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Abstract 

In response to global climate change, there has been a significant shift in energy generation 

towards sustainable, renewable energy sources, with an increasing focus on wind and solar-based 

renewable sources. Continued global collaboration, international cooperation, and national 

commitments are significant global efforts involving more economic investments and 

technological research that cause the widespread transition from fossil fuel to adopting more 

sustainable and low-carbon energy for future generations. Rapid developments of renewable 

sources worldwide, their intermittent characteristics, complex control architecture, and 

characteristics of dynamic response have issued major challenges in the stability of modern power 

systems.  

Therefore, it is essential to explore the dynamic interaction between the various control 

loops of renewable sources and synchronous generators of the power system. One of the major 

aspects to consider in addressing such concerns is understanding the synchronizing/damping 

torque offered by renewable sources to the electromechanical oscillation loop of the synchronous 

generator. In this regard, the work explores the major impacts and challenges arising from the 

increasing penetration of wind or solar-based renewable sources into power systems. Further, it 

explores the major impacts and challenges arising from the growing penetration of wind and solar-

based renewable sources into power systems. A unique methodology is proposed to evaluate the 

impact of various system parameters on the damping torque offered by the Doubly-Fed Induction 

Generator-based (DFIG-based) Wind Energy System (WES) to the Electromechanical Oscillation 

Loop (EOL) of the Rest of the Power Systems  (RPS). Furthermore, a new method of Power 

System Stabilizer (PSS) design is proposed for a power system that contains a DFIG-based wind 

farm enabled with a Virtual Inertial Controller (VIC) and Phase Locked Loop (PLL) and also 

presents a unique methodology of probabilistic small signal stability analysis of power systems 

consisting of large-scale SPVs, which is performed considering various parameters and their 

uncertainties. Ranking of all the generator buses of a power system is obtained by probabilistic 

modal sensitivity analysis based on different Sensitivity Analysis (SA) tools such as (a) Sobol 

Sensitivity Analysis, (b) Random Balance Designs - Fourier Amplitude Sensitivity Test (RBD - 

FAST), (c) Delta Moment, and (d) Pianosi and Wagener (PAWN) on the power system by replacing 
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each generator with a similarly rated Solar Photo-Voltaic (SPV) system under the uncertainties of 

load variations and generator output. 

Keywords: DFIG-based wind energy systems, solar photo-voltaic systems, virtual inertia 

controller, phase locked loop, small-signal analysis, synchronizing/damping torque, synchronous 

generator, power system stabilizer, probabilistic modal analysis 
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Chapter 1                                                                                            

State-of-the-Art 

This chapter highlights the background of different renewable sources and their impact on power 

system stability. To combat climate change and continuous technological development in 

sustainable sources, renewable sources have rapidly grown worldwide; their intermittent 

characteristics, complex control architecture, and characteristics of dynamic response have issued 

major challenges in the stability of modern power systems. In this regard, it is essential to explore 

the dynamic interaction between the various control loops of renewable sources and synchronous 

generators of the power system. This chapter introduces the state-of-art of renewable energy 

generation from sustainable sources like solar or wind and their influence on power system 

dynamic stability.  

1.1 Motivation  

1.1.1 Climate Change 

Climate change is clearly observed from the continuous rise of average global temperature 

and its impact on the world's climate system. The air temperature on Earth has gone to an all-time 

high since post-industrialization. A study on global temperature analysis conducted by a group of 

scientists of the National Aeronautics and Space Administration (NASA), USA, indicates that the 

earth's air temperature has reached little more than 10 𝐶, since 1880 [1]. Compared to previous 

years, the current condition of the global warming effect on the earth's health is more rapid and 

primarily caused by the large-scale burning of fossil-based energy resources. Nearly 75% of total 

greenhouse gas emissions and 90% of total carbon dioxide emissions are from fossil-based energy 

generation only. To combat global warming, the Paris Agreement was adopted by 196 parties 

across the globe on 12th December 2015.  The Paris Agreement then became effective in December 

2016 with three main objectives: (a) The global average temperature must be limited well below 

20 𝐶 rise since the pre-industrial level, (b) the carbon emission should be reduced to 45% by 2030, 

and (c) zero carbon emissions should be achieved by 2050 [1].  
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Figure 1.1 Growth of generations from Renewable sources [2] 

1.1.2 Energy Transformation  

Substantial acceleration in the energy sector in the post-Paris Agreement was pursued to 

meet the roadmap outlined in the Paris Agreement, which primarily centered on renewable energy, 

electrification, and energy efficiency. Further, increasing electricity demands and greater 

awareness of the environmental effects of fossil fuels have prompted efforts to develop cleaner 

and more efficient energy sources. The swift global transitions of renewable energy generations 

and their efficient harness of electrification is the culmination of recent innovations in power-

electronic converters. Further, continued global collaboration, international cooperation, and 

national commitments are significant global efforts involving more economic investments and 

technological research that cause the widespread transition from fossil fuel to adopting more 

sustainable and low-carbon energy resources for future generations. As a result, the global 

participation of total installed capacity has reached 3870 GW by the end of 2023 [2]. The year-

wise growth of global installed capacity in renewable energy resources can be viewed in Figure 

1.1. It is apparent from Figure 1.1 (b) that besides hydropower, solar and wind contribute to the 

remaining installed capacity of renewable-based energy generation with a total of 1053 GW 

(37%) and 1017 GW (26%), respectively. Figure 1.1 (a) exhibits the year-wise growth of the 

installed capacity of renewable sources from 2018 to the end of 2023. It can be observed that the 

total installation of renewables has grown by 13.9 %, with 473 GW during 2022. In the year 2023, 

the solar power generation increase continued to be at the top by adding 346 GW with a +32.2% 

increase, followed by the wind of 116 GW with a +12.9% growth. Hence, the growth of solar and 
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wind can be seen as the two dominant renewable sources from all possible sustainable sources that 

contribute to meeting the power demand with the cleanest way of power generation, as outlined 

by the Paris Agreement. 

1.1.3   Wind Power Technology 

Wind power is one of the most dominant renewable sources that has the potential to fulfill 

the growing electricity demand with technological advances, starting from wind turbine generators 

to complex converter control loops. Despite intermittence characteristics, wind power is a popular 

renewable source because of (a) clean energy with zero risk of energy exhaustion, (b) low 

installation cost, (c) lower operational/maintenance cost [3], and (d) its quick payback period [4]. 

Having these given characteristics, the installed capacity of wind power production has increased 

in recent years. Wind power is produced by four different types of technologies such as: (a) Type 

1, (b) Type 2, (c) Type 3, and (d) Type 4 [5]. Type 1 and Type 2 are induction generator-based 

Wind Energy Systems (WES), whereas Type 3 and Type 4 are Doubly-Fed Induction Generators 

(DFIG) and Permanent Magnet Synchronous Generators (PMSG), respectively. In recent years, 

Type 3 and Type 4-based WES have become more popular due to their respective pros and cons 

provided in Table 1.1. Using Type 3-based WES is advantageous over Type 4 primarily because 

Type 3 requires a smaller capacity converter than its rating. In contrast, PMSG necessitates a 

converter with a rating matching its full capacity. The Wind Turbine Generator (WTG) considered 

in this thesis is the DFIG-based WES (Type 3). The schematic of DFIG-based WES can be 

represented in Figure 1.1. Figure 1.2 illustrates that the wind-generated power is AC and is injected 

into the power system through the stator and rotor. Additionally, the rotor is connected to the grid 

through two stages of the DC-AC converter: the Rotor Side Converter (RSC) and Grid Side 

Converter (GSC). In the case of DFIG-based WES, the rotor deals with nearly 30 % of the total 

power exchange at the Point of Common Coupling (PCC) [6]. Hence, the rating of the DFIG-based 

wind system is moderate compared to PMSG.   

1.1.4 Solar Photo-Voltaic (SPV) System 

As illustrated in Figure 1.1, Solar Photo-Voltaic (SPV) systems are the fastest emerging 

renewable energy resource. Electricity is extracted from solar energy through PV arrays. PV arrays 

are formed by series-parallelly connected PV modules that collect solar lights and convert them 

into electricity [7]. The schematic illustrating a standard solar PV system is depicted in Figure 1.3.  



 

4 

 

Table 1.1: Pros and Cons of Type 3 and Type 4-based WES 

Doubly Fed Induction Generator (DFIG) 

Pros: Cons: 

Limited turbine speed range −30 % to 30 % around 

synchronous speed  

Need of gearbox, Slip 

rings 

Small capacity converter rating 

Complete control over the active and reactive powers  

The magnitude and frequency of terminal voltage can be 

maintained no matter the value of wind velocity on the wind 

turbine rotor.   

Permanent Magnet Synchronous Generator (PMSG) 

Pros: Cons: 

No need for a gear system PMSG needs a full-scale 

power converter.  There is no requirement for a power converter for the field, and it 

needs a full-rated capacity converter rating. 

Active and reactive power can be controlled completely.  

Brushless and low maintenance.  

 

Figure 1.2 Schematic of DFIG-based WES 

The electricity generated from PV arrays is in DC and has a very low voltage. Hence, DC output 

from PV arrays undergoes a DC-DC boost converter to increase the voltage level. Subsequently, 

the DC from the boost converter is connected through a DC-AC inverter and transformer. 
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Figure 1.3 Schematic of an SPV system 

Wind and solar power production is highly intermittent, as they depend on weather conditions 

that are not constantly available. In the case of grid integration, the intermittency of wind and solar 

poses challenges to grid stability and reliability, as energy generation may not align with peak 

demand periods. Rapid developments of renewable sources worldwide, their intermittent 

characteristics, complex control architecture, and characteristics of dynamic response have issued 

major challenges in the stability of modern power systems. Therefore, it is very important to 

explore the dynamic interaction between the various control loops of renewable sources and 

synchronous generators of the power system. One of the major aspects to consider in addressing 

such concerns is understanding the synchronizing/damping torque offered by renewable sources 

to the electromechanical oscillation loop of the synchronous generator. 

1.2     Research Objective  

The overarching goal of the thesis is to investigate the synchronizing/damping torque 

offered by renewable sources to the electromechanical oscillation loop of the synchronous 

generator. The set goal of the thesis is pursued by the following research objectives: 

1. Investigation of the damping torque offered by DFIG-based WES: 

a) To develop an analytical model of a DFIG-based WES-integrated power system. 

b) To derive a mathematical expression of the damping torque offered by WES on the 

Electromechanical Oscillation Loop (EOL) of the Rest of the Power Systems (RPS) 

as a function of various system parameters.  

c) Further, to validate the analytical outcome through the time domain simulation. 

2. Impact Phase Locked Loop (PLL) and Virtual Inertia Controller (VIC) on 

synchronizing/damping torque contributed by DFIG-based WES: 
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a) To develop mathematical relationships between synchronizing/damping torque 

contributed by DFIG-based WES and control parameters of PLL and VIC. 

b) To analyze the influence of PLL and VIC on the synchronizing/damping torque 

offered by DFIG-based WES. 

c) To design a PSS for a synchronous generator under the influence of PLL and VIC 

dynamics. 

d) Finally, to verify the theoretical analysis of the WES-integrated power systems with 

time domain simulation. 

3. Probabilistic modal sensitivity analysis of a large-scale PV-integrated power system: 

a) Analyzing the uncertainties associated with PV-dominated power systems. 

b) Evaluating the influence of uncertainties on critical oscillatory modes of the PV-

dominated power system. 

c) To design a VIC-based Battery Energy Storage System (BESS) and its location 

based on the probabilistic analysis of the uncertainties.  

4. Evaluate the power system oscillatory modes for the influence of PV-BESS dynamics: 

a) To develop a small-signal model of a PV-BESS-integrated power system. 

b) To investigate the influence of PV-BESS dynamics on critical oscillatory mode. 

c) Finally, to examine the Examine the modal shift of the critical oscillatory modes for 

uncertain solar irradiance. 

1.3 Literature Review 

1.3.1 Grid Integration of DFIG-Based WES and its Impact on Power System 

In a DFIG-integrated power system, interaction with the grid is primarily influenced by 

both stator and rotor flux linkages. However, as stator winding is directly exposed to the power 

system without any intermediary power electronic interface, the stator flux has fast dynamics. 

Hence, it can be neglected to model the non-linearity of the DFIG [5]. Therefore, rotor flux 

dynamics are crucial to model grid-integrated DFIG-based WES. Large-scale integration of WES 

into the power grid introduces transient and small-signal stability issues [8]. A DFIG-based WES 
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can influence the power system’s small signal stability by affecting two major aspects, such as 

load flow and dynamic interactions with the RPS [9]. According to [10], the DFIG-based WES 

interacts with the EOL of the synchronous generator through active and reactive power controller 

dynamics. In addition, it was revealed in [11] that the interaction of converter-based generation 

with low-frequency EOL depends on the power system’s inertia distribution. Further, the dynamic 

interaction with the power system by DFIGs due to relatively low inertia and inherent variability 

in power generation may deteriorate the small-signal angular stability of the power system. 

 The power system with WES integration forms a multivariable, nonlinear coupled 

network. A wind generator may be decoupled from any power system oscillatory mode as it is 

coupled with the grid through power converters. However, large-scale wind integration can affect 

the power system's oscillatory behavior, particularly inter-area modes, as discussed in [12]. Wind 

power injection at the Point of Common Coupling (PCC) may exert a positive or negative impact 

on the damping of Electromechanical Oscillatory Modes (EmOM) in the power system [13]. On 

the other hand, the investigation in [14] claims that the variation of certain system parameters 

specific to DFIG-based WES also significantly impacts the stability of grid-connected DFIG.  The 

detailed study in [14] involves the derivation of the stability limit of various system parameters 

such as line reactance, stator impedance, rotor impendence, and wind velocity so that any deviation 

in such parameters falls beyond the stability limit may deteriorate the operation of the grid-

connected wind farm.  As a result, careful attention must be given to understanding the damping 

mechanism of power system oscillations. Research conducted in [15] demonstrates a very 

interesting phenomenon: the operation under a weak grid scenario, a grid-connected DFIG-based 

WES induces Sub-Synchronous Oscillations (SSO) in power systems, which are very resonant to 

PLL oscillations. Recently, in [16], it has been shown that the control parameters of the real and 

reactive power of PV generation systems significantly affect the damping of electromechanical 

oscillations.  

The damping mechanism offered by WES to low-frequency electromechanical oscillations 

of power systems has been investigated in three ways [9], [17], [18]. In [9], the WES is a feedback 

controller whose real and reactive power (𝑃𝐷 , 𝑄𝐷) output is investigated to influence the damping 

of EOL of Synchronous Generators (SGs). In [17] a Phillip Heffron model of a multi-machine 

power system including WES is developed to probe the implication of WES parameters on the 
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EOL of SGs. Reference [18] has presented a mode-based damping torque method for 

understanding the damping mechanism offered by the feedback controller. Moreover, in [19], the 

mutual impact of damping on EmOM and PLL oscillation mode (POM) is demonstrated by the 

bilateral damping torque analysis method, which is inherited from [9].  

On the other hand, [11], [20], [21] have investigated the optimal location for placing a 

converter-based renewable energy system, which effectively improves the damping performance 

of the overall system. The work in [20] has proposed a flexibility indexing for all the buses in the 

system for optimal renewable energy sources (RES) locations. The indexing depends upon system 

parameters, network topology, and inertial distribution. However, in [11], the location of RES is 

based on a locational index, which depends on the residue of the concerned electromechanical 

mode.  A mathematical derivation has shown that the residue is a function of the transmission line 

parameter and inertia of synchronous machines. It has been found that the best location for any 

RES to be installed is far away from the Center of Inertia (COI). 

1.3.2 Stability analysis DFIG-based WES with VIC 

Because of their clean, sustainable, and excellent operational characteristics, Wind Energy 

Systems (WESs) integration in power systems has been rapidly increasing [22]. However, the 

stochastic nature of WES power output poses many challenges in the secure, reliable, and stable 

operation of power systems. Several researchers have recently conducted systematic investigations 

of the dynamic interaction of DFIGs and synchronous generators (SGs) of power systems on an 

electromechanical time scale [12], [23], [24]. The effects of WES dynamics on the EmOMs of 

power systems are demonstrated in  [12]. References [12] and [25] conclude that DFIG-based wind 

farms are practically decoupled from power systems, which minimally affect low-frequency 

EmOMs. However, DFIGs with improper PLL settings may deteriorate the small-signal stability 

of power systems [24], [26]. According to [27], a high penetration level of type 3/4 wind power 

generation without a frequency control capacity may decrease frequency response tendencies on 

the power grid due to a low inertia system. Thus, a WES that uses frequency support technology 

is critical for enhancing the stability and security of power systems. Previous studies have shown 

that the frequency control scheme of a WES is accomplished through two methods: frequency 

droop control and VIC [28]. Many researchers have determined that VIC can provide inertial 

support with improved System Frequency Regulation (SFR). The frequency support can be 
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provided by injecting active power [29] or extracting kinetic energy stored in the wind farm [30]. 

One significant advantage of extracting kinetic energy for frequency stability is that the wind 

generator does not need to deviate from the Maximal Power Point Tracking (MPPT) during normal 

operation (i.e., the derated operation is avoided), and results in reduced energy waste [31]. 

According to [32], increased wind penetration can adversely affect low-frequency EmOMs. 

Furthermore, [32] concludes that the inertial response from the WES protects the system from 

stability loss and improves the damping of inter-area system modes. A key performance indicator 

is proposed in [33] to understand the frequency stability limit of wind generators in power system 

planning studies. Under severe contingency conditions, extraction of kinetic energy by 

conventional VIC reduces the efficiency of variable-speed wind generators. This issue has been 

resolved by proposing an adaptive VIC [34].   

Reference [35] proposes an adaptive virtual capacitor to provide inertial support. Later, 

[36] develops an optimal auxiliary frequency controller containing a droop controller for WTGs 

operating at MPPT for improved SFR. As part of the work in [8], the kinetic energy from an SG 

and locally installed DFIG is shared to improve the transient and dynamic stability of the power 

system. In [37], an optimized proportional-integral-derivative controller is proposed to improve 

the performance of VIC to achieve better frequency stability. References [38] and [39] investigate 

power system stability regarding energy dissipation under the combined influence of a PLL and 

VIC. The studies have found that with a higher virtual inertial gain, the possibility that the energy 

dissipation may cause power system instability will be greater. Further, [39] explicitly shows that 

a WES with a PLL and VIC participates significantly in the low-frequency EmOMs of the power 

system. Therefore, careful cooperation in the design of the PLL is required for wind systems that 

include a PLL and VIC, as improved power angle stability in the power system can then be 

achieved.     

1.3.3 Oscillatory Stability Analysis of SPV-Integrated Power System  

The power grid is rapidly evolving with more participation of power electronically 

interfaced sources like solar, wind, BESS, etc., leading to increased uncertainties and reduced 

inertia [40], [41]. In addition, the power system also witnesses uncertainties due to the deregulation 

of the energy market and load variations [42]. The uncertainties from renewable sources make the 

power system complex and encounter critical challenges in terms of swift response to the change 
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in system frequency and damping to the electromechanical oscillations. The increased penetrations 

from renewable sources critically challenge the frequency and dynamic stability of power systems. 

Therefore, increased penetration of renewables attracts careful attention to the study of 

uncertainties.  

As the integration of inverter-based energy resources is anticipated to grow in the future 

grid, the research articles from [39], [43], and [44] have proposed various technologies for virtual 

inertia mode control of converter operations. In the context of PV operation, the approach 

suggested in [43] involves introducing a derated mode to enhance the PV's responsiveness to 

frequency excursion events. However, a different perspective is presented in the articles [44] - 

[45]. The articles introduced the involvement of charging and discharging of DC link capacitors to 

provide virtual inertia support to solar PV systems. In [45], an active power controller-based virtual 

synchronous controller is proposed for DFIG-based wind systems. Most of the virtual inertia 

controller methods in the existing literature are based on a deterministic approach.  

Conventional deterministic approaches, based on fixed and known parameters, may not be 

effective in an intermittent power system. Hence, to address the challenging issue of the stochastic 

characteristic of the power system, many authors have contributed their research in the 

development of the stochastic dynamic model of wind or PV systems [46], [47], [48], adaptive 

damping controller design using uncertainties [49], [50] online inertia estimation of power system 

[51], [52]. In this context, the articles [47], [53], and [54] have formulated the power generations 

from solar and wind systems based on modeling natural characteristics of solar irradiation and 

wind velocity with Gaussian/ Beta distribution and Weibull distribution, respectively. As a result, 

stochastic models for these sources are widely employed to conduct crucial studies, including 

probabilistic steady-state analysis of power systems [55] and stochastic eigenvalue analysis for 

future grid scenarios [53], [47]. Power penetrations from stochastic-based renewable sources alter 

the system inertia and, with disturbances, may lead to system instability [56]. Hence, in literature 

like [57], [53], [58], the study of change in system inertia from the prospect of small signal stability 

due to large-scale integration of stochastic sources is performed using various probabilistic 

approaches such as Monte Carlo Simulation, Gram-Charlier expansion, or Polynomial Chaos 

expansion. 
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Global Sensitivity Analysis Tools (GSATs) are employed to identify the most impactful 

parameters among extensive sets of uncertain inputs. Limited applications of GSATs in power 

systems are currently limited to areas like the ranking of bus [59], design of Power System 

Stabilizer (PSS) [60], voltage stability [61], and transient stability [62]. However, the applications 

of Global Sensitivity Analysis (GSA) are found most in the field, like financial decisions [63], 

acoustic energy modeling [64], environmental models [65], public deliveries [66], and medical 

science [67]. In the literature survey, the application of GSATs in small signal stability assessment 

of power systems is limited except in some publications like [68], [69], [61]. Research works in 

[68] and [69], analyze the uncertainties of the modern power system using various GSATs to 

recognize the most influential parameters affecting frequency stability and small signal stability of 

the power system.  

1.3.4 Impact of SPV with VIC on stability of power system 

Solar PV power plants, wind energy systems, and other renewable energy sources are 

becoming more and more prevalent due to decarbonization and a lack of energy from conventional 

sources. The penetration from renewable sources has steadily expanded in past decades and is also 

anticipated to grow rapidly [70]. In a practical scenario, the participation of PV systems in meeting 

the energy demand from clean and sustainable sources is very significant. Moreover, replacing 

synchronous generators with equal-rating PV power plants encounters some critical challenges, 

such as quick response to system frequency change and damping to electromechanical oscillations 

[71]. Therefore, large-scale PV integration into the power grid needs thorough investigation to 

realize the impact of PV systems on the dynamics of the RPS.  

In recent decades, the PV system has been enabled with various means of VIC to provide 

frequency support as described in [72], [44], [73]. PV systems operated in derated mode utilize 

reserved power, which is the difference between maximum power generation capacity (i.e., power 

at MPPT) and operating power to adjust the generation in response to frequency excursion events 

[72]. The major demerit of this control mechanism is that it would result in economic loss. 

Reference [44] has introduced the charging and discharging of DC link capacitors to provide 

virtual inertia to solar PV systems. In this technology, the terminal voltage reference of the DC 

link voltage controller varies according to the change in system frequency. As discussed in [73], 

the virtual inertia control strategy used in the BESS in PV power plants modifies BESS reference 
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power to provide additional support for system frequency variation while smoothing the 

fluctuation of PV power output. BESS’s State-of-Charge (SOC) is very important when offering 

frequency support. The finding of [74] aims to propose an adaptive SOC recovery strategy for 

BESS to deliver under-frequency support. In the scenario of increasing PV penetration into 

existing power systems, it is essential to study the power system oscillatory modes before and after 

the placement of PV systems. It is noticed in [75] that the PV systems enabled with virtual inertia 

controller provide inertial support and dampen power system oscillation by creating a new 

oscillatory mode. Damping of such oscillatory modes is also crucial to maintaining power system 

stability. Recently, in [76], an adaptive wide-area damping control strategy is proposed for a PV-

integrated power system. However, the control mechanism does not consider the uncertainty 

associated with PV output power, and the PV system was not capable of any change in grid side 

frequency. In [77], a BESS is modeled to dampen a target oscillation mode for a power system, 

but it does not consider any renewable source in the power system.  

1.4 Contribution Overview 

The primary focus of the research contribution in this thesis involves investigating the 

impact of grid-connected WES or SPV on the EOL of the rest of the power system. The dynamic 

stability of the renewable-integrated power system is basically dictated by the strength of 

damping/synchronizing torque afforded by the EOL of the synchronous generator, which is 

significantly affected by the grid-interacted renewable-based energy systems. The key 

contributions of the thesis in this regard are: 

a) Extensive literature surveys addressing various problems affecting the damping of power 

system oscillatory modes or affecting the small signal angular stability of the power system 

are thoroughly presented in the research. 

b) A unique methodology is proposed to evaluate the impact of various system parameters on 

the damping torque offered by DFIG-based WES to the EOL of the RPS. 

c) A new PSS design method for a power system with a DFIG-based wind farm enabled with 

VIC and PLL has been proposed. 

d) Probabilistic small signal stability of power systems consisting of large-scale SPVs is 

performed considering various parameters and their uncertainties. 
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e) Ranking of all the generator buses of a power system is obtained by probabilistic modal 

sensitivity analysis based on different Sensitivity Analysis (SA) tools like Sobol, Random 

Balance Designs - Fourier Amplitude Sensitivity Test (RBD-FAST), Delta Moment-

Independent Measure (DMIM), and Pianosi and Wagener (PAWN) on the power system by 

replacing each generator with a similarly rated SPV under the uncertainties of load 

variations and generator output.  

1.5 Structure of the Thesis 

Chapter 1: State-of-the-Art 

This chapter introduces the motivation behind the research undertaken in this thesis, 

exploring the necessity of addressing climate change. It has provided the recent development of 

energy transition of modern power systems from various renewable sources. The chapter also 

discusses an overview of the technology used to harness the energy from wind and solar. Further, 

the chapter outlines the key contribution of the research, followed by the structure of the thesis.   

Chapter 2: Investigation of Damping Torque Offered by DFIG to the EOL of RPS for 

Influence of Various System Parameters  

The chapter presents a simplified mathematical formulation for analyzing the impact of 

system parameters on the damping of interarea oscillations. A simple power system model 

consisting of two synchronous machines and a DFIG has been considered for mathematical 

derivations. The derived mathematical formulation has been validated for a higher-order power 

system integrated with WES. The derived expression of damping contribution to synchronous 

machines supports the concept that damping is highly dependent on transmission line reactance. 

This further supports the idea that WES placement in the power system is crucial in improving 

damping contribution to synchronous machines. 

Chapter 3: Small Signal Stability Analysis of DFIG-based Wind Energy-Integrated Power 

Systems Under Combined Influence of PLL and Virtual Inertia Controller 

WESs based on DFIGs have enormous potential for meeting the future demands related to 

clean energy. Integration of WES challenges the stability of power systems due to low inertia and 

intermittent power injection offered by DFIGs. The research of this chapter proposes mathematical 
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formulations to compute synchronizing and damping torque coefficients of a WES-integrated 

Single-Machine Infinite Bus (SMIB) system while considering PLL and VIC dynamics. In 

addition, a PSS is designed for a wind energy-integrated power system to enhance 

electromechanical oscillation damping. The proposed research methodology is tested in an SMIB 

and nine-bus test systems integrated with WES under several case studies. 

Chapter 4: Probabilistic Modal Sensitivity Analysis of Large-Scale PV-Integrated Power 

System 

This chapter evaluates the ranking of the generator bus by replacing each generator at a 

time with a similar rating of the SPV system, considering the various uncertain parameters like the 

probabilistic output of SPV, uncertainties of generator output, and load demand. The ranking of 

the buses is compared by widely used popular numerical sensitivity analysis (SA) techniques such 

as Sobol, RBD-FAST, DMIM, and PAWN. Then, the inertial distribution among all the busses is 

investigated to find a suitable bus for BESS installation. The BESS in this research is considered 

with a virtual inertia controller. The PSS to be installed with the synchronous generators is 

identified by the Sensitive PSS Effect (SPE). The VIC gain and PSS parameters are tuned 

simultaneously by the PSO optimization method. 

Chapter 5: Evaluation of Power System Oscillatory Modes for the Influence of PV-BESS 

Dynamics 

The increase of power electronically interfaced PV power plants into power systems causes 

severe stability problems due to lack of inertia and damping effect. The BESS at PV stations can 

be controlled by a VIC to provide virtual inertia and damping support while smoothing the power 

fluctuations of the PV power plant. The research of this chapter investigates the probabilistic 

distribution of power systems' Low-frequency Electromechanical Oscillations (LEOs) for various 

controller gains of VIC and stochastic variation of solar irradiance under the influence of PLL 

dynamics. Using the Monte Carlo simulation approach, the modal interaction of PLL and VIC with 

power system oscillatory modes is investigated by stochastic eigenvalue analysis. 
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Chapter 6: Conclusion and Future Research 

The summary of the main research findings from the thesis work is unveiled in conclusion. 

This chapter also provides the insights of future research domains. 

Appendix A: Derivation and System Data  

The appendix provides some mathematical derivations and system data that support  

Chapter 2 to Chapter 5 of the thesis.  

Appendix B: List of Publication  

The appendix contains the list of publications resulting from the research work conducted 

during the Ph.D. program.  
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Chapter 2                                                                                     

Investigation of Damping Torque Offered by DFIG to the EOL of 

RPS for Influence of Various System Parameters  

The chapter presents an analytical formulation for analyzing the impact of system parameters on 

the damping of interarea oscillations. A simple power system model consisting of two synchronous 

machines and a Doubly-Fed Induction Generator (DFIG) has been considered for mathematical 

derivations. The derived mathematical formulation has been validated for a higher-order power 

system integrated with the Wind Energy System (WES). The derived expression of damping 

contribution to synchronous machines supports the concept that damping is highly dependent on 

transmission line reactance. This further supports the idea that WES placement in the power 

system is crucial in improving damping contribution to synchronous machines. 

2.1 Introduction 

As mentioned in Chapter 1, the low inertia and intermittency of Doubly-Fed Induction 

Generator-based (DFIG-based) wind farms significantly influence the dynamic interaction with 

the power system, which can potentially jeopardize the small signal stability of the complete 

system. The integration of DFIG with the power system impacts the steady state and dynamic 

performance of the system [13]. As per the literature survey presented in Chapter 1, the real and 

reactive power output from DFIG-based Wind Energy System (WES) can impose a direct impact 

on the damping of the Electromechanical Oscillation Loop (EOL) of the synchronous generator 

[9], [17]. Further, it can be observed that the various control parameters of the inner/outer loop 

controller of real/reactive power also substantially impact the damping of the electromechanical 

mode of interest [16]. Moreover, the location of WES also plays a significant role in the stability 

of the system.  

The major contribution of the proposed research work in this chapter includes further 

investigation of the small-signal stability of the DFIG-integrated power system impacted by the 

variation of the various system parameters like transmission line reactance, bus, voltage, and 

inertia of synchronous machine. The main objective of the proposed work is to assert the existing 

research gap by contributing the following points:  
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1) A mathematical formulation of damping torque influenced by DFIG-based WES to the 

electromechanical oscillation is presented by considering the impact of variation of several 

system parameters such as line reactance, bus voltage, and machine inertia. To the best of 

the authors' knowledge, this comprehensive analysis is unique and includes the impact of 

system parameters on the damping effect produced by the DFIG system.  

2) To realize the damping torque explicitly by an analytical mathematical expression, a 

reduced-order DFIG-based WES model has been developed by using Cross-Gramian and 

SVD methods [78]. The mathematical expression defines the impact of variation in 

parameters of the system mentioned above on damping contribution from DFIG to the Rest 

of the Power Systems (RPS) as a function of transmission line reactance, bus voltage, and 

machine inertia. 

3) Finally, a systematic analysis of the expressions obtained with respect to the different 

values of system parameters was carried out. The main aim is to realize the positive or 

negative effect of the change in parameters on the damping torque influenced by the DFIG 

system on the electromechanical oscillation loop of the RPS. 

The derived expression of damping contribution to synchronous machines supports the concept 

that damping is highly influenced by transmission line reactance. This further supports the idea 

that WES placement in the power system has a crucial role in improving the damping contribution 

of synchronous machines. The conceptual derivation is also validated on the IEEE 39 bus test 

system.    

2.2 Impact of System Parameter on Damping of Low-Frequency Inter-Area 

Mode 

This section presents a comprehensive analysis of mathematical expressions for damping 

torque contribution to the EOL of synchronous machines by system parameters. 

2.2.1  Open Loop State Space Model of Power System 

To derive the expression for damping torque provided by WES to EOL of synchronous 

machines affected by system parameters, a simple lossless line, as shown in Figure 2.1, is 

considered. A synchronous generator (M1) and synchronous motor (M2) are connected at bus nos. 

1 and 2, respectively. Both the synchronous machines are represented by the classical model, i.e., 
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Figure 2.1 Two-machine system with wind farm at bus 3 

it is represented by an internal transient voltage 𝐸𝑖
′ is in series with d-axis transient reactance 𝑋𝑑𝑖

′ . 

The wind farm is aggregated into a single DFIG and connected to bus 3. The transmission lines 

are considered lossless and represented only as series reactance. The reactance of the line 

connecting buses 1-3 and 2-3 is represented by  𝑋𝐿1, and 𝑋𝐿2 respectively. The non-linear dynamic 

states of the synchronous machines are expressed by the following differential equations [79] 

{
 
 
 

 
 
 

𝛿1̇ = 𝜔𝑠 − 𝜔1
𝛿2̇ = 𝜔𝑠 − 𝜔2

𝜔1̇ =
1

𝑚1
(𝑃𝑚1 −

𝐸1
′𝑉3
𝑋13

𝑠𝑖𝑛(𝛿1 − 𝜃3))

𝜔2̇ =
1

𝑚2
(
𝐸2
′𝑉3
𝑋23

𝑠𝑖𝑛(𝜃3 − 𝛿2) − 𝑃𝑚2)

       (2.1) 

where i = 1, 2 indicates the number of synchronous machines, 𝑋13 = 𝑋𝐿1 + 𝑋𝑑1
′ , 𝑋23 = 𝑋𝐿2 +

𝑋𝑑2
′ . All parameters used in       (2.1) are all presented per unit except the angular velocity 𝜔𝑠 and 

𝜔𝑖 whose unit is in radians per second, 𝛿𝑖 in radian and 𝑚𝑖 is evaluated by 
2∗𝐻𝑖

𝜔𝑠
. Here 𝐻 is the 

inertia constant of synchronous machines in seconds. The angle differences are assumed to be 

small enough such that, sin(𝛿𝑖 − 𝜃3) ≈ (𝛿𝑖 − 𝜃3) and cos(𝛿𝑖 − 𝜃3) ≈ 1. The DFIG-based WES 

is connected to bus 3 and is assumed to inject only active power. The reactive power exchange by 

WES is assumed to be zero. For the load flow studies, the power generation from WES is assumed 

to be constant, i.e., ∆𝑃𝐷 = 0, as can be seen from the equations       (2.2) and       (2.3).  With the 

inclusion of WES at bus 3, the relationship between bus voltage (𝑉3∠𝜃3) with state variables are 

given by: 

1 3 2

T. Line 1 T. Line 2 

Wind Farm

M2M1

XL1 XL2
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Figure 2.2 Control loop between RPS and WES 

𝑆3 = 𝑉3𝑒
𝑗𝜃3 𝑐𝑜𝑛𝑗 (

𝑉3𝑒
𝑗𝜃3 − 𝐸1

′𝑒𝑗𝛿1

𝑗𝑋13
+
𝑉3𝑒

𝑗𝜃3 − 𝐸2
′𝑒𝑗𝛿2

𝑗𝑋23
)       (2.2) 

By taking real and imaginary parts of       (2.2), the following two equations are obtained: 

{
 
 

 
 𝑃3 =

𝑉3𝐸1
′

𝑋13
(𝜃3 − 𝛿1) +

𝑉3𝐸2
′

𝑋23
(𝜃3 − 𝛿2)

𝑄3 =
𝑉3
2

𝑋13
+
𝑉3
2

𝑋23
−
𝑉3𝐸1

′

𝑋13
−
𝑉3𝐸1

′

𝑋13

 
      (2.3) 

 In       (2.3), as per the mentioned assumptions, 𝑃3 = 𝑃𝐷, and 𝑄3 = 𝑄𝐷 = 0. Now, to develop an 

analytical expression of damping torques for defining the dynamic interaction between the WES 

and RPS, the system has been partitioned as a feedback system, as shown in Figure 2.2. The 

Differential and Algebraic Equations (DAEs) model of the open-loop power system is formulated 

by only considering the synchronous machines and is given in       (2.1) and       (2.3). The initial 

machine states are obtained from power flow solutions and are assumed to be equilibrium points. 

The nonlinear differential equations of       (2.1) and algebraic equations of       (2.3) are linearized 

around the equilibrium point with state vectors 𝑥 = [𝛿1, 𝛿2, 𝜔1, 𝜔2] and algebraic variable 𝑉3 , the 

linearized state-space model of the open-loop power system (i.e., RPS) can be expressed as: 

{
∆𝑥̇ = 𝐴1∆𝑥 + 𝐵1∆𝑉3
∆𝑃𝐷 = 𝐶1∆𝑥 + 𝐷1∆𝑉3

 (2.4) 

To model the RPS with a change in power at bus 3 (∆𝑃𝐷) as input variable and change in voltage 

magnitude at bus 3 (∆𝑉3) as output variable, (2.4) is augmented to: 
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{
∆𝑥̇ = 𝐴∆𝑥 + 𝐵∆𝑃𝐷
∆𝑉3 = 𝐶∆𝑥 + 𝐷∆𝑃𝐷

 (2.5) 

 where 

𝐴 = 𝐴1 − 𝐵1𝐷1
−1𝐶1 =

[
 
 
 
 
 

0 0 1 0
0 0 0 1

−𝑛1𝐸2
′𝑉3

𝐸1
′𝑋23+𝐸2

′𝑋13

𝑛1𝐸2
′𝑉3

𝐸1
′𝑋23+𝐸2

′𝑋13
0 0

𝑛2𝐸1
′𝑉3

𝐸1
′𝑋23+𝐸2

′𝑋13

−𝑛2𝐸1
′𝑉3

𝐸1
′𝑋23+𝐸2

′𝑋13
0 0]

 
 
 
 
 

  

𝐵 = 𝐵1𝐷1
−1 = [0 0

𝑋23𝑛1

𝐸1
′𝑋23+𝐸2

′𝑋13

𝑋13𝑛2

𝐸1
′𝑋23+𝐸2

′𝑋13
]
𝑇

  

𝐶 = −𝐷1
−1𝐶1 =

𝐸1
′𝐸2
′𝑋13𝑋23

[𝐸1
′𝑋23+𝐸2

′𝑋13]𝑋
[(𝛿2 − 𝛿1) (𝛿1 − 𝛿2) 0 0]  

𝐷 = 𝐷1
−1 =

−𝑋13𝑋23[𝐸1
′𝑋23(𝜃3−𝛿1)+𝐸2

′𝑋13(𝜃3−𝛿2)]

𝑉3[𝐸1
′𝑋23+𝐸2

′𝑋13]𝑋
  

𝑋 = 𝑋23 + 𝑋13,𝑛1 =
𝐸1
′

𝑚1
,𝑛2 =

𝐸2
′

𝑚2
  

Here the voltages 𝐸1
′∠𝛿1, 𝐸2

′∠𝛿2, 𝑉3∠𝜃3 are of buses 1, 2, and 3, respectively, and are evaluated at 

an operating point. The matrices A, B, C, and D are system state matrices, input coefficient vectors, 

output coefficient vectors, and feedforward matrices between changes in voltage magnitude at bus 

3 (∆𝑉3) and change in power at bus 3 (∆𝑃𝐷).  The mathematical expression for electromechanical 

eigenvalue is obtained from the system state matrix given by, 

𝜆1,2 = ±𝑗𝜔 = ±𝑗√
𝐸1
′𝐸2

′𝑉3(𝑚1 +𝑚2)

𝑀1𝑀2(𝐸1
′𝑋23 + 𝐸2

′𝑋13)
       (2.6) 

  Beyond this point, the eigenvalue is notified by 𝜆 instead 𝜆1,2. Let the right eigenvector be 

expressed by 𝑣 = [𝑒 𝑓 𝑔 ℎ]𝑇. Hence, the analytical value for the elements of the right 

eigenvector can be evaluated by: 

𝐴𝑣 = 𝜆𝑣       (2.7) 
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Figure 2.3 Wind generators in a wind farm 

𝑣 = [−𝑛1𝐸2
′ 𝜆⁄ 𝑛2𝐸1

′ 𝜆⁄ −𝑛1𝐸2
′ 𝑛2𝐸1

′]𝑇 (2.8) 

 For verification purposes, it can be noted here that the mode shape of rotor angle velocities for 

M1 and M2 is exactly 1800 to each other. 

2.2.2    Close loop model of RPS with DFIG-based wind farm 

In this research, the wind farm, consisting of 30 numbers of DFIG-based Wind Turbine and 

Generator Systems (WTGS), has been aggregated into a single system. The prime focus of the 

research, is to obtain the influence of the various parameters of the rest of the power system on the 

damping contribution of the DFIG to the EOL of the synchronous machines. Certainly, as the 

chapter does not consider the study of varying wind effect and varying cable impedance within the 

wind farm on the evaluation of damping torque contribution to the EOL of RPS, the chapter 

considers a basic wind farm that assumes the wind velocity across the entire farm remains uniform, 
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all machines within the farm have identical ratings and interconnected parallelly with each other, 

as shown in Figure 2.3. All the wind generators are placed in a distributed manner. The detailed 

modeling of each generator may be unaffordable due to the computational burden. Hence, to 

reduce the computational dimensionality, the whole wind farm has been aggregated into a single 

DFIG generator. According to the aggregation concept [80], the total input mechanical torque of 

the wind farm is defined as:  

𝑇𝑚𝐷
𝑒 =∑

1

2
𝐵𝜔𝑠𝐶𝑝

𝑖
𝑉𝑤
𝑖3

𝜔𝑟𝐷

𝑛

𝑖=1

       (2.9) 

where 𝐵, 𝐶𝑝, and 𝑉𝑤 are torque parameter (
𝑝𝑢 𝑠3

𝑚3 ), power coefficient of the wind turbine, and wind 

velocity (m/s), respectively. The chapter evaluates how various system parameters influence the 

damping contribution offered by the DFIG to the EOL of synchronous machines. Thus, in this 

research, the wind speed is treated as the average of the various wind speeds. Therefore, this 

research assumes that the wind velocity and, thus, wind power output is constant. The equivalent 

electrical power output of the overall wind generator of the wind farm is: 

𝑃𝐷,𝑒 = ∑ 𝑃𝐷𝑖
𝑛
𝑖=1 |𝑛 ∈  no. of wind generators     (2.10) 

  Similarly, the equivalent reference power of overall wind generators corresponds to active power: 

𝑃𝐷,𝑒
∗ =∑𝑃𝐷,𝑖

∗

𝑛

𝑖=1

= 𝐶∑𝜔𝑟𝐷
𝑖 3

𝑛

𝑖=1

     (2.11) 

The equivalent stator and rotor current are as follows: 

𝐼𝑑𝑠𝐷
𝑒 =∑𝐼𝑑𝑠𝐷

𝑖

𝑛

𝑖=1

𝐼𝑞𝑠𝐷
𝑒 =∑𝐼𝑞𝑠𝐷

𝑖

𝑛

𝑖=1

𝐼𝑑𝑟𝐷
𝑒 =∑𝐼𝑑𝑟𝐷

𝑖

𝑛

𝑖=1

𝐼𝑞𝑟𝐷
𝑒 =∑𝐼𝑞𝑟𝐷

𝑖

𝑛

𝑖=1

     (2.12) 

 where 𝐼𝑑𝑠𝐷, and 𝐼𝑞𝑠𝐷 are DFIG stator current on the d-q axis and 𝐼𝑑𝑟𝐷, and 𝐼𝑞𝑟𝐷 are DFIG rotor 

current on the d-q axis. In equations given by     (2.17) and     (2.18), the equivalent d-q axis rotor  
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Figure 2.4  Rotor Side Converter Controllers: (a) Active power controller (b) Reactive power controller 

voltages, such as 𝑉𝑑𝑟𝐷
𝑒∗  and 𝑉𝑞𝑟𝐷

𝑒∗  are of the same magnitude as an individual wind generator. Thus, 

the equivalent control parameters are: 

𝐾𝑃2
𝑒 =

𝐾𝑃2
𝑛

𝐾𝐼2
𝑒 =

𝐾𝐼2
𝑛

𝐾𝑃4
𝑒 =

𝐾𝑃4
𝑛

𝐾𝐼4
𝑒 =

𝐾𝐼4
𝑛

      (2.13) 

As per the above modeling of the distributed wind-turbine systems, the damping contribution by 

the wind farm can be proportionately shared by each generator wind-turbine unit with respect to  

their ratings. However, a detailed study is needed for damping torque analysis, which is outside 

the scope of this work. 

The wind turbine gearbox dynamics and active and reactive power controllers are only 

considered for modeling DFIG-based WES. The dynamics of stator and rotor flux linkages are 

ignored, which is supported by the fact that the time constant of the rotor and stator flux linkage is 

much smaller than the rest of the dynamics, i.e., dynamics of wind turbine gearbox, active and 

reactive power controller [80]. The wind turbine gearbox is assumed to be stiff and, hence, 

modeled as a single mass drive system. The single mass model of the DFIG considers the dynamics 

of only one rotating mass and thus reduces the complexity of the mathematical analysis. As the 

chapter focuses on how various system parameters influence the damping contribution offered by 

the DFIG to the EOL of synchronous machines, the consideration of a single mass model of DFIG 

does not affect the accuracy.  The dynamics of a single mass drive system are represented by:    



 

25 

 

𝑑𝜔𝑟𝐷
𝑑𝑡

=
𝜔𝑠
2𝐻𝐷

[𝑇𝑚𝐷 − 𝑋𝑚𝐷𝐼𝑞𝑠𝐷𝐼𝑑𝑟𝐷 + 𝑋𝑚𝐷𝐼𝑑𝑠𝐷𝐼𝑞𝑟𝐷] 
    (2.14) 

where 𝑋𝑚𝐷 , is magnetizing reactance, 𝐼𝑞𝑠𝐷 − 𝑗𝐼𝑑𝑠𝐷 and 𝐼𝑞𝑟𝐷 − 𝑗𝐼𝑑𝑟𝐷 are stator and rotor currents, 

respectively, on 𝑑 − 𝑞 frame, 𝑇𝑚𝐷 is the mechanical torque input of a WTG is a function of wind 

velocity 𝜔𝑟.  The research of this chapter examines the influence of the DFIG-based wind energy 

system (WES) on the electro-mechanical oscillation loop (EOL) of the rest of the power system 

(RPS), taking into account the non-linearities of DFIG, including its controllers. The dynamics of 

the rotor side converter controller regulate active and reactive power output, playing a crucial role 

in how DFIG contributes damping to the EOL of the RPS through its real and reactive power 

control loops. The RSC dynamics control consists of the active and reactive power generation 

control of DFIG [24].  From Figure 2.4, the outer loop power control equations can be represented 

by:  

{
𝐼𝑞𝑟𝐷
∗ = (𝑃𝑔

∗ − 𝑃𝑔) (𝐾𝑃1 +
𝐾𝐼1
𝑠
)

𝐼𝑑𝑟𝐷
∗ = (𝑄𝑔

∗ − 𝑄𝑔) (𝐾𝑃3 +
𝐾𝐼3
𝑠
)

     (2.15) 

 Here, 𝑃𝑔 and 𝑄𝑔 refer to total active and reactive power injected by wind energy systems (WES). 

Please note that, " ∗ " is used for the reference signal. Considering the q-axis is aligned with the 

stator flux axis (i. e. , 𝑉𝑞𝑠𝐷 = 𝑉𝐷 = 𝑉3. and 𝑉𝑑𝑠𝐷 = 0). The total active and reactive power 

penetrated by WES are as follows: 

{
𝑃𝑔 = 𝑉𝑞𝑠𝐷𝐼𝑞𝑠𝐷 − (𝑉𝑞𝑟𝐷𝐼𝑞𝑟𝐷 + 𝑉𝑑𝑟𝐷𝐼𝑑𝑟𝐷)

𝑄𝑔 = 𝑉𝑞𝑠𝐷𝐼𝑑𝑠𝐷                                                
     (2.16) 

where 𝑉𝑞𝑠𝐷 − 𝑗𝑉𝑑𝑠𝐷 and 𝑉𝑞𝑟𝐷 − 𝑗𝑉𝑑𝑟𝐷 are stator and rotor voltage on 𝑑 − 𝑞 reference frame. By 

ignoring the impact of the feedforward rotor voltage compensation term, the inner loop current 

control equations can be written as [80]: 

{
𝑉𝑞𝑟𝐷
∗ = (𝐼𝑞𝑟𝐷

∗ − 𝐼𝑞𝑟𝐷) (𝐾𝑃2 +
𝐾𝐼2
𝑠
)

𝑉𝑑𝑟𝐷
∗ = (𝐼𝑑𝑟𝐷

∗ − 𝐼𝑑𝑟𝐷) (𝐾𝑃4 +
𝐾𝐼4
𝑠
)

     (2.17) 
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  The relationship between stator and rotor current can be stated as follows [81]: 

{
 

 𝐼𝑑𝑟𝐷 =
1

𝑋𝑚𝐷
(𝑉𝐷 + 𝑅𝑠𝐷𝐼𝑞𝑠𝐷 + 𝑋𝑠𝐷𝐼𝑑𝑠𝐷)

𝐼𝑞𝑟𝐷 =
1

𝑋𝑚𝐷
(−𝑅𝑠𝐷𝐼𝑑𝑠𝐷 + 𝑋𝑠𝐷𝐼𝑞𝑠𝐷)       

     (2.18) 

 where 𝑅𝑠𝐷 + 𝑗𝑋𝑠𝐷 is the stator impedance of DFIG. Similarly, the interdependence between stator 

current and rotor parameters can be obtained by: 

{
 

 𝐼𝑑𝑠𝐷 =
1

𝑠𝑋𝑚𝐷
(𝑅𝑟𝐷𝐼𝑞𝑟𝐷 + 𝑠𝑋𝑟𝐷𝐼𝑑𝑟𝐷 − 𝑉𝑞𝑟𝐷)   

𝐼𝑞𝑠𝐷 =
1

𝑠𝑋𝑚𝐷
(−𝑅𝑟𝐷𝐼𝑑𝑟𝐷 + 𝑠𝑋𝑟𝐷𝐼𝑞𝑟𝐷 − 𝑉𝑑𝑟𝐷)

     (2.19) 

The DFIG-based WES combined model described in     (2.14) -     (2.19) is fifth-order dynamics. 

Now, considering state variables 𝑥𝐷 = {𝜔𝑟𝐷, 𝑥1, 𝑥2, 𝑥3, 𝑥4}, input variable 𝑉𝐷 and output variable 

as, 𝑃𝐷 = 𝑃𝑔 the full-order linear state equation is as follows: 

{
∆𝑥𝐷̇ = 𝐴𝐷∆𝑥𝐷 + 𝐵𝐷∆𝑉𝐷
∆𝑃𝐷 = 𝐶𝐷∆𝑥𝐷 + 𝐷𝐷∆𝑉𝐷

     (2.20) 

Algorithm 1 Model order reduction of DFIG-based wind farm by Cross-Gramian  and 

SVD method [78]  

 Input: Original 5th-order model of DFIG-based WES  

1: 

 Solve the Sylvester equation  𝐴𝐷𝑊𝑥 +𝑊𝑥𝐴𝐷 + 𝐵𝐷𝐶𝐷 = 0 for 𝑊𝑥.   

 (where 𝑊𝑥 = ∫ 𝑒𝐴𝐷𝑡𝐵𝐷𝐶𝐷𝑒
𝐴𝐷𝑡𝑑𝑡

∞

0
|𝑊𝑥:crossGramian)  

2: 

 Compute the right and left eigenvectors of 𝑊𝑥 such that 

  𝑊𝑥 = 𝑈𝑅⋀𝑈𝐿
𝑇, where ⋀ is a diagonal matrix  

3: 

 Rearrange 𝑈𝑅 and 𝑈𝐿in the following manner 

𝑈𝑅 = [𝑈𝑅
𝑙𝑎𝑟𝑔𝑒

𝑈𝑅
𝑆𝑚𝑎𝑙𝑙]

𝑇
, 𝑈𝐿

𝑇  = [𝑈𝐿
𝑙𝑎𝑟𝑔𝑒

𝑈𝐿
𝑠𝑚𝑎𝑙𝑙] 

4:  Obtain 𝑀𝑏𝑖𝑔 and apply SVD as:    
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𝑀𝑏𝑖𝑔 = 𝑈𝐿,𝑙𝑎𝑟𝑔𝑒
𝑇 𝑈𝑅,𝑙𝑎𝑟𝑔𝑒 = 𝑈𝑙𝑎𝑟𝑔𝑒Σ𝑙𝑎𝑟𝑔𝑒𝑉𝑙𝑎𝑟𝑔𝑒

𝑇  

5:  Compute 𝐶𝑅 = 𝑈𝑅
𝑙𝑎𝑟𝑔𝑒

𝑉𝑙𝑎𝑟𝑔𝑒Σ𝑙𝑎𝑟𝑔𝑒
−0.5  and 𝐶𝐿

𝑇 = 𝑈𝐿
𝑙𝑎𝑟𝑔𝑒

𝑈𝑙𝑎𝑟𝑔𝑒Σ𝑙𝑎𝑟𝑔𝑒
−0.5 . 

6:  Evaluate reduced coefficient matrices as 𝐴𝑟 = 𝐶𝐿
𝑇𝐴𝐷𝐶𝑅, 𝐵𝑟 = 𝐶𝐿

𝑇𝐵𝐷, 𝐶𝑟 = 𝐶𝐷𝐶𝑅 

 
Output: The coefficient matrices of the reduced DFIG-based WES model are obtained. 

The detailed procedure adopted to form a state-space model of the DFIG-based WES is provided 

in Appendix A. 1. To simplify the analysis, the farm has been reduced to a single-order model 

using Cross-Gramian  and SVD methods [78]. The algorithm of the model-order reduction by the 

Cross-Gramian  and SVD method is given in Algorithm 1. The advantage of the reduction method 

is that it reduces the original system based on eigenspace associated with the largest eigenvalue of 

the Cross-Gramian , which means that the original system is reduced to a system with only the 

highest energy state. Moreover, the reduction method reduces the computational burden without 

compromising the results. The data of each wind turbine and synchronous generator are provided 

in Appendix A. 3. Figure 2.5 shows the comparison of the magnitude plot of the original and 

reduced model of WES. The original system is a 5th-order model of DFIG-based WTGs. The 

reduced system accurately follows the original system for frequencies 0.5 rad⁄sec.  (≈ 0.1 Hz) and  

 

Figure 2.5  Magnitude plot of DFIG-based WES 
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above. As the low-frequency Electromechanical Oscillatory Modes (EmOM) of the power system 

generally lie in the range of 0.3 Hz to 3 Hz (≈20 rad⁄sec), the reduced-order WES can be considered 

for further analysis. After reduction, the linearized open-loop state-space model of DFIG-based 

WES can be defined as: 

{
∆𝑥𝑟̇ = 𝐴𝑟∆𝑥𝑟 + 𝐵𝑟∆𝑉𝐷
∆𝑃𝐷 = 𝐶𝑟∆𝑥𝑟 + 𝐷𝑟∆𝑉𝐷

     (2.21) 

Here, the size of the WES state matrix is 𝐴𝑟 , input co-efficient vector 𝐵𝑟, output co-efficient vector 

𝐶𝑟 and the input/output coupling matrix 𝐷𝑟 are [1 × 1] each. From     (2.21), the transfer function 

of DFIG can be obtained as: 

Δ𝑃𝐷
Δ𝑉𝐷

= 𝐶𝑟(𝑠𝐼 − 𝐴𝑟)
−1𝐵𝑟 + 𝐷𝑟 = 𝐻𝐷𝑃(𝑠) 

    (2.22) 

 where 𝐼 is an identity matrix. To obtain the closed-loop interconnection between RPS and DFIG-

based WES, the RPS linearized model, defined in (2.5), can be rewritten as: 

[∆𝛿̇
∆𝜔̇
] = [

𝐴𝛿𝛿 𝐴𝛿𝜔
𝐴𝜔𝛿 𝐴𝜔𝜔

] [
∆𝛿
∆𝜔
] + [

0
𝐵𝜔
] ∆𝑃𝐷

∆𝑉𝐷 = [𝐶𝛿 𝐶𝜔] [
𝛿
𝜔
] + 𝐷∆𝑃𝐷

     (2.23) 

 

Figure 2.6 Close-loop interconnection between RPS and DFIG-based WES 
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Here, ∆𝛿 = {∆𝛿1 ∆𝛿2}
𝑇 , ∆𝜔 = {∆𝜔1 ∆𝜔2}

𝑇 . From     (2.22) and     (2.23), the close-loop 

linearized model of RPS, including DFIG-based WES, is shown in Figure 2.6. In Figure 2.6, ∆𝑇𝐷 

represents torque contribution from DFIG to the electromechanical loop of synchronous machines. 

From this figure, the ∆𝑇𝐷 can be defined by: 

Δ𝑇𝐷 = 𝐵𝜔𝐻𝐷𝑃(𝑠)Δ𝑉𝐷     (2.24) 

  From     (2.22) and     (2.23) Δ𝑉𝐷 can be expressed as 

Δ𝑉𝐷 =
[𝐶𝛿 𝐶𝑤]Δ𝑥

1 − 𝐷𝐻𝐷𝑃(𝑠)
     (2.25) 

  Here, Δ𝑥 is the solution of      (2.23) and can be expressed as: 

Δ𝑥 =
𝑣𝑧

𝑠 − 𝜆
, Δω𝑗 =

𝑣𝜔𝑗𝑧

𝑠 − 𝜆
     (2.26) 

where 𝑗=1,2, 𝑣 is the right eigenvector associated with 𝜆 and 𝑧 = 𝑢Δ𝑥(0), where 𝑢 is the left 

eigenvector of  𝜆,  𝑣𝜔1 and 𝑣𝜔2 are the entries of 𝑣 corresponding to Δ𝜔1 and Δ𝜔2. From     (2.25) 

and     (2.26), the relationship of Δ𝑉𝐷 with ∆𝜔1 and ∆𝜔2 can be expressed as: 

Δ𝑉𝐷 =
[𝐶𝛿 𝐶𝑤]𝑣

(1 − 𝐷𝐻𝐷𝑃(𝑠))𝑣𝜔𝑖
Δ𝜔𝑖,     𝑖 = 1, 2     (2.27) 

  Now, for the given eigenvalue 𝜆,     (2.24) can be rewritten as: 

Δ𝑇𝐷𝑖 =
𝐵𝜔𝑖𝐻𝐷𝑃(𝜆)[𝐶𝛿 𝐶𝑤]𝑣

(1 − 𝐷𝐻𝐷𝑃(𝜆))𝑣𝜔𝑖
 Δ𝜔𝑖,     𝑖 = 1,2     (2.28) 

where 𝐵𝜔𝑖 are the entries of the vector 𝐵𝜔 corresponding to Δ𝜔𝑖. Now, the damping torque 

provided by DFIG can be expressed by: 

𝐷𝜔𝑖 = 𝑅𝑒(Δ𝑇𝐷𝑖 Δ𝜔𝑖⁄ ),      𝑖 = 1,2     (2.29) 

 2.2.3  Derivation of 𝑫𝝎𝟏 and 𝑫𝝎𝟐 

The DFIG transfer function defined in     (2.22) can be represented as follows: 
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𝐻𝐷𝑃(𝑠) = 𝐷𝑟 +
𝐶𝑟𝐵𝑟
𝑠𝐼 − 𝐴𝑟

     (2.30) 

where 𝑠 = 𝑗𝜔. 𝜔 is the frequency of oscillation of electromechanical inter-area mode, 𝜆. Using 

𝑠 = 𝑗𝜔 in     (2.30)  

𝐻𝐷𝑃(𝜔) =
𝐷𝑟(𝐴𝑟

2 + 𝜔2) − 𝐵𝑟𝐶𝑟𝐴𝑟
𝐴𝑟2 + 𝜔2

− 𝑗
𝐵𝑟𝐶𝑟𝜔

𝐴𝑟2 + 𝜔2
     (2.31) 

  Using     (2.31) in     (2.29), the 𝐷𝜔𝑖 can further be elaborated as 

𝐷𝜔𝑖 = 𝑅𝑒

(

 
 𝐵𝜔𝑖 (

𝐷𝑟(𝐴𝑟
2 +𝜔2) − 𝐵𝑟𝐶𝑟𝐴𝑟
𝐴𝑟2 + 𝜔2

− 𝑗
𝐵𝑟𝐶𝑟𝜔
𝐴𝑟2 + 𝜔2

) [𝐶𝛿 𝐶𝑤]𝑣

(1 − 𝐷 (
𝐷𝑟(𝐴𝑟2 + 𝜔2) − 𝐵𝑟𝐶𝑟𝐴𝑟

𝐴𝑟2 +𝜔2
− 𝑗

𝐵𝑟𝐶𝑟𝜔
𝐴𝑟2 + 𝜔2

)) 𝑣𝜔𝑖
)

 
 

     (2.32) 

  The 𝐷𝜔𝑖 in equation     (2.32) states the damping torque contribution from DFIG to the 

electromechanical loop of each machine, i.e., M1 and M2. The matrices in     (2.32), such as 

𝐵𝜔 , 𝐶𝛿 , 𝐶𝜔 , 𝐷 are of appropriate dimension satisfying the equations     (2.23),     (2.24) and functions 

of system parameters such as line reactance, bus voltage, and machine inertia. After substituting 

the expressions of 𝐵𝜔 , 𝐶𝛿 , 𝐶𝜔,𝐷,𝜔,𝑣, obtained from     (2.23) ,       (2.6), and (2.8) into     (2.31), 

the elaborated form of damping contribution to the M1 and M2 as a function of system parameters 

are derived in     (2.33) and     (2.34). 

𝐷𝜔1 ≈ −
𝐸1
′𝑋𝐿1𝑋𝐿2

2 𝐵𝑟𝐶𝑟𝑚1𝑚2[𝑛1𝐸2
′ + 𝑛2𝐸1

′](𝛿2 − 𝛿1)

(𝑋𝐿1 + 𝑋𝐿2)(𝐸1
′𝑋𝐿2 + 𝐸2

′𝑋𝐿1)[𝐴𝑟
2𝑚1𝑚2(𝐸1

′𝑋𝐿2 + 𝐸2
′𝑋𝐿1) + 𝐸1

′𝐸2
′𝑉3(𝑚1 +𝑚2)]

     (2.33) 

𝐷𝜔2 ≈ −
𝐸2
′𝑋𝐿2𝑋𝐿1

2 𝐵𝑟𝐶𝑟𝑚1𝑚2[𝑛1𝐸2
′ + 𝑛2𝐸1

′](𝛿1 − 𝛿2)

(𝑋𝐿1 + 𝑋𝐿2)(𝐸1
′𝑋𝐿2 + 𝐸2

′𝑋𝐿1)[𝐴𝑟
2𝑀1𝑀2(𝐸1

′𝑋𝐿2 + 𝐸2
′𝑋𝐿1) + 𝐸1

′𝐸2
′𝑉3(𝑚1 +𝑚2)]

     (2.34) 

  The change in damping torque coefficients (𝐷𝑤1, 𝐷𝑤2) derived in     (2.33) and     (2.34), are 

functions of bus voltage magnitude and angle, line reactance, machine inertia, and parameters of 

DFIG. According to     (2.33) and     (2.34), evaluating the effect of damping torque, whether 

positive or negative, mainly depends on the voltage angle difference between the synchronous 

machines. As a result, the exclusive expression of damping torques contributed by DFIG as a 

function of system parameters is derived. The validation of these expressions with a higher-order 

model is presented in the next section. The proposed methodology, discussed in Section 2.2, can 

be summarized in the flow chart given in Figure 2.7. 
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Figure 2.7 Flow chart of the proposed work 

2.3 Analytical and Simulation Results   

The configuration of Figure 2.1 is considered for various cases presented in this section. 

There are two synchronous machines in the said configuration, including 5th-order dynamics (4th
-

order machine model with 1st-order static exciter) and a wind farm comprising 30 nos. of 3.6 MW 

DFIG-based WTGs. The wind farm is aggregated into a single DFIG model. The data used to 

model DFIG-based WES is given in Appendix A. 3. The derived damping torque expressions 

presented in     (2.33) and     (2.34) have been validated against the full-order system in this sub-

section. The synchronous machines are presented by (i) the classical model (2nd-order) and (ii) the 

full-order model (5th-order) for comparison purposes. Data of the three bus systems shown in 

Figure 2.1 are: 𝑃𝑚2 = 1 p.u, 𝑃𝐷 = 0.87 p.u, 𝑋𝑑1
′ = 𝑋𝑑2

′ = 0.05 p.u.,  𝐻1 = 𝐻2 = 10 sec. Here 

𝑋𝑑1
′ , 𝑋𝑑2

′ , 𝐻1 and 𝐻2 are d-axis transient reactance and inertia constants of M1 and M2, 
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respectively. All the per-unit values are obtained using the base of 100 MVA. The wind farm is 

operated with a unity power factor (i.e., 𝑄𝐷 = 0). Hence, the wind farm only exchanges real power 

(𝑃𝐷) with the power systems.  For all the study cases, the wind velocity is assumed to remain 

within its operating bounds. Please note that the damping torque curve obtained from     (2.33) and     

(2.34) is indicated as that obtained from the reduced-order model. 

2.3.1 Study of damping torque influenced by line reactance  

In Figure 2.8, the damping torque curves are obtained by assigning line reactance values 

such as 0.1 ≤ 𝑋𝐿1 ≤ 0.5 p.u.  with 𝑋𝐿2 = 0.1 p.u. Due to the line reactance assigned with the 

above range, the load flow operation has provided the equilibrium points of voltage magnitude of 

bus 3 is varied in the range of 0.98 ≥ 𝑉3 ≥ 0.96 p.u, and angle of bus 1 and 2, variation has 

occurred 210. 23′ ≤ 𝛿1 ≤ 47
0. 05’, −80. 4′ ≤ 𝛿2 ≤ −80.26′. Similarly, in Figure 2.8 (b), the 

damping torque curves are observed as 0.01 ≤ 𝑋𝐿2 ≤ 0.2 p.u. with 𝑋𝐿1 = 0.2 p.u.  For the given 

variation of 𝑋𝐿2 the corresponding equilibrium points acquired from the load flow are as follows: 

0.99 ≥ 𝑉3 ≥ 0.9493 p.u., −80. 5′ ≤ 𝛿1 ≤ −80.250, and 170. 29′ ≤ 𝛿2 ≤ 390. 530. All these 

values are used in equations     (2.33) and     (2.34) to obtain the damping torque curves for Figure 

2.8 (a) and (b). The positive and negative torque contributions of Figure 2.8 can be evidenced by 

the terms (𝛿2 − 𝛿1) or (𝛿1 − 𝛿2), obtained in     (2.33) and     (2.34), respectively. The plots in Figure 

2.8 represent the impact of line reactance on damping torque provided by DFIG to the RPS. This 

case study may be useful in practical applications to approximately assess the damping of low-  

 

Figure 2.8  Damping torque affected by varying line reactance 
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Figure 2.9  Impact of line reactance on WES states participation in the system low-frequency EmOM 

frequency electromechanical oscillations of power systems contributed by the DFIG-based WES 

during the planning and operation of the wind farm. The damping torque contribution is applicable 

at a rotor frequency of oscillation. In the steady state, no damping is required. Hence, the 

expression     (2.33) and     (2.34) are derived considering a small perturbation in the system. It is 

observed from both Figure 2.8 (a) and (b) that the contribution of the damping torque curves 

obtained for the reduced-order system is in agreement with that of the full-order system. The 

figures show that as transmission line reactance increases, damping torque contribution from WES 

to both the synchronous machines gradually scales up in respective directions. The participation 

of WES states due to changes in line reactance is represented in Figure 2.9. It can be noticed from 

Figure 2.9 (a) and (b) that the participation of WES states in the EmOM system gradually increases 

with the line reactance. Hence, from Figure 2.8 (a) and (b) and Figure 2.9 (a) and (b), it is 

summarized that more the participation of WES states causes more damping contribution by WES 

to the electromechanical oscillation loop of synchronous machines. Further, from Figure 2.9 (a) 

and (b), it is evident that the state variable 𝑥1 has the highest participation in the system mode 

among the rest of the WES states. Here, 𝑥1 is an intermediate state of the active power controller 

of DFIG-based WES. 

2.3.2  Influence voltage on damping torque contribution 

According to     (2.33) and     (2.34), the damping torque contribution influences the bus 

voltage magnitude. Similarly, the voltage of bus 1 and bus 2 varies in the desired range to get the 

damping torque plots as shown in Figure 2.10. To get the plots of Figure 2.10 (a), the line 

parameters are set as 𝑋𝐿1 = 0.2 p.u., 𝑋𝐿2 = 0.1 p.u. and the voltage of bus 1 and 2 are set such as 
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0.9 ≤ 𝑉1 ≤ 1.1 p.u., and 𝑉2 = 1 p.u. The range of  𝑉1 and 𝑉2 are chosen such that a maximum of  

±10% of the nominal bus voltage variation is only allowed for normal operation. Assuming 

𝑉1 ≈ 𝐸1
′  and 𝑉2 ≈ 𝐸2

′  the bus voltage with the given values, the other equilibrium points as voltage 

magnitude of bus 3 and angles of bus 1 and 2 are obtained as 0.94 ≤ 𝑉3 ≤ 1.01, 300. 73′ ≥ 𝛿1 ≥

240. 54′ and −80. 63′ ≤ 𝛿2 ≤ −80. 19′, respectively. In a similar fashion, plots of Figure 2.10 (b) 

are accessed by varying the voltage of bus 2 in the range of 0.9 ≤ 𝑉2 ≤ 1.1 p.u. while keeping the 

voltage of bus 1 at 𝑉1 = 1 p.u.. The load flow operation provides other equilibrium points 

corresponding to the voltage of bus 3, and the voltage angles of buses 1 and 2 are 0.91 ≤ 𝑉3 ≤

1.05 p.u., 300. 28′ ≥ 𝛿1 ≥ 24
0. 96′, −100. 31′ ≤ 𝛿2 ≤ −60. 17′, respectively. By using all these 

values in equations     (2.33) and     (2.34), the damping torque curves are obtained, as shown in 

Figure 2.10 (a) and (b). As can be seen in     (2.33) and     (2.34), the positive and negative torque 

contributions evident from Figure 2.10 can be justified by the terms (𝛿2 − 𝛿1) or (𝛿1 − 𝛿2), 

respectively. From Figure 2.10 (a) and (b) the evaluation of damping contribution to synchronous 

machines from WES holds good agreement between full-order and reduced-order systems. For the 

given range of bus voltage variation, the magnitude of damping contribution has scaled down in 

respective directions with a small effect as bus voltage increases.  

The DFIG state participation in system electromechanical oscillation mode due to a change 

in bus voltage is shown in Figure 2.10. It is observed that the participation of the state 𝑥1 is highest 

in the whole range of change in bus voltage. The 𝑥1state has decreased as voltage is increased from 

0.9 to 1.1 p.u. The WES state participation is relatively very minimal for the change in bus voltage  

 

Figure 2.10  Damping torque contribution due to variation of bus voltage 
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Figure 2.11  Impact of bus voltage on WES states participation in the system low-frequency EmOM 

compared to the effect of line reactance, which is also evident from Figure 2.10, that the 

contribution of damping is minimal in influencing the change in bus voltage to the 

electromechanical oscillation mode of synchronous machines. 

2.3.3  Effect of H constants on damping torque contributions 

In Figure 2.12, the scenario is considered for variations in machine inertia. For obtaining 

the damping torque plots of Figure 2.12, the line reactances are fixed at 𝑋𝐿1 = 0.2 p.u. and 𝑋𝐿2 =

0.1 p.u. Figure 2.12 (a) shows the variation of damping torque by varrying the inertia of M1 as 

5 ≤ 𝐻1 ≤ 50 sec., while keeping the inertia of M2 at 𝐻2 = 10 sec. As the low inertia systems are 

more prone to system instability the range of inertia considered for this analysis is from 5 -50 sec.  

The Similarly, plots of Figure 2.12 (b) are acquired by setting the inertia of M2 as 5 ≤ 𝐻2 ≤ 50 

sec., while keeping the inertia of M1 as 𝐻1 = 10 sec. For both the scenarios of inertia constants, 

the equilibrium points of voltage magn itude of bus 3 and angles of bus 1 and 2 are achieved as 

 

Figure 2.12  Damping toque contribution for various values of inertia constants 
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Figure 2.13  Impact of machine inertia on WES states participation in the system low-frequency EmOM 

𝑉3 = 0.98 p.u., 𝛿1 = −8
0. 43′, 𝛿2 = 27

0. 47′0, respectively. By using these values in damping 

torque equations of     (2.33) and     (2.34), the plots of Figure 2.12 are achieved. The positive and 

negative torque contributions, which are shown in Figure 2.12, are obtained by the terms (𝛿2 − 𝛿1) 

and (𝛿1 − 𝛿2), of     (2.33) and     (2.34), respectively. It is observed that the curve obtained has 

error between the reduced and full-order model for the inertia close to 5 is due to the involvement 

of higher dynamics associated with the full-order model. The full-order system is a 5th-order 

model that includes the generator dynamics of the 4th order and the exciter of the 1st-order 

dynamics. As can be noticed in the Figure. 2.12, the error is also below 0.01 range. However, the 

error for the majority range of the inertia is negligible and has good agreement with that of the 

full-order system. Both figures show that the 𝐻 constant has an almost negligible influence on the 

damping contribution provided by DFIG-based WES. The DFIG state participation in system 

electromechanical oscillation mode influenced by system inertia is provided in Figure 2.13. Here, 

 

Figure 2.14  Damping contribution due to variation in bus voltage and inertia constants of synchronous machines  



 

37 

 

also, the state 𝑥1 has the highest participation in the whole range of change in machine inertia. The 

WES state participation is relatively minimal for the variation in machine inertia compared to the 

effect of line reactance, which also can be observed from Figure 2.12 that the contribution of 

damping is insignificant in the influence of change in machine inertia on the EmOM of 

synchronous machines. 

 

2.3.4 Influence of bus voltage and machine inertia constant on damping contributions 

In this sub-section, two scenarios are studied. In Figure 2.14 (a), the damping contribution 

to M1 and M2 (i.e.,𝐷𝑤1, 𝐷𝑤2 ) are obtained for 0.9 ≤ 𝑉2 ≤ 1.1 p.u., 𝑉1 = 1 p.u. 5 ≤ 𝐻1 ≤ 50 

sec., 𝐻2 = 10 sec. It can be observed from  Figure 2.14 (b) that for  𝐻1=5 sec,  when 0.9 ≤ 𝑉1 ≤

1.1 p. u., 𝐷𝑤1 varies from −0.038 to −0.035 and 𝐷𝑤2 varies from 0.0717 to 0.048. For 𝑉1=0.9 

p.u, when 𝐻1 is varied from 5 sec. (𝐻1<𝐻2) to 50 sec. (𝐻1>𝐻2), 𝐷𝑤1 has varied from -0.038 to -

0.0348 and 𝐷𝑤2 has varied from 0.071 to 0.064, respectively. Similarly, at 𝑉1=1.1 p.u., when 𝐻1 is 

varied from 5 sec. to 𝐻1=50 sec., 𝐷𝑤1 has varied from −0.035 to −0.032 and 𝐷𝑤2 has varied  

from 0.0487 to 0.044, respectively. Identically in Figure 2.14 (b) for any value of 𝐻1, when 

0.9 ≤ 𝑉2 ≤ 1.1 p.u. both |𝐷𝑤1| and |𝐷𝑤2| has decreased, and for any value of 𝑉2, when 5 ≤ 𝐻1 ≤

50 sec., the damping variation is very minimal. Hence, the damping effect has decreased, with 

minimal impact as the voltage is increased, and the H constant has negligible influence on it. 

2.3.5 Damping contribution influenced by the location of WES 

WES's location significantly affects system stability [21], [82]. In this sub-section, WES's 

location has been chosen with respect to the Center of Inertia (COI) location. The exact location 

of COI for Figure 2.1 can be evaluated as follows [11]: 

𝛽𝐶𝑂𝐼 =
𝐸1
′𝐻2

𝐸1
′𝐻2 + 𝐸2

′𝐻1
     (2.35) 

The location of DFIG-based WES could be somewhere in between the COI location and 

either bus 1 or bus 2. Hence 𝛽 is used as a locational parameter to define the line reactance between 

the DFIG bus (i.e., bus 3) and the rest of the system buses. The line reactance 𝑋𝐿1 and 𝑋𝐿2 of   
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Figure 2.15  Damping contribution corresponds to various locations of WES 

 

Figure 2.16  Locus of inter-area oscillation mode when the location of WES is varied from M1 to M2 

Figure 2.1 can now be defined as: 

𝑋𝐿1 = (1 − 𝛽)𝛽𝐶𝑂𝐼𝑋𝐿
𝑋𝐿2 = (1 + 𝛽)𝛽𝐶𝑂𝐼𝑋𝐿

     (2.36) 

 where 𝑋𝐿 = 𝑋𝑑1
′ + 𝑋𝑑2

′ + 𝑋𝐿1 + 𝑋𝐿2, 𝛽𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥, 𝛽𝑚𝑖𝑛 = (𝑋𝑑1
′ − 𝛽𝐶𝑂𝐼𝑋𝐿) 𝛽𝐶𝑂𝐼𝑋𝐿⁄  and 

𝛽𝑚𝑎𝑥 = (𝛽𝐶𝑂𝐼𝑋𝐿 − 𝑋𝑑2
′ ) 𝛽𝐶𝑂𝐼𝑋𝐿⁄ . The damping contribution curve of Figure 2.15 (a) is obtained 

with, 𝐻1 = 𝐻2 = 10 sec., 𝐸1
′ = 𝐸2

′ = 1.0 p. u. The corresponding equilibrium point ranges are: 

1.0 ≤ 𝑉3 ≤ 1.03  p. u,  180. 08′ ≤ 𝛿1 ≤ 340. 17′,  𝛿2 = −1
0. 05′  and 00. 12′ ≤ 𝜃3 ≤ 330. 53. 

Based on the equilibrium points, the damping torque contributed by WES to synchronous 

machines, evaluated from     (2.33) and     (2.34), demonstrated in  Figure 2.15  (a), holds a good 
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agreement with the full-order model. The trajectory of the classical model's close-loop inter-area 

low-frequency oscillation mode for the given equilibrium points is given in Figure 2.16. According 

to this figure, if the location of DFIG-based WES is farther from the COI location, the critical 

eigenmode gradually moves towards the left side of the complex plane, which indicates that the 

system stability improves. In contrast, if the WES is located near the COI location, the critical 

eigenmode moves towards zero, which means that the ability to improve the stability of the closed-

loop system gradually decreases. In Figure 2.15  (b), the damping contribution is obtained for 

different values of 𝐻1 and 𝐻2. The damping torque contribution curves are obtained for different 

scenarios, such as 𝐻1 < 𝐻2, 𝐻1 = 𝐻2, 𝐻1 > 𝐻2. For all scenarios, it has been observed that the 

change in damping contribution is almost insignificant. 

2.4 Discussions and results on multimachine test systems 

2.4.1  39 bus test systems 

The configuration of the IEEE 39 bus test system is shown in Figure 2.17. The data of the 

test system is found in [83] and is provided in Appendix A. 4 for reference. In this example, the 

4th-order model of synchronous generators and the 3rd-order model of AVRs are adopted. None of 

the generators are equipped with any damping controllers like PSS. To evaluate the electrical 

distance of buses from the COI location, a three-phase fault is created at bus 15 for 50 ms. A 

normalized distance index is recommended in [11] and has been employed here. The index is 

evaluated from instant, 𝑡0 𝑠𝑒𝑐, when fault is applied, to over a period T and is expressed as: 

𝐷𝑘 = lim
𝑁→∞

∑(𝐹𝑘(𝑛𝑖) − 𝐹𝐶𝑂𝐼(𝑛𝑖))
2. ∆𝑛

𝑁

𝑖=1

𝐷𝑖𝑛𝑑𝑒𝑥 =
𝐷𝑘

𝑚𝑎𝑥
𝑘∈{1,…𝑛𝑏}

𝐷𝑘

     (2.37) 

 where ∆𝑛 = 𝑇 𝑁⁄ , 𝑛𝑖 = 𝑡0 + ∆𝑛, 𝐹𝐶𝑂𝐼 = ∑ (𝐻𝑗𝑓𝑗)
𝑛𝑔
𝑗=1 ∑ 𝐻𝑗

𝑛𝑔
𝑗=1⁄  and 𝑓𝑗 is frequency of 𝑗𝑡ℎ 

generator and 𝑛𝑏 denotes the total number of buses. From the above set of equations, the higher 

the value of 𝐷𝑘, the higher the electrical distance between the kth bus and COI is. Therefore, the 

kth-bus is located under a low concentration of inertia. Hence, the bus with a higher value of 𝐷𝑖𝑛𝑑𝑒𝑥 

corresponds to the larger electrical distance between the measured bus and COI. As the COI 

location may not exactly lie on any bus, the nearest bus can be identified with a lower 𝐷𝑖𝑛𝑑𝑒𝑥. The 
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outcome of the distance index is shown in Figure 2.18. The buses are arranged in descending order 

of  𝐷𝑖𝑛𝑑𝑒𝑥  value.  The bus having 𝐷𝑖𝑛𝑑𝑒𝑥 = 1, which means that it is far away from the COI 

location, and the bus with 𝐷𝑖𝑛𝑑𝑒𝑥 → 0 means that it is very near to the COI location. Figure 2.17 

shows the IEEE 39 bus test system with color codes of buses according to the indexing color given 

in Figure 2.18. According to Figure 2.18, bus 19 is the farthest bus from the COI location in 

contrast to the generator buses, which are the nearest to the COI location. As the generator buses 

have 𝐷𝑖𝑛𝑑𝑒𝑥 → 0, for clarity, these are not shown in Figure 2.18. Hence, bus 19 should be the most 

suitable location for WES installation. To validate this, the damping contribution from DFIG-based 

WES to all synchronous generators is evaluated for the WES first installed at bus 19, which is 

farthest from the COI location. Thereafter, it was installed on bus 2, which is closer to the COI 

location. WES is modeled by aggregating 200 WTGs to an equivalent single WTG. The DFIG 

supplies a total of 5.6 p.u. of real power into the power system at the unity power factor mode of  

 

Figure 2.17  Configuration of 39 bus test system with relative distance of buses from COI 
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Figure 2.18  Index of Electrical distance from COI among buses of 39-bus systems 

operation. The inter-area EmOM that is most crucial for small-signal angular stability is given in 

the 2nd column of Table 2.2 for the open-loop power system. The damping torque contributions to 

each of the SGs for each mode are given in Table 2.1, which are being evaluated from     (2.30).  

As given in Table 2.1, for each mode, the damping contribution to most of the SGs are positive 

when the WES is installed on bus 19, whereas it is negative for most of the SGs when the WES is 

installed on bus 2. The EmOM of a closed loop system having an interconnection between RPS 

and WES is presented in Table 2.2. It can be observed from Table 2.2 that 𝜆1 and 𝜆2 of the close-

loop RPS-WES interconnected system have shifted towards the left side of the complex plane 

when the WES is installed at bus 19, which is farther from the COI location. In contrast, if the 

WES is placed at bus 2, closer to the COI location, the modes have shifted towards the right side 

of the complex plane. From this discussion, it is evident that if WES is located far from the COI 

location, system stability improves. 

The eigenvalue study can be convinced by the time domain simulation curves of 

generators’ rotor angular velocities, shown in Figure 2.19. Considering the concept of electrical 

distance, bus 19 and bus 2 of the IEEE 39 system are chosen for the installation of WES. As per 

the above discussion, bus 19 is far away from the COI location, and bus 2 is nearer to the COI 

location. PSS is not equipped with any generators. Bus 15 is considered to apply a three-phase 

short circuit fault at 3 sec after the simulation started and cleared by 3.05 sec. Figure 2.19 

represents the generators’ rotor angular velocity curves in response to the fault for the DFIG placed 

at bus 19 and 2. An Error Index (EI) is proposed to evaluate the performance of this placement 

based on the angular velocity of the generators, as given below. 
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𝐸𝐼 = [∑
(𝜔𝑛 − 𝜔𝑔𝑒𝑛

𝑖 )
2

max
𝑖𝜖{1,…,10}

(𝜔𝑛 − 𝜔𝑔𝑒𝑛
𝑖 )

2

10

𝑖=1

]

1
2⁄

     (2.38) 

 Here, 𝜔𝑛 is the nominal value of the angular velocity of the system, i.e., 377 (rad sec⁄ ) and  𝜔𝑔𝑒𝑛
𝑖  

is the generator rotor angular velocity for generators 𝑖=1,…,10. The value of the EI found for the 

WES locations at buses 19 and 2 are tabulated in Table 2.3. As can be evident from the results in 

Table 2.3, the EI for the WES location at bus 19 is lower than the WES at bus 2, showing the 

improvement of damping by placing the source far away from COI. From this discussion, it is 

obvious that if WES is located far from the COI location, the possibility of system stability has 

improved. Time domain simulation curves are shown in Figure 2.19, and the results of Table 2.3 

can convince the eigenvalue study of generator angular velocities. The system model development 

and time-domain simulation study were carried out using MATLAB 2019b Simulink/Simscape 

toolbox. 

Table 2.1: Torque Contribution to SGs of IEEE 39 Bus System 

Location 

 of WES 

Generators 

𝝀𝟏 𝝀𝟐 

WES at bus 19 WES at bus 2 WES at bus 19 WES at bus 2 

1 0.008 -0.0375 0.0458 0.1157 

2 0.001 -0.0126 0.0011 -0.0107 

3 0.0021 -0.0142 0.0013 -0.0055 

4 0.0053 -0.0326 0.0052 -0.0098 

5 -0.1465 0.7664 -0.111 -0.0062 

6 0.0013 -0.0091 0.0010 -0.0018 

7 0.0020 -0.0135 0.0011 -0.0005 

8 0.0027 -0.0187 0.0041 -0.0146 

9 0.0008 -0.0056 -0.0003 0.0177 

10 -0.0003 0.0024 -0.0013 0.0084 
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Table 2.2:Inter-Area Modes for Open Loop RPS and Close Loop Interconnection of RPS and WES 

Mode Open-loop 

Close loop 

WES at bus 19 WES at bus 2 

𝜆1 -0.2713±j4.4216 -0.2728 ±j4.4236 -0.2177±j4.3010 

𝜆2 -0.2079±j6.2773 -0.2112±j6.2617 -0.2064±j6.1903 

 

Figure 2.19  Generators’ rotor angular velocity for three-phase fault at bus 15 

Table 2.3:Error Norm of The Generator Rotor Angle Velocity w.r.t 𝜔𝑛 

 
WES at 

bus19 

WES at bus 

2  

EI 2.13 2.46 

2.5 Conclusion 

It is paramount to analyze the effect of system parameters on the damping contribution by 

DFIG to the rest of the power system. Further, how the damping characteristics of the systems 

depend on the wind farm location from the location of COI. In this research, a mathematical 

formulation of damping torque offered by DFIG-based WES to the electromechanical oscillation 

of synchronous machines in terms of the impact of various system parameters like line reactance, 

bus voltage, and machine inertia. This formulation is unique, and a novel relationship is derived 

in this research work. However, certain practical assumptions are being considered to simplify this 

relationship so that an analytical formulation can be obtained. Further, the classical model 

Error 

Index 

            

WES 

 Location 
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represents the synchronous machines, and the DFIG-based WES is reduced to a single-order 

system by Cross-Gramian and SVD methods without loss of generality. The accuracy of this 

analytically formulated model is compared with the full-order system (without any assumptions) 

representation model, where the M1 and M2 are represented by 5th-order dynamics (4th
-order 

machine model with 1st-order static exciter) and 5th-order DFIG model, as mentioned in Section 

2.2. The comparative results presented in  Figure 2.5, Figure 2.8, Figure 2.10, Figure 2.12, and  

Figure 2.15 show the accuracy of the analytical model. Further, the model accuracy is validated 

from the non-linear time domain simulation results in Section 2.4 for the IEEE 39 bus test system. 

In this model, all the synchronous machines, including DFIG-based WES, are assumed to be a 

full-order system. After going through the results obtained for damping torque influenced by 

system parameters, the main findings of the proposed work are as follows: 

i. The damping torque produced by DFIG to the EOL of RPS is greatly influenced by 

transmission line reactance.  

ii. The parameters like bus voltage and synchronous machine inertia have a negligible impact 

on the damping torque contributed by DFIG. 

iii. The positive or negative characteristic of damping torque mainly happens due to the load 

angle difference between synchronous machines.  

iv. A better damping phenomenon is observed in the low-frequency oscillatory mode of the 

system, while the DFIG-based WES is chosen to be located far from COI. 

The presented study of the chapter is based on a particular operating condition . However,  

different operating conditions differ by different loading levels and power output. Therefore, 

different conditions exert different operating points around which the system is linearized for small 

signal stability analysis and different operating points may have varying stability margin and 

damping characteristics. Similarly, different types of fault and duration of fault significantly 

influence the dynamics performance of the system, which can have a leading impact on the rotor 

angle, and rotor velocity of both DFIG and synchronous machine. Therefore, the stability and the 

damping performance of DFIG and synchronous machines will be affected. Hence, the control 

system of DFIG can be tuned further to enhance damping performance according to varying 
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operating points and types of faults. The outcome of this research could potentially include a 

detailed investigation of some practical applications. For example, 

(a) While designing any damping controller for WES/conventional generator or FACTS, it is 

necessary to examine their impact on the small-signal angular stability of the system. This 

research can help to investigate the positive or negative influence on the power system 

EOL. Once the positive or negative damping contribution to power system EOL is found, 

the control parameters can be tuned to alter the impact. 

(b) In the planning stage, when a preferable location needs to be identified for WES 

placement, it has minimal effect on the small-signal stability of the power system. 
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Chapter 3                                                                                             

Small Signal Stability Analysis of DFIG-based Wind Energy-

Integrated Power Systems 

Wind Energy Systems (WESs) based on Doubly-Fed Induction Generators (DFIGs) have enormous 

potential for meeting the future demands related to clean energy. Grid integration of WES 

challenges the stability of power systems due to low inertia and intermittent power injection offered 

by DFIGs. The research of this chapter proposes mathematical formulations to compute 

synchronizing and damping torque coefficients of a WES-integrated Single Machine Infinite Bus 

(SMIB) system while considering Phase Locked Loop (PLL) and Virtual Inertia Controller (VIC) 

dynamics. In addition, a Power System Stabilizer (PSS) is designed to enhance electromechanical 

oscillation damping in wind energy-integrated power systems. The proposed research 

methodology is tested in SMIB and nine-bus test systems integrated with WES under several case 

studies. 

3.1 Introduction 

The DFIG-based WES is synchronized with the main power grid through PLL. In addition, 

using VIC technology with high penetration of DFIG-based WES enhances the stability and 

security of the power system. Hence, the consequence on stability in a WES-integrated power 

system is very much associated with the combined influence of PLL and VIC dynamics. The 

various technologies adopted by VIC in DFIG-based WES provide frequency support either by (a) 

injecting active power from energy storage devices [29] or (b) by extracting kinetic energy stored 

in the wind farm [30]. The mathematical model adopted for VIC in this chapter considers that the 

frequency support provided by the VIC is carried out by extracting kinetic energy stored in the 

wind farm. 

 The proposed research work in this chapter investigates the effects of DFIG integration on the 

electromechanical oscillation dynamics of the Synchronous Generator (SG) under the combined 

influence of a PLL and VIC. In addition, this work has also investigated a novel PSS design 

approach under the combined influence of PLL and VIC dynamics of a DFIG to improve the 

electromechanical oscillatory characteristics of the power system. These objectives are achieved 
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by developing mathematical functions for a Single-Machine Infinite Bus (SMIB) system integrated 

with a DFIG-based WES that defines the electromechanical dynamics of the SG. The contributions 

of this chapter are outlined as follows: 

1) A mathematical formulation is developed based on the effects of the VIC of a DFIG-based 

wind farm on the electromechanical dynamics of a power system under the influence of 

PLL. As part of the formulation, the joint effect of the VIC and PLL are incorporated by 

retaining the original Heffron-Phillips structure.  

2) Based on the modified Heffron-Phillips model, a PSS for SMIB is designed with 

parameters tuned to consider the effects of the VIC and PLL of a DFIG-based wind farm. 

3) The effects of the VIC and PLL on the Electromechanical Oscillatory Mode (EmOM) are 

characterized by changes to synchronizing and damping torque coefficients, which are 

functions of VIC and PLL parameters.  

4) Finally, a systematic analysis is conducted to explore the expression of change in 

synchronizing and damping torque coefficients with respect to increased proportional 

gains of the VIC. A time-domain simulation of a VIC-installed WES integrated with a 

single machine system and IEEE 9-bus system is conducted to validate the theoretical 

foundation. 

3.2 Model of DFIG-Based Wind-Integrated Power System 

The analysis demonstrated in this research consists of a DFIG-based wind system 

integrated into an SMIB. Figure 3.1 presents a schematic of DFIG integration with the SMIB. In 

this research, the DFIG-based wind system is modeled by aggregating multiple DFIGs of equal 

capacities and operating states connected in a parallel configuration. However, a single DFIG 

model is obtained by aggregating the individual wind turbine units. The complete system 

associated with a DFIG-based wind system is classified into three categories: mechanical system, 

induction generator, and converters with controllers. 

3.2.1 Modeling of a Mechanical System 

A single-mass drive-rotational system models the mechanical part of the overall power 

system. The mechanical system provides the input power to the wind system based on wind veloc- 
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ity. The shaft torque, i.e., the input to the wind turbine, is defined by: 

𝑇𝑠ℎ𝐷 =∑
1

2
𝐵𝜔𝑠𝐶𝑝

𝑖
(𝑉𝑤

𝑖)3

𝜔𝑟𝐷

𝑛

𝑖=1

   (3.1)     

where 𝐵, 𝐶𝑝, 𝜔𝑟𝐷, 𝜔𝑠, and 𝑉𝑤 are the torque parameter, power coefficient of the wind turbine, rotor 

angular velocity of the DFIG, rotor angular velocity of the SG, and wind velocity, respectively. 

The dynamics of the single-mass model of the rotational system can be defined as:  

𝑑𝜔𝑟𝐷
𝑑𝑡

=
𝜔𝑠
2𝐻𝐷

(𝑇𝑠ℎ𝐷 − 𝑇𝑒𝐷)   (3.2)     

where 𝐻𝐷 is the inertial constant of the Wind Turbine Generator (WTG), and 𝑇𝑒𝐷 is the 

electromagnetic torque of the DFIG, which is given by:  

𝑇𝑒𝐷 = 𝐸𝐷𝑑
′ 𝐼𝐷𝑑𝑠 + 𝐸𝐷𝑞

′ 𝐼𝐷𝑞𝑠   (3.3)     

 where 𝐸𝐷𝑞
′ − j𝐸𝐷𝑑

′  and 𝐼𝐷𝑞𝑠 − j𝐼𝐷𝑑𝑠 are the rotor-induced Electromotive-Force (EmF) and stator 

current of the DFIG in the d-q axis, respectively. 

 

Figure 3.1  Modified SMIB system 
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3.2.2 Modeling of DFIG 

 DFIGs are used to generate electricity from available wind power. The rotor flux dynamics 

are used to simulate the DFIG, assuming that the stator flux linkage is infinitely fast. The dynamics 

of internal-induced EMF in the d-q axis of DFIG can be expressed as: 

𝑑𝐸𝐷𝑑
′

𝑑𝑡
=
1

𝑇𝑜′
((𝑋𝑠

′ − 𝑋𝑠)𝐼𝐷𝑑𝑠 − 𝐸𝐷𝑞
′ ) + (𝜔𝑟𝐷 − 𝜔𝑠)𝐸𝐷𝑑

′ +
𝑋𝑚
𝑋𝑟
𝜔𝑠𝑉𝐷𝑑𝑟   (3.4)     

𝑑𝐸𝐷𝑞
′

𝑑𝑡
=
1

𝑇𝑜′
((𝑋𝑠 − 𝑋𝑠

′)𝐼𝐷𝑞𝑠 − 𝐸𝐷𝑑
′ ) − (𝜔𝑟𝐷 − 𝜔𝑠)𝐸𝐷𝑞

′ −
𝑋𝑚
𝑋𝑟
𝜔𝑠𝑉𝐷𝑞𝑟   (3.5)     

  where 𝑇𝑜
′, 𝑋𝑠, 𝑋𝑠

′, 𝑋𝑟 and 𝑋𝑚 are the open-circuit transient time constant, stator reactance, stator 

transient reactance, rotor reactance, and mutual reactance of the stator and rotor of a DFIG, 

respectively, and 𝑉𝐷𝑞𝑟 − j𝑉𝐷𝑑𝑟 is the d-q axis rotor voltage of the DFIG.  

3.2.3 Modeling of Controllers Associated with Converters 

 .The converters at the rotor and grid sides are known as the Rotor-Side Converter (RSC) 

and Grid-Side Converter (GSC), respectively. The GSC in this research is modeled as a constant 

current source. The transient behavior of the active and reactive power controllers of the RSC are 

expressed as: 

{
 
 
 

 
 
 
𝑑𝑥1
𝑑𝑡

= 𝐾𝑖1(𝑃𝑟𝑒𝑓 − 𝑃𝑔𝑒𝑛)

𝑑𝑥2
𝑑𝑡

= 𝐾𝑖2(𝐾𝑝1(𝑃𝑟𝑒𝑓 − 𝑃𝑔𝑒𝑛) + 𝑥1 − 𝐼𝐷𝑞𝑟)

𝑑𝑥3
𝑑𝑡

= 𝐾𝑖3(𝑄𝑟𝑒𝑓 − 𝑄𝑔𝑒𝑛)

𝑑𝑥4
𝑑𝑡

= 𝐾𝑖4(𝐾𝑝3(𝑄𝑟𝑒𝑓 −𝑄𝑔𝑒𝑛) + 𝑥3 − 𝐼𝐷𝑑𝑟)

   (3.6)     

where 𝑃𝑟𝑒𝑓/𝑔𝑒𝑛 − j𝑄𝑟𝑒𝑓/𝑔𝑒𝑛  are the reference/generated power outputs of the DFIG, respectively; 

𝐾𝑝𝑥 +
𝐾𝑖𝑥

𝑠
; 𝑥 = 1,2,3,4 are the Proportional Integral (PI) controllers associated with the RSC, 

𝑥1, 𝑥2, 𝑥3, 𝑥4 are the state variables associated with RSC controllers; and 𝐼𝐷𝑞𝑟 − j𝐼𝐷𝑑𝑟 are the rotor 

currents in the d-q axis of the DFIG. Based on the assumption that the wind velocity is within its 

limit, the transient of the pitch angle controller is not included here. This chapter conducts stability 
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analysis for a DFIG-based wind energy-integrated power system using a PLL for grid 

synchronization and VIC to provide inertial support during frequency deviation events. The 

following equations describe the transient behavior of the PLL: 

𝑑𝑥𝑝𝑙𝑙

𝑑𝑡
= 𝐾𝑖

𝑝𝑙𝑙𝑉𝑝(𝜃𝑝 − 𝜃𝑝𝑙𝑙)   (3.7)     

𝑑𝜃𝑝𝑙𝑙

𝑑𝑡
= 𝐾𝑝

𝑝𝑙𝑙𝑉𝑝(𝜃𝑝 − 𝜃𝑝𝑙𝑙) + 𝑥𝑝𝑙𝑙   (3.8)     

where 𝑉𝑝∠𝜃𝑝𝑙𝑙 is the voltage at PCC, 𝐾𝑝
𝑝𝑙𝑙 +

𝐾𝑖
𝑝𝑙𝑙

𝑠
 is the PI controller used in PLL and 𝑥𝑝𝑙𝑙 is the 

intermediate state variable related to the PI of PLL. The transient of the VIC is modeled by: 

𝑑𝑥𝑣𝑖𝑐
𝑑𝑡

=
1

𝑇
(𝑓𝑝𝑙𝑙 − 𝑥𝑣𝑖𝑐)   (3.9)     

 The 𝑓𝑝𝑙𝑙, 𝑥𝑣𝑖𝑐, and 𝑇 are PLL output frequency, associated state variable, and time constant of 

VIC, respectively. Composing equations from (3.2) - (3.9), the transient equivalent model of the 

DFIG-based wind system can be represented by: 

𝑥̇𝑤(𝑡) = 𝑤(𝑡)  (3.10)     

where 𝑥𝑤(𝑡) = [𝜔𝑟𝐷 , 𝐸𝐷𝑑
′ , 𝐸𝐷𝑞

′ , 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥𝑝𝑙𝑙 , 𝜃𝑝𝑙𝑙 , 𝑥𝑣𝑖𝑐] and 𝑤(𝑡) are the functions of the first 

derivative of the state variables. In this manner, the 10th-order model of the DFIG is integrated into 

the power system, where the power system in this work is composed of 4th-order SGs. The 

following state equations define the small-signal equivalent model of the open loop Rest of the 

Power System (RPS) and the DFIG-based wind energy system: 

{
∆𝑥𝑠̇ = 𝐴𝑠∆𝑥𝑠 + 𝐵𝑠∆𝑃𝑤
∆𝑉𝑃 = 𝐶𝑠∆𝑥𝑆 + 𝐷𝑠∆𝑃𝑤

  (3.11)     

 {
∆𝑥𝑤̇ = 𝐴𝑤∆𝑥𝑤 + 𝐵𝑤∆𝑉𝑃
∆𝑃𝑤 = 𝐶𝑤∆𝑥𝑤 + 𝐷𝑤∆𝑉𝑃

  (3.12)     

 where the state vector of 𝑛 SGs of the power system is 𝑥𝑆 = [𝛿,𝜔, 𝐸𝑞
′ , 𝐸𝑓𝑑]7×𝑛

T
; the state variables 

𝛿, 𝜔, 𝐸𝑞
′ ,  and 𝐸𝑓𝑑 are the load angle, angular velocity, transient internal EMF, and exciter field 

voltage, respectively; 𝑥𝑤 is the state vector of the WES and 𝑃𝑤 and 𝑉𝑃 are the injected power and 
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voltage at the Point of Common Coupling (PCC) of the DFIG, respectively. The 𝐴𝑠 , 𝐵𝑠, 𝐶𝑠, and 𝐷𝑠 

of (3.11) are the state matrix, input matrix, output matrix, and feedforward matrix, respectively. 

Similarly, 𝐴𝑤, 𝐵𝑤, 𝐶𝑤, and 𝐷𝑤 of (3.12) is defined in a similar fashion as of (3.11). From (3.11) 

and (3.12), the state equation of the entire system takes the following form: 

𝑥̇ = 𝐴𝑠𝑦𝑠𝑥  (3.13)     

 where 𝑥 = [𝑥𝑆, 𝑥𝑤]
T and 𝐴𝑠𝑦𝑠 is the closed-loop system state matrix. The following assumptions 

are adopted in the subsequent sections to investigate the effects of the DFIG-based WES on the 

power system under the influence of VIC and PLL dynamics. 

1) A single-mass drive-train system models the mechanical part of the wind turbine. 

2) The turbine pitch angle controller is not modeled. 

3) The GSC is modeled as a controlled current source.  

4) All analyses are conducted on the assumption of a constant wind velocity, where the wind 

velocity is assumed to be within the operational limit. 

5) The nominal frequency of the entire system is 60 Hz. 

3.3 Dynamic Modeling of an SMIB with a DFIG-based WES 

 An infinite bus in the SMIB system represents a power system with infinite inertia, such 

that it can absorb or supply power without any significant change in voltage or frequency. Hence, 

in a small signal stability study, this assumption allows to focus on other factors like power system 

stability through dynamics associated with rotor angle oscillation, exciter control, and PSS. In this 

context, the linearized model of the synchronous generator is used to approximate system 

dynamics around an operating point. This section develops a modified Heffron-Phillip model for 

small signal stability analysis that consists of 3rd order model of a generator, 1st order model of 

AVR, and a DFIG-based WES endowed with a VIC. The VIC can support power system frequency 

by changing the reference current of the RSC controller [39]. The VIC is installed near the RSC 

of the DFIG. Practically, as Figure 3.1 shows, the change in system frequency is measured by the 

PLL of the DFIG and processed through the VIC as a positive frequency error, which is then 

transformed into a corresponding inertial power output of VIC (𝑃𝑖𝑛𝑒𝑟𝑡). Thus, in frequency 
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excursion events, 𝑃𝑖𝑛𝑒𝑟𝑡 alters the reference of the RSC active power controller to extract the stored 

kinetic energy of the rotor. An improper gain setting on the VIC controller can adversely affect the 

system's operation and stability. Even though the system frequency of the SMIB is assumed 

constant, small disturbances in the given system can influence the PLL dynamics in phase tracking, 

which in turn impacts the output power of DFIG. Therefore, it is essential to investigate the exact 

impact of the VIC on the power system’s small-signal stability. This section describes the 

theoretical basis for small-signal stability analysis of an SMIB system integrated with a DFIG-

based WES. The theoretical study interprets how the dynamics of a PLL and VIC of a WES affect 

the electromechanical modes of the SG. As Figure 3.1 shows, an SG is installed at bus 1, and the 

DFIG is installed at bus 3. Buses 1 and 3 are connected through a transformer and lossless 

transmission line. The SG is modeled as a 3rd-order flux decay model [79]. The differential 

equations associated with SGs and exciter dynamics [79] are given as: 

{
 
 
 

 
 
 
𝛿̇ = 𝜔 − 𝜔𝑠

𝜔̇ =
𝜔𝑠
2𝐻

(𝑃𝑚 − 𝑃𝑔)

𝐸𝑞′̇ =
1

𝑇𝑑𝑜
′ (𝐸𝑓𝑑 − 𝐸𝑞

′ − (𝑋𝑑 − 𝑋𝑑
′ )𝐼𝑑)

𝐸𝑓𝑑̇ =
1

𝑇𝐴
(−𝐸𝑓𝑑 + 𝐾𝐴(𝑉𝑟𝑒𝑓 − 𝑉𝑡))

  (3.14)     

 The variables and parameters of (3.14) follow the standardized notations from [79]. In the absence 

of a WES, the power balance equation at bus 3 satisfies: 

{
𝑃𝛴 = 𝑃𝑔
𝑄𝛴 = 𝑄𝑔

  (3.15)     

 where 𝑃𝑔 =
𝐸𝑞
′𝑉𝑝

𝑋𝐿1+𝑋𝑡+𝑋𝑑
′ sin(𝛿 − 𝜃𝑝), 𝑃𝛴 =

𝑉𝑝𝑉𝑛

𝑋𝐿2
sin 𝜃𝑝, 𝑄𝑔 =

𝐸𝑞
′𝑉𝑝

𝑋𝐿1+𝑋𝑇+𝑋𝑑
′ cos(𝛿 − 𝜃𝑝) −

𝑉𝑝
2

𝑋𝐿1+𝑋𝑇+𝑋𝑑
′ , 

𝑄𝛴 =
𝑉𝑝
2

𝑋𝐿2
−
𝑉𝑝𝑉𝑛 

𝑋𝐿2
cos 𝜃𝑝; 𝑉𝑝∠𝜃𝑝 and 𝑉𝑛∠0

0 are bus voltages of the PCC and infinite bus, 

respectively, and 𝑋𝑑 and 𝑋𝑑
′  are the d-axis steady-state and transient reactance of the SG, 

respectively. The transmission lines and transformers are considered to be lossless. Thus, the line 

and transformer equivalent impedances are represented only with reactance (i.e., 𝑋𝐿1, 𝑋𝐿2, and 𝑋𝑇, 

respectively). Linear modal analysis is conducted by linearizing the nonlinear differential-

algebraic equations of the power system given in (3.14) and (3.15). In small-signal stability 
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analysis, the change in electrical power output following a perturbation can be resolved into two 

components: synchronizing and damping power. Hence, 

𝛥𝑃𝑔 = 𝑃𝑆𝛥𝛿 + 𝑃𝐷𝛥𝜔  (3.16)     

 where 𝑃𝑆 and 𝑃𝐷 are the synchronizing and damping coefficients, respectively. The coefficients 

can be evaluated for an Electromechanical Mode of Interest (EMI) 𝜆𝑐̅ and are widely used to 

measure the small-signal stability of power systems [84]. This section describes how the modified 

Heffron-Phillips model was evaluated under the joint effect of VIC-PLL for EMI 𝜆𝑐̅. To 

incorporate the effects of the WES, the power balance expressed in (3.15) can be augmented to: 

𝑃𝛴 = 𝑃𝑔 + 𝑃𝑤  (3.17)     

  The linear form of (3.17) can be expressed as: 

∆𝑃𝛴 = ∆𝑃𝑔 + ∆𝑃𝑤  (3.18)     

 where ∆𝑃𝛴 = (
𝑉𝑝0𝑉𝑛0

𝑋𝐿2
cos 𝜃𝑝0) ∆𝜃𝑝 +

𝑃𝑔0

𝑉𝑝0
∆𝑉𝑝; and ∆𝑃𝑔 = (

𝐸𝑞0
′ 𝑉𝑝0

𝑋1
cos(𝛿0 − 𝜃𝑝0)) (∆𝛿 − ∆𝜃𝑝) +

𝑃𝑔0 (
1

𝐸𝑞0
′ ∆𝐸𝑞

′ +
1

𝑉𝑝0
∆𝑉𝑝), in which 𝑋1 is defined as 𝑋1 = 𝑋𝐿1 + 𝑋𝑇 + 𝑋𝑑

′ . The variables with 

subscript “0” indicate the initial operating points. Based on [24] and [85], the DFIG-based WES 

without VIC is practically decoupled from the RPS (i.e., the rotor velocity is decoupled with grid 

frequency). Therefore, the DFIG output active power (𝑃𝑤) does not vary with small disturbances 

at the grid side. However, a DFIG endowed with VIC can modulate 𝑃𝑤 with a variation in grid 

frequency. The frequency variation at the PCC is measured by the PLL. Thus, the active power 

output variation with the VIC and PLL can be defined as: 

∆𝑃𝑤 = {
−𝑠𝐾𝑖𝑛𝑒𝑟𝑡∆𝑓𝑝𝑙𝑙 

0                        
  

With VIC and PLL 
 (3.19)     

Without VIC 

where 𝐾𝑖𝑛𝑒𝑟𝑡 and 𝑓𝑝𝑙𝑙 are the proportional gain of the VIC and the frequency at the PCC measured 

by the PLL, respectively. A PLL based on a Synchronously-Rotating-Reference Frame (SRF-PLL) 

considered in this work is shown in Figure 3.2. Based on the assumption that 𝑉𝑝 = 1 p. u., the 

relationship between ∆𝑓𝑝𝑙𝑙 and ∆𝜃𝑝 can be expressed as: 
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Figure 3.2   A Model of SRF PLL 

∆𝑓𝑝𝑙𝑙 =
𝑠

2𝜋
(

𝑠𝐾𝑃,𝑝𝑙𝑙 +𝐾𝐼,𝑝𝑙𝑙

𝑠2 + 𝑠𝐾𝑃,𝑝𝑙𝑙 + 𝐾𝐼,𝑝𝑙𝑙
)∆𝜃𝑝  (3.20)     

Thus, with the PI parameters of the PLL (i.e., 𝐾𝑃,𝑝𝑙𝑙 and 𝐾𝐼,𝑝𝑙𝑙), (3.19) can be rewritten as:  

∆𝑃𝑤 = {
−𝑠2

𝐾𝑖𝑛𝑒𝑟𝑡
2𝜋

(
𝑠𝐾𝑃,𝑝𝑙𝑙 + 𝐾𝐼,𝑝𝑙𝑙

𝑠2 + 𝑠𝐾𝑃,𝑝𝑙𝑙 + 𝐾𝐼,𝑝𝑙𝑙
)∆𝜃𝑝

0

  (3.21)     

Next, to consider the contribution of wind power controllers, the change in wind energy active 

power output can be expressed as: 

∆𝑃𝑤 = −𝑠
2
𝐾𝑖𝑛𝑒𝑟𝑡
2𝜋

𝐹𝑝𝑙𝑙(𝑠)∆𝜃𝑝  (3.22)     

Similarly, the reactive power balance of (3.15) is linearized around the initial operating point to 

obtain the expression of ∆𝑉𝑝. Based on the assumption that the DFIG reactive power output 𝑄𝑤 =

0, the linearization of the reactive power balance of (3.15) becomes: 

∆𝑄𝑔 − ∆𝑄𝛴 = 0  (3.23)     

where  

{
  
 

  
 ∆𝑄𝛴 =

𝑉𝑝

𝑋 𝐿2
∆𝑉𝑝 +

𝑄𝛴0
𝑉𝑝0

∆𝑉𝑝 + 𝑃𝛴0∆𝜃𝑝

∆𝑄𝑔 =
𝑉𝑝0

𝑋1
𝑐𝑜𝑠(𝛿0 − 𝜃𝑝0) ∆𝐸𝑞

′ − 𝑃𝑔0(∆𝛿 − ∆𝜃𝑝) +

             (
𝑄𝑔0

𝑉𝑝0
−
𝑉𝑝0

𝑋1
)∆𝑉𝑝

  (3.24)     

 A modified Heffron-Phillips model can then be obtained by linearizing the nonlinear dynamics of 

the power system defined in (3.14) - (3.23) at an operating point when considering the dynamics 

of a wind-generator system endowed with VIC. The additional contribution to the original 𝐾1 to 

𝐾6 constants of the SMIB can be obtained, respectively, as: 
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∆𝐾1 =
𝑋𝐿2𝐸𝑞0

′ 2
𝑉𝑝0 𝑐𝑜𝑠

2(𝛿0 − 𝜃𝑝0)

𝑋1𝑀𝑒𝑛
𝐷(𝑠) ∆𝐾4 =

𝑃𝑔0(𝑋𝑑 − 𝑋𝑑
′ ) 𝑐𝑜𝑠(𝛿0 − 𝜃𝑝0)

𝑀𝑒𝑛 𝑋𝐿2⁄
𝐷(𝑠)

∆𝐾2 = −
𝑃𝑔0𝑋𝐿2 𝑐𝑜𝑠(𝛿0 − 𝜃𝑝0)

𝑋1𝑀𝑒𝑛
𝐷(𝑠) ∆𝐾5 =

𝑋𝐿1𝑋𝐿2𝑃𝑔0

𝑀𝑒𝑝
𝐷(𝑠)

1

∆𝐾3
=
𝑃𝑔0
2 (𝑋𝑑 − 𝑋𝑑

′ )

𝑉𝑝0
𝑋1𝑋𝐿2

𝑀𝑒𝑛

𝐷(𝑠) ∆𝐾6 = −
𝑃𝑔0
2 𝑋𝐿1𝑋𝐿2𝑋1𝑋𝑑

′

𝐸𝑞′𝑉𝑃0𝑀𝑒𝑛𝑀𝑒𝑝
𝐷(𝑠)

  (3.25)     

where 𝐷(𝑠) =
𝑠2
𝐾𝑖𝑛𝑒𝑟𝑡
2𝜋

𝐹𝑝𝑙𝑙(𝑠)

𝑉𝑝0

𝑋1𝑋𝐿2
𝑀𝑒𝑛+𝑠2

𝐾𝑖𝑛𝑒𝑟𝑡
2𝜋

𝐹𝑝𝑙𝑙(𝑠)
; 𝑀𝑒𝑛 = 𝑉𝑛𝑜𝑋1 cos 𝜃𝑝𝑜 + 𝐸𝑞𝑜

′ 𝑋𝐿2 cos(𝛿0 − 𝜃𝑝0); and 𝑀𝑒𝑝 =

𝐸𝑞𝑜
′ 𝑋𝐿1 cos(𝛿0 − 𝜃𝑡0) + 𝑉𝑝𝑜𝑋𝑑

′ cos(𝜃𝑡0 − 𝜃𝑝0). The steps for deriving the aforementioned 

functions are presented in Appendix A. 2. The modified 𝐾1 to 𝐾6 are then transformed into: 

{

𝐺𝑖(𝑠) = 𝐾𝑖 + ∆𝐾𝑖(𝑠)    𝑖 = 1,2, … ,6, 𝑖 ≠ 3
1

𝐺𝑖(𝑠)
=
1

𝐾𝑖
+

1

∆𝐾𝑖(𝑠)
    𝑖 = 3

  (3.26)     

All 𝐺𝑖(𝑠) retain the properties of the classical Heffron–Phillips model, as shown in Figure 3.3. The 

following section describes the PSS design procedure in the presence of VIC and PLL. 

3.4 Design Algorithm for PSS 

The Phillip-Heffron model is best suited for low-frequency oscillation analysis and the 

design of PSS to provide additional damping torque. The design of a PSS for the SG, while 

considering the effects of the VIC and PLL dynamics of the DFIG, can improve the system's 

damping properties. Instead of those of the Conventional PSS (CPSS), the parameters of the 

proposed PSS are derived from the modified Heffron-Phillips model that incorporates the VIC and 

PLL dynamics of the DFIG. However, the structure of the transfer function model is identical to 

that of the CPSS. Thus, no limitation exists for the proposed PSS from a mathematical or 

implementation standpoint. The most efficient design of the PSS is through formulating the 

transfer function of GEP(s), where GEP(s) represents the transfer function between the change in 

electrical power output and the reference voltage, as shown in Figure 3.3 and expressed as:  

𝐺𝐸𝑃(𝑠) =
−𝐺2(𝑠)𝐺3(𝑠)𝐻𝐸𝑋𝐶(𝑠)

𝐺3(𝑠)𝐺6(𝑠)𝐻𝐸𝑋𝐶(𝑠) + (1 + 𝑠𝐺3(𝑠)𝑇𝑑𝑜
′ )

     (3.27)     
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Figure 3.3  Modified Phillip Heffron Model 

where 𝐻𝐸𝑋𝐶(s) is the transfer function of the exciter dynamics.  The model of PSS is preferred to 

be a lead-lag type of compensator, as expressed in (3.28). This lead-lag compensator provides a 

sufficient phase lead to compensate for the phase lag of the feedback loop at a low-frequency 

EmOM. 

𝐻𝑝𝑠𝑠 = 𝐾𝑝𝑠𝑠 (
𝑠𝑇𝑤

1 + 𝑠𝑇𝑤
) (
1 + 𝑠𝑇1
1 + 𝑠𝑇2

) (
1 + 𝑠𝑇3
1 + 𝑠𝑇4

)     (3.28)     

All the parameters of the PSS as given in (3.28), accord with the standard notations in [79]. The 

PSS tuning steps referenced in Algorithm 1 ensure sufficient damping for the critical EmOM. The 

difference between the tuning guidelines mentioned in [86] and those outlined in Algorithm 1 is 

that instead of constant parameters for the Heffron–Phillips model, here 𝐺1(𝑠) − 𝐺6(𝑠) is used,  

which is a function of ‘𝑠’. Power electronic converters control nearly 30% of the total electric 

power generation from DFIG-based wind technology. The rest of the power is directly fed to the 

grid through the DFIG stator, which is controlled by a mechanically rotated wind turbine. During 

electrical faults, the mechanical power available at the input of DFIG is in surplus to the electrical 

power available at its terminal. Thus, during a fault, a rotor oscillation event is triggered due to a 

sudden mismatch between demand and supply. The proposed PSS with a proper VIC gain (𝐾𝑖𝑛𝑒𝑟𝑡) 

setting, as demonstrated in this study discussed in the result section, can stabilize the system by 

extracting kinetic energy stored in the rotor of the DFIG. Therefore, in a frequency excursion event, 
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even if there is no energy storage device installed in the WES, the drivetrain will not have any 

additional strain. 

3.5 Effect VIC and PLL on Synchronizing and Damping Torque 

To assess the dynamic effects of the DFIG on the damping of the SG, it is necessary to 

determine the ∆𝑃𝑔 in terms of ∆𝛿 and ∆𝜔 as a function of the VIC and PLL parameters. This can 

be accomplished by further constructing ∆𝐸𝑞
′  in terms of ∆𝛿 and ∆𝜔. The relationship of ∆𝐸𝑞

′  to  

Algorithm 1 Tuning of the proposed PSS parameters 

Input: All data related to SG, VIC, PLL 

1: 
Obtain 𝐾1 − 𝐾6 from the classical Heffron–Phillips model. 

2: Obtain the functions of 𝐺1(𝑠) − 𝐺6(𝑠) from the modified Heffron–Phillips 

model using (3.26) and Appendix A. 2. 

3: Neglecting damping from all other sources, obtain undamped natural frequency 

(𝜔𝑛) from torque angle loop presented in Figure 3.3. 

4: Obtain the phase lag of GEP(s) of (3.27) at s = 𝑗𝜔𝑛. 

5: Set the phase lead of 𝐻𝑝𝑠𝑠(𝑠) in (3.28) such that 

∠𝐻𝑝𝑠𝑠(𝑠)|𝑠=𝑗𝜔𝑛 + ∠𝐺𝐸𝑃(𝑠)|𝑠=𝑗𝜔𝑛 = 0 

6: Obtain the instability PSS gain 𝐾𝑝𝑠𝑠
𝑐  from the root locus plot of the system, 

including PSS, and then set  

𝐾𝑝𝑠𝑠 =
𝐾𝑝𝑠𝑠
𝑐

3
 

Output: Parameters of the proposed PSS are obtained. 

∆𝛿 and ∆𝜔 can be evaluated similarly as in [87] and represented as 

∆𝐸𝑞
′ (𝑠) = 𝛬𝑎𝑣𝑟(𝑠)∆𝛿 + 𝛬𝑝𝑠𝑠(𝑠)∆𝜔     (3.29)     

where  
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𝛬𝑎𝑣𝑟(𝑠) =
−[𝐺4(𝑠) + 𝐺5(𝑠)𝐻𝐸𝑋𝐶(𝑠)]𝐺3(𝑠)

𝐺3(𝑠)𝐺6(𝑠)𝐻𝐸𝑋𝐶(𝑠) + (1 + 𝑠𝐺3(𝑠)𝑇𝑑𝑜
′ )

𝛬𝑝𝑠𝑠(𝑠) =
−𝐺3(𝑠)𝐻𝑝𝑠𝑠(𝑠)𝐻𝐸𝑋𝐶(𝑠)

𝐺3(𝑠)𝐺6(𝑠)𝐻𝐸𝑋𝐶(𝑠) + (1 + 𝑠𝐺3(𝑠)𝑇𝑑𝑜
′ )

     (3.30)     

Next, by substituting (3.29) into (A. 13) of Appendix A. 2, the change in generator output power 

can be expressed as 

∆𝑃𝑔 = [𝐺1(𝑠) + 𝐺2(𝑠)𝛬𝑎𝑣𝑟(𝑠)]∆𝛿 + 𝐺2(𝑠)𝛬𝑝𝑠𝑠(𝑠)∆𝜔     (3.31)     

 As this study focuses on low-frequency oscillations up to < 3 Hz, it can be assumed that 𝐺4(𝑠) 

has a negligible impact on Λ𝑎𝑣𝑟(𝑠) [88]. With the usual range of generator constants and the tuning 

process of the AVR and PSS [87], the Λ𝑎𝑣𝑟(𝑠) and Λ𝑝𝑠𝑠(𝑠) could be approximated to that of [88] 

as 

𝛬𝑎𝑣𝑟(𝑠) ≈
−𝐺5(𝑠)

𝐾𝐴𝐾6

𝐻𝑒𝑥𝑐(𝑠)

(1 + 𝑠
𝑇𝑑𝑜
′

𝐾𝐴𝐾6
)

𝛬𝑝𝑠𝑠(𝑠) ≈
−𝐻𝑒𝑥𝑐(𝑠)𝐻𝑝𝑠𝑠(𝑠)

𝐾𝐴𝐾6 (1 + 𝑠
𝑇𝑑𝑜
′

𝐾𝐴𝐾6
)

     (3.32)     

Then, with the replacement of 𝛬𝑎𝑣𝑟(𝑠) and 𝛬𝑝𝑠𝑠(𝑠) from (3.32) into (3.31), ∆𝑃𝑔 for EMI can be 

expressed in the form of (3.16) as 

𝛥𝑃𝑔|𝑠=𝜆𝑐+∆𝜆𝑐
= 𝑃𝑆𝛥𝛿 + 𝑃𝐷𝛥𝜔     (3.33)     

 where 

𝑃𝑆 = 𝐺1(𝑠) −
𝐺2(𝑠)𝐺5(𝑠)𝐻𝑒𝑥𝑐(𝑠)

𝐾𝐴𝐾6 (1 + 𝑠
𝑇𝑑𝑜
′

𝐾𝐴𝐾6
)

 
    (3.34)     

𝑃𝐷 =
−𝐺2(𝑠)𝐻𝑒𝑥𝑐(𝑠)𝐻𝑝𝑠𝑠(𝑠)

𝐾𝐴𝐾6 (1 + 𝑠
𝑇𝑑𝑜
′

𝐾𝐴𝐾6
)

 
    (3.35)     

From (3.34) and (3.35), it can be seen that the synchronizing/damping coefficients (𝑃𝑆/𝑃𝐷) are 

mostly affected by 𝐺2(𝑠) and 𝐺5(𝑠). The ∆𝜆𝑐 in (3.33) represents the change in EMI derived from 

the VIC and PLL dynamics of the DFIG. Next, all the parameters and functions without an inertia 
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controller and PLL are obtained, which are marked with “(∧).” With this property, (3.33) can be 

rewritten as 

𝛥𝑃𝑔|𝑠=𝜆𝑐+∆𝜆𝑐
= (𝑃̂𝑆 + ∆𝑃𝑆)∆𝛿 + (𝑃̂𝐷 + ∆𝑃𝐷)∆𝜔     (3.36)     

where 𝑃̂𝑆/𝑃̂𝐷 are the synchronizing/damping coefficients, respectively, for the case without a PLL 

and VIC. Thus, for the mode of interest 𝜆𝑐, 𝑃̂𝑆/𝑃̂𝐷 can be expressed as  

𝑃𝑠̂|𝑠=𝜆𝑐
= 𝐾1 +𝐾2𝛬̂𝑎𝑣𝑟(𝑠)

𝑃̂𝐷|𝑠=𝜆𝑐
= 𝐾2𝛬̂𝑝𝑠𝑠(𝑠)

     (3.37)     

where Λ̂𝑎𝑣𝑟(𝑠)/Λ̂𝑝𝑠𝑠(𝑠) indicate changes in the AVR/PSS transfer functions, respectively. In 

addition, from (3.32), the relationship between Λ and Λ̂ can be described as  

𝛬𝑎𝑣𝑟 = 𝛬̂𝑎𝑣𝑟 (1 +
∆𝐾5(𝑠)

𝐾5
)

𝛬𝑝𝑠𝑠(𝑠) = 𝛬̂𝑝𝑠𝑠(𝑠)

     (3.38)     

 When (3.38) is substituted into (3.31), ∆𝑃𝑔 can be rewritten as 

∆𝑃𝑔 = [(𝐾1 + 𝐾2𝛬̂𝑎𝑣𝑟(𝑠))∆𝛿 + 𝐾2𝛬̂𝑝𝑠𝑠(𝑠)∆𝜔] (1 +
∆𝐾2(𝑠)

𝐾2
) 

+ [(𝐺2(𝑠)
𝑋𝐿1𝑀𝑒𝑛

𝑋1𝑀𝑣𝑣
𝛬̂𝑎𝑣𝑟(𝑠) − 𝐾1)(

∆𝐾2(𝑠)

𝐾2
) + ∆𝐾1(𝑠)] ∆𝛿 

 

    (3.39)     

where 𝑀𝑣𝑣 is defined as 

𝑀𝑣𝑣 = 𝑉𝑛𝑜𝑋𝐿1 𝑐𝑜𝑠 𝜃𝑝𝑜 + 𝑉𝑡𝑋𝐿2 𝑐𝑜𝑠(𝜃𝑡0 − 𝜃𝑝0) 

As highlighted in [86] and [87], with a high AVR gain, both the AVR and PSS offer constant 

contributions to the synchronizing/damping coefficients for a small change in eigenvalues (i.e., 

𝜆𝑐 → 𝜆𝑐 + ∆𝜆𝑐). With this property, (3.39) can be expressed as 

𝛥𝑃𝑔|𝑠=𝜆𝑐
≈ 𝛥𝑃𝑔|𝑠=𝜆𝑐+∆𝜆𝑐

     (3.40)     

 Equation (3.39), therefore, becomes 
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𝛥𝑃𝑔|𝑠=𝜆𝑐
= 𝑃̂𝑆∆𝛿 + 𝑃̂𝐷∆𝜔 + (𝑃𝑆𝑎𝛥𝛿 + 𝑃𝐷𝑎𝛥𝜔)

∆𝐾2(𝑠)

𝐾2
     (3.41)     

 where  

{
 
 

 
 𝑃𝑆𝑎 = 𝑃̂𝑆 +

𝑋𝐿1𝑀𝑒𝑛

𝑋1𝑀𝑣𝑣
𝑃𝑠,𝑎𝑣𝑟 +

𝐸𝑞𝑜
′ 𝑉𝑃

𝑋1
𝑐𝑜𝑠(𝛿0 − 𝜃𝑝0) − 𝐾1

𝑃𝐷𝑎 = 𝑃̂𝐷 +
𝑋𝐿1𝑀𝑒𝑛

𝑋1𝑀𝑣𝑣
𝑃𝑑,𝑎𝑣𝑟

     (3.42)     

The 𝑃𝑠,𝑎𝑣𝑟 and 𝑃𝑑,𝑎𝑣𝑟 are synchronizing and damping contributions from 𝐾2Λ̂𝑎𝑣𝑟(𝜆𝑐). For the mode 

of interest, (3.41) implies that  

∆𝑃𝑆∆𝛿 + ∆𝑃𝐷∆𝜔 = (𝑃𝑆𝑎𝛥𝛿 + 𝑃𝐷𝑎𝛥𝜔)
∆𝐾2(𝜆𝑐)

𝐾2
     (3.43)     

 Based on (3.25) and (3.26), the following is derived: 

∆𝐾2(𝑠)

𝐾2
=
𝐸𝑞𝑜
′ 𝑋𝐿2 𝑐𝑜𝑠(𝛿0 − 𝜃𝑝0)

𝑀𝑒𝑛
𝐷(𝑠)     (3.44)     

 Thus, at the mode of interest (𝜆𝑐 = 𝜎𝑐 + 𝑗𝜔𝑐), the 𝐷(𝑠) of (3.44) can be expressed as 

𝐷(𝑠)|𝑠=𝜆𝑐 = 𝐷𝑅 + 𝑗𝐷𝐼     (3.45)     

 If it is assumed that 𝜎𝑐 ≪ 𝜔𝑐 such that 𝜆𝑐 ≈ 𝑗𝜔𝑐, the exclusive expressions of 𝐷𝑅 and 𝐷𝐼 are  

{
 

 𝐷𝑅 =
−𝐾𝑖𝑛𝑒𝑟𝑡𝐾𝐼,𝑝𝑙𝑙𝜔𝑐

2𝐴 − 𝐾𝑖𝑛𝑒𝑟𝑡𝐾𝐼,𝑝𝑙𝑙𝜔𝑐
3𝐵

𝐴2 + 𝐵2

𝐷𝐼 =
𝐾𝑖𝑛𝑒𝑟𝑡𝐾𝐼,𝑝𝑙𝑙𝜔𝑐

2𝐵 − 𝐾𝑖𝑛𝑒𝑟𝑡𝐾𝐼,𝑝𝑙𝑙𝜔𝑐
3𝐴

𝐴2 + 𝐵2

     (3.46)     

 where A and B are expanded to: 

{
 

 𝐴 =
2𝜋𝑉𝑝𝑜𝑀𝑒𝑛

𝑋1𝑋𝐿2
(𝐾𝐼,𝑝𝑙𝑙 − 𝜔𝑐

2) − 𝐾𝑖𝑛𝑒𝑟𝑡𝐾𝐼,𝑝𝑙𝑙𝜔𝑐
2

𝐵 =
2𝜋𝑉𝑝𝑜𝑀𝑒𝑛

𝑋1𝑋𝐿2
𝐾𝑃,𝑝𝑙𝑙𝜔𝑐 − 𝐾𝑖𝑛𝑒𝑟𝑡𝐾𝑝,𝑝𝑙𝑙𝜔𝑐

3

     (3.47)     

 Based on (3.43) - (3.45), ∆𝑃𝑆 and ∆𝑃𝐷 can ultimately be represented as in (3.48).  
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{
 
 

 
 ∆𝑃𝑆 =

𝐸𝑞𝑜
′ 𝑋𝐿2 𝑐𝑜𝑠(𝛿0 − 𝜃𝑝0)

𝑀𝑒𝑛(𝐴2 + 𝐵2)
(
(𝑃𝑑𝑎𝐾𝑃,𝑝𝑙𝑙𝜔𝑐

2 − 𝑃𝑠𝑎𝐾𝐼,𝑝𝑙𝑙)𝐾𝑖𝑛𝑒𝑟𝑡𝜔𝑐
2𝐴 −

(𝑃𝑠𝑎𝐾𝑃,𝑝𝑙𝑙 + 𝑃𝑑𝑎𝐾𝐼,𝑝𝑙𝑙)𝐾𝑖𝑛𝑒𝑟𝑡𝜔𝑐
3𝐵

)

∆𝑃𝐷 =
𝐸𝑞𝑜
′ 𝑋𝐿2 𝑐𝑜𝑠(𝛿0 − 𝜃𝑝0)

𝑀𝑒𝑛(𝐴2 + 𝐵2)
(
−(𝑃𝑑𝑎𝐾𝐼,𝑝𝑙𝑙 + 𝑃𝑠𝑎𝐾𝑃,𝑝𝑙𝑙)𝐾𝑖𝑛𝑒𝑟𝑡𝜔𝑐

2𝐴 +

(𝑃𝑠𝑎𝐾𝐼,𝑝𝑙𝑙 − 𝑃𝑑𝑎𝐾𝑃,𝑝𝑙𝑙𝜔𝑐
2)𝐾𝑖𝑛𝑒𝑟𝑡𝜔𝑐𝐵

)

     (3.48)     

Thus, the changes in synchronizing and damping coefficients as derived in (3.48) are the functions 

of damping frequency 𝜔𝑐, the VIC and PLL parameters, and synchronizing/damping coefficients 

from the no-wind integration case (𝑃̂𝑆/𝑃̂𝐷). According to (3.48), as 𝐾𝑖𝑛𝑒𝑟𝑡 increases to a non-zero 

value, a shift occurs in the mode of interest (i.e., ∆𝜆𝑐), and the wind power inertial controller 

participates in damping and synchronizing torque.  

3.6 Result and Analysis 

The analytical results based on the above methodology have been tested on two different 

systems: (a) the SMIB system and (b) the IEEE 9 bus test system.  

3.6.1 SMIB System  

The outcomes described in the previous section were validated through an SMIB test system, as 

shown in Figure 3.1. 

3.6.1.1 Effects of Variations in 𝑲𝒊𝒏𝒆𝒓𝒕 on ∆𝑷𝑺 and ∆𝑷𝑫 

∆𝑃𝑆 and ∆𝑃𝐷 were studied under different values of 𝐾𝑖𝑛𝑒𝑟𝑡. The ∆𝑃𝑆 and ∆𝑃𝐷 curves 

inherited from (3.48) were validated against those obtained from (3.31), which consisted of exact 

expressions of AVR and PSS contributions. The parameters of the generator and AVR are presented 

in Appendix A. 3. The wind farm installed at bus 3 of the SMIB, as shown in Figure 3.1, consisted 

of 22 DFIGs at a 3.6 MVA rating and were connected in parallel. The wind farm was aggregated 

into a single DFIG for small-signal analysis. The parameters of the PLL used for synchronization 

purposes of the DFIG, where 𝐾𝑃,𝑝𝑙𝑙 = 0.01 and 𝐾𝐼,𝑝𝑙𝑙 = 0.1. The remainder of the data related to 

the SG, transformer, and DFIG are presented in Table A. 1 and Table A. 2. It should be noted that 

the change in the position of DFIG integration in the SMIB system, as marked in Figure 3.1, could 

result in changes to line reactance 𝑋𝐿1 and 𝑋𝐿2. Equation (3.48) presents the effects of line 

reactance on the variations in synchronizing and damping torque of the SG. Under these 

conditions, the study was conducted with DFIGs installed at (a) Location 1: 𝑋𝐿1 = 0.05 p. u., 
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𝑋𝐿2 = 0.15 p. u. with the proposed PSS1 and at (b) Location 2: 𝑋𝐿1 = 0.15 p. u., 𝑋𝐿2 ≔ 0.05 p. u. 

with the proposed PSS2. Figure 3.4 shows the effects of the location of the DFIG equipped with a 

VIC and PLL on the synchronizing and damping torque (∆𝑃𝑆 and ∆𝑃𝐷) of the SG. It can be 

observed that, the characteristics of ∆𝑃𝑆 and ∆𝑃𝐷, was the similar for the critical socillating mode, 

𝜆𝑐 in both cases. With the same data used in Location 1, the initial operating conditions of the 

system evaluated from load-flow studies as, 𝑃𝑔0 = 1 p.u., 𝑃𝑤0 = 0.88 p.u., 𝑉𝑡 = 1∠0.3398 

p.u., 𝑉𝑝0=0.9887∠0.2893 p.u., and 𝑉𝑛0 = 1∠0 p.u.. Similarly, the operating conditions of 

Location 2, where 𝑃𝑔0 = 1 p.u., 𝑃𝑤0 = 0.88 p.u., 𝑉𝑡 = 1∠0.2462 p.u.,  𝑉𝑝0 = 0.9938∠0.0947 

p.u., and 𝑉𝑛0 = 1∠0 p.u...All p. u. values were based on 100 MVA. The parameters  of  the propo 

sed PSS1 and PSS2 were tuned according to Algorithm 1, and the parameters obtained are 

presented in Table 3.1. The characteristic curves of ∆𝑃𝑆/∆𝑃𝐷 versus 𝐾𝑖𝑛𝑒𝑟𝑡 are demonstrated in 

Figure 3.4. The degree of mismatch observed in Figure 3.4 can be due to certain assumptions used 

to derive (3.48). Note that the discrepancies in the results as obtained from the approximated exp- 

Table 3.1: PSS Parameters for Locations 1 and 2 

PSS 𝑲𝒑𝒔𝒔 𝑻𝒘 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 

Proposed PSS1 62 10 0.2 0.02 0.1 0.52 

Proposed PSS2 40 10 0.2 0.02 0.1 0.64 

 

 

Figure 3.4  Change in ∆𝑃𝑆 and ∆𝑃𝐷 for (a) location 1, Prop. PSS1 (b) Location 2, Prop. PSS2 
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Figure 3.5  Dynamic response for different values of  𝐾𝑖𝑛𝑒𝑟𝑡  

ression in (3.48) and the exact expressions in (3.29) - (3.31) could be ignored, as this study focused 

on the nature and properties of the interaction between the wind farm with an inertial controller 

and the SG. Figure 3.4 shows that the increase in 𝐾𝑖𝑛𝑒𝑟𝑡 could adversly affect ∆𝑃𝑆, as, can be seen 

that at a certain large value of 𝐾𝑖𝑛𝑒𝑟𝑡, the ∆𝑃𝑆 may has become negative, which must be avoided 

to ensure the rotor angle stability of the system. In contrast to ∆𝑃𝑆, the behavior of ∆𝑃𝐷 increased 

with 𝐾𝑖𝑛𝑒𝑟𝑡. As expected, it can be concluded from Figure 3.4 (a) and (b) that the interaction 

between the wind farm and SG was more prominent when the wind was nearer to the SG, i.e., 

Location 1, and the effect diminished as it moved to a more remote location, i.e., Location 2. The 

aforementioned observations were validated through a time-domain simulation performed in 

MATLAB 2019b for the system shown in Figure 3.1. The SG and AVR parameters used in the 

simulation are presented in Appendix A. 3. The line parameters were chosen to be the same as for 

Location 1. A wind farm consisting of 22 DFIGs, each DFIG with a rating of 3.6 MW, was 

integrated into the system at bus 3. Data for each DFIG are provided in Appendix A. 3. The 

simulation of the inertial loop of the VIC consists of a rate limiter and low-pass filter to remove 

the noise from the frequency error signal, which was not modeled for the aforementioned 

mathematical analysis. This research evaluated the power system’s damping as derived from DFIG 

integration while considering VIC and PLL dynamics. More specifically, DFIG integration into 

the power system affected the damping and synchronizing torque of the SG. Thus, in this chapter, 

the wind speed was treated as the average of the various wind speeds. Therefore, this work assumes 

that the wind velocity and, thus, wind power output were constant. The PLL parameters were set 

to 𝐾𝑃,𝑝𝑙𝑙 = 0.01 and 𝐾𝐼,𝑝𝑙𝑙 = 0.1 as mentioned above. The PSS parameters were chosen from Table 

3.1 for Location 1 of the wind farm. Time-domain simulation results of the load angle curve of the 
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system for a three-phase fault applied between the PCC and infinite bus at 1 sec. are shown in 

Figure 3.5. The system load angle curve was observed for different values of 𝐾𝑖𝑛𝑒𝑟𝑡. Figure 3.5 

shows that an increase in 𝐾𝑖𝑛𝑒𝑟𝑡 have deteriorated the system rotor angle stability. 

3.6.1.2 ∆𝑷𝑫/∆𝑷𝑺 versus CPSS and Proposed PSS 

To demonstrate the effects of the proposed PSS and CPSS on changes in ∆𝑃𝑆 and ∆𝑃𝐷, the 

proposed PSS for Location 1 was designed according to the steps outlined in Algorithm 1. The 

CPSS parameters were tuned without considering the effects of the VIC and PLL. The modified 

Heffron-Phillips model was derived considering the wind farm placement. To design the proposed 

PSS for the SG, the PSS parameters were chosen as 𝑇1 = 0.2 sec., 𝑇2 = 0.02 sec., and 𝑇3 = 0.1 

sec., which is in the standard range of 0.02 to 0.2. The 𝑇4 was inferred from the phase-lagging 

information of GEP(j𝜔𝑛). In this case, the undamped natural frequency was obtained as 𝜔𝑛 =

8.03 Hz, with damping from all other sources being neglected. For the given 𝜔𝑛, 𝑇4 is obtained as 

0.52 sec. Then, 𝐾𝑝𝑠𝑠 was derived from the root locus diagram considering the dynamics of the full 

system. The root locus of the system is presented in Figure 3.7. According to the root locus 

diagram, the critical value of PSS gain is 𝐾𝑝𝑠𝑠
𝑐𝑟 = 185. Thus, in accordance with Step 4 of 

Algorithm 1, it follows, 𝐾𝑝𝑠𝑠 = 62. Figure 3.6(a) and (b) represents the changes in ∆𝑃𝑆 and ∆𝑃𝐷 

with respect to 𝐾𝑖𝑛𝑒𝑟𝑡 for the proposed PSS and CPSS, respectively. The parameters of the CPSS 

and proposed PSS are presented in Table 3.2. Figure 3.6 shows that the proposed PSS significantly 

improved the damping contribution from wind farms over that of the CPSS with respect to the 

complete range of 𝐾𝑖𝑛𝑒𝑟𝑡. These observations were validated through a time-domain simulation 

developed in MATLAB 2019b of the given system with 𝐾𝑖𝑛𝑒𝑟𝑡 = 4. A three-phase fault was 

applied at 1 sec. between the PCC and infinite bus. The fault response of load angle curve “𝛿” as  

Table 3.2: Parameters of Proposed PSS and CPSS 

Type of PSS 𝑲𝒑𝒔𝒔 𝑻𝒘 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 

Proposed PSS 62 10 0.2 0.02 0.1 0.53 

CPSS 30 10 0.2 0.02 0.1 0.42 
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Figure 3.6  Change in ∆𝑃𝑆 and ∆𝑃𝐷 for (a) Proposed PSS. (b) CPSS 

 

Figure 3.7  Root locus of SG 

shown in Figure 3.8, clearly revealed that the proposed PSS exhibited very impressive damping 

characteristics over those of the CPSS. 

The system response under fast dynamic conditions is shown in Figure 3.5 and Figure 3.8  for the 

SMIB system under the application of a three-phase fault between the PCC and infinite bus. The 

figures conclusively show that the proposed PSS, which was designed to consider the effects of 

the VIC and PLL of the DFIG at a lower range of K_inert, exhibited impressive results as compared 
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Figure 3.8  Simulation result of fault response of proposed and conventional PSS 

with the CPSS. The infinite bus is considered an ideal voltage source with no internal impedance. 

However, as Figure 3.1 shows, the line impedance connected between the PCC bus and the infinite 

bus was 𝑋𝐿2. Based on (3.48), 𝑋𝐿2 is one of the function parameters of ∆𝑃𝑆 and ∆𝑃𝐷. The effects 

of changes in 𝑋𝐿2 were simulated by changing the location of the DFIG. Here, 𝑋𝐿2 could be treated 

as grid impedance. This research consideres the two locational scenarios as Locations 1 and 2. 

Results under the two locations are presented in Figure 3.4-Figure 3.8. From these plots, it is 

concluded that when the DFIG was located near the SG, the interaction between the DFIG and SG 

was prominent in terms of improved synchronizing and damping torque. Alternatively, high grid 

impedance promoted better system stability. 

3.6.2  Modified 9-bus Test System 

The modified version of the IEEE 9-bus test system, as shown in Figure 3.9 had a wind 

farm installed at bus 7. All the parameters for the 9-bus test system were derived from [79] and are 

also presented in Appendix A. 5. A wind farm with 50 DFIG-based wind generators with stator 

side capacities of 1.5 MW each is assumed to be installed near generator 2.  

3.6.2.1 Effects of variations in 𝑲𝒊𝒏𝒆𝒓𝒕 

In this research, a generator near the wind farm was identified for installing the PSS. The 

PLL of the rotor-side converter was set to 𝐾𝑝,𝑝𝑙𝑙 = 0.52 and 𝐾𝑖,𝑝𝑙𝑙 = 17. The exciter parameters 

for Generator 2 were replaced with a gain of 200 and a time constant of 0.02 sec. This subsection 

describes the effects of 𝐾𝑖𝑛𝑒𝑟𝑡 variations on small-signal stability. The effects of 𝐾𝑖𝑛𝑒𝑟𝑡 were 

evaluated considering the presence of conventional PSS and the proposed PSS. The parameters 

are listed in Table 3.3. A three-phase fault was applied on bus 5 at 5 sec. to observe the fast dynamic 

response for the variations in 𝐾𝑖𝑛𝑒𝑟𝑡, where 𝐾𝑖𝑛𝑒𝑟𝑡 was varied from 2 to 12 sec. to consider the 
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plots of load angle of SG 2 (𝛿2) and active power output from the wind farm (𝑃𝑤) as shown in 

Figure 3.10. The plots of 𝛿2 and 𝑃𝑤 in Figure 3.10 show significant disturbances due to the presence 

of system transients. Figure 3.10 clearly shows that a higher value of 𝐾𝑖𝑛𝑒𝑟𝑡 resulted in a greater 

amplitude of oscillation, which is not conducive to rotor-angle stability. By contrast, a lower value 

of 𝐾𝑖𝑛𝑒𝑟𝑡 ensures better system performance. 

3.6.2.2 Effects of CPSS and Proposed PSS 

The proposed PSS was designed according to the steps outlined in Algorithm 1, with 

𝐾𝑖𝑛𝑒𝑟𝑡 = 4 for the VIC of the DFIG. With the phase compensation technique described in 

Algorithm 1, the time constants of the proposed PSS are obtained: T1=0.1 sec., T2=0.01 sec., 

T3=0.2 sec., and T4=0.02875 sec. According to the root locus plot in Figure 3.11, the critical gain 

was found to be 𝐾𝑝𝑠𝑠
𝑐𝑟 = 761. The 𝐾𝑝𝑠𝑠 was set to 𝐾𝑝𝑠𝑠 = 𝐾𝑝𝑠𝑠

𝑐𝑟 3⁄ ≈ 254 considering some margin 

of stability [79]. The parameters of the CPSS and proposed PSS are listed in Table 3.3. The 

simulation results of the post-fault response of the wind farm’s active power output (𝑃𝑤) and load 

angle curve of Generator 2 (𝛿2) are presented in Figure 3.12 for a three-phase fault applied at bus 

5. The plots show significant disturbances under the presence of system transients. Also, it shows 

the performances of the proposed PSS and CPSS. From the results, it is evident that the proposed 

PSS significantly outperformed the  PSS with the parameters listed in Table 3.3. The simulation 

results of the post-fault response of the wind farm’s active power output (𝑃𝑤) and load angle curve 

of Generator 2 (𝛿2) are presented in Figure 3.12 for a three-phase fault applied at bus 5. The plots 

in Figure 3.12 show significant disturbances under the presence of system transients. Figure 3.12  

shows the performances of the proposed PSS and CPSS. Figure 3.12 (a) and (b) clearly show that 

the proposed PSS significantly outperformed the CPSS. 

Table 3.3: Proposed PSS and CPSS Parameters for G2 of Modified IEEE 9 Bus Test System 

Type of PSS 𝐾𝑝𝑠𝑠 𝑇𝑤 𝑇1 𝑇2 𝑇3 𝑇4 

Proposed PSS 254 10 0.1 0.01 0.2 0.02875 

CPSS 127 10 0.1 0.01 0.2 0.21610 
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Figure 3.9  Modified IEEE 9 bus test system 

 
Figure 3.10  Three-phase fault response of 9 bus system for (a)Generator load angle ( 𝛿2) and (b) Power output from 

WES, (𝑃𝑤) with variation of 𝐾𝑖𝑛𝑒𝑟𝑡  
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Figure 3.11  Root locus of Generator 2 

 
Figure 3.12  Simulation result of (a) Generator load angle ( 𝛿2) and (b) Power output from WES, (𝑃𝑤) for three-

phase fault at bus 5 of 9-bus system 

3.7 Conclusion 

Existing power sectors have recently witnessed rapid growth in terms of wind power 

integration. As wind power is intermittent, a common practice has been to utilize VIC for 

frequency support. This chapter investigated the dynamic effects of VIC and PLL on the small 

signal stability of a power system. For this purpose, an average model of the DFIG-based wind 

farm was developed that incorporates VIC and PLL dynamics. An analytical formulation of 

damping and synchronizing coefficients was derived as functions of line reactance, 𝐾𝑖𝑛𝑒𝑟𝑡, and 

PLL parameters. The significant coupling of the WES with the rest of the power system was 
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observed with the incorporated VIC and PLL dynamics. It was also found that the gain of the 

inertial controller contributes to power system stability by influencing the damping and 

synchronizing torque of the SG. The increase in value of virtual inertial gain (𝐾𝑖𝑛𝑒𝑟𝑡), reduced 

synchronizing torque but increased the damping torque of the system. Therefore, a system with 

high 𝐾𝑖𝑛𝑒𝑟𝑡 may lose synchronism. The study also revealed that the proposed PSS tuning method 

improved the power system’s damping mechanism over that of CPSS. Thus, to improve the 

stability performance of a power system, the joint effects of the PLL and inertial controller of the 

DFIG must be considered in the design process of the PSS for the SG. The parameters of the 

proposed PSS were designed under a modified Heffron-Phillips model in a similar manner to that 

of the CPSS. However, more robustness could be obtained by applying some adaptive coordinated 

control methods. In this study, the parameters of the controllers were not optimized. Improved 

damping in the system could be achieved by considering advanced optimization techniques.  
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Chapter 4  Modal Sensitivity Analysis of Large-Scale PV-Integrated 

Power System Under System Uncertainties 

This chapter evaluates the ranking of the generator bus by replacing each generator at a time with 

a similar rating of the Solar PV (SPV) system considering the various uncertain parameters like 

the probabilistic output of SPV, uncertainties of generator output, and load demand. The ranking 

of the buses is compared by widely used popular numerical Sensitivity Analysis (SA) techniques 

such as Sobol, Random Balance Designs Fourier Amplitude Sensitivity Test (RBD-FAST), Delta 

Moment-Independent Measure (DMIM), and Pianosi and Wagener (PAWN). Then, the inertial 

distribution among all the busses is investigated to find a suitable bus for Battery Energy Storage 

System (BESS) installation. The research has considered the BESS with a Virtual Inertia Controller 

(VIC). The PSS to be installed with the synchronous generators is identified by the Sensitive PSS 

Effect (SPE). The VIC gain and PSS parameters are tuned simultaneously by the Particle Swarm 

Optimization (PSO) optimization method. 

4.1 Introduction 

The transition of the power system has been expanding with large-scale integration of 

renewable sources driven by various factors, including overwhelming awareness of environmental 

concerns, technological advancement, and effective policy implementation. As technological 

breakthroughs ensure efficiency and cost-effectiveness, solar and wind-based renewable sources 

have gained worldwide acceptance as an alternative to fossil-based energy generation. The prime 

difficulties associated with these renewable sources are zero/low inertia and stochastic behavior of 

power injection into the main power grid. As a result, there will be serious consequences, such as 

the failure of the power system’s stability. In previous chapters, the synchronizing/damping 

characteristics of DFIG-based WES are thoroughly investigated to propose a novel solution to 

improve the small signal stability of the power system. However, the research in this chapter 

investigates the small signal stability of power systems with large-scale integration of Solar PVs 

(SPVs), considering various uncertainties associated with SGs, loads, and SPVs. This chapter 

utilizes Global Sensitivity Analysis Techniques (GSATs) to account for the uncertainties. As 

mentioned in the literature survey of Chapter 1, the GSATs are reported in various areas of power 

systems like ranking of bus [59], design of PSS [60], voltage stability [61], and transient stability 
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[62]. However, in some recent publications, [61], [68] the GSATs are utilized to analyze the 

uncertainties that affect modern power systems' frequency stability/small signal stability.   

The major contribution of this research addressing the objectives include   

(i) The ranking of generator buses of the given power system is obtained and compared 

based on the sensitivity outcome from four different GSATs named (a) Sobol 

Sensitivity Analysis, (b) Random Balance Designs - Fourier Amplitude Sensitivity 

Test (RBD FAST), (c) Delta Moment, and (d) Pianosi and Wagener (PAWN). 

(ii) Comparison of the most important uncertain parameters affecting the critical mode 

is accomplished by four different GSATs. 

(iii) A VIC-based Battery Energy Storage System (BESS) is designed using the Particle 

Swarm Optimization (PSO) method to improve the small-signal stability of the 

systems. 

4.2 Global Sensitivity Analysis Methods 

Sensitivity analysis is crucial when a system is under the investigation of uncertain inputs 

and their influences on the uncertain output. Conducting sensitivity analysis involves propagating 

estimated uncertainties in the input parameters through the given model to be reflected in the 

output, ensuring a comprehensive exploration of the potential impact on the results. One of the 

processes of exploring this is utilizing Monte Carlo analysis, where the input uncertainties are 

derived from the estimated distribution function of the given input data. For example, if a system 

has uncertainties in '𝑛' nos. of input parameters. Introducing normal distribution function for each 

input, 𝒩(𝜇̅𝑗 , 𝜎𝑗), with 𝑗 = 1, 2, … ,𝑚 samples on each of these parameters, the matrix of input 

uncertain estimated data sample can be formed as,   

𝑈𝑖𝑛 = [

𝑢11 𝑢12 … 𝑢1𝑛
𝑢21 𝑢22 … 𝑢2𝑛
⋮ ⋮ ⋱ ⋮

𝑢𝑚1 𝑢𝑚2 … 𝑢𝑚𝑛

]       (4.1)     

where 𝜇̅ and 𝜎 are the mean and standard deviation of normally distributed data samples. Then, 

the given model is simulated using all the uncertain data samples to record the output as per the 

following format: 
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𝑦 = [

𝑦1
𝑦2
⋮
𝑦𝑚

]       (4.2)     

 Having performed the Monte Carlo analysis, the sensitivity analysis can be carried out to explore 

the most crucial parameter that can influence uncertain resulted output. In this chapter, the 

outcomes of three different global sensitivities are compared. Details of the different global 

sensitivities are discussed in the following sections. 

4.2.1 Sobol sensitivity analysis [89] 

Sobol sensitivity analysis belongs to the category of variance-based methods, enabling the 

assessment of the influence of individual or interacting input parameters on the variability 

observed in the model's output [89]. Let the following form define a model: 

𝑦 = 𝑔(𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛)       (4.3)     

 Sobol sensitivity indices belong to the decomposition of the variance of output 𝑦 due to the 

influence of each input 𝑠𝑖 (1
st-order sensitivity, 𝑆1) or due to the combined impact of more than 

one 𝑠𝑖 (total sensitivity, 𝑆𝑇). The decomposition allows the model to be represented by 

𝑔(𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛)

= 𝑔0 +∑𝑔𝑘(𝑢𝑘)

𝑛

𝑘=1

+ ∑ 𝑔𝑘,𝑙(𝑢𝑘, 𝑢𝑙) + ⋯+ 𝑔1,2,…,𝑛(𝑢1, 𝑢2, … , 𝑢𝑛)

𝑛

1<𝑘<𝑙<𝑛

 

      (4.4)     

 The terms of the decomposition can be defined as  

𝑔0 = ∫𝑔(𝑢)𝑑𝑢 = 𝐸(𝑦)

𝑔𝑘 = ∫𝑔(𝑢)∏𝑑𝑢𝑞 − 𝑔0
𝑞≠𝑘

= 𝐸(𝑦|𝑢𝑘) − 𝑔0

𝑔𝑘,𝑙 = ∫𝑔(𝑢) ∏ 𝑑𝑢𝑞
𝑞≠𝑘,𝑙

− 𝑔0 − 𝑔𝑘(𝑢𝑘) − 𝑔𝑙(𝑢𝑙) = 𝐸(𝑦|𝑢𝑘, 𝑢𝑙) − 𝑔0 − 𝑔𝑘 − 𝑔𝑙

 

      (4.5)     

 Eq. (4.5) satisfies,  
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∫ 𝑔(𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑛)𝑑𝑢𝑞
1

0
= 0 for 𝑞 = 1,2,3…𝑛       (4.6)     

 Eq. (4.6) allows the following decomposition of variance as 

𝑉(𝑦) = ∑𝑉𝑖

𝑛

𝑘=1

+∑∑𝑉𝑘𝑙 +⋯+ 𝑉1,2,…,𝑛
𝑘<𝑙

 

𝑘

       (4.7)     

 As a result, the sensitivity can be defined as: 

𝑆𝑇 =∑𝑆𝑘

𝑛

𝑘=1

+∑∑𝑆𝑘𝑙 +⋯+ 𝑆1,2,…,𝑛
𝑘<𝑙

 

𝑘

= 1       (4.8)     

 The Sobol’s 1st-order sensitivity can then be defined as 

𝑆𝑘 =
𝑉(𝐸(𝑦|𝑢𝑘))

𝑉(𝑦)
       (4.9)     

 and 2nd-order Sobol sensitivities are represented as  

𝑆𝑘𝑙 =
𝑉(𝐸(𝑦|𝑢𝑘, 𝑢𝑙)) − 𝑉𝑘 − 𝑉𝑙

𝑉(𝑦)
     (4.10)     

 The operator 𝑉 in (4.9) and (4.10) indicates the variance of the given argument, whereas 𝐸 denotes 

mean.  

4.2.2 Random Balance Designs - Fourier Amplitude Sensitivity Test (RBD-FAST) [90] 

The RBD-FAST is another variance-based sensitivity analysis method that can compute the 

robust and accurate 1st-order Sobol indices in a few hundred simulations, irrespective of the 

number of parameters [90]. The basic philosophy of this method involves: 

a) Partition the total uncertain input variable into groups of approximately equal input variables. 

b) Every group should be associated with a unique random permutation. 

c) Each group is assigned to a distinct frequency selected from a frequency set free of 

interferences up to a specified order. 

 For example, a 𝑛 factor model may be associated with ℎ groups, and each group is assigned with 

ℎ distinct frequencies, such as 𝜔1, 𝜔2, … , 𝜔ℎ. Now, the 𝑖𝑡ℎ factor of a group can be defined as  
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𝑢𝑖(𝑝𝑖𝑗) = 𝐻𝑖(𝑠𝑖𝑛 𝜔𝑝𝑖𝑗);   for 𝑖 = 1,2, … , 𝑛, and 𝑗 = 1,2, … ,𝑚 sample points     (4.11)     

 The function 𝐻𝑖 is chosen according to the probability density function of the factor 𝑢𝑖. Then, the 

model output is obtained for each sample point as given in (4.12) 

𝑦𝑖(𝑝𝑖𝑗) = 𝑔 (𝑢𝑖(𝑝𝑖𝑗)) ; for 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … ,𝑚 sample points     (4.12)     

 The resulting output is then re-processed according to the ascending order harmonics, and the 

sensitivity is determined by quantifying the Fourier spectrum of re-processed output. 

4.2.3 Delta Moment Independent Measure (Borgonovo indices) [91] 

The Delta Moment Independent Measure (DMIM) is one of the density-based sensitivity 

methods that can measure the importance of uncertainty of the input parameters, 𝑢𝑖,  on the output, 

𝑦, without considering the moment of 𝑦 [91]. The influence of 𝑢𝑖’s distribution on distribution of 

𝑦 can be quantified by fixing 𝑢𝑖 to 𝑢𝑖
∗ and allowing the remaining input parameters, 𝑢𝑖̃, to vary. 

Then, the Borgonovo indices can be computed by considering the average of the estimation 

measure of the shift of area from un-conditional output distribution to conditional output 

distribution following the way 

𝛿𝑖(𝑦, 𝑢𝑖) =
1

2
𝐸[𝑎(𝑢𝑖)];  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛   (4.13) 

where  

𝑎(𝑢𝑖) = ∫|𝑓𝑉(𝑦) − 𝑓𝑉|𝑢𝑖=𝑢𝑖
∗(𝑦)|𝑑𝑢

𝐸[𝑎(𝑢𝑖)] = ∫𝑓𝑢𝑖(𝑢) [∫|𝑓𝑉(𝑢) − 𝑓𝑉|𝑢𝑖=𝑢𝑖
∗(𝑦)|𝑑𝑦] 𝑑𝑢

  (4.14) 

 In (4.14) 𝑓𝑉(𝑦) and  𝑓𝑉|𝑢𝑖=𝑢𝑖
∗(𝑦) are the unconditional and condition output distribution, 

respectively. If the 𝑦 is independent of 𝑢𝑖, then the output distribution will have no change for any 

value of 𝑢𝑖 assumed to be 𝑢𝑖
∗. Hence, 𝑓𝑉|𝑢𝑖=𝑢𝑖

∗(𝑦)=𝑓𝑉(𝑦) and 𝛿𝑖(𝑦, 𝑢𝑖) = 0. On the other hand, if 

𝑦 is dependent upon the change in any input parameters, say 𝑢1, 𝑢2, … , 𝑢𝑛, then 𝛿1,2,…,𝑛 has any 

value between 0 and 1. The outer integral of (4.14) can be computed using a Monte Carlo-based 

integral around the range of 𝑢𝑖. Therefore, the computational cost to estimate Borgonovo indices 
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(𝛿) will be 𝑛𝑚𝑃, where 𝑛 is the number of uncertain input parameters, 𝑚 refers to the number of 

simulations required for outer integrals, and 𝑃 is the required number of internal integrals.   

4.2.4 PAWN Sensitivity Indices [92] 

The sensitivity of the output of a system estimated by the PAWN sensitivity method considers 

the probability distribution of the system output rather than a particular moment of the output [92]. 

Therefore, the method is also known as moment-independent sensitivity analysis. To measure the 

sensitivity of the output (𝑦) to a particular uncertain input (𝑢𝑖), the method quantifies the distance 

between the output distribution caused by unconditional input uncertainties and conditional 

uncertain inputs. The unconditional and conditional output distribution refer to the scenarios when 

uncertain inputs operate the system vary simultaneously and when the system operates with all the 

uncertain inputs except 𝑢𝑖, i.e., 𝑢𝑖 is fixed by a known quantity, respectively. For PAWN sensitivity 

indexing, the output distribution function is quantified by the Cumulative Distribution Function 

(CDF) instead of the Probability Distribution Function (PDF). The difference between the 

unconditional and conditional output distributions is measured by the Kolmogorove-Smirnov 

statistic. Mathematically, the definition can be represented by: 

𝑇𝑖 = stat
𝑢𝑖
[𝐹𝑦(𝑦) − 𝐹𝑦|𝑢𝑖(𝑦)] ; for 𝑖 = 1,2, … , 𝑛  (4.15) 

 where 𝐹𝑦(𝑦) is the unconditional CDF of the system output, 𝐹𝑦|𝑢𝑖(𝑦) is the conditional CDF of 

the output when 𝑢𝑖 is fixed with a known value. The expression, 𝐹𝑦|𝑢𝑖(𝑦) describes the impact of 

eliminating the variability associated with 𝑢𝑖 on the distribution of y. The distance between, 

𝐹𝑦|𝑢𝑖(𝑦) and 𝐹𝑦(𝑦) serves as an indicator of the influence of 𝑢𝑖 on 𝑦. The value of  𝑇𝑖 varies 

between 0 and 1. The value of 𝑇𝑖 equal to 0, referred to as the distribution, is non-influential by the 

input 𝑢𝑖 and value of 𝑇𝑖 closer to 1 indicates the out variation is highly influenced by the given 

input 𝑢𝑖. The different statistics between the distributions are accounted for by Min, Mean, Median, 

and Max across the slides/conditioning intervals, as well as the Coefficient of Variation (CV). 

However, the commonly indexed value is the median. In this chapter also, the PAWN index is 

reported by the median of the difference between the 𝐹𝑦|𝑢𝑖(𝑦) and 𝐹𝑦(𝑦). 

4.2.5 Sampling 

One of the important steps for any sensitivity analysis is to organize the data samples to 

analyze how the input variation influences the system's output. This research utilizes the Saltelli 
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sampling method to organize the input data samples by considering their probabilistic distribution. 

The Saltelli sampling technique is basically derived from Sobol’s sensitivity analysis method [89]. 

The expression of sensitivity defined in (4.10) suggests that the total sensitivity is obtained by 

combining both 1st-order and 2nd-order sensitivity factors. To define the number of input data 

samples required to perform the total sensitivity analysis, let us define the 1st-order sensitivity 

further as  

𝑆𝑘 =
𝑉(𝐸(𝑦|𝑢𝑘))

𝑉(𝑦)
=
𝐽𝑘 − 𝐸

2(𝑦)

𝑉(𝑦)
  (4.16) 

 The term 𝐽𝑘can be further described as  

𝐽𝑘 = ∫𝐸2(𝑦|𝑢𝑘 = 𝑢̃𝑘) 𝑝𝑘(𝑢̃𝑘)𝑑𝑢̃𝑘;     𝑘 = 1,2, … 𝑛  (4.17) 

 and the mean can be defined as 

𝐸(𝑦) = ∫∫…∫𝑓(𝑢1, 𝑢2, … 𝑢𝑛)∏𝑝𝑖(𝑢𝑖)𝑑𝑢𝑖

𝑛

𝑖=1

  (4.18) 

 The evaluation of the integral in (4.17) by the Monte Carlo simulation method may necessitate to 

solve 𝑛 sets of 𝑚 evaluations of 𝑓 and similarly evaluation of the integral in (4.18) may require 

one set of  𝑚 evaluations of 𝑓. In this way, the computation of the full set of first-order sensitivity 

𝑆𝑘, need total 𝑚(𝑛 + 1) of data samples. The 𝑚 and 𝑛, are denoted as the sample size and number 

of uncertain input parameters, respectively. Similarly, the computation of total sensitivity 𝑆𝑇 

mentioned in (4.8) will need additional 𝑛 sets of 𝑚 evaluations of 𝑓, resulting in a total of 

2𝑚(𝑛 + 1) numbers of data samples.    

4.3 System Under Study and Uncertainties 

In this section, the standard IEEE 39 bus-based New England Test System (NETS) has 

undergone all the sensitivity analysis studies discussed in the previous section for the following 

studies: 

a) Study of the SPV systems in place of the SGs  

b) Identify the most influential parameter of the modified IEEE 39 bus system 

The elaborate representation of the above studies is discussed in the following sub-sections.  
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4.3.1 Study of the solar PV (SPV) systems in place of the SGs: 

In the sensitivity analysis, each generator within the NETS, excluding the synchronous 

generators G1 and G2 (slack bus), was systematically replaced by an equivalent-rated SPV system. 

This replacement was conducted to evaluate how the introduction of SPV systems, individually 

and sequentially, affects the severity of the critical oscillatory mode compared to the original 

synchronous generators they were replacing. All the SGs were equipped with only AVR and IEEE 

Type1 exciter. None of the SGs were associated with a PSS. A total of 25 different uncertainties 

are considered for the given test system to facilitate the sensitivity studies using all the sensitivity 

analysis methods. The no. of samples is considered according to the Saltelli sampling method, as 

discussed in section 4.2. The value of 𝑚 considered here is 1024. Hence, the total computational 

cost here is 54272. The uncertain parameters include stochastic variations in SPV, generation of 

all the SGs except G1 and G2 (slack bus), and loads.  

i. Generators: The test system (i.e., NETS) contains a total of 10 generators, and generator 

no.1 (i.e., G1) represents the aggregation of a large New York Power System (NYPS). 

Further, the G2 is considered a slack bus. Hence, the uncertainties associated with G1 

and G2 are ignored. Therefore, the uncertainties belonging to G3-G10 are only 

considered for modeling, and the details are given in Table 4.1.  

ii. Loads: The NETS has a total of 19 loads. As the loads connected to buses 12 and 31 are 

88.31 MVA and 10.28 MVA, compared to those connected to the rest of the buses, the 

load uncertainties are assumed to have less impact on the overall system performance. 

Hence, the uncertainties associated with those loads were ignored in the model. 

Therefore, a total of 17 load uncertainties were considered for the model. The modeling 

details of the loads are provided in Table 4.1. 

iii. SPV Systems: In the sensitivity analysis, as discussed above, the SGs were replaced 

once at a time by an equal-rated SPV. The uncertainties belonging to the SPV have been 

modeled with normal distribution, and its variances are mentioned in Table 4.1.  

All the above-discussed uncertain parameters are inputted into each Global Sensitivity 

Analysis (GSA) method, and the system eigenvalues are the output parameters. The probabilistic 

Monte Carlo simulation has been used to analyze the sensitivity analysis. The flow chart of the 

sensitivity analysis performed by different GSA methods is provided in Figure 4.1. The figure 

shows the complete sensitivity analysis was conducted using DigSILENT by Power Factory and 
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Python. Initially, Python is utilized to define all the uncertainties, which are then interfaced with 

DigSILENT to conduct load flow and modal analysis for the samples of uncertain parameters 

generated from Python. This process continued until all the iterations of the Monte Carlo 

simulation ended. Then, the list of uncertain input samples and their corresponding resulting 

critical eigenvalues are provided as input for the given GSA methods to obtain the sensitivity of 

each uncertain input to the probabilistic distributed output. The probabilistic distribution of the da- 

Table 4.1: Modeling of Uncertainties of Various Power System Components 

Power system 

components 
Generators Loads SPV systems 

Distributions Normal 

(±10% 𝑣𝑎𝑟. 𝑜𝑓 𝜇) 

Normal 

(±10% 𝑣𝑎𝑟. 𝑜𝑓 𝜇) 

Normal 

(±10% 𝑣𝑎𝑟. 𝑜𝑓 𝜇) 

 

 

Figure 4.1  Flow chart for sensitivity analysis by different SA methods 
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mping ratio of the most critical eigenvalue resulting from the Monte Carlo simulation is shown in 

Figure 4.2.  The overall impact of all the uncertain parameters is defined by the cumulative 

sensitivity index (𝑆𝐼𝑐𝑢𝑚). The 𝑆𝐼𝑐𝑢𝑚 is resulted by considering the sum of 1st-order sensitivity of 

individual input parameters. 

𝑆𝐼𝑐𝑢𝑚 =∑𝑆𝑎

𝑛

𝑎=1

   (4.19) 

 where 𝑆𝑎 indicates the 1st-order sensitivity of 𝑎𝑡ℎ stochastic input parameter obtained by all the 

GSA methods discussed earlier. The result of 𝑆𝐼𝑐𝑢𝑚 of (4.19) due to the integration of SPVs in 

place are supposed to be replaced by SPVs as presented in  Table 4.3. The ranking for each 

Sensitivity Analysis (SA) method is defined in such a way that the highest 𝑆𝐼𝑐𝑢𝑚 refers to rank 1 

and the reverse refers to rank 8. As it is observed from Table 4.3, the ranking of the generators 

obtained from different GSA methods does not match each other. However, the higher-ranked top 

four generators, i.e., G3, G6, G7, and G9, resulting from different GSA methods, have very good 

agreement. This indicates that the grid would experience a significant impact from the uncertain 

parameters of the power system if those generators were replaced by the identical-rated SPV syst- 

 

Figure 4.2  Probabilistic distribution of the damping ratio of most critical eigenvalue 
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Table 4.2: 𝑆𝐼𝑐𝑢𝑚 of All Uncertain Parameters by Different SA Methods 

 

Sobol RBD-FAST Delta PAWN 

G3 2.387025 
 

0.503491 2.60537 7.796071 

G4 1.35724 0.286452 1.90348 6.589632 

G5 1.381363 0.307463 1.92528 6.987321 

G6 2.648322 0.796277 2.735526 7.53203 

G7 1.74387 0.523782 2.587431 7.098491 

G8 1.451456 0.460785 2.442156 7.013791 

G9 1.965372 0. 585431 2.620457 7.924003 

G10 1.096601 0.472613 2.556236 6.410748 

 

 

Table 4.3: Ranking of SGs to be Replaced by an SPV Considering System Uncertainties 

Ranking 

of SGs 

Name of the Sensitivity Analysis 

Techniques 

Sobol 
RBD-

FAST 
Delta PAWN 

1 G6 G6 G6 G9 

2 G3 G9 G9 G3 

3 G9 G7 G3 G6 

4 G7 G3 G7 G7 

5 G8 G10 G10 G8 

6 G5 G8 G8 G5 

7 G4 G5 G5 G4 

8 G10 G4 G4 G10 

em. Likewise, there is strong consensus among various sensitivity analysis methods regarding the 

less crucial generators, namely G4, G5, G8, and G10. This indicates that the ranking of the 

generators lying under the most crucial category (i.e., rank 1 to 4 of Table 4.3) obtained by different 

GSA methods are identical. Substituting these generators with SPV is likely to introduce signific- 

SPV @ 

SA 

Methods 
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Table 4.4: Electromechanical modes of the modified IEEE 39 bus NETS 

Sl.no. Modes Damping Frequency Damping Ratio 

1 −0.10024 ± 4.25369 0.6769 2.4083 

2 −0.6129 ± 8.49022 1.35126 7.2007 

3 −0.35431 ± 7.4516 1.18595 4.74951 

4 −0.25832 ± 6.23905 0.99297 4.1369 

ant adverse effects on the grid, primarily caused by the uncertainties of the power system. 

Therefore, in the next section, the most influential uncertain parameters are identified for the 

modified IEEE standardized 39 bus NETS, where G3, G6, G7, and G9 are substituted by SPVs of 

similar ratings. 

4.3.2 Identify the most influential parameter of the modified IEEE 39 bus system 

Typically, the installation of PV systems is deemed appropriate in areas where there is 

abundant solar irradiance. However, in this research, to investigate the potential impact of SPVs 

as a substitute for SGs on the small signal stability of the power system, the decision has been 

made to replace generators G3, G6, G7, and G9 with equivalently rated SPVs. These generators 

are the most influential in the preceding section, as they have higher sensitivity of uncertain input 

to the most critical eigenvalue. In this section, the IEEE 39 bus NETS has been modified by 

substituting G3, G6, G7, and G9 with SPVs of equivalent rating. The modified IEEE 39 bus test 

system is shown in Figure 4.3. Given the data provided in [81] for the rest of the power system 

components of IEEE 39 NETS without PSS connected to any SG, the list of obtained eigenvalues 

through linearization at the initial operating point is presented in Table 4.4. As mentioned in the 

table, all the modes except mode 1 are the local oscillatory modes. Mode 1, whose damping 

frequency lies in the range of the inter-area mode of the frequency band, has the lowest damping 

ratio of the system. Hence, the oscillatory mode can be treated as the most critical for the given 

power system.  

The prime focus of the section is to investigate the modified IEEE 39 bus test system to 

identify the most influential stochastic parameters that impact system stability by various GSA 

methods. A total of 25 uncertainties are dealt with for the given analysis. As highlighted in the 

preceding subsection, uncertainties in this context relate to loads, generators, and SPV systems. 

The uncertainties of the input parameters are modeled as normal distributions, as described in 

Table 4.1. The sensitivity indices obtained by different GSA methods are presented in Table 4.5 
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and are derived according to the flow chart shown in Figure 4.1. The indices of Table 4.5 indicate 

the sensitivity of uncertainties of different system parameters under consideration to the change in 

the output of the system. The output of the system here is considered the most crucial eigenvalue, 

as presented in Table 4.4. As per the sensitivity results presented in Table 4.5, the three most 

sensitive input uncertain parameters to the change in the system’s output are the power output from 

generator G5, 𝑃𝑉2, and 𝑃𝑉3 as highlighted in the table. It is evident that the top 3 highly influential 

parameters identified by all four SA methods have good matching. In reality, the output of SPV 

systems is expected to vary more intermittently than the power output from G5. The summary of 

 

Figure 4.3  Modified IEEE 39 bus NETS 
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this subsection is that the various GSA methods rank the group of generators (G3, G6, G7, and G9) 

as crucial if replaced by the SPV systems of similar ratings. Further, the sensitivity analysis by 

different SA methods shows that the uncertain input parameters of the system, such as power out- 

Table 4.5: Sensitivity of Different Uncertain Parameters Considered for the Modified IEEE 39 Bus System 

Parameters 
Name of different Sensitivity analysis methods 

Sobol RBD-FAST Delta PAWN 

Pv1 0.144447 0.010684223 0.139872 0.0994199 

Pv2 0.564031 0.087693693 0.171178 0.165561 

Pv3 0.549726 0.096755943 0.18903 0.187682 

Pv4 0.315493 0.006461477 0.135502 0.0880387 

PL3 0.0658955 0.00885694 0.147434 0.0627499 

PL4 0.0917224 0.004992404 0.142615 0.0730644 

PL7 0.0668444 0.002255826 0.142294 0.0704069 

PL8 0.0689527 0.001929642 0.137548 0.0541003 

PL15 0.107045 0.008068896 0.136009 0.0735608 

PL16 0.144171 0.001466366 0.144876 0.0604409 

PL20 0.342151 0.008748524 0.150836 0.114082 

PL21 0.181447 0.003860279 0.153138 0.0647771 

PL23 0.143471 0.011518852 0.138493 0.0934312 

PL24 0.110041 0.002017981 0.13619 0.0648522 

PL25 0.124505 0.008903336 0.142638 0.0770486 

PL27 0.113611 0.005246082 0.137491 0.0736646 

PL28 0.0997238 0.007900446 0.142585 0.0751708 

PL29 0.080744 0.002361533 0.142288 0.0626575 

PL39 0.188559 0.01134638 0.143617 0.0954848 

G1 0.155768 0.004694353 0.136597 0.0935124 

G4 0.225982 0.005093812 0.14113 0.0740508 

G5 0.770507 0.187996871 0.261883 0.254866 

G8 0.132171 0.014364291 0.147027 0.0816359 

G10 0.18212 0.007434521 0.137809 0.0814631 
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put of G5, 𝑃𝑉2, and 𝑃𝑉3 are the most sensitive parameters to the change in the most critical 

eigenvalue of the system.   

4.4 Inertial Distribution of Modified NETS 

The NETS has been modified by replacing the group of generators named G3, G6, G7, and 

G9 with the SPV of equivalent rating. This subsection aims to observe the distribution of inertia 

among the buses after a large-scale modification in terms of the replacement of synchronous 

generators with SPVs. Inertia distribution is the electrical distance of any bus to the location of 

Center of Inertia (COI) [93]. The electrical distance is evaluated from instant, 𝑡0 sec., when the 

fault is applied, to over a period T and can be quantified by the following: 

𝐷𝑘 = lim
𝑁→∞

∑(𝐹𝑘(𝑛𝑖) − 𝐹𝐶𝑂𝐼(𝑛𝑖))
2. ∆𝑛

𝑁

𝑖=1

𝐷𝑖𝑛𝑑𝑒𝑥 =
𝐷𝑘

𝑚𝑎𝑥
𝑘∈{1,…𝑛𝑏}

𝐷𝑘

  (4.20) 

 where ∆𝑛 = 𝑇 𝑁⁄ , 𝑛𝑖 = 𝑡0 + ∆𝑛, 𝐹𝐶𝑂𝐼 = ∑ (𝐻𝑗𝑓𝑗)
𝑛𝑔
𝑗=1 ∑ 𝐻𝑗

𝑛𝑔
𝑗=1⁄  and 𝑓𝑗 is frequency of 𝑗𝑡ℎ 

generator and 𝑛𝑏 denotes the total number of buses. From the above set of equations, the higher 

the value of 𝐷𝑘 specifies the electrical distance between the 𝑘𝑡ℎ bus and COI is high. Therefore, 

the kth bus is located under a low concentration of inertia. Hence, the bus with a higher value of 

𝐷index refers to the larger electrical distance between the measured bus and COI. As the COI 

location may not exactly lie on any particular bus, the nearest bus can be identified with a lower 

𝐷index. The result of the inertial distribution of NETS is represented in Figure 4.4. It is observed 

from Figure 4.4 that the bus where 𝑃𝑉2 and 𝑃𝑉3 are installed have the highest 𝐷index. According 

to [93], the bus with a higher 𝐷index has a better damping effect on the critical oscillatory 

eigenvalue. Further, it can also be reviewed from the result of the previous subsection that the same 

PV buses, i.e., in 𝑃𝑉2 and 𝑃𝑉3 have the highest sensitivity to the movement of the most critical 

eigenvalue. Therefore, it can be assumed that a damping controller-enabled BESS, if placed at the 

location of 𝑃𝑉2 or 𝑃𝑉3 may exert a better damping phenomenon on the critically damped 

electromechanical oscillatory mode. Hence, in the rest of the chapter, the effort has been made to 

design a damping controller for BESS to be installed at the location of 𝑃𝑉3.   
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4.5 Parameter Tunning of  VIC-based BESS with PSS of SGs 

Referring to the result discussed in the previous section, the bus 𝐵𝑝𝑣3 and 𝐵22 are expected 

to be the best locations for the installation of BESS to have a better damping phenomenon for the 

critical oscillatory mode, as the buses are located far away from the location of COI. Here, 𝐵𝑝𝑣3 

denotes the bus where 𝑃𝑉3 has been installed. In this research, the BESS is equipped with a virtual 

inertia controller (VIC) and is installed at 𝐵22.  The control loop of VIC is shown in Figure 4.5. 

The fundamental idea behind the design of VIC is that the power reference change proportional to 

the change in system frequency is given as input to the BESS active power controller loop. The 

Figure 4.4  Indexing of busses as per the electrical distance from COI of modified IEEE 39 bus test system 
 

 

Figure 4.5  VIC Enabled PV-BESS system 
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details about the control loop of the PV-BESS system can be found in [94].  The PSSs to be 

installed with the remaining synchronous generators are identified by the Sensitive PSS effect 

(SPE) theory [95]. 

𝑆𝑃𝐸 = 𝜑∆𝛿𝑔𝜓∆𝐸𝑓
𝐾𝑎
𝑇𝑎

  (4.21) 

 where the 𝜑∆𝛿𝑔  and 𝜓∆𝐸𝑓 are left and right eigenvectors corresponding to load angle and exciter 

field voltage deviation, respectively, for the given oscillatory mode. The 𝐾𝑎 and 𝑇𝑎 are the gain 

and time constant of the IEEE Type 1A exciter control loop. The SPE of each synchronous 

generator is represented in Table 4.6. The higher SPE indicates a suitable location for PSS to be 

installed. Hence, in this research, the PSS is installed at  G4 and G5. The coordinated tunning of 

VIC gain and PSS parameters is conducted to minimize the following optimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

{
 

 
𝑂𝑏𝑗1 =∑ ∑ (𝑑𝑟𝑒𝑞 − 𝑑𝑖𝑗)

2

𝑑𝑖,𝑗≥ 𝑑𝑟𝑒𝑞

𝑁𝑔

𝑖=1

𝑂𝑏𝑗2 = 𝐾𝑖𝑛𝑒𝑟𝑡

 

 

 (4.22) 

Subject to: 

𝐾𝑖𝑛𝑒𝑟𝑡
𝑚𝑖𝑛 ≤ 𝐾𝑖𝑛𝑒𝑟𝑡 ≤ 𝐾𝑖𝑛𝑒𝑟𝑡

𝑚𝑎𝑥

𝐾𝑝𝑠𝑠1
𝑚𝑖𝑛 ≤ 𝐾𝑝𝑠𝑠𝑖 ≤ 𝐾𝑝𝑠𝑠1

𝑚𝑎𝑥

𝑇1𝑖
𝑚𝑖𝑛 ≤ 𝑇1𝑖 ≤ 𝑇1𝑖

𝑚𝑖𝑛

𝑇2𝑖
𝑚𝑖𝑛 ≤ 𝑇2𝑖 ≤ 𝑇2𝑖

𝑚𝑖𝑛

𝑇3𝑖
𝑚𝑖𝑛 ≤ 𝑇3𝑖 ≤ 𝑇3𝑖

𝑚𝑖𝑛

𝑇4𝑖
𝑚𝑖𝑛 ≤ 𝑇4𝑖 ≤ 𝑇4𝑖

𝑚𝑖𝑛,      𝑖 = 1,2

 

 where  𝑑𝑟𝑒𝑞 is the required damping value of the given no. of critical eigenvalues and 𝑑𝑖𝑗 is the 

obtained value of damping factors of 𝑗𝑡ℎ operating point corresponding to the 𝑖𝑡ℎ synchronous 

generator. 𝐾𝑖𝑛𝑒𝑟𝑡 is the inertia gain of the inertia controller of the BESS connected at 𝐵22. The PSS 

parameters are represented by 𝐾𝑝𝑠𝑠𝑖, 𝑇1𝑖, 𝑇2𝑖, 𝑇3𝑖, and 𝑇4𝑖 for 𝑖𝑡ℎ generator. The given problem 

Table 4.6: SPE of Each Synchronous Generator 

Generator G2 G4 G5 G8 G10 

SPE 0.00016 0.003 0.002 0.00002 0.00005 
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Table 4.7: Parameter of VIC and PSS 

Parameters Values Parameters Values 

𝑲𝒊𝒏𝒆𝒓𝒕 0.018 𝑻𝟒𝟏 0.1482 

𝑲𝒑𝒔𝒔𝟏 0.028 𝑻𝟏𝟐 0.87 

𝑲𝒑𝒔𝒔𝟐 88 𝑻𝟐𝟐 0.02 

𝑻𝟏𝟏 1.5 𝑻𝟑𝟐 0.4 

𝑻𝟐𝟏 0.1395 𝑻𝟒𝟐 0.0296 

𝑻𝟑𝟏 1.5 -- -- 

formulation is solved by the PSO optimization method, and the parameters obtained from the 

solution are given in Table 4.7. 

4.6 Results and Discussions 

The optimized values of different parameters like inertia gain and PSS parameters obtained 

from PSO optimization are being tested on the modified NETS shown in Figure 4.3 for the time 

domain analysis. According to the SPE presented in Figure 4.4, the PSS has been chosen to be 

installed at G4 and G5. As per the 𝐷𝑖𝑛𝑑𝑒𝑥 results of Figure 4.4 suggests the VIC-based BESS is 

expected to exert better damping to the critical oscillatory modes if installed at 𝐵22. Because 𝐵22 

is located far from the location of COI. Given the above setting, the NETS is simulated to obtain 

the time domain response presented in Figure 4.6 and Figure 4.7. The plots are real power flow in 

𝐿4−14 due to a three-phase fault created at 𝐿17−18 at 2 sec of the start of the simulation. Plots of 

the real power flow in 𝐿4−14 due to the three-phase fault created at 𝐿17−18 are exhibited in Figure 

4.6. It shows the plots are taken for three cases: without BESS and PSS, with BESS and no PSS, 

and with BESS and PSS. Among all the results, it is evident that when no BESS or PSS is installed 

in the system, the post-effect of the three-phase fault appears oscillatory. However, the use of BESS 

at a suitable place, i.e., resulted as 𝐵22, from the previous sections, the post-effect oscillations seem 

to be dampened out very quickly. In the case of both BESS and PSS in operation with optimally 

tuned parameters, there is significant damp-out of oscillations in the post-fault response of real 

power flow in 𝐿4−14. 

In Figure 4.7, the time domain response of the real power flow through line L4−14 are 

represented to witness the post-effect of the three-phase fault created at the line L17−18 due to the  
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Figure 4.6 The real power flow of 𝐿4−14 due to BESS at 𝐵22 

 

 

Figure 4.7  The real power flow of 𝐿4−14 due to BESS at different busses 

VIC-based BESS placed on different buses. To validate the suitable location of BESS to be B22 as 

a result of section 1.4, the performance of BESS is decided to be tested by placing it at different 

busses such as 𝐵1, 𝐵22, 𝐵27, and 𝐵29. Figure 4.7 shows that the installation of BESS other than 

𝐵22 experiences sustained oscillations in the post-fault response of the real power flow in L4−14. 

The post-fault response becomes unstable when the BESS is installed at B1 which is very close to 
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the location of COI. However, the VIC-based BESS at B22, the real power flow in L4−14 after 

clearing the fault, it experiences an acceptable phenomenon with quick damp out of oscillations. 

4.7 Conclusion 

 The power system is undergoing swift incorporation of converter-based energy 

resources like SPV, wind energy systems, BESS, HVDC, etc., such that the transformation 

originates in rising uncertainties in power injection into the grid and reduced inertia. The growing 

uncertainties in renewable sources involve complexity in power systems and pose significant 

challenges in damping the fluctuations of system frequency and electromechanical oscillations. In 

this chapter, the intensity of the uncertainties is evaluated by different GSA methods. The GSA 

methods are employed to identify the most impactful parameters among extensive sets of uncertain 

inputs. The system uncertainties dealt with by various GSA methods are (a) generations from 

conventional sources, (b) variations in loads, and (c) power injection from SPVs.  The severity of 

the uncertainties is evaluated to rank all the generator buses except the slack generator (G2) and 

G1, which represents the aggregation of a large New York Power System (NYPS) by replacing 

one of the SGs with a similarly rated SPV once at a time. Various GSA techniques like Sobol 

sensitivity, RBD FAST, Delta moment indices, and PAWN were employed to assess the ranking of 

generators, and a high degree of consensus was achieved among all the GSA techniques used. 

Then, the generators G3, G6, G7, and G9, as identified in Table 4.3 under the severe category, are 

replaced by similarly rated SPVs to identify the most influential parameter. The identified most 

influential parameters from Table 4.5 are validated against 𝐷𝑖𝑛𝑑𝑒𝑥 of buses presented in Figure 4.4. 

It is concluded from Table 4.5 and Figure 4.4 that the power injection from 𝑃𝑉2 (or 𝐵22) is found 

to be the most influential and the farthest bus from the location of COI. Hence, a VIC-based BESS 

is placed on 𝐵22, expected to have a better damping phenomenon. The PSSs are assigned to the 

SGs G4 and G5 based on the theory of SPE. A PSO algorithm is used to tune the parameters of 

VIC and PSS optimally. The time domain plots of real power flow thorough 𝐿17−18 in Figure 4.6 

and Figure 4.7 evidence that the most influential uncertain parameter may have a high 𝐷𝑖𝑛𝑑𝑒𝑥 

value, which is expected to have a better damping phenomenon, and the control parameters of VIC 

and PSS tuned by PSO have the optimal coordination to achieve better damping of power 

oscillations. 
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 In essence, the research highlighted the critical role of system uncertainties in 

influencing the dynamic performance of the IEEE 39 bus test system. Through comprehensive 

modal sensitivity analysis using various GSA methods, the study identified 25 uncertainties, 

including variations in generator output, load, and solar photovoltaic (SPV) output. By ranking the 

severity of these uncertainties, the analysis facilitated a clearer understanding of their impact on 

system stability. This ranking was instrumental in determining the optimal placement for a Battery 

Energy Storage System (BESS) equipped with a Virtual Inertia Controller (VIC). The practical 

findings of the study suggest 

(i) Accurately identifying and ranking the system uncertainties can significantly enhance the 

strategic placement of stabilizing mechanisms, thereby improving overall grid stability. 

(ii) Uncertainties associated with PV systems are the most critical and require proper attention. 

(iii) Proper coordination in tuning the control parameters of the Virtual Inertia Controller (VIC) 

and Power System Stabilizer (PSS) can achieve better damping of power system oscillations. 

 The research work in this chapter may help identify the most critical uncertain 

parameters that influence system performance. Further, the research in this chapter effectively 

contains the system uncertainties in designing a control system to achieve better-damping power 

system oscillations.     
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Chapter 5                                                                                          

Evaluation of Power System Oscillatory Modes Under the Influence 

of PV-BESS Dynamics 

The increase of power electronically interfaced Photo-Voltaic (PV) power plants into power 

systems causes severe stability problems due to lack of inertia and damping effect. The Battery 

Energy Storage Systems (BESS) at PV stations can be controlled by a Virtual Inertia Controller 

(VIC) to provide virtual inertia and damping support while smoothing the power fluctuations of 

the PV power plant. The research of this chapter investigates the probabilistic distribution of 

power systems' Low-frequency Electromechanical Oscillations (LEOs) for various controller 

gains of VIC and stochastic variation of solar irradiance under the influence of Phase-Locked 

Loop (PLL) dynamics. The modal interaction of PLL and virtual inertia controller with power 

system oscillatory modes are investigated by stochastic eigenvalue analysis using the Monte Carlo 

simulation approach. 

5.1 Introduction 

As the modern power system is transforming towards more sustainability, Solar Photo-

Voltaic (SPV) is the most adaptable alternative. However, the uncertainty and variability in power 

harnessing from SPV introduces serious concerns about instability. In this scenario, PV-BESS has 

become a promising solution for addressing this challenge. PV generates power during the day, 

while BESS stores electricity for later use. As PV-BESS has zero inertia, it cannot maintain 

frequency stability in case of sudden changes in load or generation. Hence, a Virtual Inertia 

Controller (VIC) with PV-BESS imitates a traditional synchronous generator by providing an 

inherent inertia mechanism. Therefore, a VIC-based PV-BESS can prevent frequency fluctuation 

and smooth out power fluctuations. However, VIC’s parameter setting becomes challenging while 

power generation uncertainties from the PV-BESS system are considered. As concluded in the 

previous chapter, the VIC-enabled BESS could enhance the damping phenomenon of the low 

inertia-based power system. It is necessary to further analyze the stochastic shift of concerned 

eigenmodes to incorporate a better damping phenomenon from a VIC-based PV-BESS system. 

Based on the literature survey, it is observed that limited research papers, like [71] and [44], have 

analyzed stochastic eigenvalue studies to investigate the shifting of eigenvalue resulting from 
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various operating points due to the increasing penetration of renewable sources. This implies that 

the stochastic analysis of modal shifting of PV-integrated power systems has an adequate scope of 

research.  

This work investigates the stochastic behavior of power systems' small signal stability 

under the joint dynamic impact of a VIC-based PV-BESS system. Most of the research 

contributions presented in this chapter include the following: 

(i) A probabilistic small signal model of a VIC-based PV-BESS system is developed with joint 

dynamics of PLL. 

(ii) A stochastic eigenvalue analysis is proposed based on the Montecarlo simulation approach. 

(iii) Finally, the proposed methodology is implemented on the IEEE 39 bus test system to 

propose a better design of VIC controller gain to enhance system stability.  

5.2 Small Signal Modeling of PV-BESS-Based Power Systems 

The power system in this research consists of Synchronous generators (SGs), a PV-BESS-

based power plant, and loads. It is very important to establish the dynamic model of each power 

system component for modal analysis. Each of the SGs considered here is modeled with a 7th-order 

system consisting of IEEE Type 1 exciter, and none of the SGs are equipped with Power System 

Stabilizers (PSS). The electrical loads of the power system are modeled as a constant power load. 

The complete dynamics of Rest of the Power Systems (RPS) is described by a set of differential 

equations that represent the dynamics of SG and the algebraic equations that represent the stator 

and network equations [81], [79]. The grid-connected PV-BESS comprises a PV array, inverter, 

and associated controllers of PV and BESS, as shown in Figure 5.1. As the article focuses on how 

the power penetration from the PV-BESS combination affects the modal interaction through the 

converter controllers with the electromechanical oscillation of SGs of the power system, the solar 

farm with battery energy sources is considered a single generator [76]. The small signal model of 

all the associated controllers of PV-BESS is described in the next section. 

5.2.1 Modeling of PV inverters 

The modeling of the PV system in this study is carried out by controllers associated with 

the DC/AC inverter that converts the DC power output from the PV array to the AC power that is  
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Figure 5.1  Schematic of grid-integrated PV-BESS system 

interfaced with the rest of the power system by a coupling transformer. The control dynamics of 

the DC-DC converter used for drawing MPP power from the PV array and that of DC link capacitor 

control are assumed to be fast dynamics. Hence, the small signal modeling of the PV system is 

accomplished by involving the control dynamics of the active power controller, reactive power 

controller, PLL, and the dynamics involved with filter impedance. 

i. Active/Reactive Power Controller 

The active/reactive power control scheme of the PV system is modeled by a Proportional 

and Integral (PI) controller based on the outer loop and inner loop controllers. The outer loop 

power controller equations are given in (5.1) set the current references for the inner loop current 

controller, while the inner loop current controller, as given in (5.2), sets the voltage reference for 

PWM switching. 

{
𝐼𝑞𝑝𝑣
∗ = (𝑃𝑝𝑣

∗ − 𝑃𝑝𝑣) (𝐾𝑝𝑝1 +
𝐾𝑖𝑝1

𝑠
)

𝐼𝑑𝑝𝑣
∗ = (𝑄𝑝𝑣

∗ − 𝑄𝑝𝑣) (𝐾𝑝𝑝3 +
𝐾𝑖𝑝3

𝑠
)

  (5.1) 

{
𝑉𝑞𝑝𝑣
∗ = (𝐼𝑞𝑝𝑣

∗ − 𝐼𝑞𝑝𝑣) (𝐾𝑝𝑝2 +
𝐾𝑖𝑝2

𝑠
)

𝑉𝑑𝑝𝑣
∗ = (𝐼𝑑𝑝𝑣

∗ − 𝐼𝑑𝑝𝑣) (𝐾𝑝𝑝4 +
𝐾𝑖𝑝4

𝑠
)

  (5.2) 

 The 𝐼𝑞𝑝𝑣 − 𝑗𝐼𝑑𝑝𝑣 and 𝑉𝑞𝑝𝑣 − 𝑗𝑉𝑑𝑝𝑣 of (5.1)  and (5.2) are the current and voltage in 𝑑 − 𝑞 axis, 

respectively. " ∗ " in (5.1)  and (5.2) denotes the reference value of the corresponding signals. 𝑃𝑝𝑣 
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and 𝑄𝑝𝑣 are active and reactive power generation from the solar PV system and are computed 

based on the following equations: 

{
𝑃𝑝𝑣 = 𝑉𝑝𝑏

𝑞 𝐼𝑞𝑝𝑣 + 𝑉𝑝𝑏
𝑑 𝐼𝑑𝑝𝑣

𝑄𝑝𝑣 = 𝑉𝑝𝑏
𝑞 𝐼𝑑𝑝𝑣 − 𝑉𝑝𝑏

𝑑 𝐼𝑞𝑝𝑣 
  (5.3) 

ii. PLL 

The whole PV-BESS system is frequency synchronized by PLL. The PLL traces the phase 

as the output of the phasor quantity at its input [96]. The working principle of the PLL used in this 

article is based on the Synchronous Reference Frame-based PLL (SRF-PLL). The following 

equilibrium can describe the PLL operation: 

𝑉𝑝𝑏
𝑑 = 𝑉𝑝𝑐𝑐(𝜃𝑝𝑐𝑐 − 𝜃𝑝𝑙𝑙) = 0  (5.4) 

where 𝑉𝑝𝑐𝑐∠𝜃𝑝𝑐𝑐 is the input phasor to PLL at the terminal of PV-BESS, 𝜃𝑝𝑙𝑙 refers to the measured 

output of PLL and 𝑉𝑝𝑏
𝑑  is the d-axis voltage at the Point of Common Coupling (PCC). The dynamic 

characteristic of PLL can be explained by: 

{
𝑥𝑝𝑙𝑙̇ = 𝐾𝑖

𝑝𝑙𝑙𝑉𝑝𝑐𝑐(𝜃𝑝𝑐𝑐 − 𝜃𝑝𝑙𝑙)

𝜃𝑝𝑙𝑙̇ = 𝐾𝑝
𝑝𝑙𝑙𝑉𝑝𝑐𝑐(𝜃𝑝𝑐𝑐 − 𝜃𝑝𝑙𝑙) + 𝑥𝑝𝑙𝑙

  (5.5) 

iii. Filter 

The dynamics related to line voltage across the filter impedance (i.e., 𝜔𝑝𝑙𝑙𝐿𝑓𝑝𝑣) can be defined 

as follows: 

{
𝐿𝑓𝑝𝑣

𝑑𝐼𝑞

𝑑𝑡
= −𝜔𝑝𝑙𝑙𝐼𝑑𝑝𝑣 + 𝑉𝑞𝑝𝑣 − 𝑉𝑝𝑏

𝑞

𝐿𝑓𝑝𝑣
𝑑𝐼𝑑
𝑑𝑡

= −𝜔𝑝𝑙𝑙𝐼𝑞𝑝𝑣 + 𝑉𝑑𝑝𝑣 − 𝑉𝑝𝑏
𝑑

  (5.6) 

5.2.2  Model BESS Controllers 

PV systems without BESS contribute almost zero inertia to the rest of the power system. 

In this literature, installing BESS with a PV system for smooth and constant power generation can 

introduce a certain level of inertia to enhance the overall stability of the power system. Introducing 

the swing equation of synchronous generator (SG) to the converter controller can emulate SG and 

provide virtual inertia to improve power system stability.   
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i. Inertia Controller 

The virtual inertia control mechanism of the converter can be emulated by the following 

equation. 

𝑃𝑏𝑒𝑠𝑠 = 𝑃𝑏𝑒𝑠𝑠
∗ + 𝐷𝑏(𝜔𝑠 − 𝜔𝑝𝑙𝑙) − 𝐻𝑏

𝑑𝜔𝑝𝑙𝑙

𝑑𝑡
  (5.7) 

 where 𝐻𝑏 imitates the inertia constant of SG and 𝐷𝑏 as damping constant., 𝜔𝑠 is the synchronous 

frequency and 𝜔𝑝𝑙𝑙 is the frequency measured at the terminal of BESS by PLL. The first part of 

(5.7) (i.e., 𝑃𝑏𝑒𝑠𝑠
∗ ) is the reference input to the active power controller of BESS's converter, 

corresponding to the smoothing effect due to intermittent power output from the solar PV system. 

However, the second part of the equation is the additional input to the active power controller due 

to a change in frequency at the BESS terminal.  

ii. Active/Reactive Power Controller of BESS 

As in the case of active/reactive power controllers of PV, BESS also comprises PI-based 

outer and inner loop controllers, as given in (5.1) and (5.2), respectively. 

{
𝐼𝑞𝑏𝑒𝑠𝑠
∗ = (𝑃𝑏𝑒𝑠𝑠

∗∗ − 𝑃𝑏𝑒𝑠𝑠) (𝐾𝑝𝑏1 +
𝐾𝑖𝑏1
𝑠
)

𝐼𝑑𝑏𝑒𝑠𝑠
∗ = (𝑄𝑏𝑒𝑠𝑠

∗ − 𝑄𝑏𝑒𝑠𝑠) (𝐾𝑝𝑝3 +
𝐾𝑖𝑏3
𝑠
)

  (5.8) 

{
𝑉𝑞𝑏𝑒𝑠𝑠
∗ = (𝐼𝑞𝑏𝑒𝑠𝑠

∗ − 𝐼𝑞𝑝𝑣) (𝐾𝑝𝑏2 +
𝐾𝑖𝑏2
𝑠
)

𝑉𝑑𝑏𝑒𝑠𝑠
∗ = (𝐼𝑑𝑏𝑒𝑠𝑠

∗ − 𝐼𝑑𝑝𝑣) (𝐾𝑝𝑏4 +
𝐾𝑖𝑏4
𝑠
)

  (5.9) 

 where 𝐼𝑞𝑏𝑒𝑠𝑠 − 𝑗𝐼𝑑𝑏𝑒𝑠𝑠 and 𝑉𝑞𝑏𝑒𝑠𝑠 − 𝑗𝑉𝑑𝑏𝑒𝑠𝑠 are the current and voltage in 𝑑 − 𝑞 axis of the BESS 

controller, respectively. " ∗ " in (5.8) and (5.9) denotes the reference value of the corresponding 

signals. However, the " ∗∗ " relates to modified reference input to the active power controller due 

to the change in frequency response. 𝑃𝑏𝑒𝑠𝑠 and 𝑄𝑏𝑒𝑠𝑠 are active and reactive power generation from 

the solar PV system and are computed based on the following equations: 

{
𝑃𝑏𝑒𝑠𝑠 = 𝑉𝑞𝑏𝑒𝑠𝑠𝐼𝑞𝑏𝑒𝑠𝑠 + 𝑉𝑑𝑏𝑒𝑠𝑠𝐼𝑑𝑏𝑒𝑠𝑠
𝑄𝑏𝑒𝑠𝑠 = 𝑉𝑞𝑏𝑒𝑠𝑠𝐼𝑑𝑏𝑒𝑠𝑠 − 𝑉𝑑𝑏𝑒𝑠𝑠𝐼𝑞𝑏𝑒𝑠𝑠 

  (5.10) 

 



 

100 

 

iii. BESS Filter 

The dynamics related to line voltage across the filter impedance (i.e., 𝜔𝑝𝑙𝑙𝐿𝑓𝑏𝑒𝑠𝑠) can be defined 

as follows: 

{
𝐿𝑓𝑏𝑒𝑠𝑠

𝑑𝐼𝑞𝑏𝑒𝑠𝑠

𝑑𝑡
= −𝜔𝑝𝑙𝑙𝐼𝑑𝑏𝑒𝑠𝑠 + 𝑉𝑞𝑏𝑒𝑠𝑠 − 𝑉𝑝𝑏

𝑞

𝐿𝑓𝑏𝑒𝑠𝑠
𝑑𝐼𝑑𝑏𝑒𝑠𝑠
𝑑𝑡

= −𝜔𝑝𝑙𝑙𝐼𝑞𝑏𝑒𝑠𝑠 + 𝑉𝑑𝑏𝑒𝑠𝑠 − 𝑉𝑝𝑏
𝑑

  (5.11) 

5.3 Stochastic Model Analysis of PV-BESS-Integrated Power System 

In order to investigate the impact of PV-BESS on the Low-Frequency Electromechanical 

Oscillatory Modes (LEOs) of RPS, this work considers PV-BESS and the RPS as two open loop 

sub-systems inter-connected to form the closed loop where the PV-BESS is in the feedback path 

[93]. The set of non-linear differential and algebraic equations, the PV-BESS and RPS, are 

linearized around an equilibrium point to obtain the state-space model of each of the open loop 

sub-systems as given below: 

∆𝑥𝑟𝑝𝑠̇ = 𝐴𝑟𝑝𝑠∆𝑥𝑟𝑝𝑠 + 𝐵𝑟𝑝𝑠∆𝑃𝑝𝑏
∆𝑉𝑝𝑏 = 𝐶𝑟𝑝𝑠∆𝑥𝑟𝑝𝑠 + 𝐷𝑟𝑝𝑠∆𝑃𝑝𝑏

  (5.12) 

∆𝑥𝑟𝑝𝑠̇ = 𝐴𝑟𝑝𝑠∆𝑥𝑟𝑝𝑠 + 𝐵𝑟𝑝𝑠∆𝑃𝑝𝑏
∆𝑉𝑝𝑏 = 𝐶𝑟𝑝𝑠∆𝑥𝑟𝑝𝑠 + 𝐷𝑟𝑝𝑠∆𝑃𝑝𝑏

  (5.13) 

 where 𝑥𝑟𝑝𝑠 and 𝑥𝑝𝑏 are the vector of state variables of RPS and PV-BESS sub-systems, 

respectively. Then, the closed loop state equation can be established based on the following form: 

[𝑥𝑐𝑙]̇ = [𝐴𝑐𝑙][𝑥𝑐𝑙]  (5.14) 

 where [𝑥𝑐𝑙] = [𝑥𝑟𝑝𝑠, 𝑥𝑝𝑏  ]
𝑇
, [𝐴𝑐𝑙] = [

𝐴𝑟𝑟 𝐴𝑟𝑝
𝐴𝑝𝑟 𝐴𝑝𝑝

]. The elements of 𝐴𝑟𝑝 and 𝐴𝑝𝑟 establish the 

relationship between the states of RPS and PV-BESS-based power plants. However, 𝐴𝑟𝑟 and 𝐴𝑝𝑝 

are the decoupled matrix of RPS and PV-BESS, respectively. This chapter considers the stochastic 

variation of PV output power for small signal stability analysis of the closed-loop power system. 

The work uses the Monte Carlo simulation technique for stochastic modal analysis. The algorithm 

used in the Monte Carlo simulation is explained in Figure 5.2. 
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Figure 5.2  Proposed algorithm of Monte Carlo Simulation 

5.4 Results and Discussions: 

A small signal stability study has been conducted to observe the influence of PV-BESS on RPS. 

The analysis is evaluated on the IEEE 39 bus test system. As shown in Figure 5.3, generator G3 is 

assumed to be replaced by a PV-BESS system of equivalent rating. The PV-BESS system rating is 

650 MW. In this work, the capacity of the BESS unit is assumed to be 0.35 times the rating of the 

PV system, i.e., 230 MW. Table 5.1 consists of all the parameters associated with the PV and BESS 

controllers in per-unit values on the base of the corresponding PV and BESS ratings, respectively. 

For all the case studies with PV-BESS, the PLL parameters are set to 𝐾𝑃
𝑝𝑙𝑙 = 1.5 and 𝐾𝐼

𝑝𝑙𝑙 = 15 

and the filter inductance 𝐿𝑓𝑏𝑒𝑠𝑠 = 𝐿𝑓𝑝𝑣 = 0.021 p.u. The base of the whole power system is taken 

as 100 MVA. As mentioned in section 5.2, each of the SGs of RPS is modeled using the 7th-order 

system, which comprises an IEEE Type 1 exciter. None of the SGs are enabled with PSS. The 

parameters of the SGs of the IEEE 39 bus tests system can be obtained from Appendix A. 4. The 

whole PV-BESS-integrated power system has been developed in MATLAB 2019b. The test case 

is analyzed based on two scenarios: 

i. Power system without PV-BESS 
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ii. Power System with PV-BESS 

5.4.1 Power System without PV-BESS 

In this section, the IEEE 39 bus test system without PV-BESS installed has undergone a small 

signal stability study to obtain information regarding the critical inter-area eigenmodes that the 

system contains. The modes listed in Table 5.2 are critical because the damping ratio is as low as 

< 10%, and the damping frequency lies < 1 Hz, indicating the inter-area modes. The generators 

that participate in the critical inter-area modes are also listed in Table 5.2. The next section 

describes how these modes are affected by the involvement of stochastic characteristics of PV-

BESS-based power plants.  

5.4.2 Power system with PV-BESS 

In the last section, it is observed that the open loop RPS has two critical inter-area modes. The 

eigenvalues of the closed-loop PV-BESS are given in Table 5.3. The modal analysis results in Table 

5.3 are obtained from the PV-BESS-integrated IEEE 39 bus test system, while PV and BESS 

Table 5.1: Parameters of PV-BESS Controllers 

Component 
Active Power Controller Reactive Power Controller 

𝐾𝑝𝑝1 𝐾𝑖𝑝1 𝐾𝑝𝑝2 𝐾𝑖𝑝3 𝐾𝑝𝑝3 𝐾𝑖𝑝3 𝐾𝑝𝑝4 𝐾𝑖𝑝4 

PV 2 10 2 10 2 10 2 10 

BESS 
𝐾𝑝𝑏1 𝐾𝑖𝑏1 𝐾𝑝𝑏2 𝐾𝑖𝑏2 𝐾𝑝𝑏3 𝐾𝑖𝑏3 𝐾𝑝𝑏4 𝐾𝑖𝑏4 

1 5 1 5 1 5 1 5 

Table 5.2: Inter-Area Modes of IEEE 39 Bus Test System Without PV-BESS 

Sl. 

no. 
Eigenvalues 

Damping 

Ratio (%) 
Participating Generators 

1 
-0.2077 ± 𝑗 

6.184 
3.356  G3, G4, G5, G6, G7, G8, G10 

2 
-0.2996 ± 𝑗 

4.0614 
7.36 

G1, G2, G3, G4, G5, G6, G7, G8, 

G9, G10 
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Table 5.3: Critical Eigenmodes of IEEE 39 Bus Test System With PV-BESS 

Sl. 

no. 
Eigenvalues 

Damping 

Ratio (%) 
Participating Generators 

1 -0.2096 ± 𝑗 6.2269 3.364 G5, G6, G7,  G8, G10 

2 -0.3057 ± 𝑗 4.3886 6.956 
G1, G5, G6, G7, G8,  G10, PV-

(Filter) 

3 -0.3277± 𝑗 4.2119 7.76 G7, G8,  G10, PV(Filter) 

4 -0.0137± 𝑗 3.2538 0.42 G1, PLL 

 

Figure 5.3  Modified IEEE 39 bus test system 
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operates at 550 MW and 100 MW, respectively. As shown in Table 5.3, modes 3 and 4 are newly 

added oscillatory modes, which are associated with the dynamics of the PLL and filter component 

of the PV-BESS system. Mode 4 of PV-BESS is found to be the most critical eigenvalue of the 

closed-loop systems. Further, mode 3 affects mode 2 by reducing the damping ratio from 7.36 to 

6.956 because of modal resonance. As the influence of PV-BESS on modal interaction is 

inevitable, it is further necessary to examine the pattern of the probabilistic distribution of all the 

concerned eigenvalues under variation of PV-BESS output power. Regarding the PV output power 

distribution, the solar irradiance is assumed to be Gaussian. The Probability Density Function 

(PDF) of 5 years of solar irradiance data is displayed in Figure 5.4. The PDF of solar irradiance 

data is obtained based on the following equation: 

{𝑓𝑑(𝑙) =
1

𝜎𝑙√2𝜋
𝑒

−(𝑙−𝜇𝑙)
2

2𝜎𝑙
2

  (5.15) 

where 𝜎𝑙 and 𝜇𝑙 are the standard deviation and mean of a set of random numbers 𝑙. The 𝑙 is the set 

of Gaussian/Normal random numbers of solar irradiance. The stochastic eigenvalue evaluation is 

 

Figure 5.4  Stochastic Solar Irradiance data 
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conducted according to the steps of Monte Carlo simulation narrated in Figure 5.2 with 1000  

iterations. The stochastic eigenvalue analysis is evaluated for different values of inertia controller 

gain, 𝐻𝑏, of the BESS. For each complete simulation, the 𝐻𝑏 value is decided to increase from 2 

to 12. The stochastic distribution of eigenvalues such as mode 1, mode 2, mode 3, and mode 4 are 

displayed in Figure 5.5 (a), (b), (c), and (d) respectively. The figures display only the variations of 

the real part of eigenmodes as the variations in the imaginary part are minimal and hence are 

ignored. Table 5.4 presents the mean and variance of critical modes for different values of 𝐻𝑏. 

Figure 5.5 (a) shows the shift of mode 1 in terms of probabilistic density due to stochastic 

variations in solar irradiance over a year for different values of 𝐻𝑏. From Figure 5.5 (a), it is 

observed that mode 1is normally distributed in the range from −0.2098 to −0.2094 because of 

the normal distribution of solar irradiance. Moreover, from Table 5.4, the mean of the Gaussian 

distribution of mode-1 has a rightward shift due to the variation of 𝐻𝑏 from 2 to 12. According to 

 

Figure 5.5  Probabilistic Distribution function of critical eigenvalues 
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Table 5.4: Mean And Variance of Critical Modes 

Inertia 

controller gain 

Mode 1 Mode 2 

Mean Var Mean Var 

2 -0.20951 1.1e-09 -0.30447 6.026e-06 

5 -0.20949 9.42e-10 -0.30399 6.905e-06 

10 -0.20948 9.77e-10 -0.30392 6.9408e-6 

12 -0.20943 1.076e-9 -0.30302 6.991e-06 

Inertia 

controller gain 

Mode 3 Mode 4 

Mean Var Mean Var 

2 -0.30027 8.741e-05 -0.31937 0.0017 

5 -0.30025 8.811e-05 -0.3187 0.002 

10 -0.28936 8.915e-05 -0.3109 0.0026 

12 -0.2828 8.916e-05 -0.3092 0.0028 

the shift in the probabilistic distribution of mode 1, it can be said that the higher the 𝐻𝑏 adversely 

affects mode 1 by moving the modal distribution toward the imaginary axis of the complex plane. 

However, the amount of shift is minimal compared to the shifts observed for modes 2, 3, and 4 

because, according to Table 5.3, PV-BESS dynamics do not participate in mode 1. In Figure 5.5 

(b), the consequence of increasing 𝐻𝑏 on the probabilistic distribution of mode 2 due to the 

stochastic variation in solar irradiance has been exhibited. Further, as seen in Table 5.4, in this 

case, it is also observed that the increasing value of 𝐻𝑏 adversely influence mode 2 by shifting the 

mean of its probabilistic distribution towards the imaginary axis. As per the result in Table 5.3, this 

mode participates in PV-BESS dynamics. Hence, this mode is more sensitive than mode 1 for solar 

intermittency and change in the value of 𝐻𝑏. A similar probabilistic distribution pattern of modes 

3 and 4 has been observed from Figure 5.5 (c) and (d). A significant modal distribution is observed 

due to the stochastic variation in solar irradiance because these modes participate in PV-BESS 

dynamics. Moreover, the observed rightward shift of the mean of the modal distributions of modes 

3 and 4 on the complex plane, as presented in Table 5.4, suggests that the increasing value of 𝐻𝑏 

can deteriorate the system's stability. As per the normal distribution of all the modes for every 𝐻𝑏 

it is clearly revealed that when 𝐻𝑏 increases from 2 to 12, the mean of the Gaussian distribution of 
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corresponding eigenmodes also shifts gradually towards the right half of the complex plane and 

eventually pushes the system towards instability. Consequently, it is implied that a lower 𝐻𝑏 can 

cause the system to be more stable. 

5.5 Conclusion 

The solar PV system has great potential to meet the future energy demand as one of the 

renewable sources. As the PV provides almost zero inertia, the increasing penetration of the PV 

power plants into the grid causes serious concerns about system stability. The BESS controlled by 

VIC at PV stations not only smoothens the intermittent output power of PV but also can extend 

the support of virtual inertia by damping the LEOs of power systems. This chapter thoroughly 

discusses the dynamics of controllers associated with the PV-BESS system. The impact of VIC at 

PV-BESS station on LEOs of RPS is tested on the IEEE standardized 39 bus test system. It is 

witnessed from Table 5.2 and Table 5.3 that the PV-BESS with VIC contributes results in additional 

oscillatory modes and significantly deteriorates the small-signal stability due to closely resonated 

modes. A Monte Carlo simulation-based stochastic eigenvalue analysis is conducted to observe the 

impact pattern of the concerned eigenvalues due to the different values of inertia controller gain, 

𝐻𝑏, with probabilistic variation in solar irradiance. As per the results shown in Figure 5.5, it is 

observed that the stochastic distributions of all the concerned eigenvalues of IEEE 39 bus test 

systems move rightward of the complex plane while 𝐻𝑏 of BESS's VIC is increased from 2 to 12. 

Therefore, it can be concluded that higher VIC gain of PV-BESS may result in power system 

instability. Alternatively, the lesser value of  𝐻𝑏 poses enhanced power system stability. Further, 

this research can be helpful for the design of VIC of BESS under the impact of stochastic variation 

in PV output.  
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Chapter 6                                                                                           

Conclusion and Future Scope 

This chapter presents the key findings of the thesis research work. Additionally, the chapter 

encompasses the potential area of research for future aspects. 

6.1 Recap of Main Contributions 

In response to the post-Paris agreement, a significant transition has been observed in 

modern power systems driven by the rapid integration of renewable-based energy resources like 

solar or wind. The prime cause behind the unconventional shift in the energy sector is worldwide 

awareness regarding the importance of sustainable energy generation, technological advancement 

in power electronic-based converter stations, and effective policy implementation. As a result, the 

complexity of modern power systems increases with respect to the complex architecture of 

converter control and uncertainties in power injection due to renewable sources. Consequently, 

maintaining dynamic stability is a challenging task for the modern power system with such a large-

scale integration of renewable sources. In this response, most of the research contribution in this 

thesis highlights the following points:   

i. Synchronizing/Damping Torque analysis: To ensure grid stability, a crucial aspect is 

understanding how renewable energy sources, through their control systems, can contribute 

to the electromechanical oscillation damping provided by synchronous generators. As a 

major contribution to the thesis, it introduces a DFIG-based wind-integrated power system 

to present a simplified mathematical formulation for analyzing system parameters' impact 

on damping inter-area oscillations. 

ii. Influence of VIC and PLL dynamics on small signal stability: To support the WES 

during frequency excursion events, the dynamics of the VIC and PLL control loop 

combined impact the electromechanical oscillation loop of the power system’s 

synchronous generator. In dealing with the given issue, the thesis has proposed a 

mathematical formulation to analyze the influence of the control parameters of VIC and 

PLL on the synchronizing and damping torque coefficient of the WES-integrated Single 

Machine Infinite Bus (SMIB) system. Further, a new methodology has been proposed to 
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design a Power System Stabilizer (PSS), considering the combined impact of VIC and PLL 

dynamics. 

iii. Quantification of uncertainties associated with SPV: The power system deals with 

various uncertainties related to (a) generations from conventional sources, (b) variations in 

loads, and (c) power injection from SPVs. In this scenario, the thesis also has introduced a 

probabilistic ranking methodology for all the generator buses to identify the most suitable 

bus that could be replaced with SPV by popular GSA tools like Sobol, RBD-FAST, DMIM, 

and PAWN. Additionally, the GSA tools recognize the most influential uncertain parameter.  

iv. Probabilistic eigenvalue analysis: The stochastic power injection from large-scale SPV 

impacts the power system by shifting the oscillatory modes of interest. Hence, this research 

also introduces probabilistic small signal stability of power systems with large-scale SPVs. 

This analysis has also considered stochastic PV generation with the joint dynamic impact 

of BESS, VIC, and PLL.   

6.2 Summary of the Key Findings  

A major part of the thesis focuses on analyzing the impact of various influential parameters 

of renewable-integrated power systems, including WES and SPV systems, on damping the 

electromechanical oscillations of synchronous generators. In this regard, the summary of the 

research findings of the thesis is provided chapter by chapter as below: 

Chapter 1 lays the foundation of the research undertaken in this thesis. The chapter provides 

brief glimpses into climate change and its impacts on Earth, along with the steps carried out to 

combat the effect of climate change. It has explored the challenges in the transition of the modern 

power system in rapidly integrating various renewable sources such as wind or solar-based energy 

stations. A significant part of the chapter is dedicated to the literature review of recent 

technological developments, which forms the backbone of the research work presented in the 

thesis. Finally, the chapter outlines the objectives and key contributions of the research, followed 

by a thesis outline.   

Chapter 2 investigates various system parameters’ impact on the EOL of SGs.  For the 

given investigation, the chapter considers a DFIG-based WES-integrated power system, and to 
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account for system parameters, it considers line reactance, bus voltage, and machine inertia. The 

objective of the mentioned investigation is accomplished by developing a set of equations 

described as synchronizing and damping torques provided by DFIG-based WES to EOL of SGs as 

a function of the defined system parameters for a 3-bus system consisting of two synchronous 

machines and a DFIG-based WES. Further, the chapter also examines the locational parameter that 

defines the location of DFIG with respect to the COI for any possible impact on the damping of 

electromechanical oscillations of synchronous machines. After validation of the obtained results 

obtained for both the three-bus system and the IEEE standardized 39-bus test system, the research 

has proposed the following novel findings: 

a)  The damping torque produced by DFIG to the EOL of RPS is greatly influenced by 

transmission line reactance.  

b) The parameters like bus voltage and synchronous machine inertia have a negligible impact 

on the damping torque contributed by DFIG. 

c) The positive or negative characteristic of damping torque mainly happens due to the load 

angle difference between synchronous machines.  

d) A better damping phenomenon is observed in the low-frequency oscillatory mode of the 

system, while the DFIG-based WES is chosen to be located far from COI.  

Chapter 3 emphasizes the investigation of VIC and PLL dynamics on change in 

synchronizing/damping torque coefficients caused by the involvement of DFIG-based WES. A 

modified SMIB system consisting of an SG and DFIG-based WES is considered for the small-

signal analysis of the system influenced by VIC and PLL dynamics. The significance of the 

involvement of VIC and PLL dynamics is achieved by deriving mathematical equations for the 

change in synchronizing/damping torque coefficients as a function of line reactance, Kinert, and 

PLL parameters. From the analysis of the result verifications obtained from both the modified 

SMIB and the IEEE 9 bus system, most of the findings are as listed below: 

a) The increase in value of virtual inertial gains 𝐾𝑖𝑛𝑒𝑟𝑡 reduces synchronizing torque but 

increases the damping torque of the system. Therefore, a system with high Kinert may lose 

synchronism. 
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b) To improve the stability performance of a power system, the joint effects of the PLL and 

inertial controller of the DFIG must be considered in the design process of the PSS for the 

SG. 

The research in Chapter 4 addresses the uncertainties of power injection from growing SPVs 

in the modern power system. Additionally, the research of the chapter also considers the 

uncertainties associated with load variation and generations from SG. The uncertainties in this 

chapter are dealt with by various GSATs, such as Sobol sensitivity, RBD-FAST, Delta moment 

indices, and PAWN, to identify the most impactful parameters among extensive sets of uncertain 

inputs. The GSATs employed here are utilized to assess the severity of uncertainties based on 

which the ranking of IEEE 39 bus NETS generators is evaluated by replacing one of the SGs with 

an equal-rated SPV once at a time and further, have revealed a high degree of consensus among 

all the GSA techniques used. As presented in Chapter 4, the generators classified under the most 

severe category, such as G3, G6, G7, and G9, are replaced by similarly rated SPVs and have 

undergone the GSA to determine the most influential uncertain parameters. Further, from the 

distance indexing 𝐷𝑖𝑛𝑑𝑒𝑥, of all the busses, is evidenced by the fact that the most influential bus, 

𝐵22, lies at the farthest location from the COI.  As is seen from Chapter 3, the farthest bus from 

COI has a better damping phenomenon. This characteristic is well observed when a time domain 

plot of real power flow of line, 𝐿17−18, for a three-phase fault is taken for a VIC-based BESS when 

placed at 𝐵22 and optimized with PSSs for SGs G4 and G5. From the response of real power flow, 

it is observed that the highest distanced bus from COI, where VIC-based BESS is placed, provides 

better power oscillation damping of power oscillation. Hence, the main finding of this chapter is 

that: 

a) The uncertainties associated with modern power systems can be easily analyzed by GSATs. 

b) The bus linked with the most influential uncertain parameter may exert a better damping 

contribution to the most critical oscillatory modes. 

c) Coordinated PSO optimization for parameter tuning of VIC-based BESS and PSSs 

provides a better damping phenomenon than individual BESS or PSS controller tuning. 

Finally, in Chapter 5, probabilistic small signal stability analysis is introduced to study the 

stochastic behavior of the EmOM of interest. In this context, the chapter thoroughly discusses the 

detailed dynamics of controllers associated with the PV-BESS system and VIC dynamics. The 
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probabilistic eigen-analysis is employed in the IEEE 39 bus test system to demonstrate the impact 

of uncertainties associated with PV-BESS on shifting the EmOM of the rest of the power system. 

It is revealed in the chapter that the inclusion of the PV-BESS with VIC contributes additional 

oscillatory modes and significantly deteriorates the closely resonated modes. A Monte Carlo 

simulation is conducted to perform a stochastic eigenvalue analysis. This analysis aims to observe 

the impact pattern of the system's eigenvalues due to combined variations in stochastic solar 

irradiance and the inertia controller gain, 𝐻𝑏. As per the results presented in this chapter, it is 

observed that the stochastic distributions of all the concerned eigenvalues of IEEE 39 bus test 

systems move rightward of the complex plane while 𝐻𝑏 of BESS's VIC is increased from 2 to 12. 

Therefore, it can be ensured that a higher VIC gain of PV-BESS may risk power system instability. 

On the other hand, the lesser value of  𝐻𝑏 poses enhanced power system stability. 

6.3 Future Research Scope 

The research findings of the thesis reveal the crucial involvement of various system 

parameters and control loops of the DFIG-based WES and SPV of modern power systems in the 

damping of electromechanical oscillations. Further research could focus on the following key 

aspects in future investigations: 

• Modern power systems will be transformed in the future with the complete shift to 

renewable-based energy resources. In that scenario, the present research of the thesis can 

be extended to investigate the implication of system parameters like line reactance, bus 

voltage, and control parameters of various control loops of converters associated with 

renewable sources or HVDC links for virtual inertia estimation. 

• Investigation of power system oscillation damping for a power system composed of 

entirely renewable sources utilizing multi-terminal HVDC links where controllers operate 

in grid forming mode could be a crucial area of research in future research aspects. 

• As VIC will play a crucial role in the grid-forming mode of operations in converter-

interfaced power systems, future research could focus on the advanced design of VIC in 

coordination with damping controller design under the influence of various system 

uncertainties, including intermittent power injection and load variations. 
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Appendix A 

A. 1 State space derivation DFIG-based WES 

Derivation of state space model representation of DFIG-based WES is very important for a 

thorough understanding of Chapter 2 and Chapter 3. However, this section is directly related to 

Chapter 2. As mentioned in Chapter 2, the stator and rotor flux linkage of DFIG is considered to 

have fast dynamics and hence is dropped to consider their dynamics for the modeling of DFIG. 

Therefore, the major components considered for modeling DFIG-based WES here are the turbine 

and gearbox, the Rotor Side Converter (RSC), and the Grid Side Converter (GSC). The detailed 

dynamics associated with these components are presented in     (2.14) -     (2.19) of Chapter 2. 

Now the linearization of     (2.14) -     (2.19) can be represented in the following form: 

[
 
 
 
 
 
∆𝜔𝑟𝐷̇

∆𝑥1̇

∆𝑥2̇

∆𝑥3̇

∆𝑥4̇ ]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝜔𝑠
2𝐻𝐷

[
𝐵𝜔𝑠𝑉𝜔

3

2𝜔𝑟𝐷𝑜
3 (𝜔𝑟𝐷𝑜𝐷𝐶𝑊 − 𝐶𝑝)] 0 0 0 0

3𝐾𝐼1𝐶𝜔𝑟𝐷𝑜
2 0 0 0 0

3𝐾𝑃1𝐾𝐼2𝐶𝜔𝑟𝐷𝑜
2 𝐾𝐼2 0 0 0

0 0 0 0 0
0 0 0 𝐾𝐼4 0]

 
 
 
 
 
 

[
 
 
 
 
∆𝜔𝑟𝐷
∆𝑥1
∆𝑥2
∆𝑥3
∆𝑥4 ]

 
 
 
 

+

[
 
 
 
 
 
 
𝜔𝑠
2𝐻𝐷

[−𝑋𝑚𝐷𝐼𝑑𝑟𝐷𝑜]
𝜔𝑠
2𝐻𝐷

[𝑋𝑚𝐷𝐼𝑞𝑟𝐷𝑜]

−𝐾𝐼1𝑉𝑞𝑠𝐷𝑜 0 

−𝐾𝐼2𝐾𝑃1𝑉𝑞𝑠𝐷𝑜 0

0 −𝐾𝐼3𝑉𝑞𝑠𝐷𝑜
0 −𝐾𝐼4𝐾𝑃3𝑉𝑞𝑠𝐷𝑜 ]

 
 
 
 
 
 

[
∆𝐼𝑞𝑠𝐷
∆𝐼𝑑𝑠𝐷

]

+

[
 
 
 
 
 
𝜔𝑠
2𝐻𝐷

[𝑋𝑚𝐷𝐼𝑑𝑠𝐷𝑜] −
𝜔𝑠
2𝐻𝐷

[𝑋𝑚𝐷𝐼𝑞𝑠𝐷𝑜]

𝐾𝐼1𝑉𝑞𝑟𝐷𝑜 𝐾𝐼1𝑉𝑑𝑟𝐷𝑜 

𝐾𝐼2𝐾𝑃1𝑉𝑞𝑟𝐷𝑜 −𝐾𝐼2𝐾𝑃1𝑉𝑑𝑟𝐷𝑜
0 0
0 −𝐾𝐼4𝐼𝑑𝑟𝐷𝑜 ]

 
 
 
 
 

[
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

]

+

[
 
 
 
 

0 0
𝐾𝐼1𝐼𝑞𝑟𝐷𝑜 𝐾𝐼1𝐼𝑑𝑟𝐷𝑜 

𝐾𝐼2𝐾𝑃1𝐼𝑞𝑟𝐷𝑜 −𝐾𝐼2𝐾𝑃1𝐼𝑑𝑟𝐷𝑜
0 0
0 0 ]

 
 
 
 

[
∆𝑉𝑞𝑟𝐷
∆𝑉𝑑𝑟𝐷

] +

[
 
 
 
 

0
−𝐾𝐼1𝐼𝑞𝑠𝐷𝑜
𝐾𝐼2𝐾𝑃1𝐼𝑞𝑠𝐷𝑜
−𝐾𝐼3𝐼𝑑𝑠𝐷𝑜

−𝐾𝐼4𝐾𝑃3𝐼𝑑𝑠𝐷𝑜]
 
 
 
 

[∆𝑉𝐷] 

  (A. 1) 
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[
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

] =
1

𝑋𝑚𝐷
[
𝑋𝑠𝐷 −𝑅𝑠𝐷
𝑅𝑠𝐷 𝑋𝑠𝐷

] [
𝐼𝑞𝑠𝐷
𝐼𝑑𝑠𝐷

] + [

0
1

𝑋𝑚𝐷

] [∆𝑉𝐷]   (A. 2) 

 [
∆𝐼𝑞𝑠𝐷
∆𝐼𝑑𝑠𝐷

] =

[
{−

𝑠𝑋𝑟𝐷𝐼𝑞𝑟𝐷𝑜𝜔𝑠

𝑋𝑚𝐷
− 𝜔𝑠(𝑅𝑟𝐷𝐼𝑑𝑟𝐷𝑜 − 𝑉𝑑𝑟𝐷 − 𝑠𝑋𝑟𝐷𝐼𝑞𝑟𝐷𝑜)}

𝑋𝑚𝐷

(𝜔𝑟𝐷𝑜−𝜔𝑠)2
0 0 0 0

{−
𝑠𝑋𝑟𝐷𝐼𝑑𝑟𝐷𝑜𝜔𝑠

𝑋𝑚𝐷
− 𝜔𝑠(𝑉𝑞𝑟𝐷 − 𝑅𝑟𝐷𝐼𝑞𝑟𝐷𝑜 − 𝑠𝑋𝑟𝐷𝐼𝑑𝑟𝐷𝑜)}

𝑋𝑚𝐷

(𝜔𝑟𝐷𝑜−𝜔𝑠)2
0 0 0 0

]

[
 
 
 
 
∆𝜔𝑟𝐷
∆𝑥1
∆𝑥2
∆𝑥3
∆𝑥4 ]

 
 
 
 

+

[

𝑋𝑟𝐷

𝑋𝑚𝐷
−

𝑅𝑟𝐷

𝑠𝑋𝑚𝐷
𝑅𝑟𝐷

𝑠𝑋𝑚𝐷

𝑋𝑟𝐷

𝑋𝑚𝐷

] [
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

] + [
0

𝑋𝑚𝐷

𝑠

−
𝑋𝑚𝐷

𝑠
0
] [
∆𝑉𝑞𝑟𝐷
∆𝑉𝑑𝑟𝐷

]                                                                    

   (A. 3) 

  

[
∆𝑉𝑞𝑟𝐷
∆𝑉𝑑𝑟𝐷

] =

[
−

3𝐶𝐾𝑃1𝐾𝑃2𝜔𝑟𝐷𝑜
2

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1
−

𝐾𝑃2

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1
−

1

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1
−
𝐾𝑃1𝐾𝑃2𝐾𝑃4𝐼𝑑𝑟𝐷𝑜

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1
−

𝐾𝑃1𝐾𝑃2𝐼𝑑𝑟𝐷𝑜

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1

0 0 0 𝐾𝑃4 1
] 

[
 
 
 
 
∆𝜔𝑟𝐷
∆𝑥1
∆𝑥2
∆𝑥3
∆𝑥4 ]

 
 
 
 

+ [

𝐾𝑃1𝐾𝑃2𝑉𝑞𝑠𝐷𝑜

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1

𝐾𝑃1𝐾𝑃2𝐾𝑃3𝐾𝑃4𝐼𝑑𝑟𝐷𝑜𝑉𝑞𝑠𝐷𝑜

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1

0 −𝐾𝑃3𝐾𝑃4𝑉𝑞𝑠𝐷𝑜
] [
∆𝐼𝑞𝑠𝐷
∆𝐼𝑑𝑟𝐷

] +

[
−
𝐾𝑃2(𝐾𝑃1𝑉𝑞𝑟𝐷𝑜−)

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1

𝐾𝑃1𝐾𝑃2(𝐾𝑃4𝐼𝑑𝑟𝐷𝑜−𝑉𝑑𝑟𝐷𝑜)

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1

0 −𝐾𝑃4

] [
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

] + [

𝐾𝑃1𝐾𝑃2(𝐼𝑞𝑠𝐷𝑜+𝐾𝑃3𝐾𝑃4𝐼𝑑𝑟𝐷𝑜𝐼𝑑𝑠𝐷𝑜)

𝐾𝑃1𝐾𝑃2𝐼𝑞𝑟𝐷𝑜−1

−𝐼𝑑𝑠𝐷𝑜𝐾𝑃3𝐾𝑃4

] [∆𝑉𝐷] 

   (A. 4) 

  

[
∆𝑃𝑔
∆𝑄𝑔

] = [
−𝑉𝑞𝑟𝐷𝑜 −𝑉𝑞𝑟𝐷𝑜
0 0

] [
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

] + [
𝑉𝑞𝑠𝐷𝑜 0

0 𝑉𝑞𝑠𝐷𝑜
] [
∆𝐼𝑞𝑠𝐷
∆𝐼𝑑𝑠𝐷

]

+ [
−𝐼𝑞𝑟𝐷𝑜 −𝐼𝑑𝑟𝐷𝑜
0 0

] [
∆𝑉𝑞𝑟𝐷
∆𝑉𝑑𝑟𝐷

] + [
𝐼𝑞𝑠𝐷𝑜
𝐼𝑞𝑠𝐷𝑜

] [∆𝑉𝐷] 

  (A. 5) 
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The above equation can be symbolically represented as: 

[∆𝑥𝐷̇] = 𝐴𝐷1[∆𝑥𝐷] + 𝐵𝐷1 [
∆𝐼𝑞𝑠𝐷
∆𝐼𝑑𝑠𝐷

] + 𝐵𝐷2 [
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

] + 𝐵𝐷3 [
∆𝑉𝑞𝑟𝐷
∆𝑉𝑑𝑟𝐷

] + 𝐵𝐷4[∆𝑉𝐷]   (A. 6) 

[
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

] = 𝐷𝐷1 [
∆𝐼𝑞𝑠𝐷
∆𝐼𝑑𝑠𝐷

] + 𝐷𝐷2[∆𝑉𝐷]   (A. 7) 

[
∆𝑉𝑞𝑟𝐷
∆𝑉𝑑𝑟𝐷

] = 𝐶𝐷1[∆𝑥𝐷] + 𝐷𝐷3 [
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

] + 𝐷𝐷4 [
∆𝐼𝑞𝑠𝐷
∆𝐼𝑑𝑠𝐷

] + 𝐷𝐷5[∆𝑉𝐷]   (A. 8) 

[
∆𝐼𝑞𝑠𝐷
∆𝐼𝑑𝑠𝐷

] = 𝐶𝐷2[∆𝑥𝐷] + 𝐷𝐷6 [
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

] + 𝐷𝐷7 [
∆𝑉𝑞𝑟𝐷
∆𝑉𝑑𝑟𝐷

]   (A. 9) 

[
∆𝑃𝑔
∆𝑄𝑔

] = 𝐷𝐷8 [
∆𝐼𝑞𝑟𝐷
∆𝐼𝑑𝑟𝐷

] + 𝐷𝐷9 [
∆𝐼𝑞𝑠𝐷
∆𝐼𝑑𝑠𝐷

] + 𝐷𝐷10 [
∆𝑉𝑞𝑟𝐷
∆𝑉𝑑𝑟𝐷

] + 𝐷𝐷11[∆𝑉𝐷]   (A. 10) 

 From (A. 6) to (A. 10) the state equation of the DFIG-based WES can then be composed to  

[∆𝑥𝐷̇] = 𝐴𝐷[∆𝑥𝐷] + 𝐵𝐷[∆𝑉𝐷]

[
∆𝑃𝑔
∆𝑄𝑔

] = 𝐶𝐷[∆𝑥𝐷] + 𝐷𝐷[∆𝑉𝐷]
      (A. 11) 

where 

  

𝐴𝐷 = 𝐴𝐷1 + 𝐵𝐷3 ∗ 𝐶𝐷1 + 𝐹 ∗ 𝐸 ∗ (𝐶𝐷2 + 𝐷𝐷7 ∗ 𝐶𝐷1)
𝐵𝐷 = 𝐹 ∗ 𝐸 ∗ 𝐺 + 𝐾

𝐶𝐷 = 𝐻 ∗ 𝐸(𝐶𝐷2 + 𝐷𝐷7 ∗ 𝐶𝐷1) + 𝐷𝐷10 ∗ 𝐶𝐷1
𝐷𝐷 = 𝐻 ∗ 𝐸 ∗ 𝐺 + 𝐽

 

The matrices 𝐸, 𝐹, 𝐺, 𝐻, 𝐽, 𝐾 are further defined by: 

𝐸 = (𝐼 − (𝐷𝐷6 +𝐷𝐷7 ∗ 𝐷𝐷3) ∗ 𝐷𝐷1 − 𝐷𝐷7 ∗ 𝐷𝐷4)
−1

𝐹 = 𝐵𝐷1 + 𝐵𝐷3 ∗ 𝐷𝐷4 + (𝐵𝐷3 ∗ 𝐷𝐷3 + 𝐵𝐷2) ∗ 𝐷𝐷1
𝐺 = (𝐷𝐷6 + 𝐷𝐷7 ∗ 𝐷𝐷3) ∗ 𝐷𝐷2 + 𝐷𝐷7 ∗ 𝐷𝐷5
𝐻 = 𝐷𝐷8 ∗ 𝐷𝐷1 + 𝐷𝐷9 + 𝐷𝐷10 ∗ (𝐷𝐷4 + 𝐷𝐷3 ∗ 𝐷𝐷1)
𝐽 = 𝐷𝐷8 ∗ 𝐷𝐷2 + 𝐷𝐷10 ∗ (𝐷𝐷3 ∗ 𝐷𝐷2 + 𝐷𝐷5) + 𝐷𝐷11
𝐾 = (𝐵𝐷3 ∗ 𝐷𝐷3 + 𝐵𝐷2) ∗ 𝐷𝐷2 + 𝐵𝐷3 ∗ 𝐷𝐷5 + 𝐵𝐷4

 

The matrix ‘I’ in E is an identity matrix of order 2  
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A. 2 Derivations to Support Section 3.2 of  Chapter 3 

This section assists in deriving ∆𝐾1 to ∆𝐾6 discussed in Section 3.2. From power balance 

equations (3.18) and (3.23), the following can be derived: 

{
∆𝜃𝑝 = 𝑇1∆𝛿 + 𝑇2∆𝐸𝑞

′

∆𝑉𝑝 = 𝑇3∆𝐸𝑞
′ + 𝑇4∆𝛿

      (A. 12) 

{
 
 
 
 

 
 
 
 𝑇1 =

𝑉𝑝𝑜𝑉𝑛𝑜 𝑐𝑜𝑠 𝜃𝑝𝑜 𝑋𝐿2⁄

𝑉𝑃𝑜𝑀𝑒𝑛 (𝑋𝐿2𝑋1)⁄ + 𝑠2𝐾𝑖𝑛𝐹𝑝𝑙𝑙 (2𝜋)⁄

𝑇2 =
𝑃𝑔𝑜 𝐸𝑞𝑜

′⁄

𝑉𝑃𝑜𝑀𝑒𝑛 (𝑋𝐿2𝑋1)⁄ + 𝑠2𝐾𝑖𝑛𝐹𝑝𝑙𝑙 (2𝜋)⁄

𝑇3 =
𝑉𝑝𝑜𝑋𝐿2 𝑐𝑜𝑠(𝛿𝑜 − 𝜃𝑝𝑜)

𝑀𝑒𝑛

𝑇4 = −
𝑃𝑔𝑜𝑋1𝑋𝐿2

𝑀𝑒𝑛

      (A. 13) 

 

Using (A. 12) into (3.18), ∆𝑃𝑔 can be derived to the following form:  

∆𝑃𝑔 = 𝐺1(𝑠)∆𝛿 + 𝐺2(𝑠)∆𝐸𝑞
′       (A. 14) 

Further applying (A.12) to the linearization of 𝐸̇𝑞
′  of synchronous generator mentioned in (3.14), 

the following can be derived:  

∆𝐸𝑞
′̇ = −

1

𝑇𝑑𝑜
′ 𝐺3(𝑠)

∆𝐸𝑞
′ −

𝐺4(𝑠)

𝑇𝑑0
′ ∆𝛿 +

∆𝐸𝑓𝑑

𝑇𝑑𝑜
′

̇
      (A. 15) 

Using (3.23), ∆𝑉𝑡 can be derived to: 

∆𝑉𝑡 = 𝐺5(𝑠)∆𝛿 + 𝐺6(𝑠)∆𝐸𝑞
′       (A. 16) 

Now 𝐺1(𝑠) to 𝐺6(𝑠) derived in, (A. 14) to (A.16), can be separated as per the format expressed 

in (3.26) to derive ∆𝐾1 to ∆𝐾6 of (3.25). 
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A. 3 Data of parameters of DFIG-based WES 

Table A. 1: Parameter of Generator, AVR, and Transformer 

Generator AVR Transformer 

H 𝑥𝑑 𝑥𝑑
′  𝑥𝑞 𝑇𝑑𝑜

′  𝐾𝑎 𝑇𝑎 𝑥𝑇 

6.4 0.8958 0.1198 0.8645 6 400 0.02 0.0625 

Table A. 2:Parameters of a DFIG in a Wind Farm 

MVA 

Rating 

𝐻𝐷 

(sec.) 

𝑅𝑠𝐷 

(p.u) 

𝑋𝑠𝐷 

(p.u) 

𝑅𝑟𝐷 

(p.u) 

𝑋𝑟𝐷 

(p.u) 

3.6 5.23 0.007 3.37 0.005 3.47 

 

A. 4 Parameter Data of IEEE 39 bus New England Test System 

Table A. 3: Dynamic data of generators of IEEE 39 bus system 

Generator H 𝑹𝒂 𝑿𝒅
′  𝑿𝒒

′  𝑿𝒅 𝑿𝒒 𝑻𝒅𝒐
′  𝑻𝒒𝒐

′  𝑿𝒍 

G1 500 0 0.006 0.008 0.02 0.019 7.0 0.7 0.003 

G2 30.3 0 0.0697 0.170 0.295 0.282 6.56 1.5 0.035 

G3 35.8 0 0.0531 0.0876 0.2495 0.237 5.7 1.5 0.0304 

G4 28.6 0 0.0436 0.166 0.262 0.258 5.69 1.5 0.0295 

G5 26 0 0.132 0.166 0.67 0.62 5.4 0.44 0.054 

G6 34.8 0 0.05 0.0814 0.254 0.241 7.3 0.4 0.0224 

G7 26.4 0 0.049 0.186 0.295 0.292 5.66 1.5 0.0322 

G8 24.3 0 0.057 0.0911 0.290 0.280 6.7 0.41 0.028 

G9 34.5 0 0.057 0.0587 0.2106 0.205 4.79 1.96 0.0298 

G10 42 0 0.031 0.008 0.1 0.069 10.2 0.00 0.0125 

Table A. 4: Generator Exciter Data 

Generator 𝑲𝑨 𝑻𝑨 𝑲𝑬 𝑻𝑬 𝑲𝑭 𝑻𝑭 

G1 40 0.02 1 1.4 0 0.03 

G2 6.2 0.05 0.63 0.41 0 0.06 

G3 5.0 0.06 -0.02 0.5 0 0.08 

G4 5.0 0.06 -0.05 0.5 0 0.08 
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G5 40.0 0.02 -0.04 0.785 0 0.03 

G6 5.0 0.02 1 0.471 0 0.08 

G7 40.0 0.02 1 0.73 0 0.03 

G8 5.0 0.02 -0.05 0.528 0 0.09 

G9 40.0 0.02 1 1.4 0 0.03 

G10 5.0 0.06 -0.05 0.25 0 0.4 

Table A. 5: Line Data 

From Bus To Bus R X B 

1 2 0.0035 0.0411 0.6987 

1 39 0.0010 0.0250 0.7500 

2 3 0.0013 0.0151 0.2572 

2 25 0.0070 0.0086 0.1460 

3 4 0.0013 0.0213 0.2214 

3 18 0.0011 0.0133 0.2138 

4 5 0.0008 0.0128 0.1342 

4 14 0.0008 0.0129 0.1382 

5 6 0.0002 0.0026 0.0434 

5 8 0.0008 0.0112 0.1476 

6 7 0.0006 0.0092 0.1130 

6 11 0.0007 0.0082 0.1389 

7 8 0.0004 0.0046 0.0780 

8 9 0.0023 0.0363 0.3804 

9 39 0.0010 0.0250 1.2000 

10 11 0.0004 0.0043 0.0729 

10 13 0.0004 0.0043 0.0729 

13 14 0.0009 0.0101 0.1723 

14 15 0.0018 0.0217 0.3660 

15 16 0.0009 0.0094 0.1710 

16 17 0.0007 0.0089 0.1342 



 

121 

 

16 19 0.0016 0.0195 0.3040 

16 21 0.0008 0.0135 0.2548 

16 24 0.0003 0.0059 0.0680 

17 18 0.0007 0.0082 0.1319 

17 27 0.0013 0.0173 0.3216 

21 22 0.0008 0.0140 0.2565 

22 23 0.0006 0.0096 0.1846 

23 24 0.0022 0.0350 0.3610 

25 26 0.0032 0.0323 0.5130 

26 27 0.0014 0.0147 0.2396 

26 28 0.0043 0.0474 0.7802 

26 29 0.0057 0.0625 1.0290 

28 29 0.0014 0.0151 0.2490 

12 11 0.0016 0.0435 0.0000 

12 13 0.0016 0.0435 0.0000 

6 31 0.0000 0.0250 0.0000 

10 32 0.0000 0.0200 0.0000 

19 33 0.0007 0.0142 0.0000 

20 34 0.0009 0.0180 0.0000 

22 35 0.0000 0.0143 0.0000 

23 36 0.0005 0.0272 0.0000 

25 37 0.0006 0.0232 0.0000 

2 30 0.0000 0.0181 0.0000 

29 38 0.0008 0.0156 0.0000 

19 20 0.0007 0.0138 0.0000 
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Table A. 6: Load Data 

Bus Type Voltage 
Load Generator 

MW MVar MW MVar 

1 PQ - 0.0 0.0 0.0 0.0 

2 PQ - 0.0 0.0 0.0 0.0 

3 PQ - 322.0 2.4 0.0 0.0 

4 PQ - 500.0 184.0 0.0 0.0 

5 PQ - 0.0 0.0 0.0 0.0 

6 PQ - 0.0 0.0 0.0 0.0 

7 PQ - 233.8 84.0 0.0 0.0 

8 PQ - 522.0 176.0 0.0 0.0 

9 PQ - 0.0 0.0 0.0 0.0 

10 PQ - 0.0 0.0 0.0 0.0 

11 PQ - 0.0 0.0 0.0 0.0 

12 PQ - 07.5 88.00 0.0 0.0 

13 PQ - 0.0 0.0 0.0 0.0 

14 PQ - 0.0 0.0 0.0 0.0 

15 PQ - 320.0 153.0 0.0 0.0 

16 PQ - 329.0 32.3 0.0 0.0 

17 PQ - 0.0 0.0 0.0 0.0 

18 PQ - 158.0 30.0 0.0 0.0 

19 PQ - 0.0 0.0 0.0 0.0 

20 PQ - 628.0 103.0 0.0 0.0 

21 PQ - 274.0 115.0 0.0 0.0 

22 PQ - 0.0 0.0 0.0 0.0 

23 PQ - 247.5 84.6 0.0 0.0 

24 PQ - 308.6 -92.0 0.0 0.0 

25 PQ  224.0 47.2 0.0 0.0 

26 PQ - 139.0 17.0 0.0 0.0 
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27 PQ - 281.0 75.5 0.0 0.0 

28 PQ - 206.0 27.6 0.0 0.0 

29 PQ - 283.5 26.9 0.0 0.0 

30 PV 1.0475 0.0 0.0 250.0 - 

31 PV 0.9820 9.2 4.6 - - 

32 PV 0.9831 0.0 0.0 650.0 - 

33 PV 0.9972 0.0 0.0 632.0 - 

34 PV 1.0123 0.0 0.0 508.0 - 

35 PV 1.0493 0.0 0.0 650.0 - 

36 PV 1.0635 0 0 560  

37 PV 1.0278 0 0 540  

38 PV 1.0265 0 0 830  

39 PV 1.0300 1104.0 250.0 1000  

 

A. 5 Parameter Data of IEEE 9 bus Test System 

Table A. 7: Generator Data of IEEE 9 bus system 

Generator H 𝑹𝒂 𝑿𝒅
′  𝑿𝒒

′  𝑿𝒅 𝑿𝒒 𝑻𝒅𝒐
′  𝑻𝒒𝒐

′  

G1 23.64 0 0.0608 0.0969 0.146 0.0969 8.96 0.31 

G2 6.4 0 0.1198 0.1969 0.8958 0.8645 6.0 0.535 

G3 3.01 0 0.1813 0.25 1.3125 1.2578 5.89 0.6 

 

Table A. 8: Exciter Data of IEEE 9 bus system 

Generator 𝑲𝑨 𝑻𝑨 𝑲𝑬 𝑻𝑬 𝑲𝑭 𝑻𝑭 

G1 20 0.2 1.0 0.314 0.063 0.35 

G2 20 0.2 1.0 0.314 0.063 0.35 

G3 20 0.2 1.0 0.314 0.063 0.35 
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Table A. 9: Line parameters of IEEE 9 bus system 

From Bus To Bus R X B 

1 4 0.0 0.0576 0.0 

4 5 0.01 0.085 0.176 

5 7 0.032 0.161 0.306 

4 6 0.017 0.092 0.158 

6 9 0.039 0.17 0.358 

7 8 0.0085 0.072 0.149 

3 9 0.0 0.0586 0.0 

8 9 0.0119 0.1008 0.209 

2 7 0.0 0.0625 0.0 

 

Table A. 10: Bus Data of IEEE 9 bus system 

Bus Type 
Voltage 

(p.u) 

Load Generator 

𝑷𝑳 (p.u) 𝑸𝑳 (p.u) 𝑷 (p.u) Q (p.u) 

1 PV 1.04 - - 0.716 0.27 

2 PV 1.025∠9.30 - - 1.63 0.067 

3 PV 1.025∠4.70 - - 0.85 -0.109 

4 PQ - - - - - 

5 PQ - 1.25 0.5 - - 

6 PQ - 0.9 0.3 - - 

7 PQ - - - - - 

8 PQ - 1.0 0.35 - - 

9 PQ - - - - - 
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Appendix B 

List of Publications 

Journal Publications 

1. B. Sahu and B. P. Padhy, "Evaluation of Damping Effect Influenced by System Parameters 

on a DFIG Integrated Power System," in IEEE Systems Journal, vol. 17, no. 2, pp. 1939-

1949, June 2023, doi: 10.1109/JSYST.2023.3239933. 

2. B. Sahu and B. P. Padhy, "Design of Power System Stabilizer for DFIG-Based Wind 

Energy Integrated Power Systems under Combined Influence of PLL and Virtual Inertia 

Controller," in Journal of Modern Power Systems and Clean Energy, doi: 

10.35833/MPCE.2023.000202. 

3. B. Sahu and B. P. Padhy, "Probabilistic Sensitivity Analysis Of Large-Scale Solar PV 

Integrated Power System," in Electric Power Systems Research. (Under Review). 

4. . (Under Review). 

Conference Publications 

1. B. Sahu and B. P. Padhy, "Stability Analysis of Power system Connected to Wind Farm 

Using Eigenvalue Sensitivity Approach," 2021 9th IEEE International Conference on 

Power Systems (ICPS), Kharagpur, India, 2021, pp. 1-6, doi: 

10.1109/ICPS52420.2021.9670402. 

2. B. Sahu and B. P. Padhy, "Small Signal Stability Analysis of DFIG Integrated Power 

System Considering PLL Dynamics Under Different Grid Strengths," 2023 IEEE PES 

Conference on Innovative Smart Grid Technologies - Middle East (ISGT Middle East), Abu 

Dhabi, United Arab Emirates, 2023, pp. 1-5, doi: 

10.1109/ISGTMiddleEast56437.2023.10078449. 

3. B. Sahu and B. P. Padhy, "Impact of Large-Scale PV-BESS on Dynamics of Power System 

Oscillatory Modes," 2023 3rd International Conference on Energy, Power and Electrical 

Engineering (EPEE), Wuhan, China, 2023, pp. 1333-1338, doi: 

10.1109/EPEE59859.2023.10351868 
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