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Abstract

It is well-known that minimal surfaces over convex domains are always globally

area-minimizing, which is not necessarily true for minimal surfaces over non-convex

domains. Recently, M. Dorff, D. Halverson, and G. Lawlor proved that minimal

surfaces over a bounded linearly accessible domain D of order β for some β ∈ (0, 1)

must be globally area-minimizing, provided a certain geometric inequality is satisfied

on the boundary of D. We prove sufficient conditions for a sense-preserving harmonic

function f = h+g to be linearly accessible of order β. Then, we provide a method to

construct harmonic polynomials which map the open unit disk |z| < 1 onto a linearly

accessible domain of order β. Using these harmonic polynomials, we construct one

parameter families of globally area-minimizing minimal surfaces over non-convex

domains.

We explore odd univalent harmonic mappings, focusing on coefficient estimates,

growth and distortion theorems. Odd univalent analytic functions played an

instrumental role in the proof of the celebrated Bieberbach conjecture. Motivated by

the unresolved harmonic analog of the Bieberbach conjecture, we investigate specific

subclasses of odd functions in S0
H , the class of sense-preserving univalent harmonic

functions. We provide sharp coefficient bounds for odd univalent harmonic functions

exhibiting convexity in one direction and extend our findings to a more generalized

class, including the major geometric subclasses of odd functions in S0
H . Additionally,

we analyze the inclusion of these functions in Hardy spaces and broaden the range

of p for which they belong. In particular, the results enhance understanding and

highlight analogous growth patterns between odd univalent harmonic functions and

the harmonic Bieberbach conjecture. We also propose two conjectures and possible

scope for further study as well.

We prove sufficient conditions for a normalized complex-valued harmonic

function f defined on the unit disk to be univalent and convex in one

direction/close-to-convex. Using the geometric properties of convex in one direction

or close-to-convex function, we obtain sufficient conditions for univalency in terms

of certain integral inequalities. With the help of an integral inequality, we prove a

sharp coefficient criterion for f to be convex in one direction. As an application,

we finally generate families of univalent harmonic mappings convex in one direction

using Gaussian hypergeometric functions.

Lastly, our attention is directed towards the zeros of the harmonic polynomials.

In their groundbreaking work, Khavinson and Świa̧tek proved Wilmshurst’s

conjecture, establishing a sharp upper bound on the number of zeros of harmonic
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polynomials of the form h(z) − z, where h(z) is an analytic polynomial of degree

greater than one. Recent studies by Dorff et al. and Liu et al. further determined the

number of zeros and the compact region containing all zeros of harmonic trinomials,

respectively. Our research takes a leap further in identifying the precise compact

region encompassing all zeros of general harmonic polynomials. Moreover, we utilize

the harmonic analog of the argument principle to explore the distribution of zeros

of these polynomials, offering insightful examples for clarification.

Keywords: Univalent functions; harmonic functions; odd functions;

area-minimization; minimal surfaces; linearly accessible domains; growth problems;

coefficient estimate; integral means; Hardy spaces; harmonic polynomials;

zero inclusion regions; Argument principle for harmonic functions; convex;

close-to-convex; convex in one direction.
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Chapter 1

Introduction

1.1 An overview of univalent analytic functions

An analytic function f defined in a domain D ⊂ C (complex-plane) is said to

be univalent if it is one-to-one, i.e., f (z1) = f (z2) implies z1 = z2. For some

z0 ∈ D, the condition f ′(z0) ̸= 0 is both necessary and sufficient for an analytic

function f to be locally univalent at z0 (i.e., univalent in some neighbourhood of

z0). A function that preserves angle both in magnitude and direction is said to be

conformal. Consequently, an analytic function that is (locally) univalent is referred

to as a conformal map. Certain authors used to assume that the function was

univalent throughout the whole domain when defining conformal maps. We hold

the same conviction, and when we say a function is conformal, we mean that it is

one-to-one in that domain.

Conformal mappings were initially developed as a method for solving engineering

and physics problems. Typically, issues that can be described using functions in

C, but involve complicated geometries, can be simplified by selecting a suitable

conformal mapping. An example of a difficulty is calculating the electric field

generated by a point charge located near the corner of two conducting planes that

are aligned at a specific angle. This problem is highly challenging to address in

its current state. Nevertheless, by employing a conventional conformal mapping, it

is possible to convert the intersection point of the two planes into a straight line.

Within this novel context, the problem possesses a very simple solution, which may

subsequently be mapped back to the original domain via a composition with the

chosen conformal map. Conformal mappings are commonly employed in the study

of boundary value problems for liquid confined within a container.

An essential issue in the theory of analytic functions is the study of the class of

conformal mappings between two simply connected domains in the complex plane C.

In this direction, there is a well-known theorem by Riemann, known as the Riemann

Mapping Theorem. It can be stated as follows:

Theorem A (Riemann mapping theorem). Let D ̸= C be a simply connected
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domain and let z0 ∈ D. Then there exists a unique function f , analytic and univalent

in D, which maps D onto the open unit disk D = {z ∈ C : |z| < 1} in such a way

that f (z0) = 0 and f ′ (z0) > 0.

By utilizing the Riemann Mapping Theorem, we may simplify the study of

conformal maps between two arbitrary proper simply connected domains to the

study of conformal maps from an open unit disk D to any simply connected domain

D ̸= C. Let S be the set of analytic and univalent functions in the unit disk D,

which are normalized by the conditions f(0) = 0 = f ′(0) − 1. Therefore, a function

f ∈ S has the power series representation

f(z) = z +
∞∑
n=2

anz
n, z ∈ D.

The sum of two functions in class S need not be univalent. Nevertheless, class S is

preserved under a number of elementary transformations. If a function f ∈ S, then

the functions f(z) (conjugation), e−iθf(eiθz), θ ∈ R, (rotation), r−1f(rz), 0 < r < 1,

(dilation),
√
f(z2) (square-root transformation) and so on, also belong to the class

S. The Koebe function

k(z) = z/(1 − z)2 = z +
∞∑
n=2

nzn

is the leading example of a function of class S, which maps the unit disk D onto the

entire plane minus the slit (−∞,−1/4]. The Koebe function serves as an extremal

function in numerous problems associated with class S. In 1916, Bieberbach [3]

proved that if f ∈ S, then |a2| ≤ 2, with equality if and only if f is the Koebe

function k(z) or some of its rotation. The inequality |a2| ≤ 2 has many implications,

one of which is the Koebe One-Quarter Theorem [36], which states that the range of

every function of class S contains the disk {w : |w| < 1/4}. The Koebe function and

its rotations are the only functions in S which omit a value of modulus 1/4. This led

Bieberbach to propose a conjecture, famously known as the Bieberbach conjecture,

which is stated as follows:

Conjecture A. [3] If f ∈ S, then |an| ≤ n for all n ≥ 2. Furthermore, |an| = n

for all n if and only if f is the Koebe function k(z), or its rotations.

The conjecture remained unresolved for many years. In 1925, Littlewood [42]

made substantial progress by establishing the inequality |an| < en, which ensures

the Bieberbach conjecture has the correct order of magnitude. Over time, the

constant e was gradually substituted with a series of smaller constants, although
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a comprehensive proof remained difficult to find. Also, the conjecture was verified

for n = 3, 4, 5, 6 through increasingly complicated methods. Ultimately, in 1985, de

Branges [11] fully resolved the conjecture, which had originated 69 years before.

The mathematicians’s attempt to solve the Bieberbach conjecture resulted in the

emergence of several significant subclasses inside class S. These subclasses include

convex, starlike, close-to-convex and convex in one direction functions. Now, we are

going to explore each of these classes individually.

Definition 1.1. A domain D ⊂ C is said to be convex if the line segment joining

any two points of D lies entirely in D. A function f ∈ S is said to be convex if f(D)

is a convex domain.

Let K denote the class of convex functions. The functions in class K have the

following analytic characterization:

Theorem B. [17, Theorem 2.11] Let f be analytic in D with f(0) = 0 = f ′(0) − 1.

Then f ∈ K if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ D.

The convex function l(z) = z/(1 − z) maps the unit disk D onto the half-plane

Re{w} > −1/2 and serves as an extremal in problems associated with class K.

In 1952, Umezawa [61] generalized the analytic condition given in Theorem B and

introduced a new class of functions called convex functions of order β, denoted by

K(β). The following is the analytic characterization of the functions in class K(β):

Definition 1.2. Let f be an analytic function in D, normalized by the conditions

f(0) = 0 = f ′(0) − 1. Then f ∈ K(β), −1/2 ≤ β < 1, if f is locally univalent in D
and satisfies the condition

Re

(
1 +

zf ′′(z)

f ′(z)

)
> β, z ∈ D.

Clearly, K(0) = K and K(β) ⊆ K(0) = K for all β ∈ (0, 1). For −1/2 ≤ β < 0,

the functions f ∈ K(β) are not convex, but still have nice geometric properties.

Umezawa [61] studied these functions and referred to them as functions convex in

one direction.

Definition 1.3. A domain D ⊂ C is called convex in the direction α (0 ≤ α < π) if
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every line parallel to the line through 0 and eiα has a connected or empty intersection

with D. A function f ∈ S is said to be convex in the direction α if f(D) is convex

in the direction α.

A function f is said to be convex in one direction if there exist some α (0 ≤ α < π)

such that f is convex in the direction α. Clearly, a convex function is convex in the

direction α for every α ∈ [0, π). Therefore, the functions convex in one direction are

a natural generalization of convex functions. Another generalization of the class of

convex functions is the class of starlike functions, which can be described as follows:

Definition 1.4. A domain D ⊂ C is said to be starlike with respect to a point

z0 ∈ D if the line segment joining z0 to an arbitrary point z ∈ D lies entirely in D

i.e., every point of D is visible from z0. If z0 = 0, then the domain is called a starlike

domain and a function f ∈ S is said to be starlike if f(D) is a starlike domain.

Let S∗ denote the class of starlike functions. The functions in class S∗ have the

following analytic characterization:

Theorem C. [17, Theorem 2.10] Let f be analytic in D with f(0) = 0 = f ′(0) − 1.

Then f ∈ S∗ if and only if Re
(

zf ′(z)
f(z)

)
> 0, z ∈ D.

The Koebe function k(z) is a starlike function but not a convex function,

indicating that K ⊊ S∗. Alexander noted that there exists a one-to-one

correspondence between the class of convex functions and the class of starlike

functions, which may be expressed in the following manner:

Theorem D. [17, Theorem 2.12] Let f be analytic in D with f(0) = 0 = f ′(0) − 1.

Then, f(z) ∈ K if and only if zf ′(z) ∈ S∗.

Now we will discuss the most fascinating geometric subclass of S, which is the

class of close-to-convex functions, denoted by C.

Definition 1.5. A domain D ⊂ C is said to be close-to-convex if the complement

of D can be written as a union of non-crossing half lines. A function f ∈ S is said

to be close-to-convex if f(D) is a close-to-convex domain.

Kaplan gave the following analytic characterization of a close-to-convex function:

Theorem E. [17, Theorem 2.18] Let f be analytic and locally univalent in D. Then
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f is univalent close-to-convex if and only if∫ θ2

θ1

Re

(
1 +

zf ′′(z)

f ′(z)

)
dθ > −π, z = reiθ, (0 < r < 1),

for each r and for each pair of real numbers θ1 and θ2 with θ1 < θ2.

There is an alternate way to define a close-to-convex function. A normalized

analytic function defined on D is said to be close-to-convex if there is a univalent

convex function g (need not be normalized) such that Re(f ′(z)/g′(z)) > 0, z ∈ D.
By applying this criterion, it is straightforward to prove that every close-to-convex

function is univalent. The inclusion K ⊂ S∗ ⊂ C can be simply verified [17].

Moreover, functions convex in one direction are also close-to-convex. For more

details on univalent functions and these geometric subclasses, one could refer to the

monographs of Duren [17], Goodman [24, 25], and Pommerenke [52].

As previously stated, conformal mappings have extensive applications in physics

and engineering. However, in many physical problems, the requirement for a

solution to be a conformal map is a highly severe condition. In numerous physical

problems involving fluid flow and electrostatics, a weaker condition on the function

being a harmonic function will aid in the solution. For example, considering the

Dirichlet’s problem of steady-state temperature distribution in a thin, homogeneous

semi-infinite solid plate in the x, y-plane, it was demonstrated how harmonic

functions are used to solve such boundary value problems in a simply connected

domain. This thesis explores the properties of univalent harmonic functions from a

geometric function theoretic perspective and establishes connections between these

functions and minimal surfaces. In the following section, we will explore the

basic definitions and fundamental concepts of minimal surfaces. In Section 1.3,

we shall provide a comprehensive discussion on univalent harmonic functions and

their connections with the minimal surfaces.

1.2 Minimal Surfaces

A surface M is a minimal surface if it locally minimizes its area. In other words,

M is a minimal surface if for each sufficiently small simple closed curve C on M,

the portion of M enclosed by C has the minimum area among all surfaces spanning

C. An example in real life is the creation of minimal surfaces by immersing a wire

frame into a solution of soap. This process results in the formation of a soap film

as shown in Figure 1.1 (Source: Internet), which is a minimal surface that has the

wire frame as its boundary. The minimal surface formed in this manner is actually
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an area-minimizing minimal surface. We will study such type of surfaces in detail

in Chapter 2. Some renowned minimal surfaces are the plane, Scherk’s surface (by

Scherk in 1835), the catenoid (by Euler in 1740), and the helicoid (by Meusnier in

1776).

Figure 1.1: Soap film minimal surface with wire frame boundary

Remark 1.1. The term “minimal surface” was used to refer to surfaces which

originally minimized total surface area subject to some constraint. However, the

term “minimal surface” is now used in a more general sense so that the surfaces

may self-intersect or do not have constraints.

The geometric interpretation for a minimal surface in R3 can be given in the

following way: A surface M ⊂ R3 is minimal if and only if its mean curvature is

equal to zero at all points. Here, mean curvature is the average of maximum and

minimum curvature k(T) = dT/ds, where T ranges over all directions in the tangent

space.

There exist multiple equivalent definitions of minimal surface in R3. One of

them is represented inside the framework of a differential equation and is given as:

A surface M ⊂ R3 is minimal if and only if it can be locally expressed as the graph

of a solution of

(1 + u2
x)uyy − 2uxuyuxy + (1 + u2

y)uxx = 0. (1.1)

The partial differential equation (1.1) was originally found in 1762 by Lagrange,

and Jean discovered in 1776 that it implied a vanishing mean curvature. These

equivalences demonstrate that minimal surface theory is at the intersection of many

branches of mathematics, including differential geometry, complex analysis, and

mathematical physics.

Minimal surfaces have received significant attention in scientific research,

particularly in the fields of molecular engineering and materials science. In the

domains of general relativity and Lorentzian geometry, apparent horizons, which

are specific extensions and variations of the concept of minimal surface, hold
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great importance. Unlike the event horizon, they represent a curvature-centric

methodology for grasping the boundaries of black holes. Moreover, minimal

surfaces are a component of the generative design toolkit employed by modern

designers. Tensile structures, closely associated with minimum surfaces, have

garnered significant attention in the field of architecture. Prominent instances can

be observed in the creations of world-renowned architects Frei Otto (a German

architect), Shigeru Ban (a Japanese architect), and Zaha Hadid (an Iraqi-British

architect). Frei Otto drew inspiration from soap surfaces when designing the Munich

Olympic Stadium. Another remarkable instance, again designed by Frei Otto, is the

German Pavilion at Expo 67 in Montreal, Canada.

1.3 Univalent harmonic functions

In this thesis, we use the word “harmonic function” to refer specifically to

complex-valued harmonic functions, unless stated otherwise. Furthermore, it is usual

in contemporary literature to use the terms “harmonic mapping” and “harmonic

function” interchangeably.

A complex-valued function f = u + iv is called complex harmonic if u and

v are real-valued harmonic functions (not necessarily harmonic conjugates). Each

analytic function is complex harmonic, but the converse is not true. Once analyticity

is discarded, significant challenges emerge. Analytic functions are preserved under

composition, but harmonic functions are not. The square or reciprocal of a harmonic

function may not necessarily be harmonic. Moreover, the inverse of a harmonic

mapping may not always be harmonic. It is worth noting that if f is harmonic and

g is analytic then the composition f ◦ g, whenever well-defined, is harmonic. By

utilizing this composition rule, together with the Riemann Mapping Theorem and

the following well-known finding of Radó, we may simplify the study of univalent

harmonic maps between two arbitrary simply connected domains to the study of

univalent harmonic maps from an open unit disk D to any simply connected domain

D ̸= C.

Theorem F. [14, p. 24] There is no univalent harmonic function which maps D
onto C.

Every complex-valued harmonic function f on a simply connected domain D has

a representation f = h+g, where h and g are analytic in D, and this representation is

unique up to an additive constant. We call h and g as the analytic and co-analytic

parts of f . The Jacobian of a complex-valued harmonic function f = h + g is
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defined as Jf (z) = |fz(z)|2 − |fz(z)|2 = |h′(z)|2 − |g′(z)|2. In Section 1.1, it has been

mentioned that for an analytic function f, the condition f ′(z) ̸= 0 is both necessary

and sufficient for f to be locally univalent. This is equivalent to say that for a locally

univalent analytic function f, the Jacobian Jf is non-vanishing, as Jf = |f ′(z)|2. In

1936, Lewy [41] showed that a similar result holds for harmonic mappings.

Theorem G. Let f = h + g be a harmonic function defined on D ⊂ C and locally

univalent at z0 ∈ D, then Jf (z0) ̸= 0.

The Jacobian of a locally univalent harmonic function, being continuous, has

the same sign within a given domain. We say that a harmonic function f is

sense-preserving in a domain D if Jf (z) > 0 for all z ∈ D and it is sense-reversing if

Jf (z) < 0 for all z ∈ D. If f is sense-reversing then f is sense-preserving. Therefore,

it is possible to focus on harmonic functions that are sense-preserving, without any

loss of generality. The analytic function ω(z) = g′(z)/h′(z) is called the dilatation

of f and |ω(z)| < 1 on D, whenever f is sense-preserving on D.

Although harmonic mappings are natural generalizations of conformal mappings,

they were studied originally by differential geometers because of their role in

parameterizing minimal surfaces. The work was initiated by Karl Weierstrass

and Alfred Enneper after they gave Weierstrass-Enneper representation of minimal

surfaces.

Theorem H. [14, p. 177, Theorem] If a minimal graph {(u, v, F (u, v)) : u+iv ∈ Ω}
is parameterized by sense-preserving isothermal parameters z = x + iy ∈ D, the

projection onto its base plane defines a univalent harmonic function w = u + iv =

f(z) of D onto Ω whose dilatation is the square of an analytic function. Conversely,

if f = h+g is a sense-preserving univalent function of D onto some Ω with dilatation

ω = g′/h′ = q2 for some function q analytic in D, then the formulas

u = Re(f(z)), v = Im(f(z)), t = 2 Im

(∫ z

0

q(ζ)h′(ζ) dζ

)
define using isothermal parameters, a minimal graph whose projection is f. Except

for the choice of sign and an arbitrary additive constant in the third coordinate

function, this is the only such surface.

This relationship between the minimal surface and the corresponding univalent

harmonic function attracted widespread interest for planar harmonic mappings

among complex analysts. The catalyst was a landmark paper by Clunie and

Sheil-Small [8] in 1984, pointing out that many of the classical results for conformal
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mappings have clear analogs for harmonic mappings. In this paper, they proved the

analogy for many well-known classical results. They proved many necessary and

sufficient conditions for a complex-valued harmonic function to be univalent.

Let H denote the class of all complex-valued normalized harmonic functions

f = h+ g in unit disk D, such that h(0) = g(0) = h′(0)− 1 = 0. Denote by SH , the

class of all sense-preserving univalent harmonic mappings f = h + g ∈ H, where h

and g have the following series representations:

h(z) = z +
∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n, z ∈ D. (1.2)

It is known that SH is a normal family, but not compact. The class S0
H defined by

S0
H = {f = h + g ∈ SH : g′(0) = 0} is a compact normal family. This characteristic

makes S0
H more favorable than SH as a “correct” generalization of the class S of all

analytic univalent functions. There is a correspondence between the class S0
H and

the class SH . Indeed, if f ∈ SH , then |b1| < 1 and the function

f0 =
f − b1f

1 − |b1|2

is in S0
H . In contrast, the function f = f0 + b1f0 is in SH , whenever f0 ∈ S0

H and

|b1| < 1. Therefore, studying the class S0
H is enough, as the properties of class SH

may be derived from the properties of S0
H . Several important subclasses of the class

S0
H include the class of starlike, convex, close-to-convex functions, denoted by S∗0

H ,

C0
H , and K0

H , respectively, and convex in one direction functions. Functions in the

classes S∗0
H , K0

H , C0
H and convex in one direction map the unit disk D onto starlike,

convex, close-to-convex, and convex in one direction domains, respectively. The

leading example of the class S0
H is the harmonic Koebe function

K(z) = H(z) + G(z) =

(
z − 1

2
z2 + 1

6
z3

(1 − z)3

)
+

( 1
2
z2 + 1

6
z3

(1 − z)3

)
,

which maps D onto the entire plane minus the real interval (−∞,−1/6]. The

analytic Koebe function k(z) plays a crucial role in the construction of harmonic

Koebe function using the “shear construction” method developed by Clunie and

Sheil-Small. Shear construction can be further used to construct more univalent

harmonic functions (with prescribed dilatation) in D. This technique is extensively

used throughout the thesis. It can be stated as follows:

Theorem I. [8] Let f = h + g be harmonic and locally univalent in the unit disk

D. Then, f is univalent and its range is convex in the direction of α if and only if
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h− e2iαg has the same properties.

In particular, with the help of Theorem I, one can construct harmonic functions

convex in one direction, hence univalent. For instance, the necessary steps to

construct univalent harmonic functions convex in the real direction, are as follows:

(i) Choose a function ϕ ∈ S such that ϕ maps D onto a domain convex in the

real direction. Then, set h− g = ϕ.

(ii) Choose an analytic function ω in D with |ω(z)| < 1 for all z ∈ D.

(iii) Solve the relations

h′ − g′ = ϕ′ and ωh′ − g′ = 0

to find h and g.

(iv) This gives

h(z) =

∫ z

0

ϕ′(ζ)

1 − ω(ζ)
dζ and g(z) = ϕ(z) − h(z).

(v) The desired harmonic function is

f(z) = h(z) + g(z) = 2Re(h(z)) − ϕ(z).

The same procedure can be employed to generate functions that are convex in

an arbitrary direction. The choices ϕ = k(z) and ω(z) = z led to the formation of

harmonic Koebe function K(z). For more details on univalent harmonic functions,

one could refer to the article of Clunie and Sheil-Small [8], the monograph of Duren

[14], and the survey article of Bshouty and Hengartner [5].

The following harmonic analog of the Bieberbach conjecture due to Clunie and

Sheil-Small has been the driving force behind the development of univalent harmonic

mappings in the plane.

Conjecture B. [8] Suppose f = h+ g ∈ S0
H , with the series representation as given

in (1.2). Then, for all n ≥ 2,

|an| ≤
(n + 1)(2n + 1)

6
, |bn| ≤

(n− 1)(2n− 1)

6
, and ||an| − |bn|| ≤ n.

The bounds are attained for the harmonic Koebe function K.
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The conjecture has been verified for several subclasses of S0
H , including starlike,

convex, close-to-convex, and convex in one direction functions (see, [8], [59], [62]).

The inequality |b2| ≤ 1
2

has been fully verified. However, the problem remains open

for the whole class S0
H . Abu Muhana et al. [1] established the most recent bound

of |a2| < 21. Knowing the exact upper bounds for the coefficient modulus values

will lead to solutions for many open problems. Even though many classical results

have been extended to the class S0
H , many basic questions remain unsolved for the

well-known geometric subclasses of S0
H .

1.4 Outline of the thesis

The thesis contains five chapters, with the initial chapter serving as an introduction.

This chapter includes basic definitions and results from the existing literature, which

contribute to the development of the thesis.

In the second chapter, our main aim is to determine a geometric condition under

which a locally univalent harmonic mapping f defined on the unit disk D is univalent,

and maps D onto a linearly accessible domain of order β for some β ∈ (0, 1).

A linearly accessible domain (a non-convex domain) is important because, under

certain sufficient conditions stated by Dorff et al. [12], minimal graphs over these

domains are area-minimizing. As a consequence, we derive sufficient conditions for

f to map D onto a linearly accessible domain of order β, in the form of a convolution

result, and a coefficient inequality. By extending the ideas of Dorff et al. [12], we

construct one parameter families of globally area-minimizing minimal surfaces over

a linearly accessible domain of order β. Finally, by using a convolution technique,

we generate some more globally area-minimizing minimal surfaces.

In the third chapter, we explore the properties of odd univalent harmonic

functions. Our starting point of investigation is to obtain the sharp coefficient

estimates, growth and distortion theorems, for odd univalent functions exhibiting

convexity in one direction. We then advance our investigation to more generalized

classes, including major geometric subclasses of sense-preserving univalent harmonic

mappings. We examine the growth pattern of odd univalent harmonic functions and

extend the range of ‘p’ for which these functions belong to the Hardy space hp. Our

results, in particular, add to the understanding of the growth pattern between odd

univalent harmonic functions and the harmonic Bieberbach conjecture.

In the fourth chapter, we continue to investigate harmonic mappings convex

in one direction, close-to-convex harmonic mappings through their geometric

properties. Our starting point of investigation is to obtain certain integral
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inequalities, where the integrand is the rate of change of slope of the tangent of

a harmonic function f or its absolute value. Applying these integral inequalities,

we prove sufficient conditions for a normalized complex-valued harmonic function f

defined on unit disk D to be convex in one direction or close-to-convex and hence

univalent in D.

In the final chapter, we deal with the fundamental problem of determining the

location of the zeros of complex-valued harmonic polynomials. The best-known

results available in this direction are up to harmonic trinomials only. The exploration

of the zeros of a general harmonic polynomial has been limited due to various

challenges. Here, we determine the regions encompassing the zeros of a general

harmonic polynomial of arbitrary degree using various techniques, such as the matrix

method and certain other matrix inequalities. The various regions obtained in this

analysis may offer enhancements over one another based on specific assumptions

about the coefficients. Additionally, we employ the harmonic analog of the argument

principle to examine the distribution of zeros, which we demonstrate through

illustrative examples.



Chapter 2

Univalent Harmonic Functions and

Minimal Surfaces

Interfaces in materials are often modeled by area-minimizing minimal surfaces, such

as the soap films on wire frames. As minimal surface minimizes the area locally,

every minimal surface need not be a globally area-minimizing surface. However, it is

well-known that minimal surfaces over convex domains are globally area-minimizing,

which is not necessarily true for the minimal surfaces over non-convex domains [48, p.

67, 6.1]. Recently, Michael Dorff et al. [12] proved some sufficient conditions under

which a minimal surface over a non-convex domain is globally area-minimizing.

These conditions are shown to hold for some subsurfaces of Enneper’s surface, the

singly periodic Scherk surface, and the associated surfaces of the doubly periodic

Scherk surface. For more examples of such globally area-minimizing minimal graphs,

one can look at the article [26]. Fascinatingly, all these aforementioned subsurfaces

are surfaces over a particular type of non-convex domains, the domains having a

nice complementary set of rays. Moreover, in [12, Theorem 2.5] the authors proved

that a compact domain with a piecewise smooth connected boundary has a nice

complementary set of rays if and only if it is linearly (or angularly) accessible of

order β for some β ∈ (0, 1).

The objective of this chapter is to establish a geometric criterion that determines

when a locally univalent harmonic mapping f , defined on the unit disk D, is

both univalent and maps D onto a linearly accessible domain of order β for some

β ∈ (0, 1). This has been done in Theorem 2.1. Consequently, we establish

the sufficient conditions for the function f to map D onto a linearly accessible

domain of order β, in the form of a convolution result, and a coefficient inequality,

which are given as Theorems 2.2 and 2.3, respectively. Building upon the concepts

introduced by Michael Dorff et al. [12], we construct 1 parameter families of globally

area-minimizing minimal surfaces over a linearly accessible domain of order β (a

non-convex domain). Ultimately, by the implementation of a convolution technique,

we are able to produce further minimal surfaces that are globally area-minimizing.
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2.1 Linearly accessible domains

As already mentioned in definition (1.5), a domain is said to be a close-to-convex

domain if its complement can be written as the union of non-crossing rays. A domain

Ω is said to be linearly accessible of order β, β ∈ [0, 1], if it is the complement of

the union of non-crossing rays such that every ray is the bisector of a sector of

angle (1 − β)π which lies fully in the complement of Ω. For β = 1, the domain is

called strictly linearly accessible. A univalent analytic/harmonic function f is said

to be close-to-convex (or linearly accessible of order β in D) if the range f(D) is a

close-to-convex domain (or linearly accessible domain of order β).

In [40], Lewandowski showed that an analytic function f is close-to-convex in D
if and only if its range f(D) is linearly accessible. In fact, it is well-known that a

function f is close-to-convex of order β, for β ∈ [0, 1] if and only if f(D) is linearly

accessible of order β. For β ≥ 0, an analytic function f is said to be close-to-convex

of order β if for some normalized convex function ϕ and some constant c with |c| = 1,

we have cf ′(z) = p(z)βϕ′(z) for all z ∈ D, where p(z) with |p(0)| = 1, is an analytic

function which has positive real part in D. For more information on close-to-convex

functions of order β, β ∈ [0, 1], we refer to the article by Koepf [37]. In [54],

Maxwell proved the analytic characterization of close-to-convex functions of order β

for β ∈ [0, 1], which generalizes the result of Kaplan [31] on close-to-convex functions

of order 1. In [32, Theorem 1], Kaplan proved Theorem J for the case β = 1. We

have verified that an analogous result holds true for an arbitrary β ∈ [0, 1]. We omit

the proof of Theorem J as Kaplan’s proof technique will establish the result.

Theorem J. Let f be locally univalent in the unit disk D and let a branch of arg f ′(z)

be chosen in D. Then the following conditions are equivalent for β ∈ [0, 1] :

(a) f is close-to-convex of order β, β ∈ [0, 1] in D;

(b) ∫ θ2

θ1

Re

(
1 +

reiθf ′′(reiθ)

f ′(reiθ)

)
dθ > −βπ, 0 < r < 1, θ1 < θ2 < θ1 + 2π;

(c) arg f ′ is bounded in D and∫ θ2

θ1

Re

(
1 +

eiθf ′′(eiθ)

f ′(eiθ)

)
dθ > −βπ, θ1 < θ2 < θ1 + 2π, θ1, θ2 ∈ Ef ,

where set Ef ∩ [0, 2π] has linear measure 2π. (As arg f ′(z) is bounded, it

has radial limit as r → 1− for almost all θ and hence limr→1− arg f ′(reiθ) =
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arg f ′(eiθ), for all θ ∈ Ef ).

For a harmonic function f = h + g, the operator Df is defined as Df(z) =

zh′(z)−zg′(z) and D2f(z) = D(Df(z)). In [53], Ponnusamy et al. gave the following

sufficient condition for a sense-preserving harmonic function to be univalent and

close-to-convex in D.

Theorem K. Suppose that f ∈ H is sense-preserving and Df(z) ̸= 0 for z ∈ D\{0}.

If f satisfies∫ θ2

θ1

Re

(
D2f(reiθ)

Df(reiθ)

)
dθ > −π, 0 < r < 1, θ1 < θ2 < θ1 + 2π,

then f is univalent and close-to-convex in D.

Even though the geometric interpretation of the definition of a close-to-convex

function of order β and linearly accessible domain of order β are different, the

following theorem shows that close-to-convex harmonic mapping of order β having

hereditary property must be linearly accessible harmonic mapping of order β.

Theorem 2.1. Suppose that f = h + g ∈ H is a sense-preserving bounded function

such that Df(z) ̸= 0 for all z ∈ D \ {0}. For some β ∈ [0, 1], if f satisfies∫ θ2

θ1

Re

(
D2f(reiθ)

Df(reiθ)

)
dθ > −βπ, 0 < r < 1, θ1 < θ2 < θ1 + 2π, (2.1)

then f is univalent and linearly accessible of order β in D.

Proof. From Theorem K, it follows that f is univalent in D and f(D) is a

close-to-convex domain. Now, we shall show that f(D) is a linearly accessible domain

of order β.

For ρ ∈ (0, 1), define fρ(z) = (1/ρ)f(ρz). With some simple computations we

can see that fρ(z) also satisfies (2.1) i.e.,∫ θ2

θ1

Re

(
D2fρ(re

iθ)

Dfρ(reiθ)

)
dθ > −βπ, 0 < r < 1, θ1 < θ2 < θ1 + 2π, (2.2)

which is equivalent to

arg
∂

∂θ
(fρ(re

iθ))
∣∣∣
θ2
− arg

∂

∂θ
(fρ(re

iθ))
∣∣∣
θ1
> −βπ, 0 < r < 1, θ1 < θ2 < θ1 + 2π.

Let fρ(D) = Ωρ, and then fρ(D) = Ωρ. As Ωρ is a simply connected domain,
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which is not equal to C, the Riemann Mapping Theorem assures the existence of

a univalent analytic function gρ from D onto Ωρ with gρ(0) = 0 and g′ρ(0) > 0.

Using Carathéodory Extension Theorem [17, Page 12], gρ can be extended to a

homeomorphism of D onto Ωρ. Therefore, corresponding to every two points eiθ1

and eiθ2 on the unit circle which are mapped to fρ(e
iθ1) and fρ(e

iθ2), respectively

under the map fρ, we can set points eiθ
′
1 = g−1

ρ (fρ(e
iθ1)) and eiθ

′
2 = g−1

ρ (fρ(e
iθ2)),

respectively. Therefore, the condition (2.2) implies that

arg
∂

∂θ
(gρ(e

iθ))
∣∣∣
θ′2

− arg
∂

∂θ
(gρ(e

iθ))
∣∣∣
θ′1

> −βπ, θ′1 < θ′2 < θ′1 + 2π,

which is equivalent to

∫ θ′2

θ′1

Re

(
1 +

eiθg′′ρ(eiθ)

g′ρ(e
iθ)

)
dθ > −βπ, θ′1 < θ′2 < θ′1 + 2π.

As a consequence of Theorem J, we can conclude that gρ is a close-to-convex function

of order β and hence linearly accessible function of order β. Equivalently, we can say

that gρ(D) = Ωρ is a linearly accessible domain of order β. Setting ρn = 1 − (1/n),

for n ≥ 2, we see that the domains Ωρn → Ω as n → ∞. Therefore, by applying

the Carathéodory Convergence Theorem [17, Page 78], we obtain that there exists

an analytic function g on D such that gρn → g uniformly on each compact subset

of D and g(D) = Ω. Since the functions gρn are linearly accessible of order β and

the convergence is uniform, we deduce that g must be a linearly accessible function

of order β. Hence the domain g(D) = Ω is a linearly accessible domain of order β.

This completes the proof of the theorem.

For two analytic functions H and G defined on D, the Hadamard product or

convolution of H and G denoted by H ∗G is defined by

(H ∗G)(z) =
∞∑
n=0

AnBnz
n, whenever H(z) =

∞∑
n=0

Anz
n and G(z) =

∞∑
n=0

Bnz
n.

Theorem 2.2. Suppose that f = h + g ∈ H with g′(0) = 0 is sense-preserving and

Df(z) ̸= 0 for all z ∈ D \ {0}. For some β ∈ [0, 1], if

h(z) ∗ Aζ(z) + g(z) ∗Bζ(z) ̸= 0 for all |ζ| = 1, 0 < |z| < 1, (2.3)

where

Aζ(z) =
(2 + β)z + (2ζ − β)z2

(1 − z)3
and Bζ(z) =

(2ζ − β)z + (2 + β)z2

(1 − z)3
,
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then f is univalent and linearly accessible of order β.

Proof. From Theorem 2.1, it is clear that if f satisfies

Re

(
z(zh′(z))′ + z(zg′(z))′

zh′(z) − zg′(z)

)
> −β

2
, for all z = reiθ in D \ {0},

then f is univalent and linearly accessible of order β. The aforementioned inequality

is equivalent to

Re

 z(zh′(z))′+z(zg′(z))′

zh′(z)−zg′(z)
− (−β/2)

1 − (−β/2)

 > 0, for all z = reiθ in D \ {0}. (2.4)

The function (z(zh′(z))′+z(zg′(z))′)/(zh′(z)−zg′(z)) has a limit value of 1 at z = 0.

Furthermore, the function w(ζ) = (ζ−1)/(ζ +1) maps the unit disk |ζ| < 1 and the

unit circle |ζ| = 1, where ζ ̸= −1, to the left half-plane Re(w) < 0 and to the vertical

axis Re(w) = 0, respectively. In view of the preceding discussion, an equivalent form

of inequality (2.4) can be given as

z(zh′(z))′+z(zg′(z))′

zh′(z)−zg′(z)
− (−β/2)

1 − (−β/2)
̸= ζ − 1

ζ + 1
, |ζ| = 1, ζ ̸= −1.

A routine computation gives that

0 ̸= (ζ + 1)[z(zh′(z))′ + z(zg′(z))′] + (1 + β − ζ)[zh′(z) − zg′(z)]

= zh′(z) ∗
[

(ζ + 1)z

(1 − z)2
+

(1 + β − ζ)z

(1 − z)

]
+ zg′(z) ∗

[
(ζ + 1)z

(1 − z)2
− (1 + β − ζ)z

(1 − z)

]
= h(z) ∗ z

[
(2 + β)z + (ζ − β − 1)z2

(1 − z)2

]′
+ g(z) ∗ z

[
(2ζ − β)z − (ζ − β − 1)z2

(1 − z)2

]′
= h(z) ∗

[
(2 + β)z + (2ζ − β)z2

(1 − z)3

]
+ g(z) ∗

[
(2ζ − β)z + (2 + β)z2

(1 − z)3

]
,

which is the required condition (2.3).

Theorem 2.3. Suppose that f = h+g ∈ H, where h and g have series representation

as in (1.2). Furthermore, g′(0) = 0 and Df(z) ̸= 0 for all z ∈ D \ {0}. For some

β ∈ [0, 1], if

∞∑
n=2

((
n + 1

2

)
+

(
2 − β

2 + β

)(
n

2

))
|an| +

∞∑
n=2

((
2 − β

2 + β

)(
n + 1

2

)
+

(
n

2

))
|bn| ≤ 1,

(2.5)

then f is univalent and linearly accessible of order β. Moreover, the bound is sharp.
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Proof. From Theorem 2.2, we can infer that it is sufficient to prove that condition

(2.3) holds for f = h + g, whenever f satisfies the inequality (2.5). Consider the

quantity∣∣∣∣∣h(z) ∗
[

(2 + β)z + (2ζ − β)z2

(1 − z)3

]
+ g(z) ∗

[
(2ζ − β)z + (2 + β)z2

(1 − z)3

] ∣∣∣∣∣
=

∣∣∣∣∣(2 + β)z +
∞∑
n=2

[(
n + 1

2

)
(2 + β) +

(
n

2

)
(2ζ − β)

]
anz

n

+
∞∑
n=2

[(
n + 1

2

)
(2ζ − β) +

(
n

2

)
(2 + β)

]
bnzn

∣∣∣∣∣
≥ |z|

[
(2 + β) −

∞∑
n=2

∣∣∣∣(n + 1

2

)
(2 + β) +

(
n

2

)
(2ζ − β)

∣∣∣∣ |an||z|n−1

−
∞∑
n=2

∣∣∣∣(n + 1

2

)
(2ζ − β) +

(
n

2

)
(2 + β)

∣∣∣∣ |bn||z|n−1

]

> |z|

[
(2 + β) −

∞∑
n=2

(∣∣∣∣2(n + 1

2

)
+ β

((
n + 1

2

)
−
(
n

2

))∣∣∣∣+ 2

(
n

2

)
|ζ|

)
|an|

−
∞∑
n=2

(∣∣∣∣2(n2
)

+ β

((
n

2

)
−
(
n + 1

2

))∣∣∣∣+ 2

(
n + 1

2

)
|ζ|

)
|bn|

]

= |z|(2 + β)

[
1 −

∞∑
n=2

((
n + 1

2

)
+

(
2 − β

2 + β

)(
n

2

))
|an|

−
∞∑
n=2

((
2 − β

2 + β

)(
n + 1

2

)
+

(
n

2

))
|bn|

]
.

The last expression is non negative, whenever the condition (2.5) holds. In

particular, for β = 0, condition (2.5) reduces to

∞∑
n=2

n2|an| +
∞∑
n=2

n2|bn| ≤ 1, (2.6)

which is a well-known sufficient condition for a harmonic function f to be convex in

D. To show the sharpness of the inequality (2.5), let us consider the sense-preserving

univalent harmonic functions fa(z) = z + az3, where a ∈ [1/9, 1/5] is fixed. For the

function fa(z),

Re

(
D2fa(e

iθ)

Dfa(eiθ)

)
=

1 − 27a2 + 6a cos 4θ

1 + 9a2 − 6a cos 4θ
.

A usual but tedious computation gives that

min
θ∈[0,2π]

Re

(
D2fa(e

iθ)

Dfa(eiθ)

)
=

1 − 6a− 27a2

1 + 6a + 9a2
.
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Now, setting β = −2(1 − 6a − 27a2)/(1 + 6a + 9a2), we see that fa(z) satisfies

inequality (2.5) with the equality. This proves that the result is sharp.

2.2 Harmonic polynomials

The Gaussian hypergeometric function 2F1(a, b; c; z) is defined as

2F1(a, b; c; z) := F (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn, |z| < 1, (2.7)

where a, b, c ∈ C, c ̸= 0,−1,−2, ....., and (a)n is the Pochhammer symbol defined

by (a)0 = 1 and (a)n = a(a + 1)(a + 2)...(a + n− 1) (n ∈ N). For |z| < 1, the series

(2.7) is convergent. It is also convergent for |z| ≤ 1 if Re(c) > Re(a+ b). The proofs

of our results in this section require the following well-known results.

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
< ∞ for Re(c) > Re(a + b). (2.8)

Lemma A. [60] Let a, b > 0. Then we have the following

(a) For c > a + b + 1,

∞∑
n=0

(n + 1)(a)n(b)n
(c)nn!

=
Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
(ab + c− a− b− 1).

(b) For c > a + b + 2,

∞∑
n=0

(n + 1)2(a)n(b)n
(c)nn!

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

[
(a)2(b)2

(c− a− b− 2)2
+

3ab

c− a− b− 1
+ 1

]
.

Theorem 2.4. Let m be a positive integer, c be a positive real number and β ∈ [0, 1].

Suppose that f(z) = h(z) + g(z), where h(z) = zF (a, b; c; z) with a = b = −m and

g′(z) = z2qh′(z) for some positive integer q. If

4

2 + β

Γ(c)Γ(c + 2m)

(Γ(c + m))2

[
((−m)2)

2

(c + 2m− 2)2
+

3m2

c + 2m− 1
+ 1

]
(2.9)

+
4q

2 + β

Γ(c)Γ(c + 2m− 1)

(Γ(c + m))2
(c + m2 + 2m− 1) ≤ 2,

then f is a harmonic polynomial and f(D) is a linearly accessible domain of order

β.
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Proof. From the definitions of h and g, we see that

h(z) =
m+1∑
n=1

((−m)n−1)
2

(c)n−1(n− 1)!
zn, and g(z) =

m+2q+1∑
n=2q+1

((−m)n−2q−1)
2(n− 2q)

n(c)n−2q−1(n− 2q − 1)!
zn.

From Theorem 2.3, we infer that the function f = h + g is linearly accessible of

order β, whenever
m+1∑
n=2

[
2

2 + β
n2 +

β

2 + β
n

] ∣∣∣∣ ((−m)n−1)
2

(c)n−1(n− 1)!

∣∣∣∣
+

m+2q+1∑
n=2q+1

[
2

2 + β
n2 − β

2 + β
n

] ∣∣∣∣ ((−m)n−2q−1)
2

(c)n−2q−1(n− 2q − 1)!

(n− 2q)

n

∣∣∣∣ ≤ 1.

The L.H.S of the above inequality is equivalent to

=
2

2 + β

m∑
n=1

(n + 1)2
[

((−m)n)2

(c)n(n)!

]
+

β

2 + β

m∑
n=1

(n + 1)

[
((−m)n)2

(c)n(n)!

]

+
2

2 + β

m∑
n=0

(n + 1)2
[

((−m)n)2

(c)n(n)!

]
+

4q

2 + β

m∑
n=0

(n + 1)

[
((−m)n)2

(c)n(n)!

]

− β

2 + β

m∑
n=0

(n + 1)

[
((−m)n)2

(c)n(n)!

]
,

which reduces to condition (2.9), using Lemma A. This completes the proof.

2.3 Families of linearly accessible domains with

globally area-minimizing minimal graphs

In the preceding section, we have established several sufficient conditions for a

harmonic function to be univalent and mapping D onto a linearly accessible domain

of order β < 1. Now, we extend the ideas of Michael Dorff et al. [12] to construct

families of globally area-minimizing minimal graphs over the linearly accessible

domains of order β < 1, which are not convex domains. For the sake of the

completeness, here we briefly present their ideas.

A domain D with a piecewise smooth boundary has a nice complementary set

of rays, say Υ, if its complement DC can be written as the union of non-crossing

open rays emanating from ∂D that are non-tangent to ∂D, i.e., DC =
⋃
R, R ∈ Υ,

where R denotes the ray emanating from ∂D [12, Definition 2.3]. In [12, Theorem

2.5], the authors have established that a compact domain with a piecewise smooth

connected boundary has a nice complementary set of rays if and only if it is linearly
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(or angularly) accessible of order β < 1. Let Υ denote a nice complementary set

of rays for a closed region D in R2. Suppose M is a minimal surface in R3, which

is a graph of a function f(u, v) defined on D. In [12, Theorem 3.2], the authors

showed that M is a globally area-minimizing minimal graph, whenever the inequality

|n(p) · N(p)| ≤ R(p) · N(p) holds for all but possibly a finite number of points

p ∈ ∂D. Here, n(p), N(p), and R(p) denote the unit normal to M at (p, f(p)), the

outward unit normal to ∂D at p naturally included into R2 × 0, and unit normal

in the direction of R(p) ∈ Υ, where R(p) is a ray emanating from p, also naturally

included into R2 × 0, respectively.

In order to verify the above inequality, we adapt the technique used in [12]. We

briefly explain the strategy here: The complement of D is first divided into sections

by a finite number of non-crossing rays. Then for each section S we define a set of

rays emanating from ∂D∩S in some particular direction, say in the direction of unit

vector R. A collection of Wedges with vertex on ∂D include the complement of the

domain not covered by the defined rays. Rays coming from the vertex of the Wedges

can be used to “fill in” these Wedges. The union of the set {R(p) | p ∈ ∂D ∩ S}
together with the set of rays used to “fill in” the Wedges is called the R-set of

rays for D in S, where R(p) is a ray emanating from p in the direction R (see,

Figure 2.1). In [12, Proposition 3.6], the authors showed that R-set of rays is a nice

complementary set of rays for D in S, whenever N(p) ·R > 0 for all p ∈ ∂D ∩ S.

Finally, with all this information, we are ready to prove our results.

Theorem 2.5. Let fa(z) = z + az3, where a ∈ (1/9, 1/5). Then fa is

sense-preserving, univalent and fa(D) is a linearly accessible domain of order β,

for some 0 < β < 1. Furthermore, fa(D) is a non-convex domain and the minimal

surface lifted over this domain is globally area-minimizing.

Proof. Applying Theorem 2.3 to fa, we get that fa is a univalent harmonic mapping,

whose range is a linearly accessible domain of some order β, 0 < β < 1, whenever

a ∈ (1/9, 1/5). Let us first show that for the given values of a, fa(z) is a non-convex

function over the unit disk D. We know that a function g(z) is convex in the unit disk

D, if it satisfies the inequality ∂
∂t

(
arg
(

∂
∂t
g(z)

))
≥ 0 for z = eit. A straightforward

calculation shows that fa is a convex harmonic mapping if and only if |a| ≤ 1/9.

Hence for a, with |a| > 1/9, fa(D) is a non-convex domain. Since the dilatation of fa

is the square of analytic function
√

3az, from Weierstrass-Enneper Representation

(Theorem H), it follows that the formulas

u(x, y) = Re(fa(z)), v(x, y) = Im(fa(z)) and w(x, y) = 2
√

3axy,
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define by isothermal parameters, a minimal graph X(x, y) over fa(D). Let us

consider the portion of the minimal graph over the domain fa(Dr), where Dr is

a disk of radius r in the x, y-plane with center at origin. Using polar coordinates

(x, y) = (r cos θ, r sin θ), the coordinates of the minimal surface can be rewritten as

u(r, θ) = r cos θ − 3ar3 cos θ + 4ar3 cos3 θ,

v(r, θ) = r sin θ − 3ar3 sin θ + 4ar3 sin3 θ, and

w(r, θ) = 2
√

3ar2 cos θ sin θ.

Figure 2.1: R-set of rays which is a nice complementary set of rays for a section of
the complement of the domain f 1

6
(D).

Let N and n denote the outward unit normal to ∂fa(Dr) for a fixed r < 1 and

surface normal to the minimal surface, respectively. Then

N =

(
cos θ(1 + 9ar2 − 12ar2 cos2 θ), sin θ(1 + 9ar2 − 12ar2 sin2 θ), 0

)
√

(1 − 3ar2)2 + 48ar2 cos2 θ sin2 θ
, and

n =

(
2
√

3ar sin θ, 2
√

3ar cos θ, 3ar2 − 1

)
1 + 3ar2

.

Next, we construct a nice complementary set of rays for the domain fa(Dr).

Let µi, i = 0, 1, 2, 3, be the set of rays in the direction of θi = iπ
2
, i = 0, 1, 2, 3,

respectively. These non-crossing rays partition the complement of domain fa(Dr)

into four congruent sections. For the section S1 in the first quadrant bounded by µ0

and µ1, let R = (1/
√

2, 1
√

2, 0), and Υ1 be the R-set of rays for fa(Dr) in S1. For
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p ∈ ∂fa(Dr) ∩ S1 we have

N(p) ·R =
(cos θ + sin θ)(1 − 3ar2 + 6ar2 sin 2θ)√

2
√

1 + 9a2r4 − 6ar2 cos 4θ
≥ 1√

2
.

Therefore, by [12, Proposition 3.6], Υ1 is a nice complementary set of rays for fa(Dr)

in S1. By [12, Proposition 3.4], Υ1 extends to the nice complementary set of rays for

fa(Dr) in R2. We can even observe that N(p) ·R > 0 for every 0 < r < 1, showing

that the full domain fa(D) has a nice complementary set of rays (see, Figure 2.1).

Next, to show that M is globally area-minimizing over fa(D), we need to show

that the inequality |n(p) · N(p)| ≤ R(p) · N(p) holds for all but possibly a finite

number of points p ∈ ∂fa(D). We verify this for the section S1, which lies in the

first quadrant. For θ ∈ [0, π/2], we observe that

n(p) ·N(p) =
2
√

3a r sin 2θ√
1 + 9a2r4 − 6ar2 cos 4θ

≥ 0, for 0 < r < 1.

So, the inequality |n(p) ·N(p)| ≤ R(p) ·N(p) reduces to N(p) · (R(p) − n(p)) ≥ 0

and it is equivalent to show that

(sin θ + cos θ)[1 − 3ar2 + 12ar2 sin θ cos θ] − 4
√

6ar sin θ cos θ ≥ 0, (2.10)

for θ ∈ [0, π/2] and 0 < r < 1.

Figure 2.2: Minimal graph over
non-convex domain f 1

6
(D).

Figure 2.3: Projections of
minimal surface with r1 = 0.7,
r2 = 0.8, and r3 = 1.

Using the identity cos θ sin θ = 1
2
[(sin θ+ cos θ)2− 1], we find that the values of θ

that minimize the left-hand side of the inequality (2.10) must satisfy the equation

sin θ + cos θ =
2
√

6ar ±
√

162ar2 + 6a

18ar
.
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From (2.10) and above relation we get that |n(p) ·N(p)| ≤ R(p) ·N(p) if and only if

√
2

27
√

3ar

[
(
√
a + 81a

3
2 r2) ± (1 + 27ar2)

√
a(1 + 27ar2)

]
≥ 0, for 0 < r < 1.

A routine computation shows that the above inequality holds for r <
√

1
9a

+ 2
9
√
3a

.

Since a ∈ (1/9, 1/5), the required inequality will be satisfied for 0 < r < 1 and this

completes the proof.

Theorem 2.6. Let Fa(z) = z + az5, where a ∈ (1/25, 1/15). Then Fa is

sense-preserving, univalent and Fa(D) is a linearly accessible domain of order β,

for some 0 < β < 1. Furthermore, Fa(D) is a non-convex domain and the minimal

surface lifted over this domain is globally area-minimizing.

Proof. The proof follows from the same techniques used in Theorem 2.5 and we

skip the details. The minimal graph over the non-convex domain F 1
16

(D) and its

projections onto the plane for different values of r are shown in the figures 2.4 and

2.5, respectively.

Figure 2.4: Minimal graph over
non-convex domain F 1

16
(D).

Figure 2.5: Projections of
minimal surface with r1 = 0.7,
r2 = 0.8, and r3 = 1.

2.4 Some more globally area-minimizing minimal

graphs

For f = h + g harmonic in D and for any analytic function ϕ defined on D, the

convolution ∗̃ is defined as f ∗̃ϕ = h ∗ ϕ + g ∗ ϕ. Let us denote by Kθ and KH ,

the class of all normalized analytic functions convex in the direction of θ, and the

class of all normalized convex harmonic univalent functions, respectively. Next, we



Chapter 2. Univalent Harmonic Functions and Minimal Surfaces 25

discuss a class of analytic functions that preserve convexity in one direction under

convolution.

Definition 2.1. An analytic function ϕ is said to be Direction Convexity Preserving

denoted by ϕ ∈ DCP, if g ∗ ϕ ∈ Kθ for all g ∈ Kθ and for all θ ∈ R.

In [57], Ruscheweyh and Salinas proved remarkable results on geometry

preserving convolutions, which are given below as Theorem L, and Lemma B.

Theorem L. Let ϕ be analytic in D. Then f ∗̃ϕ ∈ KH for all f ∈ KH if and only if

ϕ ∈ DCP.

For a harmonic mapping f =
∑∞

k=1 akz
k+
∑∞

k=1 bkz
k, the nth De la Vallée Poussin

mean Vn(f) of f is defined as Vn(f) = f ∗̃Wn, where

Wn(z) :=

(
2n

n

)−1 n∑
k=0

(
2n

n + k

)
zk, z ∈ C, n ∈ N.

Lemma B. Let g be analytic in D. Then g ∈ Kθ if and only if g ∗Wn = Vn(g) ∈ Kθ

for all n ∈ N.

For details on De la Vallée Poussin means for harmonic mappings, one can have

a look at the article by Sairam Kaliraj [30]. In [58], Ruscheweyh and Sheil-Small

proved the following result on close-to-convexity preserving property of Vn(f) means.

Theorem M. If g is close-to-convex analytic function in D, then g ∗Wn = Vn(g)

are close-to-convex in D for all n ∈ N.

Theorem 2.7. Let an embedded minimal surface X defined on D with Weierstrass

representation

X =

(
Re

{∫
p(1 + q2) dw

}
, Im

{∫
p(1 − q2) dw

}
, 2 Im

{∫
pq dw

})
,

where p(0) = 1, is a graph over a convex domain. Then for ϕ ∈ DCP, the

convolution minimal surface

Y =

(
Re

{∫
µ(1 + υ2) dw

}
, Im

{∫
µ(1 − υ2) dw

}
, 2 Im

{∫
µυ dw

})
,
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where

µ(z) = p(z) ∗ ϕ(z)

z
and υ(z) =

√
ω̃ =

√
p(z)q2(z) ∗ ϕ(z)/z

p(z) ∗ ϕ(z)/z
,

is again a graph over a convex domain, and hence is globally area-minimizing

minimal surface, whenever ω̃ is a perfect square.

Proof. Let f = h + g denote the projection of X over the plane, which is a convex

harmonic mapping. From Theorem L, we can see that f ∗̃ϕ = h ∗ ϕ + g ∗ ϕ is again

in KH . From

f(z) = Re

{∫ z

0

p(t)(1 + q2(t)) dt

}
+ i Im

{∫ z

0

p(t)(1 − q2(t)) dt

}
= Re{h(z) + g(z)} + i Im{h(z) − g(z)},

the dilatation ω̃ of f ∗̃ϕ can be written as

ω̃ =
(g ∗ ϕ)′

(h ∗ ϕ)′
=

p(z)q2(z) ∗ ϕ(z)/z

p(z) ∗ ϕ(z)/z
.

Since ω̃ is the square of an analytic function, f ∗̃ϕ can be lifted to a minimal

surface. Moreover, convexity of the range of f ∗̃ϕ guarantees that the minimal surface

obtained must be globally area-minimizing minimal graph.

We demonstrate Theorem 2.7 with the help of the following example:

Example 1. Suppose X is an embedded minimal graph with its projection f(z) =∑∞
k=1 akz

k +
∑∞

k=1 bkz
k ∈ KH , with the coefficients b1 = b2 = .... = b2n = 0, and

b2n+1 ̸= 0. Set ϕ(z) = W2n+1(z), which is in DCP. Then the dilatation ω̃ of f ∗̃ϕ is

given as

ω̃ =
(g ∗ ϕ)′

(h ∗ ϕ)′
=

(2n + 1)b2n+1z
2n

(h ∗W2n+1)′
.

It is evident that f ∗̃ϕ ∈ KH , and hence h∗W2n+1 is univalent in D. This will ensure

that (h ∗W2n+1)
′ is non-vanishing in D. Therefore, ω̃ can be written as square of an

analytic function in D. Hence, the function f ∗̃ϕ can be lifted to a minimal surface

Y as given in the hypothesis of Theorem 2.7, which is a globally area-minimizing

minimal graph.

We end this section with a theorem on the approximation of a class of minimal

surfaces over close-to-convex domains by a sequence of minimal surfaces over the

range of polynomials. In [8], Clunie and Sheil-Small proved the following Lemma.
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Lemma C. Let f = h + g be locally univalent in D and suppose that for some ϵ

(|ϵ| ≤ 1), h + ϵg is convex. Then f is univalent and close-to-convex.

An inner function is any analytic function ϕ(z) in D, with the properties |ϕ(z)| ≤
1 and |ϕ(eiθ)| = 1 almost everywhere. An inner function is singular if it has no zeros

in D. Any inner function has a factorization eiαB(z)S(z), where B(z) is a Blaschke

product and S(z) is a singular inner function.

Theorem 2.8. Suppose that h and g are analytic functions in D such that |h′(0)| >
|g′(0)|, and for some ϵ (|ϵ| ≤ 1), h + ϵg is convex. If g′(z) = S(z)h′(z), where S(z)

is a singular inner function, then the function f = h + g can be lifted to a minimal

graph, which can be approximated by a sequence of minimal graphs over the domains

(f ∗̃Wn)(D) for all n ≥ N0, where N0 is a positive integer.

Proof. It is easy to see that h + αg is close-to-convex in D for |α| ≤ 1 [8, see proof

of Theorem 5.17], i.e., f is a stable harmonic close-to-convex function. Since the

dilatation of f is a singular inner function, f can be lifted to a minimal surface.

Since h + αg is close-to-convex in D for |α| ≤ 1, using Theorem M, we obtain that

(h + αg) ∗ Wn is close-to-convex in D for |α| ≤ 1. This is equivalent to f ∗̃Wn is

univalent and stable harmonic close-to-convex in D [27]. Here, we note that the

convolution map f ∗̃Wn, has the dilatation ω̃n = (g ∗Wn)′/(h ∗Wn)′, which converge

to g′/h′ = S(z). Since, S(z) is a singular inner function, by applying Hurwitz’s

theorem, we can see that ω̃n is non-vanishing for all n ≥ N0. Hence ω̃n has analytic

square-root for all n ≥ N0. Hence, f ∗̃Wn can be lifted to a minimal surface for

all n ≥ N0. This shows that the minimal surface over the domain f(D) can be

approximated by a sequence of minimal surfaces over the domains (f ∗̃Wn)(D), and

the proof is complete.
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Chapter 3

Odd Univalent Harmonic functions

The primary objective of this chapter is to delve into the properties of odd

univalent harmonic mappings. This research is prompted by the pivotal role

that odd univalent functions and their logarithmic coefficients played in resolving

the Bieberbach conjecture. While the harmonic counterpart of the Bieberbach

conjecture has remained unsolved for over three decades, our curiosity has led us

to explore a potential analogous connection between the harmonic analogue of the

Bieberbach conjecture and odd univalent harmonic mappings. What makes our

investigation particularly intriguing is that we have derived sharp results for odd

univalent harmonic mappings by examining certain subclasses of univalent harmonic

mappings. These findings show great potential, and further exploration in this

direction could enhance our understanding of the harmonic analog of the Bieberbach

conjecture.

As already mentioned in the introduction, S denote the class of all normalized

univalent analytic functions ϕ in the unit disk D. Let us denote the class of all

normalized odd univalent analytic functions defined on the unit disk D as follows:

S2 := {ϕ(z) = z +
∞∑
n=1

anz
2n+1 | ϕ is analytic and univalent in D}.

Notably, it is well-established that the square-root transformation
√
ϕ(z2) of each

function ϕ ∈ S constitutes an odd univalent function, and conversely, every odd

univalent analytic function can be expressed as a square-root transformation of

some function ϕ ∈ S. The function
√

k(z2) = z/(1 − z2) = z + z3 + z5 + . . ., the

square-root transformation of the Koebe function, is a candidate for an extremal

function, for several extremal problems associated with class S2. It can be shown

that for functions ϕ ∈ S2, the function z/(1− z2) gives the maximum and minimum

values of |ϕ(z)| and |ϕ′(z)| (see, [17], p. 70, Exercise 4). Motivated by this, in 1932,

Littlewood and Paley [43] proved that the coefficients of an odd univalent analytic

function are bounded. They found an absolute constant A such that |an| ≤ A < 14

for n = 1, 2, . . ., whenever ϕ(z) = z +
∑∞

n=1 anz
2n+1 ∈ S2. Several attempts were

made (see, for example, [39], [45], [46]) to find the best possible value for this absolute
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constant A. The best-known value for the constant A is 1.1305, proved by Hu Ke

in [29], which is given in the following theorem.

Theorem N. Let ϕ(z) = z +
∑∞

n=1 anz
2n+1 ∈ S2. Then |an| < 1.1305.

Our exploration commences with a study of odd univalent harmonic mappings

that are convex in one direction. We then advance our investigation to encompass

a more generalized class that incorporates these functions. To set the stage for our

exploration, it’s worth noting that Royster and Ziegler, in [56, Theorem 1], have

provided a notable characterization of analytic functions that exhibit convexity in

one direction.

Theorem O. Let ϕ(z) be a non-constant analytic function in unit disc D. The

function ϕ(z) maps D univalently onto a domain Ω convex in the direction of the

imaginary axis if and only if there are numbers µ and ν, 0 ≤ µ < 2π and 0 ≤ ν ≤ π,

such that

Re{−ieiµ(1 − 2ze−iµ cos ν + z2e−2iµ)ϕ′(z)} ≥ 0, z ∈ D. (3.1)

Furthermore, ϕ(ei(µ−ν)) and ϕ(ei(µ+ν)) are right and left extremes of Ω, respectively.

It is very well-known that a function ϕ is convex in the direction of α if and only if

the function ei(
π
2
−α)ϕ is convex in the direction of the imaginary axis. Consequently,

for a non-constant analytic function ϕ, the inequality (3.1) as stated in Theorem O

can be rewritten as

Re{ei(µ−α)(1 − 2ze−iµ cos ν + z2e−2iµ)ϕ′(z)} ≥ 0, z ∈ D, (3.2)

whenever ϕ is convex in the direction of α.

3.1 Some examples of odd harmonic functions

The classical Koebe function k(z) = z/(1 − z)2, has long been recognized as an

extremal function in various problems within the class S. While it hasn’t been

definitively confirmed, there’s a prevailing expectation that the harmonic Koebe

function K(z) may also serve as an extremal function for the class S0
H . Additionally,

it was commonly believed that
√

k(z2) = z + z3 + z5 + . . ., is the extremal function

for the class S2 of odd univalent analytic functions. However, this belief doesn’t

hold entirely true.



Chapter 3. Odd Univalent Harmonic functions 31

While it’s true that
√

k(z2) yields the maximum and minimum values of both

|ϕ(z)| and |ϕ′(z)| when ϕ ∈ S2, Fekete and Szegő [18] demonstrated the existence

of a function ϕ(z) = z +
∑∞

n=1 anz
2n+1 ∈ S2 for which |a2| = 1/2 + e−2/3 > 1. This

finding challenges the notion of
√

k(z2) as the exclusive extremal function for the

class S2.

In our pursuit to construct the harmonic counterpart of
√
k(z2), we employ

a shearing transformation in the vertical direction, with a prescribed dilatation

function ω(z) = −z2. While it remains possible that the resulting function may

not serve as the extremal function for the entire class of odd univalent harmonic

functions, we observe that the growth of the coefficients follows an order of O(n)

(in contrast to the full class S0
H , where it’s O(n2)), as anticipated in Theorem 3.1.

Furthermore, this construction provides the sharpness required for the obtained

bounds.

Example 2. Consider
√

k(z2) = z/(1 − z2), which is a well-known mapping,

univalent and convex in the vertical direction in D. Using Theorem I, it follows

that f = h + g will have the same properties as h + g =
√
k(z2), whenever f is

locally univalent. Local univalency of f can be assured by assuming the dilatation to

be ω(z) = −z2, i.e., g′(z) = −z2h′(z) in D. After differentiating the first condition

h + g =
√
k(z2), we have the following pair of linear equations:

h′(z) + g′(z) = (
√

k(z2))′ and z2h′(z) + g′(z) = 0.

Since
√
k(z2) = z/(1 − z2), after solving the above system of equations, we have

h′(z) =
1 + z2

(1 − z2)3
and g′(z) =

−z2(1 + z2)

(1 − z2)3
.

Integration gives

h(z) =
1

8
log

(
1 + z

1 − z

)
− z3 − 3z

4(1 − z2)2
= z +

∞∑
n=1

(n + 1)2

2n + 1
z2n+1 and

g(z) =
1

8
log

(
1 − z

1 + z

)
− 3z3 − z

4(1 − z2)2
=

∞∑
n=1

−n2

2n + 1
z2n+1,

under the assumptions that h(0) = g(0) = 0. This construction and Theorem I

show that f = h + g is a sense-preserving univalent harmonic function which is

convex in the vertical direction. Let us determine the actual range of f to better

understand its geometric properties.
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Claim 1. The image of the unit disk D under function f = h+ g is C\{z : Re{z} =

0 and |Im{z}| ≥ π/8}, as shown in Fig. 3.1.

Proof. The function

f(z) =
1

8
log

(
1 + z

1 − z

)
− z3 − 3z

4(1 − z2)2
+

1

8
log

(
1 − z

1 + z

)
− 3z3 − z

4(1 − z2)2
(3.3)

can be rewritten as

f = h + g = h− g + 2Re{g}

= Re

{
z − z3

(1 − z2)2

}
+ i Im

{
1

4
log

(
1 + z

1 − z

)
+

2z3 + 2z

4(1 − z2)2

}
.

Figure 3.1: Image of the disk centered at origin with radius .99999 under the vertical
shearing of

√
k(z2) .

This can be further simplified to the form

f(z) =
1

4
Re

{
1 + z

1 − z
− 1 − z

1 + z

}
+

i

4
Im

{
log

(
1 + z

1 − z

)
+

1

4

((
1 + z

1 − z

)2

− 1

)((
1 − z

1 + z

)2

+ 1

)}
.

Substituting

ζ(z) =
1 + z

1 − z
= u + iv,
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a well-known conformal map, which maps unit disk D to the right half-plane Re{ζ} =

u > 0, we get that f is a function of (u, v) given as

f(u, v) =
1

4

(
u− u

u2 + v2

)
+

i

4

(
arctan

(v
u

)
+

uv

2
+

uv

2(u2 + v2)2

)
, u > 0.

It is evident that each point on the unit circle (except z = 1) under the mapping ζ(z)

is mapped onto a point on the imaginary v-axis so that u = 0. This directly shows

that f(z) maps unit circle (except z = 1) to the points ± iπ/8, where lower half-circle

and upper half-circle correspond to the points −iπ/8 and iπ/8, respectively. Next

observe that the imaginary axis in D under the mapping ζ(z) is mapped onto a

circular arc {u+ iv : u2 +v2 = 1, u > 0}, which is further mapped monotonically to

the set {z : Re{z} = 0 and |Im{z}| < π/8}, under the map f(u, v). Finally, our task

boils down to show that f(u, v) maps the circular arcs {u + iv : u2 + v2 = r2, u >

0, r2 ̸= 1} onto the whole complex-plane C minus the imaginary axis. Substituting

u = r cos θ and v = r sin θ,

f(u, v) is reduced to

f(r, θ) =
1

4
cos θ

(
r − 1

r

)
+

i

4

(
θ +

sin θ cos θ

2

(
r2 +

1

r2

))
,

where r ̸= 1, −π/2 < θ < π/2. Further substituting

ξ = cos θ

(
r − 1

r

)
and η = sin θ

(
r − 1

r

)
,

f(r, θ) can be further reduced to

f(ξ, η) =
ξ

4
+

i

4

(
θ + sin θ cos θ +

ξη

2

)
, ξ ̸= 0, −π/2 < θ < π/2.

From

ξ = cos θ

(
r − 1

r

)
and η = sin θ

(
r − 1

r

)
,

we have (
ξ

(r − 1/r)

)2

+

(
η

(r − 1/r)

)2

= cos2 θ + sin2 θ = 1.

The series of substitutions reveals the mapping of circular arcs {u + iv : u2 + v2 =

r2, u > 0, r2 ̸= 1} to the right half-plane Re{p} = r > 0 except the line r = 1,

under the map p(u, v) = r + iθ. Followed by, the lines r = a (a ̸= 1) are mapped

onto circles with radius a − (1/a), except the imaginary η-axis, under the map

w(r, θ) = ξ+ iη (also, notice that the lines r = a and r = 1/a are both mapped onto
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the same circle). Upon closer examination, it becomes evident that determining the

image of the circular arcs u + iv : u2 + v2 = r2, u > 0, r2 ̸= 1 under the map

f(u, v) =
1

4

(
u− u

u2 + v2

)
+

i

4

(
arctan

(v
u

)
+

uv

2
+

uv

2(u2 + v2)2

)
, u > 0,

is equivalent to determining the image of the entire complex plane except the η-axis

under the map

f(ξ, η) =
ξ

4
+

i

4

(
θ + sin θ cos θ +

ξη

2

)
, ξ ̸= 0, −π/2 < θ < π/2.

The straight line ξ = c, for c ̸= 0, is carried univalently onto the straight line{
c

4
+ iδ : δ =

1

4

(
l(ξ, η) +

cη

2

)
, |l(ξ, η)| < π/2 + 1/2

}
,

(where l(ξ, η) = θ + sin θ cos θ, with −π/2 < θ < π/2) which is the entire line

{c/4 + iδ : −∞ < δ < ∞}. This shows that f(ξ, η) maps the whole complex-plane

except the imaginary axis univalently onto itself. As we have already seen that

the imaginary axis in D under the map f(z) is mapped onto the set {z : Re{z} =

0 and |Im{z}| < π/8}, this proves that f(z) maps the unit disk D onto C\{z :

Re{z} = 0 and |Im{z}| ≥ π/8}. As depicted in Fig. 3.1, the complete image f(D)

illustrates that f is a starlike function as well.

The Radó-Kneser-Choquet Theorem, presented in the following strong form

([14], p. 33), allows us to create a harmonic mapping from the unit disk D to any

bounded convex domain while specifying the correspondence with the boundary.

In Example 3, we will utilize this theorem to demonstrate that the output of the

constructed odd univalent harmonic function forms a convex polygon.

Theorem P. Let Ω ⊂ C be a bounded convex domain whose boundary is a Jordan

curve Γ. Let ϕ maps unit circle T continuously onto Γ and suppose that ϕ(eit) runs

once around Γ monotonically as eit runs around T. Then the harmonic extension

f(z) =
1

2π

∫ 2π

0

1 − |z|2

|eit − z|2
ϕ(eit)dt

is univalent in D and defines a harmonic mapping of D onto Ω.

Remark 3.1. The above theorem can be restated in a modified form that asserts

its validity even if ϕ has points of discontinuity. For example, suppose ϕ is piecewise

constant and monotonic, and ϕ(T) does not lie on a line, then f maps the unit disk

univalently onto the interior of convex polygon whose vertices are the values of ϕ.
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The convex function l(z) = z/(1 − z), which is Alexander’s transformation (i.e.,

zl′(z) = k(z)) of analytic Koebe function, is an extremal function in many problems

for convex functions in class S. In the upcoming example, we construct an odd

convex harmonic function by applying harmonic analog of Alexander’s transform to

the square-root transformation of the Koebe function, by shearing it in the horizontal

direction, with prescribed dilatation ω(z) = −z2 in D.

Example 3. Consider the integral
∫ z

0

√
k(ζ2)/ζ dζ = 1

2
log(1+z

1−z
), which is the

Alexander’s transform of square-root transformation of the Koebe function. It is

easy to see that the above mapping is univalent and convex in D. Using Theorem I,

it follows that f = h + g will have the same properties as h− g =
∫ z

0

√
k(ζ2)/ζ dζ,

whenever f is locally univalent. Local univalency of f can be assured by assuming

the dilatation to be ω(z) = −z2, which means g′(z) = −z2h′(z) in D. Upon

differentiating the first equation h − g =
∫ z

0

√
k(ζ2)/ζ dζ, we obtain the following

pair of equations:

h′(z) − g′(z) =

(∫ z

0

√
k(ζ2)

ζ
dζ

)′

and z2h′(z) + g′(z) = 0.

Since
∫ z

0

√
k(ζ2)/ζ dζ = 1

2
log
(
1+z
1−z

)
, solving the above system of equations we have

h′(z) =
1

1 − z4
and g′(z) =

−z2

1 − z4
.

Integration gives

h(z) =
arctan(z)

2
+

1

4
log

(
1 + z

1 − z

)
and g(z) =

arctan(z)

2
− 1

4
log

(
1 + z

1 − z

)
,

under the assumptions that h(0) = g(0) = 0. This construction and Theorem I

show that f = h + g is a sense-preserving univalent harmonic function which is

convex in the horizontal direction. Let us determine the actual range of f to better

understand its geometric properties.

Claim 2. The range of the function f is a square with vertices at α1, α2, α3, and

α4, which are given as (π/4, π/4), (−π/4, π/4), (−π/4, −π/4), and (π/4, −π/4),

respectively, as shown in Fig. 3.2.

Proof. The function

f(z) =
arctan(z)

2
+

1

4
log

(
1 + z

1 − z

)
+

arctan(z)

2
− 1

4
log

(
1 + z

1 − z

)
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can be rewritten as

f = h + g = h− g + 2Re{g}

= Re{arctan(z)} +
i

2
Im

{
log

(
1 + z

1 − z

)}
=

1

2
arg

(
i− z

i + z

)
+

i

2
arg

(
1 + z

1 − z

)
.

Let Ω be a square with distinct vertices at α1, α2, α3, and α4 taken in the

counter-clockwise order around the boundary. Choose a partition 0 = t0 < π/2 =

t1 < π = t2 < 3π/2 = t3 < t4 = 2π of the interval [0, 2π]. Define a step function

ϕ(eit) = αj for tj−1 < t < tj, j = 1, 2, 3, 4. According to the Remark 3.1, the

harmonic extension

F (z) =
1

2π

∫ 2π

0

1 − |z|2

|eit − z|2
ϕ(eit) dt

is univalent in the unit disk D and maps it onto Ω. A straightforward evaluation of

the integral leads to F (z) = f(z) and the proof is complete.

Figure 3.2: Image of the unit disk D under the horizontal shearing of 1
2

log(1+z
1−z

).

3.2 Coefficient estimates

Consider the class KH(α), which encompasses normalized univalent harmonic

functions of the form f(z) = h(z) + g(z) exhibiting convexity in the direction of α.

Within this class, we define a specific subclass denoted as K
π
2
H(α), which comprises

of functions f(z) = h(z) + g(z) such that ϕ = h− e2iαg satisfies the inequality (3.2)

with ν fixed as π
2
. The following theorem provides precise bounds for the coefficients

of odd functions belonging to the class K
π
2
H(α).
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Theorem 3.1. Let f(z) = h(z) + g(z) = z +
∑∞

n=1 anz
2n+1 +

∑∞
n=1 bnz

2n+1 be an

odd function in class K
π
2
H(α) with g′(0) = 0. Then the coefficients of f satisfy the

following inequalities:

||an| − |bn|| ≤ 1, (3.4)

|bn| ≤
n2

2n + 1
, and (3.5)

|an| ≤
(n + 1)2

2n + 1
, (3.6)

for n = 1, 2, ... Furthermore, the inequalities are sharp and are attained by the

function f(z) given in (3.3).

Proof. Given that f ∈ K
π
2
H(α), taking ν = π/2, the inequality (3.2) reduces to

Re{ei(µ−α)(1 + z2e−2iµ)(h′(z) − e2iαg′(z))} ≥ 0, z ∈ D.

The function P (z) = ei(µ−α)(1+z2e−2iµ)(h′(z)−e2iαg′(z)) is an even analytic function

with positive real part and |P (0)| = 1. Carathéodory’s Lemma [17, p. 41] gives that

the absolute value of the coefficients in the series expansion of the function P (z) are

dominated by 2 Re{P (0)} = 2 cos(µ−α), which is less than or equal to 2. Since the

functions (1+z2)/(1−z2) and 1/(1−z2) have positive coefficients, the coefficients of

the function ei(µ−α)(h′(z)−e2iαg′(z)) are dominated in modulus by the corresponding

coefficients of the function

1 + z2

1 − z2
1

1 − z2
=

1 + z2

(1 − z2)2
.

Following the terminology used in [24, Ch. 7] we can rewrite this as

ei(µ−α)(h′(z) − e2iαg′(z)) <<
1 + z2

1 − z2
1

1 − z2
.

Integration then show that the coefficients of ei(µ−α)(h(z)− e2iαg(z)) are dominated

by the corresponding coefficients of z/(z2−1) = z+z3+z5+· · · [24, Ch. 7, Theorem

5]. Hence, ||an| − |bn|| ≤ |an − e2iαbn| ≤ 1 holds for all n ≥ 1, as per the hypothesis.

We can express g′(z) as:

g′(z) =
ω(z)

ei(µ−α)(1 − e2iαω(z))

1

(1 + z2e−2iµ)
P (z),

where ω(z) = g′(z)/h′(z) is the dilatation which is an even function with ω(0) = 0

and |ω(z)| < 1, implying |ω(z)| ≤ |z|2, by Schwarz’s lemma. The condition |ω(z)| <
1 implies e2iαω(z)/(1 − e2iαω(z)) is subordinate to the convex function z/(1 − z).
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Applying Rogosinski’s result [17, Theorem 6.4], we conclude that the coefficients of

the even function ω(z)/(1 − e2iαω(z)) are dominated by 1. Thus, we have

g′(z) <<
z2

1 − z2
1

1 − z2
1 + z2

1 − z2
=

z2(1 + z2)

(1 − z2)3
,

and therefore, the inequality |bn| ≤ n2/(2n + 1) for all n ≥ 1. To derive the bound

for |an|, we use the relation:

|an| ≤ ||an| − |bn|| + |bn| ≤ 1 +
n2

2n + 1
=

(n + 1)2

2n + 1
for all n ≥ 1.

From Example 2, it is evident that the coefficient bounds are sharp and the proof

is complete.

We then advance our investigation to a more generalized class that contains

functions convex in one direction and is defined as below:

S0
H(S) = {h + g ∈ S0

H : h + eiθg ∈ S for some θ ∈ R}.

In the following theorem, we show that the bounds for the odd functions in this

class are scalar multiplications of the bounds obtained for the class K
π
2
H(α).

Theorem 3.2. Suppose that an odd function f(z) = z +
∑∞

n=1 anz
2n+1 +∑∞

n=1 bnz
2n+1 ∈ S0

H(S). Then for λ = 1.1305, and for all n ≥ 1, we have the

following inequalities:

||an| − |bn|| < λ; |bn| < λ
n2

2n + 1
; and |an| < λ

(n + 1)2

2n + 1
.

Proof. Let f(z) = h(z) + g(z) = z +
∑∞

n=1 anz
2n+1 +

∑∞
n=1 bnz

2n+1 ∈ S0
H(S). Then

ϕ(z) = h(z) + ϵg(z) = z +
∑∞

n=1 ϕnz
2n+1 ∈ S, where ϕn, n ∈ N, is the coefficient of

z2n+1 in the Taylor series expansion of the analytic function ϕ, is an odd function

for some ϵ such that |ϵ| = 1. Hence, the inequality ||an| − |bn|| ≤ |an + ϵbn| < λ

holds, as implied by Theorem N. The following integral representations are valid for

the functions h and g:

h(z) =

∫ z

0

ϕ′(ζ)

1 + ϵω(ζ)
dζ and g(z) =

∫ z

0

ϕ′(ζ)ω(ζ)

1 + ϵω(ζ)
dζ,

where ϕ′(z) = h′(z) + ϵg′(z) and ω(z) = g′(z)/h′(z) is the dilatation of

sense-preserving function f such that ω(0) = 0 and |ω(z)| < 1 for all z ∈ D.
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Let
ω(z)

1 + ϵω(z)
=

∞∑
n=1

ωnz
2n.

Given that |ω(z)| < 1, we know that −ϵω(z)/(1+ϵω(z)) is subordinate to the convex

function z/(1 − z), which leads to the conclusion that |ωn| ≤ 1 for all n ≥ 1. Thus,

we can express g′(z) as follows:

g′(z) =
ϕ′(z)ω(z)

1 + ϵω(z)
=

(
ϕ0 +

∞∑
n=1

(2n + 1)ϕnz
2n

)(
∞∑
n=1

ωnz
2n

)
,

where ϕ0 = 1. This allows us to conclude that

(2n + 1)|bn| ≤
n−1∑
k=0

(2k + 1)|ϕk| (since |ωn| ≤ 1 for all n ≥ 1)

< λ
n−1∑
k=0

(2k + 1) (since |ϕk| < λ for all k ≥ 0)

= λn2.

From the equation h(z) = ϕ(z) − ϵg(z), we obtain

|an| = |ϕn − ϵbn| ≤ |ϕn| + |bn| < λ
(n + 1)2

2n + 1
for all n ≥ 1.

This completes the proof.

Remark 3.2. (i) Consider the function f(z) = h(z)+g(z) = z+
∑∞

n=1 anz
2n+1 +∑∞

n=1 bnz
2n+1 which belongs to K0

H , the class of convex harmonic functions.

According to [8, Theorem 5.7], the functions h(z) − eiαg(z), (0 ≤ α < 2π),

are odd univalent functions convex in the direction of α/2. Using Theorem

N, we conclude that |an − eiαbn| < 1.1305, (0 ≤ α < 2π), for all n ≥ 1. This

implies |an|+ |bn| < 1.1305, and consequently, |an| < 1.1305 and |bn| < 1.1305

for all n ≥ 1. Furthermore, Alexander’s theorem [14, Lemma, p. 108] for

harmonic functions then provides the coefficient bounds |an| < 1.1305(2n+ 1)

and |bn| < 1.1305(2n+ 1) for all n ≥ 1, whenever f is an odd starlike function

in S0
H .

(ii) A sense-preserving harmonic function f = h + g is stable harmonic convex or

SHC in the unit disk if all the functions fϵ = h + ϵg with |ϵ| = 1 are convex

in D. In [27], the authors proved that a sense-preserving harmonic function

f = h + g is SHC in D if and only if the analytic functions Fϵ = h + ϵg

are convex in D for each ϵ such that |ϵ| = 1. Let f(z) = h(z) + g(z) =
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z +
∑∞

n=1 anz
2n+1 +

∑∞
n=1 bnz

2n+1 is SHC. Then the odd function ϕ(z) =

h(z) + ϵg(z) = z +
∑∞

n=1 ϕnz
2n+1 ∈ K ⊂ S (K denote the class of convex

functions) for each ϵ such that |ϵ| = 1. Therefore, the coefficients of these

functions will also satisfy the inequalities given in Theorem 3.2.

3.3 Growth and distortion theorems for the odd

functions in class K
π
2
H(α)

The following lemma serves in the proof of the distortion theorem.

Lemma 3.1. Let ϕ be an odd analytic function in the unit disk D and satisfies

Re{(1 + az2)ϕ′(z)} ≥ 0, for |z| < 1, where a ∈ C such that |a| = 1. Then, for

|z| ≤ r < 1,

(1 − r2)|ϕ′(0)|
(1 + r2)2

≤ |ϕ′(z)| ≤ |ϕ′(0)|(1 + r2)

(1 − r2)2
. (3.7)

Moreover, both the upper and lower bounds are sharp for the functions z/(1 − z2)

and z/(1 + z2), respectively.

Proof. First, we show that the even analytic function p(z) = (1 + az2)ϕ′(z) has the

following representation

p(z) =
ϕ′(0) + ϕ′(0)G(z)

1 −G(z)
, (3.8)

where |G(z)| ≤ |z|2. The claim can be proved as follows:

If ϕ′(0) = 0, then p ≡ 0 and the choice G ≡ 0 to fulfill our objective. On the

contrary, consider the even analytic function G(z) = (p(z)−p(0))/(p(z)+p(0)). This

function possesses the properties G(0) = 0 and |G(z)| ≤ 1 for |z| < 1. Therefore,

by applying Schwarz’s lemma, we find that |G(z)| ≤ |z|2, leading to the desired

representation.

Now, let’s proceed with the proof of the lemma. If ϕ′(0) = 0, then (3.7) follows

immediately. In contrast, the representation (3.8) gives

|ϕ′(z)| = |ϕ′(0)|
∣∣∣1 +

ϕ′(0)

ϕ′(0)
G(z)

∣∣∣|1 −G(z)|−1|1 + az2|−1.

From the above equation, we get (3.7) using only the triangle inequality.

Furthermore, the choices z = r, a = −1 and z = r, a = 1 give the sharpness of

the upper and lower bounds in (3.7), for the functions z/(1 − z2) and z/(1 + z2),
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respectively. This completes the proof.

Theorem 3.3. Let f(z) = h(z) + g(z) ∈ K
π
2
H(α) with g′(0) = 0, be an odd function.

Then, for |z| ≤ r < 1,

(1 − r2)

(1 + r2)3
≤ |fz(z)| ≤ (1 + r2)

(1 − r2)3
, (3.9)

and
|ω(z)|(1 − r2)

(1 + r2)3
≤ |fz(z)| ≤ r2(1 + r2)

(1 − r2)3
, (3.10)

where ω(z) = g′(z)/h′(z) is the dilatation of the function f. Moreover, the upper

bounds for both |fz(z)| and |fz(z)| are sharp for the function f(z) given in (3.3).

Proof. Since f ∈ K
π
2
H(α), taking ν = π/2, the inequality (3.2) reduces to

Re{ei(µ−α)(1 + z2e−2iµ)(h′(z) − e2iαg′(z))} ≥ 0, z ∈ D.

Let ϕ(z) = h(z) − e2iαg(z). Then, ϕ′(z) = h′(z) − e2iαg′(z) and ω(z) = g′(z)/h′(z)

give that fz(z) = h′(z) = ϕ′(z)/(1 − e2iαω(z)) and fz(z) = g′(z) = ω(z)ϕ′(z)/(1 −
e2iαω(z)). Since ω(z) is an even Schwarz function with ω(0) = 0 (and hence |ω(z)| ≤
|z|2), it follows that,

|fz(z)| =

∣∣∣∣ ϕ′(z)

1 − e2iαω(z)

∣∣∣∣ ≤ |ϕ′(z)|
1 − |ω(z)|

≤ |ϕ′(z)|
1 − |z|2

,

and

|fz(z)| =

∣∣∣∣ ϕ′(z)

1 − e2iαω(z)

∣∣∣∣ ≥ |ϕ′(z)|
1 + |ω(z)|

≥ |ϕ′(z)|
1 + |z|2

.

Similarly,

|fz(z)| =

∣∣∣∣ ω(z)ϕ′(z)

1 − e2iαω(z)

∣∣∣∣ ≤ |ω(z)||ϕ′(z)|
1 − |ω(z)|

≤ |z|2|ϕ′(z)|
1 − |z|2

,

and

|fz(z)| =

∣∣∣∣ ω(z)ϕ′(z)

1 − e2iαω(z)

∣∣∣∣ ≥ |ω(z)||ϕ′(z)|
1 + |ω(z)|

≥ |ω(z)||ϕ′(z)|
1 + |z|2

.

Lemma 3.1 can now be applied to derive the inequalities (3.9) and (3.10). It’s clear

from Example 2 that the upper bounds for both |fz(z)| and |fz(z)| are exact for the

function f(z) given in (3.3). This confirms the completion of the proof.

Theorem 3.4. Let f(z) = h(z) + g(z) ∈ K
π
2
H(α) with g′(0) = 0, be an odd function.

Then, for |z| ≤ r < 1,

|f(z)| ≤ r(1 + r2)

2(1 − r2)2
+

1

4
log

(
1 + r

1 − r

)
.
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Proof. The following integral representations

h(reiθ) =

∫ r

0

h′(ρeiθ)eiθdρ and g(reiθ) =

∫ r

0

g′(ρeiθ)eiθdρ,

and the inequality |f(z)| = |h(z) + g(z)| ≤ |h(z)| + |g(z)| ensure that

|f(z)| ≤
∫ r

0

|fz(ρeiθ)|dρ +

∫ r

0

|fz(ρeiθ)|dρ.

The inequalities (3.9) and (3.10) can now be used to obtain the desired inequality

|f(z)| ≤
∫ r

0

(1 + ρ2)

(1 − ρ2)3
dρ +

∫ r

0

ρ2(1 + ρ2)

(1 − ρ2)3
dρ

=
r(1 + r2)

2(1 − r2)2
+

1

4
log

(
1 + r

1 − r

)
.

3.4 Membership in Hardy space

Moving forward, our focus shifts to the examination of the growth patterns exhibited

by odd univalent harmonic functions within the class S0
H(S), primarily through an

exploration of their integral means. The integral means of order p (0 < p ≤ ∞) of

an analytic function ϕ in the unit disk D is given as

Mp(r, ϕ) =


(

1
2π

∫ 2π

0
|ϕ(reiθ)|pdθ

) 1
p
, 0 < p < ∞,

sup
0≤θ<2π

|ϕ(reiθ)|, p = ∞.

An analytic function ϕ in the unit disk D is of class Hp if Mp(r, ϕ) remains bounded

as r → 1−. Similarly, a harmonic function f falls into the category of class hp if

limr→1− Mp(r, f) remains bounded. The integral mean M1(r, f) is closely related to

the Bieberbach conjecture. Littlewood’s proof of |an| < en is based on the estimate

M1(r, f) ≤ r/(1 − r) for any f ∈ S. These integral means play a crucial role in

quantifying the growth of functions and find wide applications in the theory of

Hp spaces. For further insights into integral means and Hp spaces, comprehensive

references are available in the books [16, 51].

In the context of determining the range of p > 0 for which univalent harmonic

functions are included in the Hardy space hp, Nowak [49] achieved a significant

breakthrough. Specifically, she established that if f is a convex harmonic mapping,

then f ∈ hp for p < 1/2, and in the case of close-to-convex harmonic mapping,
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p < 1/3. Furthermore, in [34], Kayumov et al. expanded on these findings,

demonstrating that f ∈ hp for p < 1/3, provided f ∈ S0
H(S).

Our next theorem builds upon the results of Kayumov et al., elevating our

understanding by revealing that for odd functions within the class S0
H(S), it holds

that f ∈ hp for p < 1/2. This extension broadens our comprehension of the growth

characteristics of these functions within the context of Hardy spaces.

We require the following results from the literature to prove our main result.

Lemma D. [16, p. 65] For each p > 1/2,∫ π

−π

|eiθ − r|−2pdθ = O((1 − r)1−2p) as r → 1.

The next lemma by Baernstein [2] shows that the Koebe function has the largest

integral mean of all functions in class S.

Lemma E. If ϕ(z) ∈ S and Φ(x) is a convex nondecreasing function on (−∞,∞),

then ∫ π

−π

Φ(log |ϕ(reiθ)|)dθ ≤
∫ π

−π

Φ(log |k(reiθ)|)dθ,

where k(z) = z/(1 − z)2 is the Koebe function. Consequently,

Mp(r, ϕ) ≤ Mp(r, k), 0 < p < ∞.

In this context, let’s revisit Baernstein’s star-function and review certain

properties that will play a pivotal role in establishing Lemma 3.2. This lemma

is of utmost importance in our endeavor to prove the theorem.

Definition 3.1. For a real-valued function g(x) integrable over [−π, π], the

Baernstein star-function is defined as

g∗(θ) = sup
|E|=2θ

∫
E

g(x)dx (0 ≤ θ ≤ π),

where |E| is the Lebesgue measure of the set E ⊆ [−π, π].

Lemma F. [38] For g, h ∈ L1[−π, π],

[g(θ) + h(θ)]∗ ≤ g∗(θ) + h∗(θ).

Equality holds if g, h are both symmetric in [−π, π], and nonincreasing in [0, π].
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Lemma G. [38] If g, h are subharmonic functions in D and g is subordinate to h,

then for each r in (0, 1),

g∗(reiθ) ≤ h∗(reiθ), 0 ≤ θ ≤ π.

Lemma H. [2] For g, h ∈ L1[−π, π], the following statements are equivalent.

(a) For every convex nondecreasing function Φ on (−∞,∞),∫ π

−π

Φ(g(x))dx ≤
∫ π

−π

Φ(h(x))dx.

(b) For every t ∈ (−∞,∞),∫ π

−π

[g(x) − t]+dx ≤
∫ π

−π

[h(x) − t]+dx.

(c) g∗(θ) ≤ h∗(θ), 0 ≤ θ ≤ π.

Important to the proof of the theorem is the following result, which appears in

the article [9].

Lemma I. Let 0 < p ≤ 1. Suppose f = h+ ḡ is a locally univalent, sense-preserving

harmonic function in D with f(0) = 0. Then

Mp
p (r, f) ≤ C

∫ r

0

(r − s)p−1Mp
p (s, h′)ds,

where C is a constant independent of f .

Lemma 3.2. Let ϕ ∈ S be an odd function and ω0 is a Schwarz function such that

|ω0(z)| < 1 and ω0(0) = 0. Then, for any p ∈ (2/5, 2) there exist a constant K such

that ∫ 2π

0

∣∣∣∣ ϕ′(reit)

1 − ω0(reit)

∣∣∣∣p dt ≤ K| log(1 − r)| p2
(1 − r)3p−1

.

Proof. Consider the integral

rp
∫ 2π

0

∣∣∣∣ ϕ′(reit)

1 − ω0(reit)

∣∣∣∣p dt
=

∫ 2π

0

∣∣∣∣rϕ′(reit)

ϕ(reit)

∣∣∣∣p ∣∣∣∣ ϕ(reit)

1 − ω0(reit)

∣∣∣∣p dt
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≤

(∫ 2π

0

∣∣∣∣rϕ′(reit)

ϕ(reit)

∣∣∣∣2 dt
) p

2
(∫ 2π

0

∣∣∣∣ ϕ(reit)

1 − ω0(reit)

∣∣∣∣
2p
2−p

dt

)1− p
2

≤ C| log(1 − r)| p2
(1 − r)

p
2

C1

(1 − r)
5p−2

2

=
K| log(1 − r)| p2

(1 − r)3p−1
,

where K = CC1, and C, C1 are two positive constants. For the estimate∫ 2π

0

∣∣∣∣rϕ′(reit)

ϕ(reit)

∣∣∣∣2 dt ≤ C| log(1 − r)|
(1 − r)

,

we refer to the proof of [33, Theorem]. Further, we prove the estimate

∫ 2π

0

∣∣∣∣ ϕ(reit)

1 − ω0(reit)

∣∣∣∣
2p
2−p

dt ≤ C1

(1 − r)
5p−2
2−p

.

By employing Lemmas D through H and considering ϕ as the square-root

transformation of a function p ∈ S, specifically ϕ(z) =
√

p(z2), we obtain:(
log

∣∣∣∣ ϕ(reit)

1 − ω0(reit)

∣∣∣∣)∗

≤ (log |ϕ(reit)|)∗ +

(
log

∣∣∣∣ 1

1 − ω0(reit)

∣∣∣∣)∗

= (log |p(r2e2it)|
1
2 )∗ +

(
log

∣∣∣∣ 1

1 − ω0(reit)

∣∣∣∣)∗

≤ (log |k(r2e2it)|
1
2 )∗ +

(
log

∣∣∣∣ 1

1 − reit

∣∣∣∣)∗

=

(
log

r

|1 − r2e2it||1 − reit|

)∗

.

The choice Φ(x) = e
2p
2−p

x in Lemma H then gives

∫ 2π

0

∣∣∣∣ ϕ(reit)

1 − ω0(reit)

∣∣∣∣
2p
2−p

dt ≤
∫ 2π

0

r
2p
2−p

|1 + reit|
2p
2−p |1 − reit|

4p
2−p

dt

=

∫ π/2

−π/2

r
2p
2−p

|1 + reit|
2p
2−p |1 − reit|

4p
2−p

dt

+

∫ 3π/2

π/2

r
2p
2−p

|1 + reit|
2p
2−p |1 − reit|

4p
2−p

dt

≤
∫ π/2

−π/2

C2

|1 − reit|
4p
2−p

dt +

∫ 3π/2

π/2

C3

|1 + reit|
2p
2−p

dt

≤
∫ 2π

0

C2

|1 − reit|
4p
2−p

dt +

∫ 2π

0

C3

|1 + reit|
2p
2−p

dt
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≤
∫ 2π

0

C4

|1 − reit|
4p
2−p

dt

≤ C1

(1 − r)
5p−2
2−p

,

for all p ∈ (2/5, 2), using Lemma D, and the proof is complete.

Theorem 3.5. Let f(z) = h(z) + g(z) ∈ S0
H(S) be an odd function. Then f ∈ hp

for 0 < p < 1/2.

Proof. Since f ∈ S0
H(S) and is an odd function, there exist some ϵ (|ϵ| = 1) such

that the function ϕ = h+ϵg ∈ S and is an odd function. This gives h′ = ϕ′/(1+ϵω),

where ω(z) = g′(z)/h′(z) is the dilatation of f such that ω(0) = 0 and |ω(z)| < 1.

Lemma I and Lemma 3.2, then lead to

lim
r→1−

Mp
p (r, f) ≤ C

∫ 1

0

(1 − s)p−1Mp
p (s, h′)ds

= C

∫ 1

0

(1 − s)p−1

(
1

2π

∫ 2π

0

∣∣∣∣ ϕ′(seit)

1 + ϵω(seit)

∣∣∣∣p dt) ds

≤ KC

2π

∫ 1

0

| log(1 − s)|p/2

(1 − s)2p
ds.

The last integral is finite for p < 1/2. Therefore, f ∈ hp for p < 1/2, and the proof

is complete.

3.5 Proposed conjectures

Inspired by the findings in this chapter concerning odd univalent harmonic

functions and their analytic counterparts, we are motivated to propose the following

conjectures:

Conjecture 3.1. Let f(z) = z +
∑∞

n=1 anz
2n+1 +

∑∞
n=1 bnz

2n+1 ∈ S0
H . Then |an|

and |bn| are of order O(n) for all n ≥ 1. Furthermore, f ∈ hp for 0 < p < 1/2.

Given the difficulty level of Conjecture 3.1, it appears to be a challenging

endeavor, as it is on par with solving the harmonic analog of the Bieberbach

conjecture. Nevertheless, the following conjecture can be viewed as an initial step

towards addressing Conjecture 3.1:

Conjecture 3.2. Let f(z) = z +
∑∞

n=1 anz
2n+1 +

∑∞
n=1 bnz

2n+1 ∈ C0
H be the class of

normalized univalent close-to-convex harmonic mappings. Then |an| and |bn| are of
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order O(n) for all n ≥ 1. Furthermore, f ∈ hp for 0 < p < 1/2.
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Chapter 4

Some Geometric Subclasses of

Univalent Harmonic Functions

The main purpose of this chapter is to study the univalency and geometric properties

of normalized harmonic functions f = h + g determined by certain integral

inequalities, where the integrand is either

∂

∂θ

(
arg(f(reiθ)

)
= Re

(
Df(z)

f(z)

)
or

∂

∂θ

(
arg

(
∂

∂θ
(f(reiθ)

))
= Re

(
D2f(z)

Df(z)

)
or their absolute values, where the differential operators Df and D2f are defined as

Df = zfz − zfz and D2f = D(Df) = z(fz + zfzz) + z(fz + zfzz).

In particular, we prove some sufficient conditions for a harmonic function to be

univalent, and its range to be convex in one direction or a close-to-convex domain.

For more details on the operators Df , D2f and its connection with geometric

subclasses of nonanalytic functions, one can refer to [47, 53].

4.1 Functions convex in one direction

In [55], Robertson proved that an analytic function ϕ is convex in one direction

if and only if zϕ′ is starlike in one direction. Using this relation, Umezawa [61]

obtained some sufficient conditions for an analytic function to be convex in one

direction. First, we will recall the harmonic analog of the aforementioned relation,

accompanied by several theorems and lemmas that will serve as important tools in

proving our main results.

Ponnusamy et al. [53, Theorem 2] proved the harmonic analog of the Robertson’s

relation [55] between analytic functions that are convex in one direction and starlike

in one direction, which is given as follows:

Theorem Q. If f = h + g is a harmonic function starlike in one direction, and if
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H and G are analytic functions defined by

zH ′(z) = h(z), zG′(z) = −g(z), H(0) = G(0) = 0,

then F = H + G is univalent and convex in one direction in D. In particular, if f

is starlike in the direction of α, then F is convex in the direction of α + π/2.

In the same article [53], the authors proved Lemma J and Theorem R, which

give sufficient conditions for starlikeness in one direction and convex in one direction,

respectively. These results are useful in proving our main results.

Lemma J. Suppose that f = h + g ∈ H such that f(z) is non-zero in D \ {0},

|h′(0)| > |g′(0)| and satisfies the condition∫ 2π

0

∣∣∣∣Re

(
Df(z)

f(z)

)∣∣∣∣ dθ < 4π, z = reiθ, 0 < r < 1.

Then f(z) maps |z| = r (0 < r < 1) onto a curve which is starlike in one direction.

Theorem R. Suppose that f ∈ H such that Df(z) ̸= 0 in D \ {0}, |h′(0)| > |g′(0)|
and satisfies the condition

α > Re

(
D2f(z)

Df(z)

)
> − α

2α− 3
, z ∈ D \ {0},

for some real number α > 3/2. Then the harmonic function f is sense-preserving,

univalent, and convex in one direction in D.

Motivated by Lemma J, we prove Lemma 4.1, which is the key to obtain several

sufficient conditions for f ∈ H to be convex in one direction in D. As an application

of Lemma 4.1, we derive several other sufficient conditions for f ∈ H to be convex

in one direction in D.

Lemma 4.1. Suppose that f = h + g ∈ H such that Df(z) ̸= 0 in D \ {0},

|h′(0)| > |g′(0)| and satisfies the condition∫ 2π

0

∣∣∣∣Re

(
D2f(z)

Df(z)

)∣∣∣∣ dθ < 4π, z = reiθ, 0 < r < 1. (4.1)

Then f(z) is convex in one direction, and hence f(z) is univalent in |z| < 1.
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Proof. Set F (z) = Df(z). Since |h′(0)| > |g′(0)|, it is a simple exercise to see that

JF (0) = |h′(0)|2 − |g′(0)|2 > 0

and hence F (z) is locally univalent at the origin. Also, F (z) = Df(z) ̸= 0 for all

z ∈ D\{0} and satisfies the condition∫ 2π

0

∣∣∣∣Re

(
DF (z)

F (z)

)∣∣∣∣ dθ < 4π, z = reiθ, 0 < r < 1.

This follows using (4.1) and the relation

Re

(
DF (z)

F (z)

)
= Re

(
D2f(z)

Df(z)

)
, z ∈ D\{0}.

Thus, by Lemma J, we conclude that F (z) = Df(z) is starlike in one direction.

Hence, from Theorem Q, it is evident that f(z) is convex in one direction and

univalent on |z| < r for every r such that 0 < r < 1. This is the same as saying that

f(z) is univalent and convex in one direction in D. This completes the proof.

Theorem 4.1. Let f = h + g ∈ H such that Df(z) ̸= 0 in D \ {0} and |h′(0)| >
|g′(0)|. For some n ∈ N, if∣∣∣∣Re

(
D2f(z)

Df(z)

)∣∣∣∣ < |1 + Re{α0z
n}|, z ∈ D, (4.2)

where α0 = 1/ cos(t0) and t0 is the positive root of the equation

tan t = t + (π/2), 0 < t < π/2, (4.3)

then f(z) is convex in one direction, and hence f(z) is univalent in D. Note that

here α0 ≈ 2.97169.

Proof. Suppose that f satisfies the condition (4.2) for some n ∈ N, then it follows

that ∫ 2π

0

∣∣∣∣Re

(
D2f(z)

Df(z)

)∣∣∣∣ dθ =

∫ 2π

0

∣∣∣∣Re

(
D2f(reiθ)

Df(reiθ)

)∣∣∣∣ dθ

<

∫ 2π

0

|1 + Re{α0r
neinθ}| dθ

where 0 < r < 1. Since the integrand |1 + Re{α0r
neinθ}| is a subharmonic function

in D, it follows that the integral
∫ 2π

0
|1 + Re{α0r

neinθ}| dθ is an increasing function
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of r [16, p. 9, Theorem 1.6]. Therefore, letting r → 1, we get that∫ 2π

0

∣∣∣∣Re

(
D2f(z)

Df(z)

)∣∣∣∣ dθ <

∫ 2π

0

|1 + α0 cos(nθ)| dθ.

We know that cos−1(−1/α0) = π − cos−1(1/α0). Let us denote the constants

cos−1(−1/α0) and cos−1(1/α0) by s0 and t0, respectively, in order to simplify the

expressions. This gives ∫ 2π

0

|1 + α0 cos(nθ)| dθ

=

∫ s0
n

0

(1 + α0 cos(nθ)) dθ +
n−1∑
k=1

∫ 2kπ
n

+
s0
n

2kπ
n

− s0
n

(1 + α0 cos(nθ)) dθ

−
n−1∑
k=0

∫ 2(k+1)π
n

− s0
n

2kπ
n

+
s0
n

(1 + α0 cos(nθ)) dθ +

∫ 2π

2π− s0
n

(1 + α0 cos(nθ)) dθ

=

∫ π
n
− t0

n

0

(1 + α0 cos(nθ)) dθ +
n−1∑
k=1

∫ (2k+1)π
n

− t0
n

(2k−1)π
n

+
t0
n

(1 + α0 cos(nθ)) dθ

−
n−1∑
k=0

∫ (2k+1)π
n

+
t0
n

(2k+1)π
n

− t0
n

(1 + α0 cos(nθ)) dθ +

∫ 2π

(2n−1)π
n

+
t0
n

(1 + α0 cos(nθ)) dθ

=
(
θ +

α0

n
sin(nθ)

)π
n
− t0

n

0
+

n−1∑
k=1

(
θ +

α0

n
sin(nθ)

) (2k+1)π
n

− t0
n

(2k−1)π
n

+
t0
n

−
n−1∑
k=0

(
θ +

α0

n
sin(nθ)

) (2k+1)π
n

+
t0
n

(2k+1)π
n

− t0
n

+
(
θ +

α0

n
sin(nθ)

)2π
(2n−1)π

n
+

t0
n

= 2

(
π

n
− t0

n
+

α0

n
sin t0

)
+

n−1∑
k=1

(
2π

n
− 2t0

n
+

2α0

n
sin t0

)

−
n−1∑
k=0

(
2t0
n

− 2α0

n
sin t0

)
= 4π + [−2π − 4t0 + 4α0 sin t0] .

Therefore, by Lemma 4.1, f(z) is convex in one direction in D, and hence f(z) is

univalent in D, whenever

−2π − 4t0 + 4α0 sin t0 = 0,

i.e., tan t0 = t0 + π/2, which is the same as the condition mentioned in (4.3).

Computation shows that t0 ≈ 1.22758. This completes the proof.

Remark 4.1. Theorem 4.1 is a generalization of [50, Theorem 2.1], in which

the authors discussed the case for analytic functions with a standard function as
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integrand in the right hand side. Moreover, from Theorem 4.1, it is evident that

[50, Theorem 2.1] can be improved further.

Corollary 4.1. Let f = h + g ∈ H such that f(z) ̸= 0 for all z ∈ D\{0} and

|h′(0)| > |g′(0)|. Suppose that the function f satisfies the following condition

∣∣∣∣Re

(
Df(z)

f(z)

)∣∣∣∣ < |1 + Re{α0z
n}|, z ∈ D, n ∈ N, (4.4)

where α0 = 1/ cos(t0) and t0 is the positive root of the equation

tan t = t + π/2, 0 < t < π/2.

Then, the function f is starlike in one direction and the function F defined by

F (z) = H(z) + G(z) =

∫ z

0

h(t)

t
dt−

∫ z

0

g(t)

t
dt

is univalent and convex in one direction in D.

Proof. Suppose that f satisfies the inequality (4.4), the proof technique of Theorem

4.1, and Lemma J give that f is starlike in one direction. From the definition of

F (z), it is clear that DF (z) = zH ′(z) − zG′(z) = f(z), and D2F (z) = Df(z), and

hence F is univalent and convex in one direction in D, using Theorem Q.

Lemma 4.2. Let f = h + g ∈ H with g′(0) = 0, is sense-preserving and Df(z) ̸= 0

in D \ {0}. If

h(z) ∗ Aζ(z) + g(z) ∗Bζ(z) ̸= 0 for all |ζ| = 1, 0 < |z| < 1, (4.5)

where

Aζ(z) =
2z + (2ζ − 2)z2

(1 − z)3
and Bζ(z) =

(2ζ − 2)z + 2z2

(1 − z)3
,

then f(z) is convex in one direction, and hence f(z) is univalent in D.

Proof. The particular case when α = 3, in Theorem R, gives that if f satisfies∣∣∣∣1 − Re

(
D2f(reiθ)

Df(reiθ)

)∣∣∣∣ < 2, for all z = reiθ in D \ {0},

then f is convex in one direction. Therefore, the following inequality∣∣∣∣1 − D2f(reiθ)

Df(reiθ)

∣∣∣∣ < 2, for all z = reiθ in D \ {0}, (4.6)
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is sufficient for the function f to be convex in one direction. The equivalent form of

inequality (4.6) is ∣∣∣∣∣1 − z(zh′(z))′ + z(zg′(z))′

zh′(z) − zg′(z)

∣∣∣∣∣ < 2.

Since z(zh′(z))′ + z(zg′(z))′/(zh′(z) − zg′(z)) = 1 at z = 0, the above condition is

equivalent to

1 − z(zh′(z))′ + z(zg′(z))′

zh′(z) − zg′(z)
̸= 2

ζ
, |ζ| = 1, 0 < |z| < 1.

A routine computation gives that

0 ̸= ζ[z(zh′(z))′ + z(zg′(z))′] − (ζ − 2)[zh′(z) − zg′(z)]

= zh′(z) ∗
[

ζz

(1 − z)2
− (ζ − 2)z

(1 − z)

]
+ zg′(z) ∗

[
ζz

(1 − z)2
+

(ζ − 2)z

(1 − z)

]
= h(z) ∗ z

[
2z + (ζ − 2)z2

(1 − z)2

]′
+ g(z) ∗ z

[
(2ζ − 2)z + (2 − ζ)z2

(1 − z)2

]′
= h(z) ∗

[
2z + (2ζ − 2)z2

(1 − z)3

]
+ g(z) ∗

[
(2ζ − 2)z + 2z2

(1 − z)3

]
,

which is the required condition (4.5).

Our next result gives a coefficient criterion for a complex-valued harmonic

function f to be convex in one direction in D.

Theorem 4.2. Let f = h+g = z+
∑∞

n=2 anz
n+
∑∞

n=2 bnz
n ∈ H be sense-preserving

and Df(z) ̸= 0 in D \ {0}. If

∞∑
n=2

(
n2 + n

2

)
|an| +

∞∑
n=2

(
n2 + 3n

2

)
|bn| ≤ 1, (4.7)

then f(z) is convex in one direction, and hence f(z) is univalent in D. Moreover,

the bound is sharp.

Proof. From Lemma 4.2, we can infer that it is sufficient to prove that condition

(4.5) holds for f = h + g, whenever f satisfies the inequality (4.7). Consider the

quantityy ∣∣∣∣∣h(z) ∗
[

2z + (2ζ − 2)z2

(1 − z)3

]
+ g(z) ∗

[
(2ζ − 2)z + 2z2

(1 − z)3

] ∣∣∣∣∣
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=

∣∣∣∣∣2z +
∞∑
n=2

[
2

(
n + 1

2

)
+

(
n

2

)
(2ζ − 2)

]
anz

n

+
∞∑
n=2

[(
n + 1

2

)
(2ζ − 2) + 2

(
n

2

)]
bnzn

∣∣∣∣∣
≥ |z|

[
2 −

∞∑
n=2

∣∣∣∣2(n + 1

2

)
− 2

(
n

2

)
+ 2ζ

(
n

2

)∣∣∣∣ |an||z|n−1

−
∞∑
n=2

∣∣∣∣2(n2
)
− 2

(
n + 1

2

)
+ 2ζ

(
n + 1

2

)∣∣∣∣ |bn||z|n−1

]

> |z|

[
2 −

∞∑
n=2

(
2

(
n + 1

2

)
− 2

(
n

2

)
+ 2|ζ|

(
n

2

))
|an|

−
∞∑
n=2

(∣∣∣∣∣2
(
n

2

)
− 2

(
n + 1

2

)∣∣∣∣∣+ 2|ζ|
(
n + 1

2

))
|bn|

]

= 2|z|

[
1 −

∞∑
n=2

(
n2 + n

2

)
|an| −

∞∑
n=2

(
n2 + 3n

2

)
|bn|

]
.

The last expression is non negative, whenever the condition (4.7) holds. To show the

sharpness of the inequality (4.7), we see that the sense-preserving univalent harmonic

functions fn(z) = z + (2/(n2 + 3n))zn satisfy the inequality (4.7) with equality.

Moreover, a usual computation shows that |1 − (D2fn(reiθ)/Dfn(reiθ))| = 2 at the

boundary point z = e2πi/(n+1) i.e., the equality holds in (4.6) for the functions fn(z).

This proves that the bound is sharp.

Corollary 4.2. Let h(z) = z +
∑∞

n=2 anz
n be a normalized analytic function in

D. If
∑∞

n=2
n2+n

2
|an| ≤ 1, then h(z) is univalent and convex in one direction in D.

Moreover, the bound is sharp.

Proof. The proof follows simply by taking bn = 0 for all n ∈ N in the proof of

the Theorem 4.2. Furthermore, a similar argument as in the proof of the above

theorem shows that the bound is sharp and is attained by the functions hn(z) =

z + (2/(n2 + n))zn. In other sense, we can say that the factor (n2 + n)/2 given in

the hypothesis cannot be improved further.

Remark 4.2. There are a large number of articles in the literature where various

authors have obtained the coefficient conditions for an analytic/harmonic function

to be a convex, starlike and close-to-convex function. Theorem 4.2 is first of its kind

to give a coefficient condition for an analytic/harmonic function to be convex in one

direction in D.
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4.2 A class of functions convex in one direction

As an application of the coefficient criterion given in Theorem 4.2, we provide

here a method to construct a class of functions convex in one direction, using

Gaussian hypergeometric function F (a, b; c; z) and Lemma A, which have already

been discussed in Section 2.2.

Theorem 4.3. Let a > 0, b > 0 and c be a positive real number such that c > a+b+2.

Suppose that f(z) = z + αz2F (a, b; c; z), α ∈ C \ {0}. If

Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)

[
(ab)(a + 1)(b + 1)

2(c− a− b− 2)
+ 5(c−a− b− 1) + 4ab

]
≤ 1

|α|
, (4.8)

then f(z) is univalent and convex in one direction in D.

Proof. Let h(z) = z and g(z) =
∑∞

n=2 bnz
n = αz2F (a, b; c; z). Using (2.7), we get

bn = α
(a)n−2(b)n−2

(c)n−2(n− 2)!
for n ≥ 2.

It is sufficient to establish that A =
∑∞

n=2(
n2+3n

2
)|bn| ≤ 1, according to Theorem

4.2. The aforementioned expression for bn gives that

A =
|α|
2

∞∑
n=2

(n2 + 3n)(a)n−2(b)n−2

(c)n−2(n− 2)!

=
|α|
2

∞∑
n=0

[(n + 2)2 + 3(n + 2)](a)n(b)n
(c)n(n)!

=
|α|
2

(
∞∑
n=0

(n + 1)2(a)n(b)n
(c)n(n)!

+ 5
∞∑
n=0

(n + 1)(a)n(b)n
(c)n(n)!

+ 4
∞∑
n=0

(a)n(b)n
(c)n(n)!

)

Since, we have c > a + b + 2, so using Lemma A, we get

A =
|α|
2

(
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

(
(a)2(b)2

(c− a− b− 2)2
+

3ab

c− a− b− 1
+ 1

)

+ 5
Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)
(ab + c− a− b− 1) + 4

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

)

= |α|

(
Γ(c)Γ(c− a− b− 1)

Γ(c− a)Γ(c− b)

[
(ab)(a + 1)(b + 1)

2(c− a− b− 2)
+ 5(c− a− b− 1) + 4ab

])
.

Therefore A ≤ 1, whenever (4.8) holds, and hence f(z) is convex in one direction in

D.
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4.3 Close-to-convex functions

The following theorem by Ponnusamy et al. [53] gives sufficient condition for a

complex-valued harmonic function to be close-to-convex in D.

Theorem S. Suppose that f ∈ H is sense-preserving and f(z) ̸= 0 for z ∈ D\{0}.

If f satisfies∫ θ2

θ1

Re

(
D2f(reiθ)

Df(reiθ)

)
dθ > −π, 0 < r < 1, θ1 < θ2 < θ1 + 2π,

then f is univalent, and close-to-convex in D.

In order to discuss our results on close-to-convex harmonic mappings, we consider

the class of Schwarz functions defined by

β = {ω : ω is analytic in D, |ω(z)| < 1, and ω(0) = 0}.

Theorem 4.4. Suppose that f = h + g ∈ H is sense-preserving and f(z) ̸= 0 for

z ∈ D\{0}. Let f satisfies

Re

(
D2f(z)

Df(z)

)
> −Re

(
zω′(z)

1 − ω(z)

)
+ c, z = reiθ, 0 < r < 1, (4.9)

for some c, −1
2
< c ≤ 0, and for some ω ∈ β. If |ω| < cos(cπ) in D, then f(z) is

univalent and close-to-convex in D.

Proof. Suppose that f = h + g ∈ H is sense-preserving, f(z) ̸= 0 for z ∈ D\{0}
and it satisfies the condition (4.9). For each r (0 < r < 1) and for each pair of real

numbers θ1 and θ2 with θ1 < θ2 < θ1 + 2π, we then get that∫ θ2

θ1

Re

(
D2f(z)

Df(z)

)
dθ >

∫ θ2

θ1

(
Re

(
−reiθω′(reiθ)

1 − ω(reiθ)

)
+ c

)
dθ

=

∫ z2=reiθ2

z1=reiθ1
Re

(
−zω′(z)

1 − ω(z)

dz

iz

)
+ c(θ2 − θ1)

=

∫ z2

z1

Im

(
ω′(z)

ω(z) − 1
dz

)
+ c(θ2 − θ1)

= Im

(∫ z2

z1

ω′(z)

ω(z) − 1
dz

)
+ c(θ2 − θ1)

= Im

(∫ z2

z1

d(log{ω(z) − 1})

)
+ c(θ2 − θ1)

= ∆ ̂{z1,z2}
arg{ω(z) − 1} + c(θ2 − θ1)
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≥ −2 arcsin(cos(π|c|)) + c(θ2 − θ1)

> −2
(π

2
− π|c|

)
− 2π|c|

= −π.

Here, ∆ ̂{z1,z2}
arg k represents the total change in the argument of a non-vanishing

continuous function k along the arc {reiθ; θ1 ≤ θ ≤ θ2}. Therefore, by Theorem S,

we can see that f(z) is univalent and close-to-convex in D.

Remark 4.3. In Theorem 4.4, we note that the Schwarz function ω ∈ β can be

arbitrary and it is not necessarily the dilatation of f .

We observe that ω(z) → 0 whenever c → (−1/2)+. On the other hand, the case

c = −1/2 is covered in Theorem 4.5.

Theorem 4.5. Suppose that f = h + g ∈ H is sense-preserving and f(z) ̸= 0 for

z ∈ D\{0}. If f satisfies

Re

(
D2f(z)

Df(z)

)
> −Re

(
zω′(z)

1 − ω(z)

)
− 1

2
, z = reiθ, 0 < r < 1, (4.10)

where ω(z) ∈ β satisfies the condition

Re

(
zω′(z)

1 − ω(z)

)
+

1

2
> 0, for all z ∈ D, (4.11)

then f(z) is univalent, and close-to-convex in D.

Proof. For each r (0 < r < 1) and for each pair of real numbers θ1 and θ2 with

θ1 < θ2 < θ1 + 2π, using (4.11) we have∫ θ2

θ1

(
Re

(
reiθω′(reiθ)

1 − ω(reiθ)

)
+

1

2

)
dθ ≤

∫ 2π

0

(
Re

(
reiθω′(reiθ)

1 − ω(reiθ)

)
+

1

2

)
dθ

= Re

[∫
|z|=r

(
ω′(z)

i(1 − ω(z))
+

1

2iz

)
dz

]
= Re

[∫
|z|=r

dz

2iz

]
= π.

Hence, it follows from (4.10) that∫ θ2

θ1

Re

(
D2f(z)

Df(z)

)
dθ > −π,
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for each r (0 < r < 1) and for each pair of real numbers θ1 and θ2 with θ1 <

θ2 < θ1 + 2π. Therefore, by Theorem S, we can see that f(z) is univalent, and

close-to-convex in D.

Corollary 4.3. Suppose that f = h + g ∈ H is sense-preserving and f(z) ̸= 0 for

z ∈ D\{0}. If f satisfies

Re

(
D2f(z)

Df(z)

)
> −Re

(
λknzn

1 − λkzn

)
− 1

2
, z = reiθ, 0 < r < 1, (4.12)

for some λ such that |λ| = 1, n ∈ N and 0 < k ≤ 1/(2n− 1), then f(z) is univalent

and close-to-convex in D.

Proof. Set kzn = ω(z). Then

λknzn

1 − λkzn
=

λzω′(z)

1 − λω(z)
=: W (z), z ∈ D,

where |λ| = 1. For each |λ| = 1, it is easy to see that ζ = W (z) maps D onto the

disk ∣∣∣∣ζ − nk2

1 − k2

∣∣∣∣ < nk

1 − k2
.

It follows that Re(W (z)) > −nk/(1 + k) for all z ∈ D, and therefore, Re(W (z)) >

−1/2 in D whenever 0 < k ≤ 1/(2n − 1). The conclusion follows from Theorem

4.5.
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Chapter 5

Zeros of Harmonic Polynomials

Let

p(z) = zn+an−1z
n−1+ ....+a0+bmzm + bm−1zm−1 + .... + b0, (n > m), (5.1)

be a harmonic polynomial of degree n > 1. Sheil-Small [59] proposed that the

maximum number of zeros of the polynomial p(z) in (5.1) is n2, a conjecture that was

subsequently proven by Wilmshurst [63]. Wilmshurst demonstrated the sharpness

of the case when m = n, n− 1, and additionally proposed that the upper bound on

the number of zeros is 3n−2 for the case where m = 1. Khavinson and Świa̧tek [35]

recently proved this conjecture and also established the sharpness of the case when

n = 3 (it is trivial when n = 2). The sharpness of the bound 3n−2 was additionally

provided by Bshouty and Lyzzaik [6] for the particular values n = 4, 5, 6, 8, which

was finally settled by Geyer [23] for each value of n.

Brilleslyper et al. [4] recently examined the zeros of a one parameter family

of harmonic trinomials. They established the relationship between the parameter

and the number of zeros. Subsequently, Gao et al. [21] determined the location

of the zeros of these trinomials. The zeros of a general harmonic polynomial as

given in (5.1) have not yet been addressed. The main objective of this chapter

is to determine the location of the zeros of a general harmonic polynomial. We

determine the region encompassing all the zeros of the specified harmonic polynomial

by establishing inequalities involving its coefficients. Through diverse methodologies

like the matrix method and other matrix inequalities, we’ve described several regions

indicating the potential locations of these zeros. The various regions obtained in this

analysis may offer enhancements over one another based on specific assumptions

about the coefficients. However, they may also be difficult to compare in certain

cases. Therefore, it is worth mentioning different regions. By utilizing these regions

and applying the argument principle for harmonic mappings [15], as stated below in

Theorem T, we have examined the behavior and distribution of zeros for harmonic

polynomials of the form q(z) = h(z) − z.

Theorem T. (Argument Principle for Harmonic Functions) Let f be a harmonic
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function in a Jordan domain D with boundary C. Suppose f is continuous in D and

f(z) ̸= 0 on C, and there are no zeros of f in D for which the dilatation ω(z) has

modulus value 1. Then the total change in the argument of f(z) as C is traversed in

the positive direction is 2πN, where N is the number of zeros of f(z) in D counted

according to their multiplicity.

To substantiate the main findings of this chapter, we rely on the so

called Gershgorin’s Theorem [22]. This theorem adeptly describes the regions

encapsulating the spectrum of a matrix.

Theorem U. (Gershgorin’s Theorem) Let A = [aij] be an n × n complex matrix.

Then each eigenvalue of A lies in the union of the disks

|z − aii| ≤
∑
j ̸=i

|aij|, i = 1, 2, ....., n.

5.1 Location of the zeros of a general harmonic

polynomial

The statement that the zeros of an analytic polynomial correspond to the eigenvalues

of its companion matrix is widely recognized (see, [28], [44]). Our first result on the

location of the zeros of a harmonic polynomial relies on the previously mentioned

statement, and the Gershgorin’s Theorem, which provides the range within which

the eigenvalues of a matrix are situated.

Theorem 5.1. Let p(z) be a harmonic polynomial, as in (5.1). Then, all the zeros

of p(z) lie in the union of closed unit disk and an annular region given as

|z| ≤ 1 and |bn−1| −
n−2∑
j=0

(|aj| + |bj|) ≤ |z + an−1| ≤ |bn−1| +
n−2∑
j=0

(|aj| + |bj|),

whenever |bn−1| >
∑n−2

j=0 (|aj| + |bj|). On the other hand, all the zeros of p(z) lie in

the union of disks

|z| ≤ 1 and |z + an−1| ≤ |bn−1| +
n−2∑
j=0

(|aj| + |bj|),

whenever |bn−1| ≤
∑n−2

j=0 (|aj| + |bj|).

Proof. Set h(z) = zn + an−1z
n−1 + .... + a0 and g(z) = bmz

m + bm−1z
m−1 + .... + b0.
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Observe that if z0 is a zero of the polynomial p(z) = h(z)+g(z), i.e., if h(z0)+g(z0) =

0, then there exist some θ0 ∈ R, such that h(z0) + eiθ0g(z0) = 0. This implies that if

z0 is a zero of the harmonic polynomial p(z), then it is also a zero of some polynomial

pθ(z) ∈ Fθ, where Fθ is a family of analytic polynomials defined as

Fθ := {h(z) + eiθg(z) : θ ∈ R}.

Therefore, it is sufficient to find the region containing all the zeros of some arbitrary

analytic polynomial pθ ∈ Fθ. Let us examine the polynomial pθ(z) = h(z) + eiθg(z),

θ ∈ R, i.e.,

pθ(z) = (zn + an−1z
n−1 + .... + a0) + eiθ(bmz

m + bm−1z
m−1 + .... + b0) (5.2)

= zn + (an−1 + eiθbn−1)z
n−1 + (an−2 + eiθbn−2)z

n−2 + .... + (a0 + eiθb0),

where bj = 0 when j = m + 1,m + 2, ...., n− 1. We can rewrite pθ(z) in the form of

a matrix

pθ(z) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−z 1 0 ... 0 0

0 −z 1 ... 0 0

. . . ... . .

. . . ... . .

0 0 0 ... −z 1

−c0 −c1 −c2 ... −cn−2 −(cn−1 + z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.3)

where cj = aj + eiθbj, j = 0, 1, ...., n − 1. Therefore, pθ(z) is nothing but the

characteristic polynomial of an n× n matrix A, called the companion matrix, given

by

A =



0 1 0 ... 0 0

0 0 1 ... 0 0

. . . ... . .

. . . ... . .

0 0 0 ... 0 1

−c0 −c1 −c2 ... −cn−2 −cn−1


. (5.4)

Gershgorin’s Theorem (Theorem U) subsequently establishes that the zeros of the

polynomial pθ(z) lie in the union of the disks

|z| ≤ 1 and |z + an−1 + eiθbn−1| ≤
n−2∑
j=0

(|aj| + |bj|).

A simple observation leads to the hypothesis.



64 Chapter 5. Zeros of Harmonic Polynomials

Remark 5.1. Gershgorin’s Theorem corresponding to the deleted columns sum

gives that the zeros of the harmonic polynomial in (5.1) lie in the union of an

annular region and the disks given as

|bn−1| − 1 ≤ |z + an−1| ≤ |bn−1| + 1; |z| ≤ (|a0| + |b0|); and

|z| ≤ 1 + |aj| + |bj|, j = 1, ...., n− 2,

whenever |bn−1| > 1, and on the other hand, zeros lie in the union of disks

|z + an−1| ≤ |bn−1| + 1; |z| ≤ (|a0| + |b0|); and

|z| ≤ 1 + |aj| + |bj|, j = 1, ...., n− 2,

whenever |bn−1| ≤ 1. To establish a more stringent region, one can examine the

overlapping area of aforementioned region and the region obtained in Theorem 5.1.

5.2 Application of the Argument principle for

harmonic functions

For the sake of completeness, let us first review several fundamental characteristics

of the harmonic mappings that were previously discussed in Introduction 1.3. A

complex-valued harmonic function f = h + g, not identically constant, is said to

be sense-preserving in a domain D if it satisfies fz = ωfz, where ω is an analytic

function with |ω(z)| < 1 in D, called the second complex dilatation of f . In contrast,

f is said to be sense-reversing in a domain D if f is sense-preserving in D. The curve

Γ = {z : |ω(z)| = 1} is called the critical curve. The Jacobian of the function f can

be defined as Jf (z) = |fz(z)|2−|fz(z)|2 = |h′(z)|2−|g′(z)|2. Therefore, in particular,

Jf (z) > 0 whenever fz(z) ̸= 0, for a sense-preserving function f . A point at which

the function f is neither sense-preserving nor sense-reversing is called a singular

point. Clearly Jf (z) = 0 at every singular point, but the converse need not be true.

We define the order of a zero z0 of a harmonic function f = h + g with the help of

power series expansions of h and g about z0, which are given as

h(z) = c0 +
∞∑
k=n

ck(z − z0)
k and g(z) = d0 +

∞∑
k=m

dk(z − z0)
k, (5.5)

where n ≥ 1, m ≥ 1, and cn ̸= 0, dm ̸= 0. If z0 lies in the sense-preserving region

then it follows that m ≥ n, and the order of the zero is n. In contrast, if z0 lies in

the sense-reversing region then it follows that n ≥ m, and the order of the zero is
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−m. The order of a singular zero is not defined.

Let’s explore the properties of the polynomial q(z) = h(z) − z, where h(z) is

an analytic polynomial with (deg h) ≥ 1. Our focus will be on understanding how

the zeros of q(z) influence its behavior. First, we prove in Lemma 5.1, that the

non-singular zeros of the harmonic polynomials of the type q(z) = h(z) − z, are

all distinct and have order 1 or −1. Hence, counting the number of zeros according

to multiplicity is the same as counting the number of distinct zeros. Further, in

Remark 5.2, we observe that the sum of the orders of the non-singular zeros of the

harmonic polynomial in (5.1) is equal to n. Therefore, the argument principle for

harmonic functions and the region described in Theorem 5.1, can be employed to

examine the distribution of zeros of the harmonic polynomials q(z) = h(z) − z.

Lemma 5.1. All zeros (excluding singular zeros) of the harmonic polynomial q(z) =

h(z) − z, where h(z) is an analytic polynomial with (deg h) ≥ 1, are distinct and

have order 1 or −1.

Proof. Let z0 be a zero of the polynomial q(z) = h(z) + g(z), with g(z) = −z. From

the power series expansion of h and g about z0 as given in (5.5), we have m = 1

(because d1 = −1, which is non-zero). Thus, the order of any zero of q(z) is 1 (in

the sense-preserving region) or −1 (in the sense-reversing region).

Remark 5.2. We can observe that the sum of the orders of the non-singular zeros

of the harmonic polynomial p(z) in (5.1) is indeed n. Since n > m, for sufficiently

large positive number R, we have |p(z) − zn| < |z|n, on |z| = R. Then, the result

follows from Rouché’s Theorem for harmonic functions [15].

Despite knowing that zeros of the harmonic polynomial q(z) = h(z) − z

are distinct, the usefulness of the argument principle and Rouché’s Theorem for

harmonic mappings is limited in providing a precise count of zeros compared to their

effectiveness in the analytic case. Specifically, if we apply the argument principle

to the regions containing these zeros and it yields a count of n, this count does

not necessarily represent the total count of zeros of the polynomial. This happens

because some of the zeros can lie in the sense-preserving region, while others may lie

in the sense-reversing region. Remark 5.2 gives that the total number of zeros will

then be n+ 2k, where n is the degree of the analytic polynomial h and k represents

the number of zeros in sense-reversing region. Therefore, the argument principle

for harmonic mappings is only reliable if the polynomial is fully sense-preserving or

fully sense-reversing within the specified region. Let us illustrate this with the help

of the following example:
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Example 4. Let us consider the harmonic polynomial q(z) = 1
2
(z3 − 3z) + z as

presented by Khavinson and Świa̧tek [35]. They demonstrated that the maximum

number of zeros of the polynomial h(z)−z of deg n, bounded by 3n−2, is precisely

reached for the above polynomial q(z). Lemma 5.1 and Theorem 5.1 show that

the zeros of q(z) are distinct and lie in the disk |z| ≤ 5. Figure 5.1 shows that the

winding number of the image curve q(|z| = 5) about the origin is 3. However, this

observation does not guarantee that the total number of zeros of q(z) are 3. In fact,

Figure 5.2, where the dots represent the distinct zeros of q(z) and the curves denote

the critical curve for q(z), illustrates that there are a total of 7 zeros. Among

these, 2 are the in sense-reversing region, while 5 are in the sense-preserving region,

resulting in the value n = 3, as observed in Remark 5.2.

Figure 5.1: Image of disk |z| ≤ 5
under 1

2
(z3 − 3z) + z.

Figure 5.2: Zeros of 1
2
(z3−3z)+z and

critical curve |z2 − 1| = 2
3
.

Remark 5.3. Analyzing the order of zero of a harmonic polynomial uncovers a

significant insight: if the polynomial p(z) in (5.1) maintains its sense-preserving

nature in every neighborhood of its zeros, then the total count of zeros for p(z) is

exactly n. For instance, let’s consider the harmonic polynomial p(z) = h(z)+αh(z),

where α ∈ C with |α| < 1, and (deg h) = n. In this scenario, p(z) must indeed

possess precisely n zeros, counting the multiplicities.

5.3 Locations obtained using matrix inequalities

Let M be an n×n matrix with complex number entries. The numerical range of M,

denoted as W (M), is defined as W (M) := {⟨Mx, x⟩ : x ∈ Cn, ||x|| = 1}, where ⟨., .⟩
and ||.|| :=

√
⟨., .⟩ denote the usual inner product and the corresponding norm in Cn,

respectively. Let r(M) := max{|z| : z ∈ σ(M)} and w(M) := max{|z| : z ∈ W (M)}
denote the spectral radius and the numerical radius of the matrix M, respectively,

where σ(M) (the set of all eigenvalues) is the spectrum of the matrix M . Here, we
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recall the inclusion

r(M) ≤ w(M) ≤ ||M ||, where ||M || = sup
||x||=1

||Mx||. (5.6)

The set of the zeros of an analytic polynomial coincides with the spectrum of its

companion matrix, as previously mentioned. Thus, the task of finding the upper

bound for the modulus value of a root of an analytic polynomial can be approached

by considering several matrix inequalities that involve the spectral radius, numerical

radius, and spectral norm. There are numerous publications in the literature (for

example, see [10], [19], [20], [28], and [44]) that demonstrate the practicality of

utilizing these inequalities to identify different locations that contain the zeros of

an analytic polynomial. Our subsequent outcomes (Theorems 5.2 and 5.3) offer

additional localization of the zeros of the harmonic polynomial in (5.1) by employing

certain matrix inequalities. As previously stated, it is not possible to directly

compare these locations with the ones previously collected.

Let H and K be two Hilbert spaces with inner products ⟨., .⟩H and ⟨., .⟩K ,
respectively. Let us recall the tensor product space H ⊗K [13, Chapter 16.6], with

the well-known inner product determined by ⟨h1 ⊗ k1, h2 ⊗ k2⟩ = ⟨h1, h2⟩H⟨k1, k2⟩K ,
for all h1, h2 ∈ H and k1, k2 ∈ K.

Theorem 5.2. Let p(z) be a harmonic polynomial, as in (5.1). Then, all the zeros

of p(z) lie in the annular region given by∣∣∣|a0| − |b0|
∣∣∣(

1 +
∑n−1

j=0 (|aj| + |bj|)2
)1/2 ≤ |z| ≤

(
1 +

n−1∑
j=0

(|aj| + |bj|)2
)1/2

.

Proof. As seen in the proof of Theorem 5.1, it is sufficient to examine the possible

locations of the zeros of the analytic polynomial pθ(z), mentioned in (5.2). For

u, v ∈ Cn, define a operator u ⊗ v such that (u ⊗ v)w = ⟨w, v⟩u for w ∈ Cn.

Let {e1, e2, ...., en} be the orthonormal basis for the unitary space Cn and x =

c∗0e1 + .... + c∗n−1en, where c∗j ∈ C, j = 0, 1, ...., n− 1, is in Cn. Then the companion

matrix A as derived in (5.4) can be written as A = P − en ⊗ x, where

P =



0 1 0 ... 0 0

0 0 1 ... 0 0

. . . ... . .

. . . ... . .

0 0 0 ... 0 1

0 0 0 ... 0 0


. (5.7)
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We can observe that P ∗en is a zero vector and hence P ∗(en ⊗ x) = P ∗en ⊗ x are the

zero operators. Therefore,

||A||2 = ||A∗A|| = ||(P − en ⊗ x)∗(P − en ⊗ x)||

= ||P ∗P + x⊗ x|| ≤ ||P ∗P || + ||x⊗ x||

≤ 1 + ||x||2.

Since ||x||2 =
∑n−1

j=0 |cj|2, from inclusion (5.6), it can be deduced that if z is a zero

of the polynomial pθ(z), then

|z| ≤

(
1 +

n−1∑
j=0

|cj|2
)1/2

,

where cj = aj + eiθbj, j = 0, 1, ...., n − 1, and hence the right hand side inequality

follows. To establish the lower bound, we can utilize the upper bound on the

polynomial znpθ(1/z)/c0, resulting in

|z| ≥ |c0|(
1 +

∑n−1
j=0 |cj|2

)1/2 ,
which gives the lower bound. This completes the proof.

Theorem 5.3. The zeros of the harmonic polynomial in (5.1) lie in the disk given

by

|z| ≤ cos

(
π

n + 1

)
+

√∑n−1
j=0 (|aj| + |bj|)2 + |an−1| + |bn−1|

2
.

Proof. Once again, from the proof of Theorem 5.1, the task involves analyzing

the eigenvalues of the companion matrix A derived in (5.4). Let us rewrite the

companion matrix A as A = P + Q, where P is the same matrix as given in (5.7)

and

Q =



0 0 0 ... 0 0

0 0 0 ... 0 0

. . . ... . .

. . . ... . .

0 0 0 ... 0 0

−c0 −c1 −c2 ... −cn−2 −cn−1


.

Given that Qx = ⟨x, c⟩en, where c = (−c0,−c1, ...,−cn−1)
T and en = (0, 0, ..., 1)T ,
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the estimate for the numerical radius w(Q) can be given as

w(Q) =
||c|| ||en|| + |⟨c, en⟩|

2
=

√∑n−1
j=0 |cj|2 + |cn−1|

2
,

where cj = aj + eiθbj, j = 0, 1, ..., n − 1, (see, [20, Theorem 1]). The estimate for

the numerical radius w(P ) can be given as w(P ) = cos(π/(n+ 1)), as demonstrated

in the work of Davidson et al. [10]. The result now follows using the subadditivity

property w(A) ≤ w(P ) + w(Q), (see, [28]) and the inclusion (5.6).

Remark 5.4. The superiority of the bound obtained in Theorem 5.2, over the bound

obtained in Theorem 5.3, and vice versa, is not always guaranteed. However, when

|an−1| + |bn−1| = 0 and the sum
∑n−2

j=0 (|aj| + |bj|)2 is a significantly large value, the

bound in Theorem 5.3 is better than the upper bound in Theorem 5.2. Similarly,

the bounds in Theorems 5.1 and 5.3 cannot be compared. Under specific conditions,

where |an−1| = |bn−1| = 0, and (|aj| + |bj|) is a significantly large value for atleast

one of j = 0, 1, ..., n − 2, the bound in Theorem 5.3 can serve as an enhancement

over the bounds in Theorem 5.1. However, for a significantly large value of |an−1|,
the bounds may become incomparable.

5.4 Some more zero inclusion regions

A classical solution to the problem of finding an upper bound to the modulus of all

the zeros of an analytic polynomial was given by Cauchy [7] in 1828. It says that

all the zeros of an analytic polynomial h(z) = zn +an−1z
n−1 + ....+a0 lie in the disc

|z| ≤ 1 +B, where B = max
0≤j≤n−1

|aj|. The subsequent outcome we will provide is the

improved harmonic analog of Cauchy’s classical result.

Theorem 5.4. The zeros of the harmonic polynomial in (5.1) lie in the disk given

by

|z| ≤ 1

2
{1 + |an−1| + |bn−1| +

√
(1 − |an−1| − |bn−1|)2 + 4B},

where B = max
0≤j<n−1

(|aj| + |bj|).

Proof. Suppose that

|z| > 1

2
{1 + |an−1| + |bn−1| +

√
(1 − |an−1| − |bn−1|)2 + 4B}.

Since B ≥ 0, it follows from the above expression that |z| > 1, and a simple
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computation leads us to

(|z| − 1)(|z| − |an−1| − |bn−1|) −B > 0. (5.8)

Multiplying and dividing (5.8) by |z|n−1 and (|z| − 1), gives

|z|n − |an−1||z|n−1 − |bn−1||z|n−1 − (B|z|n−1/(|z| − 1)) > 0.

However,

|an−2z
n−2 + an−3z

n−3 + .... + a0 + bn−2zn−2 + bn−3zn−3 + .... + b0|

≤ (|an−2| + |bn−2|)|z|n−2 + (|an−3| + |bn−3|)|z|n−3 + .... + (|a0| + |b0|)

≤ B(|z|n−2 + |z|n−3 + .... + 1)

< B|z|n−1/(|z| − 1),

and

|z|n − |an−1||z|n−1 − |bn−1||z|n−1 ≤ |zn + an−1z
n−1 + bn−1zn−1|.

The previously mentioned inequalities lead us to

|p(z)| ≥ |zn + an−1z
n−1 + bn−1zn−1| − |an−2z

n−2 + .... + a0 + bn−2zn−2 + .... + b0|

> 0.

This completes the proof.

Remark 5.5. The superiority of the bound obtained in Theorem 5.2 over the bound

obtained in Theorem 5.4, and vice versa, is not always guaranteed. However, when

|an−1| + |bn−1| = 0 and B is a significantly large value, the bound in Theorem 5.4

is better than the upper bound in Theorem 5.2. In contrast, when the value of

|an−1| + |bn−1| is significantly large, the bounds exhibit the opposite advantage.

Next, we give another annular region that encompasses all the zeros of the

harmonic polynomial in equation (5.1).

Theorem 5.5. The zeros of the harmonic polynomial in (5.1) lie in the annular

region given by ∣∣∣|a0| − |b0|
∣∣∣

2(1 + A)n−1(nA + 1)
≤ |z| ≤ 1 +

(
1 − 1

(1 + A)n

)
A,

where A = max
0≤j≤n−1

(|aj| + |bj|).
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Proof. First, we will prove the right side inequality. Let us assume that nA ≤ 1.

Then, for |z| = R > 1,

|p(z)| ≥ |z|n − (|an−1| + |bn−1|)|z|n−1 − .....− (|a0| + |b0|)

≥ Rn − A(nRn−1) > 0.

Further, let us assume that nA > 1. Let α = 1 − (1/(1 + A)n), 0 < α < 1. We can

observe that on the circle |z| = 1+αA, the modulus value of the analytic polynomial

pθ(z), mentioned in (5.2), satisfies

|pθ(z)| ≥ |z|n{1 − A

n∑
j=1

|z|−j} = |z|n − A

n−1∑
j=0

|z|j = |z|n − A
|z|n − 1

|z| − 1

= (1 + αA)n − (1/α)((1 + αA)n − 1) > 0,

where the first step follows similar to [44, p. 123, Theorem (27,2)]. This gives that

pθ(z), and hence p(z) has all its zeros in |z| ≤ 1 + αA, and this completes the proof

for the right side inequality.

Next, we will prove the left side inequality. Let us examine the polynomial

gθ(z) = (1 − z)pθ(z)

= zn + c0 − cn−1z
n − zn+1 +

n−1∑
ν=1

(cν − cν−1)z
ν , where (cj = aj + eiθbj),

= c0 + hθ(z), where

hθ(z) = zn − cn−1z
n − zn+1 +

n−1∑
ν=1

(cν − cν−1)z
ν .

When R = 1 + A, then

max
|z|=R

|hθ(z)| ≤ |z|n + (|an−1| + |bn−1|)|z|n + |z|n+1 +
n−1∑
ν=1

(|aν | + |bν |)Rν

+
n−1∑
ν=1

(|aν−1| + |bν−1|)Rν

≤ Rn[R + 1 + A + (2n− 2)A]

= 2(1 + A)n(nA + 1).

Therefore, whenever |z| ≤ R

|gθ(z)| = |c0 + hθ(z)|

≥ |c0| − |hθ(z)|
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≥ |c0| −
|z|

(1 + A)
max

|z|=1+A
|hθ(z)| (Schwarz’s Lemma)

≥ |c0| − 2|z|(1 + A)n−1(nA + 1) > 0,

whenever |z| < |c0|
2(1+A)n−1(nA+1)

, and this completes the proof.
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Conclusion

6.1 Conclusion

In conclusion, this thesis has explored various aspects of univalent harmonic

mappings, contributing to the advancement of the field in several directions.

Through a comprehensive examination spanning five chapters, we have addressed

fundamental questions regarding the geometric properties and univalence of

harmonic functions, and distribution of the zeros of harmonic polynomials.

In the initial chapter, we established foundational concepts and results from

existing literature, setting the stage for our subsequent investigations. In Chapter

2, we focused on determining conditions under which harmonic mappings are

univalent and map the unit disk D onto linearly accessible domains of order β

(non-convex domains) for some β ∈ (0, 1), providing valuable insights into the

geometric properties of these mappings. By extending previous work, we derived

convolution results and coefficient inequalities, paving the way for the construction

of globally area-minimizing minimal surfaces over non-convex domains.

Chapter 3 delved into the properties of odd univalent harmonic functions, offering

sharp coefficient estimates, growth and distortion theorems. Through our analysis,

we expanded the understanding of these functions, particularly in relation to the

harmonic Bieberbach conjecture and their membership in Hardy spaces.

Continuing our exploration in Chapter 4, we investigated harmonic mappings

convex in one direction and close-to-convex mappings, establishing integral

inequalities and sufficient conditions for univalence. This chapter further

explained the geometric properties of harmonic functions, shedding light on their

convexity/close-to-convexity and univalent behavior.

Finally, in Chapter 5, we addressed the challenging problem of determining

the location of zeros of complex-valued harmonic polynomials beyond trinomials.

Employing innovative techniques such as the matrix method and matrix inequalities,

we described regions encompassing the zeros and examined their distribution using

the harmonic analog of the argument principle.
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Collectively, the insights gained from this research lay a solid foundation for

further exploration and advancement in the intricate realm of planar harmonic

mappings.
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