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Lay Summary

Gas turbine engines, commonly used in power generation and aircraft, can suffer from a serious
problem known as thermoacoustic instability. This issue arises from a constructive interaction
between the flame and acoustics of the combustion chamber, leading to loud and large amplitude
pressure oscillations. These oscillations can cause severe wear and tear on engine components,
risking both safety and efficiency.

Noise is an inherent feature of such combustion systems, stemming from fuel-air supply
systems, unsteady combustion, turbulence, and aerodynamics. In these systems, noise
characteristics are expected to vary with changes in operating conditions (temperature, Reynolds
number, equivalence ratio, etc.). Consequently, pressure oscillations in such combustors always
contain noise-induced features, regardless of the presence of thermoacoustic instability. These
noise-induced features can be utilized to develop control or mitigation strategies for suppressing
the instability. Control measures can be either passive, such as employing physical acoustic
dampers in the combustors to absorb acoustic energy, or active, such as identifying measures
that can help in early prediction of instability before it occurs. In both cases, it is crucial to
investigate how changes in inherent noise dynamics, alongside changes in operating conditions
and combustor designs, affect thermoacoustic coupling and control measures. This work focuses
on investigating how different types of noise affect these dangerous oscillations and seeks to
improve prediction and management strategies. For this investigation, the thesis is divided into

two main parts:

e Active control of thermoacoustic instability (early warning prediction): This part

examines the effect of noise properties on the reliability of early warning indicators
that can detect impending instability. The study tests how these indicators perform under
different noise conditions to determine which ones work best. It turns out that some
indicators, such as those measuring the consistency of the engine’s performance, are more
reliable than others. In contrast, some indicators are too sensitive to noise and provide
misleading signals. This finding helps in selecting the most effective tools for monitoring

and maintaining engine safety.

e Noise and turbulent flow: The second part of the research focuses on how noise interacts

with the features of turbulent flows inside the engine. Such engines involve complex
swirling (or recirculating) flows inside the combustion chamber, which are crucial for
efficiently mixing fuel and air. These recirculating flow features have inherent helical
instability that can interact with noise and further drive thermoacoustic instability.
Therefore, this part focuses on understanding how these interactions occur and how
different noise patterns affect the swirling flow and flames. This work identifies which noise
features can either suppress or excite unstable oscillations in the system. This insight helps
in designing better engine systems that can minimize instability by carefully controlling

noise and flame behavior.

In summary, the findings provide valuable guidance for engineers to better design and operate

engines, ultimately contributing to more reliable and safer gas turbine technology.
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Abstract

This thesis presents a comprehensive analysis of the stochastic dynamics in confined combustion
systems, particularly gas turbine combustors, where thermoacoustic instability poses a
significant challenge. Thermoacoustic instability refers to self-induced, large-amplitude pressure
oscillations resulting from a constructive feedback loop between acoustic waves and unsteady
heat release within the combustion system. These oscillations can lead to severe mechanical
and thermal stresses that can compromise the structural integrity of the combustor. Noise,
an inherent feature in such combustion systems, complicates the phenomenon by affecting the
amplitude and behavior of these oscillations. Recent studies have highlighted that noise can
lead to complex dynamics in such systems, which vary with changes in operating conditions
and combustor designs. Hence, it is crucial to investigate the effect of noise properties on
thermoacoustic coupling. Given the challenges posed by thermoacoustic instability, the study
emphasizes on the necessity of considering noise properties—correlation time (or color) and
intensity—in developing effective prediction, suppression, and control strategies. The work
investigates how noise properties interact with thermoacoustic coupling, with a particular focus
on early warning prediction of thermoacoustic instability and helical instabilities associated

with swirling flows in practical gas turbine configurations.

The thesis is divided into two main parts. The first part examines how noise characteristics
influence the reliability of various early warning indicators (EWIs) for predicting thermoacoustic
instability in gas turbine combustors. A combination of experimental and numerical approaches
is employed, including an electroacoustic Rijke tube simulator, stochastic Van der Pol
oscillators, and a lean premixed flat flame combustion system. The study explores how
different types of noise, both additive and multiplicative, affect EWIs based on signal amplitude
distribution, frequency spectra, fractal, and complexity measures, as the system approaches
bifurcation, considering noise color and intensity. These systems exhibit instability through both
supercritical and subcritical Hopf bifurcations. The analysis is conducted in the subthreshold
regime, where the stable focus remains the only possible asymptotic state. The findings
reveal that variations in noise color can lead to non-monotonic trends in EWIs, reducing their
reliability. Our results indicate that the coherence factor is a reliable indicator for the entire
range of investigated noise color, while variance and decay rates of the autocorrelation function
(ACF) are reliable when noise correlation times are either much smaller or larger than the
system time scale. Kurtosis, permutation entropy and Jensen-Shannon complexity can be
effectively employed in systems where noise exhibits minimal correlation time (resembling
white noise). While the Hurst exponent proves a reliable indicator in systems where noise has
correlation times much larger than the time scale of the system, multi-fractal spectrum width
and skewness are deemed unsuitable as EWIs. These insights enhance the understanding of the

effectiveness and limitations of various EWIs in predicting or monitoring impending instability.

The second part of the thesis focuses on how inherent noise interacts with turbulent swirling

flows in combustors. Swirling flows, used in gas turbine combustors for flame stabilization, are



ix

prone to precessing vortex core (PVC), a self-excited global hydrodynamic instability associated
with vortex breakdown. This instability leads to large-scale coherent structures and significant
flame fluctuations, potentially triggering thermoacoustic instability. It is, therefore, crucial to
study the interaction between these coherent structures and inherent combustor noise. The aim
is to understand how PVC responds to broadband noise excitation, aiding the development of
strategies to mitigate thermoacoustic instability. To this end, a novel multiple swirl burner
is developed, capable of operating with various hydrogen-enriched fuel blends using RANS
simulations. A dual swirl burner configuration showed promise due to its enhanced mixing
capabilities. The effects of acoustic excitation on the swirling flow field are examined using
Schlieren image velocimetry (SIV), with Proper Orthogonal Decomposition (POD) and Spectral
Proper Orthogonal Decomposition (SPOD) analyses employed to identify dominant coherent
structures and their interactions with acoustic excitation. The study confirms the presence
of single and double helical PVC, marginally stable modes excited by turbulent fluctuations.
Acoustic excitation at frequencies lower than the PVC mode is found to suppress the PVC,
while broadband forcing excited both single and double helical instabilities, increasing the

likelihood of thermoacoustic instability.

Summarizing, this thesis emphasizes the crucial role of noise characteristics in predicting and
managing thermoacoustic instability in gas turbine combustors. The findings offer valuable
insights for enhancing the design and calibration of monitoring systems, contributing to more

reliable and effective control strategies in modern gas turbine systems.

Keywords: Early warning indicators; Hopf bifurcation; Noise-induced dynamics; Precessing

vortex core; RANS simulations; Swirling flows; Thermoacoustic instability
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Chapter 1

Introduction

1.1 Thermoacoustic instability

Confined combustion systems, such as those employed in gas turbines, and rocket motors,
are susceptible to self-induced, large amplitude acoustic pressure oscillations, known as
thermoacoustic instability. These oscillations arise spontaneously from constructive feedback
between acoustic pressure oscillations in the combustor (p’) and unsteady heat release rate
fluctuations (¢) from the combustion source (e.g., single or multiple turbulent flames) [1], as
illustrated in Fig.1.1(A). The occurrence of thermoacoustic instability is explained by the famous

Rayleigh criterion [9,10], which is given as:

//p;’t q';’t dt dV >0 (1.1)
vV T

where, p’x’t and (j/m denoting pressure and heat release rate fluctuations respectively. According
to this criterion, the combustion process adds (or removes) energy to the acoustic oscillations
locally if the above integral is positive (or negative). The sign of this integral depends on
the phase difference between p’ and ¢’: it is positive (or negative) when this phase difference is
smaller (or larger) than 90° [1]. Instability occurs spontaneously only if the energy supplied to the
acoustic mode by the combustion process exceeds the mode’s energy losses due to, for example,
viscous dissipation. Thus, as long as the driving force’s magnitude exceeds that of the damping
process, the mode’s energy will increase over time. Initially, the oscillation amplitude increases
exponentially until it saturates at a limit-cycle amplitude, as shown in Fig. 1.1(B). At this
point, the time-averaged driving and damping processes are equal, and no net energy is added
to the oscillating mode. These instabilities occur at frequencies associated with the combustor’s
natural acoustic modes—both planar and non-planar. The flame response is typically low-pass
in nature [11] and is delayed in time, implying that an accurate description of thermoacoustic
instability necessarily involves delayed-differential equations. When combustion and flames
are involved, additional complexities, characteristic to the configuration under consideration
such as equivalence ratio fluctuations [12] and swirl flow and flame dynamics [13,14] must be
incorporated.

Modern gas turbine technology relies on lean premixed (partially or fully) combustion to
minimize NOx emissions. However, this approach, in addition to causing thermoacoustic
instability, also introduces challenges such as flame blowout and flashback. The mechanisms
identified in the literature that drive instability in such combustion systems are as follows: (also
marked in Fig. 1.2(A)).

e Equivalence ratio fluctuations [1, 15]: In partially premixed systems, acoustic pressure
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Figure 1.1: (A) An illustration of the occurrence of thermoacoustic instability (TAI) in gas
turbine engine. The onset of TAI occurs due to a constructive feedback between unsteady heat
release rate from flame and acoustics of the combustion chamber. (B) TAI manifests as the
self-induced finite amplitude pressure oscillations, (C) An illustration of the damage caused by
TALIL left - damaged burner assembly and right - damaged combustor liner (adapted from Yang
and Lieuwen [1]).

oscillations tend to propagate upstream into the plenum/premixing section. Here, the
oscillations modulate the mixing processes and fuel/air supply rates, creating a reactive
mixture with a periodically varying equivalence ratio. This modulated mixture is convected

into the flame, generating heat-release oscillations that drive the instability.

o Flame area and reaction rate oscillations [16]: An interaction between acoustic velocity
fluctuations and the flame causes modulation of the flame front area, which periodically

adds heat to the acoustic field, driving the instability.

e Coherent structures (vortez-flame interaction): These combustion systems often utilize
either bluff-body or swirling flows for flame stabilization within combustors. Both of these
methods, induces a vortex breakdown phenomenon, leading to the creation of a central
recirculation zone (CRZ) that sustains the flame by supplying heat and active species [17],
as illustrated in Fig. 1.2(A). This promotes efficient mixing of air-fuel mixtures and
temperature control, reducing NOx emissions and enhancing safety against auto-ignition
and flashback [18,19]. Nonetheless, intense swirling flows (S > 0.8) are susceptible to a
self-excited global hydrodynamic instability known as the precessing vortex core (PVC),
associated with the vortex breakdown process—large scale coherent structure, shown in

Fig. 1.2(B)-resulting in significant flame fluctuations [20-23]. These structures interact
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Figure 1.2: (A) Flow and flame processes that can cause thermoacoustic instabilities in
premixed combustion systems. (B) Coherent structures associated with swirling flows driving
the instability.

with fluctuations from turbulent flow or random changes in operational parameters (such
as equivalence ratio, temperature, swirl intensity, and vorticity), further driving the

thermoacoustic instability.

To be able to predict and suppress instability is a practical necessity and research in the field
has primarily focused on understanding the instability phenomenon and developing methods
for prediction and control. The Rayleigh criterion is not of much help in this regard, but the
latter—the flame response—allows for the determination of whether a given combustor-flame
configuration may become unstable for a given set of operating conditions: the flame response in
the form of the flame transfer function and the flame describing function [24,25] together with
input-output representations for acoustics within the combustor provides sufficient information
to establish stability boundaries. The method depends on the accurate measurement of the
flame response—a task which becomes increasingly difficult if the flame configuration, operating
conditions, and the acoustic field expected during the instability in modern combustors are to
be exactly represented for the flame response measurements.

One of the interesting recent developments in the field was to note that, characteristic features
aside, the combustion system is yet another dynamical system governed by a set of critical
parameters. When fluctuations in system variables are small, the evolution is well represented
by linear operators; but as the amplitude of fluctuations increases, system dynamics feature
nonlinear behaviour such as amplitude saturation, bifurcations, and chaotic scenarios. Such
systems features remarkable similarities in its dynamics with a wide spectrum of nonlinear
systems implying that fundamental features of thermoacoustic instability may be studied based
on a class of governing equations that have been developed for generic nonlinear systems
with which thermoacoustic instability shares its dynamic features. As will be discussed, this
perspective has also aided in developments in our understanding of noise-induced dynamics in

such systems.
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Thermoacoustic instability is highly undesirable in practical systems because of the large
amplitude pressure oscillations that result in thrust oscillations, severe vibrations that interfere
with control-system operation, enhanced heat transfer and thermal stresses to the combustor
walls, oscillatory mechanical loads that result in fatigue of system components, and flame
blow-off or flashback. These phenomena may result in premature wear of the components of
the gas turbine that leads to costly shutdown or catastrophic component and/or mission failure
(e.g.: the failure of America’s first manned moon mission occurred due to these instabilities in
F1 engine [26]. An example of the burner assembly and combustor liner damage due to the
occurrence of the instability is shown in Fig. 1.1(C). It becomes necessary either to avoid the
operational regime under which these instabilities occurs or to suppress the resulting oscillations.
This requires the knowledge of stability margins of a system and the understanding of the
dynamics of these instabilities, which are found to be influenced by the interactions between
the thermoacoustic instabilities and other processes in a combustor [27]. Emerging trends in
practical combustion systems tend to make them more susceptible to this feedback phenomenon.
Consequently, determination of the stability boundaries is essential and here a noisy system may
lead to problems associated with noise-induced oscillations/transitions. A basic understanding
of the primary (Hopf) bifurcation would help understand this effect of noise.

In a stable combustor, large amplitude coherent oscillations (consisting of one or more distinct
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Figure 1.3: (A) Supercritical and (B) Subcritical Hopf bifurcation diagrams. The bifurcation
parameter values at the Hopf point and saddle-node point are denoted as zy and xgy,
respectively. The regime preceding zy in (a) and zgy in (b) features only one stable
non-oscillating solution (stable focus) and is referred to as the subthreshold regime (reproduced
from Gupta et al. [2]).
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peaks in the frequency spectra of acoustic pressure/velocity or heat release rate fluctuations
from the flame) will be absent. Fluctuations may still be present due to inherent noise and these
might contain small amplitude intermittent coherent oscillations (see inset plot corresponding
to stable focus in Fig. 1.3(A)). As a critical/control parameter (~ operating condition) is varied,
large amplitude coherent oscillations will appear in one of the two possible ways: oscillations
with gradually increasing amplitude as the control parameter is varied, or oscillations with a
sudden jump in the amplitude. These two pathways are associated with the two forms of the
Hopf bifurcation. Figure 1.3 presents schematics of the two forms: the supercritical (top) and
the subcritical (bottom) Hopf bifurcation. The X-axis is the parameter and the Y-axis the
amplitude of oscillations. Solid lines are ‘stable’ asymptotic states: once the system assumes
such a state it will continue to stay at that state in the absence of any large disturbance and
further parameter variations. These are also known as ‘attractors’ because of the property that
if the system is disturbed from this state via small perturbations, it will be attracted back to
this state. The dashed lines are also states that the system can settle on for a short time, but
will eventually be repelled from this state to the closest attractor available. These are therefore
‘unstable’ states or ‘repellers’.

Depending on the nature of the nonlinearity within a system, transition to the oscillatory
state may happen via a supercritical or subcritical bifurcation [2,28]. For a supercritical Hopf
bifurcation, the transition to the oscillatory state occurs such that beyond the critical point
(also the Hopf point), g, the amplitude changes gradually. The role of noise for this case can
be expected to be limited to excursions of the system away from the stable states induced by
noise, followed by return towards the closest‘attractors’.

The subcritical Hopf bifurcation (Fig. 1.3(B)) is more interesting—and also more dangerous than
supercritical bifurcation to practical systems. In the most fundamental case of a subcritical Hopf
bifurcation, a stable (oscillator) state exists together with the stable steady state (referred to as
focus) prior to the Hopf point; and the two are separated by a repeller—an unstable limit cycle.
The point at which these two meet is referred to as a ‘saddle-node’. The region of coexisting
attractors is called ‘bistable’ region because of the existence of two attractors. The system will
evolve on one or the other depending on the initial condition: a large enough perturbation can
cause the system to switch from one to the other attractor. Such a condition is dangerous for a
practical system because although the system is far away from the Hopf point—which is what
may typically be obtained from linear stability analysis of the system—perturbations, including

noise may ‘trigger’ instability (the oscillatory stable attractor).

1.2 Noise-induced dynamics

Such combustion systems are inherently noisy. The noise originates from factors such as
aerodynamics [29, 30], unsteadiness in combustion process [31], fluctuations in air/fuel supply
ahead of flame caused by mixture coupling [32,33], fluctuations in the flow (or vorticity) caused
by velocity coupling [13,33-35], turbulence and flow separation [29,36] within the combustion

chambers. Therefore, pressure inside the combustor always consists of fluctuations induced
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Figure 1.4: An illustration of noise-induced features in gas turbine combustors

by noise irrespective of the occurrence of thermoacoustic oscillations. These fluctuations in
acoustic pressure, shown in Fig. 1.4, known as noise-induced response of a system, has been
used extensively in literature to investigate the interaction between noise and thermoacoustic
coupling.

Noise in combustion systems (Fig. 1.1) has on the one hand delayed the identification
of bifurcations and dynamical attractors (cf. [37,38]) and on the other hand enabled the
identification of measures of system stability. The latter has been possible because noise leads
to frequent excursions of the system away from its asymptotic dynamics; and characteristics of
its evolution back to the asymptotic behaviour (steady state or oscillatory states) is indicative
of the system stability. Both the aspects are discussed in further detail later. Transition due
to noise is not only limited to the transition from steady to oscillatory states; it is possible for
a system to have multiple coexisting oscillatory states; for instance in an annular combustor
both standing and rotating acoustic modes are possible during thermoacoustic instability and
it has been reported that the transitions between the two, commonly observed in experiments,
are likely due to noise in the system [39].

Noise in general has also been identified to result in other more subtle effects in nonlinear
systems such as stochastic resonance (SR), where a feeble external periodic forcing to the system
is enhanced in the presence of noise [40-43]; coherence resonance, which similar to SR except
that it does not require an external signal and internal frequencies are enhanced leading to
intermittent burst of periodic behaviour [44-48]. The term ‘resonance’ in both cases refers to
the observation that the amplification of the external periodic signal (SR) and the coherence in
noise-induced oscillations (CR) first increases with increasing noise intensity, attains a peak, and
subsequently decreases monotonically—similar to a resonance curve. The particularly interesting
feature of such noise-induced behaviour is the regime (control parameter range) within which

it occurs: for subcritical Hopf bifurcation it occurs before the bistable region (before the saddle
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node point), and for supercritical bifurcation it occurs before the Hopf point. Thus, in the
presence of inherent noise, such behaviour can be used as precursors, or for advance detection
of the proximity of the system to the (practically dangerous) bistable (subcritical Hopf) and
linearly unstable (supercritical Hopf) regimes. Only recently has coherence resonance and
associated P-bifurcations been demonstrated in experiments [6,49] and prototypical models
of thermoacoustic systems [2].

Another important aspect concerning noise-induced dynamics is that the effects are also
dependent on the nature of noise: the composition in terms of the distribution of power over
frequency and whether noise appears in the parameters governing the system (parametric noise),
whether noise is dependent on the state of the system (multiplicative noise), or if it is unrelated
to either the state or parameters (additive noise). These are however mathematical constructs
and one may find one or the other form reported in literature. The important point to note is
that the different classes of noise have different effects on the system.

Briefly summarizing, noise has been identified as a major contributing factor to the complexity
of thermoacoustic instabilities since the 1970s. Combustors are typically noisy environments
(Fig. 1.4). Considerable noise sources in practical combustion systems include flow separation,
turbulence, and combustion processes. It is expected that the presence of noise will affect in some
way the amplitudes and possibly the qualitative behaviour of organized oscillations [50]. The
noise-induced dynamics in a system can be used to acquire deterministic system parameters
(section 1.2.1), can trigger thermoacoustic instability in the bistable regime and modify the
stability margins of the system (section 1.2.2), and can act as a noisy precursor to instability

(section 1.2.3). We will now discuss the critical effects identified in recent studies.

1.2.1 System identification

It is reported that in the 1960’s or even the 50’s, several Russian groups were employing system
identification using the statistical features of pressure fluctuations [36]. It was however the
reports published in the 80s and 90s—primarily by Culick, Zinn, and their respective groups at
Caltech and Georgia tech—that made the major contributions to the theoretical investigation
of nonlinear and stochastic dynamics of thermoacoustic instability. The formulations and
results developed back then for liquid and solid rocket motors still have relevance for gas
turbine combustors and are being employed, extended, and improved for modelling and control
strategies.

This early work in particular is based on the approximate analysis for nonlinear instability
in combustors developed in [51,52]. Identifying the cause of triggering in combustors, which
was observed frequently in experiments, was the major driving force behind developing a
nonlinear framework involving either nonlinear gas dynamics, or nonlinear combustion, or
both simultaneously; and it was realized that nonlinear combustion was important to obtain
subcritical Hopf bifurcation and the associated triggering phenomenon [53].

Researchers were particularly interested in two questions: firstly, for noise with certain statistical
features introduced into the system as multiplicative or additive noise, what are the statistical

features of pressure fluctuations; and secondly, given experimental measurements of pressure
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fluctuations from a combustor, can the stability margins/measures of the system be inferred.
Among the first detailed studies on the effects of noise is the work by [30] where the authors,
building on the approximate analysis [51, 52], include parametric (noisy) excitation of the

acoustic modes and an additive noise source in the acoustic forcing term of the form:
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&, &) are parametric noise amplitudes, while =,, is the additive noise amplitude. Acoustic
pressure and velocity are expanded as a linear summation of (classical) acoustic modes and

nn is the time-varying amplitude of the n*®

mode. Accordingly, the governing equations for
fluctuations in the combustor appear as set of stochastic differential equations of the form of
oscillators with the forcing terms containing contribution from noise. Subsequently, with the
use of a two-mode approximation followed by stochastic averaging provides a simplified set of
equations for the fluctuations in the modal amplitudes in the presence of noise.

The corresponding Fokker-Planck equations [54] for pressure fluctuations will provide the
probability density. To obtain the Fokker-Planck equation, the state variable, 7, and 7, can be

transformed into amplitude and phase equations using the following relation,

n = Gp, COS (Wnpt + ©n
n ( ©n) 13)

N = —apwyp Sin (wpt + ©p)

where a, and ¢, are the instantaneous amplitude and phase of 7,. This substitution is
reasonable as, in practical cases, the thermoacoustic systems are categorized as “weakly”
amplified/damped systems [55]. Then stochastic differential equations (SDEs) for amplitude and
phase coordinates can be obtained by performing stochastic averaging [56]. The corresponding

Fokker-Planck equation associated with SDEs is given as,
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where, m (a,,) and o (a,) are drift and diffusion coefficients. Considering that when a,, — oo, the
probability density vanishes, one can obtain the stationary probability density of the acoustic
envelope by integrating the above equation. The authors reported a uni-modal, log-normal
distribution for pressure fluctuations as the result of this formulation and the description was
shown to match well with numerical simulations (Monte-Carlo) of the stochastic equations
obtained earlier.
The log-normal distribution of pressure fluctuations were also reported by [57] for the special
case when the combustor is close to the stability boundaries. The analysis was based on the
Stuart-Landau equation with the effect of noise (specifically due to turbulence) appearing as
a fluctuation of the growth rate (multiplicative noise). Furthermore, this was probably the
first work to approach transitions between the stable steady and oscillatory states within the
bistable region of the subcritical bifurcation due to noise. Further discussion on these transitions

is postponed for the section on noise-induced transitions. The authors also pointed out that to
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capture noise-induced behaviour correctly, it was important to include nonlinear terms. While
qualitatively the results appear to correspond to experimental observations, no further validation
of the multiplicative nature of noise or a characterization of changes in the transfer function or
the growth rate of the system has been attempted. Concerning multiplicative noise, additional
work was more recently undertaken in Ref. [58] where the authors show that in the presence of
fluctuations in the system damping and frequency, the stability regime shrinks (in comparison
to the boundaries identified from deterministic equations).

The definitive response to the long-standing question of whether the statistical features of
pressure fluctuations can give an idea about the stability margins of the system was finally given
by Seywert and Culick [36]. Like the previous investigations [30,50], the authors simplify the
governing equations to the form of an oscillator with multiplicative noise affecting the frequency
and growth rates of the system; with the system itself represented by four modes. Following
‘Burg’s method’ to curve-fit the power spectrum of the pressure fluctuations from simulations
of the stochastic differential equations, they identify the frequencies and growth rates of the
system and compare these to known values for the case of a linearly stable system. A very good
agreement is found and the method is reported to be robust against the amplitude of noise for the
case of additive noise and breaks down for large noise amplitudes for the case of multiplicative
noise. More insights on the latter have been obtained in very recent experiments [6,49].

The authors [36] also applied the method to linearly unstable system but the results are not as
promising. The method works only if a single mode is active during instability as it is unable
to distinguish between linear and nonlinear effects in the presence of multiple modes. The
formulation may also not be accurate as the authors consider nonlinear gas dynamics but a
linear flame response.

The idea that noise-induced dynamics could be used for system identification was recently
revisited by [59]. Unlike previous studies discussed in the last paragraphs where the authors
attempted to arrive at a set of governing stochastic differential equations, [59] and follow up
works [60,61] start with the assumption that only a single acoustic mode is active and the
dynamics may be well represented by Van der Pol equations and their stochastic extensions.
Noise is considered additive in nature. In [59] the authors propose four different approaches for
the determination of the linear growth rate and non-linearity coefficient—the nonlinearity being
an assumed form involving a single, constant coefficient. The first of these neglects the nonlinear
term and the determination of the growth rate is based on fitting the power spectrum of pressure
fluctuations with a function derived for the stochastic Van der Pol equation (with additive
noise). The second approach considers a weakly perturbed limit cycle oscillation of the oscillator.
It involves linearization about the limit cycle oscillation for which the amplitude depends on
nonlinearity coefficient and fitting of the power spectrum with the correspondingly modified
functional form. The next approach is based on the Fokker-Plank equation corresponding to
the amplitude and phase equations of the stochastic Van der Pol equation. An expression is
obtained for the amplitude distribution (Eq. 22 in [59]) and based on fitting experimentally

obtained data (Hilbert transform of the pressure oscillations given that Hilbert transform is
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applicable!) with the function. This approach relaxes the assumption of a weakly perturbed
limit cycle. Finally the authors propose another approach based on the Fokker-Plank equations
governing the evolution of the transient probability density. The coefficients associated with the
convection and diffusion of the probability density with time can be obtained from experimental
data and deterministic quantities estimated subsequently. This approach is most general and
relaxes the presumption of a stochastic Van der Pol; the result may be cross-checked to identify
whether the stochastic Van der Pol is a valid form for the governing equation. In the application
of the method on data obtained from the combustor the authors show that for the particular
case, the Van der Pol-based description largely holds. Except the first approach, the proposed
strategy is applicable for the linearly unstable regime as well.

Further development of the Fokker-Plank based method was presented recently in Boujo and
Noiray [62] where the authors provide a more robust estimation methodology based on adjoint
Fokker-Plank equations which does not suffer from problems associated with the fact that
previous methods relied on band-pass filtered data.

Among the studies mentioned only [36] has investigated the role of noise amplitude; and although
the amplitude appears as a parameter in methods studied in [39] and subsequent works, it is
implicitly assumed that for all cases the amplitude does not lead to variations in the general
form of the power spectrum or the amplitude distribution function. As discussed below, recent
experiments and associated analyses however indicate otherwise.

Kabiraj et al. [6] experimentally investigated the response of a model thermoacoustic system to
varying amplitudes of acoustic white noise signals for a range of operating conditions prior to
the bistable region. As mentioned earlier, in this region the system is linearly stable and the
steady non-oscillatory state is the sole attractor of system dynamics.

It was shown by the authors that the response to noise consists of intermittent episodes of
oscillatory behaviour at the frequency which would appear if the parameter were to be changed
to a value beyond the Hopf point. The episodes occurred more frequently and for a longer mean
duration as the system was brought closer to the edge of the bistable region. The most important
aspect concerning noise-induced dynamics was the observation that this ‘coherent’ behaviour
was also dependent on the noise intensity; and that this dependence was not monotonous. With
increasing noise amplitude the coherent response would increase and then—beyond an optimum
induced coherence—decrease. The optimum also depends on the proximity of the system to
the bistable region in a way that if the system is close to the bistable region, the optimum
is obtained at a lower noise intensity. Such behaviour has known in the nonlinear dynamics
community (cf. [47,48]) and is referred to as ‘coherence resonance’ due to the resonance-like
dependence of the induced coherence on the noise intensity. Such response was identified in
pressure as well as heat release rate fluctuations. In the presence of non-linearity, both the peak
height and the width are affected by noise [56]. The combined effect of noise on the spectral
peak is such that the coherence factors, 8, obtained from the power spectra passes through a
maximum for intermediate noise levels [45].

The investigation was further expanded in [49] to show the presence of ‘P-bifurcations’:

!With the assumption of a single dominant frequency in the system, this is true.
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qualitative changes in the statistical characteristics of pressure fluctuations as the noise intensity
is increased. The amplitude distribution functions changes from a uni-modal, log-normal
distribution to a bi-modal distribution. From the characteristics of the distribution it could
be inferred that the oscillatory attractor that exists in the bistable region and beyond influences
the noise-induced behaviour of the system already in the ‘subthreshold’ region. That such
‘P-bifurcations’ appear with the phenomenon of ‘coherence-resonance’ has also been observed
in nonlinear systems [48].

In addition to giving insights on the stochastic features of thermoacoustic instability the
observations are also practically relevant: such noise-induced behaviour and corresponding
trends can be used as precursors for advance detection of instability. We will discuss this later
in section 1.2.3.

Lately, a similar work analogous to Kabiraj et al. [6] was presented by [63]. They also
investigated coherence resonance and stochastic bifurcation behaviours in two modelled standing
wave thermoacoustic systems (open-open and closed-open boundary conditions). They reported
from the smooth transitions of the stationary probability density function (PDF) that the
thermoacoustic system is destabilized via stochastic P bifurcation, as the external noise intensity
was continuously increased. This was in good agreement to [6]. In addition, they also reported
that the increased noise intensity could shift the hysteresis region, making the system more
prone to quasi-periodic oscillations, but also reducing the hysteresis area possibly suggesting the
presence of a multiplicative noise component [58].

The phenomenon of coherence resonance was later analysed through numerical simulations
in [2]. The authors conducted numerical analysis of noise-induced (additive noise) dynamics
in subthreshold regime for models of thermoacoustic instability—Rijke tube as well as the Van
der Pol oscillator. The results reported correspond qualitatively to the observations of the
experiments [6]. The findings confirmed that the observed phenomenon of coherence resonance
in combustion systems is intrinsic to thermoacoustic coupling. Furthermore, investigations on
the Van der Pol model, which underwent bifurcation to instability via supercritical bifurcation
indicated that coherence resonance is not limited to subcritical bifurcations. The trends
in noise-induced coherence as the system approaches Hopf bifurcation for subcritical and
supercritical Hopf bifurcations were found to be qualitatively different and indicative of the
type of bifurcation. This particular result even has the potential to be used as a basis of
system identification prior to the instability. The restriction of additive white Gaussian noise
employed by the authors may not be accurate but the qualitative results impress the importance
of considering nonlinearity and noise amplitude effects in the modelling (and use in system
identification approaches) of thermoacoustic systems.

In order to summarize, the aforementioned discussions made by various researchers provided a
strong theoretical modelling of the stochastic forcing in thermoacoustic systems and how the
extended study of the model could be used to extract or determine the linear growth rate and
non-linearity in the system. It can also be concluded that the knowledge of noise-induced linear
growth /decay rates and non-linearity coefficient could help in designing of proper damping device

for dissipation of acoustic energy for a thermoacoustic system. But recent results also advocate
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the need for further developments in theoretical modelling and system identification approaches.

1.2.2 Noise-induced transitions

Among various practically-relevant aspects of thermoacoustic systems is the possibility of
switching between or undergoing transition to different dynamical states. There are two such

possibilities:

e Transitions involving thermoacoustically-stable (non-oscillatory) and oscillatory states.

e Transitions involving two oscillatory states.

In both the cases, the switch/transition may be ‘triggered’ by finite-amplitude disturbances,
including inherent noise within the system.

Transition from the stable, non-oscillatory state to an oscillatory state (not limited to limit
cycle oscillations [64]) is possible only for the case of a subcritical Hopf bifurcation (see
Fig. 1.3). Within the bistable zone, the simultaneous existence of two attractors leads to the
possibility of forcing the system to be attracted to one of them by providing an appropriate
disturbance: if a disturbance causes the system to fall within the ‘basin of attraction’ [65]
of the oscillatory state or the thermoacoustically-stable state, the system would be attracted
to the corresponding state. An illustration for such transition is shown in Fig. 1.5. Such

behaviour in thermoacoustic systems was first investigated in the context of rocket engines
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Figure 1.5: Noise-induced transition to instability when the system is in the bistable region
(reproduced from Jegadeesan et al. [3]): The pressure-time trace shown in gray corresponds to
the system evolving towards limit cycle oscillations, while the pressure-time trace shown in black
corresponds to the system evolving towards a stable focus. For the system to reach the limit
cycle, a threshold triggering amplitude is required, as indicated by the dashed lines. Bottom -
Phase portrait of the system asymptotically reaching a stable state. The term ULC denotes an
unstable limit cycle.
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where the triggering of thermoacoustic instability via a large amplitude pulse was referred to
as hard excitation or triggering instability [66]. Beyond a certain ‘threshold’ amplitude for
the disturbance, which was typically obtained through a small explosions within the combustor,
instability could be triggered. Experimentally it is possible to obtain the threshold corresponding
to the unstable limit cycle [67], but only for laboratory systems.

In the context of this study, it is important to discuss the fact that triggering is also possible
through noise [27]. Thermoacoustic systems can be triggered by low amplitude perturbations
of the order of background noise level. Noise in the system may be associated to several
sources—noise in operating conditions, noise in the base flow, fluctuations leading to combustion
noise, or external sources [68,69]. It is difficult to accurately model noise solely as additive,
multiplicative, or parametric noise; but this difficulty is a limitation of modelling methods.
Regardless of the source or classification, it has been known for a long time that noise can
induce triggering (cf. [70]) and the theory of dynamical systems, in particular the subcritical
Hopf bifurcation, provides us with the required framework to interpret and understand such
triggering. Because noise is involved, the analysis, description, and modelling of a thermoacoustic
system in the presence of noise must necessarily be probabilistic in nature.

Culick et al. [30] and Clavin et al. [57] were among the first to capture the effects of noise in
inducing repeated transitions between the stable oscillatory and stable steady states within the
bistable regions. [57], in particular obtained the transformation of the amplitude distribution
function from unimodal to bimodal nature—indicating the presence of transitions between the
steady and oscillatory states—through the Fokker-Planck formulation of the noisy (multiplicative
noise) Stuart-Landau equations that the authors argued is a simplified representation of the
thermoacoustic system in the presence of turbulent fluctuations.

Of recent, there have been several reports on noisy thermoacoustic systems, specifically
transitions within the bistable region, based on experiments involving prototypical setups;
and numerical/analytical analysis on either the Rijke tube formulation [71] with subcritical
bifurcation or the Van der Pol oscillator, where transition to instability takes place via a
supercritical bifurcation. The latter, due to the lack of a bistable region in the bifurcation,
can not be employed to understand transition within the bistable regime; and studies have
focussed mostly on the stochastic nature of pressure fluctuations within the system—without
transitions between stable attractors.

Waugh and Juniper [72] explored the mechanism of triggering a thermoacoustic system (Rijke
tube) with additive noise of different spectral composition—white, blue, and pink—and different
amplitudes, within the bistable region. Pink noise was identified to be the most effective in
triggering instabilities. Triggering required a certain threshold amplitude of noise depending on
the type of noise. If the strength of noise was increased to the point where the intensity was just
enough to trigger thermoacoustic oscillations, the system would spend some time at the unstable
periodic solution and eventually be attracted to the stable oscillatory solution (limit cycle) and
continue oscillating. At higher noise intensities, the system would directly be attracted to the
stable limit cycle. Such observation and the presence of the unstable limit cycle was also obtained

in experiments involving a periodic signal input for a prototypical system within the bistable
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region [67].

In a follow-up numerical study with additive noise [73], again within the bistable region, the
authors investigated the effect of noise intensity and the proximity of the system to the Hopf
point on the transition dynamics. If the system is close to the Hopf point, the basin boundary
for the stable oscillatory solution is closer to the steady state; and it is expected that a low
amplitude disturbance will be sufficient to cause transition. This is exactly what the authors
found in their study. Correspondingly, as the system is taken further away from the Hopf point,
transition would require a larger noise amplitude. Alternatively, for a constant noise amplitude,
transition would occur in advance (of the Hopf point); with the distance to the Hopf point for
such noise-induced transition increasing for increasing noise intensities (i.e. transition would
occur much in advance for a higher noise intensity). The authors investigated noise included
as an additional term to the system of equations as well as being included as a perturbation of
the acoustic velocity at the heater (driving the electrically-heated Rijke tube) and reported that
the results are qualitatively identical. These results explain several experimental observations
such as reported by [70], and recently repeated by [74] where the transition of combustors to
instability is advanced in the presence of increased noise (flow turbulence in the cited references)
intensity.

In experiments, a similar study was reported by [3], where the authors investigated the influence
of perturbations in fuel flow in a diffusion flame driven combustor. The configuration is closer
to being classified as a parametric noise case than an additive or multiplicative noise scenario.
Within the bistable region triggering would occur and the system evolution would pass through
the unstable periodic state before ending up at the stable oscillatory state as previously discussed
by [73] and [67]. When the system was perturbed by noise (Gaussian white noise), it underwent
noise induced transition (NIT) which was observed when the noise intensity was just 1/8th
of the triggering amplitude of the system. The evolution along the unstable periodic orbit was
found to be intermittent, with pronounced bursts of oscillatory behaviour. The authors reported
that with increased fluctuation intensity, the amplitude of triggered oscillations was lower than
the amplitude of the limit cycle oscillations for the configuration without noise. The authors
provide an explanation for the lowered amplitude based on a previous report of the drifting of
the phase between heat release rate and pressure fluctuations (thus, a constantly changed value
of the Rayleigh integral) in the presence of additive noise [75]; although if that was the case,
the numerical investigations should have identified the effect as well. The mean amplitude in
the simulations with additive noise [72, 73] was the same as the limit cycle amplitude obtained
without noise.

In experiments on the horizontal configuration of an electrically-heated Rijke tube, [76] identified
that the reduction in the hysteresis zone as a result of noise-induced transitions discussed above
follows a linear trend with respect to the normalized noise intensity. Such reduction in the
bistable/hysteresis zone for systems undergoing subcritical Hopf bifurcation, in the presence of
noise has been observed in various other dynamical systems as well [77]. For a sufficiently high
noise intensity, the system was shown to undergo repeated transitions between the stable steady

and oscillatory states; because of which the bifurcation diagram for the case of subcritical
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bifurcation with noise-induced transitions, obtained from noisy data with a representative
amplitude (in the cited work, the median of local maxima in acoustic pressure) would resemble
a supercritical bifurcation.

The authors recognize that the observed qualitative change in the bifurcation is due to
repeated transitions or ‘flickering’ as such behaviour and later in [78] identify the observation
as a stochastic P-bifurcation [48]. The authors compare the experimental observations in
terms of the transformation of the unimodal amplitude distribution function to a bimodal
structure (P-bifurcations) with increased noise to the analysis (Fokker-Planck formulation) of an
idealized single mode oscillator forced to undergo a subcritical Hopf bifurcation via an artificial
nonlinearity, and valid as a representation of the Rijke tube for small under several assumptions
including small heat release rate fluctuations and a small (in comparison to the oscillation
time period) time-delay in the heat release rate response. On account of the assumptions, the
oscillator does not feature a saddle-node bifurcation and is valid in a small vicinity of the steady
state solution. For the model, the corresponding Fokker-Planck formulation gives bifurcations
in the stationary probability distribution functions with variation in the bifurcation parameter
and the noise intensity.

Concerning the second possibility for transitions within a thermoacoustic system, noise has
also been reported to cause transition between coexisting modes of the system. Noiray et
al. [79] studied the transition between azimuthal standing and rotating modes in an annular
combustor. The modal dynamics were characterized and transitions between the two modes
were noted. To seek an explanation, the authors investigated the phase dynamics of a coupled
stochastic oscillator system with the flame nonlinearity modelled as a cubic nonlinearity. The
switch between rotating and standing modes was a long-standing aspect frequency observed
in industrial combustors and the influence of noise was found to provide the most consistent

explanation for such behaviour in modern annular systems.

1.2.3 Noisy precursors (or early warning prediction)

More recently, noise-induced dynamics have been used to identify parameters known as early
warning indicators (EWIs) or noisy precursors that change prior to the onset of instability when
the system is stable. These indicators exhibit a consistent trend, either increasing or decreasing,
as the system approaches instability. Monitoring these changes helps detect a system’s proximity
to thermoacoustic oscillations. EWIs can be broadly classified into two categories [80,81]: (i)
model-based indicators and (ii) metric-based indicators. These indicators are based on the fact
that the pressure signal inside a combustor undergoes a quantitative change before instability.
Examples of model-based indicators include the threshold of time-variant auto-regressive models
[82], non-parametric drift-diffusion-jump models [83], and potential well estimators [84].

The metric based indicators include an increase in variance of time series as the system
approaches the instability [85-90]. The increase in variance is attributed to two factors: under
small perturbation, the system can exhibit sliding around the stable state; and under large
perturbation the system can flicker (can be excited to another stable attractor). An increase in

skewness [80,89,91,92]-a measure of the symmetry of probability distribution about its mean—
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and kurtosis [80,89,91]-a measure of the distribution tails— are the critical indicators associated
with the statistics. Conditional heteroskedasticity which is a measure of variations in the time
series pattern is another critical indicator [87,93]. Conditional heteroskedasticity is indicated
by the persistence in the conditional variance of the statistical residuals.

The indicators based on the spectral content of time series are coherence factor (height-width
ratio of the spectral peak in a noisy signal) and the autocorrelation function [2,6,44,45,94,95].
An increase in the coherence factor as the system approaches the bifurcation (Hopf) point acts
as the precursor to instability. Autocorrelation function (ACF) is an another time series based
early warning indicator, related to the phenomenon of CR [44]. The time series obtained from a
combustor in general has an ACF with decaying amplitudes [6,95] which implies the presence of
coherence in the data. Both the coherence factor and the ACF are proportional to the quality
factor (f,/Af; where f denotes frequency and f, is the peak frequency) and increases as the
system approach the instability.

Multi-fractality, which indicates the degree of self-similarity in a time series by measuring
its short and long time memory is another critical early warning indicator [89,96-99]. As
the system approaches the bifurcation point, loss in multi-fractality is observed. This loss in
multi-fractality indicates impending instability and is quantified by the gradual decrease of the
Hurst exponent and singularity spectrum width, which serve as EWIs [96]. Increased duration
of intermittent bursts of periodic oscillations as the system approaches the Hopf bifurcation has
also been proposed to predict the instability [98-102]. The associated EWIs are a decrease in
the recurrence rate, time that a system spends in the intermittent state and Shannon entropy
of the time series. Recently, Baba et al. [90] and Fu et al. [99] reported that the construction of
a 2d space using joint symbolic and ordinal transition pattern-based recurrence plots can also
effectively capture the transition to thermoacoustic instability.

A decrease in permutation entropy [108-110,114] and an increase in Jensen-Shannon complexity

[108] of the system well prior to the instability are also proposed to be effective EWIs in

Table 1.1: Types of metric based early warning indicators employed commonly to predict the
onset of thermoacoustic instability.

Early warning indicator Phenomenon Reference
Increase Decrease

ACF decay rates v [101,103]
Coherence factor v [2,6,94,104,105]
Conditional heteroskedasticity v [87]
Intermittency v [90,98-102]
Jensen-Shannon complexity v [106-108]
Kurtosis v [89]
Lag-1 autocorrelation v [87—89]
Multi-fractality v [89, 96,98, 99]
Permutation entropy v [108-110]
Skewness v [89]
System identification v [111-113]
Variance v [87-89]
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literature. A more accurate EWI based on the combination of permutation entropy and
Jensen-Shannon complexity known as complexity entropy causality plane (CECP) is further
proposed [106,110,115]. In the CECP plane, three zones corresponding to combustion noise,
transition, and thermoacoustic instability are defined which are used to predict the instability
[106,107]. Lee et al. [108] further extended this approach to a three-dimensional CECS space
(complexity-entropy causality space), which considers the entropy and complexity of both the
pressure and heat release rate. The author [108] proposed CECS to be more accurate EWI than
CECP. Lee et al. [111,113] in their studies on the noise-induced dynamics in the unconditionally
stable region of a low-density jet [111] and swirl-stabilized lean premixed combustor [113]
reported that the measures of system identification (decay rates of acoustic oscillations and
non-linearity coefficients) can also be used to predict the instability. A summary of the various
metric based EWIs employed commonly in thermoacoustic systems along with their monotonic
trend is tabulated in Table 1.1.

1.3 Motivation (or research gap)

Most studies on noise-induced dynamics, including the early works by Culick et al. [30], Burnley
[50] and Clavin et al. [57] as well as recent reports [36,59,116-118] have modelled noise in the
system by additive Gaussian white noise. Such an assumption has helped in understanding
various aspects of noise-induced dynamics to a great extent. However, various numerical [5,
36] and experimental studies [4,5] have shown that the background noise actually features a
non-constant power spectrum (Fig. 1.6): the power spectrum of combustion noise increases at
low frequencies up to a cutoff frequency following P o< f2, attains a maximum and then decays
following P oc f~" (left plot in Fig. 1.6) whereas the power spectrum for flow noise remains
constant (or flat) up to a cutoff frequency and then decays following the power law (P o f~") —
right plot in Fig. 1.6. Here, r represents the decay rate of power spectrum and is proportional to

the noise color (or correlation time), P is the power spectral density and f is the frequency. A

—Re=7,500, ¢=1.3, T=293K
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1 - = ~Re=7,500, ¢=1.3, T=373K
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Figure 1.6: Left: Typical power spectra of combustion noise of turbulent premixed flames
adapted from Rajaram and Lieuwen [4]: case 1 and 2 — fuel-acetylene at ¢ = 0.71 and 0.64
respectively, case 3 — fuel-propane at ¢ = 1.03 and case 4 — fuel-natural gas at ¢ = 0.95.
Right: Power spectrum of several cases of reacting flows adapted from Nawroth et al. [5].
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change in the combustor operating conditions (via parameters such as temperature (7'), Reynolds
number, (Re), or equivalence ratio (¢)) causes a change in the amplitude, peak frequency, and
decay rate r, which causes significant changes in system dynamics. Hence, background noise in
a combustion system is not purely white Gaussian in nature.

The correlation time (also called as noise color) of background noise has been reported to affect
the phenomenon of coherence resonance: induces peak coherence at higher noise intensity [105,
119-121] and reduces the quality of induced coherence [122]. Bonciolini et al. [61] have shown the
importance of noise correlation time in system identification and have conclusively reported that
the noise correlation time and its intensity significantly affects the estimation of growth rates of
thermoacoustic oscillations in model gas turbine combustors. Noise correlation time also affects
the rate-dependent tipping-delay phenomena and it is reported that any variations in noise color
are beneficial to dodging bifurcation [123-125]. Colored noise has also been reported to be more
effective in causing noise-induced triggering than white noise [116].

The background noise features contributions not only from additive sources arising from
aerodynamics and combustion but also from multiplicative sources arising from coupling
mechanisms such as velocity, pressure and mixture coupling [1,33,36]. Lieuwen and Banaszuk
[58] have reported that the multiplicative noise alters the stability margins of the combustor and
purely additive noise is not sufficient enough to predict the pressure amplitude. Following this,
recently, Li et al. [126,127] investigated the effect of noise correlation time of both multiplicative
and additive noise on the stability margins of a thermoacoustic system (open-end Rijke tube)
exhibiting subcritical Hopf bifurcation. The authors reported decreasing the noise correlation
time of multiplicative noise can lead to a decrease in both bistable and linearly stable regions.
Hence noise correlation time of multiplicative noise has been reported to changes the qualitative
dynamics of a system.

In practical systems, inherent noise typically exhibits finite correlation time and intensity, which
vary with operating conditions (equivalence ratio, flame configuration, fuel split, Reynolds
number, etc.) [5]. Both these effects must be considered when estimating system stability to
detect the system’s proximity to thermoacoustically-unstable conditions. Information on how
noise correlation time of background noise (including both additive and multiplicative sources)
affects the reliability of early warning indicators for accurately predicting thermoacoustic
instability in practical systems is limited. In the thermoacoustic community, only Zhang et
al. [125] have investigated the effect of noise color on variance, autocorrelation, skewness,
kurtosis, and entropy, finding that among these EWIs, autocorrelation, skewness, and entropy
can serve as reliable indicators. The lack of investigations on the effect of background noise
characteristics, including both additive and multiplicative sources, on the efficacy of various
EWIs motivates the first part of the present work.

Another aspect of flame-acoustic interaction crucial to the thermoacoustic instability is the
helical instability (PVC) associated with the swirling flows. Numerous experimental and
numerical investigations in the literature have focused on understanding the excitation and
suppression mechanisms of the Precessing Vortex Core (PVC) phenomenon [17,128-131].

Paschereit et al. [20] demonstrated the excitation of axisymmetrical and helical modes in a
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model premixed burner by modifying the boundary conditions of the combustion chamber.
Iudiciani and Duwig [132] reported that acoustic excitation at frequencies lower than the PVC
mode effectively suppresses PVC, while excitation at twice the PVC frequency amplifies the
helical instability. The damping efficiency of low-frequency forcing has been corroborated by
Khalil et al. [133], and Lacarelle et al. [129]. In a recent reactive experimental study, Moeck
et al. [134] successfully suppressed the natural helical instability through acoustic forcing at
a lower frequency than the natural frequency. Besides suppression, attention has also been
directed towards understanding the interaction between the PVC and the structures induced by
external forcing. It has been reported that flame and flow field oscillates at linear combinations
of PVC and external forcing frequency [134]. A dramatic increase in turbulent kinetic energy,
as a result of changes in the structure of a turbulent jet with a high swirl number forced at
the PVC frequency, was reported by Alekseenko et al. [135]. Wang et al. [136] instead used a
numerical approach to study a swirl injector. They found that the excitation did not relevantly
affect the central recirculation zone while it excited the outer shear layer in a case where the
excitation frequency matched the intrinsic frequency of vortex shedding.

So far in literature, the mechanisms for suppressing/exciting PVC are discussed based on single
frequency acoustic excitation. Information on how the coherent structures associated with global
instability interact with inherent noise inside the combustor is not explored. Part 2 of the
thesis focuses on this aspect. The hypothesis is that introducing a broad range of frequencies
may suppress or excite the coherent structures associated with instability. This information
is significant for developing mitigation and control strategies for thermoacoustic instability in

practical combustion systems.

1.4 Objectives of the present work

The main objective of this thesis is to advance the understanding of the interaction between
thermoacoustic coupling and noise in gas turbine combustors, with a focus on practical
applications. We specifically focus on two aspects: (i) how reliably can noise-induced dynamics
be used for early warning prediction of impending thermoacoustic oscillations whilst the system
is stable (or is in subthreshold region — Fig. 1.3) and (ii) how noise interact with the coherent
structures associated with swirling flow that leads to the onset of thermoacoustic instability
in gas turbine combustors. This information on how noise interact with the instability
can help develop strategic mitigating and control measures. We achieve these objectives
through analytical, numerical and experimental modelling of inherent (background) noise and

thermoacoustic coupling.

1.5 Structure of the thesis

The thesis is structured into two main parts, which aggregate the single studies that are contained
in each chapter.

The first part of the thesis is dedicated to model and time series based parameter identification
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Figure 1.7: An illustration of the objectives for PART I of the thesis.

(growth rates of thermoacoustic oscillations and early warning indicators) for control and early
prediction of thermoacoustic instability, schematically shown in Fig. 1.7. This investigation is

conducted in following systems:

e A well controlled experiment allowing to mimic thermoacoustic coupling in gas turbine
combustion chambers is setup. More specifically, the electroacoustic feedback which is

used allows to reproduce the non-linear flame response to acoustic perturbations.

e Numerical simulations are performed employing a reduced-order combustion dynamics
model which can effectively capture the occurrence of thermoacoustic instability within

the combustion chambers.

e The practical implementation of noise-induced dynamics is shown on a practical

combustion system operating on lean premixed natural gas-air mixtures.

The second part of the thesis is dedicated to investigate the interaction between noise/acoustic
excitation and swirling flow, schematically shown in Fig. 1.8. The following studies are conducted

for this investigation:

e A novel multi-swirl burner is designed and developed through RANS numerical simulations.

Noise or acoustic
excitation

4

Q
Effect of noisy excitation on large scale coherent
structures associated with swirling flow

Reversed flow

Figure 1.8: An illustration of the objectives for PART II of the thesis.
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e Experimental investigation employing time-resolved Schlieren imaging to obtain mean flow
characteristics of the burner and subsequently, proper orthogonal decomposition (POD)

analysis is employed to identify and extract the dominant coherent structures in the flow.
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Summary

This part of the thesis systematically assesses the application and limitations of different
classes of EWIs as a function of noise color and intensity through detailed numerical
simulations and experiments. Specifically, we address how variations in background noise
characteristics influence the effectiveness of different classes of EWIs and which EWIs are
most reliable considering that noise characteristics depend on the system and may change
with control parameters. We investigate indicators based on statistical measures (variance,
skewness, and kurtosis), autocorrelation and spectral properties (coherence factor), system
identification (growth/decay rates of pressure oscillations), multi-fractality (Hurst exponent
and multi-fractal spectrum width), and time series complexity (permutation entropy and
Jensen Shannon complexity), as tabulated in Table 1.1. The entire investigation is carried
out in the subthreshold region where the system is asymptotically stable. The investigation
uses three types of systems: (i) an electrically driven Rijke tube simulator (a prototypical
thermoacoustic system) exhibiting subcritical Hopf bifurcation, (ii) reduced-order combustion
dynamics model (stochastic Van der Pol oscillators — supercritical and subcritical Hopf
bifurcation), and (iii) a lean premixed flat flame combustion system operating on natural gas-air
mixtures exhibiting subcritical Hopf bifurcation. In all cases, we subjected the systems to two

types of noise: (i) white noise and (ii) colored noise at varied noise correlation times and intensity.

This part includes four chapters. In Chapter 2, we investigate the effects of noise characteristics
on system identification, coherence resonance and fractal signature using an electroacoustic
simulator, which serves as a prototypical thermoacoustic system. In Chapters 3 and 4, we
perform detailed numerical simulations using a reduced-order combustion dynamics model
and investigate the effects of both additive (Chapter 3) and multiplicative (Chapter 4)
noise characteristics on a broad spectrum of EWIs, as tabulated in Table 1.1. We provide
recommendations on the most reliable EWIs for implementation in practical systems. In
Chapter 5, we implement the recommendations from numerical simulations in a lean premixed
combustion system where noise is systematically varied and identify the most robust EWI. The
results from this part of the thesis provide valuable insights for selecting appropriate EWIs for
engine monitoring in the absence of information on noise properties and their variation with
operating conditions. This practical information is of direct relevance and interest to any gas

turbine manufacturer or user.



Chapter 2

Electroacoustic Modelling of Thermoacoustic Instability

2.1 Overview

In this chapter, we present an experimental and numerical investigation into the noise-induced
dynamics of thermoacoustic coupling using an electroacoustic Rijke tube simulator (Fig. 2.4), a
prototypical thermoacoustic system, which exhibits instabilities via subcritical Hopf bifurcation
with variation in heater power. The electroacoustic simulator is designed to mimic the classical
Rijke tube, wherein an electroacoustic feedback allows to reproduce the non-linear flame
response to acoustic perturbations. Our focus is on the effects of noise characteristics (such
as correlation time and intensity) on system parameter identification (growth/decay rates of
acoustic oscillations) and the early warning prediction of thermoacoustic instabilities. We
model the inherent (background/combustion) noise as an additive Ornstein-Uhlenbeck (OU)

process.

We employ the Fokker-Planck formulation, associated with the stochastic differential equations
of amplitude and phase coordinates derived from the Rijke tube model subjected to both
white and OU noise for system identification. We discuss the limitations of the white noise
approximation in the stable, bistable, and linearly unstable regions to better understand the
thermoacoustic system driven by colored noise. This understanding is crucial for designing
acoustic damping devices for passive control and for developing decay-rate-based early warning

indicators for the active control of thermoacoustic instabilities.

Subsequently, we focus our investigation on the stable region (prior to the occurrence of
instability) and study the effects of noise characteristics on the estimation of two types of
noise-induced dynamics: (i) the coherence factor and (ii) the Hurst exponent and multi-fractal
spectrum (multi-fractality). As coherence resonance and multi-fractal measures are related to
trends observed in various precursors—such as variance, autocorrelation function, permutation
entropy, duration of intermittent bursts, conditional heteroskedasticity, skewness, and kurtosis
of the amplitude distribution—this investigation covers the effects of noise color one might
expect to observe in a spectrum of early warning indicators for detecting the system’s proximity

to thermoacoustically unstable conditions.

This chapter is further divided into four sections. Section 2.2 describes the numerical model of
a representative thermoacoustic system, the electrically-driven Rijke tube exhibiting subcritical
Hopf bifurcation with variations in heater power; the colored noise model; the derivation of
the Fokker-Planck formulation; and the experimental setup used in this chapter. Section 2.3

experimentally investigates the influence of noise characteristics on system identification.
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Figure 2.1: Visual summary of the contents of Chapter 2. TAI stands for thermoacoustic
instability.

Section 2.4 presents both numerical and experimental investigations on the influence of noise
characteristics on the coherence factor and measures of multi-fractality. A brief overview of the

summary for the contents of the chapter is shown in Fig. 2.1.

2.2 Model and experimental setup description

2.2.1 The Rijke tube model

Rijke tube [137-139] is a simple thermoacoustic system consisting of a hot wire gauze placed
inside a tube with open ends. Thermoacoustic instability arises in this system due to feedback
coupling between acoustic oscillations associated with duct acoustic modes and heat release
rate fluctuations from the hot wire gauze. The momentum and energy equations for an
electrically-heated Rijke tube with the mean flow and temperature gradients neglected in the

dimensionless form are given as [140]:

Ou 1 9p
ot M, oz
2.1
O M2+ Qi (o ) o
ot gy P T

here, x represents the duct’s longitudinal coordinate normalized by its length, L,; t represents
time normalized by L, /co (¢o is the speed of sound); u and p represents the velocity and pressure
fluctuations normalized by the mean velocity, ug, and the mean pressure, pg, respectively. @’

3
PCo

vy =1)
the ratio of specific heat at constant pressure and volume (v = ¢,/¢,). ¢ represents the acoustic

represents the dimensionless heat release rate fluctuations, normalized by , where v is
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damping in the system. M, is the Mach number (ug/co) of the mean flow and § is the standard
Dirac distribution employed to indicate that the heat release occurs at the heater location, zy. A

model for the heat release rate fluctuations, Q’ , is given by the modified form of King’s law [138]:

1 1
\/'3+Uf(t—7') _\/§] (2.2)

where 7 is the time-delay representing thermal inertia of heat transfer from the hot wire gauze to

Q=K

the duct acoustics, normalized by L,/cop; K is the normalized heater power which is a function
of physical and thermodynamic properties of the hot wire gauze and the fluid; and wuy is the
non-dimensional acoustic velocity at x.

Acoustic velocity, u, and pressure, p are projected onto N Galerkin base modes resulting in a
set of 2N ordinary differential equations [141]. The Galerkin modes satisfy the closed-closed

boundary condition and therefore, the decomposition is given as:

N )
p(x,t) = Z U;ﬂ M, cos (jmx)

) (2.3)
1) = 3y ) s ()
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—

J

On substituting this decomposition in acoustic momentum and energy equations (Eqn. (2.1))

and adding additive noise, we obtain,

dn; .

VAR 24

3 = (2.4)
Y 4 iy + (m)ny = 27 cos (jmay) + & (2.5)
dt J'g J vMa J

The damping term ¢; is modelled as (; = C1j + Co \/m , with C1 and Cs following Matveev
and Culick [71] and Sterling and Zukoski [37]. It is important to note here that additive noise is
introduced to each mode via the §; term. Such noise addition is not associated with a location.
This form for the noise term is the same as in previous literature [2,73,76] on noisy Rijke
tube simulations. Moreover, the noise terms, &;, are also not dependent on the mode number —
additive noise to each mode has the same intensity and color for a given simulation.

The system of equations is numerically simulated using the fourth order Runge-Kutta method.
We consider K as the control parameter while choosing the values of the other Rijke tube
parameters as: 7 = 0.2,C7 = 0.1,y = 0.06, zy = 0.25 and N = 10 to ensure modal convergence

[142]. The Hopf bifurcation diagram for the Rijke tube model in the absence of noise is shown in
Fig. 2.2 by the solid lines. As the parameter K is gradually increased from 0, the system becomes
unstable, and thermoacoustic instability (limit cycle oscillation) is spontaneously observed at the
Hopf point. Fig. 2.2 indicates that the oscillator evolves through a subcritical Hopf bifurcation,
characterized by the Hopf point and saddle-node (also fold) point at K = 0.64 and Kgn = 0.44,
respectively. The region before the fold point (K < 0.44) is termed the subthreshold region,

where the only attractor available is the stable focus, and the region beyond the Hopf point is
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Figure 2.2: The noise-free subcritical Hopf bifurcation diagram for Rijke tube model with K
as the control parameter. The bistable region is shown as the grey fill. The saddle-node and
Hopf points are located at Kgy = 0.44 and Ky = 0.64 respectively. The dashed arrows
indicate the path followed by the system as K is varied. The solid lines represent the simulation
results, whereas, the markers represent the experimental data. The RMS values of the pressure
oscillations (p) on y-axis is normalized by amplitude at Ky given as p.

the linearly unstable region (K > 0.64). A bistable region, where stable focus and limit cycle
oscillations coexist, is present between 0.44 < K < 0.64. In this region, perturbations can

trigger large amplitude limit cycle oscillations [73,116,143].

2.2.2 Noise models

The frequency spectrum of combustion noise, typically from turbulent flames as shown in
Fig. 2.3(a) for varied operating conditions, exhibits the following features: the power density
first increases from low frequencies, following P o f2, up to a cut-off frequency (200Hz < fpeqr <
1000Hz) [144]) beyond which it decays following P o< f~", where, 2 < r < 3.4 [4,5]. A change in

the combustor operating conditions (via parameters such as temperature (7'), Reynolds number,
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Figure 2.3: (a) Typical power spectra of combustion noise of turbulent premixed flames adapted
from Rajaram and Lieuwen [4]: case 1 and 2 — fuel-acetylene at ¢ = 0.71 and 0.64 respectively,
case 3 — fuel-propane at ¢ = 1.03 and case 4 — fuel-natural gas at ¢ = 0.95. (b) and (c)

Comparison of the power spectrum of white and OU noise for two bandwidths, ﬁ—: = 0.1 and

% = 0.7 respectively. The y-axis shows the power spectral density of (¢) (Eqn.(2.6)) in dB/Hz
(i.e., 10log;o(See(f)). OU noise is generated such that the powers provided by ¢ and by the
white noise of intensity I' in the band around the system’s natural frequency are equal. The
correlation time, 7., is normalized by the duct acoustic time period, Ty. The inset plots show
the same plot on log scale.
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(Re), or equivalence ratio (¢)) causes a change in the amplitude, peak frequency, and decay rate
r. The latter, decay rate is a representation of combustion noise correlation time. Such changes
in combustion noise characteristics significantly changes system dynamics.

In combustors, additional sources of noise such as flow turbulence and cooling holes exist. Still,
overall background noise is expected to have a low-pass character and &; in Eqn. (2.1) can be
adequately modelled by an Ornstein-Uhlenbeck (OU) process. This process has been previously
employed by Ma et al. [119], Bonciolini et al. [61] and Li et al. [105] for modelling systems
where external noise and heat release fluctuations are expected to have a low-pass nature.
Mathematically, {; when modelled as an OU process satisfies the following Langevin equation [61,
105]:

VD

Te

e(t) (2.6)

where 7. denotes the noise correlation time and controls the power spectrum’s cut-off frequency.

) =€+

D denotes the noise intensity. e is Gaussian white noise (a vector of size n x 1, where n is the
number of samples based on sampling frequency). Thus, white noise is a limiting case of the OU
noise, as 7. — 0: the shorter 7., the closer £ is to white noise. The OU noise has the following

statistical properties:

(€ =0 and (ee (1)) = 2exp (- 1) 27)

Te

where the parameter, s2 = D/7,, is the variance of the OU process given by its second moment,

<§2>. The power spectrum of £(t) is given as:

See(w) = 21;1:50272 (2.8)
I' is the measure of white noise intensity. In the limit 7. — 0 and D — 1, we get Sge(w) —
/21 = See(w).

The focus of the present study is to quantitatively compare white and colored noise forcing on
the Rijke tube oscillator; therefore it becomes necessary to set a criterion regarding the input
power. A convenient way is to keep the noise power in a band around the system’s natural

frequency equal for colored, £, and white noise, € [61], i.e.,

wa wo
Sggdw:/ I'/2rdw

w1 w1

In this case, the intensity of & is adjusted by the coefficient D, evaluated using the following

expression:

D= Te (wp = w) (2.9)
atan (wa7.) — atan (w1 7e)

We conduct our study for three bandwidths around the eigenfrequency: (i) Aw/wy = 0.1; (ii)
Aw/wy = 0.7; (iii)) Aw/wp = 4.9. The first two bandwidth cases are shown in Fig. 2.3(b)-(c).
The powers in the given bandwidth (area under the PSD curves on a linear scale) for the white

and OU noise are the same. In Fig. 2.3(b)-(c), the correlation time, 7, is normalized by the
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duct acoustic time period, Ty (= 1/ fp).

It is important to note that, the increasing part of the combustion noise spectrum, controlled
by f2, can only affect the system’s dynamics when 7./Ty < 0.16. In such cases, the system’s
eigenfrequency (fp) sees the f2 growth in the spectrum amplitude. The noise-induced response
of the system in such cases would be nearly identical to that of white noise for all 7./Tp < 0.16;
thereafter, the system’s response would be controlled by the decay part (f~") of the combustion
noise spectrum. This is because, within the bandwidth, the curves in the power spectrum
corresponding to 7./Tp < 0.16 are similar to the white noise. The power spectrum and associated
results considering the f? part of the combustion noise spectrum are shown in Fig. A.1 and A.2
of Appendix A. Therefore, in our study we model the additive noise with OU process which

accurately models the f~" part of the combustion noise.

2.2.3 Fokker Planck formulation

It is convenient to recast the Rijke tube model using the amplitude-phase coordinates. This
substitution is reasonable as, in practical cases, the thermoacoustic systems are categorized as
“weakly” amplified/damped systems [55]. Equations (2.4)-(2.5) can be combined and re-written

as,

—L 4 G + (jm)°n; = Kigm) C;;;(jmf) [\/Il +3sin (jrag) it —7) - 1| +&  (2.10)

For weakly non-linear analysis of the reduced-order Rijke tube model given by Eqn. (2.10), we
assume small magnitudes of n and expand the square-root non-linearity in a Maclaurin series to

obtain,

2
dt 4 4 (2.11)

+% sin2(j7mf)77(t —7)3 + &;

In order to simplify, we introduce the following terms in Eqn. (2.11),

= \/gfjﬂ sin (2j7x )
co = 3\/‘?2(]71- sin (2jmx ) sin (jray), (2.12)
c3 = 9\/:;;{‘” sin (2j7z ) sin? (jmay)
and obtain,
s 4 i + (Gm)*nj + en(t —7) + con(t — 7)° + ean(t —7)° =& =0 (2.13)

dt
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For small 7, n(t — 7) can be approximated as,

(t) + 720 (8) — 2rn(t)n(t) (2.14)
2(t) — 0P () — 3o ()i(t) + 3T (t)i? (t)

On combining Eqn. (2.13) and (2.14), we obtain the following linearized equation for j%* mode,

=5y Gy ()% + ey — exrii + can? + catn? — 2eamyy + canl — caTon? (2.15)

—303T77j77j + 3c3T 77]-77]2. — ‘Ej =0

Now, we derive the Fokker-Planck equation [54] representing the probability density function
(PDF) of the amplitude of the pressure fluctuations inside the Rijke tube. To obtain an explicit
form of the stationary Fokker-Planck equation, we derive the Fokker-Planck equation for the j"
mode.
The state variable, 7; and 7j; can be transformed into amplitude and phase equations using the
following relation,
n; = a; cos (wjt + ;) (2.16)
Mj = —ajw;sin (Wit + ¢;)
where, a; and ¢; are the instantaneous amplitude and phase of 7;. We transform Eqn. (2.15)

in terms of a; and ¢, as,

j cos ¢; — a;p;sing; =0 (2.17)
.. . - . . Cc1 C2 o9 2
a;jsin@; + a;pjcos ¢; = — (ja;sin@; + ci1Ta;sin ¢ + ;aj cos ¢; + Jaﬂ' cos” @;
j J
+ 2027'%2» sin ¢; cos ¢; + comla? Wi sin? o; + a cos qu
wj (2.18)
+ 3037a3» sin ¢; cos? ¢j + 3c3T aj3wj sin? ¢ cos @;

=+ 03T3a?wj2 sin® o; + &
where ¢; = wj;t + ¢;. The ordinary differential equations for a; and ¢; obtained from

Eqn. (2.17)-(2.18) are as,

] Cia;  ciTa; 3csmdadw?  3cezTal & .
G =S A ST L Quag 4 Eeng) 219
2 2 2
] c1 303aj 3c3T ajw; &
C— 2.20
A i Y +Qg(a, 9) + "y (cos ¢) (2.20)

where, Qq(a, ¢) and Q4(a, @) are the sum of first-order sine and cosine terms that become zero
after time-averaging. To derive the stochastic equations for a; and ¢;, following the method
stated in [56], we perform averaging of Eqn. (2.19) and (2.20) over one cycle of oscillation. The
stochastic part of Eqn. (2.19) and (2.20) can be transformed using, z = £(t)sin¢(t) and y =
&(t) cos ¢(t). The correlation time of noise is assumed to be much smaller than the characteristic

time of a;, hence there exists a time shift A > 7., over which a; and ¢ do not change noticeably.
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We can then expand x in ¢, around ¢(t — A) = ¢@_a as,
x &~ —=£(t)sin (w;t + p_a) — &(t) cos (wit + o_a) Ap (2.21)

We can then integrate the fluctuating term of Eqn. (2.20) , obtain Ay, and then express (z) as:

A
(x) = — ! /0 (€€7—0) cos ¢ cos (¢ — w;To) dT (2.22)

wWja;

For OU noise, (££;,) = FQiTCe*TO/ Te. This autocorrelation function tends to zero for time larger

than 7. Therefore, we get,

r VD
4‘*’]2“3' (1 + wj2-702>

<$>/Wj == djstoch == (223)

This term exists due to the correlation between a;(t) and ¢(t), which causes the fluctuating
component to have a non-zero average.

For white noise, 7. — 0 and D — 1, hence, we get,

r

= — (2.24)
4w]2-aj

<:E>/wj = djstoch

Making use of Eqn. (2.19)-(2.23), we compute the following form of Fokker Planck equation,

0 0 0% [o(a;)
P 0300) =~ (@) P a3 0]+ 5y | 752 (1) (2.25)
J
where, the drift and diffusion coefficients are given as,
N Gaj  ciTaj 3037’@? 3037’3%2(1;? T
mlaj) = =73 2 § T 8 4
r J (2.26)
o(aj) = @

Integration of Eqn. (2.25), will yield the following stationary PDF for OU noise,

4w?a? (14 wir?
(¢ +ar) s L)
T VD

12037'a§wj2~ (1+ wJQ-TCQ)

8T VD

P, (a;j) = Ccajexp

+(1+ w]2-72)

] (2.27)

and for the white noise as:

Py (aj) = Cpajexp | (—=C +ciT) 11 +(1+ w]2-7'2) (2.28)

4w2-a? 12037a§w2]

where, C, and C,, are the normalization constants such that [;* P(a;)da; = 1. For a given set
of parameters ((j, T, wj,c1,¢3), Py (a;) is dependent only on white noise intensity, I', whereas,

P, (aj) is also dependent on 7, and D. Eqn. (2.27) and (2.28) differ in normalization constants,
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14+w?72) | . . .
and a factor % in the exponent. For 7. — 0 and D — 1, this factor is close to 1, resulting

in Eqn. (2.27) and (2.28) to be identical. The significant difference in the two expressions for
P, and P, occur for larger values of 7, that is investigated in detail in this study. This Fokker

Planck formulation is used for system identification in section 3.3.

2.2.4 Experimental setup (electroacoustic Rijke tube simulator)

We conduct experiments in an electroacoustic Rijke tube simulator designed to mimic the
classical Rijke tube with closed ends (inspired from Noiray and Schuermans [59]). Figure 2.4
illustrates the setup which consists of a cylindrical duct closed at both ends. The duct is fitted
with two acoustic driver units connected to an amplifier, a condenser microphone combined
with a signal conditioner, and a real-time controller (RTC). An electroacoustic feedback loop
is generated in this simulator by routing the microphone to loudspeaker 1 (LS 1) through a
real-time controller (RTC) (shown by the blue dashed lines). The Rijke tube model (given by
Eqn. (2.5)) is simulated in the RTC. Pressure fluctuations, (p), acquired from the microphone
are employed to obtain velocity fluctuations, uy, via Eqn. (2.3). The noise is fed into the
simulator through Loudspeaker 2 (LS 2). All the conversion factors/calibration of loudspeakers,
microphone and amplifier are accounted for in the experiments. We consider K as the control
parameter for the simulator while choosing the values of the other Rijke tube parameters as:
7=0.2,01 =0.1,C2 =0.06, 7y = 0.25 and N = 1.

Some of the experiments were repeated multiple times to check for repeatability. Prior to

experiments with the Rijke tube simulator and noise, the cold decay rate (with K = 0) of Rijke
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Figure 2.4: Schematic of the electroacoustic Rijke tube simulator. It is a cylindrical duct closed
at both ends and is fitted with acoustic driver units and a microphone. A feedback loop inducing
electroacoustic oscillations is generated by routing the microphone to loudspeaker 1 (LS 1) via a
real-time controller wherein the Rijke tube model is simulated and the control parameter, K, is
varied. Noise is fed through loudspeaker 2 (LS 2). All dimensions in the schematic are in mm.
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Figure 2.5: Estimation of cold damping rate, v, of electroacoustic Rijke tube simulator. The
decay rate is estimated by curve fitting a straight line to the logarithmic of pressure amplitude
(obtained via Hilbert transform). The value of decay rate is found to be v = 11 + s~ ! in all
reported experiments.

tube simulator was checked; in all tests, the exponential decay rate was consistently obtained
with a value v = 11 £ 1s~!. For the cold decay rate measurements, the noise-free simulator was
excited with the fundamental duct frequency (284 H z) for a short duration through loudspeaker
1 after which the loudspeaker was turned off. The decay rates were estimated by curve fitting
a straight line to the logarithm of the amplitude (obtained in turn using the Hilbert transform
of the acoustic pressure signal). A sample result is presented in Fig. 2.5.

For the noise-free system (LS 2 switched off), as the parameter K is gradually increased from
0, thermoacoustic instability spontaneously appears in the initially stable system; a stable limit

cycle is observed. The bifurcation plot, pressure-time traces, and corresponding power spectrum
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Figure 2.6: Top: The subcritical Hopf bifurcation with bistable zone as the grey fill; Center:
Pressure-time traces; Bottom: Power spectrum obtained from noise-free electroacoustic Rike
tube simulator. The saddle-node and Hopf points are located at Kgy = 0.44 and Ky = 0.64
respectively. The frequency peak is at 284 H z.
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are presented in Fig. 2.6. The simulator exhibits subcritical Hopf bifurcation with Hopf and
saddle-node points at Kz = 0.64 and Kgn = 0.44 respectively. The peak frequency is observed
at fo = 284Hz. The validation of experimental results with simulations is shown in Fig. 2.2,
where the markers represents the experimental data and the lines represent the simulation
results.

For the noise-free system, the growth rate of oscillations can be estimated by fitting a straight
line to the logarithmic plot of the magnitude of Hilbert transform of the acoustic pressure signal.
An overview of the estimated values of growth/decay rates for a noise-free system is represented

in Fig. 2.7 as a function of the parameter K. To determine the decay rates in the bistable
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Figure 2.7: An overview of the estimation of growth rates of acoustic oscillations for a noise-free
simulator as a function of K.
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Figure 2.8: An illustration of noisy pressure-time series and corresponding power spectrum
in subthreshold and limit cycle regions acquired from electroacoustic Rijke tube simulator for
o =17Pa and 7. = 0.9 ms.
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region, the initially-stable system was subjected to a small perturbation to cause the oscillations
to decay.

In the present work, we conduct two sets of experiments: (i) noise modelled as white noise and
(ii) noise modelled as Ornstein-Uhlenbeck (OU) process. Figure 2.8 shows an example of a noisy
pressure-time series with the corresponding power spectrum in the subthreshold and linearly
unstable regimes of the bifurcation plot for ¢ =17Pa and 7, = 0.9 ms acquired from the Rijke
tube simulator.

In the next section, we present the results obtained from our experimental investigation. Firstly,
we will discuss the effect of white noise approximation on the estimation of system identification
parameters and the importance of data pre-processing for analysis. Subsequently, we will

examine the effects of varying colored noise parameters on these estimations.

2.3 Noise and growth rate estimation (system identification)

Accurate estimates of stability margins and linear growth rates of self-sustained oscillations
is important for designing the damping devices for the control of thermoacoustic instabilities.
The dynamics of a thermoacoustic system consists of non-linear and stochastic effects and for
accurate estimates of the growth rates, the system identification methods (SI) must take into
account these aspects [55]. The SI methods developed are based on approximating the stochastic
forcing as white noise (zero correlation time), however, in a real system, the stochastic forcing
has a finite correlation time. In case of experimental data analysis, a theoretical ”white noise
PDE” given by the expression, P, (Eqn. (2.28)), is fitted on the experimental one, which by
nature is “colored”, in order to identify the growth rates. However, if the effect of noise color
is not negligible in a system, the curve fit based on P, will lead to an inaccurate parameter
estimation. Here, we will investigate this deviation in the estimated growth rates when the

system is subjected to both white and colored noise.

2.3.1 Effects of white noise approximation on estimation of growth rates

The concern that the noise driving a thermoacoustic system is never white in practice can bring
the growth rates estimation based on white noise assumption into question. Therefore, we first
estimate the growth rates using the white-noise approximation to have a comparison with the
values estimated using colored noise model. By making use of the theoretical expression for
P,(aj), given by Eqn. (2.28), to curve fit on the PDF distribution of colored noise driven
simulator (shown in Fig. 2.11), we estimate the growth rates in all the three regions of
the subcritical Hopf bifurcation. The term (—(; 4+ ¢17) in the expressions for P, and P,
(Eqn. (2.27)-(2.28)) is the measure for growth rate estimation. We will present the overview
of the estimated growth rates for the noise driven Rijke tube simulator as a 2D map between
noise intensity (o) and the control parameter (K). The contours of the map will represent the
relative deviation of the estimated values of the growth rates from the true values (obtained
from noise-free system, given in Fig. 2.7).

The left plot of Fig. 2.9 shows the values of the estimated growth rates using the white-noise



Chapter 2. FElectroacoustic Modelling of Thermoacoustic Instability 36

Subthreshold — Bistable — Limit cycle Subthreshold _ Bistable _Limit cycle €,

T T 1.0

Filtered E ' E 08

E E 0.6

. | P

; i i 0.2

6 Ksw, 1K Koy | K 0o
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

K K

Figure 2.9: Map of the deviation in estimated growth rates as a function of noise intensity (o)
and control parameter (K) considering the white noise assumption using the unfiltered (left)
and bandpass filtered pressure-time series (right). The contours represent the relative deviation
of the estimated growth rates from the true value, given as, € = |(v; — ve)|/11. €, indicates the
estimation of deviation for white noise.
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Figure 2.10: An illustration of bandpass filtering of pressure-time series and its corresponding
power spectrum obtained from colored noise driven Rijke tube simulator.

approximation on the unfiltered data for the OU noise driven simulator. As can be seen from
the contours, the identified values of growth rates differ significantly from the actual values.
This deviation in the values becomes more prominent (leading to a deviation of ~ 100%) with
increasing noise intensities. The reason for such deviation can be understood from the fact
that the system identification methods for the growth rate estimation are derived based on the
assumption of a single mode in the frequency spectrum. However, the power spectrum from
the Rijke tube simulator (or real system) will consist of several excited duct acoustic modes
(shown in Fig. 2.8) which will be mutually coupled and will be influencing the response of each
other. Therefore, we can say that the system parameter identification failed because of the lack
of pre-processing of the data. To reduce the observed deviation in the estimated growth rates,
we need to analyse one mode at a time. This can be easily done by bandpass filtering the data
around the dominant mode. Therefore, we apply a bandpass filter around the eigenmode of the

simulator (fy = 284Hz) such that the filter discards the neighbouring peaks while keeping the
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main peak and its tails. An example plot for applying bandpass filtering is shown in Fig. 2.10.
We then estimate the growth rates using white-noise approximation on the bandpass filtered
data. The plot on the right side of Fig. 2.9 presents the estimation of growth rates. As we can
observe, the deviation in the estimated values have considerably reduced by a factor of 4 in all
the three regimes. In the plot, we can observe two trends: (i) in the bistable region, the deviation
in the estimated growth rate values is in the range of 5 % to 45 % unlike the stable and unstable
region where the observed deviation is in the range of 5% to 25%. This higher deviation in
the estimated growth rates in bistable region is expected due to noise-induced triggering and
noise-induced coherence resonance as the system approaches the saddle and Hopf points; (ii) the
deviation in the estimated values increases from ~ 5% to ~ 45% with increasing noise intensities.
This can be explained by the fact that with increasing noise intensities, the PDF becomes broader
with peak values shifting towards higher values of amplitudes (also explained in next section
with the help of PDFs). As the noise intensity affects the distribution of PDF, therefore, the
curve fit and hence growth rate estimation is also affected leading to higher deviation from the

actual values.

2.3.2 Effects of colored noise approximation on estimation of growth rates

In this section, we now investigate the influence of colored noise parameters upon the estimation
of growth rates. Figure 2.11 represents the PDF distribution obtained from the bandpass filtered
noisy pressure-time trace acquired from colored noise driven Rijke tube simulator for various

combinations of 7. and ¢ in subthreshold and limit cycle regimes. For both subthreshold and

7/Ty [—0.03 —0.14 ——0.3 —0.6|
9 o ="TPa o =17Pa
K =035 K =0.35

1.2 14 1.6 0.8 1 1.2 14 1.6
a/an a/an

Figure 2.11: PDF distribution obtained from the Rijke tube simulator when driven by OU noise.
The estimations are shown for Aw/wy = 4.9 at varied 7. and o.
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limit cycle region, it can be seen that as the correlation time increases, the PDF becomes broader
and the peak shifts towards the higher amplitude values for both the noise power. The shift
in the peak values of PDF is small at higher correlation times (7./7y > 0.14) and the curves
overlap each other. It can also be observed that the PDF also becomes broader with increasing
noise powers leading to a decrease in the peak values. This variation of PDF distribution with
T. and o will affect the system identification and will lead to the deviation in the values of the
estimated growth rates.

In the next step, using the theoretical expression of PDF for colored noise, P.(a;), given
by Eqn. (2.27), we further estimate the growth rates for the eigenmode by curve fitting
the expression to the experimentally obtained PDF distribution from bandpass filtered data.
Figure 2.12 presents the overview of the estimated growth rates for the colored noise driven
Rijke tube simulator. From the contours, it can be observed that the deviation in the estimated
values lies within the range of 0% to 10 % upto o = 17Pa. When the noise intensity, o > 17Pa,
the deviation in the estimated growth rates sharply increases from 10% to ~ 30%. This
can be explained through the PDF distribution curves shown in Fig. 2.11. With increasing
noise intensities, the PDF becomes broader with peak values shifting towards higher values of
amplitudes. As the noise intensity affects the distribution of PDF, therefore, the curve fit and
hence growth rate estimation is also affected leading to higher deviation from the actual values.
In order to explain the observed deviation in estimated growth rates at higher noise intensity, we
studied the noise-induced response of the Rijke tube simulator in subthreshold region (discussed

in subsequent section in detail). We observed the occurrence of coherence resonance [6,47] in
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Figure 2.12: Map of the deviation in estimated growth rates as a function of noise intensity (o)
and control parameter (K) from the bandpass filtered data. The contours represent the relative
deviation of the estimated growth rates from the true value, given as, € = |[(vy — ve)|/v4. €
indicates the estimation of deviation for OU noise.
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the simulator and found that for K in the range of 0.2 to 0.4 and 7. in the range of 0.1 ms to
10 ms, o,y at which peak coherence is induced lies within a range of 15 Pa to 30 Pa. This range
of o4y is closer to the values of o above which deviation in the estimated growth rates increases
by 10 % to 20 % (Fig. 2.12). Therefore, we find that the noise intensities at which the deviation
in estimated growth rates is high could be related to optimum noise intensities (oqp) at which
the peak coherence is induced. Further, we can observe that the deviation in the estimated
growth rates is more in the bistable region compared to the stable and unstable regions due
to noise-induced triggering. If we compare the contours of right plot of Fig. 2.9 with those of
Fig. 2.12, we can observe that the growth rate estimation is more accurate when the colored
noise model is considered for a wider range of noise intensities.

We next investigate the influence of correlation times of the driving OU noise upon growth rate
estimation. The deviation of the estimated growth rates from the true values are presented
in form of a 2D map between 7. and control parameter, K and is shown in Fig. 2.13. It can
be observed from the contours that the deviation in the estimated growth rate values is in the
range of 0% to 15 % when the colored noise model is used for system identification compared
to white-noise approximation, where the deviation lies within the range of 10 % to 20%. The
deviation, however, is higher in the bistable region than in the subthreshold and limit cycle
regions. This could be because of the noise-induced triggering and noise-induced coherence
resonance.

Summarizing, in case of the real systems, we acquire noisy pressure-time trace with no prior
knowledge of the noise intensity or noise correlation time to which the system is subjected.
In our study, we investigated the influence of two types of noise models: colored and white
noise on growth rates estimation. We found that for a robust parameter identification, the
following criteria must be taken into account: (i) pre-processing of the noisy data (applying
bandpass filtering around the peak frequency); (ii) the regions of the Hopf bifurcation in
which the estimation is done; (iii) using the colored noise model rather than white noise
approximation for estimation; (iv) the influence of noise amplitudes on the estimated growth
rates. In terms of practical implications of the study, the result that higher noise intensity can
lead to inaccurate system identification is crucial to designing acoustic damping devices for the

control of thermoacoustic instabilities. In particular, the deviations observed in the estimated
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Figure 2.13: Map of the deviation in estimated growth rates as a function of correlation time
(7c) and control parameter (K). The contours represent the relative deviation of the estimated
growth rates from the true value, given as, € = |(14 — ve)|/v4. 7c = 0 represents the white noise
case. €. indicates the estimation of deviation for OU noise.
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growth rate (or the decay rate) may lead to failure of decay-rate-based early warning indicators
of thermoacoustic instabilities.

Therefore in the remainder of the Part I, we focus our investigation solely in the stable region,
i.e., prior to the occurrence of the instability and investigate how changes in noise properties

can affect the early warning prediction of thermoacoustic instability.

2.4 Noise-induced dynamics in subthreshold region

In this section, we first numerically investigate the influence of noise properties on coherence
resonance. We then experimentally validate these results using the electroacoustic simulator
(Fig. 2.4). Subsequently, we perform a multi-fractal analysis of the time series from the Rijke

tube simulator to identify the effect of varying noise properties on measures of multi-fractality.

2.4.1 Effect of noise characteristics on coherence resonance

Noise induces coherent oscillations to appear in a stable oscillator prior to the Hopf bifurcation
such that the relative contribution from coherent oscillations in system response (a) increases as
the system is brought closer to bifurcation and (b) exhibits a resonance-like peak with increasing
noise intensity. This phenomenon is known as coherence resonance (CR) [44,145] and is observed
in several practical systems including thermoacoustic systems [2,6,95]. The noise intensity at
which peak coherence is induced is the optimum noise intensity for CR. The phenomenon is
known to be a result of nonlinear interaction between noise and the least stable mode (acoustic
mode in case of thermoacoustic systems), which becomes unstable after Hopf bifurcation. The
induced coherence is quantified conventionally in the form of a coherence factor, B, [45,47]

defined as the ratio of spectral peak height to the spectral quality factor and given as,

B=H, x (Z’}) (2.29)

where H,, and f,/Af are the height and normalized width (normalized by the peak frequency)
of a Lorentzian fit to the broad spectral peak; the width is measured at half the height of the
peak of the fit as illustrated in Fig. 2.14(a).

Figure 2.14(b) presents the variation of the coherence factor against the white noise intensity
for the Rijke tube system at three operating conditions (solid lines: numerical results, markers:
experimental results). On the x-axis, we plot the white noise intensity within the band Aw/wy =
4.9, 03, normalized by the optimum noise intensity at K = 0.40. While on the y-axis, we plot
the coherence factor () normalized by corresponding peak value at K = 0.40. The three
curves correspond to control parameter K = (.40, 0.35 and 0.30, all three lie in the subthreshold
regime and are marked as A, B and C, respectively, in Fig. 2.2. We can observe from the plot
that for each control parameter value, the induced coherent oscillations attain a peak at an
optimum noise intensity which decreases as the control parameter approaches bifurcation (K
increases). Furthermore, we also see that as the value of the control parameter, K, is increased

towards the Hopf point, the induced coherence is higher, and the peak coherence (indicated
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Figure 2.14: (a) An illustration for estimation of coherence factor, § from the power spectrum
of noisy pressure-time series in the subthreshold regime. H, represents the spectral peak, Af
represents the full width at half maximum, and f, represents the peak frequency. The markers
represent the simulation data while the solid black line is the Lorentzian fit to the data for
estimation of /3; (b) Variation of coherence factor, /3, as a function of white noise intensity within
Aw/wy = 4.9, op, and control parameter, K. The solid lines represent the simulation results,
whereas, the markers represent the experimental data. The x-axis and y-axis are normalized
by the optimum white noise intensity (o,,) and corresponding maximum coherence resonance at
K = 0.40.

by dashed vertical lines) is induced at smaller values of noise intensity (shown by the arrow).
This implies that as the system approaches its stability boundary, its noise-induced dynamics
become more coherent and receptive to external noise. It can also be observed that the values
of (B increases as the system approaches the saddle-node point at most noise levels (except at
very low (op/0y < 0.15) and very high levels(op/0y, > 2)).

Another early warning indicator directly associated with the phenomenon of CR is the
autocorrelation function (ACF) with decaying amplitudes [44,87,94]. The coherence factor and
the decay rates of ACF for a system undergoing subcritical Hopf bifurcation exhibits similar
trend: the factors first increases with increase in noise levels, attains a peak at optimum noise
level and then further decreases at higher noise levels. The optimum noise intensity at which both
the coherence factor and the decay rate of ACF attains the peak is nearly same [94]. Besides,
simple Rijke tube, the decay rates of the ACF are also employed in turbulent combustors as
the early warning indicators [101]. As the system approaches the Hopf bifurcation (K — Kgy),
the coherence factor always increases which makes it an early warning indicator. Similar to
the coherence factor, a consistent rise in the critical slowing down early warning indicators
such as variance and cumulative number of tests for conditional heteroskedasticity is observed
as the system approaches the subcritical Hopf bifurcation [87,90]. Skewness and kurtosis [89]
are another set of the precursors that could be approximately linked to the coherence factor.
Skewness is a measure of the symmetric distribution of the data about its mean value. As the
system approaches Kgpy, the asymmetry of the fluctuations about the mean value increases
because the probability distribution is more steeper on one side compared to the other in the
vicinity of Kgy [146], which thereby increases the skewness. Similarly, kurtosis (k) is a measure
of the tails of probability distribution which has a value of k = 3 for a normal distribution. In
the vicinity of the Hopf bifurcation, k& > 3 indicating a longer distribution with fat tails [89].

Thus, when background noise can be considered purely white, the coherence factor will always
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increase as system is brought closer to bifurcation and related early warning indicators will
exhibit monotonous trends. In case, noise intensity is varying simultaneously with changes
in control parameter, the presence of an optimum noise intensity due to coherence resonance
may cause deviation from monotonous trends in the coherence factor and other early warning
indicators.

We show the effects of noise correlation time on the induced coherence and the optimum noise
intensity and compare the findings with those obtained in Fig. 2.14(b) (when the combustion
noise is white in nature). Figure 2.15 shows the variation of coherence factor with noise intensity
obtained from numerical simulations for (i) Aw/wp = 0.1; (ii) Aw/wp = 0.7; (iii) Aw/wp = 4.9
for a constant control parameter, K = 0.40 (point A marked in Fig. 2.2). On the x-axis, we plot
the noise intensity within the given band (o3) normalized by the optimum white noise intensity
at K = 0.40. On the y-axis, we plot the coherence factor () normalized by peak § for white
noise at K = 0.40. The hallmark of coherence resonance is clearly observed: [ attains a peak
value at intermediate noise levels. We observe that at Aw/wy = 0.1 (plot (a)), with increasing
noise correlation time, the same level of [ is achieved at all noise intensity (curves coincide).
However, at Aw/wy = 0.7 and 4.9 (plots (b) and (c)), 8 depends on the noise intensity as well
as noise color. The peak 8 occurs at higher noise levels with increasing correlation time. The
variation of § with the bandwidth, Aw/wy, is associated with variation in the spectral content of
the signal as given in Fig. 2.3. When Aw/wy = 0.1, a nearly constant noise level at wy is noted
at all values of 7,. Whereas when Aw/wg is higher (0.7 or 4.9), we observe a decrease of noise
levels at wy with increasing 7. which alters the spectral content such that the peak coherence
occurs at higher noise levels. The peak value of coherence factor (fpeqr) is not affected by the
noise correlation time.

This result for a constant value of the system control parameter shows that the coherence factor
can change with noise color. Since it is quite likely that the correlation time of combustion
noise varies while changing system control parameter, trends in coherence factor and other early
warning indicators can get quite complicated; a general inference about the correlation between
the proximity of the system to bifurcation (impending instability) and trends in coherence factor

as well as other early warning indicators becomes elusive when system parameter and noise color
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Figure 2.15: Variation of coherence factor () as a function of noise intensity within a given band
(0p) and noise correlation time (7.) for (a) Aw/wy = 0.1; (b) Aw/wy = 0.7; (¢) Aw/wy = 4.9
at K = 0.40. o, and S, correspond to the optimum white noise intensity and corresponding
maximum coherence resonance at specified control parameter values. W N represents the case
when the combustion noise is modelled as the white noise.



Chapter 2. FElectroacoustic Modelling of Thermoacoustic Instability 43

vary simultaneously. We will elucidate this point further with data from experiments later in
this section.

We further investigate the variation of 3 as a function of 7. and K, while keeping a constant noise
intensity within a given band corresponding to Aw/wy = 0.1, 0.7, and 4.9. Figure 2.16 shows
2D maps for the variation of 8 in the parameter space 7./Ty — K for three noise intensities in
numerical simulations: (a)-(c) /0w = 0.57, (d)-(f) op/0w = 1.57, (g)-(1) 0p/0w = 2 (divided as
the three rows of the figure). At Aw/wp = 0.1 (plots (a), (d), and (g)), we observe that a change
in 7. does not significantly affect the § values for all K and op/0,,. This shows that for narrow
bandwidth, the coherence factor is independent of the combustion noise model. Whereas, at
Aw/wy = 0.7 (plots (b), (e) and (h)) and 4.9 (plots (c), (f), and (i)), we observe that 5 exhibits
a strong dependence on 7., K and oy. At 03/, = 0.57 (lower than the optimum noise intensity
for white noise), /3 decreases monotonously with increase in 7, for all K, with the sensitivity (how
much f changes with variation in K) decreasing with increasing correlation time. At a higher
intensity, op/0,, = 1.57, 8 shows a resonance-like behaviour with 7, noise color: for a given K,
B first increases sharply with increase in 7. (till 7./7y ~ 0.6 for Aw/wy = 0.7 and 7./TpH ~ 1.2
for Aw/wy = 4.9), attains a peak, and subsequently decreases with increase in 7.. At an even

higher intensity, op/0y, = 2, 8 increases monotonously with increase in 7, for all K. However,
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Figure 2.16: Variation of coherence factor (3) as a function of control parameter (K) and
noise color (7.) for three noise intensities: (a)-(c) op/0y = 0.57; (d)-(f) op/0w = 1.57; (g)-(i)
op/0ow = 2 for the three bandwidths: Aw/wy = 0.1; Aw/wy = 0.7; Aw/wy = 4.9 respectively. oy,
and f,, correspond to the optimum white noise intensity and corresponding maximum coherence
resonance at specified control parameter values.
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if the noise color and intensity can be considered constant, 8 is seen to increase as the system
approaches thermoacoustic instability. This trend is true for combustion noise with any given
correlation times. The coherence factor, therefore, indicates the approaching Hopf point when
noise color and intensity do not change. The amount of increase in coherence factor, however,
depends on noise intensity and color even if they do not vary and may need to be calibrated
for an individual combustion system based on the characteristics of the background combustion
noise for prediction purposes.

In the thermoacoustic community, Li et al. [105] have investigated the effects of noise correlation
time and its intensity on the coherence factor analytically and numerically on a prototypical
system (Van der Pol oscillator) undergoing the transition to thermoacoustic instability via a
supercritical Hopf bifurcation. Li et al. [105] had noted two main trends: (i) the optimum noise
intensity— which corresponds to peak coherence— exhibits linear dependence on 7.: an increase
in 7, leads to an increase in the optimum noise intensity; and (ii) coherence factor decreases
monotonously with increase in 7, below a threshold noise level while it exhibits resonance-like
behaviour above the threshold noise level such that the optimal 7. increases as the system
approaches the Hopf point. We can observe the same trends emerging from our findings in
Fig. 2.15 and Fig. 2.16 at Aw/wp = 0.7 and 4.9. In addition, our results demonstrate that the
threshold noise level (below which the 5 decreases monotonously) corresponds to low noise level
cases where op/0,, < 1. We also find that the resonance-like behaviour of 5 with 7. exists at
intermediate noise levels where peak coherence is induced for some range of 7.; whereas at high
noise levels, 8 increases with 7.

To elucidate the effects of combustion noise correlation time on coherence factor in a practical
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Figure 2.17: Comparison between numerical simulations and experiments: Variation of
coherence factor () as a function of (a) noise intensity within a given band (o) at K = 0.40;
(b) and (d) control parameter (K) at o/, = 0.57 and op/0,, = 1.57 respectively; (c) and (e)
noise color (7.) at op/0y, = 0.57 and op/0,, = 1.57 respectively for Aw/wy = 4.9. The solid lines
represent the simulation results, whereas, the markers represent the experimental results. W N
represents the case when the combustion noise is modelled as the white noise.
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system, we further conduct experimental study using the electroacoustic Rijke tube simulator
(Fig. 2.4) and validate our findings from the simulations. Figure 2.17 shows the comparative
results from simulations (solid lines) and experiments (markers) for the variation of coherence
factor with noise intensity, control parameter and noise correlation time at Aw/wp = 4.9. As can
be observed from Fig. 2.17, experimental results present a good agreement with the simulations.
Moreover, we can observe from Fig. 2.17(a) that with increase in noise correlation time (7.),
the optimum noise intensity at which the induced oscillations are most coherent shifts to higher
levels. Figure 2.17(b) and (d) shows that / increases as the system is brought closer to the
saddle-node point for op/0,, = 0.57 and 1.57 respectively. Further, we observe that [ decreases
monotonously at op/0,, = 0.57 (Fig. 2.17(c)), whereas for oy/0,, = 1.57 (Fig. 2.17(e)) the
variation with correlation time is a bell-shaped curve. For o /0, > 2, 5 increases monotonously
with increase in 7. (not shown here). Further, the good agreement between simulations and
experiments also suggests that the noise coupling is not dependent on the mode (j). This
observation is in line with Waugh and Juniper, [73]: they reported that similar results are
obtained for the noisy Rijke tube oscillator regardless of whether noise is introduced at a location
(they have chosen the location as same as the heater location) or introduced as additive noise to
the modes. This implies that any change in the location of the noise source in the experiments

will not affect affect the results and corresponding inferences.

2.4.2 Effect of noise characteristics on multi-fractality

Multi-fractal analysis of the noisy time-series acquired from a combustor is one of the recently
reported strategy to identify precursors of thermoacoustic instability [96]. Two measures of
multi-fractality analysis that act as the precursor to the impending instability as proposed by
Nair et al. [96] are (i) generalized Hurst exponent (H,) and (ii) multi-fractal spectrum width
(D). For a multi-fractal signal, the values of generalized Hurst exponent (H,) lie within the
range of 0 to 1: a time series is said to have a long-range dependent structure (or correlated) when
0.5 < H; < 1 and an anti-correlated structure when 0 < H, < 0.5. For an uncorrelated time
series (like Gaussian white noise), the Hurst exponent is 0.5. For the estimation of multi-fractal
measures, we calculate the variation of the fluctuation function of the noisy time-series, F,, at
different time scales of measurement, w. We then estimate the slopes of Fy to obtain g-order
H, and g-order mass exponent (¢;). The reference, Gaussian white noise, exhibits a linear
dependence of t; with ¢, which gives a constant g-order singularity exponent, h, = 0.5. In
contrast, the multi-fractal time-series exhibits a non-linear variation of ¢, with ¢. The resulting
multi-fractal spectrum has a characteristic spectral width, calculated as the difference between
the maximum and minimum h, [147].

Figure 2.18 illustrates the estimations of H, and D}, from the experiments on electroacoustic
simulator when the combustion noise is modelled as the white Gaussian noise. Figure 2.18(a)
presents the variation of Fy} with w for K = 0.25 and K = 0.40 at ¢ = 2 and Aw/wy = 4.9. The
estimated generalized Hurst exponent H, is presented in the plot (b) of Fig. 2.18 as a function
of g-order. From the plot, we observe that the values of H, lie in the range of 0 to 0.5 indicating

that the time-series is anti-correlated. This implies that the time-series consists of high and low
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Figure 2.18: Combustion noise modelled as white noise: (a) Variation of F, with window size
(w) for ¢ = 2. The slope of the various curves gives the generalized Hurst exponents (H,) for
that order, ¢; (b) q-order Hurst exponent (H,) estimated in part (a); (c) Multi-fractal spectrum
(Dy) at K =0.25 and K = 0.40; (d) Variation of estimated H, with K for ¢ = 2. H, decreases
as the system are brought closer to the Hopf point. The estimations are shown for two noise
intensities: op/0y, = 0.57 (dashed curves) and op,/0,, = 1.57 (solid curves).

amplitude fluctuations in adjacent pairs. The high and low amplitude fluctuations in different
time intervals (w) are preferentially selected by varying the order of the structure-function (g):
a positive order (¢ > 0) selects high-amplitude fluctuations, whereas a negative order (¢ < 0)
would select low-amplitude fluctuations. From Fig. 2.18(b), we observe that the values of H,
exhibit variations with ¢. This imply that the high and low amplitude fluctuations in the time
series scale differently, which results in different values of H, at different ¢g. Hence, the time
series from the simulator is multi-fractal in nature.

We now plot the multi-fractal spectrum for the time-series at K = 0.25 and K = 0.40 shown
in plot (c) of Fig. 2.18. As can be seen from the plot, the multi-fractal spectrum is broadband.
The width of the spectrum is expected to noticeably reduce as we approach instability. This loss
of multi-fractality happens due to the predominance of a single time scale that dominates the
dynamics after the onset of thermoacoustic instability. For a fractal signal, such a loss of scale
variability is also known as a loss of spectral reserve [148]. Since this loss of spectral reserve
happens gradually when the operating parameters are varied in a combustor, it acts as an early
warning signal to an impending combustion instability. Next, we obtain the variation of the
estimated H, for ¢ = 2 with the control parameter, K, shown in the plot (d) of Fig. 2.18. It can
be observed from the plot that as the control parameter K is varied towards the Hopf point,

the estimated H, decreases gradually. Hence by estimating H,, one can detect the system’s
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proximity to the thermoacoustically unstable conditions. Both these trends of H, and D, are
consistent with the experimental studies [96].

We also investigate the effects of noise levels on the Hurst exponent and multi-fractal spectrum
estimations. We find that the variations in the values of H, lie within 0% to 5% at different
noise levels. This can be seen in all the plots of Fig. 2.18. The dashed curves correspond to
op/ow = 0.57 while the solid curves represent the estimations at a noise level of oy,/0,, = 1.57.
Hence, we conclude that noise levels do not significantly affect the estimations of multi-fractal
measures.

A group of early warning indicators employed in turbulent combustors which could be related
to the Hurst exponent are intermittency [101], permutation entropy of pressure and heat loss
signals [109] and complexity-entropy causality plane (CECP) [106,108,110,115]. In turbulent
combustors, it is reported that a route to the thermoacoustic instability is via intermittency
(an excursion of the system from low-amplitude fluctuations to high-amplitude oscillations in
the stable region) [149]. The combustor loses its intermittent state upon the occurrence of the
instability. Based on this fact, early warning indicators such as the recurrence rate (RR), time
that a system spends in the intermittent state (7p) and Shannon entropy (s) of the time series
(a measure of order in a system) are employed to predict the impending instability [98, 101].
Similar to the Hurst exponent, as the system approaches the Hopf bifurcation, the RR, 7y and s
decreases and their value becomes close to 0 at the Hopf point [101]. The permutation entropy is
a measure of the signal randomness based on permutation patterns of a time series [109]. A loss
in permutation entropy of the pressure and heat loss signals indicate that the system is making
a transition from a state of disorder (random) to a state of regularity (deterministic). Similar
to the Hurst exponent, this loss in permutation entropy acts as the early warning measure
in turbulent combustors. A more accurate early warning indicator based on the concept of
entropy is CECP [106, 110, 115] (a combination of permutation entropy and Jensen-Shannon
complexity). In the CECP plane, three zones corresponding to combustion noise, transition, and
thermoacoustic instability are defined which are used to predict the instability [108]. Therefore,
we speculate that the trends for the effects of correlation time variation on Hurst exponent can
be used to infer approximately the behaviour of early warning indicators which decreases as the
system approaches the instability.

We now investigate the effects of noise correlation time on the multi-fractality measures and
compare the findings with those of white noise. We calculate the variation Fy, with w, as
a function of 7. and obtain the g-order H, and t,. Figure 2.19 presents the results for the
estimations at K = 0.40 for two bandwidths: Aw/wy = 0.7 (dashed curves) and Aw/wy = 4.9
(solid curves). When Aw/wy = 0.1, all the plots for varied correlation time collapse onto the
white noise curve implying that at very narrow bandwidth, the H, values are not affected by
noise correlation time. When Aw/wq is higher (0.7 or 4.9), we observe that the slopes of F}
and hence estimated H, varies with ¢ and 7. as shown in Fig. 2.19(a) and (b). For ¢ > 0,
the estimated g-order Hurst exponent lies within the range 0 < H, < 0.5 for all 7, indicating
that the data is an anti-correlated fractal signal; whereas for ¢ < 0, the H, lies in the range

of 0.5 < Hy < 1 for 7./Ty > 0.6 indicating a change in anti-correlated nature of the signal for
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Figure 2.19: Combustion noise modelled as OU noise: (a) Variation of F,, with window size (w)
for ¢ = 2. The slope of the various curves gives the generalized Hurst exponents (H,) for that
order, ¢; (b) g-order Hurst exponent (H,) estimated in part (a); (c) g-order mass component
(tq); (d) Multi-fractal spectrum (D) at K = 0.40. The estimations are shown for bandwidths:
Aw/wy = 0.7 (dashed curves) and Aw/wy = 4.9 (solid curves). The dashed dot lines represent
the Gaussian white noise.

low amplitude fluctuations. Figure 2.19(c) and (d) clearly shows the variation of ¢, and D, as a
function of 7.. The multi-fractal spectrum and its width exhibit variation with noise correlation
time, 7.: the longer the 7., the broader the spectrum width.

Figure 2.20 shows the variation of the estimated H, with noise correlation time (7.) as a
function of the control parameter K and g-order in the subthreshold region for two noise levels:
(a)-(c) op/ow = 0.57 and (d)-(f) op/0w = 1.57. The estimations are shown for Aw/wy = 4.9.
Figure 2.20(a) and (d) present a 2D map of the variation of H, in the parameter space between
Te - g-order at K = 0.40. We observe from the plots that for low amplitude fluctuations (i.e.
q <0), H, values deviates as a function of 7. when compared to the white noise. This deviation
in the estimated H, lies within a range of 0% to 80 %; whereas for high amplitude fluctuations
(i.e. ¢ > 0), this deviation reduces and lies within a range of 0% to 40%. This implies that
higher the noise correlation time, the higher would be the H, for all K. When we consider a
finite correlation time of combustion noise, we observe that H, does not vary significantly as the
system approaches the bifurcation point. This is illustrated in Fig. 2.20(b) and (e) where we plot
a 2D map for the variation of H, with K as a function of 7.. We observe an almost flat curve of
H, instead of a gradual decrease as the system is brought closer to the saddle point (K = 0.44).
This suggests that the noise correlation time affects the multi-fractal measures in such a way that

H, can no longer predict the impending instability. Recently, Waxenegger-Wilfing et al. [98]
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Figure 2.20: Effect of noise correlation time on H, for two noise levels: (a)-(c) op/0 = 0.57;
(d)-(f) op/ow = 1.57. (a), (d) Variation of g-order Hurst exponent, H, with q-order and 7.
at K = 0.40; (b)-(c) and (e)-(f) Variation of estimated H, with K and 7. at for ¢ = 2. The
estimations are shown for Aw/wg = 4.9. |[AH,| represents the difference in H, with K such that
all the lines start from close to a point at K = 0.25.

have also showed that fluctuations in Hurst exponent to combustion noise in a rocket thrust
chamber lead to false alarms and inaccurate predictions. We further plot the difference in H,
with K given as |AH,| such that all the lines start from close to a point at K = 0.25 as shown in
Fig. 2.20(c) and (f). We observe that when the combustion noise has zero correlation time (i.e.
white in nature), |AH,| increases with increase in K. This is expected as with increase in K
(system — bifurcation point), H, decreases thereby increasing the difference. If we now consider
the curves corresponding to the finite correlation times of combustion noise, we observe that for
7./Tp < 0.3, the trends agree with those of white noise i.e. |AH,| increases with increase in K.
However, for longer correlation times, i.e. 7./Tp > 0.3, no such particular trend in the curves
could be observed. For the electroacoustic simulator, 7./Ty = 0.3 correspond to the combustion
noise with a correlation time of 1ms. Our results imply that the trends in multi-fractal measure
such as Hurst exponent are highly sensitive to changes in noise color.

Thus, variation in the coherence factor, fractal measures, and other early warning indicators
will not follow trends identified in thermoacoustic models with white noise. When noise color
varies with operating parameters, trends in early warning indicators become non-monotonous

and consequently, the EWIs become unreliable.



Chapter 3

Stochastic Modelling of Thermoacoustic Instability: Effect of
Additive Correlated Noise Characteristics on Early Warning

Prediction

3.1 Overview

A limitation of the Rijke tube model is that it exhibits instability only via subcritical Hopf
bifurcation, whereas practical combustors also experience supercritical Hopf bifurcation.
Therefore, it is essential to investigate the effects of noise in both types of systems. In this
chapter, we present a detailed numerical investigation into the noise-induced dynamics of
thermoacoustic coupling using stochastic Van der Pol oscillators (a reduced-order combustion
dynamics model) that exhibit both supercritical and subcritical Hopf bifurcations. Motivated
from the investigations on early warning prediction of thermoacoustic instability using
electroacoustic Rijke tube simulator in Chapter 1, in this chapter, we elucidate a systematic
assessment of application and limitations of different classes of early warning indicators (EWIs)
as a function of noise color and intensity. We model the inherent (background/combustion)
noise as an additive Ornstein-Uhlenbeck (OU) process. Specifically, we address the following
questions: (i) how variations in noise characteristics influence the effectiveness of different
classes of early warning indicators and (ii) which EWIs are most reliable considering that noise
characteristics depend on the system and may even change with control parameters within
a specific system. We investigate the various early warning indicators based on statistical
measures (variance, skewness, and kurtosis), autocorrelation and spectral properties (coherence
factor), multi-fractality (Hurst exponent and multi-fractal spectrum width), and time series
complexity (permutation entropy and Jensen Shannon complexity). This investigation provides
a comprehensive overview of the influence of additive noise characteristics on a wide range of

early warning indicators, demonstrating their applicability across diverse fields.

The motivation for choosing the stochastic Van der Pol oscillator is that this model has
been employed previously to model a wide range of real-world phenomena exhibiting
bifurcations, such as those observed in power electronics [150], electrical engineering [151],
neurology [152], biology [153], seismology [154], optics [155], and thermoacoustic instability in
combustors [59,61]. The stochastic Van der Pol oscillator has also been previously employed for
understanding various nonlinear phenomena and synchronization effects such as stochastic P
bifurcations [104, 127, 156], rate-tipping delay phenomenon and bifurcation dodging [123,125],
and stochastic/coherence resonance [47,105,157]. Therefore, with applications spanning across
diverse fields of science and engineering, the stochastic Van der Pol oscillator serves as an

ideal test case for understanding the interplay between system’s deterministic dynamics and
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Figure 3.1: Visual summary of the contents for Chapter 3.
stochastic fluctuations (noise).

This chapter is further divided into two sections. Section 3.2 describes the mathematical model
of stochastic Van der Pol oscillators and colored noise; validation of numerical simulations with
analytical results and the methodology to estimate various EWIs. Section 3.3 shows the effects
of correlated noise characteristics on the estimated EWIs and discuss their reliability when
implemented in real systems. A brief overview of the summary for the contents of the chapter

is shown in Fig. 3.1.

3.2 Model description and methodology

3.2.1 Stochastic classical Van der Pol oscillators

In this work, we employ the Van der Pol oscillator model, which is well-established for capturing
the occurrence of thermoacoustic instability within combustion chambers. Van der Pol oscillator
has been previously employed to study system identification [59,61,117], stochastic bifurcations
[127], rate-tipping delay phenomenon [123,125,158] and noise-induced coherence resonance [2,

105]. The classical Van der Pol model describes a harmonic oscillator with linear feedback and
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nonlinear damping given as [159],
i+ —1)i+z=0 (3.1)

where, z represents the state of the system, p > 0 is the control parameter and p(x? — 1) is the
nonlinear damping term. This damping term acts like ordinary positive damping for |z| > 1,
but like negative damping for |z| < 1. This classical Van der Pol oscillator system transitions
to limit cycle oscillations via a supercritical Hopf bifurcation at p = 0.
We use the extended versions of the classical Van der Pol oscillator obtained by modifying the
nonlinear damping term, which can exhibit both supercritical and subcritical Hopf bifurcations,
given as [48,160]

i+ (k2 — 20)i +wiz =0 (3.2)

for supercritical system, and
. 4 ) . 2
I+ (pa® — kr® — 20)T + wir =0 (3.3)

for subcritical system. Here, v is the control parameter given as v = (* —«)/2 in rad/sec, where
« is the damping coefficient and 8* is the driving parameter. x and p are positive constants
that define the nonlinear component of the oscillator response.
In this chapter, we investigate the noise-induced response of Van der Pol oscillators in the stable
region. The corresponding stochastic differential equations for the two Van der Pol oscillators
are given as [61],

i+ (ka? — 20)d + wiz = £(t) (3.4)

i+ (pat — ke — 20)i 4+ Wiz = £(1) (3.5)

where, £(t) represents the additive noise.

The Van der Pol systems (Eqn. (3.4) and (3.5)) are numerically simulated using the fourth-order
Runge-Kutta method for ODE and Euler-Maruyama method for £(¢) in Matlab. The detailed
algorithm employed is given in Appendix B. We use the time step of d¢t = 0.0001 s in the time
span of 0 < ¢ < 1000 s. We choose the system parameters as wo/27 = 120 s™!, k = 8 s~ and
p = 2 s~ ! following Bonciolini et al. [61,118]. For the analysis, we use data for the last 500 s.
In the absence of noise, as the control parameter, v is varied from v = —4 to v = 4, the systems
exhibit limit cycle oscillations via supercritical and subcritical Hopf bifurcations with the Hopf
and saddle-node points observed at vy = 0 and vgy = —2 respectively, as shown in Fig. 3.2(a)
and (c). The dashed arrows indicate the path the system follows as v is varied in forward (red
markers) and backward (blue markers) direction. The region before the Hopf point in Fig. 3.2(a)
and the saddle-node point in Fig. 3.2(c) is known as the stable (or subthreshold [48]) region. In
case of the subcritical system, a bistable region is present for —2 < v < 0 where two stable states
(focus and limit cycle oscillations) coexist (highlighted in grey in Fig. 3.2(c)). We have verified
the numerical simulations by comparing the results for amplitude distribution with analytical

solution. The associated derivation and results are shown in section 3.2.3.
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Figure 3.2: Bifurcation diagram for Van der Pol oscillators with v as the control parameter in
the absence of noise: (a) supercritical Hopf bifurcation and (c) subcritical Hopf bifurcation. The
dashed arrows indicate the path the system follows as v is varied in forward (red markers) and
backward (blue markers) direction. The Hopf point in plots (a) and (c) and the saddle-node
point in plot (c) are observed at v = 0 and v = —2, respectively. The grey area in plot (c) shows
the bistable region (—2 < v < 0). The stable region is the area before the Hopf point in plot (a)
and the saddle-node point in plot (c). Plots (b) and (d) show the system’s response in the stable
region when driven by white noise of intensity, I' (normalized by eigenfrequency, wg = 27 fy).
The various EWIs are estimated in the stable region at —1.2 < v < —-0.2 and —3.2 <v < —-2.2
for supercritical and subcritical systems respectively.

3.2.2 Noise models

We first model £(t) as the delta correlated white Gaussian noise of intensity I'. Figure 3.2(b) and
(d) shows the response of the two classical Van der Pol systems (Eqn. (3.4)-(3.5)) in the stable
region when driven with white noise at three noise levels (low, intermediate and high). We can
observe that as the system approaches the Hopf bifurcation, in the stable region, its amplitude
(or response) increases for all noise intensities regardless of the nature of Hopf bifurcation. This
noise-induced response of the system is responsible for changing certain parameters before the
occurrence of the Hopf bifurcation, which are employed as the EWIs.

To investigate the effects of correlated noise characteristics on the system’s response, we then
model £(t) as the Ornstein Uhlenbeck (OU) process which satisfies the following Langevin

equation,

£(t) = —j;(t) + Y2 (3.6)

Te
as described in section 2.2.2. We generate OU noise such that the powers provided by &(t)

and €(t) in a band, Aw = wy — wy, around the system’s eigenfrequency—denoted by o,—are
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Figure 3.3: Power spectrum of white (7./7p = 0) and OU noise. The OU noise is generated such
that the powers provided by &(¢) and ¢(t) within Aw/wy = 0.7 are equal (area under the curve
on a linear scale denoted by o}). 7. is normalized by the time period of acoustic oscillations at
Hopf point (Ty = 27 /wp). The inset plot show the same curves on log scale.

equal [61], i.e.,
w2 w2
op = / Seedw = Seedw (3.7)

w1 w1
While employing this method for noise generation, the choice of bandwidth around the system’s
fundamental frequency plays a crucial role [61,161,162], as discussed in sections 2.3-2.4: a small
bandwidth (e.g., Aw/wy = 0.1) may lead to loss of information from the time series, thereby
failing to capture the effect of noise color on various EWIs (in this case, all the curves from
colored noise cases will collapse on the white noise case). This effect of noise color variation
can be observed more accurately with broader bandwidths, ranging from Aw/wy = 0.4 to 1.4.
However, if the bandwidth is still narrower, for instance Aw/wg = 0.4, information loss can still
occur, leading to underestimation of EWIs. We find that after Aw/wy = 0.7, the deviation in
estimated EWIs becomes significantly less, hence, for the present study, we choose Aw/wy = 0.7.
The corresponding power spectrum for white and OU noise are shown in Fig. 3.3. The noise
correlation time, 7., is normalized by the time period of acoustic oscillations at Hopf point
(To = 27 /wp). The range of the normalized noise correlation time chosen for the present work is
0 to 10. The various EWIs are estimated at three noise intensities: low ~ o3(1)), intermediate

(~ o4(2)) and high (~ 04(3)), for which the systems’ responses are shown in Figs. 3.2(b) and

(d).

3.2.3 Validation of numerical simulations with analytical results

The stochastic classical Van der Pol oscillators (Eqn. (3.4)-(3.5)) can be re-written as,
E+wiz = f(z, &) + () (3.8)

It is convenient to recast the Van der Pol model using amplitude-phase coordinates. This

substitution is valid under the assumption of weakly amplified/damped systems [159], which



Effect of Additive Correlated Noise Characteristics on Early Warning Prediction 55

implies that |v| < wp and hence the right-hand side of the above equation is small compared to

the left-hand side. Assuming,
x = A(t) coslwot + p(t)] = A(t) cos ¢(t) (3.9)
the amplitude-phase coordinates can be given as,
A= /22 + (i/w)? (3.10)

¢ = —arctan <$> — wot (3.11)
wox

Taking the time derivative of Eqn. (3.10) and (3.11) and considering Eqn. (3.8), we obtain,

f1(A,9) J2(Ag)
. & —
A= —Slj‘z’ £ (Acos ¢, — Aw sin ¢) —Smfﬁg,
cos]gb coé 10} (3.12)
o= A, f (Acos ¢, —Aw;j sin ¢) — A, €.
—_——
f3(A,9) fa(Ag)

This is a generic expression that is valid for any nonlinear function f. Now considering the case

of Van der Pol oscillators, for supercritical system
f(z, &) = (2v — k) (3.13)

and for subcritical system,
f(z,2) = (204 wa? — pxt)a (3.14)

Performing deterministic and stochastic averaging [56] for the two oscillators, yield the following

stochastic differential equations (SDE) for the amplitude A,

. _ E 9 Fe
A_A(v 8A)+4ng+C (3.15)
A K Y I‘e
A=A —A? - A 3.16
(“+8 16 )+4ng+C (3.16)
where,
5(7‘)7‘1’8& (wo) Pe
V=t = 3.17
(€)= s 520(7) (3.17)
and
r.=r" (3.18)
for white noise driven systems, while
D
r.=r 3.19
1+ wir? (3.19)

for OU noise driven systems.
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Figure 3.4: Comparison between numerical (markers) and analytical (lines) results for amplitude
distribution supercritical (a,b) and subcritical (c,d) systems respectively in the stable (a,c) and
limit cycle (b,d) regions.

The Eqn. (3.15) and (3.16) can be re-written as,

oV

A=—5a

+<

ov (3.20)

-51=7W

where, 7/(A) is the potential governing the amplitude dynamics. We now compute the Fokker
Planck equation [54] associated with the amplitude equation as,

0 0 r. 6?

A = gl ZAPAN+ 5070

= P(A,t) (3.21)

Considering that when A — oo, the probability density vanishes, we can write that the stationary
probability density of the acoustic envelope is solution of the following equation,
d 403

d—AP(A) T,

F(A)P(A) =0 (3.22)

The analytical solution for stationary probability density can be then computed as,

4w§
Ie

P(A) = N exp <_ “V(A)) (3.23)
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For supercritical system

v K r
A)=—-A2+ A~ —SInA 24
) = A A e (3:24)
and for subcritical system
r
V(A)=—SA2— Sqty Fg6 ey 4 (3.25)

2 32 96" 4w?

where, ./ is the normalization constant given as [ P(A)dA = 1.

To wverify the numerical simulations, Fig. 3.4 shows the comparison between the
amplitude distribution from simulations (markers) and analytical expression (lines) given by
Eqn. (3.23)-(3.25) for the two Van der Pol systems in stable and limit cycle regions when driven
by both white and OU noise. We can observe good agreement between simulations and analytical

results which provides confidence in the simulations performed in the present work.

3.2.4 Methodology

In this section, we present the methodology to estimate the various early warning indicators
(EWIs) from the noisy time-series obtained from stochastic Van der Pol oscillator systems in the
stable region. We investigate the EWIs based on statistics (variance, skewness and kurtosis),
autocorrelation function (decay rate), spectral properties (coherence factor), multi-fractality

(Hurst exponent and spectral width) and entropy/complexity measures.

3.2.4.1 Variance

Variance (V') is the expectation value of the squared deviation of the system variable from its
mean. It indicates how the data is spread from the mean value and is the second moment of the

distribution given as [163],
1 Z N2

where, z; is the time-series data, NN is the number of data points and Z is the mean of x
calculated as, ¥ = % Zf\i 1 ;. Variance is reported to increase as the system approaches the
Hopf bifurcation (or critical transition) [87,146].

3.2.4.2 Skewness

Skewness (.5) is the measure of the asymmetric probability distribution of system variable about
its mean value. The skewness can be positive, negative or zero and is defined as the third

moment of the distribution given as [163],

N _\3
% >y (T — 7)

[\/z{/ ity (zi—a)?

S =

. (3.27)

where, NV is the number of data points and Z is the mean of z;. For a normal distribution,

S = 0, which indicates that the probability distribution of the system variable is symmetric
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about its mean. The probability distribution is negatively skewed when the left tail is longer
than the right tail, while it is positively skewed when the right tail is longer than the left. It
is reported that the probability distribution becomes asymmetric near the Hopf bifurcation,

leading to either monotonous rise [89] or decrease in skewness [80,92].

3.2.4.3 Kurtosis

Kurtosis (k) is the measure of the tailedness in the probability distribution of the system variable

and is defined as the fourth moment of the distribution given as [163],

N _\4
% Yoiey (T — T)

VAEE, oy

k=

. (3.28)

Kurtosis is said to be mesokurtic (medium-tailed) when £ = 3 (e.g., normal distribution),
platykurtic (thin-tailed) when k < 3 (e.g., Bernoulli distribution) and leptokurtic (fat-tailed or
super-Gaussian) when k > 3 (e.g., Rayleigh or Laplace distribution) [91]. In the vicinity of the
Hopf bifurcation (or critical transition), the probability distribution is reported to become more

leptokurtic or platykurtic [89,91].

3.2.4.4 Autocorrelation function

Autocorrelation is a measure of the correlation between the data points in a time series that are
some time steps apart (also called as time-lag). Autocorrelation at any lag is estimated using

the following expression [164],

El(zy — ) (21, — 7))

AC = v

(3.29)

where, z;, and z, represents the data value at time ¢; and ¢s, Z is the mean of z; and V is the
variance of x; estimated by Eqn. (3.26). The autocorrelation function (ACF) is obtained as the
sequence of AC as a function of time lags. The decay rate () of ACF can then be estimated
by fitting an exponential decay over the magnitude of its Hilbert transform. As the system
approaches the Hopf bifurcation (or critical transition), it is reported that the decay rates of

ACF becomes increasingly smaller in magnitude [86, 146].

3.2.4.5 Coherence factor

In the stable region, noise induces random bursts of periodic oscillations such that the coherence
in the time trace is maximum at an intermediate level of noise intensity [47]. This phenomenon
is known as coherence resonance (CR) and has been shown to occur in systems undergoing
supercritical and subcritical Hopf bifurcation [2,6,47]. The phenomenon of CR arises from
the interaction between noise and the least stable eigenmodes of a system, which becomes
unstable after Hopf bifurcation [2]. Noise-induced coherence in a system can be quantified by

the coherence factor () [6,47], defined as the ratio of spectral peak height to the spectral quality



Effect of Additive Correlated Noise Characteristics on Early Warning Prediction 59

factor and given as,
fo
=H —= 3.30
o=t (& (3.30)
where Hy, and f,/Af represent the height and normalized width of a Lorentzian fit to the broad
spectral peak; the width is measured at half the height of the peak of the fit. It is reported that
for a constant noise intensity, 8 always increases as the system approaches the Hopf bifurcation

(or critical transition) [2,6].

3.2.4.6 Fractal measures

Multi-fractal Detrended Fluctuation Analysis (MFDFA) [165] is performed to study the fractal
signature of the noisy time series. In this analysis, we first obtain a mean subtracted deviate of
noisy time series as, N

Y(N)=) (- %) (3.31)

t=1

where, x; is the time series and Z is its mean. We then divide the deviate series, Y (NN), into
N, non-overlapping windows (segments) of size w. We then subtract a polynomial fit of order
m from the profile of each window (also known as detrending). The choice of polynomial order
m for detrending is important for the accurate estimation of the Hurst exponent. The Hurst
exponent is sensitive to the trend removal method, making the selection of an appropriate m
essential. Using a lower order m, such as m = 1 (linear detrending) or m = 2 (quadratic
detrending), can lead to significant errors by underestimating the trend. This underestimation
fails to capture the data’s complexity, resulting in systematic deviations. These deviations
artificially lower the root mean square (RMS) of the fluctuations, leading to inaccurate Hurst
exponent values. Conversely, a higher order m introduces a more complex trend shape, which
might seem beneficial but can cause overfitting, particularly for time series with small segment
sizes. Overfitting occurs when the polynomial trend mimics the noise in the data, reducing the
fluctuations to nearly zero. This distortion makes the time series appear smoother than it is,
skewing the Hurst exponent calculation. To prevent these issues, it is crucial that the smallest
segment size (i.e., scale) is much larger than the polynomial order m. A practical guideline
is that the segment size w should be at least w > m + 2. This ensures that the polynomial
trend does not overly conform to short-term variations in the data, preserving the integrity of
the fluctuation function used for Hurst exponent estimation. For the smallest segment sizes
containing 10 — 20 samples, an appropriate choice of m is typically between 1 and 3. This range
is supported by Ihlen et al. [147], who suggest that a lower-order polynomial is sufficient to
capture the main trend without overfitting for short time series. It is important to note that the
choice of m affects only the quantitative values, while the trends in the Hurst exponent remain
unaffected. In this study, we found that m = 3 provided a good balance, effectively removing
the trend while maintaining the statistical properties of the fluctuations. We then compute a

qg-order RMS for each window to capture the magnitude of the local fluctuations in the signal
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and obtain a g-order fluctuation function as [165],

" g7 1/q
1 & 1 — B
Fl = - > o > wit) —m)? (3.32)
=1 t=1

F} is plotted as a function of scale, w, for different q-orders in a log-log plot; the slope of which
gives a generalized q-order Hurst exponent (H;). In general, the value of H, lies within the
range of 0 to 1. A time series will have a correlated structure when 0.5 < H, < 1 and an
anti-correlated structure when 0 < H,; < 0.5. The white Gaussian noise has an uncorrelated
structure for which H, = 0.5. If the time series is multi-fractal, then H, will vary with ¢, and
this variation can be manifested in the form of a multi-fractal spectrum (D) which will have a
characteristic spectral width (wp) [147]. In this work, we estimate the Hurst exponent at ¢ = 2
(H? or H) which scales the rms of the standard deviation of fluctuations with the length of the
data. As the system approaches the Hopf bifurcation (or critical transition), both H and wp

are reported to reduce and become close to zero [89,96].

3.2.4.7 Permutation entropy

Permutation entropy (PFE) is a measure of randomness in a time series. We employ the algorithm
proposed by Bandt and Pompe [114] for the estimation of PE from the noisy time series. In this
algorithm, we first identify the embedding dimension, dg, which represents the number of data
points in each vector required for analysis. We then choose a time delay, 7y, which represents
the spacing between the data points in each vector. The time delay determines the sensitivity
to patterns over different time scales. We then construct a dg dimensional embedded vectors by
selecting data points at regular intervals based on the chosen 745, for e.g., for a time series z(t),
the embedded vector at time ¢ would be (x(t), z(t + Tqg), z(t + 274g), ..., x(t + (dg — 1)T4E)).
For each dp length vector in the time series, we create a permutation (rearrangement of the
data points) of its elements. We then calculate all possible permutations () for the chosen
dg. For each vector in the time series, we then count the number of times each permutation
appear (g(m)) and keep track for each unique permutation. We then determine the relative
frequency of each permutation (p(7)) by dividing its count (¢(7)) by the total number of dg
length vectors, which is represented as, N —dg + 1, where N is the total number of data points.

The permutation entropy (PE) can be then computed using [114],
PE = - p(m)log, p() (3.33)

We can estimate the normalized permutation entropy by dividing the calculated PE by the
maximum possible permutation entropy (PE(maz.)) for the given embedding dimension (dg)
as, PE' = PE/(logy(dg)!). The maximum PFE estimate occurs when the time series contains
the most complex and random patterns for the given dg. The value of PE’ lies in the range
of 0 — 1. A high value of PE’ indicates complex dynamics, while PE’ close to zero indicates

a periodic signal [166]. It is important to select appropriate value of dg and 7yp to effectively
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show the dynamics of a system. In literature [114,167,168], detailed investigations have been
shown on varied dynamical systems to provide the acceptable ranges for dg and 7yg. dg should
be chosen such that N > dg!. In general, the studies have reported that for any practical
system, 3 < dg < 7 and 7y = 1 would be most suitable. Figure 3.5 shows the variation
of the estimated PE’ with the embedding dimension, dg, at v = —2.2. We find that, for a
fixed noise color and intensity, PE’ decreases with increase in the embdedding dimension. This
trend concurs with the previous studies of acoustic emission by an anomalous discharge in a
plasma system [169], flame front instability induced by radiative heat loss [170] and prediction
of combustion instability in gas turbine combustors [109]. For the present analysis, we choose
dg = 5 and 7 = 1, as null hypotheses can be accepted by a two-sided t-test for PE" at 5%
reliability [109,114]. The normalized permutation entropy is reported to decrease as the system

approaches the Hopf bifurcation (or critical transition) [108,109,171].
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Figure 3.5: Noisy system: variation of permutation entropy (PE’) as a function of the embedding
dimension (D) at v = —2.2 for subthreshold Van der Pol system.

3.2.4.8 Jensen-Shannon complexity

The Jensen-Shannon complexity is a measure that quantifies the complexity of a probability
distribution. It is derived from the Jensen-Shannon divergence, a symmetric and smoothed
version of the Kullback-Leibler divergence, which is used to measure the difference between
two probability distributions [172]. To estimate Jensen-Shannon complexity, first we need to
represent the data as probability distribution (P). This distribution can be represented as a
vector of probabilities, where each element corresponds to the probability of a particular outcome
occurring (@ which represents the uniform distribution whose every element is 1/(dg)!, where
dp is the embedding dimension [114]). We then compute the average distribution by taking
the weighted average of two probability distributions, P and ). We compute Jensen-Shannon

divergence using,

PE' [p;@] __ PE'[P] _ PE'[Q]

2 2
JSD [P = 3.34
[ 7Q] JSDma,x. ( )
where LTl o 1
JSDpax = — 5 [ Ed —i'_ log(dg! +1) — 2log2dg! +logdg!] (3.35)
E-
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JSD(P,Q) can then be used as the measure of the complexity by quantifying the

differences/similarities between P and @ as,
Cp=JSD(P,Q)PE'(P) (3.36)

A higher value of Cp indicates greater algorithmic complexity between the two distributions.
Jensen-Shannon complexity is reported to increase as the system approaches the Hopf bifurcation
(or critical transition) [108].

A summary of the relationship between each measure and their phenomenon to serve as an early

warning indicator is tabulated in Table 3.1.

Table 3.1: Types of early warning measures along with their trend (consistent increase or
decrease as the system approach the critical transition) to serve as EWIs to predict the
approaching critical transition.

EWI class EWI Trend

Increase Decrease

Variance (V) v
Statistical measures Skewness (S) v v
Kurtosis (k) v v
ACF () v
Spectral measures
Coherence factor (53) v
Hurst exponent (H) v

Fractal measures ) .
Multi-fractal spectrum width (wp)

) Permutation entropy (PE")
Entropy/complexity measures ,
Jensen-Shannon complexity (Cp) v

3.3 Effect of additive noise characteristics on early warning

indicators

In this section, we discuss the effects of noise color and intensity on the various EWIs (estimated
in the stable region) for both supercritical and subcritical Van der Pol systems.

The results corresponding to each EWI are presented as 2D contour maps in the parameter
space (7. — v) at three noise intensities: o3(1) (column 1), 0(2) (column 2) and o04(3) (column
3). The Hopf and saddle-node points occur at vy = 0 and vgy = —2 respectively. To illustrate
whether the variation in an EWI is more sensitive to changes in noise color or control parameter,
vertical and horizontal arrows are provided in each plot respectively. In each plot, a 4x4 grid
(16 points in 7. — v) is chosen, and the arrows are placed at those 16 points.

Figure 3.6 illustrates the effect of control parameter (v), noise color (7./Tp) and intensity (oy)

on variance for both supercritical (plots (a)-(c)) and subcritical (plots (d)-(f)) Van der Pol
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Figure 3.6: 2D contour map of variance (V') as the control parameter (v) and noise correlation
time (7./Tp) are varied at three noise intensities (op(1) (a, d), 0,(2) (b, €) and o4(3) (c, f)) for
supercritical (a)-(c) and subcritical (d)-(f) Van der Pol systems. The dashed grey lines separate
the plots into categories of low, moderate, and high noise correlation times. The arrows roughly
indicate whether the variation in V' is greater in the direction of control parameter (dashed) or
in the direction of noise correlation time (solid).

systems. The dashed grey lines separate the plots into categories of low (7./Tp < 0.1), moderate
(0.1 < 7./Tp < 1), and high (7./To > 1) noise correlation times. We observe that, for a fixed
noise intensity and control parameter, V' decreases with increase in noise color up to 7./Ty = 1
and then becomes relatively constant. We observe that V' increases monotonously with increase
in control parameter at all noise correlation times and noise intensities. However, when noise
color spans the range 0.1 to 1, variance is more sensitive to changes in noise color than changes
in control parameter value. This could result in a non-monotonous behaviour of variance in
practical systems, where noise color is expected to change with change in control parameter.
Therefore, variance can be employed as an effective early warning indicator, either at very small
noise correlation times, i.e. ~ white noise or very large correlation times (7./7y > 1) (shown by
the dashed blue arrows). We also observe that variance increases with increase in noise intensity
for each noise color and control parameter. These observed trends for variance are qualitatively
similar in both the Van der Pol systems.

Figure 3.7 shows the variation of skewness (S5) with v, 7./Tp and oy, for the two Van der Pol
systems. In case of supercritical system (Figs. 3.7(a)-(c)), we observe that, for each v, skewness
decreases with increase in noise color. When noise color is kept constant, skewness exhibits an
oscillatory behaviour at o3(1), while decreases consistently at o3(2) and 03(3), as the control
parameter is increased towards the Hopf point. In case of subcritical system (Figs. 3.7(d)-(f)),
for each v, skewness increases with increase in noise color at o,(1). Whereas, at 04(2) and o3(3),
skewness increases with increase in noise color for v < —2.5 while it decreases for —2.5 < v < —2.
Near the saddle-node point, for all 7./Ty > 4, we observe that skewness increases at low noise

intensity while it decreases at intermediate and high intensities.
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Figure 3.7: 2D contour map of skewness (S) as the control parameter (v) and noise correlation
time (7./Tp) are varied at three noise intensities (op(1) (a, d), 0,(2) (b, €) and o4(3) (c, f)) for
supercritical (a)-(c) and subcritical (d)-(f) Van der Pol systems. The dashed grey lines separate
the plots into categories of low, moderate, and high noise correlation times. The arrows roughly
indicate whether the variation in S is greater in the direction of control parameter (dashed) or
in the direction of noise correlation time (solid).

In both systems (Fig. 3.7), the primary factor driving changes in skewness is the variation in
noise color rather than the control parameter, except close to the saddle-node point at large
correlation times and moderate to high noise intensities in subcritical system, as highlighted
by the blue dashed arrows. Hence skewness is not suitable as an early warning indicator for
practical systems.

Figure 3.8 shows the variation of kurtosis (k) with v, 7./Tp and o}, for both the Van der Pol
systems. In case of supercritical system (Figs. 3.8(a)-(c)), we observe that, for each v, kurtosis
increases with increase in noise color, whereas it decreases with increase in noise intensity.
When noise color and intensity are kept constant, kurtosis decreases as the system approaches
the Hopf bifurcation. However, for all 7./Ty > 0.1, the changes in kurtosis are mostly influenced
by changes in noise color than the control parameter, specifically at intermediate and high noise
intensity, as indicated by blue solid arrows. In case of subcritical system (Figs. 3.8(d)-(f)), we
observe the following trends for kurtosis: (i) at o,(1), k decreases with increase in 7./T} for all
v < —2.3, while shows an oscillatory response with noise color for all —2.3 < v < —2; (ii) at
op(2) and op(3), k shows an oscillatory response with noise color at each v and (iii) for each
v and 7./Tp, kurtosis decreases with increase in noise intensity. As the system approaches the
saddle-node point, k increases at low noise intensity while it decreases for intermediate to high
noise intensities. When noise color span the range 0.1 to 1, no clear monotonous trend for
kurtosis can be expected as the changes in its values are mostly influenced by the noise color
(see blue solid arrows).

Hence, Fig. 3.8 shows that the implementation of kurtosis as an early warning indicator has

limitations. It can work well for both the type of Van der Pol systems if noise has very small
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Figure 3.8: 2D contour map of kurtosis (k) as the control parameter (v) and noise correlation
time (7./Tp) are varied at three noise intensities (op(1) (a, d), 0,(2) (b, €) and o4(3) (c, f)) for
supercritical (a)-(c) and subcritical (d)-(f) Van der Pol systems. The dashed grey lines separate
the plots into categories of low, moderate, and high noise correlation times. The arrows roughly
indicate whether the variation in k is greater in the direction of control parameter (dashed) or
in the direction of noise correlation time (solid).

correlation time, i.e. when white noise approximation is acceptable. For 7./Tp > 0.1, kurtosis
could be employed for supercritical systems with low noise intensity; while for subcritical system,
it may only work when the noise correlation time is high (7./7y > 4) and the system is already
in the vicinity of the saddle-node point.

It should be noted that in case of the subcritical Van der Pol system, the trends in skewness and
kurtosis are also influenced by the changes in the x value in Eqn. (3.5). & influences the width of
the bistable region: smaller (or larger) the s value, smaller (or larger) the bistable region. This
change in the bistable region, causes a qualitative change in the trends of skewness and kurtosis
(shown in appendix C). Any changes in x value results in different trends in the variation of
skewness and kurtosis with v, 7./Tp and op. Thus, these two measures are not suitable as early
warning indicators.

Figure 3.9 shows the variation of decay rates (o) of ACF as a function of v, 7./Tp and o}, for
the two Van der Pol systems. In case of supercritical system (Figs. 3.9(a)-(c)), we observe that,
for each v, o remains relatively constant with increase in noise color at o(1), whereas « shows
an oscillatory response with noise color at 0,(2) and o03(3). We further observe that, for each
7¢/Ty and v, o decreases with increase in noise intensity. When noise color and intensity are
kept constant, « increases as the system approaches the Hopf point; however, changes in « are
influenced by noise color in the range of 0.1 to 1, specifically from intermediate to high noise
intensities (blue solid arrows). In case of subcritical system (Figs. 3.9(d)-(f)), for each v, we
observe that « decreases at o,(1) and o0p(2), while it increases at 04(3) with increase in noise
color up to 7./Tp = 1, after which a becomes relatively constant. When noise color and intensity

are constant, « increases as the system approaches the saddle-node point.
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Figure 3.9: 2D contour map of the decay rates («) of ACF as the control parameter (v) and
noise correlation time (7./7p) are varied at three noise intensities (o5(1) (a, d), 03(2) (b, e) and
op(3) (c, f)) for supercritical (a)-(c) and subcritical (d)-(f) Van der Pol systems. The dashed
grey lines separate the plots into categories of low, moderate, and high noise correlation times.
The arrows roughly indicate whether the variation in « is greater in the direction of control
parameter (dashed) or in the direction of noise correlation time (solid).
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Figure 3.10: 2D contour map of coherence factor (f) as the control parameter (v) and noise
correlation time (7./Tp) are varied at three noise intensities (o4(1) (a, d), op(2) (b, €) and o3(3)
(c, f)) for supercritical (a)-(c) and subcritical (d)-(f) Van der Pol systems. The dashed grey
lines separate the plots into categories of low, moderate, and high noise correlation times. The
arrows roughly indicate whether the variation in g is greater in the direction of control parameter
(dashed) or in the direction of noise correlation time (solid).

Overall, Fig. 3.9 indicates that the decay rate of ACF can serve as reliable early warning indicator
in systems where noise correlation time is either minimal (7./7p < 0.1) or larger than the system
time scale (7./Tp > 1), as indicated by blue dashed arrows.

Figure 3.10 shows the variation of coherence factor (/) with v, 7./Ty and o} for both the Van
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Figure 3.11: 2D contour map of Hurst exponent (H) as the control parameter (v) and noise
correlation time (7./7p) are varied at three noise intensities (op(1), 0p(2) and o03(3)) for
supercritical (a)-(c) and subcritical (d)-(f) Van der Pol systems. The dashed grey lines separate
the plots into categories of low, moderate, and high noise correlation times. The arrows roughly
indicate whether the variation in H is greater in the direction of control parameter (dashed) or
in the direction of noise correlation time (solid).

der Pol systems. We observe that coherence factor decreases with increase in noise color up
to 7./Ty = 1 and then becomes relatively constant. This trend is true for each v at op(1) and
op(2). At 03(3), in the vicinity of the Hopf and saddle-node points, 5 exhibits an oscillatory
behaviour with noise color. Further, at each 7./Ty and v, we can observe the phenomenon
of coherence resonance: [ attains a peak value at an optimum noise intensity, which shift
towards lower values as the system approach the Hopf bifurcation. When noise correlation time
and intensity are considered constant, coherence factor increases as the two systems approach
the Hopf bifurcation (Fig. 3.10). The variation in § is dominated by the changes in control
parameter than the noise characteristics (blue dashed arrows). Thus, coherence factor can serve
as an effective early warning indicator even when noise characteristics vary simultaneously with
the system parameter. These trends are qualitatively true for both supercritical and subcritical
Van der Pol systems.

Figure 3.11 shows the variation of Hurst exponent (H) with v, 7./Ty and o} for both the Van
der Pol systems. We can note that the value of H falls within the range of 0 to 0.5 This suggests
that the time series from both systems exhibit an anti-correlated signature. We observe that, for
each o, and v, Hurst exponent increases with increase in noise color up to 7./Ty = 4, after which
it becomes relatively constant. Hurst exponent does not exhibit significant variation with noise
intensity. When noise color and intensity are considered constant, Hurst exponent decreases as
the two systems approach the Hopf bifurcation. However, the degree of variation in H with
the control parameter is significantly less than with variations in noise correlation times up to
7./To = 1 (blue solid arrows). Consequently, if both noise correlation time and intensity vary

simultaneously with the control parameter, the trends in the Hurst exponent (H) could become
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Figure 3.12: 2D contour map of multi-fractal spectrum width (wp) as the control parameter (v)
and noise correlation time (7./7p) are varied at three noise intensities (o4(1), 04(2) and o4(3)) for
supercritical (a)-(c) and subcritical (d)-(f) Van der Pol systems. The dashed grey lines separate
the plots into categories of low, moderate, and high noise correlation times. The arrows roughly
indicate whether the variation in wp is greater in the direction of control parameter (dashed)
or in the direction of noise correlation time (solid).

non-monotonous. Thus, Hurst exponent can be considered as a reliable early warning indicator
in systems where the noise correlation time is larger than the system time scale, i.e., 7./Tp > 1
(blue dashed arrows). Examples for previous successful implementation of the Hurst exponent as
a precursor include Nair et al. [96,173], Unni et al. [174], and Fu et al. [99], where the transition
to periodic oscillations is reported to occur via intermittency. In these aforementioned studies,
noise color may have satisfied the criterion for correlation time. It is also possible that the change
in Hurst exponent is due to a combined effect of noise color variation and parameter variation,
but was ascribed to the parameter. For instance, with reference to Fig. 3.11(f), simultaneous
increase in control parameter and decrease in noise color will result in a prominent monotonous
decrease in the Hurst exponent. Whereas, the use of the Hurst exponent in an experiment where
noise color increases with increase in parameter will lead to a much smaller decrease — or even an
increase — in the Hurst exponent with increase in control parameter as observed in Fig. 2.20 with
electroacoustic simulator. Such an experiment on the Hurst exponent as an instability precursor
would likely be considered as inconclusive, but as we see here, such trends are a manifestation
of the effects of noise characteristics.

Another early warning measure associated with fractal signature of the time series is the
multi-fractal spectrum width. Figure 3.12 shows the variation of spectrum width (wp) with
v, Tc/To and o} for both the Van der Pol systems. We observe that no consistent trend is
apparent in the plots with respect to noise color and control parameter for any o,. We also
observe that wp does not show variations with noise intensity. Although for low (7./Tp < 0.1)
and high (7./Tp > 1) noise color, the blue dashed arrows indicates that variation in wp is

mostly influenced by control parameter than the noise color, however, it does not display any
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Figure 3.13: 2D contour map of (a), (c) permutation entropy (PE’) and (b), (d) Jensen-Shannon
complexity (Cp) as the control parameter (v) and noise correlation time (7./7p) are varied at
op(3) for supercritical (a)-(b) and subcritical (c)-(d) Van der Pol systems. The dashed grey
line separate the plots into categories of low and moderate to high noise correlation times. The
arrows roughly indicate whether the variations in PE’ and Cp are greater in the direction of
control parameter (dashed) or in the direction of noise correlation time (solid).

monotonous trend and may either increase or decrease as the two systems approach the Hopf
bifurcation. This indicates that the multi-fractal spectrum width is not a suitable choice as an
early warning indicator.

Figure 3.13 shows the variation of entropy/complexity measures of time series with v and 7./Tj
at 0p(3) for the two Van der Pol systems. We observe that, for each v, permutation entropy
(Figs. 3.13(a) and (c)) decreases, while Jensen-Shannon complexity (Figs. 3.13(b) and (d))
increases with increase in noise color up to 7./7y = 0.1, after which they become constant. As
no variations in PE" and Cp after 7./Ty > 0.1 are observed, the limits of y-axis are restricted
to 7./Tp = 0.2 for clear visualization of trends. Although not shown here, but, we find that
noise intensity does not influence these measures. When noise color and intensity are considered
constant, PE’ decreases while Cp increases as the two systems approach the Hopf bifurcation.
Even within the span of 0 < 7./Tp < 0.1, the variation in PE’ and Cp are more responsive
to changes in noise correlation time than the control parameter, as indicated by the blue solid
arrows. Consequently, entropy/complexity measures can only be employed as early warning
indicators in systems where the white noise approximation is acceptable.

Figures 3.6-3.13 illustrated the characteristics and limitations of various EWIs with respect to
control parameter, noise color and intensity. In order to summarize and recommend the most
reliable indicators for implementation in practical systems, we estimate the % change in each

EWT as the control parameter is varied towards the Hopf bifurcation. The % change (x) in each
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Figure 3.14: Summary of the reliability of various EWIs represented as the % change in each
indicator (x) as the control parameter (v) is increased towards the supercritical Hopf bifurcation
for varied noise color (7., marked with arrows) at o3(3).

EWI is calculated as,
~ EWI—EWIL,..f

= 1 .
Y B, 00 (3.37)

where, EWI,s is the value of EWI at the far away point from the Hopf bifurcation for each
noise color, i.e., v = —1.2 for supercritical system and v = —3.2 for subcritical system. The
advantage of such normalization is that all the curves in the plot will start from zero, indicating
the maximum change in an EWI near the Hopf or saddle-node point.

Figures 3.14 and 3.15 show a comparative analysis of the various EWIs in terms of x for varied
noise correlation times at o(3) for supercritical and subcritical Van der Pol systems respectively.
We find that among the investigated EWIs, variance (Figs. 3.14(a) and 3.15(a)), ACF decay
rates (Figs. 3.14(d) and 3.15(d)) and coherence factor (Figs. 3.14(e) and 3.15(e)) are the most
reliable indicators, as they exhibit a monotonous trend regardless of noise characteristics and
bifurcation variant. The Hurst exponent (Figs. 3.14(f) and 3.15(f)) falls next on the reliability
index but the trends are distinguishable only when 7./Ty > 1. The entropy/complexity measures
(Figs. 3.14(h-i) and 3.15(h-i)) can be only reliable in systems approximated by white noise.
Multi-fractal spectrum width (Figs. 3.14(g) and 3.15(g)) is not suitable as an EWI. Although, we
can observe that the % change in skewness (Figs. 3.14(b) and 3.15(b))) and kurtosis (Figs. 3.14(c)
and 3.15(c)) is high, but the trends are not consistent with change in system parameter, as can

be compared between Figs. 3.14-3.15 and Figs. C.1-C.2. Hence, these are also deemed unsuitable
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Figure 3.15: Summary of the reliability of various EWIs represented as the % change in each
indicator (x) as the control parameter (v) is increased towards the subcritical Hopf bifurcation
for varied noise color (7., marked with arrows) at o3(3).

as early warning indicators.

Implementation of any early warning indicator in practical system is based on detecting the
changes in the EWI and relating them with whether the system is moving closer to or away from
the critical point. In our numerical study, the closest point to limit cycle oscillations is v = —0.2
and v = —2.2 for supercritical and subcritical systems respectively. Despite their sensitivity
to changes in noise characteristics, indicators such as V, «, B and H consistently exhibit a
monotonous trend up to v = —0.2 and v = —2.2, suggesting their efficacy as EWIs. However,
when applying these indicators for prediction, it is crucial to calibrate them for individual systems
based on the noise characteristics.

In practical combustion systems, the flame response to the acoustic forcing can occur after a
time delay (7), as shown in Bonciolini et al. [175-177]. In Appendix D, we show the effect of the
time delay on the trends of two noise-induced precursors: coherence factor and Hurst exponent.
In case the time delay of flame response is not negligible, we find that the coherence factor will
work at most time delays and noise color, while the trends in the Hurst exponent are mostly
dependent on the noise color of additive noise (i.e., 7./Tp > 1) than the time delay. Although
introducing time delay as a parameter complicates the stochastic dynamics of the system—due
to the addition of multiplicative noise from variations in the time delay—our conclusions for
non-time delay oscillators remain applicable.

An important note here is that we have conducted the analysis in the subthreshold region,
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where the system is linearly stable. In bistable region, noise-induced triggering (also known as
noise-induced flickering [178]) is challenging for EWIs to detect because the system transitions
to an alternative state due to strong external disturbances, without approaching or crossing the
bifurcation point. Dakos et al. [80] have conducted extensive investigations into this phenomenon
using the same framework as that for linearly stable systems. They analyzed two datasets for an
ecosystem: one where the control parameter is slowly increased towards the Hopf point (critical
slowing down) and another where both the control parameter and stochastic fluctuations are
increased to induce triggering within a bistable region (flickering). They found that traditional
EWIs like autocorrelation and skewness showed an increasing trend even after the critical
transition, making them unreliable. Variance, however, displayed an increasing trend until
it began to decrease near the transition point due to more frequent excursions to the alternative
attractor, indicating its potential as a reliable EWI in these contexts. Similarly, the spectral
exponent was found to be a reliable indicator. On the other hand, the Hurst exponent exhibited a
non-monotonic trend, offering no clear indication of an impending transition. This suggests that
missed alarms are more likely in triggered cases, as EWIs typically signal transitions when the
system gradually approaches a bifurcation. In situations where external forcing changes faster
than the system’s response rate, variance or spectral exponent can still function as indicators, but
they may not be entirely reliable. In such scenarios, novel approaches like potential analysis may
be more effective in assessing bistability [84,179]. This method allows for a better understanding
of the system’s potential landscape and can provide insights into the likelihood of transitions
even in the presence of strong perturbations.

In this chapter, we investigate the effect of noise characteristics—correlation time and
intensity—on commonly employed early warning indicators (EWIs) of critical transition in
dynamical systems. We assess the reliability of these indicators via numerical simulations
using a generalized Van der Pol oscillator which undergoes both supercritical and subcritical
Hopf bifurcation. We model correlated noise in the system as an additive Ornstein Uhlenbeck
(OU) process. The study is performed in the subthreshold regime such that the stable focus
is the only possible asymptotic state. We thus have three primary parameters in this study:
the control parameter which controls the proximity of the system to the Hopf bifurcation, the
noise correlation time, and the noise intensity. We have applied various measures — statistical,
spectral, fractal, and entropy/complexity-related — while varying the parameters. Unlike most
previous investigations, the objective is to systematically assess whether a given measure can
be employed reliably as an early warning indicator. A reliable EWI would follow a monotonous
trend as the system is brought close to the Hopf point. In addition, it is desired that the
measure vary predominantly in response to variation in the control parameter. Such criteria for
an EWI is relevant in a practical setting where noise characteristics may vary simultaneously
with the operating/ambient conditions or the control parameter. For instance, in combustors,
both inherent noise and the control parameter is linked to the properties of the flame driving
combustors. As a consequence, as the control parameter is varied, the noise characteristics (in
particular, noise color) also varies. An EWI such as kurtosis in the normalized noise color range

of 0.1-1 (see Fig. 3.8) will vary due to changes in the color and control parameter. Depending
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Table 3.2: Summary of results obtained in this work in the stable region along with comparisons
from existing literature.

Results Limitations

EWIs Types of noise (literature) Results (this work) (this work)

‘White noise

. lored noise
or type undefined Colored noise

Correlation time  Intensity

Robust with

Variance Ref. [80,86,87,80,01,180 el [I817184),  Rel. [I81], oo Reliable with 01<7/Ty<1
this work this work . limitations
(time delays)
Skewness Ref. [80,89,91,180] Ref. [183], this work ~ Mixed trends Not reliable Bifurcation type,
this work 7. and oy
Kurtosis Ref. [89,91] this work this work ~ Mixed trends R('ehafble.wlth 1e/To > 1, oy
limitations
Robust with
. Ref. [181-184],  Ref. [181],  limitations Reliable with
°f. s 5 : . . R 1< <
ACF Ref. [80,86,87,89,91,180,185] this work this work (time lags) limitations 01=m/To<1
(type of noise)
Coherence  on Ref. [186], Ref. [186], } .
factor Ref. [2,6,186] this work this work Robust Reliable B
Hurst . Ref. [184,186],  Ref. [186], Reliable with
. R ’ <
exponent Ref. (89, 96] this work this work Robust limitations Te/To <1
Multi-fractal Bifurcation type
spectrum Ref. [96] this work this work - Not reliable ’ ype,
. 7. and oy
width
Permutation Ref. [108,109] this work this work Robust R(.:hz?blc'wwh 7e/To > 1
entropy limitations
Jensen ] ]
Shannon Ref. (108, 109] this work  this work Robust Reliable with 7o/To > 1
. limitations
complexity

on the variation in noise color, the desired monotonous trend may not be obtained. Kurtosis in
such a scenario would be unreliable. Coherence factor (Fig. 3.10) on the other hand will still
vary monotonously in response to control parameter variation — except for a subcritical system
at large noise intensity and far away from bifurcation (Fig. 3.10f).

Thus, conclusions from investigations conducted in the absence of information on how noise
varies with control parameter will differ depending on the noise intensity, noise color, and control
parameter. A summary comparing the findings in this study and conclusions from previous

studies on the various classes of investigated EWIs is tabulated in Table 3.2.



Chapter 4

Effect of Multiplicative Correlated Noise Characteristics on Early

Warning Prediction

4.1 Overview

The background noise in a combustor features contributions not only from additive sources
arising from aerodynamics and combustion but also from multiplicative sources arising from
coupling mechanisms such as velocity, pressure and mixture coupling [1,33,36]. In this chapter,
we numerically investigate the effects of noise characteristics of combined multiplicative and
additive noise sources on the reliability /efficacy of different classes of EWIs using the stochastic
Van der Pol oscillator. We investigate the EWIs based on spectral properties (coherence factor),
statistical measures (variance), multi-fractality (Hurst exponent), and time series complexity
(permutation entropy). This investigation provides more detailed insights on the most reliable
EWIs that should be employed for accurate prediction of instability, considering variations in

noise sources and characteristics expected in practical gas turbine combustors.

In dynamical systems theory, a subcritical Hopf bifurcation is known as a catastrophic critical
transition, characterized by the system abruptly transitioning to limit cycle oscillations upon
variation of the control parameter. This phenomenon is particularly important due to the
presence of hysteresis, which leads to a bistable region where noise-induced transitions can occur.
In practical gas turbine combustors, thermoacoustic instability is frequently observed to arise
through subcritical Hopf bifurcation [67,149,187,188]. In Chapter 2, we observed that the trends
in EWIs for both supercritical and subcritical bifurcations are largely similar. Therefore, in the

subsequent chapters of PART I, we will focus on systems exhibiting subcritical Hopf bifurcation.

This chapter is further divided into two sections. Section 4.2 describes the mathematical model
of stochastic Van der Pol oscillator and colored noise and the methodology to estimate various
EWTIs. Section 4.3 shows the effects of correlated noise characteristics on the estimated EWIs
and discuss their reliability when implemented in real systems. A brief overview of the summary

for the contents of the chapter is shown in Fig. 4.1.
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Figure 4.1: Visual summary of the contents for Chapter 4.

4.2 Model description and methodology

4.2.1 Stochastic Van der Pol oscillator

For this investigation, we employ the extended version of Van der Pol oscillator model (discussed

in section 3.2.1) which exhibits instabilities via subcritical Hopf bifurcation, given as
i+ (pat — ke — 20)i +wiz =0 (4.1)
The corresponding stochastic differential equation is given as,
i+ wir = (2v+ P ,ux4) T4+ x(t)E +&(t) (4.2)

where, x(t) is the velocity coupled multiplicative noise and £(t) is the additive noise. We
numerically simulate this model using the fourth-order Runge-Kutta method in Matlab using a
time step of dt = 0.0001 s in the time span of 0 < ¢ < 1000 s. We choose the system parameters
as fo = wo/2m = 100 Hz, k = 8 s7! and p = 2 s~! following the experimental validation of
Bonciolini et al. [158]. For the analysis, we use data for last 500 s. In the absence of noise, as

the control parameter, v, is varied from v = —4 to v = 4, the oscillator undergoes transition
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to instability via a subcritical Hopf bifurcation as shown in Fig. 3.2(c), with the Hopf and
saddle-node points observed at vy = 0 and vgy = —2 respectively. The analysis for estimating
various EWIs to detect the approaching instability is carried out in the subthreshold region

where the control parameter varies from —3.2 < v < —2.2.

4.2.2 Noise models

We first model x(¢) and £(¢) in Eqn (4.2) as the white Gaussian noise of intensity I', as discussed
in section 3.2.2. To investigate the effect of noise color, we then model x(t) and £(t) based on
the following spectral features [4]: (i) the power spectrum for flow (velocity coupled) noise
remains constant (or flat) up to a cutoff frequency and then decays following the power law
(P < f7") — OU noise and (ii) the power spectrum of additive (combustion) noise increases at
low frequencies up to a cutoff frequency following P o< f?, attains a maximum and then decays
following P oc f~". Here, r represents the decay rate of power spectrum and is proportional to
the noise color (or correlation time), P is the power spectral density and f is the frequency. The
corresponding mathematical expressions for x(t) and £(¢) in the frequency domain are given as
611, i
X)) = VD

X 4.3
€(s) (1 + 7ms) (43)
whose power spectrum can be given as,
r Db
Syx(w) = |Hm|2866 = = (4.4)

27 1+ w272,
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Figure 4.2: Power spectrum for colored (a) multiplicative noise and (b) additive noise. The
black curves correspond to white Gaussian noise in each case. The colored noises are generated
such that the powers provided by x(t), {(t) and €(¢) within Aw/wy = 0.7 are equal (area under
the curve on a linear scale denoted by oy, and o}, respectively). 7, and 7, are normalized by
the time period of acoustic oscillations at Hopf point (Tp = 27/wp). The inset plots show the
same curves on log scale.
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e(s) (14 748)2
whose power spectrum can be given as,
I' Dyw?r?
See(w) = ’Ha‘zsee =_———2_a 5 (4.6)
27 (1 4 w?72)
which features fyeqr at,
1
= 4.7
fpeak 27TTa ( )

where, s = iw is the Laplace variable, €(s) is the white noise, 7, and 7, are the respective noise
correlation times, D,,, and D, are the respective noise intensities.
Here as well, we generate the two types of colored noises in such a way that the powers provided

by x(t), £(t) and €(t) in a band, Aw = wy—w1, around the system’s eigenfrequency are equal [61],

i.e.,
w2 w2
Obm = Syydw = Seedw (4.8)
w1 w1
and
w2 w2
Oba — / Sggdw = / Seedw (4.9)
w1 w1

For the present study, we choose Aw/wy = 0.7, as discussed in section 3.2.2. The corresponding
power spectrum for both the types of noises at varied noise correlation times are shown in
Fig. 4.2. The noise correlation times are normalized by the time period of acoustic oscillations
at Hopf point (Ty = 27 /wy).

4.2.3 Methodology

In this chapter, we investigate the EWIs based on spectral properties (coherence factor),
statistical measures (variance), multi-fractality (Hurst exponent) and time series complexity
measures (permutation entropy). The detailed methodology along with the specifications of
parameters for estimation of these EWIs are discussed in section 3.2.4. A brief summary of the
formulations to estimate various EWIs along with their monotonic trend is illustrated in Fig. 4.3.

Figure 4.4 shows the variation of 8 with noise intensity (o3) and control parameter (v) when

EWI class EWI Formulation Trend
1 N
Statistical measures Variance V= ﬁz (x; — %)? Increases
i—1
Spectral measures Coherence factor B = Hp X (fp/Af) Increases
Fractal measures Hurst exponent Fq~w”‘1 Decreases
Entropy measures Permutation entropy PE = — Z p(m) log, p(m) Decreases
s

Figure 4.3: A brief summary of methodology to estimate various early warning indicators in the
subthreshold region along with their monotonic trend.
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Figure 4.4: Coherence resonance: variation of coherence factor () as a function of white noise
intensity within Aw/wy = 0.7 and control parameter v for the system when excited by (a)
only multiplicative noise and (b) only additive noise. The results are presented at three noise
intensities (low, intermediate and high) marked by dashed lines for respective cases.

the nonlinear oscillator is excited by only white multiplicative noise (plot (a)) and only white
additive noise (plot (b)). We can observe the hallmark of coherence resonance in the two cases:
(i) for each v, B attains a peak value at an intermediate noise level (or optimum noise intensity).
This optimum noise intensity shifts to lower values as the control parameter is increased towards
the saddle-node point (vgy = —2). (ii) S increases as the system approaches the saddle-node
point at most noise intensities, except for very low or very high noise levels where the variation
in S is too small to distinguish a trend. This consistent increase in 5 as the system approaches
the instability serve as an EWL.

In case of multiplicative noise driven oscillator (Fig. 4.4(a)), we observe that as v is decreased
from v = —2.2 to v = —3, there appear two distinct peaks for . This indicates that
multiplicative noise changes qualitative characteristics in a system such that a transition from
one peak to two peaks in coherence resonance is induced. This phenomenon is also observed by
Luo and Zhu [189] for bistable systems. No such qualitative characteristics are observed /reported
for additive noise driven systems.

Figure 4.4 also shows that noise intensity plays an important role in affecting the system
dynamics in the subthreshold region. Therefore, in addition to noise color variations, we also

investigate the effects of noise intensity on the trends of various EWIs. In section 4.3, we will
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present the results at three noise intensities (low, intermediate and high) marked in Fig. 4.4 for

respective cases.

4.3 Effect of background noise characteristics on EWIs

In this section, we will discuss the effects of stochastic features (noise correlation time and
intensity) of background noise on the various EWIs estimated in the subthreshold region. The
results are presented as a 2D contour map in the parameter space between noise color (7)
and control parameter (v) at low (column 1), intermediate (column 2) and high (column 3)
noise intensities. The saddle-node point occurs at vgy = —2. The dashed lines in the contour
plots separate it into categories of low, moderate, and high noise correlation times. The arrows
roughly indicate whether the variation in the EWTI is greater in the direction of control parameter

(horizontal) or in the direction of noise correlation time (vertical).

4.3.1 Effect of multiplicative colored noise

Figure 4.5 shows the variation of coherence factor (3), variance (V'), Hurst exponent (H) and
permutation entropy (PE’) as a function of noise color (7,,/Tp), noise intensity (o, ) and control
parameter (v) when the system is excited by only multiplicative noise (i.e. £(¢) = 0 and x(t) # 0
in Eqn. (4.2)). We observe from Fig. 4.5(a)-(c) that for each v, coherence factor decreases with
increase in noise color at oy, (1) and o4,,(2). At high noise levels (03,,(3)), 5 exhibits an
oscillatory behaviour (first increases, attains a peak value and then decreases—a bell-shaped
curve behaviour) with noise color up to 7,,/Tp = 0.05, after which it consistently decreases with
increase in 7,,. When noise color and intensity are considered fixed, 3 increases as the system
approaches the saddle-node point, as illustrated in Fig. 4.5(d). The amount of increase in j,
however, depends on the noise color and intensity even if they do not vary. We observe that the
changes in [ are more sensitive to changes in noise color rather than the control parameter, as
indicated by the arrows in the contour plots, except at oy, (1) for 7,,,/To < 0.05. This indicates
that even a slight change in noise color with variations (or fluctuations) in operating condition,
will cause a significant change in the values of coherence factor and hence, the corresponding
trend in S can deviate from monotonous behaviour.

Similarly, variance (Fig. 4.5(e)-(g)) also decreases with increase in noise color at all v and opy,.
Whereas for a fixed 7,,, and v, variance increases with increase in noise intensity. If noise color
and intensity are fixed, variance also increases as the system approaches the saddle-node point
(Fig. 4.5(h)), however, the changes in V' are more sensitive to changes in noise color and intensity
than the control parameter, as indicated by the arrows.

We observe that the Hurst exponent (Fig. 4.5(i)-(k)), on the other hand, increases with increase
in both noise color and intensity at each v. While, it remains relatively constant as the system
approaches the saddle-node point at all 7,, and oy, as illustrated in Fig. 4.5(1). Further,
changes in H are also predominantly influenced by noise properties than the control parameter.
Permutation entropy (Fig. 4.5(m)-(0)) decreases with increase in noise color, while it exhibits

an oscillatory behaviour with noise intensity at all v. Similar to the Hurst exponent, PE’ also
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Figure 4.5: Multiplicative noise driven system: variation of (a)-(d) coherence factor (53), (e)-(h)
variance (V'), (i)-(1) Hurst exponent (H) and (m)-(p) permutation entropy (PE’) as a function
of noise color (7,,) and noise intensity (o4,,). The dashed lines in the contour plots separate it
into categories of low, moderate, and high noise correlation times. The arrows roughly indicate
whether the variation in the EWT is greater in the direction of control parameter (horizontal)
or in the direction of noise correlation time (vertical). The line plots in column 4 illustrates the
general trend in each EWT as a function of control parameter at oy, (3).

remains constant as the system approaches the saddle-node point at all 7,,, and oy, as illustrated
in Fig. 4.5(p) and changes in PE’ are governed only by noise color.

Therefore, Fig. 4.5 indicates that if noise properties change simultaneously with the control
parameter, trends in coherence factor and variance can become non-monotonous, specifically at
moderate to high noise levels, if the background noise has major contributions from velocity
coupling sources. Whereas, as the Hurst exponent and permutation entropy do not exhibit any
trend with the control parameter these parameters can not be employed as EWIs.

It should be noted that at low noise levels (op,,(1)), multiplicative noise affects the system’s

response such that the noise-induced fluctuations in the system becomes nearly zero for all
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Figure 4.6: Additive noise driven system: variation of (a)-(d) coherence factor (5), (e)-(h)
variance (V'), (i)-(1) Hurst exponent (H) and (m)-(p) permutation entropy (PE’) as a function
of noise color (7,) and noise intensity (op,). The dashed lines in the contour plots separate it
into categories of low, moderate, and high noise correlation times. The arrows roughly indicate
whether the variation in the EWT is greater in the direction of control parameter (horizontal)
or in the direction of noise correlation time (vertical). The line plots in column 4 illustrates the
general trend in each EWT as a function of control parameter at oy, (3).

Tm/To > 0.1. Hence, EWIs can not be estimated for small noise levels at large correlation times.

4.3.2 Effect of additive colored noise

Figure 4.6 shows the variation of coherence factor (5), variance (V'), Hurst exponent (H) and
permutation entropy (PE’) as a function of noise color (7,/Tp), noise intensity (op,) and control
parameter (v) when the oscillator is excited by only additive noise (i.e. £(t) # 0 and x(¢) =0 in
Eqn. (4.2)). An excitation by additive noise does not change the qualitative characteristics of
the system, hence, we can investigate wide ranges of noise color for this case. We find that for

a fixed v and o}, coherence factor (Fig. 4.6(a)-(c)) exhibits an oscillatory behaviour with noise
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color up to 7, /Ty = 0.05. For 7, /Ty > 0.05, 5 remains relatively constant with noise color at low
(Fig. 4.6(a)) and moderate (Fig. 4.6(b)) noise intensities, while it consistently decreases with
increase in noise color at oy, (3) (Fig. 4.6(c)). If noise color and intensity are fixed (Fig. 4.6(d)),
coherence factor increases as the system approaches the saddle-node point. This trend holds for
the entire range of investigated noise color and intensity. Majorly, the changes in § are more
sensitive to changes in v than 74, making it a reliable EWI except at low noise correlation times
(1a/To < 0.05) in the vicinity of saddle-node point where changes in 3 are more influenced by
T, than v (as indicated by arrows).

We observe that variance (Fig. 4.6((e)-(g)) also exhibits an oscillatory behaviour with noise
color up to 7,/Tp < 0.05 for all v and o}, after which it becomes constant. Variance increases
with increase in noise intensity at all v and 7,. Further, when noise color and intensity are
fixed (Fig. 4.6(h)), variance increases as the system approaches the saddle-node point. For all
Ta/To > 0.05, the changes in V' are mostly influenced by the changes in control parameter than
the noise color, as illustrated by the arrows.

We observe that the Hurst exponent (Fig. 4.6(i)-(k)) increases with increase in noise color at all
v and op,. We also observe that noise intensity do not significantly affect the values of Hurst
exponent. When noise color and intensity are fixed (Fig. 4.6(1)), Hurst exponent decreases as the
system approaches the saddle-node point, however, the amount of decrease in H is dependent
on the noise intensity: H decreases faster at low noise levels (Fig. 4.6(i)) and relatively slower at
high noise levels (Fig. 4.6(k)). Further, in this case as well, changes in H are more sensitive to
changes in noise color than the control parameter at all o, (indicated by the vertical arrows).
We observe that for a fixed v and o4, permutation entropy (Fig. 4.6(m)-(o)) consistently
decreases with increase in noise color up to 7, /Ty = 0.3, after which it becomes constant (hence
the contour plots extend only up to 7,/7p = 0.5). Similar to H, permutation entropy does not
exhibit significant variations with noise intensity. We observe that as the system approaches
the saddle-node point (Fig. 4.6(p)), PE’ decreases for all 7,/Ty < 0.1. At high correlation
times (7,/Tp > 0.1), permutation entropy remains relatively constant with increase in v towards
the saddle-node point. In this case as well, we observe that changes in PE’ are influenced
significantly by noise color than the control parameter (indicated by the vertical arrows).
Therefore, Fig. 4.6 indicates that a monotonous increase in coherence factor and variance as the
system approaches the instability can be considered as effective EWIs in practical combustion
systems when the background noise has significant contributions from additive sources, except
when the noise color is very small, i.e. close to white noise approximation. Whereas, Hurst
exponent can act as an effective EWI in systems where the noise correlation time is very large,
i.e., 7,/Tp > 0.5. Permutation entropy, on the other hand, can be employed as an EWI only in the

systems featuring minimal correlation time i.e., where white noise approximation is acceptable.

4.3.3 Effect of multiplicative and additive colored noise

Figure 4.7 shows the variation of 3, V, H and PE’ as a function of noise color (7, and 7,) and
control parameter (v) at op,(3) and op,(3) when the system is excited by both multiplicative
and additive noises (i.e. £(t) # 0 and x(¢) # 0 in Eqn. (4.2)). In the figure, columns 1 — 3 show
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Figure 4.7: Multiplicative and additive noise driven system: variation of (a)-(c) coherence factor
(8), (d)-(f) variance (V), (g)-(i) Hurst exponent (H) and (j)-(1) permutation entropy (PE’) as
a function of noise color (7, and 7,) at op,(3) and op,(3).

the variation of EWIs with 7,,, while the individual curves inside each plot show the variation
of EWIs with 7,. We find that for a fixed v and o, the coherence factor (Fig. 4.7(a)-(c)) exhibits
an oscillatory behaviour with both 7, and 7,: [ first increases with increase in 7, reaches a
peak value at an optimum 7 and after which it decreases with a further increase in 7. This
optimum value of 7,,, and 7, at which peak § is observed, changes with change in the control
parameter. We observe that for each 7, 8 increases monotonously as the system approaches
the saddle-node point. We observe that changes in coherence factor are influenced equally by
changes in both 7,/Ty and v when 7,,/Ty = 0, whereas for 7,,/Ty > 0, changes in 3 are more
sensitive to the changes in control parameter than 7,/Ty. Therefore, when noise color changes
simultaneously with operating conditions, the trends in coherence factor can still be employed
as effective EWIs.

We observe the following trends for variance (Fig. 4.7(d)-(e)): (i) for fixed 7., and v, variance
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exhibits oscillatory behaviour 7,, (ii) for fixed 7, and v, variance decreases consistently
with increase in 7,,, and (iii) variance increases monotonously as the system approaches the
saddle-node point at all 7, and 7,,,. We can observe that the deviation in the values of V' with
changes in noise color is less compared to its deviation with changes in the control parameter,
therefore, in cases where noise color changes simultaneously with the operating conditions, the
trends in variance can serve as reliable EWIs.

We observe that the Hurst exponent (Fig. 4.7(g)-(i)) increases with increase in both 7, and 7,
at each v. Whereas, permutation entropy (Fig. 4.7(j)-(1)) decreases with increase in 7, up to
7a/To = 1, after which it becomes constant. While PE’ increases with increase in 7, at all 7, /Tp
and v. A slight decrease in the Hurst exponent, as the system approaches the saddle-node point,
can be observed when 7,/Ty > 0.5 at all 7,,,/Tp. On the other hand, the decrease in permutation
entropy, as v is increased towards vsy, is evident only when 7,/Ty < 0.1 at all 7,,/Tp. For
all other noise color values, these two indicators, do not show variations with changes in the
control parameter. We can observe that the changes in the Hurst exponent and permutation
entropy are predominantly influenced only by noise color. Therefore, in scenarios when noise
color changes with operating conditions, these EWIs would be less reliable in predicting the
impending instability.

Noise introduces both coherent and incoherent fluctuations, leading to a competition that results
in coherence resonance (CR). This phenomenon is characterized by changes in spectral peak
features, which become more pronounced as the system approaches the saddle-node point.
The coherence factor, by analyzing these spectral characteristics, effectively tracks the system’s
approach to instability. It measures the degree to which the system’s response is periodic and
coherent, providing a clear signal as the system nears the Hopf bifurcation. Similarly, variance
captures stochastic fluctuations by measuring deviations of data from their mean value. As
stochastic fluctuations vary with changes in the control parameter, variance becomes a reliable
predictor of impending limit cycle oscillations. This reliability stems from the fact that as the
system approaches a bifurcation point, the increased sensitivity to perturbations results in larger
deviations, which are well-captured by the variance. Other EWIs such as the Hurst exponent
and entropy/complexity measures have limitations in their implementation for systems with
dominant oscillations. The Hurst exponent, which measures the long-term memory of time series
data, can be less effective in detecting the approach of instability in oscillatory systems because
it is more sensitive to trends and long-term correlations rather than periodic changes. Similarly,
entropy /complexity measures, which quantify the unpredictability and structural complexity
of the time series, may not capture the regular periodic patterns associated with oscillatory
systems. These metrics are more suited for systems where changes are not primarily driven by
oscillatory dynamics.

Therefore, while coherence factor and variance provide robust and reliable early warning
indicators for systems exhibiting oscillatory behavior and approaching bifurcation points, the
Hurst exponent and entropy/complexity measures may have limitations in their implementation
due to their design and sensitivity characteristics. This distinction is crucial for accurately

predicting and managing thermoacoustic instability in practical applications, such as gas turbine
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combustors, where noise and oscillations play significant roles.

4.3.4 Reliability of EWIs: recommendations for use in practical combustion

systems

The background noise in a combustion system can exert various qualitative and quantitative
effects on a combustor’s dynamics. As the noise properties such as correlation time and intensity
often vary alongside changes in system operating conditions, trends in several EWIs can become
intricate and may exhibit non-monotonic trends, potentially resulting in inaccurate predictions
of impending thermoacoustic instability.

In this study, the addition of noise aims to model the inherent noise—originating from
fluctuations in fuel-air supply systems, variations in heat release due to unsteady combustion,
fluctuations in the flow field, and aerodynamic noise—present in various combustion systems. To
recommend the most reliable indicators for practical implementation, we perform the following

sensitivity analysis for each EWIL.

4.3.4.1 Sensitivity to variations in control parameter

For this investigation, we estimate the percentage change in each EWI as the control parameter

approaches the Hopf bifurcation. The percentage change (A) in each EWI is calculated as

follows: EWI _ EWI
- ref
= x 100 4.10
EWL,..s ( )
where, EWI,¢ is the value of EWTI at the far away point from the Hopf bifurcation for each noise
color, i.e., v = —3.2. This normalization ensures all curves in the plot begin at zero, highlighting
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Figure 4.8: Multiplicative and additive noise driven system: Reliability of the various EWIs
represented as the % change in each indicator (A) as the control parameter (v) is increased
towards the saddle-node point (vgy = —2) as a function of noise color (7,, and 7,) at opm,(3)
and 0p4(3). The top and bottom rows correspond to the cases when 7,, /Ty = 0 and 7,,,/Tp = 0.1
respectively.
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the maximum change in an EWI as the system approaches the saddle-node point.

Figure 4.8 show a comparative analysis of the various EWIs in terms of A as a function of
noise color (7, and 7,) at opy(3) and ope(3). We find that among the investigated EWTIs,
coherence factor (Fig. 4.8(a),(e)) and variance (Fig. 4.8(b),(f)) exhibit a consistent increasing
trend at all combinations of 7,, and 7, as the system approaches the saddle-node point, making
them the most reliable EWIs for practical implementation. The implementation of a decrease
in Hurst exponent (Fig. 4.8(c),(g)) and permutation entropy (Fig. 4.8(d),(h)) has limitations:
Hurst exponent can work effectively when 7, /Ty > 0.5, whereas permutation entropy can work
in cases when additive noise has minimal correlation time (7,/7y < 0.1), i.e. when white noise

approximation is acceptable. These trends are true for all 7, /Tj.

4.3.4.2 Sensitivity to variations in time series length

We examined how sensitive the estimated early warning indicators (EWIs) are to the length
of the time series. Figure 4.9 illustrates the variation of different EWIs as a function of time
series length and the control parameter (v) as a function of noise color (7, and 7,,) at ope(3)
and op,,(3). Our findings reveal that among the investigated EWIs, Hurst exponent (plots (c,g))
and permutation entropy (plots (d,h)) are most sensitive to the changes in time series length.
These metrics show considerable variation with changes in the time series length, which can
affect their reliability in real-time applications. Conversely, coherence factor (plots (a,e)) and
variance (plots (b,f)) exhibit relatively stable trends regardless of the time series length, making
them more dependable for accurate prediction.

In practical combustor configurations, the onset of instability can occur rapidly, often within
a few seconds. Given this time constraint, we recommend using 8 and V as they provide
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Figure 4.9: Multiplicative and additive noise driven system: Sensitivity of the various EWIs to
the length of the time series as the control parameter (v) is increased towards the saddle-node
point (vgy = —2) as a function of noise color (7, and 7,) at o4, (3) and 04,(3). The top and
bottom rows correspond to the cases when 7,, /Ty = 0 and 7,,, /Ty = 0.1 respectively.
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reliable predictions even with shorter time series lengths. Their estimation process is also
faster and less sensitive to variations in noise characteristics, making them suitable for real-time
monitoring. On the other hand, EWIs such as the Hurst exponent and entropy/complexity
measures require longer time series for accurate estimation and are more reliable at higher
noise correlation times. This limitation hinders their effectiveness in real-time scenarios where
quick decision-making is critical. Overall, while various EWIs offer different insights, our
study highlights the importance of selecting appropriate indicators like the coherence factor
and variance for real-time applications due to their robustness, quick estimation, and minimal
sensitivity to time series length and noise characteristics. This approach ensures timely and
accurate detection of thermoacoustic instability.

An important note here is that as per the nature of the EWIs, a unique correlation between
the absolute value of EWIs and the Hopf or saddle node points cannot be obtained. Thus, to
identify the stability boundary, a calibration is necessary — regardless of the chosen EWI. If
inconsistencies and errors in system input or system control are present, such issues will have to
be either addressed (removed) or incorporated in the calibration to ensure safe system operation
— the latter strategy will lead to a smaller system operating envelope. This might not always
be feasible. In such cases, the observation that reliable EWI measures (as identified in our
work) are changing with a prominent trend is an indication that the system is approaching a
bifurcation as sufficiently far away, changes in EWI will be minimal and without a monotonous
trend. The phrase ‘sufficiently far away’ will be system-dependent but as per previous reports
on noise-induced coherence, the efficacy of noise to cause noise-induced oscillations is expected

to decay rapidly with increasing separation from the stability boundary.



Chapter 5

Implementation of Early Warning Indicators (EWIs) in

Experiments

5.1 Overview

In this work, we extend the numerical investigations discussed in Chapters 2-4 and show
the practical implementation of the recommended EWIs on a laminar combustion system
operating on lean premixed natural gas-air mixtures (shown in Fig. 5.2). This lean premixed
combustion system undergoes transition to thermoacoustic instability via a subcritical Hopf
bifurcation. We choose noise intensity to be the varying parameter for this investigation as
intensity of noise (whether white or colored), has been reported to play crucial roles in changing
the stability margins of the system [76], causing noise-induced transitions to instability in
bistable region [3, 73] and affecting the estimation growth/decay rates of thermoacoustic
oscillations [161,190]. The primary objective of this study is to test the reliability of various
EWIs discussed in chapters 2-4, in a practical combustion system. This investigation provides
practical insights for choosing appropriate EWIs in systems where noise characteristics can
change with changes in operating conditions, specifically in turbulent combustors, to accurately

detect the system’s proximity to the impending thermoacoustic oscillations.

This chapter is further divided into two sections. Section 5.2 describes experimental setup and

brief methodology to estimate various EWIs. Section 5.3 shows the effects of noise intensity
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Figure 5.1: Visual summary of the contents for Chapter 5. TAI stands for thermoacoustic
instability.
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on the estimated EWIs and discuss their reliability when implemented in real systems. A brief

overview of the summary for the contents of the chapter is shown in Fig. 5.1.

5.2 Experimental setup and methodology

5.2.1 Experimental setup

In this work, experiments are conducted using a prototypical combustor, schematically shown
in Fig. 5.2, which operates on premixed natural gas-air mixtures under lean conditions. The
combustor (inner diameter = 105 mm) consists of an upstream plenum (length = 570 mm), a
combustion source (laminar quasi flat 50 mm diameter conical flame stabilized on a perforated
copper plate), a quartz duct (length = 300 mm) for optical access of flame and a downstream
exhaust (length = 315 mm). The plenum is mounted with two acoustic actuators and an
inlet for premixed fuel-air mixtures, while the exhaust is mounted with thermocouples and
water-cooled microphones for temperature and acoustic pressure measurements, respectively. A
silencing device consisting of three alternating layers of aluminium discs and fire proof foam
which reduces the flow noise due to the entering fuel-air mixture to pj = 0.18 Pa(rms). The

upstream and downstream ducts are separated by a perforated brass plate which acts as a flame

Perforated plate
flame holder

— Plenum

Acoustic
actuators

i

Inlet

Figure 5.2: Flat flame combustion system operating on lean premixed natural gas-air mixtures.
The setup consists of a plenum mounted with two acoustic actuators and upstream pressure
microphones (1 to 3), a quartz duct for acquiring ¢’ with the help of photo-multiplier tube
(PMT) and an exhaust duct mounted with downstream pressure microphones (4 to 6). Analysis
based on p’ from microphone 4 and ¢’ from PMT are presented in subsequent sections.
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Figure 5.3: Noise-free system (no acoustic excitation through loudspeakers): Transition to (a)
self-excited limit cycle oscillations at ¢ = 0.728 and (b) to stable state at ¢ = 0.715.

holder. It has 91 holes with a diameter of d;, = 2 mm which are arranged in a hexagonal shape
with a circumscribing circle with a diameter of d. = 50 mm. The flow passes the holes with a
mean velocity of u = 1.13 m/s, resulting in a Reynolds number of Re = 147 and thus providing
a laminar flow.

In the experiments, the airflow rate is kept constant at 0.36 g/s and the equivalence ratio, ¢,
is chosen as the control parameter, whose values are varied in the range 0.688 to 0.735 in steps
of 0.007 (standard deviation in ¢, calculated from air/fuel measurements is 0.002). Given the
dimensions of the upstream plenum, and low values of the air /fuel flow rates, fluctuations in ¢ are
expected to be lower than the measured error in ¢, upstream of the flame. The corresponding fuel
flow rates are in the range 0.0144 g/s to 0.0154 g/s. The air/fuel mass flow rates are measured
using coriolis flow meters, regulated by PID valves: an Endress + Hauser PROMASS AS80
(nominal uncertainty +0.5%) is used for air and a Bronkhorst mini CORI-FLOW (nominal
uncertainty +0.2%) integrates both flow meter and valve for fuel.

The setup consists of a total of 6 microphones mounted in normal direction with respect to
the setup, three (mic. 1 — 3) are located in the upstream plenum and three (mic. 4 — 6)
are located in downstream exhaust duct. All the microphones are calibrated to account for
phase and magnitude. For microphones 1 — 3, the calibration is conducted on a separate tube
of wall thickness equal to that of the plenum, while for microphones 4 — 6, the calibration is
conducted at the exhaust duct itself by flush mounting a reference microphone to its inner
surface opposite to each microphone. We present here the analysis based on acoustic pressure
oscillations (p’) acquired in the exhaust duct through microphone 4 at a sampling rate of 8192
Hz as this microphone featured the smallest deviation from the reference microphone and is
located closest to the flame. The heat release rate fluctuations (¢’) are also acquired from CH
chemiluminescence using a photo-multiplier tube (PMT) at the flame through the quartz glass
duct. Each measurement is recorded for 32 s. Using a K-type thermocouple (measurement error
+2.2°C), the temperature at the interface between the quartz duct and the perforated plate
flame holder is monitored. Experiments are performed after the measured temperature reaches
a steady state.

We first perform the bifurcation experiments in the noise-free system to track the system’s
transition to thermoacoustic instability and identify the stability margins. In the absence of
external acoustic excitation, as the control parameter, ¢ is varied in forward and backward

direction, the system transitions between steady state and limit cycle oscillations (LCO). An
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Figure 5.4: Noise-free system (no acoustic excitation through loudspeakers): Exemplary time
series of (a) acoustic pressure oscillations (p’) and (b) heat release rate fluctuations (¢') at
¢ = 0.728 (limit cycle oscillations) and ¢ = 0.708 (stable system).
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Figure 5.5: Noise-free system (no acoustic excitation through loudspeakers): Exemplary
frequency spectrum of (a) acoustic pressure oscillations (p') and (b) heat release rate fluctuations
(¢") at ¢ = 0.728 (limit cycle oscillations) and ¢ = 0.708 (stable system).

exemplary illustration of transition between two states (steady and LCO), time series and
corresponding power spectra for both p’ and ¢’ are shown in Fig. 5.3-5.5 respectively. The
maximum instantaneous pressure amplitude of instability observed is 52.10 Pa. As the control
parameter, ¢ is varied, the system undergoes a transition to self-induced limit cycle oscillations
via a subcritical Hopf bifurcation with Hopf and saddle-node points observed at ¢z = 0.728 and
¢sn = 0.715 respectively, shown in Fig. 5.6. The solid and dashed curves represent the forward
and reverse directions of the bifurcation analysis, respectively. The region before the saddle-node
point is termed as the subthreshold region, where the only attractor available is the stable focus,
and the region beyond the Hopf point is the linearly unstable region (thermoacoustic instability).
A bistable region exists between 0.715 < ¢ < 0.728. In this region, small perturbations can
trigger large amplitude limit cycle oscillations [73,116]. Therefore, the EWIs are of practical
relevance only till the saddle-node point. Hence, we focus our investigation on the subthreshold
region where the system is in a stable state. Multiple realizations of the experiments are
performed to ensure the accuracy of the saddle-node point (see Fig. E.1 in Appendix E). The
frequency spectrum of oscillations in p’ and ¢’ during limit cycle peaks at 191 Hz.

The present investigation aims to study the effect of noise intensity on the early warning
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Figure 5.6: Subcritical Hopf bifurcation in the noise-free system. The solid line connects
experimental points obtained by increasing ¢, while the dashed line indicates translation in the
reverse direction. The Hopf and saddle-node points are observed at ¢z = 0.728 and ¢gny = 0.715
respectively. A bistable region exists between 0.715 < ¢ < 0.728. LCO represents the limit cycle
oscillations. The analysis is performed in the subthreshold region with ¢ varying in the range
0.695 to 0.714.

indicators of thermoacoustic instability. For this purpose, external excitation is added to the
system through the two acoustic actuators, driven by white Gaussian noise voltage signals
generated at 16384 Hz. The noise intensity, o, is systematically varied in the range 5.7 Pa to
17 Pa in steps of 1.4 Pa. o is the root mean square value of the acoustic noise level measured
at the microphone location. The power spectrum of the input white noise signals at varied
intensities is shown in Fig. 5.7. ¢ is interchangeably termed either the noise level or the noise
intensity, as appropriate, in the subsequent sections. All the measurements are taken 30 s after
the noise intensity is increased. The experiments are repeated seven times for each equivalence
ratio. As the noise intensity increases, stochastic fluctuations in the system also increase.

The corresponding system’s response to varied noise levels in the subthreshold region in

amplitude and frequency domains is shown in Fig. 5.8 and Fig. 5.9 respectively. Figure 5.8 shows

o (Pa) 6 f (Hz)

Figure 5.7: Power spectrum of white noise input given to the speaker at varied intensities on

y-axis.



Chapter 5. Implementation of Early Warning Indicators (EWIs) in Experiments 93

(@) (b)
30 !

142Pa —a— & 2 142 pa _a
99Pa —e— ¢ 9.9 Pa —e—
25 1 5.7Pa —E— A !
o

noise —o—/ ] | N§h701i:;% . |
' 16 [ / 1

- . -

10 - «—° ] 127 A// 1
51 —a | ot |

.
o

Pressure amplitude (Pa)
&
>
Flame response (arb.)
=

-

O L e

0.69 0.7 0.71 072 073 0.69 0.7 0.71 072 073

Equivalence ratio, ¢ Equivalence ratio, ¢

Figure 5.8: Noisy system: (a) Pressure (p).,,,) and (b) flame (¢..,,,) response to noisy excitation in
subthreshold region. The noise levels represent the measurements without the flame (reproduced
from Kabiraj et al. [6]).

the rms values of acoustic pressure (p') and heat release rate (¢’) fluctuations as a function of
¢ in the stable region at varied noise intensities. Each data value represents the average of 7
measurements at same operating condition. The vertical line in the plots separate the stable
and bistable regions. We can observe from the plots that the response of both p’ and ¢’ increases
with increase in both noise intensity and equivalence ratio. However, at o = 5.7 Pa, p’ does not
depend on ¢ until saddle-node point is reached. Figure 5.9 shows the waterfall plots for power
spectrum of system’s response as a function of noise intensity (on y-axis) at two equivalence
ratios, ¢ = 0.708 (left plot) and ¢ = 0.714 (right plot) respectively. As noise intensity increases,
the spectral peak, observed at 191 + 3 Hz, initially rises with increasing noise intensity, reaches
a maximum at intermediate noise levels, and then decreases. These fluctuations, caused by the
introduction of noise in the stable system, are used to estimate various Early Warning Indicators
(EWIs) for predictive purposes. The width of the spectral peak also changes with noise intensity.
The variation in the peak height and width with control parameter and noise variation is best

captured in the coherent factor (/3) as reported in Kabiraj et al. [6].

¢ =0.708 ¢ =0.714

PSD (dB)

Figure 5.9: Noisy system: Frequency spectra of p’ for the system excited by noise at ¢ = 0.708
(left) and ¢ = 0.714 (right). The different colors in the plots (ranging from blue to yellow)
correspond to increasing noise intensities marked on y-axis.
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Figure 5.10: Top: mean image of the flame. The black solid line represents the maximum
intensity along the vertical direction, while the dashed white line marks the location of the
perforated plate. The vertical scale is in mm (true aspect ratio). Bottom: Phase-averaged
images of the center part of the flame subjected to harmonic forcing are presented. The black
dotted lines denote the vertical location of the maximum intensity integrated along the horizontal
direction (adapted from Moeck et al. [7]).

Along with the time series signals and corresponding power spectrum, we also show the
kinematics of a flat flame during thermoacoustic instability in the subthreshold regime in
Fig. 5.10. Acoustic noise is introduced into the system. The system itself comprises of
the combustor acoustics and the flame. The flame responds to acoustic fluctuations and
acoustic fluctuations are generated as per flame response. The flame response to noise will
be kinematically similar. In Fig. 5.10, the top image correspond to the mean image of the
side-view of the flame and bottom images correspond to its response to acoustic excitation. The
horizontal extent corresponds to approximately half of the burner plate. Based on the maximum
intensity along every image column, the flame can be considered flat. The intensity has a larger
vertical extent in the middle due to the flame’s circular shape. The two bottom frames show
phase-averaged intensity distributions for forcing at the fundamental frequency and a velocity
fluctuation amplitude of 0.5 m/s. These phase-averaged images reveal that the flame reaches its
maximum intensity while moving upstream to the burner. At the minimum stand-off distance,

the intensity drops and remains low while moving back downstream.

5.2.2 Methodology

In this chapter, we investigate the practical implementation of the various EWIs
based on spectral properties (coherence factor), autocorrelation (decay rate), system
identification (growth/decay rates of p’), statistical measures (variance, skewness and kurtosis),
multi-fractality (Hurst exponent) and time series complexity measures (permutation entropy
and Jensen-Shannon complexity). The detailed methodology along with the specifications of
parameters for estimation of these EWIs are discussed in section 3.2.4. A brief summary of
the formulations to estimate various EWIs along with their monotonic trend is illustrated in
Fig. 5.11.
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EWI class EWI Formulation Trend
Coherence factor B = Hp X (fp/Af)
Spectral measures B ~ Increases
Decay rate of ACF(a) AC = (E[(xy — X)(xn —0)])/V
System Identification Decay rates of p’ (v) Fokker Planck equation Increases
measures
1 N
Variance V= —Z (x; — )2
N
i—1
Statistical measures Skewness S = (Z{Vﬂ x; — f)3/N)/V3/2 Increases
Kurtosis k=(Z~, (x; —x)*/N)/V?
Multi-fractal measures Hurst exponent Fq~wH‘l Decreases
Permutation entropy PE = — Z p(m) log, p(m) Decreases
Entropy measures z
Jensen-Shannon
complexity Cp = Qj[P,P.]PE[P] Increases

Figure 5.11: A brief summary of methodology to estimate various early warning indicators in
the subthreshold region along with their monotonic trend (marked in Fig. 5.6).

5.3 Effect of noise characteristics on EWls

This section discusses the effects of noise intensity on the various early warning indicators
estimated in the subthreshold region (marked in Fig. 5.6). The saddle-node point occur at
¢psn = 0.715 respectively. The results corresponding to each EWI are presented as 2D contour
maps in the parameter space (o0 — ¢). Each plot is subdivided into categories of low, moderate,
and high noise levels by dashed lines. To illustrate whether the variation in an EWI is more
sensitive to changes in noise intensity or control parameter, vertical and horizontal arrows are
provided in each plot respectively. In each plot, a 4x4 grid (16 points in o — ¢) is chosen, and

the arrows are placed at those 16 points.

5.3.1 Effects of noise intensity on coherence factor and autocorrelation

Figure 5.12 shows the variation of coherence factor () and decay rates («) of ACF as a function
of noise intensity (o) and control parameter (¢), estimated from p’. We can observe the
occurrence of coherence resonance [6,47] from Fig. 5.12(a): (i) for each ¢, 8 attains a peak
value at intermediate noise levels, and (ii) peak coherence is induced at a lower noise level as
¢ approaches the Hopf bifurcation. We observe that for a fixed noise level, § increases as the
system approaches the instability. This monotonous increasing trend of 3 is observed at most
noise levels, except for 15.58 Pa < ¢ < 11.33 Pa, where peak coherence is induced (as indicated
by black (dashed) and red (solid) arrows). We can also observe that far away from the Hopf
bifurcation (¢ < 0.701), the variation in /3 is too small to distinguish a trend. This is because,
at low ¢, the peak coherence is induced at significantly large noise intensities.

Noise induces both coherent and incoherent fluctuations in the system, a competition between

these fluctuations result in the occurrence of coherence resonance (CR). This is manifested by
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Figure 5.12: 2D contour map of (a) coherence factor () and (b) decay rates of ACF (a) as the
control parameter (¢) and noise intensity (o) are varied. The arrows roughly indicate whether
the variation in 5 and « is greater in the direction of control parameter (horizontal black dashed
arrows) or in the direction of noise intensity (vertical red solid arrows). The red dashed lines
separate the plots into categories of low, moderate, and high noise levels.

changes in spectral peak characteristics, which become more distinct as ¢ increases towards the
saddle-node point. As coherence factor is estimated using the spectral features, it effectively
tracks the approaching instability. Thus, in a combustion system, the coherence factor will
always increase as the system is brought closer to bifurcation. In case noise intensity is varying
simultaneously with changes in control parameter, the presence of an optimum noise intensity
due to coherence resonance can cause deviation from monotonous trends in the coherence factor
at intermediate noise levels (indicated by red arrows).

Similar to the coherence factor, the decay rates («) of ACF also exhibit oscillatory behaviour
with noise intensity (Fig. 5.12(b)): « increases at low noise levels, attains a peak value at
intermediate level and after that decreases with a further increase in the noise level; however,
the oscillatory response is not as prominent as that of 5. We further observe that « increases
as the system approaches the instability at most noise levels except for o < 7.08 Pa, where the
variation in the values of o are more sensitive to changes in o than ¢ (as shown by the red (solid)
arrows). Also, for 7.08 Pa < o < 11.33 Pa, far away from the Hopf bifurcation (¢ < 0.701),
changes in o depend on noise level than ¢. This implies that when noise intensity changes with

the control parameter, trends in o can become non-monotonous.

0.695 0.701 0.708 7 0.714

¢

Figure 5.13: 2D contour map of decay rates of acoustic oscillations (), as the control parameter
(¢) and noise intensity (o) are varied. The arrows roughly indicate whether the variation in
v is greater in the direction of control parameter (horizontal black dashed arrows) or in the
direction of noise intensity (vertical red solid arrows). The red dashed lines separate the plots
into categories of low, moderate, and high noise levels.
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5.3.2 Effects of noise intensity on decay rates of acoustic oscillations

Figure 5.13 shows the variation of decay rates of p’ with noise intensity (o) and control parameter
(¢). We observe that the estimation of decay rates is influenced by noise intensity, causing a
deviation from the true values (v at o = 0). Specifically, for each ¢, an increase in o leads to an
increase in v. This deviation in the estimation of » with varying ¢ has been previously reported
by Vishnoi et al. [161,190] across all three regions of the Hopf bifurcation. We further find that
v increases as the system approaches the saddle-node point at most noise levels (depicted by
black (dashed) arrows). However, when noise levels are low (o < 7.08 Pa) and cover the range
of 8.5 Pa to 11.33 Pa, the deviations in v are more contingent on changes in o than ¢ (illustrated
by red (solid) arrows). Thus, an increase in v can be employed as an EWI for systems with

moderate or high noise levels.

5.3.3 Effects of noise intensity on statistical measures

Figure 5.14 shows the variation of variance, skewness and kurtosis with noise intensity (o) and
control parameter (¢), estimated from p’. We observe that for each ¢, variance and skewness
increase with an increase in noise intensity, whereas kurtosis does not exhibit any specific trend
with noise intensity. We can observe from Fig. 5.14(a) that variance increases as the system
approaches the instability; however, the amount of increase in variance depends on noise level
and distance from Hopf bifurcation (shown by black (dashed) and red (solid) arrows): (i) for
low noise levels, i.e., o0 < 7.08 Pa, variance shows no significant changes with ¢; (ii) for noise
levels ranging between 7.08 Pa < 0 < 10 Pa and 11.33 Pa < ¢ < 12.74 Pa, changes in variance
are more sensitive to changes in o than ¢, implying non-monotonous trends in cases where
noise intensity will change with control parameter. Also, far away from Hopf bifurcation, i.e.,
¢ < 0.701, changes in V mostly depend on noise intensities. Thus, an increase in variance can
be employed as an effective early warning indicator for combustion systems featuring high noise
levels (in our case for o > 12.74 Pa).

Figure 5.14(b) shows that skewness increases as the system approaches the instability at most

noise levels except for o < 7.08 Pa (shown by black (dashed) and red (solid) arrows). At low
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Figure 5.14: 2D contour map of (a) variance (V'), (b) skewness (S) and (c) kurtosis (k) as the
control parameter (¢) and noise intensity (o) are varied. The arrows roughly indicate whether
the variation in V', S and k is greater in the direction of control parameter (horizontal black
dashed arrows) or in the direction of noise intensity (vertical red solid arrows). The red dashed
lines separate the plots into categories of low, moderate, and high noise levels.
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noise levels, changes in skewness are dominated by changes in o, leading to non-monotonous
trends in a real system. Figure 5.14(c) shows that for noise levels up to o = 8.5 Pa, kurtosis
increases close to the Hopf bifurcation. In contrast, for 8.5 Pa < ¢ < 11.33 Pa, kurtosis gradually
increases as ¢ is increased up to ¢ = 0.708 and then decreases near the saddle-node point. For
all o0 > 11.33 Pa, kurtosis decreases as the system approaches the instability. In all cases,
kurtosis exhibits no clear trend with either noise intensity or control parameter, which implies

its inaccuracy as an early warning measure.

5.3.4 Effects of noise intensity on multi-fractal and time series complexity

measures

Figure 5.15 shows the variation of Hurst exponent, permutation entropy and Jensen-Shannon
complexity with noise intensity (o) and ¢ estimated from p’. We find from Fig. 5.15(a) that for a
fixed ¢, the Hurst exponent does not exhibit a specific trend with an increase in noise intensity.
At the same time, it decreases monotonously as ¢ is increased towards instability at most noise
levels except for o < 11.33 Pa (as indicated by black (dashed) arrows). For noise levels, o < 7.08
Pa, and 8.5 Pa < 0 < 11.33 Pa, H is more sensitive to changes in o than ¢ (indicated by red
(solid) arrows). Therefore, a decrease in H as an early warning measure is suitable for systems
featuring high noise levels. Waxenegger-Wilfing et al. [98], in their experiments on a rocket
thrust chamber, have also reported that increased fluctuations in the Hurst exponent lead to
false alarms and inaccurate predictions.

Figure 5.15(b) and (c) show that permutation entropy increases while Jensen-Shannon
complexity decreases with an increase in noise intensity for each ¢ up to ¢ = 0.708. Near
the saddle-node point, PE and C'P show non-monotonic response with o. We observe that
PFE decreases while C'P increases as the system approaches the instability for high noise levels,
i.e., for all ¢ > 11.33 Pa (indicated by black (dashed) arrows). Similar to Hurst exponent, at
o < 7.08 Pa and 8.5 Pa < ¢ < 11.33 Pa, PE and CP are also more sensitive to changes in
o than ¢ (red (solid) arrows), making them unsuitable early warning measures at such noise

levels.
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Figure 5.15: 2D contour map of (a) Hurst exponent (H), (b) permutation entropy (PE) and
(c) Jensen-Shannon complexity (C'P) as the control parameter (¢) and noise intensity (o) are
varied. The arrows roughly indicate whether the variation in H, PE and CP is greater in
the direction of control parameter (horizontal black dashed arrows) or in the direction of noise
intensity (vertical red solid arrows). The red dashed lines separate the plots into categories of
low, moderate, and high noise levels.



Chapter 5. Implementation of Early Warning Indicators (EWIs) in Experiments 99

5.3.5 Reliability of early warning indicators

Figures 5.12-5.15 illustrated the characteristics and limitations of various EWIs at varied noise
levels. We now discuss the reliability of employing these EWIs in practical combustors to
predict thermoacoustic instability accurately. Figure 5.16 shows a comparative analysis (or
cross-analysis) of the various EWIs in normalized form as the system approaches the instability.
The normalization in each EWI is calculated as,

_ |EWI — EWlas 7pa;¢=0.695

X = (5.1)

EWlas.7pa;s=0.695

The error-bars in each plot in Fig. 5.16 represent the standard deviation observed in estimated
EWIs over multiple experiments. However, please note that the methods considered have
never been used previously with error bounds/uncertainty due to the nature and purpose of
EWTIs. Therefore, we emphasize on the uncertainty associated with the experiments. We find
that among all the EWIs investigated, the coherence factor (Fig. 5.16(a)) shows the maximum
variation (~ order of 10%) in its value as the system approaches the Hopf bifurcation at all noise
levels, making it the most reliable early warning indicator for practical combustors. Variance
(Fig. 5.16(d)) and skewness (Fig. 5.16(e)) shows a variation of the order of ~ 30 and ~ 10
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Figure 5.16: Reliability of various EWIs, estimated using p’ data, represented in normalized
form as the control parameter (¢) is increased towards the Hopf bifurcation at varied noise
levels (o). The error-bars represent the standard deviated observed in estimated EWIs over
multiple experiments.
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respectively, which makes them robust indicators as well. The decay rates of ACF (Fig. 5.16(b)),
decay rates of acoustic oscillations (Fig. 5.16(c)) and Hurst exponent (Fig. 5.16(g)) falls next
on the reliability index as the maximum variation in their values are between 0.3 and 0.8. The
maximum changes in entropy/complexity measures (Fig. 5.16(h)-(i)) are below 0.2, indicating
lower reliability compared to other EWIs. It is important to note that indicators such as «, V,
S and H prove effective only above a certain threshold of noise level in the system, for example,
when o > 8.50 Pa in our experiments. Finally, kurtosis ((Fig. 5.16(f))) can not be used as an
early warning measure under any condition.

Implementing any early warning measure in practical combustion systems requires defining a
minimum threshold value at a suitable distance from the saddle-node point to monitor the
system’s proximity to instability. This threshold will be based on how close to the bifurcation
the system may be allowed to get. The definition of ’how close’ and, therefore, the corresponding
threshold is system dependent and is to be identified by the user. Our findings imply that this
threshold will also be affected by noise in the system. In this work, we consider variation in
the EWIs vary as the control parameter is modified. The observed trends in EWI variation is
the most important aspect to consider when evaluating EWIs. We show how trends in EWI
are affected in the presence of noise: if the variation in EWI is prominently along the variation
of control parameter then it is reliable. If the variation of the EWI is prominent along the
noise intensity, then it is not a reliable EWI. Additionally, if the trend is non-monotonic or
if relative changes are small then also the EWI is not reliable. These variations in trends are
shown with the help of horizontal and vertical arrows in the contour plots. In our experimental
study, the closest point to instability is ¢ = 0.714. Despite their sensitivity to changes in noise
characteristics, indicators such as 3, «, v, V, and S consistently exhibit a monotonous trend up
to ¢ = 0.714, suggesting their efficacy in predicting impending instability.

It is important to note that the length of the time series used for estimating various Early
Warning Indicators (EWIs) is a crucial parameter when assessing the system’s proximity to
instabilities. We conducted an additional investigation to examine the impact of time series
length on different EWIs. The corresponding results are shown in Fig. F.1 in Appendix F.
Our findings indicate that EWIs such as skewness (5), kurtosis (k), and Hurst exponent (H)
are significantly influenced by the time series length, especially at low and intermediate noise
intensities. These metrics show considerable variation with changes in the time series length,
which can affect their reliability in real-time applications. Whereas, coherence factor (3) and
variance (V') exhibit relatively stable trends regardless of the time series length, making them

more dependable for accurate prediction.

5.3.6 Estimation of early warning indicators using heat release rate

fluctuations (¢')

Since self-excited thermoacoustic oscillations arise due to the coupling of p’ and ¢, we
further investigate the ¢’ time series data, which is obtained by capturing fluctuations in CH
chemiluminescence, to estimate various Early Warning Indicators (EWIs). The methodology

for estimating these EWIs remain the same as mentioned in section 2.2. We find that only
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Figure 5.17: 2D contour map of (a) coherence factor (3;) and (b) variance (V), estimated using
heat release rate (¢’) measurements (hence the subscript ¢), as a function of control parameter
(¢) and noise intensity (o). The arrows indicate whether the variation in 3, and Vj is greater
in the direction of control parameter or in the direction of noise intensity. The red dashed lines
separate the plots into categories of low, moderate, and high noise levels.

the coherence factor (f3;) and variance (V;) can be reliably estimated using ¢, results shown
in Fig. 5.17. Both B, and V, exhibit a monotonous increase as the system approaches the
saddle-node point at most noise levels, highlighting their robustness as EWIs. The subscript
q is added to these indicators to differentiate it from those estimated from acoustic pressure
oscillations (f in Fig. 5.12(a) and V in Fig. 5.14(a)). Among other indicators, we find that
the ACF decay rates and skewness can be effective, but only in systems with very high noise
levels (for example, o > 14 Pa in our experiments). However, kurtosis, Hurst exponent, and
entropy/complexity measures cannot be estimated using ¢’

The acquisition of ¢’ data depends on various factors such as efficacy of CH filter and PMT, hence
fluctuations observed in ¢’ are very low compared to fluctuations in p’, as shown in Fig. 5.4(b).
Hence, all the EWIs can not be reliably estimated from ¢’ data.

Therefore, in practical systems, when monitoring the onset of instability tracking either p’ or ¢’
time series, coherence factor and variance should be the best choices as early warning indicators.
In practical turbulent combustion systems, noise may stem from fluctuations in the fuel-air
supply systems, variations in heat release caused by unsteady combustion, fluctuations in flow
field caused by turbulence, flow separation and aerodynamic noise. Further in these systems,
the noise characteristics are expected to vary simultaneously with the changes in operating
condition (temperature, Reynolds number, equivalent ratio, etc.), specifically noise intensity
increases as the system becomes more turbulent. In such situations, for an accurate prediction
of impending thermoacoustic oscillations, it becomes crucial to utilize early warning indicators
that demonstrate a consistent trend with the control parameter and remain largely unaffected
by fluctuations in noise characteristics. Based on our controlled experimental investigation,
employing the analysis of both acoustic pressure oscillations (p’) and fluctuations in heat release
rate (¢'), we recommend coherence factor and variance to be the best choices as early warning
indicators for application in gas turbine engines.

The present analysis, conducted on a simple flat flame laminar combustor (a prototypical
thermoacoustic system), provides insights that are applicable to real systems. Further studies
on the effects of noise spectra, the mode of noise introduction, and other factors will still need

to be tested on such simplified systems rather than the complex combustors, to derive useful
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and general conclusions. This is expected, as most seminal results on combustor dynamics
(bifurcations, system identification, stochastic dynamics, flame response, and others) are based
on simple cases. Moreover, the novel methodology employed in this study will serve as a
foundation for future investigations into stochastic dynamics and early warning indicators for

combustor dynamics.






Conclusions - PART 1

In this part of the thesis, we examine how different types of noise, i.e. additive and multiplicative
and their characteristics—correlation time and intensity—impact the reliability of various early
warning indicators. Key questions addressed include (a) the existence of comparative
reliability assessments among different EWIs, (b) how variations in noise properties affect
EWTI effectiveness, and (c¢) which EWIs are most reliable considering that noise characteristics
can change with the system and its operating conditions. This information is essential for
engine designers and users to develop robust monitoring systems for gas turbine combustors.
The range of EWIs studied includes statistical measures (variance, skewness, kurtosis), spectral
measures (coherence factor, autocorrelation), system identification measures (growth/decay
rates of acoustic pressure oscillations), fractal measures (Hurst exponent, multi-fractal spectrum
width), and time series complexity measures (permutation entropy, Jensen-Shannon complexity).
The investigation uses three types of systems: (i) an electrically driven Rijke tube simulator (a
prototypical thermoacoustic system), (ii) reduced-order combustion dynamics model (stochastic
Van der Pol oscillators), and (iii) a lean premixed flat flame combustion system operating on
natural gas-air mixtures. In all cases, we subjected the systems to two types of noise: (i) white

noise and (ii) colored noise at varied noise correlation times and intensity.

e Electroacoustic modelling: The investigation using an electroacoustic simulator formed
the foundation for our study. This simulator employs electroacoustic feedback to replicate
the nonlinear flame response to acoustic perturbations. Such a practical setup is
advantageous for conducting detailed investigations and understanding how the system
responds to varying noise properties before integrating the flame. We primarily examined
how changes in inherent noise properties can affect system identification (growth/decay
rates of oscillations), which is crucial for designing acoustic dampers and the system’s
response in the stable region (coherence resonance and fractal behavior). From this

investigation, we draw the following conclusions:

1. Increasing the correlation time and noise intensity leads to an increase in the deviation
of the estimated growth rates from the true values. For o < oy, the deviation
in the estimated values lies within the range of 0% to 10% but when o > ogy,
the deviation increases from 10% to 30%. A sharp increase in the deviation of the
estimated growth rates above o, can be attributed to the fact that higher noise
intensities affects the non-linear and stochastic dynamics of the system thus affecting
the system identification. This optimum value of noise intensity above which the
deviation in the estimated growth rates sharply increases is close to the value at

which the peak coherence is induced in the system.

2. For colored noise model, the deviation in the estimated growth rates lies within the
range of 0% to 10 % compared to the deviation of 5% to 25 % observed considering

the white noise approximation.
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3. The accuracy in the estimated growth rates can be increased by (i) applying a
bandpass filter around the frequency of interest; (ii) using the Fokker Planck equation
based on colored noise model for growth rate estimation rather than white noise
model; (iii) when the noise intensities are lower that the optimum value at which the

peak coherence is induced.

4. Concerning noise-induced coherence, noise correlation time affects the system
response in such a way that peak coherence is induced at higher noise intensities
compared to white noise forcing. The peak coherence factor also reduces in magnitude

with correlation time.

5. When noise intensity and correlation time (color) are kept constant, the coherence
factor () always increases as the system is brought closer to the Hopf bifurcation at
most noise levels (except at very small or very large noise levels, where 3 variation is
too small to distinguish a trend); which makes it a reliable early warning indicator.
Even for constant noise intensity and color, the increase in the value of coherence
factor, depends on noise correlation time, intensity, and in our experiments, the
choice of bandwidth. When employing coherence resonance and related indicators for
prediction, precursors would have to be calibrated for individual combustion system

based on the characteristics of the background combustion noise.

6. Increasing noise correlation time increases the Hurst exponent and width of the

multi-fractal spectrum.
7. Fractal measures are observed to be insensitive to noise intensity.

8. We find that there are limitations for loss of multi-fractality (indicated by the gradual

decrease of the Hurst exponent) to act as the reliable early warning indicator.

9. Thus, variation in the coherence factor, fractal measures, and other early warning
indicators will not follow trends identified in thermoacoustic models with white noise.
When noise color varies with operating parameters, trends in early warning indicators

become non-monotonous and consequently, the EWIs become unreliable.

e Stochastic modelling: Building on the results from the electroacoustic system, we
then employed the most commonly used reduced-order combustion dynamics model
to mimic thermoacoustic instability as described in the literature—stochastic Van der
Pol oscillators (exhibiting both supercritical and subcritical Hopf bifurcation). We
performed detailed numerical simulations to assess the reliability of a wide spectrum of
early warning indicators (EWIs) as a function of noise color and intensity. The objective
was to identify the most reliable indicators that consistently show a trend with the
control parameter (operating condition) and remain largely unaffected by fluctuations in
noise characteristics. For this investigation, we modeled the background noise as purely
additive, purely multiplicative, and a combination of additive and multiplicative. The
specific effects of noise on the efficacy of the various EWIs identified in our study are as

follows:
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For purely additive noise:

1.

Variance and decay rate of ACF increases as the systems approach the Hopf
bifurcation, hence can serve as reliable EWIs, but only in systems where noise has
either minimal correlation time (7./Ty < 0.1) or has high correlation time (7./7p > 1).
When noise color is of the order of system’s time scale, i.e. 0.1 < 7./Tp < 1, the degree
of changes in these indicators are predominantly influenced by changes in noise color

than the control parameter.

. Skewness can not be employed as an EWI, as it varies more with noise color compared

to the control parameter.

Kurtosis can be a reliable EWI in the systems characterized by minimal noise
correlation time, i.e., 7./Tp < 0.1 regardless of bifurcation variant and noise
intensities. For large correlation times (7./7y > 1), kurtosis can be suitable at low
noise intensity for supercritical systems and at high noise intensity for subcritical

systems.

. Coherence factor increases as the systems approach the Hopf bifurcation, regardless

of simultaneous changes in noise characteristics and bifurcation variant. Hence, it

emerges as one of the most reliable early warning indicators.

Among the fractal measures, for low to moderate noise correlation times, i.e. 0 <
T./To < 1, Hurst exponent is strongly dependent on noise color than the control
parameter. Hence, a decrease in Hurst exponent can be employed as reliable EWI
only when the noise correlation time is much larger than the system’s time-scale
(1¢/To > 1). Whereas, the loss in spectral reserve, indicated by a decrease in the width

of the multi-fractal spectrum, is unsuitable as an EWI at all investigated conditions.

The entropy/complexity measures are highly sensitive to changes in noise color,
therefore they can serve as reliable EWIs only for systems where white noise

approximation is acceptable.

For purely multiplicative noise:

1.

When noise is solely multiplicative, for a fixed control parameter, coherence factor,
variance, and permutation entropy decrease while the Hurst exponent increases with
increasing noise correlation time. However, variability in multiplicative noise color
alongside the control parameter renders all investigated EWIs more sensitive to noise

color than to the control parameter, challenging their reliability as EWIs.

For combination of both additive and multiplicative noise:

1.

In case when background noise has contributions from both multiplicative and
additive sources, then coherence factor and variance are observed to always increase
as system is brought closer to the Hopf bifurcation, irrespective of the background
noise characteristics, making them the most reliable EWIs. Nevertheless, the extent

of increase in these EWIs depends on noise characteristics, even when considered as
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constants. Hence, calibration may be necessary for individual systems based on the

specific attributes of the background noise.

2. The implementation of the decrease in Hurst exponent and permutation entropy as
EWIs has limitations. These indicators are applicable only in systems where the
background noise has major contribution from additive sources. Specifically, the
Hurst exponent is effective when the noise correlation time is large (7,/Tp > 0.5),
while permutation entropy is reliable in systems with small noise correlation times

(1a/Tp < 0.1), i.e. where white noise approximation is acceptable.

e Practical implementation: We then demonstrate the practical implementation of
the recommended EWIs from numerical simulations on a flat flame combustion system
operating on lean premixed natural gas-air mixtures, which exhibits subcritical Hopf
bifurcation. Through this investigation, we showcase the limitations and robustness of
EWIs for application in practical gas turbine combustors. Here, noise intensity is the

varying parameter. From our study, we draw the following conclusions:

1. Coherence factor increases as the system approaches the Hopf bifurcation under most
noise levels, indicating its effectiveness as an EWI. Further, the coherence factor is
quite sensitive when the system is close to the Hopf bifurcation. So, in addition to
whether we are moving close or away from the Hopf point, it also indicates if we are

close or far away from the saddle-node point.

2. The ACF decay rates, variance and skewness increase as the system approaches the
Hopf bifurcation, making them reliable indicators except at very low noise levels,

o < 7.08 Pa in our experiments.

3. We find that an increase in kurtosis is not a suitable early warning measure under

any condition.

4. Hurst exponent and entropy/complexity measures can effectively work as early
warning indicators in combustion systems with high noise intensities, ¢ > 12.74 Pa

in our experiments.

Based on our extensive investigation on the reliability and efficacy of EWIs, we provide a ranking

Early warning indicator Reliability index

Coherence factor Rank 1 (most reliable)
Variance
i < <
By s G ACE Rank 2 Modergte'nmse Folor (0.1 <t./Ty <1)and
P low noise intensity
Decay rates of p
Hurst exponent Rank 3 Low noise color (z./Tp < 1)
Permutation entropy Moderate to high noise color (z. /Ty > 0.1)
. Rank 4 o .
Jensen-Shannon complexity and low noise intensity
Skewness, kurtosis Rank 5 (least reliable) Noise properties, bifurcation variant
Multifractal spectrum width Rank 6 Cannot serve as an EWI

Ranking order of EWIs based on their reliability index.
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order for employing in practical systems (illustrated in the table above). An important point
to note is when applying these indicators for prediction, it is crucial to calibrate precursors for
individual combustion systems based on background noise characteristics.

In conclusion, coherence factor and variance emerge as robust choices for EWIs in engine
monitoring applications, particularly in the absence of detailed information on noise properties
and their variations with operating conditions. These measures demonstrate consistent behavior
with respect to changes in the control parameter, offering reliable insights into the prediction of

impending thermoacoustic instability in gas turbine combustors.
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Overview of the contents of PART II: this part is divided into two chapters, (i) Top (chapter 6):
swirl burner development, where RANS simulations are performed to develop a novel fuel flexible
multi-swirl burner and (ii) Bottom (chapter 7): where experimental investigation is conducted
on the developed swirl burner to investigate the interaction between noise and swirling flow

fields.

Summary

The objective of this part of the thesis is to investigate how the coherent structures associated

with global instability of swirling flows interact with inherent noise inside the combustor.
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The hypothesis is that introducing a broad range of frequencies may suppress or excite the
coherent structures associated with instability. This information is significant for developing
mitigation and control strategies for thermoacoustic instability in practical combustion systems.
Here, first design and develop a swirl burner comprising of multiple swirling passages through
numerical RANS simulations. We perform extensive simulations with a variety of fuel/air
mixtures and study the flow/flame characterization. After finalizing the burner configuration,
we experimentally investigate the associated typical flow features and coherent structures.
The objective is to study the interaction between large-scale coherent structures, specifically
the PVC and acoustic excitation using time-resolved Schlieren imaging. We investigate three
distinct excitation ranges: (i) a frequency lower than the natural frequency of PVC, (ii) a
frequency higher than the natural frequency of PVC, and (iii) broad-band excitation (white
noise). We first obtain the mean flow characteristics of the burner through Schlieren images
and, subsequently, employ proper orthogonal decomposition (POD) analysis to identify and

extract the dominant coherent structures in the flow.

We demonstrate the usage of Schlieren image velocimetry (SIV) for turbulent swirling flows. The
demonstration of this diagnostic technique is less explored in the field of gas turbine combustors.
Schlieren image velocimetry (SIV), first proposed by Townend [191], is a non-intrusive diagnostic
method utilized for visualizing and quantifying fluid flow velocities based on schlieren imaging
principles. SIV capitalizes on changes in refractive index that cause light deviation due to
optical inhomogeneities within the medium. Unlike particle image velocimetry (PIV), SIV
doesn’t require seeding particles; instead, turbulent eddies within the flow serve as “particles.”
As turbulent eddy length scales become increasingly smaller with rising Reynolds numbers,
successive Schlieren images, with slight time delays, can be correlated to extract velocity
field data. This method is suitable during initial phase of burner design and development on
laboratory scale as it does not require expensive laser sources and seeding particles. In literature,
SIV has been successfully implemented for capturing flow features in high speed Helium jets [192],
synthetic jets [193], gas fires and explosions [194], subsonic and supersonic turbulent boundary
layer [195-198], sweeping jets [199] and swirling sprays [200]. Consequently, analyzing Schlieren
images is invaluable in fluid mechanics, facilitating the visualization and calculation of flow fields
in unseeded flows [201,202]. Recently Schlieren imaging showed promising results to characterize
non-MILD distributed combustion in a swirl burner [203]. The challenging task is to obtain
the velocity fields from the Schlieren images. For this, we followed the image pre-processing
techniques proposed in the studies of Kegerise and Settles [204], Hargather et al. [197], Biswas
and Qiao [192], Ozawa et al. [198], Machado et al. [200] and J6zsa et al. [203], where the authors
have shown a close agreement between SIV and PIV results for their respective experimental
setups. The maximum deviation reported in the studies is ~ 15%. SIV strongly depend on the
flow topology and the scale of the visualized turbulent structure. Therefore, we also support the
obtained velocity profiles from SIV with RANS simulations.

Apart from estimating velocity, Schlieren images have also proven to be useful in obtaining the

symmetric/anti-symmetric structures in a flow by performing modal decomposition study. A
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few studies where the successful implementation of Schlieren-POD has been reported are Berry
et al. [205], Pellessier et al. [193] and Wen et al. [199]. Hence, Schlieren visualization can serve

as a powerful tool to qualitatively investigate swirling flow features.

This part of the thesis include two chapters. In chapter 6, we develop the swirl burner based on
the RANS simulations. In chapter 7, we perform the experimental investigation of the developed
burner and study the interaction of noise with the flow fields. This is the first study in gas turbine
community where the application of SIV and corresponding modal decomposition is extended

to a turbulent swirling flow, hence, the discussions on the methodology and results are crucial.






Chapter 6

Swirl Burner Development

6.1 Overview

In this chapter, we aim to develop a novel fuel-flexible multiple swirl burner to achieve stable
combustion, enhanced flashback resistance, and low emissions (carbon and NOx). To this
end, we propose the design of triple and dual swirl burners and investigate the flow, flame,
and flashback characteristics within the burner passages and inside the combustor using the
Reynolds Averaged Navier-Stokes (RANS) simulation approach. We test a wide range of
fuel/air mixtures, from methane-air mixtures to methane-hydrogen-steam-air mixtures, at
varied equivalence ratios and power levels. Our results are based on the characterization of
mean velocity (axial, radial, and tangential), vorticity, temperature fields, and emissions, and

we validate the RANS simulation results with Laser Doppler Anemometry (LDA) experiments.

We began our investigation by designing a triple swirl burner, comprising three coaxial swirling
passages: inner and intermediate axial swirlers, and an outer radial swirler, inspired by the
TARS (Triple Annular Research Swirler) concept [206]. TARS is a fuel injector developed
by Goodrich Corporation in collaboration with General Electric Aircraft Engines (GEAE)
for research purposes. TARS has a complex geometry with design features analogous to an
aero-engine application and has been studied extensively in both experimental and numerical
contexts [18,207,208]. In this configuration, we tested isothermal flow (pure air), methane-air
mixtures, and two methane-hydrogen blends: (i) 90% — 10% and (ii) 60% — 40%, with and
without steam dilution at an equivalence ratio of ¢ = 0.75. Our investigation found that the
flow fields for methane-air mixtures were stable with no flashback. However, adding hydrogen
caused an upstream propagation of the reaction zone and central recirculation zone (CRZ),
leading to flame flashback at 40% hydrogen content. Higher flame temperatures up to 2200
K were also observed with hydrogen addition, resulting in increased NOx emissions. The
flame temperatures decreased to 1800 K under humidified conditions, reducing the flashback
propensity and NOx emissions by a factor of 5 for methane-hydrogen blends. The mass flow
rates and inlet temperature of the air were kept constant at 8.73 g/s, 40 g/s and 300 K,

respectively.

When we increased the hydrogen content to a 50% — 50% blend and, instead of humidification
(moisture at 300 K), diluted the mixture with steam (inlet temperature increased to 623 K),
the burner experienced flashback through the radial slots of the outer swirler. Consequently,
we modified the burner design to a dual swirler configuration by blocking the radial slots. This
chapter presents the detailed results from the investigation of the dual swirl burner, examining

the effect of steam dilution and swirling direction on the flow and flame characteristics for
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methane-hydrogen-air mixtures at an equivalence ratio of ¢ = 0.9 with a power of around
131kW. This burner configuration is identified as a more suitable candidate for next-generation

fuel-flexible gas turbines.

This chapter is further divided into two sections. Section 6.2 describes the burner geometry,
RANS configuration, and operating/boundary conditions used for the simulations. Section 6.3

presents the comparative flow and flame features within the burner and inside the combustor.

6.2 Burner geometry and RANS configuration

6.2.1 Dual Swirl Burner

In the present study, the investigated burner is characterized by two co-axial mixture passages:
outer and inner axial swirlers as shown in Fig. 6.1(a). The dashed-dot red lines represent the
cross-wise planes at which the velocity fields are discussed in the subsequent sections. Several
configurations of the burner can be obtained by varying the vane angles or changing the swirling
direction (co- or counter-rotating). In the present work, the swirling direction is considered
to be the main focus as counter-rotating swirling streams have been reported to form intense
shear stresses that affect the combustion processes significantly [209]. In this study, we are

presenting the numerical investigation of two burner configurations as shown in Fig. 6.1(b):

©

Combustor

Sc4555

Figure 6.1: (a) Half-section view; (b) Cross-sectional view of the dual swirl burner and its
configurations (Swirler 1: S4555; Swirler 2: Sc4555) respectively; (¢) Computational domain for
RANS simulations. All dimensions are in mm. The burner exit diameter (D) is chosen to be the
normalizing parameter for the coordinates. The dashed-dot red lines represent the cross-wise
planes at which the velocity fields are discussed later.
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Table 6.1: Geometric details of the swirlers.

Swirler Vane angle (deg.) Number of vanes Swirl number Swirl direction

Outer 45 8 0.77
Inner 55 5 1.06

co- and counter- rotating
co- rotating

S4555 (Swirler 1) and Sc4555 (Swirler 2), where the swirlers are defined by their respective
vane angles: 45° outer, and 55° inner swirlers and ”¢” indicates the counter-rotating direction.
The outer and inner axial swirl numbers are 0.77 and 1.06 respectively. The thickness of the
intermediate swirler body is 2 mm; while the inner diameter of the inner swirler is 7 mm. The
overall length and exit diameter of the dual swirl burner for two configurations are L = 66
mm and D = 52 mm respectively. The exit diameter (D) is chosen as the reference length
for normalization against each case. The geometric details of the two swirlers are tabulated in
Table 6.1. Figure 6.1(c) shows the computational domain that we are employing for carrying
out the numerical simulations. The domain consists of a plenum with a dual swirl burner flush
mounted to cylindrical confinement, which acts as the combustor. The inlet is located at ~ 3D
upstream of the dump plane. The cylindrical confinement is ~ 7D long and ~ 3D in diameter.

The origin of the coordinates is placed at the centre of the plenum inlet.

6.2.2 RANS configuration

Reynolds Averaged Navier Stokes (RANS) simulation approach employing SST k —w model and
Flamelet Generated Manifold combustion (FGM) model [210] is used to predict the flow and
temperature fields within the burner and inside the combustor. The SST k—w turbulence model,
in addition to solving the conservation equations, also solves the transport partial differential
equations for turbulent kinetic energy (k) and specific rate of turbulent dissipation (w). The SST
k — w turbulence model amongst other RANS turbulence models (such as k — w, k — € (where
€ is the turbulent dissipation), RNG, etc.), provides a better prediction of complex swirling
flows and flow separation as it accounts for the transport of the principal shear stress in adverse
pressure gradient boundary layers [211]. The SST (shear stress transport) formulation aids in
combining the standard k£ — w and k — ¢ models through a blending function. This function

activates the standard k¥ — w model in the viscous sub-layer the wall and k£ — ¢ model in the

Table 6.2: Summary of FGM and TFSC parameters.

Parameter

Approach or Value

Flamelet type

Flamelet solution method
Energy treatment

Flamelet grid points

Flamelet refinement

Turbulent Schmidt number
Turbulence-chemistry interaction
Variance method

Premixed

Progress variable space
Non-adiabatic

32 x 32

Stoichiometric mixture fraction
0.7

Turbulent flame speed
Transport equation
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free stream, thereby ensuring utilization of appropriate model throughout the flow field. We
employ the SST k —w model in conjunction with Kato Launder production limiter (production
limiter clip factor = 10) on turbulent viscosity which avoids the build up of excessive k near
the stagnation points in the flow, thereby preventing the overestimation of shear stress. To
account for roughness of walls through roughness correlations [212], y transport equation model
including the cross-flow transition model is employed. The SST k£ —w turbulence model also has
a high accuracy to expense ratio in wide range of flows which makes it the most popular model
in engineering computations [211].

We employ the progress variable approach with the FGM model and Zimont’s Turbulent Flame
Speed Closure model (TFSC) [213] to incorporate the detailed chemistry mechanism in turbulent
flows. The progress variable approach tracks the global progress of the combustion reaction and
the flame using the premixed adiabatic flamelet library generated by the FGM model [210,213].
This eliminates the need for computationally expensive evaluation of transport equations for each
species. A summary of FGM and TFSC parameters Incorporated in the present work is tabulated
in Table 6.2. The simulations are carried out in Ansys Fluent 2022 R1 employing GRI-Mech 3.0
[214] reaction mechanism (325 reactions and 52 species) for combustion. GRI-Mech 3.0 provides
better predictions of laminar and turbulent flame speeds for combustion of hydrocarbons [214].
The conservation and transport equations are discretized using a second-order upwind scheme
and COUPLED algorithm [215,216] has been employed to account for pressure-velocity coupling.
The criteria for achieving the convergence of the solution of all the equations is set to a value
of 107 [210]. The under-relaxation factors («) for turbulent kinetic energy, pollutant NO,
progress variable and mean mixture fraction are chosen to be a = 0.75 to ensure the stability
of the solution [215,216].

6.2.2.1 Mesh sensitivity

We conduct the mesh (or grid) independence study to ensure that the solution obtained is
not sensitive to mesh size. We generated an unstructured polyhedral mesh with its size varying
from 1.9 million to 9.6 million cells which corresponds to a base size (~ smallest size of the mesh)
varying from 10mm to 0.9 mm. The growth rate of the mesh is kept constant at a value of 1.2
ensuring a constant aspect ratio with an increase in mesh elements. Figure 6.2(a) and (b) shows
the effects of variation of mesh size on the mean axial and tangential velocities of air (cold flow
case shown in Table 6.3) at the dump plane inside the combustor. We can observe that the mesh
sizes, 1.9M and 3.9M cells, under-predicts the peak annular jet velocities and over-predicts the
recirculation zones resulting from complex swirling flow and flow separation in the combustor.
Additionally, these mesh sizes are unable to capture the variation in the peak annular velocities
occurring due to the presence of multiple swirling passages. The variation in the axial and
tangential velocities is significantly small (a relative difference of ~ 5% is observed) when mesh
size is varied between 4.6 M and 9.6 M. As the computational time required significantly increases
with mesh sizes of 9.6 M, therefore, we choose the mesh size of 4.6 M for the present study (shown
in Fig. 6.2(c)) to ensure the balance between accuracy and computational time. The chosen mesh

size also shown accuracy for both non-reacting and reacting flows.
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Figure 6.2: Grid independence test: (a) and (b) mean axial and tangential velocity profiles at
(1 plane respectively for 4 different mesh sizes ranging from 1.9 million to 9.6 million cells; (c)
the stream-wise plane showing the chosen mesh size (4.6M) at which the results are presented.

Mass flow inlet Dual swirl burner wall
(m = 52.12 g/s) No-slip
Tin = 623K Isothermal wall
I, = 5% \ : (T,, = 623K)
9, =10

Combustor wall
No-slip
Isothermal wall
(Ty = 700K)

Plenum wall
No-slip
Isothermal wall
(T, = 623K)

Dump wall
No-slip
Isothermal wall
(T,, = 700K)

Outflow outlet

Figure 6.3: An illustration of the computational domain with the boundary conditions for the
RANS simulations.
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Table 6.3: Operating conditions for RANS simulations

Case description Tin (K)  1hgir (g/s) mcem, (8/s) mhm, (g/s) Q ¢ P (kW)
Cold flow (for validation) 300 9 - - - - -
Non-reacting flow 623 42 1.77 (80%) 0.35 (20%) 0,0.2 0.9 -
Reacting flow 623 42 1.77 (80%) 0.35 (20%) 0,0.2 0.9 131

6.2.2.2 Boundary and operating conditions

Figure 6.3 shows the schematic of the computational domain illustrating the boundary conditions
(details tabulated in Table 6.3) employed.

1. Inlet: The total mass flow rate (), species mass fractions, temperature (7;,), reaction
progress variable, and pressure (p = 101kPa) are specified at the inlet. To account for
turbulence at the inlet, a turbulence intensity (I;) of 5% and a turbulent viscosity ratio
(vp) of 10 are specified [216]. The Damkéhler number (Da), defined as the ratio of a
characteristic flow time to a characteristic chemical time, is Da > 1, indicating that the
chemical reaction rates are faster than the fluid mixing rates, resulting in a fast-chemistry
region. Conversely, the Karlovitz number (Ka), defined as the ratio of the Kolmogorov
timescale to the chemical timescale, is Ka < 1, placing the flame in the ”thin reaction
zone” [217]. On the Borghi-Peters combustion diagram [217,218] for premixed turbulent
flows, these parameter values represent wrinkled and corrugated flames. The turbulent
Reynolds number at the inlet is Re; = 1365.

2. Outlet: The outflow boundary condition is specified such that the pressure and

temperature gradients are zero.

3. Wall: An isothermal boundary condition is imposed with a temperature of 623K specified
on the plenum and swirler walls and 700K specified on the combustor wall. This setup
captures the heat losses through convection and radiation from the walls and adequately
represents the overall flame shape and structure [210,219]. All walls are stationary with a

no-slip condition.

The operating conditions for the present investigation are tabulated in Table 6.3. We first
provide an experimental validation of the code using air at the flow rate of 1, = 9g/s) and
inlet temperature of T;, = 300K. We then conduct the numerical investigations for non-reacting
(isothermal) and reacting (combustion of premixed methane-hydrogen-steam-air mixtures) flows
at an inlet temperature of T;, = 623K . The total mass flow rate of air and steam is kept constant
at 50g/s, while fuel flow rates are varied. The steam content, €, is defined as the ratio of mass

flow rate of steam to that of air (Q = Msteam/Mair)-

6.2.2.3 Validation: cold flow case

We validate our RANS solver setup by comparing the isothermal flow fields of the cold case
(tabulated in Table 6.3) with experiments from a slightly different burner configuration: a triple

swirl burner. This burner, in addition to the two axial swirling passages shown in Fig. 6.1, also
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features an outer radial swirling passage, and is denoted as S504555, where the vane angle of the
radial slots is 50°. The experiments were conducted at Cardiff University using an atmospheric
test rig, which consists of a vertical airflow conditioning chamber and a funnel extension for
mounting the triple swirl burner. Mean axial, radial, and tangential velocity data were acquired
using the LDA (Laser Doppler Anemometry) diagnostic technique at various planes downstream
of the burner exit (inside the combustor). A 3D Dantec traverse system, mounted with the laser
head, was employed for measurements in vertical and horizontal planes relative to the burner.
The airflow rate was controlled by a Platon flow meter (accuracy: +£1.25% FSD) at a constant
pressure of p = 2bar. Aluminium dioxide particles with a nominal size of 5 um were used as
seeding particles for flow visualization.

Figure 6.4 shows the stream-wise contours of mean axial and tangential velocity obtained from
experiments (plots (a) and (c)) and RANS simulations (plots (b) and (d)). The coordinates and
velocities are normalized by the burner exit diameter (D = 52mm) and average exit velocity

(Vo = 20.15m/s), calculated by volumetric flow rate at T;, = 300K, respectively. Figure 6.4(a)

Experiments (S504555) RANS (S504555) V. /Vo 35
1.55 1.55 )
1.05 1.05
Q
~
N
0.55 0.55
0.05 0.05

—0.5 0.0 0.5 —0.5 0.0 0.5

Vo/Va

Experiments (S504555) RANS (S504555)

1.55 1.55

1.05 1.05
Q
~
N

0.55 0.55

0.05 - 0.05

—0.5 0.0 0.5
r/D r/D

Figure 6.4: Validation: Stream-wise contours of mean (a), (b) axial velocity (V) and (c), (d)
mean tangential velocity (Vj) from experiments (a, ¢) and RANS simulations (b, d) for a triple
swirl burner (S5045555). The coordinates and velocities are normalized by D and Vj respectively.
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and (b) illustrate an annular jet with a peak velocity of approximately 2.5V, emanating from
the burner exit, separating the central recirculation zone (CRZ), which has a width of about
0.5D and a length of approximately 1.45D, from the two outer recirculation zones (ORZ). The
CRZ dominates the central flow region with a maximum negative velocity of around 0.5Vj.
Figure 6.4(c) and (d) show that the tangential velocity also reaches its highest magnitude,
around 2V, at a similar location as the axial velocity. As Vp is the out-of-plane circumferential
component, the contours show opposite directions on the two sides of the centerline. The
RANS simulations exhibit significant similarity with the experiments in terms of magnitudes
and locations of peak axial velocities and recirculation zones.

Further, in Fig. 6.5, we plot the mean axial and tangential velocity profiles at three planes
(Ci = Z/D =0.05, Cy = Z/D = 0.2, and C3 — Z/D = 0.4), marked by black dashed lines
in Fig. 6.4. The RANS simulations show good agreement with the experiments, particularly at
planes Cy and C5. At plane (7, RANS under-predicts the central recirculation zone and the
location of peak tangential velocity, with a relative deviation of around 9.5% observed between
RANS and experiments. Due to the triple swirl burner exhibiting flashback under the reacting
conditions tabulated in Table 6.3, we present the investigation on the dual swirl burner. Given
that the RANS solver setup can predict the flow fields with an accuracy of over 90%, we employ
it to predict the flow fields for the dual swirl burner.

6.3 Results and Discussions

In this section, we present the results and observations obtained from the RANS simulations
of the non-reacting and reacting flows in the dual swirl burner. We provide comparative
results for co- and counter-swirl configurations, analyzing velocity, turbulence, temperature,

and combustion species distribution in both the burner and the combustor.

“\i“@f V. Sim. - Vo Sim. e Ri R, R
4 V. Exp. = Vy Exp. 4 4 T T T
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
r/D r/D r/D

Figure 6.5: Validation: mean axial (V) and tangential (Vj) velocity profiles at (a) C1 — Z/D =
0.05; (b) Co — Z/D = 0.2; (¢) C3 — Z/D = 0.4 inside the combustor of S504555. The Y
coordinate and velocities are normalized by D and Vj respectively. The lines represent the
RANS simulation results, whereas, the markers represent the experimental results. The exit
radii of each swirler is marked by the arrows.
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6.3.1 Non-reacting Flow Fields

6.3.1.1 Velocity fields

A swirling motion is imparted to the incoming flow by the stationary vanes of the swirlers.
Therefore, the flow that emanates from the burner exit, in addition to axial and radial velocity,
also has a tangential velocity component. The presence of the swirling motion creates radial
and axial pressure gradient which influences the flow field. The central core of the rotating flow
has low pressure which recovers as the flow emanates from the burner leads to the creation of
adverse axial pressure gradients such that when S > 0.6, the flow reverses its direction along
the burner axis and forms a central torroidal recirculation zone (CRZ). This CRZ causes the
expansion of the annular jet emerging from the burner. The length of the CRZ, defined as the
distance from the burner exit to the point where the flow reverses its direction, depends on
the swirl number: the length increases with increase in swirl number. The recirculation zones
promotes the fuel/air mixing and helps in stabilizing the combustion. The sudden expansion
of the jet due to the area change and the confinement of the combustion chamber results in
the formation of outer recirculation zones (ORZ). Figure 6.6 presents an illustration of the
typical flow field emerging from the co-rotating dual swirl burner 2 = 0. Two annular jets
that separates the central and the outer recirculation zones emanates from the outer and inner
swirling passages. Regions of strong velocity gradients, known as the shear layers, exist between
the incoming annular jet and the formed recirculation zones (CRZ and ORZ). These regions are
highly unstable and turbulent and are associated with the vortex roll-up and form concentrated
regions of vorticity [220]. The flame is expected to stabilize or anchor at these inner (between
annular jet and CRZ) and outer (between annular jet and ORZ) shear layers. Further, we can

observe small regions of reversed flow attached to the inner walls of the two swirlers. These

v

0 0.5 1 1.5 2

Outer shear layer Inner shear layer

Outer swirler
—_—

Inner swirler Reversed flow

—_—
attached to
the inner wall
of the swirlers
Annular jet
ORZ

Figure 6.6: Non-reacting flow: illustration of the typical flow features from the dual swirl burner
by stream-wise contours of mean axial velocity (V), normalized by Vj.
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regions of the reversed flow favour the merging of the two incoming jets of the swirlers [18]. The
reversed flow region attached to the walls of the inner swirler predominantly acts as the flame
attachment (or anchoring) point. Additionally, this is also a potential region for the occurrence
of the boundary layer flashback due to the upstream propagation of CRZ.

To study the effects of swirler configurations and steam dilution on the non-reacting flow fields,
we present the comparative results for co- and counter-rotating burner. We find that steam
dilution does not affect the non-reacting flow fields significantly, therefore, we present the results
in this section at 2 = 0.2. Figure 6.7 shows the stream-wise (r—z plane) contours for the mean
axial velocity (a, b) and mean tangential velocity (c, d) for swirler 1 (S4555) and swirler 2
(Sc4b55) respectively. Coordinates and velocity are normalized by the burner exit diameter
(D) and the plug flow velocity at burner exit (Vy = 52.71m/s) estimated for T}, = 623K. From
Fig. 6.7(a) we find that in case of the co-flow (swirler 1), the CRZ that dominates the central core
region inside the combustor has a maximum width of ~ 2D, a length of ~ 6.8D and a maximum
negative velocity of ~ 0.33Vy (~ —17m/s). The maximum width of the CRZ is observed at
~ 3.73D inside the combustor; whereas, in case of the counter-rotating flow (Fig. 6.7(b)), we
observe that the width of the CRZ is increased by ~ 5% (~ 2.1D), while its length is reduced by
~ 0.15%. The peak negative velocity is increased by ~ 11% (~ —19.5m/s) when compared to the

co-rotating flow (Fig. 6.7(a)). The occurrence of a shorter CRZ in the case of counter-rotating
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Figure 6.7: Non-reacting flow: stream-wise contours of mean (a, b) axial velocity (V) and (c,d)
tangential velocity for swirler 1: S4555 (a, ¢) and swirler 2: Sc4555 (b, d) respectively. The
coordinates and velocities are normalized by D and Vj respectively. The contour lines for zero
axial velocity are indicated by solid white lines. The arrows indicate the direction of flow.
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flow makes it less susceptible to flame oscillations [221] and increases the pressure gradient and
turbulence in the combustor which aids in enhanced mixing of cold reactants and hot combustion
gases [222]. The reduction in the length of the CRZ in case of counter-rotating flow has also been
observed in TARS [209] and in the GTMC dual swirl burner [222-224]. The strongest annular
jet with a peak axial velocity of ~ 1.95V and ~ 2.1V emanates from swirling passages extends
up to ~ 3.73D in the combustor for co- and counter- rotating flows respectively, after which
it reattaches to the combustor walls. The annular jet of the counter-rotating flow has a larger
divergence angle than the co-rotating flow. This is because of the increased width of the CRZ
observed in the counter-flow. This increase width of the CRZ is attributed to the fact that the
opposing sense of direction of the two swirling passages increases the magnitudes of the radial
velocity which leads to a wide expansion of the annular jet. Therefore, we can expect a shorter
and a wider flame in case of counter-flow as compared to the co-flow. From the zoomed inset
of Fig. 6.7(a) and (b) we observe that the maximum negative velocity of reversed flow regions
attached to the inner walls of the two swirlers is increased from 0.12Vy (~ —6.5m/s) in co-flow
to ~ 0.34Vy (~ —17.85m/s) in counter-flow. Further, the flow fields indicate that the flame is
likely to attach to the center body of the inner swirler. From the stream-wise contours of mean
tangential velocity of swirler 1 (S4555) and swirler 2 (Sc4555) (Fig. 6.7(c) and (d) respectively),
we can observe that the flow inside the combustor is dominated by the swirl direction of the
outer swirler. The tangential velocity have the highest magnitude at about a similar location
as the axial velocity for both the configurations inside the combustor and extend up to ~ 3.2D
for co-rotating flow and up to ~ 3.13D for counter-rotating flow. In swirler 2, at the burner
exit near the centerline, the magnitudes of tangential velocity are smaller than the swirler 1
due to opposing sense of rotation about burner axis for the inner and outer swirlers of the
counter-rotating configuration.

To identify the impact of each swirler on the flow field, Fig. 6.8 shows the cross-wise contours of
mean axial velocity (a, e), tangential velocity (b, f), radial velocity (c, g) and turbulent kinetic
energy (d, h) at plane C inside the burner (shown in the zoomed inset of Fig. 6.7 for swirler 1
((a)-(d)) and swirler 2 ((e)-(h)). From Fig. 6.8(a) and (e), we observe the presence of a larger
reversed flow region attached to the inner wall of the outer swirler in case of counter-rotating
flow in comparison to the co-flow. This is because of the increased magnitudes of velocity in the
radial direction (Fig. 6.8(c) and (g)) in case of counter-flow which causes the higher expansion
of the flow emerging from the outer swirler thereby resulting in increased recirculation near the
wall. This leads to increased turbulence near the burner exit inside the outer swirler in case of
counter-flow (Fig. 6.8(h)). The increased turbulence will cause more entrainment of recirculating
gases in the incoming flow and therefore increases the probability of boundary layer flashback
through outer shear layer. Further, we can observe from Fig. 6.8(c) and (g), that the shearing
is prominent in the counter-rotating case due to presence of a positive velocity jet followed by a
negative velocity jet near the burner exit which leads to more turbulence in counter-rotating case.
We next discuss the comparative circumferentially averaged axial velocity, tangential velocity,
radial velocity and turbulent kinetic energy profiles at planes C5 and C5 inside the combustor
of swirler 1 (S4555-lines) and swirler 2 (Sc4555-markers) (Fig. 6.9). The presence of multiple
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peaks at plane C5 in Fig. 6.9(a) and (c) indicates the presence of multiple swirling passages in
the burner. The outer swirler is observed to significantly affect the flow in the combustor: the

counter-rotating flow has increased the width of the CRZ and increased the peak axial velocity
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Figure 6.8: Non-reactng flow: cross-wise contours of mean axial velocity (a, e), tangential
velocity (b, f), radial velocity (c, g) and turbulent kinetic energy (d, h) at plane C; inside
the burner for swirler 1 ((a)-(d)) and swirler 2 ((e)-(h)). The coordinates, velocities and k are
normalized by D, Vp and Vi respectively.
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Figure 6.9: Non-reacting flow: circumferentially averaged (a) axial velocity (V3); (b) tangential
velocity (Vp); (c) radial velocity (V;); (d) turbulent kinetic energy (k) profiles at planes C
(Z/D = 0.05), Cy (Z/D = 0.4) and C3 (Z/D = 0.8) inside the combustor of swirler 1
(S4555-lines) and swirler 2 (Sc4555-markers). The coordinates and velocities are normalized
by D and Vj respectively. The exit radii of each swirler is marked by the arrows.
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magnitude (Fig. 6.9(a)), has reversed the direction of tangential velocity (Fig. 6.9(b)) and has
increased the turbulence at the burner exit in both axial and tangential direction. These effects
are attributed to the interaction between co- and counter- rotating swirling flows in the inner and
outer passages. We can observe in the downstream direction (from C; — C3), the magnitudes
of the axial, tangential and radial velocity decreases for both the burner configurations. The
magnitudes of the radial velocity of counter-rotating case at Cy and C3 is 13% and 8% higher
than the co-rotating case (Fig. 6.9(c)) which indicates that the divergence angle of the annular
jet of the counter-flow is greater than the co-flow that causes the faster re-attachment of the flow
to the combustor wall for swirler 2. From Fig. 6.9(d), we observe that the turbulence intensity is
highest in the shear layers for both the configurations. The maximum turbulent kinetic energy
for counter-rotating case observed near the burner exit is ~ 23% greater than the co-rotating
flow. This higher turbulence in the shear layer of the counter-flow can be utilized for better

mixing [224].

6.3.2 Reacting Flow Fields
6.3.2.1 Velocity fields

The heat release from combustion results in temperature jump and a corresponding density
drop, which in turn causes the flow fields for the reacting case to differ from those of the
non-reacting conditions. We now discuss the effects of combustion on the flow-fields of the co-
and counter-rotating flows at @ = 0 and 2 = 0.2 respectively. Figure 6.10(a, d) and Fig. 6.11(a,
d) shows the stream-wise (r—z plane) contours for the mean axial velocity for swirler 1 and
swirler 2 at 2 = 0 and Q = 0.2 respectively. In comparison to the non-reacting flow (Fig. 6.7),
we observe a reduction in the size of the CRZ with increased maximum negative velocity and
increased peak annular velocity in reacting flow for both the swirler configurations: the width
of CRZ reduces by ~0.7% for co-rotating flow and ~ 5% for counter-rotating flow compared
to the non-reacting flow. The length of the CRZ reduces by 7.5% for co-rotating case, while it
reduces by 10% for counter-rotating case. The maximum negative velocity of the CRZ increases
by ~ 28 % (~ —24ms™!) for co-rotating case and by ~ 21% (~ —25m/s) for counter-rotating
case; whereas the maximum velocity of the annular jet emanating from the burner exit increases
by ~5% for the co-rotating flow and by ~ 8% for the counter-rotating flow compared to the
non-reacting case. The steam dilution does not affect the velocity field significantly. From the
velocity fields of both the swirlers, we can expect two types of flame stabilized in either of the
shear layers (high velocity gradient regions between annular jet and recirculation zones): (i) a

V-shaped flame or (ii) an M-shaped flame anchored to the center body of the inner swirler.

6.3.2.2 Temperature distribution and flame shape

Figure 6.10(b, e) and Fig. 6.11(b, e) shows the stream-wise (r-z plane) contours for the
temperature distribution for swirler 1 and swirler 2 at & = 0 and 2 = 0.2 respectively. We
can observe two high temperature regions at near the burner exit inside the combustor: (i) the

center region wherein the hot combustion gases are recirculated through the CRZ; (ii) the outer
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Figure 6.10: Reacting flow: stream-wise contours of (a, d) mean axial velocity, (b, e) temperature
distribution and (c, f) OH species mass fraction for swirler 1 (S4555) at 2 = 0 and Q =
0.2 respectively. The coordinates, velocity and temperature are normalized by D, Vj and T,
respectively. The contour lines for zero axial velocity are indicated by solid lines. The arrows
indicate the direction of flow.

Figure 6.11: Reacting flow: stream-wise contours of (a, d) mean axial velocity, (b, e) temperature
distribution and (c, f) OH species mass fraction for swirler 2 (Sc4555) at @ = 0 and =
0.2 respectively. The coordinates, velocity and temperature are normalized by D, Vj and T,
respectively. The contour lines for zero axial velocity are indicated by solid lines. The arrows
indicate the direction of flow.

region near the combustor walls wherein the ORZ is located. At 2 = 0, a flame temperature
of 2400 K (~ 3.85T},) is observed inside the combustor for both the configurations. When the
fuel-air mixture is diluted with steam (i.e. at = 0.2), we observe that the flame temperature
reduces to 1994 K for both the swirlers. This is because the steam absorbs the energy from the

combustion to heat up. Further, steam dilution also increases the heat loss of the flame due
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to its stronger radiation ability [225]. At the combustor walls, we observe low temperatures
due to the heat-loss (constant wall temperature boundary condition). These trends can also be
observed from the distribution of temperature along the centerline of the combustor for both the
swirlers shown in Fig. 6.12(a). The temperature profiles have a steep gradient in the reaction
zone. The similarity in the peak temperatures between co- and counter- configurations has also
been reported by Li and Gutmark [209] for TARS when operating on gaseous fuel. We can
observe that in both the configurations, the flame is attached to the inner wall of the inner
swirler as expected from the velocity field (the location of flame attachment is shown by the
cross-wise contours for each configuration).

The flame shape and structure for swirler 1 and swirler 2 at Q2 = 0 and Q = 0.2 is represented
by the distribution of OH species mass fraction in Fig. 6.10(c, ) and Fig. 6.11(c, ) respectively.
We can observe that the steam dilution decreases the concentration of the OH species mass
fractions for both co-and counter-rotating flows. This is because the steam addition decreases
the concentration of all the reactants which leads to a lower reaction rate for the same ¢ and also
decreases the flame residence time by increasing the mass flow rates. We observe an M-shaped
flame anchored to the inner wall of the inner swirler in both the configurations. The M-shaped
flame observed at intermediate steam content (£2 = 0.1 —0.2) can transition to a short V-shaped
flame at higher steam content (2 = 0.3—0.4) [226]. From the zoomed inset of Fig. 6.10(c, f) and
Fig. 6.11(c, f), we can observe that steam dilution causes the flame to move in the downstream
direction. The superimposition of the streamlines of axial and radial velocity components on
the OH distribution shows that the M-shaped flame is stabilized in the outer shear layer in
both the swirlers. Further, in case of counter-rotating flow, we can observe that the flame is
stretched in radial and confined in axial direction which results in a wider and shorter flame when
compared to co-flow. The existence of the flame divides the combustor in three regions as shown
in Fig. 6.12: (I) pre-flame region; (II) in-flame region or the reaction zone which is dominated
by the mixing, and (III) post-flame or burn-out region which is dominated by the chemistry.

All the combustion species mass fractions such as OH, CH>0O, CO, NO, etc. first increases
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Figure 6.12: Reacting flow: centerline profiles of (a) temperature and (b) NOz emissions formed
by thermal pathway for swirler 1 (yellow) and swirler 2 (blue) at 2 = 0 and © = 0.2 respectively.
The coordinate and temperature are normalized by D and T;,. §; represents the flame thickness;
Ty represents the flame temperature. I —pre-flame region; I/ —in-flame region (or reaction
zone) and II] —post-flame region (or burn-out).
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sharply from pre-flame region to the reaction zone, attains a maximum in the reaction zone and
then decreases in the burn-out region to attain equilibrium through a series of recombination
reactions with the other species. The sharp gradients observed in the reaction zone correspond
to the flame edge indicating the location of the flame front and gives an estimate of the flame
thickness (7).

6.3.2.3 Emissions

It has been reported previously that NOx emissions in a premixed flame depends on temperature
and equivalence ratio: NOx emissions are low at low temperatures and equivalence ratios and
increases rapidly with increase in equivalence ratios [8]. There are 4 conventional pathways
for NOx formation [8]: (i) thermal pathway (Zeldovich) which is the strongest pathway for
NOx formation when the temperatures are above 1700K. In this case, the concentration of
the equilibrium NO is the highest due to increased residence time of gases in high temperature
regions; (ii) prompt NO pathway where NO results from CH radicals, therefore are higher in
concentration in rich mixtures. These NOx occurs at temperatures below 1000K due to their
lower activation energy compared to the thermal NOx; (iii) NO formation via NoO which is
the source of NOx formation at lean conditions; (iv) NO formation via NNH radical pathway
is prominent for flames where hydrogen content is high due to more H radicals. For dry
methane flames, the flame adiabatic temperature lies within 1350 K to 1950 K depending on
the equivalence ratios. The addition of hydrogen increases the flame temperatures due to higher
flame speed and reaction rates. The flame temperature observed in the dual swirl burner for
methane-hydrogen mixture is 2400K at 2 = 0 and 1994K at 2 = 0.2 which indicates that the
thermal NOx pathway dominates the NO formation. We estimate the NOx emissions from the
burner by choosing the thermal NOx model in Ansys solver setup. This pathway of NOx model
estimates the pollutant that is formed after combustion. Figure 6.12(b) shows the distribution
of NOx formed by the thermal pathway along the centerline of the combustor for both the
swirlers. We can observe that the highest NOx concentration occurs in the reaction zone in the
CRZ where the incoming reactants interact with the recirculating hot combustion products. The
addition of the steam decreases the temperatures inside the combustor and thereby reduces the
NOx emissions. The overall NOx emissions from both the configurations are below 45ppm at
Q =0 and 15ppm at © = 0.2 which is expected for a lean premixed gas turbine combustor [227].
At the combustor exit, the average NOx emission for co-flow is 24ppm, whereas it is 25.1ppm

in the counter-flow at 2 = 0. With the steam dilution, the NOx emission reduces to 10.4ppm

Table 6.4: Comparison of NOx and CO emissions from dual swirl burner with Goke [8]

Burner T (K) 1y (kg/h) %CH4,%H2, Q¢  NOx (ppm) CO (ppm)
(air 4 steam) (15%042,dry)  (15%O02,dry)
Premixed combustor [§] 623 180 80,20 0.2 0.9 3.2 1.3
. 623 180 80,20 0 09 7.3 1.26
Swirler 1 (co-flow) 0.9 30 196
623 180 80,20 0 09 7.5 1.26

Swirler 2 (counter-flow) 0.2 33 196
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for co-flow and 11.5ppm for counter-flow. We present the comparison of the estimated NOx
(@15%03, dry) in the dual swirl burner with the experimental study of Géke [8] on a premixed
combustor employing a single swirler at the same operating conditions shown in Table 6.4. The
flame temperature observed in Goke [8] is ~ 1750 — 1850K which is ~ 12 — 15% lower than the
flame temperature attained in the dual swirl burner. We observe that the estimated NOx for
both co-rotating flow and counter-rotating flow are similar to the values reported by Goke [8].

CO emissions for pure methane-air mixtures at dry conditions show dependence on the
equivalence ratios [8]: mnear the lean blowout limit (¢ ~ 0.2 — 0.3), CO emissions are
~ 5ppm(@15%02, dry) due to flame instability and low temperatures; at ¢ ~ 0.5 — 0.6, CO
emissions are extremely low (~ 0.2 — 0.3ppm(@15%0O3, dry)). This is the range where the lean
premixed gas turbines operate; Further increase of ¢, increases the CO emissions due to increase
in CO2 and temperature. The hydrogen addition to the methane-air mixture reduces the CO
emissions due to reduction in the concentrations of COq [8], increase in OH concentration [228]
and increase in global reaction rate [229]. Steam dilution does not affect the trend of CO
emissions except that the same trends are observed at high equivalence ratios. The estimated
CO emissions (@15%03,dry) from co-flow and counter-flow along with the comparison with
Goke [8] are tabulated in Table 6.4. The estimated CO emissions from both the configurations
is below 5ppm and a deviation of only 4% is observed from the experiments. We observe that
the CO emissions are not affected by the swirler configurations.

Our results indicates that GRI-Mech 3.0 provides relatively good prediction of NOx and CO
emissions for methane-hydrogen flames. The accuracy in the prediction of emissions employing
GRI-Mech 3.0 reaction mechanisms has also been confirmed by the numerical study by Goke
[8]. From Table 6.4, we also observe that the swirler configurations (co- and counter-flow) at
high inlet temperatures does not significantly affect the NOx and CO emissions, despite having
differences in the flame structure. This is because gaseous fuel at high temperatures require

lesser mixing time within highly turbulent flow [209].






Chapter 7

Schlieren Image Velocimetry and Modal Decomposition Study of

Preheated Swirling Flows

7.1 Overview

In this chapter, we experimentally investigate the typical flow features and coherent structures
of the counter-rotating dual swirl burner developed in chapter 6. Here, the objective is
to study the interaction between large-scale coherent structures, specifically the PVC and
acoustic excitation using time-resolved Schlieren imaging. The hypothesis is that introducing
a broad range of frequencies may suppress or excite the coherent structures associated with
instability. This information is significant for developing mitigation and control strategies for
thermoacoustic instability in practical combustion systems. This study encompasses three
distinct excitation ranges: (i) a frequency lower than the natural frequency of PVC, (ii) a
frequency higher than the natural frequency of PVC (motivated from the work of Lacarelle
et al. [129]), and (iii) broad-band excitation (white noise). We first perform Schlieren image
velocimetry to obtain the mean flow characteristics of the burner, compare the velocity fields
with RANS simulations and, subsequently, employ proper orthogonal decomposition (POD)

analysis to identify and extract the dominant coherent structures in the flow.

This chapter is further divided into two sections. Section 7.2 discusses the details of experimental
setup and data pre-processing, followed by the procedure for performing SIV and POD analysis.
In section 7.3, we present the results and discuss the effects of different acoustic actuation on
the flow.

7.2 Experimental setup and methodology

7.2.1 Experimental setup

This study conducts experiments using an unconfined multi-swirler jet setup, schematically
shown in Fig. 7.1, together with the Schlieren imaging configuration. The investigated burner
(half-section view shown as a zoomed inset) is characterized by three co-axial air passages: outer
radial swirler (S = 0.8), intermediate (S = 0.8) and inner (S = 1.08) axial swirlers, discussed
and developed in section 6.2. Multiple realizations of the burner can be obtained by varying
the vane angles, swirling direction (co- or counter-rotating) or blocking varied swirling passages.
For the present work, radial slots are blocked to obtain a dual-swirl burner configuration (as
discussed in chapter 6), where intermediate and inner swirlers have counter- and co-rotating
vanes (45° and 55°), respectively. We chose counter-rotating swirling direction of the burner as

counter-flow is reported to create high turbulence in the shear layers and enhance mixing [224].
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Figure 7.1: Schematic diagram of the unconfined experimental test rig with Z-type Schlieren
imaging system.

The dual swirl burner configuration is asymmetric, with 8 and 5 vanes in intermediate and
inner swirlers, respectively. The overall length and exit diameter of the dual swirl burner are
L =76 mm and D = 48 mm. The bulk velocity corresponding to the burner exit diameter is
Upulk ~ 1.34 m/s.

Preheated air (100°C) at a constant flow rate of 150 SLPM is fed to the burner via a cylindrical
duct of 169 mm diameter. The test rig also allows for the actuation of stream-wise acoustic
waves using the loudspeaker (Ahuja AU60 unit) mounted upstream of the burner. In this work,
we present the comparative results for flow fields and coherent structures between the natural
flow and acoustically forced flow with two types of actuation: (i) a sinusoidal excitation of
constant amplitude at two different frequencies corresponding to the Strouhal numbers (defined
as, St = fD /upyy) of St = 0.46 (frequency lower than the natural frequency of observed PVC,
see section 3.2) and St = 2 (frequency much larger than the natural frequency of PVC) and (ii)
a white noise excitation.

A time-resolved Z-type Schlieren imaging system captures the flow field emerging from the
swirling jet (illustrated in Fig. 7.1). This setup consists of two identical parabolic mirrors (6”
diameter with a focal length of 609.6 mm), a green LED point source (CBT120 luminous device),
a source slit and a knife edge [201]. The instantaneous flow snapshots were captured using a
high-speed camera (Photron Fastcam mini AX100 with F2.8/100 mm macro lens) at a frame
rate of 1000 FPS with a resolution of 8250 px/m. 1800 images of size 1024 x 1024 are acquired
for each flow condition. The average pixel shift between two consecutive images is ~ 12 pixels.
Note that in case of high speed flows, where bulk velocity at the burner/nozzle exit is greater
than 300 m/s, an extremely high framing rate is required to capture such flow details and
extract a meaningful correlation between consecutive images [192]. For example, to observe a

10 x 10 cm? region of interest in a flow field flowing at a velocity of 500 m/s, a minimum of
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Figure 7.2: Instantaneous (left) and mean (right) Schlieren images captured at varied flow
conditions: (a) natural flow; forced flow with acoustic excitation of (b) St = 0.46, (c) St = 2
and (d) white noise. The region of interest for the subsequent analysis is highlighted by the
rectangle.

80 kHz frame rate is required for an optimum 10 to 12 pixel shift [192]. Also, in such high
speed flows, camera exposure time should be less than frame-to-frame time delay to reduce the
integration effect, which requires involvement of two cameras (master and slave). In this work,
as the velocity is low (~ 1.34 m/s), a d¢ = 1 ms is sufficient to capture the flow effectively.
An illustration of the acquired instantaneous flow images (left column) and corresponding mean
intensity (right column) for each flow condition is shown in Fig. 7.2. The rectangular red boxes
indicate the chosen region of interest for the subsequent analysis. The instantaneous Schlieren
images (Fig. 7.2) show the temporal and spatial flow structures (turbulent eddies) of varied

length scales, while the mean intensity images show the two annular jets emerging from the
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Figure 7.3: An illustration of the image pre-processing employed for Schlieren image velocimetry
(SIV) and proper orthogonal decomposition (POD) study.

swirl burner. We can also observe that acoustic excitation of the flow causes increased vortical

fluctuations, indicating an increase in the energy of the turbulent eddies.

7.2.2 Methodology

7.2.2.1 Image pre-processing

Schlieren imaging shows the density gradients in the line of sight. Hence, the results are
the projections of 3D structures with temporal evolution characterized by high density and
temperature gradients. Therefore, image restoration and enhancement play a significant role in
obtaining the flow fields and properties from Schlieren images. Figure 7.3 shows an illustration
of image pre-processing employed for performing Schlieren image velocimetry (SIV) and Proper
orthogonal decomposition (POD) analysis. The visualization of structures (or turbulent eddies)
in the images is enhanced by subtracting the mean intensity from the instantaneous snapshots
(image re-construction) followed by an intensity capping [230], which significantly improves the
image contrast for cross-correlation. Note that, mean intensity subtraction does not necessarily
always work when dealing with Schlieren images: it can also lead to loss of actual signals [192].

Noise filters are applied to remove image outliers caused by camera shot noise, pixel anomalies,
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and digitization artefacts. Lastly, a Laplace filter was also applied to enhance the edges of the
turbulent structures, which reduces the so-called peak-locking effect [231]: long camera exposure
time could blur turbulent structures and create an under-sampled image segment. A region of

interest (ROI), as shown in Fig. 7.3, was then chosen to perform the SIV and POD analysis.

7.2.2.2 Schlieren image velocimetry (SIV)

SIV is performed using the PIVLab application [232] to estimate the instantaneous and mean flow
fields emerging from the burner at varied flow conditions. The velocity vectors are obtained using
the FFT window deformation cross-correlation algorithm, wherein the size of the interrogation
windows changes from coarse to fine in various passes (shown by green and yellow squares
in Fig. 7.3). A large interrogation window in the first pass, on the one hand, enhances the
signal-to-noise ratio (SNR) and estimates the displacement of pixels reliably, but also gives low
vector resolution. Therefore, the size of the interrogation windows is reduced in the subsequent
passes, where the pixel displacement information from the initial pass is used to offset the
interrogation areas in the next pass. Thereby yielding high vector resolution, SNR and dynamic
velocity range. For the present analysis, we chose 4 passes of the window sizes as 128 x 128,
64 x 64, 32 x 32 and 16 x 16 respectively. The estimated velocity vectors are then calibrated using
8250 px/m resolution with the time step of 1 ms between the images. The post-processing of
the estimated vector fields includes data filtering to remove any erroneous vectors occurring due
to outliers or poor illumination using a standard deviation filter followed by the interpolation of
missing data.

An important note here is SIV offers integrated velocity fields along the line of sight, therefore,
it mostly provides qualitative characteristics of the flow features. Achieving precise quantitative
accuracy for velocity fields can be challenging, especially in regions of uniform density or where
density gradients are weak. There are several key considerations: (i) spatial resolution of
SIV limited by the optical setup and resolution of the imaging system. This means that
small-scale flow structures (smallest eddies) may not be fully resolved, particularly in high-speed
flows where rapid changes occur over short distances. In such cases, it may be challenging
to distinguish between turbulent fluctuations and true flow velocities, leading to inaccuracies
in the measurements. (ii) Optical distortions, such as aberrations in the imaging system or
non-uniform illumination, can introduce errors into the schlieren images. These distortions can
make it difficult to accurately interpret the density gradients and can affect the precision of
the velocity measurements. (iii) limited depth of field of SIV, which makes it challenging to
fully characterize complex three-dimensional flows. Given these factors, it is crucial to report
the expected uncertainty limits in SIV results: the mean uncertainties in axial (V}) and radial
(V) velocities observed are 1.24 4+ 0.13 m/s and 0.6 = 0.03 m/s, respectively. These values
are derived from statistical measurements (histogram plots) in PIVLab. In summary, Schlieren
imaging velocimetry serves as a valuable tool for visualizing and quantifying fluid flow velocities,
offering valuable insights into complex flow phenomena. However, one must carefully consider

its limitations and uncertainties when interpreting the results.
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7.2.2.3 Proper orthogonal decomposition (POD)

Proper Orthogonal Decomposition (POD) is a technique used to extract dominant patterns
or modes from a set of data (spatial snapshots of a field variable such as velocity) [233]. A
brief methodology for obtaining POD modes is as follows [233]: (i) the spatial snapshots are
firstly arranged into a matrix, U, where each column corresponds to a snapshot, and each
row corresponds to a spatial location. For N snapshots and M spatial locations, U is an
M x N matrix; (ii) then a singular value decomposition (SVD) on U is performed to obtain
U=AY W where A is the matrix of spatial modes (POD modes), }_ is a diagonal matrix of
singular (or eigen) values and W is the matrix of temporal coefficients; (iii) a certain number n of
dominant modes, based on the magnitude of the eigenvalues, are selected. Typically, n is chosen
to capture a significant amount of the total energy or variability in the data. The reconstructed
field variable is then given as, un(x,t) = Y ;" wyi¢;(x), where, wy; are the temporal coeflicients
and ¢;(x) are the spatial modes. The POD modes represent the spatial structures, and the
temporal coefficients provide the time evolution.

We estimate the POD modes from the instantaneous axial velocity snapshots and identify the

dominant coherent structures and the corresponding peak frequency at all flow conditions.

7.3 Results and discussions

7.3.1 Velocity fields

Figure 7.4 shows the stream-wise 2D contours in the x-y plane for mean velocity magnitude
(left) and vorticity (right) fields obtained from SIV at varied flow conditions. Typical features
associated with the swirling flow are observed: two annular jets, separating the central (CRZ)
and the outer (ORZ) recirculation zones, emanate from the intermediate and inner swirling
passages. Regions of strong velocity gradients, known as the shear layers, exist between the
incoming annular jet and the formed recirculation zones. These regions are highly unstable and
turbulent and are associated with the vortex roll-up, forming concentrated vorticity regions, as
shown in the right plots. The flame is expected to stabilize or anchor at these inner (between
annular jet and CRZ) and outer (between annular jet and ORZ) shear layers. We observe a short
central recirculation zone —a typical feature associated with counter flow configuration— which
indicates that the flow will be less susceptible to flame oscillations [221], thereby increasing
pressure gradient and turbulence. We observe that acoustic excitation of the flow reduces the
magnitude of both velocity and vorticity fields. This implies that acoustic perturbations cause
fluctuations in the vortical structures, which may, in turn, affect the frequency and energy level
of global flow instabilities, as also reported by Chen et al. [234].

Figure 7.5 shows the mean axial and radial velocity profiles near the burner exit (y/D = 0.05)
for all investigated cases. We can observe the presence of negative velocities in the central
and outer recirculation zones. Downstream this plane, negative velocities at the center are
not observed (see, Fig. 7.6). This implies that the CRZ is mostly propagated upstream inside

the burner passages, specifically through the inner swirler, owing to its short length. The



Chapter 7. Schlieren Image Velocimetry and Modal Decomposition Study of Preheated
Swirling Flows 134

Mean velocity magnitude (m/s) Mean vorticity (1/s)

40 -20 O 20 40 60

1
x/D x/D
Mean velocity magnitude (m/s) Mean vorticity (1/s)

!

13 60 -40 -20 O 20 40 60

]
o

1.5 1.5

y/D
_
y/D
-

0.5 0.5

0.5 1 15 0.5 1 1.5
x/D x/D
Mean velocity magnitude (m/s) Mean vorticity (1/s)
B ] |
(C) -0.1 0.1 0.3 05 07 09 11 13 -60 -40 -20 0 20 40 60 80

y/D

0.5 1 1.5 0.5 1 1.5
x/D

Mean vorticity (1/s)

0 20 40 60

0.5 1 1.5 0.5 1 1.5
x/D x/D

Figure 7.4: Mean velocity magnitude (left) and vorticity (right) fields estimated from SIV at
varied flow conditions: (a) natural flow; forced flow with acoustic excitation of (b) St = 0.46,
(c) St =2 and (d) white noise. The coordinates are normalized by burner exit diameter (D).
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Figure 7.5: (A) Mean axial (V) and (b) radial (V}.) velocity profiles at y/d = 0.05 obtained from
SIV at varied flow conditions (natural flow; forced flow with acoustic excitation of St = 0.46,
St = 2 and white noise). The coordinates are normalized by burner exit diameter (D).

upstream propagation of CRZ indicates the potential occurrence of flame flashback under
reactive conditions. We can observe the asymmetry in the flow fields in terms of peak annular jet
velocities arising due to asymmetric burner geometry. The intermediate and inner axial swirlers
in the burner have 8 and 5 vanes, respectively. The flow from the burner hence would not be
symmetric around the center axis. Such asymmetry in the axial velocities were also reported
through LES and PIV results in TARS (Triple Annular Research Swirler) by Iudiciani [18].

In addition to the experimental results, we conducted RANS simulations to validate the trends
observed in the SIV data. The comparison between SIV and simulations is presented in Fig. 7.6.
We observe a similarity in the qualitative trends between SIV and RANS. Although SIV offers
integrated velocity fields along the line of sight, it accurately captures the characteristic flow
features qualitatively provided the Schlieren images are pre-processed (restoration, enhancement

and filtering) adequately, as evident from Fig. 7.6.
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Figure 7.7: Mode energy fraction for first 9 modes drawn in descending order at all flow
conditions (natural flow; forced flow with acoustic excitation of St = 0.46, St = 2 and white
noise).

7.3.2 Flow structures identified from Schlieren image velocimetry

Figure 7.7 shows the energy of first 9 POD modes drawn in descending order for all flow
conditions. In the energy spectra, modes 1 — 6 have the highest energy content and hence
represent dominating large-scale structures in the flow field. The energy content for modes
greater that 7 is too low (< 1%) for the POD to separate it from other dynamical structures
and noise in the data. Acoustic forcing of the flow increases the mode energies regardless of the
type of excitation. The energy level of acoustic excitation with St = 0.46, St = 2, and white

noise are relatively similar for all modes, compared to the natural flow.
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Figure 7.8: POD modes 0—6 in the stream-wise direction (top) and corresponding power spectra
of time coefficients (bottom) of natural flow. The dashed dot line indicates the burner axis. The
solid line corresponds to first mode of the pair and dashed line to the second.

We performed a sensitivity analysis, similar to Lacarelle et al. [129], for identifying the minimum
number of instantaneous axial velocity snapshots required to effectively capture the mode shapes.
We performed this analysis on the natural flow case, where we varied the number of snapshots
ranging from 100 to 1800 in steps of 400. We find that for the analysis of POD modes from SIV
data, a minimum of 1000 to 1200 snapshots are required. Here we show the analysis of POD
modes obtained from 1500 snapshots of axial velocity.

Figure 7.8 shows the POD modes (0-6) and corresponding power spectra of time coefficients for
the natural flow (unforced case). Mode 0 represents the mean axial flow from the burner. It
is important to mention here that the sign of cross-wise velocity shows an opposed symmetry
than the azimuthal velocity, such that modes (2,4) have anti-symmetric structure while modes
(1,3,5,6) have symmetric structures. This implies helical fluctuations of an azimuthal order of
|m| = 2 and higher are present in the flow [235]. When we consider the frequency spectra of
the temporal coefficients of the mode pairs (modes 1,3,5,6) and (modes 2,4), we can observe
multiple distinct peaks. This indicates that contributions from several different structures in
the flow with their own dynamics are present in a mode pair. In other words, POD spreads out
the coherent structures across multiple modes. The presence of similar double or triple helical
structures in the swirling jet flow has been previously reported by Percin et al. [236], Vanierschot
et al. [237,238] and Vignat et al. [239]. The frequency of the dominant anti-symmetric structures
is observed at St = 0.53 £ 0.03. The symmetric modes correspond to a double helical PVC,
while the anti-symmetric modes correspond to single helical PVC [238].

Figure 7.9 shows the effect of excitation at St = 0.46 on the flow structures and corresponding
power spectrum. When the flow is excited with St = 0.46, the symmetric modes (1,3,5,6)
exhibit strong similarities with a phase shift in the axial direction compared to the natural flow.

They indicate counter-rotating vortices at the burner exit. The anti-symmetric structures of
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Figure 7.9: POD modes 1 — 6 in the stream-wise direction and corresponding power spectra of
time coefficients of forced flow at St = 0.46. The dashed dot line indicates the burner axis. The
solid line corresponds to first mode of the pair and dashed line to the second.
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Figure 7.10: Pod modes 1 — 6 in the stream-wise direction and corresponding power spectra of
time coefficients of forced flow at St = 2. The dashed dot line indicates the burner axis. The
solid line corresponds to first mode of the pair and dashed line to the second.

modes (2,4), on the other hand, changes to the symmetric ones and power spectra no longer
show a peak frequency. This implies that the acoustic forcing of St = 0.46 which is lower than
the natural frequency of the helical instability causes a suppression of single helical PVC. In
this case, axial fluctuations are more energetic than the PVC. These results are in agreement
with the experimental works of Moeck et al. [134], Lacarelle et al. [129] and numerical work of
Tudiciani et al. [132].

We find that when the flow is forced with a frequency twice the natural frequency of PVC (i.e.,

St = 1.06), the helical structures becomes more energetic than the excitation, while maintaining
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Figure 7.11: Pod modes 1 — 6 in the stream-wise direction (top) and corresponding power
spectra of time coefficients (bottom) of forced flow: white noise excitation. The dashed dot line
indicates the burner axis. The solid line corresponds to first mode of the pair and dashed line
to the second.

a peak at St = 0.53 as for the unforced case (not shown here). We now look at the structures
when the flow is forced with St = 2 a higher frequency other than the PVC harmonics, shown in
Fig. 7.10. We can observe that all the modes retain their symmetric/anti-symmetric structures
as that of the natural flow with a phase shift in the axial direction. Thus, this forcing does not
suppress the structures, but redistributes the modal contribution on the energy content. These
trends concur with the experimental work of Lacarelle et al. [129].

From Fig. 7.8 and 7.10, we see that single frequency excitation of the flow fields either stabilizes
or suppresses the single helical PVC depending on the excitation frequency, while it causes no
major change to the double helical PVC. Figure 7.11 show the effect of broadband excitation,
i.e., white noise, on the flow structures. We observe the following two main trends: (i) symmetric
and anti-symmetric flow structures remain same as that of the natural flow case with no phase
shift and (ii) white noise excites double helical PVC at ~ St = 0.53, while stabilizing the
single helical PVC in the flow, evident from the frequency spectrum for the two cases. The
observed trends holds for two different excitation amplitudes: 10% and 40% of bulk velocity.
This excitation of the helical instabilities could be attributed to the amplification of shear layer
(convective instability) caused by flow fluctuations, leading to the growth of coherent structures.
These structures generate coherent Reynolds stresses and substantially modify the mean flow
leading. This phenomenon is expected to become more pronounced in reactive cases. Further,
from the mean axial velocity fields (Fig. 7.5), we noted upstream propagation of CRZ inside the
burner. Therefore, these helical instabilities are expected to originate inside the burner passages,
specifically in the inner swirler, due to its short length.

The POD analysis on raw Schlieren images did not provide the information on the presence of
symmetric or anti-symmetric structures in the flow. The main reason behind this is that the

flow had propagated upstream inside the burner, where most of the structures are formed. On
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the other hand, POD analysis on the instantaneous axial velocity snapshots from SIV revealed
the dominant structures along with the types of PVC and associated frequencies. Hence, this
latter approach (POD-SIV) is better suitable for extracting more qualitative information on the
flow.

In addition to the POD analysis, we also perform spectral proper orthogonal decomposition
(SPOD) analysis [240] on the instantaneous axial velocity snapshots from SIV. The
corresponding results are presented in Fig. G.1 of Appendix G. We find a qualitative agreement
between the two analysis for the observed frequency of the dominant anti-symmetric mode pair
(2-4). Further, from the temporal evolution of mode coefficients, we observe that the dominant
mode is marginally stable for natural flow and an excitation with white noise forcing stabilizes

this mode in the flow.






Conclusions - PART 11

Swirling flows in gas turbine (GT) combustors are highly susceptible to precessing vortex core
(PVC), a self-excited global hydrodynamic instability associated with vortex breakdown. This
instability creates large-scale coherent structures and significant flame fluctuations, potentially
causing thermoacoustic instability. While previous studies have examined PVC excitation and
suppression under single-frequency acoustic excitation, GT combustors inherently exhibit noise
dynamics that vary with operating conditions and combustor designs. It is crucial to investigate
how these coherent structures interact with the inherent combustor noise, which is the focus of

this part of the thesis. We derive the following conclusions:

1. We begin by developing a multiple swirl burner using RANS simulations, capable of
operating with various hydrogen-enriched fuel blends. This burner, designed to exhibit
reduced flame flashback and NOx emissions, considers parameters such as swirling
direction (co- and counter-rotating), fuel blends, equivalence ratios, and the number of
swirling passages. We report the comparative insights from RANS investigation of co-
and counter-rotating configurations of a dual-swirl burner operating on lean premixed
methane-hydrogen-steam-air mixture. We find that the two configurations can lead to
important differences in the flow field and the flame structure. From the non-reacting
and reacting velocity fields, we observe that in comparison to the co-rotating case,
the counter-rotating swirl case has a shorter and wider CRZ located slightly further
downstream in the combustor. The annular jet emerging from the burner exit has a
wide divergence angle in case of counter-rotating flow than the co-flow. We observe that
the counter-rotating flow increases the magnitudes of axial, radial and tangential velocity
with increased turbulence in the shear layers. From the reacting flow-fields, we observe
that steam dilution decreases the flame temperature from ~ 3.85T;, to ~ 3.2T;, inside
the combustor and also shifts the flame slightly in the downstream direction for both the
swirlers. We observe the existence of an M-shaped flame, stabilized in the outer shear
layer, anchored to the center body of the inner swirler for both the configurations. The
counter-rotating case has a short and wide flame. In terms of NOx and CO emissions,
significant differences between co-flow and counter-flow are not observed (a 9% increase
in NOx emission is observed in case of counter-flow); however, steam dilution (2 = 0.2)
reduces the NOx emissions by 57% for both the swirlers. The flow-fields, temperature
distribution and emissions from the dual swirl burner compare well with the literature. Our
results indicate that counter-rotating configuration offers enhanced mixing between cold
reactants and hot products, as well as enhanced mixing upstream of the flame (in case the

configuration is employed for non-premixed or technically /partially-premixed combustion).

2. We then experimentally investigate the effects of acoustic excitation on the swirling flow
field from the counter-rotating dual swirl burner using Schlieren image velocimetry (SIV).
Subsequently, we perform Proper Orthogonal Decomposition (POD) and Spectral Proper

Orthogonal Decomposition (SPOD) analyses using the SIV snapshots of instantaneous
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axial velocity field to identify dominant coherent structures and their interactions with
acoustic excitations. Analysis of the velocity fields reveals that the central recirculation
zone moves upstream within the burner passages, suggesting a potential risk of flashback.
Moreover, the external forcing of the natural flow induces a reduction in both velocity and
vorticity magnitudes, causing fluctuations in the energy levels of turbulent eddies. The
POD analysis confirms the presence of the PVC (Precessing Vortex Core) in the swirl
burner flow field, which was observed as a marginally stable mode excited by turbulent
fluctuations. The spatial modes of the natural flow revealed the occurrence of single and
double helical PVC at St = 0.53. Acoustic actuation at St = 0.46 (frequency lower than
the PVC frequency) effectively suppresses single helical instability. Acoustic actuation at
St = 2 (higher frequency unrelated to PVC harmonics) acoustic actuation stabilizes the
single helical PVC while altering the modal contribution of double helical instability on
the energy spectrum. Broadband forcing, however, is observed to excite both single and

double helical instabilities.

In summary, we recommend the dual swirl burner with a counter-rotating configuration as a
promising candidate for next-generation fuel-flexible gas turbine combustors. We demonstrate
the implementation of Schlieren image velocimetry (SIV) for analyzing turbulent swirling
flow. SIV analysis successfully characterizes the typical flow features and coherent structures
qualitatively. Additionally, we find that inherent noise in the combustor can lead to the
excitation or stabilization of the PVC, thereby increasing the probability of thermoacoustic
instability. Future work will involve identifying interaction mechanisms leading to the observed

suppression and excitation of helical instabilities by acoustic oscillations.
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Appendix A: Effect of f? part of combustion noise on EWIs

While OU noise has a flat spectrum till the cutoff frequency, combustion noise features a power
law increase (approximately following f2) until the peak frequency. The f? increase at lower
frequencies does not change the conclusions drawn on the basis of OU noise. To understand the
effects of f2 part of the combustion noise spectra on the results, we perform additional numerical
simulations which are discussed as follows:
For capturing the increasing part in the combustion noise spectrum, we obtain the modified
colored noise (E (s)) by filtering €(s) in the frequency domain, using the following transfer function
(H(s)) [61], A
€6) _ () —p YPms (A1)
(14 7.8)2
where, s = iw is the Laplace variable. € is Gaussian white noise (a vector of size n x 1, where n is
the number of samples based on sampling frequency). T is the measure of white noise intensity.
D is a constant used to adjust the power of £, and 7. is the noise correlation time. The resulting

power spectrum is given by,

I Duw?r?
Seelw) = [H?Se = -1 (A2)
21 (1 4 w?72)
which features fyeqr at,
1
= A3
f peak 27TTC ( )

Similar to the OU noise, the modified colored noise power is equated to that of a white noise in

the band [w;;ws], which yields

D :2((,02 —wl)

-1
<atan (woTe) — atan (wy7.) — w2te + WiTe > (A4)
Tc

1+wit? 14 wir?

Figure A.1 shows the comparison of the power spectrum between white noise, OU noise and
corresponding modified colored noise (given by Eqn.(A1)) generated by keeping the power within
ﬁ—o‘” = 0.7 constant. We generate the modified colored noise in such a way that the decay part
of the spectrum (controlled by f~") for both OU and modified colored noise are nearly identical
as shown in Fig. A.1(a).

From Fig. A.1(b), we can observe that increasing noise correlation times shift the fpeqr to lower
frequencies (in accordance with Eqn. (A3)). We also observe that the thermoacoustic frequency
of the system (fy) will equal to fpear at 7./Tp = 0.16. This implies that fo sees the f? growth
in the spectrum amplitude for all 7./7y < 0.16. We find that noise-induced response of the
system would be nearly identical to that of white noise up to the 7. at which fo = fpeqr. This is

because, within the bandwidth, the curves in the power spectrum corresponding to 7./Tp < 0.16
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Figure A.1: Comparison of the power spectrum of (a) OU noise and modified colored noise at
7./To = 1.2 and (b) white noise and modified colored noise. The OU noise and modified colored

noise are generated such that the powers provided by & and by the white noise of intensity I

within ﬁ—o“’ = 0.7 are equal. The correlation time, 7., is normalized by the duct acoustic time

period, Ty (= 1/ fo).

are nearly similar to the white noise (for example, yellow and black curves in plot (b)). For all
7./Tp > 0.16, noise-induced response of a system would be similar to OU noise.

To elucidate the effect of f2 increase on the coherence factor, we present the results by subjecting
the system to the modified colored noise for Aw/wy = 0.7. Figure A.2 shows the variation of
coherence factor () as a function of 7. and op at K = 0.40 (lines + markers correspond to
the system when subjected to OU noise and lines (solid, dashed and dotted) correspond to
the system subjected to modified colored noise). We can observe that at 7./Tp = 0.16 (where
Jo = fpear), B has a peak at op/ow ~ 1 for modified colored noise forcing. We find that when
7./To < 0.16, the 3 trends would be nearly identical to that of white noise with optimal noise
intensity (op/0y) varying between 0.9 to 1. For all 7./Ty > 0.16, the qualitative trends for 5 are

similar for both the types of noise forcing: (i) increase in 7, shifts the optimum noise intensity

L5016 03 —=--12
0.16 - - ~0.3 veer 1.2

lines + markers — OU noise

lines — colored noise
7 P

Tc/TO

16//6’117

0.5¢

ob/ow

Figure A.2: Comparison between OU noise and modified colored noise forcing: variation of
coherence factor (3) as a function of noise intensity within a given band (o}) and noise correlation
time (7.) for Aw/wy = 0.7 at K = 0.40. Lines + markers correspond to the system when
subjected to OU noise and lines (solid, dashed and dotted) correspond to the system subjected
to modified colored noise. o, and (3, correspond to the optimum white noise intensity and
corresponding maximum coherence resonance at specified control parameter values.



Appendices 164

to higher levels; (ii) 8 increases as the system is brought closer to the saddle-node point; (iii) for
op/ow < 1, B decreases monotonously with increase in 7.; whereas for o,/0,, > 2, [ increases
monotonously with increase in 7.

The Hurst exponent (H,) also exhibits the similar variation as 8 with modified colored noise
forcing: for 7./Tp < 0.16, the H, curves overlap the white noise curve shown in Fig. 2.18(d);
thereafter, H, increases with increase in 7.. The dependence of H, on 7. may lead to inaccurate
predictions of impending instability.

Thus, the difference between the flat OU noise spectrum and the f? increase in combustion noise
spectrum at low frequencies leads to small quantitative differences in terms of the coherence
factor, but the trends in the coherence factor — therefore the primary conclusions of the study

concerning early warning indicators — are preserved.
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Appendix B: Algorithm for numerical integration

Eqn. (3.4)-(3.5) can be re-written as,
&+ f(x,&,t) = £(t) (B1)

where, f(x,2,t) is the deterministic part of the system and £(¢) is the OU noise, given as,

VD

Tc

£(t) = —jcg(t) + Y2 (B2)

The algorithm for numerical integration can be written as [54,241,242]:

1. Initialize the time step size (At), state vector (xo) and its first derivative (u = ),

stochastic term (&), and time (tg).
2. For each time step (n) from 1 to N:

(a) Compute the deterministic increments:

kip =inAt

k1w =f(xn, Tn, tn) At

kog =(i, + 0.5k1,) At

kow =f (2, + 0.5k14, Zn + 0.5k1y
tn + 0.5At) At

(B3)
k3g =(Zpn + 0.5k, ) At
k3w :f(l‘n + 0.5koy, Tp + 0.5koy,
tn + 0.5A8) At
/{345,; :(in + kjgu)At
k4u :f(xn + k?)xa Ty + k?)w tn + At)At
(b) Calculate the stochastic increment through Euler-Maruyama approach:
At D
£n+1 = En - 7£n + ffn VAt (B4)
(c) Update the state vector:
1
Tp4+1 =Tn + é(klz + 2k2w + 2k3$ + k4z)
(B5)

. . 1
Tptl =Ty + é(k'lv + 2koy, + 2k3v + k4v)

3. Increment the time by the time step size, At.

4. Repeat the steps until the desired number of time steps is completed.
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This general formulation combines the deterministic part (using the classic 4th order
Runge-Kutta method) and the stochastic part (using the Euler-Maruyama method) to solve

the second-order ODE with a stochastic term.
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Appendix C: Effect of x variation on skewness and kurtosis

Figure C.1 shows the variation of skewness as a function of v, 7./Tp, o3, and « for subcritical
Van der Pol system. We can observe that at k = 4 (Figs. C.1(a-b)), skewness decreases with
increase in noise color for all v and op; while it increases with increase in noise intensity for all v
and 7./Tp. Skewness also decreases as the system approaches the saddle-node point. However,
at k = 12 (Figs. C.1(c-d)), although skewness increases with increase in both noise color and
intensity but it remains relatively constant as the system approach the saddle-node point.
Similarly, Fig. C.2 shows the variation of kurtosis as a function of v, 7./Tp, o, and k for the
subcritical system. We can observe that at k = 4 (Figs. C.2(a-b)), kurtosis increases with
increase in noise color for all v and o}; while it decreases with increase in noise intensity and
control parameter for all 7./Ty. Whereas, at k = 12 (Figs. C.2(c-d)), at low noise level, kurtosis
decreases with increase in noise color, while it exhibit increasing-decreasing trend with noise color
at high noise levels. Further, at low noise levels, the trends in kurtosis becomes indistinguishable
for all 7./Ty > 1. Kurtosis also shows different trends with respect to control parameter at
different noise levels: kurtosis increases as the system approaches the saddle-node point at low
noise level; while at high noise level, it decrease for 7./Ty < 0.1 and increases for all 7./Ty > 0.1
as the system approach the Hopf bifurcation.

Figs. 3.7-3.8 and C.1-C.2 shows that both skewness and kurtosis not only depends on noise
characteristics and control parameter but also depends on constant equation parameters, hence

they can not serve as reliable EWIs.

10*

5100 100
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=

1071 1071
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Figure C.1: 2D contour map of skewness (S) as the control parameter (v) and noise correlation
time (7./Tp) are varied at two noise intensities (03(1) (a, ¢) and 03(3) (b, d)) for subcritical Van
der Pol systems at k = 4 (a-b) and k = 12 (c-d). The dashed grey line separate the plots into
categories of low and moderate to high noise correlation times.
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10! |

Figure C.2: 2D contour map of kurtosis (k) as the control parameter (v) and noise correlation
time (7./Tp) are varied at two noise intensities (03(1) (a, ¢) and 03(3) (b, d)) for subcritical Van
der Pol systems at k = 4 (a-b) and k = 12 (c-d). The dashed grey line separate the plots into
categories of low and moderate to high noise correlation times.

The variation in x value do not affect the qualitative trends of other EWIs discussed above.
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Appendix D: Time delayed stochastic Van der Pol oscillators

While fundamental aspects of thermoacoustic instability can be understood through the classical
Van der Pol oscillator, the instability in combustors employing flames is essentially a time delay
feedback phenomenon; the time delay being a characteristic feature of the response of flames to
acoustic fluctuations [175-177]. Recently Bonciolini et al. [177] have proposed modification of
Van der Pol oscillators (Eqn. (3.4)-(3.5)) to include time delay as,

B+ kix? — BrE, + ad + wix = E(t) (D1)

and

B4 pirat — kica? — B, + ok + wie = £(t) (D2)

where, 7 is the flame response time delay. The control parameter, v, is modified from v =
(B* —a)/2 to v = (f*cos(wpT) — ) /2. The time delay becomes an additional parameter whose
effect on system dynamics must be studied. Moreover, noise may be present in the time delay.
Noise in time delay will be a parametric noise source to the oscillator system with a mean 7 and

standard deviation o. In such a case, the time delay model is given as [177],
T=7(14+¢(t)) (D3)

where, ((t) is the random process generating the distribution of time delay which can be modelled
as both white and colored noise. Eqn. (D1)-(D2) are also simulated using the fourth-order
Runge-Kutta method for ODE and Euler-Maruyama method for £(¢) in Matlab. Figure D.1
shows the effect of time delay on the bifurcation of both supercritical and subcritical Van der
Pol systems in the absence of noise. We find that when the time delay is an integer multiple of

acoustic time period (Tp), such as, 7/Tp = 1,2,3, ..., then the system’s response is similar to

7/Tol © 0 = 01 o 02 » 08 < 09 - 1]

(a) Supercritical system 3 (b) Subcritical system
B3 | i e 1
1.5 D R —— I b ——
B S — <=
Subthreshold Subthreshold
11 regions 2L regions
8
0.5 1t
O~ e S S S R e 0 e S S e
-5 -5 0 5
v

Figure D.1: Effect of time delay (7/7p) of flame response on bifurcation diagram in the absence
of noise for (a) supercritical Hopf bifurcation and (b) subcritical Hopf bifurcation. The Hopf
and saddle-node points changes with time delay. The grey regions in plot (b) shows the bistable
region at varied 7/Ty. The subthreshold regions for corresponding time delay are marked with
solid, dashed and dash-dot arrows.



Appendices 170

Table D.1: Stability margins of time delayed Van der Pol oscillator systems in the absence of
noise

7/To
0O 01 0.2 08 09 1
Hopf point (vy) 0 02 2 2 02 O
Saddle-node point (vgy) -2 -1.6 02 02 -1.6 -2

shown in Fig. 3.2 with Hopf and saddle-node points observed at v = 0 and v = —2 respectively.
However, when the time delay is a non-integer number, such as 7/7y = 0.1,0.2,0.8,0.9, then
the system’s response varies such that the Hopf and saddle-node points are observed at higher
v values compared to 7/Ty = 0, as shown in Fig. D.1. The corresponding values of Hopf and
saddle-node points are tabulated in Table D.1. It is important to note here that the Van der
Pol systems displays a discontinuous (or alternating) behaviour with variation in the time delay:
the system becomes unconditionally stable when the values of time delay are 0.3 < 7/Tp < 0.7
or 1.3 < 7/Ty < 1.7. In such cases, the bifurcation cannot be tracked to identify subthreshold
or limit cycle regions. There are, therefore, limitations on the values of time delay that can be
assumed. This behaviour of the Van der Pol systems with time delay is also reported by Ghirardo
et al. [176] and Bonciolini et al. [177]. Also, the systems become unconditionally unstable for
large enough delays. Therefore, the dynamics of the deterministic, delayed-feedback oscillators
deviates substantially from that of classical Van der Pol systems.

Figure D.2 shows the effect of time delay on coherence factor and Hurst exponent. Results are
presented for three different additive noise correlation times as columns (column 1 corresponds
to white noise) at a fixed intensity, o;(3). The top two rows are for coherence factor, 3, while
the bottom rows are for the Hurst exponent, H. Since the Hopf point changes with time delay,
the x-axis is modified to v* = v — vy, where vy denotes the Hopf point. The effect of parameter
variation on 8 and H is evaluated at six different time delays. For fixed time delay, noise color,
and noise intensity, the coherence factor increases as the system approaches the instability except
at 7/Tp = 0.8 for supercritical system and 7/Tjy = 0.2 for subcritical system, where the increase
in 8 is not significant. The variation of coherence factor with noise color is same as those
shown in Fig. 5. When time delay is close to an integer multiple of Ty (7/Tp = 0.1 and 0.9),
the coherence factor values are close to the those obtained from the oscillator without time
delay. On the other hand, when time delay is close to the unconditionally stable regions [177]
(1/Tp = 0.8 and 0.2 for supercritical and subcritical cases respectively), coherence factor values
show a substantial deviation from those obtained without time delay in the oscillator. We can
also conclude that the sensitivity of coherent factor to small changes in time delay (which may
be expected for small changes in combustor operating conditions) is a non-monotonous function
of the time delay: close to 7/Ty of 0.2 or 0.8, small changes in time delay will lead to changes
in # much larger than changes in response to parameter variation; close to 0.1, small time delay
changes will lead to small 8 variation.

The Hurst exponent (Fig. D.2g-1) also responds to changes in 7/Tp; the response is dependent
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Figure D.2: Effect of time delay of flame response on coherence factor (plots (a)-(f)) and Hurst
exponent (plots (g)-(1)) for supercritical and subcritical Van der Pol systems for varied noise
color (7./Tp) of additive noise at o4(3).

on noise color. For white additive noise (Fig. D.2g, j) and for any given v*, the Hurst exponent
decreases with increase in time delay up to 7/7p = 0.8 and increases thereafter. For colored
noise, (Fig. D.2h, i, k, 1), the Hurst exponent exhibits a non-monotonic trend with time delay.
For a given time delay, the Hurst exponent decreases as the system approaches the instability,
however, the decrease is evident only when noise color of additive noise is greater than the
system’s time scale, i.e. 7./Typ > 1. Additionally, Hurst exponent increases with increase in
noise color. These trends of H with 7. and v* for a fixed time delay are similar to those
presented in Fig. 3.11.

Differences in the effects of time delay variation on coherence factor and Hurst exponent could be
explained on the basis of the occurrence of intermittent oscillations on the introduction of a time
delay [177]. In the power spectrum such oscillations are expected to exhibit minimal impact

close to dominant peak and thus result in relatively minor variation in the coherence factor
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Figure D.3: Effect of time delay fluctuations (7.q/7p) on coherence factor (a—f) and Hurst
exponent (g-1) for supercritical (7/Tp = 0.2) and subcritical (7/Tp = 0.9) Van der Pol systems
for varied noise color (7./Tp) of additive noise at 0(2). The variance of time delay fluctuations
is kept constant as /Ty = 1. NF represents the case without noise, shown in Fig. D.2.

(except for 7/Tp = 0.2 and 0.8). In contrast, Hurst exponent estimation relies on analyzing
fluctuations in the time series, making them more susceptible to the presence of intermittent
oscillations introduced by time delays. Finally, we note that time delay adds non-Markovian
effects to system dynamics. A method to identify the non-Markovian effect is presented by
Giugioli et al. [243]. However, such analysis is out of the scope of the present study.

Figure D.3 shows the variation of coherence factor (a—f) and Hurst exponent (g-1) as a function of
time delay fluctuations (7. q/T0) at o /Ty = 1 in response to variation in the control parameter, v*,
for white and colored additive noise with a fixed intensity, o, (3) for supercritical and subcritical
time delay Van der Pol systems. We find that when /7T < 1, the estimated coherence factor
and Hurst exponent remains close to those shown in Fig. D.2. But when /Ty > 1, the values

of the precursors deviate from that of constant time delay. We can observe that for a given
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mean time delay (7/7p), both coherence factor and Hurst exponent decrease with increase in
color of time delay noise. The variation in Hurst exponent with 7. 4/7p is more pronounced than
the coherence factor. Further, for a fixed 7.4/Ty and 7./Tp, coherence factor increases while
the Hurst exponent decreases as the systems approach the instability. The decrease in Hurst
exponent is prominent only when 7./Ty > 1. We note that adding fluctuations in the time delay

corresponds to multiplicative noise.
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Appendix E: Iteration of bifurcation experiments (noise-free

system)

Multiple realizations (a total of 11) of the bifurcation experiments are performed, as shown
in Fig. E.1, to ensure accuracy in the experimental results and to ensure that all the tests are
performed in the subthreshold region (prior to the bistable region). In the last two measurement
iterations, ¢ was varied in smaller steps (0.0035). However, on the grounds of being too close to
the error in ¢ measurements (0.002), experiments with noise were conducted with a step size of
0.007. Fig. E.1 shows that in all the experiments, the system was stable in all experiments for

¢ < 0.714 (closest point to the Hopf bifurcation).

0.742 T T T T

System becoming unstable—x—
System regaining stability —a—

Equivalence ratio, ¢

1
1 2 3 4 5 6 7 8 9 10 11
Iteration

Figure E.1: Iterations of the bifurcation experiments and the obtained critical parameter values.
The shaded region marks the hysteresis zone for each iteration (reproduced from Kabiraj et
al. [6]).
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Appendix F: Effect of time series length on estimation of EWIs

(lean premixed combustion system)

We have also examined how sensitive the estimated early warning indicators (EWIs) are to the
length of the time series of acoustic pressure fluctuations. Figure F.1 illustrates the variation
of different EWIs as a function of time series length and the control parameter (¢) at three
different noise intensities: ¢ = 5.66 Pa, 11.33 Pa, and 16.99 Pa. Our findings reveal that the
skewness (5), kurtosis (k), and Hurst exponent (H) are significantly influenced by the length
of the time series, particularly at low and intermediate noise intensities. These metrics show
considerable variation with changes in the time series length, which can affect their reliability
in real-time applications. Conversely, other EWIs like the coherence factor (53), variance (V),
exhibit relatively stable trends regardless of the time series length, making them more dependable
for accurate prediction.

In practical combustor configurations, the onset of instability can occur rapidly, often within a
few seconds. Given this time constraint, we recommend using 5 and V as they provide reliable
predictions even with shorter time series lengths. Their estimation process is also faster and less
sensitive to variations in noise characteristics, making them suitable for real-time monitoring.

On the other hand, EWTIs such as the Hurst exponent and entropy/complexity measures require
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Figure F.1: Sensitivity of the various EWIs (estimated using p’ data) on the length of the time
series at three noise intensities, 0 = 5.66 Pa, 11.33 Pa and 16.99 Pa, as ¢ is increased towards
the Hopf bifurcation.
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longer time series for accurate estimation and are more reliable at higher noise levels. This
limitation hinders their effectiveness in real-time scenarios where quick decision-making is
critical. Additionally, the decay rates of the autocorrelation function (ACF) and p’ can be
estimated with any time series length but require more computational time, which might not be
feasible in fast-paced operational environments.

Overall, while various EWIs offer different insights, our study highlights the importance of
selecting appropriate indicators like the coherence factor (8) and variance (V') for real-time
applications due to their robustness, quick estimation, and minimal sensitivity to time
series length and noise intensity. This approach ensures timely and accurate detection of

thermoacoustic instability.
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Appendix G: SPOD analysis: temporal coefficients and Lissajous

curves (phase portraits) for dominant mode pairs

In addition to the general POD analysis, we also conducted the SPOD (spectral proper
orthogonal decomposition) analysis on the instantaneous velocity snapshots obtained from
SIV. SPOD [240], derived from space-time POD, performs the modal decomposition in the
frequency domain and helps in obtaining the energetic coherent structures under all characteristic
frequencies. For, a detailed derivation and discussion on SPOD, the reader is referred to Sieber
et al. [240]. Figure G.1 shows the obtained results from SPOD analysis for two cases: (i)
natural flow (plots (a)-(c)) and (ii) white noise forced flow (plots (d)-(f)). We can observe from
Fig. G.1(a) and (d) that the single helical PVC (modes 2 and 4) is observed at St = 0.53, similar
to the POD results (Fig. 7.8 and 7.11). A phase difference of 7/2 is observed between the two
time coefficient for each case (Fig. G.1(b) and (e)), which is further confirmed by the circular
shape of corresponding Lissajous curves (Fig. G.1(c) and (f)). We can further observe that the
single helical PVC is not always present in the flow in both cases: the amplitude grows and
decays more often in case of natural flow suggesting its dynamic nature compared to the forced
flow (Fig. G.1(b) and (e)). The evolution of amplitude indicates that the mode is marginally
stable and gets excited by turbulent fluctuations or stochastic changes of the mean flow. These
observations for the growth/decay of a amplitudes is also reported by Vanierschot et al. [238].
The time coeflicient plots also indicates that white noise forcing stabilizes the single helical PVC

mode. We find a good qualitative agreement between the results from POD and SPOD analysis
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Figure G.1: SPOD analysis of (a)-(c) natural flow and (d)-(f) white noise forced flow. Plots
(a), (d) shows the power spectral density of the dominant mode pair (2-4). The temporal
characteristics of the mode pair are shown in plots (b), (e) ~temporal coefficients— and (c), (f)
—phase portraits— respectively.
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of the SIV snapshots. Hence, SIV and the corresponding modal decomposition study can help

in capturing the typical flow features and provides reliable results for burner design.
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