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Abstract

Stiffener Reinforced structures are widely used in many engineering disciplines like aerospace,
marine, civil and automotive. By adding reinforcement to a structure in the form of a
stiffener, the mechanical properties of the structure especially stiffness and fracture tough-
ness are greatly improved without much increase in weight and cost. However, stiffened
structures undergo a localized shift in the neutral plane due to the geometric discontinu-
ities introduced by the stiffener. This shift necessitates careful attention when analyzing
these structures.

Conducting full-scale 3D finite element analyses (FEA) for such structures can be
computationally expensive, particularly during the design optimization phase. To ad-
dress this computational burden, reduced-order models are often favored. The literature
employs various approaches utilizing reduced-order models for plates and beams to an-
alyze stiffened structures efficiently. However, selecting appropriate reduced-order beam
and plate models is crucial, as the accuracy and efficiency of the analysis heavily rely on
this selection. Furthermore, ensuring compatibility between the beam and plate models
and accounting for geometric discontinuities pose challenges in accurately modeling stiff-
ened plates. Most of the approaches found in the literature are based on ad hoc and a
priory assumptions and have their own advantages and shortcomings.

This research addresses this challenge by developing a reduced-order model for the
stiffened plates that captures their deformation behavior accurately with significantly
reduced computational cost. The primary objective is to create a systematic and math-
ematically sound approach for analyzing various stiffened plate configurations, enabling
efficient design optimization.

The core of the work lies in establishing an asymptotically correct reduced-order plate
theory for anisotropic plates. This is achieved by leveraging variational calculus and the
concept of isoenergetics. The theory was derived using first principles avoiding any ad
hoc and a priory assumptions. The derived model accurately captures the deformation
characteristics while significantly reducing computational complexity compared to full-
scale 3D finite element analysis (FEA).

The framework developed for the single-layer anisotropic plates is then extended to
handle more complex scenarios. The plate theory is modified to incorporate analysis of
multilayered composite plates and functionally graded plates, reflecting real-world engi-
neering structures with tailored properties. This allows for the analysis of plates with

varying stiffness and strength profiles throughout their thickness.

ix



Finally, the developed the developed reduced order plate theory is equipped to han-
dle stiffened plates, a crucial component in many engineering applications. The model
can analyze both symmetric and asymmetric stiffener configurations, providing valuable
insights into the influence of stiffener orientation, size, and number on the overall plate
behavior.

Key contributions of the present work are (a) First principles-based derivation of the
reduced order 2D model from the 3D model energy (b) No dependency on the pre-
assumed kinematics, (¢) A systematic ordering scheme is employed utilizing the geometry
of the structure and a bound on the maximum value of the strains. (d) The plane stress
condition is a natural outcome of the present mathematical framework (e). The higher-
order derivatives appearing during the dimensional reduction process were dealt with by
a novel isoenergetic approach, reducing the computational complexities.

Overall, this research work presents a powerful tool for engineers by providing a math-
ematically rigorous and computationally efficient framework for analyzing and optimizing
stiffened plates. The developed reduced order model allows for a deeper understanding
of plate deformation behavior under various loading conditions, ultimately leading to

improved design decisions for a diverse range of engineering applications.
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Chapter 1

Introduction

Stiffened structures are frequently used in many engineering disciplines like aerospace,
marine, civil and automotive. These structures strategically integrate stiffeners to en-
hance their mechanical performance, particularly stiffness and fracture toughness. The
reinforcement of structures by stiffeners provides significant improvements with minimal
weight and cost penalties. The design of stiffened structures involves numerous parameters

that influence their performance for a specific application. These include

1. Sizing of the plate and stiffeners
2. The cross-section and material of the stiffeners

3. The spacing and orientation of the stiffeners

Adjusting these parameters is crucial for achieving the most suitable structure for a given
application. This necessitates a mathematically robust, accurate, and computationally
efficient model of such structures for selecting the optimal design. This becomes even
more critical in the present scenario, where weight reduction and structural efficiency are
highly desirable.

The approaches used for analyzing stiffened plates fall into three main categories:

1. Experimental approaches
2. 3D elasticity based approaches

3. Reduced order-based approaches
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Suitably and carefully designed experimental approaches are accurate. However, per-
forming experiments at a very large scale for the selection of the best suitable structure
for a given application is tedious, cumbersome, and very cost-effective. Also, there are
numerous reasons for the experiments to go wrong, which can cause wastage of material
and time. Thus, numerical and analytical approaches are preferred over experimental
analysis. The experimental analysis can be performed after proper numerical and ana-
lytical analysis. Among the numerical and analytical approaches, the 3D elasticity-based
approach is the most fundamental; however, its applicability is limited as they are compu-
tationally intensive. The reduced order-based approaches are simpler and more efficient.
The reduced order models not only offer the analyst the flexibility to alter the geometrical
or material parameters but also provide quick results. Three prominent methods based

on reduced order theories of beams and plates are given below.

1. Orthotropic Plate Approximation [24, 23]
2. Grillage Approximation [41, 40]

3. Separate Analysis and Compatibility [39, 38, 37]

The orthotropic Plate Approximation method simplifies the structure by distributing
the effect of the stiffeners across the plate, treating it as an orthotropic material. This ap-
proach works well when stiffeners are closely spaced. The Grillage Approximation method
incorporates the influence of the plate into the stiffeners by increasing their effective sec-
ond moment of area. However, determining the effective width in this method can be
challenging. Separate Analysis and Compatibility is a more general approach. It ana-
lyzes the plate and stiffeners independently. Compatibility is then ensured by enforcing
equilibrium and continuity conditions along their connection line.

Stiffened plates incorporate plates as a fundamental component. The accuracy and
efficiency of analyzing these stiffened plates with reduced-order models depend heavily
on the chosen reduced-order plate theory. This work addresses this by developing an
asymptotically accurate theory for the plates, which is then implemented for the analysis of
stiffened plates. The following sections outline the motivation, objectives, and a literature

review to identify existing research gaps and justify the need for this new theory
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1.1 Motivation

Plate-like structures, characterized by one dimension that is significantly smaller than
the other two, are predominant in engineering applications. Analyzing their behavior in
full 3D detail can be computationally expensive and often unnecessary. To address this
challenge, engineers have developed reduced-order theories. These theories aim to capture
the essential mechanical behavior of plates with a lower computational expense.

Traditionally, these reduced-order theories rely on ad-hoc (made for a particular pur-
pose or need) and a priori (based on an assumed principle or fact, rather than on actual
observed facts) simplifications. These simplifications limit the suitability of these the-
ories for specific cases, making them unreliable for others. As a result, engineers may
find themselves constantly switching between different reduced-order theories depending
on the specific application, which can be inefficient, time-consuming, and sometimes un-
scientific.

Among the reduced-order plate theories, Equivalent Single-Layer (ESL) theories, par-
ticularly First-order shear deformation plate theory, are known for their computational
efficiency and simplicity. However, their reliance on ad hoc and a priori assumptions about
material behavior or displacement patterns limits their applicability. This motivates the
author to develop an ESL plate theory on mathematically rigorous grounds, avoiding any
ad hoc and a priori assumptions. The aim is to remove the limitations/shortcomings of
the ESL theories while maintaining computational cost comparable to the FSDT plate
theory. This is done using the Variational Asymptotic Method (VAM).

VAM offers a more rigorous alternative for developing reduced-order plate theories.
VAM leverages the energy aspect of the problem: the total potential energy of the de-
formed structure. By utilizing the asymptotic expansion of the energy functional (total
potential energy) associated with the plate, VAM allows us to decompose the complex 3D

problem into two simpler ones:

e A Through-the-thickness 1D analysis: This analysis focuses on how the plate

deforms in the direction of its smallest dimension (thickness).

e A In-plane 2D analysis: This analysis focuses on how the plate deforms in its

larger (in-plane) dimensions.

This decomposition, as illustrated in Fig. 1.1, leads to a more reliable reduced-order

2D plate theory. The resulting theory captures the details of plate deformation more

3
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Through-the-
thickness 1D
analysis

= | +

3D Plate
In-plane 2D analysis

Figure 1.1: Decomposition of the complex 3D problem in through-the-thickness 1D prob-
lem and in-plane 2D problem

accurately than assumption-based plate theories while being significantly more computa-
tionally efficient than a full 3D analysis.

However, VAM-derived theories include higher-order derivatives of displacements and /or
strains in their governing equations. These higher-order terms increase the complexity
of the analysis significantly, making it difficult to solve for the unknown quantities. The
existing literature addresses this by employing mathematically complex extremization pro-
cesses. This process eliminates the higher-order terms at the expense of the asymptotic
correctness of the theory. This limitation becomes even more problematic for plates with
non-uniform thickness, such as stiffened plates. The existing VAM approaches struggle
to handle the varying through-the-thickness geometry of these structures effectively.

These limitations of existing VAM approaches motivate us to develop an alternative
procedure. The presented method eliminates the higher-order derivatives from the analy-
sis while preserving the asymptotic correctness of the VAM framework. The key elements

of the present approach are as follows.

e Strategic selection of a reference plane: The choice of the reference plane of
the plate significantly impacts the resulting equations. The present work selects the
reference plane of the plate suitably to result in the elimination of the higher-order

derivatives from the analysis.

e Isoenergetic approach: This innovative approach ensures that the asymptotically
correct plate theory and the commonly used First-order Shear Deformation Theory

(FSDT) represent the same energy density for a specific deformation pattern of

4



CHAPTER 1 1.2. OBJECTIVE

the reference plane. This strategy effectively eliminates the higher-order derivative

terms from the analysis while maintaining accuracy.

This improved approach offers a more robust and efficient framework for analyzing plate
structures, particularly those with complex geometries. Furthermore, existing VAM ap-
proaches often rely on pre-assumed plate kinematics and an assumed ordering of the
quantities involved. This work presents a first-principles-based VAM that avoids these
assumptions. The VAM framework employed in this work does not rely on the pre-
assumed kinematics of the plate. It determines the order of relevant quantities utilizing
the plate geometry and a bound on the maximum values of strains, leading to a more

robust foundation for the analysis.

1.2 Objective

The objectives of the present work include the development of a reduced-order Equivalent
Single Layer (ESL) plate model using a systematic and mathematically robust approach,
free from ad-hoc and a priori assumptions. Such a model is developed using VAM. The
present work equips VAM with a mathematically rigorous and robust framework by elim-
inating its dependency on pre-assumed kinematics and introducing a systematic ordering
scheme for the asymptotic expansion of the energy functional. This work eliminates
the complications arising from the higher-order derivatives inherent with the VAM-based
reduced-order model from the analysis using the concept of isoenergetics and by choosing
a suitable reference plane for the plate. The developed framework is tailored to deal with

different scenarios as follows.

1. Development of asymptotically correct isoenrergetic formulation for geometrically

nonlinear analysis of Anisotropic Plates.

2. Development of asymptotically accurate approach to find out shear correction fac-

tors for Laminated Composite Plates.

3. Development of asymptotically correct isoenergetic formulation for geometrically

nonlinear analysis of Symmetric Multilayered Composite Plate.

4. Development of asymptotically correct isoenergetic formulation for geometrically

nonlinear analysis of Functionally Graded Plates.
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5. Development of asymptotically correct isoenergetic formulation for geometrically

nonlinear analysis of symmetric and asymmetric Stiffened Plates.

1.3 Literature Survey

The study of the mechanics of solids finds its roots in the mathematically rigorous 3D
continuum elasticity theory. However, solving the resulting set of differential equations
for various loading and boundary conditions may be tedious [78, 66, 99, 79, 94] . In most
of cases, analytical strategies may not be applicable, hence numerical methods become
essential. Implementation of numerical methods requires a balance between accuracy
and computational cost, which might be quite expensive in certain cases [142]. In order
to provide an acceptable preliminary design solution, reduced order models have been
developed. Researchers have developed reduced order theories for beams, plates and
shells by approximating behavior in smaller dimensions [136].

To formulate reduced order models, fundamentally, three approaches have been adopted
based on the choice of primary variables [92, 97, 93, 94, 65]:

a. Displacement formulation, wherein the primary variables are the displacements of

the reference surface

b. Stress formulation, wherein the primary variables are the membrane stresses of the

reference surface

c. Mixed formulation involves the displacements of the reference plane and the traverse

stresses as the primary variables.

Each formulation has its own advantages and disadvantages. However, the displacement
formulation is the most commonly used approach for the analysis of thin and moderately
thick plates because of its simplicity and intuitiveness.

The above-mentioned formulations can be adapted to model anisotropic and/or mul-
tilayered structures using presupposition-based modeling strategies such as Equivalent
Single Layer (ESL) theories [100, 101, 102], Layer-Wise (LW) theories [106, 90, 91, 140]
and unified formulations [7, 93, 8]. The ESL approach, which is the most popular method
for analyzing anisotropic [135, 134, 133] and /or multilayered panels, simplifies the analysis
by assuming that the plate is composed of a single layer and expresses primary variables

associated with the whole domain of the plate in terms of primary variables associated
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with the reference plane of the plate reducing the degree of freedom of the analysis and
thereby increasing computational efficiency. The LW theories consider each layer sepa-
rately with appropriate boundary conditions at the layer interfaces, resulting in a larger
number of unknowns, which are directly proportional to the number of layers. Building
on the foundation of classical plate theories, Carrera and his team introduced a unified
formulation for laminated plates, now known as the Carrera Unified Formulation (CUF)
[7, 8]. This approach was further extended by Demasi into a more general framework,
termed the Generalized Unified Formulation (GUF) [6]. Similarly, Caliri et al. proposed
their own unifying approach, Caliri’s Generalized Formulation (CGF) [93]. Despite the
simplifying assumptions made in the ESL approach, it has been shown to be effective
in investigating the global response of multilayered thin and moderately thick plates.
However, its performance significantly deteriorates for thick plates.

Several types of ESL plate theories have been developed to analyze the behavior of
plates. A comprehensive review can be found in [100, 101, 80, 93]. In such theories, the
3D displacement field is represented in terms of the deformation of the reference plane.
The ESL theories are broadly classified into three categories (a) the polynomial theories
[71, 72, 73, 74, 75] (b) the non-polynomial theories [87, 88, 89, 69, 70] and (c) zig-zag (Z7Z)
theories [104, 105, 103, 143]. Polynomial theories are developed by expanding the displace-
ments in a power series of transverse coordinates involving simple orthogonal polynomials,
such as Legendre, Hermite or Chebyshev. Examples of polynomial theories include Clas-
sical Laminated Plate Theory (CLPT), First-order Shear Deformation Theory (FSDT),
Reddy’s Third Order Shear Deformation Plate Theory (R-TSDT), etc. In non-polynomial
theories, the displacement field of the plate is expressed in terms of trigonometric, hyper-
bolic or exponential function of the thickness coordinates. The underlying principle of ZZ
theories is to assume that the displacement field is a superposition of a global first-order,
second-order, or higher-order displacement field and a local ZZ function [104, 95].

ESL plate theories offer several advantages over LW and 3D plate theories. Their key
strengths lie in their low computational cost, ease of implementation, and overall sim-
plicity. These attributes make them highly desirable for analyzing large structures and
facilitating efficient iteration within optimization algorithms. Among ESL theories, the
classical laminate plate theory (CLPT) and first-order shear deformation theory (FSDT)
stand out for their remarkable simplicity. Computational efficiency and ease of use make
FSDT a popular choice for thin and moderately thick plates. While higher-order ESL the-

ories boast increased accuracy, their computational burden often outweighs the marginal
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improvement in results, especially for multilayered composite materials.

While FSDT offers the appealing advantage of computational efficiency, it comes with
limitations. Notably, it relies on a shear correction factor and struggles to accurately
predict transverse shear stresses, particularly crucial for laminated composites prone to
delamination. This limitation extends to higher-order ESL theories when dealing with
composite laminates. To address this, the present work introduces a computationally
efficient approach comparable to FSDT but with significantly improved accuracy in pre-
dicting transverse shear stresses.

The present work adopts the Variational Asymptotic Method (VAM) as a tool to
derive a displacement-based, asymptotically correct, reduced-order plate theory. The
computational complexities involved with this reduced order plate theory, due to its
inherent higher order derivatives, were eliminated using a novel isoenergetic approach.
Berdichevsky [107] introduced the VAM by combining asymptotic [150, 141, 149] and
variational approaches [148] wherein, the small geometric and material parameters are
used to reduce the dimensionality of the problem in hand. When applied to the plate
problem, it decouples the 3D problem into a 1D through the thickness analysis and a
2D planar problem. This approach has been used by many researchers to solve plate
problems [108, 113, 109, 86, 111, 112, 155], a detailed review of such theories is available
in [110]. It is worth mentioning here that similar strategies have been successfully applied
by researchers in various studies. Rajagopal et al. [64] utilized these strategies to analyze
planar deformation of initially curved isotropic strips, Harusampath et al. and Liu et al.
[63, 151, 147] applied them to model composite beams, Amandeep et al. [82, 67] used
them to find analytical solutions for functionally graded beams, and Shakya et al. [81]
employed them to investigate elastic coupling in anisotropic-homogeneous beams.

Yu introduced a new unified approach named Mechanics of Structure Genome (MSG)
in 2016 for the multiscale constitutive modeling [?, 2]. This approach was built upon pre-
vious research using the Variational Asymptotic Method (VAM), which has been applied
to beams, plates, shells, and unit cell homogenization. MSG establishes a unified frame-
work for constructing constitutive models across multiple length scales. The core concept
is the ”structure genome,” defined as the smallest fundamental mathematical unit of a
structure. MSG bridges the gap between the microstructure and macroscopic levels of
composite materials, providing essential information to develop constitutive models for a
wide range of structural components, including 3D structures, beams, plates, and shells.

To the best of the author’s knowledge, the existing plate models based on VAM typi-
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Figure 1.2: Literature summary with contribution of present work

cally begin with a priori assumptions about the 2D strains/displacements and refine them
by considering a warping vector. In other words, VAM has mainly been used to improve
existing reduced-order plate models by making perturbations rather than creating the
reduced-order model by itself considering the 3D plate model. VAM-based plate theo-
ries, while accurate, are mathematically complex and computationally inefficient due to
the involvement of higher-order derivatives of generalized 2D strains or 2D displacement
variables. Consequently, these theories are often less practical to apply. In an effort to
address this challenge in many VAM-based theories [112, 62, 108, 113], the plate model
is transformed into a Reissner-like model, leading to a distortion of the model. Unfortu-

nately, this distortion compromises the asymptotic correctness of the approach, which is



CHAPTER 1 1.4. OUTLINE OF THE THESIS

a key advantage of using VAM.

In this study, 1D through-the-thickness analysis is conducted for the plate problem,
employing a first-principles-based derivation to obtain a reduced-order 2D plate model
from the energy of the 3D model. Unlike traditional methods, the Present approach
avoids pre-assumed plate kinematics and ordering of variables. Instead, This work pro-
poses a systematic ordering scheme that assigns orders to different quantities of interest
and improves them progressively. The final order obtained through this scheme aligns per-
fectly with established literature, demonstrating its robustness. Furthermore, the present
approach does not require an a priori reference plane. Instead, the analysis methodology
naturally yields a reference plane as an outcome. Similarly, the position of this plane is
not pre-assumed but determined logically to eliminate higher-order derivatives. Overall,

the present work has the following novel contributions

i. First principles-based derivation of the reduced order 2D plate model from the 3D

model energy,

ii A systematic ordering approach is used utilizing bounds on the maximum value of

the strains and the maximum thickness-to-length ratio.

iii. Elimination of higher order derivatives of 2D displacement variables using isoener-

getic principle.

A summary of the literature, along with the contribution of the present work, is
illustrated in Fig. 1.2. The unification of the first principles-based displacement solutions
with the isoenergetic approach results not only in an asymptotically correct theory but
also in computationally efficient and robust solutions. The reduced order 2D plate theory
can be analyzed using the analytical solutions approaches like Navier or Levy solution
[119] or Numerical approaches like Finite Element Method (FEM). Different solution
approaches highlighting the adapted solution approaches (shown in green colored blocks)

are presented in Fig. 1.3

1.4 Outline of the Thesis

This thesis is organized into six chapters, each aligned with the defined objectives of the
research.
Chapter 2 presents a novel asymptotically accurate equivalent single layer (ESL)

geometrically nonlinear plate theory for anisotropic materials. This development builds
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Figure 1.3: Different solution approaches employed for the solution of the reduced order
2D plates

upon a critical review of existing ESL plate theories in Chapter 1, which highlights the
limitations of current approaches due to their reliance on ad hoc and a prior: assumptions.

Chapter 3 extends the work done in Chapter 2 to analyze multilayered symmetric
composite plates. It focuses on the continuity of displacements and transverse stresses
at layer interfaces during the 1D through-the-thickness analysis. This chapter introduces
asymptotically accurate shear correction factors. These factors make FSDT plate the-
ory isoenergetic to the asymptotically correct plate theory. This innovation reduces the
complexity of the analysis while maintaining high accuracy in the results.

Chapter 4 addresses functionally graded plates (FG plates) with different gradation
models. Unlike symmetric plates, the reference plane for FG plates does not coincide with
the mid-plane. This chapter determines the optimal reference plane position and develops
an ESL theory for FG plates using VAM and the concept of isoenergetics.

Chapters 5 and 6 leverage the theories developed in previous chapters. Chapter 5
presents a systematic approach for analyzing symmetric stiffened plates, while Chapter
6 tackles asymmetric stiffened plates. Chapter 7 concludes the thesis by summarizing
the key findings and outlining potential avenues for future research. This final chapter
explores how the present work could be extended or modified to tackle a broader range

of engineering challenges.

11



Chapter 2

Asymptotically Correct Isoenergetic
Formulation of Geometrically
Nonlinear Anisotropic Plates

2.1 Introduction

This chapter presents a displacement-based ESL plate theory for anisotropic materials
derived using Variational Asymptotic Method (VAM) and further simplified using a novel
isoenergetic approach. Unlike the available VAM-based plate theories, the present work
does not rely on any pre-assumed kinematics of plates, thus establishing a more systematic
and rigorous framework for VAM. Additionally, the present work introduces a systematic
scheme leveraging the geometry of the plate and a bound on the maximum value of
strains to assign an order to different quantities of interest, which play a crucial role in
the asymptotic expansion of the 3D model energy functional associated with the plate.
The asymptotic expansion results in the decoupling of the 3D plate problem into a 1D
through the thickness analysis and a 2D planar problem. The through-the-thickness 1D
analysis, which is conducted first, yields a 2D reduced-order model for plates. It is to be
emphasized here that the classical reduced order model 2D plate model, as well as the
through-the-thickness analysis, is a natural outcome of the methodology adopted in the
present work. However current approach also results in the higher order derivatives of 2D
displacement terms. To circumvent this issue, an innovative isoenergetic approach has
been developed by enforcing the condition that the asymptotically correct plate theory
and FSDT plate theory represent identical energy densities for a given deformation pattern

of the reference plane. This strategy, referred to as the isoenergetic approach, results in

12
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the elimination of higher-order derivative terms.

The unification of the first principles-based displacement solutions with the isoener-
getic approach results not only in an asymptotically correct theory but also in compu-
tationally efficient and robust solutions. Henceforth, this theory will be referred to as
the Asymptotically Correct Isoenegetic Equivalent Single Layer (ACI-ESL) plate theory.
The reduced order ACI-ESL plate theory can be analyzed using the analytical solutions
approaches like Navier or Levy solution [119] or Numerical approaches like Finite Element
Method (FEM).

In what follows, the detailed derivation and validation of the proposed ACI-ESL plate

theory is presented.

2.2 Analytical Development

Consider a homogeneous anisotropic plate of length a, width b and thickness A, with a
right-handed orthogonal cartesian coordinate system = = (xy, 29, x3) and unit vectors é;
along the axes x; as shown in Fig. 2.1. The x3-axis is oriented in the downward direction.
For plate-like structures, the plate thickness A is much smaller than other dimensions a
and b. Defining a and b to be of the order [, the ratio % becomes a small parameter i.e.
% < 1. The interior region of the plate is denoted by {2 and the boundary comprises
of the top surface 0, the bottom surface 0o and the side surfaces 0€lgqe With
0y, = 0Qop U 0ot The position vector of any arbitrary point P in this domain is
given by & = x;¢;. Throughout this work, Roman indices (i, j, k, ...) range from 1 to 3,
while Greek indices (a, 3,7, ...) range from 1 to 2 unless their values are specified.

The point P deforms to point P’ through displacement v = v;é;. For a deformation
with small strains and moderate rotations, the Green—St. Venant strain tensor [128, 127,
119, 139] is given as

E= % {(%ﬁ) + (ﬁxﬁ)T + (ﬁxﬁ)T (%ﬁ)} (2.1)

In the subsequent sections, we present a novel and intriguing strategy for developing a
reduced-order plate theory. This theory is based on the generalized strain tensor defined
in Eq. (2.1) with a limit on the maximum value of strains. Additionally, it utilizes the
geometrical dimensions of the plate with a limit on the maximum value of % to develop a
reduced order plate model in a mathematically rigorous way, avoiding any a priori or ad

hoc assumptions. It would be interesting to observe that the successive perturbations of

13
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Figure 2.1: Schematic of the plate deformation (a) Undeformed state (b) Deformed state

the reduced order plate model, as will be demonstrated in this work, lead to increasingly
improved plate theories encompassing the CLPT and higher order plate theories. The
analytical development is divided into three parts: Part A develops a CLPT type plate
theory, Part B refines the model presented in Part A considering the contribution of
higher-order energy, and Part C presents a novel isoenergetic approach to eliminate the
higher-order derivatives present in the plate theory developed in Part A and B to reduce

the computational complexities and computational cost.

14
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2.3 Part A: Development of a CLPT type plate the-
ory

By leveraging the geometry of the plate and a bound on the maximum value of strains,
a scheme has been established to estimate and re-estimate the order of the different

quantities of interest. The ordering scheme is presented in the following section.

2.3.1 Order Estimation Scheme

With the ordering scheme outlined in [112], the relation between the orders of v; and its

derivatives with respect to x; is given as follows

ot 95 o 1\CH /1\"
O(a_xtla_;g;a_xg”i)N(i) (5) Olv) (2.2)

r,s,t=0,1,2,3,...

Note that the 0% order derivative represents no derivative, i.e., 83 5 O(v;) = O(v;). The

supnorm (supremum norm) of strains (||E|[) is defined below

|El[c = max —max |Ey| (2.3)

1<4,5<3 TS

The maximum value of % and the supnorm is bounded by & and e respectively as

shown below mathematically

b‘

7€
I1E]l <€

(2.4)

In the context of deformation with small strains, we consider bound on the supnorm
of strains to be a very small parameter i.e. ¢ < 1. Also, for a plate-like structure bound
on the maximum value of % is small, i.e. £ < 1. For the asymptotic expansion of the
stains and strain energy, it is assumed that ¢ = £3. It will be demonstrated later that the
bound on the maximum value of the strains and ’% with the ordering scheme given in Eq.

(2.2) results in a unique estimation of the order of different quantities of interest.

2.3.2 Constitutive Relations and Strain Energy

Let o = {011, 092, 033, To3, T3, Ti2}  be 2"¢ Piola-Kirchhoff stress tensor which is ener-

getically conjugate to the Green—St. Venant strain tensor [61], the constitutive relation
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is given by

o=CE, (2.5)
where C' represents the stiffness matrix and E = {F}1, FEa, FEs3, 2Es3, 2E)3, 2E12}T.
For materials exhibiting monoclinic symmetry, such as laminae in composite materials

and crystalline solids like gypsum, borax, orthoclase, etc. [132], the stiffness matrix takes
the following form [131]

Cin Cip Ciz 0 0 Cig)
Cia Oy Cy 0 0 Cy
013 023 033 0 0 036

0 0 0 Cu Cs 0 (2.6)

0 0 0 (O Cp 0
Cig Co Cz6 0 0 Ces

The order of all material constants, denoted by p, is assumed to be the same [108]. The
strain energy density is given by )
U= §UTE (2.7)

2.3.3 Dimensional Reduction

Let us consider tractions ¢ = ¢ é; and t = t; &; on 9y, and OQqe respectively. Application

of the principle of virtual work yields

/ SUAV — / 7 vdag, — / £ §ddagae = 0 (2.8)
Q ath 8Qsicle

Eq. (2.8) describes a computationally intensive 3D elasticity problem. The major part
of the literature solves this problem by reducing the 3D problem into a simpler 2D plate
problem. Traditionally, this reduction involves ad hoc and a prior: assumptions, which
may not fully account for deformation energy considerations. The present work takes the
energy aspects of the problem into consideration to develop a reduced order plate model.

The dimensional reduction procedure, which relies on VAM, aligns with that adopted
by Harursampath et al. [126] to investigate non-linear behavior of long anisotropic tubes.
To elucidate this procedure, we express U in Eq. (2.8) as a functional of the first-order

derivatives of vy, v, and w3 with respect to x1, z9, and z3.

/w L R
QO b 37d$17d$2’d$37d1'1’d$27d$3’d$1’d$27d1'3

— / (T 5Udatb — / F 617daside =0
O, Oside
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Now, the order estimation scheme outlined in Section 2.3.1 is used to estimate the
orders of vy, v, and v3. Based on this order estimation, the most significant terms of U
are selected, while less significant terms are neglected. This selection process simplifies

Equation (2.9) into the following form:

/5U (xl,xg,xg,%,@,@) dV—/ cj-éﬁdatb—/ £ 6vdagge =0  (2.10)
Q d!L’g dl’g d$3 YRR 0side

Notably, in the above Eq. (2.10), U contains terms having derivatives of vy, v, and
vy with respect to x3 only. This makes the extremization done in the thickness direction
independent of the boundary condition at the sides of the plate, thereby making it in-
dependent of the in-plane deformation of the plate. This naturally decomposes the 3D
problem into two simpler subproblems: (a) a through-the-thickness 1D analysis and (b)
an in-plane 2D analysis. The through-the-thickness 1D analysis gives the reduced-order
model for the plates. This approach is repeatedly used to improve the reduced order
model. The whole procedure is divided into different order solutions, each improves the
solution obtained in the previous one. The details of each order solution are presented in

the subsequent sections.

2.3.4 Zeroth Order Solutions (ZOS)

In this order solutions, the displacement field is assumed to be v; = v), where v} (1, 22, 73)
are zeroth order perturbation variables. The order estimation scheme presented in Section
2.3.1 is employed to evaluate the order of v{. The estimated order of v?(zy,xs,x3) is
determined to be O(£2h). Based on this order estimation, the order of the different strain

components is evaluated as shown below, with the orders indicated using underbraces.

4 ovY 4
Eyn =0 (&) 2E23:8_903+O(§)

——
o(&?)
En=0() 255 = 20 10(€h
——
o(g?)
B 8vg B A
E33_8_:c3 2E1, =0 (&)
——
o(&?)
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It is noteworthy that the order of the perturbation variable v? determined in this
section corresponds to the maximum permissible value that ensures the strains remain
bounded by ¢ = £3. This order is unique, as altering the order of v{ would lead to a
change in the upper bound of the strains, which is not allowable. This ordering of strains

yields an ordered representation of U in terms of the small parameters &, as illustrated

below.
U= Usg +0O (57/~L)
O(&p)
o
(2.12)
1 a0\ o) O O\ o 2
- = bt e L 272 e’} 73
U51g 2 055 <(9a:3) + 045 8Q33 81’3 + 044 8.133 + 033 8x3

The lowest order term, Uy, in the above equation has the highest contribution to the
energy functional. Therefore, this section targets the energy of this order only, neglecting
the other higher order terms [137]. This reduces the virtual work Eq. (2.8) to the following

form

/ { / 6Usigdx3] dayes — / q- ovdag, — / t- dvdagge = 0 (2.13)
OQrer LS 3 0Q4p 0Qside

Where 0€2, is the reference plane of the plate. Due to historical precedence and ease
of analysis, the midplane of the undeformed plate is taken as the reference plane. An
interesting observation from Eq. (2.12) is that Ug, contains terms having derivatives of
v? with respect to x3 only. This allows to perform the minimization in two stages: (i)
a 1D through the thickness analysis along x3 only, and (ii) a 2D analysis in the x, zo

plane, as expressed below.

ST, =0 ST = 0
——

SN—— .
1D Analysis 2D Analysis

Har3 :/ Usigd.l’g (214)

3

I = / I, dter — / 7~ dag, / P idaga.
Ot Oy, Oside

This strategy naturally leads to a dimensional reduction of the problem.
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Through the Thickness 1D Analysis

Extrimization of II,, yields following Euler Lagrange governing equations

0?0 0?v
3 3
0% 0%
Z 1 20 2.15
0x? (2.15)

Css +Cys

Cis

and following associated boundary conditions

Byo

1 |x3:—h/2 =

Byo

vy ‘xg:h/Q o

B0 =0

2 |z3:—h/2 — Py ’Jigih/Q o

Bo =0

VU3 |w3:—h/2 - ng ‘a::;:h/Q -
oY oY

By = Cos— + Cys—=

0 5 s + Cus D

oY ovd

8ZE3 0233

o

8%3

(2.16)

By = Cusz— + Cus

ng = C’33

solving the Euler-Lagrange equations Eq. (2.15) with the boundary conditions Eq. (2.16)
results in following solution
V) = (21, 7o) (2.17)

This solution will be further refined for more accuracy in the upcoming sections. Note
that this zeroth-order solution expresses the 3D displacement components v; in terms of
u;, which are functions of x; and x5 only and therefore are termed as 2D variables. In other
words, u; represent the rigid body like deformation A°B° of a line segment AB lying along
the thickness direction é3, as shown in Fig. 2.3(b). Since this displacement is independent
of x3, all points lying on AB have the same displacement. However, for convenience, u;
are expressed as the average through the thickness displacement components of the plate

as shown below mathematically.

1 h/2
U; = —/ (4 deg (218)
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2.3.5 First Order Solution (FOS)

In this section, The displacement field obtained in ZOS is perturbed to further improve
it as follows!.
v; =) + v} =+ v} (2.19)

Introduction of v} in Eq. (2.19) results in three additional degrees of freedom to
the displacement field. To ensure the uniqueness of the solution, three constraints are
essential. Eq. (2.18) result in the following three constraints on the n't perturbation

variables v}

h/2
/ vi'drs =0 (2.20)
—h/2

It may be noted that the choice of the constraint is not unique. Several papers on the
VAM-based analysis of plates [113, 111, 112, 108] uses the similar constraints as given in
Eq. (2.20).

Following the procedure described in Section 2.3.1, we estimate the order of u; and v}
to be O(£31) and O(&3h), respectively. Notably, the order of the perturbation variables
v? and v} is the same, which seems to contradict the usual refinement procedure done
through perturbations. However, we started with a conservative order of v;, treating the
plate as a 3D body and considering the maximum possible variation in v; for all possible
deformation modes with strains bounded by €. As the refinement in the displacement field
goes on, the plate reveals its true deformation pattern, relaxing the bound on v;. This
relaxation necessitates further refinement in the displacement field in the same order,
justifying it.

Substituting v; from Eq. (2.19) into Eq. (2.1) gives the following strains, along with

their respective orders indicated in underbraces

Note that v = v (1, 22, 73), termed as n'h order perturbation variable, will consistently be used in
the upcoming work to improve the displacement field in the n'® order solution
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ouq 4 duz  Ovl 4
Ey = B, +0 (&%) 2B, = Dy + 5 0z +0 (%)
~~~ %/—/

o(g?) o(g?)
5’uz Ous  Ovl
Ey = YY) 2B3=—+—— 4
2= 5y, TOE) 3= gp T o, 7O (2.21)
—
o) o)
_ 8113 4 ~ Oup | Oug 4
Esq = s O (&%) 2F9 = s + e +0 (&%)
——
o(?) o(&?)

The revised strains given in Eq. (2.21) are used to recalculate U and Uy,. Similar to

the ZOS, the perturbation variables v} present in Ug, have derivatives with respect to z3

only allowing us to perform the 3D analysis in two stages (1D and 2D analyses).

Through the Thickness 1D Analysis

The functional II,, is recalculated to accommodate the modifications in Usg. Extremiza-

tion of II,, yields the following Euler Lagrange equations

and following associated boundary conditions

B’”% {Igz—h/2 -
BU% {:cg:—h/Q -
BU% |1‘3:—h/2
ou
B'U} 0458 ?
X2
ou
By =Cuz—
4op)
0
Bv?l) - C(36 au;

0458; | 044%%2; =0 (2.22)
e oy
v ‘xg:h/2 =0
g ‘x;>,:h/2 =0
=B, ‘x;;:h/Z =0
0552 ) +C5sgv; 045222 (2.23)
+Cis g“i’ Cis g“; Cis g”z
+ Cas guz Cis gui Cse gzj + 0332—2?2
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Solving the Euler Lagrange equations in Eq. (2.22) with the boundary conditions in Eq.
(2.23) and the constraints given in Eq. (2.20) yields

?}% = —1'3%
81’1
’Ul —Ig%
? O, (2.24)
U3 = $3f1
ouy Ousy ouq Ous
fi= 033 0368 2—i‘czsa 2+Ol3a 4—0368901

2.3.6 Second Order Solution (SOS)

To improve the results of the FOS, the displacement field at this stage is further perturbed

as follows.

0 1 2
Ui:Ui +Ui +Ui

where

ouy (2.25)
vl—ul—a:ga—l—l—vl, 02:u2—$37+v2
v3 = uz + T3f1 + v
Following the procedure described in Section 2.3.1, the orders of u,, uz and v) are
estimated to be O(&31), O (€21) and O(£3h), respectively. Substituting v; from Eq. (2.25)
into Eq. (2.1) gives the following strains, along with their respective orders indicated

using underbraces

o 8u1 82’&3 4 87)2
E11 = a_{,(,’l — .%'36—1:% +O (6 ) 2E23 8:[‘3 ‘|—O (5 )
— ~~
0(£3) O(&3)
B 8uz 82’&3 4 8?]1
Ezg—a—@—l'gﬁ—x%—i—O(f) 2E13—87+O(§)
— \/
OE?) o) (2.26)
o3
E33—fl+a +O(f)
—
O(&?)
Ou;  Oug D*us 4
2B12 = ?zz 0r, 23 01102 +0 (5 )
)
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The revised strains given in Eq. (2.26) are used to recalculate U and Ug,. Similar to the
ZOS and FOS, the perturbation variables v? present in Uy, have derivatives with respect

to x3 only allowing us to perform the 3D analysis in two stages (1D and 2D analyses).

Through the Thickness 1D Analysis

The functional II,, is recalculated to accommodate the modifications in Usg. Extremiza-

tion of II,, yields the following Euler Lagrange equations

0?v? 0%v3
Css—=——a + Cis—==2 =0
55 07 + Cus 072
0?3 0?02
C +Cu——==0
4575 o a 2 4475 o 8$§
0?us 0?us 0?us 0?02
C 2C, C — Ca3——2 =0
2383: ° 4 365 1(9:132+ 1382 3383:?,)
and the following associated boundary conditions
Bv% ‘$3:—h/2 = BU% |I3:h/2 = 0
ng ‘x;;:—h/Z = BU% |x3:h/2 =0
ng‘xgz—h/Z - BU§|r3=h/2 =0
ov? ovs
B, =C L1 Cp=2
2 555 s + Cus 02
ov? ov3
B, =C Ly Oy—2
2 455 s + Cyy D2
0?3 0%us 0%us
B, C. +2C +C + C.
( 2382 368%182 1381> 335

(2.27)

(2.28)

o3
81’3

Solving the Euler-Lagrange equations in Eq. (2.27) with the boundary conditions in

Eq. (2.28) and the constraints given in Eq. (2.20) yields

v? =0
vs =0
1
vs = _E<h2 —1223) ¢
1 (92 82U3 82U3
C + 2C C
g1 = 2 | P02 3 10y + C13 072

(2.29)

The zeroth-order solution to the second-order solution gives a CLPT like plate theory,
which was the objective of Part A of this work. A summary of the approach followed and

the key findings of the work done in Part A are presented in the following sections.
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2.3.7 Summary of Part A

Tv‘
Order Estimation

Rules
* Bound on supnorm and '7’
® Order of the derivatives

0@?) ~O(€%h) |e—]

Solution (ZOS)

I
I
I
I
I
B
. Zeroth Order
I
I
I
I
I
|

v; = v + v}

Order Re-estimation

Closed Form Solution
o~ [ } KR

O(u;) ~ O(€%1)

) ~O(EH) Rules

* Bound on supnorm and /7‘
® Order of the derivatives

/ First Order
‘ Solutmn Foy

Part A

estimation l

Order Re-

Closed Form Solution | :

O(uq) ~ O(E3)
()(1 3) ~ O(&2)|+—
(v?) ~ O(€%h)

Rules
¢ Bound on supnorm and %
* Order of the derivatives

¢ -

| ‘ U ~ O(e%h) 7‘ - 5

i oUS :

: v}

! sl (U1~ OEw) > (v} L2?)
0

‘ Uo ~ O(€%)

O(ua) ~ O(£%)
O(us) ~ O(€])
O(v?) ~ O(E%h)

Same as
in SOS

Order Re-estimation

[ /Second Order
i \\olutmn (SOS) Closed Form Solution |

2[O(ua) ~ O(ET
O(us) ~ O(€%)

Rules

* Bound on supnorm and ',’

Part B

Figure 2.2: Systematic methodology adopted in

deriving the reduced order model

v
: S|0@w?) ~ O(*h) + Order of the derivatives
‘ : :
i (o~ ;(ﬁsﬂ) | Somlaim(])rder>( koot orm Souion |
B U ~ O(€%) <‘1 D)
1| U o~ ot > (l,‘ll’r?)
3 ~ o i

1’(1t|11|n|l<m‘ :
v =0 + v} + v} + 0}
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Figure 2.2 presents a graphical rep-
resentation of the adopted procedure.
The procedure begins by calculating
strains, considering the plate to be a
3D body.

tion scheme based on the upper bound

It uses an order estima-
on the supnorm and 2 given in Eq.
(2.4) and a rule to Calculate the order
of derivatives of displacement compo-
nents given in Eq. (2.2).

The zeroth order solution begins
with order estimation of different
quantities of interest, following the or-
dering strategy described in Section
2.3.1. This results in an ordered rep-
resentation of the strain energy den-
sity U. The most significant portion
of the strain energy density is isolated
and termed Us;. Extremization of Uy
yields a closed-form solution for the
zeroth-order perturbation variables v}
In the first and second-order solutions,
the entire procedure is repeated,
cluding order re-estimation of different
quantities of interest following the or-
dering scheme, selection of the most
significant portion of the strain energy
density, and its extremization to ob-
tain a closed-form solution for the per-
turbation variables. A graphical rep-
resentation of the above procedure has

been presented in Fig. 2.2.
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2.3.8 Displcement Field Obtained in Part A

The displacement field obtained in Part A of this work is given below

V1 = U x Ous
1= U 38:01
o(&3)
0
Vo = Uy — l’gﬂ
———
o(&3)
1
= — —(h?* — 1242
U3 us +x3fi 12( x:s)glj
0(&21) O@gh)

Let the inner product of the p™ and ¢"™ order solution of v; i.e. v! and v{ be defined

h/2
(o7, vf) :/vafdv :/ (/ vafdazg,) dayes (2.31)
Q o \J-n/2

For any values of p and ¢ between 0 and 2, we have (vF,vf) = 0, which implies

17 71

as follows

that v? and v! are orthogonal. The orthogonality between two solutions of different
order ensures their independence and justifies splitting the displacement components into
different orders of solutions at the same order of strain energy.

Notably, The displacement components v; and vy given in Eq. (2.30) are consistent
with CLPT [100, 119, 130], validating Kirchhoff’s assumption that a line segment per-
pendicular to the reference plane in the undeformed configuration remains straight and
perpendicular to the deformed reference plane after deformation. However, displacement
component v given in Eq. (2.30) contradicts Kirchhoff’s assumption that there is no
change in the length of a transverse normal after deformation (i.e., the transverse nor-
mals are inextensible). Interestingly, as will be demonstrated in the next section, the
assumption of the plane stress condition in CLPT makes it energetically equivalent to the

asymptotically correct plate theory developed in Part A of this work.

2.3.9 Strains Obtained in Part A

Eq. (2.1) and (2.30) give the following strains corrected up to order &?
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o aul . @2’&3 o 8u2 . 82U3
U o, 3 Oz? 27 Oz 3 O3
—_——— —_———
o(e?) o(e?)
33 = f1 + 2x301 23 (2.32)
o(g?)
ou;  Ousy 0%us
2E15 =0 2By = = + —— — 2
1 12 ?xg al‘l 3 6x18x2
(&)

It is interesting to note that substituting strains from Eq. (2.32) in Eq. (2.5) yields.

o33 = Ci3 B + Coz Fog + Csz Fzg +2 Csg Frig =0 (2.33)

Eq. (2.33) results in plane stress condition, which is valid up to the present level of
accuracy in stresses. With o33 = 0, the transverse normal strain Fs3 does not appear in
the virtual work Eq. (2.8), although it is not identically zero. As a result, the transverse
normal strain Fj33 is neglected. By omitting the transverse strain component, Fjs3, in Eq.
(2.32), we obtain

( Quy _ . 0%ug )
E11 o1 x3 830%
Quy _ . 0Pug
E22 Oxo 3 023
2E13 O
2E12 Om 8u2 _ 8211,3
{9z T 807 — 273 90,0u; /

Interestingly, despite the discrepancy in the displacement field shown in Section 3.8,
the asymptotically correct strains F in Eq. (2.34) resemble the strains given by CLPT
[100]. This indicates that CLPT plate theory is energetically equivalent to the asymp-
totically correct plate theory derived considering strain energy up to order (£%u) and
neglecting its higher order part.

The work done in Part A is further refined in Part B, considering the contribution of

the higher-order Energy.

2.4 Part B: Refinement of Part A

Part B refines the plate theory obtained in Part A, while maintaining the consistency of

the procedure. In addition to the work done in Part A, Part B includes the contribution
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of higher-order energy in the analysis. Part B is intentionally separated from Part A
because the development done in Part B follows the usual procedure found in the litera-
ture on VAM-based development of plate theories, where the development begins with a
presupposition-based kinematics similar to that developed in Part A, which is then refined
by considering a warping vector. The refinement of Part A is presented in the following

section.
2.4.1 Third Order Solution (TOS)
Perturbing the displacement field obtained in SOS results in as follows.

0 1 2 3
Ui:Ui +’U’i +U’i _I_Ui?

where
Ous Ous 2.35
vlzul—xga—xl—i-vi)’, ’U2:u2—$38—x2+1}3 ( )
1
V3 = ug + x3f1 — E(hQ - 121":%)91 + Ug

It is essential to mention that, following the procedure outlined in section 2.3.1, the
orders of u,, ug, and v} are estimated to be O(&31), O(&%), and O(£3h), respectively.
The estimated orders of the variables are the same as in SOS. Therefore, if we perform
extremization based on these variable orders, it will result in v} = 0, leading to no
improvement in the displacement field. To improve the displacement field further, we
must consider the contribution of higher-order strain energy at this stage. To account for
the effect of strain energy of the order of (£%u), we set the order of v to O (£*h) while
keeping the orders of the other variables unchanged. Substituting v; from Eq. (2.35) into
Eq. (2.1) yields
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_ 0w O ! (%)2+ DL Lo ()

= — — Lo—
H axl 3 aZL’% 8%1 81’1
~ - ~ / N~~~
0(&%) o(sh) 0(&?)

_ Ouy Pus 1 (duz\® 9%03 6
E22_8_x2_x38—x%+§ (a_@ + Dz +O(§)

N——
0(€3) 0(&%) 0(&%)

1 (0us\> 1 [0us\® v 6
o 9 e e ]
33 ﬁ+mm+2Q%) +2QMJ + 50, O (€)
0(E) -

Oo(&*)
0 1 0 ovs
2E23 = ZE3i — —(h2 — 1217%) 91 Uz

o, 12 x> | Ory

-

o(&")

8u3 (9u2 8211,3
i) ) _ = i/
+ D2y (fl + 21301 s + a3 02

0(€5) (2.36)
3u1 3u3 8u3 82U3 avg 6
Oxo 011 s 0x1 0x1019 029 O (5 )

O(&%)

3
2553::xgéfl-ik(hQ-lzxg)agl4—8U1

or, 12 Or, = Ors

(et
ou ou d*u
+_3(f1+2x391— -+ 3)
8.%‘1

—_— w [
8x1 3 81’%
o)
Ous Ous Ous O0%us o3

_ O (£
?xl 81’2 * xga.l'g 81’181’2 * 8:614—’_ (5 )

0(°)

ou;  Ous 0%us Ous Ous ov?  ovs
2E15 = -2
12 61’2 * 85(71 x38$18$24+ 8[E1 61’2 +?I2 * 81’1}

) o) )

+0 (£°)

.

The revised strains given in Eq. (2.36) are used to recalculate U which takes the following
form

Usig
U=Uy+ U +Us+ Uy +0 (%) (2.37)
—_———
0(Eox) O(E%w)
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Where Uy, Uy, Us, and Us are the contributions of the strain energy density U in the
zeroth, first, second, and third order solutions, respectively. To include the effect of higher
order energy, the portion of U corrected up to O (£3u) is taken as Ugg. The functional
IL,, is recalculated to incorporate the change in Ugg.

It is important to note that in the third order solution, unlike the zeroth, first, and
second order solutions, the derivatives of the perturbation variables v} with respect to
the z, coordinates, i.e., (%), appear in the analysis. To eliminate these derivatives,
integration by parts is performed, which results in boundary conditions defined at ()gqe.
However, these boundary conditions are ignored in the present analysis, as the goal is to
find the displacement field for the interior domain of the plate without considering edge
effects.

Extremization of II,, yields the following Euler Lagrange equations

0} 0?v3
2055 f2 + 60557392 + 2045 f3 + 6Cu57393 = C55F + Cis——
x5 Oxs
%3 0%
2045 fo + 6C 152392 4 2Cua f3 + 6Cuax395 = 0458721 + 0448722 (2.38)
3 3
0%v3
C 2 =0
33 5 022

Where fs, f3, g2 and g3 are functions of x; and x5. The expressions for these functions
in terms of derivatives of u; w.r.t. x; and the material constants are given in Appendix

C. The associated boundary conditions are given below

By ‘x;;:—h/Z = B3 |x3=h/2 =0
v3 ‘xngh/2 - ng |:1:3:h/2 =0
v3 ‘xngh/2 - ng |:1:3:h/2 =0
of h? dg of
B 045:L’3ax1 + 045 ( 12 + $§) O ; + 055 38:131
R: L\ O ov} ovs
+ Cs5 <_E + 3) (9_$1 + 055(9.1'3 045a s (2.39)
0 h? 0 0
Bv3 = 0442338—2 + 044 ( E +x ) ag; + 04511338f1
h? oq ov? v
Cus | —— 2 C Lic 2
+ 45( 12" 3) 0z, g, T g,
o3
B = Cy—>
vy 33 8x3
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solving the Euler Lagrange equations Eq. (2.38) with the boundary conditions Eq. (2.39)

and the constraints given in Eq. (2.20) yields

_ 194
f2 N 20$1

_10f
f3 n _ang

3 1
U? = <_Zh2$3 + xg) g2 + (ﬂhQ —
‘ 3 1 0 1 0
vy = (—thzg + 333) g3 + ( h* — x%) Oh _ —h2:173ﬂ

8U3 8u3

3 _ 1 “H3 ? 8u3
Vg = 2033$3 (Cas + Cs3) Oy 20368x1 Oy + (Cy3 + Cs3) 8x1

(2.40)

A graphical representation of the adopted procedure for the development done in Part

B is presented in Fig. 2.2.

2.4.2 A Discussion on the Displacement Field

The final displacement field obtained in Part A and B is given below.

1 1
U1 = Uy —x3%+ <—§h2x3 +m§) g2 + (24h2 ) % — —h2 agl

. 83:11 4 0xy S0r,
o) o)
Ous 3 1 1 ofi 1 dgy
. ] __hQ h2 = 2 ~JLr _h2 I
pm I383:2+< 4 x3+$3) g5+ (24 273 ) 91, 6 0wy
o) O(Eth)
1
V3 = U:’; +\$3f1 — E<h2 - 12553)91
o(&21) o
1 E)u3 8U3 8U3 6163 2
(Co3+ C 20! + (Cy3 + C —
2033 |: 23 33 (8332) 368 a 2 ( 13 33) 8x1
O(Eh) O(Eh)

(2.41)

The evolution of this displacement field is influenced by each perturbation we go

through. A graphical representation of the improvements made to the displacement field

as we progress through each perturbation is depicted in Fig (2.3)

Fig. 2.3(a) displays a line segment C'D in the reference plane, oriented along é,

while line segment AB is oriented along é3. The deformed configuration of line segment
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A
C > I D
B

1

AB'2AB T
Cl
Bl
(c)
ou 31,2 17209
~on — 192 — h gy,
A2[\~ dus 3/‘
_Oug A
AB2 £ AL X 822 .
A2B2 £ AB D*
C? B2 oL

BS
(d) (e)
Figure 2.3: Deformation of lines AB and C'D lying along direction é3 and é; respectively.
(a) Undeformed configuration (b) Configuration after zeroth perturbation (c¢) Configura-

tion after first perturbation (d) Configuration after second perturbation (e) Configuration
after third perturbation

AB in ZOS is depicted in Fig. 2.3(b) by line segment A°B?. In the FOS and SOS,
the displacement field undergoes refinements, incorporating a rotation of line AB and a
change in its length, as shown in Fig. 2.3(c) and 2.3(d) by line segments A' B! and A?B2.
In the third-order solutions, the line segment AB deforms to the curve line A3B? as shown
in Fig. 2.3(e).

2.4.3 A Discussion on the Strains, Stresses and Stiffness Matrix

Eq. (2.1) and (2.41) give the strains corrected up to order (¢*). These strains are given

below:
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(&)
1 g1
2F5; = ——(h? — 422 A
23 4( r3) (393 - (%2)
(&)
2By = —(h? — 4a2) (39, + 20
81‘1
(&)
(‘9u1 81@ 82U3 8u3 8U3
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12 ?IQ + E)xl 3 8x18x%+ 85(71 8ZE2
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It is interesting to note that the plane stress condition, which was valid in Part A, is
still valid. The plane stress condition can easily be verified by substituting strains from
Eq. (2.42) in Eq. (2.5). This subtitution results in o33 = 0. It is worth noting that the
plane stress condition is a natural outcome of the adopted procedure without introducing
it as an ad hoc or a priori assumption as done in many plate theories found in literature
[119, 122, 68].

The plane stress condition, with its historical precedent, is often a popular choice
for plate theories due to its simplicity, computational efficiency, and accuracy for many
engineering applications. Following the same argument as in section 3.9, the transverse
normal strain Fj33 is neglected. By omitting the transverse strain component, Fjs3, in Eq.
(2.42), we obtain
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2
2
Qs gy P 41 ()
P= {0 - ad) (30,4 28 243
—(h* —4a3) (392 + 5=
[+ G2 — 2l + (52 (52) )

Also, the stiffness matrix shown in Eq. (2.6) is modified according to the plane stress

condition [119] as

Dy Dy 0 0 Dig

Dy Dy 0 0 Do
D = 0 0 D44 D45 0 (244)

0 0 D45 D55 0

Dig Dy 0 0 Deg
It is interesting to note that the strains accurate up to order (£*) differ from those
given by FSDT. This indicates that FSDT is not asymptotically correct, due to which
it requires a shear correction factor and does not accurately represent the true behavior
of transverse shear strains. Under plane stress conditions, stresses ¢ and strain energy

density U take the following form

T
o= {011, 022, T23, T13, 712} = DE,

1 1 2.45

2.5 Part C: Elimination of Higher Order Derivatives

It is important to note that though expressions (393 + g—g;), and (392 + g—ﬁ) in Eq.
(2.43) are asymptotically accurate but they depend on higher order derivatives of us.
This results in complexity in the 2D solution and thus limits its practical implementa-
tion. In contrast, FSDT, though asymptotically inaccurate, is very practical due to its
simplicity and computational efficiency, thereby often preferred for the analysis of thin
and moderately thick plates. Our goal is to derive a plate theory that is computationally
efficient and simple, like FSDT, but more accurate and asymptotically correct.

FSDT plate theory accounts for the transverse shear deformation effects in the plate.
In FSDT, it is assumed that a straight line normal to the undeformed reference plane

0t Temains straight but not perpendicular to the deformed reference plane 0€2,o and
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has rotations ¢, and ¢, about the z; and x5 axes. Thus, FSDT plate theory incorporates
two additional degrees of freedom ¢; and ¢5. In the present work, a novel isoenergetic
approach, which is illustrated in Fig. 2.4, has been developed. In this approach, the shear
deformation energies obtained from the VAM-based asymptotically correct plate model
are equated to that obtained from the FSDT plate model to calculate shear correction
factors. Further, using these shear correction factors, the transverse shear force resultants

@1 and )9 are calculated in terms of ¢; and ¢5. Now )1 and ()2 are used to eliminate

o991
Oxy

correct plate model. As a result of this, a modified asymptotically correct plate model is

the inconvenient terms <3g3 + g—f;) and <3g2 + ) from the VAM based asymptotically

obtained, which is as simple and computationally efficient as the FSDT theory. In what

follows, we present the above-mentioned procedure in detail.

Reference plane

Dimension Reduction

l 4,

Asymptotlcall}{ Correct Axiomatic
through the thickness through the thickness
Deformation Pattern (TOUSH DI TIICRIESS
¢ < Deformation Pattern
Isoenergetic
Deformed Reference plane Deformed Reference plane
lOutcome l Outcome
Modified Asymptotically Transverse Shear Force
Correct ESL Plate Model Resultants (Q1, Q2)

Figure 2.4: The isoenergetic approach
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2.5.1 Simplified Model Based on Isoenergetics
The transverse shear force resultants ()1 and (), are given by
h/2 h/2
Q1 :/ Ti3 dr3, Q2= / To3 d3
—h/2 —h/2
From Egs. (2.45) and (2.46), we have

h/2
Q1 = / (2 Dys Eoz +2 Ds5 Ey3) dus
—h/2

h/2
Q2 = / (2 Dyy E93+2 Dys Er3) dus
—h/2

Eq. (2.47) gives,
6 (D45Q1 — Ds5Q2)

a91)
393 + o
( 93 8I2 (D25 — D44D55) h3
6 (—DyuQ1 + DysQo)

991
3 -
( g2+ a$1) (Di5 — D44D55) h3
Substituting Eq. (2.48) in Eq. (2.43), we obtain

( ouy 92%us 1 [ Ous 2 )
oz ~ P37 T2 <<9_xl)
Quy _ . 9Pus | 1 (Ous
Ox2 3 81‘3 + 2 \ Ox2
D —D
E— 3 (hz 4 x%) ( ;15@1 55Q2)3
2 (D2,—DaaDss )b
3 2 2\ (=D44Q1+D45Q2)

\ Oz2 oy

ou
2B, = ¢1 + 8_3751))

h/2
Q1= Kl/ {D45 (¢2 + %> + Dss <¢1 + P

—h/2 0wy

h/2
Q2 = Kz/ [D44 (¢2 + %) + Dys <¢1 + P

h/2 3x2
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Quy | Quy _ _Duz Qus | ( Qus
+ 2x38m18x2 + (81’1) (

(D32,—DaaDs5 ) h3

Oxa

8U3

, 2E9 =g+ ——

83;2

8u3

))

In FSDT, the transverse shear strains Efg and Ef}) are given as

and the transverse shear force resultants, (J; and () are given as

8u3

)

)

where K7 and K, are shear correction factors [83]. Eq. (2.50) and (2.51) gives

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)
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2E¢ _ ¢ + au3 o D44K2Q1 - D45K1Q2

=0 2 = _
13 afL’l DZ5hK1K2 — D44D55hK1K2 (2 52)
2ES, = ¢ + Ot Dys K2Q1 — D55 K1Q2 '

01y D2 Ky — DyyDssh K1 K,

Now K; and K, are calculated by equating the transverse shear deformation energies
(123, 117, 129, 145, 146] of the assumption based FSDT plate model and the present
(ACI-ESL) plate model, as shown below :

h/2 h/2
Efg T13 ATz = Eq3 (D45 Eo3 + Dss E13) dxs
—h/2 —h/2
h/2 h/2 (2.53)
/ Egy T3 das = / FEs3 (Dys Eog3 + Dys Ens) dxs
—h/2 —h/2

Solving Eq. (2.53) for K and K, we have
K=Ky =2 (2.54)

A key observation here is that the above-obtained values of the shear correction factors
are a natural outcome of the present approach (without taking any assumptions). Fur-
thermore, these values of shear correction factors are exactly the same as obtained for
homogeneous materials in references [122, 123, 121]. Substituting Eq. (2.54) into Eq.
(2.51) followed by Eq. (2.51) into Eq. (2.49), the following expressions for the transverse

shear strains are established

28, — 20— 4r3) <¢a + 8u3> (2.55)

4h? 0z,
Since the order of the transverse shear strains is O (£?), therefore we have

d 0
nigp (004 52 ) ~ 0 (€) (2.56)

Egs. (2.56) results in as follows

Pus_ 0% o (e3) (2.57)

—I3——— =z
38xa8935 Sﬁxa
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Eq. (2.49), (2.55) and (2.57) results is the following strains

/

2
o 55+ ()
2
B s 52+ 4 ()
E= M) (g + P (2.58)
5(h1;;1x§) b1 + g_Zf
G+ s (B4 52) + (3) (),

Eq.
model of the plate. Although it is as simple as the FSDT, it is asymptotically accurate
up to O(&*Y), which gives better results than the FSDT. Additionally, it does not require

any shear correction factor.

(2.58) provides a simplified and computationally efficient reduced dimensional

2.6 Results and Discussion

This chapter introduces a new ACI-ESL plate theory, which is asymptotically correct up
to (O(£4)). To evaluate its accuracy, numerical examples dealing with different scenarios
are presented. Six distinct examples (Examples 1-6) are detailed. All examples utilize the
material properties outlined in Table 2.1. In this table, subscripts L and 71" denote the
longitudinal (x) and transverse (y) directions, as illustrated in Figure 2.5. Furthermore,
Figure 2.6 depicts the boundary conditions employed in the numerical examples and Table
2.2 presents the geometry, material properties, and boundary conditions used in different
examples. In all examples, the plate edges are aligned with the z; and z; axes. In
Example-1, Example-2 and Example-4, the plate is subjected to a uniform pressure P on
the top face (23 = —%) In Example-3, a square plate [116] with length a and thickness

h, subjected to a sinusoidally varying pressure ¢ on its top face, is examined.

Table 2.1: Material properties used in different numerical examples

Material-1 [116] Material-2 [153] Material-3 [154] Material-4 [144]

E; (GPa) 172.369 40 227.53 206.843
Er (GPa) 6.895 1 144.79 206.843
Grr (GPa) 3.337 0.6 55.16 78.588
Grr (GPa) 1.379 0.5 27.58 78.587
VLT 0.25 0.25 0.25 0.316
vrr 0.25 0.25 0.25 0.316
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Figure 2.5: (a) Geometry, loading, and material orientation details for all numerical

examples. (b) Specific material orientation used in Example-1 (§ = 45°). (c) Material
orientation used in the remaining examples (6 = 0°).
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Figure 2.6: Boundary conditions used in different numerical examples
. ™ 1 . T X9
qd = qo Sin (—) sin ( > (2'59)
a a

In Example-1, as shown in Fig. 2.5(b), the longitudinal direction x of the material
orientation makes an angle of 45° with the x; axis, resulting in the monoclinic symmetry
about the mid-plane of the plate. In All other examples, as shown in Fig. 2.5(c), the

longitudinal direction x of the material orientation aligns with the x; axis, leading to the
orthotropic behavior of the material.
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Table 2.2: Geometry, Material Properties and boundary conditions for the numerical
examples

Numerical Geometry Material ~ Boundary
Example (Fig. 2.5) Properties Conditions
a (m) b (m) h (m) b (Table 2.1)  (Fig. 2.6)
Example-1 1 1 0.01 100 Material-1 SSSS
Example-2 0.5472 0.1824  0.001824 100 Material-2 cfef
Example-3 a a h Material-1 SSSS
Example-4 0.2 0.2 0.002667 75 Material-3 ccee
2.06
2.04

Central Deflection (mm)
o
[e)}
1

1.92

b TorTTTTT AL | ML | AL | AL |
1 10 100 1000 10000 100000
Number of elements

Figure 2.7: Convergence plot for the out of plane deflection us for Example-1 under
uniform Pressure of P = 25 kN/m? applied at the top face.

For Example-1 and Example-2, the transverse displacement of the plate midpoint for
different values of P is calculated [61, 138] utilizing the proposed plate model (ACI-ESL),
FSDT, and 3D FEA approaches. Fig. 2.8 and 2.9 show that the transverse displacement
computed by the proposed plate model for Example-1 and Example-2, respectively, is
in excellent agreement with the 3D FEA. In this work, the 3D finite element analysis
was performed using the Abaqus software. The chosen element type for the analysis was

C3D20R, which corresponds to a 20-node quadratic brick element with reduced integra-
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Figure 2.8: Load-deflection curves for the central point of the plate considered in Example-
1 under uniform Pressure P applied at its top face

tion. A thorough convergence study was carried out to ensure the accuracy and reliability
of the obtained results. This study involved systematically refining the mesh and moni-
toring the convergence behavior of relevant quantities such as displacements, strains, and
stresses. For example, the convergence analysis for Example-1 done at P = 25kN/m? is
shown in Fig. 2.7. Nevertheless, for brevity, the convergence analysis is omitted for other
examples. The analytical solutions were obtained using numerical methods or state-of-
the-space methods (like Navier or Levy solution) [119].

For Example-1, the variation of the transverse deflection along the centerline parallel
to 1 axis predicted by the proposed plate model (ACI-ESL), FSDT, and 3D FEA for a
pressure of P = 25 kN/m? is compared in Fig. 2.10.

Fig. 2.11 displays the variation of the displacement component ug with respect to
and x, for Example-1 under a uniform pressure of P = 13 kN/m?. Similar results are
presented for Example-2 for P = 400 N/m? in Figure 2.13. Fig. 2.11(a) and 2.13(a) were
generated using the 3D FEA approach, while Fig. 2.11(b) and 2.13(b) were produced
using the ACI-ESL plate theory. Fig. 2.12 and 2.14 illustrates the variation of the
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Figure 2.9: Load-deflection curves for the central point of the plate considered in Example-
2 under uniform Pressure P applied at its top face
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Figure 2.10: Out of plane deflection of the plate considered in Example-1 along centerline
parallel to z; axis under uniform Pressure of P = 25kN/m? applied at its top face
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1.00

0.75
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0.25

Figure 2.11: Out-of-plane deflection of the plate considered in Example-1 subjected to a
uniform pressure of P = 13 kN/m? applied on its top face. Deflections are obtained using:
(a) 3D Finite Element Analysis (FEA) and (b) present ACI-ESL plate theory.

7 0.0

1.0 0

Figure 2.12: Percentage error in the out of plane deflection us for Example-1 under uniform
Pressure of P = 13 kN/m? applied at the top face.

percentage error in the value of ug with respect to x; and x5, for Example-1 and Example-

2, respectively. The percentage error (PE) for Figure 2.12 and 2.14 is defined in Eq. (2.60).

U3 FEA — U3 ACI-ESL

PE = 100 (2.60)

max
U3 FEA
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1.0

0.5

Figure 2.13: Out-of-plane deflection of the plate considered in Example-2 subjected to
a uniform pressure of P = 400 kN/m? applied on its top face. Deflections are obtained
using: (a) 3D Finite Element Analysis (FEA) and (b) present ACI-ESL plate theory.

0

Figure 2.14: Percentage error in the out of plane deflection us for Example-2 under uniform
Pressure of P = 400 N/m? applied at the top face.

Where u3 ppa and us acr-gst, are values of ug obtained using the 3D FEA and ACI-ESL
plate model approaches. u3'ig, is the maximum value of u3 pga. Figure 2.12 demonstrates
that the results obtained by the 3D FEA and the present ACI-ESL model approach are
in very good agreement.

To compare the results, the following non-dimensionalized quantities [122] are consid-
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ered In Example-3

w =

a b 3 2
U3 (5,5,0) h°> Ey _ a b h\ h (a ) h
100 = e — = - 0.0) —
[ 0 ot » 011 =011 2'2°2 ) ¢ a2 023 = 023 2°) W a

_ ab h\ n2 _ 0.2 0) P
022 = 022 2°2°6 ) ¢ a2 013 = 013 X % a
(2.61)

Fig. 2.15 illustrates the variation of the nondimensionalized transverse shear stresses along
the thickness direction for the plate in Exaple-3. The proposed plate theory (ACI-ESL)
provides a significantly better distribution of transverse shear stresses compared to FSDT
and CLPT. The results are in very good agreement with Reddy’s Third Order Shear
Deformation Plate Theory (R-TSDT) [122]. The R-TSDT, being a higher-order theory,
requires more computational cost than the present ACI-ESL plate model. To quantify the

computational efficiency, the time taken by a processor to solve the differential equations
of Example-3 obtained using the FSDT, Present ACI-ESL and R-TSDT theory were
examined. All the parameters, such as system configuration and solution methodology
(Navier solution approach), were kept the same. The results showed that the FSDT,
ACI-ESL, and R-TSDT plate theories required 0.2469 seconds, 0.2595 seconds, and 0.4938
seconds, respectively. These calculations were performed using a single core of the Intel
Xeon Gold 6248 CPU processor with a base speed of 2.50 GHz. The installed RAM in
the system was 512GB with a speed of 2933 MHz. In contrast, the 3D Finite Element
Analysis (FEA) approach using C3D20R elements in Abaqus required significantly more
resources compared to the reduced-order plate theories. Solving the same problem with
this method utilized 40 cores of the same processor and consumed 1 hour, 2 minutes, and
55 seconds.

For Example-3, Table 2.3 presents a comparison between the nondimensionalized
stresses and transverse deflection as defined in Eq. (4.63) obtained using the proposed
plate model (ACI-ESL) and that obtained using the CLPT, FSDT and 3D FEA ap-
proaches. The observations from the table indicate that as the # ratio increases, the
results converge towards the 3D FEA results. This trend is a consequence of the fact that
the ordering of the strains has been carried out considering the smallness of the ratio %

Fig. 2.16 illustrates transverse displacement w3 along centerline parallel to x; axis and
the stresses (011, 092, 093, 013 and o12) along the thickness in Example-4 for P = 50 N.

The results are in good agreement with those obtained using 3D FEA.
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Figure 2.15: Through-thickness variation of the nondimensionalized transverse shear

stress components in a thin orthotropic square plate (§ = 50) considered in Example-

3 based on 3D FEA, Present Work (ACI-SEL), FSDT, CLPT and Reddy’s TSDT (R-
TSDT).

Example-5 and Example-6 deal with circular and annular plates. Both the plates are

made of Material-4 (see Table 2.1). The outer radius R of each plate is 1 m and the inner
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Table 2.3: Nondimensionalized deflections and stresses in the plate considered in Example-
3 under sinusoidal transverse loads[122]

. FSDT FSDT
b | Quant. |3DFEA | ACI-ESL | K;=2 Ki1=1 CLPT
Ky=2 Ky=1

w 0.6447 0.6383 0.6383 0.6042 0.4312

10 |on 0.5727 0.5248 0.5248 0.5270 0.5387
o2 0.0124 0.0113 0.0113 0.0109 0.0089
o2 0.0552 0.0459 0.0368 0.0298 0
o3 0.4444 0.4315 0.3452 0.2885 0
w 0.4868 0.4836 0.4836 0.4749 0.4312

20 |ou 0.5492 0.5350 0.5350 0.5356 0.5387
o2 0.0097 0.0095 0.0095 0.0094 0.0089
o2 0.0532 0.0399 0.0319 0.0263 0
o3 0.4574 0.4376 0.3501 0.2920 0
w 0.4411 0.4396 0.4396 0.4382 0.4312

50 | on 0.5411 0.5381 0.5381 0.5382 0.5387
o2 0.0090 0.0090 0.0090 0.0090 0.0089
o3 0.0528 0.0380 0.0304 0.0253 0
o3 0.4528 0.4394 0.3516 0.2930 0
w 0.4340 0.4333 0.4333 0.4330 0.4312

100 |7y 0.5396 0.5385 0.5385 0.5386 0.5387
o2 0.0071 0.0089 0.0089 0.0089 0.0089
o2 0.0524 0.0377 0.0302 0.0252 0
o3 0.4516 0.4397 0.3518 0.2932 0

radius r for the annular plate is 0.25 m as shown in Fig. 2.17. The thickness of both of
the plates is 0.2 m (resulting in % = 10). Both plates are rigidly clamped along their
inner and outer boundaries. A uniformly distributed force P of 300 MPa is applied at the
top surface of these plates. Figure 2.18 depicts the out-of-plane deflection uz along the
centerline parallel to the x; axis for both the circular and annular plates. These results,

along with others presented in this work, demonstrate the accuracy of the present work.

2.7 Conclusion

In this chapter, a novel VAM-based geometrically nonlinear plate model ACI-ESL has
been developed by applying the first principles and the isoenergetic approach. Following
are key highlights of the present work
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Figure 2.16: Comparison of out of plane deflection ug along the centerline parallel to

and stress components at point B (shown in Fig. 2.5(a)) for an orthotropic square plate
considered in Example-4.

1. A bound on thickness to length ratio (%) and supnorm of strains has been used for
the asymptotic expansion. In the energy functional this translates to asymptotic
expansion in powers of (£). The analysis with strain energy accurate up to the order

of (£31) results in analytic expressions for displacement vector and strains accurate
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Figure 2.17: Geometric details and loading on (a) circular plate considered in Example-5
(b) annular plate considered in Example-6.
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Figure 2.18: Comparison of out-of-plane deflection us along the centerline parallel to
axis for the circular and annular plates considered in Example-5 and Example-6, respec-
tively.

up to the order of (£*h) and (&%) respectively. It is observed from the results that

the diminishing value of small parameter (%) improves the accuracy, aligning them

more closely with the results obtained from 3D FEA. Therefore, it becomes evident
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that the proposed model is asymptotically accurate and demonstrates satisfactory

performance for thin and moderately thick plates.

2. It is interesting to observe that the zeroth order solution results in the estimation
of 3D displacement field in terms of 2D variables u;(x1, z2). Essentially, this leads
to the dimensional reduction of 3D problem to 2D, which is assumed a priori in

classical plate theories.

3. The higher order 1D through the thickness analysis involves derivatives of w;(z1, x5)
w.r.t x,. The complexity involving these derivatives is eliminated through a novel

isoenegetic approach, resulting in better estimation of the overall deformation.

4. It may be noted that most of the plate theories rely on the ad hoc assumption
of plane stress condition as an integral part of their formulation. However, it is
interesting to observe that the plane stress condition is a natural consequence of the

mathematical procedure adopted in the present formulation.

5. The proposed model, as well as the FSDT, estimates strains up to the same order
of accuracy, resulting in comparable levels of computational complexities and cost.
However, due to its asymptotic correctness, the current model has the following

advantages over FSD'T model.

i. FSDT predicts a constant transverse shear stress and strain. In contrast, the

present formulation provides an accurate quadratic variation of the same.

ii. The quadratic variation ensures the enforcement of zero tangential traction
boundary conditions on the surface of the plate, ensuring excellent agreement

with the expected physical behavior.

iii. Unlike FSDT, there is no need for a shear correction factor.

6. The quadratic variation of transverse shear strains predicted by the proposed plate
model is in line with that given by higher-order plates models such as R-TSDT and
G-TSDT (see Appendix C). However, the proposed plate model distinguishes itself
from these higher-order plate models by excluding higher-order derivatives of the
normal and in-plane shear strains. This isoenergetic and asymptotic correctness-

based simplification effectively reduce computational complexities.

49



CHAPTER 2 2.7. CONCLUSION

To summarize, this work provides a more refined, accurate, and computationally efficient
ESL plate theory for thin and moderately thick plate structures. Comparison with estab-
lished theories such as CLPT, FSDT, R-TSDT and 3D FEA demonstrates the accuracy
of the present work.

Although the work done in this chapter is focused more on material anisotropy, it
will be interesting to see the application of the proposed theory in plates/stiffened plates
made up of inhomogeneous and composite materials, which will be done in the upcoming

chapters.
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Chapter 3

Asymptotically Accurate
Geometrically Nonlinear
Isoenergetic Analysis of Multilayered
Composite plates

3.1 Introduction

Composite laminates are crafted through the strategic layering of thin sheets of compos-
ites, each characterized by distinctive fiber types (such as carbon, glass, aramid), matrix
materials (including epoxy, polyester, and thermoplastic), and fiber orientations. These
laminates typically have a width and length much larger than their thickness. As a
result, they are commonly modeled as plate elements for engineering analysis. Due to
their unique properties, composite laminates are often used in applications that require
membrane and bending strength.

The present work develops an asymptotically correct reduced order pate theory utiliz-
ing the variational principles. This method for obtaining reduced-order models is referred
to as the variational asymptotic method (VAM). VAM utilizes small geometric and ma-
terial parameters to reduce the complexity of engineering problems elegantly. Applying
it to plate analysis, VAM decomposes the 3D problem into a manageable 1D through-
the-thickness analysis and a 2D planar analysis. The development done in this Chapter
is based on the mathematical foundation introduced in Chapter 2. However, to make the
chapter self-contained, the important concepts introduced in Chapter 2 are repeated in
this chapter whenever necessary.

Following the methodology similar to that used in Chapter 2 for anisotropic plates, this
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CHAPTER 3 3.2. ANALYTICAL DEVELOPMENT

chapter conducts a 1D through-the-thickness analysis for the multilayered composite plate
problem. This first-principles-based derivation obtains a reduced-order 2D plate model
from the energy of the 3D model. Unlike traditional methods that rely on pre-assumed
plate kinematics and variable ordering, this work proposes a systematic ordering scheme.
This scheme assigns orders to different quantities of interest and progressively refines them.
The final order aligns perfectly with established literature, demonstrating its robustness.
Furthermore, the present approach does not require an a priori reference plane. Instead,
the analysis methodology naturally yields a reference plane as an outcome. Similarly, the
position of this plane is not pre-assumed but determined logically to eliminate higher-order
derivatives.

The 1D through the thickness analysis consider the continuity of the displacements
and the transverse stresses at the interface of the layers of the multilayered composite lam-
inate and gives close form solution for the displacement vector components in terms of
2D variables (functions of two independent variables) associated with the reference plane
of the plate. Due to their dependence on the laminate’s constructional details (material
properties, layup sequence, fiber orientation), these closed-form solutions are unique to
each problem. To facilitate analysis, a code has been developed in Mathematica. The
1D through the thickness analysis yields a reduced order 2D plate model. The 2D plate
model obtained this way, though asymptotically correct, is computationally inefficient as
it contain higher order derivatives of the 2D variables. Interestingly, for the accuracy in
strains considerd in the present work, higher-order derivatives only appear in the trans-
verse shear terms. This approach eliminates these higher order derivatives by selecting a
reference plane suitable and using the concept of isoenergetics. The isoenergetics ensures
that the strain energy of the VAM based reduced order model matches that of the FSDT
plate theory for a given deformation pattern of the reference plane. Enforcement of this
condition results in the determination of the shear correction factors and the transverse
shear force resultants which are used to replace the The higher order derivatives present
in the analysis by lower order derivatives. What follows present this work in a systematic

way.

3.2 Analytical Development

A symmetric laminated composite plate is analyzed. The plate has length a, width b, and

thickness h. A global coordinate system x = (z1,x2, z3) is defined. The origin O of this
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CHAPTER 3 3.2. ANALYTICAL DEVELOPMENT

system is located at a distance n from the midplane of the plate as shown in Fig 3.1(c).
The plate consists of n orthotropic layers. Each layer (termed as lamina) has its own
principal material coordinate system, denoted by (7,25, 2%) for the r'* lamina (where
r=1,2,3,...,n). The orientation of each lamina is specified by the angle 6" relative to
the global coordinate system x (see Fig. 3.1). The notation é; denotes the orthonormal
basis vectors along the x; axes.
In the undeformed configuration, the interior region of the 7" lamina is denoted by Q"

and its boundaries comprise of the top surface 9, the bottom surface 92 ; and the side
surfaces 0€;,, with 0€}, = 0

side top
the interior region of the entire plate is designated as {2 and its boundaries consists

U 0}, Similarly, in the undeformed configuration,

of the top surface 0, the bottom surface 0o and the side surfaces 0€lgqe With
Oy = 0op U Ot It is to be noted that 0Q, = O, and Iyer = O

The position vector of any arbitrary point P in this domain is given by ¥ = z;é;.
Throughout this work, Roman indices (i, j, k, . ..) range from 1 to 3, while Greek indices
(e, B,7,...) range from 1 to 2 unless their values are specified. A superscript indicates the
number of a lamina, while parentheses () are used to distinguish mathematical exponents
from these superscripts.

Consider the point P located within the r** lamina. Due to deformation, P moves to
a new position P’. This displacement is described by the vector v" = v[é;, where v! are
the components of the displacement in the global coordinate directions. Assuming small
strains and moderate rotations, Green-St. Venant strain tensor [128, 127, 119] for the r"
lamina can be expressed as follows.

107/ . T . T,
E - [(vzw) + (Vo) + (V) (vm)] (3.1)

where V, is the gradient operator with respect to the global coordinates x. This work
proposes a novel strategy for developing a reduced-order plate theory for multilayered
composite materials. This theory builds upon the strain tensor defined in Eq. (3.1).
Additionally, it leverages the geometrical dimensions of the plate and the maximum al-
lowable strains to establish a mathematically rigorous reduced-order plate model. This
approach avoids introducing any arbitrary and/or pre-assumed simplifications.

Interestingly, it will be shown that successive refinements of this reduced-order model
lead to progressively more accurate plate theories, ultimately encompassing CLPT and

even higher-order plate theories.
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Figure 3.1: Schematic of the plate (a) Undeformed state of the plate (b) r*® lamina of the
plate (c¢) through-the-thickness lay-up sequence (d) Deformed state of the plate

The development is divided into three parts:

Part A: Establishes a reduced-order model for the plate, aligning with CLPT.

Part B: Refines the model from Part A by incorporating the contribution of higher-order

energy terms.

Part C: Introduces the concept of isoenergetics to eliminate higher-order derivatives from

the analysis, improving computational efficiency.

3.3 Part A: Development of a reduced order model

This section leverages the geometry of the plate and a bound on the maximum strain value

to estimate the order of various quantities of interest. The estimation scheme follows the

54



CHAPTER 3  3.3. PART A: DEVELOPMENT OF A REDUCED ORDER MODEL

approach outlined in [57]. The ordering scheme is presented in the next subsection.

3.3.1 Order Estimation Scheme

Following the ordering scheme from [112], The relationship between the orders of dis-
placement components, v;, and their derivatives with respect to the spatial coordinates,

x; can be expressed as follows.

ollam) Ge) G -0 @ e

m,n,p=20,1,2,3,...

0
Here, the Oth order derivative signifies no differentiation, i.e., O [(%) 'UZ] = O(vy).
The supnorm (supremum norm) of strains for the r lamina, denoted by [|E£||s, is
defined as follows.
|E"|[cc = max — max ’EZJ’ (3.3)

1<i,j<3 2€Qr

) and the supnorm of strains are bounded by £ and e

The maximum aspect ratio (2

respectively.

h
7€ and ||l <e (3.4)

In the context of small strains, the supnorm of strains is considered a very small
parameter, i.e., ¢ < 1. Similarly, for plate-like structures, the maximum aspect ratio is
also bound to be small, i.e., £ < 1. For the asymptotic expansion of strains and strain
energy, we will assume ¢ = £3.

It will be demonstrated later that the order estimation scheme introduced in this

section provides a unique estimation of the order of various relevant quantities.

3.3.2 Constitutive Relations and Strain Energy

The relationship between stress and strain for the 7* lamina is governed by the following

equation [61]

0" = CTE" (3.5)
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Where E" = {E7,, E5,, Ejy, 2E5, 2By, 2B}, 0" = {0],, 03y, 0%, 0%, 074, 07}
and C" are Green-Lagrange strain tensor, Second Piola-Kirchhoff stress tensor and Stiff-
ness matrix for the r** lamina respectively.

Here, C" captures the elastic properties of the r*" lamina in the global coordinate
system x. The components of C” depend on the specific material properties of the lamina.
Each lamina in the laminate exhibits monoclinic symmetry with respect to the global
coordinate system x. Therefore the stiffness matrix C” for the r* lamina takes the

following structure

[C, Cf, Cf; 0 0 Cf]
Cly O Ci 0 0 Cg
Cr: {3 53 §3 0 0 56 (36)

0o 0 0 Cj Ck O©
0 0 0 Cj Ci 0
[C6 C6 C36 0 0 Cge]

It is assumed that all the material constants are of the same order p. The strain

energy density for each lamina is given by.

U — %(UUTET (3.7)

3.3.3 Dimensional Reduction

Let § = q é; and £ = t; é; be traction forces on 4, and 9Qgqe respectively. The principle

of virtual work results in

> / SUTdV — / q- 6vday, — / t- 6Udagge =0 (3.8)
=1 Q" Oy, Mside

Where ¢ = ¢" for all values of r between 1 to n (n = total number of laminae).
Eq. (3.8) presents a computationally expensive 3D elasticity problem. This problem
is typically addressed by simplifying it to a 2D plate problem. However, traditional
approaches to this simplification rely on assumptions that may not fully account for the
energy involved in deforming the material. This work considers the energy aspects of
the problem while creating the reduced-order 2D plate model. The details of the present

approach are explained in the sections that follow.
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3.3.4 Zeroth Order Solutions (ZOS)

ZOS assumes v}, the displacement field of the 7" lamina, to be %7. Here %! (1, w9, z3)
represent zeroth order perturbation variables. Throughout this work, the following nota-

tion is consistently used

(m.;>€op/b0t
Interpretation
e . Represents the quantity of interest (e.g., displacement, stress, strain).
m : Denotes the m™ order solution/contribution of e.
r: Indicates the ™ lamina.
i . indicates the i component
p : Exponent of the quantity within the parentheses

top/bot : Denotes the top/bottom surface of 7" lamina

The approach outlined in Section 3.3.1 is utilized to estimate the order of %!. The
estimated order of %! is found to be O(£3h). Subsequently, the order of various strain
components is evaluated. The various strain components with their respective orders

denoted using underbraces are given below.

r 4 r 80U£ 4
En:O(f) 2E23:8 +O(f)
T3
——
o(g?)
B =0 28, = 2% 40
22 — 13 — al'g (39)
~——
o(e?)
o%r
By=72  2Bp=0(¢)
~——
o(e3)

It is important to highlight that the order estimated for the perturbation variable %!
represents its maximum acceptable value. This order is crucial because it ensures that
the strains stay within their maximum allowable value, denoted by ¢ = £3. Importantly,
there is only one valid order for “?. Choosing a different order would affect the maximum

allowed strain, which is unacceptable. By following this specific ordering of strains, we
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can represent the strain energy density, U", as an ordered series in terms of the small

parameter &, as shown below.

U= UL, +0 (')

sig
O(¢6
T 0% 0%7 9 %5 9%\ d%r\? (3.10)
Ur _ CT 1 20" 1 2 Cr 2 Cr 3
sig % ( 8.113 ) + 45 8.113 81’3 + 44 ( 8Q33 ) + 33 < 8333 ) ]

The term with the lowest order, U

sig?

contribution to the energy functional. By concentrating solely on this contribution, the

in the equation above makes the most significant

virtual work Eq. (3.8) simplifies to the following form

/ [ [ o
8Qref

The reference plane of the plate, denoted by 0., is defined as a plane parallel to

dayes — / q - dvdagy, — / - 0tdagqe = 0 (3.11)
8th 6Q§1de

r=1

the midplane but located at a distance n away, as shown in Fig. 3.1. The magnitude of n
will be determined later on logical grounds. Interestingly, Equation (3.10) shows that Usig
contains terms with derivatives of %! with respect to x5 alone. This allows us to perform
the minimization process in two stages:(i) A through the thickness 1D analysis along the

xg direction. (ii) A 2D in-plane analysis in the ;x5 plane, as expressed below.

ST, =0 ST = 0
——

N—— .
1D Analysis 2D Analysis

M, =>» 1, I = / Ul das (3.12)
r=1

II = / Hmd&ref — / @ U datb — / t- ’U daside
89rcf ath aQsidc

This approach inherently reduces the dimensionality of the problem. During the 1D
analysis, we can neglect the external loads for now. These external loads will be considered
later in the 2D in-plane analysis, as described in references [111, 124]. Minimizing the
potential energy functional II,, leads to the minimization of IT},, while ensuring continuity
of displacements and transverse stresses (0;3) at the interface between adjacent laminas
[92, 111, 56]. This is illustrated in the figure below.
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O ety (o (4 ) = O
r bot P (023)1; r—1 — (o"
(¥)op asho (0fi), = (0%)iep
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Figure 3.2: Continuity of displacements and transverse stresses at the interface of two
consecutive laminae

Through the Thickness 1D Analysis

. . . r . . . . th .
Extrimization of IT}, yields following Euler-Lagrange governing equations for r*" lamina

T a ? T T a ? T
055 (_axg) OU]_ + 045 (_ax_g) 01}2 = O
'S 8 2 T T a 2 T
i () i+ i () 5= 19

T a ? T
C33 (8_563> OU3 =0
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The associated boundary conditions are as follows

B()v'{ wa=hr—n (UIS)tOp BOU{ w3=h(r+)—p — (UIB)bot
Bovg wy=hr—n (023)t0p B%g z3=h(+D)—py — (013)bot
N T g r
Bovg‘x?):hrin = (033)t0p B%g z3=hr+)—p — (033)bot
0,r 0,,r
o 07 . 0]
Bo,r = CL " (3.14)
1 6.773 8563
0,,r 0,,r
Boy, = 21 4 07,92
2 8353 (9.1'3
0,,r
BO,UT — gg'a U?)
3 8ZE3

with (093)r0p = (075)por = (023)s0p = (O53)bor = (T33)e0p = (083)per = 0, for traction free
top and bottom surfaces of the plate. Solving the Euler-Lagrange equations Eq. (3.13)
with the boundary conditions Eq. (3.14) and imposing the continuity of displacements

and transverse stresses at the boundaries of each lamina results in following solution

i = w1, ) (3.15)

This solution will undergo further refinement for increased accuracy in subsequent
sections. It’s important to note that this zeroth-order solution expresses the 3D displace-
ment components v; in terms of u;, which are functions solely of x; and x5, hence referred
to as 2D variables. Essentially, u; depict the rigid body-like deformation of a line segment
AB, denoted as A "B, along the thickness direction és, as illustrated in Fig. 3.4(b). Since
this displacement remains independent of x3, all points along AB exhibit the same dis-
placement. However, for convenience, u; are expressed as the displacement components
associated with the x1, x5 plane of the global coordinate system, which is referred to as
the reference plane of the plate.

u; = vi‘

(3.16)

23=0
3.3.5 First Order Solution (FOS)
The displacement field obtained in ZOS is perturbed to improve it further as follows

v = OUZ-" + ol = + 11)27" (3.17)

Including the term "o} in Equation (3.17) introduces three additional degrees of free-

dom to the displacement field. However, to guarantee a unique solution, we need three
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constraints. Equation (3.16) provides these three constraints for the n'® order perturba-
tion variables, denoted by "v;.
il g =0 (3.18)

It may be noted that the choice of the constraint is not unique. Several papers on the
VAM based analysis of plates [113, 111, 112] assume that the through-thickness average
value of warping components is zero i.e. ff{jQ "™y;drs = 0. However, constraints defined
in Eq.(3.18) are simpler and straight forward to use from the point of view of numerical
implementation, further same constraint have been adapted for analysis of beam sections

n [114].

Following the procedure outlined in Section 3.3.1, we determine the order of u; and "7
to be O(&31) and O(£3h), respectively. However, this might seem counter-intuitive as both
% and ! have the same order, which deviates from the usual refinement process. The
key here is that we initially assumed a conservative order for v}, treating the plate as a 3D
object and considering the most extreme possible deformation within the strain limit of .
As the refinement process progresses and the displacement field becomes more accurate,
the actual deformation pattern of the plate emerges. This allows for a relaxation of the
bound on v]. Consequently, further refinement of the displacement field in the same order
is necessary, justifying the order for the perturbation variables.

By substituting v} from Equation (3.17) into Equation (3.1), The following strains are

obtained.
roo__ 9 4 T 8“'3 a 4
~— NG
0(&?) 0(&?)
_ Oug 8u 8
v NG
O(&f ) O(&?)
8 8u1 8u2
Er. — 4 2FT — = 4
33 amg (5 ) 12 axz + 5 axl (6 )
~—~—~ ~——
o(&?) 0(&?)

The revised strains from Equation (3.19) are employed to re-evaluate the strain energy

density, U", and its significant part, Ug,. Similar to the ZOS, the perturbation variables

I appearing in Ugg only have derivatives with respect to x3. This allows us to divide
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the minimization process into two stages: a through-the-thickness 1D analysis and an

in-plane 2D analysis.
Through the Thickness 1D Analysis

The functional I}, is updated to account for the changes made to Ug,. Minimizing II},

leads to the following Euler-Lagrange equations for the r** lamina.

T 0 ? r T 0 ? r
055 (_8m3) lvl + 045 (_aw?)) 1'02 = 0
a1\’ a1\’

'S 6 2 T
Cs3 (8_1:3> 1Uz =0

The associated boundary conditions are as follows

BO”I wy=hT—n = (UI3>top BOU1 z3=h(r+1) —p (0{3)bot

B()vg w3=h"—n == (U£3>t0p Boyz 3= —p(r+1) _ —n (0-71“3)[)0(’,

Bovg‘xgzhrf’n = <0§3)t0p Boyg 3= —h(r+1) —n (0—33)b0t
s Ous o Ous O 0

B, = 0458 > 0558 + Css D3 . + Cis 8x2 (3.21)
T a T a s 8 T 8

Blv; =Clum— O, + Cisa o, + Cys o5 +Cl O3
T a T a T a T 8 s al

B, [ 0363 0238 0133 0368 + O35 O3

The Euler-Lagrange equations given in Equation (3.20) are solved, subject to the
boundary conditions from Equation (3.21) and the constraints in Equation (3.18). Addi-
tionally, the continuity of displacements and transverse stresses at the interfaces between

each lamina is ensured. This yields

W= —pg— Ous
(91’1
L OJus
? ? Oy (3.22)
1U§ = +asf]
i = G |Gl + Chsg + Ol + Cio g
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Where the expression for ¢] = ¢} (z1,x2) is obtained in terms of f] by considering con-
tinuity of displacements at the interface of each lamina and the constraint given in Eq
(3.18), leading in estimation of order of ¢] as h O(f7). It is intersting to note that for

homogeneous monoclinic materials ¢f = 0.

3.3.6 Second Order Solution (SOS)

To achieve higher accuracy in the solution, we further refine the displacement field at this

stage using the following perturbation

r 0 r 1.r 2 r
v, = v + v, + 7
where

(3.23)

V] = Uy — r3— + 7, vgzug—xg—x + g

v = ug + w3 f] + v}
Following the scheme outlined in Section 3.3.1, the orders of u,, uz and %! are de-
termined. The estimated orders for these quantities are O(&3), O(&21), and O(&3h),
respectively. Notably, by substituting v; from Equation (3.23) into Equation (3.1), the

corresponding strains are obtained. These strains are presented below, along with their

respective orders indicated using underbraces.

2 2,.r
Er % — 15 (i) Us —I—O(§4) 2T, = 0 vy 10 (54)

1= 81'1 81‘1 81‘3
0(e3) o(¢?)
. Ouy o\ . . 0% .
E22 = 8_:@ — I3 (8_562) Us +O(f ) 2E13 = (9_1'3 +0 (5 )
820@3) o) (3.24)
T T Ur
By = f1 + 8:1:33 +0 (54)
o)
. Oup  Ouy 0 0 4
2B, = G-+ 5y, — 20 ( 8x1) ( a@) uz +0(¢7)
o)

The revised strains obtained in Equation (3.24) are utilized to re-evaluate the strain
Similar to the ZOS and FOS, the

energy density U" and its significant component Ug,.
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perturbation variables %! apearing in U, have derivatives with respect to x3 alone. This

sig
splits the 3D analysis into two stages (1D and 2D analyses).

Through the Thickness 1D Analysis

We update the functional IT}, to account for the changes made to U]

o ,
sig- Minimizing II7,

leads to the following Euler-Lagrange equations for the r** lamina.

(DN oo ()
055 <8_$3) 2U1 + 045 (a—m?’) 2U2 =0
2 2
Cs 9 ] + Cy 9 vy =0
8:53 8333
o \2 9 (3.25)

0 \? 9 \?
+C{3 (6_.2131) U3—C§3 (8_1'3) 22;;,;:0

The associated boundary conditions are as follows

_ r _ r
Bov{ z3=h"—n (013)top BOU{ zz=h(r+t)—pn — (Ul?))bot
_ r _ r
Bovg z3=hT—nm (023)top B%g zg=h(r+)—p — (O-IS)bot
_ r _ r
B%g“’m:hr_n = (‘733)top B%g @a=h(r+D) _p = (U33)bot
2 2
OW 9%
B2UT — 055 045
1 ox ox
2 2
. 0] . 0] (3.26)
BQ,UT - 045 C44
8%3 85(,’3

(0N 0%
+ 013 <a_:L’1) Ug} + 33_8ZL’;

Euler-Lagrange equations in Eq. (3.25) are solved considering the boundary conditions
in Eq. (3.26) and the constraints given in Eq. (3.18) with addition to the continuity of
displacements and transverse stresses at the boundaries of each lamina. The solution to

the Euler-Lagrange equations is as follows
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2 =0
2@’2" =0
Wy = ¢+ (23)°91 (3.27)

R N B A I a d (0N
", [C23 (5r) w20 (5) (5 o+ 5 (5) ]

Where the expression for ¢ = c4(x1,x2) is obtained in terms of g7 by considering
continuity of displacements at the interface of each lamina and the constraint given in
Eq (3.18), leading in estimation of order of ¢ as h? O(g7). For homogeneous monoclinic
materials ¢ = —5h%g].

Part A of this work aimed to develop a plate theory similar to CLPT. The solution
approach employed in this work achieves this objective by starting with a zeroth-order
solution and iteratively refining it to reach a second-order solution. The following sections

provide a concise summary of the methodology used and the key findings from Part A.

3.3.7 Summary of Part A

Figure 3.3 visually depicts the systematic methodology employed to derive the reduced-
order model. The procedure commences by calculating strains, assuming the plate as
a 3D object. An order estimation scheme is used, based on the upper bound on the
supnorm and 2 as given in Equation (3.4). Additionally, a rule for calculating the order
of displacement component derivatives, provided in Equation (3.2), is employed.

The zeroth-order solution starts with order estimation of various quantities of interest,
following the ordering strategy outlined in Section 3.3.1. This leads to an ordered repre-

sentation of the strain energy density, U”. The most significant portion of U", denoted

T

ag» 18 isolated. Minimizing U, yields a closed-form solution for the zeroth-order

sig
perturbation variables, %!. The first and second-order solutions follow an identical pro-

as
cedure, including order re-estimation of relevant quantities based on the ordering scheme,

selection of the most significant part of the strain energy density, and its minimization to

obtain closed-form solutions for the perturbation variables.
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3.3.8 Displcement Field Obtained in Part A
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Figure 3.3: Systematic methodology adopted

in deriving the reduced order model

The Part A of this work gives the following
displacement field

Ous
_ x38_x1
O(&3)

Ous

vy = Uy — Tg—

8952

V] =y

O(&3)
vE = ug +asfl + (23)%¢) + (21, 2
3 3 \3f1 ( 3)£]r1 ( 1 2)1
O(&2) O(&3h)

(3.28)

Where ¢ = ¢} + c;. The displace-
ment components v; and vy in Equation
(3.28) align with those found in CLPT
[100, 119, 130]. This is consistent with
Kirchhoff’s assumption: a line segment
normal to the undeformed reference plane
remains straight and perpendicular to the
deformed reference plane after deforma-
tion. However, the displacement compo-
nent v in Equation (3.28) deviates from
Kirchhoff’s assumption of no change in
length for transverse normals after defor-
mation (i.e., they are inextensible). In-
terestingly, the next section will demon-
strate that despite this difference, the plane
stress assumption in CLPT makes it ener-
getically equivalent to the asymptotically
correct plate theory evolved in Part A of

this work.
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3.3.9 Strains Obtained in Part A

The strains, as shown below, corrected up to order £ are calculated by Eq. (3.1) and

(3.28).
du 9\’ du 9\’
Ei‘l = 8_551 — T3 (a—xl) us E;é = 6_;1:2 — I3 (8—1'2> us

O(&3) O(&3)
B3y = [ + 22397 2E33 =0 (3.29)
0(€3)
0(E)

It is interesting to note that substituting strains from Eq. (3.29) in Eq. (3.5) yields

U§3 = Cfs Efl + 053 Egz + C§3 E§3 +2 Cgﬁ EIQ =0 (3-30)

Equation (3.30) leads to a plane stress condition that holds true with the current level
of accuracy achieved for stresses. Consequently, since o4, = 0, the virtual work equation
Eq. (3.8) does not include the transverse normal strain Ef; even though it is not zero.
Therefore, we neglect the transverse normal strain %5, and by omitting this term from

Equation (3.29), we obtain

( ou L2l )
Er, ory T3 (871)
E1, dup _ (i)

Oz 3\ oz
Ep=1{ 2Eb, » = ’ o ’ (3.31)

2FT,
2EI2 ou ou 0

\ B:Jc; + 83:? 2x 3 (8:}01> <B_zz> U3)

An intriguing observation emerges despite the difference in the displacement field
discussed in Section 3.3.8. The asymptotically correct strains, s, obtained in Equation
(3.31) become similar to the strains predicted by CLPT [100]. This implies that CLPT is
energetically equivalent to the asymptotically correct plate theory we formulated. Part B
of this work improves the results from Part A by incorporating the effects of the higher-

order energy terms.
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3.4 Part B: Refinement of Part A

Building upon the foundation established in Part A, Part B refines the plate theory while
preserving the overall methodological consistency. Notably, Part B incorporates the effects
of higher-order energy terms within the analysis, improving the accuracy of Part A. Part
B aligns with the conventional VAM-based approach for plate theory development found
in the literature. The details of this refinement process are presented in the following

section.

3.4.1 Third Order Solution (TOS)

The displacement components obtained in the SOS are further refined through perturba-

tion as follows:

r_0r 1.r 27 3.7
v =+ v Y+

where

x %—l—?’vr vy =Uy — X %—F%T (3:32)
® O, b 27 O, 2

vh = uz + 23 f] + (23)°g] + (21, 22) + M0}

ngul—

Following the order estimation scheme outlined in Section 3.3.1, we estimate the order
of the displacement components u,, u3, and the perturbation variable *%?7. These are
determined to be O(£31), O(£%1), and O(£3h), respectively. Interestingly, these estimates
are identical to those obtained in the SOS. Consequently, minimizing the potential energy
based on these orders would lead to *v] = 0, resulting in no further improvement to the
displacement field.

To overcome this limitation and achieve further refinement, we must consider the
contribution of higher-order strain energy terms at this stage. Specifically, to account for
the effects of strain energy of order (£%u), we elevate the order of %! to O (£*h) while
maintaining the orders of the other variables. By substituting v; from Equation (3.32)

into Equation (3.1), we obtain
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. Ouy a1\ 1 (dus\*  0%] 6
=g () g () + 0@
0(%) O(&4) O(£%)
Oy o\’ 1 [(us\> 8% 6
B, =—— — —\ =
2 81'2 3 (81'2) U3+ 2 ( [L’Q) + 8ZE2 +O <€ )
0(e3) o) o(&)
Ejy = f{ +2x L (O 2+1 Ouy 2+%+O(§6)
33 w 2 81’1 2 (9.1'2 8353
O(&3) > O@)
off . L0g 9 o
2E5, = 13—
2 s 8332 + (1'3) 8.272 + 8.172 + 8.1'3
o(e")
8U3 8u2 8QU3 8’&1 8u3 8U3 0 0 87)33: 6
2B L 9gag” — _ 773
+ 0xy (fl + 28301 019 t o 3 0xo 011 3 O0x1 \ 01 0o us+ 0xo +0 (6 )
o)
off | g 9 o]
2FE ., = 13— ‘
13 ?381’1 + <x5) 8351 + 89&1 8.1’31
o(e")
871,3 8u1 82U3 (9uQ 8U3 8U3 0 0 81)% 6
I8 L 9gag” — _ 773
+ 8902 (fl + T3 81’1 t o ax% 81’1 81’2 x38m2 8131 8x2 us + 8561 +O (é )
)
8u1 8u2 0 0 8U3 aUS 0 31}{ d 31}5 6
2K, = — 4+ — — 2 — —
27 92y Oxy s <8x1) (8@) us + <8x1) (8962) +\3x2 3x1j+0 (5 )
0(e3) () 0(%)
(3.33)

The revised strains given in Eq. (3.33) are utilized to recalculate U” which takes the

following form

r
sig
AN

U ="U0"+'U"+%U"+ U" +0 (&p) (3.34)
~~ AR g
O(&%p) O(&81)

where PU" is the portion of the strain energy density U” considered in p'" order solution.

To account for higher-order energy effects, we define

up to O(&p).
for U’

sig*

U

sig
The functional II’, is then recalculated based on this refined expression

as the portion of U" corrected
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A key distinction between the third-order solution and the zeroth, first, and second-
order solutions lies in the appearance of derivatives of the perturbation variables *?! with
respect to the x, coordinates (i.e., %). To eliminate these derivatives, integration by
parts is employed, leading to boundary conditions defined at the edges of the plate domain,
Qgiqe. However, for the present analysis, we focus on the interior domain of the plate and
disregard these edge effects, aiming to determine the displacement field within the plate
interior without considering the influence of its boundaries [108, 112].

Finally, extremization of the modified functional II} leads to the following Euler-

Lagrange equations for the 7" lamina

2\ 0\
55 (8_353) i+ G (8_353) = 2055 f5 + 60551395 + 2035 f5 + 6051393

r a 2 r T a ? T T T T T T T T '
Cis <8_x3) ol + Cly <8_x3) “vj = 2015 f5 + 6C 52395 + 207, f5 + 6C, w595 (3.35)

T a ? T
33 (8_353) 3”2 =0

The functions f3, f3, g5, and g5 depend on the in-plane coordinates x; and z3. Detailed
expressions for these functions in terms of the material constants and derivatives of wu;

w.r.t. x; are provided in Appendix D. The associated boundary conditions are presented

below.
BO’”I‘Ig:h’“*’I] = (0-’{3)1',01) BOU{ x3=h(r+1)— —n (0—71n3)bot
Bovﬁ‘xg,:hun = (0g3>top Bovg x3=h(r+1) —p (UIB)bot
B%g‘xg:hv-_ = (U§3>t0p B°u3|x3 Rr+1) g (‘7§3)bot
ofr ,0g" oc" off
Bs. = Tyt + Lycor + OF g —L
ST 45 332 45T 35’2 4582 55 381
. 2 0g] . oc” R R
+ Cys 38 -+ % Dy + 55%31 + 5 0y (3.36)
r af1 891 ac” afl
Bsy = Cly 38 + Cy; 38 + 448 + Cls 38171
. 2 0g] oc” L 0T R
+ Cys 381"‘ 458 + 458 —1+ 448:6
0%
Bs, =Cl,—=
Sz 33 O

solution to the Euler-Lagrange equations Eq. (3.35) is given by
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Wi = ay +wsah + (03)°f3 + (23)°g3
b = ab + waal + (z3)f5 + (v3)°gh (3.37)
E = af + waaj

Where af, a}, a, a}, af, and ag are constants of integration. These are determined by
considering the boundary conditions in Eq. (3.36), the constraints in Eq. (3.18) and the
continuity of the displacement components and transverse stresses at the interface of two
consecutive laminae. A Mathematica code is developed to determine these quantities for

a given laminate. However, the expression for ag is straightforward and is given below.

1 Oous Ous Ous Ous
I8 — 'S T 2 T ™ T 338
e 2053 [(023 Cis) <8x2) + 2055, 0x, 8x2 +(Cs + Cisa) <8x1 ) ] ( )

Also, applying the boundary conditions in Eq. (3.36) for a symmetric plate with shear

traction-free top and bottom surfaces leads to

(2 50 ) —20 (3054 5% =0
1 ! (3.39)
o) o )

Eq. (3.39) will be utilized later to find 7 and to eliminate higher-order derivatives from

the strains. A graphical representation of the adopted procedure for the development done

in Part B is presented in Fig. 3.3.

3.4.2 A Discussion on the Displacement Field

The final displacement field obtained in Part A and B is given below

ou
vi = —wag a4 aadh + (@) 7 + (2)°)
— o(gn)
o(&3l)
au 7 T s ‘s
vh =g — g+ G5+ @ad) + (20)'f3 + (23)°63 (3.40)

() o

vy = uz + 333ff + (z3)°g} "‘CT(JJl,Izz + gg +l’3ag

o(£21) 0(¢3h) O(€1h)
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Each successive perturbation refines the displacement field. Figure 3.4 visually depicts
the progressive improvements achieved in the displacement field with the introduction of

each perturbation.

A
o
C tl D
R
(a)
OA IA o
A8 =4 | LB A (a3
04083 H AB 'D +* i)}
© i
OB IB

24 g 3A/‘
2023 21418 o0 00 ,

2A°B + AB

(d) (e)

Figure 3.4: Progression of Deformation in lines AB and C'D: (a) Undeformed configura-
tion. (b) Configuration after zeroth-order perturbation. (c) Configuration after first-order
perturbation. (d) Configuration after second-order perturbation. (e) Configuration after
third-order perturbation.

Figure 3.4(a) depicts the undeformed configuration. Line segment C'D lies in the
reference plane oriented along direction é;, while line segment AB is oriented along és.

Figure 3.4(b) illustrates the deformed configuration of line segment AB in the ZOS,
represented by line segment A°B. In the FOS and SOS (Figures 3.4(c) and 3.4(d) re-

spectively), the displacement field is refined to include a rotation and a change in length
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of line segment AB, as shown by line segments 'A'B and 242B.
Finally, in the Third Order Solution, line segment AB deforms into the curved line
segment “A°B as depicted in Figure 3.4(e).

3.4.3 A Discussion on the Strains, Stresses and Stiffness Matrix

Eq. (3.1) and (3.40) provide the expressions for the strains accurate up to order (£%).

These refined strains are presented below:

() O(E")
_ o Ouy o\’ L1 (0us 2
= 0 2 3 8:62 3 2 i
o?g%) OT“)
1 1 0u3 2 0u3 8U3 8U3 2
Bl = ——— [<2Cs(fT + 2234, O (22 ) F 205622 Oy (22
33 2033 [ 33(f1 + 1‘391)] + 2033 23 (01’2) * 3601’1 8332 13 8:1:1
o(&*) h O(eh) 3
oc” off ag;
O(E")
oc” ofy ag;
O(E")
Ooup  Oug 0 0 Oug Ous
2ET, = — 4+ 22 2y [ — | [ =—— ) (=2
12 81‘2 * 81‘1 3 (61‘1) 81‘2) U3+ (0x1 6952
(&) O(E")

(3.41)

The transverse shear strains, 2FE13 and 2F»3, depend on the derivatives of the in-plane

displacement, w,. Specifically, they involve terms like (2 fa+ %) and (2 fa+ g—ﬁ),

which include higher-order derivatives of u,. As shown in Eq. (3.39), setting the reference

plane distance n to zero, eliminates these terms. This simplification justifies choosing the
mid-plane of the plate (where 7 = 0 ) as the reference plane for further analysis.

An interesting observation is that the plane stress condition, established in Part A,

remains valid even with the higher-order strain terms incorporated here. This can be read-
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ily verified by substituting the strains from Eq. (3.41) into Eq. (3.5). This substitution
confirms that 053 = 0, signifying the plane stress condition.

It is noteworthy that the plane stress condition arises naturally from the adopted proce-
dure, eliminating the need for an ad hoc or a priori assumption as commonly encountered
in various plate theories from the literature [119, 122, 68]. The historical precedent and
simplicity of the plane stress condition, make it a popular choice for plate theories.

Following the reasoning presented in Section 3.3.9, the transverse normal strain g,
can be neglected. Omitting this term from Eq. (3.41) and selecting the mid-plane of the

plate as the reference plane, we obtain

(

E" = af + 85 + (v3)? (395 + 24 > (3.42)
(

Our | Oup _ 0 ) (o Oug | ( Qus
\ Ox2 + o1 23:3 <8a:1> (8z2> us + (8:1:1) (81}2) )

Also, the stiffness matrix for 7** lamina is modified according to the plane stress

condition [119] as

Dy Dy 0 0 Dig
Diy Dy 0 0 Dig
D'=10 0 Dy, Dj; O (3.43)
0 0 Dy, Di, 0
Dig Dy 0 0 Dg
Under plane stress conditions, stresses ¢” and strain energy density U” for the r®

lamina are given as follows

r r r r r r\T iy
0" = {01y, 05, 033, 013, 015} = D"E", (3.44)
1 1 :
Ur = _(O_'I‘)TET — _(D'I‘E’I‘)TET’
2 2
The transverse shear force resultants Q,, strain energy per unit area U and transverse

shear strain energy per unit area Ugpe,, are given by
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h(r+1)

QQ Z/ U;Bdl'g

h('r+1
Ql Z/ 0'11ﬂ3d$3

- (3.45)
U Z / U dxs

R(r+1)
shear = E / 0—23E§3 + U{SEIS) d.’L’g

Substitution of the strain energy from Eq. (3.45) in the virtual work Eq. (3.8) reduces

it in the following form

/ <5Urest + 5Ushear) daref - / (j 56datb - / F é‘6(1aside =0
onr ath aQsldc

Where Urest == ﬁ - Usheaur

(3.46)

The Virtual work Eq. (3.46) can used for the 2D in plane analysis considering u; as
the independent variables of the problem resulting in the solution to the 2D variables.
However, Due to dependency of U on the higher order derivatives of ug, This Equation
involve computational complexities and becomes computationally inefficient. To circum-
vent the computational complexities by eliminating these higher order derivatives FSDT
plate theory and the concept of isoenergetics [57] are used. The following section presents

the details of this procedure.

3.5 Part C: Elimination of Higher Order Derivatives

FSDT plate theory, though asymptotically inaccurate, is very practical due to its sim-
plicity and computational efficiency thereby often preferred for the analysis of thin and
moderately thick plates. This theory accounts for the transverse shear deformation effects
in the plate. In This theory, it is assumed that a straight line normal to the undeformed
reference plane 0€),.s remains straight but not perpendicular to the deformed reference
plane 0Q.s and has rotations ¢; and ¢5 about the x; and x, axes. Thus FSDT plate
theory incorporates two additional degrees of freedom ¢; and ¢o. The strains for FSDT
plate theory [100, 101] are given below
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( 2 3\
Quy. 9¢1 | 1 ( Ous
EFSDT oz, T3 3ay T 2 (8901)
RS
Qua 9¢2 | 1 (Ous
Eas ozs T3 guy T3 (a@
EFSDT — 2E§SSDT — < Ous (347)
FSDT ¢ + dz2
2E7; b+ Su2
Ouy | OJug 061 | 992 Oug | ( Jus
\612 + 8:131 +x3 (8332 + axl) + (8231) (8932) )

The through the thickness constant value of the transverse strains (2EX5PT) in FSDT
results in an inaccurate calculation of transverse shear strain energies [54, 53, 52, 51].
To remove this shortcoming of the FSDT plate theory, SCFs are emplyed. Following
references [50, 49], The expressions for the transverse shear force resultants QTSPT and

transverse shear strain energy per unit area T2 for FSDT Plate theory with SCfs are

shear

given by

h(r+1)

3T = Z/ (2D£4E§3SDT + 2D25E1F3SDT) drs3
r=1 "

h(r+1)

QT =3 / (2D, EESPT 4 907, EESDTY gy (3.48)
r=1 "

n (r+1)
TR =30 [ [2DAEE D B BT 4 205
r=1v""

Where (k,)> = K, are SCFs. The FSDT plate theory is made isoenergetic to the
asymptotically correct plate theory by finding suitable shear correction factors (SCFs) in
such a way that the asymptotically correct plate theory and the FSDT plate theory result
in the same strain energy per unit area for same deformation pattern of the reference
plane. To calculate SCFs, the equality of the relevant quantities in Eq. (3.45) and (3.48)

is employed as shown below

—FSDT _ —
PSDT _ (), FSDT _ () U — Uhenr (3.49)

shear

To find K, using Eq. (3.49), the cylindrical bending about the z; and z, axes is
considered [50, 123]. First cylindrical bending about zy axis resulting in ug(zy,z2) =
ug(z1) is investigated. Eq. (3.49) is used to establish a relation between k; and ks which

is independent of the quantities associated with the deformation pattern (viz. 7,3 and
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derivatives of ug with respect to z7). Following a similar approach, another relation
between ki and ks is set by considering cylindrical bending about z; axis. The two
relations in k; and ko are used to find the SCFs.

As determined in the present work, the order of transverse shear strains is O(£?).
Thearfore, Eq. (3.47) and the order estimation scheme in article 3.3.1 gives

82U3 8(;55

- =z
38xa8x3 5 0z,

Considering strains accurate up to the order of O(&*), Eq. (3.50) is utilized to replace

+0 (&) (3.50)

second and higher-order derivatives of uz with derivatives of ¢, from Eq. (3.42), neglecting
quantities of order O(£°) and higher. This replacement modifies Eqs. (3.42), (3.44), (3.45),
and (3.46), rendering E.s = ELZPT. Additionally, Eq. (3.49) enables the replacement
of Ushear with U:fezf in the virtual work equation (3.46). This makes the FSDT plate
theory with SCF's Isoenergetic to the asymptotically correct plate theory developed in
this work. Hence, the present work employs Isoenergetic FSDT plate theory to calculate
in-plane displacement variables u; and ¢;. Once these variables are determined, the actual
through-the-thickness variation of strains is recovered using the following strains, obtained
by replacing higher-order derivatives of uz with lower-order derivatives of ¢, using Eq.

(3.50) in Eq. (3.42).

3¢5 + o (3.51)

3.6 Results and Discussion

In this work, a novel approach is introduced for analyzing multilayered composite struc-
tures. To assess its accuracy, numerical examples involving various scenarios are provided.
The material properties listed in Table 3.1 are utilized in these numerical illustrations. In
this table, subscripts L and T represent the longitudinal (along the fiber orientation) and
transverse (perpendicular to the fiber orientation) directions, respectively. For systematic

presentation, the Validation is divided into two subsections: the first subsection validates
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the SCFs obtained using the present approach, while the second subsection validates the

deformation of plates obtained using the present approach.

Table 3.1: Material properties used in different numerical examples

Material-1 [48] Material-2 [116] Material-3 [47] Material-4 [144] Material-5 [144]

E;, (GPa) 139.3 172.369 103.421 12.605
Er (GPa) 9.72 6.895 6.895 12.628
Grr (GPa) 5.58 3.337 3.447 2.155
Grr (GPa) 3.45 1.379 2.413 2.155
VLT 0.29 0.25 0.3 0.2395
vrr 0.4 0.25 0.49 0.2395

227.53
144.79
55.16
27.58
0.25
0.25

3.6.1 Validation of the SCF's

A number of examples are presented to find SCFs. The results are compared with those
found in literature. In all the examples, different symmetric layer sequences with equal
layer thickness within a total thickness h are investigated.

First a laminate with n laminae is examined [123]. The laminate is constructed of

alternate plies of 0° and 90° orientations relative to the z; axis of the plate with the two
h

centre layers oriented at 90° to provide symmetry . All plies have the same thickness .
Each ply is composed of Material-2, whose properties are given in Table 3.1.

The SCFs K; and K, have been plotted versus the number of plies, n, in Fig. 3.5.
It is clear that the SCFs calculated using the present approach are in excellent match
with given in the the work done by Vlachoutsis et al. [123]. Also the values of K,
(K7 = 0.6808, Ky = 0.6794) for n = 120 matched exactly with those given in his work.
The SCF versus the g—;; are plotted in Fig. (3.6), for n = 120, when only Ga3 changes
while the other values remain unchanged.

Next SCF's are calculated for different symmetric lay-up sequences. The results are
compared with those found in literature in Table 3.2. the results obtained using the
present appoach are found in good agreement with those given in literature.

Finally the SCFs are calculated for the homogeneous Isotropic/orthotropic/monoclinic

materials. the SCFs (K 1=Ky = %) are found to be in agreement with literature [47, 123].
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Figure 3.5: Variation of SCFs with number of plies
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Figure 3.6: Variation of SCFs with g—;z

3.6.2 Validation of the Deformation of Plates

In this section displacements and stresses are calculated for different Numerical examples.

Fig. 3.7 and 3.8 depict the dimensions of the plats, the lay-up sequences and the boundary
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Table 3.2: SCFs for different symmetric lay-up sequences

Lay-up (°) Material (Table 3.1) Theory — K K,
[0,90,0] Material-2 [47] 0.7031 0.8676
Present 0.5828 0.8028
[0,90]¢ Material-2 [46] 0.5952 0.7205
[45]  0.5936 0.7788
Present 0.5952 0.7205
Materia-4 Present 0.8332 0.8334
[30/ — 30]s Material-2 [50]  0.7549 0.6730
[45]  0.6773 0.6722
Present 0.6472 0.6361
[10/5/0/5/10] Material-3 [47]  0.8313 0.8208
Present 0.8303 0.8309
[—14.80/75.20/ — 75.20/ Material-1 Present 0.8029 0.3926
14.80/ — 22.87/67.13]s
[0/90/0/90]5 Material-2 Present 0.6574 0.6305
[45/ — 45]s Material-5 Present 0.7237 0.7237

conditions for different numeric examples. The values of length of the plate a, width of
the plate b and thickness of the plate h along with material properties and boundary

conditions used in different examples are given in Table 3.3.

Table 3.3: Geometry, Material Properties and boundary conditions for the numerical
examples

Numerical Geometry Material Boundary
Example (Fig. 3.7) Properties Conditions
a (m) b (m) h (m) b (Table 3.1)  (Fig. 3.8)
Example-1 0.5472 0.1824  0.001824 100 Material-1 cfef
Example-2 0.3048 0.3048  0.002438 125 Material-4 ccee
Example-3 a a h 20 Material-2 SSSS
Example-4 a a h Material-2 SSSS
Example-5 ) 1 0.02 50 Material-5 cecee

Result for the center point deflection of the plate considered in Example-2 is ploted in
Fig. 3.12. it is compared with that obtained using 3D FEA, MXFEM [144], Experimen-
tal [43] and Linear [144] approaches. The results obtained using present, 3D FEA and
MXFEM approachs are in good aggrement. However, there is a small difference in exper-
imental results. This difference might be due to limitations in modeling the experiment’s

actual support conditions and material properties within the simulations.
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Figure 3.7: Geometry of the plate examined in the numerical examples (a) in-plane dimen-
sions of the plate (b) through the thickness structure of the plate in Example-1 (¢) through

the thickness structure of the plate in Example-2

(d) through the thickness structure of

the plate in Example-3 (e) through the thickness structure of the plate in Example-4, (f)
through the thickness structure of the plate in Example-5.
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Figure 3.8: Boundary conditions used in different numerical examples
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Figure 3.9: Load-deflection curves for the central point of the plate considered in Example-
1 under uniform Pressure P applied at its top face

In Example-1 and Example-2 the plate is subjected to a uniform pressure P on the top

face (z3 = —%). In rest of the numerical examples (Example-3, Example-4 and Example-

5), plates subjected to a sinusoidally varying pressure ¢ on its top face is examined.

qzqosin<

Wfl) sin (ﬂl;m) (3.52)
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Figure 3.10: Out-of-plane deflection of the plate considered in Example-1 subjected to a
uniform pressure of P = 400 N/m? applied on its top face. Deflections are obtained using:
(a) 3D Finite Element Analysis (FEA) and (b) present ACI-ESL plate theory.

2.0

0.5

0

Figure 3.11: Percentage error in the out of plane deflection uz obtained using 3D FEA
and present approach under uniform Pressure of P = 400N /m? applied at the top face

The lay-up sequence for the laminate in Example-1, Example-3 and Example-5 are
[—14.80°/75.20°/ — 75.20°/14.80°/ — 22.87°/67.13°]s, [0°/90°/0°/90°]s, [45°/ — 45°]¢ re-
spectively. The first example has a hygrothermally stable lay-up sequence [44]. The lay-up
sequence for Example-2 and Example-4 is [0°/90°]s. The SCFs corresponding to the all

numerical examples are calculated following the present approach. These SCF's are listed
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Figure 3.12: Load-deflection curves for the central point of the plate considered in
Example-2 under uniform Pressure P applied at its top face

in Table 3.2.

For Example-1, the transverse displacement (u3) of the plate midpoint (xl =3, Ty = g)
for different values of constant pressures P is calculated [61] utilizing the present approach,
and 3D FEA. Fig. 3.9 shows that the transverse displacement computed by the proposed
plate model is in excellent agreement with the 3D FEA. In this work, the 3D finite el-
ement analysis was performed using the Abaqus software. The element type chosen for
the analysis was C3D20R, which corresponds to a 20-node quadratic brick element with
reduced integration. A thorough convergence study was carried out to ensure the accu-
racy and reliability of the obtained results. This study involved systematically refining
the mesh and monitoring the convergence behavior of relevant quantities such as displace-
ments, strains, and stresses. Nevertheless, for brevity, the convergence analysis is omitted
from this presentation. Analytical solutions were obtained using numerical methods or
state-of-the-space methods (such as the Navier or Levy solution) [119].

Figures 3.10 shows the variation of the displacement component us with respect to
r; and zy for Example-1 with a uniform pressure of P = 400 N/m?. Figure 3.10(a)
was generated using the 3D FEA approach, while Figure 3.10(b) was produced using the

present approach. Figure 3.11 illustrates the variation of the percentage error in the value
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Figure 3.13: Variation of out of plane non-dimensionalized deflection w along the center-
line parallel to z; and non-dimensionalized stress components @;; along the thickness of

the plate considered in Example-3

of uz with respect to z; and x5 between the results obtained by the two approaches. The

percentage error (PE) for Figure 3.11 is defined as follows
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Table 3.4: Comparison of the dimensionless quantities (Max Value) computed in Example-
4

Quant. 3D Elas- FSDT

b | (Max. %‘gA ticity Present EggT (K=2)
Value) [122] [122]
w 0.7469 0.743 0.7447 0.7147 0.6628
10 | 011 0.5652 0.559 0.4827 0.5456 0.4989
099 0.4056 0.401 0.3988 0.3888 0.3615
o3 0.2124 0.196 0.1992 0.1531 0.1292
013 0.3147 0.301 0.3082 0.2640 0.1667
012 0.0235 | 0.0275 0.0253 | 0.0268 | 0.0241
w 0.5164 0.517 0.5138 0.5060 0.4912
20 | 711 0.5464 | 0.543 0.5222 | 0.5393 | 0.5273
T2 0.3113 0.308 0.3076 0.3043 0.2957
023 0.1664 0.156 0.1562 0.1234 0.1087
013 0.3384 0.328 0.3301 0.2825 0.1749
019 0.0216 0.0230 0.0225 0.0228 0.0221
w 0.4354 0.4385 0.4346 0.4343 0.4337
100/ 011 0.5398 0.539 0.5380 0.5387 0.5382
092 0.2711 0.276 0.2710 0.2708 0.2705
o3 0.1492 0.141 0.1382 0.1117 0.1009
013 0.3492 | 0.337 0.3385 | 0.2897 | 0.1780
019 0.0212 0.0216 0.0213 0.0213 0.0213
PE = 100 U3,FEA ;a/l:?),Present (353)

U3 FEA

Where u3 ppa and ug present are values of uz obtained using the 3D FEA and the present
approaches. uz's, is the maximum value of uzpra. Figure 3.11 demonstrates that the
results obtained by the 3D FEA and the present approach are in very good agreement.

To compare the results, following dimensionless quantities [116] are considered in

Example-3, Example-4 and Example-5.
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2 qo b4 5’ qo b
a b h? b h
J11 = 011 (57 57953) W 013 = 013 <0, 5,1‘3) m (3.54)
a b h? h?
T2 = 0922 (5,5,953) W b2 T12 = 012 (0,07$3)W

Fig. 3.13 illustrates the variation of the dimensionless transverse displacement w along
the centerline parallel to the z; axis and the variation of the dimensionless stresses
(G11,022,023,013 and 712) along the thickness direction of the plate considered in Example-
3. The results were compared with those obtained using 3D FEA, TSDT [122] , ACI-ESL
[57], FSDT [119] and CLPT [119].

Table 3.4 presents a comparison of the maximum values of the dimensionless quantities
in Example-4. The observations from the table indicate that as the § ratio increases, the
results converge towards the 3D FEA results. This trend is a consequence of the fact
that the ordering of the strains has been carried out considering the smallness of the ratio
%. The results of the present approach aligns well with results from 3D FEA and 3D
elasticity. Notably, a significant improvement in the displacement field and transverse
shear stresses is observed compared to the TSDT and FSDT plate theories.

Fig. 3.14 shows the variation of w along the center-line parallel to z; axis, It also
presents the variation of a11, 722, 723, 713 and 715 along the thickness in Example-4.
Notably, these quantities are calculates for pint B having in-plane coordinates (, %) as
shown in Fig. 3.7 insted of the locations defined in Eq. (3.54). The results obtained using
the present approach are compared with 3D FEA.

3.7 Conclusion

In this chapter, a computationally efficient framework is presented to analyze multilayered
symmetric composite plates. This framework makes the FSDT plate theory isoenergetic to
the asymptotically correct plate theory by finding suitable SCFs. the isoenergetic FSDT
plate theory is used to find the 2D displacement components. The through the thickness
variation of the displacement field, strains and stresses is recovered by substituting these
2D variables in the asymptotically correct displacement, strains and stresses. Following

are key highlights of the present work
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Figure 3.14: Variation of out of plane non-dimensionalized deflection w along the center-
line parallel to z; and non-dimensionalized stress components 7;; along the thickness of

the plate considered in Example-5

1. The utilization of isoenergetic FSDT plate theory in this work results in a low

computational cost similar to FSDT plate theory.

2. The dimensional reduction using VAM is based on first principles, avoiding reliance
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on pre-assumed kinematics of the plate and assumptions regarding the order of

different quantities of interest.

3. The zeroth order solution yields the estimation of the 3D displacement field in terms
of 2D variables u;(x1, z2), leading to the dimensional reduction of the 3D problem

to 2D, which is traditionally assumed in classical plate theories.

4. The reference plane of the plate emerges naturally as a consequence of the systematic
approach adopted in this work, and its position is determined on logical grounds

rather than being set a priori.

5. A mathematically sound ordering scheme is employed, utilizing the plate’s geometry
and a bound on the maximum value of the strains to determine the orders of different
quantities of interest. The final order of these quantities matches exactly with those

found in the literature, demonstrating the robustness of the ordering scheme.

6. The higher order 1D through the thickness analysis involves derivatives of w; (1, z2)
w.r.t x,. The complexity involving these derivatives is eliminated through a novel

isoenegetic approach resulting in better estimation of the overall deformation.

7. The plane stress condition emerges naturally from the mathematical procedure
adopted in this formulation, rather than being an ad hoc assumption as in many

other plate theories.

8. Numerical examples demonstrate the asymptotic correctness of the present work,
with improved results observed as the small parameter (%) decreases. Satisfactory

performance is achieved for thin and moderately thick plates.

9. The present framework outperforms FSDT and higher-order (TSDT) ESL plate
theories, particularly in the displacement field and transverse shear strains and

stresses.

In summary, this work presents a more refined, accurate, and computationally efficient
framework for analyzing thin and moderately thick plate structures. Comparison with
established theories such as CLPT, FSDT, R-TSDT, and 3D FEA demonstrates the

accuracy of the proposed approach.
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Chapter 4

Analysis of Functionally Graded
Plates Using Novel Isoenergetic
Formulation

4.1 Introduction

Functionally Graded Materials (FGMs), inspired by the structure of bamboo, represent
a cutting-edge advancement. Composed of two or more materials with a gradual compo-
sitional change in desired direction [20], FGMs were pioneered by Japanese scientists for
rocket nozzle applications to withstand extreme thermal and mechanical loads [19]. Look-
ing at the exceptional results/properties offered by these materials, they are now widely
employed in many applications such as in artificial hip joints, in transducers for filtering
out the noise, piezoelectric, aircraft structures, biomedical devices, dental implant, various
kind of sensors etc. [82, 18, 17]

This chapter presents an asymptotically correct isoenergetic formulation for the func-
tionally graded plates. Some of the literature studies on analytical approaches for studying
FGM plate-type structures are as follows: Kumar et al. [13] conducted a study on the
bending behavior of FGM plates. In this work a higher order shear displacement model
approach has been adopted where the displacement variables are assumed as a series so-
lution. For finding out the solution use of Navier’s empirical equations has been made.
However, no analytical expressions have been provided in the study and just the results
are plotted. It is suspected that the solutions obtained might be quite complex which
can not be represented in mathematical expression form. Nguyen et al. [12] proposed a

first-order shear deformation model for the FGM plates using the stress based formula-
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tion. For obtaining correct results, use of Shear Correction Factor (SCF) has been made
which is calculated using the shear deformation energy. Numerical results for deflection
and stresses have been presented in tabular and graphical form without any evidence to
the mathematical expressions for the results. The approach has ad-hoc assumptions as-
sociated to it and also the calculations involved are quite combersome. Singha et al. [11]
conducted a non linear finite element analysis of functionally graded plates under trans-
verse loads. The material properties are assumed to follow a power law variation along the
thickness of the plate. Use of FSDT theory has been made to formulate the problem. The
position of neutral plane of the plate is found out by using the literature results. Since,
they are finite element based results thus don’t give sufficient insight into the mechanics
of the problem and also involves ad-hoc assumtions. Le [124] presented first order shear
deformation theory for functionally graded plates. A linear strain tensor has been used
which restricts the effects of geometric non-linearity to be included in the analysis. Also,
the mid-plane is selected as the reference plane without any justification. The use of VAM
technique leads to complicated expressions. Silvia et al. [10] presented a finite element
based displacement calculus of functionally graded plate. The analysis has been done by
assuming homogeneous layers which limit the scope of the formulation. Vidal et al. [9]
analyzed FGM plates using a variable seperation method. A computationally intensive
layer-wise approach has been used. The displacement field has been approximated as a
sum of seperated functions of in-plane coordinate and out of plane/transverse coordinate.
The fourth order expansion for transverse coordinate leads to correct solutions for the
problem while the in-plane coordinates have been solved using FEA approach. The com-
putational cost for this fourth order expansion is not in par with the improvement in the
results.

From the literature above, it is clear that all the models have certain assumptions
associated to them or the solutions provided are quite cumbersome which require higher
computational cost. Thus, a simpler and assumptions free analysis with lesser compu-
tational cost is still required. Further, It has also been observed that the displacement
based formulation offers a simpler analysis which makes this approach a wise choice to
use. In this work we proceed with the reduced order model formulation by adopting dis-
placement based formulation. To make this formulation more robust and fundamental we
have adopted Variational Asymptotic Method (VAM) [107] where the 3D problem is split
up into a 1D through the thickness analysis and 2D cross-sectional analysis with the help

of small parameters inherent to the problem. This small parameter assists in systematic
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derivation and asymptotic expansion of the strain energy for a refined solution. To obtain
the solution, use of first principle has been made. Further, as already highlighted about
the limitation of various reduced order models regarding higher order derivatives, this
issue has been resolved by the use of novel isoenergetic principle where the strain energy
of this model is equated to the strain energy of the FSDT model thus resulting in the
considerable savings of computational cost without compromising on the accuracy of the
solution [57]. The obtained results have been verified with the help of 3D FEA results
and few prominent literature results. A good agreement with a considerable savings in
computational cost justifies the requirement of the presented formulation. Since this ap-
proach is asymptotically correct and use the novel concept of isoenergetic so we name it
as Asymptotically Correct Isoenergetic Formulation (ACIF). The detailed derivation and

verfication of the proposed ACIF is presented in the next section.

4.2 Analytical Formulation

An FGM plate with length a, width b, and thickness h, has been shown in Fig. 4.1.
A right handed orthogonal cartesian coordinate system xz; with unit vectors é; has been
adopted, where, x3-axis is oriented along the thickness of the plate while 1, x5 represents
the in-plane coordinates. The reference plane is taken at a distance n from the mid-plane
of the plate as shown in Fig 4.1(b). For a plate-like structure, usually, the thickness h is
much smaller than the other two dimensions i.e. a and b. Thus, exploiting this feature to
define a and b to be of the order [, so the ratio % becomes a small parameter i.e. % < 1.
For making the analysis simpler, the interior region of the plate has been denoted by 2
while the boundary which comprises of the top surface is denoted by 0€,, the bottom
surface boundary is denoted by 0, and the side surfaces are denoted by 0€)q. with
Oy, = Oop U Oor. Now, the position vector of an arbitrary point P in this domain
can be represented by & = z;6;. It is to be noted that the Roman indices (i, 7, k,...)
range from 1 to 3, while Greek indices («, 3,7, ...) range from 1 to 2 unless their values
are specified. Now, after deformation the point P shifts to a new location represented
by P’. The displacement vector for this shift is given by ¢ = v;é;. For the present
study, we consider Green—St. Venant strain tensor [128, 127, 119, 139] which accounts for

deformation having small strains and moderate rotations
17/- o AT o A\NT /.
E-3 {(w) + (vwa) + (vxv) (vwa)} (4.1)
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Figure 4.1: Schematic of the plate deformation (a) Undeformed state (b) Coordinate
system (c¢) Deformed state

Using the information discussed up to now, we formulate the problem in the subsequent
sections, where a novel strategy for developing a reduced order plate theory has been
presented. This analytical development is categorized into three parts: Part A presents the
development a Classical Laminated Plate Theory (CLPT) type theory, Part B discusses
the refinement in the model presented in Part A considering the contribution of higher-
order energy, and Part C presents a novel iso-energetic concept that eliminates higher-
order derivatives and thus reduces the computational cost without compromising the

accuracy of the approach.
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4.3 Part A: CLPT-type plate theory

For efficient and accurate modeling, the use of small parameter has been made along with
imposing a limit on the maximum value of strain. Various quantities that are of interest
in the present analysis are ordered using this small parameter. The detailed discussion

on this ordering is as follows:

4.3.1 Ordering Scheme

The idea of ordering comes from the work of Hodges et al. [112], Using this idea the

relation between the orders of v; and its derivatives with respect to x; can be written as

g o o 1\ 1\
Ol =——=—v |~ |- — ] O(v;
(axg O 0 ”) (z) (h) () (4.2)
r,s,t=0,1,2,3,...
It is to be noted that these derivatives follow the simple differential calculus laws where

O (8‘9—;(_) vi> = O(v;). The supnorm (supremum norm) of strains (|| E||.) is defined below

1]l = max = max |E;| (4.3)

The maximum value of % and the supnorm is bounded by ¢ and e respectively as shown

below mathematically
<¢
E]loe < ¢

Now, as per the small deformation and moderate rotations discussed in the analytical

~ =

(4.4)

development section, we consider bound on the supnorm of strains to be a very small
parameter i.e. ¢ < 1. For a plate-like structure bound on the maximum value of % is
small i.e. & < 1. For the asymptotic expansion of the stains and strain energy, it is
assumed that ¢ = £3. The bound on the maximum value of the strains and % with the
ordering scheme given in Eq. (4.2) results in a unique estimation of the order of different

quantities of interest which will be evident in the coming sections.

4.3.2 Constitutive Relations and Strain Energy

. . . T
Second Piola-Kirchhoff stress tensor is given by o = {011, 092, 033, Tes3, T3, T12} and

the constitutive relation is given by

oc=CE, (4.5)
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where C' represents the stiffness matrix and E = {F\;, Fa, FEs3, 2Es3, 2E)3, 2E12}T.
For FGM plates with material gradation in x3 direction, the stiffness matrix takes the

following form [82]

[ (1—-v) v v 0 0 0
v (1—-v) v 0 0 0
O Y v v (1—-v) 0 0 0
(14 v)(1—2v) 0 0 0 3(1-2v) 0 0
0 0 0 0 s(1—2v) 0

0 0 0 0 0 11— 2)

(4.6)
Where Y = Y (z3) is youngs modulus of elasticity which changes in the thickness direction
following different material gradation laws (viz. exponential, power law and reciprocal
gradation) and v is Poisson’s ratio. The order of Y is taken u. The strain energy density
is given by )

U= §UTE (4.7)

4.3.3 Dimensional Reduction

For this, let us start with the application of the principle of virtual work

/ sUdV — / 7 - 6vday, — / t- 6tdagqe = 0 (4.8)
Q b 0Q%side

where ¢ = ¢ é3 and t = t; é are traction vectors on 9Qy and e respectively. It
has been observed that the use of Eq. (4.8) results in a computationally intensive 3D
elasticity problem. Thus, to save the cost a lot of literature work uses the concept where
3D problem is reduced into 2D, and then the energy is calculated, but this reduction
involves ad hoc and a priori assumptions, which may not fully account for deformation
energy considerations. In the present work we consider the energy aspects of the problem
to develop a reduced order plate model. The dimensional reduction process is divided
into different order solutions. The details of each order solution are presented in the

subsequent sections.

4.3.4 Zeroth Order Solutions (ZOS)

Here the order of displacement field is assumed to be 0 so that v; = v. The discussion
regarding the ordering scheme has been done in section 3.1. Using this scheme the esti-

mated order of v)(x1, T2, x3) is determined to be O(£3h). Now using this order estimation,
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the order of the different strain components is evaluated which is shown as

4 81}8 4
E; =0(&Y) 2E23=a—+0(f)
T3
—~—
o(e?)
En=0()  265= 0% L0
22 = 13 = 0z (4.9)
-~
o(&?)
ovl
FEaq = —3 = 4
3= B, 2E1, =0 (&%)
—~
o(g?)

It is to be noted that the quantities with under-braces represents the orders. Further, it is
important to highlight that the order of v? here, corresponds to the maximum permissible
value that ensures the strains remain bounded by € = £3. The order of v; in this section is
unique in itself, as altering the order of v? would lead to a change in the upper bound of the
strains, which is not allowable. This ordering of strains yields an ordered representation

of U in terms of the small parameters ¢ as illustrated below.

U= Ug +0 ()
~~

O(&5u)
oY 2+ a_vg 2+ 2(1 —v) [ 0vY 2
0x3 0xs (1 —2v) \Oz3

4.10
; (4.10)
As per the ordering, term, Uy, will have the highest contribution to the energy functional.

Usig =

4(1+v)

Therefore, for zeroth order contribution only this energy becomes important [137]. This

reduces the virtual work Eq. (4.8) to the following form

/ {/ 5Usigdx3} dQpes — / q - 0vdayy,
aQref xr3 6th

- / E (Wdaside =0
6Qside

where 0, is the reference plane of the plate . For functionally graded materials, neutral

(4.11)

plane donot coincide with the geometrical central plane of the plate thus, x1,xs plane
which is 7 distance away from the geometrical central plane, is taken as its reference
plane. It is worth noting that the Eq. (4.10) contains terms having derivatives of v{ with

respect to x3 only. Thus, the minimization problem can be split into two stages: (i) a 1D
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through the thickness analysis along x3 only, and (ii) a 2D analysis in the x1,zo plane,

as expressed below

ST, =0 I = 0
N——

v .
1D Analysis 2D Analysis
I, = / Usigdrs (4.12)
T3

II = / I, dayes — / q - vdag, — / t - Udagide
6Qref ath aQside

It can be observed that the dimensional reduction of the problem is a natural outcome of

this strategy.

Through the Thickness 1D Analysis

Extremization of II,, yields following Euler Lagrange governing equations

Y v Ya%(f

=0
Oxs 015 3
oY v 0?0
y -0 4.13
Oxs Oxs + Oz (4.13)
oY ol N Y821)2‘3) _0
0xs 0rs3 Oxs
and following associated boundary conditions
Bv?|x3=7(h/2)fn - Bv?lzs,:(hﬂ)*n =0
ng|mng(h/2)f17 - B”S ‘$3=(h/2)*77 =0

B |z3:—<h/2>—n =By ’m:(h/m—n -
Yy o
Bo=————1
o 2(14+v) Oz (4.14)
g, Y o
> 2(1+v)0zs
B Y(1—-v) 0

S (1=2v)(1+v)0xs

solving Eq. (4.13) with the boundary conditions Eq. (4.14) results in following solution
V) = (21, 7o) (4.15)

It can be observed that the zeroth-order solution manifest the 3D displacement compo-

nents v;, in terms of u;. Here, u; are functions of only the in-plane coordinates x; and
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Zo, making them 2D variables which means, at this stage the displacements are constant
along the thickness of the plate. Further, refinement in the solutions will be carried out in
the higher order solutions. For convenience, these 2D variables, u;, are chosen to represent
the in-plane displacements of the reference plane (the x;-zo plane) of the plate. This is

achieved through the following equation.

wi =l (4.16)
4.3.5 First Order Solution (FOS)
The solution obtained in zeroth-order is perturbed to obtain first order solution!.
v; =) + v} =+ v (4.17)

It is important to note that the term v} in Eq. (4.17) leads to three additional degrees
of freedom to the displacement field. Thus, to remove this redundancy and to ensure the
uniqueness of the solution, three constraints are essential. These constraints are

7|

U,

—0 (4.18)

x3=0

Now using the procedure described in Section 4.3.1, the order of quantities u; and v is
found to be O(£31) and O(&3h), respectively. One may note that the order of the pertur-
bation variables v? and v} is the same, which essentially contradict the usual refinement
procedure done through perturbations. However, the analysis starts with a conservative
order of v;, treating the plate as a 3D body and considering the maximum possible varia-
tion in v; for all possible deformation modes with strains bounded by €. As the refinement
is carried out in the displacement field, the plate reveals its true deformation pattern, re-
laxing the bound on v;. This relaxation necessitates further refinement in the displacement

field in the same order, justifying it. Substituting v; from Eq. (4.17) into Eq. (4.1) gives

Note that v = v1*(x1, 22, 73), termed as n'! order perturbation variable, will consistently be used in
the upcoming work to improve the displacement field in the n'" order solution
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the following strains, along with their respective orders indicated in underbraces

Oy A _ Oug vy 4
En = oz, +0 (£%) 2Fy = By + D24 +0 (£%)
~~~ ——

o(&3) o(&3)
_ Ouy A ~ Oug | Ovy 4
E22_8_x2+0(£) 2E13_a—xl+a—x3+0(§) (4.19)
~~~ ——
0(&3) 0(&3)
ovl Ou;  Ouy
Esz=—240(¢) 2E5=—+—40 (&
33 8x3 + (6 ) 12 8:62 + 8x1 + (5 )
~~~ ——
o(&?) o(&?)

Using these strains Eq. (4.19) strain energy terms U and Uy, are recalculated. Just like
the Zeroth order solution, the perturbation variables v} in Ug, contain derivatives with
respect to z3 only thus allowing us to perform the 3D analysis in two stages (1D and 2D

analyses).

Through the Thickness 1D Analysis

The functional II,, is calculated agarin to accommodate the changes in Uy,. Extremizing

IL,, yields the following Euler Lagrange equations

oY (Ouz  Ov} v}
% _
dx3 (8:1:1 * 8x3) * (61‘% 0

oY (Ous  Ov} v}
Y = 4.20
dx3 (63:2 N 81:3) * (81‘% 0 (4.20)
8Y (9uQ 3Y (9u1 8Y 8v§ 82v§
—v)——=+ (1 -v)Y =0
1/8173 85(?2 V@a:g a$1 V) 81’3 89(:3 + ( V) 8a:§
and associated boundary conditions
Bv% ‘;vg:—(h/?)—n - Bv% }xsz(hﬂ)—n =0
Bt | s ny2y—n = Butlaaeuyy—y = 0
Bv§ ‘xszf(hﬂ)*n - 8”5 }xs=(h/2)*n =0
Y Ouz  Ov}
Y duz Oy
5o = 510 (axz i axg)
B vy Ouy N Oy Y(1—-v) 0Ouvl
BT I—20)(1+v) \Ozy | Oxs)  (1—20)(1+v)Oxs
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Solving the Euler Lagrange equations in Eq. (4.20) with the boundary conditions in Eq.
(4.21) and the constraints given in Eq. (4.18) results in

r 381’1
8U3
vy = —T3— s (4.22)
1 a3y (Oup | Ouy
- (8x1 * 8x2>
4.3.6 Second Order Solution (SOS)
Further perturbation in the displacement field leads to
v; =) 4+ v + 07
where
Ous Ous (4.23)
V1 = U] — T3—=—— —l—vl, Vg = Ug — T3 —— —l—v2,
8 T1 a X2

2
V3 = U3 +l‘3f1 +U3

Using the similar procedure as explained earlier, the orders of u,, uz and v? are estimated
to be O(&31), O (€21) and O(&3h), respectively. Substituting v; from Eq. (4.23) into Eq.
(4.1) leads to

Oy 0%us 4 ov3 4
Ell—a—qjl—ﬂ,’g@—x%—i—(}(g) 2E23—8_;U3+O(£)
— ~~
0(&3) 0(&3)
o 8u2 82’&3 4 81}1
E22 = 8_132 — .Z’ga—x% +O (5 ) 2E13 8{E3 +O (f )
— ~~
OE?) o) (4.24)
v 4
E33—f1+a +O(f)
€3
0(£3)
ou;  Ousy 0%us A
2E12 N ({91‘2 * 8_1'1 21;3 6m16x%+0 (5 )

0(E?)
Using the strains from Eq. (4.24) the strain energy U and Uy, is calculated again. Similar
observations are noted regarding the splitting of problem into two seperate stages i.e. 1D

and 2D analysis.
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Through the Thickness 1D Analysis

Extremization of II,, results in following Euler Lagrange equations

oY v} Y(‘?Qv%

=0
Ox3 Oxs 3
Y ov2 2,2
Y 0v; n YE) 1)22 _0
0x3 03 Oxs (4.25)
Y82U3 oY 6u1 82’&3 Y62U3 oY 8u2 827,L3 .
v —v — T3—5 v —v —x
ox? dxs \ Oz, ° 922 O’ dxs \Ozy 023
oY [ —v duy  —v Ouy = Ol 0?3
—(1- —(l—v)Y=2=0
( V>6m3 (1—V8$2+1—V81‘1+8I3 (1-v) ox?
and associated boundary conditions
B }m:—(h/?)—n =By |m3:(h/2>—n =0
By }x3:—(h/2)—n = B3 |z3:(h/2)—n =0
B.; }zgz—(h/Q)—n = B3 |x3:(h/2)—n =0
Y  ov?
Bp=-———1
g Y 03
2 2(1 + I/) 6;173
-Y 82U3 82163 8U2
B2 = — (1 — 73
S (1-20)(1+v) (:cgu 0z? sy dx3 ( y)8x3>
Solution to these equations along with the constraints given in Eq. (4.18) leads to following
solution
v? =0
vy =0 (4.27)
) T3 Duz  O%us
Vqg =
P21 —v) \ 022 023

It is hereby emphasized that the solution obtained up to this stage i.e.second order solution
gives a CLPT like plate theory, which was the objective of Part A of this work. Summary

and key findings of the work done so fat is briefed in the following section

4.3.7 Summary of Part A
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riving the reduced order model

Systematic methodology adopted in de-
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A graphical representation of the
adopted procedure is shown in Fig-
ure 4.2. The analysis starts with
the calculation of strains where the
plate is considered to be a 3D body.
Then an order estimation scheme
is adopted which based on the up-
per bound on the supnorm and %
which is then followed by a rule to
calculate the order of derivatives of
displacement components given in
Eq. (4.2).

lution starts with order estimation

The zeroth order so-

for the quantities of interest which
follows the ordering strategy de-
scribed in Section 3.1. The result
obtained is an ordered representa-
tion of the strain energy density U.
The most significant portion of this
strain energy density is seperated
and termed as Ugg. This Uy is ex-
tremized to yield Euler-Lagrange
equations and associated boundary
conditions. The solutions to these
equations results in a closed form
solution. In the first and second or-
der solutions, the entire procedure
is repeated, by perturbing the solu-
tion obtained in the preceeding or-
der i.e. zeroth order perturbation
for first order solution and pertur-
bation in first order for finding the

second order solution.
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4.3.8 Displcement Field of Part A

The displacement field derived in Part A of this work is shown as

0u3
V1 =Up — X357 —

3:61

O(&3)
8U3
Vg = U2 — XT3 —=—
——
O(&%)

B  my (0w N Ous N T3y 0%us N 0%us
BT \on " Oas 2(1—v) \ 023 023

oS O(E*h) ’

It can be observed that the displacement components v, and v given in Eq. (4.28) are
in line with the results of CLPT theory [100, 119, 130], thus validating the Kirchhoft’s
assumption that a line segment perpendicular to the reference plane in the undeformed
configuration remains straight and perpendicular to the deformed reference plane after
deformation. But the displacement component v3 seems to contradict Kirchhoff’s assump-
tion that there is no change in the length of a transverse normal after deformation (i.e.,
the transverse normals are inextensible). Interestingly, the plane stress condition in CLPT
makes it energetically equivalent to the asymptotically correct plate theory developed in

Part A of this work the detailed discussion is followed in the next section.

4.3.9 Strains of Part A

Eq. (4.1) and (4.28) give the following strains corrected up to order &*

E _aul_x @2’&3 E _8u2_x 82U3
U o, 3 Oz? 27 2y 3 O3
o(e?) o(e?)
33 = f1+ 22301 23 (4.29)
o)
ou;  Ousy 0%us
9F1; = 0 OBy = b T2
1 12 ?xg * al‘l 3 6x18x%
o(€®)
Using strains from Eq. (4.29) in Eq. (4.5) leads to

o33 = Ci3 B + Cag Eag + O3 Esz +2 Csg Eip =0 (4.30)

103



CHAPTER 4 4.4. PART B: REFINEMENT OF PART A

This justifies the plane stress condition which is valid up to the present level of accuracy.
With o33 = 0, the transverse normal strain F33 does not appear in the virtual work Eq.
(4.8), although it is not identically zero. As a result, the transverse normal strain Fjs3 is

neglected. By omitting the transverse strain component, Fs3, in Eq. (4.29), one can write

( % - 8211,3 )

E11 oz €3 893%
Quy _ .. O%ug
E22 Oxo Z3 837%
Eps == 2E23 == 0 > (431)

2E13 0
2E, Ouy | duy _ 0’ug

\ Ox2 + ox1 2 39210z /

It is worth noting that despite the discrepancy in the displacement field shown in Section
3.8, the asymptotically correct strains E,s in Eq. (4.31) resemble the strains given by
CLPT [100]. This indicates that the CLPT plate theory is energetically equivalent to the
asymptotically correct plate theory derived considering strain energy up to order (£5u)
and neglecting its higher order part. The work done in Part A is further refined in Part
B considering the contribution of the higher order Energy

4.4 Part B: Refinement of Part A

This section refines the plate theory by including higher-order energy terms which facil-
itate for a more comprehensive analysis by capturing the influence of material property
variations through the thickness direction. Notably, Part A derives strains independent

of such variations, while Part B extracts this information.

4.4.1 Third Order Solution (TOS)

Perturbing the displacement field obtained in second order solution as

0 1 2 3

where
ouz 4 duz 4 (4.32)
U1 = Uy :zzgaxl—i—vl, Vg = Usg x38$2+v2
xsv [(Ou;  Ousy T3y Pus  0%us 5
= us — -
BE T (8x1 3932) * 2(1 —v) \ 023 * o3 T

Now using the procedure discussed in section 3.1, the orders of u,, u3, and v} are estimated
to be O(£31), O(€%1), and O(&3h), respectively which is identical to the second order
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solution, So the extremization on these quantities will lead to v} = 0 meaning that the

solution has no improvement. Thus we need to consider the contribution of higher-order

strain energy at this stage. To account for the effect of higher order strain energy i.e. of
the order of (£31), we set the order of v} to O (£*h) while keeping the orders of the other

variables unchanged. Substituting v; from Eq. (4.32) into Eq. (4.1) yields

ouy Pus 1 (Oug\® P 6
Fi1=— —ga—o 4+ —= 71
1 0, s or? 2 (8331 + 0x; +0 (5 )
N — DN LA NG
0(&3) o(&4) O(¢5)
Ous Pus 1 (Ouz\® %3 6
n= -5 (Ge) + G0 )
N — P —— —~—~
O(&3) O(£%) O(&°)
—v |Ouy Ouy Pus  O%us Ous S| Ous 8v§’
E — — R JE— — v _ _ _ 9 O 6
BT [8@ 0, 3 ( Ox? + 013 + 2 \ 0z * 2 \ Oxa 03 + <£ )
) oY)
T3V 0%us 0%uy Pus Pus ovs
2y — S R v
2201 - ) { 013 0x10xo s o3 i 023014 * O3
o(e")
+% —%—i—x Ous B 1 Ous yaul Ous . V82u3 0%us +8_U§’
0xy Oxs % 0,01, 1—voxy | 01 Oz s 02 3 0z,
)
T3V 0%*uy 0%us DPus Pug ov?
2F = o7 My 9
BT =) { o3 011014 T o3 * 0x102% * Ozs
o(e")
N ug [ Juy L Ousg \ 1 Oug Vaug ouy . V(?ng 0%us N 8_1)?
0xy 0x; 02,02, 1—vox, | Oy On ? 03 0x? 0xy
)
3u1 3u2 82U3 0u3 3u3
2By, = S L T2y
12 0xs * 0, 3 0;5103:2/+ 0y 0xs
) o)
o ol
L 22 L0 (€5
o(e%)
(4.33)
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Using the strains from Eq. (4.33) strain energy U is calculated again, which takes the

following form

Usig
U=Uy+ U +Us+ Uy +0 () (4.34)
—_———
0(E%k) O(E%w)

where Uy, Uy, Us, and Us represents the energy contributions corresponding to zeroth,
first, second, and third order solutions, respectively. To include the effect of higher order
energy, the portion of U corrected up to O (€%u) is taken as Uge. Now the functional
II,, is recalculated to incorporate the change in Ug,. It has been observed that in the
third order solution the derivatives of the perturbation variables v} with respect to the
x, coordinates, i.e., (%), appears which create difficulty in the analysis. To eliminate
these derivatives, integration by parts is performed, which results in boundary conditions
defined at (q.. However, these boundary conditions are ignored in the present analysis,
as the aim is to find the displacement field for the interior domain of the plate without

considering the edge effects. Extremization of II,, yields the following Euler Lagrange

equations
— S—Z |:—2I31/% + x%u%gig — 2x3y8;_;? + x%ya;—;? +2(1 - V)%Q;ﬂ
oy {(—1 + ) %2%1 - azg; Foas(2 - ”)aijgig —(2- u)?;—;?
+3(2 — V)gi;? —(1- y)%?g} =0
_ g_z; [—23:31/% + x%u% — 2x3u%2—;§ + x%V%?’—;g +2(1-v) %2;}51 (4.35)
roy {(—1 +v) %222 - azg; + (2 —v) ai;g; —(2— V)ZQ—;;

83U3 82’03
+ x3(2 — v) 923 -(1-v) axg} =0

8Y 8U3 2 8U3 2 821)??; 82U§ _
(3_1‘1) + (a—@) + 2(1 — I/) D — 2(1 — I/)Y 81‘% =0

 Ors
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where fs, f3, g2 and g3 are functions of 1 and x5. The details for this is given in Appendix

A. The associated boundary conditions are given below

By ‘xgz—(h/Q)—n =By ‘xsz(hﬂ)—n =0
By ’xg:f(h/Q)fn = By ‘xsz(h/Q)fn =0
ng ‘13=*(h/2)*77 - ng ‘x3=(h/2)*77 =0
1 8QUQ 63U3 82”1 agu?) v}
B:s=—_"Y |-2 2 - Vo +2(1 - 1
v} 4(1 =12 { xgl/axlaxz +£3V8:U18:17% v 0x? T o3 +2 ) T3
1 0y Pusg 0?uy 0’us 0%y
B:=——-—Y|-2 2 — 2x3V——- 3 2(1 - 2
Ba— _ Y au?, 2+ % 2_2(_1_|_V)a_vg’
Vs 2(—1+v+202) \ \0ry Oy Oy
(4.36)

The Euler-Lagrange equations, Eq. (4.35), can be solved for different gradation models,
making the procedure versatile. Here, we are specifically considering the exponential
gradation model for further analysis. However, it’s important to note that the same
procedure can be applied to other gradation models as well. The mathematical form for
the exponential model is given by [82]

X(mi—n)}

Y =Y, e{ (4.37)

where A is gradation index. Solving Eq. (4.35) and (4.36) for this gradation model leads

1 A 2h+§—1
1 A 2h+£—j

to

2 2 2
fi=A1- u)%—% +A(1+v) 8?122:132 + 2Aaa;? (4.3
2 2 2
fo=X21-— u)%—;? + A1 +v) ailglb + 2A%;§
Pus Dus
g = dr10x3 * o3
us Pus
92

h 0x20ry O3
It can be observed that the quantities f; and fy; contain second order derivatives of wu,

w.r.t. x; and x5 so to eliminate them position of the reference plane of the plate is selected
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by taking n as given below [82]

n = g (coth (%) —~ %) (4.39)
3

Solving Eq. (4.18), (4.35), (4.36), (4.37) and (4.39) results in the following solution

—mfl/\cothi © z )\
v = 66)\;(_—21_‘_1/)2 |:6§Z’\+%>\Coth;‘x3 (12h* — 6has) + 23\*v) — 6e (—1 + e%> h3csch§] g1

g e h o2 LN

TN (C1 )
(5e) (52
(4.40)

A graphical representation of the adopted procedure for the development done in Part B

—m—l/\coth% |:

3 €3
Po(=1+v)

(Y

has been shown in Fig. 4.2.

4.4.2 A Discussion on the Displacement Field

The final displacement field obtained in Part A and B is given below

1 A
e h +§Acoth%x3 (12h2 . 6h£173>\ + .CE?;’)\QV) — 6e (_1 + e%) h3CSCh§:| g2

J/

8u3
V1 = U] — Ly3——
1 1 38$1
0o(&31)
—Jc3k—l)\cothA
[ h 2 2 z3A | 1 o A o )\
by €T TR b (120 ke 3) e (<14 ) s
O(€th)
0
U2 = u2 — x3ﬂ
81‘2
O(&31)
—23%_ 1ycothd
e h 2 2 23\ |1 coth 2 o )\
TR {6 Fraeonday (121 — 6haad + 23X) — 6e (<14 ¢ ) h3csch§] 9
O(€h)
—x3v [(Ouy  Oug T3y 2us  O%us s Bus 9 s )
vz = OZ;)JF} —v (&El + ag:Q) + 21— 1) \ 922 + 022 /+ 210 [\an 7o,
O(€?h) s oy

Oy e"3reoths ! A A PBug Bug
o h2 2 s5Acothg A hZ
x? + A(—1+v) < “ e 2> <8x§ * 8x18x%>
(4.41)
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The improvement in solution of this displacement field is influenced by each perturbation

we go through. This has been explained graphically in Fig (4.3) Fig. 4.3(a) shows a line

A
.
C >1 D
€3 1‘3
(a)
AP Al A _0us
4B = AB ) 0 115 £ AR ) Oy
0498 | AB D a D
o ic
B B!
(b) (c)
2 —Llacoth @ 1 a 3 3,
— 0t 7222(_1 ﬂf) h? <262“C°th 2 — eacsch%) <%;%,3 + 7‘3131%)
AZ[\_% A3/A
2B ALAB X 0;”11) ,
2AB 4 AB 3D
QC B2 30
B3
(d) (e)

Figure 4.3: Deformation of lines AB and C'D lying along direction é3 and é; respectively.
(a) Undeformed configuration (b) Configuration after zeroth perturbation (c¢) Configura-
tion after first perturbation (d) Configuration after second perturbation (e) Configuration
after third perturbation

segment C'D in the reference plane which is oriented along é; and another line segment
AB that oriented along é3. Now as per the zeroth order contribution to the solution there
is no change in the length or direction of the line segment AB thus, it is represented by
A°BY in Fig. 4.3(b). In the first and second order contributions the displacement field
incorporates the effect of rotation and change in length of line AB which is shown in Fig.
4.3(c) and 4.3(d) respectively. In the third order solutions, the line segment AB deforms
to the curve line A3B? as shown in Fig. 4.3(e).
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4.4.3 A Discussion on the Strains, Stresses and Stiffness Matrix

Eq. (4.1) and (4.41) give the strains corrected up to order (£*). These strains are given

below:

8u1 82u3 1 8U3 2
Fii=— — pa—= 1 [ —=
U o, 3 ox? + 2 \ 0z
(&) (&)

oy Py 1 <%)2

27 Brs 2 0a2 A1
0(E) o(E")
v Ousy Ous 2 ouy Ous 2 Pus  O%us
Es3 = 2 2— ) -2 it
33 2(—1+v) ( 0xy + (8952) + 0x; * 0xy 3 0r? + 3
o(e")
D — 1 —%—%ACO‘Dh(%)h 2) %-‘r%)\coth(%)(h_ )\)_ h h é 83U3+ 82u3
TN (-1 + V)e ‘ s NASEN 2 dxs  0r20x,y
o(e")
Oy = — R baeoth (3), (‘9 30 (3) (1 — ,0) — ehesch [ 2 Puy Oy
D T V)e ‘ s NASE 2 dx3  Ox1023
o(e")

8u1 8u2 82u3 8u3 8U3
2B = —t 4 =22
12 \(91’2 * 8:161 $3a$18$2/+ 8.1'1 (91'2

0(£?) O(&*)

J/

(4.42)
It is important to note that the plane stress condition which was valid in Part A, is
still valid. This can be verified by substituting strains from Eq. (4.42) in Eq. (4.5).
This is a natural outcome of the formulation without considering any ad-hoc and apriori
assumptions. This plane stress condition facilitate the analysis by introducing simplicity,
computational efficiency and accuracy for many engineering applications. Following the

same argument as in section 3.9, the transverse normal strain Fs3 is neglected. By omitting
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the transverse strain component, Es3, in Eq. (4.42), we obtain

(

2
Quy _ . 0%z 1 (Oug
ox1 3 833% + 2 \ Oz1

2
Quy _ . 0%z | 1 (Jug
Oxo 3 (%U% + 2 \ Oz

_Z3A 14 oo A 23N 1y A u U
E= § ckme 2@y (205320 () (1 — 250) — ehdesch(3) T + ol
23 1y coth (A 230 L1y coth (2 u u
me P —ghcoth (3) )y (9o h 3 th(Q)(h—:cg)\) — ehAcsch () %1;;,3 + ai?aig
Ou du 9%u Ou, Ou,
\ Do B — oyl 4+ (32) (32)
(4.43)
The simplified stiffness matrix considering the plane stress claim can be written as
1 v 0 0 0
v | v 1 0 0 0
D==—— 0035 0 0 (4.44)
Y loo 0 5200
00 0 0 Lt

2

If we compare the strains (accurate up to order (1)) with the strains of FSDT, it can be
observed that they don’t match. This indicates that FSDT is not asymptotically correct
and do not represent the actual behavior. That is why the need to introduce a shear
correction factor arises in FSDT. Under plane stress conditions, stresses ¢ and strain

energy density U take the following form

T
o= {011, 022, T23, T13, 712} = DE,

1 1 4.45

4.5 Part C: Elimination of the Higher Order Deriva-
tives

It is important to note that though strains given in Eq. (4.43) are asymptotically ac-
curate but they depend on higher order derivatives of us. This higher order derivative
introduces complexities in the 2D solution and thus limits its practical implementation
whereas FSDT which is although asymptotically inaccurate but is very practical due to
its simplicity and computational efficiency . The aim of the present work is to derive a
plate theory that is computationally efficient and simple like FSDT but more accurate

and asymptotically correct.
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FSDT accounts for the transverse shear effects in the plate where it is assumed that a
straight line normal to the undeformed reference plane 0€2,.¢ remains straight but rotates
by angle ¢; and ¢, about the x; and x5 axes respectively, which introduces two additional
degrees of freedom. In the present work a novel isoenergetics approach, which is illustrated
in Fig. 4.4, has been developed where the shear deformation energies obtained from the
VAM based asymptotically correct plate model are equated to that obtained from the
FSDT plate model to calculate shear correction factors. Use of this shear correction
factors results in the calculation of transverse shear force resultants ), and )5 in terms
of ¢; and ¢o. Now these (); and (), are utilized to eliminate the inconvenient terms
(393 + g—g;) and (392 + g—fg) from the VAM based asymptotically correct plate model.
This process results in a modified asymptotically correct plate model which is as simple
and computationally efficient as the FSDT theory. In what follows we present the above

mentioned procedure in detail.

4.5.1 Simplified Model Based on Isoenergetics

The transverse shear force resultants ()1 and (), are given by

h/2—n h/2—n
Q= / Ti3 drs, Q2 = / To3 dx3 (4-46)

h/2—n h/2—n

From Eqs. (4.45) and (4.46), we have

1 2—Acoth 3 73 2 A Puy Pug
= —— 2 hY5(2 4+ A° — 2 cosh A)esch—
o (=1 + VQ)e 2h7Yo(2 + cosh A)csc 2 \ 0m1022 + 027 )
1 2—Acoth 373 2 A RE Pusg '
= C2RYH(2 4+ A7 — 2 cosh A)esch— f
@ 2\3(—1 +V2)6 Y2+ cosh A)esc 2 \ 0230, * ox3
Eq. (4.47) gives,
83U3 N aSug B 26—2+)\c0th(%))\3(_1 + V2>Q1 smh(%)
Or1073  O0xd h3Yy(2 + A2 — 2 cosh(N)) (4.48)
Pus | 0us _ 2e~2AONGIN3 (1 4 12)Q, sinh(3) '
0x20xy O3 h3Y5(2 + A2 — 2 cosh(\))
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Reference plane

Dimension Reduction

| |

Asymptotically Correct . .

through the thickness Axiomatic

Dot gh b P through the thickness

elormation Pattern Deformation Pattern
Isoenergetic
Deformed Reference plane Deformed Reference plane
lOutcome I Outcome

Modified Asymptotically Transverse Shear Force
Correct ESL Plate Model Resultants (Q1, Q2)

Figure 4.4: The isoenergetic approach

Substituting Eq. (4.48) in Eq. (4.43), we obtain

( d 92 1 (ous)? )
duy _ ug | 1 (Ous
Ox1 3 03 + 2 <8:v1)
2
Quy _ . 9Pus | 1 (Ous
Ox2 3 03 + 2 \ Oxo
3N, 1 A 3N, 1 A
E = {272 22 (140)Qs(chA—2e 222 (h—g3)) sinh(3)) (4.49)

h2Yp(2+22—-2cosh(N))
xz3X 1 A x3X 1 A
2”27 T2\ (140) Q1 (eha—2¢ k- T2 P(2) (h_z3)) sinh(2))
h2Yo(2+A2—-2 cosh()()

Qui | Ouz %us OQug | ( Quz
L Oz + o1 2x38x18132 + 8x1> <8x2> )
In FSDT, the transverse shear strains Efg and Ef3 are given as

8U3

. 2E9 = ¢ + . (4.50)

ou
20, = ¢ + 5 3

X1
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and the transverse shear force resultants, (); and ()5 are given as

2 eoth sy pyy sinh 2 <¢1 + %>

0z
Q=
A1 +v) (451)
A 3y, sinh 3 (6, + 92 )
@2 = A1+ v)
where K7 and K, are shear correction factors [83]. Eq. (4.50) and (4.51) gives
p Ous 6_2+)‘C°th(%))\(1 + v)esch (3) Q1
Oy hia Yo (4.52)
288 — gy Q8 N1+ vjasch (3) @,
28— 2 8x2 N hKQ)/O

Now K; and K, are calculated by equating the transverse shear deformation energies
(123, 117, 129, 145, 146] of the assumption based FSDT plate model and the present
(ACI-ESL) plate model. This equality results in as follows
PN (1 + v)esch(M/2)Q1 [6 — 12K + 402 + A + 4(—2 + 4K, — A%) cosh())
+ (2 — 4K;) cosh(2)) + 2K, 2\’ sinh(A)] = 0

(4.53)
e PN (1 + v)esch(M/2)Q2[6 — 12K, + 402 + M + 4(=2 + 4K5 — A?) cosh())
+ (2 — 4K,) cosh(2)) + 2K,A? sinh(A)] = 0
Solving Eq. (4.53) for K and K, we have
A% — 2 cosh()\)]” esch® (2
Ko — Ky — — 2+ cos S % esc (2) (4.54)
—32 4 2X3csch? (3) sinh(\)

It is important to note that the shear correction factors are a natural outcome of the
present approach (without taking any assumptions). Substituting Eq. (4.54) into Eq.
(4.51) followed by Eq. (4.51) into Eq. (4.49), the following expressions for the transverse

shear strains are established

A[2 4+ A2 — 2cosh()\)] esch® (3) [eh)\ _ 9" +aAcoth(3 )(h — x3)) sinh(%)] Ous
2Ea3 = - (¢a )

2eh [—16 + A3csch®(3) sinh())] O,
(4.55)
Since the order of the transverse shear strains is O (£1), therefore we have
d ou
g (52 ) ~ 0@ (4.56)
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Eqgs. (4.56) results in as follows

. 82’&3 6¢5
3 0x,0x 5 8xa

+0 (&) (4.57)

Eq. (4.49), (4.55) and (4.57) results is the following strains

( w001 ous \ 2 \
2
Ou folo} ou,
858; + 8352 +3 <8_x§> _
/\[2+)\272(:osh(/\)]csch4( ) ehA—2e hA"'?’\COth(%)(hf;Q)\)sinh(%) 5
= — J Qug
E= th[ 1 +/\3csch4( )smh()\)] ) <¢2 + Bzz> > (458)

=]

A[2+22 2 cosh(M)]esch? (3 ) [eha—2e T hcotn( 2) (h—z3)) sinh(3)

— Jug
26h[—16+/\SCSCh4( )smh()\)] ¢1 + 8:01)
OQuy | Oug Ob1 02 Oug | ( Oug
\ (h; + 81? + T3 <812 + 83?1) + (81?) (812) )

Eq. (4.58) provides an asymptotically accurate, simplified and computationally efficient

reduced dimensional model of the plate.

4.6 Results and Discussion

This Capter introduces a new ESL plate theory for functionally graded Materials. The
presented theory is asymptotically correct up to (O(£1)). To evaluate its accuracy, nu-
merical examples dealing with different scenarios are presented. Two different material
gradations are examined. Details of each gradation are given in section 4.6.1 and 4.6.2.
In this work, the in-plane 2D analysis was done using non-linear (Example-1 and
Example-2) and linear (Example-3, Example-4 ) finite element analysis code written in
Mathematica based on the present formulation. To assess the accuracy of cases where
data from literature is not available the 3D finite element analysis was performed us-
ing Abaqus software. The USDFLD subroutine written in FORTRAN [3] was used to
mimic the gradation in Abaqus. The chosen element type for the analysis was C3D20R,
which corresponds to a 20-node quadratic brick element with reduced integration. A
thorough convergence study was carried out to ensure the accuracy and reliability of the
obtained results. This study involved systematically refining the mesh and monitoring the
convergence behavior of relevant quantities such as displacements, strains, and stresses.

Nevertheless, for brevity, the convergence analysis is omitted from this presentation.
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4.6.1 Material Gradation-1

An exponential variation of Young’s modulus Y with the mathematical form [4] given in

Eq. (4.64) is considered.
2
Y =Y,exp {—5 (1 — %)}

5— —log (1{2) (4.59)

ys=a3+1
Where Y; and Y, are Young’s modulus of the top and bottom surfaces of the plate
respectively. For this gradation, the reference plane shift relative to the mid-plane of the

plate n and the shear correction factor K are determined as follows.

(Y% +Y)h b
2(Y, - Y)) log (ﬁ)

(2) " {log(V) — log(Y)} {(Yb LY YiYilog (?t>2}2

Denominator

b 2
Y Y
2 t _t _
Y, <Yb) log (Yb) {Yb Y,
Y, ARED Y\ 2
+ (Y + Y3 log (E) }+<Yb—m (E) b {2m—n>2—mmog (?b) H

(4.60)

A plate made of ceramic—metal combination is examined in the first and second ex-

K=—

Y
Denominator = (Y}, — Yi) log <Yt)
b

amples. The bottom and top surfaces of the plate are composed of aluminum metal and
alumina ceramic, respectively [4]. Young’s modulus is taken to be Y, = 70 GPa for alu-
minum and Y; = 380 GPa for alumina. Poisson’s ratio u for both of the materials is 0.3.
The variation of Young’s Modulus Y of the plat along the thickness of the plate is plotted
in Fig. 4.5. For varied values of Y;, keeping the other parameters constant, n and K
are plotted in Fig. 4.6. Notably, for homogeneous materials (when Y; = Y;), n = 0 and
K = 0.8333. The values of n and K match exactly with those found in the literature for
homogeneous materials [122, 123, 121].

For this material gradation, the strains are given as follows
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Figure 4.5: Variation of the Young’s modulus along the thickness of the plate for the first
and second examples
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Figure 4.6: Variation of the shift of the reference plane 7 and shear correction factor K
with % for the first and second examples
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)

h[Y?( )YbeYtl g () [Vt (Vv log(32) 4 (v 1@)(7;)%{%%—1@)2—%%1@(&
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(4.61)
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Figure 4.7: Geometry of the plate
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Figure 4.8: Load-deflection curves for the central point of the plate considered in the first
example under uniform Pressure P applied at its top face

Also for this case, the stiffness matrix takes the following form

L iexp[-0(1- %)
1 — p?

OO OKT
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h = 1.824 mm as shown in Fig.4.7 is considered. Two opposite boundaries (at z; = 0 and
x1 = a) of the plate are clamped and the rest two are free. A uniform pressure load P is
applied to the bottom surface (x3 = —%) of the plate.

The displacement of the midpoint of the plate is plotted in Fig. 4.8 for three different
cases: (a) plate is composed of Aluminum (b) plate is composed of Alumina and (c)
plate is composed of functionally graded material. The results obtained using the present
approach agree with the 3D FEA results.

In the second example, a square plate with side a and thickness h is considered. The

side to length ratio 3 is taken 20. The plate is simply supported at all its edges. The

following non-dimensionalized quantities [122] are considered to compare the results.

100MY, b B B2
Ww=———u3|T,3,0 o1 = o1 (1, T2, T3)

q0 CL4 2 qo0 CL2

_ h? — h

O99 = 20'22 (J}l, Zo, ZE3) 0923 = — 0293 (1717 T, IL‘3) (463)
qo a do a

_ h? — h

019 = 20'12 (;El, X, 11:3) 013 — —013 (l’l, X2, Q:3)
do do @

Fig. 4.9 illustrates non-dimensionalized displacement uz along the centerline parallel
to xp axis and it also plots non-dimensionalized stresses 011, 093 and g93 at point B (shown

in Fig. 4.7) along the thickness of the plate in the second example.

4.6.2 Material Gradation-2

A power law variation of Young’s modulus Y with the mathematical form [1] given in Eq.
(4.64) is considered.

V=Y,+( Y, -¥)V
ys  1\"
V=|(>+= 4.64
(h+2> (4.64)
Y3 = T3 +1n
Where Y, and Y, are Young’s modulus of the top and bottom surfaces of the plate
respectively. V and n are the volume fraction and volume fraction index respectively. For

this gradation, the shift of the reference plane relative to the mid-plane of the plate n and

the shear correction factor K are determined as follows.
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Figure 4.9: Variation of the non-dimensionalized displacement w along the centerline of
the plate and through-the-thickness variation of the different non-dimensionalized stress
components 7;; evaluated at point B (shown in Fig. 4.7) for an orthotropic square plate

considered in the second example.
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Figure 4.10: Through-the-thickness variation of the volume fraction V' and Young’s mod-
ulus Y of the plate considered in the third example.
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Figure 4.11: Variation of the shift of the reference plane n and shear correction factor K
with volume fraction index n

hn(Y: — Yy)
p= RN
2(2 4+ n)(nYp + Yi)
K= (I+n)1+p)
h_,
h(nYy, +Y3) [ 2, 9 dzg
-
—2-n _ 203 n(Ye—Yp)  \"] g2
o [2nve + i - ¥e) (14 232 + it ) ]S
14p
_ Numerator
h3(2 4 n)(nYy + Y2) [n2(T + 4n + n2)Y2 + 4n(7 + dn + n2)Y, Yy + 12¥2] 20, + (=¥, + o) (14 258 + %)"]
Numerator = 3(3 + n) [2(2 + n)x3(nY} + Y¢) + h(1 + n)(nY}y, + 2Yy)] [Q(Y —Ye) |1+ 2ﬁ + M :
- 3 b t b t b t h (2+n)(an+Yt>

(—2(2 4+ n)xz3(nYy + Yi) + h(nYy + 2Y3)) — 2" (2 + n)Yy (—2(2 + n)z3(nYy + Yi) + h(1 + n)(nYs + 2Y:)) } (14 p)
(4.65)

Notably, for homogeneous materials where Y; = Y, we have n = 0, K = %. These
values of  and K are in agreement with literature [122; 123, 121].

For this material gradation, the strains are given as follows

2 3\
Ouy 9%1 | 1 (Ous
o1 +$3 ox1 + 2 (8:51)
2
Ouy 992 | 1 (Ous
Oxo _l_m?’ Oxo + 2 (3$2>
f<¢2+%)
—
2f7h ngdxg
—h_
f(¢1+%)

i
2 f—ﬁ—n gdxs

Ouy | Oug 9¢1 | O¢2 Oug | ( Qug
\ Oz2 + ox1 +9§'3 (8$2 8:c1> + <8x1> <8x2> )

Also for this case the stiffness matrix takes the following form

(4.66)
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Figure 4.12: Variation of the non-dimensionalized quantities with volume fraction index
for the third example. The non-denationalized displacement w, normal stress o;; and
transverse shear stress o3 are calculated at points (z; = §, 72 = %, y3 =0), (r1 = §,29 =

§7y3 = %) and (961 = %,xg =0,y3 = O) respectively.

1L pu 0 0 0
1 0 0 0
Y+ Y, -,V | #
p= ot ¥i—Y) 00 5 0 o0 (4.67)
1—[1,2 2 1—
00 0 2 0
00 0 o0 Lt

A simply supported square functionally graded plate with side a = b = 1 m and height

h=0.1m (i.e. y = 10) is examined in the third example. The schematic of the plate is

given in Fig. 4.7. The plate is subjected by a sinusoidally distributed load ¢ of intensity
qo (i.e. q = qosin (%‘1) sin (’%‘2) ) Young’s modulus for the bottom and top surfaces of
the plate are taken to be Y, = 70 GPa and Y; = 151 GPa respectively. Poisson’s ratio

for both of the materials is taken to be 0.3 [1]. The variation of the volume fraction V'
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Figure 4.13: Through-the-thickness variation of the volume fraction V' and Young’s mod-
ulus Y of the plate considered in the second example
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Figure 4.14: Variation of ] and K with volume fraction index n

and Young’s Modulus Y of the plat along its thickness is plotted in Fig. 4.10. For varied
values of volume fraction index n, keeping the other parameters constant, ; and K are
plotted in Fig. 4.11.

The non-dimensionalized quantities defined in Eq. (4.63) are calculated and compared
against the results given by Reddy [1] and obtained using 3D FEA approach. This
comparision is presented in Fig. 4.12. The non-denationalized displacement w, normal

stress 71 and transverse shear stress @o3 are calculated at points (x; = 5, Ty = %, y3 = 0),

a
2

A square simply supported functionally graded plate with side a = b = 1 m and height

(x1=2%,25 =2 y; =2) and (21 = 4,25 = 0, y3 = 0) respectively.

h =0.01 m (i.e., y= 100) is examined in the fourth example. The schematic of the plate
is given in Fig. 4.7. The plate is subjected to a uniformly distributed load P acting on
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Figure 4.15: Variation of the non-dimensionalized normal stresses 17 along the thickness
of the plate for the different values of the volume fraction index n. @7 is calculated at
the middle point of the plate in the fourth example.

its bottom surface. Young’s modulus for the bottom and top surfaces of the plate are
taken to be Y, = 70 GPa and Y; = 380 GPa respectively. Poisson’s ratio u for both of
the materials is taken to be 0.3 [11]. The variation of the volume fraction V' and Young’s
Modulus Y of the plat along its thickness is plotted in Fig. 4.13. For varied values of
volume fraction index n, keeping the other parameters constant, ; and K are plotted in
Fig. 4.14.

The non-dimensionalized quantities defined in Eq. (4.63) are calculated and compared
with the results given by Singha et al. [11] and 3D FEA. Fig. 4.15 illustrates through-the-
thickness variation of the non-dimensionalized normal stress ;7 at the middle point of the
plate and Fig. 4.16 presents through-the-thickness variation of the non-dimensionalized

shear stress 713 at 1 = a, and x9 =0
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4.7 Conclusion

In this chapter, a novel VAM based geometrically nonlinear ESL plate theory for function-

ally graded plates has been developed by applying the first principles and the isoenergetic

approach. Following are key highlights of the present work

1. This work formulates an asymptotically accurate ESL plate theory by expanding

the energy function in terms of a small parameter related to the geometry of the

plate and state of strain.

2. present work uses the first principles-based approach to reduce the 3D problem to

a 2D analysis by estimating the 3D displacement field in terms of 2D variables.

3. The higher order 1D through the thickness analysis involves derivatives of w;(z1, x5)
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w.r.t £,. The complexity involving these derivatives is eliminated by (a) slectin the

reference plane suitably and (b) using the concept of isoenegetics.

4. Unlike most existing plate theories that assume plane stress condition, this model

derives it naturally through its mathematical formulation.

5. It predicts an accurate quadratic variation of transverse shear stress and strain,

compared to FSDT’s constant value.

6. The quadratic variation of transverse shear stresses enforces zero tangential traction

on the boundaries of the plate, reflecting realistic physical behavior.

To summarize, this work provides a more refined, accurate, and computationally efficient

ESL plate theory for thin and moderately thick functionally graded plate structures.
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Chapter 5

Analysis of Stiffened Plates

5.1 Introduction

Stiffened plates are a fundamental building block in many engineering applications. They
consist of a thin plate reinforced with elements called stiffeners, which can be bars, ribs,
or other shapes. Depending on the positioning of the stiffeners, the stiffened plates are
classified as: (a) symmetric stiffened plates (b) assymetric stiffened plates. Symmetric
stiffened plates have stiffeners arranged in a mirrored pattern on either side of the plate,
creating a symmetrical structure. Asymmetric stiffened plates have an uneven distribution
of stiffeners. This asymmetry can result from design considerations, loading conditions,
or specific structural requirements. Stiffened plates find application in various engineering
fields where structural efficiency, high load capacity, and the ability to tailor performance

to specific needs are crucial. Some common applications include

1. Aerospace: Stiffened plates are used in aircraft fuselages, wings, and structural

components to provide strength, rigidity, and aerodynamic performance.

2. Automotive: They find application in vehicle chassis, frames, and body panels to

enhance structural integrity, crashworthiness, and weight efficiency.

3. Marine: Stiffened plates are employed in ship hulls, decks, and superstructures to

withstand hydrodynamic forces, wave loads, and structural stresses.

4. Civil Engineering: They are used in bridges, buildings, and infrastructure projects

to support heavy loads, resist seismic forces, and ensure long-term durability.
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Researchers employ diverse formulations to consider the impact of stiffeners, leading
to significant variations between different approaches. Some of these formulations en-
compass the orthotropic plate approximation, the grillage approximation, and the plate
beam idealization. Initially, earlier investigators approximated the effects of stiffeners by
distributing them across the plate and treating the structure as an orthotropic system.
This method produced satisfactory outcomes when the spacing between stiffeners was
minimal [42, 36]. In the grillage approximation, the plate’s effects are incorporated into
the stiffener by increasing the beam’s second moment of area [41, 40]. However, deter-
mining the effective width, which serves as a hypothetical flange representing the plate
in the beam, poses a challenge in this approximation. In the most general scenario, the
plate and stiffener are separately analyzed [39, 38, 37]. Then, by ensuring equilibrium
and continuity along the attachment line, the plate and beam are made compatible.

Deb et al. [36] proposed an approximate shear deformation theory for stiffened plates
based on the Reissner-Mindlin plate theory and Timoshenko beam theory, utilizing the
smeared-out idealization. Mukherjee et al. [35], Sadek et al. [34], Biswal et al. [33], and
Ghosh et al. [32] presented finite element methods based on a higher-order shear deforma-
tion theory (HSDT) for static and vibrational analysis of laminated stiffened plates. Bhar
et al. [31] compared the finite element results of composite stiffened plates using the first-
order shear deformation theory (FSDT) and HSDT. They strongly recommended the use
of HSDT over the Classical Plate Theory and even FSDT, particularly for thick panels.
Sapountzakis et al. [30] introduced an optimized model based on the classical approach
that considers the in-plane forces and displacements at the interface of the plate and the
beam. By comparing their results with various finite element models, they emphasized
the significance of considering in-plane shear forces for a more accurate description of the
stiffened plate’s behavior. Qing et al. [29] developed a three-dimensional solution for
the free vibrations of stiffened plates using the variational approach, employing finite el-
ements to solve state vector equations. The model automatically incorporates transverse
shear deformations and rotary inertia. Kamineni et al. [28] used VAM for the analysis of
laminated composite flat stiffened panels. In their approach, they modeled the stiffened
plate using VAM, and then they attached a stiffener with the plate. The integration of
skin and the stiffener technique was used by introducing a constraint matrix. Chen Jiaqi
et al. [27] did a static and dynamic analysis of Isogrid Stiffened Composite Plates (ISCP)
using an equivalent model based on VAM.

The present approach considers the stiffener reinforced plate as one continuous struc-

128



CHAPTER 5 5.2. METHODOLOGY USED

ture with varying material properties in the thickness direction instead of a combination
of two structures (stiffener and plate). VAM is used to systematically reduce the di-
mension of the stiffener reinforced structure up to a desired level of accuracy by taking
advantage of the smallness of the thickness of the structure as compared to the other two
dimensions. The framework developed in chapter-2, chapter-3, and chapter-4 forms the
basis for obtaining a reduced order model for the stiffened plates. In what follows, this

approach is elucidated.

5.2 Methodology Used

The present work treats the stiffened plate as a single structure with a position-dependent
through-the-thickness configuration. This captures the effect of the stiffeners in a natural
way by performing through-the-thickness 1D analysis for each distinct section of the plate
by leveraging the framework established in Chapters 2, 3, and 4. Consequently, a reduced-
order two-dimensional (2D) model is obtained for stiffened plates. Figure 5.1 illustrates
this approach for the symmetric stiffened plates where the mid-plane of the plate is taken

as its reference plane due to the symmetry of the structure about this plane.

(a) (b)

Figure 5.1: Approach used for the analysis of the symmetric stiffened plates (a) symmetric
stiffened plate (b) splitting of the analysis in through-the-thickness 1D analysis and in-
plane 2D analysis
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_|_
- L
(a) (b)

Figure 5.2: Approach used for the analysis of the asymmetric stiffened plates (a) asym-
metric stiffened plate with its reference plane (b) splitting of the analysis in through-the-
thickness 1D analysis and in-plane 2D analysis

In the case of assymetrically stiffened plates, the geometric discontinuity caused by
the stiffeners results in a localized shift in the reference plane at the attachment region
of the plate and the stiffeners. To handle this, in this work, we assume that the interface
of the plate and stiffeners becomes the reference plane at the locations where they are
attached, and for the rest of the plate, the mid-plane of the plate is the reference plane
(as shown in Fig. 5.2).

It is important to note that the present approach leads to inaccurate normal and
shear stresses within the width of the stiffeners. This inaccuracy arises because, during
1D through-the-thickness analysis, the zero traction boundary conditions were not im-
posed at the surfaces of the stiffeners perpendicular to the width direction of the stiffeners.
To address this issue, consider a representative section of a stiffener as shown in Fig. 5.3.
We define a local coordinate system (yi, y2, y3) with axes lying along the length, width,
and height directions of the stiffener respectively. The displacement components along
these directions are denoted as wq, wy, and ws. To eliminate the inaccurate stresses, it is
assumed that the displacement components w; and ws are constant across the width (yo
direction) of the stiffener section. Additionally, The displacement component ws is as-
sumed to be zero. These assumptions, taken from the classical beam theories [26], simplify
the analysis by focusing on the primary stiffening effect and eliminate the introduction of

overvalued stresses in the width direction.
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Y1

Yo

Ys

Figure 5.3: Approach used for the analysis of the symmetric stiffened plates (a) symmetric
stiffened plate (b) splitting of the analysis in through-the-thickness 1D analysis and in-
plane 2D analysis

5.3 Results and discussion

In the first example, a square plate with two symmetric stiffeners (one along the x; axis
and the other along the x5 axis) is analysed. the geometry of the stiffened plate is given
in Fig. 5.4 where a = 1.016 m, t = 2.54 cm, h = 5.08 mm and H = 5.08 mm. The
plate is mate of homogeneous isotropic material with young modulus £ = 206.843GPa
and poisiions ratio v = 0.3. The plate is simply supported. Due to symmetry only one

quarter of the plate is modeled. the boundary conditions are taken as given below

U1:UQ:U3:¢2:O at Xlzg
U1:UQZU3:¢1:0 at ngg (51)
U1:¢1:0 at X1:O
UQ:¢2:0 at X2:O
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Figure 5.4: Geometry of the plate with symmetric stiffeners considered in the first example
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Figure 5.5: Load deflection curve for the mid point of the plate with symmetric stiffeners
considered in the first example
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Fig. 5.5 shows the deflection of the mid point O of the plate. the results obtained

using the present approach are in good aggrement with those given by Liao et al. [61].

L

L a
AT_LJA

Z2 E E
1 a |
Section A — A i
[ ; A h
ot

Figure 5.6: Geometry of the plate with an asymmetric stiffener considered in the second
example

In the second example, a square plate with an asymmetric stiffener oriented along
the z5 axis and passing through the center of the plate is analyzed. the geometry of the
stiffened plate is given in Fig. 5.6 where a = 2.54 ¢m, t = 0.254 mm, h = 0.254 mm and
H = 2.54 mm. The plate is made of homogeneous isotropic material with young modulus
E = 1172109 GPa and positions ratio » = 0.3. The plate is simply supported at all its
edges.

Fig. 5.7 shows the deflection of the asymmetric stiffened plate considered in the second
example along its centerlines parallel to the x; and x5 axes. the results obtained using
the present approach are in good agreement with those given by A Islam et al. [61] and
Chattopadhyay et al. [25].

In the third example, a square stiffened plate with a side length of 1 m is considered.
The depth of the plate is 1 ¢cm and the depth of the stiffener is 5 cm. The plate is
reinforced by two stiffeners lying along the z; axis. The stiffeners, shown in Fig. 5.8,

are placed at a distance of 30 cm from the edges of the plate. The distance between
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Figure 5.7: Deflections along the centerlines of the plate parallel to the x; and x, axis

Dimensions are in mm

Figure 5.8: (a) Dimensions (b) Loading conditions

the stiffeners is 30 cm. The whole structure is made of homogeneous isotropic material
with Young’s Modulus of E = 200 x 10° Pa and Poissons ratio of v = 0.3. The two
edges perpendicular to the stiffeners are kept simply supported, and the other two are
free. Uniform pressure load P = 0.1 Nm~2 is applied at the bottom surface of the plate

as shown in Fig. 5.8

Fig. 5.9 shows the deformation pattern of the stiffened structure as obtained by the
present approach and the 3D FEA.
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Figure 5.9: Deflection in x3 direction (a) present work (b) 3-D FEA result
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Figure 5.10: Comparison of result with 3-D FEA and present result

The interface deformation response of the structure was studied by the present ap-
proach and compared with that obtained by the 3-D FEA. Fig. 5.10 shows the displace-
ment of the stiffened plate in x5 direction along the path highlighted in red colour.

Fig. 5.11 shows the percentage error in the results obtained by the present approach
and the 3-D FEA. Thus the result is in good agreement with that of the 3-D FEA.

In the fourth example, a rectangular stiffened plate with a length of ¢ = 0.21 m and
width of b = 0.20 m is considered as shown in Fig. 5.12(a). The depth of the plate h
is 2 mm. The plate is reinforced by a stiffener lying along the x; axis and placed in the
middle of the plate. The depth of the stiffener H is 8 mm as shown in Fig. 5.12(b). The

whole structure is made of an anisotropic material with the following material properties
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Figure 5.11: Percentage error

[116]:
Ep =25x10° psi (172.369 GPa)

Er =1x10° psi (6.895 GPa)
Grr = 0.5 x 10° psi (3.337 GPa)
Grr = 0.2 x 10° psi (1.379 GPa) (5.2)
v = vpp = 0.25
L : Longitudinal direction (z)
T : Transverse direction (zq, x3)

The plate is clamped at all of its edges as shown in Fig. 5.12(c). Uniform pressure
load P = 500 Nm~2 is applied at the bottom surface of the plate as shown in Fig. 5.12(b).
Fig. 5.13 displays the variation of the displacement component ug with respect to x;
and x5 for the fourth example. Fig. 5.13(a) was generated using the 3D FEA approach,
while Fig. 5.13(b) was produced using the present approach. Fig. 5.14 illustrates the
variation of the percentage error in the value of us with respect to x; and x,. The

percentage error (PE) is defined in Eq. (5.3).

PE = 100 U3,FEA — U3 Present

(5.3)

max
U3 FEA

Where us ppa and 3 present are values of ug obtained using the 3D FEA and Present

approaches. ug'figa 1s the maximum value of ugpga. Figure 5.14 demonstrates that the
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Figure 5.12: Stiffened plate analyzed in the fourth example (a) in plane geometry of the
plate (b) through-the-thickness structure of the plate and loading condition (c) boundary
conditions

Figure 5.13: Out-of-plane deflection of the plate considered in the fourth example. The
results are obtained using (a) 3D FEA approach (b) present approach
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0.20

0.

Figure 5.14: Percentage error in the out of plane deflection wugz for the fourth example

results obtained by the 3D FEA and the present approach are in very good agreement.

5.4 Conclusion

This approach treats the stiffened plates as structures with varying through-the-thickness
structure. To exploit the thin nature of the structure compared to its in-plane dimensions,
the Variational Asymptotic Method (VAM) is employed. This method systematically
reduces the dimensionality of the problem, leading to computationally efficient solutions.
The good agreement between the results obtained using this approach and those reported

in the literature validates its effectiveness.
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Chapter 6

Conclusion and Future Scope

This thesis introduces a novel VAM based reduced-order model for geometrically nonlinear
analysis of plate-like structures. This reduced-order model efficiently handles structures
where one dimension is significantly smaller than the other two. The model’s versatility
has been demonstrated through successful application to various plate configurations,
including anisotropic plates, multilayer composite plates, functionally graded plates, and
stiffened plates. Results obtained using the proposed reduced-order model show excellent
agreement with benchmark problems from the literature and with those obtained from
3D finite element analysis. A brief summary of the work presented in this thesis is given

below.

6.1 Summary

A literature survey has been carried out on stiffened plates and approaches used for their

analysis. The following key research gaps were found.

1. Most of the reduced order theories are presupposition based and relies on ad hoc

and a priori assumptions.

2. A number of Assymptotically correct plate theories are available, however the have

folloing shortcomings

(a) Relies on pre-assumed kinematics of plate

(b) In most of the literature asymptotic expansion is done relying on the assumed

orders of relevant quantities.
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(c) Higher order derivatives of the primary variables are eliminated following a
mathematically complex extremizaton process done at the expense of the asymp-

totic correctness of the theory.

A novel, asymptotically accurate equivalent single layer (ESL) theory has been intro-
duced to address limitations in existing theories and analyze the geometrically nonlinear
behavior of anisotropic plates. This development lays the foundation for subsequent anal-
yses. The theory developed for anisotropic plates has been extended to analyze multilay-
ered symmetric composite plates. A key aspect is ensuring the continuity of displacements
and transverse stresses across layers, which is absent in classical ESL theories. Addition-
ally, a novel approach for calculating shear correction factors is introduced, significantly
reducing computational complexity while maintaining high accuracy. Building upon these
advancements, the framework was further extended to tackle functionally graded (FG)
plates with varying material properties. The optimal reference plane location within the
FG plate was determined, and a new ESL theory for FG plates was developed using VAM
and the established isoenergetic concept. This approach results in an accurate and com-
putationally efficient ESL plate theory for FG plates. Finally, the developed theoretical
frameworks were adapted to analyze both symmetric and asymmetric stiffened plates,

presenting a systematic approach for efficient and accurate analysis

6.2 Key highlights of present work

1. The dimensional reduction using VAM is based on first principles, avoiding reliance
on pre-assumed kinematics of the plate and assumptions regarding the order of

different quantities of interest.

2. A bound on thickness to length ratio (%) and supnorm of strains has been used for
the asymptotic expansion. In the energy functional this translates to asymptotic
expansion in powers of (£). The analysis with strain energy accurate up to the order
of (£8u) results in analytic expressions for displacement vector and strains accurate
up to order of (£*h) and (£*) respectively. It is observed from the results that
the diminishing value of small parameter (%) improves the accuracy, aligning them
more closely with the results obtained from 3D FEA. Therefore it becomes evident
that the proposed model is asymptotically accurate and demonstrates satisfactory

performance for thin and moderately thick plates.
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3. It is interesting to observe that the zeroth order solution results in the estimation
of 3D displacement field in terms of 2D variables u;(x1, z2). Essentially, this leads
to the dimensional reduction of 3D problem to 2D, which is assumed a priori in

classical plate theories.

4. The reference plane is not chosen a priori. It is selected in a mathematically justified

manner.

5. The higher order 1D through the thickness analysis involves derivatives of u;(xy, z2)
w.r.t x,. The complexity involving these derivatives is eliminated through a novel
isoenegetic approach and choosing the reference plane suitably resulting in better

estimation of the overall deformation.

6. It may be noted that most of the plate theories rely on the ad hoc assumption
of plane stress condition as an integral part of their formulation. However, it is
interesting to observe that the plane stress condition is a natural consequence of the

mathematical procedure adopted in the present formulation.

7. The proposed model as well as the FSDT estimates strains up to the same order
of accuracy resulting in comparable levels of computational complexities and cost.
However, due to its asymptotic correctness, the current model has the following

advantages over FSDT model

i. FSDT addresses shear effects by assuming a constant distribution of transverse
shear strains throughout the thickness. However, this study reveals that the
actual asymptotic distribution of transverse shear strains follows a series of

quadratic curves.

ii. Unlike FSDT, the present work ensures the continuity of the transverse stresses
along the thickness direction and zero tangential traction boundary conditions
on the surface of the plate, ensuring excellent agreement with the expected

physical behavior.

iii. Unlike FSDT there is no need for shear correction factor.

To summarize, this work provides a more refined, accurate, and computationally ef-
ficient reduced order theory applicable for thin and moderately thick plate like struc-
tures. Comparison with established theories such as CLPT, FSDT, R-TSDT and 3D

FEA demonstrates the accuracy of the present work.
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6.3 Scope of Future Research

The proposed framework for analyzing plate-like structures has demonstrably yielded

successful results across various applications. Based on these implementations, there is

significant potential to further refine and broaden the capabilities of present framework

for tackling a wider range of engineering problems. Here are some promising avenues for

future exploration:

1.

Extension to Stiffened/Unstiffened Shell Structures: The developed frame-
work can be adapted and extended to analyze shell-type structures, both stiffened
and unstiffened. Investigating the behavior of such structures under various loading
conditions and geometries would be valuable for practical applications in aerospace,

automotive, and maritime industries.

. Handling Material Non-linearity: Extending the analysis to incorporate mate-

rial non-linearity would be a significant advancement. Investigating the behavior of
stiffened /unstiffened plates under non-linear material models such as plasticity, vis-
coelasticity, or damage mechanics could provide insights into the structural response

under realistic loading scenarios.

. Multi-physics Problems: The framework could be extended to handle multi-

physics problems, such as the interaction between mechanics, heat transfer, and
moisture diffusion. This would be particularly relevant for analyzing composite

materials commonly used in aerospace and marine structures.

. Handling Asymmetric Composite Plates: Extending the analysis to handle

asymmetric composite plates would further enhance the applicability of this frame-

work.

. Buckling and Dynamic Problems: Addressing buckling and dynamic prob-

lems would be crucial for understanding the stability and dynamic response of stiff-
ened /unstiffened structures. Developing methodologies to predict critical buckling
loads and natural frequencies, as well as studying the dynamic behavior under tran-

sient loads, would be valuable for structural design and optimization.

With these future scopes, this work can continue to contribute significantly to the

advancement of structural analysis and design, with implications for various engineering

applications.
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Appendix G

Expressions g9, g3, fo and f3

As we keep on perturbing the solution for increased accuracy, we encounter bulky expres-
sions containing higher order derivatives of uy,us and us. These bulky expressions are
replaced in Chapter 2 with two-dimensional functions fs, f3, g2 and g3. This is done to
make the equations concise. Also, this replacement does not reduce the completeness of
the chapter as the chapter does not go into the details of these expressions and removes
them from the final reduced order plate model using the concept of isoenergetics. The
details of these replacements are included in this appendix.

As shown in Chapter 2, the third-order solution results in the following Euler-Lagrange

equations.

0%} 0%v3

2C55fo + 6C55x390 + 205 f3 + 6Cy51393 = 055(9_21 + C'45—22

x5 Oxs

0?v? v
2C5 f2 + 6Cs57392 + 2Cu f3 + 6Cuux393 = C45W + C44W (G.1)

3 3

0%v3
Caz3——2 =0

Where f5, f3, g2 and g5 are functions of x; and x5. The expressions for these functions

in terms of derivatives of w; w.r.t. ; and the material constants are given below
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Appendix H

Comparison of strain components

Chapter 2 derives a new plate theory named ACI-ESP plate theory. It is worth noting
the differences in strains obtained from various plate theories. The normal strains given
by different well-known plate theories are compared in Table H.1. Tables H.2 and H.3
compare the transverse and in-plane shear strains. This comparison shows that the ACI-
ESP plate theory has the same expressions for the in-plane normal and shear stresses as
those provided by the FSDT plate theory. However, in contrast to the FSDT plate theory,

the present theory predicts the transverse shear stresses with similar accuracy to that of

higher-order plate theories.

Table H.1: Comparison of normal strains o, in different plate models for cases involving

small displacements and rotations only

Plate Model | Normal strain (FEj;) Normal strain (Fag)
CLPT [100] | 3 —; 2% T

FSDT [100] | 9% + x5 52 Ty gy 002

ACT-ESL Ou Ly 901 D, 002

RTSDT |58 + @ 5o e+ w52

| (e ) L (3 )
G-TSDT |92 + w5 o A 2

18] HE-m) (s |- (B )
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Table H.2: Comparison of transverse shear strains o,3 in different plate models for cases
involving small displacements and rotations only

Plate Model | Shear strain (2Fs3) Shear strain (2E3)
CLDPT [100] |0 0
FSDT [100] <¢ n gi> (¢>1 + §i>

3 U 242 -
ACESL | MG (g g) | ™5 (014 3)
R-TSDT 2 e . i}
[122] = (¢2 + 352) ) <¢1 + gxf)
G-TSDT 2_ g2 9 2_g42 u
[118] 5<h4h;1 2 <¢2 + g—xi) 5(h4h24 2 <¢1 + 3—;)

Table H.3: Comparison of in-plane shear strains o5 in different plate models for cases
involving small displacements and rotations only

Plate Model | Shear strain (2F;2)

CLPT [100] | u 4 du 4, (8%3@)
AR

FSDT [100] - < sy 0 i?)
Ju Ju

ACI-ESL i_xs < o0, i o > on

R-TSDT B (3— t %>

|t ()
—57 (52 + ot
w5

G-TSDT B <g% + §7>

| () (e )
() (G2 o)
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Expressions g3, g5, f5 and f3

As we continue to perturb the solution for increased accuracy, we encounter bulky expres-
sions containing higher-order derivatives of uq,us and wuz. These bulky expressions are
replaced in Chapter 3 with two-dimensional functions f3, f5, g5 and ¢5. This is done to
make the equations more concise. The details of these replacements are provided in this
appendix.

As shown in Chapter 3, the third-order solution results in the following Fuler-Lagrange

equations.

T a ? T T a ? T T T T ‘s T T T T
55 (8_> i + Ciy (6_> g = 2055 f5 + 6C352395 + 2055 f3 + 635735
XT3 T3

T a ? T T a ? T T T T ‘s T T T ‘s
45 (3_133> Svl + Oy (8_133> sz =205 f3 + 6C 52395 + 201 f3 + 6C, w393 (L.1)

T a ? T
33 (8_:153) 3“2 =0

Where f3, f3, g5 and g5 are functions of z; and z5. The expressions for these functions

in terms of derivatives of w; w.r.t. ; and the material constants are given below
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167

1
5 = — CC33C 1y + Cy3C56Cy
92 605, {(Cr-)2 — C5,0% ) { 2633 44 2336 44
N2 v g y20 00U O us
- <C23)2<C45)2 + C2QC33(C45>2} ax;;, + 381‘181‘%
— {C13C3Cl — (C1)*C3aCis + 2(C)*Cly + 3C5,C5,Ciy
Du
~ 3C5:C36C% — (Ca)(Cis)” + CaCiaCis — 2CCiulCig)} o
1

- { = 3OOl + 3 C3Ch — O Cla)PCls + (CP)PClyCl

83U3
1023

+{C5(C13)*Cly — (C1)*C3C1 + C1sCi3Chs — C13C15(Clg + Ci)

— 2(C55)"Cls — 2056(Cis)” + 205601055 + 205,055} 5—

T r T u
+ C13CL s } W;]

1

g’/‘: ; o — —Cr.or.C" +CTC’I‘ Cr +C«r
3 6033{( )2 . 044055} { 263345 23 45( 36 45)

83’&3
01023
—{ = C13C55C%; + (C1,)*C35Cis — (C§e) Cls — 205,035
— 3056033 55 + 3003036 Css + 2036004 Css

— U5y 033C55 + Cg(Cz + Cly) 055} 5 +3

83U3
205,C:Ch6 t =—5=— 3CT6C33C
+ 3345 66}81‘%81}2_‘_{ 16~'33~45
— O30 (3036 + Cls) + Cla(Cgs + Cy ) g5 — O (C1yCgy
83U3
D102 2 _{
8 U3

—2(C3)" + 205,C5) | — (C13)*Cls + (C1)*C53C75

— ClsC33C55 + C3C56C55 1 5 5
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1
205 {(C5)? = CLuCis}
82U1 82’&1

+ Og3C05:Chs + C33CCis—— + == + 1C5%C53C1
23036045 33466 g2 T G {C36C55C0

3 (C36)*Cla — C3sC53C15

8211,2 82’&2

— C53036Chy + (053)2025 - 0520§30£5}8_x% + 6—1’%
AR R~ 20} Rt
+ OlOICl gt — GOl
OBt | OO gl — iyl
- OOl — Oyl
b OOl (Ol
- 2Ry gt 4 205 e
+ 053(025)2% — O30y gs%
+ C33C4 gﬁ% - (013)2 14%2_;? + C11C3 245;_;%1
- LR G + Ch O + R S

0y
= ClCiuCis T+ {ClaCiaCia = ChCiCi

r ™ ' T T r ' ' T T a2u
+ C36C45(C36 + Cls) — C36C14Cs — 033045066} 02 :c22
1
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r_ 1 r oo (o . B
fs = 2075, {(Co)? — C,CL:t (C36C15(C6 + Cis) + C5C35Cs

82’&1 62u1

— C3(Cg3 + Chy)Cs5 — C33C35C6) = +

oz? O3

— (C36C33C%5 — C33C45(Ch + Cs) + (052) C33C55

— C3a(Cha + 044>0;5>%2“f + a@ ~ 2006l 362322
OOl 4 () gt
- Ot 4 (OOt
— (C3)*C aajgl — C13C1,Cs 8823 + %%(%)2%
+ C1C3C 38232 — (Ch)*C33Cis ff? + (G Cis aalg;
+ C36Chs(Cas + Cis) aijg o 200 Css aajg;

— 205,03 CE 88 gz — C36C4Css 88 22 — C33075(Cge)” aijg;
+ (1) 025%2 — (C1)*C5:C35 ?;UI + CIGCZ%C%&;
- c;gcgﬁcgf; 5+ { = (CsC3C05 + C13C5Cs
— (C30)°Cs + C:Ze,(fé},(056)2}a;—;%2
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