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Lay Summary 

 
          The combustion of oil, coal, and natural gas produces significant amounts of 

greenhouse gases in the atmosphere, including carbon dioxide (CO2), methane, nitrous oxide, 

and fluorinated gases. As a result, atmospheric CO2 concentration is increasing rapidly, and it 

has exceeded 425 ppm currently. This rising CO2 concentration has resulted in 

several environmental issues, including extreme weather, rising sea levels, and increasing 

global temperature. Carbon capture and sequestration (CCS) has been used to reduce the 

growing concentration of carbon dioxide. However, carbon capture and utilization (CCU) is a 

promising value-added alternative that uses CO2 as a C1 source to produce a variety of value-

added chemicals and fuels. Also, it provides dual benefits of mitigating rising CO2 

concentration and producing various value-added chemicals. Among the several catalytic 

transformations of carbon dioxide to value-added chemicals and fuels, the cycloaddition of 

epoxide with CO2 to produce cyclic carbonates (CCs) has received significant attention owing 

to 100% atom efficiency of the reaction and broad spectrum of industrial applications of CCs. 

Besides, synthesis of α-alkylidene cyclic carbonates (α-aCCs) by combining propargylic 

alcohols with CO2 has received significant attention due to their potential applications as 

commodity chemicals for polycarbonates and polyurethanes synthesis. Furthermore, the one-

pot synthesis of styrene carbonates from readily available styrene and CO2 has received 

substantial attention from researchers due to the promising applications of styrene carbonates 

as precursors for synthesizing styrene carbamates, vicinal diols and polymers. Notably, the 

one-step synthesis of styrene carbonates (SCs) from styrene and CO2 presents an 

environmentally friendly alternative to the two-step approach that needs styrene oxides 

(epoxides). 

           In addition, utilization of CO2 for production of bioactive molecules is of potential 

significance. Thus, carboxylation of terminal alkynes with CO2 to produce alkynyl carboxylic 

acids, a value-added chemical, is potentially noteworthy. The extensive use of alkynyl 

carboxylic acids in preparing anticancer medicines such as coumarin makes this conversion 

an excellent way to transfer carbon dioxide into value-added products. Furthermore, 

converting CO2 to bioactive oxazolidinones, an important building blocks of antibiotics, by 

carboxylative cyclization with propargylic amines is highly beneficial. However, most of the 

catalytic systems reported for carbon dioxide fixation require either high temperature and/or 

high pressure of carbon dioxide to synthesize these valuable compounds. Consequently, 

developing an active catalyst capable of converting CO2 to high-value chemicals at ambient 

conditions is extremely desirable. Towards this direction, we intend to synthesize framework-
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based materials composed of high CO2 philic basic and acidic (Lewis/Brønsted) sites suitable 

for selective capture and conversion of carbon dioxide under mild conditions. 

       Furthermore, the catalyst employed should exhibit high stability and recyclability for 

several cycles of reuse. In this direction, covalent organic frameworks (COFs) formed by 

covalent linking of organic precursors composed of light (B, C, N, O, F, and S) elements have 

gained much interest due to their modular nature facilitating rational design with tailored 

properties. COFs feature unique properties of high surface area/porosity and good 

thermal/chemical stability, rendering them promising candidate materials for selective capture 

and conversion of CO2 to value-added chemicals. The primary objectives of this thesis were to 

design functionalized covalent organic frameworks (COFs) and their utilization as recyclable 

catalysts to transform CO2 into value-added chemicals/fuels under environmentally benign 

reaction conditions. Consequently, several functionalized COFs were synthesized, and their 

application for selective capture and functionalization of CO2 into commodity chemicals was 

investigated. The thesis has been organized into five chapters, as summarized below. 

          Chapter 1: This chapter comprehensively introduces the topic, the importance of carbon 

capture and utilization (CCU), and various methods employed for chemical fixation of CO2 

into high-value compounds. Also, the potential application of COF-based porous materials for 

effective CCU is discussed. 

          Chapter 2: This chapter presents application of a polar functionalized covalent organic 

framework, COF-SO3H, for metal/solvent-free CO2 fixation to cyclic carbonates (CCs) under 

mild conditions. Here, COF-SO3H demonstrated high CO2 adsorption, with a heat of 

adsorption (Qst) value of 42.1 kJ/mol and good catalytic performance for cycloaddition of 

epoxides with CO2 to produce value-added cyclic carbonates under atmospheric pressure 

conditions. Furthermore, the role of -SO3H group in improving the catalytic fixation of CO2 

was further established using an analogous COF (COF-H), which lacks a polar sulfonic acid 

group. Indeed, COF-SO3H showed effective catalytic activity for CO2 chemical fixation to 

cyclic carbonates at ambient CO2 pressure. 

          Chapter 3: In this chapter synthesis of bipyridine-functionalized covalent triazine 

framework (CTF) and its utilization for stable anchoring of non-noble, alkynophilic Cu(I) 

active site is reported. The Cu(I)@bipy-CTF was employed as a recyclable catalyst to 

generate value-added α-alkylidene cyclic carbonates (α-aCCs) by coupling propargylic 

alcohol with dilute CO2 (13% CO2) at ambient conditions. The presence of both CO2-philic 

nitrogen and alkynophilic Cu(I) sites decorated in the 1D channels of bipy-CTF rendered 

excellent catalytic activity for CO2 utilization under atmospheric pressure conditions. 
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Furthermore, Cu(I)@bipy-CTF showed excellent recyclability and structural stability, even 

after numerous cycles of reuse. 

           Chapter 4: This chapter describes the use of Fe(III)-centered porphyrin-based covalent 

organic framework (Fe(III)@P-COF) for one-pot green synthesis of styrene carbonates (SCs) 

from easily available styrene and CO2 under ambient conditions. Furthermore, the catalytic 

activity was enhanced for the one-pot conversion of different alkenes (aliphatic and aromatic) 

to their corresponding cyclic carbonates. This one-step cyclic carbonate synthesis is a 

environmentally friendly alternative to traditional two-step procedure employing epoxides. 

Thus, this study constitutes a greener approach for synthesizing styrene carbonates from 

easily available styrenes under atmospheric pressure conditions. 

          Chapter 5: This chapter presents rational design of a highly porous bipyridine 

functionalized pyrene-based covalent organic framework (Pybpy-COF) and its application for 

stable anchoring of Ag NPs at the bipy sites exposed in 1D channels of the framework. Due to 

the presence of alkynophillic Ag and CO2 philic basic sites in the framework, Ag@Pybpy-

COF demonstrated substantial catalytic activity for carboxylation of terminal alkynes to 

alkynyl carboxylic acids via C-H bond functionalization under atmospheric pressure 

conditions. Besides, carboxylative cyclization of propargylic amines with CO2 to obtain 

oxazolidinones has also been achieved using Ag@Pybpy-COF under ambient conditions. 

Further, theoretical calculations unveiled insight mechanistic aspects of carboxylation of 

terminal alkynes/propargylic amines with CO2 to produce alkynyl carboxylic 

acids/oxazolidinones. Thus, this study demonstrates effective utilization of CO2 in 

synthesizing two useful compounds under mild conditions. 
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Abstract 

 
          The rising carbon dioxide (CO2) concentrations in the atmosphere contribute to various 

environmental issues, including extreme weather, climate change, and global warming. As a 

result, it is essential to control growing CO2 levels by utilizing it as a C1 feedstock for 

generating value-added chemicals and fuels. However, the functionalization of CO2 under 

ambient conditions is challenging due to its high kinetic inertness and thermodynamic 

stability. Consequently, it is extremely desirable to synthesize effective catalysts capable of 

selectively capturing CO2 and converting it into commodity chemicals. However, to 

accomplish efficient chemical fixation of CO2, most catalysts require high temperatures and 

pressure conditions. On the other hand, green and sustainable chemistry practices prefer 

recyclable catalysts capable of transforming CO2 into value-added chemicals under eco-

friendly mild conditions. In this context, covalent organic frameworks (COFs), a new family 

of porous organic polymers, have sparked widespread interest among researchers due to their 

modular nature facilitating the introduction of CO2-philic and catalytic sites. Motivated by the 

potential uses of COFs in the chemical fixation of CO2 to value-added chemicals, we sought 

to develop various functionalized frameworks suitable for environmentally friendly chemical 

fixation of CO2 into high-value compounds. The thesis work has been organized into five 

chapters. Chapter 1 presents importance of carbon capture utilization (CCU) and various 

strategies for converting CO2 into high-value chemicals or fuels. The advantages of COF-

based materials in CO2 capture and utilization are also discussed. Thus, motivated by CO2 

conversion to value-added chemicals to mitigate rising CO2 concentrations, we intend to 

develop functionalized COFs for effective CCU. In this context, Chapter 2 involves the 

rational construction of a polar functionalized COF with Brønsted acidic (-SO3H) sites 

decorated in the 1D channels and its investigation for metal/solvent-free cycloaddition of 

epoxide with CO2 to generate cyclic carbonates (CCs) under mild conditions. Further, the role 

of Brønsted acidic sites on the catalytic conversion of CO2 has been ascertained by utilizing a 

COF-H, which lacks acidic sites. 

          In Chapter 3, synthesis of a highly CO2-phillic and thermally stable covalent triazine 

framework (bipy-CTF) and its functionalization to anchor non-noble metal Cu(I) for fixation 

of CO2 from dilute gas into value-added α-alkylidine cyclic carbonate (α-aCC) under mild 

conditions has been studied. Furthermore, considering the potential benefits of porphyrin-

based linkers in selective CO2 capture and conversion, in Chapter 4, we developed Fe(III)-

embedded porphyrin-based COF (P-COF) and its catalytic performance for one-pot synthesis 

of styrene carbonates (SCs) from readily available styrene and CO2 under ambient conditions.       
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          In Chapter 5, the application of silver nanoparticles (Ag NPs) anchored pyrene-based 

COF for carboxylation of terminal alkynes with CO2 to produce value-added alkynyl 

carboxylic acids via C-H bond functionalization and carboxylative cyclization of propargylic 

amines to generate bio-active oxazolidinones under atmospheric conditions is presented. 

Overall, the thesis work involves the rational synthesis and functionalization of porous 

covalent organic framework materials with CO2-philic and catalytic sites ideal for 

environmentally friendly chemical fixation of carbon dioxide, a greenhouse gas, into various 

value-added chemicals. 
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1.1 Carbon dioxide (CO2), a greenhouse gas 

      The current energy demand for human activities is met primarily through fossil 

fuels and natural gas combustion. This process emits greenhouse gases such as CO2, 

NO2, and other fluorinated gases (Figure 1a).1 Hence, the level of CO2 in the 

atmosphere is fast growing, and it has surpassed 425 ppm currently.2 Figure 1b 

illustrates the overall CO2 emissions across various economic sectors globally. The 

highest emissions originate from industry, electricity production, agriculture, and 

transportation, followed by other energy-related processes (Figure 1b).3 This rising 

concentration of CO2 has caused a plethora of environmental concerns, including 

global warming, extreme weather conditions, and overall elevation of Earth's 

atmospheric temperature.4,5 To address the rising concentration of CO2, extensive 

research endeavors are underway worldwide in the realms of carbon capture, storage 

(CCS), and utilization (CCU).6-10 However, current CCS technology demands 

significant energy for processes such as purification, separation, transportation, and 

storage.11-13 A novel and valuable approach is carbon capture and utilization (CCU) as 

a C1 source for synthesizing valuable chemicals and fuels. The process of CCU offers 

numerous advantages, particularly in addressing energy-related issues.14 

 

 

Figure 1. (a) Global greenhouse gas emissions. (b) Global greenhouse gas emission by 

different economic sectors.  
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1.2  Carbon capture and utilization 

      The exploitation of carbon dioxide (CO2) as a C1 source offers the dual benefits of 

mitigating atmospheric CO2 levels and generating value-added chemicals.15-17 Carbon 

dioxide is an easily accessible, cheap, and harmless C1 source, making it an attractive 

candidate for chemical synthesis. The feasibility of coupling CO2 with various organic 

molecules enables production of a diverse array of chemicals and fuels, as illustrated 

in Figure 2. Consequently, employing CO2 as a C1 source to generate value-added 

compounds has become a significant area of research worldwide. At the same time, 

industrial applications of CO2 include the production of useful chemicals, such as urea, 

methanol, and salicylic acid. Besides, carbon dioxide is utilized in the food and 

beverage sectors. Thus, it is imperative to explore new and efficient methods for 

utilizing CO2 in the development of value-added compounds, especially cyclic 

carbonates, oxazolidinones, α-alkylidene cyclic carbonates (αCCs), formamides, 

alkynyl carboxylic acids, carbamates, etc., (Figure 2). In this regard, various synthetic 

pathways have been established to effectively convert CO2 into important compounds. 

For example, Cyclic carbonates are produced via cycloaddition reaction of epoxides 

with CO2. Oxazolidinones are formed through carboxylative cyclization of propargylic 

amines with CO2. The α-Alkylidene cyclic carbonates (α-aCCs) are formed by 

coupling propargylic alcohols with CO2. Formamides are generated by reacting amines 

with CO2 and alkynyl carboxylic acids/phenylpropiolic acids are formed through 

carboxylative cyclization of terminal alkynes with CO2. These compounds have broad 

applications in industry and pharmaceuticals synthesis. For example, cyclic carbonates 

are employed as electrolytes in batteries and polar aprotic liquid solvents. 

Oxazolidinones and alkynyl carboxylic acids have significant pharmaceutical 

applications, including the production of antibiotics and anticancer medications.           

       However, utilization of CO2 at ambient conditions poses challenges due to its high 

C-O bond dissociation energy (805 kJ/mol) and kinetic inertness. Hence, there is 

significant scope for developing effective catalysts that efficiently adsorb CO2 and 

transform it into valuable compounds under ambient conditions.18 It is worth noting 

that, for optimal catalytic activity, the catalyst should possess high CO2-philic basic 

and catalytic sites along with high surface area, thermal/chemical stability.19,20 In 

search of ideal catalytic systems, researchers worldwide are making extensive research 

efforts to develop effective catalytic processes for carbon dioxide capture and 
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conversion to various value-added compounds.21-27 However, heterogeneous catalysts 

are crucial in practical applications because they can eliminate the issues of product 

separation and catalyst recyclability.28-30 In the literature, there are various 

heterogeneous catalysts reported for transformation of CO2 to high-value chemicals, 

including metal-oxides, metal-organic frameworks (MOFs), covalent organic 

frameworks (COFs), etc.31-35 Considering the unique advantages of COF-based 

materials, their excellent ability to capture carbon dioxide has been utilized to design 

efficient, reusable catalysts for concurrent capture and transformation of CO2 into 

useful compounds under ambient conditions.36,37 

 

Figure 2. Schematic representation of CO2 utilization as a C1 source in constructing 

various value-added compounds. Reproduced with permission from reference 38.  
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1.3 Framework-based materials 

1.3.1. Metal-Organic Frameworks (MOFs) 

      MOFs, also known as porous coordination polymers (PCPs), represent an 

innovative genre of crystalline inorganic-organic hybrid porous materials. MOFs are 

synthesized by coordination bonds between metal nodes and multi-functional organic 

molecules, forming extended 1D, 2D, or 3D structures.39,40 These frameworks exhibit 

remarkable attributes, including high crystallinity, excellent surface area, variable pore 

dimension, and functionality.41,42 These exceptional properties enable MOFs to be 

utilized in various applications, including gas capture/separation,43 catalysis,44 

sensing,45 proton conduction,46 energy storage47,48, and drug delivery.49 Among these 

applications, conversion of CO2 into useful chemicals/fuels is of particular interest.50 

The rational integration of organic linkers with CO2-philic sites and Lewis acidic 

metal nodes as catalytic sites renders them highly effective heterogeneous catalysts for 

specific CO2 adsorption and transformation. The transformation of CO2 to cyclic 

carbonates by coupling with epoxides has been widely investigated using MOFs as 

recyclable catalysts.51,52 The Lewis acidic metal nodes in MOFs are potential sites for 

polarizing epoxides, which further couple with CO2 to produce cyclic carbonates 

under ambient conditions. In addition, MOFs have been utilized as effective catalysts 

for transforming  CO2 into various commodity chemicals.   

 

1.3.2. Covalent-Organic Frameworks (COFs) 

      COFs are an emerging class of crystalline porous organic polymers constructed 

from organic linkers composed of light elements (B, C, N, O, S, and F) through 

covalent bonding to form extended 2D or 3D framework structures.53-56 In COFs, the 

organic building units are generally connected via strong covalent bonds. The strong 

covalent connections within the building units are crucial in forming extended 

crystalline networks. The distinctive properties of COFs include large surface area, 

crystallinity, thermal/chemical stability, and tailored properties, making them ideal 

catalysts for various applications.57,58 These applications encompass gas 

adsorption/separation, sensing, proton conduction, catalysis, energy storage, etc.59-63 

COFs are synthesized using various organic linkers to construct frameworks with 

diverse architectures. The pore dimensions and functionality can be finely modified by 

using appropriate linkers, rendering the creation of COFs with 1D, 2D, or 3D 
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structures, as illustrated in Figure 3. The 1D COFs are linear or rod-like structures 

where the covalent connectivity extends primarily in one dimension (Figure 3).64 The 

2D COFs are planar frameworks with covalent bonds extending in two directions, 

generating sheet-like networks.65 These layers stack on top of one another through 

weak van der Waals interactions or π-π stacking. On the other hand, 3D COFs 

represent the most complex and fully interconnected networks, extending in three 

spatial dimensions.66 These 3D covalent linking render rigid, highly porous structures 

featuring exceptional stability and large surface area. The synthesis of 1D, 2D, or 3D 

COFs can be achieved by rationally choosing organic building blocks. For instance, a 

C2 + C2 amalgamation of organic building units along a direction forms 1D COF. 

While a combination of C3 + C2 or C3 + C3 linkers results in hexagonal COFs, and C4 + 

C2 combination affords tetragonal COFs with an extended 2D structure.53 It is 

important to highlight that formation of 3D COFs requires a minimum of one 

tetrahedral (Td) organic unit.56 For example, a combination of tetrahedral node with a 

C2 or C3 organic building block renders 3D COFs, as depicted in Figure 3. 

 

Figure 3. Construction of 1D chain, 2D sheet, and 3D framework of COFs connected 

through different linkers. 

 

 1.3.2.1. History of COFs 

      In 2005, Yaghi and co-workers developed the first 2D COF through a condensation 

reaction involving phenyl diboronic acid (BDBA).67 Further, Yaghi’s group 

constructed a second COF (COF-5) by condensation reaction of diboronic acid 

(BDBA) with hexahydroxytriphenylene (HHTP).67 Notably, the COFs with boroxine 

and boronate linkages are known to exhibit remarkable thermal stability. In 2008, 
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Thomas and co-workers developed triazine-based frameworks.68 Thus, the first 

covalent triazine framework (CTF) was constructed by cyclotrimerization of 1,4-

dicyanobenzene in molten ZnCl2 at 400 °C.68 The synthesized CTF exhibited superior 

thermal stability compared to boron-based COFs. In 2009, Yaghi and co-workers 

prepared the first imine-based (C=N) 3D COF by employing tetrahedral tetra-(4-

anilyl)-methane and linear terephthalaldehyde through solvothermal method.69 These 

imine-based COFs offer intriguing applications in numerous areas,  including gas 

adsorption/separation, energy storage, catalysis, sensing, etc.70-73 Banerjee, and co-

workers synthesized β-ketoenamine-linked COFs in 2012 by Schiff-base condensation 

reaction of 1,3,5-triformylphloroglucinol with p-phenylenediamine.109 The synthesized 

COFs exhibited significant chemical endurance in both acidic and basic environments, 

owing to significant intramolecular (N-H…N) hydrogen bonding interactions within 

the framework layers. This advancement signifies a promising stride in COFs, 

presenting a gateway for global researchers to fabricate and employ chemically stable 

frameworks in diverse catalytic applications. Besides, several other research groups 

have developed COFs that exhibit high stability by employing various linkages, viz 

squaraine, azine, imide, and sp2 carbon-linked COFs.74-78 It has been demonstrated that 

sp2 carbon-linked COFs (olefin/vinylene-based) synthesized through Knoevenagel 

condensation of aromatic aldehydes and nitriles have received great attention owing to 

presence of ᴫ-electron conjugated network. Thus, in 2019, Wang and co-workers 

successfully developed the first olefin-linked COF by employing 1,4-

phenylenediacetonitrile (PDAN) and porphyrin aldehyde via a base-catalyzed 

Knoevenagel condensation reaction.79 Overall, the development of numerous COFs by 

utilizing different linkages has greatly broadened their scope for applications in several 

fields, including gas adsorption, separation, sensing, catalysis, and CCU. 80-82 
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Figure 4. Development of COFs with different linkages. 

 

1.4. Applications of COFs 

      The distinct properties of COF-based materials, especially large surface area, 

adjustable pore size, functionality, and chemical constancy, render them excellent 

catalysts for various applications including gas adsorption/separation, sensing, drug 

delivery, catalysis, and energy storage (Figure 5).83-86 These innovative properties of 

COFs inspired us to develop efficient framework materials that can absorb CO2 and 

simultaneously convert it into valuable chemicals under ambient conditions.  
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Figure 5. A schematic representation of the various applications of COFs. 

 

1.5. COFs for CO2 capture and utilization 

1.5.1. COFs for CO2 capture 

      The literature study demonstrated that COFs offer significant potential for CO2 

capture and storage (CCS) applications owing to their pre-designed structures and 

customized functions by incorporation of desired polar (-COOH, -OH, SO3H), and 

basic imine (C=N), Azo (N=N) moieties within the framework.87-89 In the literature, 

several COFs have been described for applications in CO2 capture and storage 

(CCS).90-92 It has been extensively proven that incorporating polar functional groups 

viz -NH2, -OH, SO3H, -COOH, and CO2-philic basic sites within the COF framework 

significantly enhances CO2 uptake.93-95 These functional groups improve carbon 

dioxide adsorption capacity, facilitating efficient capture and storage.96-99 A few 

notable examples of COFs reported for substantial CO2 adsorption at 273 K 
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temperature and 1 bar CO2 pressure, together with their Qst value, have been listed in 

Table 3. In 2015, Jiang and co-workers synthesized imine-based COF employing 

porphyrin amine [Tetra(p-amino-phenyl)porphyrin (TAPP)] and aromatic aldehydes 

[2,5-dihydroxyterephthalaldehyde (DHTA) + 1,4-phthalaldehyde (PA)] under 

solvothermal conditions, and it was further functionalized with succinic anhydride to 

introduce carboxylic acid groups onto the 1D channel walls of the framework.101 The 

fully functionalized COF ([COOH]100%-H2P-COF)  showed significantly high CO2 

adsorption of 89 cc/g (Qst value of 43.5 kJ/mol) in contrast to non-functionalized COF 

([HO]100%-H2P-COF) with 32 cc/g (Qst value of 36.6 kJ/mol) at 273 K and 1 bar 

pressure. The high CO2 adsorption of carboxylic acid functionalized COF has been 

attributed to the availability of extensive binding sites for CO2 molecules. 

Additionally, the carboxylic acid groups contribute to a higher isosteric heat of 

adsorption.101,108 

      Further, in 2013, Han and co-workers synthesized two covalent triazine 

frameworks (CTFs) named CTF-1-600 and FCTF-1-600 by treating terephthalonitrile 

and tetrafluoroterephthalonitrile with ZnCl2.
104 Notably, the CTF (FCTF-1-600) 

constituted by fluorinated linker showed high CO2 uptake of 124 cc/g over non-

fluorinated CTF (80 cc/g) at 273 K and 1 bar CO2 pressure. The enhanced CO2 uptake 

of perfluorinated CTF (FCTF-1-600) is associated with greater interaction of CO2 

molecules (Qst = 32 kJ/mol) with the electronegative fluorine atoms exposed in the 1D 

channels of the framework. Further, basic nitrogen sites are known to support greater 

interaction of CO2 molecules with the framework. For instance, Liu and co-workers 

reported azine-linked COF (ACOF-1), produced by reaction of 1,3,5-triformylbenzene 

with hydrazine hydrate using solvothermal method, which demonstrated improved 

CO2 uptake of 90 cc/g at 273 K, 1 bar CO2 owing to presence of basic azine groups.105 

The increased CO2 adsorption has been ascribed to favorable interaction of carbon 

dioxide with azine groups exposed within the COF. Further, Banerjee and co-workers 

conducted a CO2 uptake study on triformylphloroglucinol (Tp) based COFs. They 

synthesized various Tp-based COFs using different functional amines, namely TpPa-1, 

TpPa-2, TpPa-NO2, and TpPa-F4. Notably, TpPa-1 demonstrated an impressive CO2 

uptake capacity of 78 cc/g at 273 K and atmospheric pressure (Table 1).109,112 Several 

other examples have been reported in the literature utilizing functionalized COFs for 

achieving high CO2 uptake, as summarized in Table 1. Thus, the advancement of 
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COFs as highly efficient adsorbent catalysts for substantial CO2 adsorption under 

ambient pressure and temperature conditions is being extensively explored worldwide.  

 

Table 1: Representative examples of COFs with their CO2 uptake capacities and Qst 

values. 

S. No. COFs Bond type/ 

Functionality 

CO2 uptake 

(cc/g) 

Qst (kJ/mol) References 

1.  [COOH]100%-

H2P-COF 

Imine/COOH 89 43.5 101 

2.  TBICOF -NH 68.89 42.8 100 

3.  [OH]100%-

H2P-COF 

Imine/OH 32 36.4 101 

4.  FCTF-1-600 Triazine/F 124 32.0 104 

5.  COF-SO3H Imine/-SO3H 54.5 31.4 93 

6.  COF-JLU-2 Azine 110 31.0 102 

7.  COF-IL Imidazolium-

IL 

106.04 30.2 103 

8.  CTF-1-600 triazine 80 30.0 104 

9.  ACOF-1 Azine 90 27.6 105 

10.  TDCOF-5 Boronate 47 21.8 106 

11.  [EtNH2]100-

H2P-COF 

Imine/ NH2 49 20.9 108 

12.  [EtOH]100-

H2P-COF 

Imine/OH 43 19.3 108 

13.  [AcOH]100-

H2P-COF 

Imine/COOH 49 18.8 108 

14.  ILCOF-1 imine 31 18.3 107 

15.  [MeOAc]100-

H2P-COF 

Imine/COOMe 33 17.8 108 

16.  [Et]100-H2P-

COF 

Imine/CH3 19 15.3 108 

17.  TpPa-1 Imine/H 78 - 109 

18.  COF-DhaTab Imine/OH 78 - 110 

19.  TpPa-2 Imine/CH3 64 - 109 

20.  DhaTph Imine/OH 65 - 111 
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21.  TpPa-NO2 Imine/NO2 73 - 112 

22.  COF-1 Boroxine 51 - 113 

23.  DmaTph Imine/OMe 37 - 111 

24.  TpPa-F4 Imine/F 35 - 112 

 

1.5.2. COFs for CO2 utilization 

      COFs have gained significant interest as potential candidate materials for CCU 

because of their adjustable pore sizes and functional properties. COFs can be 

engineered to exhibit precise pore sizes and high surface areas, facilitating efficient 

CO2 adsorption and transformation to value-added compounds. The inclusion of polar 

functional moieties, for instance, amines (-NH2), carboxylic acids (-COOH), and 

sulfonic acids (-SO3H) enhances their CO2 uptake performance. The free amines 

within the framework react with CO2 to generate carbamate species, whereas 

carboxylic acids and sulfonic acids interact with carbon dioxide through hydrogen 

bonding and other non-covalent interactions.101,114 These interactions enhance the 

framework’s affinity for CO2 and its selective capture performance.93,115 This enhances 

COFs performance to adsorb significant amounts of CO2 even under ambient 

conditions. 

     Furthermore, the potential of COFs to integrate catalytic sites opens up avenues for 

converting captured CO2 into valuable chemicals and fuels. Thus, CCU provides the 

combined advantage of decreasing rising carbon dioxide concentration and producing 

value-added chemicals at ambient conditions. Numerous transformations have been 

established in literature to employ CO2 to produce important commodity compounds. 

Notable catalytic transformations include the generation of cyclic carbonates (CCs) 

through C-O bond formation between epoxides and CO2.
116 The coupling of 

propargylic amines with CO2 to acquire 2-oxazolidinones,117 and carboxylation of 

propargylic alcohols with CO2 to yield α-alkylidene cyclic carbonates (αCCs) and 

others (Figure 6).118 Additionally, carboxylation of terminal alkynes with CO2 to 

synthesize bioactive alkynyl carboxylic acids,119 hydrogenation of CO2 to generate 

valuable formic acid, and photo/electrocatalytic CO2 reduction to generate various 

fuels are studied (Figure 6).120,121 
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Figure 6. A schematic representation of CO2 utilization catalyzed by COF catalysts. 

       

      Thus COFs offer great potential in CO2 utilization for synthesis of various useful 

compounds and fuels. The desired CO2 transformation determines the choice of active 

sites and functional groups within COFs, as different catalytic reactions require 

uniquely designed functionalities to ensure optimal performance and selectivity. Thus, 

the framework design and its post-synthetic modification processes need to be 

optimized to obtain COFs with improved structural and functional properties. These 

approaches are described in detail below (Figure 7).            

 

1.5.2.1. Modification in the backbone of COFs 

      As reported in the literature, imine-based COFs are extensively utilized in several 

applications, including the chemical fixation of CO2 to synthesize various commodity 

compounds,  photocatalytic CO2 reduction, hydrogen evolution from water, etc.122,123 

Despite their versatility, imine-based COFs often face challenges regarding stability 

when exposed to aqueous environments. It has been demonstrated that the chemical 

stability of imine-based COFs can be amended by reacting the imine bonds with 

styrene and epoxides, resulting in formation of stable aromatic linkages with phenyl 

ring through multicomponent Povarov reaction.124,125 These functionalizations are 



Chapter 1  Introduction 

15 
 

anticipated to render COFs with stronger backbone structures (Figure 7a). For 

instance, Thomas and co-workers constructed a COF (PMCR-1) under solvothermal 

conditions using triazine-based amine and aldehyde precursors.124 They employed a 

multicomponent Povarov reaction to generate quinoline-linked COF with enhanced 

framework stability. This modified aqueous stable COF (PMCR-1) was utilized for 

photocatalytic hydrogen peroxide (H₂O₂) production. 

 

 

Figure 7. Representation of various strategies to incorporate catalytic active sites into 

a COF framework. Reproduced with permission from reference number 57. 

 

1.5.2.2. Functionalization of COFs  

      The rationally functionalized COFs incorporating CO2-philic and catalytic sites 

function as bifunctional materials for efficient CO2 capture and further 

functionalization to value-added compounds. A key challenge is integrating specific 

functional groups into the COF skeleton, which is often hindered by rigorous 

conditions required for solvothermal synthesis. To address this issue, polar functional 

moieties can be introduced into the COF’s framework via chemical reactions, ensuring 

the framework structure remains intact (Figure 7b).126,127 The functionalization of 

COFs can be accomplished by treating with various reagents which can introduce 

desired functional moieties like -NH2, -OH, -SO3H, -COOH, etc. In literature, various 

functionalization strategies of COFs and their applications for effective CCU to 
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synthesize value-added compounds are reported. For instance, Liu and co-workers 

reported synthesis of two triazine-based COFs (COF-JLU6, COF-JLU7) and their 

functionalization with hydroxyl groups.146 These OH-functionalized COFs were 

subsequently employed for the cycloaddition of epoxides with CO₂ to generate value-

added cyclic carbonates. The hydroxyl groups in the COF framework promote 

polarizing the epoxide through hydrogen bonding, enabling the formation of cyclic 

carbonates. Wang and co-workers developed a hydroxyl-based COF, namely COF-

HNU2.128 The COF was further modified by reacting it with imidazolium-based ionic 

liquids (ILs) to obtain bifunctional imidazolium-anchored COF and utilized for the 

chemical functionalization of CO2 to cyclic carbonates. This post-synthetic 

modification approach enhanced the catalytic efficiency of the COFs. Here, the 

presence of polar hydroxyl groups functions as Brønsted acidic sites and serves as 

hydrogen bond donors, facilitating the activation of epoxides to undergo cycloaddition 

with CO2,  resulting in the generation of cyclic carbonates.  

 

1.5.2.3. Incorporation of catalytic active metal sites into COFs 

      The catalytic conversion efficiency of CO₂ to value-added compounds can 

significantly improve by strategically incorporating metal catalytic sites into the 

framework via post-synthetic modification (Figure 7c). Metals such as Zn, Mg, Co, 

Ag, Ru, Cu, Fe, etc., can be precisely integrated into the anchoring sites of the 

framework, such as bipyridine sites or free-base porphyrin cavities.129,130 These metal-

doped frameworks exhibit high efficacy in various catalytic conversions, including the 

generation of cyclic carbonates through the cycloaddition reaction of epoxides with 

CO₂, among other valuable transformations. For example, Yaghi and co-workers 

developed cobalt-doped porphyrin-based COFs via Schiff-base condensation reaction 

of porphyrin amine, tetra(p-amino-phenyl)porphyrin (TAPP) with various 

functionalized aromatic aldehydes under solvothermal conditions.122 These 

synthesized COFs demonstrated potential application in electrocatalytic CO2 

reduction. In a related study, Wang and co-workers constructed porphyrin-based COFs 

and subsequently doped with various metal ions, including Co(II) and Zn(II).131 The 

resulting metal-doped COFs were then employed to generate cyclic carbonates via 

cycloaddition reaction of CO2 with epoxides. Further, incorporation of alkynophilic 

active sites (Ag(0)/Cu(0)) at the bipyridine anchoring sites of the framework 

considerably increases catalytic activity for the conversion of CO2 to important 
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compounds.132 For example, the alkynophilic metal sites promote activation of the 

C≡C bond of alkynes and facilitate CO₂ coupling in generating value-added α-

alkylidene cyclic carbonates (αCCs). In 2019, Wang and co-workers successfully 

synthesized an azine-linked three-dimensional COF (3D-HNU5). The synthesized 

COF was subsequently utilized to stabilize silver nanoparticles (NPs) within the 

framework.133 The resulting COF (Ag@3D-HNU5), demonstrated significant catalytic 

efficiency in functionalizing CO2 with propargylic alcohols to generate value-added α-

alkylidene cyclic carbonates (αCCs) under ambient reaction conditions. Thus, the 

post-synthetic modification method is useful for stabilizing catalytically active sites 

within the functionalized pores of the framework to obtain hybrid materials capable of 

converting CO2 into valuable chemicals.  

 

1.5.3. Utilization of CO2 via C-X (X = O, N, and C) bond formation   

      The framework-based materials provide dual benefits of mitigating rising CO2 

concentration and producing new value-added compounds under mild conditions. 

Moreover, numerous value-added chemicals and fuels have been generated by the 

chemical fixation of CO2 through C-X (X = O, N, and C) bond formation between 

CO2 and substrate molecule under mild conditions (Figure 8).134,116 As a result,  

substantial research initiatives have been devoted to the rational creation of COF-

based catalysts for the chemical transformation of CO2 into useful chemicals and fuels, 

as shown below.  

 

 

Figure 8. Utilization of CO2 through C-X bond formation.  
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1.5.3.1. Utilization of CO2 via C-O bond formation 

      The cycloaddition of epoxides with CO2 via C-O bond formation has garnered 

significant attention lately because of its high atom efficacy, leading to cyclic 

carbonates with 100% selectivity.135,136 The resulting cyclic carbonates offer extensive 

uses in the pharmaceutical and industrial fields. For instance, they are employed as 

electrolytes in lithium-ion batteries, substrates for polymer synthesis, and polar aprotic 

chemicals, etc.137,138 Numerous homogeneous catalysts, including ionic liquids,139 

metal complexes,140 and quaternary ammonium salts,141 have been reported for the 

conversion of CO2 to cyclic carbonates using epoxides. However, to facilitate product 

separation and catalyst recycling, heterogeneous catalysts, including carbon-based 

materials,142 metal oxides,143 zeolites,144 metal-organic frameworks (MOFs),145 

covalent organic frameworks (COFs),93 and covalent triazine frameworks (CTFs)78 

have been employed in functionalization of CO2 with epoxides to generate CCs. 

Particularly, COFs show potential for fixation of carbon dioxide to cyclic carbonates 

(CCs) owing to their distinctive structural characteristics composed of significant CO2-

philic basic and Lewis/Bronsted acidic sites. These features enhance the uptake of CO2 

and epoxide polarization, thereby promoting the efficient formation of cyclic 

carbonates. In some cases, COFs enable in reducing the necessity of metal ions 

employed to polarize epoxides in synthesizing cyclic carbonates.100,146 Additionally, 

their stability under mild conditions further enhances their appeal for sustainable and 

environmentally friendly catalytic processes. The Brønsted acidic sites (-SO3H, -

COOH, -OH) within the framework support polarization of epoxides in cyclic 

carbonate synthesis. 

      The plausible reaction mechanism for the generation of cyclic carbonates via 

chemical reaction of CO2 with epoxides through C-O bond formation is shown in 

Scheme 1. To accomplish effective coupling of CO2 with epoxides, the catalyst should 

be composed of Brønsted acidic active sites (AS), which are utilized for the 

polarization of the epoxides, along with a nucleophilic co-catalyst such as tetra-n-

butylammonium bromide (TBAB) for ring opening of polarized epoxide, thereby, 

promoting the generation of cyclic carbonates. The reaction proceeds with the 

polarization of epoxide using Brønsted acidic active sites (AS) present within the 

catalyst. Subsequently, nucleophilic attack of Br- at the less sterically hindered carbon 

atom of polarized epoxides resulted in the generation of a bromoalkoxide intermediate. 

Further, CO2 insertion occurs, leading to an alkyl carbonate anion that undergoes ring 
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closure to yield five-membered cyclic carbonate as the final product.93,100 

Simultaneously, regeneration of the catalyst takes place, which is reused for 

subsequent catalytic cycles. The selected examples of COFs known for production of 

cyclic carbonates are summarized in Table 2.  

     

Scheme 1. A plausible reaction mechanism of CO2 coupling with epoxides to 

synthesize cyclic carbonates through C-O bond formation catalyzed by COF. AS 

represents Brønsted acidic active sites such as -SO3H, -COOH, and -OH.  
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Table 2: Representative examples of COFs reported for cycloaddition of 

epichlorohydrin with CO2. 

S. No. Catalyst 
Active 

sites 

Pressure 

(bar) 

Conversion 

(%) 
References 

1. COF-JLU7 -OH 01 92 146 

2. COF-JLU6 -OH 01 86 146 

3. TBICOF -NH- 01 95 100 

4. 
2,3-DhaTph 

COF 
-OH 01 77 147 

5. 
2,3-DmaTph 

COF 
-OCH3 01 63 147 

6. COF-SO3H -SO3H 01 >99 93 

7. Tp-BD-COF -NH- 01 99 148 

8. Tp-PD-COF -NH- 01 87 148 

9. Tp-PMD-COF -NH- 01 85 148 

10. 
TFPB-DHBD-

COF 
-OH 01 97 149 

11. 
OMe-TPBP-

COF 
-OCH3 01 48 150 

12. 
OMe-OH-

TPBP-COF 
-OCH3/OH 01 91 150 

13. OH-TPBP-COF -OH 01 89 150 

          

      Furthermore, another application of COFs for utilization of CO2 via C-O bond 

formation is the production of α-alkylidene cyclic carbonates (α-aCCs) via 

carboxylation of propargylic alcohols with CO2.
151 The synthesized α-aCCs have 

potential utility in synthesis of polyurethanes, polycarbonates, and drugs.152 The 

literature study reveals that the transformation of propargylic alcohols to α-aCCs by 

utilization of greenhouse gas, carbon dioxide has been achieved using alkynophilic 

Cu(I)/Ag(I) active sites in the framework. A plausible mechanism for carboxylative 

cyclization of propargylic alcohol with CO2 to α-aCCs catalyzed by COFs is shown in 

Scheme 2. In the initial step, the alkyne bond of the propargylic alcohol undergoes 

polarization through interaction with the active sites (AS) present in the COF. Then, 
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propargylic alcohol deprotonation occurs with a base, DBU (1,8-

diazabicyclo[5.4.0]undec-7-ene). This deprotonation facilitates the insertion of CO2 

molecule, forming a carbamate species. Subsequently, intramolecular cyclization 

occurs, leading to the generation of α-alkylidene cyclic carbonates (αCCs). At last, the 

catalyst is regenerated and utilized for subsequent cycles.19 

       

 

Scheme 2. A plausible reaction mechanism for CO2 coupling with propargylic alcohol 

to synthesize α-alkylidene cyclic carbonates through C-O bond formation catalyzed by 

COF. AS represents alkynophilic Ag(I) or Cu(I) active site. 

 

1.5.3.2. Utilization of CO2 via C-N bond formation 

      The utilization of CO2 through C-N bond formation offers the benefits of 

mitigating the rising CO2 concentration and generating bioactive 2-oxazolidinones. 

This has been achieved by chemical fixation of propargylic amines with CO2 through 

carboxylative cyclization. The oxazolidinones offer potential applications as building 

blocks for synthesis of antibiotics and other pharmaceuticals.153 A literature study 

indicated that alkynophilic Cu(0)/Ag(0) or Cu(I)/Ag(I) are effective for converting 

propargylic amines to 2-oxazolidinones via carboxylative cyclization with CO2.
154 The 
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literature study unveiled that the number of examples of COFs reported for synthesis 

of 2-oxazolidinones is relatively less compared to that of cyclic carbonates (CCs). 

Consequently, there is substantial scope for investigating synthesis of 2-

oxazolidinones using functionalized COFs by utilization of CO2. The plausible 

reaction mechanism for generation of 2-oxazolidinones by coupling propargylic 

amines with CO2 through carboxylative cyclization is shown in Scheme 3. 

        

 

Scheme 3. A plausible reaction mechanism for CO2 utilization to synthesize 2-

oxazolidinones through C-N bond formation catalyzed by COF. AS represents 

alkynophilic Ag(I) or Cu(I) active site.  

 

      In the first step, the C≡C bond of propargylic amine is polarized by alkynophilic 

Cu(0)/Ag(0) or Cu(I)/Ag(I) active sites (AS) present in the framework. Following this 

activation, propargylic amine is deprotonated using DBU as a base. Subsequently, the 

insertion of CO2 takes place, resulting in carbamate formation. The subsequent step 

involves an intramolecular cyclization process, wherein the carbamate intermediate 

undergoes rearrangement to form 2-oxazolidinones.117 Finally, 2-oxazolidinone 
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product is eliminated from the metal center, regenerating the catalyst for further 

catalytic cycles. 

 

1.5.3.3. Utilization of CO2 via C-C bond formation 

      The utilization of CO2 via C-C bond formation by carboxylation of terminal 

alkynes to produce alkynyl carboxylic acids/esters has sparked substantial interest.155 

This process finds potential application in synthesizing antibiotics and anticancer 

agents, such as flavones, coumarins, and other essential compounds.156 The literature 

reports have demonstrated the necessity of an alkynophilic metal center, such as Cu or 

Ag, to catalyze this transformation. The Cu/Ag metals play a vital role in facilitating 

the carboxylation of terminal alkynes with CO2 to produce alkynyl carboxylic 

acids/esters. Thus extensive research efforts have been conducted worldwide to 

advance the carboxylation of terminal alkynes with CO2 to obtain alkynyl carboxylic 

acids/esters. The detailed mechanism for the fixation of CO2 to alkynyl carboxylic 

acids/phenylpropiolic acids via C-C bond formation through the carboxylation of 

terminal alkynes with CO2 catalyzed by COFs is shown in Scheme 4. 

          

     

Scheme 4. A plausible reaction mechanism of CO2 coupling with terminal alkynes to 

synthesize alkynyl carboxylic acids through C-C bond formation catalyzed by COF. 

AS represents alkynophilic Ag(I)/Cu(I), or Ag(0)/Cu(0) active site. 
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      As discussed before, the reaction proceeds with a polarization of C≡C bond of 

terminal alkynes at the alkynophilic (Ag/Cu) active site. This step is followed by 

deprotonation of the alkyne in presence of Cs2CO3, resulting in the formation of an 

Ag-acetylide intermediate. Then, CO2 insertion occurs in the Ag/Cu-acetylide 

intermediate to form the corresponding Ag-carboxylate. Subsequently, transmetalation 

leads to the formation of cesium carboxylate, which, upon hydrolysis, results in the 

desired product (alkynyl carboxylic acid). The catalyst was regenerated for multiple 

cycles of reuse. 

      Overall, with the thesis objectives of CO2 utilization as a C1 source for generating 

valuable chemicals using heterogeneous catalysts, we strategically synthesized 

functionalized COFs. Further, the COFs were utilized for effective CO2 capture and 

conversion into valuable commodity compounds, viz cyclic carbonates (CCs), α-

alkylidene cyclic carbonates (α-aCCs), 2-oxazolidinones, and bio-active 

alkynylcarboxylic acids/phenylpropiolic acids under ambient conditions, which are 

discussed in the subsequent chapters.  

 

1.6. Summary 

      This chapter provided a brief overview of COFs, their distinctive features, and 

potential applications. Specifically, we explored the potential of COFs for CO2 capture 

and utilization into several valuable chemicals through C-X (X = O, N, and C) bond 

formation. This discussion sets the stage for further exploration of COFs in the context 

of sustainable chemistry and green technology. 
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2.1. Introduction 

          Carbon dioxide (CO2) is one of the major contributors to global warming, 

resulting in the greenhouse effect and climate change.1-4 However, CO2 can be utilized 

as a harmless, abundant, cheap, and renewable feedstock to synthesize high-value 

chemicals or fuels.5-9 Among the various chemical functionalizations, coupling CO2 

with epoxides to produce cyclic carbonates has attracted significant attention due to its 

100% atom competence.10-16 Further, cyclic carbonates offer numerous applications in 

various fields, such as precursors for synthesizing polymeric materials and 

pharmaceuticals, electrolytes in lithium-ion batteries, and so on.17 In this regard, 

various homogeneous18-22 and heterogeneous catalysts23-30 have been utilized for the 

cycloaddition of epoxide with CO2. However, most of these catalysts require costly 

metal ions, high pressure, and temperature conditions to efficiently convert CO2 into 

cyclic carbonates.31-36 On the other hand, towards green and sustainable chemistry 

practices, the development of heterogeneous catalysts for metal-free utilization of CO2 

under mild conditions has gained the significant interest of researchers.37-41 In this 

context, covalent organic frameworks (COFs), a new class of crystalline porous 

organic polymers (POPs) have gained tremendous attention.42-44 Further, COFs can be 

rationally designed with tailored chemical and physical properties, suitable for various 

applications, like selective gas storage/separation, catalysis, proton conductivity, and 

so on.45-50 Particularly, COFs composed of CO2-philic basic sites such as azo (N=N), 

azine (C-N-N-C), and imine (C=N), based organic linkers are of potential significance 

for selective capture and conversion of CO2.
51-55 Further, most of the COFs reported 

for catalytic conversion of CO2 required additional steps for catalyst preparation.56-59 

On the other hand, it has been observed that catalyst-bearing hydrogen bond donor 

(HBD) groups can activate the epoxides through hydrogen bonding interaction.60       

          Keeping these aspects, in Chapter 2, we report the utilization of sulfonic acid-

functionalized COF name COF-SO3H for the chemical fixation of CO2 into value-

added cyclic carbonate.61 Further, to evaluate the role of the polar group (-SO3H) 

towards CO2 capture and conversion, an analogous COF, COF-H, which lacks the -

SO3H group was synthesized. Interestingly, COF-SO3H showed about 10.8 kJ/mol 

higher heat of interaction energy for CO2 than that of COF-H. The high value of Qst 

observed for COF-SO3H highlights the crucial role of polar functionality (-SO3H) 

towards enhanced capture and conversion of CO2. Further, the presence of a high 
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density of basic -NH and polar Brønsted acid (BA) sites provided a suitable platform 

for metal/solvent-free chemical fixation of CO2 with epoxides under mild conditions. 

Indeed, COF-SO3H showed higher catalytic activity than most of the COF-based 

catalysts reported for the coupling of CO2 to epoxides. Besides, the catalyst could be 

recycled for multiple cycles without loss of catalytic activity and framework rigidity. 

Overall, this chapter demonstrates the utilization of polar functionalized COF for 

selective capture and fixation of CO2 under atmospheric pressure conditions. 

 

2.2. Experimental section  

2.2.1. Materials 

          All the reagents used in this work were commercially available and employed 

as provided without any further purification. 1,3,5- trimethyl benzene, 1,4-dioxane, 

N-butyl alcohol, and o-dichlorobenzene were purchased from TCI chemicals Ltd. 

Acetic acid (99%) was obtained from Merck and Co. 2,5-diamino benzene sulfonic 

acid, and 1,4-phenylenediamine utilized for COF synthesis were obtained from Alfa 

Aesar Chemical Co. 1,3,5-Triformyl phloroglucinol was prepared by following the 

previously reported procedure.62 

 

2.2.2. Physical measurements  

          Powder X-ray diffraction measurements were conducted in the 2θ range of 3-

50° on PAN analytical’s X’PERT PRO X-Ray diffractometer with a scan rate of 

2°/min using Cu-Kα radiation (λ = 1.54184 Å, 40 kV, 20 mA) for confirming phase 

purity of as-synthesized samples. Thermogravimetric analyses of the as-synthesized 

samples were carried out using a Metler Toledo thermogravimetric analyzer under a 

nitrogen atmosphere with a flow rate of 30 mL/min from 25-600 °C (heating rate of 5 

°C/min). Fourier transform infrared (FT-IR) spectra of the samples were recorded on a 

Bruker Tensor-F27 instrument in ATR mode. The products of catalytic reactions were 

identified, and the catalytic conversions were determined by 1H NMR spectra recorded 

on a JEOL JNM-ECS-400 spectrometer operating at a frequency of 400 MHz using 

CDCl3 solvent. 13C CP-MAS (Cross Polarization Magic Angle Spinning) solid-state 

NMR (400MHz) spectra were recorded on Bruker Advance 400 (DRX400) 

instrument. 
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2.2.3. Synthesis 

2.2.3.1. Synthesis of COF-SO3H      

          COF-SO3H was synthesized following the previously reported procedure with 

little modification.63 Briefly, a pyrex tube is charged with 1,3,5-

Triformylphloroglucinol (0.3 mmol), 2,5-diaminobenzenesulfonic acid (0.45 mmol), 3 

mL solvent mixture of N-butyl alcohol and o-dichlorobenzene, and 0.5 mL of 3 M 

glacial acetic acid. The mixture was sonicated for 10 minutes to get a homogeneous 

dispersion of the solution. Then, the Pyrex tube was flash-frozen using a liquid N2 bath 

(77 K) and degassed by three freeze-pump-thaw cycles. Subsequently, the pyrex tube 

was sealed off using a flame torch and heated in an oven at 120 °C for 72 h. After 

completion of the reaction, a dark red-colored precipitate was collected by filtration 

and washed with acetone. The crystalline solid obtained was then subjected to solvent 

exchange with acetone 5-6 times to remove unreacted reactants and dried at 120 °C 

under vacuum for 12 h to get a fine crystalline red powder of COF-SO3H in ~70 % 

isolated yield. 

 

2.2.3.2. Synthesis of COF-H 

          COF-H was synthesized by following the previously reported procedure with 

little modification.64 Briefly, a pyrex tube was charged with Triformylphloroglucinol 

(0.3 mmol), 1,4-phenylenediamine (0.45 mmol), and a 3 mL solvent mixture of 

mesitylene and dioxane (1:1), and 0.5 mL of 3 M aqueous acetic acid. Then, the 

mixture was sonicated for 10 minutes to get a homogeneous dispersion of the solution. 

Subsequently, the pyrex tube was flash-frozen using a liquid N2 bath (77 K) and 

degassed by three freeze-pump-thaw cycles. Later, the tube was sealed and maintained 

in an oven at 120 °C for 72 h. After the reaction was completed, the red-colored 

precipitate was collected by centrifugation and washed with acetone. The powder was 

kept in acetone for solvent exchange to remove the high boiling solvent in the material 

and dried at 120 °C under vacuum for 12 h to get a fine crystalline red powder of 

COF-H in ~80 % isolated yield. 

 

2.2.4. Metal-free cycloaddition of CO2 with epoxides 

          The cycloaddition reaction of CO2 with various epoxides was carried out in a 

stainless steel reactor (50 mL) with a magnetic stirrer at 80 °C and 1 bar pressure of 

CO2. The catalyst, COF-SO3H, was activated at 373 K for 12 h under vacuum to 
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remove the guest solvents. The reactants were taken in the reactor at room 

temperature, and it was flushed with CO2 twice, the required pressure, 0.1 MPa was 

introduced, and the contents were kept stirring for 24 h. After the reaction, the reactor 

was allowed to cool down, excess CO2 gas was released from the reactor, and the 

catalyst, COF-SO3H was separated from the reaction mixture by filtration. The 

catalytic conversion was determined by recording the 1H NMR spectra of the filtrate. 

The recovered catalyst was washed with acetone thrice, activated at 373 K under 

vacuum for 12 h, and reused for further catalytic cycles. The catalytic conversions 

were quantified by 1H NMR analysis. The TON was calculated using the relation 

given below. 

TON = Moles of product formed (mmol g-1)/total number of active acidic sites on the 

catalyst (mmol g-1). 

 

2.2.5. Structure simulation and modeling of COF-SO3H and COF-H 

          To elucidate the structure of COF-SO3H/COF-H and to calculate the unit cell 

parameters, a possible 2D model was constructed. The experimental PXRD pattern 

matches well with the simulated pattern for an eclipsed model of COF-SO3H and 

COF-H. Refinement of PXRD patterns was carried out using the Pseudo-Voigt 

function. The simulated optimized structure of COF-SO3H/H is shown in Figures 1 

and 2. 
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Figure 1. The unit cell of COF-SO3H in different display style representation, (A) 

Line, (B) stick, (C) ball and stick, and (D) stacked 2D layers of COF-SO3H. 

 

 

Figure 2. The unit cell of COF-H in different display style representation, (A) Line, 

(B) stick, (C) ball and stick, and (D) stacked 2D layers of COF-H. 
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2.2.6. Gas adsorption measurements 

          N2 adsorption-desorption studies were carried out at 77 and 273 K, while CO2 

adsorption-desorption measurements were carried out at 273 and 298 K using 

QUANTACHROME Quadrasorb SI automated surface area and pore size analyzer 

instrument. Ultrapure (99.995%) N2, CO2, and CH4 gases were used for the 

adsorption-desorption measurements. Prior to adsorption measurements, the sample 

(~0.050 g) was evacuated at 393K under vacuum (20 mTorr) for 12 h on 

QUANTACHROME Flovac degasser and further purged with ultrapure N2 

(99.995%) gas on cooling. The BET surface area of the COFs was estimated from N2 

sorption isotherms carried out at 77 K. The gas selectivity experiments were carried 

out at 273 K. The dead volume of the sample cell was measured using Helium gas 

(99.995%).  

 

2.3. Results and discussion  

2.3.1. Synthesis and structural description 

          The COF-SO3H and COF-H were synthesized by following the previously 

reported procedure with a slight modification (Scheme 1). The FT-IR spectra of as-

synthesized COF-SO3H showed the absence of characteristic stretching peaks around 

3335-3425 cm-1 and 1650 cm-1 corresponding to free N-H and C=O groups from 

precursors, 2,5-diaminobenzenesulfonic acid and 1,3,5-triformylphloroglucinol, 

respectively. In addition, the appearance of two new peaks at 1578 cm-1 and 1233 cm-1 

corresponding to C=C and C-N stretching frequencies, respectively, supporting the 

COF formation by Schiff-base condensation of the aldehyde and amine precursors 

(Figure A1a). Similarly, new peaks at 1572 and 1252 cm-1 corresponding to C=C and 

C-N stretching frequencies were observed in support of COF-H formation (Figure 

A1b). In the case of COF-SO3H, the appearance of an additional peak at 1005 cm-1 

due to S-OH stretching supports the presence of free sulfonic acid (-SO3H) groups 

decorated in the 1D channels of the COF (Figure A1a).65  



Chapter 2                                                                   Highly efficient metal/solvent…. 

47 
 

 

Scheme 1.  The synthesis scheme of COF-SO3H, COF-H, and their structural models 

(yellow, Sulfur; red, Oxygen; blue, Nitrogen; grey, Carbon; white, Hydrogen). 

 

          Moreover, the 13C CP-MAS solid-state NMR spectrum of COF-SO3H/H 

showed the absence of a C=O resonance peak, confirming the complete 

consumption of starting material.66,67 Further, the appearance of new resonance 

peaks at δ, 145-150 ppm corresponding to the C-N bond formed by Schiff-base 

condensation supports the formation of COF-SO3H/H (Figure 3a and 3b). It is worth 

mentioning that the peaks due to C-N and C=C in COF-SO3H are relatively 

downfield shifted compared to those of COF-H, which has been attributed to the 

presence of electron-withdrawing group (-SO3H).66,67 Moreover, the PXRD pattern 

of as-synthesized COF-SO3H showed a predominant peak at low angle range, 2Ɵ = 

4.8° assigned to (100) plane supporting the long-range ordering in the structure and 

appearance of a broad peak in the range of 2Ɵ = 26.8-27.2° is assigned to (001) 

plane corresponding to π-π stacking between the planes of COF-SO3H. It is worth 

noting that the experimental PXRD pattern is well-matched with that of the 

simulated pattern (Figure 3c). The PXRD pattern of COF-H showed an intense peak 

at 2Ɵ = 4.7° corresponding to the (100) plane supporting the long-range ordering in 

the structure. Besides, minor peaks were observed at 2Ɵ = 8.3°, 11.1°, and 27°, 

which are assigned to (200), (210), and (001) planes (Figure 3d). The d-spacing 

calculated for COF-SO3H and COF-H was found to be 3.4 Å and 3.3 Å, respectively 

(Scheme 1). Further, the most probable 2D model of COF-SO3H was envisaged in 
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an eclipsed structure with a Triclinic crystal system in the P1 space group. The unit 

cell parameters for COF-SO3H are a = 22.83 Å, b = 22.94 Å, c = 6.87 Å, α = 89.85°, 

β = 89.79° and γ = 120.54°. Whereas the probable 2D model of COF-H in an 

eclipsed form was simulated with a hexagonal crystal structure in the P6/m space 

group and the unit cell parameters are a = b = 22.82 Å, c = 3.34 Å, α = β = 90° and γ 

= 120°. Further, COF-SO3H possesses 1D channels with a diameter of 14.5 Å 

decorated with a high density of polar (-SO3H) groups. Whereas, COF-H has 1D 

channels with a dimension of 18.3 Å free from polar functional groups (Scheme 1). 

 

 

Figure 3. 13C CP-MASS solid-state NMR spectrum of COF-SO3H (a) and COF-H (b). 

Comparison of theoretical and experimental PXRD patterns of COF-SO3H, (c) and 

COF-H (d). SEM images of COF-SO3H (e) and COF-H (f).  

          The SEM images of COF-SO3H showed nanofiber-like morphology, while 

COF-H showed aggregated particles (Figures 3e and 3f).68 Further, to test the thermal 

stability of the samples, thermogravimetric analysis (TGA) of the COFs was carried 

out as shown in Figure A2. The TGA plot of the COFs show a weight loss in the 

temperature range of 50-100 °C, which can be attributed to the loss of adsorbed 

solvent molecules. The desolvated COFs were stable up to 300 °C, and at higher 

temperatures, the frameworks undergo disintegration (Figure A2a and A2b). 

 

2.3.3. Gas adsorption studies 

          The permanent porosity of COF-SO3H and COF-H was determined by N2 
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adsorption measurements at 77 K. Prior to the adsorption measurements, the as-

synthesized samples were activated at 120 °C under vacuum for 12h. From N2 

adsorption measurements, the BET surface area (SBET) of COF-SO3H and COF-H 

were determined to be 185 m2g-1 and 498.7 m2g-1, respectively (Figure 4a). The 

relatively higher surface area of the COF-H sample could be attributed to its relatively 

smaller particle size in comparison to that of COF-SO3H. The pore size distribution 

plot of COF-SO3H confirms the microporous (~ 14.2 Å) nature of the material. 

Further, CO2 adsorption isotherms of COF-SO3H/H follow a type-I profile with the 

uptake of 75.2/58.5 cc/g and 54.5/38.5 cc/g at 273 and 298 K, respectively (Figure 4b 

and 4c). Furthermore, the adsorption isotherms were fitted with the Freundlich-

Langmuir equation69 (Figure A3 and A4), and the value of heat of interaction (Qst) 

determined using the Clausius-Clayperon equation70 was 42.2 kJ/mol and 31.4 kJ/mol 

for COF-SO3H and COF-H, respectively (Figure A5a and A5b). The high heat of 

interaction energy of COF-SO3H over COF-H supports stronger interaction of CO2 

with polar (-SO3H) groups lined in the 1D channels of the framework. A similar 

observation of enhanced CO2 interaction with frameworks in the presence of polar 

SO3H groups is reported in the literature.71 Moreover, COF-SO3H shows selective 

adsorption of CO2 over N2 and CH4 at 273 K (Figure 4d) with a Henry selectivity 

constant of 49.3 and 86.8 for KCO2/CH4 and KCO2/N2, respectively (Figure A6).  
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Figure 4.  N2 adsorption isotherms for COF-SO3H and COF-H carried out at 77 K (a). 

The CO2 adsorption-desorption isotherms of COF-SO3H (b) and COF-H (c). Selective 

CO2 adsorption isotherms of COF-SO3H (d).  

  

          Furthermore, the amount of acidic sites present in COF-SO3H was determined 

by the temperature-programmed desorption (TPD) technique. The NH3-TPD analysis 

was carried out to quantify the acidity of the COF-SO3H. As shown in Figure A7, the 

NH3-TPD analysis revealed that NH3 is desorbed with peaks maxima around 140 and 

360 °C.  The amount of acidity in COF-SO3H was calculated to be 3.46 mmol g-1, 

which can be attributed to the presence of sulfonic acid (-SO3H) groups. Thus, the -

SO3H groups introduce Brønsted acid sites in the COF, which facilitate the catalytic 

conversion of CO2 with epoxides to obtain value-added cyclic carbonates.  

 

2.3.4. Metal-free utilization of CO2     

          The high heat of CO2 interaction and the presence of Brønsted acid (BA) sites in 

COF-SO3H motivated us to explore its catalytic activity towards the cycloaddition of 

CO2 with epoxides under metal/solvent-free conditions. To start with, the catalytic 

reactions were carried out using epichlorohydrin (ECH) as the model substrate, and 



Chapter 2                                                                   Highly efficient metal/solvent…. 

51 
 

the catalytic conditions were optimized (Table 1) by varying the temperature and time 

of the reaction, as shown in Figure 5.   

 

 

Figure 5. The catalytic optimization performed by varying reaction temperature (a) 

and time (b). Conditions: Epoxide (20 mmol), COF-SO3H (0.01 mmol), TBAB (2.5 

mol%), and 1 bar CO2. 

 

          The catalytic reaction carried out with COF-SO3H as a catalyst at RT and 1 

bar CO2 resulted in 63% conversion of ECH into cyclic carbonate (CC) in 24 h 

(Table 1). Further, with an increase in reaction temperature to 80 °C, the conversion 

of ECH to corresponding cyclic carbonate increased by >99% (Table 1). Moreover, 

a control experiment carried out using TBAB (tetrabutylammonium bromide) as a 

catalyst showed only 27% conversion of ECH to CC under the optimized 

conditions, highlighting the importance of COF-SO3H towards the conversion of 

CO2 (Table 1). 
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Table 1. Optimization of reaction parameters for cycloaddition reaction of CO2 with 

epichlorohydrin catalyzed by COF-SO3H. 

Entry 

No. 

Catalyst 

(mol%) 

Co-

catalyst 

(mol%) 

Pressure 

(bar) 

Time 

(h) 

Temperature 

(°C) 

Conversion 

% 

1. - - 1 12 r.t. - 

2. - - 1 12 60 - 

3. COF-

SO3H 

- 1 12 80 - 

4. COF-

SO3H 

TBAB 1 24 30 63 

5. COF-

SO3H 

TBAB 1 24 80       >99 

6. COF-H TBAB 1 24 80 75 

7. - TBAB 1 24 80 27 

           

          This high catalytic activity motivated us to extend the substrate scope for 

various other epoxides. The epoxides, 1,2-epoxypropane, 1,2-epoxybutane, 1,2-

epoxyhexane, and 1,2-epoxydecane were found to undergo conversion to the 

corresponding cyclic carbonates with >99, 85, 71, and 66% yield, respectively 

(Table 2). The decrease in the catalytic conversion of the longer epoxides can be 

attributed to the confinement of the pore channels, which results in the restricted 

diffusion of larger epoxides to the BA sites lined in the 1D channels of the 

framework.72 Whereas, butyl glycidyl ether (BGE) and allyl glycidyl ether (AGE) 

undergo relatively higher catalytic conversion with 89 and 80% conversion, 

respectively, which can be ascribed to the electron-donating nature of glycidyl ether 

(Table 2).73 Besides, aromatic epoxide, viz styrene oxide (SO), was found to convert 

75% to styrene carbonate (Table 2).  Further, to evaluate the role of Brønsted acid (-

SO3H) sites towards the catalytic conversion of CO2, the catalytic activity of analogs 

COF having no -SO3H sites was studied at the optimized conditions. Interestingly, 

COF-H catalyzed only 75% conversion of ECH to CC at the optimized conditions 

(Table 1). This relatively lower catalytic activity of COF-H highlights the 

importance of -SO3H groups for enhanced capture and conversion of CO2. It is 
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worth emphasizing that COF-SO3H showed higher catalytic activity than various 

COF-based catalysts reported in the literature (Table A1). 

 

Table 2. Metal/solvent-free fixation of CO2 catalyzed by COF-SO3H as 

heterogeneous catalyst.a     

                                   
S. 

No. 

 

                    Substrate            Product Conversion 

(%)b 

Selec

tivity 

(%) 

TON 

 

1 

 

 

                    
             

>99 100 248 

 

2 

 

 

                              

                 

>99 100 248 

 

3 
                       

             

85 100 213 

 

4 

 

 

               

      

71 99 178 

 

5 

 

 

 
 

66 100 165 

 

6 

 

 

            

    

80 100 200 

 

7 

 

 

     
    

89 100 223 

 

8 

 

 

 

 

                               

75 99 188 

aReaction conditions: Epoxide (20 mmol), COF-SO3H (0.01 mmol), TBAB (2.5 

mol%), Temperature (80 °C), 1 bar CO2, 24 h, and bThe catalytic conversions were 

determined by 1H NMR analysis. 
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2.3.5. Recyclability and catalyst leaching test 

          The recyclability of a heterogeneous catalyst is an essential parameter for 

practical applications. To test the recyclability, the COF-SO3H was separated from the 

reaction mixture by filtration, washed with acetone, dried, and reused for subsequent 

cycles. Remarkably, no significant loss in the catalytic activity was observed even 

after reusing for five consecutive cycles (Figure 6a). Further, the recycled COF was 

characterized by various techniques to confirm its structural stability and morphology. 

Indeed, the PXRD pattern, FT-IR spectra, and morphology of the recycled sample 

matched well with an as-synthesized sample, confirming retaining the original 

framework structure even after catalysis (Figure A8-A10). Furthermore, the N2 

adsorption isotherm of COF-SO3H recovered after catalysis showed a slight reduction 

in BET surface area (151 m2/g) in comparison to that of pristine COF (185 m2/g) 

(Figure A11). To rule out the leaching of the active catalyst, a control experiment was 

carried out for cycloaddition of ECH in which the catalytic reaction was stopped after 

6 h, the COF was separated by filtration, and the filtrate was allowed to stir for an 

additional period of 18 h. Interestingly, only a slight increase (~6%) in the conversion 

of ECH was observed, which can be attributed to the presence of a co-catalyst (TBAB) 

in the reaction mixture. The significant reduction in the conversion of ECH upon 

removal of COF catalyst supports the absence of leaching of active catalyst into the 

reaction mixture (Figure 6b). 

 

 

Figure 6. (a) Recyclability test and (b) leaching test of COF-SO3H.  
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2.3.6. Plausible mechanism 

          A plausible mechanism for the cycloaddition reaction of CO2 with epoxide 

using COF-SO3H is shown in Scheme 2. The sulfonic acid groups lined in the 1D 

channels act as Brønsted acid sites at which polarization of epoxide takes place 

through H-bonding interactions. To confirm this step, COF-SO3H was treated with 

ECH for 2 h followed by washing with methanol. The FT-IR spectra (Figure A12) of 

the recovered COF show characteristic peaks around 3000-2900 cm-1 corresponding to 

C-H stretching frequencies of the epoxide, supporting polarization of the epoxide by 

COF-SO3H. This step is followed by nucleophilic attack of the Br- ion of TBAB at the 

less hindered carbon atom of epoxide, facilitating ring-opening of the epoxide and 

leading to the formation of oxyanion intermediate. Subsequent insertion of the CO2 

molecule results in forming an alkyl carbonate anion, which undergoes ring closure to 

form cyclic carbonate, and its elimination regenerates the COF-SO3H catalyst for 

further cycles.  

 

 

Scheme 2. A plausible mechanism for coupling CO2 with epoxides catalyzed by 

TpPa-SO3H (only part of the COF unit is shown for clarity). 

 

2.4. Conclusion 

          In summary, the present work demonstrates the utilization of a polar 

functionalized COF (COF-SO3H) for selective capture and conversion of CO2 into 

high-value cyclic carbonates under metal and solvent-free mild conditions of RT and 
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an atmospheric pressure of CO2. The presence of the polar group not only enhanced 

the CO2 affinity of the framework but also promoted higher catalytic activity over the 

analogs COF, which lacks the polar group. More importantly, the COF-SO3H catalyst 

was highly recyclable for up to five cycles without loss of catalytic activity and 

framework stability. Overall, this study can pave the way for the development of 

metal-free heterogeneous catalysts functionalized with polar Brønsted acid sites for the 

fixation of CO2 into value-added chemicals under mild conditions.    
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(CTF) for Simultaneous Capture and 

Conversion of CO2 at Ambient 

Conditions 

 

 

❖ Reference: “Singh, G.; Nagaraja, C. M. J. CO2 Util. 2022, 63, 102132.”  
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3.1. Introduction 

          The concentration of CO2 is increasing rapidly in the atmosphere, resulting in 

various environmental issues.1-3 Therefore, it is necessary to extenuate the rising 

concentration of CO2 by utilizing it as a C1 source for synthesizing valuable chemicals 

and fuels.4-9 However, owing to the high C-O bond energy (805 kJ/mol) and inert 

nature of CO2, efficient catalysts capable of selectively capturing and converting 

carbon dioxide into fine chemicals at ambient conditions are highly desired.10-21 In this 

regard, researchers worldwide are making significant research efforts to develop 

efficient catalytic systems.22-30 Among the various functionalization strategies 

developed so far, the formation of α-aCCs by fixation of CO2 with alkyne molecules 

has gained much attention due to their potential utilization as commodity chemicals 

for polycarbonates, polyurethanes, pharmaceuticals, and so on.31-38 Hence design of 

highly active catalytic systems composed of high density of CO2-philic and catalytic 

sites capable of functionalizing CO2 to α-aCCs at mild conditions is of significant 

interest. In this regard, covalent organic frameworks (COFs) have received significant 

interest because of their highly exposed surface and modular nature, enabling rational 

tuning of pore size and functionality for desired applications.39-47 Therefore, the 

strategic design of COFs composed of CO2 philic basic and Bronsted acidic 

functionalities is of potential significance to utilize as promising transition metal-free 

heterogeneous catalysts for the chemical functionalization of CO2. Further, the 

literature survey revealed that production of α-aCCs has been mostly achieved using 

Ag(I)/Ag(0) as a catalyst owing to alkynophilicity of silver promoting activation of 

alkyne C≡C bonds.56-59 However, from the point of green and sustainable synthesis, 

the use of non-noble metal-based catalysts is highly preferred over noble metal-based 

ones.60 

          Keeping these objectives, in Chapter 3, we report the strategic utilization of the 

covalent triazine framework (CTF) owing to its advantages of high thermal/chemical 

stability and large pore channels decorated with CO2-philic basic nitrogen sites.61-63 

More importantly, the functionalized CTFs with the 1D channels decorated with 

bipyridine coordination sites can serve as ideal supports for anchoring catalytic 

metal/complex ions to carry out various catalytic transformations.64-67 In this regard, 

CTF-anchored metal-based heterogeneous catalysts are gaining increasing attention 

because of the advantages of high catalyst stability towards recycling.68-70 Hence, in 
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this chapter, we demonstrate the application of CTF with pores functionalized with 

bipyridine sites as the ideal support for anchoring noble metal-free Cu(I) ions to obtain 

Cu(I)@bipy-CTF. 

 

3.2. Experimental section 

3.2.1. Materials 

            All the reagents used in this work are commercially available and employed 

as provided without any further purification. 2,2’-bipyridine-5,5’-dicarbonitrile 

(DCbipy) utilized for CTF synthesis was obtained from the alfa Aeser chemical co. 

The CuI and ZnCl2 were purchased from Sigma Aldrich. 

 

3.2.2. Physical measurements 

           Powder X-ray diffraction measurements were conducted in the 2θ range of 5-

80° on PAN analytical’s X’PERT PRO X-ray diffractometer with a scan rate of 2°/min 

using Cu-Kα radiation (λ = 1.54184 Å, 40 kV, 20 mA) for confirming phase purity of 

as-synthesized samples. Fourier transform infrared (FT-IR) spectra of the samples 

were recorded on a Bruker Tensor-F27 instrument in ATR mode. The products of 

catalytic reactions were identified, and the catalytic conversions were determined by 

1H NMR spectra recorded on a JEOL JNM-ECS-400 spectrometer operating at a 

frequency of 400 MHz using CDCl3 solvent. 

 

3.2.3. Synthesis  

3.2.3.1. Synthesis of bipy-CTF 

           The bipy-CTF was synthesized by following the reported procedure with little 

modifications.71 2,2’-bipyridine-5,5’-dicarbonitrile (0.10 g, 0.04 mmol) and ZnCl2 

(0.33 g, 2.4 mmol) were charged into 1 mL sealed tube under N2 atmosphere. After 

that, the tube was sealed under a vacuum with flame and kept in the furnace for 48 h at 

400 °C with a heating rate of 60 °C/h. After the reaction, the furnace was cooled down 

to room temperature, and the resulting black powder was ground and stirred in 250 mL 

of water for 3 h. After washing with water and acetone, the resulting solid was 

refluxed with 1 M HCl (250 mL) for 16 h. Further, the black powder was kept for 

drying at 200 °C for 6 h after washing with 1 M HCl (150 mL), H2O (150 mL), THF 

(150 mL), and acetone (150 mL). 
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3.2.3.2. Synthesis of Cu(I)@bipy-CTF 

           The bipy-CTF (0.036 mmol) and an acetonitrile solution of CuI (0.18 mmol) 

were taken in a 50 mL two-neck RB under N2 atmosphere and incubated at 60 °C for 

12 h. The resulting powder was separated from the reaction mixture by centrifugation, 

washed with a copious amount of acetonitrile, and used for further characterization 

after vacuum drying. 

 

3.2.4. Catalytic cycloaddition reactions of CO2 with propargylic alcohol 

           The catalytic cyclic carboxylation of propargylic alcohol was carried out in a 

Schlenk tube (30 mL) at 40 °C under 1 atm CO2 (balloon). Prior to the catalytic study, 

the catalyst was activated by treating at 373 K under vacuum for 12 h. In a typical 

procedure, catalyst Cu(I)@bipy-CTF (0.02 mmol), propargylic alcohol (4 mmol), and 

DBU (0.4 mmol) were taken in a Schlenk tube with 2 mL DMF at room temperature. 

The CO2 was introduced at 1 atm using a balloon, and the contents were stirred at 40 

°C for 24 h. Then, the catalyst was separated by centrifugation, and the conversion 

was determined by 1H NMR analysis of the filtrate in CDCl3 solvent. The recovered 

catalyst was washed in acetone, activated for 12 h at 100 °C, and then used for 

subsequent catalytic cycles. A similar procedure was used for the catalytic reactions 

carried out with dilute gas (13% CO2), except that the reaction temperature was 

maintained at 60 °C. 

 

3.2.5. Adsorption measurements 

             N2 adsorption-desorption studies were carried out at 77 and 273 K, while CO2 

adsorption-desorption measurements were carried out at 273 and 298 K using 

QUANTACHROME Quadrasorb SI automated surface area and pore size analyzer 

instrument. Ultrapure (99.995%) N2, CO2, and CH4 gases were used for the 

adsorption-desorption measurements. Before the adsorption measurements, the sample 

(~0.100 g) was evacuated at 393 K under vacuum (20 mTorr) for 12 h on 

QUANTACHROME Flovac degasser and further purged with ultrapure  N2 

(99.995%) gas on cooling. The BET surface area of the COFs was estimated from N2 

sorption isotherms carried out at 77 K, respectively. The gas selectivity experiments 

were carried out at 273 K.  
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3.3. Results and discussion 

3.3.1. Synthesis and Characterizations 

             The synthesis of bipy-CTF with pores functionalized with bipyridine moieties 

was achieved by adopting the previously reported procedure with a slight modification 

and characterized by various techniques (Scheme 1). The FT-IR spectra of as-prepared 

bipy-CTF depicted stretching frequencies at 1506 and 822 cm-1 corresponding to the 

triazine ring and absence of peaks at 2300-2200 cm-1 corresponding to C≡N (nitrile) 

group of precursor, 5,5ʹ-dicyano-2,2ʹ-bipyridine supporting the complete conversion of 

nitrile group into triazine ring (Figure 1a). Furthermore, the appearance of bands at 

1600-1550 cm-1 and 740 cm-1 corresponds to C=N and C-H stretching vibrations of the 

bipyridine ring, respectively.65 Furthermore, the solid-state 13C CP-MAS NMR 

spectrum of bipy-CTF showed characteristic peaks at 120-170 ppm corresponding to 

the 13C resonance from carbon atoms of the triazine and bipyridine rings supporting 

the formation of bipy-CTF (Figure 1b).65,72 Further, the powder X-ray diffraction 

(PXRD) pattern of bipy-CTF showed a broad peak at 2Ɵ = 25° which is assigned to 

the (001) plane, indicating the structural ordering of the bipy-CTF (Figure A13).65,73 

 

 

Scheme 1. Synthesis scheme of bipy-CTF and Cu(I)@bipy-CTF. 

 

          The anchoring of Cu(I) at the bipyridine sites of CTF was achieved through a 

post-synthetic approach by treating as-synthesized bipy-CTF with acetonitrile (ACN) 

solution of CuI for 12 h at 60 °C. The FT-IR spectra of Cu(I)@bipy-CTF showed a 

shift in the C=N stretching frequency of the bipyridine ring supporting the embedding 
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of Cu(I) ions at the bipy sites lined in the 1D channels of the COF (Figure 1a).70 The 

PXRD pattern of Cu(I)@bipy-CTF is in accordance with that of pristine COF, 

suggesting that the framework is retained even after metalation (Figure A13). The 

scanning electron microscopy (SEM) images of bipy-CTF show irregular block-

shaped morphology of the sample and the morphology was retained even after 

embedding of Cu(I) at the bipy sites of the framework (Figure 1c and 1d). Further 

support for anchoring of Cu(I) in CTF was obtained from energy dispersive 

spectroscopy (EDS) analysis (Figure A14a and A14b). Besides, the percentage loading 

of Cu(I) determined by microwave-plasma atomic emission spectroscopy (MP-AES) 

analysis was 7.5% (Figure A15). 

  

 

Figure 1. (a) FT-IR plots of dicyanobipyridine (black), bipy-CTF (red), and 

Cu(I)@bipy-CTF (blue). (b) 13C CP-MAS solid-state NMR spectrum of bipy-CTF. 

The SEM images of bipy-CTF (c) and Cu(I)@bipy-CTF (d). 

 

          The X-ray photoelectron spectroscopy (XPS) analysis was performed for 

bipy-CTF and Cu(I)@bipy-CTF to determine the elemental composition. Figure 2a 

shows the N 1s spectra of bipy-CTF with two BE peaks at 398.7 and 399.2 eV 

corresponding to triazine and pyridine N, respectively. Whereas the deconvoluted N 

1s spectra (Figure 2b) of Cu(I)@bipy-CTF showed BE peaks not only for triazine 
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and pyridine Ns but also for the Cu(I) bound bipy N at 400.2 eV.71,74 Figure 2c 

shows Cu(I) spectra with binding energy (BE) peaks at 933.1 and 952.9 eV assigned 

to 2P3/2 and 2P1/2, respectively, which is in line with the XPS spectra of Cu(I) 

reported before.60 Hence, the XPS analysis confirmed the Cu(I) anchoring at the 

bipyridine sites decorated in the pore walls of bipy-CTF.  

          Thermogravimetric analysis (TGA) of bipy-CTF revealed high thermal 

stability of the sample up to 550 °C (Figure 2d) with an initial weight loss of ~11% 

corresponding to guest water molecules. Meanwhile, the TGA plot of Cu(I)@bipy-

CTF showed thermal stability up to 400 °C, and at higher temperatures, the 

framework undergoes disintegration (Figure 2d). 

   

 

Figure 2. XPS spectra (a) N 1s spectrum of bipy-CTF, (b)  N 1s spectrum of 

Cu(I)@bipy-CTF, (c) Cu 2p spectrum of Cu(I)@bipy-CTF, and (d) 

Thermogravimetric analysis (TGA) plots for bipy-CTF (red) and Cu(I)@bipy-CTF 

(blue). 

 

3.3.2. Gas sorption analysis 

          To test the permanent porosity of Cu(I)@bipy-CTF, the N2 sorption studies 
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were carried out. The as-prepared bipy-CTF and Cu(I)@bipy-CTF were activated at 

120 °C for 12 h under vacuum prior to gas sorption measurements. As shown in 

Figure 3a, N2 sorption isotherms display a type-I plot indicating the microporous 

nature of CTF. The calculated BET (Brunauer-Emmett-Teller) surface area of bipy-

CTF and Cu(I)@bipy-CTF were found to be 538.3 m2g-1 and 348.6 m2g-1, 

respectively. The reduction in surface area of Cu(I)@bipy-CTF can be ascribed to a 

partial loss of porosity upon embedding of Cu(I) ions at the bipy sites lined in the 

1D channels of CTF. Further, CO2 sorption measurements of bipy-CTF and 

Cu(I)@bipy-CTF show type-I plots with the uptake of 48.13/29.48 cc/g and 

32.15/21.26 cc/g at 273/298 K, respectively (Figure 3b and 3c). The CO2 sorption 

isotherms were fitted with the Freundlich-Langmuir equation to accurately predict 

the CO2 uptake (Figures A16 and A17).75 Moreover, the heat of interaction energy 

(Qst) estimated from the Clausius-Clayperon equation was 34.94 and 44.09 kJ/mol 

for bipy-CTF and Cu(I)@bipy-CTF, respectively (Figure A16 and A17). The high 

value of interaction energy indicates preferential interaction of CO2 with basic 

nitrogen sites of Cu(I)@bipy-CTF. As shown in Figure 3d, gas selectivity 

measurements revealed negligible uptake of N2 and CH4 over CO2 with a Henry gas 

selectivity constant of 29.32 for KCO2/CH4 and 51.94 for KCO2/N2, respectively 

(Figure A18). 

   



Chapter 3                                                                           Rational Design of Cu(I)…. 

76 
 

 

Figure 3. N2 sorption isotherm for bipy-CTF and Cu(I)@bipy-CTF carried out at 77 K 

(a). The CO2 sorption isotherm of bipy-CTF (b) and Cu(I)@bipy-CTF (c). Selective 

CO2 sorption isotherm of Cu(I)@bipy-CTF (d). 

 

3.3.3. Coupling of CO2 with propargylic alcohol at atmospheric conditions 

          The presence of CO2 philic triazine nitrogen and catalytic Cu(I) sites in 

Cu(I)@bipy-CTF encouraged us to investigate its catalytic performance for coupling 

of CO2 with propargylic alcohol to produce α-alkylidene cyclic carbonate (Table 1). 

To begin with, the activity was checked at RT and 1 atm (balloon) of CO2 using 2-

methyl-3-butyne-2-ol as a model substrate with the addition of DBU (1,8-

diazabicyclo[5.4.0]underc-7-ene) which facilitates the deprotonation of propargylic 

alcohol. Indeed, Cu(I)@bipy-CTF catalyzed about 80% conversion of propargylic 

alcohol into α-alkylidene cyclic carbonate within 24 h with high selectivity (> 99%) at 

room temperature (Table 1). Further, upon increasing the temperature up to 40 °C, the 

catalytic conversion was enhanced to 96% in 24 h, supporting the promising catalytic 

activity of Cu(I)@bipy-CTF for the conversion of CO2 to valuable chemicals (Table 

1). Moreover, control experiments performed using Cu(NO3)2.6H2O, and bipy-CTF as 

catalysts showed no conversion of propargylic alcohol into α-alkylidene cyclic 
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carbonate. This observation clearly highlights the importance of Cu(I) catalytic sites in 

activating and functionalizing the alkynes with CO2 to yield α-aCC (Table 1). More 

interestingly, Cu(I)@bipy-CTF showed high catalytic activity as compared to the 

homogeneous counterpart, CuI which showed about 70% conversion of propargylic 

alcohol to α-aCC. At this juncture, it is worth mentioning that, although the catalytic 

reaction carried out using CuI (homogeneous) showed a moderate conversion of 

propargylic alcohol, it has limits in terms of catalyst recycling and product separation. 

Further, the higher catalytic activity of Cu(I)@bipy-CTF can be ascribed to the 

presence of CO2 philic basic sites and catalytic Cu(I) sites in the framework. To 

confirm the role of CO2 in the catalytic conversion of propargylic alcohol to α-aCC, 

we carried out the catalytic reaction in the absence of carbon dioxide using Ar gas at 

the optimized conditions. To our delight, no conversion of propargylic alcohol was 

observed which unambitiously proves the role of CO2 in the formation of α-aCC 

(Table 1).  
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Table 1. Optimization table for the carboxylation of 2-methyl-3-butyn-2-ol catalyzed 

by Cu(I)@bipyCTF.a 

          

S. 

No. 

Catalyst Pressure Temperature 

(°C) 

Conversion 

(%)b 

1 - 1 atm CO2 r.t. - 

2 bipyCTF 1 atm CO2 r.t. - 

3 Cu(NO3)2.6H20 1 atm CO2 r.t. - 

4 CuI 1 atm CO2 r.t. 70 

5 DBU 1 atm CO2 40 - 

6c Cu(I)@bipy-CTF 1 atm CO2 40 - 

7d Cu(I)@bipy-CTF 1 atm CO2 40 - 

8 Cu(I)@bipy-CTF 1 atm CO2 r.t. 80 

9e Cu(I)@bipy-CTF 1 atm CO2 40 62 

10 Cu(I)@bipy-CTF 1 atm CO2 40 96 

aReactions Conditions: 2-methyl-3-butyn-2-ol (4 mmol), catalyst (0.02 mmol), DBU 

(0.4 mmol), DMF (2 mL), time (24 h), b: the percentage conversions were determined 

by 1H NMR analysis, c: under argon atmosphere, d: without DBU and e: time (12 h) 

           

          Further, the superior catalytic activity of Cu(I)@bipy-CTF encouraged us to 

explore the coupling of CO2 with other alcohol substrates under the optimized 

conditions (Table 2). As can be seen from the entries in Table 2, as the alkyl chain 

length of epoxide increases, the catalytic conversion decreases, which could be 

correlated to the restricted diffusion of larger alcohols to the Cu(I) active sites inside 

the 1D channels of the framework.60,76 Interestingly, a comparison of the catalytic 

activity of Cu(I)@bipy-CTF with literature examples of COF-based heterogeneous 

systems revealed its higher catalytic activity for coupling CO2 with propargylic 

alcohols to afford valuable chemicals under mild conditions (Table A2). 
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Table 2.  Coupling of CO2 with propargylic alcohols catalyzed by Cu(I)@bipy-CTF.a 

                     

 

S. No. 

 

Substrate 

 

Product 

 

Conversion 

(%)b 

 

TONc 

 

 

1. 

 

 
 

 

 

96 

 

 

192 

 

 

2. 

 

 
 

 

 

75 

 

 

150 

 

 

3. 

 

  

 

 

65 

 

 

130 

 

 

4. 

 

 
 

 

 

60 

 

 

120 

 

 

5. 

 

  

 

 

55 

 

 

110 

 

aReaction conditions: propargylic alcohol (4 mmol), catalyst (0.02 mmol), DBU (0.4 

mmol), DMF (2 mL), temperature (40 °C), CO2 (1 atm, balloon), 24 h. bThe catalytic 

conversions were determined by 1H NMR analysis. cTON = no. of moles of product 

formed / no. of moles of catalytic Cu(I) sites 

 

3.3.4. Coupling of propargylic alcohol with dilute CO2 (13%) 

            Encouraged by the high catalytic activity of Cu(I)@bipy-CTF for coupling of 

CO2 with propargylic alcohols, the activity was checked using dilute CO2 gas (CO2:N2 

= 13:87%) as a carbon dioxide source. The catalysis performed at the optimized 
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conditions resulted in a 60% conversion of the propargylic alcohol to α-aCC (Table 3). 

Further, to increase the yield of α-aCC, the reaction temperature was increased to 60 

°C, leading to an increase in the product yield to 85% in 24 h (Table 3). To achieve 

quantitative conversion of propargylic alcohol, the catalytic reaction was extended for 

an additional time, and about 97% conversion of propargylic alcohol to α-aCC was 

observed in 36 h (Table 3). The enhanced catalytic conversion of propargylic alcohol 

even at a low concentration of CO2 (13%) prompted us to extend the catalytic activity 

to other derivatives of propargylic alcohols. Interestingly, the catalyst Cu(I)@bipy-

CTF showed good activity for the catalytic conversion of various propargylic alcohols 

to α-aCCs as shown in Table 3. 
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Table 3.  Catalytic conversion of CO2 from dilute gas to α-aCCs.a 

                                                       

S. No. Substrate Product Conversion 

(%)d 

TONe 

 

 

1b 

 

  

 

 

60 

 

 

120 

 

2 

 

 
 

 

 

85 

 

 

170 

 

3 

 

  

 

 

67 

 

 

134 

 

4 

 

  

 

 

58 

 

 

116 

 

5 

     

        

  

 

 

54 

 

 

108 

 

6 

 

 
 

 

 

48 

 

 

96 

 

 

7c 

 

  

 

 

        97 

 

 

194 

aReaction conditions: propargylic alcohol (4 mmol), catalyst (0.02 mmol), DBU (0.4 

mmol), DMF (2 mL), temperature (60 °C), CO2 (1 atm, dilute gas), 24 h. bTemperature 

(40 °C). cTime (36 h). dThe catalytic conversions were determined by 1H NMR 
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analysis. eTON = no. of moles of product formed / no. of moles of active catalytic 

Cu(I) sites. 

 

3.3.5. Recyclability and catalyst leaching test 

          To test the recyclability of Cu(I)@bipy-CTF, the catalyst was recovered after 

the reaction and reused for further catalytic cycles with prior activation at 100 °C for 

12 h. Interestingly, Cu(I) anchored bipy-CTF was recyclable up to eight cycles with no 

substantial reduction in the yield of α-aCC formed (Figure 4a). Further, the stability of 

the recycled catalyst was confirmed by PXRD and FT-IR analysis (Figures A19 and 

A20). Moreover, SEM analysis revealed that the morphology of recycled COF is 

almost similar to that of the pristine sample (Figure A21). Further, the leaching test 

was carried out to rule out any catalysis from the homogeneous phase. To do this, the 

reaction was stopped after 6 h at which the conversion of propargylic alcohol into α-

alkylidene cyclic carbonate was found to be 33%. Then the catalyst was separated and 

the reaction was continued for a further period. Interestingly, no significant increase in 

the conversion of propargylic alcohol into α-alkylidene cyclic carbonate was observed, 

which unambiguously rules out the absence of leaching of active catalyst (Figure 4b). 

 

 

Figure 4. (a) Recyclability test and (b) leaching test of Cu(I)@bipy-CTF. 

 

3.3.6. Plausible mechanism 

          A plausible mechanism for Cu(I)@bipy-CTF catalyzed functionalization of CO2 

with propargylic alcohols resulting in the formation of α-aCC as shown in Scheme 2. 

It involves the polarization of the alkyne bond upon interaction with Cu(I) sites. To 

confirm this alkyne bond polarization, the alcohol was treated with bipy-CTF and 

Cu(I)@bipy-CTF for 2 h, and then the catalyst was recovered, followed by washing 
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with methanol and dried. The FT-IR spectra of Cu(I)@bipy-CTF recovered showed 

stretching bands at 2120 cm-1 corresponding to alkyne coordinated to Cu(I) sites. 

Whereas no stretching bands corresponding to alkyne were observed in the case of 

metal-free bipy-CTF (Figure A22), supporting the polarization of alkyne bond by 

Cu(I) sites in the framework. This step is followed by the deprotonation of alcohol by 

DBU and the subsequent addition of CO2 results in α-aCC formation. Then the 

catalyst was recycled for further cycles after activation at 100 °C for 12 h. 

 

 

Scheme 2. A plausible mechanism for the carboxylation of CO2 with propargylic 

alcohol catalyzed by Cu(I)@bipy-CTF. 

 

3.4. Conclusion 

          In summary, a Cu(I) anchored covalent triazine framework is demonstrated for 
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selective capture and functionalization of carbon dioxide to synthesize α-alkylidene 

cyclic carbonate at the mild conditions of 1 atm (balloon) of CO2. The presence of 

basic triazine moiety provided good CO2-philicity to the framework with a high 

binding energy of 44.09 kJ/mol. Consequently, the combined effect of CO2-philic 

triazine and Cu(I) catalytic sites rendered promising activity for the fixation of CO2 to 

α-alkylidene cyclic carbonate even with dilute gas (13% CO2) at atmospheric pressure 

conditions. Besides, Cu(I)@bipy-CTF showed very good recyclability and chemical 

stability for several cycles of reuse. This work represents a rare example of a CTF-

based noble-metal-free recyclable catalyst for the chemical fixation of CO2 into high-

value chemicals under mild conditions. 
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4.1. Introduction 

          The gradual increase in the atmospheric CO2 concentration has resulted in 

climate change, a rise in global average temperature, and other potentially harmful 

environmental issues.1-3 Towards contending this rise in atmospheric CO2 level, its 

selective capture/storage and utilization has been studied by researchers worldwide. 

Especially carbon capture and its subsequent utilization as a C1 source for generating 

useful chemicals/fuels is a promising and valuable approach with the dual benefits of 

lowering atmospheric carbon dioxide concentration and producing commodity 

chemicals.4-8 In this direction, various strategies have been employed by researchers in 

functionalizing CO2, a greenhouse gas, into valuable compounds.9-21 Particularly, the 

transformation of CO2 to cyclic carbonates via cycloaddition reaction with epoxides is 

of much interest owing to its 100% atom efficiency.22-33 Additionally, cyclic 

carbonates find applications as polar solvents, electrolytes, and commodity chemicals 

for polymers.34-38 Various strategies have been employed by researchers in developing 

catalytic systems for efficient coupling of CO2 to epoxides for cyclic carbonate 

production.39-50 However, the synthesis of cyclic carbonates by a green, one-pot 

oxidative carboxylation of olefins is highly preferred over the two-step process 

involving the utilization of epoxides. 

          In this regard, significant efforts are being made toward designing catalytic 

systems suitable for the one-step preparation of cyclic carbonates from readily 

accessible olefins and CO2.
51-55 Particularly styrene carbonates have received special 

interest due to their potential applications as precursors for the synthesis of styrene 

carbamates, vicinal diols, polymers, etc.56,57 However, most of the reports known for 

styrene carbonate (SC) synthesis utilize a two-step process involving the conversion of 

styrene to styrene oxide (SO) and its subsequent coupling with CO2 to generate 

styrene carbonate.58-61 Towards developing a green and sustainable approach, it is 

desirable to carry out the synthesis via a one-pot cascade process by utilizing styrene 

and CO2 under mild conditions.62,63 This one-step process offers advantages over the 

two-step synthesis in terms of easy handling, low cost, and minimum use of solvents. 

However, examples of recyclable catalysts known for the one-pot cascade synthesis of 

styrene carbonates are scarce.          

          The rational construction of covalent organic frameworks (COFs) as 

heterogeneous catalysts for selective CO2 functionalization to valuable chemicals has 
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recently gained tremendous interest owing to their high surface area, ordered structure, 

tailored pore size, and functionality.64-71 Especially, COFs with pores functionalized 

with polar groups are ideal candidate materials for CO2 capture/utilization 

applications.72-81 In this context, porphyrin-based frameworks have received a special 

interest owing to the presence of a free-base macrocyclic cavity that acts as a nano-

reactor to promote selective CO2 adsorption.82,83 At the same time, the free-base 

porphyrin ring can also serve as a potential site for anchoring catalytic metal ions 

suitable for various organic transformations, including CO2 conversion to high-value 

chemicals.84-88 However, to date, there are no reports on the utilization of porphyrin-

based COFs for an environmentally friendly, one-pot preparation of cyclic carbonates 

from readily available precursors, i.e. olefins and CO2 under mild conditions.  

          Thus in Chapter 4, we demonstrate the application of Fe(III)-doped porphyrin 

COF, (Fe(III)@P-COF) as a recyclable catalyst for one-step preparation of CCs by 

utilizing olefins and CO2 under atmospheric pressure conditions. A Schiff-base 

reaction of tetra(p-amino-phenyl)porphyrin (TAPP) with 1,4-

benzenedicarboxaldehyde (BDA) was employed to obtain the porphyrin-COF (P-

COF). The Lewis acidic Fe(III) ions were anchored at the free-base porphyrin ring of 

P-COF by treating with FeCl3. The resultant Fe(III)@P-COF was characterized by 

various techniques. Further, catalytic investigations of Fe(III) embedded P-COF 

revealed excellent activity for the one-step CC preparation from readily accessible 

olefins and CO2 through in situ formation of epoxides. Indeed, various olefins, 

including substituted styrenes and linear alkenes, were transformed to their respective 

CCs in good yield and selectivity under atmospheric pressure conditions. Further, the 

catalyst was reusable for multiple cycles, retaining its network structure and catalytic 

performance. More importantly, Fe(III)@P-COF exhibited superior catalytic 

performance over several heterogeneous catalysts reported in the literature. This is a 

rare demonstration of applying porphyrin-COF-based catalysts for one-step CCs 

synthesis under mild conditions.  

 

4.2. Experimental section 

4.2.1. Materials 

           All the reagents used in this work were commercially available and employed 

as received without any further purification. The 1,3,5-trimethyl benzene was 
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purchased from TCI Chemicals Ltd. Acetic acid (99%) was obtained from Merck and 

Co. 1,4-benzenedicarboxaldehyde (BDA) utilized for COF synthesis was obtained 

from Sigma Aldrich Chemicals Co. Tetra(p-amino-phenyl)porphyrin (TAPP) was 

prepared by following the previously reported procedure.89 

 

4.2.2. Physical measurements 

           Powder X-ray diffraction measurements were recorded in the 2Ө range of 2-50° 

on PAN analytical’s X’PERT PRO X-Ray diffractometer with a scan rate of 2°/min 

using Cu-Kα radiation (λ = 1.54184 Å, 40 kV, 20 mA) for confirming phase purity of 

as-synthesized samples. Fourier transform infrared (FT-IR) spectra of the samples 

were recorded on a Bruker Tensor-F27 instrument in ATR mode. The products of 

catalytic reactions were identified and the catalytic conversions were determined by 

1H NMR spectra recorded on a JEOL JNM-ECS-400 spectrometer operating at a 

frequency of 400 MHz using CDCl3 solvent.  

 

4.2.3. Synthesis 

4.2.3.1. Synthesis of porphyrin COF (P-COF) 

          In a typical synthesis, a pyrex tube was charged with terephthalaldehyde (5.6 

mg, 0.04 mmol), tetra(p-aminophenyl)porphyrin (13.5 mg, 0.02 mmol), and to which 

absolute ethanol (0.5 mL), mesitylene (0.5 mL), and 6 M aqueous acetic acid (0.1 mL) 

were added. The tube was flash frozen at 77 K, evacuated, flame sealed, and heated at 

120 °C for 72 h in an oven. After completion of the reaction, a purple crystalline solid 

was separated by centrifugation, washed with 1,4-dioxane, THF, and acetone, and 

dried under a vacuum. FT-IR (KBr, cm-1) 3426 (br), 1620 (s), 1512 (m), 1466 (m), 

1420 (w), 1381 (m), 1288 (m), 1249 (m), 1180 (s), 1118 (w), 802 (s), 733 (w), 656 

(w), 556 (w). 

 

4.2.3.2. Synthesis of Fe(III)@P-COF 

           The activated sample of P-COF (0.06 mmol) at 120 °C was treated with the 

solution of FeCl3 (0.6 mmol) in DMF (10 mL) and the mixture was refluxed for 12 h. 

After completion of the reaction, the solid was separated by centrifugation, washed 

with a copious amount of methanol to remove unreacted FeCl3, and dried under a 

vacuum. The percentage loading of FeIII in P-COF was determined by MP-AES 

elemental analysis. 
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4.2.3.3. Synthesis of Fe(II)/Zn(II)@P-COF 

          This Fe(II)@P-COF was prepared following a procedure similar to that of the 

Fe(III)@P-COF. The activated sample of P-COF (0.06 mmol) was treated with a 

solution of Fe(OAc)2 (0.6 mmol) in DMF (10 mL) and refluxed for 12 h. After 

completion of the reaction, the solid was separated by centrifugation and washed with 

a copious amount of methanol to remove unreacted Fe(OAc)2 and dried under a 

vacuum. In addition, we used Zn(OAc)2.2H2O in methanol for Zn doping and the 

process remained the same. The loading of Fe(II)/Zn(II) was determined by MP-AES 

analysis. 

 

4.2.4. Catalytic epoxidation of styrenes 

          The catalytic reaction was carried out as follows, the Zn/Fe@P-COF (10 mg), 

styrene (0.6 mmol), and oxidant PhIO (1.5 mmol) were mixed in dichloromethane (5 

mL) in RB at RT and the reaction mixture was heated with stirring for 18 h. After that, 

the catalyst was separated by centrifugation, and the filtrate was evaporated. The yield 

of styrene carbonate formed was determined by 1H NMR spectroscopic analysis.  

 

4.2.5. One-pot oxidative carboxylation of styrene 

           In a 50 mL stainless steel reactor, the oxidative carboxylation reaction of 

styrene with CO2 was performed using Fe(III)@P-COF as a catalyst in the presence of 

PhIO and TBAB as oxidant and co-catalyst, respectively. Before the reaction, the 

catalyst was activated at 373 K for 10 h under a vacuum to eliminate the guest solvent 

molecules. Then the activated catalyst Fe(III)@P-COF (10 mg), styrene (0.6 mmol), 

oxidant, PhIO (1.5 mmol), and TBAB (0.3 mmol) in dichloromethane (2 mL) were 

taken in a 50 mL glass reactor with a stainless steel jacket and flushed three times with 

CO2 to eliminate the air inside the glass reactor. After introducing the required CO2 

pressure (0.1 MPa), the reaction mixture was stirred at 80 °C for 24 h. After that time, 

the CO2 was released slowly, the catalyst was separated by centrifugation, the filtrate 

was evaporated, and the catalytic conversion of styrene was determined by 1H NMR 

spectroscopy. The recovered catalyst was washed with methanol, activated for 12 h at 

100 °C, and then reused for subsequent catalytic cycles. 

 

4.2.6.  Structure simulation and modeling of P-COF 

          To elucidate the structure of P-COF and to calculate the unit cell parameters, a 
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possible 2D model was constructed. The experimental PXRD pattern matches well 

with that of the simulated pattern for an eclipsed model of P-COF. Refinement of 

PXRD patterns was carried out using the Pseudo-Voigt function. The optimized 

structural parameters are given below. The simulated optimized structure of P-COF is 

shown in Figure 1. 

 

Figure 1. Simulated structure of P-COF (ball and stick model) (gray, Carbon; blue, 

Nitrogen). 

 

4.2.7. Gas adsorption measurements 

           N2 adsorption-desorption studies were carried out at 77 and 273 K, while CO2 

adsorption-desorption measurements were carried out at 273 and 298 K using 

QUANTACHROME Quadrasorb SI automated surface area and pore size analyzer 

instrument. Ultrapure (99.995%) N2 gas was used for the adsorption-desorption 

measurements. Prior to adsorption measurements, the sample (~0.070g) was evacuated 

at 393 K under vacuum (20 mTorr) for 12 h on QUANTACHROME Flovac degasser 

and further purged with ultrapure N2 (99.995%) gas on cooling. The BET surface area 
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of the COFs was estimated from N2 sorption isotherms carried out at 77 K, 

respectively. The dead volume of the sample cell was measured using Helium gas 

(99.995%).  

 

4.3. Results and discussion  

4.3.1. Synthesis and structural description 

          The preparation of porphyrin-based COFs has been achieved by employing 

various synthetic routes.76,90 Particulary, the solvothermal approach is generally 

followed to obtain COFs with high crystallinity.67,68,91 The porphyrin-COF (P-COF) 

was prepared by adopting the reported solvothermal procedure with minor 

modifications92 (Scheme 1) and characterized by different techniques. The FTIR 

spectra of P-COF depicted the disappearance of characteristic stretching frequencies 

due to the -NH2 group of tetra(p-amino-phenyl)porphyrin (TAPP) and also the 

carbonyl group (C=O) of 1,4-benzenedicarboxaldehyde (BDA) indicating complete 

consumption of the precursors during the COF synthesis. Besides, a new stretching 

frequency at 1620 cm-1 corresponding to the C=N group was observed, supporting the 

formation of P-COF by Schiff base condensation (Figure A23a). Furthermore, the 

solid-state 13C CP-MAS NMR spectra of P-COF showed a characteristic peak at 159.0 

ppm assigned to the 13C resonance of the C=N group formed between the precursors 

(Figure A24).93  
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Scheme 1. Synthesis scheme for P-COF and M@P-COF. 

 

          Moreover, the crystalline nature of P-COF was revealed from the XRD analysis. 

The powder XRD pattern (Figure 2a) showed an intense peak at a lower Bragg angle 

of 3.54° corresponding to the (100) plane and a relatively lower intense peak at 7.14° 

due to the (200) plane, indicating the presence of long-range ordering in the material. 

In addition, the broad peak around 20° (001) corresponds to π-π stacking amongst the 

2D COF sheets. Furthermore, the XRD pattern of P-COF matches well with the 

simulated pattern (Figure 2a). The most probable 2D model of P-COF was conceived 

of as an eclipsed form having a tetragonal system with space group, P4/m with unit 

cell parameters of a = b = 25.41 Å, c = 12.37 Å, α = β = γ = 90°. Further, SEM images 

of P-COF and Fe(III)@P-COF showed a flower-like hierarchical structure (Figures 2c 

and 2d). Further, the porphyrin COF (P-COF) was treated with FeCl3 to obtain 

Fe(III)@P-COF, which was isolated and washed with methanol to remove free metal 

salt. Various characterizations further confirmed the incorporation of FeIII at the free-

base porphyrin ring. For instance, the FTIR spectra (Figure A23b and A23c) of 

Fe(III)@P-COF showed the disappearance of stretching frequency at 3327 cm-1 

corresponding to the pyrrole -N-H bond of porphyrin ring supporting the anchoring of 
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Fe(III) in P-COF as illustrated in Scheme 1. Further, the PXRD plot of Fe(III)@P-

COF displays a diffraction pattern similar to that of pristine P-COF, suggesting the 

retention of network structure even after the incorporation of FeIII ion (Figure 2b). 

Furthermore, EDS analysis proved the presence of FeIII ion in the framework (Figures 

A25 and A26), and the % loading determined by MP-AES (microwave plasma atomic 

emission spectroscopy) analysis was 6.9 wt % (Figure A27a). 

 

 

Figure 2. (a) Experimental (blue) and simulated (purple) powder XRD plots of P-

COF. (b) Powder XRD plots of Fe(III)@P-COF samples, pristine (I), and recycled 

after catalysis (II). (c and d) SEM images of P-COF and Fe(III)@P-COF, respectively. 

  

          The XPS analysis of pristine P-COF and FeIII-anchored COF was performed to 

confirm the elemental composition of the samples. The survey scan (Figures 3a and 

A28a) showed the presence of constituent elements. The N 1s spectra of P-COF show 

two binding energy (BE) bands at 398.2 and 400.2 eV corresponding to -C=N- and 

pyrrolic N, respectively (Figure A28b).95,96 While a new band was observed at 398.8 

eV in the N 1s spectra of Fe(III)@P-COF corresponding to the pyrrole N of the 

porphyrin ring coordinated to FeIII (Fe-N) (Figure 3b). Further, the FeIII 2p spectra 

(Figure 3c) show two peaks due to 2p3/2 and 2p1/2 at BE of 710.7 and 724.6 eV, 



Chapter 4                                                                    Fe(III)-Anchored Porphyrin…. 

101 
 

respectively. This observation is in line with the XPS spectra of FeIII compounds 

reported before.97-99 Besides, the deconvoluted spectra of Cl 2p (Figure 3d) show the 

presence of two BE bands at 197.9 and 199.6 eV attributed to 2p3/2 and 2p1/2, 

respectively, which further asserted the +3 oxidation state of Fe. Thus, XPS analysis 

supports the embedding of FeIII in the porphyrin pyrrole ring. 

   

Figure 3. XPS plot of Fe(III)@P-COF, (a) survey spectrum (b) N 1s, (c) Fe 2p, and 

(d) Cl 2p.    

 

           Furthermore, to establish the role of oxophilic FeIII ion in catalyzing the one-

step oxidative carboxylation of olefins to CCs, analogous COFs based on Zn(II)/Fe(II) 

were prepared and characterized. The FT-IR spectra of Zn(II)/Fe(II)@P-COF showed 

the absence of peaks at 3327 cm-1 due to pyrrole N-H of the porphyrin ring, indicating 

anchoring of Fe(II)/Zn(II) at the porphyrin ring (Figure A29a). Further, the PXRD plot 

of the metal-embedded COFs matches well with that of parent P-COF, with diffraction 

peaks at 2Ө of 3.5, and 7.1 corresponding to the (100) and (200) plane, respectively 

supporting the isostructural nature of Zn(II)/Fe(II) and Fe(III)@P-COFs (Figure 

A29b). Further, the % loading of the metal was determined by MP-AES (microwave 

plasma atomic emission spectroscopy) analysis (Figure A27b and A27c).    
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4.3.2. Gas adsorption analysis 

          The N2 sorption isotherms performed to assess the porosity of P-COF and 

Fe(III)@P-COF are shown in Figure 4. The samples were activated prior to adsorption 

measurements. The BET surface area (SBET) of pristine P-COF was determined to be 

686 m2g-1 which was decreased to 382 m2g-1 upon the incorporation of FeIII in the 

porphyrin ring (Fe(III)@COF) owing to loss of porosity on metallation (Figure 4a). 

Further, CO2 sorption isotherms of P-COF and Fe(III)@P-COF show typical type-1 

profiles with the uptake of 27.13/16.91 cc/g and 18.43/10.47 cc/g at 273/298 K, 

respectively (Figure 4b). The accurate determination of CO2 uptake was performed by 

fitting the isotherms adopting the Freundlich-Langmuir equation (Figure A30), and the 

adsorption energy (Qst) determined from Clausius-Clayperon equation were 28.08 and 

37.76 kJ/mol for P-COF and Fe(III)@P-COF, respectively (Figure A31). The high 

heat of adsorption of CO2 with Fe(III) anchored COF can be attributed to their 

enhanced interaction aided by the presence of imine (-C=N-) linkages and unsaturated 

Fe(III) ion through Lewis acid/base and/or metal ion/quadrupole interactions.100,101,104 

 

Figure 4. (a) N2 adsorption plot of P-COF and Fe(III)@P-COF. (b) The CO2 sorption 

isotherms of P-COF (I, II) and Fe(III)@P-COF (III, IV) were performed at 273 K and 

298 K, respectively.  

 

4.3.3. Catalytic epoxidation of styrenes 

          The nanoporous Fe(III)@P-COF with 1D channels decorated with Lewis acidic, 

oxophilic FeIII ions motivated us to investigate its catalytic performance for the one-

step reaction of CO2 with olefins. To start with, the catalysis was tested for the 

oxidation of olefins to epoxides. The catalytic reaction performed for the epoxidation 

of styrene using P-COF as a catalyst and PhIO as an oxidizing agent (OA) showed no 

styrene oxide (SO) formation. Whereas the use of Fe(III)@P-COF as a catalyst at the 
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optimized conditions (Table 1) resulted in >99% SO formation with 100% selectivity, 

highlighting the requirement of FeIII ions for selective oxidation of styrene (Table 1). 

Further, to examine the critical role of FeIII ions in catalyzing the epoxidation of 

olefins, the reaction was tested with Zn(II)/Fe(II)@P-COF as a catalyst. Interestingly, 

negligible conversion of styrene was observed with Zn(II)-COF, while about 38.2% 

styrene was converted to SO using Fe(II)@P-COF as a catalyst at the optimized 

conditions (Table 1). These results unambiguously confirm the necessity of Lewis 

acidic, oxophilic FeIII in catalyzing the epoxidation of olefins. 

 

Table 1: Optimization table for oxidation of styrene to styrene oxide.a  

S. No. Catalyst Oxidant Conversion (%)b 

1 _ PhIO 2 

2 P-COF NO - 

3 FeCl3 PhIO 4 

4 TAPP PhIO 2 

5 FeCl2 PhIO 3 

6 Zn(II)@P-COF PhIO 4 

7 P-COF PhIO 3 

8 Fe(II)@P-COF PhIO 38.2 

9 Fe(III)@P-COF No - 

10c Fe(III)@P-COF PhIO 55.6 

11 Fe(III)@P-COF PhIO >99 

12d Fe(III)@P-COF PhIO 53.2  

aReaction conditions: catalyst (10 mg), styrene (0.6 mmol), PhIO (1.5 mmol), CH2Cl2, 

and time (18 h) at 40 °C. bThe percentage conversion was determined by 1H NMR 

analysis. cTemperature (RT). dTime (9h).  

 

          Further, various control experiments were performed to arrive at the optimum 

conditions required for the epoxidation of styrene to styrene oxide (Table 1). The 

enhanced catalytic activity of Fe(III)@P-COF has been ascribed to the facile 

formation of FeIV-oxo species, a key intermediate in SO (epoxide) formation.102,103 

This superior catalytic performance of Fe(III)@P-COF encouraged us to test the 

epoxidation of various olefins, such as substituted styrenes and linear olefins. Notably, 
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most olefins were transformed to respective epoxides in good conversion and 

selectivity (Table 2). More interestingly, the catalytic performance of Fe(III)@P-COF 

is comparable to or better than reported heterogeneous catalysts (Table A3).  

Table 2: Epoxidation of olefins catalyzed by Fe(III)@P-COF. a 

     

S. No. Substrate Product Conversion (%)b 

1 

  

>99 

2 

  

91.2 

3 
  

86.2 

4 
   

76.3 

5 

     

70.2 

6     
65.3 

7     
52.5 

8 

 

 

 

 
39.4 

9 
  

38.2 
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aReaction conditions: catalyst (10 mg), olefin (0.6 mmol), PhIO (1.5 mmol), CH2Cl2, 

and time (18 h) at 40 °C. bThe conversions were determined by 1H NMR analysis.  

 

4.3.4. One-pot cyclic carboxylation of olefins  

          The enhanced catalytic performance of Fe(III)@P-COF for the epoxidation of 

olefins encouraged us to test their catalytic activity for the one-pot CCs synthesis from 

readily accessible olefins and carbon dioxide. Hence, the catalysis was carried out in 

the presence of an oxidant (PhIO) and a nucleophilic cocatalyst, tetrabutylammonium 

bromide (TBAB), to promote the ring-opening of the epoxide.105 To start with, the 

catalytic performance was studied using styrene as a model reagent, and optimization 

of reaction conditions was performed by varying the temperature and time of the 

reaction. The best catalytic performance was achieved at 80 °C in 24 h (Figure 5 and 

Table 3). 

 

Table 3: Optimization table for catalytic oxidative carboxylation of styrene to styrene 

carbonate.a 

S. No. Catalyst Oxidant Conversion (%)b 

1 FeCl3 PhIO 3 

2 _ PhIO 1 

3 P-COF No - 

4c P-COF No - 

5 FeCl2 PhIO 2 

6 Fe(III)@P-COF No - 

7 TAPP PhIO 1 

8 TABB PhIO 3 

9 P-COF PhIO 4 

10 Zn(II)@P-COF PhIO 5 

11 Fe(II)@P-COF PhIO 40 

12d Fe(III)@P-COF PhIO 60.3 

13 Fe(III)@P-COF PhIO >99 

14e Fe(III)@P-COF PhIO 58.9 

15f Fe(III)@P-COF No >99 
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aReaction conditions: catalyst (10 mg), styrene (0.6 mmol), PhIO (1.5 mmol), TBAB 

(0.3 mmol), CO2 (0.1 MPa), CH2Cl2 (2 mL) and time (24 h) at 80 °C. bThe percentage 

conversion was determined by 1H NMR analysis. cwithout TBAB. dTemperature (RT). 

eTime (12 h). fconversion for styrene oxide. 

 

 

Figure 5. The optimization of catalytic reaction by varying temperature (a) and time 

(b). Reaction conditions: catalyst (10 mg), styrene (0.6 mmol), TBAB (0.3 mmol), 

CO2 (0.1 MPa), PhIO (1.5 mmol), and dichloromethane (2 mL).  

 

          The catalytic reaction performed at RT and 1 bar CO2 using Fe(III)@P-COF (10 

mg) as a catalyst along with PhIO (1.5 mmol), and TBAB (0.3 mmol) led to a 60.3% 

conversion of styrene to SC within 24 h (Table 4). Further, the effect of temperature 

on catalysis was studied. As can be seen from Figure 5a, the reaction carried out at 60 

°C resulted in 86.2% conversion of styrene to SC. Upon increasing the temperature 

further, the conversion of styrene was found to increase. The best catalytic 

performance with >99% conversion of styrene to styrene carbonate (98.5% selectivity) 

along with styrene oxide (1.5 %) as a minor product was observed at 80 °C in 24 h 

(Table 3). These results suggest that the SO formed in situ undergoes cycloaddition 

with CO2 in the presence of TBAB to form SC. This was further supported by the 

control experiment carried out in the absence of catalyst and PhIO, which showed no 

SC formation (Table 3). On the contrary, the catalytic reactions performed with 

pristine P-COF as a catalyst under the optimized conditions led to negligible formation 

of SC (Table 3). While the application of TBAB as a catalyst showed negligible 

conversion (~3%) of styrene to SC (Table 3). In addition, the reaction carried out with 

Zn(II)@P-COF did not yield SC (Table 3), whereas the use of Fe(II)@P-COF 

rendered a 40% conversion of styrene (Table 3). These experiments further highlight 
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the necessity of Lewis acidic, oxophilic FeIII-anchored COF for the one-pot synthesis 

of SCs from styrene and CO2 (Table 3).  

 

Table 4: One-step oxidative carboxylation of olefins with CO2.
a 

         

 

S. 

No. 
Substrate Product 

Conversion 

(%)b 

Selectivity of 

SC (%) 

1 

        
>99 98.5c 

2 

  

     

92.3 91.5d 

3 
 

   

85.1 89.7e 

4  

   

88.3 90.7f 

5  

     

78.2 87.8g 

6        72.3 85.4h 

7  
               

69.2 74.2i 

8  
        

56.3 62.3j 

9 

 

 

 

 41.6 49.4k 

10    40 56.6l 

aReaction conditions: catalyst (10 mg), olefin (0.6 mmol), TBAB (0.3 mmol), PhIO (1.5 

mmol), CO2 (0.1 MPa), CH2Cl2 (2 mL) and time (24 h) at 80 °C. bThe conversions were 
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determined by 1H NMR analysis. Selectivity of styrene oxide: c1.5, d8.5, e10.3, f9.3, 

g12.2, h14.6, i25.8, j37.7, k50.6 and l43.4.  

 

           This promising catalytic performance of Fe(III)@P-COF for one-pot synthesis 

of SCs further motivated us to investigate the scope of the process for the 

transformation of substituted styrenes using the optimized conditions (Table 4). As 

shown in Table 4, most styrenes were found to transform to respective SCs in 

quantitative yield (72.3-99.5%) along with SO intermediate as a minor product at 1 

atm of CO2. This one-pot synthesis strategy was also extended for oxidative 

carboxylation of linear olefins. Interestingly, the catalytic conversions were found to 

decrease with an increase in the alkyl chain length of the olefins from 1-hexene to 1-

decene (Table 4).106 This can be ascribed to the lower reactivity and restricted 

diffusion of higher alkenes in the pore channels of COF. Moreover, the internal 

alkene, cyclohexene, was transformed to the corresponding CC in a moderate yield 

(Table 4). This lower conversion of cyclohexene has been attributed to its intrinsic low 

reactivity and bulkiness, limiting its diffusion to the catalytic Fe(III) site. Further, the 

catalytic reaction performed using an epoxide/SO instead of olefin/styrene under the 

optimized conditions resulted in  >99% SC formation within 18 h with a selectivity of 

100%. This experiment supports the in situ formation of SO/epoxide intermediate en 

route to the SC formation (Table 4). A control experiment was performed to further 

characterize the intermediate in which Fe(III)@P-COF was treated with styrene oxide 

for 2 h. Then the catalyst was retrieved, and its FT-IR spectra recorded showed the 

appearance of peaks at 3100-2900 cm-1 corresponding to the C-H stretching 

frequencies of SO, affirming its interaction with the FeIII center in the COF (Figure 

A32). Notably, the performance of Fe(III)@P-COF for one-pot synthesis of SCs was 

found to be superior in comparison to various framework-based catalysts reported 

before (Table A4). Overall, this work highlights the CO2 utilization at atmospheric 

pressure conditions for the one-step CC synthesis from olefins and CO2.  

 

4.3.5. Catalyst recycling and leaching test 

          To test the catalyst's recyclability, Fe(III)@P-COF was separated from the 

reaction mixture, and after suitable activation, it was reused for subsequent catalytic 

cycles. Notably, the catalyst was reusable for up to eight cycles without loss of 

catalytic performance (Figure 6a). The XRD and FT-IR plots of the recycled COF 
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support the structural rigidity of the recycled catalyst even after multiple cycles of 

reuse (Figure 2b and A33). Furthermore, SEM images of recycled COF showed that 

the original morphology was almost retained (Figure A34). 

 

 

Figure 6. Recyclability (a) and catalyst leaching (b) test of Fe(III)@P-COF. 

                     

          Moreover, to rule out any catalytic activity originating from the homogeneous 

phase,  the catalyst leaching test was performed in which the Fe(III)@P-COF was 

stopped after 6 h with a 30% yield of SC. Then Fe(III)@P-COF was separated, and the 

filtrate was continued for an additional time. Interestingly, there was no substantial 

rise in the SC yield, supporting the absence of catalyst leaching (Figure 6b). 

 

4.3.6. Plausible mechanism 

          A plausible reaction pathway for Fe(III)@P-COF catalyzed one-pot preparation 

of CCs from readily accessible styrene and CO2 is shown in Scheme 2. The reaction 

proceeds with the in situ formation of epoxide by olefin oxidation catalyzed by FeIII in 

the presence of the oxidizing agent PhIO. To get further support on this step, a time-

dependent 1H NMR study was undertaken for the oxidation of styrene as a model 

substrate. As can be seen from the stack plot (Figure A35), the 1H NMR spectra of the 

aliquot taken after 18 h of catalytic reaction show peaks corresponding to styrene and 

the product, SC, along with the intermediate, SO. Further, with an increase in reaction 

time from 18 to 24 h, the intensity of the peaks due to SO decreases, and those of SC 

increase, supporting the transformation of SO to SC. The SO formed undergoes a ring-

opening step by the attack of the Br- ion of TBAB, resulting in bromo-alkoxide 

formation. The subsequent CO2 insertion into the metal-alkoxide intermediate led to 
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SC formation, which upon intramolecular ring-closer reaction, yields SC. The 

elimination of SC regenerates the catalyst for successive catalytic cycles. 

 

 

Scheme 2. A proposed mechanism for the one-step styrene carbonate synthesis from 

styrene and CO2 catalyzed by Fe(III)@P-COF. 

 

4.4. Conclusion  

          In summary, the one-step synthesis of CCs, valuable feedstock chemicals, was 

achieved by utilization of greenhouse gas, CO2, and readily available olefins at 

atmospheric pressure conditions using Fe(III)@P-COF as a highly recyclable catalyst. 

The Fe(III)@P-COF showed good CO2 affinity and catalytic activity for direct cascade 

preparation of various CCs from CO2 and olefins. Notably, the catalyst was recycled 

for eight cycles without substantial loss in activity and structural rigidity. Overall the 

catalytic strategy developed here presents an eco-friendly route for generating valuable 

chemicals by utilizing abundant CO2 and styrenes under mild atmospheric pressure 

conditions and paves the way for the rational design of catalysts for carbon capture 

and utilization under mild conditions. 
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5.1 Introduction  

          The rising concentration of CO2 in the earth's atmosphere has resulted in 

global warming, climate change, unpredictable weather patterns, and so on.1-3 To 

overcome these undesirable environmental issues, it is essential to mitigate the 

atmospheric CO2 content by its selective capture and storage/utilization. In this regard, 

selective carbon capture and utilization (CCU) has been considered a promising route 

for generating value-added chemicals/fuels by utilizing abundant greenhouse gas, CO2, 

as a one-carbon (C1) source.4-9 To date, extensive research efforts are being 

accomplished for the selective capture and transformation of carbon dioxide into 

various value-added chemicals and fuels.10-18 Among them, the conversion of carbon 

dioxide into value-added cyclic carbonates (CCs) is well studied owing to its atom 

efficiency and potential utility as precursors for the synthesis of polymeric materials, 

pharmaceuticals, and so on.19-24 Whereas the transformation of CO2 into other valuable 

commodity chemicals such as alkynyl carboxylic acids/phenylpropiolic acids and 2-

oxazolidinones is relatively less studied. Hence, there is a significant scope to 

investigate the transformation of CO2 to valuable alkynyl carboxylic acids by 

carboxylation of terminal alkynes through C-H bond functionalization. Further, 

alkynyl carboxylic acids are essential commodity compounds used in the synthesis of 

high-value medicinal molecules like flavones, and coumarins.25-27 On the other hand, 

the production of 2-oxazolidinones, essential building blocks for antibacterial drugs, 

such as linezolid, eperezolid, and radezolid via carboxylative cyclization of 

propargylic amines with CO2 is of high significance.28-30 The literature study revealed 

that the synthesis of alkynyl carboxylic acids and 2-oxazolidinones by coupling CO2 

with terminal alkynes/amines has been achieved using homogeneous catalysts under 

harsh conditions.31-33 However, green chemistry practices prefer the application of 

heterogeneous catalysts to overcome the limitations of product separation and catalyst 

recycling associated with homogeneous catalysts.34,35 Consequently, developing 

effective heterogeneous catalysts for CO2 fixation to valuable alkynyl carboxylic acids 

and 2-oxazolidinones at ambient conditions is highly significant in the sustainable 

generation of high-value chemicals.36-39 

          In this regard, covalent organic frameworks (COFs), an emerging class of 

crystalline porous organic polymers (POPs) have gained special interest due to their 

high surface area, chemical/thermal stability, and tunable functionality.40-42 These 
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unique features enable COFs to be employed in heterogeneous catalysis, energy 

storage, proton conductivity, gas storage/separation, etc.43-52 Especially functionalized 

COFs composed of heteroatom (N, F, Cl,) and polar (-COOH, -SO3H, -OH) groups 

offer potential advantageous for selective CO2 capture and conversion.44,53,54 In this 

regard, the COFs constituted by organic linkers containing bipyridine (bpy) moiety 

have gained significant interest as these bipyridine groups can serve as potential sites 

for anchoring of catalytic metal/complex ions or metal nanoparticles to bring out 

numerous catalytic transformations.15,55,56  

          In light of these observations, in Chapter 5, we synthesized highly porous 

pyrene-based COF (Pybpy-COF) with 1D channels functionalized with bipyridine 

moieties by Schiff-base condensation of pyrene amine (Py-NH2) with bipyridine 

aldehyde (bpy-CHO) under solvothermal conditions. Further, the bipyridine sites 

exposed in the 1D channels of the COF were utilized for stable anchoring of Ag(0) 

nanoparticles by treating with AgNO3 followed by reduction with hydrazine. Notably, 

the Ag@Pybpy-COF showed excellent catalytic performance for the fixation of CO2 

with diverse terminal alkynes and propargylic amines to produce alkynyl carboxylic 

acids and 2-oxazolidinones in high-yield (99%) and selectivity (100%) under 

atmospheric conditions. The catalyst was recyclable for several cycles without losing 

substantial catalytic activity. Thus, this study showcases the importance of bipyridine 

functionalized porous COF for developing highly recyclable Ag NPs anchored COF 

for efficient utilization of atmospheric CO2 to produce two value-added commodity 

chemicals, alkynyl carboxylic acids and 2-oxazolidinones under ambient conditions. 

 

5.2. Experimental section 

5.2.1. Materials 

          All the reagents used in this work were commercially available and employed as 

received without further purification. The 1,3,5-trimethyl benzene and 1,4-dioxane 

were purchased from TCI Chemicals Ltd. Acetic acid (99%) was obtained from Merck 

and Co. 2,2'-bipyridyl-5,5'-dialdehyde (bpy-CHO) utilized for COF synthesis was 

obtained from alfa Aeser chemical Co. 4,4,4,4-(pyrene-1,3,6,8tetrayl)tetraaniline 

(Py-NH2) was prepared by following the previously reported procedure.57 
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5.2.2. Physical measurements 

          Powder X-ray diffraction measurements were recorded in the 2Ө range of 2-50° 

on PAN analytical’s X’PERT PRO X-Ray diffractometer with a scan rate of 2°/min 

using Cu-Kα radiation (λ = 1.54184 Å, 40 kV, 20 mA) for confirming phase purity of 

as-synthesized samples. Fourier transform infrared (FT-IR) spectra of the samples 

were recorded on a Bruker Tensor-F27 instrument in ATR mode. Gas adsorption 

measurements of the samples were performed on a Quantachrome’s QUADRASORB-

SI automatic volumetric instrument using ultrapure (99.995%) N2, CO2, and CH4 

gases. The SEM images and EDAX patterns were recorded on the FEI Nova SEM-450 

instrument. The metal content of Ag in the COF was determined by Agilent’s 

microwave-plasma atomic emission spectrometer (MP-AES). The X-ray photoelectron 

spectroscopy (XPS) analyses were performed on a Thermo Fisher Scientific NEXSA 

photoemission spectrometer using Al Kα (1486.6 eV) X-ray radiation, and analysis of 

the obtained data was performed using Avantage software. The products of catalytic 

reactions were identified and catalytic conversions were determined by 1H and 13C 

NMR spectra recorded in DMSO-d6/CDCl3 on a JEOL JNM-ECS-400 spectrometer 

operating at a frequency of 400 MHz and 100 MHz, respectively. First-principles 

calculations were performed using Material Studio’s DMol3 module.58 

 

5.2.3. Synthesis Procedures 

5.2.3.1. Synthesis of Pybpy-COF 

          In a typical synthesis, a pyrex tube was charged with bpy-CHO (0.04 mmol, 8.5 

mg), Py-NH2 (0.02 mmol, 11.3 mg), and subsequently dioxane (0.5 mL), mesitylene 

(0.5 mL), and 6 M aqueous acetic acid (0.1 mL) were added. The tube was flash-

frozen at 77 K, evacuated, flame-sealed, and heated at 120 °C for three days in an 

oven. After completion of the reaction, the orange crystalline solid was separated by 

centrifugation, washed with THF and acetone, and dried under a vacuum.  

 

5.2.3.2. Synthesis of Ag@Pybpy-COF 

          In a typical procedure, 0.03 mmol of Pybpy-COF was dispersed in 5 mL water, 

and in a separate vial, 0.13 mmol of AgNO3 was dissolved in water in the dark. An 

aqueous solution of AgNO3 was added dropwise to the dispersed solution of Pybpy-

COF at room temperature with constant stirring for 1h. The solid was isolated from the 

reaction mixture and thoroughly washed with water. The dried powder was re-
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dispersed in water, 500 μL hydrazine hydrate was added, and the reaction mixture was 

stirred for an additional 1 h. Then the solid was separated, washed with water, and 

dried under a vacuum. 

 

5.2.4. Catalytic carboxylation of terminal alkynes  

          The carboxylation of terminal alkynes with CO2 catalyzed by Ag@Pybpy-COF 

was carried out in a glass reactor (50 mL) with a magnetic stirrer at 50 °C and 1 bar 

CO2 pressure. Prior to catalytic reactions, the catalyst was activated at 393 K for 12 h 

under a vacuum to remove the adsorbed solvent molecules. The activated sample of 

Ag@Pybpy-COF (10 mg) and DMF (5 mL) were taken in the reactor, then Cs2CO3 

(1.5 mmol) and terminal alkyne (1 mmol) were added into the reaction mixture, and 

the reactor was flushed with CO2 twice. Then, 0.1 MPa of CO2 was introduced and the 

reaction was maintained at 50 °C for 12 h under stirring. After 12 h, the reactor was 

cooled down, and excess CO2 was released. The catalyst was separated from the 

reaction mixture by filtration followed by washing with acetone. The filtrate was 

washed with CH2Cl2, acidified with 1 M HCl to pH = 1, and then extracted with ethyl 

acetate. The combined organic fraction was washed with saturated NaCl solution and 

dried over anhydrous MgSO4. The solvent was removed under vacuum to obtain the 

carboxylic acid product. The isolated yield was calculated based on the reactant used. 

The products were characterized by 1H and 13C NMR spectroscopic analysis. The 

recovered catalyst after the catalysis was washed with acetone followed by drying 

under a vacuum at 373 K for 12 h and reused for subsequent catalytic cycles.  

 

5.2.5. Synthesis of propargylic amines 

          The reported procedure was followed for the synthesis of propargylic amine 

derivatives.59 

 

     In a typical experiment, propargylic bromide (3 mL, 27 mmol) was added into 

amine (162 mmol) dropwise over 30 minutes using an addition funnel. The mixture 

was allowed to be stirred overnight at ambient temperature. Then, the mixture was 

diluted with 20 mL Et2O and washed with saturated aqueous NaHCO3 (3 ×10 mL). 

The organic phases were collected and dried over anhydrous MgSO4. The 
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concentrated mixture was purified by column chromatography on silica gel (petroleum 

ether/ethyl acetate = 9:1 as eluent) to afford the corresponding product as pale-yellow 

liquids. 

 

5.2.6. Carboxylative cyclization of propargylic amines  

          The carboxylative cyclization of synthesized propargylic amines with CO2 

catalyzed by Ag@Pybpy-COF was carried out in a glass reactor (50 mL) with a 

magnetic stirrer at 50 °C and 1 bar CO2 pressure. The catalyst was activated at 393 K 

for 12 h under a vacuum to remove guest solvent molecules. In a typical procedure, 

Ag@Pybpy-COF (10 mg) and DMSO (2 mL) were taken in a reactor, then propargylic 

amine (1 mmol) was added into the reaction mixture during stirring, followed by DBU 

(0.1 mmol) was added. Flushed the reactor with CO2 twice. Later, 0.1 MPa of CO2 

was introduced and it was maintained at 50 °C for 0.5 h under stirring. After the 

required time, the reactor was cooled down and excess CO2 was released. The catalyst 

was separated from the reaction mixture by filtration and the product was extracted 

from filtrate with DCM, washed with saturated NaCl solution, and dried over 

anhydrous MgSO4. The product was further purified by column chromatography on 

silica gel, and the isolated yield was calculated based on the starting reactants utilized. 

The characterization of the product was performed by 1H and 13C NMR analysis.  

 

5.2.7. Structure simulation and modeling of Pybpy-COF 

          To elucidate the structure of Pybpy-COF and to calculate the unit cell 

parameters, a possible 2D model was constructed in the material studio software. The 

experimental PXRD pattern matches well with the simulated pattern for an eclipsed 

model of Pybpy-COF. Refinement of PXRD patterns was carried out using the 

Pseudo-Voigt function. The optimized structure of Pybpy-COF is given below. 
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Figure 1. Simulated structure of Pybpy-COF. 

 

5.3 Results and Discussion 

          The Pybpy-COF was synthesized by Schiff-base reaction of 4,4,4,4-(pyrene-

1,3,6,8-tetrayl)tetraaniline (Py-NH2) with 2,2'-bipyridyl-5,5'-dialdehyde (bpy-CHO) in 

the presence of mesitylene/dioxane/6M AcOH at 120 °C (Scheme  1).60 Further, the 

anchoring of Ag(0) at the bipy sites exposed in the 1D channels of Pybpy-COF was 

achieved by treating the COF with AgNO3 followed by reduction with hydrazine, as 

shown in Scheme 1.  

      

Scheme  1. The synthesis scheme of Pybpy-COF and Ag@Pybpy-COF. 



Chapter 5                                                                       Pyrene-Based Nanoporous…. 

129 
 

          The as-synthesized COFs were characterized by various techniques. The Fourier 

transform infrared (FT-IR) spectra of Pybpy-COF showed the disappearance of 

characteristic peaks due to the amine group of Py-NH2 and the carboxyl group of bpy-

CHO precursor. Besides, a new peak at 1624 cm-1 was observed corresponding to the 

imine (-C=N-) bond formed by Schif-base condensation of the reactants supporting the 

Pybpy-COF formation, as depicted in Figure A36a.61 In addition, stretching bands 

corresponding to C=N and C-C bonds of the bipyridine ring were observed at 1600-

1550 cm-1 and 740 cm-1, respectively.15 Further, the FT-IR spectra of Ag(0) anchored 

Pybpy-COF showed the characteristic stretching band due to imine (-C=N-) bond, 

indicating retaining of the framework structure even after embedding of silver NPs, 

and a slight shift was observed in the C=N stretching frequency of the bipyridine ring 

supporting the interaction of Ag NPs at the bipy sites align in the 1D channel of the 

Pybpy-COF (Figure A36b). Moreover, the powder X-ray diffraction (XRD) pattern of 

the sample established the phase purity of as-synthesized Pybpy-COF. The XRD 

pattern shows an intense peak at a Bragg’s angle (2Ө) of 3.16° corresponding to 110 

plane, supporting the presence of log-range ordering in the structure (Figure 2a). 

Besides, additional diffraction peaks with lower intensity were observed at 2Ө = 4.58°, 

6.38°, 9.74°, 12.98°, and 23.86° assigned to (020), (220), (330), (440), and (001) 

planes, respectively (Figure 2a).62 The (001) facet supports the structural ordering and 

π-π stacking between the 2D layers of COF. Additionally, the experimental XRD 

pattern matches well with that of the simulated pattern (Figure 2a). Further, the Ag(0) 

incorporated sample showed appearance of new diffraction peaks at 2Ө = 38.1, 44.2, 

64.5, and 77.3 assigned to (111), (200), (220), and (311) planes of anchored Ag NPs 

(JCPDS no. 04-0783), supporting its successful embedding in the framework (Figure 

2b).63 The most probable 2D model of Pybpy-COF was optimized with an eclipsed 

structure in the PMM2 space group, and the unit cell parameters are a = 42.10 Å, b = 

36.80 Å, C = 4.29 Å and α = β = γ = 90°.62 Further, carbon cross-polarization magic 

angle spinning (13C CP-MAS) solid-state nuclear magnetic resonance (NMR) spectra 

of Pybpy-COF showed a resonance peak at 154.1 ppm corresponding to imine (-C=N) 

carbon, supporting the formation of COF (Figure 2c).64 Besides, the spectrum shows 

resonance peaks corresponding to the pyridine, phenyl, and pyrene carbons of the 

framework.          
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Figure 2. (a) Comparison of the experimental and simulated PXRD plots of Pybpy-

COF. (b) PXRD pattern of Ag@Pybpy-COF (Ag NPs peaks are represented by 

arrows). (c) Solid-state 13C CP-MAS spectra of Pybpy-COF. (d) Thermogravimetric 

analysis (TGA) plot of Pybpy-COF (red) and Ag@Pybpy COF (blue). 

 

          Further, field-emission scanning electron microscopy (FE-SEM) analysis 

showed a flake-like morphology of pristine Pybpy-COF (Figure 3a).65 The 

morphology was almost retained even after Ag NPs were anchored at the bipyridine 

sites of the COF (Figure 3b). Energy-dispersive X-ray spectroscopy (EDS) plots 

confirmed the presence of Ag NPs (Figure A37). Additionally, elemental mapping 

supports the uniform distribution of C, N, and Ag in the pristine and Ag-loaded 

COF(Figures A38a and A38b). Moreover, high-resolution transmission electron 

microscopy (HR-TEM) analysis of Ag@Pybpy COF unambiguously confirms the 

presence of Ag NPs on the surface of the COF with an average particle size of ~15 nm 

(Figure 3c). The selected area electron diffraction (SAED) pattern supports the 

crystalline nature of the Ag nanoparticles (Figure 3d).66 Additionally, the lattice 

fringes with 0.23 nm spacing correspond to the (111) plane of Ag, supporting the 

embedding of Ag NPs in the COF (Figure 3e).67 Besides, microwave plasma atomic 
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emission spectroscopy MP-AES analysis revealed 2.4 wt % loading of Ag in COF 

(Figure A39). 

 

Figure 3.  FE-SEM images of Pybpy-COF, and Ag@Pybpy-COF (a, b). HR-TEM 

image of Ag@Pybpy-COF along with inset plot of particle size distribution, (c) SAED 

pattern, (d) and lattice fringes of Ag (e). 

 

          X-ray photoelectron spectroscopy (XPS) study confirmed the presence of 

constituent (C, N, and Ag) elements (Figure 4a). The XPS spectra of Ag showed two 

characteristic bands at binding energy (BE) of 374.0 eV and 368.0 eV with a spacing 

of 6 eV corresponding to 3d3/2 and 3d5/2, respectively, supporting its metallic Ag(0) 

state (Figure 4b).68 A slight bathochromic shift observed with respect to BE reported 

for free Ag NPs (3d5/2 = 368.3 and 3d3/2 = 374.3) could be ascribed to its interaction 

with highly exposed bipy nitrogen sites in the 1D channels of the framework.68 A 

similar observation of a shift in the BE of Ag has been reported upon the coordination 

of Ag NPs with bipyridine N-sites.68,69 The N 1s spectra of pristine COF showed two 

bands at BE of 398.3 eV and 399.7 eV corresponding to pyridyl nitrogen and imine 

nitrogen, respectively (Figure 4c).70 On the other hand, the deconvoluted N 1s spectra 

of Ag@Pybpy-COF showed a new band at 399.2 eV corresponding to Ag-bound 

bipyridine-N (Figure 4d). Thus, XPS results confirm the anchoring of Ag at the 

bipyridine sites. Thus, COF plays a vital role in stabilizing Ag NPs at the bipyridine 
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sites lined in the pore walls. Further, the thermal stability of as-synthesized Pybpy-

COF and Ag@Pybpy-COF was investigated by thermogravimetric analysis (TGA), 

and the COFs were found to exhibit high thermal stability up to 400 °C (Figure 2d). 

Further, the framework undergoes disintegration at temperatures higher than 400 °C.   

 

  

Figure 4. (a) XPS survey spectra of Ag@Pybpy-COF, (I) and  Pybpy-COF, (II). (b) 

Ag 3d spectra of Ag@Pybpy-COF. (c and d) The N 1s spectra of Pybpy-COF, and 

Ag@Pybpy-COF.  

 

5.3.1. Gas adsorption analysis 

          The N2 adsorption measurements of Pybpy-COF and Ag@Pybpy-COF were 

carried out to test the permanent porosity of COFs. The BET (Brunauer-Emmett-

Teller) surface area of Pybpy-COF and Ag@Pybpy-COF were estimated to be 1408 

m2g-1 and 787 m2g-1, respectively (Figure 5a). The reduction in the surface area of 

Ag@Pybpy-COF can be attributed to a partial loss of porosity on incorporating Ag 

NPs in Pybpy-COF.71 Further, the CO2 sorption isotherms of Pybpy-COF and 

Ag@Pybpy-COF showed type-1 plot with the uptake of 47.6/33.4 and 37.4/23.2 cc/g 

at 273 and 298 K, respectively (Figure 5b).62 The adsorption isotherms were suited 
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with the Freundlich-Langmuir equation, and the heat of adsorption value (Qst) was 

calculated using the Clausius-Clayperson equation, and the value is 22.14 and 30.89 

kJ/mol for Pybpy-COF and Ag@Pybpy-COF, respectively (Figure A40 and A41). The 

high Qst value of Ag@Pybpy-COF could be ascribed to the interaction of CO2 with Ag 

NPs embedded at the bipyridine sites of the COF. Further, gas selectivity 

measurements of Ag@Pybpy-COF revealed selective adsorption of CO2 over N2 and 

CH4 with Henry gas selectivity constant of 66.25 for KCO2/N2 and 35.50 for KCO2/CH4, 

respectively (Figure A42).  

 

 

Figure 5. (a) N2 adsorption isotherm collected at 77K for Pybpy-COF (I) and 

Ag@Pybpy-COF (II); (b) CO2 adsorption isotherms of Pybpy-COF (I and III), and 

Ag@Pybpy-COF (II and IV) performed at 273 and 298 K, respectively.  

 

5.3.2. Carboxylation of terminal alkynes with CO2 catalyzed by Ag@Pybpy-COF  

          Owing to the presence of basic bipyridine and catalytic Ag(0) sites, the catalytic 

activity of Ag@Pybpy-COF was investigated for carboxylation of terminal alkynes to 

alkynyl carboxylic acids. To begin with, reaction conditions were optimized using 

phenylacetylene as a model substrate for alkynes (Table 1 and Figure 6).  
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Figure 6. Optimization of reaction conditions for the carboxylation of phenylacetylene 

with CO2 by varying temperature and time (a and b) catalyzed by Ag@Pybpy-COF. 

Reaction conditions: Ag@Pybpy-COF (10 mg), Phenylacetylene (1 mmol), base (1.5 

mmol), CO2 (1 bar), and solvent (DMF, 5 mL). 

 

          The effect of solvent on the catalytic performance was studied by screening 

various solvents (Table 1), and the reaction performed in dimethylformamide (DMF) 

afforded a higher product yield over other solvents [(Toluene, tetrahydrofuran (THF), 

and dimethyl sulfoxide (DMSO)] employed (Table 1). This higher catalytic activity 

could be due to better solubility of quadrupolar CO2 and ionic Cs2CO3 in DMF. The 

effect of a base on the catalytic performance was also studied by screening various 

bases like KOH, Na2CO3, Triethylamine, K2CO3, and Cs2CO3 under the optimized 

conditions (Table 1). Notably, the catalytic reaction with Cs2CO3 (Table 1) showed a 

higher conversion of phenylacetylene to the product, 3-phenylpropargylic acid. This 

higher catalytic performance is assigned to the vital role of Cs2CO3 in deprotonating 

the alkynes and forming the product (please refer to Scheme 2).34,72 At the optimized 

conditions, the catalytic reaction performed with Ag@Pybpy-COF (10 mg) as a 

catalyst, phenylacetylene (1 mmol), and base (Cs2CO3), in DMF at 30 ⁰C) showed a 

52.5% yield of the corresponding product (3-phenylpropargylic acid) (Figure 6a). 

Increasing the reaction temperature to 50 °C led to the quantitative conversion of the 

alkyne, affording 98% yield of the product (3-phenylpropargylic acid) with 100% 

selectivity (Table 1). Further increase in the reaction temperature (70 °C) resulted in a 

reduction in the product yield, which could be ascribed to partial decarboxylation of 

propynoate intermediate at higher temperatures (Figure 6a).35 
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Table 1: Optimization table for the carboxylation of terminal alkynes with CO2 

catalyzed by Ag@Pybpy-COF.a 

S. No. Catalyst Base Temp. 

(°C) 

Time 

(h) 

Yield 

(%)b 

1 - - 50 12 - 

2 Ag@Pybpy-COF - 50 12 - 

3 - Cs2CO3 50 12 08 

4 AgNO3 Cs2CO3 50 12 10.5 

5 Pybpy-COF Cs2CO3 50 12 15 

c6 Ag@Pybpy-COF Cs2CO3 50 12 51.4 

7 Ag@Pybpy-COF Cs2CO3 50 12 98 

8 Ag@Pybpy-COF K2CO3 50 12 - 

9 Ag@Pybpy-COF Na2CO3 50 12 - 

10 Ag@Pybpy-COF Triethylamine 50 12 - 

11 Ag@Pybpy-COF KOH 50 12 - 

d12 Ag@Pybpy-COF Cs2CO3 50 12 - 

e13 Ag@Pybpy-COF Cs2CO3 50 12 16 

f14 Ag@Pybpy-COF Cs2CO3 50 12 82 

h15 Ag@Pybpy-COF Cs2CO3 50 12 38 

i16 Ag@Pybpy-COF Cs2CO3 50 12 - 

        17 Ag@Pybpy-COF Cs2CO3 25 12 40 

aReaction conditions: Ag@Pybpy-COF (10 mg), Phenylacetylene (1 mmol), base (1.5 

mmol), CO2 (1 bar), solvent (DMF 5 mL), 12 h. bIsolated yield. cCatalyst (5 mg), 

Solvent =  dToluene, eTHF, fDMSO, hCatalyst (20 mg), and iunder N2 gas. 

 

          Further, the effect of catalyst (Ag@Pybpy-COF) loading on the yield of the 

product (3-phenylpropargylic acid) was also studied. The use of 5 mg of catalyst 

rendered 51.4% yield of the product (Table 1), and increasing the loading to 10 mg led 

to 98% yield of the product under the optimized conditions. Further increase in 

catalyst loading to 20 mg resulted in a reduction in product yield (Table 1) due to 

decarboxylation of the product.35 Furthermore, the catalytic reaction performed in the 
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absence of carbon dioxide (under N2) showed no product formation, which confirms 

the Csp-CCOOH bond formation by the C-C coupling of alkyne moiety with CO2 (Table 

1). Additionally, the usefulness of a catalyst for CO2 conversion from simulated flue 

gas/dilute gas (13% CO2) was examined. The carboxylation of terminal alkynes was 

tested using dilute gas, which has a composition similar to that of dry flue gas (CO2: 

N2 = 13:87%) as a CO2 source under the optimized conditions. Notably, about 62% 

yield (Table 2) of the product (3-phenylpropargylic acid) was obtained, highlighting 

the potential significance of the catalyst for the utilization of CO2 from dilute gas 

under mild conditions. 
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Table 2. Carboxylation of various terminal alkynes with CO2 catalyzed by 

Ag@Pybpy-COF.a 

     

     

S.No. Substrate Product Yield 

(%)b 

TONc 

 

1 

   

98.0 

 

490 

 

2d 

   

62.0 

 

310 

 

3 

   

95.0 

 

475 

 

4 

   

97.0 

 

485 

 

5 

   

93.0 

 

465 

 

6 

   

99.0 

 

495 

 

7 

   

96.0 

 

480 

 

8 

  

 

 

99.0 

 

495 

aConditions: Catalyst [10 mg; (Ag 0.002 mmol)], alkynes (1 mmol), Cs2CO3 (1.5 

mmol), CO2 (1 bar), DMF (5 mL), 50 °C for 12 h. bIsolated yield, cTON = moles of 

the product formed/moles of the active metal sites in the catalyst, and dSimulated flue 

gas (13:87 % = CO2:N2). 

mailto:Ag@Pybpy-COF.a
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          Motivated by the high catalytic activity of Ag@Pybpy-COF for the 

carboxylation of phenylacetylene to propiolic acid at atmospheric pressure of CO2, the 

scope of the reaction was further extended to various substituted phenylacetylenes 

under the optimized conditions (Table 2). Notably, Ag@Pybpy-COF could convert a 

variety of terminal alkynes into the corresponding value-added alkynyl carboxylic 

acids at mild conditions. Interestingly, phenylacetylenes containing the electron-

withdrawing group undergo a higher conversion than those with the electron-donating 

functional group (Table 2).73 Here, the electron-withdrawing group enhances the 

polarity of the terminal C-H bond of aromatic alkynes, thereby promoting facile 

deprotonation of alkynes in the presence of Cs2CO3. Further, heteroaromatic 

(thiophene) acetylene was converted to corresponding 3-(thiophene-3-yl)propiolic acid 

in high yield under the optimized conditions (Table 2). These results demonstrate the 

excellent catalytic activity of Ag@Pybpy-COF with diverse functional group tolerance 

for efficient carboxylation of various terminal alkynes at mild conditions. Moreover, a 

comparison of the catalytic performance of Ag@Pybpy-COF with literature-reported 

catalysts revealed its superior activity for the chemical fixation of CO2 to propiolic 

acids (Table A5).  

 

5.3.3. Carboxylative cyclization of propargylic amines with CO2 catalyzed by 

Ag@Pybpy-COF 

          Motivated by the higher catalytic performance of Ag@Pybpy-COF for the 

carboxylation of terminal alkynes, the catalytic activity was tested for coupling of 

propargylic amines with CO2 to produce bioactive 2-oxazolidinones. First, the 

catalytic performance was tested with N-benzylprop-2-yn-1-amine as a model 

substrate, and the reaction conditions were optimized (Table 3). At the optimized 

conditions, use of 10 mg of Ag@Pybpy-COF as catalyst, N-benzylprop-2-yn-1-amine 

(1 mmol), 0.1 mmol of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), resulted in 

complete conversion of the amine into 2-oxazolidinone with 99% yield and 100% 

selectivity within 30 minutes at 50 °C and atmospheric pressure of CO2 (Table 3).  
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Table 3: Optimization table for the carboxylic cyclization of CO2 with propargylic 

amines catalyzed by Ag@Pybpy-COF.a 

S. No. Catalyst Base Temperature 

(°C) 

Time (h) Yield 

(%)b 

1 Ag@Pybpy-

COF 

- 50 0.5 10 

2 Ag@Pybpy-

COF 

DBU 50 0.5 99 

      

3 - DBU 50 0.5 - 

4 Pybpy-COF DBU 50 0.5 - 

5 Ag@Pybpy-

COF 

DBU 25 0.5 30 

6c Ag@Pybpy-

COF 

DBU 50 0.5 - 

aReaction conditions: Ag@Pybpy-COF (10 mg), N-benzylprop-2-yn-1-amine (1 

mmol), base (0.1 equiv.), CO2 (1 bar), and DMSO (2 mL), 0.5 h. bIsolated yield. 

cUnder N2 gas. 

     Further, the control experiment in the absence of CO2 (under N2) under optimized 

conditions showed no product formation (Table 3), which confirms that 2-

oxazolidinone is formed by chemical fixation of carbon dioxide with amine via CCO2-

N bond formation. Whereas the catalysis carried out with pristine COF (Pybpy-COF) 

as a catalyst did not show product formation, highlighting the importance of Ag(0) in 

catalyzing the formation of 2-oxazolidinones by coupling of CO2 with propargylic 

amines (Table 3). The reaction carried out in the absence of DBU resulted in 

negligible product yield, suggesting its critical role in abstracting a proton of 

propargylic amine (Table 3). Further, the reaction scope was extended to various 

substituted propargylic amines. Interestingly, most of the propargylic amines were 

converted to respective oxazolidinones in excellent yield (> 95%) under the optimized 

conditions of atmospheric CO2 within 30 minutes (Table 4). Moreover, a comparison 

of the catalytic performance with literature-reported heterogeneous catalysts revealed 
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the superior catalytic performance of Ag@Pybpy-COF for carboxylative cyclization of 

propargylic amines to value-added 2-oxazolidinones (Table A6). 

Table 4. Carboxylative cyclization of propargylic amines with CO2 catalyzed by 

Ag@Pybpy-COF.a 

  

                        

S. No. Substrate Product Yield 

(%)b 

TONc 

 

1 

   

 99.0 

 

495 

 

2 

  

 

 

 

 97.0 

 

485 

 

3 

   

     96.0 

 

480 

 

4 

 

 

 

 

 

 

     98.0 

 

 

490 

 

 

    5 

   

     95.0 

 

 

475 

    6 

 

       98.0     490 

aConditions: Catalyst [10 mg; Ag (0.002 mmol)], propargylic amine (1 mmol), CO2 (1 

mailto:Ag@Pybpy-COF.a
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bar), DBU (0.1 equiv.), DMSO (2 mL), 50 °C for 0.5 h. bIsolated yield. cTON = moles 

of the product formed/moles of the active metal sites in the catalyst. 

 

5.3.4. Mechanistic investigation for carboxylation of terminal alkynes with CO2  

          A plausible reaction mechanism for the carboxylation of phenylacetylene with 

CO2 catalyzed by Ag@Pybpy-COF is shown in Scheme 2a.34,35 The catalytic reaction 

proceeds with the polarization of C≡C bond of alkyne by its coordination with Ag NP, 

resulting in silver acetylide intermediate formation in the presence of cesium 

carbonate. The formation of this intermediate was established by doing a control 

experiment in which Ag@Pybpy-COF was treated with phenylacetylene for 2 h and 

recovered. The FT-IR spectra of recovered COF showed stretching frequencies 

corresponding to C≡C, terminal C-H, and aromatic C-H bonds of phenylacetylene, 

supporting its coordination with Ag(0) in COF (Figure A43). Subsequent insertion of 

CO2 led to the formation of silver carboxylate followed by transmetalation to generate 

cesium carboxylate, which was acidified to obtain the carboxylic acid product, and the 

catalyst was recycled for subsequent cycles. 

          To get further insight into mechanistic details, density functional theory (DFT) 

calculations were performed with phenylacetylene as model acetylene and its coupling 

with CO2 to generate 3-phenylpropargylic acid (Scheme 2b). To start with, the binding 

interaction between the Ag6 cluster and the bipy unit of COF was analyzed. For this, 

Ag6, bipyridine moiety of COF, and Ag6-COF cluster were fully relaxed, and binding 

energy (EB) was calculated using the following equation: 

𝐸𝐵 = 𝐸𝐴𝑔_𝐶𝑂𝐹 − (𝐸𝐶𝑂𝐹 + 𝐸𝐴𝑔) 

Here, EAg_COF, ECOF, and EAg represent the energy of the Ag6-COF cluster, pristine 

COF unit, and Ag6 cluster, respectively. It was observed that Ag6 binds strongly to the 

COF unit through the bipyridine N-sites at a distance of 2.35 Å, with a binding energy 

of -2.94 eV. The optimized structure of Ag6-COF complex a is shown in Scheme 2b. 

Next, the reactant phenylacetylene (R1) was introduced to Ag6-COF, and the 

optimized structure of the resultant system shows the binding of phenylacetylene with 

Ag6-COF through bridging interactions to form complex b favored by adsorption 

energy of -21.6 kcal/mol and the distance between two acetylenic carbon atoms and 

Ag atom are 2.31 and 2.48 Å, respectively. Further, cesium carbonate deprotonates 

phenylacetylene, and the resultant phenyl acetyl moiety binds to the Ag cluster 
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through a Ph-C≡C sigma interaction with an Ag-C distance of 2.08 Å in the 

intermediate complex c with a reaction free energy of -8.4 kcal/mol. At the same time, 

the CO2 molecule interacts with the imine (C=N) nitrogen of the COF unit (structure 

c). The activated Ag-Csp bond is the insertion site for CO2 and through the bond 

migration mechanism, the CO2 molecule inserts to acetylenic carbon of the 

phenylacetylene to form the final carboxylate complex d with a reaction-free energy of 

-14.6 kcal/mol (Scheme 2b). The distance between the Ag cluster and two oxygen 

atoms is 2.38 and 2.37 Å, respectively. To study this step properly, we determined the 

transition state (TS) using the TS search LST/QST method. The energy barrier is -4.2 

kcal/mol, validating the feasibility of this step. The relative energy profile for this 

mechanism is represented in Scheme 2b. The intermediate c and final complex d lie at 

-8.4 kcal/mol and -14.6 kcal/mol, respectively. The TS lies between the intermediate 

and final complex with a relative binding energy of -4.2 kcal/mol. Notably, the overall 

reaction-free energy is -14.6 kcal/mol, which supports the reaction feasibility.  

 

Scheme 2. (a) Plausible reaction mechanism for the carboxylation of terminal alkynes 

with CO2 catalyzed by Ag@Pybpy-COF. (b) DFT energy profile for the carboxylation 

of terminal alkynes with CO2 catalyzed by Ag@Pybpy-COF (bond distances are in Å). 

Color code: grey, C; blue, N; red, O; and pale blue, Ag. For clarity, only a fragment of 

COF is shown, and hydrogen atoms are omitted.  

 

5.3.5. Mechanistic investigation for carboxylation of propargylic amines with CO2 

           Based on the literature study, a plausible mechanism for carboxylative 
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cyclization of propargylic amine (N-benzylprop-2-yn-1-amine) with CO2 catalyzed by 

Ag@Pybpy-COF is shown in Scheme 3a.36,38 The coordination of propargylic amines 

with the framework underwent the same trial as that of terminal alkynes with 

Ag@COF. In support of this, the FTIR spectra of the COF treated with N-benzylprop-

2-yn-1-amine showed characteristic peaks corresponding to propargylic amine, 

demonstrating its interaction with Ag@COF (Figure A45). Then, the presence of DBU 

facilitates abstraction of the proton of propargylic amine, and subsequent insertion of 

CO2 leads to carbamate formation, which undergoes intramolecular cyclization to 

generate oxazolidinone and its elimination from the metal center regenerates the 

catalyst for subsequent cycles. The DFT calculations were performed to better 

understand the reaction mechanism and the plausible catalytic cycle (Scheme 3b). The 

reactants (N-benzylprop-2-yn-1-amine) and CO2 were introduced to Ag6-COF, and the 

optimized structure a is shown in Scheme 3b. At the initial complex b, the propargylic 

amine interacts with Ag6-COF via nitrogen atom at a distance of 2.37Å and acetylenic 

bond at a distance of 3.17Å with a relative energy of -38.3 kcal/mol as displayed in 

Scheme 3b. At the same time, the CO2 molecule interacts with the imine (C=N) 

nitrogen of COF through a long-range interaction at 4.6 Å. Then, the  intermediate 

complex c with a relative energy of -36.9 kcal/mol is formed, in which the CO2 

molecule attacks the amino group of propargylic amine to generate a carbamate 

intermediate (Scheme 3b). The distance between the O atom of CO2 and the Ag cluster 

is 2.37Å. Subsequently, a ring closure reaction generates the final complex d with a 

free energy of -34.5 kcal/mol. As discussed in the previous section, we investigated 

this step by determining the TS using the TS search LST/QST method. The TS lies at -

27.9 kcal/mol from the intermediate complex, validating the feasibility of this step. 

The relative energy profile for this mechanism is represented in Scheme 3b. The 

energy of the overall reaction is -34.5 kcal/mol, which substantiates the feasibility of 

this reaction. Thus, the catalytic pathway for carboxylative cyclization of propargylic 

amines with CO2 to generate 2-oxazolidinones catalyzed by Ag@Pybpy-COF is 

presented.   
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 Scheme 3. (a) Plausible reaction mechanism for the carboxylative cyclization of 

propargylic amines with CO2 catalyzed by Ag@Pybpy-COF. (b) DFT energy profile 

for the carboxylative cyclization of PAs with CO2 catalyzed by Ag@Pybpy-COF 

(bond distances are in Å). Color code: grey, C; blue, N; red, O; and pale blue, Ag. For 

clarity, only a fragment of COF is shown, and hydrogen atoms are omitted.  

 

5.3.6. Catalyst recycling and leaching test 

          The recyclability of Ag@Pybpy-COF for multiple cycles of reuse was tested by 

separating the catalyst by centrifugation after the catalytic reaction, washed with 

acetone, and utilized for subsequent catalytic cycles after activating at 100 °C for 12 h 

under vacuum. Notably, Ag@Pybpy-COF was recyclable for up to six cycles with 

negligible loss in the yield of phenylpropargylic acid, which supports the catalyst 

stability and recyclability (Figure 7a). Further, the recovered catalyst was 

characterized by various techniques to confirm its structural stability and Ag loading. 

The PXRD pattern and FT-IR spectra of the recycled sample match well with those of 

the parent COF, supporting its structural integrity (Figures A47 and A48). The XPS 

analysis and elemental mapping of recycled samples revealed the presence of 

constitute elements (Figure A49). Further, MP-AES analysis showed about 2.2 wt% of 

Ag close to that of the parent sample, supporting the stable anchoring of Ag NPs. In 

addition, the catalyst leaching test was performed by separating Ag@Pybpy-COF from 

the reaction mixture after 3h, led to no further increase in the yield of propiolic acid, 

supporting the absence of catalyst leaching (Figure 7b). 
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Figure 7. Recyclability (a) and leaching test (b) of Ag@Pybpy-COF. 

 

5.4. Conclusion  

          This work demonstrates the application of highly porous Pybpy-COF for stable 

anchoring of catalytically active Ag(0) NPs and its application for the synthesis of two 

valuable commodity chemicals, alkynyl carboxylic acids, and 2-oxazolidinones by 

utilizing greenhouse gas, CO2 at ambient conditions. The efficient carboxylation of 

various terminal alkynes with CO2 via C-H bond functionalization was achieved to 

produce alkynyl carboxylic acids with diverse substrates scope in high yield and 

selectivity. Besides, carboxylative cyclization of diverse propargylic amines with  CO2 

was accomplished to obtain high-value 2-oxazolidinones at a mild atmospheric 

pressure of CO2. A detailed mechanistic path of the catalytic transformations has been 

elucidated from in-depth theoretical DFT studies. Moreover, the catalyst was highly 

recyclable for up to six cycles without significant loss in catalytic activity and 

structural rigidity. Overall, this work showcases effective CCU at a mild atmospheric 

pressure of CO2.  
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with CO2 catalyzed by Ag@Pybpy-COF (bond distances are in Å).  

Figure A47. PXRD spectra of Ag@Pybpy-COF (I) and recycled 
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Figure A1. FT-IR spectra of (a) 1,3,5-Triformylphloroglucinol (black line) 2,5-

diaminobenzenesulfonic acid (red line) and COF-SO3H (blue line). (b) FT-IR spectra 

of 1,3,5-Triformylphloroglucinol (black line), 1,4-phenylenediamine (red line) and 

COF-H ( blue line). 

 

 

 Figure A2. TGA plot of (a) COF-SO3H and (b) COF-H. 

 

Analysis of gas adsorption isotherms 

Clausius-Clapeyron equation1 was used to calculate the enthalpies of carbon dioxide 

adsorption and by using the Langmuir Freundlich equation2 an accurate fit was 

retrieved to get a precise prediction of CO2 adsorbed at saturation. A modification of 

the Clausius-Clapeyron equation was used for the calculations. 

ln(P1/P2) = ΔHads(T2 − T1/R. T1. T2)…….(i) 

where P1 and P2 = Pressures for isotherm at 273 K  and 298 K, respectively. 

              T1 and T2 = Temperatures for isotherm at 273 K and 298 K, respectively. 

              ΔHads  = Enthalpy of adsorption. 

              R = Universal gas constant = 8.314 J/K/mol). 

The pressure is a function of the amount of gas adsorbed which was determined by 
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using Langmuir-Freundlich fit. 

Q/Qm = B. P(1/t)/1 + (B. P(1/t))…… (ii) 

                         where Q = moles of gas adsorbed. 

                                         Qm = moles of gas adsorbed at saturation. 

                                         B and t = constants. 

                                         P = Pressure.                 

 By rearranging equation (ii) we get equation (iii) 

P = [(Q/Qm)/{B − (B. (Q/Qm)}]
t……..(iii) 

  Substituting equation (iii) into equation (i) we get 

ΔHads = {R. T1. T2/(T2 − T1)}. ln
⁡[(Q/Qm1)/{B−(B.Q/Qm1)}]

t1

[(Q/Qm2)/{B−(B.Q/Qm2)}]t2
………(iv) 

In equation (iv), subscripts 1 and 2 represent data corresponding to 273 K and 298 K, 

respectively.   

 

 

Figure A3. Carbon dioxide adsorption isotherm for COF-SO3H at (a) 273 K and (b) 

298 K. (the solid line shows the best fit to the data using the Langmuir-Freundlich 

equation). 
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Figure A4. Carbon dioxide adsorption isotherm for COF-H at (a) 273 K and (b) 298 

K. (the solid line shows the best fit to the data using the Langmuir-Freundlich 

equation). 

 

 

Figure A5. Enthalpy of carbon dioxide adsorption for (a) COF-SO3H and (b) COF-H 

calculated using Clausius-Clapeyron equation calculations. 
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Figure A6. Linear fitting of CO2, CH4, and N2 isotherms of COF-SO3H used for 

calculation of Henry’s selectivity constants. 

 

 

Figure A7. NH3 TPD plot of COF-SO3H. 
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Table A1. Comparison of the catalytic activity of COF-SO3H for cycloaddition of 

CO2 with epichlorohydrin to produce cyclic carbonate. 

S. No. Catalyst 
Active 

sites 

Pressure 

(bar) 

 

Conversion 

(%) 

References 

1. COF-JLU7 -OH 01 92 3  

2. COF-salen–Co Co(II) 20 91 4  

3. COF1/ZnBr2 Zn(II) 01 >99 5 

4. COF-366-Zn Zn(II) 15 71.2 6 

5. 2,3-DhaTph COF -OH 01 77 7 

6. 
Co/TPA-

TCIF(BD) 
Co(II) 5 95.1 8 

7. Cu/POP-Bpy Cu(II) 01 59.2 9 

8. Zn/POP-Bpy Zn(II) 01 58.1 9 

9. Co/POP-Bpy Co(II) 01 50.3 9 

10. PAF Zn(II) 10 73 10 

11. 1-Co Co (III) 20 88 11 

12. 1-Cr Cr (III) 20 95 11 

13. COF-SO3H -SO3H 01 >99 This work 
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Figure A8. FT-IR spectra of COF-SO3H recovered after five cycles of catalysis. 

 

 

Figure A9. PXRD plot of COF-SO3H recovered after five cycles of catalysis. 
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Figure A10. SEM images of COF-SO3H before and after catalysis. 

 

 

Figure A11. N2 adsorption isotherm of COF-SO3H before and after catalysis. 

 



Annexure 
 

168 
 

 

Figure A12. FT-IR spectra of (a) COF-SO3H (b) epichlorohydrin and (c) COF-SO3H 

treated with epichlorohydrin. 

 

 

Figure A13. PXRD pattern of bipy-CTF (i) and Cu(I)@bipy-CTF (ii). 
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Figure A14. EDS plot of bipy-CTF (a) and Cu(I)@bipy-CTF (b). 

 

 

Figure A15. MP-AES calibration curve for Cu(I)@bipy-CTF. 
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Figure A16. Carbon dioxide adsorption isotherm for bipy-CTF at (a) 273 K and (b) 

298 K (the solid line shows the best fit to the data using the Langmuir-Freundlich 

equation). (c) Enthalpy of carbon dioxide adsorption was determined using the 

Clausius-Clapeyron equation. 
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Figure A17. Carbon dioxide adsorption isotherm for Cu(I)@bipy-CTF at (a) 273 K 

and (b) 298 K (the solid line shows the best fit to the data using the Langmuir-

Freundlich equation). (c) Enthalpy of carbon dioxide adsorption was determined using 

the Clausius-Clapeyron equation. 
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Figure A18. Linear fitting for (a) CO2, (b) CH4, and (c) N2 isotherms of Cu(I)@bipy-

CTF was used for the calculation of Henry’s selectivity constants. 

 

Table A2. Comparison of the catalytic activity of Cu(I)@bipyCTF for carboxylative 

cyclization of 2-methyl-3-butyne-2-ol with the reported POP-based catalysts. 

S. No. Catalyst Active 

sites 

Pressure 

(bar) 

Conversion 

(%) 

References 

1. Ag@COF Ag(0) 1 91.2 12 

2. Ag@3D-HNU5 Ag(0) 1 99 13 

3. PAzo-POP-Ag Ag(0) 10 95 14 

4. F-MOP-3-Ag Ag(I) 10 99 15 

5. AgN@COF Ag(0) 1 95 16 

6. Cu(I)@bipy-CTF Cu(I) 1 (balloon) 96 This work 
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Figure A19. PXRD plot of Cu(I)@bipy-CTF as-prepared (red) and recovered after 

eight cycles of catalysis (blue). 

 

 

Figure A20. FT-IR spectra of Cu(I)@bipy-CTF as-prepared (red) and recovered after 

eight cycles of catalysis (blue). 

 



Annexure 
 

174 
 

 

Figure A21. SEM images of Cu(I)@bipy-CTF (a) as-prepared and (b) recovered after 

eight cycles of catalysis. 

 

 

Figure A22. FT-IR spectra of bipy-CTF (a), Cu(I)@bipy-CTF (b), 2-methyl-3-butyn-

2-ol (c), Cu(I)@bipy-CTF treated with 2-methyl-3-butyn-2-ol (d), bipy-CTF treated 

with 2-methyl-3-butyn-2-ol. 
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Figure A23. (a) FT-IR plot of P-COF (blue), BDA (purple), and TAPP (red). (b and c) 

Magnified FT-IR plots of P-COF (red) and Fe(III)@P-COF (blue). 

 

 

Figure A24. 13C CP-MAS solid-state NMR spectrum of P-COF. 
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Figure A25. EDS plot of P-COF. 

 

 

Figure A26. EDS plot of Fe(III)@P-COF. 

 



Annexure 
 

177 
 

 

Figure A27. MP-AES calibration curve for estimation of metal content in M@P-COF 

(M = Fe(III) (a), Fe(II) (b), and Zn(II) (c). 

 

 

Figure A28. XPS plot of P-COF, (a) survey spectrum (b) N1s.   

 

 

Figure S7. XPS plot of P-COF, (a) survey spectrum (b) N 1s. 
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Figure A29. FT-IR (a) and PXRD (b) plots of P-COF (I), Zn(II)@P-COF (II), and 

Fe(II)@P-COF (III). 

Figure A30. Carbon dioxide adsorption isotherm for P-COF at (a) 273 K and (b) 298 

K and Fe(III)@P-COF at (c) 273 K and (d) 298 K. (The solid line shows the best fit to 

the data using the Langmuir-Freundlich equation). 
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Figure A31. Enthalpy of carbon dioxide adsorption for Fe(III)@P-COF was calculated 

by using the Clausius-Clapeyron equation. 
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Table A3: Comparison of catalytic activity of Fe(III)@P-COF with the reported 

examples of heterogeneous catalysts known for epoxidation of styrene. 

S. 

No. 

Catalyst Oxidant Time 

(h) 

Conversion References 

1 (Compound 1) Perylene 

bis-imide linked iron(III) 

porphyrin chloride 

framework  

TBHP 08 99 17 

2 (Compound 2) Perylene 

bis-imide linked 

manganese (III) porphyrin 

chloride framework  

TBHP 08 99 17 

3 (Mn-CPF-1) covalent-

porhyrinic framework  

TBHP 24 99 18 

4 [Mn(salen)Cl] (1) PhIO 03 91 19 

5 [Mn(3,5-dtButsalhd)Cl] 

(5) 

PhIO 03 61.3 19 

6 Mn-CPF-2  TBHP 24 93 18 

7 Fe@MOF1 PhIO 18 90.9 20 

8 Compound 1 

[Co(Hoba)2(H2O)2](H2oba 

= 4,4′-oxydibenzoic acid) 

TBHP 06 96 21 

9 Fe(III)@P-COF PhIO 18 >99 This work 

 

 



Annexure 
 

181 
 

Table A4: Comparison of catalytic activity of Fe(III)@P-COF with the reported 

examples of heterogeneous catalysts known for the one-pot oxidative carboxylation of 

styrene. 

S. 

No

. 

Catalyst CO2 

(bar) 

Co-

catalyst 

(TBAB) 

(mmol) 

Temp. 

(°C) 

Time 

(h) 

Conversion 

(%) 

References 

 

1 MNP@SiO2–

8Mn 

10 PPNCl 

(0.02) 

80 24 99 22 

2 Fe@MOF1 08 0.2 50 24 98.6 20 

3 Ti-MMM-E  08 0.02 50 48 71 23  

4 MOF-590 01 0.3 80 10 93 24  

5 Co(II)@CSU

ST-2 

01 0.4 75 12 98 25 

6 Cr-MIL-101 08 0.02 25 24 39 26  

7 CSMCRI-10 08 0.09 80 08 92.6 27 

8 Fe(III)@P-

COF 

01 0.3 80 24 >99 This Work 
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Figure A32. FT-IR spectra of P-COF (a), Fe(III)@P-COF (b), styrene oxide (c), 

Fe(III)@P-COF treated with styrene oxide (d) P-COF treated with styrene oxide (e). 

 

 

Figure A33. FT-IR plot of Fe(III)@P-COF before (red) and after catalysis (blue). 
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Figure A34. SEM images of as-synthesized (a) and recycled (b) Fe(III)@P-COF. 

 

 

Figure A35. 1H NMR (400 MHz, CDCl3, 20 °C) stack plot for direct oxidative 

carboxylation of styrene catalyzed by the Fe(III)@P-COF at different time intervals (* 

peak due to TBAB).  
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Figure A36. (a) FT-IR stack plot for PyNH2 (pink), bpyCHO (red), and Pybpy-COF 

(blue). (b) FT-IR stack plot of Pybpy-COF (I) and Ag@Pybpy-COF (II). 
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Figure A37. EDS plot of Pybpy-COF (a) and Ag@Pybpy-COF (b). 

 

 

Figure A38. Elemental mapping of Pybpy-COF and Ag@Pybpy-COF (a and b), C 

(red), N (green), and Ag (light blue), respectively. 
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Figure A39. MP-AES calibration curve for Ag@Pybpy-COF. 

 

 

Figure A40. Carbon dioxide adsorption isotherms of Pybpy-COF carried out at 273 K, 

and 298 K (a and b) (the solid line shows the best fit to the data using the Langmuir-

Freundlich equation). (c) The enthalpy of carbon dioxide adsorption determined using 

the Clausius-Clapeyron equation. 
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Figure A41. Carbon dioxide adsorption isotherms for Ag@Pybpy-COF performed at 

273 K and 298 K (a and b) (the solid line shows the best fit to the data using the 

Langmuir-Freundlich equation). (c) The enthalpy of carbon dioxide adsorption 

determined using the Clausius-Clapeyron equation.  
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Figure A42. Linear fitting of CO2, N2, and CH4 isotherms of Ag@Pybpy-COF used 

for calculation of Henry’s selectivity constants. 

 

Table A5: Comparison of catalytic activity of Ag@Pybpy-COF with previously 

reported heterogeneous catalysts for the carboxylation of terminal alkynes. 

S. 

No. 

Catalyst Temp. 

(°C) 

CO2 

(bar) 

Time 

(h) 

Yield 

(%) 

References 

1 MOP-Pz-Ag 50 1 24 92 28 

2 Ag@p-CTF-250 50 1 16 96 29 

3 Ag0@CTFN-2 60 1 24 97 30 

4 Ag0@CTFN-3 60 1 24 97 30 

5 CTF-DCE-Ag 50 1 20 90.2 31 

6 AgNPs@m-PS-PC 70 1 12 91 32 

7 Ag@Pybpy-COF 50 1 12 98 This work 
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Figure A43. (a) FT-IR stack plot of Pybpy-COF (I), Ag@Pybpy-COF (II), 

ethynylbenzene (III), Ag@Pybpy-COF treated with ethynylbenzene (IV). (b) 

Magnified view of the selected region of FT-IR stack plot. 

 

 

Figure A44. Optimized structures of the intermediates and transition state (TS) in the 

catalytic carboxylation of terminal alkyls with CO2 catalyzed by Ag@Pybpy-COF 

(bond distances are in Å).  
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Table A6: Comparison of catalytic activity of Ag@Pybpy-COF with previously 

reported heterogeneous catalysts for carboxylative cyclization of propargylic amines. 

S. 

No. 

Catalyst Temperature 

(°C) 

Base 

(mmol) 

(DBU) 

CO2 

(bar) 

Time 

(h) 

Yield 

(%) 

References 

1 Ag@2,6-

FPP-TAPT 

50 0.25 1 2 99 33 

2 Ag@3,5-

FPP-TAPT 

50 0.25 1 2 91 33 

3 Ag@NPOP-

1 

50 0.1 1 2 97 34  

4 Ag@NPOP-

2 

50 0.1 1 2 93 34 

5 Ag@BT-

COP 

60 0.25 1 14 99.3 35  

6 Ag@BT-

COP 

60 0.25 1 14 84.9 35 

7 Ag@BT-

COP 

60 0.25 1 14 40.4 35 

8 Ag@Pybpy-

COF 

50 0.1 1 0.5 99 This work 
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Figure A45. FT-IR stack plot of Pybpy-COF (I), Ag@Pybpy-COF (II), N-benzylprop-

2-yn-1-amine (III), Ag@Pybpy-COF treated with N-benzylprop-2-yn-1-amine (IV). 

 

 

Figure A46. Optimized structures of intermediates and transition state in the 

catalytic carboxylative cyclization of propargylic amines with CO2 catalyzed by 

Ag@Pybpy-COF (bond distances are in Å).  
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Figure A47. PXRD spectra of Ag@Pybpy-COF (I) and recycled catalyst (II) after 

catalysis. 

 

 

Figure A48. FT-IR spectra of Ag@Pybpy-COF (I) and recycled catalyst (II) after 

catalysis. 
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Figure A49. Elemental mapping for Ag@Pybpy-COF recycled after five cycles of 

catalysis, C (red), N (green), and Ag (light blue). 
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