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Abstract

Stiffener Reinforced structures are widely used in many engineering disciplines like aerospace,

marine, civil and automotive. By adding reinforcement to a structure in the form of a

stiffener, the mechanical properties of the structure especially stiffness and fracture tough-

ness are greatly improved without much increase in weight and cost. However, stiffened

structures undergo a localized shift in the neutral plane due to the geometric discontinu-

ities introduced by the stiffener. This shift necessitates careful attention when analyzing

these structures.

Conducting full-scale 3D finite element analyses (FEA) for such structures can be

computationally expensive, particularly during the design optimization phase. To ad-

dress this computational burden, reduced-order models are often favored. The literature

employs various approaches utilizing reduced-order models for plates and beams to an-

alyze stiffened structures efficiently. However, selecting appropriate reduced-order beam

and plate models is crucial, as the accuracy and efficiency of the analysis heavily rely on

this selection. Furthermore, ensuring compatibility between the beam and plate models

and accounting for geometric discontinuities pose challenges in accurately modeling stiff-

ened plates. Most of the approaches found in the literature are based on ad hoc and a

priory assumptions and have their own advantages and shortcomings.

This research addresses this challenge by developing a reduced-order model for the

stiffened plates that captures their deformation behavior accurately with significantly

reduced computational cost. The primary objective is to create a systematic and math-

ematically sound approach for analyzing various stiffened plate configurations, enabling

efficient design optimization.

The core of the work lies in establishing an asymptotically correct reduced-order plate

theory for anisotropic plates. This is achieved by leveraging variational calculus and the

concept of isoenergetics. The theory was derived using first principles avoiding any ad

hoc and a priory assumptions. The derived model accurately captures the deformation

characteristics while significantly reducing computational complexity compared to full-

scale 3D finite element analysis (FEA).

The framework developed for the single-layer anisotropic plates is then extended to

handle more complex scenarios. The plate theory is modified to incorporate analysis of

multilayered composite plates and functionally graded plates, reflecting real-world engi-

neering structures with tailored properties. This allows for the analysis of plates with

varying stiffness and strength profiles throughout their thickness.

ix



Finally, the developed the developed reduced order plate theory is equipped to han-

dle stiffened plates, a crucial component in many engineering applications. The model

can analyze both symmetric and asymmetric stiffener configurations, providing valuable

insights into the influence of stiffener orientation, size, and number on the overall plate

behavior.

Key contributions of the present work are (a) First principles-based derivation of the

reduced order 2D model from the 3D model energy (b) No dependency on the pre-

assumed kinematics, (c) A systematic ordering scheme is employed utilizing the geometry

of the structure and a bound on the maximum value of the strains. (d) The plane stress

condition is a natural outcome of the present mathematical framework (e). The higher-

order derivatives appearing during the dimensional reduction process were dealt with by

a novel isoenergetic approach, reducing the computational complexities.

Overall, this research work presents a powerful tool for engineers by providing a math-

ematically rigorous and computationally efficient framework for analyzing and optimizing

stiffened plates. The developed reduced order model allows for a deeper understanding

of plate deformation behavior under various loading conditions, ultimately leading to

improved design decisions for a diverse range of engineering applications.
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Chapter 1

Introduction

Stiffened structures are frequently used in many engineering disciplines like aerospace,

marine, civil and automotive. These structures strategically integrate stiffeners to en-

hance their mechanical performance, particularly stiffness and fracture toughness. The

reinforcement of structures by stiffeners provides significant improvements with minimal

weight and cost penalties. The design of stiffened structures involves numerous parameters

that influence their performance for a specific application. These include

1. Sizing of the plate and stiffeners

2. The cross-section and material of the stiffeners

3. The spacing and orientation of the stiffeners

Adjusting these parameters is crucial for achieving the most suitable structure for a given

application. This necessitates a mathematically robust, accurate, and computationally

efficient model of such structures for selecting the optimal design. This becomes even

more critical in the present scenario, where weight reduction and structural efficiency are

highly desirable.

The approaches used for analyzing stiffened plates fall into three main categories:

1. Experimental approaches

2. 3D elasticity based approaches

3. Reduced order-based approaches
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CHAPTER 1

Suitably and carefully designed experimental approaches are accurate. However, per-

forming experiments at a very large scale for the selection of the best suitable structure

for a given application is tedious, cumbersome, and very cost-effective. Also, there are

numerous reasons for the experiments to go wrong, which can cause wastage of material

and time. Thus, numerical and analytical approaches are preferred over experimental

analysis. The experimental analysis can be performed after proper numerical and ana-

lytical analysis. Among the numerical and analytical approaches, the 3D elasticity-based

approach is the most fundamental; however, its applicability is limited as they are compu-

tationally intensive. The reduced order-based approaches are simpler and more efficient.

The reduced order models not only offer the analyst the flexibility to alter the geometrical

or material parameters but also provide quick results. Three prominent methods based

on reduced order theories of beams and plates are given below.

1. Orthotropic Plate Approximation [24, 23]

2. Grillage Approximation [41, 40]

3. Separate Analysis and Compatibility [39, 38, 37]

The orthotropic Plate Approximation method simplifies the structure by distributing

the effect of the stiffeners across the plate, treating it as an orthotropic material. This ap-

proach works well when stiffeners are closely spaced. The Grillage Approximation method

incorporates the influence of the plate into the stiffeners by increasing their effective sec-

ond moment of area. However, determining the effective width in this method can be

challenging. Separate Analysis and Compatibility is a more general approach. It ana-

lyzes the plate and stiffeners independently. Compatibility is then ensured by enforcing

equilibrium and continuity conditions along their connection line.

Stiffened plates incorporate plates as a fundamental component. The accuracy and

efficiency of analyzing these stiffened plates with reduced-order models depend heavily

on the chosen reduced-order plate theory. This work addresses this by developing an

asymptotically accurate theory for the plates, which is then implemented for the analysis of

stiffened plates. The following sections outline the motivation, objectives, and a literature

review to identify existing research gaps and justify the need for this new theory
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1.1 Motivation

Plate-like structures, characterized by one dimension that is significantly smaller than

the other two, are predominant in engineering applications. Analyzing their behavior in

full 3D detail can be computationally expensive and often unnecessary. To address this

challenge, engineers have developed reduced-order theories. These theories aim to capture

the essential mechanical behavior of plates with a lower computational expense.

Traditionally, these reduced-order theories rely on ad-hoc (made for a particular pur-

pose or need) and a priori (based on an assumed principle or fact, rather than on actual

observed facts) simplifications. These simplifications limit the suitability of these the-

ories for specific cases, making them unreliable for others. As a result, engineers may

find themselves constantly switching between different reduced-order theories depending

on the specific application, which can be inefficient, time-consuming, and sometimes un-

scientific.

Among the reduced-order plate theories, Equivalent Single-Layer (ESL) theories, par-

ticularly First-order shear deformation plate theory, are known for their computational

efficiency and simplicity. However, their reliance on ad hoc and a priori assumptions about

material behavior or displacement patterns limits their applicability. This motivates the

author to develop an ESL plate theory on mathematically rigorous grounds, avoiding any

ad hoc and a priori assumptions. The aim is to remove the limitations/shortcomings of

the ESL theories while maintaining computational cost comparable to the FSDT plate

theory. This is done using the Variational Asymptotic Method (VAM).

VAM offers a more rigorous alternative for developing reduced-order plate theories.

VAM leverages the energy aspect of the problem: the total potential energy of the de-

formed structure. By utilizing the asymptotic expansion of the energy functional (total

potential energy) associated with the plate, VAM allows us to decompose the complex 3D

problem into two simpler ones:

• A Through-the-thickness 1D analysis: This analysis focuses on how the plate

deforms in the direction of its smallest dimension (thickness).

• A In-plane 2D analysis: This analysis focuses on how the plate deforms in its

larger (in-plane) dimensions.

This decomposition, as illustrated in Fig. 1.1, leads to a more reliable reduced-order

2D plate theory. The resulting theory captures the details of plate deformation more

3
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3D Plate

Through-the-

thickness 1D

analysis

In-plane 2D analysis

Figure 1.1: Decomposition of the complex 3D problem in through-the-thickness 1D prob-
lem and in-plane 2D problem

accurately than assumption-based plate theories while being significantly more computa-

tionally efficient than a full 3D analysis.

However, VAM-derived theories include higher-order derivatives of displacements and/or

strains in their governing equations. These higher-order terms increase the complexity

of the analysis significantly, making it difficult to solve for the unknown quantities. The

existing literature addresses this by employing mathematically complex extremization pro-

cesses. This process eliminates the higher-order terms at the expense of the asymptotic

correctness of the theory. This limitation becomes even more problematic for plates with

non-uniform thickness, such as stiffened plates. The existing VAM approaches struggle

to handle the varying through-the-thickness geometry of these structures effectively.

These limitations of existing VAM approaches motivate us to develop an alternative

procedure. The presented method eliminates the higher-order derivatives from the analy-

sis while preserving the asymptotic correctness of the VAM framework. The key elements

of the present approach are as follows.

• Strategic selection of a reference plane: The choice of the reference plane of

the plate significantly impacts the resulting equations. The present work selects the

reference plane of the plate suitably to result in the elimination of the higher-order

derivatives from the analysis.

• Isoenergetic approach: This innovative approach ensures that the asymptotically

correct plate theory and the commonly used First-order Shear Deformation Theory

(FSDT) represent the same energy density for a specific deformation pattern of
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the reference plane. This strategy effectively eliminates the higher-order derivative

terms from the analysis while maintaining accuracy.

This improved approach offers a more robust and efficient framework for analyzing plate

structures, particularly those with complex geometries. Furthermore, existing VAM ap-

proaches often rely on pre-assumed plate kinematics and an assumed ordering of the

quantities involved. This work presents a first-principles-based VAM that avoids these

assumptions. The VAM framework employed in this work does not rely on the pre-

assumed kinematics of the plate. It determines the order of relevant quantities utilizing

the plate geometry and a bound on the maximum values of strains, leading to a more

robust foundation for the analysis.

1.2 Objective

The objectives of the present work include the development of a reduced-order Equivalent

Single Layer (ESL) plate model using a systematic and mathematically robust approach,

free from ad-hoc and a priori assumptions. Such a model is developed using VAM. The

present work equips VAM with a mathematically rigorous and robust framework by elim-

inating its dependency on pre-assumed kinematics and introducing a systematic ordering

scheme for the asymptotic expansion of the energy functional. This work eliminates

the complications arising from the higher-order derivatives inherent with the VAM-based

reduced-order model from the analysis using the concept of isoenergetics and by choosing

a suitable reference plane for the plate. The developed framework is tailored to deal with

different scenarios as follows.

1. Development of asymptotically correct isoenrergetic formulation for geometrically

nonlinear analysis of Anisotropic Plates.

2. Development of asymptotically accurate approach to find out shear correction fac-

tors for Laminated Composite Plates.

3. Development of asymptotically correct isoenergetic formulation for geometrically

nonlinear analysis of Symmetric Multilayered Composite Plate.

4. Development of asymptotically correct isoenergetic formulation for geometrically

nonlinear analysis of Functionally Graded Plates.
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5. Development of asymptotically correct isoenergetic formulation for geometrically

nonlinear analysis of symmetric and asymmetric Stiffened Plates.

1.3 Literature Survey

The study of the mechanics of solids finds its roots in the mathematically rigorous 3D

continuum elasticity theory. However, solving the resulting set of differential equations

for various loading and boundary conditions may be tedious [78, 66, 99, 79, 94] . In most

of cases, analytical strategies may not be applicable, hence numerical methods become

essential. Implementation of numerical methods requires a balance between accuracy

and computational cost, which might be quite expensive in certain cases [142]. In order

to provide an acceptable preliminary design solution, reduced order models have been

developed. Researchers have developed reduced order theories for beams, plates and

shells by approximating behavior in smaller dimensions [136].

To formulate reduced order models, fundamentally, three approaches have been adopted

based on the choice of primary variables [92, 97, 93, 94, 65]:

a. Displacement formulation, wherein the primary variables are the displacements of

the reference surface

b. Stress formulation, wherein the primary variables are the membrane stresses of the

reference surface

c. Mixed formulation involves the displacements of the reference plane and the traverse

stresses as the primary variables.

Each formulation has its own advantages and disadvantages. However, the displacement

formulation is the most commonly used approach for the analysis of thin and moderately

thick plates because of its simplicity and intuitiveness.

The above-mentioned formulations can be adapted to model anisotropic and/or mul-

tilayered structures using presupposition-based modeling strategies such as Equivalent

Single Layer (ESL) theories [100, 101, 102], Layer-Wise (LW) theories [106, 90, 91, 140]

and unified formulations [7, 93, 8]. The ESL approach, which is the most popular method

for analyzing anisotropic [135, 134, 133] and/or multilayered panels, simplifies the analysis

by assuming that the plate is composed of a single layer and expresses primary variables

associated with the whole domain of the plate in terms of primary variables associated
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with the reference plane of the plate reducing the degree of freedom of the analysis and

thereby increasing computational efficiency. The LW theories consider each layer sepa-

rately with appropriate boundary conditions at the layer interfaces, resulting in a larger

number of unknowns, which are directly proportional to the number of layers. Building

on the foundation of classical plate theories, Carrera and his team introduced a unified

formulation for laminated plates, now known as the Carrera Unified Formulation (CUF)

[7, 8]. This approach was further extended by Demasi into a more general framework,

termed the Generalized Unified Formulation (GUF) [6]. Similarly, Caliri et al. proposed

their own unifying approach, Caliri’s Generalized Formulation (CGF) [93]. Despite the

simplifying assumptions made in the ESL approach, it has been shown to be effective

in investigating the global response of multilayered thin and moderately thick plates.

However, its performance significantly deteriorates for thick plates.

Several types of ESL plate theories have been developed to analyze the behavior of

plates. A comprehensive review can be found in [100, 101, 80, 93]. In such theories, the

3D displacement field is represented in terms of the deformation of the reference plane.

The ESL theories are broadly classified into three categories (a) the polynomial theories

[71, 72, 73, 74, 75] (b) the non-polynomial theories [87, 88, 89, 69, 70] and (c) zig-zag (ZZ)

theories [104, 105, 103, 143]. Polynomial theories are developed by expanding the displace-

ments in a power series of transverse coordinates involving simple orthogonal polynomials,

such as Legendre, Hermite or Chebyshev. Examples of polynomial theories include Clas-

sical Laminated Plate Theory (CLPT), First-order Shear Deformation Theory (FSDT),

Reddy’s Third Order Shear Deformation Plate Theory (R-TSDT), etc. In non-polynomial

theories, the displacement field of the plate is expressed in terms of trigonometric, hyper-

bolic or exponential function of the thickness coordinates. The underlying principle of ZZ

theories is to assume that the displacement field is a superposition of a global first-order,

second-order, or higher-order displacement field and a local ZZ function [104, 95].

ESL plate theories offer several advantages over LW and 3D plate theories. Their key

strengths lie in their low computational cost, ease of implementation, and overall sim-

plicity. These attributes make them highly desirable for analyzing large structures and

facilitating efficient iteration within optimization algorithms. Among ESL theories, the

classical laminate plate theory (CLPT) and first-order shear deformation theory (FSDT)

stand out for their remarkable simplicity. Computational efficiency and ease of use make

FSDT a popular choice for thin and moderately thick plates. While higher-order ESL the-

ories boast increased accuracy, their computational burden often outweighs the marginal
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improvement in results, especially for multilayered composite materials.

While FSDT offers the appealing advantage of computational efficiency, it comes with

limitations. Notably, it relies on a shear correction factor and struggles to accurately

predict transverse shear stresses, particularly crucial for laminated composites prone to

delamination. This limitation extends to higher-order ESL theories when dealing with

composite laminates. To address this, the present work introduces a computationally

efficient approach comparable to FSDT but with significantly improved accuracy in pre-

dicting transverse shear stresses.

The present work adopts the Variational Asymptotic Method (VAM) as a tool to

derive a displacement-based, asymptotically correct, reduced-order plate theory. The

computational complexities involved with this reduced order plate theory, due to its

inherent higher order derivatives, were eliminated using a novel isoenergetic approach.

Berdichevsky [107] introduced the VAM by combining asymptotic [150, 141, 149] and

variational approaches [148] wherein, the small geometric and material parameters are

used to reduce the dimensionality of the problem in hand. When applied to the plate

problem, it decouples the 3D problem into a 1D through the thickness analysis and a

2D planar problem. This approach has been used by many researchers to solve plate

problems [108, 113, 109, 86, 111, 112, 155], a detailed review of such theories is available

in [110]. It is worth mentioning here that similar strategies have been successfully applied

by researchers in various studies. Rajagopal et al. [64] utilized these strategies to analyze

planar deformation of initially curved isotropic strips, Harusampath et al. and Liu et al.

[63, 151, 147] applied them to model composite beams, Amandeep et al. [82, 67] used

them to find analytical solutions for functionally graded beams, and Shakya et al. [81]

employed them to investigate elastic coupling in anisotropic-homogeneous beams.

Yu introduced a new unified approach named Mechanics of Structure Genome (MSG)

in 2016 for the multiscale constitutive modeling [?, 2]. This approach was built upon pre-

vious research using the Variational Asymptotic Method (VAM), which has been applied

to beams, plates, shells, and unit cell homogenization. MSG establishes a unified frame-

work for constructing constitutive models across multiple length scales. The core concept

is the ”structure genome,” defined as the smallest fundamental mathematical unit of a

structure. MSG bridges the gap between the microstructure and macroscopic levels of

composite materials, providing essential information to develop constitutive models for a

wide range of structural components, including 3D structures, beams, plates, and shells.

To the best of the author’s knowledge, the existing plate models based on VAM typi-
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Figure 1.2: Literature summary with contribution of present work

cally begin with a priori assumptions about the 2D strains/displacements and refine them

by considering a warping vector. In other words, VAM has mainly been used to improve

existing reduced-order plate models by making perturbations rather than creating the

reduced-order model by itself considering the 3D plate model. VAM-based plate theo-

ries, while accurate, are mathematically complex and computationally inefficient due to

the involvement of higher-order derivatives of generalized 2D strains or 2D displacement

variables. Consequently, these theories are often less practical to apply. In an effort to

address this challenge in many VAM-based theories [112, 62, 108, 113], the plate model

is transformed into a Reissner-like model, leading to a distortion of the model. Unfortu-

nately, this distortion compromises the asymptotic correctness of the approach, which is
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a key advantage of using VAM.

In this study, 1D through-the-thickness analysis is conducted for the plate problem,

employing a first-principles-based derivation to obtain a reduced-order 2D plate model

from the energy of the 3D model. Unlike traditional methods, the Present approach

avoids pre-assumed plate kinematics and ordering of variables. Instead, This work pro-

poses a systematic ordering scheme that assigns orders to different quantities of interest

and improves them progressively. The final order obtained through this scheme aligns per-

fectly with established literature, demonstrating its robustness. Furthermore, the present

approach does not require an a priori reference plane. Instead, the analysis methodology

naturally yields a reference plane as an outcome. Similarly, the position of this plane is

not pre-assumed but determined logically to eliminate higher-order derivatives. Overall,

the present work has the following novel contributions

i. First principles-based derivation of the reduced order 2D plate model from the 3D

model energy,

ii A systematic ordering approach is used utilizing bounds on the maximum value of

the strains and the maximum thickness-to-length ratio.

iii. Elimination of higher order derivatives of 2D displacement variables using isoener-

getic principle.

A summary of the literature, along with the contribution of the present work, is

illustrated in Fig. 1.2. The unification of the first principles-based displacement solutions

with the isoenergetic approach results not only in an asymptotically correct theory but

also in computationally efficient and robust solutions. The reduced order 2D plate theory

can be analyzed using the analytical solutions approaches like Navier or Levy solution

[119] or Numerical approaches like Finite Element Method (FEM). Different solution

approaches highlighting the adapted solution approaches (shown in green colored blocks)

are presented in Fig. 1.3

1.4 Outline of the Thesis

This thesis is organized into six chapters, each aligned with the defined objectives of the

research.

Chapter 2 presents a novel asymptotically accurate equivalent single layer (ESL)

geometrically nonlinear plate theory for anisotropic materials. This development builds

10
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Figure 1.3: Different solution approaches employed for the solution of the reduced order
2D plates

upon a critical review of existing ESL plate theories in Chapter 1, which highlights the

limitations of current approaches due to their reliance on ad hoc and a priori assumptions.

Chapter 3 extends the work done in Chapter 2 to analyze multilayered symmetric

composite plates. It focuses on the continuity of displacements and transverse stresses

at layer interfaces during the 1D through-the-thickness analysis. This chapter introduces

asymptotically accurate shear correction factors. These factors make FSDT plate the-

ory isoenergetic to the asymptotically correct plate theory. This innovation reduces the

complexity of the analysis while maintaining high accuracy in the results.

Chapter 4 addresses functionally graded plates (FG plates) with different gradation

models. Unlike symmetric plates, the reference plane for FG plates does not coincide with

the mid-plane. This chapter determines the optimal reference plane position and develops

an ESL theory for FG plates using VAM and the concept of isoenergetics.

Chapters 5 and 6 leverage the theories developed in previous chapters. Chapter 5

presents a systematic approach for analyzing symmetric stiffened plates, while Chapter

6 tackles asymmetric stiffened plates. Chapter 7 concludes the thesis by summarizing

the key findings and outlining potential avenues for future research. This final chapter

explores how the present work could be extended or modified to tackle a broader range

of engineering challenges.

11



Chapter 2

Asymptotically Correct Isoenergetic
Formulation of Geometrically
Nonlinear Anisotropic Plates

2.1 Introduction

This chapter presents a displacement-based ESL plate theory for anisotropic materials

derived using Variational Asymptotic Method (VAM) and further simplified using a novel

isoenergetic approach. Unlike the available VAM-based plate theories, the present work

does not rely on any pre-assumed kinematics of plates, thus establishing a more systematic

and rigorous framework for VAM. Additionally, the present work introduces a systematic

scheme leveraging the geometry of the plate and a bound on the maximum value of

strains to assign an order to different quantities of interest, which play a crucial role in

the asymptotic expansion of the 3D model energy functional associated with the plate.

The asymptotic expansion results in the decoupling of the 3D plate problem into a 1D

through the thickness analysis and a 2D planar problem. The through-the-thickness 1D

analysis, which is conducted first, yields a 2D reduced-order model for plates. It is to be

emphasized here that the classical reduced order model 2D plate model, as well as the

through-the-thickness analysis, is a natural outcome of the methodology adopted in the

present work. However current approach also results in the higher order derivatives of 2D

displacement terms. To circumvent this issue, an innovative isoenergetic approach has

been developed by enforcing the condition that the asymptotically correct plate theory

and FSDT plate theory represent identical energy densities for a given deformation pattern

of the reference plane. This strategy, referred to as the isoenergetic approach, results in
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CHAPTER 2 2.2. ANALYTICAL DEVELOPMENT

the elimination of higher-order derivative terms.

The unification of the first principles-based displacement solutions with the isoener-

getic approach results not only in an asymptotically correct theory but also in compu-

tationally efficient and robust solutions. Henceforth, this theory will be referred to as

the Asymptotically Correct Isoenegetic Equivalent Single Layer (ACI-ESL) plate theory.

The reduced order ACI-ESL plate theory can be analyzed using the analytical solutions

approaches like Navier or Levy solution [119] or Numerical approaches like Finite Element

Method (FEM).

In what follows, the detailed derivation and validation of the proposed ACI-ESL plate

theory is presented.

2.2 Analytical Development

Consider a homogeneous anisotropic plate of length a, width b and thickness h, with a

right-handed orthogonal cartesian coordinate system x = (x1, x2, x3) and unit vectors êi

along the axes xi as shown in Fig. 2.1. The x3-axis is oriented in the downward direction.

For plate-like structures, the plate thickness h is much smaller than other dimensions a

and b. Defining a and b to be of the order l, the ratio h
l
becomes a small parameter i.e.

h
l
< 1. The interior region of the plate is denoted by Ω and the boundary comprises

of the top surface ∂Ωtop, the bottom surface ∂Ωbot and the side surfaces ∂Ωside with

∂Ωtb = ∂Ωtop ∪ ∂Ωbot. The position vector of any arbitrary point P in this domain is

given by x⃗ = xiêi. Throughout this work, Roman indices (i, j, k, . . .) range from 1 to 3,

while Greek indices (α, β, γ, . . .) range from 1 to 2 unless their values are specified.

The point P deforms to point P ′ through displacement v⃗ = viêi. For a deformation

with small strains and moderate rotations, the Green–St. Venant strain tensor [128, 127,

119, 139] is given as

E =
1

2

[(
∇⃗xv⃗

)
+
(
∇⃗xv⃗

)T
+
(
∇⃗xv⃗

)T (
∇⃗xv⃗

)]
(2.1)

In the subsequent sections, we present a novel and intriguing strategy for developing a

reduced-order plate theory. This theory is based on the generalized strain tensor defined

in Eq. (2.1) with a limit on the maximum value of strains. Additionally, it utilizes the

geometrical dimensions of the plate with a limit on the maximum value of h
l
to develop a

reduced order plate model in a mathematically rigorous way, avoiding any a priori or ad

hoc assumptions. It would be interesting to observe that the successive perturbations of
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Figure 2.1: Schematic of the plate deformation (a) Undeformed state (b) Deformed state

the reduced order plate model, as will be demonstrated in this work, lead to increasingly

improved plate theories encompassing the CLPT and higher order plate theories. The

analytical development is divided into three parts: Part A develops a CLPT type plate

theory, Part B refines the model presented in Part A considering the contribution of

higher-order energy, and Part C presents a novel isoenergetic approach to eliminate the

higher-order derivatives present in the plate theory developed in Part A and B to reduce

the computational complexities and computational cost.
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CHAPTER 2 2.3. PART A: DEVELOPMENT OF A CLPT TYPE PLATE THEORY

2.3 Part A: Development of a CLPT type plate the-

ory

By leveraging the geometry of the plate and a bound on the maximum value of strains,

a scheme has been established to estimate and re-estimate the order of the different

quantities of interest. The ordering scheme is presented in the following section.

2.3.1 Order Estimation Scheme

With the ordering scheme outlined in [112], the relation between the orders of vi and its

derivatives with respect to xj is given as follows

O

(
∂t

∂xt
1

∂s

∂xs
2

∂r

∂xr
3

vi

)
∼
(
1

l

)(s+t)(
1

h

)r

O(vi)

r, s, t = 0, 1, 2, 3, ...

(2.2)

Note that the 0th order derivative represents no derivative, i.e., ∂0

∂x0
i
O(vi) = O(vi). The

supnorm (supremum norm) of strains (||E||∞) is defined below

||E||∞ = max
1≤i,j≤3

max
x∈Ω

|Eij| (2.3)

The maximum value of h
l
and the supnorm is bounded by ξ and ε respectively as

shown below mathematically

h

l
≤ ξ

||E||∞ ≤ ε
(2.4)

In the context of deformation with small strains, we consider bound on the supnorm

of strains to be a very small parameter i.e. ε ≪ 1. Also, for a plate-like structure bound

on the maximum value of h
l
is small, i.e. ξ < 1. For the asymptotic expansion of the

stains and strain energy, it is assumed that ε = ξ3. It will be demonstrated later that the

bound on the maximum value of the strains and h
l
with the ordering scheme given in Eq.

(2.2) results in a unique estimation of the order of different quantities of interest.

2.3.2 Constitutive Relations and Strain Energy

Let σ = {σ11, σ22, σ33, τ23, τ13, τ12}T be 2nd Piola-Kirchhoff stress tensor which is ener-

getically conjugate to the Green–St. Venant strain tensor [61], the constitutive relation
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is given by

σ = CE, (2.5)

where C represents the stiffness matrix and E = {E11, E22, E33, 2E23, 2E13, 2E12}T .
For materials exhibiting monoclinic symmetry, such as laminae in composite materials

and crystalline solids like gypsum, borax, orthoclase, etc. [132], the stiffness matrix takes

the following form [131]

C =


C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66

 (2.6)

The order of all material constants, denoted by µ, is assumed to be the same [108]. The

strain energy density is given by

U =
1

2
σTE (2.7)

2.3.3 Dimensional Reduction

Let us consider tractions q⃗ = q ê3 and t⃗ = ti êi on ∂Ωtb and ∂Ωside respectively. Application

of the principle of virtual work yields∫
Ω

δUdV −
∫
∂Ωtb

q⃗ · δv⃗datb −
∫
∂Ωside

t⃗ · δv⃗daside = 0 (2.8)

Eq. (2.8) describes a computationally intensive 3D elasticity problem. The major part

of the literature solves this problem by reducing the 3D problem into a simpler 2D plate

problem. Traditionally, this reduction involves ad hoc and a priori assumptions, which

may not fully account for deformation energy considerations. The present work takes the

energy aspects of the problem into consideration to develop a reduced order plate model.

The dimensional reduction procedure, which relies on VAM, aligns with that adopted

by Harursampath et al. [126] to investigate non-linear behavior of long anisotropic tubes.

To elucidate this procedure, we express U in Eq. (2.8) as a functional of the first-order

derivatives of v1, v2, and v3 with respect to x1, x2, and x3.∫
Ω

δU

(
x1, x2, x3,

dv1
dx1

,
dv1
dx2

,
dv1
dx3

,
dv2
dx1

,
dv2
dx2

,
dv2
dx3

,
dv3
dx1

,
dv3
dx2

,
dv3
dx3

)
dV

−
∫
∂Ωtb

q⃗ · δv⃗datb −
∫
∂Ωside

t⃗ · δv⃗daside = 0

(2.9)
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Now, the order estimation scheme outlined in Section 2.3.1 is used to estimate the

orders of v1, v2, and v3. Based on this order estimation, the most significant terms of U

are selected, while less significant terms are neglected. This selection process simplifies

Equation (2.9) into the following form:

∫
Ω

δU

(
x1, x2, x3,

dv1
dx3

,
dv2
dx3

,
dv3
dx3

)
dV −

∫
∂Ωtb

q⃗ · δv⃗datb −
∫
∂Ωside

t⃗ · δv⃗daside = 0 (2.10)

Notably, in the above Eq. (2.10), U contains terms having derivatives of v1, v2 and

v3 with respect to x3 only. This makes the extremization done in the thickness direction

independent of the boundary condition at the sides of the plate, thereby making it in-

dependent of the in-plane deformation of the plate. This naturally decomposes the 3D

problem into two simpler subproblems: (a) a through-the-thickness 1D analysis and (b)

an in-plane 2D analysis. The through-the-thickness 1D analysis gives the reduced-order

model for the plates. This approach is repeatedly used to improve the reduced order

model. The whole procedure is divided into different order solutions, each improves the

solution obtained in the previous one. The details of each order solution are presented in

the subsequent sections.

2.3.4 Zeroth Order Solutions (ZOS)

In this order solutions, the displacement field is assumed to be vi = v0i , where v
0
i (x1, x2, x3)

are zeroth order perturbation variables. The order estimation scheme presented in Section

2.3.1 is employed to evaluate the order of v0i . The estimated order of v0i (x1, x2, x3) is

determined to be O(ξ3h). Based on this order estimation, the order of the different strain

components is evaluated as shown below, with the orders indicated using underbraces.

E11 = O (ξ4) 2E23 =
∂v02
∂x3︸︷︷︸
O(ξ3)

+O (ξ4)

E22 = O (ξ4) 2E13 =
∂v01
∂x3︸︷︷︸
O(ξ3)

+O (ξ4)

E33 =
∂v03
∂x3︸︷︷︸
O(ξ3)

2E12 = O (ξ4)

(2.11)
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It is noteworthy that the order of the perturbation variable v0i determined in this

section corresponds to the maximum permissible value that ensures the strains remain

bounded by ε = ξ3. This order is unique, as altering the order of v0i would lead to a

change in the upper bound of the strains, which is not allowable. This ordering of strains

yields an ordered representation of U in terms of the small parameters ξ, as illustrated

below.

U = Usig︸︷︷︸
O(ξ6µ)

+O
(
ξ7µ
)

Usig =
1

2

[
C55

(
∂v01
∂x3

)2

+ 2C45
∂v01
∂x3

∂v02
∂x3

+ C44

(
∂v02
∂x3

)2

+ C33

(
∂v03
∂x3

)2
] (2.12)

The lowest order term, Usig, in the above equation has the highest contribution to the

energy functional. Therefore, this section targets the energy of this order only, neglecting

the other higher order terms [137]. This reduces the virtual work Eq. (2.8) to the following

form

∫
∂Ωref

[∫
x3

δUsigdx3

]
daref −

∫
∂Ωtb

q⃗ · δv⃗datb −
∫
∂Ωside

t⃗ · δv⃗daside = 0 (2.13)

Where ∂Ωref is the reference plane of the plate. Due to historical precedence and ease

of analysis, the midplane of the undeformed plate is taken as the reference plane. An

interesting observation from Eq. (2.12) is that Usig contains terms having derivatives of

v0i with respect to x3 only. This allows to perform the minimization in two stages: (i)

a 1D through the thickness analysis along x3 only, and (ii) a 2D analysis in the x1, x2

plane, as expressed below.

δΠx3 = 0︸ ︷︷ ︸
1D Analysis

δΠ = 0︸ ︷︷ ︸
2D Analysis

Πx3 =

∫
x3

Usigdx3

Π =

∫
∂Ωref

Πx3daref −
∫
∂Ωtb

q⃗ · v⃗datb −
∫
∂Ωside

t⃗ · v⃗daside

(2.14)

This strategy naturally leads to a dimensional reduction of the problem.
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Through the Thickness 1D Analysis

Extrimization of Πx3 yields following Euler Lagrange governing equations

C55
∂2v01
∂x2

3

+ C45
∂2v02
∂x2

3

= 0

C45
∂2v01
∂x2

3

+ C44
∂2v02
∂x2

3

= 0

C33
∂2v03
∂x2

3

= 0

(2.15)

and following associated boundary conditions

Bv01

∣∣
x3=−h/2

= Bv01

∣∣
x3=h/2

= 0

Bv02

∣∣
x3=−h/2

= Bv02

∣∣
x3=h/2

= 0

Bv03

∣∣
x3=−h/2

= Bv03

∣∣
x3=h/2

= 0

Bv01
= C55

∂v01
∂x3

+ C45
∂v02
∂x3

Bv02
= C45

∂v01
∂x3

+ C44
∂v02
∂x3

Bv03
= C33

∂v03
∂x3

(2.16)

solving the Euler-Lagrange equations Eq. (2.15) with the boundary conditions Eq. (2.16)

results in following solution

v0i = ui(x1, x2) (2.17)

This solution will be further refined for more accuracy in the upcoming sections. Note

that this zeroth-order solution expresses the 3D displacement components vi in terms of

ui, which are functions of x1 and x2 only and therefore are termed as 2D variables. In other

words, ui represent the rigid body like deformation A0B0 of a line segment AB lying along

the thickness direction ê3, as shown in Fig. 2.3(b). Since this displacement is independent

of x3, all points lying on AB have the same displacement. However, for convenience, ui

are expressed as the average through the thickness displacement components of the plate

as shown below mathematically.

ui =
1

h

∫ h/2

−h/2

vi dx3 (2.18)
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2.3.5 First Order Solution (FOS)

In this section, The displacement field obtained in ZOS is perturbed to further improve

it as follows1.

vi = v0i + v1i = ui + v1i (2.19)

Introduction of v1i in Eq. (2.19) results in three additional degrees of freedom to

the displacement field. To ensure the uniqueness of the solution, three constraints are

essential. Eq. (2.18) result in the following three constraints on the nth perturbation

variables vni ∫ h/2

−h/2

vni dx3 = 0 (2.20)

It may be noted that the choice of the constraint is not unique. Several papers on the

VAM-based analysis of plates [113, 111, 112, 108] uses the similar constraints as given in

Eq. (2.20).

Following the procedure described in Section 2.3.1, we estimate the order of ui and v1i

to be O(ξ3l) and O(ξ3h), respectively. Notably, the order of the perturbation variables

v0i and v1i is the same, which seems to contradict the usual refinement procedure done

through perturbations. However, we started with a conservative order of vi, treating the

plate as a 3D body and considering the maximum possible variation in vi for all possible

deformation modes with strains bounded by ε. As the refinement in the displacement field

goes on, the plate reveals its true deformation pattern, relaxing the bound on vi. This

relaxation necessitates further refinement in the displacement field in the same order,

justifying it.

Substituting vi from Eq. (2.19) into Eq. (2.1) gives the following strains, along with

their respective orders indicated in underbraces

1Note that vni = vni (x1, x2, x3), termed as nth order perturbation variable, will consistently be used in
the upcoming work to improve the displacement field in the nth order solution
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E11 =
∂u1

∂x1︸︷︷︸
O(ξ3)

+O (ξ4) 2E23 =
∂u3

∂x2

+
∂v12
∂x3︸ ︷︷ ︸

O(ξ3)

+O (ξ4)

E22 =
∂u2

∂x2︸︷︷︸
O(ξ3)

+O (ξ4) 2E13 =
∂u3

∂x1

+
∂v11
∂x3︸ ︷︷ ︸

O(ξ3)

+O (ξ4)

E33 =
∂v13
∂x3︸︷︷︸
O(ξ3)

+O (ξ4) 2E12 =
∂u1

∂x2

+
∂u2

∂x1︸ ︷︷ ︸
O(ξ3)

+O (ξ4)

(2.21)

The revised strains given in Eq. (2.21) are used to recalculate U and Usig. Similar to

the ZOS, the perturbation variables v1i present in Usig have derivatives with respect to x3

only allowing us to perform the 3D analysis in two stages (1D and 2D analyses).

Through the Thickness 1D Analysis

The functional Πx3 is recalculated to accommodate the modifications in Usig. Extremiza-

tion of Πx3 yields the following Euler Lagrange equations

C55
∂2v11
∂x2

3

+ C45
∂2v12
∂x2

3

= 0

C45
∂2v11
∂x2

3

+ C44
∂2v12
∂x2

3

= 0

C33
∂2v13
∂x2

3

= 0

(2.22)

and following associated boundary conditions

Bv11

∣∣
x3=−h/2

= Bv11

∣∣
x3=h/2

= 0

Bv12

∣∣
x3=−h/2

= Bv12

∣∣
x3=h/2

= 0

Bv13

∣∣
x3=−h/2

= Bv13

∣∣
x3=h/2

= 0

Bv11
= C45

∂u3

∂x2

+ C55
∂u3

∂x1

+ C55
∂v11
∂x3

+ C45
∂v12
∂x3

Bv12
= C44

∂u3

∂x2

+ C45
∂u3

∂x1

+ C45
∂v11
∂x3

+ C44
∂v12
∂x3

Bv13
= C36

∂u1

∂x2

+ C23
∂u2

∂x2

+ C13
∂u1

∂x1

+ C36
∂u2

∂x1

+ C33
∂v13
∂x3

(2.23)
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Solving the Euler Lagrange equations in Eq. (2.22) with the boundary conditions in Eq.

(2.23) and the constraints given in Eq. (2.20) yields

v11 = −x3
∂u3

∂x1

v12 = −x3
∂u3

∂x2

v13 = x3f1

f1 =
−1

C33

[
C36

∂u1

∂x2

+ C23
∂u2

∂x2

+ C13
∂u1

∂x1

+ C36
∂u2

∂x1

]
(2.24)

2.3.6 Second Order Solution (SOS)

To improve the results of the FOS, the displacement field at this stage is further perturbed

as follows.

vi = v0i + v1i + v2i

where

v1 = u1 − x3
∂u3

∂x1

+ v21, v2 = u2 − x3
∂u3

∂x2

+ v22

v3 = u3 + x3f1 + v23

(2.25)

Following the procedure described in Section 2.3.1, the orders of uα, u3 and v0i are

estimated to be O(ξ3l), O (ξ2l) and O(ξ3h), respectively. Substituting vi from Eq. (2.25)

into Eq. (2.1) gives the following strains, along with their respective orders indicated

using underbraces

E11 =
∂u1

∂x1

− x3
∂2u3

∂x2
1︸ ︷︷ ︸

O(ξ3)

+O
(
ξ4
)

2E23 =
∂v22
∂x3︸︷︷︸
O(ξ3)

+O
(
ξ4
)

E22 =
∂u2

∂x2

− x3
∂2u3

∂x2
2︸ ︷︷ ︸

O(ξ3)

+O
(
ξ4
)

2E13 =
∂v21
∂x3︸︷︷︸
O(ξ3)

+O
(
ξ4
)

E33 = f1 +
∂v23
∂x3︸ ︷︷ ︸

O(ξ3)

+O
(
ξ4
)

2E12 =
∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2︸ ︷︷ ︸
O(ξ3)

+O
(
ξ4
)

(2.26)
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The revised strains given in Eq. (2.26) are used to recalculate U and Usig. Similar to the

ZOS and FOS, the perturbation variables v2i present in Usig have derivatives with respect

to x3 only allowing us to perform the 3D analysis in two stages (1D and 2D analyses).

Through the Thickness 1D Analysis

The functional Πx3 is recalculated to accommodate the modifications in Usig. Extremiza-

tion of Πx3 yields the following Euler Lagrange equations

C55
∂2v21
∂x2

3

+ C45
∂2v22
∂x2

3

= 0

C45
∂2v21
∂x2

3

+ C44
∂2v22
∂x2

3

= 0

C23
∂2u3

∂x2
2

+ 2C36
∂2u3

∂x1∂x2

+ C13
∂2u3

∂x2
1

− C33
∂2v23
∂x2

3

= 0

(2.27)

and the following associated boundary conditions

Bv21

∣∣
x3=−h/2

= Bv21

∣∣
x3=h/2

= 0

Bv22

∣∣
x3=−h/2

= Bv22

∣∣
x3=h/2

= 0

Bv23

∣∣
x3=−h/2

= Bv23

∣∣
x3=h/2

= 0

Bv21
= C55

∂v21
∂x3

+ C45
∂v22
∂x3

Bv22
= C45

∂v21
∂x3

+ C44
∂v22
∂x3

Bv23
= −x3

(
C23

∂2u3

∂x2
2

+ 2C36
∂2u3

∂x1∂x2

+ C13
∂2u3

∂x2
1

)
+ C33

∂v23
∂x3

(2.28)

Solving the Euler-Lagrange equations in Eq. (2.27) with the boundary conditions in

Eq. (2.28) and the constraints given in Eq. (2.20) yields

v21 = 0

v22 = 0

v23 = − 1

12
(h2 − 12x2

3)g1

g1 =
1

2C33

[
C23

∂2u3

∂x2
2

+ 2C36
∂2u3

∂x1∂x2

+ C13
∂2u3

∂x2
1

] (2.29)

The zeroth-order solution to the second-order solution gives a CLPT like plate theory,

which was the objective of Part A of this work. A summary of the approach followed and

the key findings of the work done in Part A are presented in the following sections.
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2.3.7 Summary of Part A

U sig

U

U0 ∼ O(ξ6µ) Extremization v0
i

Rules
Bound on supnorm and h

l

Order of the derivatives

Order Estimation

O(v0
i
)∼O(ξ3h)

Closed Form Solution

Zeroth Order
Solution (ZOS)

vi = v0
i

P
a
rt

A
P
a
rt

B

Figure 2.2: Systematic methodology adopted in
deriving the reduced order model

Figure 2.2 presents a graphical rep-

resentation of the adopted procedure.

The procedure begins by calculating

strains, considering the plate to be a

3D body. It uses an order estima-

tion scheme based on the upper bound

on the supnorm and h
l
given in Eq.

(2.4) and a rule to calculate the order

of derivatives of displacement compo-

nents given in Eq. (2.2).

The zeroth order solution begins

with order estimation of different

quantities of interest, following the or-

dering strategy described in Section

2.3.1. This results in an ordered rep-

resentation of the strain energy den-

sity U . The most significant portion

of the strain energy density is isolated

and termed Usig. Extremization of Usig

yields a closed-form solution for the

zeroth-order perturbation variables v0i .

In the first and second-order solutions,

the entire procedure is repeated, in-

cluding order re-estimation of different

quantities of interest following the or-

dering scheme, selection of the most

significant portion of the strain energy

density, and its extremization to ob-

tain a closed-form solution for the per-

turbation variables. A graphical rep-

resentation of the above procedure has

been presented in Fig. 2.2.
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2.3.8 Displcement Field Obtained in Part A

The displacement field obtained in Part A of this work is given below

v1 = u1 − x3
∂u3

∂x1︸ ︷︷ ︸
O(ξ3l)

v2 = u2 − x3
∂u3

∂x2︸ ︷︷ ︸
O(ξ3l)

v3 = u3︸︷︷︸
O(ξ2l)

+x3f1 −
1

12
(h2 − 12x2

3)g1︸ ︷︷ ︸
O(ξ3h)

(2.30)

Let the inner product of the pth and qth order solution of vi i.e. v
p
i and vqi be defined

as follows

(vpi , v
q
i ) =

∫
Ω

vpi v
q
i dV =

∫
Ω

(∫ h/2

−h/2

vpi v
q
i dx3

)
daref (2.31)

For any values of p and q between 0 and 2, we have (vpi , v
q
i ) = 0, which implies

that vpi and vqi are orthogonal. The orthogonality between two solutions of different

order ensures their independence and justifies splitting the displacement components into

different orders of solutions at the same order of strain energy.

Notably, The displacement components v1 and v2 given in Eq. (2.30) are consistent

with CLPT [100, 119, 130], validating Kirchhoff’s assumption that a line segment per-

pendicular to the reference plane in the undeformed configuration remains straight and

perpendicular to the deformed reference plane after deformation. However, displacement

component v3 given in Eq. (2.30) contradicts Kirchhoff’s assumption that there is no

change in the length of a transverse normal after deformation (i.e., the transverse nor-

mals are inextensible). Interestingly, as will be demonstrated in the next section, the

assumption of the plane stress condition in CLPT makes it energetically equivalent to the

asymptotically correct plate theory developed in Part A of this work.

2.3.9 Strains Obtained in Part A

Eq. (2.1) and (2.30) give the following strains corrected up to order ξ3
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E11 =
∂u1

∂x1

− x3
∂2u3

∂x2
1︸ ︷︷ ︸

O(ξ3)

E22 =
∂u2

∂x2

− x3
∂2u3

∂x2
2︸ ︷︷ ︸

O(ξ3)

E33 = f1 + 2x3g1︸ ︷︷ ︸
O(ξ3)

2E23 = 0

2E13 = 0 2E12 =
∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2︸ ︷︷ ︸
O(ξ3)

(2.32)

It is interesting to note that substituting strains from Eq. (2.32) in Eq. (2.5) yields.

σ33 = C13 E11 + C23 E22 + C33 E33 + 2 C36 E12 = 0 (2.33)

Eq. (2.33) results in plane stress condition, which is valid up to the present level of

accuracy in stresses. With σ33 = 0, the transverse normal strain E33 does not appear in

the virtual work Eq. (2.8), although it is not identically zero. As a result, the transverse

normal strain E33 is neglected. By omitting the transverse strain component, E33, in Eq.

(2.32), we obtain

E =


E11

E22

2E23

2E13

2E12

 =



∂u1

∂x1
− x3

∂2u3

∂x2
1

∂u2

∂x2
− x3

∂2u3

∂x2
2

0
0

∂u1

∂x2
+ ∂u2

∂x1
− 2x3

∂2u3

∂x1∂x2


(2.34)

Interestingly, despite the discrepancy in the displacement field shown in Section 3.8,

the asymptotically correct strains E in Eq. (2.34) resemble the strains given by CLPT

[100]. This indicates that CLPT plate theory is energetically equivalent to the asymp-

totically correct plate theory derived considering strain energy up to order (ξ6µ) and

neglecting its higher order part.

The work done in Part A is further refined in Part B, considering the contribution of

the higher-order Energy.

2.4 Part B: Refinement of Part A

Part B refines the plate theory obtained in Part A, while maintaining the consistency of

the procedure. In addition to the work done in Part A, Part B includes the contribution
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of higher-order energy in the analysis. Part B is intentionally separated from Part A

because the development done in Part B follows the usual procedure found in the litera-

ture on VAM-based development of plate theories, where the development begins with a

presupposition-based kinematics similar to that developed in Part A, which is then refined

by considering a warping vector. The refinement of Part A is presented in the following

section.

2.4.1 Third Order Solution (TOS)

Perturbing the displacement field obtained in SOS results in as follows.

vi = v0i + v1i + v2i + v3i ,

where

v1 = u1 − x3
∂u3

∂x1

+ v31, v2 = u2 − x3
∂u3

∂x2

+ v32

v3 = u3 + x3f1 −
1

12
(h2 − 12x2

3)g1 + v33

(2.35)

It is essential to mention that, following the procedure outlined in section 2.3.1, the

orders of uα, u3, and v3i are estimated to be O(ξ3l), O(ξ2l), and O(ξ3h), respectively.

The estimated orders of the variables are the same as in SOS. Therefore, if we perform

extremization based on these variable orders, it will result in v3i = 0, leading to no

improvement in the displacement field. To improve the displacement field further, we

must consider the contribution of higher-order strain energy at this stage. To account for

the effect of strain energy of the order of (ξ8µ), we set the order of v3i to O (ξ4h) while

keeping the orders of the other variables unchanged. Substituting vi from Eq. (2.35) into

Eq. (2.1) yields
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E11 =
∂u1

∂x1

− x3
∂2u3

∂x2
1︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x1

)2

︸ ︷︷ ︸
O(ξ4)

+
∂v31
∂x1︸︷︷︸
O(ξ5)

+O
(
ξ6
)

E22 =
∂u2

∂x2

− x3
∂2u3

∂x2
2︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x2

)2

︸ ︷︷ ︸
O(ξ4)

+
∂2v32
∂x2︸ ︷︷ ︸
O(ξ5)

+O
(
ξ6
)

E33 = f1 + 2x3g1︸ ︷︷ ︸
O(ξ3)

+
1

2

(
∂u3

∂x1

)2

+
1

2

(
∂u3

∂x2

)2

+
∂v33
∂x3︸ ︷︷ ︸

O(ξ4)

+O
(
ξ6
)

2E23 = x3
∂f1
∂x2

− 1

12
(h2 − 12x2

3)
∂g1
∂x2

+
∂v32
∂x3︸ ︷︷ ︸

O(ξ4)

+
∂u3

∂x2

(
f1 + 2x3g1 −

∂u2

∂x2

+ x3
∂2u3

∂x2
2

)
︸ ︷︷ ︸

O(ξ5)

− ∂u1

∂x2

∂u3

∂x1

+ x3
∂u3

∂x1

∂2u3

∂x1∂x2

+
∂v33
∂x2︸ ︷︷ ︸

O(ξ5)

+O
(
ξ6
)

2E13 = x3
∂f1
∂x1

− 1

12
(h2 − 12x2

3)
∂g1
∂x1

+
∂v31
∂x3︸ ︷︷ ︸

O(ξ4)

+
∂u3

∂x1

(
f1 + 2x3g1 −

∂u1

∂x1

+ x3
∂2u3

∂x2
1

)
︸ ︷︷ ︸

O(ξ5)

− ∂u2

∂x1

∂u3

∂x2

+ x3
∂u3

∂x2

∂2u3

∂x1∂x2

+
∂v33
∂x1︸ ︷︷ ︸

O(ξ5)

+O
(
ξ6
)

2E12 =
∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2︸ ︷︷ ︸
O(ξ3)

+

(
∂u3

∂x1

)(
∂u3

∂x2

)
︸ ︷︷ ︸

O(ξ4)

+
∂v31
∂x2

+
∂v32
∂x1︸ ︷︷ ︸

O(ξ5)

+O
(
ξ6
)

(2.36)

The revised strains given in Eq. (2.36) are used to recalculate U which takes the following

form

U =

Usig︷ ︸︸ ︷
U0 + U1 + U2︸ ︷︷ ︸

O(ξ6µ)

+ U3︸︷︷︸
O(ξ8µ)

+O
(
ξ9µ
)

(2.37)
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Where U0, U1, U2, and U3 are the contributions of the strain energy density U in the

zeroth, first, second, and third order solutions, respectively. To include the effect of higher

order energy, the portion of U corrected up to O (ξ8µ) is taken as Usig. The functional

Πx3 is recalculated to incorporate the change in Usig.

It is important to note that in the third order solution, unlike the zeroth, first, and

second order solutions, the derivatives of the perturbation variables v3i with respect to

the xα coordinates, i.e.,
(

∂v3i
∂xα

)
, appear in the analysis. To eliminate these derivatives,

integration by parts is performed, which results in boundary conditions defined at Ωside.

However, these boundary conditions are ignored in the present analysis, as the goal is to

find the displacement field for the interior domain of the plate without considering edge

effects.

Extremization of Πx3 yields the following Euler Lagrange equations

2C55f2 + 6C55x3g2 + 2C45f3 + 6C45x3g3 = C55
∂2v31
∂x2

3

+ C45
∂2v32
∂x2

3

2C45f2 + 6C45x3g2 + 2C44f3 + 6C44x3g3 = C45
∂2v31
∂x2

3

+ C44
∂2v32
∂x2

3

C33
∂2v33
∂x2

3

= 0

(2.38)

Where f2, f3, g2 and g3 are functions of x1 and x2. The expressions for these functions

in terms of derivatives of ui w.r.t. xj and the material constants are given in Appendix

C. The associated boundary conditions are given below

Bv31

∣∣
x3=−h/2

= Bv31

∣∣
x3=h/2

= 0

Bv32

∣∣
x3=−h/2

= Bv32

∣∣
x3=h/2

= 0

Bv33

∣∣
x3=−h/2

= Bv33

∣∣
x3=h/2

= 0

Bv31
= C45x3

∂f1
∂x2

+ C45

(
−h2

12
+ x2

3

)
∂g1
∂x2

+ C55x3
∂f1
∂x1

+ C55

(
−h2

12
+ x2

3

)
∂g1
∂x1

+ C55
∂v31
∂x3

+ C45
∂v32
∂x3

Bv32
= C44x3

∂f1
∂x2

+ C44

(
−h2

12
+ x2

3

)
∂g1
∂x2

+ C45x3
∂f1
∂x1

+ C45

(
−h2

12
+ x2

3

)
∂g1
∂x1

+ C45
∂v31
∂x3

+ C44
∂v32
∂x3

Bv33
= C33

∂v33
∂x3

(2.39)
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solving the Euler Lagrange equations Eq. (2.38) with the boundary conditions Eq. (2.39)

and the constraints given in Eq. (2.20) yields

f2 = −1

2

∂f1
∂x1

f3 = −1

2

∂f1
∂x2

v31 =

(
−3

4
h2x3 + x3

3

)
g2 +

(
1

24
h2 − 1

2
x2
3

)
∂f1
∂x1

− 1

6
h2x3

∂g1
∂x1

v32 =

(
−3

4
h2x3 + x3

3

)
g3 +

(
1

24
h2 − 1

2
x2
3

)
∂f1
∂x2

− 1

6
h2x3

∂g1
∂x2

v33 = − 1

2C33

x3

[
(C23 + C33)

(
∂u3

∂x2

)2

+ 2C36
∂u3

∂x1

∂u3

∂x2

+ (C13 + C33)

(
∂u3

∂x1

)2 ]
(2.40)

A graphical representation of the adopted procedure for the development done in Part

B is presented in Fig. 2.2.

2.4.2 A Discussion on the Displacement Field

The final displacement field obtained in Part A and B is given below.

v1 = u1 − x3
∂u3

∂x1︸ ︷︷ ︸
O(ξ3l)

+

(
−3

4
h2x3 + x3

3

)
g2 +

(
1

24
h2 − 1

2
x2
3

)
∂f1
∂x1

− 1

6
h2x3

∂g1
∂x1︸ ︷︷ ︸

O(ξ4h)

v2 = u2 − x3
∂u3

∂x2︸ ︷︷ ︸
O(ξ3l)

+

(
−3

4
h2x3 + x3

3

)
g3 +

(
1

24
h2 − 1

2
x2
3

)
∂f1
∂x2

− 1

6
h2x3

∂g1
∂x2︸ ︷︷ ︸

O(ξ4h)

v3 = u3︸︷︷︸
O(ξ2l)

+x3f1 −
1

12
(h2 − 12x2

3)g1︸ ︷︷ ︸
O(ξ3h)

− 1

2C33

x3

[
(C23 + C33)

(
∂u3

∂x2

)2

+ 2C36
∂u3

∂x1

∂u3

∂x2︸ ︷︷ ︸
O(ξ4h)

+(C13 + C33)

(
∂u3

∂x1

)2 ]
︸ ︷︷ ︸

O(ξ4h)

(2.41)

The evolution of this displacement field is influenced by each perturbation we go

through. A graphical representation of the improvements made to the displacement field

as we progress through each perturbation is depicted in Fig (2.3)

Fig. 2.3(a) displays a line segment CD in the reference plane, oriented along ê1,

while line segment AB is oriented along ê3. The deformed configuration of line segment
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ê1

A

B

A0

B0

A1

B1

A2

B2

A3

B3

(a)

(b) (c)

(d) (e)

A0B0 = AB
A0B0 ‖ AB

A1B1 �= AB

A2B2 �= A1B1

A2B2 �= AB

ê3

−∂u3

∂x1

−∂u3

∂x1

−∂u3

∂x1

− 3

4
h2g2 −

1

6
h2 ∂g1

∂x1

C D

C0

D0

C1

D1

C2

D2

C4

D4

Figure 2.3: Deformation of lines AB and CD lying along direction ê3 and ê1 respectively.
(a) Undeformed configuration (b) Configuration after zeroth perturbation (c) Configura-
tion after first perturbation (d) Configuration after second perturbation (e) Configuration
after third perturbation

AB in ZOS is depicted in Fig. 2.3(b) by line segment A0B0. In the FOS and SOS,

the displacement field undergoes refinements, incorporating a rotation of line AB and a

change in its length, as shown in Fig. 2.3(c) and 2.3(d) by line segments A1B1 and A2B2.

In the third-order solutions, the line segment AB deforms to the curve line A3B3 as shown

in Fig. 2.3(e).

2.4.3 A Discussion on the Strains, Stresses and Stiffness Matrix

Eq. (2.1) and (2.41) give the strains corrected up to order (ξ4). These strains are given

below:
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E11 =
∂u1

∂x1

− x3
∂2u3

∂x2
1︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x1

)2

︸ ︷︷ ︸
O(ξ4)

E22 =
∂u2

∂x2

− x3
∂2u3

∂x2
2︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x1

)2

︸ ︷︷ ︸
O(ξ4)

E33 = − 1

2C33

[−2C33(f1 + 2x3g1)]︸ ︷︷ ︸
O(ξ4)

+
1

2C33

[
C23

(
∂u3

∂x2

)2

+ 2C36
∂u3

∂x1

∂u3

∂x2

+ C13

(
∂u3

∂x1

)2
]

︸ ︷︷ ︸
O(ξ4)

2E23 = −1

4
(h2 − 4x2

3)

(
3g3 +

∂g1
∂x2

)
︸ ︷︷ ︸

O(ξ4)

2E13 = −1

4
(h2 − 4x2

3)

(
3g2 +

∂g1
∂x1

)
︸ ︷︷ ︸

O(ξ4)

2E12 =
∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2︸ ︷︷ ︸
O(ξ3)

+

(
∂u3

∂x1

)(
∂u3

∂x2

)
︸ ︷︷ ︸

O(ξ4)

(2.42)

It is interesting to note that the plane stress condition, which was valid in Part A, is

still valid. The plane stress condition can easily be verified by substituting strains from

Eq. (2.42) in Eq. (2.5). This subtitution results in σ33 = 0. It is worth noting that the

plane stress condition is a natural outcome of the adopted procedure without introducing

it as an ad hoc or a priori assumption as done in many plate theories found in literature

[119, 122, 68].

The plane stress condition, with its historical precedent, is often a popular choice

for plate theories due to its simplicity, computational efficiency, and accuracy for many

engineering applications. Following the same argument as in section 3.9, the transverse

normal strain E33 is neglected. By omitting the transverse strain component, E33, in Eq.

(2.42), we obtain
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E =



∂u1

∂x1
− x3

∂2u3

∂x2
1
+ 1

2

(
∂u3

∂x1

)2
∂u2

∂x2
− x3

∂2u3

∂x2
2
+ 1

2

(
∂u3

∂x2

)2
−1

4
(h2 − 4x2

3)
(
3g3 +

∂g1
∂x2

)
−1

4
(h2 − 4x2

3)
(
3g2 +

∂g1
∂x1

)
∂u1

∂x2
+ ∂u2

∂x1
− 2x3

∂2u3

∂x1∂x2
+
(

∂u3

∂x1

)(
∂u3

∂x2

)


(2.43)

Also, the stiffness matrix shown in Eq. (2.6) is modified according to the plane stress

condition [119] as

D =


D11 D12 0 0 D16

D12 D22 0 0 D26

0 0 D44 D45 0
0 0 D45 D55 0

D16 D26 0 0 D66

 (2.44)

It is interesting to note that the strains accurate up to order (ξ4) differ from those

given by FSDT. This indicates that FSDT is not asymptotically correct, due to which

it requires a shear correction factor and does not accurately represent the true behavior

of transverse shear strains. Under plane stress conditions, stresses σ and strain energy

density U take the following form

σ = {σ11, σ22, τ23, τ13, τ12}T = DE,

U =
1

2
σE =

1

2
(DE)E

(2.45)

2.5 Part C: Elimination of Higher Order Derivatives

It is important to note that though expressions
(
3g3 +

∂g1
∂x2

)
, and

(
3g2 +

∂g1
∂x1

)
in Eq.

(2.43) are asymptotically accurate but they depend on higher order derivatives of u3.

This results in complexity in the 2D solution and thus limits its practical implementa-

tion. In contrast, FSDT, though asymptotically inaccurate, is very practical due to its

simplicity and computational efficiency, thereby often preferred for the analysis of thin

and moderately thick plates. Our goal is to derive a plate theory that is computationally

efficient and simple, like FSDT, but more accurate and asymptotically correct.

FSDT plate theory accounts for the transverse shear deformation effects in the plate.

In FSDT, it is assumed that a straight line normal to the undeformed reference plane

∂Ωref remains straight but not perpendicular to the deformed reference plane ∂Ωref and
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has rotations ϕ1 and ϕ2 about the x1 and x2 axes. Thus, FSDT plate theory incorporates

two additional degrees of freedom ϕ1 and ϕ2. In the present work, a novel isoenergetic

approach, which is illustrated in Fig. 2.4, has been developed. In this approach, the shear

deformation energies obtained from the VAM-based asymptotically correct plate model

are equated to that obtained from the FSDT plate model to calculate shear correction

factors. Further, using these shear correction factors, the transverse shear force resultants

Q1 and Q2 are calculated in terms of ϕ1 and ϕ2. Now Q1 and Q2 are used to eliminate

the inconvenient terms
(
3g3 +

∂g1
∂x2

)
and

(
3g2 +

∂g1
∂x4

)
from the VAM based asymptotically

correct plate model. As a result of this, a modified asymptotically correct plate model is

obtained, which is as simple and computationally efficient as the FSDT theory. In what

follows, we present the above-mentioned procedure in detail.

Deformed Reference plane Deformed Reference plane

Asymptotically Correct
through the thickness
Deformation Pattern

Axiomatic
through the thickness
Deformation Pattern

Isoenergetic

Outcome

Transverse Shear Force
Resultants (Q1, Q2)

Modified Asymptotically
Correct ESL Plate Model

Dimension Reduction

Outcome

Figure 2.4: The isoenergetic approach
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2.5.1 Simplified Model Based on Isoenergetics

The transverse shear force resultants Q1 and Q2 are given by

Q1 =

∫ h/2

−h/2

τ13 dx3, Q2 =

∫ h/2

−h/2

τ23 dx3 (2.46)

From Eqs. (2.45) and (2.46), we have

Q1 =

∫ h/2

−h/2

(2 D45 E23 + 2 D55 E13) dx3

Q2 =

∫ h/2

−h/2

(2 D44 E23 + 2 D45 E13) dx3

(2.47)

Eq. (2.47) gives, (
3g3 +

∂g1
∂x2

)
= −6 (D45Q1 −D55Q2)

(D2
45 −D44D55)h3(

3g2 +
∂g1
∂x1

)
= −6 (−D44Q1 +D45Q2)

(D2
45 −D44D55)h3

(2.48)

Substituting Eq. (2.48) in Eq. (2.43), we obtain

E =



∂u1

∂x1
− x3

∂2u3

∂x2
1
+ 1

2

(
∂u3

∂x1

)2
∂u2

∂x2
− x3

∂2u3

∂x2
2
+ 1

2

(
∂u3

∂x2

)2
3
2
(h2 − 4 x2

3)
(D45Q1−D55Q2)

(D2
45−D44D55)h3

3
2
(h2 − 4 x2

3)
(−D44Q1+D45Q2)

(D2
45−D44D55)h3

∂u1

∂x2
+ ∂u2

∂x1
− 2x3

∂2u3

∂x1∂x2
+
(

∂u3

∂x1

)(
∂u3

∂x2

)


(2.49)

In FSDT, the transverse shear strains Eϕ
23 and Eϕ

13 are given as

2Eϕ
13 = ϕ1 +

∂u3

∂x1

, 2Eϕ
23 = ϕ2 +

∂u3

∂x2

(2.50)

and the transverse shear force resultants, Q1 and Q2 are given as

Q1 = K1

∫ h/2

−h/2

[
D45

(
ϕ2 +

∂u3

∂x2

)
+D55

(
ϕ1 +

∂u3

∂x1

)]
dx3

Q2 = K2

∫ h/2

−h/2

[
D44

(
ϕ2 +

∂u3

∂x2

)
+D45

(
ϕ1 +

∂u3

∂x1

)]
dx3

(2.51)

where K1 and K2 are shear correction factors [83]. Eq. (2.50) and (2.51) gives
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2Eϕ
13 = ϕ1 +

∂u3

∂x1

= − D44K2Q1 −D45K1Q2

D2
45hK1K2 −D44D55hK1K2

2Eϕ
23 = ϕ2 +

∂u3

∂x2

=
D45K2Q1 −D55K1Q2

D2
45hK1K2 −D44D55hK1K2

(2.52)

Now K1 and K2 are calculated by equating the transverse shear deformation energies

[123, 117, 129, 145, 146] of the assumption based FSDT plate model and the present

(ACI-ESL) plate model, as shown below :∫ h/2

−h/2

Eϕ
13 τ13 dx3 =

∫ h/2

−h/2

E13 (D45 E23 +D55 E13) dx3∫ h/2

−h/2

Eϕ
23 τ23 dx3 =

∫ h/2

−h/2

E23 (D44 E23 +D45 E13) dx3

(2.53)

Solving Eq. (2.53) for K1 and K2 we have

K1 = K2 =
5

6
(2.54)

A key observation here is that the above-obtained values of the shear correction factors

are a natural outcome of the present approach (without taking any assumptions). Fur-

thermore, these values of shear correction factors are exactly the same as obtained for

homogeneous materials in references [122, 123, 121]. Substituting Eq. (2.54) into Eq.

(2.51) followed by Eq. (2.51) into Eq. (2.49), the following expressions for the transverse

shear strains are established

2Eα3 =
5(h2 − 4x2

3)

4h2

(
ϕα +

∂u3

∂xα

)
(2.55)

Since the order of the transverse shear strains is O (ξ4), therefore we have

x3
d

dxα

(
ϕβ +

∂u3

∂xβ

)
∼ O

(
ξ5
)

(2.56)

Eqs. (2.56) results in as follows

−x3
∂2u3

∂xα∂xβ

= x3
∂ϕβ

∂xα

+O
(
ξ5
)

(2.57)
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Eq. (2.49), (2.55) and (2.57) results is the following strains

E =



∂u1

∂x1
+ x3

∂ϕ1

∂x1
+ 1

2

(
∂u3

∂x1

)2
∂u2

∂x2
+ x3

∂ϕ2

∂x2
+ 1

2

(
∂u3

∂x2

)2
5(h2−4x2

3)

4h2

(
ϕ2 +

∂u3

∂x2

)
5(h2−4x2

3)

4h2

(
ϕ1 +

∂u3

∂x1

)
∂u1

∂x2
+ ∂u2

∂x1
+ x3

(
∂ϕ1

∂x2
+ ∂ϕ2

∂x1

)
+
(

∂u3

∂x1

)(
∂u3

∂x2

)


(2.58)

Eq. (2.58) provides a simplified and computationally efficient reduced dimensional

model of the plate. Although it is as simple as the FSDT, it is asymptotically accurate

up to O(ξ4), which gives better results than the FSDT. Additionally, it does not require

any shear correction factor.

2.6 Results and Discussion

This chapter introduces a new ACI-ESL plate theory, which is asymptotically correct up

to (O(ξ4)). To evaluate its accuracy, numerical examples dealing with different scenarios

are presented. Six distinct examples (Examples 1-6) are detailed. All examples utilize the

material properties outlined in Table 2.1. In this table, subscripts L and T denote the

longitudinal (x) and transverse (y) directions, as illustrated in Figure 2.5. Furthermore,

Figure 2.6 depicts the boundary conditions employed in the numerical examples and Table

2.2 presents the geometry, material properties, and boundary conditions used in different

examples. In all examples, the plate edges are aligned with the x1 and x2 axes. In

Example-1, Example-2 and Example-4, the plate is subjected to a uniform pressure P on

the top face (x3 = −h
2
). In Example-3, a square plate [116] with length a and thickness

h, subjected to a sinusoidally varying pressure q on its top face, is examined.

Table 2.1: Material properties used in different numerical examples

Material-1 [116] Material-2 [153] Material-3 [154] Material-4 [144]
EL (GPa) 172.369 40 227.53 206.843
ET (GPa) 6.895 1 144.79 206.843
GLT (GPa) 3.337 0.6 55.16 78.588
GTT (GPa) 1.379 0.5 27.58 78.587

νLT 0.25 0.25 0.25 0.316
νTT 0.25 0.25 0.25 0.316
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Figure 2.5: (a) Geometry, loading, and material orientation details for all numerical
examples. (b) Specific material orientation used in Example-1 (θ = 45◦). (c) Material
orientation used in the remaining examples (θ = 0◦).
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Figure 2.6: Boundary conditions used in different numerical examples

q = q0 sin
(π x1

a

)
sin
(π x2

a

)
(2.59)

In Example-1, as shown in Fig. 2.5(b), the longitudinal direction x of the material

orientation makes an angle of 45◦ with the x1 axis, resulting in the monoclinic symmetry

about the mid-plane of the plate. In All other examples, as shown in Fig. 2.5(c), the

longitudinal direction x of the material orientation aligns with the x1 axis, leading to the

orthotropic behavior of the material.
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Table 2.2: Geometry, Material Properties and boundary conditions for the numerical
examples

Numerical Geometry Material Boundary
Example (Fig. 2.5) Properties Conditions

a (m) b (m) h (m) b
h

(Table 2.1) (Fig. 2.6)
Example-1 1 1 0.01 100 Material-1 ssss
Example-2 0.5472 0.1824 0.001824 100 Material-2 cfcf
Example-3 a a h Material-1 ssss
Example-4 0.2 0.2 0.002667 75 Material-3 cccc

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
1 . 8 8

1 . 9 0

1 . 9 2

1 . 9 4

1 . 9 6

1 . 9 8

2 . 0 0

2 . 0 2
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2 . 0 6

Ce
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N u m b e r  o f  e l e m e n t s

Figure 2.7: Convergence plot for the out of plane deflection u3 for Example-1 under
uniform Pressure of P = 25 kN/m2 applied at the top face.

For Example-1 and Example-2, the transverse displacement of the plate midpoint for

different values of P is calculated [61, 138] utilizing the proposed plate model (ACI-ESL),

FSDT, and 3D FEA approaches. Fig. 2.8 and 2.9 show that the transverse displacement

computed by the proposed plate model for Example-1 and Example-2, respectively, is

in excellent agreement with the 3D FEA. In this work, the 3D finite element analysis

was performed using the Abaqus software. The chosen element type for the analysis was

C3D20R, which corresponds to a 20-node quadratic brick element with reduced integra-
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Figure 2.8: Load-deflection curves for the central point of the plate considered in Example-
1 under uniform Pressure P applied at its top face

tion. A thorough convergence study was carried out to ensure the accuracy and reliability

of the obtained results. This study involved systematically refining the mesh and moni-

toring the convergence behavior of relevant quantities such as displacements, strains, and

stresses. For example, the convergence analysis for Example-1 done at P = 25kN/m2 is

shown in Fig. 2.7. Nevertheless, for brevity, the convergence analysis is omitted for other

examples. The analytical solutions were obtained using numerical methods or state-of-

the-space methods (like Navier or Levy solution) [119].

For Example-1, the variation of the transverse deflection along the centerline parallel

to x1 axis predicted by the proposed plate model (ACI-ESL), FSDT, and 3D FEA for a

pressure of P = 25 kN/m2 is compared in Fig. 2.10.

Fig. 2.11 displays the variation of the displacement component u3 with respect to x1

and x2 for Example-1 under a uniform pressure of P = 13 kN/m2. Similar results are

presented for Example-2 for P = 400 N/m2 in Figure 2.13. Fig. 2.11(a) and 2.13(a) were

generated using the 3D FEA approach, while Fig. 2.11(b) and 2.13(b) were produced

using the ACI-ESL plate theory. Fig. 2.12 and 2.14 illustrates the variation of the
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Figure 2.9: Load-deflection curves for the central point of the plate considered in Example-
2 under uniform Pressure P applied at its top face
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Figure 2.10: Out of plane deflection of the plate considered in Example-1 along centerline
parallel to x1 axis under uniform Pressure of P = 25kN/m2 applied at its top face
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Figure 2.11: Out-of-plane deflection of the plate considered in Example-1 subjected to a
uniform pressure of P = 13 kN/m² applied on its top face. Deflections are obtained using:
(a) 3D Finite Element Analysis (FEA) and (b) present ACI-ESL plate theory.
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Figure 2.12: Percentage error in the out of plane deflection u3 for Example-1 under uniform
Pressure of P = 13 kN/m2 applied at the top face.

percentage error in the value of u3 with respect to x1 and x2, for Example-1 and Example-

2, respectively. The percentage error (PE) for Figure 2.12 and 2.14 is defined in Eq. (2.60).

PE = 100

∣∣∣∣∣u3,FEA − u3,ACI-ESL

umax
3,FEA

∣∣∣∣∣ (2.60)
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Figure 2.13: Out-of-plane deflection of the plate considered in Example-2 subjected to
a uniform pressure of P = 400 kN/m² applied on its top face. Deflections are obtained
using: (a) 3D Finite Element Analysis (FEA) and (b) present ACI-ESL plate theory.
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Figure 2.14: Percentage error in the out of plane deflection u3 for Example-2 under uniform
Pressure of P = 400 N/m2 applied at the top face.

Where u3,FEA and u3,ACI-ESL are values of u3 obtained using the 3D FEA and ACI-ESL

plate model approaches. umax
3,FEA is the maximum value of u3,FEA. Figure 2.12 demonstrates

that the results obtained by the 3D FEA and the present ACI-ESL model approach are

in very good agreement.

To compare the results, the following non-dimensionalized quantities [122] are consid-
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ered In Example-3

w = 100

[
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(
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]
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(
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,
b

2
,
h

2

)
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2
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) h

q0 a

σ22 = σ22

(
a

2
,
b

2
,
h

6

)
h2

q0 a2
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(
0,

b

2
, 0

)
h

q0 a
(2.61)

Fig. 2.15 illustrates the variation of the nondimensionalized transverse shear stresses along

the thickness direction for the plate in Exaple-3. The proposed plate theory (ACI-ESL)

provides a significantly better distribution of transverse shear stresses compared to FSDT

and CLPT. The results are in very good agreement with Reddy’s Third Order Shear

Deformation Plate Theory (R-TSDT) [122]. The R-TSDT, being a higher-order theory,

requires more computational cost than the present ACI-ESL plate model. To quantify the

computational efficiency, the time taken by a processor to solve the differential equations

of Example-3 obtained using the FSDT, Present ACI-ESL and R-TSDT theory were

examined. All the parameters, such as system configuration and solution methodology

(Navier solution approach), were kept the same. The results showed that the FSDT,

ACI-ESL, and R-TSDT plate theories required 0.2469 seconds, 0.2595 seconds, and 0.4938

seconds, respectively. These calculations were performed using a single core of the Intel

Xeon Gold 6248 CPU processor with a base speed of 2.50 GHz. The installed RAM in

the system was 512GB with a speed of 2933 MHz. In contrast, the 3D Finite Element

Analysis (FEA) approach using C3D20R elements in Abaqus required significantly more

resources compared to the reduced-order plate theories. Solving the same problem with

this method utilized 40 cores of the same processor and consumed 1 hour, 2 minutes, and

55 seconds.

For Example-3, Table 2.3 presents a comparison between the nondimensionalized

stresses and transverse deflection as defined in Eq. (4.63) obtained using the proposed

plate model (ACI-ESL) and that obtained using the CLPT, FSDT and 3D FEA ap-

proaches. The observations from the table indicate that as the a
h
ratio increases, the

results converge towards the 3D FEA results. This trend is a consequence of the fact that

the ordering of the strains has been carried out considering the smallness of the ratio h
a
.

Fig. 2.16 illustrates transverse displacement u3 along centerline parallel to x1 axis and

the stresses (σ11, σ22, σ23, σ13 and σ12) along the thickness in Example-4 for P = 50 N.

The results are in good agreement with those obtained using 3D FEA.
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Figure 2.15: Through-thickness variation of the nondimensionalized transverse shear
stress components in a thin orthotropic square plate ( a

h
= 50) considered in Example-

3 based on 3D FEA, Present Work (ACI-SEL), FSDT, CLPT and Reddy’s TSDT (R-
TSDT).

Example-5 and Example-6 deal with circular and annular plates. Both the plates are

made of Material-4 (see Table 2.1). The outer radius R of each plate is 1 m and the inner
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Table 2.3: Nondimensionalized deflections and stresses in the plate considered in Example-
3 under sinusoidal transverse loads[122]

a
h Quant. 3D FEA ACI-ESL

FSDT
K1=

5
6

K2=
5
6

FSDT
K1=1
K2=1

CLPT

10
w 0.6447 0.6383 0.6383 0.6042 0.4312
σ11 0.5727 0.5248 0.5248 0.5270 0.5387
σ22 0.0124 0.0113 0.0113 0.0109 0.0089
σ23 0.0552 0.0459 0.0368 0.0298 0
σ13 0.4444 0.4315 0.3452 0.2885 0

20
w 0.4868 0.4836 0.4836 0.4749 0.4312
σ11 0.5492 0.5350 0.5350 0.5356 0.5387
σ22 0.0097 0.0095 0.0095 0.0094 0.0089
σ23 0.0532 0.0399 0.0319 0.0263 0
σ13 0.4574 0.4376 0.3501 0.2920 0

50
w 0.4411 0.4396 0.4396 0.4382 0.4312
σ11 0.5411 0.5381 0.5381 0.5382 0.5387
σ22 0.0090 0.0090 0.0090 0.0090 0.0089
σ23 0.0528 0.0380 0.0304 0.0253 0
σ13 0.4528 0.4394 0.3516 0.2930 0

100
w 0.4340 0.4333 0.4333 0.4330 0.4312
σ11 0.5396 0.5385 0.5385 0.5386 0.5387
σ22 0.0071 0.0089 0.0089 0.0089 0.0089
σ23 0.0524 0.0377 0.0302 0.0252 0
σ13 0.4516 0.4397 0.3518 0.2932 0

radius r for the annular plate is 0.25 m as shown in Fig. 2.17. The thickness of both of

the plates is 0.2 m
(
resulting in 2R

h
= 10

)
. Both plates are rigidly clamped along their

inner and outer boundaries. A uniformly distributed force P of 300 MPa is applied at the

top surface of these plates. Figure 2.18 depicts the out-of-plane deflection u3 along the

centerline parallel to the x1 axis for both the circular and annular plates. These results,

along with others presented in this work, demonstrate the accuracy of the present work.

2.7 Conclusion

In this chapter, a novel VAM-based geometrically nonlinear plate model ACI-ESL has

been developed by applying the first principles and the isoenergetic approach. Following

are key highlights of the present work
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Figure 2.16: Comparison of out of plane deflection u3 along the centerline parallel to x1

and stress components at point B (shown in Fig. 2.5(a)) for an orthotropic square plate
considered in Example-4.

1. A bound on thickness to length ratio
(
h
l

)
and supnorm of strains has been used for

the asymptotic expansion. In the energy functional this translates to asymptotic

expansion in powers of (ξ). The analysis with strain energy accurate up to the order

of (ξ8µ) results in analytic expressions for displacement vector and strains accurate
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Figure 2.17: Geometric details and loading on (a) circular plate considered in Example-5
(b) annular plate considered in Example-6.
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Figure 2.18: Comparison of out-of-plane deflection u3 along the centerline parallel to x1

axis for the circular and annular plates considered in Example-5 and Example-6, respec-
tively.

up to the order of (ξ4h) and (ξ4) respectively. It is observed from the results that

the diminishing value of small parameter
(
h
l

)
improves the accuracy, aligning them

more closely with the results obtained from 3D FEA. Therefore, it becomes evident
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that the proposed model is asymptotically accurate and demonstrates satisfactory

performance for thin and moderately thick plates.

2. It is interesting to observe that the zeroth order solution results in the estimation

of 3D displacement field in terms of 2D variables ui(x1, x2). Essentially, this leads

to the dimensional reduction of 3D problem to 2D, which is assumed a priori in

classical plate theories.

3. The higher order 1D through the thickness analysis involves derivatives of ui(x1, x2)

w.r.t xα. The complexity involving these derivatives is eliminated through a novel

isoenegetic approach, resulting in better estimation of the overall deformation.

4. It may be noted that most of the plate theories rely on the ad hoc assumption

of plane stress condition as an integral part of their formulation. However, it is

interesting to observe that the plane stress condition is a natural consequence of the

mathematical procedure adopted in the present formulation.

5. The proposed model, as well as the FSDT, estimates strains up to the same order

of accuracy, resulting in comparable levels of computational complexities and cost.

However, due to its asymptotic correctness, the current model has the following

advantages over FSDT model.

i. FSDT predicts a constant transverse shear stress and strain. In contrast, the

present formulation provides an accurate quadratic variation of the same.

ii. The quadratic variation ensures the enforcement of zero tangential traction

boundary conditions on the surface of the plate, ensuring excellent agreement

with the expected physical behavior.

iii. Unlike FSDT, there is no need for a shear correction factor.

6. The quadratic variation of transverse shear strains predicted by the proposed plate

model is in line with that given by higher-order plates models such as R-TSDT and

G-TSDT (see Appendix C). However, the proposed plate model distinguishes itself

from these higher-order plate models by excluding higher-order derivatives of the

normal and in-plane shear strains. This isoenergetic and asymptotic correctness-

based simplification effectively reduce computational complexities.
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To summarize, this work provides a more refined, accurate, and computationally efficient

ESL plate theory for thin and moderately thick plate structures. Comparison with estab-

lished theories such as CLPT, FSDT, R-TSDT and 3D FEA demonstrates the accuracy

of the present work.

Although the work done in this chapter is focused more on material anisotropy, it

will be interesting to see the application of the proposed theory in plates/stiffened plates

made up of inhomogeneous and composite materials, which will be done in the upcoming

chapters.
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Chapter 3

Asymptotically Accurate
Geometrically Nonlinear
Isoenergetic Analysis of Multilayered
Composite plates

3.1 Introduction

Composite laminates are crafted through the strategic layering of thin sheets of compos-

ites, each characterized by distinctive fiber types (such as carbon, glass, aramid), matrix

materials (including epoxy, polyester, and thermoplastic), and fiber orientations. These

laminates typically have a width and length much larger than their thickness. As a

result, they are commonly modeled as plate elements for engineering analysis. Due to

their unique properties, composite laminates are often used in applications that require

membrane and bending strength.

The present work develops an asymptotically correct reduced order pate theory utiliz-

ing the variational principles. This method for obtaining reduced-order models is referred

to as the variational asymptotic method (VAM). VAM utilizes small geometric and ma-

terial parameters to reduce the complexity of engineering problems elegantly. Applying

it to plate analysis, VAM decomposes the 3D problem into a manageable 1D through-

the-thickness analysis and a 2D planar analysis. The development done in this Chapter

is based on the mathematical foundation introduced in Chapter 2. However, to make the

chapter self-contained, the important concepts introduced in Chapter 2 are repeated in

this chapter whenever necessary.

Following the methodology similar to that used in Chapter 2 for anisotropic plates, this
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CHAPTER 3 3.2. ANALYTICAL DEVELOPMENT

chapter conducts a 1D through-the-thickness analysis for the multilayered composite plate

problem. This first-principles-based derivation obtains a reduced-order 2D plate model

from the energy of the 3D model. Unlike traditional methods that rely on pre-assumed

plate kinematics and variable ordering, this work proposes a systematic ordering scheme.

This scheme assigns orders to different quantities of interest and progressively refines them.

The final order aligns perfectly with established literature, demonstrating its robustness.

Furthermore, the present approach does not require an a priori reference plane. Instead,

the analysis methodology naturally yields a reference plane as an outcome. Similarly, the

position of this plane is not pre-assumed but determined logically to eliminate higher-order

derivatives.

The 1D through the thickness analysis consider the continuity of the displacements

and the transverse stresses at the interface of the layers of the multilayered composite lam-

inate and gives close form solution for the displacement vector components in terms of

2D variables (functions of two independent variables) associated with the reference plane

of the plate. Due to their dependence on the laminate’s constructional details (material

properties, layup sequence, fiber orientation), these closed-form solutions are unique to

each problem. To facilitate analysis, a code has been developed in Mathematica. The

1D through the thickness analysis yields a reduced order 2D plate model. The 2D plate

model obtained this way, though asymptotically correct, is computationally inefficient as

it contain higher order derivatives of the 2D variables. Interestingly, for the accuracy in

strains considerd in the present work, higher-order derivatives only appear in the trans-

verse shear terms. This approach eliminates these higher order derivatives by selecting a

reference plane suitable and using the concept of isoenergetics. The isoenergetics ensures

that the strain energy of the VAM based reduced order model matches that of the FSDT

plate theory for a given deformation pattern of the reference plane. Enforcement of this

condition results in the determination of the shear correction factors and the transverse

shear force resultants which are used to replace the The higher order derivatives present

in the analysis by lower order derivatives. What follows present this work in a systematic

way.

3.2 Analytical Development

A symmetric laminated composite plate is analyzed. The plate has length a, width b, and

thickness h. A global coordinate system x = (x1, x2, x3) is defined. The origin O of this
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CHAPTER 3 3.2. ANALYTICAL DEVELOPMENT

system is located at a distance η from the midplane of the plate as shown in Fig 3.1(c).

The plate consists of n orthotropic layers. Each layer (termed as lamina) has its own

principal material coordinate system, denoted by (xr
1, x

r
2, x

r
3) for the rth lamina (where

r = 1, 2, 3, ..., n). The orientation of each lamina is specified by the angle θr relative to

the global coordinate system x (see Fig. 3.1). The notation êi denotes the orthonormal

basis vectors along the xi axes.

In the undeformed configuration, the interior region of the rth lamina is denoted by Ωr

and its boundaries comprise of the top surface ∂Ωr
top, the bottom surface ∂Ωr

bot and the side

surfaces ∂Ωr
side with ∂Ωr

tb = ∂Ωr
top ∪ ∂Ωr

bot. Similarly, in the undeformed configuration,

the interior region of the entire plate is designated as Ω and its boundaries consists

of the top surface ∂Ωtop, the bottom surface ∂Ωbot and the side surfaces ∂Ωside with

∂Ωtb = ∂Ωtop ∪ ∂Ωbot. It is to be noted that ∂Ωtop = ∂Ω1
top and ∂Ωbot = ∂Ωn

bot.

The position vector of any arbitrary point P in this domain is given by x⃗ = xiêi.

Throughout this work, Roman indices (i, j, k, . . .) range from 1 to 3, while Greek indices

(α, β, γ, . . .) range from 1 to 2 unless their values are specified. A superscript indicates the

number of a lamina, while parentheses () are used to distinguish mathematical exponents

from these superscripts.

Consider the point P located within the rth lamina. Due to deformation, P moves to

a new position P ′. This displacement is described by the vector v⃗r = vri êi, where vri are

the components of the displacement in the global coordinate directions. Assuming small

strains and moderate rotations, Green–St. Venant strain tensor [128, 127, 119] for the rth

lamina can be expressed as follows.

Er =
1

2

[(
∇⃗xv⃗

r
)
+
(
∇⃗xv⃗

r
)T

+
(
∇⃗xv⃗

r
)T (

∇⃗xv⃗
r
)]

(3.1)

where ∇⃗x is the gradient operator with respect to the global coordinates x. This work

proposes a novel strategy for developing a reduced-order plate theory for multilayered

composite materials. This theory builds upon the strain tensor defined in Eq. (3.1).

Additionally, it leverages the geometrical dimensions of the plate and the maximum al-

lowable strains to establish a mathematically rigorous reduced-order plate model. This

approach avoids introducing any arbitrary and/or pre-assumed simplifications.

Interestingly, it will be shown that successive refinements of this reduced-order model

lead to progressively more accurate plate theories, ultimately encompassing CLPT and

even higher-order plate theories.
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Figure 3.1: Schematic of the plate (a) Undeformed state of the plate (b) rth lamina of the
plate (c) through-the-thickness lay-up sequence (d) Deformed state of the plate

The development is divided into three parts:

Part A: Establishes a reduced-order model for the plate, aligning with CLPT.

Part B: Refines the model from Part A by incorporating the contribution of higher-order

energy terms.

Part C: Introduces the concept of isoenergetics to eliminate higher-order derivatives from

the analysis, improving computational efficiency.

3.3 Part A: Development of a reduced order model

This section leverages the geometry of the plate and a bound on the maximum strain value

to estimate the order of various quantities of interest. The estimation scheme follows the
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approach outlined in [57]. The ordering scheme is presented in the next subsection.

3.3.1 Order Estimation Scheme

Following the ordering scheme from [112], The relationship between the orders of dis-

placement components, vri , and their derivatives with respect to the spatial coordinates,

xj can be expressed as follows.

O

[(
∂

∂x1

)m(
∂

∂x2

)n(
∂

∂x3

)p

vri

]
∼
(
1

l

)(m+n)(
1

h

)p

vri

m,n, p = 0, 1, 2, 3, ...

(3.2)

Here, the 0th order derivative signifies no differentiation, i.e., O

[(
∂
∂xi

)0
vri

]
= O(vri ).

The supnorm (supremum norm) of strains for the rth lamina, denoted by ||Er||∞, is

defined as follows.

||Er||∞ = max
1≤i,j≤3

max
x∈Ωr

∣∣Er
ij

∣∣ (3.3)

The maximum aspect ratio (h
l
) and the supnorm of strains are bounded by ξ and ε

respectively.

h

l
≤ ξ and ||Er||∞ ≤ ε (3.4)

In the context of small strains, the supnorm of strains is considered a very small

parameter, i.e., ε ≪ 1. Similarly, for plate-like structures, the maximum aspect ratio is

also bound to be small, i.e., ξ < 1. For the asymptotic expansion of strains and strain

energy, we will assume ε = ξ3.

It will be demonstrated later that the order estimation scheme introduced in this

section provides a unique estimation of the order of various relevant quantities.

3.3.2 Constitutive Relations and Strain Energy

The relationship between stress and strain for the rth lamina is governed by the following

equation [61]

σr = CrEr (3.5)
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Where Er = {Er
11, Er

22, Er
33, 2Er

23, 2Er
13, 2Er

12}
T , σr = {σr

11, σr
22, σr

33, σr
23, σr

13, σr
12}

T

and Cr are Green-Lagrange strain tensor, Second Piola-Kirchhoff stress tensor and Stiff-

ness matrix for the rth lamina respectively.

Here, Cr captures the elastic properties of the rth lamina in the global coordinate

system x. The components of Cr depend on the specific material properties of the lamina.

Each lamina in the laminate exhibits monoclinic symmetry with respect to the global

coordinate system x. Therefore the stiffness matrix Cr for the rth lamina takes the

following structure

Cr =


Cr

11 Cr
12 Cr

13 0 0 Cr
16

Cr
12 Cr

22 Cr
23 0 0 Cr

26

Cr
13 Cr

23 Cr
33 0 0 Cr

36

0 0 0 Cr
44 Cr

45 0
0 0 0 Cr

45 Cr
55 0

Cr
16 Cr

26 Cr
36 0 0 Cr

66

 (3.6)

It is assumed that all the material constants are of the same order µ. The strain

energy density for each lamina is given by.

U r =
1

2
(σr)TEr (3.7)

3.3.3 Dimensional Reduction

Let q⃗ = q ê3 and t⃗ = ti êi be traction forces on ∂Ωtb and ∂Ωside respectively. The principle

of virtual work results in

n∑
r=1

∫
Ωr

δU rdV −
∫
∂Ωtb

q⃗ · δv⃗datb −
∫
∂Ωside

t⃗ · δv⃗daside = 0 (3.8)

Where v⃗ = v⃗r for all values of r between 1 to n (n = total number of laminae).

Eq. (3.8) presents a computationally expensive 3D elasticity problem. This problem

is typically addressed by simplifying it to a 2D plate problem. However, traditional

approaches to this simplification rely on assumptions that may not fully account for the

energy involved in deforming the material. This work considers the energy aspects of

the problem while creating the reduced-order 2D plate model. The details of the present

approach are explained in the sections that follow.
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3.3.4 Zeroth Order Solutions (ZOS)

ZOS assumes vri , the displacement field of the rth lamina, to be 0vri . Here 0vri (x1, x2, x3)

represent zeroth order perturbation variables. Throughout this work, the following nota-

tion is consistently used

(m•ri )
p
top/bot

Interpretation

• : Represents the quantity of interest (e.g., displacement, stress, strain).

m : Denotes the mth order solution/contribution of •.

r : Indicates the rth lamina.

i : indicates the ith component

p : Exponent of the quantity within the parentheses

top/bot : Denotes the top/bottom surface of rth lamina

The approach outlined in Section 3.3.1 is utilized to estimate the order of 0vri . The

estimated order of 0vri is found to be O(ξ3h). Subsequently, the order of various strain

components is evaluated. The various strain components with their respective orders

denoted using underbraces are given below.

Er
11 = O (ξ4) 2Er

23 =
∂ 0vr2
∂x3︸ ︷︷ ︸
O(ξ3)

+O (ξ4)

Er
22 = O (ξ4) 2Er

13 =
∂ 0vr1
∂x3︸ ︷︷ ︸
O(ξ3)

+O (ξ4)

Er
33 =

∂ 0vr3
∂x3︸ ︷︷ ︸
O(ξ3)

2Er
12 = O (ξ4)

(3.9)

It is important to highlight that the order estimated for the perturbation variable 0vri

represents its maximum acceptable value. This order is crucial because it ensures that

the strains stay within their maximum allowable value, denoted by ε = ξ3. Importantly,

there is only one valid order for 0vri . Choosing a different order would affect the maximum

allowed strain, which is unacceptable. By following this specific ordering of strains, we
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can represent the strain energy density, U r, as an ordered series in terms of the small

parameter ξ, as shown below.

U r = U r
sig︸︷︷︸

O(ξ6µ)

+O
(
ξ7µ
)

U r
sig =

1

2

[
Cr

55

(
∂ 0vr1
∂x3

)2

+ 2Cr
45

∂ 0vr1
∂x3

∂ 0vr2
∂x3

+ Cr
44

(
∂ 0vr2
∂x3

)2

+ Cr
33

(
∂ 0vr3
∂x3

)2
] (3.10)

The term with the lowest order, U r
sig, in the equation above makes the most significant

contribution to the energy functional. By concentrating solely on this contribution, the

virtual work Eq. (3.8) simplifies to the following form

∫
∂Ωref

[
n∑

r=1

∫
x3

δU r
sigdx3

]
daref −

∫
∂Ωtb

q⃗ · δv⃗datb −
∫
∂Ωside

t⃗ · δv⃗daside = 0 (3.11)

The reference plane of the plate, denoted by ∂Ωref, is defined as a plane parallel to

the midplane but located at a distance η away, as shown in Fig. 3.1. The magnitude of η

will be determined later on logical grounds. Interestingly, Equation (3.10) shows that U r
sig

contains terms with derivatives of 0vri with respect to x3 alone. This allows us to perform

the minimization process in two stages:(i) A through the thickness 1D analysis along the

x3 direction. (ii) A 2D in-plane analysis in the x1x2 plane, as expressed below.

δΠx3 = 0︸ ︷︷ ︸
1D Analysis

δΠ = 0︸ ︷︷ ︸
2D Analysis

Πx3 =
n∑

r=1

Πr
x3

Πr
x3

=

∫
x3

U r
sigdx3

Π =

∫
∂Ωref

Πx3daref −
∫
∂Ωtb

q⃗ · v⃗ datb −
∫
∂Ωside

t⃗ · v⃗ daside

(3.12)

This approach inherently reduces the dimensionality of the problem. During the 1D

analysis, we can neglect the external loads for now. These external loads will be considered

later in the 2D in-plane analysis, as described in references [111, 124]. Minimizing the

potential energy functional Πx3 leads to the minimization of Πr
x3

while ensuring continuity

of displacements and transverse stresses (σi3) at the interface between adjacent laminas

[92, 111, 56]. This is illustrated in the figure below.
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Figure 3.2: Continuity of displacements and transverse stresses at the interface of two
consecutive laminae

Through the Thickness 1D Analysis

Extrimization of Πr
x3

yields following Euler-Lagrange governing equations for rth lamina

Cr
55

(
∂

∂x3

)2
0vr1 + Cr

45

(
∂

∂x3

)2
0vr2 = 0

Cr
45

(
∂

∂x3

)2
0vr1 + Cr

44

(
∂

∂x3

)2
0vr2 = 0

Cr
33

(
∂

∂x3

)2
0vr3 = 0

(3.13)
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The associated boundary conditions are as follows

B0vr1

∣∣
x3=hr−η

= (σr
13)top B0vr1

∣∣
x3=h(r+1)−η

= (σr
13)bot

B0vr2

∣∣
x3=hr−η

= (σr
23)top B0vr2

∣∣
x3=h(r+1)−η

= (σr
13)bot

B0vr3

∣∣
x3=hr−η

= (σr
33)top B0vr3

∣∣
x3=h(r+1)−η

= (σr
33)bot

B0vr1
= Cr

55

∂ 0vr1
∂x3

+ Cr
45

∂ 0vr2
∂x3

B0vr2
= Cr

45

∂ 0vr1
∂x3

+ Cr
44

∂ 0vr2
∂x3

B0vr3
= Cr

33

∂ 0vr3
∂x3

(3.14)

with (σ1
13)top = (σn

13)bot = (σ1
23)top = (σn

23)bot = (σ1
33)top = (σn

33)bot = 0, for traction free

top and bottom surfaces of the plate. Solving the Euler-Lagrange equations Eq. (3.13)

with the boundary conditions Eq. (3.14) and imposing the continuity of displacements

and transverse stresses at the boundaries of each lamina results in following solution

0vri = ui(x1, x2) (3.15)

This solution will undergo further refinement for increased accuracy in subsequent

sections. It’s important to note that this zeroth-order solution expresses the 3D displace-

ment components vi in terms of ui, which are functions solely of x1 and x2, hence referred

to as 2D variables. Essentially, ui depict the rigid body-like deformation of a line segment

AB, denoted as 0A 0B, along the thickness direction ê3, as illustrated in Fig. 3.4(b). Since

this displacement remains independent of x3, all points along AB exhibit the same dis-

placement. However, for convenience, ui are expressed as the displacement components

associated with the x1, x2 plane of the global coordinate system, which is referred to as

the reference plane of the plate.

ui = vi
∣∣
x3=0 (3.16)

3.3.5 First Order Solution (FOS)

The displacement field obtained in ZOS is perturbed to improve it further as follows

vri =
0vri +

1vri = ui +
1vri (3.17)

Including the term 1vri in Equation (3.17) introduces three additional degrees of free-

dom to the displacement field. However, to guarantee a unique solution, we need three
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constraints. Equation (3.16) provides these three constraints for the nth order perturba-

tion variables, denoted by nvi.

nvi
∣∣
x3=0

= 0 (3.18)

It may be noted that the choice of the constraint is not unique. Several papers on the

VAM based analysis of plates [113, 111, 112] assume that the through-thickness average

value of warping components is zero i.e.
∫ h/2

−h/2
nvidx3 = 0. However, constraints defined

in Eq.(3.18) are simpler and straight forward to use from the point of view of numerical

implementation, further same constraint have been adapted for analysis of beam sections

in [114].

Following the procedure outlined in Section 3.3.1, we determine the order of ui and
1vri

to be O(ξ3l) and O(ξ3h), respectively. However, this might seem counter-intuitive as both
0vri and 1vri have the same order, which deviates from the usual refinement process. The

key here is that we initially assumed a conservative order for vri , treating the plate as a 3D

object and considering the most extreme possible deformation within the strain limit of ε.

As the refinement process progresses and the displacement field becomes more accurate,

the actual deformation pattern of the plate emerges. This allows for a relaxation of the

bound on vri . Consequently, further refinement of the displacement field in the same order

is necessary, justifying the order for the perturbation variables.

By substituting vri from Equation (3.17) into Equation (3.1), The following strains are

obtained.

Er
11 =

∂u1

∂x1︸︷︷︸
O(ξ3)

+O (ξ4) 2Er
23 =

∂u3

∂x2

+
∂ 1vr2
∂x3︸ ︷︷ ︸

O(ξ3)

+O (ξ4)

Er
22 =

∂u2

∂x2︸︷︷︸
O(ξ3)

+O (ξ4) 2Er
13 =

∂u3

∂x1

+
∂ 1vr1
∂x3︸ ︷︷ ︸

O(ξ3)

+O (ξ4)

Er
33 =

∂ 1vr3
∂x3︸ ︷︷ ︸
O(ξ3)

+O (ξ4) 2Er
12 =

∂u1

∂x2

+
∂u2

∂x1︸ ︷︷ ︸
O(ξ3)

+O (ξ4)

(3.19)

The revised strains from Equation (3.19) are employed to re-evaluate the strain energy

density, U r, and its significant part, U r
sig. Similar to the ZOS, the perturbation variables

1vri appearing in U r
sig only have derivatives with respect to x3. This allows us to divide
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the minimization process into two stages: a through-the-thickness 1D analysis and an

in-plane 2D analysis.

Through the Thickness 1D Analysis

The functional Πr
x3

is updated to account for the changes made to U r
sig. Minimizing Πr

x3

leads to the following Euler-Lagrange equations for the rth lamina.

Cr
55

(
∂

∂x3

)2
1vr1 + Cr

45

(
∂

∂x3

)2
1vr2 = 0

Cr
45

(
∂

∂x3

)2
1vr1 + Cr

44

(
∂

∂x3

)2
1vr2 = 0

Cr
33

(
∂

∂x3

)2
1vr3 = 0

(3.20)

The associated boundary conditions are as follows

B0vr1

∣∣
x3=hr−η

= (σr
13)top B0vr1

∣∣
x3=h(r+1)−η

= (σr
13)bot

B0vr2

∣∣
x3=hr−η

= (σr
23)top B0vr2

∣∣
x3=h(r+1)−η

= (σr
13)bot

B0vr3

∣∣
x3=hr−η

= (σr
33)top B0vr3

∣∣
x3=h(r+1)−η

= (σr
33)bot

B1vr1
= Cr

45

∂u3

∂x2

+ Cr
55

∂u3

∂x1

+ Cr
55

∂ 1vr1
∂x3

+ Cr
45

∂ 1vr2
∂x3

B1vr2
= Cr

44

∂u3

∂x2

+ Cr
45

∂u3

∂x1

+ Cr
45

∂ 1vr1
∂x3

+ Cr
44

∂ 1vr2
∂x3

B1vr3
= Cr

36

∂u1

∂x2

+ Cr
23

∂u2

∂x2

+ Cr
13

∂u1

∂x1

+ Cr
36

∂u2

∂x1

+ Cr
33

∂ 1vr3
∂x3

(3.21)

The Euler-Lagrange equations given in Equation (3.20) are solved, subject to the

boundary conditions from Equation (3.21) and the constraints in Equation (3.18). Addi-

tionally, the continuity of displacements and transverse stresses at the interfaces between

each lamina is ensured. This yields

1vr1 = −x3
∂u3

∂x1

1vr2 = −x3
∂u3

∂x2
1vr3 = cr1 + x3f

r
1

f r
1 =

−1

Cr
33

[
Cr

36

∂u1

∂x2

+ Cr
23

∂u2

∂x2

+ Cr
13

∂u1

∂x1

+ Cr
36

∂u2

∂x1

]
(3.22)
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Where the expression for cr1 = cr1(x1, x2) is obtained in terms of f r
1 by considering con-

tinuity of displacements at the interface of each lamina and the constraint given in Eq

(3.18), leading in estimation of order of cr1 as h O(f r
1 ). It is intersting to note that for

homogeneous monoclinic materials cr1 = 0.

3.3.6 Second Order Solution (SOS)

To achieve higher accuracy in the solution, we further refine the displacement field at this

stage using the following perturbation

vri =
0vri +

1vri +
2vri

where

vr1 = u1 − x3
∂u3

∂x1

+ 2vr1, vr2 = u2 − x3
∂u3

∂x2

+ 2vr2

vr3 = u3 + x3f
r
1 + 2vr3

(3.23)

Following the scheme outlined in Section 3.3.1, the orders of uα, u3 and 0vri are de-

termined. The estimated orders for these quantities are O(ξ3l), O(ξ2l), and O(ξ3h),

respectively. Notably, by substituting vi from Equation (3.23) into Equation (3.1), the

corresponding strains are obtained. These strains are presented below, along with their

respective orders indicated using underbraces.

Er
11 =

∂u1

∂x1

− x3

(
∂

∂x1

)2

u3︸ ︷︷ ︸
O(ξ3)

+O(ξ4) 2Er
23 =

∂ 2vr2
∂x3︸ ︷︷ ︸
O(ξ3)

+O
(
ξ4
)

Er
22 =

∂u2

∂x2

− x3

(
∂

∂x2

)2

u3︸ ︷︷ ︸
O(ξ3)

+O(ξ4) 2Er
13 =

∂ 2vr1
∂x3︸ ︷︷ ︸
O(ξ3)

+O
(
ξ4
)

Er
33 = f r

1 +
∂ 2vr3
∂x3︸ ︷︷ ︸

O(ξ3)

+O
(
ξ4
)

2Er
12 =

∂u1

∂x2

+
∂u2

∂x1

− 2x3

(
∂

∂x1

)(
∂

∂x2

)
u3︸ ︷︷ ︸

O(ξ3)

+O(ξ4)

(3.24)

The revised strains obtained in Equation (3.24) are utilized to re-evaluate the strain

energy density U r and its significant component U r
sig. Similar to the ZOS and FOS, the
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perturbation variables 2vri apearing in U r
sig have derivatives with respect to x3 alone. This

splits the 3D analysis into two stages (1D and 2D analyses).

Through the Thickness 1D Analysis

We update the functional Πr
x3

to account for the changes made to U r
sig. Minimizing Πr

x3

leads to the following Euler-Lagrange equations for the rth lamina.

Cr
55

(
∂

∂x3

)2
2vr1 + Cr

45

(
∂

∂x3

)2
2vr2 = 0

Cr
45

(
∂

∂x3

)2
2vr1 + Cr

44

(
∂

∂x3

)2
2vr2 = 0

Cr
23

(
∂

∂x2

)2

u3 + 2Cr
36

(
∂

∂x1

)(
∂

∂x2

)
u3

+ Cr
13

(
∂

∂x1

)2

u3 − Cr
33

(
∂

∂x3

)2
2vr3 = 0

(3.25)

The associated boundary conditions are as follows

B0vr1

∣∣
x3=hr−η

= (σr
13)top B0vr1

∣∣
x3=h(r+1)−η

= (σr
13)bot

B0vr2

∣∣
x3=hr−η

= (σr
23)top B0vr2

∣∣
x3=h(r+1)−η

= (σr
13)bot

B0vr3

∣∣
x3=hr−η

= (σr
33)top B0vr3

∣∣
x3=h(r+1)−η

= (σr
33)bot

B2vr1
= Cr

55

∂ 2vr1
∂x3

+ Cr
45

∂ 2vr2
∂x3

B2vr2
= Cr

45

∂ 2vr1
∂x3

+ Cr
44

∂ 2vr2
∂x3

B2vr3
= −x3

{
Cr

23

(
∂

∂x2

)2

u3 + 2Cr
36

(
∂

∂x1

)(
∂

∂x2

)
u3

+ Cr
13

(
∂

∂x1

)2

u3

}
+ Cr

33

∂ 2vr3
∂x3

(3.26)

Euler-Lagrange equations in Eq. (3.25) are solved considering the boundary conditions

in Eq. (3.26) and the constraints given in Eq. (3.18) with addition to the continuity of

displacements and transverse stresses at the boundaries of each lamina. The solution to

the Euler-Lagrange equations is as follows
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2vr1 = 0

2vr2 = 0

2vr3 = cr2 + (x3)
2gr1

gr1 =
1

2Cr
33

[
Cr

23

(
∂

∂x2

)2

u3 + 2Cr
36

(
∂

∂x1

)(
∂

∂x2

)
u3 + Cr

13

(
∂

∂x1

)2

u3

] (3.27)

Where the expression for cr2 = cr2(x1, x2) is obtained in terms of gr1 by considering

continuity of displacements at the interface of each lamina and the constraint given in

Eq (3.18), leading in estimation of order of cr2 as h2 O(gr1). For homogeneous monoclinic

materials cr2 = − 1
12
h2gr1.

Part A of this work aimed to develop a plate theory similar to CLPT. The solution

approach employed in this work achieves this objective by starting with a zeroth-order

solution and iteratively refining it to reach a second-order solution. The following sections

provide a concise summary of the methodology used and the key findings from Part A.

3.3.7 Summary of Part A

Figure 3.3 visually depicts the systematic methodology employed to derive the reduced-

order model. The procedure commences by calculating strains, assuming the plate as

a 3D object. An order estimation scheme is used, based on the upper bound on the

supnorm and h
l
as given in Equation (3.4). Additionally, a rule for calculating the order

of displacement component derivatives, provided in Equation (3.2), is employed.

The zeroth-order solution starts with order estimation of various quantities of interest,

following the ordering strategy outlined in Section 3.3.1. This leads to an ordered repre-

sentation of the strain energy density, U r. The most significant portion of U r, denoted

as U r
sig, is isolated. Minimizing U r

sig yields a closed-form solution for the zeroth-order

perturbation variables, 0vri . The first and second-order solutions follow an identical pro-

cedure, including order re-estimation of relevant quantities based on the ordering scheme,

selection of the most significant part of the strain energy density, and its minimization to

obtain closed-form solutions for the perturbation variables.

65



CHAPTER 3 3.3. PART A: DEVELOPMENT OF A REDUCED ORDER MODEL

3.3.8 Displcement Field Obtained in Part A

U r

sig

U r

0U r
∼ O(ε2µ) Extremization 0vr

i

Order Estimation

O(0vr
i
) ∼ O(εh)

Closed Form Solution

Zeroth Order
Solution (ZOS)

vr
i
=0vr

i

P
a
rt

A
P
a
rt

B

Rules
Bound on supnorm and h

l

Order of the derivatives

Figure 3.3: Systematic methodology adopted
in deriving the reduced order model

The Part A of this work gives the following

displacement field

vr1 = u1 − x3
∂u3

∂x1︸ ︷︷ ︸
O(ξ3l)

vr2 = u2 − x3
∂u3

∂x2︸ ︷︷ ︸
O(ξ3l)

vr3 = u3︸︷︷︸
O(ξ2l)

+x3f
r
1 + (x3)

2gr1 + cr(x1, x2)︸ ︷︷ ︸
O(ξ3h)

(3.28)

Where cr = cr1 + cr2. The displace-

ment components v1 and v2 in Equation

(3.28) align with those found in CLPT

[100, 119, 130]. This is consistent with

Kirchhoff’s assumption: a line segment

normal to the undeformed reference plane

remains straight and perpendicular to the

deformed reference plane after deforma-

tion. However, the displacement compo-

nent v3 in Equation (3.28) deviates from

Kirchhoff’s assumption of no change in

length for transverse normals after defor-

mation (i.e., they are inextensible). In-

terestingly, the next section will demon-

strate that despite this difference, the plane

stress assumption in CLPT makes it ener-

getically equivalent to the asymptotically

correct plate theory evolved in Part A of

this work.
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3.3.9 Strains Obtained in Part A

The strains, as shown below, corrected up to order ξ3 are calculated by Eq. (3.1) and

(3.28).

Er
11 =

∂u1

∂x1

− x3

(
∂

∂x1

)2

u3︸ ︷︷ ︸
O(ξ3)

Er
22 =

∂u2

∂x2

− x3

(
∂

∂x2

)2

u3︸ ︷︷ ︸
O(ξ3)

Er
33 = f r

1 + 2x3g
r
1︸ ︷︷ ︸

O(ξ3)

2Er
23 = 0

2Er
13 = 0 2Er

12 =
∂u1

∂x2

+
∂u2

∂x1

− 2x3

(
∂

∂x1

)(
∂

∂x2

)
u3︸ ︷︷ ︸

O(ξ3)

(3.29)

It is interesting to note that substituting strains from Eq. (3.29) in Eq. (3.5) yields

σr
33 = Cr

13 Er
11 + Cr

23 Er
22 + Cr

33 Er
33 + 2 Cr

36 Er
12 = 0 (3.30)

Equation (3.30) leads to a plane stress condition that holds true with the current level

of accuracy achieved for stresses. Consequently, since σr
33 = 0, the virtual work equation

Eq. (3.8) does not include the transverse normal strain Er
33 even though it is not zero.

Therefore, we neglect the transverse normal strain Er
33 and by omitting this term from

Equation (3.29), we obtain

Eps =


Er

11

Er
22

2Er
23

2Er
13

2Er
12

 =



∂u1

∂x1
− x3

(
∂

∂x1

)2
u3

∂u2

∂x2
− x3

(
∂

∂x2

)2
u3

0
0

∂u1

∂x2
+ ∂u2

∂x1
− 2x3

(
∂

∂x1

)(
∂

∂x2

)
u3


(3.31)

An intriguing observation emerges despite the difference in the displacement field

discussed in Section 3.3.8. The asymptotically correct strains, Eps, obtained in Equation

(3.31) become similar to the strains predicted by CLPT [100]. This implies that CLPT is

energetically equivalent to the asymptotically correct plate theory we formulated. Part B

of this work improves the results from Part A by incorporating the effects of the higher-

order energy terms.
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3.4 Part B: Refinement of Part A

Building upon the foundation established in Part A, Part B refines the plate theory while

preserving the overall methodological consistency. Notably, Part B incorporates the effects

of higher-order energy terms within the analysis, improving the accuracy of Part A. Part

B aligns with the conventional VAM-based approach for plate theory development found

in the literature. The details of this refinement process are presented in the following

section.

3.4.1 Third Order Solution (TOS)

The displacement components obtained in the SOS are further refined through perturba-

tion as follows:

vri =
0vri +

1vri +
2vri +

3vri ,

where

vr1 = u1 − x3
∂u3

∂x1

+ 3vr1, vr2 = u2 − x3
∂u3

∂x2

+ 3vr2

vr3 = u3 + x3f
r
1 + (x3)

2gr1 + cr(x1, x2) +
3vr2

(3.32)

Following the order estimation scheme outlined in Section 3.3.1, we estimate the order

of the displacement components uα, u3, and the perturbation variable 3vri . These are

determined to be O(ξ3l), O(ξ2l), and O(ξ3h), respectively. Interestingly, these estimates

are identical to those obtained in the SOS. Consequently, minimizing the potential energy

based on these orders would lead to 3vri = 0, resulting in no further improvement to the

displacement field.

To overcome this limitation and achieve further refinement, we must consider the

contribution of higher-order strain energy terms at this stage. Specifically, to account for

the effects of strain energy of order (ξ8µ), we elevate the order of 3vri to O (ξ4h) while

maintaining the orders of the other variables. By substituting vi from Equation (3.32)

into Equation (3.1), we obtain
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Er
11 =

∂u1

∂x1

− x3

(
∂

∂x1

)2

u3︸ ︷︷ ︸
O(ξ3)

+
1

2

(
∂u3

∂x1

)2

︸ ︷︷ ︸
O(ξ4)

+
∂ 3vr1
∂x1︸ ︷︷ ︸
O(ξ5)

+O
(
ξ6
)

Er
22 =

∂u2

∂x2

− x3

(
∂

∂x2

)2

u3︸ ︷︷ ︸
O(ξ3)

+
1

2

(
∂u3

∂x2

)2

︸ ︷︷ ︸
O(ξ4)

+
∂ 3vr2
∂x2︸ ︷︷ ︸
O(ξ5)

+O
(
ξ6
)

Er
33 = f r

1 + 2x3g
r
1︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x1

)2

+
1

2

(
∂u3

∂x2

)2

+
∂ 3vr3
∂x3︸ ︷︷ ︸

O(ξ4)

+O
(
ξ6
)

2Er
23 = x3

∂f r
1

∂x2

+ (x3)
2 ∂g

r
1

∂x2

+
∂cr

∂x2

+
∂v32
∂x3︸ ︷︷ ︸

O(ξ4)

+
∂u3

∂x2

(
f r
1 + 2x3g

r
1 −

∂u2

∂x2

+ x3
∂2u3

∂x2
2

)
− ∂u1

∂x2

∂u3

∂x1

+ x3
∂u3

∂x1

(
∂

∂x1

)(
∂

∂x2

)
u3 +

∂v33
∂x2︸ ︷︷ ︸

O(ξ5)

+O
(
ξ6
)

2Er
13 = x3

∂f r
1

∂x1

+ (x3)
2 ∂g

r
1

∂x1

+
∂cr

∂x1

+
∂v31
∂x3︸ ︷︷ ︸

O(ξ4)

+
∂u3

∂x2

(
f r
1 + 2x3g

r
1 −

∂u1

∂x1

+ x3
∂2u3

∂x2
1

)
− ∂u2

∂x1

∂u3

∂x2

+ x3
∂u3

∂x2

(
∂

∂x1

)(
∂

∂x2

)
u3 +

∂v33
∂x1︸ ︷︷ ︸

O(ξ5)

+O
(
ξ6
)

2Er
12 =

∂u1

∂x2

+
∂u2

∂x1

− 2x3

(
∂

∂x1

)(
∂

∂x2

)
u3︸ ︷︷ ︸

O(ξ3)

+

(
∂u3

∂x1

)(
∂u3

∂x2

)
︸ ︷︷ ︸

O(ξ4)

+
∂ 3vr1
∂x2

+
∂ 3vr2
∂x1︸ ︷︷ ︸

O(ξ5)

+O
(
ξ6
)
(3.33)

The revised strains given in Eq. (3.33) are utilized to recalculate U r which takes the

following form

U r =

Ur
sig︷ ︸︸ ︷

0U r + 1U r + 2U r︸ ︷︷ ︸
O(ξ6µ)

+ 3U r︸︷︷︸
O(ξ8µ)

+O
(
ξ9µ
)

(3.34)

where pU r is the portion of the strain energy density U r considered in pth order solution.

To account for higher-order energy effects, we define U r
sig as the portion of U r corrected

up to O(ξ8µ). The functional Πr
x3

is then recalculated based on this refined expression

for U r
sig.
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A key distinction between the third-order solution and the zeroth, first, and second-

order solutions lies in the appearance of derivatives of the perturbation variables 3vri with

respect to the xα coordinates (i.e.,
∂ 3vri
∂xα

). To eliminate these derivatives, integration by

parts is employed, leading to boundary conditions defined at the edges of the plate domain,

Ωside. However, for the present analysis, we focus on the interior domain of the plate and

disregard these edge effects, aiming to determine the displacement field within the plate

interior without considering the influence of its boundaries [108, 112].

Finally, extremization of the modified functional Πr
x3

leads to the following Euler-

Lagrange equations for the rth lamina

Cr
55

(
∂

∂x3

)2
3vr1 + Cr

45

(
∂

∂x3

)2
3vr2 = 2Cr

55f
r
2 + 6Cr

55x3g
r
2 + 2Cr

45f
r
3 + 6Cr

45x3g
r
3

Cr
45

(
∂

∂x3

)2
3vr1 + Cr

44

(
∂

∂x3

)2
3vr2 = 2Cr

45f
r
2 + 6Cr

45x3g
r
2 + 2Cr

44f
r
3 + 6Cr

44x3g
r
3

Cr
33

(
∂

∂x3

)2
3vr2 = 0

(3.35)

The functions f r
2 , f

r
3 , g

r
2, and gr3 depend on the in-plane coordinates x1 and x2. Detailed

expressions for these functions in terms of the material constants and derivatives of ui

w.r.t. xj are provided in Appendix D. The associated boundary conditions are presented

below.

B0vr1

∣∣
x3=hr−η

= (σr
13)top B0vr1

∣∣
x3=h(r+1)−η

= (σr
13)bot

B0vr2

∣∣
x3=hr−η

= (σr
23)top B0vr2

∣∣
x3=h(r+1)−η

= (σr
13)bot

B0vr3

∣∣
x3=hr−η

= (σr
33)top B0vr3

∣∣
x3=h(r+1)−η

= (σr
33)bot

B3vr1
= Cr

45x3
∂f r

1

∂x2

+ Cr
45x

2
3

∂gr1
∂x2

+ Cr
45

∂cr

∂x2

+ Cr
55x3

∂f r
1

∂x1

+ Cr
55x

2
3

∂gr1
∂x1

+ Cr
55

∂cr

∂x1

+ Cr
55

∂ 3vr1
∂x3

+ Cr
45

∂ 3vr2
∂x3

B3vr2
= Cr

44x3
∂f r

1

∂x2

+ Cr
44x

2
3

∂gr1
∂x2

+ Cr
44

∂cr

∂x2

+ Cr
45x3

∂f r
1

∂x1

+ Cr
45x

2
3

∂gr1
∂x1

+ Cr
45

∂cr

∂x1

+ Cr
45

∂ 3vr1
∂x3

+ Cr
44

∂ 3vr2
∂x3

B3vr3
= Cr

33

∂ 3vr3
∂x3

(3.36)

solution to the Euler-Lagrange equations Eq. (3.35) is given by
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3vr1 = ar1 + x3a
r
2 + (x3)

2f r
2 + (x3)

3gr2
3vr2 = ar3 + x3a

r
4 + (x3)

2f r
3 + (x3)

3gr3
3vr3 = ar5 + x3a

r
6

(3.37)

Where ar1, a
r
2, a

r
3, a

r
4, a

r
5, and ar6 are constants of integration. These are determined by

considering the boundary conditions in Eq. (3.36), the constraints in Eq. (3.18) and the

continuity of the displacement components and transverse stresses at the interface of two

consecutive laminae. A Mathematica code is developed to determine these quantities for

a given laminate. However, the expression for ar6 is straightforward and is given below.

ar6 = − 1

2Cr
33

[
(Cr

23 + Cr
33)

(
∂u3

∂x2

)2

+ 2Cr
36

∂u3

∂x1

∂u3

∂x2

+ (Cr
13 + Cr

33)

(
∂u3

∂x1

)2 ]
(3.38)

Also, applying the boundary conditions in Eq. (3.36) for a symmetric plate with shear

traction-free top and bottom surfaces leads to(
2f r

2 +
∂f r

1

∂x1

)
− 2η

(
3gr2 +

∂gr1
∂x1

)
= 0(

2f r
3 +

∂f r
1

∂x2

)
− 2η

(
3gr3 +

∂gr1
∂x2

)
= 0

(3.39)

Eq. (3.39) will be utilized later to find η and to eliminate higher-order derivatives from

the strains. A graphical representation of the adopted procedure for the development done

in Part B is presented in Fig. 3.3.

3.4.2 A Discussion on the Displacement Field

The final displacement field obtained in Part A and B is given below

vr1 = u1 − x3
∂u3

∂x1︸ ︷︷ ︸
O(ξ3l)

+ ar1 + x3a
r
2 + (x3)

2f r
2 + (x3)

3gr2︸ ︷︷ ︸
O(ξ4h)

vr2 = u2 − x3
∂u3

∂x2︸ ︷︷ ︸
O(ξ3l)

+ ar3 + x3a
r
4 + (x3)

2f r
3 + (x3)

3gr3︸ ︷︷ ︸
O(ξ4h)

vr3 = u3︸︷︷︸
O(ξ2l)

+ x3f
r
1 + (x3)

2gr1 + cr(x1, x2)︸ ︷︷ ︸
O(ξ3h)

+ ar5 + x3a
r
6︸ ︷︷ ︸

O(ξ4h)

(3.40)
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Each successive perturbation refines the displacement field. Figure 3.4 visually depicts

the progressive improvements achieved in the displacement field with the introduction of

each perturbation.

ê1

A

B

0A

0B

1A

1B

2A

2B

3A

3B

(a)

(b) (c)

(d) (e)

0A 0B = AB
0A 0B ‖ AB

1A 1B �= AB

2A 2B �=1A 1B
2A 2B �= AB

ê3

−∂u3

∂x1

−∂u3

∂x1

−∂u3

∂x1

+ ar
2

C D

0C

0D

1C

1D

2C

2D

3C

3D

Figure 3.4: Progression of Deformation in lines AB and CD: (a) Undeformed configura-
tion. (b) Configuration after zeroth-order perturbation. (c) Configuration after first-order
perturbation. (d) Configuration after second-order perturbation. (e) Configuration after
third-order perturbation.

Figure 3.4(a) depicts the undeformed configuration. Line segment CD lies in the

reference plane oriented along direction ê1, while line segment AB is oriented along ê3.

Figure 3.4(b) illustrates the deformed configuration of line segment AB in the ZOS,

represented by line segment 0A 0B. In the FOS and SOS (Figures 3.4(c) and 3.4(d) re-

spectively), the displacement field is refined to include a rotation and a change in length
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of line segment AB, as shown by line segments 1A 1B and 2A 2B.

Finally, in the Third Order Solution, line segment AB deforms into the curved line

segment 3A 3B as depicted in Figure 3.4(e).

3.4.3 A Discussion on the Strains, Stresses and Stiffness Matrix

Eq. (3.1) and (3.40) provide the expressions for the strains accurate up to order (ξ4).

These refined strains are presented below:

Er
11 =

∂u1

∂x1

− x3

(
∂

∂x1

)2

u3︸ ︷︷ ︸
O(ξ3)

+
1

2

(
∂u3

∂x1

)2

︸ ︷︷ ︸
O(ξ4)

Er
22 =

∂u2

∂x2

− x3

(
∂

∂x2

)2

u3︸ ︷︷ ︸
O(ξ3)

+
1

2

(
∂u3

∂x1

)2

︸ ︷︷ ︸
O(ξ4)

Er
33 = − 1

2C33

[−2C33(f
r
1 + 2x3g

r
1)]︸ ︷︷ ︸

O(ξ3)

+
1

2C33

[
C23

(
∂u3

∂x2

)2

+ 2C36
∂u3

∂x1

∂u3

∂x2

+ C13

(
∂u3

∂x1

)2
]

︸ ︷︷ ︸
O(ξ4)

2Er
23 = ar4 +

∂cr

∂x2

+ x3

(
2f r

3 +
∂f r

1

∂x2

)
+ (x3)

2

(
3gr3 +

∂gr1
∂x2

)
︸ ︷︷ ︸

O(ξ4)

2Er
13 = ar2 +

∂cr

∂x1

+ x3

(
2f r

2 +
∂f r

1

∂x1

)
+ (x3)

2

(
3gr2 +

∂gr1
∂x1

)
︸ ︷︷ ︸

O(ξ4)

2Er
12 =

∂u1

∂x2

+
∂u2

∂x1

− 2x3

(
∂

∂x1

)(
∂

∂x2

)
u3︸ ︷︷ ︸

O(ξ3)

+

(
∂u3

∂x1

)(
∂u3

∂x2

)
︸ ︷︷ ︸

O(ξ4)

(3.41)

The transverse shear strains, 2E13 and 2E23, depend on the derivatives of the in-plane

displacement, uα. Specifically, they involve terms like
(
2f r

3 +
∂fr

1

∂x2

)
and

(
2f r

2 +
∂fr

1

∂x1

)
,

which include higher-order derivatives of uα. As shown in Eq. (3.39), setting the reference

plane distance η to zero, eliminates these terms. This simplification justifies choosing the

mid-plane of the plate (where η = 0 ) as the reference plane for further analysis.

An interesting observation is that the plane stress condition, established in Part A,

remains valid even with the higher-order strain terms incorporated here. This can be read-
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ily verified by substituting the strains from Eq. (3.41) into Eq. (3.5). This substitution

confirms that σr
33 = 0, signifying the plane stress condition.

It is noteworthy that the plane stress condition arises naturally from the adopted proce-

dure, eliminating the need for an ad hoc or a priori assumption as commonly encountered

in various plate theories from the literature [119, 122, 68]. The historical precedent and

simplicity of the plane stress condition, make it a popular choice for plate theories.

Following the reasoning presented in Section 3.3.9, the transverse normal strain Er
33

can be neglected. Omitting this term from Eq. (3.41) and selecting the mid-plane of the

plate as the reference plane, we obtain

Er =



∂u1

∂x1
− x3

(
∂

∂x1

)2
u3 +

1
2

(
∂u3

∂x1

)2
∂u2

∂x2
− x3

(
∂

∂x2

)2
u3 +

1
2

(
∂u3

∂x2

)2
ar4 +

∂cr

∂x2
+ (x3)

2
(
3gr3 +

∂gr1
∂x2

)
ar2 +

∂cr

∂x1
+ (x3)

2
(
3gr2 +

∂gr1
∂x1

)
∂u1

∂x2
+ ∂u2

∂x1
− 2x3

(
∂

∂x1

)(
∂

∂x2

)
u3 +

(
∂u3

∂x1

)(
∂u3

∂x2

)


(3.42)

Also, the stiffness matrix for rth lamina is modified according to the plane stress

condition [119] as

Dr =


Dr

11 Dr
12 0 0 Dr

16

Dr
12 Dr

22 0 0 Dr
26

0 0 Dr
44 Dr

45 0
0 0 Dr

45 Dr
55 0

Dr
16 Dr

26 0 0 Dr
66

 (3.43)

Under plane stress conditions, stresses σr and strain energy density U r for the rth

lamina are given as follows

σr = {σr
11, σr

22, σr
23, σr

13, σr
12}

T = DrEr,

U r =
1

2
(σr)TEr =

1

2
(DrEr)TEr

(3.44)

The transverse shear force resultants Qα, strain energy per unit area U and transverse

shear strain energy per unit area U shear are given by
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Q2 =
n∑

r=1

∫ h(r+1)

hr

σr
23dx3

Q1 =
n∑

r=1

∫ h(r+1)

hr

σr
13dx3

U =
n∑

r=1

∫ h(r+1)

hr

U rdx3

U shear =
1

2

n∑
r=1

∫ h(r+1)

hr

(σr
23E

r
23 + σr

13E
r
13) dx3

(3.45)

Substitution of the strain energy from Eq. (3.45) in the virtual work Eq. (3.8) reduces

it in the following form

∫
∂Ωr

(
δU rest + δU shear

)
daref −

∫
∂Ωtb

q⃗ · δv⃗datb −
∫
∂Ωside

t⃗ · δv⃗daside = 0

Where Urest = U− Ushear

(3.46)

The Virtual work Eq. (3.46) can used for the 2D in plane analysis considering ui as

the independent variables of the problem resulting in the solution to the 2D variables.

However, Due to dependency of U on the higher order derivatives of u3, This Equation

involve computational complexities and becomes computationally inefficient. To circum-

vent the computational complexities by eliminating these higher order derivatives FSDT

plate theory and the concept of isoenergetics [57] are used. The following section presents

the details of this procedure.

3.5 Part C: Elimination of Higher Order Derivatives

FSDT plate theory, though asymptotically inaccurate, is very practical due to its sim-

plicity and computational efficiency thereby often preferred for the analysis of thin and

moderately thick plates. This theory accounts for the transverse shear deformation effects

in the plate. In This theory, it is assumed that a straight line normal to the undeformed

reference plane ∂Ωref remains straight but not perpendicular to the deformed reference

plane ∂Ωref and has rotations ϕ1 and ϕ2 about the x1 and x2 axes. Thus FSDT plate

theory incorporates two additional degrees of freedom ϕ1 and ϕ2. The strains for FSDT

plate theory [100, 101] are given below
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EFSDT =


EFSDT

11

EFSDT
22

2EFSDT
23

2EFSDT
13

2EFSDT
12

 =



∂u1

∂x1
+ x3

∂ϕ1

∂x1
+ 1

2

(
∂u3

∂x1

)2
∂u2

∂x2
+ x3

∂ϕ2

∂x2
+ 1

2

(
∂u3

∂x2

)2
ϕ2 +

∂u3

∂x2

ϕ1 +
∂u3

∂x1

∂u1

∂x2
+ ∂u2

∂x1
+ x3

(
∂ϕ1

∂x2
+ ∂ϕ2

∂x1

)
+
(

∂u3

∂x1

)(
∂u3

∂x2

)


(3.47)

The through the thickness constant value of the transverse strains (2EFSDT
α3 ) in FSDT

results in an inaccurate calculation of transverse shear strain energies [54, 53, 52, 51].

To remove this shortcoming of the FSDT plate theory, SCFs are emplyed. Following

references [50, 49], The expressions for the transverse shear force resultants QFSDT
α and

transverse shear strain energy per unit area U
FSDT

shear for FSDT Plate theory with SCfs are

given by

QFSDT
2 =

n∑
r=1

∫ h(r+1)

hr

(
2Dr

44E
FSDT
23 + 2Dr

45E
FSDT
13

)
dx3

QFSDT
1 =

n∑
r=1

∫ h(r+1)

hr

(
2Dr

45E
FSDT
23 + 2Dr

55E
FSDT
13

)
dx3

U
FSDT

shear =
n∑

r=1

∫ h(r+1)

hr

[
2Dr

44(E
FSDT
23 )2 + 4Dr

45E
FSDT
13 EFSDT

23 + 2Dr
55(E

FSDT
13 )2

]
dx3

(3.48)

Where (kα)
2 = Kα are SCFs. The FSDT plate theory is made isoenergetic to the

asymptotically correct plate theory by finding suitable shear correction factors (SCFs) in

such a way that the asymptotically correct plate theory and the FSDT plate theory result

in the same strain energy per unit area for same deformation pattern of the reference

plane. To calculate SCFs, the equality of the relevant quantities in Eq. (3.45) and (3.48)

is employed as shown below

QFSDT
2 = Q2 QFSDT

1 = Q1 U
FSDT

shear = U shear (3.49)

To find Kα using Eq. (3.49), the cylindrical bending about the x1 and x2 axes is

considered [50, 123]. First cylindrical bending about x2 axis resulting in u3(x1, x2) =

u3(x1) is investigated. Eq. (3.49) is used to establish a relation between k1 and k2 which

is independent of the quantities associated with the deformation pattern (viz. γα3 and
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derivatives of u3 with respect to x1). Following a similar approach, another relation

between k1 and k2 is set by considering cylindrical bending about x1 axis. The two

relations in k1 and k2 are used to find the SCFs.

As determined in the present work, the order of transverse shear strains is O(ξ4).

Thearfore, Eq. (3.47) and the order estimation scheme in article 3.3.1 gives

−x3
∂2u3

∂xα∂xβ

= x3
∂ϕβ

∂xα

+O
(
ξ5
)

(3.50)

Considering strains accurate up to the order of O(ξ4), Eq. (3.50) is utilized to replace

second and higher-order derivatives of u3 with derivatives of ϕα from Eq. (3.42), neglecting

quantities of orderO(ξ5) and higher. This replacement modifies Eqs. (3.42), (3.44), (3.45),

and (3.46), rendering Eαβ = EFSDT
αβ . Additionally, Eq. (3.49) enables the replacement

of Ushear with U
FSDT

shear in the virtual work equation (3.46). This makes the FSDT plate

theory with SCFs Isoenergetic to the asymptotically correct plate theory developed in

this work. Hence, the present work employs Isoenergetic FSDT plate theory to calculate

in-plane displacement variables ui and ϕi. Once these variables are determined, the actual

through-the-thickness variation of strains is recovered using the following strains, obtained

by replacing higher-order derivatives of u3 with lower-order derivatives of ϕα using Eq.

(3.50) in Eq. (3.42).

E =


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+ x3
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∂x1
+ 1

2

(
∂u3

∂x1

)2
∂u2

∂x2
+ x3

∂ϕ2

∂x2
+ 1

2

(
∂u3

∂x2

)2
ar4 +

∂cr

∂x2
+ (x3)

2
(
3gr3 +

∂gr1
∂x2

)
ar2 +

∂cr

∂x1
+ (x3)

2
(
3gr2 +

∂gr1
∂x1

)
∂u1

∂x2
+ ∂u2

∂x1
+ x3

(
∂ϕ1

∂x2
+ ∂ϕ2

∂x1

)
+
(

∂u3

∂x1

)(
∂u3

∂x2

)


(3.51)

3.6 Results and Discussion

In this work, a novel approach is introduced for analyzing multilayered composite struc-

tures. To assess its accuracy, numerical examples involving various scenarios are provided.

The material properties listed in Table 3.1 are utilized in these numerical illustrations. In

this table, subscripts L and T represent the longitudinal (along the fiber orientation) and

transverse (perpendicular to the fiber orientation) directions, respectively. For systematic

presentation, the Validation is divided into two subsections: the first subsection validates
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the SCFs obtained using the present approach, while the second subsection validates the

deformation of plates obtained using the present approach.

Table 3.1: Material properties used in different numerical examples

Material-1 [48] Material-2 [116] Material-3 [47] Material-4 [144] Material-5 [144]
EL (GPa) 139.3 172.369 103.421 12.605 227.53
ET (GPa) 9.72 6.895 6.895 12.628 144.79
GLT (GPa) 5.58 3.337 3.447 2.155 55.16
GTT (GPa) 3.45 1.379 2.413 2.155 27.58

νLT 0.29 0.25 0.3 0.2395 0.25
νTT 0.4 0.25 0.49 0.2395 0.25

3.6.1 Validation of the SCFs

A number of examples are presented to find SCFs. The results are compared with those

found in literature. In all the examples, different symmetric layer sequences with equal

layer thickness within a total thickness h are investigated.

First a laminate with n laminae is examined [123]. The laminate is constructed of

alternate plies of 0◦ and 90◦ orientations relative to the x1 axis of the plate with the two

centre layers oriented at 90◦ to provide symmetry . All plies have the same thickness h
n
.

Each ply is composed of Material-2, whose properties are given in Table 3.1.

The SCFs K1 and K2 have been plotted versus the number of plies, n, in Fig. 3.5.

It is clear that the SCFs calculated using the present approach are in excellent match

with given in the the work done by Vlachoutsis et al. [123]. Also the values of Kα

(K1 = 0.6808, K2 = 0.6794) for n = 120 matched exactly with those given in his work.

The SCF versus the G13

G23
are plotted in Fig. (3.6), for n = 120, when only G23 changes

while the other values remain unchanged.

Next SCFs are calculated for different symmetric lay-up sequences. The results are

compared with those found in literature in Table 3.2. the results obtained using the

present appoach are found in good agreement with those given in literature.

Finally the SCFs are calculated for the homogeneous Isotropic/orthotropic/monoclinic

materials. the SCFs
(
K1 = K2 =

5
6

)
are found to be in agreement with literature [47, 123].
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G23

3.6.2 Validation of the Deformation of Plates

In this section displacements and stresses are calculated for different Numerical examples.

Fig. 3.7 and 3.8 depict the dimensions of the plats, the lay-up sequences and the boundary
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Table 3.2: SCFs for different symmetric lay-up sequences

Lay-up (◦) Material (Table 3.1) Theory K1 K2

[0,90,0] Material-2 [47] 0.7031 0.8676
Present 0.5828 0.8028

[0, 90]S Material-2 [46] 0.5952 0.7205
[45] 0.5936 0.7788

Present 0.5952 0.7205
Materia-4 Present 0.8332 0.8334

[30/− 30]S Material-2 [50] 0.7549 0.6730
[45] 0.6773 0.6722

Present 0.6472 0.6361
[10/5/0/5/10] Material-3 [47] 0.8313 0.8298

Present 0.8303 0.8309
[−14.80/75.20/− 75.20/ Material-1 Present 0.8029 0.3926
14.80/− 22.87/67.13]S

[0/90/0/90]S Material-2 Present 0.6574 0.6305
[45/− 45]S Material-5 Present 0.7237 0.7237

conditions for different numeric examples. The values of length of the plate a, width of

the plate b and thickness of the plate h along with material properties and boundary

conditions used in different examples are given in Table 3.3.

Table 3.3: Geometry, Material Properties and boundary conditions for the numerical
examples

Numerical Geometry Material Boundary
Example (Fig. 3.7) Properties Conditions

a (m) b (m) h (m) b
h

(Table 3.1) (Fig. 3.8)
Example-1 0.5472 0.1824 0.001824 100 Material-1 cfcf
Example-2 0.3048 0.3048 0.002438 125 Material-4 cccc
Example-3 a a h 20 Material-2 ssss
Example-4 a a h Material-2 ssss
Example-5 5 1 0.02 50 Material-5 cccc

Result for the center point deflection of the plate considered in Example-2 is ploted in

Fig. 3.12. it is compared with that obtained using 3D FEA, MXFEM [144], Experimen-

tal [43] and Linear [144] approaches. The results obtained using present, 3D FEA and

MXFEM approachs are in good aggrement. However, there is a small difference in exper-

imental results. This difference might be due to limitations in modeling the experiment’s

actual support conditions and material properties within the simulations.
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Figure 3.7: Geometry of the plate examined in the numerical examples (a) in-plane dimen-
sions of the plate (b) through the thickness structure of the plate in Example-1 (c) through
the thickness structure of the plate in Example-2 (d) through the thickness structure of
the plate in Example-3 (e) through the thickness structure of the plate in Example-4, (f)
through the thickness structure of the plate in Example-5.
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Figure 3.8: Boundary conditions used in different numerical examples
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Figure 3.9: Load-deflection curves for the central point of the plate considered in Example-
1 under uniform Pressure P applied at its top face

In Example-1 and Example-2 the plate is subjected to a uniform pressure P on the top

face (x3 = −h
2
). In rest of the numerical examples (Example-3, Example-4 and Example-

5), plates subjected to a sinusoidally varying pressure q on its top face is examined.

q = q0 sin
(π x1

a

)
sin
(π x2

b

)
(3.52)
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Figure 3.10: Out-of-plane deflection of the plate considered in Example-1 subjected to a
uniform pressure of P = 400 N/m² applied on its top face. Deflections are obtained using:
(a) 3D Finite Element Analysis (FEA) and (b) present ACI-ESL plate theory.
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Figure 3.11: Percentage error in the out of plane deflection u3 obtained using 3D FEA
and present approach under uniform Pressure of P = 400N/m2 applied at the top face

The lay-up sequence for the laminate in Example-1, Example-3 and Example-5 are

[−14.80◦/75.20◦/ − 75.20◦/14.80◦/ − 22.87◦/67.13◦]S, [0
◦/90◦/0◦/90◦]S, [45

◦/ − 45◦]S re-

spectively. The first example has a hygrothermally stable lay-up sequence [44]. The lay-up

sequence for Example-2 and Example-4 is [0◦/90◦]S. The SCFs corresponding to the all

numerical examples are calculated following the present approach. These SCFs are listed
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Figure 3.12: Load-deflection curves for the central point of the plate considered in
Example-2 under uniform Pressure P applied at its top face

in Table 3.2.

For Example-1, the transverse displacement (u3) of the plate midpoint
(
x1 =

a
2
, x2 =

b
2

)
for different values of constant pressures P is calculated [61] utilizing the present approach,

and 3D FEA. Fig. 3.9 shows that the transverse displacement computed by the proposed

plate model is in excellent agreement with the 3D FEA. In this work, the 3D finite el-

ement analysis was performed using the Abaqus software. The element type chosen for

the analysis was C3D20R, which corresponds to a 20-node quadratic brick element with

reduced integration. A thorough convergence study was carried out to ensure the accu-

racy and reliability of the obtained results. This study involved systematically refining

the mesh and monitoring the convergence behavior of relevant quantities such as displace-

ments, strains, and stresses. Nevertheless, for brevity, the convergence analysis is omitted

from this presentation. Analytical solutions were obtained using numerical methods or

state-of-the-space methods (such as the Navier or Levy solution) [119].

Figures 3.10 shows the variation of the displacement component u3 with respect to

x1 and x2 for Example-1 with a uniform pressure of P = 400 N/m2. Figure 3.10(a)

was generated using the 3D FEA approach, while Figure 3.10(b) was produced using the

present approach. Figure 3.11 illustrates the variation of the percentage error in the value
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Figure 3.13: Variation of out of plane non-dimensionalized deflection w along the center-
line parallel to x1 and non-dimensionalized stress components σij along the thickness of
the plate considered in Example-3

of u3 with respect to x1 and x2 between the results obtained by the two approaches. The

percentage error (PE) for Figure 3.11 is defined as follows
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Table 3.4: Comparison of the dimensionless quantities (Max Value) computed in Example-
4

a
h

Quant.
(Max.
Value)

3D
FEA

3D Elas-
ticity
[122]

Present
TSDT
[122]

FSDT
(K=5

6
)

[122]

10

w 0.7469 0.743 0.7447 0.7147 0.6628
σ11 0.5652 0.559 0.4827 0.5456 0.4989
σ22 0.4056 0.401 0.3988 0.3888 0.3615
σ23 0.2124 0.196 0.1992 0.1531 0.1292
σ13 0.3147 0.301 0.3082 0.2640 0.1667
σ12 0.0235 0.0275 0.0253 0.0268 0.0241

20

w 0.5164 0.517 0.5138 0.5060 0.4912
σ11 0.5464 0.543 0.5222 0.5393 0.5273
σ22 0.3113 0.308 0.3076 0.3043 0.2957
σ23 0.1664 0.156 0.1562 0.1234 0.1087
σ13 0.3384 0.328 0.3301 0.2825 0.1749
σ12 0.0216 0.0230 0.0225 0.0228 0.0221

100

w 0.4354 0.4385 0.4346 0.4343 0.4337
σ11 0.5398 0.539 0.5380 0.5387 0.5382
σ22 0.2711 0.276 0.2710 0.2708 0.2705
σ23 0.1492 0.141 0.1382 0.1117 0.1009
σ13 0.3492 0.337 0.3385 0.2897 0.1780
σ12 0.0212 0.0216 0.0213 0.0213 0.0213

PE = 100

∣∣∣∣∣u3,FEA − u3,Present

umax
3,FEA

∣∣∣∣∣ (3.53)

Where u3,FEA and u3,Present are values of u3 obtained using the 3D FEA and the present

approaches. umax
3,FEA is the maximum value of u3,FEA. Figure 3.11 demonstrates that the

results obtained by the 3D FEA and the present approach are in very good agreement.

To compare the results, following dimensionless quantities [116] are considered in

Example-3, Example-4 and Example-5.
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Fig. 3.13 illustrates the variation of the dimensionless transverse displacement w along

the centerline parallel to the x1 axis and the variation of the dimensionless stresses

(σ11,σ22,σ23,σ13 and σ12) along the thickness direction of the plate considered in Example-

3. The results were compared with those obtained using 3D FEA, TSDT [122] , ACI-ESL

[57], FSDT [119] and CLPT [119].

Table 3.4 presents a comparison of the maximum values of the dimensionless quantities

in Example-4. The observations from the table indicate that as the a
h
ratio increases, the

results converge towards the 3D FEA results. This trend is a consequence of the fact

that the ordering of the strains has been carried out considering the smallness of the ratio
h
a
. The results of the present approach aligns well with results from 3D FEA and 3D

elasticity. Notably, a significant improvement in the displacement field and transverse

shear stresses is observed compared to the TSDT and FSDT plate theories.

Fig. 3.14 shows the variation of w along the center-line parallel to x1 axis, It also

presents the variation of σ11, σ22, σ23, σ13 and σ12 along the thickness in Example-4.

Notably, these quantities are calculates for pint B having in-plane coordinates (a
4
, b
4
) as

shown in Fig. 3.7 insted of the locations defined in Eq. (3.54). The results obtained using

the present approach are compared with 3D FEA.

3.7 Conclusion

In this chapter, a computationally efficient framework is presented to analyze multilayered

symmetric composite plates. This framework makes the FSDT plate theory isoenergetic to

the asymptotically correct plate theory by finding suitable SCFs. the isoenergetic FSDT

plate theory is used to find the 2D displacement components. The through the thickness

variation of the displacement field, strains and stresses is recovered by substituting these

2D variables in the asymptotically correct displacement, strains and stresses. Following

are key highlights of the present work
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Figure 3.14: Variation of out of plane non-dimensionalized deflection w along the center-
line parallel to x1 and non-dimensionalized stress components σij along the thickness of
the plate considered in Example-5

1. The utilization of isoenergetic FSDT plate theory in this work results in a low

computational cost similar to FSDT plate theory.

2. The dimensional reduction using VAM is based on first principles, avoiding reliance
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on pre-assumed kinematics of the plate and assumptions regarding the order of

different quantities of interest.

3. The zeroth order solution yields the estimation of the 3D displacement field in terms

of 2D variables ui(x1, x2), leading to the dimensional reduction of the 3D problem

to 2D, which is traditionally assumed in classical plate theories.

4. The reference plane of the plate emerges naturally as a consequence of the systematic

approach adopted in this work, and its position is determined on logical grounds

rather than being set a priori.

5. A mathematically sound ordering scheme is employed, utilizing the plate’s geometry

and a bound on the maximum value of the strains to determine the orders of different

quantities of interest. The final order of these quantities matches exactly with those

found in the literature, demonstrating the robustness of the ordering scheme.

6. The higher order 1D through the thickness analysis involves derivatives of ui(x1, x2)

w.r.t xα. The complexity involving these derivatives is eliminated through a novel

isoenegetic approach resulting in better estimation of the overall deformation.

7. The plane stress condition emerges naturally from the mathematical procedure

adopted in this formulation, rather than being an ad hoc assumption as in many

other plate theories.

8. Numerical examples demonstrate the asymptotic correctness of the present work,

with improved results observed as the small parameter
(
h
l

)
decreases. Satisfactory

performance is achieved for thin and moderately thick plates.

9. The present framework outperforms FSDT and higher-order (TSDT) ESL plate

theories, particularly in the displacement field and transverse shear strains and

stresses.

In summary, this work presents a more refined, accurate, and computationally efficient

framework for analyzing thin and moderately thick plate structures. Comparison with

established theories such as CLPT, FSDT, R-TSDT, and 3D FEA demonstrates the

accuracy of the proposed approach.
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Chapter 4

Analysis of Functionally Graded
Plates Using Novel Isoenergetic
Formulation

4.1 Introduction

Functionally Graded Materials (FGMs), inspired by the structure of bamboo, represent

a cutting-edge advancement. Composed of two or more materials with a gradual compo-

sitional change in desired direction [20], FGMs were pioneered by Japanese scientists for

rocket nozzle applications to withstand extreme thermal and mechanical loads [19]. Look-

ing at the exceptional results/properties offered by these materials, they are now widely

employed in many applications such as in artificial hip joints, in transducers for filtering

out the noise, piezoelectric, aircraft structures, biomedical devices, dental implant, various

kind of sensors etc. [82, 18, 17]

This chapter presents an asymptotically correct isoenergetic formulation for the func-

tionally graded plates. Some of the literature studies on analytical approaches for studying

FGM plate-type structures are as follows: Kumar et al. [13] conducted a study on the

bending behavior of FGM plates. In this work a higher order shear displacement model

approach has been adopted where the displacement variables are assumed as a series so-

lution. For finding out the solution use of Navier’s empirical equations has been made.

However, no analytical expressions have been provided in the study and just the results

are plotted. It is suspected that the solutions obtained might be quite complex which

can not be represented in mathematical expression form. Nguyen et al. [12] proposed a

first-order shear deformation model for the FGM plates using the stress based formula-
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tion. For obtaining correct results, use of Shear Correction Factor (SCF) has been made

which is calculated using the shear deformation energy. Numerical results for deflection

and stresses have been presented in tabular and graphical form without any evidence to

the mathematical expressions for the results. The approach has ad-hoc assumptions as-

sociated to it and also the calculations involved are quite combersome. Singha et al. [11]

conducted a non linear finite element analysis of functionally graded plates under trans-

verse loads. The material properties are assumed to follow a power law variation along the

thickness of the plate. Use of FSDT theory has been made to formulate the problem. The

position of neutral plane of the plate is found out by using the literature results. Since,

they are finite element based results thus don’t give sufficient insight into the mechanics

of the problem and also involves ad-hoc assumtions. Le [124] presented first order shear

deformation theory for functionally graded plates. A linear strain tensor has been used

which restricts the effects of geometric non-linearity to be included in the analysis. Also,

the mid-plane is selected as the reference plane without any justification. The use of VAM

technique leads to complicated expressions. Silvia et al. [10] presented a finite element

based displacement calculus of functionally graded plate. The analysis has been done by

assuming homogeneous layers which limit the scope of the formulation. Vidal et al. [9]

analyzed FGM plates using a variable seperation method. A computationally intensive

layer-wise approach has been used. The displacement field has been approximated as a

sum of seperated functions of in-plane coordinate and out of plane/transverse coordinate.

The fourth order expansion for transverse coordinate leads to correct solutions for the

problem while the in-plane coordinates have been solved using FEA approach. The com-

putational cost for this fourth order expansion is not in par with the improvement in the

results.

From the literature above, it is clear that all the models have certain assumptions

associated to them or the solutions provided are quite cumbersome which require higher

computational cost. Thus, a simpler and assumptions free analysis with lesser compu-

tational cost is still required. Further, It has also been observed that the displacement

based formulation offers a simpler analysis which makes this approach a wise choice to

use. In this work we proceed with the reduced order model formulation by adopting dis-

placement based formulation. To make this formulation more robust and fundamental we

have adopted Variational Asymptotic Method (VAM) [107] where the 3D problem is split

up into a 1D through the thickness analysis and 2D cross-sectional analysis with the help

of small parameters inherent to the problem. This small parameter assists in systematic
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derivation and asymptotic expansion of the strain energy for a refined solution. To obtain

the solution, use of first principle has been made. Further, as already highlighted about

the limitation of various reduced order models regarding higher order derivatives, this

issue has been resolved by the use of novel isoenergetic principle where the strain energy

of this model is equated to the strain energy of the FSDT model thus resulting in the

considerable savings of computational cost without compromising on the accuracy of the

solution [57]. The obtained results have been verified with the help of 3D FEA results

and few prominent literature results. A good agreement with a considerable savings in

computational cost justifies the requirement of the presented formulation. Since this ap-

proach is asymptotically correct and use the novel concept of isoenergetic so we name it

as Asymptotically Correct Isoenergetic Formulation (ACIF). The detailed derivation and

verfication of the proposed ACIF is presented in the next section.

4.2 Analytical Formulation

An FGM plate with length a, width b, and thickness h, has been shown in Fig. 4.1.

A right handed orthogonal cartesian coordinate system xi with unit vectors êi has been

adopted, where, x3-axis is oriented along the thickness of the plate while x1, x2 represents

the in-plane coordinates. The reference plane is taken at a distance η from the mid-plane

of the plate as shown in Fig 4.1(b). For a plate-like structure, usually, the thickness h is

much smaller than the other two dimensions i.e. a and b. Thus, exploiting this feature to

define a and b to be of the order l, so the ratio h
l
becomes a small parameter i.e. h

l
< 1.

For making the analysis simpler, the interior region of the plate has been denoted by Ω

while the boundary which comprises of the top surface is denoted by ∂Ωtop, the bottom

surface boundary is denoted by ∂Ωbot and the side surfaces are denoted by ∂Ωside with

∂Ωtb = ∂Ωtop ∪ ∂Ωbot. Now, the position vector of an arbitrary point P in this domain

can be represented by x⃗ = xiêi. It is to be noted that the Roman indices (i, j, k, . . .)

range from 1 to 3, while Greek indices (α, β, γ, . . .) range from 1 to 2 unless their values

are specified. Now, after deformation the point P shifts to a new location represented

by P ′. The displacement vector for this shift is given by v⃗ = viêi. For the present

study, we consider Green–St. Venant strain tensor [128, 127, 119, 139] which accounts for

deformation having small strains and moderate rotations

E =
1

2

[(
∇⃗xv⃗

)
+
(
∇⃗xv⃗

)T
+
(
∇⃗xv⃗

)T (
∇⃗xv⃗

)]
(4.1)
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Figure 4.1: Schematic of the plate deformation (a) Undeformed state (b) Coordinate
system (c) Deformed state

Using the information discussed up to now, we formulate the problem in the subsequent

sections, where a novel strategy for developing a reduced order plate theory has been

presented. This analytical development is categorized into three parts: Part A presents the

development a Classical Laminated Plate Theory (CLPT) type theory, Part B discusses

the refinement in the model presented in Part A considering the contribution of higher-

order energy, and Part C presents a novel iso-energetic concept that eliminates higher-

order derivatives and thus reduces the computational cost without compromising the

accuracy of the approach.
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4.3 Part A: CLPT-type plate theory

For efficient and accurate modeling, the use of small parameter has been made along with

imposing a limit on the maximum value of strain. Various quantities that are of interest

in the present analysis are ordered using this small parameter. The detailed discussion

on this ordering is as follows:

4.3.1 Ordering Scheme

The idea of ordering comes from the work of Hodges et al. [112], Using this idea the

relation between the orders of vi and its derivatives with respect to xj can be written as

O

(
∂t

∂xt
1

∂s

∂xs
2

∂r

∂xr
3

vi

)
∼
(
1

l

)(s+t)(
1

h

)r

O(vi)

r, s, t = 0, 1, 2, 3, ...

(4.2)

It is to be noted that these derivatives follow the simple differential calculus laws where

O
(

∂0

∂x0
i
vi

)
= O(vi). The supnorm (supremum norm) of strains (||E||∞) is defined below

||E||∞ = max
1≤i,j≤3

max
x∈Ω

|Eij| (4.3)

The maximum value of h
l
and the supnorm is bounded by ξ and ε respectively as shown

below mathematically
h

l
≤ ξ

||E||∞ ≤ ε
(4.4)

Now, as per the small deformation and moderate rotations discussed in the analytical

development section, we consider bound on the supnorm of strains to be a very small

parameter i.e. ε ≪ 1. For a plate-like structure bound on the maximum value of h
l
is

small i.e. ξ < 1. For the asymptotic expansion of the stains and strain energy, it is

assumed that ε = ξ3. The bound on the maximum value of the strains and h
l
with the

ordering scheme given in Eq. (4.2) results in a unique estimation of the order of different

quantities of interest which will be evident in the coming sections.

4.3.2 Constitutive Relations and Strain Energy

Second Piola-Kirchhoff stress tensor is given by σ = {σ11, σ22, σ33, τ23, τ13, τ12}T and

the constitutive relation is given by

σ = CE, (4.5)
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where C represents the stiffness matrix and E = {E11, E22, E33, 2E23, 2E13, 2E12}T .
For FGM plates with material gradation in x3 direction, the stiffness matrix takes the

following form [82]

C =
Y

(1 + ν)(1− 2ν)


(1− ν) ν ν 0 0 0

ν (1− ν) ν 0 0 0
ν ν (1− ν) 0 0 0
0 0 0 1

2
(1− 2ν) 0 0

0 0 0 0 1
2
(1− 2ν) 0

0 0 0 0 0 1
2
(1− 2ν)


(4.6)

Where Y = Y (x3) is youngs modulus of elasticity which changes in the thickness direction

following different material gradation laws (viz. exponential, power law and reciprocal

gradation) and ν is Poisson’s ratio. The order of Y is taken µ. The strain energy density

is given by

U =
1

2
σTE (4.7)

4.3.3 Dimensional Reduction

For this, let us start with the application of the principle of virtual work∫
Ω

δUdV −
∫
∂Ωtb

q⃗ · δv⃗datb −
∫
∂Ωside

t⃗ · δv⃗daside = 0 (4.8)

where q⃗ = q ê3 and t⃗ = ti êi are traction vectors on ∂Ωtb and ∂Ωside respectively. It

has been observed that the use of Eq. (4.8) results in a computationally intensive 3D

elasticity problem. Thus, to save the cost a lot of literature work uses the concept where

3D problem is reduced into 2D, and then the energy is calculated, but this reduction

involves ad hoc and a priori assumptions, which may not fully account for deformation

energy considerations. In the present work we consider the energy aspects of the problem

to develop a reduced order plate model. The dimensional reduction process is divided

into different order solutions. The details of each order solution are presented in the

subsequent sections.

4.3.4 Zeroth Order Solutions (ZOS)

Here the order of displacement field is assumed to be 0 so that vi = v0i . The discussion

regarding the ordering scheme has been done in section 3.1. Using this scheme the esti-

mated order of v0i (x1, x2, x3) is determined to be O(ξ3h). Now using this order estimation,
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the order of the different strain components is evaluated which is shown as

E11 = O (ξ4) 2E23 =
∂v02
∂x3︸︷︷︸
O(ξ3)

+O (ξ4)

E22 = O (ξ4) 2E13 =
∂v01
∂x3︸︷︷︸
O(ξ3)

+O (ξ4)

E33 =
∂v03
∂x3︸︷︷︸
O(ξ3)

2E12 = O (ξ4)

(4.9)

It is to be noted that the quantities with under-braces represents the orders. Further, it is

important to highlight that the order of v0i here, corresponds to the maximum permissible

value that ensures the strains remain bounded by ε = ξ3. The order of vi in this section is

unique in itself, as altering the order of v0i would lead to a change in the upper bound of the

strains, which is not allowable. This ordering of strains yields an ordered representation

of U in terms of the small parameters ξ as illustrated below.

U = Usig︸︷︷︸
O(ξ6µ)

+O
(
ξ7µ
)

Usig =
Y

4(1 + ν)

[(
∂v01
∂x3

)2

+

(
∂v02
∂x3

)2

+
2(1− ν)

(1− 2ν)

(
∂v03
∂x3

)2
] (4.10)

As per the ordering, term, Usig, will have the highest contribution to the energy functional.

Therefore, for zeroth order contribution only this energy becomes important [137]. This

reduces the virtual work Eq. (4.8) to the following form∫
∂Ωref

[∫
x3

δUsigdx3

]
daref −

∫
∂Ωtb

q⃗ · δv⃗datb

−
∫
∂Ωside

t⃗ · δv⃗daside = 0

(4.11)

where ∂Ωref is the reference plane of the plate . For functionally graded materials, neutral

plane donot coincide with the geometrical central plane of the plate thus, x1, x2 plane

which is η distance away from the geometrical central plane, is taken as its reference

plane. It is worth noting that the Eq. (4.10) contains terms having derivatives of v0i with

respect to x3 only. Thus, the minimization problem can be split into two stages: (i) a 1D
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through the thickness analysis along x3 only, and (ii) a 2D analysis in the x1, x2 plane,

as expressed below

δΠx3 = 0︸ ︷︷ ︸
1D Analysis

δΠ = 0︸ ︷︷ ︸
2D Analysis

Πx3 =

∫
x3

Usigdx3

Π =

∫
∂Ωref

Πx3daref −
∫
∂Ωtb

q⃗ · v⃗datb −
∫
∂Ωside

t⃗ · v⃗daside

(4.12)

It can be observed that the dimensional reduction of the problem is a natural outcome of

this strategy.

Through the Thickness 1D Analysis

Extremization of Πx3 yields following Euler Lagrange governing equations

∂Y

∂x3

∂v01
∂x3

+ Y
∂2v01
∂x2

3

= 0

∂Y

∂x3

∂v02
∂x3

+ Y
∂2v02
∂x2

3

= 0

∂Y

∂x3

∂v03
∂x3

+ Y
∂2v03
∂x2

3

= 0

(4.13)

and following associated boundary conditions

Bv01

∣∣
x3=−(h/2)−η

= Bv01

∣∣
x3=(h/2)−η

= 0

Bv02

∣∣
x3=−(h/2)−η

= Bv02

∣∣
x3=(h/2)−η

= 0

Bv03

∣∣
x3=−(h/2)−η

= Bv03

∣∣
x3=(h/2)−η

= 0

Bv01
=

Y

2(1 + ν)

∂v01
∂x3

Bv02
=

Y

2(1 + ν)

∂v02
∂x3

Bv03
=

Y (1− ν)

(1− 2ν)(1 + ν)

∂v03
∂x3

(4.14)

solving Eq. (4.13) with the boundary conditions Eq. (4.14) results in following solution

v0i = ui(x1, x2) (4.15)

It can be observed that the zeroth-order solution manifest the 3D displacement compo-

nents vi, in terms of ui. Here, ui are functions of only the in-plane coordinates x1 and
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x2, making them 2D variables which means, at this stage the displacements are constant

along the thickness of the plate. Further, refinement in the solutions will be carried out in

the higher order solutions. For convenience, these 2D variables, ui, are chosen to represent

the in-plane displacements of the reference plane (the x1-x2 plane) of the plate. This is

achieved through the following equation.

ui = vi
∣∣
x3=0 (4.16)

4.3.5 First Order Solution (FOS)

The solution obtained in zeroth-order is perturbed to obtain first order solution1.

vi = v0i + v1i = ui + v1i (4.17)

It is important to note that the term v1i in Eq. (4.17) leads to three additional degrees

of freedom to the displacement field. Thus, to remove this redundancy and to ensure the

uniqueness of the solution, three constraints are essential. These constraints are

vni
∣∣
x3=0

= 0 (4.18)

Now using the procedure described in Section 4.3.1, the order of quantities ui and v1i is

found to be O(ξ3l) and O(ξ3h), respectively. One may note that the order of the pertur-

bation variables v0i and v1i is the same, which essentially contradict the usual refinement

procedure done through perturbations. However, the analysis starts with a conservative

order of vi, treating the plate as a 3D body and considering the maximum possible varia-

tion in vi for all possible deformation modes with strains bounded by ε. As the refinement

is carried out in the displacement field, the plate reveals its true deformation pattern, re-

laxing the bound on vi. This relaxation necessitates further refinement in the displacement

field in the same order, justifying it. Substituting vi from Eq. (4.17) into Eq. (4.1) gives

1Note that vni = vni (x1, x2, x3), termed as nth order perturbation variable, will consistently be used in
the upcoming work to improve the displacement field in the nth order solution
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the following strains, along with their respective orders indicated in underbraces

E11 =
∂u1

∂x1︸︷︷︸
O(ξ3)

+O (ξ4) 2E23 =
∂u3

∂x2

+
∂v12
∂x3︸ ︷︷ ︸

O(ξ3)

+O (ξ4)

E22 =
∂u2

∂x2︸︷︷︸
O(ξ3)

+O (ξ4) 2E13 =
∂u3

∂x1

+
∂v11
∂x3︸ ︷︷ ︸

O(ξ3)

+O (ξ4)

E33 =
∂v13
∂x3︸︷︷︸
O(ξ3)

+O (ξ4) 2E12 =
∂u1

∂x2

+
∂u2

∂x1︸ ︷︷ ︸
O(ξ3)

+O (ξ4)

(4.19)

Using these strains Eq. (4.19) strain energy terms U and Usig are recalculated. Just like

the Zeroth order solution, the perturbation variables v1i in Usig contain derivatives with

respect to x3 only thus allowing us to perform the 3D analysis in two stages (1D and 2D

analyses).

Through the Thickness 1D Analysis

The functional Πx3 is calculated agarin to accommodate the changes in Usig. Extremizing

Πx3 yields the following Euler Lagrange equations

∂Y

∂x3

(
∂u3

∂x1

+
∂v11
∂x3

)
+ Y

(
∂2v11
∂x2

3

)
= 0

∂Y

∂x3

(
∂u3

∂x2

+
∂v12
∂x3

)
+ Y

(
∂2v12
∂x2

3

)
= 0

ν
∂Y

∂x3

∂u2

∂x2

+ ν
∂Y

∂x3

∂u1

∂x1

+ (1− ν)
∂Y

∂x3

∂v13
∂x3

+ (1− ν)Y
∂2v13
∂x2

3

= 0

(4.20)

and associated boundary conditions

Bv11

∣∣
x3=−(h/2)−η

= Bv11

∣∣
x3=(h/2)−η

= 0

Bv12

∣∣
x3=−(h/2)−η

= Bv12

∣∣
x3=(h/2)−η

= 0

Bv13

∣∣
x3=−(h/2)−η

= Bv13

∣∣
x3=(h/2)−η

= 0

Bv11
=

Y

2(1 + ν)

(
∂u3

∂x1

+
∂v11
∂x3

)
Bv12

=
Y

2(1 + ν)

(
∂u3

∂x2

+
∂v12
∂x3

)
Bv13

=
νY

(1− 2ν)(1 + ν)

(
∂u1

∂x1

+
∂u2

∂x2

)
+

Y (1− ν)

(1− 2ν)(1 + ν)

∂v13
∂x3

(4.21)
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Solving the Euler Lagrange equations in Eq. (4.20) with the boundary conditions in Eq.

(4.21) and the constraints given in Eq. (4.18) results in

v11 = −x3
∂u3

∂x1

v12 = −x3
∂u3

∂x2

v13 =
−x3ν

1− ν

(
∂u1

∂x1

+
∂u2

∂x2

) (4.22)

4.3.6 Second Order Solution (SOS)

Further perturbation in the displacement field leads to

vi = v0i + v1i + v2i

where

v1 = u1 − x3
∂u3

∂x1

+ v21, v2 = u2 − x3
∂u3

∂x2

+ v22,

v3 = u3 + x3f1 + v23

(4.23)

Using the similar procedure as explained earlier, the orders of uα, u3 and v2i are estimated

to be O(ξ3l), O (ξ2l) and O(ξ3h), respectively. Substituting vi from Eq. (4.23) into Eq.

(4.1) leads to

E11 =
∂u1

∂x1

− x3
∂2u3

∂x2
1︸ ︷︷ ︸

O(ξ3)

+O
(
ξ4
)

2E23 =
∂v22
∂x3︸︷︷︸
O(ξ3)

+O
(
ξ4
)

E22 =
∂u2

∂x2

− x3
∂2u3

∂x2
2︸ ︷︷ ︸

O(ξ3)

+O
(
ξ4
)

2E13 =
∂v21
∂x3︸︷︷︸
O(ξ3)

+O
(
ξ4
)

E33 = f1 +
∂v23
∂x3︸ ︷︷ ︸

O(ξ3)

+O
(
ξ4
)

2E12 =
∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2︸ ︷︷ ︸
O(ξ3)

+O
(
ξ4
)

(4.24)

Using the strains from Eq. (4.24) the strain energy U and Usig is calculated again. Similar

observations are noted regarding the splitting of problem into two seperate stages i.e. 1D

and 2D analysis.
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Through the Thickness 1D Analysis

Extremization of Πx3 results in following Euler Lagrange equations

∂Y

∂x3

∂v21
∂x3

+ Y
∂2v21
∂x2

3

= 0

∂Y

∂x3

∂v22
∂x3

+ Y
∂2v22
∂x2

3

= 0

νY
∂2u3

∂x2
1

− ν
∂Y

∂x3

(
∂u1

∂x1

− x3
∂2u3

∂x2
1

)
+ νY

∂2u3

∂x2
2

− ν
∂Y

∂x3

(
∂u2

∂x2

− x3
∂2u3

∂x2
2

)
−(1− ν)

∂Y

∂x3

(
−ν

1− ν

∂u2

∂x2

+
−ν

1− ν

∂u1

∂x1

+
∂v23
∂x3

)
− (1− ν)Y

∂2v23
∂x2

3

= 0

(4.25)

and associated boundary conditions

Bv21

∣∣
x3=−(h/2)−η

= Bv21

∣∣
x3=(h/2)−η

= 0

Bv22

∣∣
x3=−(h/2)−η

= Bv22

∣∣
x3=(h/2)−η

= 0

Bv23

∣∣
x3=−(h/2)−η

= Bv23

∣∣
x3=(h/2)−η

= 0

Bv21
=

Y

2(1 + ν)

∂v21
∂x3

Bv22
=

Y

2(1 + ν)

∂v22
∂x3

Bv23
=

−Y

(1− 2ν)(1 + ν)

(
x3ν

∂2u3

∂x2
1

+ x3ν
∂2u3

∂x2
2

− (1− ν)
∂v23
∂x3

)
(4.26)

Solution to these equations along with the constraints given in Eq. (4.18) leads to following

solution
v21 = 0

v22 = 0

v23 =
x2
3ν

2(1− ν)

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

) (4.27)

It is hereby emphasized that the solution obtained up to this stage i.e.second order solution

gives a CLPT like plate theory, which was the objective of Part A of this work. Summary

and key findings of the work done so fat is briefed in the following section

4.3.7 Summary of Part A
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Figure 4.2: Systematic methodology adopted in de-
riving the reduced order model

A graphical representation of the

adopted procedure is shown in Fig-

ure 4.2. The analysis starts with

the calculation of strains where the

plate is considered to be a 3D body.

Then an order estimation scheme

is adopted which based on the up-

per bound on the supnorm and h
l

which is then followed by a rule to

calculate the order of derivatives of

displacement components given in

Eq. (4.2). The zeroth order so-

lution starts with order estimation

for the quantities of interest which

follows the ordering strategy de-

scribed in Section 3.1. The result

obtained is an ordered representa-

tion of the strain energy density U .

The most significant portion of this

strain energy density is seperated

and termed as Usig. This Usig is ex-

tremized to yield Euler-Lagrange

equations and associated boundary

conditions. The solutions to these

equations results in a closed form

solution. In the first and second or-

der solutions, the entire procedure

is repeated, by perturbing the solu-

tion obtained in the preceeding or-

der i.e. zeroth order perturbation

for first order solution and pertur-

bation in first order for finding the

second order solution.
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4.3.8 Displcement Field of Part A

The displacement field derived in Part A of this work is shown as

v1 = u1 − x3
∂u3

∂x1︸ ︷︷ ︸
O(ξ3l)

v2 = u2 − x3
∂u3

∂x2︸ ︷︷ ︸
O(ξ3l)

v3 = u3︸︷︷︸
O(ξ2l)

− x3ν

1− ν

(
∂u1

∂x1

+
∂u2

∂x2

)
+

x2
3ν

2(1− ν)

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

)
︸ ︷︷ ︸

O(ξ3h)

(4.28)

It can be observed that the displacement components v1 and v2 given in Eq. (4.28) are

in line with the results of CLPT theory [100, 119, 130], thus validating the Kirchhoff’s

assumption that a line segment perpendicular to the reference plane in the undeformed

configuration remains straight and perpendicular to the deformed reference plane after

deformation. But the displacement component v3 seems to contradict Kirchhoff’s assump-

tion that there is no change in the length of a transverse normal after deformation (i.e.,

the transverse normals are inextensible). Interestingly, the plane stress condition in CLPT

makes it energetically equivalent to the asymptotically correct plate theory developed in

Part A of this work the detailed discussion is followed in the next section.

4.3.9 Strains of Part A

Eq. (4.1) and (4.28) give the following strains corrected up to order ξ3

E11 =
∂u1

∂x1

− x3
∂2u3

∂x2
1︸ ︷︷ ︸

O(ξ3)

E22 =
∂u2

∂x2

− x3
∂2u3

∂x2
2︸ ︷︷ ︸

O(ξ3)

E33 = f1 + 2x3g1︸ ︷︷ ︸
O(ξ3)

2E23 = 0

2E13 = 0 2E12 =
∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2︸ ︷︷ ︸
O(ξ3)

(4.29)

Using strains from Eq. (4.29) in Eq. (4.5) leads to

σ33 = C13 E11 + C23 E22 + C33 E33 + 2 C36 E12 = 0 (4.30)

103



CHAPTER 4 4.4. PART B: REFINEMENT OF PART A

This justifies the plane stress condition which is valid up to the present level of accuracy.

With σ33 = 0, the transverse normal strain E33 does not appear in the virtual work Eq.

(4.8), although it is not identically zero. As a result, the transverse normal strain E33 is

neglected. By omitting the transverse strain component, E33, in Eq. (4.29), one can write

Eps =


E11

E22

2E23

2E13

2E12

 =



∂u1

∂x1
− x3

∂2u3

∂x2
1

∂u2

∂x2
− x3

∂2u3

∂x2
2

0
0

∂u1

∂x2
+ ∂u2

∂x1
− 2x3

∂2u3

∂x1∂x2


(4.31)

It is worth noting that despite the discrepancy in the displacement field shown in Section

3.8, the asymptotically correct strains Eps in Eq. (4.31) resemble the strains given by

CLPT [100]. This indicates that the CLPT plate theory is energetically equivalent to the

asymptotically correct plate theory derived considering strain energy up to order (ξ6µ)

and neglecting its higher order part. The work done in Part A is further refined in Part

B considering the contribution of the higher order Energy

4.4 Part B: Refinement of Part A

This section refines the plate theory by including higher-order energy terms which facil-

itate for a more comprehensive analysis by capturing the influence of material property

variations through the thickness direction. Notably, Part A derives strains independent

of such variations, while Part B extracts this information.

4.4.1 Third Order Solution (TOS)

Perturbing the displacement field obtained in second order solution as

vi = v0i + v1i + v2i + v3i ,

where

v1 = u1 − x3
∂u3

∂x1

+ v31, v2 = u2 − x3
∂u3

∂x2

+ v32

v3 = u3 −
x3ν

1− ν

(
∂u1

∂x1

+
∂u2

∂x2

)
+

x2
3ν

2(1− ν)

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

)
+ v33

(4.32)

Now using the procedure discussed in section 3.1, the orders of uα, u3, and v3i are estimated

to be O(ξ3l), O(ξ2l), and O(ξ3h), respectively which is identical to the second order
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solution, So the extremization on these quantities will lead to v3i = 0 meaning that the

solution has no improvement. Thus we need to consider the contribution of higher-order

strain energy at this stage. To account for the effect of higher order strain energy i.e. of

the order of (ξ8µ), we set the order of v3i to O (ξ4h) while keeping the orders of the other

variables unchanged. Substituting vi from Eq. (4.32) into Eq. (4.1) yields

E11 =
∂u1

∂x1

− x3
∂2u3

∂x2
1︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x1

)2

︸ ︷︷ ︸
O(ξ4)

+
∂v31
∂x1︸︷︷︸
O(ξ5)

+O
(
ξ6
)

E22 =
∂u2

∂x2

− x3
∂2u3

∂x2
2︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x2

)2

︸ ︷︷ ︸
O(ξ4)

+
∂2v32
∂x2︸ ︷︷ ︸
O(ξ5)

+O
(
ξ6
)

E33 =
−ν

1− ν

[
∂u2

∂x2

+
∂u1

∂x1

− x3

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

)]
︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x1

)2

+
1

2

(
∂u3

∂x2

)2

+
∂v33
∂x3︸ ︷︷ ︸

O(ξ4)

+O
(
ξ6
)

2E23 =
x3ν

2(1− ν)

[
−2

∂2u2

∂x2
2

− 2
∂2u1

∂x1∂x2

+ x3

(
∂3u3

∂x3
2

+
∂3u3

∂x2
1∂x2

)]
+

∂v32
∂x3︸ ︷︷ ︸

O(ξ4)

+
∂u3

∂x1

(
−∂u1

∂x2

+ x3
∂u3

∂x1∂x2

)
− 1

1− ν

∂u3

∂x2

[
ν
∂u1

∂x1

+
∂u2

∂x2

− x3

(
ν
∂2u3

∂x2
1

+
∂2u3

∂x2
2

)]
+

∂v33
∂x2︸ ︷︷ ︸

O(ξ5)

+O
(
ξ6
)

2E13 =
x3ν

2(1− ν)

[
−2

∂2u1

∂x2
1

− 2
∂2u2

∂x1∂x2

+ x3

(
∂3u3

∂x3
1

+
∂3u3

∂x1∂x2
2

)]
+

∂v31
∂x3︸ ︷︷ ︸

O(ξ4)

+
∂u3

∂x2

(
−∂u2

∂x1

+ x3
∂u3

∂x1∂x2

)
− 1

1− ν

∂u3

∂x1

[
ν
∂u2

∂x2

+
∂u1

∂x1

− x3

(
ν
∂2u3

∂x2
2

+
∂2u3

∂x2
1

)]
+

∂v33
∂x1︸ ︷︷ ︸

O(ξ5)

+O
(
ξ6
)

2E12 =
∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2︸ ︷︷ ︸
O(ξ3)

+

(
∂u3

∂x1

)(
∂u3

∂x2

)
︸ ︷︷ ︸

O(ξ4)

+
∂v31
∂x2

+
∂v32
∂x1︸ ︷︷ ︸

O(ξ5)

+O
(
ξ6
)

(4.33)
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Using the strains from Eq. (4.33) strain energy U is calculated again, which takes the

following form

U =

Usig︷ ︸︸ ︷
U0 + U1 + U2︸ ︷︷ ︸

O(ξ6µ)

+ U3︸︷︷︸
O(ξ8µ)

+O
(
ξ9µ
)

(4.34)

where U0, U1, U2, and U3 represents the energy contributions corresponding to zeroth,

first, second, and third order solutions, respectively. To include the effect of higher order

energy, the portion of U corrected up to O (ξ8µ) is taken as Usig. Now the functional

Πx3 is recalculated to incorporate the change in Usig. It has been observed that in the

third order solution the derivatives of the perturbation variables v3i with respect to the

xα coordinates, i.e.,
(

∂v3i
∂xα

)
, appears which create difficulty in the analysis. To eliminate

these derivatives, integration by parts is performed, which results in boundary conditions

defined at Ωside. However, these boundary conditions are ignored in the present analysis,

as the aim is to find the displacement field for the interior domain of the plate without

considering the edge effects. Extremization of Πx3 yields the following Euler Lagrange

equations

− ∂Y

∂x3

[
−2x3ν

∂2u2

∂x1∂x2

+ x2
3ν

∂3u3

∂x1∂x2
2

− 2x3ν
∂2u1

∂x2
1

+ x2
3ν

∂3u3

∂x3
1

+ 2(1− ν)
∂2v31
∂x3

]
+ 2Y

[
(−1 + ν)

∂2u1

∂x2
2

− ∂2u2

∂x1∂x2

+ x3(2− ν)
∂3u3

∂x1∂x2
2

− (2− ν)
∂2u1

∂x2
1

+ x3(2− ν)
∂3u3

∂x3
1

− (1− ν)
∂2v31
∂x2

3

]
= 0

− ∂Y

∂x3

[
−2x3ν

∂2u1

∂x1∂x2

+ x2
3ν

∂3u3

∂x2
1∂x2

− 2x3ν
∂2u2

∂x2
2

+ x2
3ν

∂3u3

∂x3
2

+ 2(1− ν)
∂2v32
∂x3

]
+ 2Y

[
(−1 + ν)

∂2u2

∂x2
1

− ∂2u1

∂x1∂x2

+ x3(2− ν)
∂3u3

∂x2
1∂x2

− (2− ν)
∂2u2

∂x2
2

+ x3(2− ν)
∂3u3

∂x3
2

− (1− ν)
∂2v32
∂x2

3

]
= 0

− ∂Y

∂x3

[(
∂u3

∂x1

)2

+

(
∂u3

∂x2

)2

+ 2(1− ν)
∂2v33
∂x3

]
− 2(1− ν)Y

∂2v33
∂x2

3

= 0

(4.35)
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where f2, f3, g2 and g3 are functions of x1 and x2. The details for this is given in Appendix

A. The associated boundary conditions are given below

Bv31

∣∣
x3=−(h/2)−η

= Bv31

∣∣
x3=(h/2)−η

= 0

Bv32

∣∣
x3=−(h/2)−η

= Bv32

∣∣
x3=(h/2)−η

= 0

Bv33

∣∣
x3=−(h/2)−η

= Bv33

∣∣
x3=(h/2)−η

= 0

Bv31
=

1

4(1− ν2)
Y

[
−2x3ν

∂2u2

∂x1∂x2

+ x2
3ν

∂3u3

∂x1∂x2
2

− 2x3ν
∂2u1

∂x2
1

+ x2
3ν

∂3u3

∂x3
1

+ 2(1− ν)
∂2v31
∂x3

]
Bv32

=
1

4(1− ν2)
Y

[
−2x3ν

∂2u1

∂x1∂x2

+ x2
3ν

∂3u3

∂x2
1∂x2

− 2x3ν
∂2u2

∂x2
2

+ x2
3ν

∂3u3

∂x3
2

+ 2(1− ν)
∂2v32
∂x3

]
Bv33

= − Y

2(−1 + ν + 2ν2)

((
∂u3

∂x1

)2

+

(
∂u3

∂x2

)2

− 2(−1 + ν)
∂v33
∂x3

)
(4.36)

The Euler-Lagrange equations, Eq. (4.35), can be solved for different gradation models,

making the procedure versatile. Here, we are specifically considering the exponential

gradation model for further analysis. However, it’s important to note that the same

procedure can be applied to other gradation models as well. The mathematical form for

the exponential model is given by [82]

Y = Y0 e

{
λ(x3−η)

h

}
(4.37)

where λ is gradation index. Solving Eq. (4.35) and (4.36) for this gradation model leads

to

η =
1

2

(
h coth

(
λ

2

)
−

2h+ f1
g1

λ

)

η =
1

2

(
h coth

(
λ

2

)
−

2h+ f2
g2

λ

)

f1 = λ(1− ν)
∂2u1

∂x2
2

+ λ(1 + ν)
∂2u2

∂x1∂x2

+ 2λ
∂2u1

∂x2
1

f2 = λ(1− ν)
∂2u2

∂x2
1

+ λ(1 + ν)
∂2u1

∂x1∂x2

+ 2λ
∂2u2

∂x2
2

g1 =
∂3u3

∂x1∂x2
2

+
∂3u3

∂x3
1

g2 =
∂3u3

∂x2
1∂x2

+
∂3u3

∂x3
2

(4.38)

It can be observed that the quantities f1 and f2 contain second order derivatives of uα

w.r.t. x1 and x2 so to eliminate them position of the reference plane of the plate is selected
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by taking η as given below [82]

η =
h

2

(
coth

(
λ

2

)
− 2

λ

)
(4.39)

Solving Eq. (4.18), (4.35), (4.36), (4.37) and (4.39) results in the following solution

v31 =
e−

x3λ
h

− 1
2
λ coth λ

2

6λ2(−1 + ν)

[
e

x3λ
h

+ 1
2
λ coth λ

2 x3

(
12h2 − 6hx3λ+ x2

3λ
2ν
)
− 6e

(
−1 + e

x3λ
h

)
h3csch

λ

2

]
g1

v32 =
e−

x3λ
h

− 1
2
λ coth λ

2

6λ2(−1 + ν)

[
e

x3λ
h

+ 1
2
λ coth λ

2 x3

(
12h2 − 6hx3λ+ x2

3λ
2ν
)
− 6e

(
−1 + e

x3λ
h

)
h3csch

λ

2

]
g2

v33 =
x3

2(−1 + ν)

[(
∂u3

∂x1

)2

+

(
∂u3

∂x2

)2
]

(4.40)

A graphical representation of the adopted procedure for the development done in Part B

has been shown in Fig. 4.2.

4.4.2 A Discussion on the Displacement Field

The final displacement field obtained in Part A and B is given below

v1 = u1 − x3
∂u3

∂x1︸ ︷︷ ︸
O(ξ3l)

+
e−

x3λ
h

− 1
2
λ coth λ

2

6λ2(−1 + ν)

[
e

x3λ
h

+ 1
2
λ coth λ

2 x3

(
12h2 − 6hx3λ+ x2

3λ
2ν
)
− 6e

(
−1 + e

x3λ
h

)
h3csch

λ

2

]
g1︸ ︷︷ ︸

O(ξ4h)

v2 = u2 − x3
∂u3

∂x2︸ ︷︷ ︸
O(ξ3l)

+
e−

x3λ
h

− 1
2
λ coth λ

2

6λ2(−1 + ν)

[
e

x3λ
h

+ 1
2
λ coth λ

2 x3

(
12h2 − 6hx3λ+ x2

3λ
2ν
)
− 6e

(
−1 + e

x3λ
h

)
h3csch

λ

2

]
g2︸ ︷︷ ︸

O(ξ4h)

v3 = u3︸︷︷︸
O(ξ2l)

+
−x3ν

1− ν

(
∂u1

∂x1

+
∂u2

∂x2

)
+

x2
3ν

2(1− ν)

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

)
︸ ︷︷ ︸

O(ξ3h)

+
x3

2(−1 + ν)

[(
∂u3

∂x1

)2

+

(
∂u3

∂x2

)2
]

︸ ︷︷ ︸
O(ξ4h)

− ∂2u3

∂x2
1

+
e−

1
2
λ coth λ

2

λ2(−1 + ν)
h2

(
2e

1
2
λ coth λ

2 − eλcsch
λ

2

)(
∂3u3

∂x3
1

+
∂3u3

∂x1∂x2
2

)
(4.41)
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The improvement in solution of this displacement field is influenced by each perturbation

we go through. This has been explained graphically in Fig (4.3) Fig. 4.3(a) shows a line

ê1

A

B

A0

B0

A1

B1

A2

B2

A3

B3

(a)

(b) (c)

(d) (e)

0A 0B = AB
0A 0B ‖ AB

1A 1B �= AB

2A 2B �=1A 1B
2A 2B �= AB

ê3

−∂u3

∂x1

−∂u3

∂x1

−∂2
u3

∂x2
1

+ e
−

1
2
α coth

α

2

α2(−1+µ) h
2
(

2e
1

2
α coth α

2 − eαcschα

2

) (

∂3
u3

∂x3
1

+ ∂3
u3

∂x1∂x
2
2

)

C D

0C

0D

1C

1D

2C

2D

3C

3D

Figure 4.3: Deformation of lines AB and CD lying along direction ê3 and ê1 respectively.
(a) Undeformed configuration (b) Configuration after zeroth perturbation (c) Configura-
tion after first perturbation (d) Configuration after second perturbation (e) Configuration
after third perturbation

segment CD in the reference plane which is oriented along ê1 and another line segment

AB that oriented along ê3. Now as per the zeroth order contribution to the solution there

is no change in the length or direction of the line segment AB thus, it is represented by

A0B0 in Fig. 4.3(b). In the first and second order contributions the displacement field

incorporates the effect of rotation and change in length of line AB which is shown in Fig.

4.3(c) and 4.3(d) respectively. In the third order solutions, the line segment AB deforms

to the curve line A3B3 as shown in Fig. 4.3(e).
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4.4.3 A Discussion on the Strains, Stresses and Stiffness Matrix

Eq. (4.1) and (4.41) give the strains corrected up to order (ξ4). These strains are given

below:

E11 =
∂u1

∂x1

− x3
∂2u3

∂x2
1︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x1

)2

︸ ︷︷ ︸
O(ξ4)

E22 =
∂u2

∂x2

− x3
∂2u3

∂x2
2︸ ︷︷ ︸

O(ξ3)

+
1

2

(
∂u3

∂x1

)2

︸ ︷︷ ︸
O(ξ4)

E33 =
ν

2(−1 + ν)

(
2
∂u2

∂x2

+

(
∂u3

∂x2

)2

+ 2
∂u1

∂x1

+

(
∂u3

∂x1

)2

− 2x3

(
∂2u3

∂x2
1

+
∂2u3

∂x2
2

))
︸ ︷︷ ︸

O(ξ4)

2E23 =
1

λ2(−1 + ν)
e−

x3λ
h

− 1
2
λ coth (λ

2 )h

(
2e

x3λ
h

+ 1
2
λ coth (λ

2 )(h− x3λ)− ehλcsch

(
λ

2

))(
∂3u3

∂x3
2

+
∂2u3

∂x2
1∂x2

)
︸ ︷︷ ︸

O(ξ4)

2E13 =
1

λ2(−1 + ν)
e−

x3λ
h

− 1
2
λ coth (λ

2 )h

(
2e

x3λ
h

+ 1
2
λ coth (λ

2 )(h− x3λ)− ehλcsch

(
λ

2

))(
∂3u3

∂x3
1

+
∂2u3

∂x1∂x2
2

)
︸ ︷︷ ︸

O(ξ4)

2E12 =
∂u1

∂x2

+
∂u2

∂x1

− 2x3
∂2u3

∂x1∂x2︸ ︷︷ ︸
O(ξ3)

+

(
∂u3

∂x1

)(
∂u3

∂x2

)
︸ ︷︷ ︸

O(ξ4)

(4.42)

It is important to note that the plane stress condition which was valid in Part A, is

still valid. This can be verified by substituting strains from Eq. (4.42) in Eq. (4.5).

This is a natural outcome of the formulation without considering any ad-hoc and apriori

assumptions. This plane stress condition facilitate the analysis by introducing simplicity,

computational efficiency and accuracy for many engineering applications. Following the

same argument as in section 3.9, the transverse normal strain E33 is neglected. By omitting
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the transverse strain component, E33, in Eq. (4.42), we obtain

E =



∂u1

∂x1
− x3

∂2u3

∂x2
1
+ 1

2

(
∂u3

∂x1

)2
∂u2

∂x2
− x3

∂2u3

∂x2
2
+ 1

2

(
∂u3

∂x2

)2
1

λ2(−1+ν)
e−

x3λ
h

− 1
2
λ coth (λ

2 )h
(
2e

x3λ
h

+ 1
2
λ coth (λ

2 )(h− x3λ)− ehλcsch
(
λ
2

))(
∂3u3

∂x3
2
+ ∂2u3

∂x2
1∂x2

)
1

λ2(−1+ν)
e−

x3λ
h

− 1
2
λ coth (λ

2 )h
(
2e

x3λ
h

+ 1
2
λ coth (λ

2 )(h− x3λ)− ehλcsch
(
λ
2

))(
∂3u3

∂x3
1
+ ∂2u3

∂x1∂x2
2

)
∂u1

∂x2
+ ∂u2

∂x1
− 2x3

∂2u3

∂x1∂x2
+
(

∂u3

∂x1

)(
∂u3

∂x2

)


(4.43)

The simplified stiffness matrix considering the plane stress claim can be written as

D =
Y0e

λ(x3−η)
h

1− ν2


1 ν 0 0 0
ν 1 0 0 0
0 0 1−ν

2
0 0

0 0 0 1−ν
2

0
0 0 0 0 1−ν

2

 (4.44)

If we compare the strains (accurate up to order (ξ4)) with the strains of FSDT, it can be

observed that they don’t match. This indicates that FSDT is not asymptotically correct

and do not represent the actual behavior. That is why the need to introduce a shear

correction factor arises in FSDT. Under plane stress conditions, stresses σ and strain

energy density U take the following form

σ = {σ11, σ22, τ23, τ13, τ12}T = DE,

U =
1

2
σE =

1

2
(DE)E

(4.45)

4.5 Part C: Elimination of the Higher Order Deriva-

tives

It is important to note that though strains given in Eq. (4.43) are asymptotically ac-

curate but they depend on higher order derivatives of u3. This higher order derivative

introduces complexities in the 2D solution and thus limits its practical implementation

whereas FSDT which is although asymptotically inaccurate but is very practical due to

its simplicity and computational efficiency . The aim of the present work is to derive a

plate theory that is computationally efficient and simple like FSDT but more accurate

and asymptotically correct.
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FSDT accounts for the transverse shear effects in the plate where it is assumed that a

straight line normal to the undeformed reference plane ∂Ωref remains straight but rotates

by angle ϕ1 and ϕ2 about the x1 and x2 axes respectively, which introduces two additional

degrees of freedom. In the present work a novel isoenergetics approach, which is illustrated

in Fig. 4.4, has been developed where the shear deformation energies obtained from the

VAM based asymptotically correct plate model are equated to that obtained from the

FSDT plate model to calculate shear correction factors. Use of this shear correction

factors results in the calculation of transverse shear force resultants Q1 and Q2 in terms

of ϕ1 and ϕ2. Now these Q1 and Q2 are utilized to eliminate the inconvenient terms(
3g3 +

∂g1
∂x2

)
and

(
3g2 +

∂g1
∂x4

)
from the VAM based asymptotically correct plate model.

This process results in a modified asymptotically correct plate model which is as simple

and computationally efficient as the FSDT theory. In what follows we present the above

mentioned procedure in detail.

4.5.1 Simplified Model Based on Isoenergetics

The transverse shear force resultants Q1 and Q2 are given by

Q1 =

∫ h/2−η

−h/2−η

τ13 dx3, Q2 =

∫ h/2−η

−h/2−η

τ23 dx3 (4.46)

From Eqs. (4.45) and (4.46), we have

Q1 =
1

2λ3(−1 + ν2)
e2−λ coth λ

2 h3Y0(2 + λ2 − 2 coshλ)csch
λ

2

(
∂3u3

∂x1∂x2
2

+
∂3u3

∂x3
1

)
Q2 =

1

2λ3(−1 + ν2)
e2−λ coth λ

2 h3Y0(2 + λ2 − 2 coshλ)csch
λ

2

(
∂3u3

∂x2
1∂x2

+
∂3u3

∂x3
2

) (4.47)

Eq. (4.47) gives,

∂3u3

∂x1∂x2
2

+
∂3u3

∂x3
1

= −
2e−2+λ coth(λ

2
)λ3(−1 + ν2)Q1 sinh(

λ
2
)

h3Y0(2 + λ2 − 2 cosh(λ))

∂3u3

∂x2
1∂x2

+
∂3u3

∂x3
2

= −
2e−2+λ coth(λ

2
)λ3(−1 + ν2)Q2 sinh(

λ
2
)

h3Y0(2 + λ2 − 2 cosh(λ))

(4.48)
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Deformed Reference plane Deformed Reference plane

Asymptotically Correct
through the thickness
Deformation Pattern

Axiomatic
through the thickness
Deformation Pattern

Isoenergetic
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Figure 4.4: The isoenergetic approach

Substituting Eq. (4.48) in Eq. (4.43), we obtain

E =



∂u1

∂x1
− x3

∂2u3

∂x2
1
+ 1

2

(
∂u3

∂x1

)2
∂u2

∂x2
− x3

∂2u3

∂x2
2
+ 1

2

(
∂u3

∂x2

)2
2e−2−x3λ

h
+1

2λ coth(λ2 )λ(1+ν)Q2(ehλ−2e
x3λ
h

+1
2λ coth(λ2 )(h−x3λ) sinh(λ

2
))

h2Y0(2+λ2−2 cosh(λ))

2e−2−x3λ
h

+1
2λ coth(λ2 )λ(1+ν)Q1(ehλ−2e

x3λ
h

+1
2λ coth(λ2 )(h−x3λ) sinh(λ

2
))

h2Y0(2+λ2−2 cosh(λ))

∂u1

∂x2
+ ∂u2

∂x1
− 2x3

∂2u3

∂x1∂x2
+
(

∂u3

∂x1

)(
∂u3

∂x2

)


(4.49)

In FSDT, the transverse shear strains Eϕ
23 and Eϕ

13 are given as

2Eϕ
13 = ϕ1 +

∂u3

∂x1

, 2Eϕ
23 = ϕ2 +

∂u3

∂x2

(4.50)
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and the transverse shear force resultants, Q1 and Q2 are given as

Q1 = K1

e2−λ coth λ
2 hY0 sinh

λ
2

(
ϕ1 +

∂u3

∂x1

)
λ(1 + ν)

Q2 = K2

e2−λ coth λ
2 hY0 sinh

λ
2

(
ϕ2 +

∂u3

∂x2

)
λ(1 + ν)

(4.51)

where K1 and K2 are shear correction factors [83]. Eq. (4.50) and (4.51) gives

2Eϕ
13 = ϕ1 +

∂u3

∂x1

=
e−2+λ coth(λ

2 )λ(1 + ν)csch
(
λ
2

)
Q1

hK1Y0

2Eϕ
23 = ϕ2 +

∂u3

∂x2

=
e−2+λ coth(λ

2 )λ(1 + ν)csch
(
λ
2

)
Q2

hK2Y0

(4.52)

Now K1 and K2 are calculated by equating the transverse shear deformation energies

[123, 117, 129, 145, 146] of the assumption based FSDT plate model and the present

(ACI-ESL) plate model. This equality results in as follows

eλ coth(λ/2)λ(1 + ν)csch(λ/2)Q1

[
6− 12K1 + 4λ2 + λ4 + 4(−2 + 4K1 − λ2) cosh(λ)

+ (2− 4K1) cosh(2λ) + 2K1λ
3 sinh(λ)

]
= 0

eλ coth(λ/2)λ(1 + ν)csch(λ/2)Q2

[
6− 12K2 + 4λ2 + λ4 + 4(−2 + 4K2 − λ2) cosh(λ)

+ (2− 4K2) cosh(2λ) + 2K2λ
3 sinh(λ)

]
= 0

(4.53)

Solving Eq. (4.53) for K1 and K2 we have

K1 = K2 = −
[2 + λ2 − 2 cosh(λ)]

2
csch4

(
λ
2

)
−32 + 2λ3csch4

(
λ
2

)
sinh(λ)

(4.54)

It is important to note that the shear correction factors are a natural outcome of the

present approach (without taking any assumptions). Substituting Eq. (4.54) into Eq.

(4.51) followed by Eq. (4.51) into Eq. (4.49), the following expressions for the transverse

shear strains are established

2Eα3 = −
λ [2 + λ2 − 2 cosh(λ)] csch4

(
λ
2

) [
ehλ− 2e

x3λ
h

+ 1
2
λ coth(λ

2
)(h− x3λ) sinh(

λ
2
)
]

2eh
[
−16 + λ3csch4(λ

2
) sinh(λ)

] (
ϕα +

∂u3

∂xα

)
(4.55)

Since the order of the transverse shear strains is O (ξ4), therefore we have

x3
d

dxα

(
ϕβ +

∂u3

∂xβ

)
∼ O

(
ξ5
)

(4.56)
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Eqs. (4.56) results in as follows

−x3
∂2u3

∂xα∂xβ

= x3
∂ϕβ

∂xα

+O
(
ξ5
)

(4.57)

Eq. (4.49), (4.55) and (4.57) results is the following strains

E =



∂u1

∂x1
+ x3

∂ϕ1

∂x1
+ 1

2
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∂u3

∂x1

)2
∂u2
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∂ϕ2

∂x2
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2
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∂u3

∂x2
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λ[2+λ2−2 cosh(λ)]csch4(λ
2 )

[
ehλ−2e

x3λ
h

+1
2λ coth(λ2 )(h−x3λ) sinh(

λ
2
)

]
2eh[−16+λ3csch4(λ

2
) sinh(λ)]

(
ϕ2 +

∂u3

∂x2

)
−

λ[2+λ2−2 cosh(λ)]csch4(λ
2 )

[
ehλ−2e

x3λ
h

+1
2λ coth(λ2 )(h−x3λ) sinh(

λ
2
)

]
2eh[−16+λ3csch4(λ

2
) sinh(λ)]

(
ϕ1 +

∂u3

∂x1

)
∂u1

∂x2
+ ∂u2

∂x1
+ x3

(
∂ϕ1

∂x2
+ ∂ϕ2

∂x1

)
+
(

∂u3

∂x1

)(
∂u3

∂x2

)


(4.58)

Eq. (4.58) provides an asymptotically accurate, simplified and computationally efficient

reduced dimensional model of the plate.

4.6 Results and Discussion

This Capter introduces a new ESL plate theory for functionally graded Materials. The

presented theory is asymptotically correct up to (O(ξ4)). To evaluate its accuracy, nu-

merical examples dealing with different scenarios are presented. Two different material

gradations are examined. Details of each gradation are given in section 4.6.1 and 4.6.2.

In this work, the in-plane 2D analysis was done using non-linear (Example-1 and

Example-2) and linear (Example-3, Example-4 ) finite element analysis code written in

Mathematica based on the present formulation. To assess the accuracy of cases where

data from literature is not available the 3D finite element analysis was performed us-

ing Abaqus software. The USDFLD subroutine written in FORTRAN [3] was used to

mimic the gradation in Abaqus. The chosen element type for the analysis was C3D20R,

which corresponds to a 20-node quadratic brick element with reduced integration. A

thorough convergence study was carried out to ensure the accuracy and reliability of the

obtained results. This study involved systematically refining the mesh and monitoring the

convergence behavior of relevant quantities such as displacements, strains, and stresses.

Nevertheless, for brevity, the convergence analysis is omitted from this presentation.
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4.6.1 Material Gradation-1

An exponential variation of Young’s modulus Y with the mathematical form [4] given in

Eq. (4.64) is considered.

Y = Yt exp

[
−δ

(
1− 2y3

h

)]
δ =

1

2
log

(
Yt

Yb

)
y3 = x3 + η

(4.59)

Where Yt and Yb are Young’s modulus of the top and bottom surfaces of the plate

respectively. For this gradation, the reference plane shift relative to the mid-plane of the

plate η and the shear correction factor K are determined as follows.

η = −(Yb + Yt)h

2(Yb − Yt)
− h

log
(

Yt

Yb

)

K = −

(
Yt

Yb

) Yt
Yb−Yt {log(Yb)− log(Yt)}

{
(Yb − Yt)

2 − YbYt log
(

Yt

Yb

)2}2

Denominator

Denominator = (Yb − Yt) log

(
Yt

Yb

)[
Y2

b

(
Yt

Yb

) Yb
Yb−Yt

log

(
Yt

Yb

)2
{
Yb − Yt

+ (Yb + Yt) log

(
Yt

Yb

)}
+ (Yb − Yt)

(
Yt

Yb

) Yt
Yb−Yt

{
2(Yb − Yt)

2 − YbYt log

(
Yt

Yb

)2
}]
(4.60)

A plate made of ceramic–metal combination is examined in the first and second ex-

amples. The bottom and top surfaces of the plate are composed of aluminum metal and

alumina ceramic, respectively [4]. Young’s modulus is taken to be Yb = 70 GPa for alu-

minum and Yt = 380 GPa for alumina. Poisson’s ratio µ for both of the materials is 0.3.

The variation of Young’s Modulus Y of the plat along the thickness of the plate is plotted

in Fig. 4.5. For varied values of Yt, keeping the other parameters constant, η and K

are plotted in Fig. 4.6. Notably, for homogeneous materials (when Yt = Yb), η = 0 and

K = 0.8333. The values of η and K match exactly with those found in the literature for

homogeneous materials [122, 123, 121].

For this material gradation, the strains are given as follows
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Figure 4.5: Variation of the Young’s modulus along the thickness of the plate for the first
and second examples
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(4.61)
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Figure 4.7: Geometry of the plate

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0
- 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

4 . 0

Ce
ntr

al 
De

fle
ctio

n (
mm

)

U n i f o r m  P r e s s u r e      ( k N / m 2 )

 A l u m i n i u m  ( 3 D  F E A )
 A l u m i n i u n  ( P r e s e n t )
 A l u m i n a  ( 3 D  F E A )
 A l u m i n a  ( P r e s e n t )
 G r a d a t i o n - 1  ( 3 D  F E A )
 G r a d a t i o n - 1  ( P r e s e n t )

Figure 4.8: Load-deflection curves for the central point of the plate considered in the first
example under uniform Pressure P applied at its top face

Also for this case, the stiffness matrix takes the following form

D =
Yt exp

[
−δ
(
1− 2y3

h

)]
1− µ2


1 µ 0 0 0
µ 1 0 0 0
0 0 1−µ

2
0 0

0 0 0 1−µ
2

0
0 0 0 0 1−µ

2

 (4.62)

In first example, a rectangular plate with sides a = 0.5472 m, b = 0.1824 m and height
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h = 1.824 mm as shown in Fig.4.7 is considered. Two opposite boundaries (at x1 = 0 and

x1 = a) of the plate are clamped and the rest two are free. A uniform pressure load P is

applied to the bottom surface (x3 = −h
2
) of the plate.

The displacement of the midpoint of the plate is plotted in Fig. 4.8 for three different

cases: (a) plate is composed of Aluminum (b) plate is composed of Alumina and (c)

plate is composed of functionally graded material. The results obtained using the present

approach agree with the 3D FEA results.

In the second example, a square plate with side a and thickness h is considered. The

side to length ratio a
h
is taken 20. The plate is simply supported at all its edges. The

following non-dimensionalized quantities [122] are considered to compare the results.

w =
100 h3 Yt

q0 a4
u3

(
x1,

b

2
, 0

)
σ11 =

h2

q0 a2
σ11 (x1, x2, x3)

σ22 =
h2

q0 a2
σ22 (x1, x2, x3) σ23 =

h

q0 a
σ23 (x1, x2, x3)

σ12 =
h2

q0 a2
σ12 (x1, x2, x3) σ13 =

h

q0 a
σ13 (x1, x2, x3)

(4.63)

Fig. 4.9 illustrates non-dimensionalized displacement u3 along the centerline parallel

to x1 axis and it also plots non-dimensionalized stresses σ11, σ23 and σ23 at point B (shown

in Fig. 4.7) along the thickness of the plate in the second example.

4.6.2 Material Gradation-2

A power law variation of Young’s modulus Y with the mathematical form [1] given in Eq.

(4.64) is considered.

Y = Yb + (Yt − Yb)V

V =

(
y3
h

+
1

2

)n

y3 = x3 + η

(4.64)

Where Yt and Yb are Young’s modulus of the top and bottom surfaces of the plate

respectively. V and n are the volume fraction and volume fraction index respectively. For

this gradation, the shift of the reference plane relative to the mid-plane of the plate η and

the shear correction factor K are determined as follows.
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Figure 4.9: Variation of the non-dimensionalized displacement w along the centerline of
the plate and through-the-thickness variation of the different non-dimensionalized stress
components σij evaluated at point B (shown in Fig. 4.7) for an orthotropic square plate
considered in the second example.
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with volume fraction index n
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∫ h

2
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2
−η

g dx3
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1 +

2x3
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(−2(2 + n)x3(nYb + Yt) + h(nYb + 2Yt)) − 2
n
(2 + n)Yb (−2(2 + n)x3(nYb + Yt) + h(1 + n)(nYb + 2Yt))

]
(1 + µ)

(4.65)

Notably, for homogeneous materials where Yt = Yb, we have η = 0, K = 5
6
. These

values of η and K are in agreement with literature [122, 123, 121].

For this material gradation, the strains are given as follows

E =


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(4.66)

Also for this case the stiffness matrix takes the following form
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Figure 4.12: Variation of the non-dimensionalized quantities with volume fraction index
for the third example. The non-denationalized displacement w, normal stress σ11 and
transverse shear stress σ23 are calculated at points (x1 =

a
2
, x2 =

b
2
, y3 = 0), (x1 =

a
2
, x2 =

b
2
, y3 =

h
2
) and (x1 =

a
2
, x2 = 0, y3 = 0) respectively.

D =
Yb + (Yt − Yb)V

1− µ2


1 µ 0 0 0
µ 1 0 0 0
0 0 1−µ

2
0 0

0 0 0 1−µ
2

0
0 0 0 0 1−µ

2

 (4.67)

A simply supported square functionally graded plate with side a = b = 1 m and height

h = 0.1 m
(
i.e. a

h
= 10

)
is examined in the third example. The schematic of the plate is

given in Fig. 4.7. The plate is subjected by a sinusoidally distributed load q of intensity

q0

(
i.e. q = q0sin

(
πx1
a

)
sin
(
πx2
a

) )
. Young’s modulus for the bottom and top surfaces of

the plate are taken to be Yb = 70 GPa and Yt = 151 GPa respectively. Poisson’s ratio

for both of the materials is taken to be 0.3 [1]. The variation of the volume fraction V
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Figure 4.13: Through-the-thickness variation of the volume fraction V and Young’s mod-
ulus Y of the plate considered in the second example
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Figure 4.14: Variation of η
h
and K with volume fraction index n

and Young’s Modulus Y of the plat along its thickness is plotted in Fig. 4.10. For varied

values of volume fraction index n, keeping the other parameters constant, η
h
and K are

plotted in Fig. 4.11.

The non-dimensionalized quantities defined in Eq. (4.63) are calculated and compared

against the results given by Reddy [1] and obtained using 3D FEA approach. This

comparision is presented in Fig. 4.12. The non-denationalized displacement w, normal

stress σ11 and transverse shear stress σ23 are calculated at points (x1 =
a
2
, x2 =

b
2
, y3 = 0),

(x1 =
a
2
, x2 =

b
2
, y3 =

h
2
) and (x1 =

a
2
, x2 = 0, y3 = 0) respectively.

A square simply supported functionally graded plate with side a = b = 1 m and height

h = 0.01 m
(
i.e., a

h
= 100

)
is examined in the fourth example. The schematic of the plate

is given in Fig. 4.7. The plate is subjected to a uniformly distributed load P acting on
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Figure 4.15: Variation of the non-dimensionalized normal stresses σ11 along the thickness
of the plate for the different values of the volume fraction index n. σ11 is calculated at
the middle point of the plate in the fourth example.

its bottom surface. Young’s modulus for the bottom and top surfaces of the plate are

taken to be Yb = 70 GPa and Yt = 380 GPa respectively. Poisson’s ratio µ for both of

the materials is taken to be 0.3 [11]. The variation of the volume fraction V and Young’s

Modulus Y of the plat along its thickness is plotted in Fig. 4.13. For varied values of

volume fraction index n, keeping the other parameters constant, η
h
and K are plotted in

Fig. 4.14.

The non-dimensionalized quantities defined in Eq. (4.63) are calculated and compared

with the results given by Singha et al. [11] and 3D FEA. Fig. 4.15 illustrates through-the-

thickness variation of the non-dimensionalized normal stress σ11 at the middle point of the

plate and Fig. 4.16 presents through-the-thickness variation of the non-dimensionalized

shear stress σ13 at x1 = a, and x2 = 0
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Figure 4.16: Variation of the non-dimensionalized normal stresses σ13 along the thickness
of the plate for the different values of the volume fraction index n. σ13 is calculated at
x1 = a, and x2 = 0

4.7 Conclusion

In this chapter, a novel VAM based geometrically nonlinear ESL plate theory for function-

ally graded plates has been developed by applying the first principles and the isoenergetic

approach. Following are key highlights of the present work

1. This work formulates an asymptotically accurate ESL plate theory by expanding

the energy function in terms of a small parameter related to the geometry of the

plate and state of strain.

2. present work uses the first principles-based approach to reduce the 3D problem to

a 2D analysis by estimating the 3D displacement field in terms of 2D variables.

3. The higher order 1D through the thickness analysis involves derivatives of ui(x1, x2)
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w.r.t xα. The complexity involving these derivatives is eliminated by (a) slectin the

reference plane suitably and (b) using the concept of isoenegetics.

4. Unlike most existing plate theories that assume plane stress condition, this model

derives it naturally through its mathematical formulation.

5. It predicts an accurate quadratic variation of transverse shear stress and strain,

compared to FSDT’s constant value.

6. The quadratic variation of transverse shear stresses enforces zero tangential traction

on the boundaries of the plate, reflecting realistic physical behavior.

To summarize, this work provides a more refined, accurate, and computationally efficient

ESL plate theory for thin and moderately thick functionally graded plate structures.
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Chapter 5

Analysis of Stiffened Plates

5.1 Introduction

Stiffened plates are a fundamental building block in many engineering applications. They

consist of a thin plate reinforced with elements called stiffeners, which can be bars, ribs,

or other shapes. Depending on the positioning of the stiffeners, the stiffened plates are

classified as: (a) symmetric stiffened plates (b) assymetric stiffened plates. Symmetric

stiffened plates have stiffeners arranged in a mirrored pattern on either side of the plate,

creating a symmetrical structure. Asymmetric stiffened plates have an uneven distribution

of stiffeners. This asymmetry can result from design considerations, loading conditions,

or specific structural requirements. Stiffened plates find application in various engineering

fields where structural efficiency, high load capacity, and the ability to tailor performance

to specific needs are crucial. Some common applications include

1. Aerospace: Stiffened plates are used in aircraft fuselages, wings, and structural

components to provide strength, rigidity, and aerodynamic performance.

2. Automotive: They find application in vehicle chassis, frames, and body panels to

enhance structural integrity, crashworthiness, and weight efficiency.

3. Marine: Stiffened plates are employed in ship hulls, decks, and superstructures to

withstand hydrodynamic forces, wave loads, and structural stresses.

4. Civil Engineering: They are used in bridges, buildings, and infrastructure projects

to support heavy loads, resist seismic forces, and ensure long-term durability.
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Researchers employ diverse formulations to consider the impact of stiffeners, leading

to significant variations between different approaches. Some of these formulations en-

compass the orthotropic plate approximation, the grillage approximation, and the plate

beam idealization. Initially, earlier investigators approximated the effects of stiffeners by

distributing them across the plate and treating the structure as an orthotropic system.

This method produced satisfactory outcomes when the spacing between stiffeners was

minimal [42, 36]. In the grillage approximation, the plate’s effects are incorporated into

the stiffener by increasing the beam’s second moment of area [41, 40]. However, deter-

mining the effective width, which serves as a hypothetical flange representing the plate

in the beam, poses a challenge in this approximation. In the most general scenario, the

plate and stiffener are separately analyzed [39, 38, 37]. Then, by ensuring equilibrium

and continuity along the attachment line, the plate and beam are made compatible.

Deb et al. [36] proposed an approximate shear deformation theory for stiffened plates

based on the Reissner-Mindlin plate theory and Timoshenko beam theory, utilizing the

smeared-out idealization. Mukherjee et al. [35], Sadek et al. [34], Biswal et al. [33], and

Ghosh et al. [32] presented finite element methods based on a higher-order shear deforma-

tion theory (HSDT) for static and vibrational analysis of laminated stiffened plates. Bhar

et al. [31] compared the finite element results of composite stiffened plates using the first-

order shear deformation theory (FSDT) and HSDT. They strongly recommended the use

of HSDT over the Classical Plate Theory and even FSDT, particularly for thick panels.

Sapountzakis et al. [30] introduced an optimized model based on the classical approach

that considers the in-plane forces and displacements at the interface of the plate and the

beam. By comparing their results with various finite element models, they emphasized

the significance of considering in-plane shear forces for a more accurate description of the

stiffened plate’s behavior. Qing et al. [29] developed a three-dimensional solution for

the free vibrations of stiffened plates using the variational approach, employing finite el-

ements to solve state vector equations. The model automatically incorporates transverse

shear deformations and rotary inertia. Kamineni et al. [28] used VAM for the analysis of

laminated composite flat stiffened panels. In their approach, they modeled the stiffened

plate using VAM, and then they attached a stiffener with the plate. The integration of

skin and the stiffener technique was used by introducing a constraint matrix. Chen Jiaqi

et al. [27] did a static and dynamic analysis of Isogrid Stiffened Composite Plates (ISCP)

using an equivalent model based on VAM.

The present approach considers the stiffener reinforced plate as one continuous struc-
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ture with varying material properties in the thickness direction instead of a combination

of two structures (stiffener and plate). VAM is used to systematically reduce the di-

mension of the stiffener reinforced structure up to a desired level of accuracy by taking

advantage of the smallness of the thickness of the structure as compared to the other two

dimensions. The framework developed in chapter-2, chapter-3, and chapter-4 forms the

basis for obtaining a reduced order model for the stiffened plates. In what follows, this

approach is elucidated.

5.2 Methodology Used

The present work treats the stiffened plate as a single structure with a position-dependent

through-the-thickness configuration. This captures the effect of the stiffeners in a natural

way by performing through-the-thickness 1D analysis for each distinct section of the plate

by leveraging the framework established in Chapters 2, 3, and 4. Consequently, a reduced-

order two-dimensional (2D) model is obtained for stiffened plates. Figure 5.1 illustrates

this approach for the symmetric stiffened plates where the mid-plane of the plate is taken

as its reference plane due to the symmetry of the structure about this plane.

(a) (b)

Figure 5.1: Approach used for the analysis of the symmetric stiffened plates (a) symmetric
stiffened plate (b) splitting of the analysis in through-the-thickness 1D analysis and in-
plane 2D analysis
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(a) (b)

Figure 5.2: Approach used for the analysis of the asymmetric stiffened plates (a) asym-
metric stiffened plate with its reference plane (b) splitting of the analysis in through-the-
thickness 1D analysis and in-plane 2D analysis

In the case of assymetrically stiffened plates, the geometric discontinuity caused by

the stiffeners results in a localized shift in the reference plane at the attachment region

of the plate and the stiffeners. To handle this, in this work, we assume that the interface

of the plate and stiffeners becomes the reference plane at the locations where they are

attached, and for the rest of the plate, the mid-plane of the plate is the reference plane

(as shown in Fig. 5.2).

It is important to note that the present approach leads to inaccurate normal and

shear stresses within the width of the stiffeners. This inaccuracy arises because, during

1D through-the-thickness analysis, the zero traction boundary conditions were not im-

posed at the surfaces of the stiffeners perpendicular to the width direction of the stiffeners.

To address this issue, consider a representative section of a stiffener as shown in Fig. 5.3.

We define a local coordinate system (y1, y2, y3) with axes lying along the length, width,

and height directions of the stiffener respectively. The displacement components along

these directions are denoted as w1, w2, and w3. To eliminate the inaccurate stresses, it is

assumed that the displacement components w1 and w3 are constant across the width (y2

direction) of the stiffener section. Additionally, The displacement component w2 is as-

sumed to be zero. These assumptions, taken from the classical beam theories [26], simplify

the analysis by focusing on the primary stiffening effect and eliminate the introduction of

overvalued stresses in the width direction.
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y1

y2

y3

Figure 5.3: Approach used for the analysis of the symmetric stiffened plates (a) symmetric
stiffened plate (b) splitting of the analysis in through-the-thickness 1D analysis and in-
plane 2D analysis

5.3 Results and discussion

In the first example, a square plate with two symmetric stiffeners (one along the x1 axis

and the other along the x2 axis) is analysed. the geometry of the stiffened plate is given

in Fig. 5.4 where a = 1.016 m, t = 2.54 cm, h = 5.08 mm and H = 5.08 mm. The

plate is mate of homogeneous isotropic material with young modulus E = 206.843GPa

and poisiions ratio ν = 0.3. The plate is simply supported. Due to symmetry only one

quarter of the plate is modeled. the boundary conditions are taken as given below

u1 = u2 = u3 = ϕ2 = 0 at x1 =
a

2

u1 = u2 = u3 = ϕ1 = 0 at x2 =
a

2
u1 = ϕ1 = 0 at x1 = 0

u2 = ϕ2 = 0 at x2 = 0

(5.1)
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Figure 5.4: Geometry of the plate with symmetric stiffeners considered in the first example
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Figure 5.5: Load deflection curve for the mid point of the plate with symmetric stiffeners
considered in the first example
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Fig. 5.5 shows the deflection of the mid point O of the plate. the results obtained

using the present approach are in good aggrement with those given by Liao et al. [61].

A A

x1

x2

Section A− A

a

a

t

h

H

Figure 5.6: Geometry of the plate with an asymmetric stiffener considered in the second
example

In the second example, a square plate with an asymmetric stiffener oriented along

the x2 axis and passing through the center of the plate is analyzed. the geometry of the

stiffened plate is given in Fig. 5.6 where a = 2.54 cm, t = 0.254 mm, h = 0.254 mm and

H = 2.54 mm. The plate is made of homogeneous isotropic material with young modulus

E = 117.2109 GPa and positions ratio ν = 0.3. The plate is simply supported at all its

edges.

Fig. 5.7 shows the deflection of the asymmetric stiffened plate considered in the second

example along its centerlines parallel to the x1 and x2 axes. the results obtained using

the present approach are in good agreement with those given by A Islam et al. [61] and

Chattopadhyay et al. [25].

In the third example, a square stiffened plate with a side length of 1 m is considered.

The depth of the plate is 1 cm and the depth of the stiffener is 5 cm. The plate is

reinforced by two stiffeners lying along the x1 axis. The stiffeners, shown in Fig. 5.8,

are placed at a distance of 30 cm from the edges of the plate. The distance between
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Figure 5.7: Deflections along the centerlines of the plate parallel to the x1 and x2 axis

Figure 5.8: (a) Dimensions (b) Loading conditions

the stiffeners is 30 cm. The whole structure is made of homogeneous isotropic material

with Young’s Modulus of E = 200 × 109 Pa and Poissons ratio of ν = 0.3. The two

edges perpendicular to the stiffeners are kept simply supported, and the other two are

free. Uniform pressure load P = 0.1 Nm−2 is applied at the bottom surface of the plate

as shown in Fig. 5.8

Fig. 5.9 shows the deformation pattern of the stiffened structure as obtained by the

present approach and the 3D FEA.
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(a) (b)

Figure 5.9: Deflection in x3 direction (a) present work (b) 3-D FEA result

Figure 5.10: Comparison of result with 3-D FEA and present result

The interface deformation response of the structure was studied by the present ap-

proach and compared with that obtained by the 3-D FEA. Fig. 5.10 shows the displace-

ment of the stiffened plate in x3 direction along the path highlighted in red colour.

Fig. 5.11 shows the percentage error in the results obtained by the present approach

and the 3-D FEA. Thus the result is in good agreement with that of the 3-D FEA.

In the fourth example, a rectangular stiffened plate with a length of a = 0.21 m and

width of b = 0.20 m is considered as shown in Fig. 5.12(a). The depth of the plate h

is 2 mm. The plate is reinforced by a stiffener lying along the x1 axis and placed in the

middle of the plate. The depth of the stiffener H is 8 mm as shown in Fig. 5.12(b). The

whole structure is made of an anisotropic material with the following material properties
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Figure 5.11: Percentage error

[116]:
EL = 25× 106 psi (172.369 GPa)

ET = 1× 106 psi (6.895 GPa)

GLT = 0.5× 106 psi (3.337 GPa)

GTT = 0.2× 106 psi (1.379 GPa)

νLT = νTT = 0.25

L : Longitudinal direction (x1)

T : Transverse direction (x2, x3)

(5.2)

The plate is clamped at all of its edges as shown in Fig. 5.12(c). Uniform pressure

load P = 500 Nm−2 is applied at the bottom surface of the plate as shown in Fig. 5.12(b).

Fig. 5.13 displays the variation of the displacement component u3 with respect to x1

and x2 for the fourth example. Fig. 5.13(a) was generated using the 3D FEA approach,

while Fig. 5.13(b) was produced using the present approach. Fig. 5.14 illustrates the

variation of the percentage error in the value of u3 with respect to x1 and x2. The

percentage error (PE) is defined in Eq. (5.3).

PE = 100

∣∣∣∣∣u3,FEA − u3,Present

umax
3,FEA

∣∣∣∣∣ (5.3)

Where u3,FEA and u3,Present are values of u3 obtained using the 3D FEA and Present

approaches. umax
3,FEA is the maximum value of u3,FEA. Figure 5.14 demonstrates that the
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Figure 5.12: Stiffened plate analyzed in the fourth example (a) in plane geometry of the
plate (b) through-the-thickness structure of the plate and loading condition (c) boundary
conditions
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Figure 5.13: Out-of-plane deflection of the plate considered in the fourth example. The
results are obtained using (a) 3D FEA approach (b) present approach

137



CHAPTER 5 5.4. CONCLUSION
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Figure 5.14: Percentage error in the out of plane deflection u3 for the fourth example

results obtained by the 3D FEA and the present approach are in very good agreement.

5.4 Conclusion

This approach treats the stiffened plates as structures with varying through-the-thickness

structure. To exploit the thin nature of the structure compared to its in-plane dimensions,

the Variational Asymptotic Method (VAM) is employed. This method systematically

reduces the dimensionality of the problem, leading to computationally efficient solutions.

The good agreement between the results obtained using this approach and those reported

in the literature validates its effectiveness.
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Chapter 6

Conclusion and Future Scope

This thesis introduces a novel VAM based reduced-order model for geometrically nonlinear

analysis of plate-like structures. This reduced-order model efficiently handles structures

where one dimension is significantly smaller than the other two. The model’s versatility

has been demonstrated through successful application to various plate configurations,

including anisotropic plates, multilayer composite plates, functionally graded plates, and

stiffened plates. Results obtained using the proposed reduced-order model show excellent

agreement with benchmark problems from the literature and with those obtained from

3D finite element analysis. A brief summary of the work presented in this thesis is given

below.

6.1 Summary

A literature survey has been carried out on stiffened plates and approaches used for their

analysis. The following key research gaps were found.

1. Most of the reduced order theories are presupposition based and relies on ad hoc

and a priori assumptions.

2. A number of Assymptotically correct plate theories are available, however the have

folloing shortcomings

(a) Relies on pre-assumed kinematics of plate

(b) In most of the literature asymptotic expansion is done relying on the assumed

orders of relevant quantities.
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(c) Higher order derivatives of the primary variables are eliminated following a

mathematically complex extremizaton process done at the expense of the asymp-

totic correctness of the theory.

A novel, asymptotically accurate equivalent single layer (ESL) theory has been intro-

duced to address limitations in existing theories and analyze the geometrically nonlinear

behavior of anisotropic plates. This development lays the foundation for subsequent anal-

yses. The theory developed for anisotropic plates has been extended to analyze multilay-

ered symmetric composite plates. A key aspect is ensuring the continuity of displacements

and transverse stresses across layers, which is absent in classical ESL theories. Addition-

ally, a novel approach for calculating shear correction factors is introduced, significantly

reducing computational complexity while maintaining high accuracy. Building upon these

advancements, the framework was further extended to tackle functionally graded (FG)

plates with varying material properties. The optimal reference plane location within the

FG plate was determined, and a new ESL theory for FG plates was developed using VAM

and the established isoenergetic concept. This approach results in an accurate and com-

putationally efficient ESL plate theory for FG plates. Finally, the developed theoretical

frameworks were adapted to analyze both symmetric and asymmetric stiffened plates,

presenting a systematic approach for efficient and accurate analysis

6.2 Key highlights of present work

1. The dimensional reduction using VAM is based on first principles, avoiding reliance

on pre-assumed kinematics of the plate and assumptions regarding the order of

different quantities of interest.

2. A bound on thickness to length ratio
(
h
l

)
and supnorm of strains has been used for

the asymptotic expansion. In the energy functional this translates to asymptotic

expansion in powers of (ξ). The analysis with strain energy accurate up to the order

of (ξ8µ) results in analytic expressions for displacement vector and strains accurate

up to order of (ξ4h) and (ξ4) respectively. It is observed from the results that

the diminishing value of small parameter
(
h
l

)
improves the accuracy, aligning them

more closely with the results obtained from 3D FEA. Therefore it becomes evident

that the proposed model is asymptotically accurate and demonstrates satisfactory

performance for thin and moderately thick plates.
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3. It is interesting to observe that the zeroth order solution results in the estimation

of 3D displacement field in terms of 2D variables ui(x1, x2). Essentially, this leads

to the dimensional reduction of 3D problem to 2D, which is assumed a priori in

classical plate theories.

4. The reference plane is not chosen a priori. It is selected in a mathematically justified

manner.

5. The higher order 1D through the thickness analysis involves derivatives of ui(x1, x2)

w.r.t xα. The complexity involving these derivatives is eliminated through a novel

isoenegetic approach and choosing the reference plane suitably resulting in better

estimation of the overall deformation.

6. It may be noted that most of the plate theories rely on the ad hoc assumption

of plane stress condition as an integral part of their formulation. However, it is

interesting to observe that the plane stress condition is a natural consequence of the

mathematical procedure adopted in the present formulation.

7. The proposed model as well as the FSDT estimates strains up to the same order

of accuracy resulting in comparable levels of computational complexities and cost.

However, due to its asymptotic correctness, the current model has the following

advantages over FSDT model

i. FSDT addresses shear effects by assuming a constant distribution of transverse

shear strains throughout the thickness. However, this study reveals that the

actual asymptotic distribution of transverse shear strains follows a series of

quadratic curves.

ii. Unlike FSDT, the present work ensures the continuity of the transverse stresses

along the thickness direction and zero tangential traction boundary conditions

on the surface of the plate, ensuring excellent agreement with the expected

physical behavior.

iii. Unlike FSDT there is no need for shear correction factor.

To summarize, this work provides a more refined, accurate, and computationally ef-

ficient reduced order theory applicable for thin and moderately thick plate like struc-

tures. Comparison with established theories such as CLPT, FSDT, R-TSDT and 3D

FEA demonstrates the accuracy of the present work.
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CHAPTER 6 6.3. SCOPE OF FUTURE RESEARCH

6.3 Scope of Future Research

The proposed framework for analyzing plate-like structures has demonstrably yielded

successful results across various applications. Based on these implementations, there is

significant potential to further refine and broaden the capabilities of present framework

for tackling a wider range of engineering problems. Here are some promising avenues for

future exploration:

1. Extension to Stiffened/Unstiffened Shell Structures: The developed frame-

work can be adapted and extended to analyze shell-type structures, both stiffened

and unstiffened. Investigating the behavior of such structures under various loading

conditions and geometries would be valuable for practical applications in aerospace,

automotive, and maritime industries.

2. Handling Material Non-linearity: Extending the analysis to incorporate mate-

rial non-linearity would be a significant advancement. Investigating the behavior of

stiffened/unstiffened plates under non-linear material models such as plasticity, vis-

coelasticity, or damage mechanics could provide insights into the structural response

under realistic loading scenarios.

3. Multi-physics Problems: The framework could be extended to handle multi-

physics problems, such as the interaction between mechanics, heat transfer, and

moisture diffusion. This would be particularly relevant for analyzing composite

materials commonly used in aerospace and marine structures.

4. Handling Asymmetric Composite Plates: Extending the analysis to handle

asymmetric composite plates would further enhance the applicability of this frame-

work.

5. Buckling and Dynamic Problems: Addressing buckling and dynamic prob-

lems would be crucial for understanding the stability and dynamic response of stiff-

ened/unstiffened structures. Developing methodologies to predict critical buckling

loads and natural frequencies, as well as studying the dynamic behavior under tran-

sient loads, would be valuable for structural design and optimization.

With these future scopes, this work can continue to contribute significantly to the

advancement of structural analysis and design, with implications for various engineering

applications.
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[42] R. Bareš and C.E. Massonnet, Analysis of Beam Grids and Orthotropic Plates by the
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Appendix G

Expressions g2, g3, f2 and f3

As we keep on perturbing the solution for increased accuracy, we encounter bulky expres-

sions containing higher order derivatives of u1, u2 and u3. These bulky expressions are

replaced in Chapter 2 with two-dimensional functions f2, f3, g2 and g3. This is done to

make the equations concise. Also, this replacement does not reduce the completeness of

the chapter as the chapter does not go into the details of these expressions and removes

them from the final reduced order plate model using the concept of isoenergetics. The

details of these replacements are included in this appendix.

As shown in Chapter 2, the third-order solution results in the following Euler-Lagrange

equations.

2C55f2 + 6C55x3g2 + 2C45f3 + 6C45x3g3 = C55
∂2v31
∂x2

3

+ C45
∂2v32
∂x2

3

2C45f2 + 6C45x3g2 + 2C44f3 + 6C44x3g3 = C45
∂2v31
∂x2

3

+ C44
∂2v32
∂x2

3

C33
∂2v33
∂x2

3

= 0

(G.1)

Where f2, f3, g2 and g3 are functions of x1 and x2. The expressions for these functions

in terms of derivatives of ui w.r.t. xj and the material constants are given below
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g2 =
1

6C33(C2
45 − C44C55)

[
(−C26C33C44 + C23C36C44

− C2
23C45 + C22C33C45)

∂3u3

∂x3
1

+ 3
∂3u3

∂x1∂x2
2

− (C13C23C44

− C12C33C44 + 2C2
36C44 + 3C26C33C45 − 3C23C36C45 − C23C

2
45

+ C23C44C55 − 2C33C44C66)
∂3u3

∂x2
1∂x2

+ (−3C16C33C44

+ 3C13C36C44 − C13C23C45 + C12C33C45 − 2C2
36C45 − 2C36C

2
45

+ 2C36C44C55 + 2C33C45C66)
∂3u3

∂x1∂x2
2

+ (C2
13C44 − C11C33C44

+ C16C33C45 − C13C45(C36 + C45) + C13C44C55)
∂3u3

∂x3
2

]

g3 =
1

6C33(C2
45 − C44C55)

[
(C26C33C45 − C23C45(C36 + C45)

− C22C33C55 + C23(C23 + C44)C55)
∂3u3

∂x3
1

+ 3
∂3u3

∂x1∂x2
2

− (−C13C23C45 + C12C33C45 − 2C2
36C45 − 2C36C

2
45

− 3C26C33C55 + 3C23C36C55 + 2C36C44C55

+ 2C33C45C66)
∂3u3

∂x2
1∂x2

+ (3C16C33C45

− C13C45(3C36 + C45) + C13(C23 + C44)C55 − C55(C12C33

− 2C2
36 + 2C33C66))

∂3u3

∂x1∂x2
2

− (−C2
13C45 + C11C33C45

− C16C33C55 + C13C36C55)
∂3u3

∂x3
2

]
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f2 =
1

2C33(C2
45 − C44C55)

[
− C2

36C44 − C26C33C45

+ C23C36C45 + C33C44C66
∂2u1

∂x2
1

+
∂2u1

∂x2
2

+ (C26C33C44

− C23C36C44 + C2
23C45 − C22C33C45)

∂2u2

∂x2
1

+
∂2u2

∂x2
2

+ 2C16C33C44
∂2u1

∂x1∂x2

− 2C13C36C44
∂2u1

∂x1∂x2

+ C13C23C45
∂2u1

∂x1∂x2

− C12C33C45
∂2u1

∂x1∂x2

+ C2
36C45

∂2u1

∂x1∂x2

+ C36C
2
45

∂2u1

∂x1∂x2

− C36C44C55
∂2u1

∂x1∂x2

− C33C45C66
∂2u1

∂x1∂x2

− C13C23C44
∂2u2

∂x1∂x2

+ C12C33C44
∂2u2

∂x1∂x2

− C2
36C44

∂2u2

∂x1∂x2

− 2C26C33C45
∂2u2

∂x1∂x2

+ 2C23C36C45
∂2u2

∂x1∂x2

+ C23C
2
45

∂2u2

∂x1∂x2

− C23C44C55
∂2u2

∂x1∂x2

+ C33C44C66
∂2u2

∂x1∂x2

− C2
13C44

∂2u1

∂x2
1

+ C11C33C44
∂2u1

∂x2
1

− C16C33C45
∂2u1

∂x2
1

+ C13C36C45
∂2u1

∂x2
1

+ C13C
2
45

∂2u1

∂x2
1

− C13C44C55
∂2u1

∂x2
1

+ (C16C33C44 − C13C36C44

+ C36C45(C36 + C45)− C36C44C55 − C33C45C66)
∂2u2

∂x2
1

]
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f3 =
1

2C33(C2
45 − C44C55)

[
(C36C45(C36 + C45) + C26C33C55

− C36(C23 + C44)C55 − C33C45C66)
∂2u1

∂x2
1

+
∂2u1

∂x2
2

− (C26C33C45 − C23C45(C36 + C45) + C22C33C55

− C23(C23 + C44)C55)
∂2u2

∂x2
1

+
∂2u2

∂x2
2

− 2C16C33C45
∂2u1

∂x1∂x2

+ 2C13C36C45
∂2u1

∂x1∂x2

+ C13C
2
45

∂2u1

∂x1∂x2

− C13C23C55
∂2u1

∂x1∂x2

+ C12C33C55
∂2u1

∂x1∂x2

− C2
36C55

∂2u1

∂x1∂x2

− C13C44C55
∂2u1

∂x1∂x2

+ C33C55C66
∂2u1

∂x1∂x2

+ C13C23C45
∂2u2

∂x1∂x2

− C12C33C45
∂2u2

∂x1∂x2

+ C2
36C45

∂2u2

∂x1∂x2

+ C36C
2
45

∂2u2

∂x1∂x2

+ 2C26C33C55
∂2u2

∂x1∂x2

− 2C23C36C55
∂2u2

∂x1∂x2

− C36C44C55
∂2u2

∂x1∂x2

− C33C45C66
∂2u2

∂x1∂x2

+ C2
13C45

∂2u1

∂x2
1

− C11C33C45
∂2u1

∂x2
1

+ C16C33C55
∂2u1

∂x2
1

− C13C36C55
∂2u1

∂x2
1

+ (−C16C33C45 + C13C36C45 − C2
36C55 + C33C55C66)

∂2u2

∂x2
1

]
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Comparison of strain components

Chapter 2 derives a new plate theory named ACI-ESP plate theory. It is worth noting

the differences in strains obtained from various plate theories. The normal strains given

by different well-known plate theories are compared in Table H.1. Tables H.2 and H.3

compare the transverse and in-plane shear strains. This comparison shows that the ACI-

ESP plate theory has the same expressions for the in-plane normal and shear stresses as

those provided by the FSDT plate theory. However, in contrast to the FSDT plate theory,

the present theory predicts the transverse shear stresses with similar accuracy to that of

higher-order plate theories.

Table H.1: Comparison of normal strains σαα in different plate models for cases involving
small displacements and rotations only

Plate Model Normal strain (E11) Normal strain (E22)

CLPT [100] ∂u1

∂x1
− x3

∂2u3

∂x2
1

∂u2

∂x2
− x3

∂2u3

∂x2
2

FSDT [100] ∂u1

∂x1
+ x3

∂ϕ1

∂x1

∂u2

∂x2
+ x3

∂ϕ2

∂x2

ACI-ESL ∂u1

∂x1
+ x3

∂ϕ1

∂x1

∂u2

∂x2
+ x3

∂ϕ2

∂x2

R-TSDT
[122]

∂u1

∂x1
+ x3

∂ϕ1

∂x1

−4 x2
3

3 h2

(
∂ϕ1

∂x1
+ ∂2u3

∂x2
1

) ∂u2

∂x2
+ x3

∂ϕ2

∂x2

−4 x2
3

3 h2

(
∂ϕ2

∂x2
+ ∂2u3

∂x2
2

)
G-TSDT
[118]

∂u1

∂x1
+ x3

∂ϕ1

∂x1

+
(

x3

4
− 5x3

3

3h2

)(
∂ϕ1

∂x1
+ ∂2u3

∂x2
1

) ∂u2

∂x2
+ x3

∂ϕ2

∂x2

+
(

x3

4
− 5x3

3

3h2

)(
∂ϕ2

∂x2
+ ∂2u3

∂x2
2

)
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Table H.2: Comparison of transverse shear strains σα3 in different plate models for cases
involving small displacements and rotations only

Plate Model Shear strain (2E23) Shear strain (2E13)
CLPT [100] 0 0

FSDT [100]
(
ϕ2 +

∂u3

∂x2

) (
ϕ1 +

∂u3

∂x1

)
ACI-ESL 5(h2−4x2

3)

4h2

(
ϕ2 +

∂u3

∂x2

)
5(h2−4x2

3)

4h2

(
ϕ1 +

∂u3

∂x1

)
R-TSDT
[122]

(h2−4x2
3)

h2

(
ϕ2 +

∂u3

∂x2

)
(h2−4x2

3)

h2

(
ϕ1 +

∂u3

∂x1

)
G-TSDT
[118]

5(h2−4x2
3)

4h2

(
ϕ2 +

∂u3

∂x2

)
5(h2−4x2

3)

4h2

(
ϕ1 +

∂u3

∂x1

)

Table H.3: Comparison of in-plane shear strains σ12 in different plate models for cases
involving small displacements and rotations only

Plate Model Shear strain (2E12)

CLPT [100] ∂u1

∂x2
+ ∂u2

∂x1
− x3

(
∂2u3

∂x1∂x2

)
FSDT [100]

∂u1

∂x2
+ ∂u2

∂x1

+x3

(
∂ϕ1

∂x2
+ ∂ϕ2

∂x1

)
ACI-ESL

∂u1

∂x2
+ ∂u2

∂x1

+x3

(
∂ϕ1

∂x2
+ ∂ϕ2

∂x1

)

R-TSDT
[122]

∂u1

∂x2
+ ∂u2

∂x1

+x3

(
∂ϕ1

∂x2
+ ∂ϕ2

∂x1

)
−4 x2

3

3 h2

(
∂ϕ1

∂x2
+ ∂2u3

∂x1∂x2

)
−4 x2

3

3 h2

(
∂ϕ2

∂x1
+ ∂2u3

∂x1∂x2

)

G-TSDT
[118]

∂u1

∂x2
+ ∂u2

∂x1

+x3

(
∂ϕ1

∂x2
+ ∂ϕ2

∂x1

)
+
(

x3

4
− 5x3

3

3h2

)(
∂ϕ1

∂x2
+ ∂2u3

∂x1∂x2

)
+
(

x3

4
− 5x3

3

3h2

)(
∂ϕ2

∂x1
+ ∂2u3

∂x1∂x2

)
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Expressions gr2, g
r
3, f

r
2 and fr3

As we continue to perturb the solution for increased accuracy, we encounter bulky expres-

sions containing higher-order derivatives of u1, u2 and u3. These bulky expressions are

replaced in Chapter 3 with two-dimensional functions f r
2 , f

r
3 , g

r
2 and gr3. This is done to

make the equations more concise. The details of these replacements are provided in this

appendix.

As shown in Chapter 3, the third-order solution results in the following Euler-Lagrange

equations.

Cr
55

(
∂

∂x3

)2
3vr1 + Cr

45

(
∂

∂x3

)2
3vr2 = 2Cr

55f
r
2 + 6Cr

55x3g
r
2 + 2Cr

45f
r
3 + 6Cr

45x3g
r
3

Cr
45

(
∂

∂x3

)2
3vr1 + Cr

44

(
∂

∂x3

)2
3vr2 = 2Cr

45f
r
2 + 6Cr

45x3g
r
2 + 2Cr

44f
r
3 + 6Cr

44x3g
r
3

Cr
33

(
∂

∂x3

)2
3vr2 = 0

(I.1)

Where f r
2 , f

r
3 , g

r
2 and gr3 are functions of x1 and x2. The expressions for these functions

in terms of derivatives of ui w.r.t. xj and the material constants are given below
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gr2 =
1

6Cr
33{(Cr

45)
2 − Cr

44C
r
55}

[{
− Cr

26C
r
33C

r
44 + Cr

23C
r
36C

r
44

− (Cr
23)

2(Cr
45)

2 + Cr
22C

r
33(C

r
45)

2
}∂3u3

∂x3
1

+ 3
∂3u3

∂x1∂x2
2

−
{
Cr

13C
r
23C

r
44 − (Cr

12)
2Cr

33C
r
44 + 2(Cr

36)
2Cr

44 + 3Cr
26C

r
33C

r
45

− 3Cr
23C

r
36C

r
45 − (Cr

23)
2(Cr

45)
2 + Cr

23C
r
44C

r
55 − 2Cr

33C
r
44(C

r
66)
} ∂3u3

∂x2
1∂x2

+
{
− 3Cr

16C
r
33C

r
44 + 3Cr

13C
r
36C

r
44 − Cr

13(C
r
23)

2Cr
45 + (Cr

12)
2Cr

33C
r
45

− 2(Cr
36)

2Cr
45 − 2Cr

36(C
r
45)

2 + 2Cr
36C

r
44C

r
55 + 2Cr

33C
r
45C

r
66

} ∂3u3

∂x1∂x2
2

+
{
Cr

13(C
r
13)

2Cr
44 − (Cr

11)
2Cr

33C
r
44 + Cr

16C
r
33C

r
45 − Cr

13C
r
45(C

r
36 + Cr

45)

+ Cr
13C

r
44C

r
55

}∂3u3

∂x3
2

]

gr3 =
1

6Cr
33{(Cr

45)
2 − Cr

44C
r
55}

[{
− Cr

26C
r
33C

r
45 + Cr

23C
r
45(C

r
36 + Cr

45)

− Cr
22C

r
33C

r
55 + Cr

23(C
r
23 + Cr

44)C
r
55

}∂3u3

∂x3
1

+ 3
∂3u3

∂x1∂x2
2

−
{
− Cr

13C
r
23C

r
45 + (Cr

12)
2Cr

33C
r
45 − 2(Cr

36)
2Cr

45 − 2Cr
36C

r
45

2

− 3Cr
26C

r
33C

r
55 + 3Cr

23C
r
36C

r
55 + 2Cr

36C
r
44C

r
55

+ 2Cr
33C

r
45C

r
66

} ∂3u3

∂x2
1∂x2

+
{
3Cr

16C
r
33C

r
45

− Cr
13C

r
45(3C

r
36 + Cr

45) + Cr
13(C

r
23 + Cr

44)C
r
55 − Cr

55(C
r
12C

r
33

− 2(Cr
36)

2 + 2Cr
33C

r
66)
} ∂3u3

∂x1∂x2
2

−
{
− (Cr

13)
2Cr

45 + (Cr
11)

2Cr
33C

r
45

− Cr
16C

r
33C

r
55 + Cr

13C
r
36C

r
55

}∂3u3

∂x3
2

]
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f r
2 =

1

2Cr
33 {(Cr

45)
2 − Cr

44C
r
55}

[
− (Cr

36)
2Cr

44 − Cr
26C

r
33C

r
45

+ Cr
23C

r
36C

r
45 + Cr

33C
r
44C

r
66

∂2u1

∂x2
1

+
∂2u1

∂x2
2

+ {Cr
26C

r
33C

r
44

− Cr
23C

r
36C

r
44 + (Cr

23)
2Cr

45 − Cr
22C

r
33C

r
45}

∂2u2

∂x2
1

+
∂2u2

∂x2
2

+ 2Cr
16C

r
33C

r
44

∂2u1

∂x1∂x2

− 2Cr
13C

r
36C

r
44

∂2u1

∂x1∂x2

+ Cr
13C

r
23C

r
45

∂2u1

∂x1∂x2

− Cr
12C

r
33C

r
45

∂2u1

∂x1∂x2
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36C

r
45

∂2u1

∂x1∂x2

+ Cr
36(C

r
45)

2 ∂2u1

∂x1∂x2

− Cr
36C

r
44C

r
55

∂2u1

∂x1∂x2

− Cr
33C

r
45C

r
66
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∂x1∂x2

− Cr
13C

r
23C

r
44

∂2u2
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12C

r
33C

r
44

∂2u2
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− (Cr
36)

2Cr
44
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− 2Cr
26C

r
33C

r
45

∂2u2

∂x1∂x2
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23C

r
36C

r
45

∂2u2

∂x1∂x2
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45)
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∂x1∂x2
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44C

r
55

∂2u2

∂x1∂x2
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33C

r
44C

r
66

∂2u2

∂x1∂x2

− (Cr
13)

2Cr
44

∂2u1

∂x2
1

+ Cr
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33C

r
44

∂2u1

∂x2
1

− Cr
16C
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33C

r
45

∂2u1

∂x2
1

+ Cr
13C

r
36C

r
45

∂2u1

∂x2
1

+ Cr
13C

2
45

∂2u1

∂x2
1

− Cr
13C

r
44C

r
55

∂2u1

∂x2
1

+
{
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16C
r
33C
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13C
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36C
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1

]
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f r
3 =

1

2Cr
33 {(Cr
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2 − Cr

44C
r
55}

[
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36C
r
45(C

r
36 + Cr
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33C
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45C
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r
45 − Cr
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∂x1∂x2

− Cr
13C

r
23C
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r
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1
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