding section, we have established several sufficient conditions for a
harmonic function to be univalent and mapping ID onto a linearly accessible domain
of order 5 < 1. Now, we extend the ideas of Michael Dorff et al. [12] to construct
families of globally area-minimizing minimal graphs over the linearly accessible
domains of order 5 < 1, which are not convex domains. For the sake of the

completeness, here we briefly present their ideas.

A domain D with a piecewise smooth boundary has a nice complementary set
of rays, say Y, if its complement DC can be written as the union of non-crossing
open rays emanating from 9D that are non-tangent to D, i.e., DC = UR, ReT,
where R denotes the ray emanating from 0D [12, Definition 2.3]. In [12, Theorem
2.5], the authors have established that a compact domain with a piecewise smooth

connected boundary has a nice complementary set of rays if and only if it is linearly
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(or angularly) accessible of order § < 1. Let T denote a nice complementary set
of rays for a closed region D in R%. Suppose M is a minimal surface in R?, which
is a graph of a function f(u,v) defined on D. In [12, Theorem 3.2], the authors
showed that M is a globally area-minimizing minimal graph, whenever the inequality
In(p) - N(p)| < R(p) - N(p) holds for all but possibly a finite number of points
p € 0D. Here, n(p), N(p), and R(p) denote the unit normal to M at (p, f(p)), the
outward unit normal to D at p naturally included into R? x 0, and unit normal
in the direction of R(p) € T, where R(p) is a ray emanating from p, also naturally

included into R? x 0, respectively.

In order to verify the above inequality, we adapt the technique used in [12]. We
briefly explain the strategy here: The complement of D is first divided into sections
by a finite number of non-crossing rays. Then for each section S we define a set of
rays emanating from 0D N.S in some particular direction, say in the direction of unit
vector R. A collection of Wedges with vertex on dD include the complement of the
domain not covered by the defined rays. Rays coming from the vertex of the Wedges
can be used to “fill in” these Wedges. The union of the set {R(p) | p € 9D N S}
together with the set of rays used to “fill in” the Wedges is called the R-set of
rays for D in S, where R(p) is a ray emanating from p in the direction R (see,
Figure 2.1). In [12, Proposition 3.6], the authors showed that R-set of rays is a nice
complementary set of rays for D in S, whenever N(p) - R > 0 for all p € 0D N S.

Finally, with all this information, we are ready to prove our results.

Theorem 2.5. Let f,(2) = z + az®, where a € (1/9, 1/5). Then f, is
sense-preserving, univalent and f,(D) is a linearly accessible domain of order f3,
for some 0 < B < 1. Furthermore, f,(D) is a non-convexr domain and the minimal

surface lifted over this domain is globally area-minimizing.

Proof. Applying Theorem 2.3 to f,, we get that f, is a univalent harmonic mapping,
whose range is a linearly accessible domain of some order 3, 0 < # < 1, whenever
a € (1/9, 1/5). Let us first show that for the given values of a, f,(z) is a non-convex
function over the unit disk . We know that a function g(z) is convex in the unit disk
D, if it satisfies the inequality % (arg (% g(z))) >0 for z = e. A straightforward
calculation shows that f, is a convex harmonic mapping if and only if |a| < 1/9.
Hence for a, with |a| > 1/9, f,(D) is a non-convex domain. Since the dilatation of f,
is the square of analytic function v/3az, from Weierstrass-Enneper Representation

(Theorem H), it follows that the formulas

u(z,y) = Re(fu(2)), v(z,y) =Im(fu(2)) and w(z,y) = 2v3azy,
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define by isothermal parameters, a minimal graph X(z,y) over f,(ID). Let us
consider the portion of the minimal graph over the domain f,(ID,), where D, is
a disk of radius r in the x, y-plane with center at origin. Using polar coordinates

(z,y) = (rcosf,rsinf), the coordinates of the minimal surface can be rewritten as

u(r, 0) = rcos® — 3ar® cos § + 4ar® cos® 0,
v(r,0) = rsinf — 3ar’sin @ + 4ar® sin® 0, and

w(r,§) = 2v/3ar? cos O sin 6.

Wedge
M1

Figure 2.1: R-set of rays which is a nice complementary set of rays for a section of
the complement of the domain fi (D).

Let N and n denote the outward unit normal to 0f,(ID,) for a fixed r < 1 and

surface normal to the minimal surface, respectively. Then

(cos 0(1 + 9ar? — 12ar? cos? ), sin O(1 + 9ar? — 12ar? sin? 6), 0)

N = , and
v/ (1 — 3ar?)? 4 48ar2 cos? f sin” 0
(2\/ 3arsin 0, 2v/3ar cos 0, 3ar? — 1)
n= :

1+ 3ar?

Next, we construct a nice complementary set of rays for the domain f,(D,).
Let u;, @ = 0,1,2,3, be the set of rays in the direction of 0; = i3, ¢ = 0,1,2,3,
respectively. These non-crossing rays partition the complement of domain f,(ID,)
into four congruent sections. For the section S; in the first quadrant bounded by g
and 1, let R = (1/v/2,1v/2,0), and Y, be the R-set of rays for f,(ID,) in S;. For
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p € 0fa(D,) NSy we have

(cos 0 + sin 0)(1 — 3ar? + 6ar? sin 26) o1

V21 + 9a2r* — 6ar2 cos 40 - E

N(p)-R=

Therefore, by [12, Proposition 3.6], T; is a nice complementary set of rays for f,(ID,)
in S;. By [12, Proposition 3.4], T; extends to the nice complementary set of rays for
f2(D,) in R?. We can even observe that N(p) - R > 0 for every 0 < r < 1, showing

that the full domain f,(D) has a nice complementary set of rays (see, Figure 2.1).

Next, to show that M is globally area-minimizing over f,(ID), we need to show
that the inequality |n(p) - N(p)| < R(p) - N(p) holds for all but possibly a finite
number of points p € df,(D). We verify this for the section S;, which lies in the
first quadrant. For 6 € [0, 7/2], we observe that

24/ in 26
Ja 7sin >0, for 0<r<l.

n -N =
(p) (p) V1 + 9a2r* — 6ar?cos46 —

So, the inequality [n(p) - N(p)| < R(p) - N(p) reduces to N(p) - (R(p) —n(p)) >0

and it is equivalent to show that
(sin @ 4 cos 0)[1 — 3ar? + 12ar? sin 6 cos 0] — 4v/6ar sin § cos 6 > 0, (2.10)

for 6 € [0,7/2] and 0 <7 < 1.

Figure 2.3: Projections of
Figure 2.2: Minimal graph over minimal surface with r; = 0.7,
non-convex domain f% (D). ro = 0.8, and 75 = 1.

Using the identity cos@sin @ = [(sin @ 4 cos #)? — 1], we find that the values of 0
that minimize the left-hand side of the inequality (2.10) must satisfy the equation

2v/6ar + +/162ar2 + 6a

18ar

sin @ + cosf =
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From (2.10) and above relation we get that |n(p)-N(p)| < R(p)-N(p) if and only if
V2

o7 Rar [(\/5+ 8lazr?) £ (14 27ar?)y/a(l + 27ar2)] >0, for 0<r<l.

A routine computation shows that the above inequality holds for r < 9—1a + 9\%“.

Since a € (1/9, 1/5), the required inequality will be satisfied for 0 < r < 1 and this
completes the proof. O

Theorem 2.6. Let F,(z) = z + az°, where a € (1/25, 1/15). Then F, is
sense-preserving, univalent and F,(D) is a linearly accessible domain of order f3,
for some 0 < 8 < 1. Furthermore, F,(D) is a non-convex domain and the minimal

surface lifted over this domain is globally area-minimizing.

Proof. The proof follows from the same techniques used in Theorem 2.5 and we
skip the details. The minimal graph over the non-convex domain F. (ID) and its

projections onto the plane for different values of r are shown in the figures 2.4 and

2.5, respectively.

Figure 2.5: Projections of

Figure 2.4: Minimal graph over minimal surface with » = 0.7,
non-convex domain F' 1 (D). ry = 0.8, and 73 = 1.

O

2.4 Some more globally area-minimizing minimal
graphs

For f = h + g harmonic in D and for any analytic function ¢ defined on D), the
convolution % is defined as fx¢ = h x ¢ + g * ¢. Let us denote by Ky and Kg,
the class of all normalized analytic functions convex in the direction of €, and the

class of all normalized convex harmonic univalent functions, respectively. Next, we
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discuss a class of analytic functions that preserve convexity in one direction under

convolution.

Definition 2.1. An analytic function ¢ is said to be Direction Convexity Preserving
denoted by ¢ € DCP, if g x ¢ € Ky for all g € Ky and for all § € R.

In [57], Ruscheweyh and Salinas proved remarkable results on geometry

preserving convolutions, which are given below as Theorem L, and Lemma B.

Theorem L. Let ¢ be analytic in D. Then fx¢ € Ky for all f € Ky if and only if
¢ € DCP.

For a harmonic mapping f = Y 7o axz®+> - bpz*, the n De la Vallée Poussin
mean V,,(f) of f is defined as V,,(f) = f*W,,, where

o\ ' — 2n K
Wn(z)—<n) ;(n—i—kz)z’ z2e€C, neN

Lemma B. Let g be analytic in D. Then g € Ky if and only if gxW,, = V,,(g) € K
for alln € N.

For details on De la Vallée Poussin means for harmonic mappings, one can have
a look at the article by Sairam Kaliraj [30]. In [58], Ruscheweyh and Sheil-Small

proved the following result on close-to-convexity preserving property of V,,(f) means.

Theorem M. If g is close-to-convex analytic function in D, then g* W, = V,(g)

are close-to-convex in D for all n € N.

Theorem 2.7. Let an embedded minimal surface X defined on D with Weierstrass

representation

e (e m{ fra- ) fma]).

where p(0) = 1, is a graph over a conver domain. Then for ¢ € DCP, the

convolution minimal surface

(o frae ik m{fro- ). 2 ).
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where

z z

(=) = p()+ 22 and w(z) = VE = \/ /)/z,

18 again a graph over a convex domain, and hence is globally area-minimizing

minimal surface, whenever & is a perfect square.

Proof. Let f = h + g denote the projection of X over the plane, which is a convex
harmonic mapping. From Theorem L, we can see that fx¢ = h x ¢ + g * ¢ is again

in Kg. From
e = e [ ath+imd [0 - o)
= Re{h(z) + g(2)} + i Im{h(z) — g(2)},
the dilatation @w of f*¢ can be written as

5 (9x9) _p)a(z) x 9(2) />
(hxo) — p(z)xo(2)/z

Since @ is the square of an analytic function, f*¢ can be lifted to a minimal

surface. Moreover, convexity of the range of f*¢ guarantees that the minimal surface

obtained must be globally area-minimizing minimal graph. O]

We demonstrate Theorem 2.7 with the help of the following example:

Example 1. Suppose X is an embedded minimal graph with its projection f(z) =
S agz® + 5707 b2k € Ky, with the coefficients by = by = ... = by, = 0, and
bant1 # 0. Set ¢(z) = Wa,i1(2), which is in DCP. Then the dilatation @ of f%¢ is

given as
- (gx9)  (2n+1)bypa2™"

v (h * qb)/ a (h * W2n+1),

It is evident that fx¢ € Ky, and hence h W5, 1 is univalent in ID. This will ensure

that (h* Wa,41)" is non-vanishing in . Therefore, @ can be written as square of an
analytic function in ID. Hence, the function f*¢ can be lifted to a minimal surface
Y as given in the hypothesis of Theorem 2.7, which is a globally area-minimizing

minimal graph.

We end this section with a theorem on the approximation of a class of minimal
surfaces over close-to-convex domains by a sequence of minimal surfaces over the

range of polynomials. In [§], Clunie and Sheil-Small proved the following Lemma.
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Lemma C. Let f = h + g be locally univalent in D and suppose that for some €

(lel < 1), h+eg is convex. Then fis univalent and close-to-conver.

An inner function is any analytic function ¢(z) in D, with the properties |¢(z)| <
1 and |¢(e?)| = 1 almost everywhere. An inner function is singular if it has no zeros
in D. Any inner function has a factorization ¢®B(2)S(z), where B(z) is a Blaschke

product and S(z) is a singular inner function.

Theorem 2.8. Suppose that h and g are analytic functions in D such that |h'(0)| >
|g'(0)|, and for some € (le] < 1), h+ eg is convex. If ¢'(z) = S(z)W(z), where S(z)
s a singular inner function, then the function f = h + g can be lifted to a minimal
graph, which can be approrimated by a sequence of minimal graphs over the domains
(f¥W,)(D) for all n > Ny, where Ny is a positive integer.

Proof. 1t is easy to see that h + ag is close-to-convex in D for |a| < 1 [8, see proof
of Theorem 5.17], i.e., f is a stable harmonic close-to-convex function. Since the
dilatation of f is a singular inner function, f can be lifted to a minimal surface.
Since h + ag is close-to-convex in D for |a| < 1, using Theorem M, we obtain that
(h + ag) * W, is close-to-convex in D for |a] < 1. This is equivalent to f*W,, is
univalent and stable harmonic close-to-convex in D [27]. Here, we note that the
convolution map f*W,, has the dilatation w,, = (g W,,)"/(h*W,)’, which converge
to ¢'/h = S(z). Since, S(z) is a singular inner function, by applying Hurwitz’s
theorem, we can see that w, is non-vanishing for all n > Ny. Hence w,, has analytic
square-root for all n > Ny. Hence, fxW, can be lifted to a minimal surface for
all n > Ny. This shows that the minimal surface over the domain f(D) can be
approximated by a sequence of minimal surfaces over the domains (f%W,,)(D), and

the proof is complete. O
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Chapter 3

Odd Univalent Harmonic functions

The primary objective of this chapter is to delve into the properties of odd
univalent harmonic mappings. This research is prompted by the pivotal role
that odd univalent functions and their logarithmic coefficients played in resolving
the Bieberbach conjecture. While the harmonic counterpart of the Bieberbach
conjecture has remained unsolved for over three decades, our curiosity has led us
to explore a potential analogous connection between the harmonic analogue of the
Bieberbach conjecture and odd univalent harmonic mappings. What makes our
investigation particularly intriguing is that we have derived sharp results for odd
univalent harmonic mappings by examining certain subclasses of univalent harmonic
mappings. These findings show great potential, and further exploration in this
direction could enhance our understanding of the harmonic analog of the Bieberbach

conjecture.

As already mentioned in the introduction, & denote the class of all normalized
univalent analytic functions ¢ in the unit disk . Let us denote the class of all

normalized odd univalent analytic functions defined on the unit disk D as follows:

S i={p(z) =2+ Z an2®" ™ | ¢ is analytic and univalent in D}.

n=1

Notably, it is well-established that the square-root transformation \/¢(2?) of each
function ¢ € S constitutes an odd univalent function, and conversely, every odd
univalent analytic function can be expressed as a square-root transformation of
some function ¢ € S. The function \/k(22) = z/(1 — 22) = z + 2> + 2° + .., the
square-root transformation of the Koebe function, is a candidate for an extremal
function, for several extremal problems associated with class S%. It can be shown
that for functions ¢ € 82, the function z/(1 — z?) gives the maximum and minimum
values of |¢(z)| and |¢/(z)| (see, [17], p. 70, Exercise 4). Motivated by this, in 1932,
Littlewood and Paley [43] proved that the coefficients of an odd univalent analytic
function are bounded. They found an absolute constant A such that |a,| < A < 14
for n = 1,2,..., whenever ¢(z) = z 4+ > - a,z*"™ € §2. Several attempts were
made (see, for example, [39], [45], [46]) to find the best possible value for this absolute
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constant A. The best-known value for the constant A is 1.1305, proved by Hu Ke

in [29], which is given in the following theorem.
Theorem N. Let ¢(z) =z + Y oo, a2t € §2. Then |a,| < 1.1305.

Our exploration commences with a study of odd univalent harmonic mappings
that are convex in one direction. We then advance our investigation to encompass
a more generalized class that incorporates these functions. To set the stage for our
exploration, it’s worth noting that Royster and Ziegler, in [56, Theorem 1], have
provided a notable characterization of analytic functions that exhibit convexity in

one direction.

Theorem O. Let ¢(z) be a non-constant analytic function in unit disc D. The
function ¢(z) maps D univalently onto a domain Q convex in the direction of the
imaginary axis if and only if there are numbers p andv, 0 < p < 2w and 0 < v <,
such that

Re{—ie™(1 — 2ze " cosv + 2% 2*")¢/(2)} >0, =z € D. (3.1)
Furthermore, ¢(e’*=)) and ¢(e’*+)) are right and left extremes of 2, respectively.

It is very well-known that a function ¢ is convex in the direction of « if and only if
the function e’ (27 ¢ is convex in the direction of the imaginary axis. Consequently,
for a non-constant analytic function ¢, the inequality (3.1) as stated in Theorem O

can be rewritten as
Re{e!"=9(1 — 2ze ™ cosv 4 22 21§/ (2)} >0, zeD, (3.2)

whenever ¢ is convex in the direction of a.

3.1 Some examples of odd harmonic functions

The classical Koebe function k(z) = z/(1 — 2)?, has long been recognized as an
extremal function in various problems within the class . While it hasn’t been
definitively confirmed, there’s a prevailing expectation that the harmonic Koebe
function K(z) may also serve as an extremal function for the class 8%. Additionally,
it was commonly believed that \/sz) = z+ 2%+ 2%+ ..., is the extremal function
for the class 8% of odd univalent analytic functions. However, this belief doesn’t

hold entirely true.
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While it’s true that /%(22) yields the maximum and minimum values of both
|6(2)| and |¢'(2)] when ¢ € 82, Fekete and Szegd [18] demonstrated the existence
of a function ¢(2) = z 4+ > o0 | a,2?"*! € §? for which |as| = 1/2 + e ?/® > 1. This
finding challenges the notion of \/m as the exclusive extremal function for the

class S2.

In our pursuit to construct the harmonic counterpart of \/k(22), we employ
a shearing transformation in the vertical direction, with a prescribed dilatation

function w(z) = —22.

While it remains possible that the resulting function may
not serve as the extremal function for the entire class of odd univalent harmonic
functions, we observe that the growth of the coefficients follows an order of O(n)
(in contrast to the full class 8%, where it’s O(n?)), as anticipated in Theorem 3.1.
Furthermore, this construction provides the sharpness required for the obtained

bounds.

Example 2. Consider \/k(22) = z/(1 — z?), which is a well-known mapping,
univalent and convex in the vertical direction in D). Using Theorem I, it follows
that f = h + g will have the same properties as h + g = /k(z2), whenever f is
locally univalent. Local univalency of f can be assured by assuming the dilatation to
be w(z) = =22, ie., ¢'(z) = =221/ (z) in D. After differentiating the first condition
h+g= \/m , we have the following pair of linear equations:

W)+ () = (VEGD) and 2H(z)+ () = 0.
Since \/k(22) = z/(1 — 2?), after solving the above system of equations, we have

h'(z) = (fj——;)?) and ¢'(z) = _51(_1—;)23)

Integration gives

1 1—=2 328 — 2 Ea

under the assumptions that h(0) = ¢(0) = 0. This construction and Theorem I
show that f = h + g is a sense-preserving univalent harmonic function which is
convex in the vertical direction. Let us determine the actual range of f to better

understand its geometric properties.
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Claim 1. The image of the unit disk D under function f = h+gis C\{z : Re{z} =
0 and |Im{z}| > 7/8}, as shown in Fig. 3.1.

Proof. The function

1 142 23— 32 1 1—2 323 — 2
— _ 2 _ 3.3
J(2) =3 Og<1—z) 122 8 Og<1+z> 41— 22)2 (3:3)

can be rewritten as

f=h+7="h—g+2Re{g}
= Re —2_23 + 7 Im 1lo Ltz + 227 + 22
i NP 4 %\1 =) Tag — 2

1.5+

1.0+

0.5+

0.0

-0.5-

-1.0-

-1.5-

-0.5 0.0 0.5

Figure 3.1: Image of the disk centered at origin with radius .99999 under the vertical

shearing of \/k(2?) .

This can be further simplified to the form

1 1+2z 1-—=z
f(z)_é_LRe{l—z_l—i-z}

s (12) 3 (22 ) (52 )

Substituting




Chapter 3. Odd Univalent Harmonic functions 33

a well-known conformal map, which maps unit disk D to the right half-plane Re{(} =

u > 0, we get that f is a function of (u,v) given as

f( ) 1 U +i ; (v>+uv+ uv -0
uv)=-|u— ——— — | arctan | — _—t u .
’ 4 u? + v? 4 u 2 2wr+0?)?)’

It is evident that each point on the unit circle (except z = 1) under the mapping (=)
is mapped onto a point on the imaginary v-axis so that v = 0. This directly shows
that f(z) maps unit circle (except z = 1) to the points 4 i7 /8, where lower half-circle
and upper half-circle correspond to the points —im/8 and im/8, respectively. Next
observe that the imaginary axis in D under the mapping ((z) is mapped onto a
circular arc {u+iv : v?*+v? =1, u > 0}, which is further mapped monotonically to
the set {z : Re{z} = 0 and |Im{z}| < 7/8}, under the map f(u,v). Finally, our task
boils down to show that f(u,v) maps the circular arcs {u +iv : u* +v* =72 u >

0, r? # 1} onto the whole complex-plane C minus the imaginary axis. Substituting
u=rcosf and v =rsinb,
f(u,v) is reduced to

1 1 7 sinfcost [, 1
f(r,0) = ZLCOSQ (r—;) —1—1 (6+T (r +r_2)> 7

where 7 # 1, —71/2 < 0 < w/2. Further substituting
1 ) 1
fzc%@(r——) and 77281119(7"——),
r r
f(r,0) can be further reduced to

f(&mn) Zg—l-% (0+Sin6?cos€+%7), E£0, —7m/2<0<7/2

fZCOSQ(T—l) and n:sinﬁ(r—l),
r T

The series of substitutions reveals the mapping of circular arcs {u + v : u? + v? =
r?, u > 0, 7% # 1} to the right half-plane Re{p} = r > 0 except the line r = 1,
under the map p(u,v) = r + if. Followed by, the lines r = a (a # 1) are mapped

From

we have

onto circles with radius a — (1/a), except the imaginary n-axis, under the map

w(r, ) = £+1n (also, notice that the lines r = @ and r = 1/a are both mapped onto
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the same circle). Upon closer examination, it becomes evident that determining the

image of the circular arcs u + iv : u? +v* = r%, u > 0, r? # 1 under the map

f(u,v) ! - + ! arcta (U) + 2 o >0
u,v) =~ |(u— ——— —larctan (= )+ —+———-= ], u
’ 4 u? + v? 4 u 2 2wr+0v2)2 )’ ’

is equivalent to determining the image of the entire complex plane except the n-axis

under the map

f(&m) = % +% <9+s1n9cos9+%”) L E£0, —m/2<0< 72

The straight line & = ¢, for ¢ # 0, is carried univalently onto the straight line

{g b6 = i <l(£, 1) + %) L UE )| < 7/2+ 1/2} ,
(where [(§,m) = 0 + sinfcosf, with —7/2 < 6 < m/2) which is the entire line
{¢/4+1i6: —o0 < § < oco}. This shows that f(£,n) maps the whole complex-plane
except the imaginary axis univalently onto itself. As we have already seen that
the imaginary axis in D under the map f(z) is mapped onto the set {z : Re{z} =
0 and |Im{z}| < 7/8}, this proves that f(z) maps the unit disk D onto C\{z :
Re{z} = 0 and |Im{z}| > 7/8}. As depicted in Fig. 3.1, the complete image f(D)

illustrates that f is a starlike function as well. O]

The Radé-Kneser-Choquet Theorem, presented in the following strong form
([14], p. 33), allows us to create a harmonic mapping from the unit disk D to any
bounded convex domain while specifying the correspondence with the boundary.
In Example 3, we will utilize this theorem to demonstrate that the output of the

constructed odd univalent harmonic function forms a convex polygon.

Theorem P. Let Q) C C be a bounded convex domain whose boundary is a Jordan
curve I'. Let ¢ maps unit circle T continuously onto T' and suppose that ¢(e™) runs

once around I' monotonically as e runs around T. Then the harmonic extension

P 1 2W1_’Z|2 eitd
£(2) /O—¢< )t

~or et — 2|2
is univalent in D and defines a harmonic mapping of D onto 2.

Remark 3.1. The above theorem can be restated in a modified form that asserts
its validity even if ¢ has points of discontinuity. For example, suppose ¢ is piecewise
constant and monotonic, and ¢(T) does not lie on a line, then f maps the unit disk

univalently onto the interior of convex polygon whose vertices are the values of ¢.
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The convex function [(z) = z/(1 — z), which is Alexander’s transformation (i.e.,
2l'(z) = k(z)) of analytic Koebe function, is an extremal function in many problems
for convex functions in class §. In the upcoming example, we construct an odd
convex harmonic function by applying harmonic analog of Alexander’s transform to
the square-root transformation of the Koebe function, by shearing it in the horizontal

direction, with prescribed dilatation w(z) = —2% in D.

Example 3. Consider the integral [ VEC)/CAC = 5log(1¥£), which is the
Alexander’s transform of square-root transformation of the Koebe function. It is
easy to see that the above mapping is univalent and convex in . Using Theorem I,
it follows that f = h + g will have the same properties as h — g = foz \/@/C dc¢,
whenever f is locally univalent. Local univalency of f can be assured by assuming
the dilatation to be w(z) = —2z?%, which means ¢'(z) = —2?h’(2) in D. Upon
differentiating the first equation h — g = foz \/m /¢ d(, we obtain the following

pair of equations:

h'(z)—4g'(z) = (/OZ —”k;_(CQ) dC) and 2°H(2) + ¢'(z) = 0.

Since [ \/k(¢?)/¢d¢ = Llog (3£2), solving the above system of equations we have

1—2z

1 —22

/ —
T and g(z)—1_24.

W(z) =
Integration gives

h(z) =

arctan(z) 1 1+z _arctan(z) 1 1+z2
—_— —10g<1_z) and g¢(z) = — Zlog T )

2 4
under the assumptions that h(0) = ¢(0) = 0. This construction and Theorem I
show that f = h + g is a sense-preserving univalent harmonic function which is
convex in the horizontal direction. Let us determine the actual range of f to better

understand its geometric properties.

Claim 2. The range of the function f is a square with vertices at «ay, as, as, and
ay, which are given as (w/4, ©/4), (—n/4, w/4), (-7 /4, —7n/4), and (7/4, —7/4),

respectively, as shown in Fig. 3.2.

Proof. The function

arctan(z) N 1 1 1+ 2 N arctan(z) 1 1+z2
2 18 \1=2 2 1

f(z) =
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can be rewritten as

f=h+9=h—g+2Re{g}
= Re{arctan(z)} + % Im {log (1 + z)}

1—=2
1 1 —z +i 1+2
— —ar — ar .
pMe i) TaMe T,

Let € be a square with distinct vertices at «q, s, asz, and a4 taken in the

counter-clockwise order around the boundary. Choose a partition 0 = ¢, < 7/2 =
1 < m =1ty <3m/2 =t3 <ty =27 of the interval [0,27]. Define a step function
Pp(e") = aj for t;1 < t < tj, j = 1,2,3,4. According to the Remark 3.1, the

harmonic extension
e == [ e a
z) = —— ¢(e
2 Jy et —z|?
is univalent in the unit disk D and maps it onto §2. A straightforward evaluation of

the integral leads to F'(z) = f(z) and the proof is complete.

— —
0.5+ [N / s N
| !/ —— \
NG S \
| / iy \ \‘
[ NS |
o e sl
. ‘ \ T I /J‘/ /‘ ‘
WA aB / )\ )
A\ s == //
_os |10 == /
05 = === = \/{
-05 0.0 0.5

Figure 3.2: Image of the unit disk D under the horizontal shearing of %log(Hz).

1—z

3.2 Coefficient estimates

Consider the class Kpy(«), which encompasses normalized univalent harmonic
functions of the form f(z) = h(z) 4+ g(z) exhibiting convexity in the direction of .
Within this class, we define a specific subclass denoted as ICI%{(Q), which comprises
of functions f(z) = h(z) + g(2) such that ¢ = h — e**g satisfies the inequality (3.2)
with v fixed as . The following theorem provides precise bounds for the coefficients
of odd functions belonging to the class K%(a).
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Theorem 3.1. Let f(z) = h(z) + g(z) = 2+ > o a2 + 307 5,221 be an
odd function in class KZ(a) with ¢'(0) = 0. Then the coefficients of f satisfy the

following inequalities:

lan] = [ball < 1, (3.4)

2

n
n d D
bn < 2n+1’ a (35)

(n+1)2

ap| < —— 3.6
janl < 2n+1"7 (36)
for n = 1,2,... Furthermore, the inequalities are sharp and are attained by the

function f(z) given in (3.3).
Proof. Given that f € IC%I(&), taking v = /2, the inequality (3.2) reduces to
Re{ei(pfa)(l + 226721p)(h/< ) i /( ))} >0, z€ D.

The function P(z) = e/~ (14-22e=2#)(h'(2)—e**¢'(2)) is an even analytic function
with positive real part and |P(0)| = 1. Carathéodory’s Lemma [17, p. 41] gives that
the absolute value of the coefficients in the series expansion of the function P(z) are
dominated by 2 Re{P(0)} = 2cos(u — ), which is less than or equal to 2. Since the
functions (1+22)/(1—2?) and 1/(1— 2?) have positive coefficients, the coefficients of
the function e~ (h/(2) —e?“¢/(z)) are dominated in modulus by the corresponding

coefficients of the function

1422 1 14 22

1—221—22 (1-—22)?%

Following the terminology used in [24, Ch. 7] we can rewrite this as

1+22 1
1—221— 22

WE(h (2) — g (2)) <<

Integration then show that the coefficients of €'~ (h(z) — e*®g(z)) are dominated
by the corresponding coefficients of z /(22 —1) = z+2%425+- -+ [24, Ch. 7, Theorem
5]. Hence, ||ay| — |bn|| < |an — €**b,| < 1 holds for all n > 1, as per the hypothesis.

We can express ¢'(2) as:

w(z) 1
ellh=a)(1 — eZieg(2)) (1 + 22e—2m)

q'(z) = P(z),
where w(z) = ¢'(2)/h'(2) is the dilatation which is an even function with w(0) =0
and |w(z)| < 1, implying |w(z)| < |2|?, by Schwarz’s lemma. The condition |w(z)| <

1 implies e?®w(z)/(1 — e**w(z)) is subordinate to the convex function z/(1 — z).
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Applying Rogosinski’s result [17, Theorem 6.4], we conclude that the coefficients of

the even function w(z)/(1 — e**w(z)) are dominated by 1. Thus, we have

(2) << 22 1 1+22  22(1+2%)
z =
g 1—221—221-22  (1-22)3"

and therefore, the inequality |b,| < n?/(2n + 1) for all n > 1. To derive the bound

for |a,|, we use the relation:

n*  (n+1)?
n+1  2n+1

|an| < |an] — |bal] + |bn| < 1+ for all n > 1.

From Example 2, it is evident that the coefficient bounds are sharp and the proof

is complete. O

We then advance our investigation to a more generalized class that contains

functions convex in one direction and is defined as below:
SHS)={h+7G €Sy h+e?geS for some § € R}.

In the following theorem, we show that the bounds for the odd functions in this

class are scalar multiplications of the bounds obtained for the class ICI%(Q).

Theorem 3.2. Suppose that an odd function f(z) = z + Y oo a,z*"t +
S0 bp2?tt € 8Y(S). Then for A = 1.1305, and for all n > 1, we have the

following inequalities:

n? (n+ 1)

nl = oa]| <Ay |ba] < A ; d la,| <A .
laal = Poall < X 1bal <A 575 and o] < A DT

Proof. Let f(z) = h(2) +9(2) = 2+ D> 00, apn2® ™ + 3777 b,22"+ € §%(S). Then
P(z) = h(z) +eg(z) =z + D> 00 $p2*" T € S, where ¢, n € N, is the coefficient of

2ntl in the Taylor series expansion of the analytic function ¢, is an odd function

2
for some € such that |e] = 1. Hence, the inequality ||a,| — |bn]| < |an + €by| < A
holds, as implied by Theorem N. The following integral representations are valid for
the functions h and g:
* Q) P (Ow(C)
h(z)= [ —=—=d d = [ —=—>£d
O [ Toaimic md o) - [ T

where ¢'(z) = h'(2) + €¢'(2) and w(z) = ¢'(2)/h'(z) is the dilatation of
sense-preserving function f such that w(0) = 0 and |w(z)| < 1 for all z € D.
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Let

(JJ(Z) _ - w ZQn
P a—— E n .
n=1

1 +ew(z)

Given that |w(z)| < 1, we know that —ew(z)/(1+e€w(2)) is subordinate to the convex
function z/(1 — z), which leads to the conclusion that |w,| < 1 for all n > 1. Thus,

we can express ¢'(z) as follows:

/) = <¢0 DI 1>¢nz2“) (Z w) ,

where ¢y = 1. This allows us to conclude that

—_

2n+ 1)|b,| < (2k + 1)|¢x| (since |w,| <1 for all n > 1)

-0

n—1

< A)Y (2k+1) (since |¢x| < A for all k£ > 0)
k=0

= n

o

From the equation h(z) = ¢(z) — eg(z), we obtain

(n+1)?
2n + 1

an| = ¢ — €bn] < || + [bn] < A for all n > 1.

This completes the proof. n

Remark 3.2. (i) Consider the function f(z) = h(2)+g(z) = 2+ o0 | a,2*" T+

(ii)

Z;O:l b,z2"t1 which belongs to KY%, the class of convex harmonic functions.

According to [8, Theorem 5.7], the functions h(z) — e™@g(z), (0 < a < 2m),
are odd univalent functions convex in the direction of «/2. Using Theorem
N, we conclude that |a, — €™b,| < 1.1305, (0 < o < 27), for all n > 1. This
implies |a,|+ |b,| < 1.1305, and consequently, |a,| < 1.1305 and |b,| < 1.1305
for all n > 1. Furthermore, Alexander’s theorem [14, Lemma, p. 108] for
harmonic functions then provides the coefficient bounds |a,| < 1.1305(2n + 1)
and |b,| < 1.1305(2n+ 1) for all n > 1, whenever f is an odd starlike function

in SY.

A sense-preserving harmonic function f = h + 7 is stable harmonic convex or
SHC in the unit disk if all the functions f. = h + €g with |¢| = 1 are convex
in D. In [27], the authors proved that a sense-preserving harmonic function
f = h+79is SHC in D if and only if the analytic functions F, = h + €g

are convex in D for each e such that |[¢] = 1. Let f(2) = h(z) + g(z) =
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4> a2 4 3 b2t is SHC. Then the odd function ¢(z) =
h(z) + eg(z) = 2+ > 07 ¢p2®t € K € S (K denote the class of convex
functions) for each € such that |¢] = 1. Therefore, the coefficients of these

functions will also satisfy the inequalities given in Theorem 3.2.

3.3 Growth and distortion theorems for the odd

functions in class £} («)

The following lemma serves in the proof of the distortion theorem.

Lemma 3.1. Let ¢ be an odd analytic function in the unit disk D and satisfies
Re{(1 + az?)¢/'(2)} > 0, for |z| < 1, where a € C such that |a| = 1. Then, for
|z| <r <1,

(1 —7)|¢'(0)]

A5y wOIer 37)

(1—r2)2

Moreover, both the upper and lower bounds are sharp for the functions z/(1 — z?)

<|¢'(x)l <

and z/(1 + 2?), respectively.

Proof. First, we show that the even analytic function p(z) = (1 + az?)¢/(z) has the

following representation
_ #'(0) + ¢(0)G(z)

where |G(z)| < |z|?. The claim can be proved as follows:

If ¢'(0) = 0, then p = 0 and the choice G = 0 to fulfill our objective. On the
contrary, consider the even analytic function G(z) = (p(z)—p(0))/(p(2)+p(0)). This
function possesses the properties G(0) = 0 and |G(z)| < 1 for |z| < 1. Therefore,
by applying Schwarz’s lemma, we find that |G(z)| < |z|?, leading to the desired

representation.

Now, let’s proceed with the proof of the lemma. If ¢'(0) = 0, then (3.7) follows

immediately. In contrast, the representation (3.8) gives

(0)
(0)

From the above equation, we get (3.7) using only the triangle inequality.

¢'(2)] = |¢'(0)]|1 + G|l = G| + a2?|

Furthermore, the choices z = r, a = —1 and z = r, a = 1 give the sharpness of

the upper and lower bounds in (3.7), for the functions z/(1 — 2?) and z/(1 + 2?),
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respectively. This completes the proof. ]

Theorem 3.3. Let f(z) = h(z) 4+ g(z) € ICI%{(a) with ¢'(0) = 0, be an odd function.
Then, for |z| <r <1,

(1—1r?) (1+1r?)
SR < [f:(2)] < 1= ) (3.9)
and
w(2)](1 = r?) r’(1+1r?)
T+ <|[fz(2)] < T2 (3.10)

where w(z) = ¢'(2)/1(2) is the dilatation of the function f. Moreover, the upper
bounds for both |f.(z)| and |fz(z)| are sharp for the function f(z) given in (3.3).

Proof. Since f € ICI%(oz), taking v = /2, the inequality (3.2) reduces to
Re{e V(1 + 2% 2")(K'(2) — ¢*¢/(2))} 20, z€D.

Let ¢(2) = h(z) — e?g(z). Then, ¢'(z) = W (z) — ezia_g’(z) and w(z) = ¢'(2)/W(2)
give that £.(2) = W(2) = ¢/(2)/(1 — *w(2)) and J(2) = ¢/(2) = w(=)6/()/(1 —

e*9w(z)). Since w(z) is an even Schwarz function with w(0) = 0 (and hence |w(z)| <
|2|?), it follows that,

/()] = 1_QZ/2(iii)<Z) = 1|_¢I|(j()l)| = 1|¢—/(|Zz)||2’
and / ! !
|f:(2)] = 1_(’;(@20@ - 1L(-b ‘%, = ﬁ(ij\‘?'
Similarly,
£(2)] = 1‘1(?2?;&1) < ‘“i<i>|'li‘{i§ﬁ < ‘ilz—w{iﬁ)”
and

w(2)¢'(2)

1 — e?ew(z)

s @] wlle(2)]

| fz(2)] = T+ |w(z)] = 1422

Lemma 3.1 can now be applied to derive the inequalities (3.9) and (3.10). It’s clear
from Example 2 that the upper bounds for both |f,(z)| and | fz(z)| are exact for the
function f(z) given in (3.3). This confirms the completion of the proof. O

Theorem 3.4. Let f(z) = h(z) +g(2) € ICI%{(Oz) with ¢'(0) = 0, be an odd function.
Then, for |z| <r <1,

r(l+r%) 1 (1—1—7’)'

FEl s s T rle 1
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Proof. The following integral representations
e = [ Wipe®)edp and glre®) = [ pe)eap,
0 0
and the inequality |f(z)| = |h(2) + g(z)| < |h(2)| + |g(z)| ensure that

)] < / 1 (pe®)ldp + / Felpe™)ldp.

The inequalities (3.9) and (3.10) can now be used to obtain the desired inequality

1) < /Or(‘”—pz)dﬁ/o’"wdp

R AN ok
(47 +110 1+
T oo 1 ®\1 )"

3.4 Membership in Hardy space

Moving forward, our focus shifts to the examination of the growth patterns exhibited
by odd univalent harmonic functions within the class S%(S), primarily through an
exploration of their integral means. The integral means of order p (0 < p < o0) of

an analytic function ¢ in the unit disk D is given as

1

Vo) — (& 7 10tre)ds) ", 0 <p< oo,
o sup | p(re’)], p=cc.

0<o<2mr

An analytic function ¢ in the unit disk D is of class H? if M,(r, ¢) remains bounded
as v — 17. Similarly, a harmonic function f falls into the category of class h? if
lim, ;- M,(r, f) remains bounded. The integral mean M, (r, f) is closely related to
the Bieberbach conjecture. Littlewood’s proof of |a,| < en is based on the estimate
My(r,f) < r/(1 —r) for any f € S. These integral means play a crucial role in
quantifying the growth of functions and find wide applications in the theory of
HP? spaces. For further insights into integral means and H? spaces, comprehensive

references are available in the books [16, 51].

In the context of determining the range of p > 0 for which univalent harmonic
functions are included in the Hardy space h”, Nowak [49] achieved a significant
breakthrough. Specifically, she established that if f is a convex harmonic mapping,

then f € h? for p < 1/2, and in the case of close-to-convex harmonic mapping,
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p < 1/3. Furthermore, in [34], Kayumov et al. expanded on these findings,
demonstrating that f € h? for p < 1/3, provided f € 8%(S).

Our next theorem builds upon the results of Kayumov et al., elevating our
understanding by revealing that for odd functions within the class 8%(S), it holds
that f € h? for p < 1/2. This extension broadens our comprehension of the growth

characteristics of these functions within the context of Hardy spaces.

We require the following results from the literature to prove our main result.

Lemma D. [16, p. 65] For each p > 1/2,

/ e —r|72Pdf = O((1 — )" ™%P) asr — 1.

—T

The next lemma by Baernstein [2] shows that the Koebe function has the largest

integral mean of all functions in class S.

Lemma E. If ¢(z) € S and ®(z) is a convex nondecreasing function on (—oo, 00),
then

/ " &(log |p(re®)|)db < / " @(log [k(re®) )db,

—T —Tr

where k(z) = z/(1 — 2)?* is the Koebe function. Consequently,

M,(r,¢) < My(r,k), 0<p<oo.

In this context, let’s revisit Baernstein’s star-function and review certain
properties that will play a pivotal role in establishing Lemma 3.2. This lemma

is of utmost importance in our endeavor to prove the theorem.

Definition 3.1. For a real-valued function g(z) integrable over [—m,x], the

Baernstein star-function is defined as

5'0) = s / g(x)de (0<0 <),

where |E| is the Lebesgue measure of the set F C [—m, 7).
Lemma F. [38] For g,h € L'|—m, 7],
[9(0) + h(O)]" < g7(0) + 1" (0).

Equality holds if g, h are both symmetric in [—7, x|, and nonincreasing in [0, 7|.
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Lemma G. [38] If g, h are subharmonic functions in D and g is subordinate to h,
then for each r in (0, 1),

gt (re’) < h*(re?), 0<6<m.

Lemma H. [2] For g,h € L'[—m, 7|, the following statements are equivalent.

(a) For every convex nondecreasing function ® on (—o0,00),

| ettt < [ en)ar

(b) For everyt € (—o0,0),

[ 1ot =t < [ ipte) -1t

(c) g"(0) < (), 0<O<m.

Important to the proof of the theorem is the following result, which appears in
the article [9].

Lemma I. Let 0 < p < 1. Suppose f = h+g is a locally univalent, sense-preserving
harmonic function in D with f(0) = 0. Then

' -1
ME(r, f) < C/O (r—s)P~ MP(s, h')ds,
where C' is a constant independent of f.

Lemma 3.2. Let ¢ € S be an odd function and wy is a Schwarz function such that

lwo(2)| < 1 and wo(0) = 0. Then, for any p € (2/5,2) there exist a constant K such

that . ,
[ [ Klog )
o |1 —wo(ret) - (1—r)t
Proof. Consider the integral
27 ’ it p
rp/ —¢ (re ) dt
o |1 —wo(ret)
[ |y | eter,
~Jo | olre) | |1 —wo(re®)




45

[NIiS]

Chapter 3. Odd Univalent Harmonic functions
r¢' (re't)

= </ S(re) dt></

Cllog(1 — )| C
T (1-r): 1-n)"
K|log(1 —7)|%
(1—r)-1

where K = C'C, and C, C are two positive constants. For the estimate

/27r
0

we refer to the proof of [33, Theorem|. Further, we prove the estimate

/27r
0

(re”)

1 — wp(ret)

2p 1-
2—p
dt)

r¢/(re')
¢(re't)

C|log(1 —r)]

2
dt <
— (]_—T’) Y

(re")

20
2—p Cl
1 — wo(rett)

5p—2 °

o (1=r)2

By employing Lemmas D through H and considering (b as the square-root

transformation of a function p € S, specifically ¢(z) = y/p(2?), we obtain:
p(re”) " it 1 "
log | ————— < (1 I log | ————=
( o8| 2 ) < toglotre)y + (10| T

1

1 — wp(rett)

;

= (log|p(r* 22t)|%)* + (log

IN

2 24ty |1\«
R T

r *
= (1 A — | .
< o8 |1 —r2e?t||1 — 7’6“5|)
2p

The choice ®(z) = e?»” in Lemma H then gives

/271’
0

2p 210
2—p 2—p
dt < —dt
0 |1+7"e”|2 P|1 reit|z—»
2p

r2-p
s L
-7/2 |1 +T6“|2 F|1 — reit|zr

_2p

3m/2 ri-»
oI L
7r/2 \1+re”\2 P\l reit|2=p

o(re”)

1 — wp(rett)

VAN

IN

:

3mw/2 C
—7/2 |1—7’e”]2 v /2 |14 reft|z»

2 27
C
L= s
0 1—7°e”]2:v 0 |1+ rett|z-r

dt

dt
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2m
C
/ —44pdt
0 |1 —ret|zr

Cy
5p—2

(1 —r)2>»

IN

IN

for all p € (2/5,2), using Lemma D, and the proof is complete. ]

Theorem 3.5. Let f(z) = h(z) + g(z) € SY(S) be an odd function. Then f € h?
for0<p<1/2.

Proof. Since f € 8%(8S) and is an odd function, there exist some € (Je] = 1) such
that the function ¢ = h+eg € S and is an odd function. This gives ' = ¢’ /(14 ew),
where w(z) = ¢'(2)/h/(2) is the dilatation of f such that w(0) = 0 and |w(z)| < 1.

Lemma I and Lemma 3.2, then lead to

1
lim M2(r,f) < C / (1= )P~ MP(s, W) ds
0

r—1-
1 . 1 27
= C[ 1-=s)P"(—
0 27 Jo

KC [*|log(1 — s)|P/?
27 Jo (1—s)%

(5
1 + ew(se')

p
dt) ds

The last integral is finite for p < 1/2. Therefore, f € h? for p < 1/2, and the proof

is complete. O

3.5 Proposed conjectures

Inspired by the findings in this chapter concerning odd univalent harmonic
functions and their analytic counterparts, we are motivated to propose the following

conjectures:

Conjecture 3.1. Let f(z) = z4+ > o0 ap2® T 4+ 307 b,22t € 8y, Then |ay|
and |b,| are of order O(n) for all n > 1. Furthermore, f € h? for 0 <p < 1/2.

Given the difficulty level of Conjecture 3.1, it appears to be a challenging
endeavor, as it is on par with solving the harmonic analog of the Bieberbach
conjecture. Nevertheless, the following conjecture can be viewed as an initial step

towards addressing Conjecture 3.1:

Conjecture 3.2. Let f(2) = 24> o0 ap 2?4+ 37> b, 22741 € CY, be the class of

normalized univalent close-to-convex harmonic mappings. Then |a,| and |b,| are of
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order O(n) for all n > 1. Furthermore, f € h? for 0 < p < 1/2.
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Chapter 4

Some Geometric Subclasses of

Univalent Harmonic Functions

The main purpose of this chapter is to study the univalency and geometric properties
of normalized harmonic functions f = h 4+ g determined by certain integral

inequalities, where the integrand is either

S -1 (551 o o (550)) - (55

or their absolute values, where the differential operators D f and D?f are defined as

Df =zf.—Zf; and D2f:D<Df) :Z(fz+zfzz)+g(f2+zfﬁ)-

In particular, we prove some sufficient conditions for a harmonic function to be
univalent, and its range to be convex in one direction or a close-to-convex domain.
For more details on the operators Df, D?f and its connection with geometric

subclasses of nonanalytic functions, one can refer to [47, 53].

4.1 Functions convex in one direction

In [55], Robertson proved that an analytic function ¢ is convex in one direction
if and only if z¢' is starlike in one direction. Using this relation, Umezawa [61]
obtained some sufficient conditions for an analytic function to be convex in one
direction. First, we will recall the harmonic analog of the aforementioned relation,
accompanied by several theorems and lemmas that will serve as important tools in

proving our main results.

Ponnusamy et al. [53, Theorem 2| proved the harmonic analog of the Robertson’s
relation [55] between analytic functions that are convex in one direction and starlike

in one direction, which is given as follows:

Theorem Q. If f = h+ 7 is a harmonic function starlike in one direction, and if
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H and G are analytic functions defined by
zH'(z) = h(z), 2G'(z) =—g(z), H(0)=G(0)=0,
then F = H + G is univalent and convez in one direction in . In particular, if f

is starlike in the direction of v, then F' is convez in the direction of o+ /2.

In the same article [53], the authors proved Lemma J and Theorem R, which
give sufficient conditions for starlikeness in one direction and convex in one direction,

respectively. These results are useful in proving our main results.

Lemma J. Suppose that f = h+ 7 € H such that f(z) is non-zero in D\ {0},
|h'(0)| > |¢'(0)| and satisfies the condition

\/\27T
0

Then f(z) maps |z| =r (0 <r < 1) onto a curve which is starlike in one direction.

Df(z) o
Re(f(z))’d9<47r, z=re? 0<r<l.

Theorem R. Suppose that f € H such that Df(z) # 0 in D\ {0}, |A'(0)] > |¢'(0)]

and satisfies the condition

on (58 -

D\ 10
5 g 2 EDA{0}

for some real number o > 3/2. Then the harmonic function f is sense-preserving,

univalent, and convex in one direction in D.

Motivated by Lemma J, we prove Lemma 4.1, which is the key to obtain several
sufficient conditions for f € H to be convex in one direction in ID. As an application
of Lemma 4.1, we derive several other sufficient conditions for f € H to be convex

in one direction in D.

Lemma 4.1. Suppose that f = h+ g € H such that Df(z) # 0 in D\ {0},
[P/ (0)] > |4'(0)| and satisfies the condition

/27T
0

Then f(z) is convex in one direction, and hence f(z) is univalent in |z| < 1.

Re (%QJ{((ZZ))M df < 4w, z=re" 0<r<1. (4.1)
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Proof. Set F(z) = Df(z). Since |h'(0)| > |4'(0)|, it is a simple exercise to see that
Jr(0) =1 (0)]* —1g'(0)]* > 0

and hence F'(z) is locally univalent at the origin. Also, F(z) = Df(z) # 0 for all
z € D\{0} and satisfies the condition

/27r
0

This follows using (4.1) and the relation

v () =R (Bre) Femvo

Re DF(z) dd <4m, z=re" 0<r<1.
F(z)

Thus, by Lemma J, we conclude that F'(z) = Df(z) is starlike in one direction.
Hence, from Theorem Q, it is evident that f(z) is convex in one direction and
univalent on |z| < r for every r such that 0 < r < 1. This is the same as saying that

f(2) is univalent and convex in one direction in . This completes the proof. O]

Theorem 4.1. Let f = h+g € H such that Df(z) # 0 in D\ {0} and |V (0)| >
|g'(0)]. For some n € N, if

= (510)

where ag = 1/ cos(ty) and tq is the positive root of the equation

< |14+ Re{w2z"}|, ze€D, (4.2)

tant =t + (7/2), 0<t<m/2, (4.3)

then f(z) is convex in one direction, and hence f(z) is univalent in . Note that
here oy =~ 2.97169.

Proof. Suppose that f satisfies the condition (4.2) for some n € N, then it follows

that
/ Re(%?(f)))'de - /

27
< / 11+ Re{apr™e™}| do
0

v (st )|

where 0 < r < 1. Since the integrand |1 + Re{agr™e™}| is a subharmonic function

in D, it follows that the integral fo% |1+ Re{agr"e™?}|df is an increasing function
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of r [16, p. 9, Theorem 1.6]. Therefore, letting » — 1, we get that

/27r Re (DQf(z))‘ do < /27r |1+ ag cos(nb)| db.
0 0

Df(z)
We know that cos™'(—1/ap) = 7 — cos™!(1/ap). Let us denote the constants

cos H(=1/ap) and cos™(1/ag) by so and tg, respectively, in order to simplify the
expressions. This gives

2w
/ |1 + ap cos(nh)| dé
0

n—1

= /n + g cos(nd)) d@—i—Z/ n(l—i—ozocos(nﬁ))d@
0 2kn _ 50

k=1 n

1 2(k+1)7w i]

- Zﬁkﬂr

_f n—1 . @ktir_to
n

— / 1 + agcos(nd)) df + Z/ ' (1 + agcos(nd))dd

(2k—1)=w
n + n

3

2

(1 + apcos(nB)) db + / (1 + o cos(nd))do

2r—20
n

W

:\4 O

=]

n—1 (2k+1)7r+ 2

_ [2 ' (1 + ag cos(n@))dé’—f—/ (1 + agcos(nd)) db

k+1)7r7t70 2n—1)m m
T Tt

kol
o

,_l

(2k+ D)7 tg

(0 + 2 sin( n@)) ol

(2k— 1)71' I to

ZH=|

70 n—
n

= <0+%smn9> +

n

i{ngh

—_

3

o (2k+1)7
0 . n
- 0 + — sin(nd)

n 2kt 1)
O n

2w

Qo .
(Q + E Sln(n0)> w to

T

o 2y 2

<l -0y ﬂsinto)
n n n

J’_

>
I
’—‘ :\5* EISy

T i Q —
—_— —°+—°sint0> +
n n n 1

! (Qto 2&0 . )
— E — — —ssinty
n n
k=0

= 4 + [—27 — 4tg + dag sinty) .

I
N

Therefore, by Lemma 4.1, f(z) is convex in one direction in D, and hence f(z) is

univalent in D, whenever
—21 — 4t0 + 40[0 Sinto = 0,

e., tanty = to + m/2, which is the same as the condition mentioned in (4.3).
Computation shows that ¢y ~ 1.22758. This completes the proof. m

Remark 4.1. Theorem 4.1 is a generalization of [50, Theorem 2.1], in which

the authors discussed the case for analytic functions with a standard function as
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integrand in the right hand side. Moreover, from Theorem 4.1, it is evident that

[50, Theorem 2.1] can be improved further.

Corollary 4.1. Let f = h+ g € H such that f(z) # 0 for all z € D\{0} and
|0/ (0)| > 14'(0)|. Suppose that the function f satisfies the following condition

‘Re (%S)) ‘ < |1+ Re{az"}|, z€D, neN, (4.4)

where ag = 1/ cos(ty) and to is the positive root of the equation

tant =t+7/2, 0<t<m/2

Then, the function f is starlike in one direction and the function F defined by

F@):H@HWZ/:@&—/;@ﬂ

18 uniwwalent and convex in one direction in D.

Proof. Suppose that f satisfies the inequality (4.4), the proof technique of Theorem

4.1, and Lemma J give that f is starlike in one direction. From the definition of

F(2), it is clear that DF(z) = zH'(z) — 2G'(2) = f(z), and D*F(z) = Df(z), and

hence F' is univalent and convex in one direction in D, using Theorem Q. O

Lemma 4.2. Let f = h+g € H with ¢'(0) = 0, is sense-preserving and D f(z) # 0
in D\ {0}. If

h(z)* Ac(2) + g(2) * Be(2) 20 forall |¢|=1,0 < |z <1, (4.5)

where

Aclz) = 2z 71(25;)32)2 and Be(z) = (2¢ (—12_)22; 2z |

then f(z) is convex in one direction, and hence f(z) is univalent in D.

Proof. The particular case when o = 3, in Theorem R, gives that if f satisfies

D2 0 )
‘1—Re (%)’ <2, forall z=re?inD)\ {0},

then f is convex in one direction. Therefore, the following inequality

D? f(ret?)

= D (re) <2, forall z=re?inD)\ {0}, (4.6)

‘1
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is sufficient for the function f to be convex in one direction. The equivalent form of

inequality (4.6) is

Since z(zh'(2)) + 2(29'(2)) /(2 (2) — z¢'(2)) = 1 at z = 0, the above condition is

equivalent to

2(2h(2)) + 2(29'(2))
2W(z) — zg'(2)

7= =1, 0< ]z <1,

7Nl )

A routine computation gives that

0 # Cl=(zh(2)) + 2(29'(2))] = (€ = 2)[2I'(2) — 2¢/(2)]

= e [ T—2p <<1_—22)>Z |+ % [ro + 3]
_ {2z+ }/ij*z{_(iQ()ijz(;Z)w]/
o ] . P
which is the required condition (4.5). O

Our next result gives a coefficient criterion for a complex-valued harmonic

function f to be convex in one direction in D.

Theorem 4.2. Let f = h+g =2+~ ,a,2"+> ., b,2" € H be sense-preserving
and Df(z) # 0 in D\ {0}. If

i <n22+n) |an] + i (nQ;?’") b < 1, (4.7)

n=2 n=2

then f(z) is convez in one direction, and hence f(z) is univalent in D. Moreover,

the bound is sharp.

Proof. From Lemma 4.2, we can infer that it is sufficient to prove that condition
(4.5) holds for f = h + g, whenever f satisfies the inequality (4.7). Consider the
quantityy

o [EE5 m [RR25]
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2 + i {2 (” ;r 1) + (Z) (2¢ — 2)} 2"
+ ¥ [(”;1) (2C - 2) +2<Z)] bpzn

n=2

> |z|[2—§ 2(”;1) —2(Z> +2<<Z) jan 2]
SR )]

B ) ) )
() (1))

_ 9l [1 _ i <”22+”) lan| — i (”2;3”) by ]

n=2

The last expression is non negative, whenever the condition (4.7) holds. To show the
sharpness of the inequality (4.7), we see that the sense-preserving univalent harmonic
functions f,(z) = z + (2/(n® + 3n))z" satisfy the inequality (4.7) with equality.
Moreover, a usual computation shows that |1 — (D2 £, (re®®) /D f,(re??))| = 2 at the
boundary point z = e?7/("*1) j e the equality holds in (4.6) for the functions f,(z).
This proves that the bound is sharp. O

Corollary 4.2. Let h(z) = z + > .-, a,2" be a normalized analytic function in

D. If Y, "2;”\%\ < 1, then h(z) is univalent and convex in one direction in D.

Moreover, the bound is sharp.

Proof. The proof follows simply by taking b, = 0 for all n € N in the proof of
the Theorem 4.2. Furthermore, a similar argument as in the proof of the above
theorem shows that the bound is sharp and is attained by the functions h,(z) =
z+ (2/(n? +n))z". In other sense, we can say that the factor (n? 4+ n)/2 given in

the hypothesis cannot be improved further. O

Remark 4.2. There are a large number of articles in the literature where various
authors have obtained the coefficient conditions for an analytic/harmonic function
to be a convex, starlike and close-to-convex function. Theorem 4.2 is first of its kind
to give a coefficient condition for an analytic/harmonic function to be convex in one

direction in D.
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4.2 A class of functions convex in one direction

As an application of the coefficient criterion given in Theorem 4.2, we provide
here a method to construct a class of functions convex in one direction, using
Gaussian hypergeometric function F'(a,b;c; z) and Lemma A, which have already

been discussed in Section 2.2.

Theorem 4.3. Leta > 0, b > 0 and c be a positive real number such that ¢ > a+b+2.
Suppose that f(z) = z + az?F(a,b;¢; z), a € C\ {0}. If

I'(e)f(c—a—b—1)]|(ab)(a+1)(b+1) 1

I'(c—a)T(c—10) 20c—a—b—2) +5(c—a—b—1)+4ab Sm, (4.8)

then f(z) is univalent and convex in one direction in D.

Proof. Let h(z) = z and g(z) = > o0, by2™ = az?F(a, b; ¢; z). Using (2.7), we get

It is sufficient to establish that A = > 7, (222 +3”)|b | < 1, according to Theorem

4.2. The aforementioned expression for b, gives that

n 271—2)

B M (n+ 2) +3(n+2)](a)n(b),
2 Z (c)n(n)'

_ 1o oo(”+12 (n+1)(a)n( = (a)n(b),
2 (nzzo (¢)n(n 52 ( Zo (c) n)

o] & n+3n (@)p—2(b)p—2

C)n(n)! n(

Since, we have ¢ > a + b+ 2, so using Lemma A, we get
c)l'(c—a—D) (( (a)2(b)2 3ab N 1)

4 = Ll "
2 \I(c—a)(c—b) \(c—a—b—2)y c—a—b—1

Fle)l(c—a—-b—-1)
['(c—a)l(c—10)

o (F(C)F(c —a—b—1)

|

+ 5 (ab+c—a—b—1)+

4F(C)F(c —a—1")
F(c—a)l'(c—10)

(ab)(a+1)(b+1) 4 5(c—a—b—1) + 4ab

['(¢c—a)l'(c—b) 2(c—a—b-2)

).

Therefore A < 1, whenever (4.8) holds, and hence f(z) is convex in one direction in
D. O
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4.3 Close-to-convex functions

The following theorem by Ponnusamy et al. [53] gives sufficient condition for a

complex-valued harmonic function to be close-to-convex in .

Theorem S. Suppose that f € H is sense-preserving and f(z) # 0 for z € D\{0}.
If f satisfies

02 DZf(rezH)
_— — 1 2
/91 Re(Df(re29)>d9> m, 0<r<l1, 6; <0y <6 +2m,

then f is univalent, and close-to-convex in .

In order to discuss our results on close-to-convex harmonic mappings, we consider

the class of Schwarz functions defined by

B = {w: w is analytic in D, |w(z)|] < 1, and w(0) = 0}.

Theorem 4.4. Suppose that f = h+ g € H is sense-preserving and f(z) # 0 for
z € D\{0}. Let f satisfies

Re (%2]{8) > —Re (fi”l—wz)) Ve, z=re? 0<r<1,  (4.9)

for some ¢, —1 < ¢ <0, and for some w € B. If |w| < cos(cr) in D, then f(z) is

univalent and close-to-convex in D.

Proof. Suppose that f = h+ 7 € H is sense-preserving, f(z) # 0 for z € D\{0}
and it satisfies the condition (4.9). For each r (0 < r < 1) and for each pair of real
numbers 6; and 0, with 6; < 0, < 6; + 27, we then get that

02 D2f(z) 02 —reww’(rew)
/01 Re(Df(z)) do > /91 (Re (—l—w(rew) —i—c) de
_ /zzzreZ 2 Re (Ll(z)% + 0(82 — @1)

1=reif1

= A{@} arg{w(z) — 1} + c(f2 — 1)
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> —2arcsin(cos(r|c|)) + ¢(f2 — 61)
>

-2 (E — 7T|C|> — 27|¢|
2

= —T.

Here, A oy 18 k represents the total change in the argument of a non-vanishing
continuous function k along the arc {re?;6; < 6 < 6,}. Therefore, by Theorem S,

we can see that f(z) is univalent and close-to-convex in D. O

Remark 4.3. In Theorem 4.4, we note that the Schwarz function w € 3 can be

arbitrary and it is not necessarily the dilatation of f.

We observe that w(z) — 0 whenever ¢ — (—1/2)". On the other hand, the case

¢ = —1/2 is covered in Theorem 4.5.

Theorem 4.5. Suppose that f = h+ g € H is sense-preserving and f(z) # 0 for
z € D\{0}. If f satisfies

D%*f(z) 2w (2) 1 0
_ Eatedi o/ — ret 1 4.1
Re(Df(z))> Re(l_w(z)) 5 z=re?, 0<r<l1, (4.10)
where w(z) € B satisfies the condition

2w’ (z) 1
—_— = Il D 4.11
Re(l—w(2)>+2>0’ for all z €D, ( )

then f(z) is univalent, and close-to-conver in D.

Proof. For each r (0 < r < 1) and for each pair of real numbers 6, and 6, with

[ (re (=) +5) 0
B M%Ar(ﬁwién+£gd4
= Re —

[ 5

01 < 6y < 01 + 27, using (4.11) we have

62 Teww/(rew) 1
e AN I T
.L G“(l—ww%>+2>

IN

Hence, it follows from (4.10) that
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for each » (0 < r < 1) and for each pair of real numbers 6; and 0y with 6, <
0y < 01 + 2m. Therefore, by Theorem S, we can see that f(z) is univalent, and

close-to-convex in D. O

Corollary 4.3. Suppose that f = h+7g € H is sense-preserving and f(z) # 0 for
z € D\{0}. If f satisfies

for some X such that [\| =1, n € N and 0 <k <1/(2n—1), then f(z) is univalent

and close-to-convex in D.

Proof. Set kz" = w(z). Then

Aknz"  d2w'(2)
1—Mkzr 1 —dw(2)

= W(z), ze€D,

where |A| = 1. For each |A| = 1, it is easy to see that ( = W (z) maps D onto the

disk
nk?

1 — k2

nk
_ k2

17
It follows that Re(W(z)) > —nk/(1 + k) for all z € D, and therefore, Re(W(z)) >

—1/2 in D whenever 0 < k£ < 1/(2n — 1). The conclusion follows from Theorem
4.5. [l
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Chapter 5

Zeros of Harmonic Polynomials

Let

p(2) = 2" an 12" A agF b 2™ A+ by 12 by, (> m), (5.1)

be a harmonic polynomial of degree n > 1. Sheil-Small [59] proposed that the
maximum number of zeros of the polynomial p(z) in (5.1) is n?, a conjecture that was
subsequently proven by Wilmshurst [63]. Wilmshurst demonstrated the sharpness
of the case when m = n, n — 1, and additionally proposed that the upper bound on
the number of zeros is 3n — 2 for the case where m = 1. Khavinson and Swiatek [35]
recently proved this conjecture and also established the sharpness of the case when
n = 3 (it is trivial when n = 2). The sharpness of the bound 3n — 2 was additionally
provided by Bshouty and Lyzzaik [6] for the particular values n = 4,5,6,8, which
was finally settled by Geyer [23] for each value of n.

Brilleslyper et al. [4] recently examined the zeros of a one parameter family
of harmonic trinomials. They established the relationship between the parameter
and the number of zeros. Subsequently, Gao et al. [21] determined the location
of the zeros of these trinomials. The zeros of a general harmonic polynomial as
given in (5.1) have not yet been addressed. The main objective of this chapter
is to determine the location of the zeros of a general harmonic polynomial. We
determine the region encompassing all the zeros of the specified harmonic polynomial
by establishing inequalities involving its coefficients. Through diverse methodologies
like the matrix method and other matrix inequalities, we’ve described several regions
indicating the potential locations of these zeros. The various regions obtained in this
analysis may offer enhancements over one another based on specific assumptions
about the coefficients. However, they may also be difficult to compare in certain
cases. Therefore, it is worth mentioning different regions. By utilizing these regions
and applying the argument principle for harmonic mappings [15], as stated below in
Theorem T, we have examined the behavior and distribution of zeros for harmonic

polynomials of the form ¢(z) = h(z) — Z.

Theorem T. (Argument Principle for Harmonic Functions) Let f be a harmonic
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function in a Jordan domain D with boundary C. Suppose f is continuous in D and
f(2) # 0 on C, and there are no zeros of f in D for which the dilatation w(z) has
modulus value 1. Then the total change in the argument of f(z) as C is traversed in
the positive direction is 2r N, where N is the number of zeros of f(z) in D counted

according to their multiplicity.

To substantiate the main findings of this chapter, we rely on the so
called Gershgorin’s Theorem [22]. This theorem adeptly describes the regions

encapsulating the spectrum of a matrix.

Theorem U. (Gershgorin’s Theorem) Let A = [a;;] be an n x n complex matriz.

Then each eigenvalue of A lies in the union of the disks

|z—aii\ §Z|aij|, i21,2, ..... ,n.
J#i

5.1 Location of the zeros of a general harmonic

polynomial

The statement that the zeros of an analytic polynomial correspond to the eigenvalues
of its companion matrix is widely recognized (see, [28], [44]). Our first result on the
location of the zeros of a harmonic polynomial relies on the previously mentioned
statement, and the Gershgorin’s Theorem, which provides the range within which

the eigenvalues of a matrix are situated.

Theorem 5.1. Let p(2) be a harmonic polynomial, as in (5.1). Then, all the zeros

of p(2) lie in the union of closed unit disk and an annular region given as

n—2 n—2
Al <1 and  (bual =Y (ag] + 1b5]) < 12+ anoa] < Joamal + Y (lagl + [b;1),
§=0 §=0

whenever |b,_1| > Z?;g(\aﬂ +1b4]). On the other hand, all the zeros of p(z) lie in

the union of disks

n—2
2| <1 and |z + ap_y| < |byy] +Z(’aj| +16;1);
=0

whenever [b,_1| < Z}Zﬁ(\%! + [b51)-

Proof. Set h(z) = 2"+ a,_ 12"t + ... + ag and g(z) = b, 2™ + by 12™ 1+ ..+ bo.
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Observe that if 2 is a zero of the polynomial p(z) = h(2)+g(2), i.e., if h(z0)+g(20) =
0, then there exist some 6, € R, such that h(z) + e g(z5) = 0. This implies that if
2o is a zero of the harmonic polynomial p(z), then it is also a zero of some polynomial

po(2) € Fy, where Fy is a family of analytic polynomials defined as
Fyi={h(z) +e“g(2) : 6 € R}.

Therefore, it is sufficient to find the region containing all the zeros of some arbitrary
analytic polynomial py € Fy. Let us examine the polynomial pg(2) = h(2) + e¥?g(z2),
0 eR,ie.,

Po(2) = (2" 4 12"+ o Fag) + €0 (b 2™ A by 12 L+ D) (5.2)
= 2" 4 (a1 + €bp_1) 2" F (an_g + €Pby_9) 2" 2+ .+ (ag + €Pby),

where b; = 0 when j =m+1,m+2,....,n — 1. We can rewrite py(z) in the form of
a matrix
—z 1 0 0
0 —z 1 0
po(z) = (=1)" : (5-3)
0 0 0o ... -z 1
—cg —C —C3 .. —Cho —(Cho1+2)

where ¢; = a; + €“b;, j = 0,1,....,n — 1. Therefore, ps(z) is nothing but the
characteristic polynomial of an n x n matrix A, called the companion matrix, given

by

1 0
0 1
A= (5.4)
0 0 0o .. 0 1
i —Cp —Ci —C ... —Cp—9 —Cp_1 ]

Gershgorin’s Theorem (Theorem U) subsequently establishes that the zeros of the
polynomial py(z) lie in the union of the disks

—2
2l <1 and |24 a1 +€“b, 4 Z |a;] =+ [b51).
=0

A simple observation leads to the hypothesis. O
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Remark 5.1. Gershgorin’s Theorem corresponding to the deleted columns sum
gives that the zeros of the harmonic polynomial in (5.1) lie in the union of an

annular region and the disks given as
1| =1 < |z 4 ana| < |bpal + 1 |z < (Jaol + bo]);  and

|Z| §1+|aj\+\bj|, jzl,....,n—?,

whenever |b,_1| > 1, and on the other hand, zeros lie in the union of disks
|Z—|—(Zn_1| S |bn—1|+1; |Z| S (|(Io|—|—|b0|), and

|Z| §1+|aj\+\bj|, jzl,....,n—2,

whenever |b,_1| < 1. To establish a more stringent region, one can examine the

overlapping area of aforementioned region and the region obtained in Theorem 5.1.

5.2 Application of the Argument principle for

harmonic functions

For the sake of completeness, let us first review several fundamental characteristics
of the harmonic mappings that were previously discussed in Introduction 1.3. A
complex-valued harmonic function f = h + g, not identically constant, is said to
be sense-preserving in a domain D if it satisfies fz = wf., where w is an analytic
function with |w(z)| < 1in D, called the second complex dilatation of f. In contrast,
f is said to be sense-reversing in a domain D if f is sense-preserving in D. The curve
I' ={z:|w(z)| = 1} is called the critical curve. The Jacobian of the function f can
be defined as J;(z) = |f.(2)[* = |fz(2)|> = |W'(2)|* = |¢'(2)|*. Therefore, in particular,
J¢(z) > 0 whenever f,(z) # 0, for a sense-preserving function f. A point at which
the function f is neither sense-preserving nor sense-reversing is called a singular
point. Clearly J;(z) = 0 at every singular point, but the converse need not be true.
We define the order of a zero zy of a harmonic function f = h + g with the help of

power series expansions of h and g about 2y, which are given as

hz) = co + Z cr(z —20)" and  g(z) = do + Z di(z — 2)", (5.5)

k=n k=m
where n > 1, m > 1, and ¢, # 0, d,, # 0. If 2z lies in the sense-preserving region
then it follows that m > n, and the order of the zero is n. In contrast, if z lies in

the sense-reversing region then it follows that n > m, and the order of the zero is
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—m. The order of a singular zero is not defined.

Let’s explore the properties of the polynomial ¢(z) = h(z) — Z, where h(z) is
an analytic polynomial with (deg k) > 1. Our focus will be on understanding how
the zeros of ¢(z) influence its behavior. First, we prove in Lemma 5.1, that the
non-singular zeros of the harmonic polynomials of the type ¢(z) = h(z) — z, are
all distinct and have order 1 or —1. Hence, counting the number of zeros according
to multiplicity is the same as counting the number of distinct zeros. Further, in
Remark 5.2, we observe that the sum of the orders of the non-singular zeros of the
harmonic polynomial in (5.1) is equal to n. Therefore, the argument principle for
harmonic functions and the region described in Theorem 5.1, can be employed to

examine the distribution of zeros of the harmonic polynomials ¢(z) = h(z) — Z.

Lemma 5.1. All zeros (excluding singular zeros) of the harmonic polynomial q(z) =
h(z) — Z, where h(z) is an analytic polynomial with (deg h) > 1, are distinct and

have order 1 or —1.

Proof. Let zy be a zero of the polynomial ¢(z) = h(z) + g(2), with g(z) = —z. From
the power series expansion of i and g about z as given in (5.5), we have m = 1
(because d; = —1, which is non-zero). Thus, the order of any zero of ¢(z) is 1 (in

the sense-preserving region) or —1 (in the sense-reversing region). O

Remark 5.2. We can observe that the sum of the orders of the non-singular zeros
of the harmonic polynomial p(z) in (5.1) is indeed n. Since n > m, for sufficiently
large positive number R, we have |p(z) — 2"| < |z]", on |z| = R. Then, the result

follows from Rouché’s Theorem for harmonic functions [15].

Despite knowing that zeros of the harmonic polynomial ¢(z) = h(z) — Z
are distinct, the usefulness of the argument principle and Rouché’s Theorem for
harmonic mappings is limited in providing a precise count of zeros compared to their
effectiveness in the analytic case. Specifically, if we apply the argument principle
to the regions containing these zeros and it yields a count of n, this count does
not necessarily represent the total count of zeros of the polynomial. This happens
because some of the zeros can lie in the sense-preserving region, while others may lie
in the sense-reversing region. Remark 5.2 gives that the total number of zeros will
then be n + 2k, where n is the degree of the analytic polynomial & and k represents
the number of zeros in sense-reversing region. Therefore, the argument principle
for harmonic mappings is only reliable if the polynomial is fully sense-preserving or
fully sense-reversing within the specified region. Let us illustrate this with the help

of the following example:
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Example 4. Let us consider the harmonic polynomial ¢(z) = %(z?’ —3z) 4+ Z as
presented by Khavinson and Swiatek [35]. They demonstrated that the maximum
number of zeros of the polynomial h(z) —Z of deg n, bounded by 3n — 2, is precisely
reached for the above polynomial ¢(z). Lemma 5.1 and Theorem 5.1 show that
the zeros of ¢(z) are distinct and lie in the disk |z| < 5. Figure 5.1 shows that the
winding number of the image curve ¢(|z| = 5) about the origin is 3. However, this
observation does not guarantee that the total number of zeros of ¢(z) are 3. In fact,
Figure 5.2, where the dots represent the distinct zeros of ¢(z) and the curves denote
the critical curve for ¢(z), illustrates that there are a total of 7 zeros. Among
these, 2 are the in sense-reversing region, while 5 are in the sense-preserving region,

resulting in the value n = 3, as observed in Remark 5.2.

0.4

0.2

-0.2

-0.4

[ ]
50 100 UO_S O.w
[ ]

(=*

Figure 5.1: Image of disk [z] < 5 Figure 5.2: Zeros of 32)+7Z and

1
2
under £(2% — 3z) +z. critical curve |22 — 1]

2
.

Remark 5.3. Analyzing the order of zero of a harmonic polynomial uncovers a
significant insight: if the polynomial p(z) in (5.1) maintains its sense-preserving
nature in every neighborhood of its zeros, then the total count of zeros for p(z) is
exactly n. For instance, let’s consider the harmonic polynomial p(z) = h(z)+ah(z),
where av € C with |o| < 1, and (deg h) = n. In this scenario, p(z) must indeed

possess precisely n zeros, counting the multiplicities.

5.3 Locations obtained using matrix inequalities

Let M be an n x n matrix with complex number entries. The numerical range of M,
denoted as W (M), is defined as W (M) := {(Mz,z) : x € C", ||z|| = 1}, where (.,.)
and ||.|| := 1/(,.) denote the usual inner product and the corresponding norm in C",
respectively. Let r(M) := max{|z| : z € o(M)} and w(M) := max{|z| : z € W (M)}
denote the spectral radius and the numerical radius of the matrix M, respectively,

where o (M) (the set of all eigenvalues) is the spectrum of the matrix M. Here, we
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recall the inclusion

r(M) < w(M) <|[|M]], where |[M]|= Sup || M. (5.6)
z||=1

The set of the zeros of an analytic polynomial coincides with the spectrum of its
companion matrix, as previously mentioned. Thus, the task of finding the upper
bound for the modulus value of a root of an analytic polynomial can be approached
by considering several matrix inequalities that involve the spectral radius, numerical
radius, and spectral norm. There are numerous publications in the literature (for
example, see [10], [19], [20], [28], and [44]) that demonstrate the practicality of
utilizing these inequalities to identify different locations that contain the zeros of
an analytic polynomial. Our subsequent outcomes (Theorems 5.2 and 5.3) offer
additional localization of the zeros of the harmonic polynomial in (5.1) by employing
certain matrix inequalities. As previously stated, it is not possible to directly

compare these locations with the ones previously collected.

Let H and K be two Hilbert spaces with inner products (.,.)y and (., .)k,
respectively. Let us recall the tensor product space H ® K [13, Chapter 16.6], with
the well-known inner product determined by (hy ® k1, he ® ko) = (hy, ho) g {k1, ko) K,
for all hy,ho € H and kq, ks € K.

Theorem 5.2. Let p(z) be a harmonic polynomial, as in (5.1). Then, all the zeros

of p(z) lie in the annular region given by

o] — Ibo

(1 32550 s+ I

n—1 1/2
?)
Proof. As seen in the proof of Theorem 5.1, it is sufficient to examine the possible
locations of the zeros of the analytic polynomial py(z), mentioned in (5.2). For
u,v € C", define a operator u ® v such that (v ® v)w = (w,v)u for w € C".
Let {ey,es,....,e,} be the orthonormal basis for the unitary space C" and = =
€1 + oo + ¢ _g€n, where ¢; € C, j=0,1,....,n — 1, is in C". Then the companion

matrix A as derived in (5.4) can be written as A = P — e,, ® x, where
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We can observe that P*e, is a zero vector and hence P*(e, ® x) = P*e, ® x are the

zero operators. Therefore,

147 = [[AAll = [|(P - en ® 2)"(P — ex @ 7))
= |[PPP+az@ux|| <|[PP|| + ||z @ ||
< 1l

Since ||z|]* = Z;.:Ol |cj|?, from inclusion (5.6), it can be deduced that if z is a zero

of the polynomial py(z), then

n—1 1/2
o < (sz) |
=0

where ¢; = a; + ewbj, 7 =0,1,.....,n — 1, and hence the right hand side inequality
follows. To establish the lower bound, we can utilize the upper bound on the

polynomial 2"py(1/2)/cy, resulting in

|Co|

ne1 1/27
(14555 lesl?)

2| =

which gives the lower bound. This completes the proof. O

Theorem 5.3. The zeros of the harmonic polynomial in (5.1) lie in the disk given

by

w)+JZﬁMM+MW+MHHMWH

n+1 2

|z] < cos (

Proof. Once again, from the proof of Theorem 5.1, the task involves analyzing
the eigenvalues of the companion matrix A derived in (5.4). Let us rewrite the

companion matrix A as A = P + @, where P is the same matrix as given in (5.7)

and _ -
0 0 0 0
0 0 0 0
Q=
0 0 0 .. 0 0
L —Cp —Ci —Co .. —Cp—2 —Cp_-1 |

Given that Qz = (z,c)e,, where ¢ = (—cy, —c1,..., —¢,_1)? and e, = (0,0,...,1)T,
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the estimate for the numerical radius w(Q) can be given as

wi@) — Jell lleall+ lecen)| Il + o]

2 2 ’

where ¢; = a; + ¢€b;, j = 0,1,...,n — 1, (see, [20, Theorem 1]). The estimate for
the numerical radius w(P) can be given as w(P) = cos(m/(n+ 1)), as demonstrated
in the work of Davidson et al. [10]. The result now follows using the subadditivity
property w(A) < w(P) + w(Q), (see, [28]) and the inclusion (5.6). O

Remark 5.4. The superiority of the bound obtained in Theorem 5.2, over the bound
obtained in Theorem 5.3, and vice versa, is not always guaranteed. However, when
|a—1| + |br—1| = 0 and the sum Z?:_g(|aj| + |bj])? is a significantly large value, the
bound in Theorem 5.3 is better than the upper bound in Theorem 5.2. Similarly,
the bounds in Theorems 5.1 and 5.3 cannot be compared. Under specific conditions,
where |a,_1| = |[b,—1| = 0, and (|a;| + |b;]) is a significantly large value for atleast
one of j = 0,1,...,n — 2, the bound in Theorem 5.3 can serve as an enhancement
over the bounds in Theorem 5.1. However, for a significantly large value of |a,_1|,

the bounds may become incomparable.

5.4 Some more zero inclusion regions

A classical solution to the problem of finding an upper bound to the modulus of all
the zeros of an analytic polynomial was given by Cauchy [7] in 1828. It says that
all the zeros of an analytic polynomial h(z) = 2" +a,_12""' +.... + qq lie in the disc
|z| <1+ B, where B= max |a;|. The subsequent outcome we will provide is the

0<j<n—1
improved harmonic analog of Cauchy’s classical result.

Theorem 5.4. The zeros of the harmonic polynomial in (5.1) lie in the disk given

by

1
21 < 51+ lana] + bl + /T = Jan 1] = b 1)2 + 4B},

where B = 0&133{4(\@” + |b;])-

Proof. Suppose that

1
|| > 5{1 + Jan_1] + |bp1| + V(1 = |an_1| — |bp_1])? + 4B}.

Since B > 0, it follows from the above expression that |z| > 1, and a simple
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computation leads us to
(lz] = D(I2] = lan-1| = [bp-1]) = B > 0. (5.8)
Multiplying and dividing (5.8) by |z|"~! and (]z| — 1), gives
2" = lan-al]z[" = b []2[" = (Bl2"7/(]2] - 1)) > 0.

However,

|an—22""2 4 @p_32""2 + ...+ ag + by_22" 2 + by_3273 + ... + by

< (lan-a| + [ba-2D|2""* + (lan-s| + [ba=s])|2]" ™ + ... + (|ao| + [bol)
< B(l2" 242" 4 )

< Bl /(l2] - 1),

and

|2|" — |an_1||z|"_1 — |bn_1||z|”_1 < 2"+ 12" 4 bpy_q 2.

The previously mentioned inequalities lead us to

Ip(2)] > 2"+ an12" by 12 = |an02" 2 4 o Fag + by_02 2 4 L+ by
> 0.

This completes the proof. n

Remark 5.5. The superiority of the bound obtained in Theorem 5.2 over the bound
obtained in Theorem 5.4, and vice versa, is not always guaranteed. However, when
|a_1| + |bn_1] = 0 and B is a significantly large value, the bound in Theorem 5.4
is better than the upper bound in Theorem 5.2. In contrast, when the value of

|ap—1| + |bn—1| is significantly large, the bounds exhibit the opposite advantage.

Next, we give another annular region that encompasses all the zeros of the

harmonic polynomial in equation (5.1).

Theorem 5.5. The zeros of the harmonic polynomial in (5.1) lie in the annular

region given by

|a0|_|b0|’ <ll<i4(1-—2_)a
AT A marD S A S +( _(1+A)n> !

where A = Ogr%ig(_lﬂaﬂ + |b;]).
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Proof. First, we will prove the right side inequality. Let us assume that nA < 1.
Then, for |z| = R > 1,

v

2" = (|an—1| + [ba1])|2]" 7" = oo = (Jao| + [bo])
> RY— A(R™) > 0.

p(2)|

Further, let us assume that nA > 1. Let a=1— (1/(1+ A)"), 0 < o < 1. We can
observe that on the circle |z| = 14+ aA, the modulus value of the analytic polynomial

po(z), mentioned in (5.2), satisfies

n—1
2P {1—A2|z| Sy = |- AZW — e - A=

= (1+ad)" —(1/a)((1+aA) — )>0,

[Po(2)]

Vv

where the first step follows similar to [44, p. 123, Theorem (27,2)]. This gives that
pa(z), and hence p(z) has all its zeros in |z| < 1+ @A, and this completes the proof
for the right side inequality.

Next, we will prove the left side inequality. Let us examine the polynomial
g96(z) = (1—=2)po(2)
= 24 cyg—cy12t — 2" 4 Z —¢,-1)z", where (¢; = a; + €"b;),
= ¢o+ he(2), where

ho(z) = 2" —cp12" — 2"+ Z —Cy1)

When R =1+ A, then

n—1
ﬁaglhe( A< 2"+ (anaa| + aa DI + 27+ (aw| + (b)) R
v=1
n—1
+ > (laval+ b)) R
v=1

IN

R'R+14+ A+ (2n — 2)A]
= 2(1+A)"(nA+1).

Therefore, whenever |z| < R

90(2)| = lco + ho(2)]
|col — [he(2)]

v
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a E’A) |zr\2?i(A |ho(2)| (Schwarz’s Lemma)

> eol = 2]2|(1+ A)" 1 (nA+1) >0,

> |eol —

|eo]

AT LA and this completes the proof. O

whenever |z| <



Chapter 6

Conclusion

6.1 Conclusion

In conclusion, this thesis has explored various aspects of univalent harmonic
mappings, contributing to the advancement of the field in several directions.
Through a comprehensive examination spanning five chapters, we have addressed
fundamental questions regarding the geometric properties and univalence of

harmonic functions, and distribution of the zeros of harmonic polynomials.

In the initial chapter, we established foundational concepts and results from
existing literature, setting the stage for our subsequent investigations. In Chapter
2, we focused on determining conditions under which harmonic mappings are
univalent and map the unit disk D onto linearly accessible domains of order g
(non-convex domains) for some 5 € (0,1), providing valuable insights into the
geometric properties of these mappings. By extending previous work, we derived
convolution results and coefficient inequalities, paving the way for the construction

of globally area-minimizing minimal surfaces over non-convex domains.

Chapter 3 delved into the properties of odd univalent harmonic functions, offering
sharp coefficient estimates, growth and distortion theorems. Through our analysis,
we expanded the understanding of these functions, particularly in relation to the

harmonic Bieberbach conjecture and their membership in Hardy spaces.

Continuing our exploration in Chapter 4, we investigated harmonic mappings
convex in one direction and close-to-convex mappings, establishing integral
inequalities and sufficient conditions for univalence. This chapter further
explained the geometric properties of harmonic functions, shedding light on their

convexity /close-to-convexity and univalent behavior.

Finally, in Chapter 5, we addressed the challenging problem of determining
the location of zeros of complex-valued harmonic polynomials beyond trinomials.
Employing innovative techniques such as the matrix method and matrix inequalities,
we described regions encompassing the zeros and examined their distribution using

the harmonic analog of the argument principle.
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Collectively, the insights gained from this research lay a solid foundation for
further exploration and advancement in the intricate realm of planar harmonic

mappings.
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