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Abstract

In today’s world, our power grids are becoming smarter, due to the rapid and

wide spread integration of digital sensors, computers, Internet and Communication

Technologies (ICTs) etc. The remarkable advancements of such modernized technologies

and far-reaching use of various sophisticated remotely control devices have transformed

our age old traditional energy sector from purely physical system to somewhat complex

Cyber Physical Systems (CPS). While this CPS infrastructure has effectively prevented

various disastrous scenarios like blackouts, uncontrolled shutdowns, unwanted frequency

and voltage fluctuations, power loss and grid instability, nevertheless the close integration

of power system’s physical operation with that of unsecured cyber networks brings

a new risk of cyber threats via unauthorized control access to the communication

channels, exploitation of networking protocols, forced equipment outage and damage,

manipulation of sensing and control signals and any kind of other sabotaging activities

that jeopardize the normal monitoring and control functionality of power grid ranging

from power transmission to power distribution. Thus this thesis aims to provide an overall

comprehensive security solution towards developing a Cyber Attack Resilient Monitoring

and Control (CARMC) framework by unveiling vulnerabilities across transmission

(T-System) to distribution (D-System) power networks.

The research begins by identifying and addressing the key vulnerabilities introduced in

the T-System networks. Following this, a comprehensive attack resilient framework is

developed based on strategic placement of Phasor Measurement Units (PMUs) at such

optimal locations that safeguard a minimal sets of measurements in order to make the

system resilient against any kind of False Data Injection Attacks (FDIAs) on those selected

vulnerable lines. After securing a set of critical meters by developing a secured metering

infrastructure, the next research study of T-System focused on the detection and control

technique of another simple but impactful attack named, Replay Attack (RA) that targets

one of the core power system monitoring application of energy management system i.e

Power System State Estimation (PSSE). In order to safeguard the PSSE against RA, the

proposed technique leverages the secured phasor measurements obtained from the optimal

PMU locations through a hybrid state estimator (HYB-SE) to correct the manipulated

conventional meter readings.

The later half of the thesis focuses on detecting and mitigating vulnerabilities associated

to the D-System networks, specifically Microgrids (MGs), where the Distributed Energy

Resource (DER) controller’s and its communication links are being targeted by the

attacker to cause voltage and frequency instability to the grid. To this end, for

the detection, classification and localization of cyber attacks, a statistical two-sample

hypothesis test, called as Maximum Mean Discrepancy (MMD) index and a rule based

algorithm coupled with XGBoost classifier is utilized respectively. After the attack being

detected and classified successfully, the next study aims to develop a cyber-attack resilient

control framework for the MG system based on designing Unknown Input Observer’s

(UIO) states and Back-stepping Integrated Sliding Mode Controller (BSMC) to mitigate



ix

the overall effect of injected attack into the DER’s secondary controller. Finally, with

the aim of having a secured monitoring infrastructure in D-System, the last research

study addressed the problem of accurate detection of islanding event in the presence of

cyber-attacks.

The effectiveness of the proposed CARMC framework is validated through extensive

offline simulation performed in MATLAB, PSCAD, RSCAD software and real-time testing

incorporating various hardware platforms such as Real-Time Digital Simulator (RTDS)

and dSPACE 1104 Research & Development controller board. The results demonstrate

the ability of the CARMC framework to bolster the resilience of transmission and active

distribution networks against diverse cyber threats.

Keywords: Topological Vulnerability; Phasor Measurements Units; Power System

State Estimation; False Data Injection Attack; Replay Attack; AC Microgrid;

Distributed Secondary Control; Maximum Mean Discrepancy; Unknown Input Observer;

Back-stepping Integrated Sliding Mode Controller; Secured Passive Islanding Detection.
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(ẐHY B
RTU ) Reconstructed measurements based on the output

states of hybrid estimator

Z̃RTU RTU sensor noisy reading which may or may not

be compromised

Zv Sets of identified vulnerable RTU measurements

Een Entropy value

Ese Shannon Energy value

A,B,C and E Known system matrices for MG network

F,J,L and K Designed matrices for UIO



xxiv List of Tables

f̂ω Vector of rough estimation of exogenous frequency

attack input to DERs by UIO

Bp, Bu, Bf Designed matrices for BSMC

Xω Vector containing frequency states of DERs

UP Injected active power input vector for DERs

Usω Desired control law output vector from BSMC to

make the MG attack resilient

F State transition matrix for KF

P̄ and Q̄ Process covariance and model error covariance

matrix

R Sensor measurement noise covariance matrix

K̄ Kalman Gain Matrix

Functions and Operators∑
Sums of all elements of a vector/matrix

(·)T Transpose Operator

1[Ξ] An indicant function

hRTU (·) Non-linear mapping function that relates

measurements with states

J Objective Function to for WLS State Estimator

∥∗∥2H 2-norm operation in RKHS

φ(·) Mapping function consist of a kernal matrix

K(X, .) to map some feature sets to RKHS

MMD[F , ·, ·] Computing maximum mean discrepancy between

two class of function in their feature space, F

E[·] Expectation Operator

supf́∈F (·) Finding supremum of a certain set of function f́ ,

belongs to the feature space, F

α· Attack modelling parameter

F̂ Domain of classification and regression trees

(L) Approximating loss functions

L Differential convex loss function

ϑ Regularization Function

rank(·) Calculating matrix rank

V Lyapunov Function

Constant, Variables and Symbols

N Cardinality of node set V
M Cardinality of edge set E
vi ith Node of a graph

ei,j Edge between Node-i and Node-j

ai,j Elements of adjacency matrix Aadj

wi,j Weight of edge ei,j



List of Tables xxv

dij Shortest path between two node pairs i.e vi and vj

λ Eigenvalues of Aadj

Ω⃗ External injected/extracted current vector

Is Injected current at source node s
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Chapter 1

Introduction

1.1 General: Cyber Physical Integration of Smart Grid

In recent decades, the integration of advanced sensing, computing, Internet of Things

(IoTs), Information and Communication Technologies (ICT) within the power sector

has undoubtedly revolutionized the flexibility, reliability, efficiency and management of

electrical grids to a considerable extent. This revolutionary and evolutionary changes have

made a profound impact on national critical infrastructures, such as Power Systems (PSs);

transforming them into the present-day complex Cyber-Physical Systems (CPS), known

as Smart Grids (SGs) with offering numerous benefits such as, control of the two-way

flow of electricity and information, efficient monitoring and control of real-time electricity

generation and consumption, optimized resource utilization, reduced operational costs,

increased renewable energy, empowering consumers through real-time visibility and control

over their energy usage etc.

While such involvements of CPS in monitoring and control operations of PS have effectively

prevented various disastrous scenarios like blackouts, uncontrolled shutdowns, unwanted

frequency and voltage fluctuations, power losses, and grid instability, they have also

introduced new challenges to the PS operators in terms of device-level and network-level

security [1, 2, 3]. Many remote devices located in the physical layer of SGs like digital

sensors, actuators, smart meters, digital relays, Remote Terminal Units (RTUs), Intelligent

Electronic Devices (IEDs), etc, and servers of communication and ICT interface layer

like SCADA Server, Communication Server, Human Machine Interface Server (HMI)

and, Database Server are connected to the open network via some corporate networks

for being more flexible in management process which acts as a back-door access for the

cyber attackers to get into operator’s supervisory network control layer to disrupt various

managerial decisions as shown in Fig. 1.1. Moreover, a large number of systems have been

using third-party web-based applications for the monitoring of physical process and this

direct connection to the internet could be an another possible path for the cyber attacker

to penetrate into the enterprise network. Thus, the increasing dependence of the SG on

the critical cyber networks and extensive interlaced with data communication layers at its

various levels has exposed the power grid to potential vulnerabilities and persistent cyber

threats such as forced equipment outage, manipulation of sensing and actuation signals

by malicious actors, theft of intellectual property, exploiting financial arbitrage, and other

kind of sabotage which ultimately hampers the normal grid functioning [4].
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Figure 1.1: Generic illustration of a cyber-physical Smart Grid architecture and its
vulnerable surface

1.1.1 Historical Events of Some Major Cyber Attacks in Smart Grid

As per the standards defined by the industry, a Cyber-Attack is an intrusion that can

jeopardize the availability, confidentiality, or integrity of an information system or the data

it processes, stores, or transmits. Additionally, it is noteworthy to mention that out of all

network infrastructures, the energy sector has faced the greatest number of cyber intrusions

and thus it is placed at significantly higher security risks in terms of attack severity and

impact, according to vulnerability reports from the US ICS-CERT [5] and Kaspersky

ICS-CERT [6]. One of its main reason is that the current communication networks for

PSs and most SCADA network protocols e.g., Modbus, DNP3, TCP/IP, IEC 61850, etc,

are not designed to be adequately protected from potential cyber threats. Hence, recent

years have witnessed that power plants and electrical grids are becoming increasingly an

attractive target for hackers due to the large number of individuals who could be impacted

and the extent of damage that could be inflicted nationwide [7]. Notably, various reported
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historical incidents worldwide as listed in Table 1.1 have highlighted significant challenges

stemming from such cyber-attacks in the cyber-layer of energy-sector infrastructures.

Table 1.1: Some reported major cyber attacks events targeted to energy sector

Year Attack Location
Attack

Type/Method
Attack Target Attack Impacts

Oct, 2010
Natanz Nuclear
Power Plant, Iran

Malware STUXNET
PLCs, ICS Network,

and HMI

Manipulate the speed
and rotation cycles of

PLC controlled
centrifuges

Dec, 2014
Nuclear and

Hydroelectric Plant,
South Korea

Malware, Social
Engineering

ICT Interface

Steal sensitive
information such as
design documents,
operation manuals,
and employee data.

Dec, 2015
and 2016

Power Grid, Ukraine FDIA, MitM
ICS, Relay and
Circuit Breaker

Wide spread blackout
took place in 3 major
power distribution

companies

Aug, 2017
Petro-chemical Plant,

Saudi Aramco

Malware
BLACKENERGY,
Social Engineering

ICT Interface

Disrupt operations,
compromise sensitive

data, and inflict
financial loss

Feb, 2019 Power Grid, Russia Unconfirmed
ICS, Substations

Equipment

Gained illegal access
to technological

control systems to
affect dozens of
settlements

Feb, 2020
Water treatment

plant in Florida, US
Malware,

Eavesdropping
Remote Access to
HMI Software

Manipulates the
chemical levels in the

water supply.

May, 2021
Colonial Oil
Pipeline, US

Ransomware (Via
–Spear Phishing Email)

Fuel Storage Units,
IT Systems

Led to fuel shortages,
urgent shut down
operations and
economic loss

Feb, 2022

Multiple Oil
terminals across
Belgium and
Germany,

Northern Europe

Ransomware,
DoS

Oil Refining Ports
and Storage
Facilities

Disable computers
of Energy

Department

Mar, 2023
Power Grid, South

Africa
Eavesdropping

attack
SCADA Servers,
EMS, Substations

Compromised systems
and establish remote
connections on the
electric utility to

change the payloads

According to the statistics reviewed, China, Singapore, Russia, and the countries of the

Commonwealth of Independent States (CIS) collectively account for the majority of cyber

attacks. In July 2018, the U.S. Department of Homeland Security (DHS) and Industrial

Control Systems Cyber Emergency Team (ICS-CERT) has issued the warning alerts

against the international threat actors, who have constantly targeted the energy sector

in the past. India, as a nation, is also undergoing rapid digitization across its various

sectors, and is also not immune to the increasing number and severity of cyber threats.

Figure 1.2 depicts the most affected countries which is very frequently been targeted by the

cyber attacks where India continues to be one of the top-three most attacked countries
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by nation-state actors in the Asia-Pacific (APAC) region, accounting for 13% of cyber

attacks. According to information reviewed by Mint [8], several high profile cyber attacks

Figure 1.2: Global landscape of cyber attacks

incidents that Indian power sector has been encountered so far includes,

� The March 2018 attack on Haryana distribution company (DISCOM), which

involved hacking into the commercial billing software of the highest-paying industrial

customers.

� The November 2017 malware attack on THDC Ltd’s Tehri dam in Uttarakhand,

India, which targeted the critical infrastructure to steal sensitive operational data.

� The May 2017 ransomware attack on West Bengal State Electricity Distribution Co.

Ltd (WBSEDCL), which affected the operations of the utility company and caused

a prolong blackout.

� The February 2018 attack on a Rajasthan discom website, which disrupted online

services and potentially compromised sensitive information.

Figure. 1.3 shows the statistical record of total number of cyber intrusions happened in

India as reported in the annual report of CERT-IN. The data reveals an exponential surge

in reported cyber incidents throughout last 6 years span upto year 2022 where year 2021

and 2022 has been found as the worst year so far for India when it comes to cyber attacks

[9]. It has also been noticed that Indian power sector are facing such cyber threats with

at least 30 events reported daily. All these aforementioned incidents highlight the growing

threat of cyber attacks on power sector and the need for enhanced and sustainable cyber

security measures to protect it against such threats. Therefore, to cope up with those

cyber physical challenges, countries like the U.S. Government, Department of Energy

(DoE) and NATO nations with the Cyber Defense Center of Excellence (CDCOE), are
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actively investing in research, development, and guidelines to enhance the cyber security

of their power infrastructure.

Figure 1.3: Statistics of reported cyber attack incidents in India since 2017-22

1.1.2 Types of Cyber Attacks in Power Grid

There are numerous types of attacks that could be carried out in SG. The most commonly

occurring attacks in SG are constructed with each aimed at compromising one or more of

the three security objectives: Confidentiality, Integrity, and Availability as shown in Fig.

1.4.

Integrity attacks [10, 11, 12, 13] target the legitimacy and consistency of information

within the system. Unauthorized individuals may gain access to the operator network

to modify or destroy legitimate data, compromising its accuracy and trustworthiness.

Integrity attacks seek to illicitly delay and alter the original data’s content, including

customer account and billing information, voltage and sensor readings, control commands

and device status to obscure the limited visibility of PS. In the context of power substation

networks, integrity attacks may involve broadcasting fake Address Resolution Protocol

(ARP) network packets to induce malfunction or disconnect RTUs and IEDs from the

substation gateway. Attackers typically penetrate the system’s network security through

methods such as password cracking, wiretapping, or exploiting software vulnerabilities to

gain authentication and access control. Once inside, they may inject false data, manipulate

code, obscure identity of legitimate devices or replay malicious data packets to mislead

system operators into making incorrect decisions regarding system operations.

On the other hand, Confidentiality and Availability attacks [14, 15, 16] aim to disclose

or steal intellectual property, personal privacy, and proprietary information, while also

restricting timely and reliable access to relevant information. These attacks can result in

loss of network availability, leading to adverse consequences such as the loss of real-time

monitoring of the power grid and major power blackouts. Attackers may conduct port
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Figure 1.4: Most commonly occurring attacks in SG

scanning and packet sniffing to capture network tariff information and execute Denial

of Service (DoS) attacks by flooding the network with illegitimate requests or jamming

communication channels, rendering them inaccessible for intended use. IP-based protocols

such as TCP/IP and IEC 61850 are mainly vulnerable to such availability attacks.

Additionally, confidentiality attacks like phishing, social engineering involve hackers

impersonating authorized users and surreptitiously enters a communication channel

between two parties. After then, attacker has gained the ability to eavesdrop on the

conversation, potentially steal data, or even spoof the messages between source and

destination.

The aforementioned attacks underscore the significance of implementing strong cyber

security methods to safeguard SG systems from malevolent acts. From the network

layer perspective, the risks presented by integrity, confidentiality, and availability threats

in the SG domain can be reduced by putting measures like encryption, access control,

intrusion detection, and security awareness training into practice. However, to keep

SG infrastructure secure and resilient in the face of challenging cyber threats from PS

applications or physical layer perspective, proactive attack detection, correction and

resilient monitoring and control framework is of urgent need for the overall defense to

secure our power grids.
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1.1.3 Taxonomy of False Data Injection Attacks in Smart Grid Based

on its Attack Model, Target and Impact

False data injection (FDI) attack, has emerged as a most sophisticated form of cyber

attacks in recent times and seems to be a topic of great interest for both, the SG industry

and research. Therefore, this subsection presents a comprehensive taxonomic overview of

FDI attacks particularly focusing on SG based on several key dimensions such as attack

construction model, end target applications, and its impact as shown in Fig. 1.5.

Figure 1.5: Taxonomy of FDI attacks in Smart Grid

FDI Attack Models: Various threat models exist for FDI attacks in Smart Grids, aiming

to disrupt grid operations. As per the existing literature, earlier the main assumptions for

the method of attack vector construction was attackers possessed complete knowledge

of system topology to remain undetected [17, 18]. However, this assumption is not

always realistic, as attackers often lack resources for extracting topological information

or face restricted physical access to sensitive meters. Later, it was well established, that

based on obeying some observability criteria between the attacking and non-attacking

region of a larger PS, a stealthy attack can also be constructed by exploiting the partial

topological information [19, 20]. Besides, recently alternative approaches of employing

data-driven model-free techniques and load redistribution adversarial models are also

gaining significant popularity. However, the stealthiness of an attack construction model

mainly depends on the nature of power flow (DC or AC) method considered in the

construction process [21]. This usually may differ in terms of attacker’s key motives such



8 Chapter 1. Introduction

as minimum allowable threshold selection criteria for successful attack launch, minimum

investment of attack resources and degree of complexity and attack efforts involving in

formulation of stealth attack vector. Although DC-based attacks are less complex and

stealthier, they’re less practical due to the majority of PS applications being nonlinear

with AC dynamics [22, 23]. Now, in the distribution side specially multiagent microgrid

(MG) system, another aspect is added with FDI attack model formation which defines the

centralized or distributed structure of MG network. Both of the structures associated with

low bandwidth communications channels for exchange of information among Distributed

Energy Resources (DER) units, equally vulnerable to FDI attacks.

FDI Target Applications: Cyber attackers typically target specific SG applications,

components, or functional entities across power generation, transmission, distribution,

and active distribution networks. As far as the generation and transmission sides are

concerned, Automatic Generation Control (AGC) is critical for maintaining grid frequency

by regulating load generation balancing. Attackers may target AGC sensor measurements

or control commands to cause frequency violations, triggering remedial actions leading to

system-wide blackouts [24]. Similar to this, State Estimation (SE) [10], another vulnerable

application in the Energy Management System (EMS), is also a prime target for the cyber

adversaries because its malfunction or large error in the estimated output could seriously

impair all other crucial ancillary services and applications, like economic dispatch, Optimal

Power Flow, and Contingency Analysis (CA). Attackers may deceive the CA process by

deliberately adding a transmission line contingency to the standard contingency list by

introducing fictitious data into the SE process which ultimately causes line overloading

and cascaded blackouts [25]. Aftermath of such event could also impact the Market

Management System (MMS) which aims at facilitating the electricity market operation

by setting location marginal price along with managing transaction between electricity

service providers and utility consumers [26]. Last but not the least, because DERs are

connected with insecure and unencrypted communication protocols on Active Distribution

Network (ADN) side, they are also most likely to be targeted by the PS hackers [27].

Impacts of FDI Attacks: The threat of cyber-attacks primarily impacts the stability,

reliability, dependability, economy, consumer privacy, and social welfare of Smart Grids.

First of all, FDI attacks can manipulate sensor data or control signals to cause voltage

and frequency instabilities in the grid which thereby initiates wrong control commands

that potentially leads to equipment malfunction, overload and physical damage. Injecting

false data disrupt normal power flow calculations, which by mistake, triggers unnecessary

outages on transmission lines [28, 29]. Reliability is also compromised by erroneous

data in decision-making processes, increasing the risk of equipment failures and service

interruptions. Successful FDI attacks weaken the grid’s ability to withstand disturbances,

making it more susceptible to blackouts. Attackers accessing MMS can misuse SCADA

advanced metering infrastructure to manipulate meter readings or falsify customer billing

information, leading to electricity theft [30]. Moreover, by manipulating the real-time and

day ahead pricing signal of electricity market operation through biased transmission line
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congestion, attacker can exploit huge financial profit in virtual bidding process. Finally,

the cumulative impact of FDI attacks, including equipment damage, service interruptions,

compromised grid resilience and energy theft, can result in significant economic losses for

utilities, businesses, and consumers, affecting productivity, revenue, and overall economic

stability of SG [2].

1.2 Literature Review

The aim of the present thesis work is to develop a holistic attack-resilient monitoring and

control framework. To this end, both, the transmission as well as the active distribution

network is considered in the study. A detailed literature survey is carried out in this

section, exploring the existing research, focusing on the cyber attack vulnerabilities,

current monitoring and control solutions, identifying the research gaps and emerging

challenges in the current cyber security frameworks.

1.2.1 Vulnerability Assessment and Its Resiliency Analysis

One of the most important tasks when it comes to power grid cyber security is knowing how

to identify and evaluate the system’s weaknesses as well as how resilient it is to external

events. The foundation of any cyber security strategy lies in vulnerability assessment,

which offers a methodical way to find flaws, openings, and other points of entry that could

be used by a perpetrator. As was previously mentioned, the modern installations of a

variety of equipment, including distributed sources, digital relays, phasor measurement

units (PMUs), RTUs, and IEDs, have become essential parts of this vital infrastructure,

spanning from the generation of electricity to its transmission and distribution which

makes the grid large, sophisticated, interconnected, and complex. This interconnected

nature results in a scenario where a single failure can have severe consequences, ranging

from medium-scale to large-scale blackouts and the destruction of major power equipment

such as transmission lines, transformers, and generators [31]. These failures can result

from two main categories of extreme events.

� Natural, having medium to high impact, high frequency events e.g., violent weather

condition, floods, earthquakes, etc.[32, 33];

� Synthetic, having high impact, low frequency events like cyber and physical attacks,

blended attacks, and human made accidents, etc.[34, 35].

Due to the wide-spread deployment of distributed sensors based technologies and highly

integrated nature of cyber-physical control systems, various critical infrastructures are

now a days becoming targets of various synthetic attack i.e man made attack. These

attacks pose a significant threat to the resilience and security of these infrastructures as

it is witnessed by 2015 Ukrainian power grid attack [36, 37]. A review of current trends

suggests that such attacks are expected to increase in the near future, and thus it is

imperative to focus on prevention, mitigation, and detailed vulnerability assessment in
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a holistic manner. By taking proactive measures to identify and address vulnerabilities

within the power grid, it is possible to enhance their resilience against potential synthetic

attacks. Therefore, the next two subsequent subsection will broadly discuss about the

literature pertaining to existing vulnerability assessment and the framework for resiliency

improvement.

1.2.1.1 Vulnerability Assessment

Reference [38] investigated how coordinated cyber-physical attacks can exploit

vulnerabilities in power systems that follow the N-1 security standard, potentially

overloading transmission lines, resulting cascading failures. A tri-level model is proposed in

to analyze these attacks by utilizing semi-definite programming relaxation and primal-dual

formulation for optimization. Case studies show that in N-1 secure systems, the proposed

attack can trigger the tripping of additional lines, or can creates N-1-1 contingency.

However, the attack’s impact is severely constrained by the load measurements’ bound of

change. A dynamic risk assessment model for CPS against cyber attacks is constructed in

[39] considering both software vulnerabilities in cyber devices and physical consequences

in power systems. It estimates the physical effects of minimum shedding loads in N-1

circumstances brought on by a maliciously controlled SCADA system in a substation.

Another multi contingency vulnerability algorithm is proposed in [40, 41], using graph

theory and DC power flow based linear sensitivity factors. As an aspect of a novel

vulnerability assessment model, [42] utilized a stochastic counterfactual risk analysis

method to get around data limitations of topological information. The research conducted

in [43] evaluates power system cyber vulnerabilities incorporating both physical failures

and cyber security risks by developing a statistical framework. This framework was built

upon human dynamic theory where attacker versus defender interactions are modeled via

static and Markov decision model. Reference [44] addressed the vulnerability of CPS

considering the impact of cyber layer failures on cascading failures. Vulnerability indices

are established based on network structure and power flow properties under different

interface and attack strategies, which helps to analyze the CPS performance before and

after cascading failures. The findings demonstrate that malicious attacks and critical cyber

nodes significantly increase vulnerability. Similarly in [45], a clustering-based vulnerability

evaluation framework is proposed adopting a mixed-integer linear programming (MILP)

approach for searching minimum combination of the most vulnerable communication

channels under certain extreme operational constraints.

Aforementioned literature survey reveals that majority of the reported cyber attack

strategies, and hence, their defense frameworks heavily rely on an aprior detailed system

studies. However, such a detailed analysis of the system along with so much of real-time

data might not be accessible to the attacker for devising an attack. Thus, it will be

beneficial if a vulnerability evaluation approach can be developed which exploits the

topological structure of the system, and thereafter, develops a cyber attack resilient

framework against such power grid structural vulnerabilities. Recently, the concept of
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Complex Network Theory (CNT), has gained considerable attention from the research

community for evaluating the structural aspects of the network’s system vulnerabilities

because of its prominent features and simpler approach of solving various large scale

problems in the domain of different complex networks i.e social networks, biological

networks, citation networks, brain network etc. [46, 47]. Centrality measures are the

essential tools of CNT, which estimate the significance of certain features of complex

networks according to the structural properties of nodes, edges, and their level of

connectedness. There are essentially two categories of centrality metrics exits that are

frequently used to assess the effectiveness of any real world network dynamics and analyze

its influential nodes or edges depending upon the network structure: those that use local

information and those that use global information [48]. Since it only looks for local

information, the local metric has the advantage of a somewhat faster computing speed,

whereas the global metric has a moderate to high computational complexity but measure

network’s overall performance from a wider angle.

Numerous interdisciplinary studies have been conducted by modeling conventional power

grid within the framework of CNT, which used various fundamental traditional centrality

indices, such as degree centrality, betweenness centrality, closeness centrality etc., to assess

the structural vulnerabilities of power network by quantifying the structural importance

of any nodes or edges [49, 50, 51, 52, 53]. The results have shown that electric power

networks not only have the characteristics of small-world networks [52], but also have

the crucial characteristics of scale-free networks [51, 53], which make it vulnerable to

deliberate attack and sturdy to random attack or accidental failure of transmission lines.

In [54], a two-step screening-and-ranking approach is proposed to assess the vulnerability

of transmission grids under extreme contingencies i.e natural and synthetic attack event.

At its first step, vulnerable transmission lines are selected based on critical eigenvalue

sensitivities and topology analysis that searches for the cutsets in the system leading to

islanding. In the next ranking step, time domain simulation are performed to rank those

screened out transmission lines according to their actual dynamic impacts. Since most

cyber criminals will only possess a limited amount of system information, a standard

power grid N–1 security analysis cannot be expanded to fully evaluate the risk. Therefore,

authors of [55] make use of graph theory based closeness and edge betweenness centrality

metric to investigate cyber physical vulnerabilities for N-X contingencies with limited

resources. The simulation results of the method shows that pertaining to the loss of bus or

node injection, closeness centrality seems to be a superior vulnerability assessment tool for

identifying high impact event than the edge betweenness centrality which aim to assess the

loss of multiple line outages. However this centrality based methods have a limitation on

selecting maximum number of top contingencies upto three. In reference [56], an extended

betweenness centrality metric is used by incorporating some electrical parameters in the

formulation of traditional centrality to identify vulnerable components of the network. But

in that ranking scheme topological attributes are completely ignored and dynamic ranking

are also not incorporated for power system vulnerability analysis. Therefore, it will not be
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as good as contingency ranking metric to identify critical components. In [57], an improved

betweenness is proposed over adjacent graph based on mapping of topological parameters

to electrical network to assess the vulnerable features of the transmission networks. But

this proposed approach, includes the effect of overload mechanism only due to spontaneous

fault but not the impact of attack. The authors of [58] developed various node-attacking

strategies and conducted an empirical analysis of their effects on the structural perspective

and operational performance of the power grid using a number of conventional centrality

metrics. But the only attacks shown are node attacks, which are less probable than line

attacks.

1.2.1.2 PMU Equipped Secured Metering Framework

One way of utilising the vulnerability assessment results is to exploit the vulnerable points

in designing of a secured metering groundwork to prevent or mitigate the effect of the

cyber-physical attack on the grid infrastructure. Identification and then protection of

basic measurements set with advanced information technology (IT) security measure or

safeguarding certain measurements with the deployment of PMU are the key ideas to

improve the resiliency in attack detection frameworks [59, 60]. A greedy approach was

presented in [17, 61] to choose a small subset of measurements that must be protected

against data integrity attacks by strategically placing secured PMUs so that the attacker’s

attack resources rise several times higher than they would if there was no protection.

However, the greedy approach based methods may stuck in local optima and thus not

able to assure the best optimal choices of PMU location all the times. Finding the bare

minimum number of connected lines in a system architecture to maintain observability

requirement is also crucial for executing vulnerability evaluations and enhancing online

security monitoring, in addition to identifying critical PMU deployment locations. An

observability recovery problem is thus formulated as a MILP problem in [62] to find the

locations for sequential restoration of PMUs after a massive cyber attack on the grid

that affects the situational awareness and cyber physical resilience. However, a priori

information of optimal sets of PMU based on greedy and random strategies are required

in advance to accelerate the recovery process. Reference [63] have effectively addressed

this issue through the development of a bi-level optimization problem where the lower level

problem carries out the job of finding traditional Optimal PMU Placement (OPP) for some

selected combination of secured lines and the upper level problem is used to determine the

optimal allocation of specific lines, allowing utilities to make better decisions regarding

power system monitoring based on available information of critical buses and transmission

lines. The major difficulties that arise out of the optimization problem are lack of

transparency between two levels which obscures interpretability of accurate line selections,

convergence issues over a large scale system and computationally expensive and complex

solutions. Another methodology for optimizing the placement of PMUs considering both

system and topology aspects of disturbances are presented in [64]. The proposed approach

intends to improve the accuracy of pre- and post-disturbance monitoring, especially for
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single transmission line outages, by articulating the PMU placement problem to assure full

observability of power systems and integrating post-disturbance variations. The authors

of [65] demonstrate an ingenious pre-deployment PMU technique that works in harmony

with the current PMU deployment approach. This is capable of deterring an attacker

from successfully launching a linear FDI attacks. In order to combat different injection

in wide-area monitoring and control systems, a multi-sensor temporal prediction based

wide-area control method is developed in [66]. This method collects real-time measurement

data from available PMUs, modifies those estimates using a temporal prediction filter

to find any discrepancies. However, the effectiveness of the temporal prediction filter

heavily relies on its ability to identify patterns specific to malicious injections thus it

might lead to false positives, where discrepancies are identified even when no malicious

injection is present. This can trigger unnecessary control actions and disrupt normal grid

operations. Modified Teaching-Learning Based Optimization has been used to solve this

multi-objective PMU placement problem. An end to end PMU-based attack resilient cyber

physical framework in Wide Area Monitoring and Control System has also been portrayed

in [67]. In this work, an in-depth resilient architecture, various attack resilient algorithms

are developed which effectively denominate the aspects of cyber-security risk assessment,

attack detection, prevention and mitigation approaches. The above mentioned literature

survey reveals that majority of the existing approaches are computationally expensive,

complex, requiring apriori system information, struggling to find global optimal PMU

locations, often settling for suboptimal solutions and mainly focusing on observability

without considering the order in which they installed in face of multi-layer of line outages

which mainly caused due to cyber attacks. Thus, a simple yet effective smart metering

placement framework is still of interest which can secure an optimal set of measurements

using minimum investment.

1.2.2 Replay Attack Resilient State Estimation Framework at

Transmission-Level

Once a secure PMU infrastructure is established throughout the system, the next

subsequent critical task is leveraging these secure measurements in EMS applications,

notably Power System State Estimation (PSSE). However, the PSSE is highly susceptible

to various data integrity attacks, specially Replay Attack (RA), emphasizing the need

for an attack-resilient framework to safeguard PSSE, upon which many other EMS

applications like optimal power flows, economic dispatch, contingency analysis rely.

Therefore, the following subsection will delve into existing literature on available security

measures for attack-resilient PSSE against RAs. It has been acknowledged by various

research studies that sophisticated data integrity attack such as FDI attacks, RAs etc are

designed with the intention to fool the traditional state estimator and remains undetected

from the defender’s surveillance which ultimately arises the concerns of detection and

control of attack extremely challenging. There mainly three broad categories of cyber

attack that very frequent to been seen in CPS are: denial of service attacks, where
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superfluous illegitimate requests are being sent to the host machine to temporarily or

indefinitely disrupts it services; data injection attack, where a carefully designed synthetic

unknown value is injected with the original measurement set to falsify it without being

noticed by defender’s security mechanism; and replay attack, where a valid transmission of

data is first fraudulently recorded and then maliciously repeated or delayed with the use of

a record-with-replay attack script features as shown in Fig. 1.6. The first two categories

of attacks can be somewhat minimized or prevented to some extent by using anomaly

identification and multi factor based authentication tools, implementing strong firewall,

intrusion detection and data loss prevention mechanism, advanced statistical and signal

processing based attack detection methods [68]. However, as compared to above two types,

on one hand replay attacks are in general very easy to be executed in real practice and on

the other hand a bit difficult to be spotted due to maintaining statistical similarities of

the replayed signal with the original observations and thereby having capability of passing

examination of cryptographic keys, resulting interrupting the power delivery and degrade

system performances. Thus, this subsection explores those literature that intend to replay

attack (RA) detection and its secured isolation from the CPS.

Figure 1.6: Execution of Replay Attack and its impact on Power System State Estimation

To ensure the security and reliability of CPS in the face of RAs, various defense mechanisms

have been proposed out of which attack detection is considered as a fundamental element

of security measures. The existing literature classifies these defense approaches into two

main categories: Passive Approaches and Active Approaches.
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1.2.2.1 Passive Approaches:

The Passive Approaches are the ones which utlise some observatory parameters such

as model residuals, measurement estimates, computational and sensory resources etc.

References [69, 70] investigate the issue of RAs in securing distributed state estimation

using a multisensor approach. At first, the compromised sensors are identified and then

with the help of designed distributed observers the adverse effects of the attacks can

be eliminated. Another approach for secure state estimation in CPS is presented in

[71], emphasizing multisensors information fusion. However, the above-mentioned studies

needs for further development in improving the detection rates of RAs. Additionally, this

multi-sensor based RA detection method assumes proactive protection of some sensors by

operators, making them immune to manipulation but involving computationally expensive

operations, limiting real-time implementations. Kalman filter integrated with linear

quadratic Gaussian regulator is used in [72] to develop a data driven methodology to

detect RAs in SCADA sensor or meters. At first, the state space modelling of plant and

measurement function is derived and then statistical measure over the model residuals are

utilized to detect RA. However the proposed approach is limited to liner-time invariant

system only. Reference [73] introduces a modified receding-horizon control approach for

discrete-time linear time invariant system to address RAs and assesses its impact on

the system performance. In sensor networks, the issue of distributed H∞ filtering in

discrete-time nonlinear systems susceptible to RAs is examined in [74]. It establishes

a pattern to explain the temporal behavior of RAs and adds an indicator variable to

detect them. A real-time, PMU-based data-driven cyber-attack detection mechanism is

proposed in [75] to detect continuous RAs in wide-area monitoring, protection, and control

system employing Autoregressive Integrated Moving Average modeling and Kullback

Leibler divergence analysis. However, a major disadvantage of this time-series model

based replay attack detection method is the substantial amount of data preprocessing

and tuning work required. It is highly dependent on precise topology knowledge and

system parameters, which may vary according on the load conditions, as well as a

precise understanding of the probability distribution of time-series data. In order to

successfully identify RA, the authors in [76] use the relative changes in eigen value

information derived from singular value decomposition and Pearson correlation of PMU

measurements. However, there are growing concerns over the method’s effectiveness and

a significant computing overhead, especially when dealing with RAs that exhibit delays

or long playback duration. A new control strategy is proposed in [77] utilizing standard

Model Predictive Control (MPC) scheme to detect replay attacks and take corrective

actions. It leverages the receding horizon nature of MPC and the concept of controllable

sets to identify inconsistencies caused by replayed data. An idea of using blockchain-based

decentralized framework to addresses the challenge of detecting cyber attacks in large-scale

power systems with real-time sensor data is first conveyed in [78]. This approach focuses

on detecting coordinated RAs based on locally reported alarms and associated statistics,

while preserving data privacy. In general, the major limitations of the above-mentioned
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passive approaches lies in the fact that, firstly some of the methods are not suitable for

bulk power delivery systems as in such case it is very difficult to get suitable linearized

model without much approximations. The accuracy of some of the model-based techniques

heavily depends on the topology information and knowledge of system parameters which

may change in loading condition.

1.2.2.2 Active Approaches:

Active approaches to RA detection involve intentionally injecting an external signal, such

as noise or a specific watermarking signal, into the system to monitor its response. These

methods rely on analyzing the system’s output in relation to the injected input to detect

RAs effectively. The receiver compares the system’s response to the injected challenge

with a pre-defined expected response based on the challenge design. Unlike passive

approaches that rely solely on analyzing existing data patterns, active methods create

a dynamic environment where deviations from expected behavior can reveal anomalous

sensor readings caused by replay attempts of the adversary. A popular strategy for RA

detection in active techniques is the addition of watermarking signals [79, 80, 81, 82, 83],

i.e., encrypt the measurement signals and control inputs with embedding watermark.

Subsequently, a range of statistical tests are conducted in an attempt to potentially detect

RA signals and suggest countermeasures for attacks. This watermark can be a random

sequence, a cryptographic hash, or any signal designed to be easily detectable by the

receiver. For example, an intriguing approach for periodical injections of independently

Gaussian noise or any harmonic oscillation to the control signal which is only known

to defender was carried out in [79, 81]. This carefully chosen ”noise” introduced into

the system is commonly known as watermarking, which deliberately creates discrepancies

between the genuine system states and the compromised ones in the event of RA. Unlike

the previous method, authors in [82] proposed a frequency-based detector for RA detection

in CPS where a sinusoidal watermarking signal with a time varying frequency as an

authentication signal was injected in the closed-loop systems and then checks if the

frequency components in the output signal match the time profile of authentication signal

or not. However, these strategies are effective in achieving high accuracy in detection,

but it necessitates meticulous design and safeguarding of the authentication signal with

compromises in controller performance. In reference [83], the authors explored a dynamic

variation of watermarking which involves embedding unalterable patterns into a medium,

capable of detecting any manipulation of sensor measurements. Apart from these, there are

other variants of watermarking methods can also be found out in literature such as additive

[84], multiplicative [85], time-varying [12] and optimal watermarking [86]. Additional

complexity with increased cost in the design and implementation of those watermarking

signal generator is one of its major hindrance with this class. Also the assumption of taking

full access of all the available sensors in the CPSs followed by some of the papers seems not

to be so realistic in practical sense. Nevertheless, this approach has also certain weakness

such as: Need of improved detection rate, RAs identification may gets failed if signal be
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encrypted by the attacker before coded and limited tolerance for extended-duration RAs.

The preceding literature surveys have effectively underscored the critical need for secure

metering and resilient infrastructure at the transmission (T-system) level, along with

existing approaches to address these challenges. However, as the focus of this thesis extends

to provide an end-to-end cyber attack resilient monitoring and control framework, it is

crucial that power system researchers should also consider the distribution (D-system)

side’s cyber attack vulnerabilities as well. This is particularly relevant in the context

of microgrid systems, which are currently been experiencing rapid growth in distributed

renewable energy penetration but often lack robust cyber security measures. Therefore,

the subsequent literature survey sections will now delve into the detection and security

measures of D-systems, necessary to maintain reliable and resilient distributed energy

infrastructure. Thus, to start with, the next literature review section will now explore

methods for accurately detecting, classifying, and localizing cyber attacks within MG,

aiming to enhance the overall cyber security posture of critical energy systems.

1.2.3 Cyber Attack Detection and Classification Techniques in Islanded

Microgrid at Distribution-Level

The concept of microgrid brings up a new dimension in monitoring, protection and control

of information and power flow to the existing distribution management system (DMS)

which fulfills the gap between the reliability and sustainability requirements and manages

diverse power demand issues economically with the advantages of significant reduction of

pollution margin, higher energy utilization rate, lower power transmission loss, etc with

the effective and coordinated integration of (DERs). All of these multifaceted benefits

makes MG to be a promising solution for future self-reliant autonomous power delivery

networks which can operate in either grid-connected or islanded (autonomous) mode via

three-level hierarchical control architecture: primary, secondary, and tertiary [87, 88].

Among these hierarchies, secondary control is the main critical component which guarantee

the reliable operation of MG by compensating any deviation in the voltage and frequency

parameter with the help of exchanging global information among the neighboring DERs.

In that perspective, MG is also be a part of complex CPS and familiar to be known

as an networked control multiagent system where each DER is treated as an agent and

they have the privilege to communicate among themselves to serve certain system-level

objectives and thus reach to a global consensus agreement [89]. Figure 1.7(a) and 1.7(b)

shows two commonly used communication architecture of DMS i.e (a) Centralized and (b)

Distributed, where the co-operative secondary control mechanism for both of the above

control structures are equally vulnerable to high risk of data manipulation attacks due to

widespread use of remote sensing, transmitting and computing devices such as sensors,

actuators, controllers, and vulnerable communication links. Alongside the high volume

deployment of power electronic converters with their cloud-based software-intensive

controllers integrated with unencrypted susceptible communication protocols such as

Modbus, DNP3, IEC 61850, TCP/IP, make the sensors to be easily compromised, alter the
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data of communication ports via packet sniffing and thus creates a treacherous channel

for the intruders that allows them to take full access of DMS for hijacking the DER’s

controllers and thereby perform numerous malevolent activity in the grid [90, 91]. The

injection of corrupted data either in the secondary controller of DERs or in its neighboring

communication links forcefully introduces significant errors in the voltage and frequency

distributed secondary consensus law that drives the whole system towards instability.

Under these circumstances, timely detection of malicious attacks with correct identification

of either the misbehaving agents or the corrupted incoming communication link is very

important in the aspect of cooperative network-based MG system. The existing literature

(a) Centralized (b) Distributed

Figure 1.7: Microgrid control structures, its communication network and its arena that’s
prone to be attacked. (i) Controller hijacking attacks, (ii) False data injection to
communication channels, and (iii) Sensor compromised.

on cyber security issues in islanded MGs can be broadly categorized into three main groups.

The first group focuses solely on cyber attack detection, classification, and localization,

techniques aiming to quickly identify and isolate the affected DERs to restore normal MG

operation. However, this approach may result in compromised DER utilization and impede

maximum power serving capabilities of the MG system. The next two research groups

focus on developing resilient frameworks to mitigate the effects of injected attacks, ensuring

continued reliability and functionality despite persistent potential security threats. Thus,

this current subsection highlights the works belonging to the first group only, while the

next subsection will delve into the details of the next two groups.

In that reference, to address the issues related to cyber attack detection, the authors in

[92] exploit the difference in output of secondary voltage sublayers of DERs to propose a

cooperative vulnerability factor index that can differentiate the attacks on the voltage

sensors of the corrupted agents. At the onset of attack this factor will converge to

some non-zero steady state value, indicating the possibilities of cyber manipulation. A
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unified anomaly detection approach is presented in [93] to calculate a data integrity index

using the Laplacian disagreement function which is nothing but the consensus error of

the communication graph topology following which agents are communicating among

each other within a MG cluster. The False Data Injection Attacks (FDIA) detection

problem in [94] was formalized as monitoring a change in the set of some MG candidate

invariant parameters and identified DERs are then removed from the system in order to

regain MG stability. A discordant-based detection method is proposed in [95] using the

local and neighboring measurements to distinguish the attack nodes under deception and

destabilization attacks on the current sensors. In reference [96], parametric time–frequency

logic was employed to classify cyber attacks and fault-based anomalies in MG. The

proposed detector utilizes time–frequency information extracted from training datasets,

which include anomalous data. During the testing phase, this information is applied to

identify abnormal elements among the normal inputs. Authors in [97], present an idea

to detect FDIA and DoS attacks in the sensors or communication networks based on

signal temporal logic which basically works by evaluating output voltage and currents

of a MG against desired specifications and comparing it with some operational bounds.

A robust cyber-attack detection algorithm is proposed in [98, 99] based on the safe

estimation of states using the Kalman Filtration techniques while modeling the whole

MG in state space. Apart from the above-mentioned model-based methods, a few more

existing works had used various data driven neural network and machine learning-related

model-free methods, such as Artificial Neural Networks [100, 101], Recurrent Neural

Networks [102], Reinforcement Learning [103, 104, 105] and Deep Learning [106, 107]

to detect, classify and localized the attacked node i.e., DERs in MG. However, the issues

with the above-mentioned methods seem to be quite complex and need accurate model

verification tools. Alongside these model-free approaches also increase the computational

burden and system complications due to requirement of voluminous labeled data to train

the detectors.

It has been observed from the above literature that most of the existing works are

implemented keeping voltage regulation and current sharing of DC MGs as a target

application and only few works among [108, 109, 110, 111, 112, 113, 114, 115, 116] are

primarily focused on detection of cyber attacks over consensus-based distributed secondary

control of AC MGs. In [108], a time-dependent cryptographic technique, named as Link

Error Counter is used to detect any data manipulation on the communication links.

A chi-square test enabled, residual-based cyber attack detection method is proposed

in [109] which utilizes a cyber physical real-time reference model built upon a digital

real-time simulator. Authors in [110], used subspace identification method of control

theory as an integrated approach for the detection of attacks in AC MG’s sensors,

controller’s input and local loads via modelling the MG as a state space representation

of CPS. The overall detection framework however is based on centralized secondary

control infrastructure which is computationally expensive and prone to be affected by

single point failure. Additionally, although the above proposed detectors able to quickly
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spotted the multiple attacks with different level of accuracy, but such chi-square test

based attack detection method failed to work faithfully for stealthy attack in the MG

[117]. A fully distributed synchronous detection method is proposed in [111] to detect the

attack DERs by relying only local neighboring communication information. Reference

[112] introduced a novel noninvasive anomaly diagnosis mechanism for inverter based

resources, aiming to ensure reliable and secure operations by classifying grid faults and

cyber-attacks. After collecting locally measured voltage and frequency inputs and mapping

them in a XY-plane, the proposed approach can able to draw the characterization process

by utilizing physics-informed empirical laws and sample-based trajectory analysis. It

still needs qualitative data for training related to various fault scenarios even though

it does not require complicated mathematical models. Designing mechanisms for such

high-accuracy anomaly diagnosis is further restricted by the availability of such qualitative

data. Authors in [113] proposed a framework for developing cyber-security test bed that

counteracts with emerging vulnerable cyber intrusions in power distribution systems which

can jeopardize the safe and reliable operation of DERs. Various types of non-parametric

and parametric attacks, their effects and the proposed countermeasure are demonstrated

via HIL simulation. An attack detection and identification method based on dynamic state

estimation using an unknown input observer (UIO) can be found in [114, 115]. This method

estimates MG states and generates a residual function to detect FDI attacks, triggering

a detection alarm for attack isolation and mitigation. In order to achieve the objectives

of correct identification of attacked agent in the distributive communication network,

a relative entropy based attack detection technique utilizing kullback-liebler divergence

(KLD) criterion is presented in [116]. As per this method, by exploiting the statistical

properties inherited by KLD of auxiliary secondary frequency control input of a DERs

under normal and compromised situation, attack can be detected. However, the technique

described imposes a considerable communication overhead and computational burden on

distributed secondary control. Recent research, such as [118], has also highlighted concerns

regarding the complete detectability of the KLD method. It has been demonstrated

that attackers can still achieve stealthiness by exploiting mathematical expectations,

covariance, and probability distribution knowledge on normal innovation and designed

upper bound parameters of KLD statistics.

While the first group of methods is able to detect attack and is able to mitigate it by

only restricting its spread through the complete isolation of infected DERs, they may

suffer with following major drawbacks: (1) Decreasing system utilization efficiency, (2)

Requiring upgradation of existing secondary control hardwares, and (3) Undermining

consensus agreement in case of severe attacks. Moreover, majority of the above literature

is based on two pessimistic assumptions [119]: (1) The information communicated from the

leader DER is not attackable as the operator strongly safeguards such links through some

expensive advanced security mechanisms, and 2) the resiliency of the network controlled

multiagent system depends on the characteristic features of the network topology, i.e., the

network should always posses graph connectivity of at least more than 2f . That means,
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to prevent f malicious DERs from disrupting the operation of its neighbouring DERs in

distributed consensus rule, the minimum connectivity requirement for detecting attacks

and achieving resiliency with disseminating information reliably is to make at least (2f+1)

neighbours DERs to be intact. Both these assumptions are not always practically possible.

Thus, an efficient cyber attack detection scheme is of interest which can work accurately

even if these assumptions are relaxed.

This motivated to explore the following literature that solves the issues highlighted above,

in the first group by designing a suitable framework where the resiliency against persistent

attack penetration into the MG system can be achieved through successful mitigation of

the attack effect.

1.2.4 Cyber Attack Resilient Control and Mitigation Techniques in

Islanded Microgrid

The second group of research literature involves incorporating additional data signals

alongside commonly transmitted signals in the secondary control layers. This necessitates

the implementation of an extra communication layer commonly called as Hidden Layers

to design a special control laws to mitigate the attack and thus achieve resilient operation.

For instance, in [120] a robust hidden layer-based attack resilient distributed secondary

frequency control (DSFC) scheme is proposed to eradicate attacker’s effort. This scheme

is based on designing a suitable hidden-layer of a virtual system placed on the top of

communication layer and securely coupled with the entities of physical and communication

nodes. However, this method has limitation in selecting some carefully designed

virtual system parameters which if being accessible by the attacker can cause loss of

synchronization among DERs. A similar kind of attack containment based control method

is presented in [121] where, a virtual control layer is designed with hidden networks in a

cooperative and adversarial multi-inverter MG network. The concept of proposing resilient

cooperative distributed secondary control scheme with integration of original MG system

to a virtual system via interconnection of some virtual communication layers, shielded from

being subjected to cyber attack is also fostered in [122]. Reference [123] introduces another

cross-layer resilient control strategy for an islanded AC MG against FDIA and DoS attack

where the bottom layer comprises of physical inverters and load, middle layer contains

communication network for relative information exchange among inverters and the top

layer represents a masked virtual parallel control network that execute resilient control

commands in face of cyber attacks. A few more resilient methods that contain an original

system, a virtual network and its associated hidden layers can also be found in [124, 125].

This competitive design criteria of those methods are verified by the Lyapunov-based

stability theorem to ascertain guaranteed consensus dynamics while the attackers either

intercept the DERs communication networks and corrupt its local state feedback input.

In [126], a novel intrusion mitigation approach is proposed based on a weighted mean

subsequence reduced (WMSR) technique to control the information flow of corrupted

DER via a virtual communication graph. However, the applicability WMSR technique is
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limited by the minimum algebraic connectivity requirement of the communication graph

for providing consensus among the DERs. To enhance the maximum resilience of the

AC MG in the scenarios where DSFC of all DERs are compromised, the authors in [127]

proposed a resilient co-operative frequency control framework. This framework introduces

a few auxiliary state and resiliency index variables into the conventional secondary control

scheme which basically counterbalance the negative effects of the attack penetration by

regulating auxiliary control inputs. However, aforementioned mitigation methods are

effective in dealing FDIAs in DSFC controllers and communication links, but the additional

cost and computational burden due to incorporation of additional hidden communication

layer is a mater of concern for its practical implementation, specially for large systems.

The third group of work mainly focuses on using some observer-based finite time control

scheme or computation of some off-set compensatory terms to control the impact of

the attack on MG secondary control action. For instance, the detection and isolation

problem of FDI attacks are effectively dealt in [128] by introducing an interval observer

to estimate the interval state of the physical system accurately and then utilizes interval

residuals as a detection threshold. Additionally, an attack signature logical judgment

matrix-based isolation algorithm is also proposed to isolate sensors where FDI attacks

may be injected. Another residual observer based attack detection and mitigation method

is discussed in [129] which exhibits it effectiveness in dealing with intermittent integrity

attack in MG while satisfying network and stability constraints. Using distributed

observer, an improvised attack detection and compensation method based on confidence

and trust factor with faster convergence speed are proposed in [130, 131]. In [132],

conventional secondary control is replaced by a novel integrated distributed control for

frequency and voltage regulation to make the controllers resilient to cyber-attacks. A

distributed adaptive algorithm is proposed in [133, 125] by combining a distributed state

observer and H∞ controller to mitigate the deception attacks on the MG controllers

and sensors. In [134, 135], the authors employed distributed sliding mode control to

estimate false signals and calculate cyber-resilient offset compensation terms, aiming to

effectively mitigate cyber attacks in AC MGs. However, such methods necessitate heavy

tuning efforts to properly scale hyper-parameters of the models and hence dynamic load

sharing performance and retaining system stability against persistent attack situation is

questionable.

Table 1.2 presents a comparative state-of-the-art summary of the existing literature on

cyber-attack detection and mitigation strategies, emphasizing its key differentiating factors

such as type of system considered, requirement of additional resources, computational

overhead, resiliency capacity, response against natural events, and detection and mitigation

capability. Furthermore, it highlights the validation tools adopted by each approach,

providing insights into their effectiveness and applicability in real-world scenarios.
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Table 1.2: Comparative Performance of various Cyber Attack Detection and Mitigation
Schemes for Islanded MGs

Ref
Grid
Types

Processing
Overhead

Resilience
Capability

Additional
Resources

Effectiveness
During Fault
and Load
Change

Attack
Types

Localization
of Attacked

DERs

Attack
Detection

and
Isolation

Mitigation
Validation

Tools

[136] AC High N/2 VHCL × FDIA/
DoS

× ✓ × Matlab

[137] AC High N/2 × Load FDIA × ✓ × PSCAD/
EMTDC

[138, 98] DC High NS LO+UIO × FDIA ✓ ✓ × Matlab

[131, 130]
[139]

AC High N/2 DO Load FDIA × ✓
Case

Dependent1
Matlab

[116, 108] AC High N/2 × × FDIA/
DoS

✓ ✓
Case

Dependent1

Opal-RT
HIL+

Raspberry
Pi

[126, 120] AC Medium N VHCL × FDIA × × Case
Dependent1

Matlab

[121] AC High N/2 VHCL × FDIA × × ✓

Typhoon
HIL+

dSPACE
1202

[123] AC High NS VHCL Load
FDIA/
DoS

× × ✓
PSCAD/
EMTDC

[132] AC Medium N DO+AC Both FDIA ✓ × ✓
PSCAD/
EMTDC

[133, 140] AC High N DO+AC Load FDIA × × ✓ Matlab

[141] AC Low N-1 × Both FDIA ✓ Detection ✓ Matlab

[142] AC-DC Medium N/2 DO × FDIA × × Case
Dependent1

Opal-RT+
B&R PLC

[143, 144]
[110]

DC Medium NS × × FDIA/
DoS

✓ ✓ × Matlab

[145] DC Medium N/2 DO × FDIA ✓ ✓
Case

Dependent1
Matlab

[101] DC High NS
Training
Data

Load FDIA × × ✓ Matlab

[146] AC High NS
Training
Data

Load FDIA × ✓ × Matlab

[147] DC High NS
Training
Data

× FDIA × ✓ × RTDS

[111] AC Low NS × Load FDIA ✓ ✓ × Matlab

[148] AC Medium N/2 × Load FDIA ✓ Detection ✓ Matlab
1Depends on the nature of algebraic graph connectivity, N: Number DERs unit in MG, NS: Not Specified, VHCL: Virtual hidden Control Layer,

DO: Distributed Observer, LO: Luenberger Observer, UIO: Unknown Input Observer, BSMC: Backstepping Sliding Mode Control, AC:
Adaptive Controller/Compensator, HIL: Hardware-in-Loop
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1.2.5 Cyber-Secured Islanding Detection

The rise of DG systems has brought about the critical issue of islanding, wherein a section

of the distribution network becomes electrically isolated from the main power grid but

remains powered by DGs. It is imperative for DG systems to possess robust islanding

detection capabilities to mitigate the risks associated with islanded operation. Failure

to promptly disconnect islanded generators within 2 second of its formation can lead to

various complications for both the generators and the connected loads, including safety

hazards and equipment damage. This issue however is now becoming more complicated

due to recent rapid digital innovations happening within the grid which enables physical

and remote access to the sensor measurements and local controls to be easy and unsecured,

makes widesperad use of communication servers and networks immensely vulnerable and

heightened the infidelity about the quality and integrity of received islanding data. To this

end, the first segment in this section explores various conventionally available methods for

detecting islanding and non-islanding events, while the second segment delves into efforts

to fortify islanding detection schemes against cyber manipulation or preemptively detect

cyber interference prior to islanding decisions.

1.2.5.1 Conventional Islanding Detection Methods:

In the event of any abnormal condition or fault at utility side, the accurate identification of

islanding is very crucial for changing the operating control modes of DGs to autonomously

operate in islanded condition and ensure reliability of power supply. Thus, to provide

guidelines and requirements for the grid interconnection reliability and performance

requirements for DGs under unintentional islanding scenarios, various islanding detection

standards are prepared as listed in Table. 1.3. However, as far as the detection is

concerned, the existing literature of conventional islanding detection methods (IDMs) are

primarily classified into three categories: (1) Remote or Communication-based Methods,

(2) Active Methods and (3) Passive methods.

Table 1.3: Islanding detection standards

Parameters IEEE-1547 IEEE-929-2000 IEC-62116

Quality Factor 1 2.5 1

Detection time (Sec) t<2s t<2s t<2s

Frequency range (Hz) 59.3 ≤ f ≤ 60.5 59.3 ≤f ≤ 60.5 (58.5) ≤ f ≤ 61.5 )

Voltage range (p.u.) 0.88 ≤ V ≤ 1.10 0.88 ≤ V ≤ 1.10 0.85 ≤ V ≤ 1.15

Remote or Communication-based Methods: This method need a dedicated communication

infrastructure between control unit of DGs and utility grid to determine the islanding

state [149]. In [150], a power line carrier communication signal is broadcasted from

the utility substation to a designated distribution feeders path. In case the signal is

lost by the receiver of DGs, an islanding scenario is suspected. There is an idea of

using transfer trip which majorly monitors the status of all the circuit breakers and
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reclosers of an area to take decision over islanding events. This scheme needs standard

data communication for the practical implementation [151, 152] . There are some other

types of remote-based method also exists which necessitates installation of some electronic

component such as inductor or capacitors which are normally connected in open state.

However as soon as islanding occurred, the circuitry of the component gets closed due

to significant changes of impedances detected at Point of Common Couplings (PCC) side

[153, 154]. Nevertheless the remote or communication-based IDMs are very fast with

having almost zero Non Detection Zone (NDZ), but the major obstacles of the practical

implementation of such methods is huge capital investment over specialized hardware

and expensive communication infrastructure requirements which might gets failed in any

adverse system condition.

Active Methods: This philosophy of this method is to inject some minor disturbances

in to the DGs control unit to observe how that influence the power system parameters.

This observances introduced a large impact against such a modest disturbance injected

when the DGs are actually islanded, whereas the impact can be usually negligible in grid

connected condition. In [155], a disturbance is generated by injecting a signal equivalent

to 1% of the d-axis current reference at a frequency of 20 Hz. Additionally, in [156], a

disturbance is introduced into the maximum power point tracking controller when the

absolute deviation of the output voltage exceeds a predefined threshold. In addition,

various other considerable contributions to the active islanding detection techniques are:

harmonic current injection and harmonic distortion-based technique [157, 158], impedance

based active frequency drift [159], sandia frequency shift [160], active slip frequency [155],

phase angle shift [161, 162], Active correlation [163, 164], negative sequence current

injection [165] etc. Although active methods have a zero Non Detection Zone (NDZ),

injecting disturbances into the inverter control circuit can degrade power quality, cause

unwanted transients, and result in reduced performance, particularly in scenarios with

multiple DG systems.

Passive Methods: Continuous monitoring of power system quantities and electrical signals

at the PCC and thereafter compare its natural variations with a predefined thresholds are

the key working ideology of this method. The conventional passive islanding detection

methods such as over/under voltage (OUV), and over/under frequency (OUF) are now

modified or combined with some other signal-processing and machine learning based

techniques as reported in various literature. For example, support vector machine

[166, 167], principal component analysis [161], Decision Tree [168], Wavelet Transform [169]

and other neural network based [170, 171] approaches are the example of few modernized

ML techniques commonly familiar for islanding detection. Reactive power control based

method [172] is another very popular passive anti-islanding detection technique which rely

on monitoring reactive power variations within the power system to detect islanding events

passively, without the need for actively injecting signals or modifying system parameters.

Reference [173] utilize the rate of change of dynamic load behavior to devise an passive

islanding scheme consisting of both synchronous and inverter based generation. Apart
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from this, a few more passive islanding techniques such as Rate of Change of Frequency,

Rate of Change of Voltage Phase angle, mathematical morphology, modal decomposition,

transient event detection along with positive sequence superimposed current angle at PCC

has been found in [174, 175, 176, 177, 178].

A detailed literature review of the most popular islanding detection scheme under all the

available IDMs and their comparative performance on various parameters are summarized

in Table 1.4.

1.2.5.2 Cyber Secured Islanding Detection Methods:

The islanding detection problem is highly susceptible to cyber attacks in following three

ways [189].

1. It is feasible that cyber physical attacks of any type can target the grid, changing

a crucial signal parameters (voltage, frequency, phase angle, current etc) before it

reaches to an IDM and creates a false, inadvertent islanding scenario. This fake

action not only compromise the reliability and resiliency of the microgrid but also

disrupts the power supply to critical loads, posing potential safety hazards and

economic losses.

2. On the contrary, if a genuine islanding scenario occurs, but the attacker manipulates

the results to mask it, the microgrid may experience severe fluctuations in frequency

and voltage. This can lead to a significant reduction in power quality, causing damage

to electrical equipment, particularly sensitive loads.

3. Furthermore, some islanding detection techniques heavily rely on proliferation of

communication channels and gateways to transmit measurement data to the control

center for processing via software-defined algorithms. However, this reliance poses

significant risks of unauthorized data manipulation, DoS attacks, or damage to the

communication channel, potentially disrupting actual islanding detection algorithms.

Currently, there is a scarcity of literature available addressing this crucial issue of

cyber-secured islanding, which are now being discussed below.

Literature suggests that the first crucial step towards enhancing the D-System’s resiliency

is to integrate synchrophasor technologies. The advent of µPMUs has emerged as a

valuable tool in the MG environment, offering high precision sampling rates for monitoring

purposes which in turn increased visibility and situational awareness to DMS. Thus, owing

to high resolution measurements obtained with high speed data acquisition, it is evident

from the literature that there is an ongoing trends of making use of µPMUs in various

pioneering work of unintentional islanding detection with the aim of achieving fastest

response time, accurate identification of point of disconnection, lower cost, negligible NDZ

and finally maintaining grid stability and prevent potential safety hazards [190, 181]. In

terms of cyber security as well, the inherent intelligence of µPMUs can contribute to

reducing the risk of cyber attacks aimed at manipulating islanding scenarios [191]. In
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extreme conditions when the communication channels between the control center and

the µPMU may be compromised, µPMUs equipped with such intelligent autonomous

upgraded module will be of great assistance to reduce the cyber security risk and bolster

the resilience of islanding detection in MGs. This similar concept is also utilized in

[192, 193] for reducing the risk of cyber attack, where µPMUs are first deployed in each

busses of MG to obtain the voltage information. Then an intelligent separate subroutine

is implanted within µPMU architecture that exploits the angle difference between positive

and negative sequence component for generating decision over an islanding event. The

data transmission channel employed in conventional µPMU applications for island

detection is not used in the suggested method which reduced the risk of cyber attacks.

However, cost of placing µPMUs at every bus will be a major hindrance of its practical

implementation. The difference in positive sequence superimposed impedance angle

between PCC and DG ends are used in [194] for devising a secured islanding detection

method. The distinction between non-islanding and islanding event is confirmed based on

observing the changes of the index value in positive and negative direction respectively.

However, the proposed method need the PCC signals to be transmitted in each cycle to

the DG end which is designed to be secured by integrating advanced security measures

and encryption protocols.

With the research gaps identified through the comprehensive literature survey done in

previous section, several potential areas for further investigation are revealed which sets

up the motivation for the undertaken research. Thus, the next section is dedicated for

delineating the motivation to elucidate how these identified gaps serve as the driving force

for the research endeavors and highlight the significance of addressing them in advancing

the field.

1.3 Motivation

Traditional power systems operation primarily focused on creating strategies to manage

physical faults or disturbances in the system, such as outages, deviations from normal

frequencies, and voltage imbalances. But present-day smart grids are getting equipped

with more sensing, communication, and distributed control techniques to accommodate

renewable generations, electric vehicle loads, storage, demand response, and other

emerging technologies. This substantially increases the data transfers at both the

transmission (T-system) as well as the distribution-level (D-system) grids, and makes

the grid more vulnerable to cyber attacks. This thesis has, therefore, undertaken the

task of developing an end-to-end cyber-attack resilient monitoring and control framework,

considering both the T and D systems.

The transmitted data when reaches at the CC, is first used to carry out the observability

analysis of the PS. In case, the received set of measurements are sufficient enough to

estimate all the system voltages, the real-time measurements are fed to the very crucial
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application , i.e., the Power System State Estimation (PSSE). The output of the PSSE

thereafter serves to many critical applications’ decisions such as optimal power flow,

economic dispatch, contingency analysis, etc. Clearly, the very first step towards building

an attack-resilient framework demands the system operators to perform vulnerability

analysis in order to pinpoint the weak points in their system that need to be protected

from the possible data breaches, or have a fallback in order to make it more resilient to

external threats. Vulnerability analysis is associated with the physical behaviour of PS

which mainly has two aspects: (i) topological structure and (ii) operational states. Thus,

there are two types of vulnerability analysis in power systems: structural vulnerability

analysis and conventional vulnerability analysis. Large-scale power systems face challenges

for conventional vulnerability analysis, which is based on complete operational data,

topological information, and standard engineering models. Conversely, a power system’s

physical behaviour and its topological structure are closely related because a structural

alteration may affect a power system’s operating conditions, which, in turn, may affect the

system’s physical behaviour. Unfortunately, current research often overlooks this structural

vulnerability perspective, leaving a critical gap in understanding the full range of threats

and unobserveability issues posed by such attacks. Subsequently, this gap also leads to

a potential solution which can make the grid resilient from cyber threats. Making some

of the meters immune to attack so that the observeability of the system is maintained

even in attacked scenario can be one of the effective approach towards devising potential

remedies.

After safeguarding a set of critical meters in the system, the next vulnerable point to be

strengthened in an attack-resilient framework naturally becomes the heart of the EMS,

i.e., Power System State Estimation. The manipulation of operational states of the system

via injection of false data into the unprotected sensor measurements or replaying them

with previously recorded data after some alteration can greatly impact the outcome

of the PSSE, and thereby, of the subsequent critical decisions. Commonly observed

attacks in the PSSE are data injection attacks, where a synthetically designed value is

injected to falsify measurements without detection; and replay attacks, where valid data

transmission is fraudulently recorded and maliciously repeated or delayed with the use

of a record-with-replay attack script features. The first category of attacks has been

well researched in the literature, and can be minimized or prevented by using anomaly

identification and multi factor based authentication tools, implementing strong firewall,

intrusion detection and data loss prevention mechanism and advanced statistical and

signal processing based attack detection methods. The impact of RAs, however, has

not been rigorously analysed on the PSSE. The execution of RAs is very simple and

straightforward, but it is difficult to be spotted due to maintaining statistical similarities

of the replayed signal with the original observations and thereby having capability of

passing data intrusion detection test. So, in order to safeguard the PSSE against RAs,

first, (from an attacker’s perspective) the modelling and injection of the RAs on a limited

(but impactful) number of PS sensors needs to be carried out. Next, (from defender’s
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perspective) a defensive correction approach needs to be developed for the PSSE to identify

and resist different kinds of RAs by utilizing the secured sensor measurements in the

estimation process.

Conventionally, cyber attacks are perceived as primary threats to transmission systems

(T-system) owing to huge power flows associated with the transmission network, and

thereby, the amount of impact these attacks could create in T-systems. It is, however,

crucial to acknowledge vulnerabilities in D-systems as well, particularly in the light

of heavy integration of the DERs at D-level, in order to develop end-to-end defense

strategies. In D-systems, MG involves the communication and networking architecture

for the efficient monitoring and control operation of DER units. To maintain the

voltage and frequency stability throughout the grid, DERs need to communicate their

information to its neighbouring DERs, or master controller unit through a prescribed

communication architecture i.e., either centralized or distributed, both of which are

equally vulnerable to attacks. Cyber criminals focus their attacks on components of the

power system that heavily rely on information technology. These include the controller

network, responsible for executing DER’s distributed secondary control algorithms and

programmed logics, the sensors network, which comprises software-based RTUs and IEDs,

and the communication network, utilizing cables and diverse protocols for efficient data

transmission. Consequently, cyber attacks can manipulate data transmitted within the

smart distribution grid architecture, affecting parameters such as power injection, voltage

measurement, line flow, and the operational state of relays, breakers, and switches. This

motivates to establish a coherent attack resilient unified framework for stable functioning

of MG. As per the literature review, the existing knowledge gap fuels two compelling

research pursuits: (1) precise attack detection, localization and classifications to identify

the vulnerabilities exploited, and (2) the design of robust mitigation measures to counter

the attacks on DERs controllers. As far as the attack detection is concerned, most of the

study focused in contributing to identify any observed abnormal event is FDIA or not.

A critical gap still remains i.e, to dissect and pinpoint these attacks because absence of

this information hinders the effective mitigation strategies. So, in D-system domain, it is

envisaged to first accurately detect an attack, followed by the precise attack classification

and localization. Finally, this information is exploited to develop a novel attack mitigation

scheme.

Another pressing challenge within MG networks is the islanding operation of DERs,

wherein these resources persist in operation even after disconnecting from the power

grids. This isolation can have disastrous consequences in terms of power system stability

and quality, as DERs may struggle to maintain stable voltage and frequency within

safe operating ranges. Therefore, detecting islanding conditions becomes imperative

to prevent catastrophic damage to sensitive loads in MG. However, the smart-active

distribution grid, constituting a cyber-physical system with various components such as

Renewable Energy Resources, ICTs, IoTs, and IEDs, faces coordination and security

challenges. These issues make islanding detection methods significantly challenging in
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the presence of emerging cyber threats. Unauthorized access to islanding detection data,

encompassing internal voltage, phase angles, and power output of inverters, can disrupt

the actual islanding detection algorithm, leading to adverse consequences for all grid

components. However, it has been perceived from the literature that current islanding

detection methods often fall short in the face of these sophisticated cyber threats. This

observation propels the motivation to conduct research and devise a novel islanding

detection scheme integrated with a cyber attack detection method. This integrated

approach aims to synergistically address the issues of unauthorized access and data

manipulation, empowering system operators with accurate information and preventing

false decisions regarding suspected islanding events caused by cyber attacks.

Hence, the present-day smart grids requires an end-to-end cyber attack resilient monitoring

and control framework considering the challenges at both, the transmission-level

(T-system) as well as distribution-level (D-system). The framework must encompass

the essential stages of developing a cyber attack resilient strategies, viz., vulnerability

assessment, attack detection, localization and mitigation, extending seamlessly from the

transmission to the microgrid level.

1.4 Aim and Objectives of Thesis

The primary aim and main research objectives for this thesis are meticulously designed in

light of the above-identified research gaps and motivational background.

The overall workflow and the holistic view of thesis organization is depicted in the

Fig. 1.8. This thesis comprehensively investigates cyber security vulnerabilities for both

Transmission Systems (T-Systems) and Distribution Systems (D-Systems) within a

unified framework. For T-Systems, the focus of research contribution is on securing

meter monitoring infrastructure and developing reliable attack detection and control

mechanisms. For D-Systems, the work addresses challenges through resilient control

and mitigation schemes, along with secured islanding detection monitoring. Each aspect of

cyber security challenges is meticulously examined from both the attacker’s and defender’s

perspectives, ensuring a comprehensive understanding of the threats and the corresponding

protective measures.

Aligned with the comprehensive workflow described above, the thesis is designed to meet

the following objectives:

Objectives:

1. To carry out a topological vulnerability assessment, and to develop a cyber-attack

resilient secured metering infrastructure for the T-system.

2. To devise a novel framework for safeguarding the power system state estimation

from replay attacks by exploiting the limited secured measurements obtained from

objective-1.
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3. To accurately detect, classify and localise cyber attacks in an islanded AC microgrid

system.

4. Following the detection and attack localization information from objective-3, to

devise a robust attack resilient control framework to compensate the effect of attack

over DER’s secondary control and retain MG’s stability.

5. To develop a cyber attack-immune islanding detection Schemes (IDS) in MGs.

Figure 1.8: Flowchart of overall research work reported in thesis

1.5 Assumptions Considered in the Thesis

1. PMU is considered to be calibrated, error free, resilient and cyber secured device due

to its advanced cyber security features. Information flow through the PMU channels

are safeguarded with proper authentication and key encryption mechanisms.

2. Meter measurements that are kept under the strict surveillance of PMU’s

observability coverage range are assumed to be faithful and tamper-proof.

3. Attackers are assumed to have knowledge and access to critical components such

as substation, human machine interface, communication port and network switches,

enabling them to execute cyber physical attacks on the grid. However it is realistic to

assume that they are always bounded by the limited number of sensor’s manipulation

due to their finite amount of attack budget or resources.
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4. In the context of attack localization and mitigation in D-Systems, only one DER is

assumed to be targeted at a time by the adversary.

1.6 Thesis Organization

Finally, the thesis work has been organized in the following seven chapters. The brief

summary of each chapter is given as follows,

Chapter 1: Introduction

This chapter starts with the basic overview of cyber-physical critical infrastructure of the

smart grid along with the brief explanation on most commonly seen cyber attack and its

security challenges arising due to modern digitization of the grid. After presenting the

literature survey on the proposed research work, it highlights the key research gaps in

the literature. Then it sets the motivation behind carrying out the vulnerability analysis

and attack detection and mitigation within contemporary power systems, particularly

in the face of intricate cyber-attacks both at transmission (T-system) level as well as

distribution level (D-system). Finally, it outline the thesis’s proposed objectives and

presents the preface of whole thesis work.

Chapter 2: Cyber Attack Immune Metering Framework

This chapter proposes a robust cyber-attack resilient framework, designed to address

structural vulnerabilities in SGs. The proposal is mainly divided into two parts. In

the first part, a novel and effective attack strategy known as Hybrid Between-ness

Centrality (HBC) is proposed from the attacker’s point of view to rank the most

vulnerable transmission lines whose malicious tripping causes severe structural damage

to the power system, losing system’s observability and situational awareness. With the

line ranking information obtained from the HBC, in the next part, a unique objective

function is developed for the strategic placement of PMUs, aiming to safeguard those

resulted vulnerable lines against FDIAs. The outcomes of this strategic PMU placement

yields minimal sets of secure measurements that need strong protection to guarantee

state variable integrity. This helps in enhancing system’s resiliency index and to remain

observable even in presence of a data integrity attack i.e., FDIA in some top vulnerable

lines. The effectiveness of this framework is demonstrated through case studies on the

IEEE 14-bus and New England (NE) 39-bus test systems.

Chapter 3: Novel Replay Attack Detection and Mitigation Framework for

Power System State Estimation

This chapter deals with the problem of detection and correction of a very stealthy cyber

threat i.e., Replay Attacks which can pose significant risks in various monitoring and

control applications of T-systems. The work proposed in this chapter first explores
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the exploitation of topographical information and Power Transfer Distribution Factor to

identify the most vulnerable SCADA meters whose compromised state could jeopardize

the system stability. These vulnerable meters are sniffed and compromised for launching

the replay attacks. Next, based on the secured phasor measurements from optimally

placed PMU locations (as obtained from Chapter 2), a Hybrid state estimation algorithm

is proposed which successfully detects and mitigates any replay attacks, if launched, from

the PSSE measurement set. The effectiveness of the proposed scheme is demonstrated

through simulating the model using the Real Time Digital Simulator (RTDS) on the

IEEE 14-bus and NE 39-bus test systems.

Chapter 4: Detection, Classification and Localization of Cyber Attacks in

Islanded AC Microgrid

This chapter focuses on the cyber attacks in D-systems, more specifically in AC

islanded MG systems. Unlike the existing methods, the precise localization of the source

of the attack is also explored as a key strategy in this chapter, thereby, allowing for

the isolation of affected DERs from the system and minimizing the overall impact.

In order to achieve this goal, two comprehensive detection approaches are presented.

The first method relies on a two-sample distance-based probabilistic measure called the

maximum mean discrepancy in a distributed cooperative secondary control of islanded

MG for the timely detection of any malicious attack with correct identification of the

misbehaving DERs. In addition to this statistical measures based detection, this chapter

also introduces a second approach utilizing a machine learning based classifier, specifically

the XGBoost algorithm to detect, classify and locate attacks. Once the attack is detected,

two statistical inconsistency measure i.e. shannon energy and entropy are calculated

and is utilized to introduce a novel rule-based attack classification approach integrated

with the same XGBoost classifier to classify various types of injection attacks in the

DER’s controllers. Having detected the type of cyber-attacks, lastly a multi-class attack

localization schemes after exploiting a few more statistical features to be incorporated in

the XGBoost classifier, which aids in pinpointing the specific attacked DERs, streamlining

the process of isolating compromised components from the system in worst-case scenarios.

The proposed scheme is validated on a modified IEEE 13-bus islanded AC MGs systems

modelled in the Real Time Digital Simulation environment.

Chapter 5: Unknown Input Observer and Back-stepping Integrated Sliding

Mode Control based Cyber Attack Mitigation Framework

This chapter focuses on developing an attack resilient control framework that has the

ability to mitigate the impact of the attack inflicted onto DER units. The framework is

built upon the secondary control layer functionalities of the MG as it is most prone to be

targeted by the attackers; aftermath of which leads to cascaded blackouts, endangering

system stability. The proposed resilient controller first assesses the output of the attack
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detector obtained from Chapter 4 for the designing of an unknown input observer that can

keep track the system states which, in turn, helps in computing the injected amount of

attack bias by the perpetrator under compromised situation. Later, the coarse estimated

bias obtained via previous step is further utilized in the backstepping-based sliding mode

controller design approach to generate a suitable control law that enforces the injected

attack to be compensated by finer adjustments of the compensation signal. Notably,

this is achieved without necessitating any modifications to the existing hardware of the

Distributed Secondary Frequency Controller or the addition of extra communication

channels. To thoroughly validate the effectiveness of the proposed mitigation scheme, the

modified IEEE-13 bus distribution test feeder operating in an islanded mode is modelled

in detail with RSCAD software of RTDS. Furthermore, a Hardware-in-Loop (HIL)

simulation control environment incorporating RTDS and dSPACE 1104 R&D controller

is set up for the real time implementation of this proposed scheme to demonstrates

its accelerated convergence speed and superior performance in handling unknown

disturbances, uncertainties, and potential stealthy attacks.

Chapter 6: Synergistic Islanding and Cyber Attack Detection Scheme

Accurate and timely detection of an unintentional islanding in D-systems heavily

depends upon the quality of data and its precise time of arrivals. FDIA, if launched

on the key signal parameter before it being fed to any islanding detection algorithm

may trigger a false unintentional islanding alarm. Cyber attacks can also delay the

islanding decision, prolonging the exposure of vulnerable equipment and increasing

the risk of catastrophic failures. This chapter, thus, proposes a cyber-attack resilient

Islanding detection scheme. Initially, a Kalman filter based cyber attack detector (CAD)

is utilized as a first layer of defense to check the integrity of the measurement of interest

before being used as an input for the novel islanding detection scheme. The proposed

detector, CAD is constructed based on the absolute difference between two very popular

statistical correlation measure named Spearman’s rank correlation and Cosine-Similarity

respectively. As soon as the estimated data obtained from Kalman filtering are found to

be contaminated due to any kind of attack, the proposed CAD quickly tries to trace the

estimated change in the observed data pairs. Apparently when the error difference i.e.,

CAD approaches to zero, a flag is generated to identify the event as cyber attacks. Next,

if the proposed CAD confirms absence of any cyber attack, a novel statistical property

inherited passive islanding detection technique is activated to detect the unintentional

islanding. The voltage mean value and the entropy information is exploited to develop a

Mean based Islanding Detector (MID) along with an entropy-based Decaying DC Detector

(DDCD). The MID and DDCD information is finally utilized to design a statistical relay

digital logic (SRDL) that accurately distinguishes the islanding and non-islanding events.

The proposed scheme is rigorously tested on a real life small scale industrial facility i.e.,

Banshee’s industrial microgrid test system, modelled in the RTDS, on the basis of the

IEEE-1547, UL 1741 standards.
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Chapter 7: Conclusions

This chapter finally summarizes the key findings of the research work carried out in this

thesis, along with a few areas for the future research.

Appendix A: Test System Data

Appendix A discusses the details of various test networks used in the thesis.



Chapter 2

Cyber Attack Immune Metering

Framework

2.1 Introduction

As discussed in Chapter-1, since our future smart grids are going to be integrated with

more monitoring, communications and distributed sensor-based technologies, they are

becoming large, sophisticated, interconnected and complex Cyber Physical Systems (CPS)

which is now being targeted by man-made or synthetic attacks. Therefore, assessment of

vulnerability in the power grid network subject to extreme contingencies, cyber-physical

attack or an unwanted natural disaster becomes a paramount importance to improve

power grid’s safety and resiliency against such unprecedented events. In order to assess

the vulnerability of any network purely from a graph theoretical perspective, this chapter

exploits some of the centrality metrics to investigate power system vulnerabilities from

purely topological perspective by introducing a novel attacking mechanism to attack the

most critical lines of transmission network which leads to major loss of system integrity,

network structure and efficiency. The aim of the proposed work is to equip a given

system with minimum number of Phasor Measurement Units (PMUs) such that the system

remains observable even in presence of a data integrity attack i.e., False Data Injection

Attack (FDIA) in some top vulnerable lines.

The rest of this chapter is organized as follows. Section 2.2 describes the preliminary

concept of graph theory pertaining to the application of Complex Network Theory

(CNT) on a power grid network. The proposed hybrid betweenness centrality attack

strategy is discussed in detail in Section 2.3. Taking the vulnerable lines locations

into account, Section 2.4 proposes a new optimization formulation to obtain optimum

PMU locations with improved redundancy and complete topological observability under

attacking condition. Secured measurements resulting from Optimal PMU Placements

(OPP) are used for resiliency assessment of the network, as discussed in Section 2.5.

Simulation results of the proposed method for vulnerability assessment and attack-resilient

PMU placement are illustrated on the IEEE 14-bus and New England 39-bus systems in

Section 2.6. Finally, the chapter is ended with concluding remarks in Section 2.7.
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2.2 Preliminaries to Graph Representation of Power Grid

To access the power system vulnerabilities, the power network is seen as a complex,

scale-free network modelled using graph theoretic approach. This graphical approach

is useful to obtain the information of the nature of interconnection and the topological

behaviour of the network. The abstract graph is formally defined as G = (V,E,W), where

V is a finite set of vertices, E is a finite set of edges which is analogous to bus node and

transmission lines of a power network respectively and W represents the set of weights of

edge set E.

1. The edges in the set E can be expressed as E = {ei,j |vi, vj ∈ V}, where vi and vj are
the extreme nodes of ei,j . ei,j = ±1, if node i and j are interconnected, otherwise

ei,j = 0.

2. The weights of the edge set E of a weighted graph G, can be symbolized as W =

{wi,j |vi, vj ∈ E}, where wi,j ∈ N and wi,j ⊂ E. If wi,j = 1, the graph is called to be

unweighted.

3. The cardinality of node set V and edge set E is N and M, respectively which

constitutes an undirected adjacency matrix Aadj , of size N ×N of a graph network

G, where the elements of the matrix Aadj , ai,j = wi,j .ei,j , if node i and j are

interconnected, otherwise ai,j = 0.

4. Let dij be the shortest path between two pairs of node i.e vi and vj and the square

matrix D is termed as graph distance matrix that takes all-pairs of shortest path of

node set V into the account.

5. G is said to be undirected if ei,j ∈ E is same as that ej,i ∈ E and therefore ai,j =

wi,j .ei,j : aj,i = wj,i.ej,i, where ei,j = 1.

In this chapter, for the analysis of vulnerability in power network, the graph representation

is considered to be connected, undirected, unweighted with no loops and parallel

transmission lines is associated.

2.3 Hybrid Betweenness Centrality: A Novel Vulnerable

Link Identification Metric

The vulnerability of a transmission line towards cyber-attack is assessed based on

the proposed Hybrid Betweenness Centrality (HBC) index. The proposed HBC index

considers the combined effect of two centrality indices, (a) Eigenvector Centrality and

(b) Current Flow-based Centrality. The first centrality index provides more robust

comprehensive information about most influential set of nodes in a network that gives a

better insight into the dynamical view of the network. Whereas the second centrality index

gives an intermediate measures of global and local characterization of nodes. This doesn’t



Chapter 2. Cyber Attack Immune Metering Framework 39

follow the exact shortest path philosophy; therefore, it bears more valuable information

spread from one node to another. That make it a suitable measure of application in a

power network or any other network where information flows in a random direction based

on network parameters properties.

2.3.1 Eigenvector Centrality Metric

Computing eigenvector centrality is a popular tool for measuring the influence of a node

based on the importance of its neighbours, as well as its 2-hop and 3-hop neighbouring

nodes. It works with the philosophy of assigning relatively higher importance to all

the high-index nodes that contribute more to the score than lower-indexed nodes of

the network. Therefore, the global eigenvector centrality of a node is the summation

of centralities of its adjacent nodes. For a graph G, the eigenvector centrality is computed

as mentioned below:

Let say λ1, λ2, λ3, . . . , λN , are the eigenvalues of Aadj , mentioned in Section 2.2, of the

network G such that for each {λi, i ∈ N}, there exists a non-negative eigenvector U

which satisfy the relation AadjU = λU . Now, the non-zero solution of the equation

(Aadj − λI)U = 0 gives a principal eigenvector (U = [u1, u2, u3, ..., uN ]T ) i.e eigenvector

corresponding to the largest eigenvalues (λmax) are considered here to measure the

centrality denoted as CE(vi) of a node vi as shown below:

CE(vi) =
1

λmax

N∑
k=1

aikuk (2.1)

To find the absolute relative score of a node, the results need to be normalized such that

sum over all the nodes is equal to 1.

2.3.2 Current Flow-based Centrality Metric

There are some real-world scale-free networks (e.g Power Networks, Water-flow Networks,

Mechanical or Thermal Networks etc.), where conventional shortest (geodesic) path

betweenness concept fails to extract the accurate dynamics and actual behaviour of the

system as information can flow in such network in any direction efficiently through the

various available paths. Due to this drawback, conventional centrality indices based on

the pure topological concepts will not work well in power network as it disregards the real

physical properties and the operative constraints of power grids. This is primarily because

the flow of electricity in power network can pass through various available path governing

the physical law of KCL and KVL, unlike the other commonly seen networks. The second

differentiating factor between power networks and other commonly seen networks (such

as, Biological networks, Transport road networks, Communication networks etc.) is that,

in other network each vertex is used to either function as a source node or sink node

though which some physical quantities are transmitted, but in power network we already

designated nodes based on their unique functionality such as some nodes are called as
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generation nodes, and some are load nodes. And power flow can only take place from

generation nodes to load nodes. Thus, influence of high flow degree centrality node is found

to be most destructive to the network. These issues are now taken into the consideration

where a flow-based centrality as a measure of betweenness is now introduced in to the

picture with the two following steps.

2.3.2.1 Computing potential (vi) of any node-i under a unit current injection

at source node-s and unit current extraction at target node-t:

Figure 2.1: An example of electrical circuit

Let Is and It is the external current injected at node s and extracted at node t as shown in

Fig. 2.1. Let vi and vj is the potential of two random nodes i and j. Applying Kirchhoff’s

current law i.e summation of all incoming and outgoing currents at any particular node is

equal to zero, which implies the following equation need to be satisfied.

di∑
j=1

Iij =

di∑
j=1

vi − vj
rij

(2.2)

where di is the degree of the node-i and vi − vj is the potential difference between i and

j. Applying Eq. (2.2) to every node of G yields

QV⃗ = Ω⃗ (2.3)

where Q ∈ RN×N is the conductance matrix with elements qij = 1/rij . V⃗ ∈ RN×1 is the

voltage vector and Ω⃗ ∈ RN×1 is external injected/extracted current vector and it can be

defined as follows.

Ω⃗ =


+Is for i = s,

−It for i = t,

0 otherwise

(2.4)

In Eq. (2.3), Q is termed as laplacian matrix and using Eq. (2.4), Eq. (2.3) can be

rewritten as following matrix form:

Q = Bb∇BT
b (2.5)
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where, Bb ∈ RN×M is the Bus incidence matrix and ∇ = (ϕij) ∈ RM×M is a diagonal

matrix with conductance specified to its graph edges.

ϕij =

qij for i = j,

0 for i ̸= j
(2.6)

Now, it is to be noted that we can’t directly take the inverse of Q, from Eq. (2.3), as this

graph Laplacian matrix Q is singular. It basically indicates one of the equation among

N th number of algebraic equations is redundant. So, Kirchhoff’s current conversion law

is violated. To get rid of this problem, consider any one node of the test electrical circuit

say, r to be as reference node and therefore, potential of this node is zero i.e vr = 0. This

assumption allows us to remove the rth row and rth column from the Laplacian matrix Q

and thereby reduce the dimension of Q by one i.e (N − 1)× (N − 1). The newly obtained

reduced matrix denoted as Q̃ ∈ R(N−1)×(N−1) is now a non-singular, invertible matrix.

Later, to maintain the cardinality of set V, the rth row and rth column of the matrix Q

is reintroduced in matrix Q̃ after inversion process is completed. The resultant matrix is

denoted by H̆ = h̆ij ∈ RN×N .

H̆ =

[
Q̃

−1
0

0T 0

]
(2.7)

This H̆ matrix of Eq. (2.7) is now going to be used for computation of voltage vector V⃗

using the relation below:

V⃗ = H̆Ω⃗ (2.8)

Now put the value of external current vector Ω into Eq. (2.8) yields

V⃗ = IsH⃗s − ItH⃗t (2.9)

where H⃗s and H⃗t are the sth and tth column vector of matrix H̆ respectively. As Is = It,

therefore Eq. (2.9) can rewritten as follows:

V⃗ = Is(H⃗s − H⃗t) (2.10)

Thus, the voltage (vi) of a node i of the graph G under an amount of current injection at

source node-s and current extraction at target node-t can now be expressed as:

vsti = Is(h̆is − h̆it) (2.11)
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2.3.2.2 Computation of current flow matrix (Ist) over all possible

source-target (st) pairs:

Using Eq. (2.12), one can compute potential drop across any node for all st pairs, i.e

{s, t ∈ V }. Thus current-flow Isti over all st pairs can also be calculated as follows:

Isti =
1

2

di∑
j=1

|vi − vj |
rij

(2.12)

Now replacing Eq. (2.11) in Eq. (2.12) and put 1/rij = qij , then

Isti =
Is
2

N∑
j

qij |h̆is − h̆it − h̆js + h̆jt|, for i ̸= s, t (2.13)

It is also to be noted that as the currents are specified in source node-s and target node-t,

therefore, one can simply write

Ists = Istt =

Is if s, t ∈ |f is→t(j)|,

0 if s, t /∈ |f is→t(j)|
(2.14)

where, f is→t(j) denotes the current flow routes between node i and node j.

2.3.3 Proposed Hybrid Betweenness Centrality Metric

So, it is realized from the above two centrality indices that while eigenvector provides

information about the presence of the most influential nodes from a structural perspective,

current flow-based centrality, fundamentally based on the idea of inclusion of non-geodesic

paths, aids in identifying the presence of such potential super-spreader nodes that involves

those current flow paths and also the quantity of information that passes through those

specific nodes. Thus, to identify those critical paths of the network through which

optimal information flows while considering the weight of those super influential nodes, a

novel Hybrid Betweenness Centrality is proposed in this work as a measure of centrality.

Therefore, in simple words the HBC index will screen out the most vulnerable lines that

the attacker might target to impose maximum structural damage to the system.

While defining HBC, it is assumed that the power can flow from generating nodes to load

nodes through all the probable paths, and all the generating nodes (g) belong to the source

set (s) and all the load nodes (d) belong to the target node set (t). Next, if Ṕ defines the

total number of combinations of source-target (st) pairs, the first step of HBC formulation

is to create the external current injected matrix (Ist ∈ RN×Ṕ ) over all (st) pairs using Eq.

(2.13). Thereafter, the flow-energy of dominant node-i, (F i
E) is calculated as,

F i
E = CE(vi)× σṔi = CE(vi)×

∑
s ̸=t∈V

Isti (2.15)
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F j
E = CE(vj)× σṔj = CE(vj)×

∑
s ̸=t∈V

Istj (2.16)

where, σṔi denotes the aggregate sum of injection currents at node-i over all st pairs.

Finally, the proposed HBC index is defined for each transmission line (l), associated with

two end nodes, i.e, “From Node” (i) and “To Node” (j), as,

HBC(li−j) =
F i
E − F

j
E∑N

i=1 1[i∈g] ×
∑N

j=1 1[j∈d]
(2.17)

where, 1[Ξ] = 1, if the condition [Ξ] is true, otherwise 1[Ξ] = 0. Denominator of Eq. (2.17)

is used for normalization process which represents the number of (st)-pairs considered for

the calculation. The HBC index represents the relative drop of the flow-energy between

two extreme nodes of each lines, and acts as a vulnerability indicator for a line. Once

all the lines are ranked as per their HBC values, clearly, the top-ranked lines associated

with maximum drop of flow energy are most likely to be chosen first by the attacker to

launch an attack as it indicates the most influential path of information flow in a power

system graph. The rest of the lines will thereafter be selected based on their vulnerability

index value. The overall formulation steps of HBC in graph G using Eq. (2.17) for a unit

current injection (i.e.,Is = 1) is outlined in Algorithm 1.

2.4 Development of PMU Assisted Cyber-attack Resilient

Framework

A literature survey reveals that PMUs are one of the best candidate devices to detect

many unobservable attacks [59],[195]. Therefore, the developing of various placement

algorithms for identifying strategic locations of PMUs to defend any kind of data integrity

attack has now become a growing interest to the researcher community due to its higher

synchronization rate, advanced security measure and impervious communication [196] and

networking architecture [197]. All the measurements with greater accuracy collected by

PMUs from different locations of a geographically dispersed area are correctly labelled

with real-time stamps, which increases inherent robustness against attacks. Therefore,

if the System Operator (SO) can get the complete system observability through phasor

measurements alone, they can make an informed decision even in the event that any of

the data on the vulnerable lines is compromised. Therefore, it becomes a natural step

forward to include the information of vulnerable links while equipping a power system

network with PMUs to provide it a maximum protective covering against cyber-physical

attack. To achieve this goal, in this chapter, a novel objective function is formulated that

incorporates the line serviceability index when the system is under attack, which is then

utilized in a Mixed-integer Linear Programming model to guarantee complete topological

observability.
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Algorithm 1: Hybrid Betweenness Centrality

Input: A is the Adjacency Matrix of an Unweighted and Undirected Graph
G(V,E,W).
E = {ei,j |vi, vj ∈ V}, the Edge-list.
Q ∈ RN×N , be the graph laplacian matrix of G.

Output: Hybrid Betweenness Centrality, HBC(li−j)
begin

˜HBC(li−j) ∈ Rm ←− 0;
CE(vi)←− ∅;
value←− 0;
Solve for eigenvector U ∈ RN corresponding to λmax, by |A− λI| = 0;
for i← 1 to m do

for j ← 1 to m do
if ai,j ̸= 0 then

value = value + ai,j ∗ u(j)
end

end
CE(vi) =

1
λmax

*value;
value = 0

end

H̆ ∈ RN×N ←→ Q̃ ∈ R(N−1)×(N−1);
for t← d to t ≥ 1 do

for s← g to s ≤ t do
for each eij ∈ E do

if i ̸= s, t then

Isti ← Isti + (1/2)|h̆is − h̆it − h̆js + h̆jt|
end

end

end

end
for i← 1 to m do

∆F l
E = (CE(vi)×

∑
s ̸=t∈V I

st
i − CE(vi)×

∑
s ̸=t∈V I

st
i )

HBC(li−j) =
∆F l

E
|s|×|t|

end

end
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2.4.1 Conventional Optimal PMU Placement

In graph theoretic approach, a power system network equipped with PMUs are said to be

topologically observable if all the nodes of the graph are directly or indirectly traversed by

optimally placed PMUs. Such problem can be solved by integer Linear Programming (ILP)

[198] by minimizing the conventional optimization formulation from cost minimization

perspective as shown below:

minimize
x

f0(x) =
N∑
j=1

cjxj , xj ∈ R,Z

subject to ĀX̄ ≥ 1 ≡ (Aadj + I)X̄ ≥ 1

xj = (0/1), a binary variable

(2.18)

where,

� cj is the cost of PMU placement at bus-j. In this study, PMU installation cost at

all buses are assumed to be unity. It is also assumed that PMU has equipped with

sufficient channels to measure voltage and current phasor at its installation bus and

all its incidents lines respectively.

� xj represents an element of the output vector X̄, where a value of 1 indicates the

presence of a PMU at the jth bus location.

� I is the identity matrix of size N × N.

� Ā is the binary connectivity matrix of size N × N with entries ăij as:

ăij =

1 if i = j or, if i and j are connected,

0 otherwise
(2.19)

The above objective function is used to solved using conventional ILP for the values of xj .

2.4.2 Proposed Modified Objective Function for ILP-based Attack

Resilient PMU Placement

Minimization of the objective function in Eq. (2.18), results in multiple PMU locations

with same cost and only valid when the system is in intact condition i.e free from any

attacks. When the system is subjected to any attacks the lines are going to be removed as

per the attacking strategy, then the system topology gets modified and therefore earlier

ILP-based PMU placement technique will give incomplete observability of the systems.

Moreover, as PMU deployment process is an offline procedure and is considered in power

system planning stage only, therefore modification of constraints at each round of PMU

placement is not feasible. Considering this problem as a motivation, in this chapter a

novel objective function is formulated which will take care of this issues associated with

HBC attacking strategy. As the attackers are always constrained with limited resources
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in terms of time and information to outline an attack, the proposed work assumes that it

is sufficient to safeguard the system against FDI attack in top 20% of the most vulnerable

lines in the system in order to enhance the system resilience. To this end, the strategic

selection of vulnerable lines is carefully orchestrated by the HBC ranking based attack

model in Section 2.2. Top 20% vulnerable lines are, thereafter, utilized in the proposed

PMU placement problem as an input in line serviceability indicator (L) and branch-to-node

incident matrix (B), defined in Eq. (2.22) and Eq. (2.23) respectively. These ‘L’ vector

and ‘B’ matrix modifies as these critical lines are attacked, and go out of service. Thus,

the resilient Optimal PMU Placement (OPP) problem is formulated as -

Minimize
x

f(x) =
N∑
j=1

ξj xj , xj ∈ R,Z

subject to ĀX̄ ≥ 1 ≡ (Aadj + I)X̄ ≥ 1

xj = (0/1), a binary variable

(2.20)

ξj in Eq. (2.20) is termed as the merit of far-ness which is analogous to cost function of

PMU placements, and is defined as

ξ = L1×M BM×N DN×N (2.21)

where,

� L is the line serviceability indicator for N bus system as: L = [a1, a2, a3, . . . , aM ],

M ∈ R. Where the entries L as:

al =

1 if line l is in service,

0 if line l is in out of service
(2.22)

� B is the undirected branch-to-node incident matrix of size M × N with entries li−j

as:

lij =

1 if vi and vj are connected, vi, vj ∈ V and li−j ∈ E

0 otherwise
(2.23)

� The matrix D represents the graph distance, with dimensions N × N, containing the

shortest path between all pairs of vertices in a network. In this context, considering

the network as unweighted and undirected ensures that the distances are always

positive. The values of the elements dij in matrix D are computed using established

techniques such as the Floyd-Warshall algorithm. The distance metric examined in

this study adheres to three fundamental axioms.

– Main diagonal entries of D are set to 0 corresponding to vi, i.e dii = 0 ∀ 1 ≤
i ≥ N .

– Off-diagonal entries of D are non-negative i.e dij ≥ 0, if vi ̸= vj . dij will be 0,
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if there is no shortest route available between the node vi and vj .

– As the graph is undirected here, the matrix D should be symmetric in nature

i.e dij = dji for vi, vj ∈ V .

The weight ξj assigns significance to each node in the network based on the average

far-ness between all pairs of source and target nodes. The first term of the vector L

considers the influence of outage of lines according to their ranking in the HBC schemes.

The matrix B captures the effect of the network breaking into islands following an

attack, indirectly reflecting the size of the system’s giant component through branch and

node connectivity. Furthermore, the evaluation of the distance matrix D matrix involves

searching for best optimal path by reducing the far-ness between pair of nodes when the

system is subjected to an attack. At the same time, it also takes care of the total system

topological observability in account with improved redundancy. Minimizing this objective

function aims to maximize the system’s full topological observability while identifying

optimal locations for a minimal number of PMU placements in case of line outages due to

attack.

As depicted in Fig. 2.2, the IEEE 5-bus system serves as an example. According to the

proposed HBC ranking, Line 4-5 (L7) and Line 2-5 (L5) (highlighted in red) emerge as the

top two critical lines. This vulnerable line information is then used in the proposed attack

resilient OPP problem formulation as summarized in the Table 2.1. The results in Table

2.1 demonstrate that the proposed PMU placement approach effectively incorporates line

vulnerability information from the HBC ranking into its objective function. It conducts

a search for optimal PMU locations while not altering the existing system constraints.

Clearly, if the bus-2 and bus-5 are equipped with PMUs, then even in the event of FDIA in

the conventional measurements of these lines and lines being out, the system still remains

observable with phasor measurements.

Figure 2.2: Single line diagram of IEEE 5-bus system identifying the critical lines
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Table 2.1: Attack resilient OPP solution details in the IEEE 5-Bus network

Vulnerable
Links

Line Serviceability
Indicator (L)

Branch-to-Node
Incident Matrix (B)

Distance
Matrix (D)

Attack
Resilient

OPP Results

Line 4-5 L =

[
1 1 1 1 1 1 0

]
B =



1 1 0 0 0

1 0 1 0 0

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 0 0 0



D =



0 1 1 2 2

1 0 1 1 1

1 1 0 1 2

2 1 1 0 2

2 1 2 2 0


Bus-2

Line 4-5
and

Line 2-5
L =

[
1 1 1 1 0 1 0

]
B =



1 1 0 0 0

1 0 1 0 0

0 1 1 0 0

0 1 0 1 0

0 0 0 0 0

0 0 1 1 0

0 0 0 0 0



D =



0 1 1 2 0

1 0 1 1 0

1 1 0 1 0

2 1 1 0 0

0 0 0 0 0


Bus-2
and
Bus-5

2.5 Evaluating Cyber-Attack Resilience Using Secure PMU

Measurements

After developing a PMU-equipped network in section 2.4, this section proposes a

performance-based metric to assess the network’s resilience against false data injection

attack on AC state estimator [199]. It is presumed that (1) the resilience of a power

system network to attacks is contingent upon several factors, including the number

of PMUs, number of measurements, number of attacked buses, and attack magnitude

(Ψ). (2) Because PMUs are extremely complex devices with cutting-edge security

features, an attacker cannot access PMU measurements because of their encrypted, secure

communication protocols [59].

In order to survive an attack, a system should have sufficient number of secured

measurements so that following an attack on a vulnerable link, the attack is still

detectable. The resiliency, in the proposed work, is quantified as the fraction of the

secured phasor measurements obtained from the proposed PMU placement strategy in

the total measurement vector of the state estimator, i.e.,

Critical Measurement Ratio Index =
(Number of secured phasor measurements)

(Total number of measurements)
(2.24)

The higher the Critical Measurement Ratio Index (CMRI) is the more cyber-attack

resilient system is.
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Calculate Graph Adjacency 
Matrix (Aadj)

Calculate EigenVector Centrality 
(CE) Using (2.1)

Calculate Graph Laplacian 
Matrix (Q) Using (2.5) and (2.6)

Compute Current-Flow Based 
Matrix (Ist) Using (2.13)

Ranking the Lines Based Upon 
Their Vulnerability Assigned By 

HBC Using (2.17)

Calculate Line Serviceability 
Index (L)
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Figure 2.3: Flowchart of the proposed PMU-assisted cyber-attack resilient framework

The flowchart in Fig. 2.3 illustrates the entire proposed framework for enhancing

cyberattack resilience using PMU measurements. This framework comprises three main

stages viz., 1) Identification of vulnerable links in the network, 2) Developing a cyber

attack-resilient network with PMU integration, and 3) Evaluating cyber-attack resiliency

using the proposed CMRI. These stages are clearly delineated in the flowchart of Fig.

2.3. In Stage 1, the topological properties of the power system is analyzed to device a

new attacking strategy and also estimate the impact of line outages due to the proposed

attack over the topological breakdown of the studied power networks. Initially, the graph’s

connectivity is determined by computing the adjacency matrix using network topological

parameters. Subsequently, a HBC attack strategy is formulated based on a combination

of (i) eigenvector centrality and (ii) current flow-based matrix information. The former

takes the contribution of influential nodes based on their adjacent nodes’ importance,

from purely topological perspective while the latter considers current flow information

into account to bring-in the dynamic behaviour of the system too. Finally, all system lines

are ranked according to their HBC values to assess their vulnerability to cyber-attacks.

Given the attackers’ limited resources in terms of time and information, the proposed

approach focuses on safeguarding the system against cyberattacks by targeting the top

20% of the most vulnerable lines. To this end, the information of the top 20% vulnerable

lines, obtained from Stage 1, is utilized in the proposed PMU placement problem of Stage

2 as an input in line serviceability indicator (L) and branch-to-node incident matrix (B)

of the Eq. (2.20) as detailed in Section-2.4. The ’L’ vector and ’B’ matrix modifies

as these vulnerable lines are attacked, and goes out of service. The attack-resilient

optimal PMU placement conducted in Stage 2 ensures system observability even in

the event of a data integrity attack, such as a FDIA, on these vulnerable lines. The

outcome of this attack resilient OPP provides twofold benefits- i) the state estimation

results become more accurate and reliable, and ii) due to the secure communication

infrastructure of PMUs, a set of safe and secured measurements is obtained which is
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difficult to manipulate by the adversary. Stage 3 validates these observations through

the proposed Resiliency Index, which assesses the system’s resilience from the perspective

of obtained secured measurements among total number of available measurements to run

reliable state estimation followed by the successful detection of data injection attacks based

on largest normalized residual (LNR) testing.

2.6 Results and Discussion

The test results of proposed PMU-assisted cyber-attack resilient framework is presented

on the standard IEEE 14-bus and the New England 39-bus test systems. The simulation

work was performed in MATLAB R2018a, loaded on a laboratory PC (an HP ProDesk 600

G4 SFF) with specifications including a 64-bit Windows-10 operating system, an Intel(R)

Core(TM) i7-8700 CPU running at 3.20 GHz, and 16 GB of RAM.

To evaluate the qualitative measures of the vulnerability assessment on the power grid

subjected to attack, a well-known popular performance parameter named as “Giant-

Component Size (S)”, is used in the Chapter. This metric quantifies both the topological

and operation characteristics of the power grid. In the case, removal of lines strategically

causes the network to be partitioned into several components, which are basically the

disjointed version of original graph. The graph statistics, giant component mechanism

seeks for the largest connected components of the graph that contains maximal fraction

of nodes of the parental graph’s nodes. It is usually calculated by the ratio of current

giant size of the network after attack to the initial network size N . Mathematically its is

expressed as shown below:

Sl(%) =

∑N
i=1 1i∈Gl

H

N
× 100 (2.25)

where,1[Ξ] is an indicant function as explained in Section 2.3. Gl
H is the current giant

component of the initial graph after removing of line-l. After calculating the proposed

centrality value, giant component is evaluated after every attack to show how it cause

structural damage to the network. A steeper fall of giant-component metric, signifies

substantial damage of the grid with higher degree.

2.6.1 IEEE 14-bus Test Systems

2.6.1.1 Vulnerable links identification

The IEEE 14-bus system consists of 5 generators and 20 transmission lines. The top-4

vulnerable lines identified as per the proposed HBC based method are tabulated in Table

2.2 and also being shown in Fig. 2.4(a). Figure 2.4(b) depicts the drop of giant component

size of the system when the attacks lines are physically out from the system in the

subsequent order of the attack strategy.

The test result is also compared with two other conventional attack approaches i.e
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Table 2.2: Ranking of Lines of IEEE 14-Bus System

Hybrid Betweenness Centrality
Line No Line Info Value

16 Line 9-10 1.0
6 Line 4-3 0.9304
17 Line 9-14 0.7809
10 Line 5-6 0.4346

Topological Betweenness Centrality (TBC) [200] and Electrical Betweenness Centrality

(EBC) [56]. Attacks on vulnerable links based on TBC ranking do not result in the creation

of islands in the system, as shown in Fig. 2.4(b) where the Giant Component Size stays

at 100%. In contrast to EBC, which was 87%, the proposed HBC-based attacks, however,

caused the largest reduction in the system’s Giant component size, reaching 57% following

the simultaneous attack on all four of the most vulnerable links. This demonstrates

the supremacy of the HBC-based attack technique above all others pertaining to severe

structural fragmentation and substantial damage of the systems. Therefore, HBC-based

attack has more potential to create cascades failures which may lead to severe blackout.

2.6.1.2 Cyber-attack resilient PMU placement

The vulnerable lines, as identified in Table 2.2, are incorporated in PMU placement

strategy of Eq. (2.20) and Eq. (2.21). Table 2.3 lists the optimal number of PMUs

that are resistant to cyber-attacks. The results are also compared with the locations

that arise when the typical unity cost function is used in place of the objective function in

formulation Eq. (2.20), and vulnerable lines are eliminated from the system by altering the

observability requirements in accordance with [201]. Although both the methods results

in same number of PMU locations, as listed in Table 2.3. However, incorporating ξj in Eq.

(2.21) as the merit of far-ness has increased the resiliency in the system as is demonstrated

in the next subsection.

Table 2.3: Optimal PMU Locations For IEEE 14-Bus System Under Attack condition

Attack Resilient Normal
4 at Bus-2, 7, 11, 13 4 at Bus-2, 7, 10, 13

2.6.1.3 Cyber-security resiliency assessment

To evaluate the impact of the proposed PMU placement strategy on system resilience,

various test cases are conducted with varying levels of attack intensity and target bus

locations for attack. The attack vector is modelled as a false data injection attack as

described in [202] targeting non-linear state estimations running in the control centre.

Across all test cases, a total of 79 measurements are available for SE algorithm execution.

In Fig. 2.4(a), the IEEE 14-bus system is depicted, highlighting the placement of PMUs
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at four distinct locations: Bus-2, 7, 11, and 13, as determined by the proposed resilient

PMU placement approach. With each PMU installed at a designated bus − i, the

associated state variables Vi, θi and related power injections and flow measurements for

that bus − i are assumed to be secured (tamper-proof). Thus, Table 2.4 details all the

secured measurements, resulted from the proposed resilient PMU placement. It can be

observed from Table 2.4 that the total number of secured phasor measurements are found

to be 36 in the IEEE 14-bus test system. These secured measurements are subsequently

utilized in the Weighted Least Square AC state estimator, alongside conventional SCADA

measurements, to ensure reliable state estimation and to detect any attacks tampering

conventional measurements. Consequently, based on Eq. (2.24) detailed in Section 2.5

and the identified PMU locations from Section 2.4, the RI for this test system is calculated

to be 45.56%. To illustrate the impact of a FDIA on state estimation performance, two

Table 2.4: Summary of secured measurements of the IEEE 14-bus system resulted from
the attack-resilient PMU placement

IEEE 14-Bus System

PMU Bus No Secured Measurements

2 V2, P2, Q2, P1−2, P2−5, P2−4, P2−3, Q1−2, Q2−5, Q2−4, Q2−3

7 V7, P7, Q7, P4−7, P7−8, P7−9, Q4−7, Q7−8, Q7−9

11 V11, P11, Q11, P6−11, P10−11, Q6−11, Q10−11

13 V13, P13, Q13, P6−13, P12−13, P13−14, Q6−13, Q12−13, Q13−14

Total Secured Measurements = 36

scenarios are considered. In Case-1), only conventional SCADA measurements are utilized

in the state estimation process, while in Case-2), secured phasor measurements are also

included. It is assumed that the attacker has access to multiple measurements, enabling

them to inject false data (á) into the original measurements set, (Z) via vulnerable

SCADA communication channels. The attacker can thus compromise the measurement

set as, Za = Z + á, and can, thereby, deviate the original estimates of system states (x̂)

to some arbitrary bad states (x̂bad = x̂+Ψ). This injection vector is generated based on

the AC power flow model as á = H(x̂bad) − H(x̂) to circumvent conventional bad data

detection mechanisms [202] such that LNRbad = LNR, where LNRbad = ||Za−H(x̂bad)||
and LNR = ||Z −H(x̂)||. H is the Jacobian matrix relating available measurements with

the state vector.

Case-1) When meters are not secured i.e., non-inclusion of PMU in the system: The

effect of the FDI attack on the bus voltage magnitude of Bus-3, Bus-5, and Bus-9 is

depicted in Fig. 2.5. FDIA targeted a fraction of attack buses, introduced bias to the

magnitude of these attacked state variables, which causes incorrect estimation.

Based on the verification of residual checking, this attack remained undetected as
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shown in Fig. 2.6. This is because of the continuous adjustment of the associated
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Figure 2.5: FDI attack on Bus-3, Bus-5 and Bus-9 with attack intensity (Ψ) of 0.03 pu
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Figure 2.6: Performance of residue detector in presence of FDIA (Case-1)

measurements of those attack state variables. It is evident that the residue remained

almost same for both type of cases i.e., with FDIA and without FDIA. The residual

plot’s threshold, as displayed below, is determined by using a chi-square distribution with

a 95% confidence interval. Thus, the weighted sum of squares and L2 norm, or LNR,

stayed below threshold to allow the attack to remain stealthy even in the presence of FDIA.

Case-2) When measurements are secured by optimal PMUs deployment: The performance

of residual detector, in this case when the selected meters are inherently secured by

the direct supervision of PMU is shown in Fig. 2.7. It can be observed that through
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the proposed PMU deployment process and full rank nature of the phasor measurement

Jacobian matrix, most of the attacks get eliminated because their injection is hindered in

the first place itself.
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Figure 2.7: Performance of residue detector in presence of FDIA (Case-2)

2.6.2 New England 39-bus Test Systems

2.6.2.1 Vulnerable links identification

The New England 39-bus test system consists of 10 generators and 46 transmission lines are

shown in Fig. 2.8(a). Table 2.5 shows the top-6 vulnerable lines identified by the proposed

HBC-based attack strategy, and Fig. 2.8(b) depicts the drop of giant component size of

the system when the attack lines are physically out from the system in subsequent order

of this attack strategy. Here, the TBC- and EBC-based attack mechanisms demonstrate

that, according to their respective techniques, the system giant component size reduction

begins when one line goes out; nevertheless, the HBC-based attack mechanism experiences

the same thing for a consecutive two lines outage. As shown in Fig. 2.8(b), the TBC-based

attack method reduces the giant size to 69% after three consecutive line outages, and then

it also stays constant for subsequent outages of other lines. In contrast, the EBC-based

attack method drops the largest system size from 100% to 71% after one line outage, and

then it remains almost constant for other remaining line outages. It is important to note

that, despite its initial slight delay in system fragmentation compared to TBC and EBC,

the HBC-based attack causes the network to be more torment as giant component size

is drastically reduced below to 50%. Figure 2.8(c) explains that when top two lines are

went out, the HBC-based method did not create any partition on the network, unlike the

TBC and EBC-based attack mechanism had created same number of system components.

However, after that the number of system partitions due to HBC keeps increasing gradually
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Table 2.5: Ranking of Lines of IEEE 39-Bus System

Hybrid Betweenness Centrality
Line No Line Info Value

4 Line 2-25 1.0
20 Line 15-16 0.7279
45 Line 29-38 0.7056
43 Line 25-37 0.7030
6 Line 3-18 0.6079
22 Line 16-19 0.5977

with increasing vulnerability measures, indicating more severe damage to the system.

Another noticeable fact observed in EBC-based attack is that although the number of

system segments keep increasing when line outage increases from three to five, the giant

size has not shown any changes as shown by the HBC results. This is due to the fact that

the nature of selection of vulnerable links for EBC is not so optimal and thus, in such

period, it may pick up some unimportant links from some already created smaller partition,

which basically has no contribution to the reduction of largest system component. That is

why TBC and EBC depicts flat profile after certain line outages. So, it is hereby concluded

that by developing such hybrid a betweenness centrality measure, one can anticipate a

better understanding of the importance of nodes and lines of a specific complex network

which assist operator in exploring the vulnerabilities more efficiently.

2.6.2.2 Cyber-attack resilient PMU placement

The top six vulnerable lines of the New-England Power System, as identified in Table 2.5,

are now incorporated in proposed PMU placement scheme of Eq. (2.20) and Eq. (2.21).

Table 2.6 shows the final number and locations of PMUs for both, the proposed placement

scheme as well as for the normal PMU placement case. Once more, it is seen that although

Table 2.6: Optimal PMU Locations For NE 39-Bus System Under Attack condition

Attack Resilient Normal

14 at Bus-2, 6, 9, 10, 11, 14, 17, 19,
20, 22, 23, 26, 37, 38

14 at Bus-2, 6, 9, 12, 14, 17, 19, 20,
22, 23, 29, 32, 37, 38

the number of PMU locations that are optimal for both the cyber-resilient and the normal

procedures stays the same, the locations that are produced differ. The objective function

in Eq. (2.21) traces the reduction of giant component at each step of attack execution

strategy and based on that, the defense philosophy searches for new optimal locations of

PMU based on available algebraic connectivity of the graph with shortest route features.

It should be noted that at the end of the attack, the proposed PMU deployment method

with some different PMU locations enhances the system resiliency while maintaining the

full topological observability of the system throughout.
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2.6.2.3 Cyber-security resiliency assessment

Similar to the FDIA test cases performed in the IEEE-14 bus system, same test cases are

also carried out in NE 39-bus system. The total number of meters that are available in this

system is 195. Figure 2.8(a) shows that the proposed OPP formulation strategy allocates

fourteen specific bus locations dispersed geographically for the installation of PMUs. Due

to the installations of PMUs at the those locations, a subset of measurements pertaining

to PMU enabled bus injection meters and flow meters incident to the PMU equipped

buses are being treated as secured and it is tabulated in Table 2.7. The table shows that

Table 2.7: Summary of secured measurements of NE 39-bus resulted from the
attack-resilient PMU placement

NE 39-Bus System

PMU Bus No Secured Measurements

2 V2, P2, Q2, P1−2, P2−3, P2−4, P2−25, Q2−30, Q1−2, Q2−3, Q2−4, Q2−25, Q2−30

6 V6, P6, Q6, P5−6, P6−7, P6−11, P6−31, Q5−6, Q6−7, Q6−11, Q6−31

9 V9, P9, Q9, P8−9, P9−39, Q8−9, Q9−39

10 V10, P10, Q10, P10−11, P10−13, P10−32, Q11−10, Q10−13, Q10−32

11 V11, P11, Q11, P11−12, Q11−12

14 V14, P14, Q14, P13−14, P4−14, P14−15, Q13−14, Q4−14, Q14−15

17 V17, P17, Q17, P16−17, P17−18, P17−27, Q16−17, Q17−18, Q17−27

19 V19, P19, Q19, P16−19, P19−20, P19−33, Q16−19, Q19−20, Q19−33

20 V20, P20, Q20, P20−34, Q20−34

22 V22, P22, Q22, P21−22, P22−23, P22−35, Q21−22, Q22−23, Q22−35

23 V23, P23, Q23, P23−24, P23−36, Q23−24, Q23−36

26 V26, P26, Q26, P25−26, P26−27, P26−28, P26−29, Q25−26, Q26−27, Q26−28, Q26−29

37 V37, P37, Q37, P25−37, Q25−37

38 V38, P38, Q38, P29−38, Q29−38

Total Secured Measurements = 112

there have been total 112 secured phasor measurements found for this test case. It can be

observed that through the proposed PMU deployment process and full rank nature of the

phasor measurement Jacobian matrix, most of the attacks get eliminated because their

injection is hindered in the first place itself due to presence of 112 secured measurements.

Thus, calculated value of the proposed RI for this test case is as 57%.
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2.7 Conclusions

In addition to natural random failures, modern power systems face increasing threats

from malicious attacks, where adversaries aim to target influential nodes or critical lines

to disrupt the system’s functionality. To mitigate the risks posed by cyber-attacks, this

chapter proposes a novel PMU-assisted framework designed to enhance the resilience of

power systems. The primary goal of this framework is to strategically deploy a minimal

number of PMUs to ensure system observability, even in the event of a data integrity

attack such as FDIA in some top vulnerable lines. The proposed scheme is developed in

three stages viz., (1) Identification of vulnerable links in the network, (2) Development

of cyber-attack resilient PMU equipped network, and (3) Assessing the cyber-attack

resiliency via proposed Resiliency Index.

� The proposed hybrid between-ness centrality index is found to be proficient attack

strategy to identify group of transmission lines whose sequential outages may severely

affect the system performance due to major structural breakdown.

� To prioritize the full system topological observability with higher resiliency in

the presence of HBC-based attack, the novel development of PMU deployment

framework works well and also defend the system from any data integrity types

of attacks.

� The newly introduced resiliency index provides a quantitative measure of obtaining

resiliency limit for the system operator to defend the system against typical ranges

of stealth attacks in terms of meters found to be inherently secured.

� The proposed PMU placement strategy results in 46% and 57% secured

measurements in the IEEE 14-bus and NE 39-bus system, respectively.
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Chapter 3

A Novel Replay Attack Detection

and Mitigation Framework for

State Estimation

3.1 Introduction

In Chapter-2, a cyber-attack-immune metering framework was developed, wherein

a vulnerability assessment in the transmission-level networks was carried out first.

Thereafter, the system was made completely observable with minimum number of

temper-proof PMUs to ensure system observability. Nonetheless, the attackers can still

falsify the legacy SCADA measurements received from the Remote Terminal Unit (RTUs)

via Replay Attacks (RAs), in order to hamper the critical state estimation application.

This chapter, therefore, tries to develop a simple yet effective replay attack detection and

mitigation framework in order to make Power System State Estimation (PSSE) application

more resilient. To this end,

1. From attacker’s viewpoint, Stage-1 of the proposed scheme identifies a minimal set of

SCADA measurements from power flow, power injection, and voltage sensors which,

if compromised, would result maximum error in the State Estimation (SE) results.

2. Stage-2 models different RAs which the attacker may inject into the measurement

vector of the SE application.

3. Finally, Stage-3 presents a simple yet effective scheme for the detection and

correction of RAs.

The rest of the chapter is organized as follows: In order to identify the highly sensitive

active power flows, voltages, and injection sensor data that are vulnerable to RAs and could

seriously disrupt PSSE estimates, a unique scheme is presented in Section 3.2. Section 3.3

represents the modeling of various RAs based on recording and replaying attack techniques

with those vulnerable measurements. Section 3.4 depicts the flowchart for the SE, based

on the mixed vulnerable SCADA and partial synchrophasors measurements, coherently

detecting and correcting the RAs, if any. Section 3.5 details the validation results of the

proposed algorithm on the two standard IEEE test systems i.e the IEEE-14 and IEEE

39-bus system, modelled in the Real-Time Digital Simulator (RTDS). Finally, Section 3.6
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summarizes the major findings made from the work as is also illustrated in Fig. 3.1 below.

Figure 3.1: Distribution of contributions: A Quadrant Perspective Visualization

3.2 Stage-1: Identification of the Vulnerable SCADA

Measurements

This is an offline stage, wherein a minimal number of power flows, voltages and injection

sensors are identified, from an attacker’s perspective, which can be compromised by RAs

resulting serious disruption in performance as well as obtaining actual operational states

of the power system. In pursuit of it, at the core of this scheme, a very commonly used

factor known as Power Transfer Distribution Factor (PTDF) is exploited, which is usually

defined as the incremental change in active flows of the line caused by the incremental

change in active power injection at some nodes of the system [203]. Firstly, for finding

minimum number of active power flow meters, an optimization problem is formed based

on Branch PTDF (BR-PTDF) matrix which analyzes sensitivities of each lines towards

change in 1 p.u. power injection and withdrawal at both the edge bus of each available

transmission lines of the system, respectively. Finally, the top few sensitive lines are

extracted, potentially resulting in significant vulnerabilities such as line overloads, load

shedding, cascading failures, and blackouts if they are externally tampered with. Similarly,

for minimum active power injection meters, a criteria is defined based on Nodal PTDF

(N-PTDF) matrix information. The detailed descriptions of both the proposed schemes

are elucidated as follows:

3.2.1 Selecting Critical Active and Reactive Power Flow Meters using

Branch Power Transfer Distribution Factor (BR-PTDF)

BR-PTDF, defined as a factor that gives the fraction of power that is sent into the network

at bus-s (source bus) to the bus-r (receiving bus) which flows over line l from bus-i to
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bus-j can be expressed as follows:

PTDFs→r,ij =
1

xij

[
(
∗
Xis −

∗
Xir)− (

∗
Xjs −

∗
Xjr)

]
(3.1)

where, xij is the lth line reactance, connecting bus-i and bus-j and
∗
Xik denotes the

elements of bus reactance matrix
∗
X of size (N ×N) pertaining to ith row and kth column.

Alternatively, in matrix notation, the same can also be written as:

PTDF = Bx ×
∗
A× X̃× (Ã)T (3.2)

where, Bx and
∗
A are the branch network suspentance matrix of order M ×M and line

incidence matrix of order M ×N respectively. Ã is the modified version of
∗
A by setting

the entry of the corresponding radial bus for any radial lines to be zero. Similarly, X̃ is

also be modified to
∗
X by setting zero entries in the row corresponding to the reference bus

and also for the rows corresponding to radial bus except its diagonal element to be placed

as one.

At the end, each rows of the computed PTDF matrix denotes the line flow pairs i ↔ j

and columns denotes the injected/withdrawal pairs s ↔ r. This s ↔ r can actually be

any bus pairs of the network but for the simplicity, in this chapter, the chosen s↔ r pairs

can be considered as only the end pairs of each lines. Now with the aim of maximizing the

impact of RAs in terms of having highest flow changes in each line pairs by considering

the cumulative effect of all s ↔ r pairs into the account and also simultaneously search

for the minimum number of meters of those highest sensible lines, the following novel

optimization function with the linear constraint are formulated which is solved using usual

Integer Linear Programming Model as shown below.

Minimize
x

f(x) =

nl∑
j=1

ψT
j xj xj ∈ R,Z

subject to ΘTX ≤ 1

xj = (0/1), a binary variable

where, ψ(i) =
1

nl
×

nl∑
j=1

PTDF (i, j)

Θ(j) =

nl∑
j=1

PTDF (j, i)

(3.3)

Equation 3.3 introduces the binary variable xj which serves as a selector index for active

and reactive power flow sensors or measurements targeted for the attack. Specifically, when

the decision variable, xj = 1, it signifies that the ith sensor is targeted and compromised,

while a value of xj = 0, signifies that the ith sensor readings are plausible. The constraint

outlined in Eq. (3.3) plays a crucial role in establishing a lower limit on the number of

line flow sensors chosen for tampering by potential replay attackers. In order to obtained
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minimal sensors output, the design criteria is formed such that while 1 p.u power is injected

to any one source bus “Ś” and extracted from any one withdrawal bus “Ŕ”, the cumulative

effect of all lines flows for that transaction are bounded by 1 p.u. Resulting it constitutes

a right balance between selection of sensors for tampering while maximizing the overall

vulnerability index to unity.

3.2.2 Selecting Active Power Injections and Voltage Meters using Nodal

Power Transfer Distribution Factor (N-PTDF)

The N-PTDF matrix characterizes the influence of power injections at each node on a given

individual line. In this matrix, there is a designated reference node i.e the slack bus through

which all power transactions i.e withdrawal takes place between each injection node. By

assuming a reference node (slack bus) available in the network, the N-PTDF are limited

to only nodal bus injections instead of all combinations of transactions between each pair

of busses. Thus, if m is designated as slack bus for corresponding power withdrawal and

n be the bus where 1 p.u power is injected, in such case the distribution of power change

on each line can be calculated from N-PTDF as follows:

N-PTDFm→n = PTDFn − PTDFm (3.4)

Hence, the above N-PTDF matrix of size nl×nb can alternatively be written as following

matrix notation:

N-PTDF = Bx ×
∗
A×

∗
X (3.5)

The above N-PTDF matrix is exploited in this chapter as mentioned in the following

sequential steps to find the index of vulnerable injection meters. Same index of voltage

meters can also be targeted by the attackers to maximize the impact of attack.

Algorithm 2: Selection of injections/voltage meters

Step-1: Calculate the Nodal PTDF (N-PTDF) matrix using Eq. (3.5).
Step-2: Compute a row vector containing the absolute sum of each column. This

vector gives total absolute change for all the lines corresponding to each
nodal point.

Step-3: Normalized and ranked the vector obtained from the Step-2 in descending
sequence and then select top 25% of the total bus injection meters from it as
target meters.

3.3 Stage-2: Modelling of Replay Attacks

Replay attacks involve unauthorized access by an intruder to secretly record the sensing

data, which is later delayed or replayed with fraudulent manipulation to the control center

(CC) during a sabotaging activities on the physical system without being noticed by the

operator. In this process of data sniffing, the adversary analyzes the captured dataset to

identify periods of disturbance and kept it separate from ambient data. The pre-recorded
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disturbance data is then subsequently replayed from sensor terminals, deceiving CC

operators into taking falsified actions that may potentially favour the adversary. As these

recorded packets are the duplicate copies of some original measured readings and adhere

to the same protocol, conventional anomaly detection methods usually cannot recognize

them as anomalies.

The above-mentioned intrusion strategy primarily consists of followings two steps:

3.3.1 Recording Window Phase:

This is the initial phase when the intruder infiltrates the system by breaking conventional

IT network security gateways and discreetly records observed sensor values without

altering any data for sufficiently long finite-time interval in a buffer. As the adversary

has usage limitation of attack resources associated with this phase, it is reasonable to

assume that they can only store n data packets of ith sensor and the set of the capture

data is denoted by Yi(t) = {yi(t0), yi(t1), yi(t2), ..., yi(tn)}, where t0 ̸= t1 ̸= t2 ̸= ... ̸= tn

be the discrete time instants of whole time period T. Therefore, if the adversary starts

eavesdropping at time instant t0 (Let’s denote it as, Ts) to gather knowledge of sensor’s

data and continues to do so till time instant say Te, then the recorded interval is designated

as trec = {t ∈ N : t ∈ [Ts,Te] = [t0, t0 + ĺ − 1]}, where, ĺ ∈ N denotes the window size of

the attacker’s recording phase and the recorded output follows the below mathematical

equation:

Yr
i (t) = Yi(t), t ∈ trec (3.6)

3.3.2 Replaying Window Phase:

In the second phase, the attacker commences the tampering of pre-determined sensors

identified in Section 3.2. This involves manipulating current observed values of those

sensor measurements by substituting them with any related/unrelated previously recorded

values for some specific time duration. Lets say, the replaying functionalities are initiated

by the adversary at Te+h sec and continues to persist for the whole duration up to T sec,

then the playback time interval is denoted as trep = {t ∈ N : t ∈ [ńTe+h, (ń+1)Te−Ts]},
where, ń = 1, 2, ... and h accounts for the total number of replay attack sequence and

sampling period respectively. Thus, finally at the end of this second stage the malicious

sensor reading that fraudulently transmitted to CC can be written as:

Ya
i (t) =

Yr
i (t− τ́), if 𭟋i = 1 and t ∈ trep,

Yi(t), otherwise
(3.7)

where, τ́ is the time elapse between the onset of above two phases and 𭟋 is the binary

variable whose value is unity when RA is triggered and zero otherwise. Also, it is to be

noted that in Eq. (3.6) and Eq. (3.7) the subscripts r and a denotes the sensor output

during the record and replay window phase respectively.
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3.3.3 Different RA Models Influencing PSSE:

Accurately estimating the state in real-time is crucial, especially in power systems, as

it relies on sensor data from RTUs for monitoring and control. However, the integrity

of these results is jeopardized by the occurrence of replay attacks, potentially leading

to security breaches and power system instability. In pursuit of showing its impact on

PSSE according to the execution plan mentioned above, two different RA models that

aim to interfere with trend-based power system applications and cause possible failures,

are discussed in this subsection below.

� Multiple Data Dropping Attack (MDDA): In this MDDA-type replay attacks,

attacker aims to capture the actual dynamic trends from the normal RTU sensor

readings at distinct and convenient time intervals of attacker’s choice in its recording

window phase. During replaying window phase, the attacker substitutes the current

stream of RTU readings with an interpolated data sequence derived from the

previously recorded data as described in the following Algorithm. 3.

Algorithm 3: MDDA with interpolated data sequence

Step-1: Start eavesdrop and record the ith RTU readings upto tthn sec with a gap of
k sec intervals such that Yr

i (t) = {yi(t0), yi(t0+k), yi(t0+2k), ..., yi(t0+ĺk)},
where tĺk ≤ tn is satisfied.

Step-2: The incomplete recorded dataset due to dropout of multiple data at each
(ĺk − 1)th interval is then filled up by the computed steady state
interpolated trends from the existing available ith RTU dataset.

Step-3: In the replaying window phase, the original RTU measurements data from
tthn+1 sec to tthm sec are being replayed by the interpolated and recorded data
provided by Step-2.

� Repetitive Data Cloning Attack (RDCA): Replay attack can be launched

via impersonating as a natural disturbance or an equipment fault. Therefore, the

primary objective of RDCA here is to replace the current trends in multiple sensors

with the cloning of pre-saved historical measurement data across repetitive time

instances. With the aim of manipulating the dynamic signatures, in RDCA the

attackers replaces the original dynamic data trends of the various RTU sensors

with repeated sequences of pre-saved unrelated high disturbance or faulted signature

trends. The following two algorithms i.e Algorithms. 4 and Algorithms. 5 outlines

the modeling steps of different RDCAs.

3.4 Stage-3: PMU Sensor-Assisted RA Detection and

Correction

In SCADA system, the traditional state estimation (SE) relies on non-linear weighted least

square (WLS) algorithm for finding the best fit of the of system states, utilizing sensor

measurements from RTUs across a wide geographical area. However, the susceptibility
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Algorithm 4: RDCA with cloning of high disturbance event historical data
(LT-RDCA)

Step-1: Choose a pre-saved unrelated historical huge load disturbance dataset from
a historical database archives.

Step-2: Start recording of a kth sec window from the above disturbance dataset such
that Yr

i (t) = {yi(t0), yi(t1), yi(t2), ..., yi(tk)}, where tk ≤ T.
Step-3: Now in the playback period, the current RTU data streams are being

replaced by the recorded dataset and the same being replayed periodically
from tthn+1 sec onwards.

Algorithm 5: RDCA with cloning of Faulted event historical data (ST-RDCA)

Step-1: Choose a pre-saved unrelated historical Faulted dataset from a historical
database archives.

Step-2: Record the fault signature from the chosen dataset from tk sec to tk+4 sec
duration.

Step-3: Now replace the original RTU measurements of a non-fault case by the same
duration recorded data and replay it between tk sec to tk+4 sec to
misinterpret the non-fault case as fault case.

to high dB noise or replay attacks in the transmitted data between RTUs and other

network components due to the absence of robust security mechanisms in telemetry poses

a substantial threat. This lack of security measures leads to notable discrepancies in

estimation accuracy and may also introduces potential catastrophic vulnerabilities in the

physical system. However, the state-of-the-art PMU sensors, on the other hand, are

considered to be resilient and cyber-secured due to their advanced cybersecurity features

and robust design, providing accurate and time-stamped real-time data of voltage and

current phasors [204, 65]. These devices play a crucial role in enhancing the grid’s

situational awareness and ensuring the integrity of the system against cyber threats.

Nevertheless, the large scale deployment of these devices are quite expensive due to its

requirement of communication infrastructure and maintenance cost and thus complete

replacement of RTU device with PMU is not possible in near future. Therefore, the

coexistence and complimentary co-operative support of both the sensors i.e., RTUs and

limited PMUs is the only viable option to jointly estimates the power system states as well

as ensuring global network observability and robustness against implausible cyber threats.

Thus, in order to detect and correct the RAs in SE, the methodology proposed in this

section is based on the improved synchrophasor-assisted hybrid state estimator (HYB-SE)

and a model based residual check technique, as discussed in the following subsections.

3.4.1 Hybrid SE (HYB-SE) Model

In the WLS-assisted conventional SE, the measurement vectors (ZRTU ), comprising of

M RTU readings (voltages, power injections, and power flows), are linked to the 2N − 1
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system states (XRTU ) of order N using the following non-linear relationships:

ZRTU = hRTU (XRTU ) + εRTU (3.8)

where hRTU (·) is the non-linear mapping function that relates the RTU measurements with

its corresponding state variables and εRTU ∈ N(0, σ̃RTU ) is the measurement Gaussian

noise or errors associated with RTU sensors.

Then, the conventional estimates of system state vector are obtained if the objective

function (J(XRTU )) defined as the weighted sum of squares of measurement errors can be

minimized through WLS method as shown below:

J(XRTU ) = [ZRTU − hRTU (XRTU )]
TR−1

RTU[ZRTU − hRTU (XRTU )] (3.9)

where RRTU be the M×M order RTU measurements error covariance matrix defined as

RRTU = E[εRTU · εTRTU ] The reciprocal of this matrix is called as weight matrix (WRTU)

whose each diagonal elements represents the weightage of the corresponding available RTU

measurements. It depends on the accuracy level of RTU sensors. At the end, solving the

above objective function through iterative approach, the final estimated value of the states

can be obtained as: [205]

∆ZRTU (X̂
k
RTU ) = ZRTU − hRTU (X̂

k
RTU ) (3.10)

∆X̂k
RTU = [HT

RTUR−1
RTUHRTU]−1HT

RTUR−1
RTU∆ZRTU (X̂

k
RTU ) (3.11)

X̂k+1
RTU = X̂k

RTU +∆X̂k
RTU (3.12)

where, HRTU is measurement Jacobian matrix of size M×N , HT
RTUR−1HRTU is called

as gain matrix and X̂k
RTU = [V̂ k

RTU θ̂kRTU ]
T be the conventional estimated states at kth

iteration.

Now, to enhance the estimation accuracy, capturing dynamic state trends, and mitigate

uncertainties, the PMU-derived bus voltage and current phasor measurements, in

conjunction with the latest WLS-assisted conventional SE estimates, are utilised to form

a new measurement vector (ZHY B). Since voltage and current exhibit linear relationships

with the relevant state variables, the new measurement vector is expressed in rectangular

coordinates, forming a hybrid linear estimator model as shown below.

ZHY B =



[
V̂Re
V̂Im

]
RTU[

VRe
VIm

]
PMU[

IRe
IIm

]
PMU


=



I 0

0 I

CCC1 0

0 CCC2

CCC3 CCC4

CCC5 CCC6


×

[
VRe

VIm

]
+



εVRe
RTU

εVIm
RTU

εVRe
PMU

εVIm
PMU

εIRe
PMU

εIImPMU


(3.13)

ZHY B = HHYB XHY B + εHY B (3.14)
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The subscripts ‘Re’ and ‘Im’ in the above equation denotes the real and imaginary

components of the measurements and hybrid states (XHY B). Symbols I and 0 represents

an unit matrix and zero matrix respectively. CCC1 and CCC2 are the matrices where each row

corresponds to a specific PMU location, with ones placed in the columns corresponding

to the measured voltage phasors by the respective PMU’s row index. The elements of

matrices CCC3 to CCC6 are represented in linear combinations consisting of line conductance

and susceptance for the lines where current phasors are available. Finally, the WLS

solution (X̂HY B) for the above linear model can be obtained in non-iterative manner and

expressed in the same form as stated in Eq. (3.11) and Eq. (3.12).

X̂HY B = (HT
HYBWHYBHHYB)

−1 HT
HYB WHYB ZHY B (3.15)

where, WHYB be the reciprocal of covariance matrix of hybrid estimator (RHYB) consist

of error covariance matrices of conventional SE, PMU voltage phasors and PMU current

phasors converted into rectangular format based on error propagation theory [206] of

measurement transformation.
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PMU Measurement

RTU Measurement

Figure 3.2: Time scale of arrival of RTU and PMU measurements

3.4.2 Proposed Phasor Measurement Based RA Detection and

Correction

The detection and correction of the RAs on PSSE can be effectively achieved through

the use of above described 2-stage hybrid state estimation model, considering real-time

measurements collected using both RTUs and PMUs with different time scan periods.

Usually, the measurement set updated by the RTU is within a time scan of few seconds

and for PMU the reporting rate is quite high i.e., typically up to 60 frames per seconds. The

aim here is to effectively integrate information from both the devices operating at different

sampling rates, within the dynamic HYB-SE framework such that any manipulations in

RTUs can be noticed easily. In this context, this chapter assumes that HYB-SE is executed

whenever a new set of PMU data arrives, with a refresh rate of 20 frames per second for

a 60 Hz system. Simultaneously, the conventional non-linear SE is executed at each

one-second interval upon the arrival of a new RTU measurement dataset. This implies

that between two consecutive RTU measurements, 20 PMU measurements are reported.

The whole timeline diagram, including the arrival of the complete set of RTU and PMU

measurements both and the HYB SE’s execution cycle, is shown in Fig. 3.2. During
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periods when only PMU measurements are available, the latest states estimated solely by

the conventional non-linear SE are incorporated to fill the incomplete measurement set and

execute the HYB-SE. This is due to the fact that existing power system is observable by

the available RTU measurements, but the inclusion of additional PMUs serves the purpose

of transforming any critical existing measurements into redundant ones, thereby improving

the overall accuracy of the measurement reconstruction process. This enhancement also

aids in the identification of compromised RTU sensor readings and distinguishing the

moment when a RA is initiated. After the Stage-1 and Stage-2, steps have been followed

in block (1)-(3) in Fig. 3.3, and a few critical RTU measurements are compromised, the

RAs may be initiated by the attacker at any opportune time. The steb-by-step procedure

for detecting and correcting the RAs in SE, are described as follows.

(1) In block-(4), the WLS-assisted SE algorithms estimate system states (X̂RTU ) once

every second. The linearized HYB-SE also runs through blocks 5–6 in parallel. The

dynamic estimates X̂HY B are produced recursively in HYB-SE using the estimates

of the WLS estimator until new RTU data is received.

(2) Because the secured PMU measurements are quite accurate, (X̂HY B) can be used,

using standard power flow equations, to reconstruct the estimation of the original

RTU readings at each second interval following the arrival of ZRTU in block-(7).

(3) In block-(8), a measurement residue (Λ) is computed using the original RTU sensor

readings (Z̃RTU ) (which may or may not be compromised) and the reconstructed

measurements (ẐHY B
RTU ).

(4) If the residue lies within an upper (+δUB) and lower bound (−δLB) in block-(9), the

RTU measurements are labeled as Normal with a Flag=0 in block-(10), compromised

otherwise. The measurements that have Flag=1 assigned to them are considered

vulnerable and are kept in a variable called Zv in block (11).

(5) To fix the bugged measurements, Zv, block-(12) replaces the malicious RTU sensor

readings with the reconstructed measurements by hybrid states and the toggling

switch, Sw is set to position 2 as shown in Fig. 3.3.

(6) The conventional SE stage in block-(4) executes in loop, thereafter, to estimate the

attack-free states with the corrected measurements through blocks (5)-(12).

The overall flowchart of the proposed scheme with various intermediate blocks is presented

in Fig. 3.3.

3.5 Real-Time Digital Simulation (RTDS) Results

The proposed RA detection and correction framework is tested and validated on the

IEEE 14-bus and New England (NE) 39-bus systems using the RSCAD software in the

RTDS. The RTDS modeling closely mimics real field scenarios, providing accurate results.
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Figure 3.3: Flowchart of the proposed RA detection and correction scheme
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Dynamic conditions of the grid are emulated by varying loads from ±10% to ±30% with

user-defined logic sequences in RSCAD. Gaussian noise is introduced to both RTU and

PMU readings to simulate measurement uncertainties. PMUs are installed at the same bus

locations as specified in [207]. A MATLAB script implementing HYB-SE is then executed

for randomly generated RA test scenarios. The framework’s performance is evaluated

based on factors such as correct identification of vulnerable measurements, detection time

for launched RAs, and key metrics including True Negative (TN), False Negative (FN),

False Positive (FP), and True Positive (TP), along with other derived evaluation indices.

3.5.1 IEEE 14 Bus Test System:

To assess the accuracy of the proposed method for detecting and correcting replay attacks,

the IEEE 14-bus test system is initially selected. The system is tested against two

attack strategies: MDDA and the RDCA algorithm (4), as discussed in Section 3.3.

The details associated with various RTU, PMU and vulnerable measurements along with

their standard deviation (SD) for the IEEE 14-bus system is tabulated in Table 3.1.

Additionally, PMU sensors are installed at Bus-2, Bus-7, Bus-10, and Bus-13 to obtain

voltage and current phasors for the execution of HYB-SE, which is used to generate refined

reconstructed measurements. For this test system, the upper (+δUB) and lower threshold

(-δLB) values are fixed at 0.03 p.u. through out the total simulation duration.

Table 3.1: Conventional, Compromised and Synchrophasor Measurements for IEEE
14-Bus Test System

IEEE 14-bus System

Parameters

Bus Location
for Voltages

(Bi)

Bus Location
for Active
Power

Injections (Bi)

Bus Location
for Reactive

Power
Injections (Bi)

Line Location for
Active and Reactive
Power Flows (Li-j)

No. of RTU
Sensors

SD: 0.006 p.u. SD: 0.01 p.u. SD: 0.01 p.u. SD: 0.01 p.u.

ZRTU

B1, B2, B6,
B9, B10, B12,

B14

B1, B2, B4,
B6, B8, B10,
B12, B14

B1, B4, B6,
B7, B9, B11,
B12, B13

L1-2, L1-5, L2-3, L2-4,
L4-5, L4-7, L4-9, L5-6,
L6-11, L6-12, L7-8,
L7-9, L9-10, L9-14,
L12-13, L13-14

7+8+8
+16+16 = 55

Zv B10, B12 B8, B10, B12
L2-3, L2-4, L4-7, L5-6,
L7-8, L7-9, L13-14

2+3+7+7 = 19

Parameters

Bus Location for
Voltages Phasors

Line Location for
Current Phasors No. of PMU

Sensors

SD: 1.0e-05 p.u (Mag), 0.001 (Ang) SD: 1.0e-05 p.u (Mag), 0.001 (Ang)

ZPMU B2, B7, B10, B13
L2-1, L2-3, L2-4, L2-5, L7-4, L7-8, L7-9,
L10-9, L10-11, L13-6, L13-12, L13-14

4+12 = 16
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3.5.1.1 Multiple Data Dropping Attack (MDDA) Detection

In this study, before the attack initiation, the model is running in steady state with

dynamic load variations are performed at the load bus 4, bus 5 and bus 9 to bus 13. The

variations are simulated chronologically, with the model running at its base load for the

initial 0 to 2 sec. Then, the load is increased by 30% for the next 3 sec, followed by

another increment of 30% of the previous load for the next 3 sec. Finally, after 8 seconds,

the load is reduced to its base load again. Throughout the first 5 sec simulation duration,

in MDDA, the attacker eavesdrops and sniffs data packets to capture dynamic snapshots

of the current simulation case at three distinct intervals: 0 sec, 2 sec, and 4 sec based on

resource availability. Now to generate a complete set of replay attack vector for a 5 sec

duration, interpolated steady-state values are computed for 1 sec and 3 sec based on the

captured data set. Following this, the attacker is prepared to replace the current streaming

of RTU sensor data with the pre-recorded data for a playback time of 5 sec, which is then

transmitted to the control center from 5 sec onward.

As per the flowchart of Fig. 3.3, with the onset of the attack, direct residue (Λ) in Fig.

3.4(a) exhibits significant changes in the model residual of some of the measurements

crossing the thresholds limit denoted with red and the blue horizontal lines. At the end,

the residual matrix is converted to a binary matrix by placing one while the observed

residuals crossing upper and lower bound thresholds and place 0 otherwise. Then by

calculating the total number of zeros and non-zeros at the end of simulation duration

pertaining to individual measurements, a plot is generated as shown in Fig. 3.4(b) which

represents the cluster of the measurements Flagged as normal (blue dots) and the ones

flagged as vulnerable (Flag=1, with red dots). The same information is quantitatively

assessed through confusion matrix as shown in Fig. 3.4(c) to count the number of correctly

identified and labeled attacked and non-attacked RTU sensor measurements based on TP,

TN, FP, and FN. These information also help to calculate some other crucial metrics

such as precision, recall, and F1 score to gain profound quantitative insights into the

efficacy of proposed attack detection method. It is noticed that the proposed method has

relatively higher true positive rate (89.47%), accuracy (81.85%) with a little compromise

in true negative rate (77.79%), F1 score (77.27%) and precision (68%). This is due to

the presence of bad data in the measurement vector which is not attacked. Moreover,

in order to visualize the timing instants of replay attack and to potentially identify

the uncorrelated attacked measurements or outliers, various statistical study in terms

of computing correlation coefficients via correlation matrix and box plot are conducted

based on residual features matrix as shown in Fig. 3.4(d) and 3.4(e). The correlation

matrix shown in Fig. 3.4(d) measures the relationships between different measurements

over time for discerning distinct behavioral patterns during attack and non-attack periods.

Thus, during 5 sec attack duration of MDDA, the coefficients values get surprisingly very

high as compared to the same computed in other timings as visualized by the heatmap.

The same can also be perceived by the boxplot as shown in Fig. 3.4(e) which facilitated

the identification of outliers or potentially corrupted data using the symbol ’+’ during
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Figure 3.4: Detection phase of MDDA for IEEE 14-bus test system

the attack periods (5 sec to 9 sec), as many data points significantly deviating from the

expected distribution and lying outside of the interquartile range of the box.

3.5.1.2 Repetitive Data Cloning Attack (RDCA) Detection

In contrast to the previous case, now the chronological load variation is done with low

step load changes in such a way that the model is allowed to run under normal conditions

for the initial 0 to 2 sec followed by 12% decrement for next 3 sec. In subsequent next 3

sec, the load is increased by 17% from its previous load value and finally the load settles
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at 10% below the previous value after 8 sec onwards. As per the RDCA algorithm 4, it

is assumed that the attacker already got control access into the operator’s network before

and recorded an unrelated historical load disturbance data for 4 sec window span. Now

in this case study, attackers start replaying those recorded data packets periodically in

the replacement of original RTU data from 4 sec onwards. The direct residual plots, as

shown in Fig. 3.5(a) reveals the presence of RDCA in some of the measurements. Figure

3.5(b) also successfully identified most of the vulnerable measurements marked as red dot

while it crossing the set threshold limits. It is also noticed from the confusion matrix of

Fig. 3.5(c) that the number of FN and FP are 1 and 2 respectively which is significantly

improved then previous case study. Moreover, improvement can also be observed in other

derived metrices such as true positive rate and true negative rate is almost 94.5% with

precision, accuracy and F1 score are 90%, 94.6% and 92.3% respectively. To analyze

temporal patterns in the context of potential replay attacks on those attack time instants,

correlation matrix is also shown in Fig. 3.5(d). Stronger associations were shown by bright

hues on the heatmap, which provided a visual representation of this increased correlation.

This observation implies that replay attacks occurring at those specific time instance can

have a noticeable impact on the temporal correlations between observations, resulting

in patterns that can be identified in the correlation matrix. As the attack being start

replayed from 4 sec by the adversary, the box plot depicted in Fig. 3.5(e) also shows

a sudden increase in corrupted uncorrelated measurement readings which clearly discern

irregularities and variations which corresponded with the occurrence of cyber attacks.

3.5.1.3 Attack Correction

The correction phase of the proposed methodology against these two above mentioned

attacks i.e MDDA and RDCA algorithm 4 is shown in Fig. 3.6. The vulnerable

measurements identified by the above detection phase is now corrected with the

reconstructed RTU measurements using the refined estimates of hybrid states

incorporating secured PMU measurements. The re-execution of SE process thereafter

takes place as per the algorithm explained in Section 3.4.2. As a result it can be evident

from the direct residue plots of Fig. 3.6(a) and Fig. 3.6(b), that now the residuals are

confined within the range selected by upper and lower level thresholds and thus none

of the measurements are now treated as attacked or compromised. It clearly reveals

that the error under compromised condition, i.e., before RA correction was maximum

in the range of 0.2 pu, whereas after the correction as per the proposed scheme, the

residual drops to a maximum value of about 0.02 pu. On the similar line, the correlation

matrix depicted in Fig. 3.6(c) also demonstrates the strong correlation coefficients with

its diagonal entity only which implies that the measurements received at different time

instances are consistent and correlated with their respective time of arrival and there

was existence of no anomalous readings. Also by exploring the temporal and spatial

relationships between time, measurements, and attack labels, the 3-D scatter plot shown

in Fig. 3.6(d) indicates that there is no measurements in the corrected RTU vector set
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Figure 3.5: Detection phase of RDCA Algorithm 4 for IEEE 14-bus test system

that are corrupted by any of the aforementioned attacks. Furthermore, in the correction

phase of the MDDA, the maximum reduction in residue from the attacked state to the

corrected state ranges between 83.33% (upper bound) and 89.73% (Lower bound). The

highest root mean square error of the hybrid estimated states, post-correction for MDDA,

is recorded at 0.4%. Similarly, during the correction phase of the RDCA, the maximum

decrease in residue from the attacked state to the corrected state falls within the range

of 89.51% (upper bound) and 83.65% (Lower bound). The maximum root mean square

error of the hybrid estimated states, after correcting for RDCA, is observed to be 0.6%.

Notably, in both case studies, following the correction process, the true negative rate

reach 100%. The consolidated results derived from all the above post-correction plots
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(d) 3-D Scatter Plot

Figure 3.6: Correction phase of proposed scheme for IEEE 14-bus test system

provide compelling evidence of the attack mitigation. Thus, the efficacy of proposed

attack correction strategy has been proven to evident through its ability to restore the

integrity of attacked measurements.

3.5.2 New England (NE) 39-Bus Test System:

To assess the effectiveness of the proposed attack detection and control approach on larger

system, two different variants of RDCA as mentioned in algorithm 4 and algorithm 5 are

now employed in NE 39-Bus test system. The details pertaining to various measurements

have been summarized in Table 3.2. As the threshold selection is system specific, the

upper (+δUB) and lower (-δLB) threshold level are set at 0.05 pu, corresponding to this

test system.

3.5.2.1 Long Term Repetitive Data Cloning Attack (LT-RDCA):

This case study is similar to the RDCA Algorithm 4 as described in IEEE 14 test

system where the adversary recorded the unrelated high disturbance data for replaying

compromised RTU measurements periodically from 4 sec onward. Dynamic load variations

are sequentially applied to 10 different bus locations: bus-3, bus-4, bus-8, bus-15, bus-16,

bus-20, bus-24, bus-26, bus-29, and bus-39.The impact of these adversarial actions is

evident in the direct residual (Λ) plot, illustrated in Fig. 3.7(a), which shows the clear

evidence of adversarial action by effectively flagging out any potential corrupted sensor

readings resulting from the attack. Figure 3.7(b) provides a granular visualization in

pinpointing specific measurements affected during whole attack duration. Figure 3.7(c)

shows the confusion matrix that provides a comprehensive picture of attack detection

performance with very lower value of FP and FN, specifically 3 and 6, respectively. This

leads to improved model’s ability to successfully detect attacks while minimizing false
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Table 3.2: Conventional, Compromised and Synchrophasor Measurements for NE 39-Bus
Test System

NE 39-bus System

Parameters

Bus Location for
Voltages (Bi)

Bus Location for
Active Power
Injections (Bi)

Bus Location for
Reactive Power
Injections (Bi)

Line Location for
Active and Reactive
Power Flows (Li-j) No. of RTU

Sensors

SD: 0.006 p.u. SD: 0.01 p.u. SD: 0.01 p.u. SD: 0.01 p.u.

ZRTU

B1, B2, B3, B5, B6,
B7, B8, B10, B12,
B15, B16, B18, B20,
B21, B22, B23, B25,
B26, B28, B29, B30,
B31, B32, B33, B34,
B35, B36, B37, B38,
B39

B1, B2, B3, B5, B6,
B7, B8, B10, B12,
B15, B16, B18, B20,
B21, B22, B23, B25,
B26, B28, B29, B30,
B31, B32, B33, B34,
B35, B36, B37, B38,
B39

B1, B2, B3, B4, B7,
B8, B10, B12, B15,
B16, B18, B20, B21,
B23, B24, B25, B26,
B27, B28, B29, B30,
B31, B32, B33, B34,
B35, B36, B37, B38,
B39,

L1-2, L1-39, L2-3, L2-25,
L3-18, L4-14, L5-8, L6-7,
L6-11, L7-8, L8-9, L9-39,
L10-13, L13-14, L14-15,
L15-16, L16-19, L16-21,
L16-24, L17-18, L21-22,
L22-23, L26-27, L26-29,
L28-29, L12-11, L12-13,
L10-32, L23-36, L25-37,
L29-38, L19-20

30+30+30+
32+32 = 154

Zv

B20, B22, B23, B28,
B29, B33, B34, B35,
B36, B38

B20, B22, B23, B28,
B29, B33, B34, B35,
B36, B38

L1-2, L3-18, L4-14, L5-8,
L6-7, L6-11, L7-8, L8-9,
L9-39, L10-13, L13-14,
L14-15, L15-16, L16-19,
L16-21, L16-24, L17-18,
L21-22, L26-27, L12-11,
L12-13, L10-32, L19-20

10+10+23
+23 = 66

Parameters
Bus Location for Voltages Phasors Line Location for Current Phasors

No. of PMU
Sensors

SD: 1.0e-05 p.u (Mag), 0.001 (Ang) SD: 1.0e-05 p.u (Mag), 0.001 (Ang)

ZPMU
B2, B6, B9, B10, B11, B14, B17, B19, B20,
B22, B23, B26, B37, B38

L2-1, L2-3, L2-25, L2-30, L6-5, L6-7, L6-11,
L6-31, L9-8, L9-39, L10-11, L10-13, L10-32,
L11-6, L11-10, L11-12, L14-4, L14-13, L14-15,
L17-16, L17-18, L17-27, L19-16, L19-20,
L19-33, L20-19, L20-34, L22-21, L22-23,
L22-35, L23-22, L23-24, L23-36, L26-25,
L26-27, L26-28, L26-29, L37-25, L38-29

14+39 = 53

alarms. The resulted performance metrics includes: true positive rate of 91%, true negative

rate of 97%, precision of 95.2%, accuracy of 94.2% and F1 score of 93.02%. To identify

timing instances of potentially uncorrelated and compromised RTU measurement’s arrival,

based on columns features of residual matrix, the correlation coefficients are calculated as

shown in correlation matrix of Fig. 3.7(d). By leveraging the heatmap’s color intensity

associated with elevated correlation coefficients, the timing of replaying historical recorded

measurements are now clearly discernible.

3.5.2.2 Short Term Repetitive Data Cloning Attack (ST-RDCA)

In the second variant of RDCA, the attacker initially recorded a 2 second windowed

RTU data of a single phase to ground fault from any historical database and then these

faulted RTU readings are being replaced with the normal RTU readings at 3 sec as per

the Algorithm 5 to impersonate a normal event as a faulty one. Thus unlike previous

attack cases, this attack features with limited duration but seemingly more hazardous as

it could lead to false tripping of relays even if the system is in healthy condition. The

proposed detection method effectively identifies such replay attacks, as evident from the



82
Chapter 3. A Novel Replay Attack Detection and Mitigation Framework for State

Estimation

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
6

0
6

1
6

2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
7

0
7

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
8

0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
9

0
9

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

9
1

0
0

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5
1

0
6

1
0

7
1

0
8

1
0

9
1

1
0

1
1

1
1

1
2

1
1

3
1

1
4

1
1

5
1

1
6

1
1

7
1

1
8

1
1

9
1

2
0

1
2

1
1

2
2

1
2

3
1

2
4

1
2

5
1

2
6

1
2

7
1

2
8

1
2

9
1

3
0

1
3

1
1

3
2

1
3

3
1

3
4

1
3

5
1

3
6

1
3

7
1

3
8

1
3

9
1

4
0

1
4

1
1

4
2

1
4

3
1

4
4

1
4

5
1

4
6

1
4

7
1

4
8

1
4

9
1

5
0

1
5

1
1

5
2

1
5

3
1

5
4

Measurements Index

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
 Direct Residue ( )

time = 3 sec time = 4 sec time = 5 sec time = 6 sec time = 7 sec time = 8 sec time = 9 sec

(a) Direct Residue of MDDA

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
6

0
6

1
6

2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
7

0
7

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
8

0
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
9

0
9

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

9
1

0
0

1
0

1
1

0
2

1
0

3
1

0
4

1
0

5
1

0
6

1
0

7
1

0
8

1
0

9
1

1
0

1
1

1
1

1
2

1
1

3
1

1
4

1
1

5
1

1
6

1
1

7
1

1
8

1
1

9
1

2
0

1
2

1
1

2
2

1
2

3
1

2
4

1
2

5
1

2
6

1
2

7
1

2
8

1
2

9
1

3
0

1
3

1
1

3
2

1
3

3
1

3
4

1
3

5
1

3
6

1
3

7
1

3
8

1
3

9
1

4
0

1
4

1
1

4
2

1
4

3
1

4
4

1
4

5
1

4
6

1
4

7
1

4
8

1
4

9
1

5
0

1
5

1
1

5
2

1
5

3
1

5
4

Measurement Index

0

1

C
lu

s
t
e

r
s
 
(
0

 
a

n
d

 
1

)

Cluster Pertaining to Confusion Matrix

(b) Cluster of Measurements

Negative Positive

True Class

Negative

PositiveP
re

d
ic

te
d
 C

la
s
s

Confusion Matrix

3

6

60

85

(c) Confusion Matrix



Chapter 3. A Novel Replay Attack Detection and Mitigation Framework for State
Estimation 83

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

Correlation Matrix

1

0.378

0.382

0.322

0.378

1

0.275

0.323

0.382

0.275

1

0.309

0.322

0.323

0.309

1

1

0.978

0.912

0.933

0.935

0.902

0.978

1

0.941

0.913

0.94

0.895

0.912

0.941

1

0.905

0.88

0.897

1

0.933

0.913

0.905

1

0.875

0.811

0.935

0.94

0.88

0.875

1

0.957

0.902

0.895

0.897

0.811

0.957

1

-0.181

-0.177

-0.152

0.0724

-0.132

-0.181

-0.176

-0.0653

-0.0581

-0.0525

0.1

-0.0427

-0.0727

-0.0921

-0.0984

-0.078

-0.0533

0.113

-0.0772

-0.0713

-0.0791

0.146

0.158

0.143

-0.0637

0.103

0.0924

0.0946

-0.181

-0.0653

-0.0984

0.146

-0.22

-0.177

-0.0581

-0.078

0.158

-0.202

-0.152

-0.0525

-0.0533

0.143

-0.0922

0.0724

0.1

0.113

-0.0637

-0.22

-0.202

-0.0922

-0.105

-0.161

-0.125

-0.132

-0.0427

-0.0772

0.103

-0.105

-0.181

-0.0727

-0.0713

0.0924

-0.161

-0.176

-0.0921

-0.0791

0.0946

-0.125

-0.2

0

0.2

0.4

0.6

0.8

1

(d) Correlation Matrix

Figure 3.7: Detection phase of LT-RDCA (Algorithm 4) for NE 39-bus test system

residue plot in Fig. 3.8(a). For the clear distinction of replay attack occurrence, in the

above plot the pre-attack, during attack and post attack time legends are only shown. The

distinct categorization between compromised RTU sensors data from the normal sensor

data, offering a holistic view of measurement cluster during both routine and adversarial

scenarios as depicted in Fig. 3.8(b). The confusion matrix in Fig. 3.8(c) reveals that

application of proposed detection techniques over this test case results in 13 FPs and 1 FN

in total. By analyzing the distribution of TP, TN, FP, and FN in the confusion matrix, a

comprehensive evaluation of the model’s success rates in detecting attacks can be accessed

through the calculated values of other derived metrics such as true positive rate (98.49%),

true negative rate (85.23%), precision (83.33%), accuracy (91%) and F1 score (90.3%).

Lastly, the box plot in Fig. 3.8(d) offers detailed insights into the temporal dynamics

of meter corruption, showcasing whiskers and individual data points. This visualization

reveals high variability and skewed distributions in RTU sensor data during the initiation

of replay attacks from 3 sec to 5 sec, highlighting anomalous behavior in detected meters.

3.5.2.3 Attack Correction

The correction phase of the proposed methodology against the aforementioned two attack

variants of RDCA is depicted in Fig. 3.9. The vulnerable measurements identified

in the detection phase are now corrected using the reconstructed RTU measurements,

incorporating refined estimates of hybrid states with secured PMU measurements. The

resulted residue plot of LT-RDCA, depicted in Fig. 3.9(a) is updated after incorporating

corrected RTU measurements into the state estimation process. Notably, it is observed

that the corrected residues consistently maintained a profile within the predefined range
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Figure 3.8: Detection phase of ST-RDCA (Algorithm 5) for NE 39-bus test system
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Figure 3.9: Correction phase of proposed scheme for NE 39-bus test system
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delineated by the upper and lower level thresholds. This observation signified a successful

mitigation of the detected attacks, as the corrected measurements no longer surpassed

these established boundaries. As a result none of the RTU meters reading is now suspected

as compromised which is clearly illustrated by all the measurements marked as blue dots

in Fig. 3.9(b). Correlation matrix analysis of ST-RDCA is depicted in Fig. 3.9(c)

reveals strong correlation coefficients only along the diagonal, indicating consistent and

non-anomalous measurements at various time instances. Furthermore, for LT-RDCA

correction, the maximum residue drop is approximately 96.5%, with a post-correction

root mean square error of 0.4%. In ST-RDCA correction, the residue drop ranges between

97.81% (upper bound) and 82.87% (lower bound), and the root mean square error is 0.5%.

The true negative rate for both the attack variant reach at 100% after the end of correction

steps.

3.6 Conclusions

The aim of detecting and correcting replay-attacked measurements in the power

system dynamic state estimator is achieved in this chapter based on developing three

sequential stages. In Stage-1, based on nodal and branch power transfer distribution

factors vulnerable RTU measurements are first identified, followed by corrupting those

measurement values based on designing two novel RA models in Stage-2. Finally, in

Stage-3, with the utilization of secured PMU sensors readings in a hybrid state estimator

model, an attack detection and correction algorithm is developed to counteract the

RAs. Rigorous testing on two popular standard IEEE test systems, i.e., IEEE-14 and

NE-39, modelled in Real time Digital Simulators and the computational results of many

performance indices has validated the effectiveness and remediation of proposed attack

detection and correction strategy which in turn fortify resilience of cyber-physical systems

against adversarial interventions. At the end, this chapter comes up with following salient

features of the proposed method:

� The average detection rate for RDCA and MDDA is determined to be 94.6% and

90%, respectively. In the IEEE 14-bus system, there are a total of 8 FPs and 2 FNs

for the MDDA and 2 FPs and 1 FN for the RDCA.

� The accuracy estimation for both MDDA and RDCA is found to be 82% and 93.27%

respectively.

� The RMSE of estimated states of the estimator under MDDA and RDCA becomes

0.4% and 0.45%, respectively, after applying the attack correction algorithm.

� For both attack variations, the true negative rate constantly approaches 100%.

This indicates the high specificity of the proposed algorithm in correctly identifying

instances that do not belong to the attack class after correction.

� The resilience of the PSSE is enabled by secured PMUs, placed at approximately

1/3rd of the system buses.



Chapter 4

Detection, Classification and

Localisation of Cyber Attacks in

Islanded AC Microgrid

4.1 Introduction

While Chapter-2 and Chapter-3 highlights the vulnerability of T-systems to cyber-attacks,

it is also crucial to acknowledge the vulnerabilities that constantly faced by Distributed

Energy Resources (DERs) at active distribution level network as well, particularly within

the control mechanisms of Microgrids (MGs). MGs rely in seamless interconnections

with various DERs for exchanging their own local information to the controllers and also

highly interdependence with diversified communication and networking architecture for

the efficient monitoring and control process. Consequently, now-a-days cyber criminals are

increasingly shifting their attention to D-system, especially in the complex environment

of islanded AC MG systems where the DERs controllers and its communication links

are purposely targeted to be compromised, posing challenges for voltage and frequency

stability. Thus, in D-System domain, particularity in the realm of MG, this chapter

envisages for timely detection, classification and localization of cyber attacks which is of

paramount importance for successful isolation of corrupted DERs from the MG topology

under worst case situation. Thereafter, this detection and locational information will be

utilized in next chapter to develop an effective resilient defense mechanisms to neutralize

the cyber threats.

This chapter attains the above-mentioned objectives in 3 sequential steps. At first,

Maximum Mean Discrepancy (MMD) based two-sample statistical hypothesis test is

employed for analyzing and comparing distribution of the actual and estimated local

frequency neighborhood tracking errors to detect the presence of misbehaving DERs

or its corrupted incoming communication links. In next step, following detection of

an attack, two statistical inconsistency measures—Shannon energy and entropy—are

computed and used in a novel rule-based attack classification method that is integrated

with the same XGBoost classifier to categorize different kinds of injection attacks in the

controllers of the DERs. Upon classifying the nature of cyber-attacks, in the last step,

this chapter introduces a multi-class attack localization scheme that leverages additional

statistical features to be integrated into the XGBoost classifier. This facilitates the easier
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identification and quick isolation of compromised i.e., targeted DERs units from the system

in the worst-case scenario.

This chapter is organized in six sections. In Section 4.2, a brief background of conventional

primary control with communication based distributed secondary control of MG system

is reviewed. Next, three consecutive sections i.e Section 4.3, Section 4.4 and Section

4.5 provides detailed description of the proposed methodology along with the real time

digital simulation results pertaining to MMD based attack detection, proposed rule-based

attack XGBoost-enabled attack classification and multi label attack localization scheme

respectively. Finally, the key inferences are drawn and highlighted in conclusion Section

4.6.

4.2 Modelling Preliminaries of Islanded AC Microgrid

4.2.1 Cyber Graph Theory Terminology

Being a multiagent system [208], the distributed communication network of a microgrid

are usually represented by a directed cyber graph topology such as G = (V,E,A ),

where each DERs are treated as vertices and the communication links associated with

it are viewed as edges having a directed adjacency matrix A . In such communicative

microgrid environment, if the DER of vertex-j, vj transmitting its own information to

an another DER of vertex-i, vi then the entity, aij of adjacency matrix A is defined

as aij = 1, if (vj , vi) ∈ E otherwise aij = 0. The immediate neighbours of DER of

vertex-i are represented mathematically by the set as N̄i = {j|(vj , vi) ∈ E}. Every vertex

of G is associated with in-degree and out-degree based on the information it received and

transmitted respectively. Thus, the diagonal in-degree matrix of entire G is denied as

D = diag{di} ∈ RN×N with di =
∑

j∈N̄i
aij . This in-degree matrix indirectly helps to

analyze the convergence rate of the system dynamics via calculating the graph Laplacian

matrix as L = D−A with the assumption that the graph should have a spanning tree. If

this assumption holds true, then λ1 = 0 will be the simplest eigenvalue of L and ω̃ = c1

becomes the solution to L ω̃ = 0, c is any constant, which guaranteed the voltage and

frequency synchronization of distributed secondary consensus law.

In such network multiagent system, there must be atleast one DER, who has the knowledge

of MG’s voltage and frequency reference values are considered to be as leader and its

corresponding edge weight in the distributed secondary control is taken as gi ≥ 0 which is

called as pinning gain [131].

4.2.2 Droop-Characteristics Based Primary Control

In an islanded operation, the voltage and frequency instability issues arise in MG due

to the mismatch in power consumption and generation. In such critical scenario, power

converters are used to operate in grid-forming mode where the primary control takes the

control action for voltage and frequency regulation, and also to facilitate a proper active
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and reactive power sharing among parallelly operating voltage controlled voltage source

inverters (VCVSI) without the use of communication links. This control can be achieved

by designing the active power versus frequency and reactive power versus voltage droop

characteristics as follows.

ωi = ω∗
ni
−mPiPi (4.1)

Vodi = V ∗
ni
− nQiQi (4.2)

where, ω∗
ni

and V ∗
ni

are primary control nominal frequency and d-axis voltage reference

respectively, obtained from secondary level control. mPi and nQi are the active and reactive

power droop coefficients, respectively which is selected based on converter power ratings

and allowable maximum f and v deviations. Pi and Qi are the filtered active and reactive

power of ith VCVSI, respectively [208, 145]. The output from the droop control acts as

reference points for the internal zero level control loops of the VCVSI which generate

switching modulation pulses for the DER’s operation.

4.2.3 Communication Based Distributed Secondary Control

As the primary control of VCVSI only utilizes locally measured variables, it often leads

to significant deviations in the global parameters of the MG system, such as frequency

and voltage, from their reference values (ωref and V ref). To address this, cooperative

distributed secondary control leverages information from neighboring DERs through a

defined cyber graph topology, enabling proportionate load power sharing and stable MG

operation. To do so, the distributed secondary control provides the frequency and voltage

set points, ω∗
ni

and V ∗
ni

in Eq. (4.1) and Eq. (4.2) for each DER-i in such a way such that

the global frequency and voltage tracking synchronizing error quickly converges to zero as

shown below:

lim
t→∞
∥ωi(t)− ωref∥ = 0 ∀i (4.3)

lim
t→∞
∥Vodi(t)− Vref∥ = 0 ∀i (4.4)

Therefore, the secondary control inputs for the frequency and voltage of a distributive

multiagent system can be written by differentiating the frequency and voltage droop

characteristics in Eq. (4.1) and Eq. (4.2) respectively.

ω̇∗
n = ω̇i +mPiṖi = Uωi , i = 1, ..., N (4.5)

V̇ ∗
ni

= ˙Vodi +mQiQ̇i = UVi
, i = 1, ..., N (4.6)

where, Uωi and UVi
are the frequency and voltage auxiliary control inputs for DER-i

respectively. At this stage, the value of those control inputs at which synchronization of

VSVCIs can be attainable if all DERs communicate its own information with its neighbours

through a prescribed communication digraph G as.
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Uωi = −cωδωi (4.7)

UVi
= −cV δVi

(4.8)

where δωi and δVi
are the local neighbourhood synchronization errors for distributed

secondary frequency control (DSFC) and distributed secondary voltage control (DSVC)

respectively. cω ∈ R and cV ∈ R are the control gains of DSFC and DSVC respectively

which are choosen as per the following condition:

cω = cV ≥
1

2λ+min(L + G )
(4.9)

where, G is the pinning gain matrix associated with communication graph G and λ+min

is the minimum positive eigenvalue of matrix (L + G ). This auxiliary control inputs

(Uωi ,UVi
) for any DER-i are governed by a single integrator dynamics based on the v, f

and power information of its own and its immediate neighbour as follows [209, 210]:

δωi =
∑
j∈N̄i

aij(ωi − ωi
j) + gi(ωi − ωref ) +

∑
j∈N̄i

aij(mPiPi −mPjP
i
j ) (4.10)

δVi
=
∑
j∈N̄i

aij(Vodi − V i
odj) + gi(Vodi − Vref ) +

∑
j∈N̄i

aij(nQiQi − nQjQ
i
j) (4.11)

where, ωi
j ,V

i
odj , P

i
j and Qi

j are the frequency, voltage, active power and reactive power of

DER-j, respectively that are being communicated to DER-i through separate channels.

It is assumed that the MG is operating in an islanded mode with balanced loading and

feeder model.

4.3 Cyber Attack Modelling and Proposed Attack

Detection Scheme

Attack modeling and maximum mean discrepancy based detection mechanism are

presented in this section for the distributed secondary control of the microgrid. Let’s

first define two usual definitions, that will be extensively used throughout the chapter.

Definition 1 (Compromised DER). A compromised DER is one that is under direct

attack.

Definition 2 (Intact DER). An intact DER is one that is not under direct attack or

compromised.

4.3.1 Attack Modeling

It is assumed that the adversary launches the FDI attacks in sensors, controllers or

any decision-making units of the DERs in order to disrupt its operation and transmit

the corrupted data to the control unit, affecting the MG data integrity and, thereby,

jeopardizing its overall functioning. Based on the knowledge of distributive communication
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networks topology and DER’s local information, perpetrators can hijack secondary

controllers/corrupt the communication links which in turn, results in the auxiliary control

inputs of each DERs being converged to some arbitrary wrong non-zero values that leads

to frequency and voltage instability resulting collapse of the grid. A direct attack on the

sensors or controller of the DER-i is modelled as, ζattacki = ζi+Υif
a
i , where, ζi is the actual

local frequency or voltage signal recorded by the sensors that is to be used by DSFC or

DSVC for generating primary droop control reference, ζattacki is the resulted compromised

output after the data manipulation with attacker injected input denoted as fai . Υi is unity

when attack is initiated otherwise zero.

In a same manner, if the communication channel for outgoing frequency information of

DER-i to DER-j is tampered with FDIA, then the malicious signal received by DER-j can

be modelled as (ωj
i )

a = ωj
i +Υif

a
i , where, (ω

j
i )

a is the final manipulated information that

has been transmitted to DER-j. Table 4.1 summarizes different types of attacks which

have been studied and detected in the present work.

Table 4.1: FDIA Details

FDIA Types Attack Signal Model (fa
i ) Parameters

Step Attack fa
i = αst αst is a constant.

Ramp Attack fa
i = αra.t αra is a varying slope.

Scaling Attack fa
i = αsc.yi

αsc is scaling gain.
αst is the original signal.

Pulse Attack fa
i = αpu(t), t ∈ τp

αpu is a constant.
τ̌p is the attack duration

Sine Attack fa
i = α sinωt

α is a constant.
ω is the injected frequency

4.3.2 Proposed Attack Detection Scheme

4.3.2.1 Maximum Mean Discrepancy (MMD)

At heart, the proposed cyber attack detection scheme exploits a two-sample distance-based

measure called the maximum mean discrepancy (MMD) in a distributed cooperative

secondary control of islanded MG. The distance of two distributions is calculated on

the space of their probability measure based on the mean embeddings of two samples

mapped into a reproducing kernel hilbert space (RKHS). In this chapter, basically, the

most commonly used Gaussian radial basis function (RBF) kernel with kernel width ν,

K(Xi, Xj) = exp(−∥Xi −Xj∥2/2ν2), which represents as a feature vector in some input

space, is first applied over the two sample distributions and then the unbiased estimate of

MMD is computed. RBF is a strictly continuous positive definite function. So, in formal

sense, if P and K be the given probability measure and real-valued kernel defined on a

topological space χ respectively, then the embedded mean for the samples drawn from P
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map to hilbert space H can be expressed as follows:

µP =

∫
χ
K(x, .) dP(x) (4.12)

where, x be the observation samples of distribution X. The expression of MMD can

be easily represented in a more compact form by introducing the functional evaluation

reproducing properties of RKHS in the following definition.

Definition 3 (Reproducing Kernal Property). Let, H be a Hilbert space of real valued

functions on topological set χ i.e, (f́ : χ → R). Then the kernal function K : χ × χ → R
is called to be reproducing kernal of H, if the following conditions holds [211]:

1. ∀x ∈ χ, K(x, .) ∈ H and

2. ∀x ∈ χ,∀f́ ∈ H, there must be a valid feature map φ(x) from χ that map f́ ∈ H

to f́(x) ∈ R such that f́(x) =< φ(x), f́(.) >H where φ(x) = K(x, .) represents the

canonical representation of feature mappings.

3. In particular, x and y be the two samples drawn from two distributions that belongs

to the non-empty set χ, then K(x, y) =< φ(x), φ(y) >H=< K(x, .),K(y, .) >H.

Therefore, by computing means via linearity, µP can also be expressed as expectation of

feature map φ(x) as follows:

µP := Ex∼P(x)[φ(x)] = Ex∼P(x)[K(x, .)] (4.13)

MMD, being a similarity measure, is applied over wide variety of problems, ranging from

bio-informatics, neuroscience, machine learning to any other engineering applications to

verify whether the two test samples defined on domain χ under study are statistically

indistinguishable or not. The empirical estimates of MMDs heavily rely on the RBF class

F (f́ : χ → R) to be the unit ball in the universal RKHS, should have quick convergence

and cheap computation, i.e for each m and n given points from two distributions, the cost

is quadratic in time i.e O(m+ n)2.

Definition 4 (Maximum Mean Discrepancy). Let F be a class of functions, f́ : χ→ R.
P = {p1, p2, ..., pm} and Q = {q1, q2, ..., qn} are the observations that are being drawn

independently and identically distributed (iid) from distributions X and Y be defined in the

domain χ. Then the maximum mean discrepancy (MMD) can be written as [212, 213]:

MMD[F , X, Y ] := sup
f́∈F

(Ep∼X [f́(p)]− Eq∼Y [f́(q)]) (4.14)

Now, from the properties described in Definition 1, one can write Ep∼X [f́(p)] =< µX , f́ >

and Eq∼Y [f́(q)] =< µY , f́ >. Therefore, applying it Eq. (4.14) yields,

MMD[F , X, Y ] := sup
∥f́∥H≤1

< µX − µY , f́ >= ∥µX − µY ∥H (4.15)
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As in practice, it is hard to compute expectations of µX and µY , an empirical estimate of

MMD is obtained by replacing the population expectations with empirical expectations on

the sample of P and Q as follows:

MMD[F ,P,Q] := sup
f∈F

(
1

m

m∑
i=1

f́(pi)−
1

n

n∑
i=1

f́(qi)

)
(4.16)

The empirical estimates of MMD can be defined in a framework of statistical hypothesis

testing where the computed estimates, MMD[F ,P,Q] are compared with a predefined

threshold γ. If the two distributions are found to be similar, MMD[F ,P,Q] will be

evaluated as zero and the null hypothesis H0: X = Y gets accepted. On the other hand,

if the distribution deviates far apart and become statistically distinguishable with loosing

homogeneity, MMD[F ,P,Q] result in crossing the threshold limit, which essentially

means the alternative hypothesis gets accepted i.e H1: X ̸= Y .

4.3.2.2 MMD based Cyber Attack Detection

Since MMD acts as a similarity measure to verify whether the two test series, defined on

a domain χ, under study are statistically indistinguishable or not, it is applied on the

frequency and voltage auxiliary control input signals of each DER in order to determine

whether they are correctly participating as per the distributed secondary consensus-based

protocol or not. While the controller of any DER or any of its incoming communication

links is subjected to attacks, their local neighbourhood synchronization errors also get

corrupted, resulting in a change in the statistical properties of the auxiliary control

variables of DSFC and DSVC. As an example, under the typical satisfactory performance

of DSFC, the frequency auxiliary control output (Uωi) of any DER, say DER-i can

be represented by Eq. (4.7). But, while attackers penetrate into the MG multiagent

system through any security breaches and take control of the frequency input of DSFC via

hijacking the controller, then the auxiliary control variables of DER-i will get modified as,

Ua
ωi

= −cωδaωi
(4.17)

where, the previously clean local neighborhood frequency synchronization error (δωi) is

now corrupted by some exogenous input ∆i. This had been injected adversely due to

the adversary’s action while compromising the local frequency information of DER-i, (ωa
i )

used as an input for secondary control of the VSVCI inverter.

δaωi
= δωi +∆i (4.18)

δaωi
= δωi +

∑
j∈N̄i

aij + gi

ωa
i −

∑
j∈N̄i

aijω
i
j

 (4.19)

Similarly, for each incoming link related to a particular DER, the corrupted auxiliary

control inputs are computed in order to identify compromised communication lines. In
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general, the corrupted frequency auxiliary control required for the MMD calculation under

attack in the communication links can be written as,

δa
ωj
i

= δωi +


∑

j∈N̄i

aij + gi

ωi −
∑
j∈N̄i
j ̸=k

aijω
i
j − aik(ωi

k)
a

 (4.20)

Ua
ωj
i

= − cωδaωj
i

(4.21)

It is to be noted that in the presence of an attack, based on the communication cyber

graph topology and distributed secondary cooperative control framework, one can easily

inspect the corrupted frequency of DERs and thus, based on this corrupted frequency,

compromised auxiliary controls (Ua
ωi
or Ua

ωj
i

) can also be observed [116]. But the overall

exogenous input, (∆i or ∆j
i ) injected by the attacker, is not required to be known or not

measurable explicitly. Thus based on the statistical properties inferred from the both Ua
ωi

and Uωi , one can compute the unbiased empirical MMD estimates by taking squares of

Eq. (4.15) and then applying reproducing kernel properties to detect compromised DER

as follows.

∥µX − µY ∥2H = < µX − µY , µX − µY >H

∥µX − µY ∥2H = < µX , µX >H + < µY , µY >H −2× < µX , µY >H

∥µX − µY ∥2H = EX,X < φ(Uωi), φ(U
′
ωi
) >H +EX,X < φ(Ua

ωi
), φ(Ua′

ωi
) >H

− 2EX,Y < φ(Uωi), φ(U
a
ωi
)) >H

(4.22)

Substituting empirical estimates of the features spaces based on samples from Uωi =

{u1, u2, ..., um} and Ua
ωi

== {ua1, ua2, ..., uam}, the final expression would be written as,

MMD[F ,Uωi ,U
a
ωi
] :=

[
1

m2

m∑
s,t=1

K(us, ut)−
2

m2

m∑
s,t=1

K(us, u
a
t )

+
1

m2

m∑
s,t=1

K(uas , u
a
t )

] 1
2

(4.23)

Likewise, the communication link attack can also be detected by replacing the Ua
ωi

with

Ua
ωj
i

. Finally, the effect of the attacks on either DSFC or DSVC can be easily detected

when the empirical MMD estimates cross some predefined design threshold γ.

4.3.3 Real-Time Digital Simulation Results

The efficacy of the proposed cyber attack detection scheme using the RTDS under various

types of attacks are listed in Table 4.1 of Section 4.3. The experiments were conducted

on a modified IEEE 13-node distribution feeder system, as depicted in Fig. 4.1, with

averaged line parameters [214]. The detailed description of the modified test system

with line specifications can be found in Appendix A.1. The system operates at a nominal
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frequency of 60 Hz and a line-to-line voltage of 4.16 kV. Four DERs, each with equal active

power (1 p.u) and voltage rating (1 p.u), are interconnected via a 1.0 MVA, 0.48/4.16 kV

Yg-Yg transformer, supplying power to an islanded AC MG. DER-3 is designated as the

leader with a pinning gain of g3 = 1, and communication between DERs is facilitated

by a specified communication digraph. Conventional secondary control for voltage and

frequency, based on Eq. (4.10) and Eq. (4.11), is implemented with control gains cV and

cω taken as 10 and 20, respectively. Real and reactive power droop coefficients are set to

2× 10−4 and 1× 10−3 respectively. The converter filter resistance (Rf ), inductance (Lf )

and capacitance (Cf ) is set to 0.02 ohms, 100 micro-henry and 50 micro-farad respectively.

Figure 4.2 shows the schematic laboratory hardware setup where the auxiliary control

inputs of each DER are collected from the RTDS front analogue output panel, and then

the proposed MMD-based attack detection algorithm has been converted to C code via

MATLAB Simulink® C Coder builder, which is next compiled and run into DS1104 R&D

controller board to observe its output via oscilloscope’s screen.

Figure 4.1: Single line diagram of the IEEE 13-node Microgrid test system

4.3.3.1 Single Attack Detection on Conventional DSFC

In the first case study (Case A), a step-type attack is modeled to breach DER-1’s DSFC

as shown in Fig. 4.3. As seen in Fig. 4.3(a), a step attack with parameter αst = 0.05

pu is injected to the frequency input of the DSFC at about 3.4 seconds which causes

a large variation in the local frequencies of all DERs below 220 rad/sec. Furthermore,
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Figure 4.2: RTDS setup for HIL validation of the proposed scheme

Fig. 4.3(b) demonstrates the impact of this attack on the active power sharing among the

individual inverters, revealing a consequential disruption in grid stability. Notably, DER-3,

functioning as the leader DER with knowledge of the grid’s reference voltage and frequency,

experiences comparatively less impact than others. Nevertheless, as Figs. 4.3(a) and 4.3(b)

show, it is difficult to identify compromised DERs because of the distributive cooperative

consensus law that regulates DER interactions and the particular communication graph

topology as depicted in Fig. 4.1. Additionally, Fig. 4.3(c) showcases the response of

proposed MMD-based detector under attack condition, focusing on the irregularities in

observed frequency auxiliary control input of DER-1. Since this attack is localized to

DER-1, only the compromised inverter’s MMD shows a notable rise, suggesting that local

control variables differ from those of other DERs.

In the second case study (Case B), a pulse type of attack with specific parameters of

αpu = 0.06 p.u magnitude and τ̌p = 0.5 sec duration are being modeled and then

injected to the controller of DSFC of leader DER-3 to compromise it frequency output

as shown in Fig. 4.4. Similar to previous case, this manipulation results in significant

deviation of local frequency of all DERs below 340 rad/sec as shown in Fig. 4.4(a).

Figure 4.4(b) shows the impact of sharing active power among the inverters as a dire

consequence of this periodic pulse attack, where the leader DER, i.e., DER-3 knows

the overall reference voltage and frequency of the grid. Therefore, it drives down the

frequency of all DERs in a coherent manner. But as all the DERs are also participating

among themselves, obeying distributive cooperative consensus law for maintaining the

grid stability through some specific predefined communication digraph, therefore, the

direct attack impact of compromised DERs is inflicted differently to other DERs and thus

correct identification of compromised DERs are also found to be very difficult as shown
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(a) Frequency

(b) Active Power Sharing

(c) Estimates of MMD Under Step Attack

Figure 4.3: Case A: Effect of Step Attack on DSFC of DER-1 and MMD estimates. In (a)
and (b) the figure color labels black, red, blue and green represents frequency and active
power of DER-1. DER-2, DER-3 and DER-4 respectively.
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(a) Frequency

(b) Active Power Sharing

(c) Estimates of MMD Under Pulse Attack

Figure 4.4: Case B: Effect of Pulse Attack on DSFC of DER-3 and MMD estimates. In (a)
and (b) the figure color labels black, red, blue and green represents frequency and active
power of DER-1. DER-2, DER-3 and DER-4 respectively.
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in Fig. 4.4(a) and 4.4(b). Figure 4.4(c) exhibits the behaviour of MMD based detector

under attack, targeting frequency auxiliary control input of DER-3. It is clearly revealed

that the proposed MMD successfully captured the drift created between the actual and

estimated local synchronization error after the attack launch which results in fulling the

criteria of accepting null hypothesis as discussed in Section 4.3. As a results, MMD of

the compromised inverter rises up to a significantly higher value due to disparity in local

control variables, flagging out the alarm of cyber attack detection.

In the third case study (Case C), a time-varying and non-linear sine attack signal

(fai = sin(0.01t)) is injected into the DSFC of DER-1 around 3.5 seconds, aiming to

disrupt the functioning of primary droop control techniques as shown in Fig. 4.5. Initially,

all DERs’ frequency and output power are regulated by conventional secondary control.

However, upon injection of the malicious signal, consensus agreement is lost, leading

to unstable frequency and active power exceeding acceptable limits across all DERs as

shown in Fig. 4.5(a) and 4.5(b). This destabilization occurs as the victim DER begins

to share falsified frequency, voltage, and power outputs with other DERs due to the

addition of this time-dependent ambiguous input, disrupting their consensus protocols.

As the aforementioned frequency attack model is updated with each second intervals,

the simulation shows that the frequency and active power response exhibits a stair-case

and oscillatory pattern, respectively. However, with the objective of correct and on-time

identification of compromised units, the proposed detector successfully detect the attack

instant based on observing the discrepancies in their embedding mean of theirs actual and

observed auxiliary frequency control variables as shown in Fig. 4.5(c).

4.3.3.2 Single Attack Detection on Conventional DSVC

Similar to the previous case study, in this test scenario (Case D), the attacker targets the

secondary voltage controller of DER-2 as shown in Fig. 4.6. They’re manipulating the

DER’s controller input signal with a scaling attack of attack parameter: αsc = 1.05 pu, on

the DSVC. The on-set of the attack significantly impacts the voltage and reactive power

profiles of the inverter, as depicted in Fig. 4.6(a) and Fig. 4.6(b). This manipulation

leads to a erroneous voltage and reactive power response suggests all DERs lose their

coordinated control, with global parameters deviating from normal due to the constant

injection of false data. Failure to promptly address this issue and remove the compromised

DER from the topology risks driving the microgrid towards instability. In this regard, it

is observed from Fig. 4.6(c), that the proposed MMD algorithm demonstrates exceptional

ability to identify such attacks and pinpoint the faulty DER.

4.3.3.3 Attack Detection for Simultaneous Attacks on Multiple DERS

Similar to the case studies described earlier, in this test cases (Case E) and (Case F),

the DSFC of multiple DERs are now being targeted at the same time with a ramp type

of signal first followed by a pulse attack as depicted in Fig. 4.7 and 4.8. In the first

case, a slowly varying ramp attack signal, dynamically generated from a step signal with
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(a) Frequency

(b) Active Power Sharing

(c) Estimates of MMD Under Sine Attack

Figure 4.5: Case C: Effect of Sine Attack on DSFC of DER-1 and MMD estimates. In (a)
and (b) the figure color labels black, red, blue and green represents frequency and active
power of DER-1. DER-2, DER-3 and DER-4 respectively.
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(a) DER Output Bus Voltage

(b) Reactive power sharing

(c) Estimates of MMD Under Scaling Attack

Figure 4.6: Case D: Effect of Scaling Attack on DSVC of DER-2 and MMD estimates.
In (a) and (b) the figure color labels black, red, blue and green represents frequency and
active power of DER-1. DER-2, DER-3 and DER-4 respectively.
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parameters αra = 1.2 pu and a time constant of 500 sec, is injected into the frequency

control of DER-1 and DER-3. This aims to disrupt the global parameters of all DERs and

push them away from their desired consensus. And in the second case study, a pulse attack

of magnitude αpu = 0.04 pu with duration of 0.5 sec are also injected to dishonestly alter

the frequency setpoints for the primary control action of both the DERs affecting the MG’s

frequency and voltage stability. As shown in Fig. 4.7(a), 4.7(b) and Fig. 4.8(a), 4.8(b)

the frequency and power of all DERs significantly disrupted due to such unbound attack

effect. On the other hand, Fig. 4.7(c) and 4.8(c) shows the competence of the proposed

MMD-based detector to correctly identify the DERs, victim of such severe attack. Here

also, it is noticed that as this malignant attack is limited to DER-1 and DER-3, only the

compromised inverter’s MMD shows a notable rise, suggesting that local control variables

differ from those of other DERs. Henceforth, this demonstrates the detector’s effectiveness

even in handling multi-DER attacks occurring simultaneously.

4.3.3.4 Attack Detection on Communication Links

This case study (Case G) examines the impact of short-length pulse and slow-varying

ramp frequency attacks on the communication links of an inverter, leading to deviations in

DER parameters beyond acceptable ranges, challenging the detection of the compromised

DER as illustrated in Fig. 4.9. The case studies is divided into two subparts: (a) Single

communication link attack and (b) Multiple communication links attack. In the first

subpart, a short-length pulse attack signal with a parameter of αpu = 0.06 pu, falsifies

the frequency information of leader DER-3 while communicating with DER-2 for 0.5 sec,

resulting in a significant frequency deviation, as depicted in Fig. 4.9(a). Since DER-3

serves as the reference for achieving consensus among all other DERs in a networked

control MG system, compromising its outgoing information has a pronounced effect on

the other DERs due to the rapid propagation of attack signals. Consequently, all DERs

exhibit similar behavior to the corrupted DER. In this compromised scenario, the proposed

detection scheme’s performance is validated by calculating MMD for all the working links.

Figure 4.9(b) illustrates that the MMD remains nearly zero for all intact communication

links except the corrupted one, underscoring the proposed MMD’s efficacy in identifying

compromised links even when the leader DER information itself is compromised. On a

similar line, another case study is being conducted in Fig. 4.9 where all the outgoing

communication links of DER-1 are compromised with a slow varying ramp frequency

attack signal of parameter αra = 0.06 pu. With multiple attacks on DER-1’s outgoing

communication channels, the integrity of the communication graph topology is significantly

compromised, resulting in the rapid and widespread dissemination of attack signals to

other healthy DERs as depicted in Fig. 4.9(c). As the MMD calculation is now based on

localized estimates of corrupted auxiliary control variables for each link, thus, as a next

corrective step, the MMD calculation is carried out for all the available links. Clearly, Fig.

4.9(d) depicts that due to disparity of information received via any link with respect to

the other neighboring links for each particular DER causes the respective link’s MMD to
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(a) Frequency

(b) Active Power Sharing

(c) Estimates of MMD Under Ramp Attack

Figure 4.7: Case E: Effect of Ramp Attack on DSFC of DER-1 and DER-3 and their
MMD estimates. In (a) and (b) the figure color labels black, red, blue and green represents
frequency and active power of DER-1. DER-2, DER-3 and DER-4 respectively.
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(a) Frequency

(b) Active Power Sharing

(c) Estimates of MMD Under Ramp Attack

Figure 4.8: Case F: Effect of Pulse Attack on DSFC of DER-1 and DER-3 and their MMD
estimates. In (a) and (b) the figure color labels black, red, blue and green represents
frequency and active power of DER-1. DER-2, DER-3 and DER-4 respectively.
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Figure 4.9: Case G: Attack on communication link. (a),(b) Single line attack while
transmitting ω2

3 between DER-3 to DER-2. (c),(d) All outgoing communication links
from DER-1 is compromised.

be remained almost zero for all the intact communication links except the corrupted one.

This underscores the effectiveness of the proposed MMD-based detection scheme, even in

scenarios where multiple communication lines are under attack.

4.3.3.5 Performance of the Proposed Attack Detector Against Natural Events

Power system undergoes certain changes in their operating states in the event of either any

frequent natural disturbances or any unprecedented cyber-attacks. It is, therefore, crucial

to differentiate between these two distinct events so that the operator should not initiate

any adverse control action by misinterpreting a cyber attempt as a natural disturbance.

To this end, in this test case (Case H), a sudden single phase to ground (AG) fault of
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almost 10-cycles duration is created at Bus-632 of the IEEE 13 bus distribution test feeder

as shown in Fig. 4.1. The frequency response and the MMD pattern are shown in Fig.

4.10(a) and 4.10(b). In contrast, another disturbance of load switching is performed in

the system where a balanced load of 0.4MW active and 0.15MVAR reactive power are

suddenly switched on at Bus-632. Figure 4.10(c) and 4.10(d) depict the change in active

power sharing and the MMD detector performance, respectively, under such scenarios. It

is well perceived from Fig. 4.10 that under both the events, MMD values come out to be

significantly less than the threshold (γ = 0.25V ) and henceforth the proposed detector is

capable of accurately distinguishing cyber attack from fault and sudden load variations,

ensuring that no false alarms are generated.
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Figure 4.10: Case H: Performance of MMD against natural disturbances: (a),(b) Inception
of a single-line-ground fault. (c),(d) Sudden switching of a balanced load.
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4.3.3.6 Performance of the Proposed Attack on Comparative Assessment

The performance of the proposed MMD-based attack detection method has also been

checked against a popular entropy-based attack strategy, i.e., Kullback-Leibler Divergence

(KLD) [116]. To this end, Fig. 4.11(a) and 4.11(b) reveal the comparative behaviour

of MMD and KLD in case of ramp and step type attack scenarios. The comparative

assessment reveals that the response time of KLD is fairly sluggish as compared to that of

the MMD. Also, the amplitude of KLD change is found to be very minimal with response

to any attack event as it is not an exact measure of disparity and hence less sensitive,

whereas, MMD is found to be simpler and more effective as compared to the entropy

based method.

(a) Ramp-type FDI Attack

(b) Step-type FDI Attack

Figure 4.11: Case I: Performance between MMD and KLD: (a) Channel 1 (Yellow) –
MMD, (b) Channel 2 (Blue) – KLD.
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4.4 Rule-based EXtreme Gradient Boosting (XGBoost)

Assisted Cyber Attack Classification

In the ever-evolving landscape of cyber security, accurately classifying cyber-attacks

remains paramount importance for implementing effective defense strategies. With

this as an aim, attack classification, in particular, plays a crucial role in identifying

and categorizing different types of cyber threats on DERs controllers of MG system

as mentioned in Table 4.1. To achieve this goal, a novel rule-based algorithm for

feature extraction along with a renowned machine learning classifier i.e EXtreme Gradient

Boosting (XGBoost) is utilized to classify those above detected attacks by the proposed

detector in Section 4.2. In the domain of classification problem, XGBoost has emerged as

a leading ensemble machine learning technique due to its exceptional performance across

a multitude of tasks, especially in handling structured data with high dimensionality.

Moreover, XGBoost’s scalability and efficiency enable rapid training and deployment

of attack classification models, crucial for real-time detection and response to cyber

threats. XGBoost’s core lies in its gradient boosting framework as shown in Fig. 4.12,

which sequentially builds a set of weak learners, typically shallow decision trees, into a

single, highly accurate ”strong learner.” Each new tree corrects the errors made by the

previous ones through the minimization of the loss function, resulting in a model that

can capture complex relationships within data. This iterative process allows XGBoost

to continuously improve its predictive capabilities, achieving remarkable accuracy and

generalization on various datasets. This makes XGBoost particularly well-suited for

cyber attack classification tasks. Additionally, XGBoost’s robustness to overfitting and its

capacity to handle imbalanced datasets are particularly advantageous in the cyber security

domain, where data may be scarce and class distributions uneven. Thus, by analyzing

network topological features, system model and DER’s control parameters XGBoost can

learn to distinguish between normal network behavior and various attack types.

4.4.1 Introduction to Mathematical Operation of XGBoost Classifier

In boosting algorithm, in order to minimize the objective function, at first a base learner is

chosen to fit it with the negative gradient of loss function at each iteration and thereafter

the predicted outcome is added with the output from previous iteration value after being

multiplied with some constant. In other sense it acts as performing gradient decent to the

loss function and this negative gradients are usually termed as pseudo residuals. As it is

known that XGBoost is nothing but the ensemble of several weak learners then the final

prediction from a given dataset D = (xi, yi) with n rows and m features is described as

average weighted output of all the base learners as follows:

ŷi = Φ(xi) =

k∑
t=1

f̀t(xi), f̀t ∈ F̂ . (4.24)
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Figure 4.12: Visual representations of Gradient Boosting

where, F̂ = f̀(x) = w̃p̀(x)(p̀ : Rm → TK , w̃ ∈ RT
k) denotes the domain of regression trees,

also referred to as CART (Classification and Regression Trees). Here, TK , represents the

total number of leaves in the tree and each f̀t corresponds to a distinct tree configuration

p̀ and leaf weights w̃. This approach is based on approximating functions through the

optimization of certain loss functions (L) and the use of multiple regularization strategies

as described below.

L(t) =
n∑

i=1

L(yi, ŷ(t−1) + f̀t(xi)) + ϑ(f̀t)

where, ϑ(f̀t) = βTK +
1

2
η∥w̃∥2 (4.25)

Here, L is termed as differential convex loss function which calculates the difference

between the target yi and predicted outcome ŷi. The second term ϑ encounters the

regularization concept, used to regulate the final weights to prevent over-fitting of the

model. If this terms becomes zero, then it will become equivalent to conventional gradient

boosting approach. The learning rate is represented by β; the larger the value of β, the

simpler the tree. Another regularization term that lowers the step size in cumulative

expansion is called shrinkage η. Now, to approximately calculate the value of the loss

function for different possible base learners, taylor series expansion (up to second order

derivative terms) must be applied to Eq. (4.25).

L(t) =

n∑
i=1

L(yi, ŷ(t−1)) +
∂2L(yi, ŷ(t−1))

∂2ŷ(t−1)︸ ︷︷ ︸
ĝi

f̀t(xi) +
1

2

∂L(yi, ŷ(t−1))

∂ŷ(t−1)2︸ ︷︷ ︸
ĥi

f̀2t (xi) + ϑ(f̀t) (4.26)
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As the first term is a constant and free from f̀t, Eq. (4.26) can be simplified as:

L̂(t) =
∑
i

[
ĝif̀t(xi) +

1

2
ĥif̀

2
t (xi)

]
+ ϑ(f̀t). (4.27)

Let us define Ik be the set of instances belonging to leaf node ′k′. Now, expanding ϑ from

Eq. (4.25) in Eq. (4.27) yields as follows:

L̂(t) =

TK∑
k=1

(∑
i∈Ik

ĝi)w̃k +
1

2
(
∑
i∈Ik

ĥi + η)w̃2
k

+ βTK . (4.28)

Now, the optimal weight, w̃∗
k for each leaf node-j, can be obtained by equating derivative

of loss function with respect to each leaf node’s weight i.e., ∂L̂(t)

∂w̃∗
k
= 0, as follows:

0 =
∑
i∈Ik

ĝi +
1

2
(
∑
i∈Ik

hi + η)× 2× w̃∗
k

w̃∗
k =

−
∑

i∈Ik ĝi∑
i∈Ik ĥi + η

(4.29)

The obtained optimal weights is then substituted in Eq. (4.28) to get final optimal loss

function value for a fixed tree structure p̀ as shown below:

L̂(t) = −1

2

TK∑
k=1

(
∑

i∈Ik ĝi)
2∑

i∈Ik ĥi + η
+ βTK (4.30)

XGBoost employs several techniques to speed up training and reduce overfitting. It utilizes

random subsampling of data and columns during tree building, introducing randomization.

Additionally, XGBoost leverages a compressed, pre-sorted data structure that eliminates

redundant sorting, significantly accelerating the search for optimal splits in decision trees.

This allows for faster training and more efficient models [215].

4.4.2 Tuning of Hyper-parameters in XGBoost

The key features of XGBoost algorithm is its ability to handle missing and complex

data, regularization and auto pruning techniques to prevent the model from being

over/under-fitted and mostly excellent performance due to its parallelization feature

concept to have efficient computation. However, such merits are obtained by carefully

selecting and choosing values of some hyper-parameters through validation techniques like

k-fold cross validation that drive the XGBoost model to enhance its performance and

control its bias and variance in training and testing stages.

4.4.2.1 Learning Rate

The learning rate (β) parameter in XGBoost classifiers plays a crucial role in controlling

how much each new tree in the ensemble contributes to the overall model. It is used
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to prevent the overfitting issues faced by the individual base learners but may increase

training time. A smaller learning rate leads to more conservative updates, requiring

more trees to achieve the desired accuracy. Conversely, a larger learning rate leads to

more aggressive updates, potentially leading to faster training but also increasing the risk

of overfitting. The optimal learning rate is achieved and set to the value 0.5 through

experimentation or techniques like grid search.

4.4.2.2 Number of Estimator (n estimator)

In XGBoost, a critical hyper-parameter for achieving optimal performance is the number

of estimators (n estimator), which refers to the quantity of decision trees built sequentially

during the boosting process. While intuitively, a larger number of trees suggests a more

intricate and potentially more accurate model, this isn’t always the case. Increasing the

number of estimators can lead to diminishing returns in terms of accuracy, and even

introduce the phenomenon of overfitting and conversely, reducing the number of estimators

can lead to underfitting and decreased accuracy. Therefore choosing a suitable count of

n estimator, necessitates a delicate balancing act between accuracy and model complexity.

In this chapter, experimenting with a wide range of estimator values revealed 100 as the

optimal choice, balancing accuracy and computational complexity.

4.4.2.3 Auto-pruning Hyper-parameter

XGBoost offers an automated approach to controlling tree complexity through the

parameter denoted as ϱ, also known as the auto pruning parameter. This parameter

establishes a minimum gain threshold, say ’max depth’ determining when splits are made

during tree growth. Splits producing gains below this threshold are disregarded, preventing

overfitting by focusing on informative splits that contribute meaningfully to the prediction

accuracy. Similarly, if the ’max depth is set to very low, underfitting situation may arise

as the model is not able to be trained well to capture all the relevant patterns in the data.

Thus While the ’max depth’ parameter sets an upper limit on tree depth, the auto pruning

feature with the ϱ parameter allows for more granular control within that limit, leading

to more efficient and potentially more accurate models. In this study, the max depth is

chosen to be 5 to balance between overfitting and underfitting.

4.4.2.4 Objective or Loss Function

The objective function in XGBoost is crucial for guiding the model’s training process by

evaluating its performance on the training data and calculating gradients for improvement.

The choice of objective function depends on the task at hand; for binary classification,

the binary logistic regression function is suitable, while for multi-class problems like the

one addressed in this chapter, the ’softprob’ function is recommended. This function is

specifically designed to handle the complexities of multi-class classification tasks, ensuring

that XGBoost learns effectively in these scenarios. Given that this chapter centers around
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a multi-class attack classification problem, the, softprob’ objective function is opted in

this study to calculate the probability of an observation belonging to a predicted class.

4.4.3 Dataset Preparation

For the generation of testing and training dataset for the chosen machine learning (ML)

model, the same modified IEEE 13-bus islanded AC MG system incorporating 4 DERs

with the pre-defined communication topology as shown in Fig. 4.13 is utilized for

the classification problem. In this topology, the single head arrow represents one-way

communication whereas the two head arrow represents two-way communication between

the DERs. There are in total 5 different types of attacks are simulated: Pulse,

Ramp, Random, Scaling and Sine. The attack is launched in the DERs by corrupting

the frequency input of their respective secondary controllers as per the attack model

summarized in Table 4.1. The generation of attacked dataset are prepared based on

either increasing the attack impact through magnitude alteration or varying attack length

through changing attack duration as described below and tabulated in Table 4.2 and 4.3.

Finally, this comprehensive dataset would be used to train and evaluate the XGBoost

model’s effectiveness in detecting these attacks.

Figure 4.13: Communication topology of participating DERs in co-operative Distributed
Secondary Control

In reference to dataset preparation, the first case study is dedicated for generation of

such dataset which is later used to investigate the efficacy of the XGBoost model in

pinpointing attacks that exhibited varying duration. To achieve this, they kept the

attack magnitude (strength) constant while meticulously adjusting the time period during

which the attack was launched. This manipulation allowed them to observe the system’s

response under different attack scenarios and identify the ”sweet spot” from the attacker’s

perspective. A total window of 10 seconds was chosen to monitor the system behavior

under various FDI attacks. Initially, the attack amplitude remains constant, while the

attack duration increases incrementally for all distinct attack types to account for their

inherent characteristics. For Pulse attacks, the time step is set to 0.01 seconds, while for

other attack types, it is 0.05 seconds. The shorter duration for Pulse attacks is chosen to
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simulate the effects of very brief attacks, starting from 0.01 seconds and increasing up to

0.11 seconds. Similarly, the initial duration for other attacks is 0.5 seconds, increasing in

steps of 0.05 seconds until reaching 1 second, as detailed in Table 4.2.

Table 4.2: First Case: Constant Attack Magnitude and Varying Attack Duration

Attack Types
Magnitude

(p.u)
Initial Attack
Duration (sec)

Step Size
(sec)

Final Attack
Duration (sec)

Pulse Attack 0.01 0.01 0.01 0.11

Ramp Attack 0.5 0.5 0.05 1.0

Random Attack 0.01 0.5 0.05 1.0

Scaling Attack 1.03 0.5 0.05 1.0

Sine Attack 0.3 0.5 0.05 1.0

In second scenario, the classifier ability is also need to be checked for such FDI attacks

whose intensities (amplitudes) are varying while holding the attack duration constant.

Here, the attack duration for the Pulse attack at its maximum value identified earlier (0.11

seconds) and for all other attack types at 1 second are fixed. However, the amplitude was

now systematically increased in small increments (0.01 units) for a total of 10 steps. It’s

important to note that the attackers deliberately chose distinct initial amplitudes for each

attack types. This strategic selection aimed to incorporate a broad spectrum of variations

within the system parameters. In essence, they were creating a diverse dataset that

reflected a wide range of attack intensities across different FDI attack types. A detailed

breakdown of the initial amplitude values chosen for each attack type can be found in

Table 4.3.

Table 4.3: Second Case: Constant Attack Duration and Varying Attack Magnitude

Attack Types
Magnitude

(p.u)
Initial Attack
Duration (sec)

Step Size
(sec)

Final Attack
Duration (sec)

Pulse Attack 0.11 0.01 0.01 0.1

Ramp Attack 1 0.5 0.01 0.59

Random Attack 1 0.01 0.01 0.1

Scaling Attack 1 1.03 0.01 1.12

Sine Attack 1 0.3 0.01 0.39

Therefore, in a nutshell for the training and evaluation of the XGBoost model, a

comprehensive dataset is generated encompassing variation in both attack duration and
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intensity as discussed above. For each simulated attack scenario, attackers meticulously

targeted a single DER at a time. Throughout the attack, four critical system parameters:

frequency, active power, reactive power, and voltage are monitored and recorded. This

data collection process encompassed all four DGs within the system, even though only one

was under direct attack at any given moment. Therefore, by capturing all these parameters

from all four DGs, under each attack scenario, 16 parameters are available for recording.

Now referring back to Table 2.2, a total of 11 distinct attack scenarios were simulated.

Considering the 16 parameters recorded for each attack on each DG, this translates to a

total of 3520 attack instances. Similarly, Table 2.3, presented 10 unique attack scenarios.

Following the same logic, this translates to an additional 3200 attack instances. Thus, by

meticulously simulating attacks under various conditions , finally a total of 6720 attack

instances (3520 instances from Table 4.2 + 3200 instances from Table 4.3) as summarized

in Table. 4.4.

Table 4.4: Comprehensive Attack Dataset Generation

Description Values

Number of DERs 4

Number of Attacks 5

Number of Recorded Parameters 16

Number of Attack Instances Generated from Table 4.2 3520

Number of Attack Instances Generated from Table 4.3 3200

Total Attack Instances 6720

4.4.4 Proposed Rule-based XGBoost Enabled Cyber Attack

Classification Scheme

To effectively differentiate between statistically crafted cyber-attacks from the normal

measurements received at the control centers, its crucial to identify and leverage distinctive

patterns within the data. These patterns can significantly enhance the performance of

XGBoost classifiers in detecting attacks. With this objective, this chapter delve into two

key metrics: Entropy and Shannon Energy. These metrics are specifically chosen to help

extract these crucial distinguishing patterns from the measured quantities.

4.4.4.1 Entropy

In signal processing, entropy reflects the information content within a signal to predict

the outcomes of a random process. Essentially, entropy measures the average surprise

or unexpectedness associated with each event in the signal. Signals with a more even

distribution (all samples are equally likely) have higher entropy compared to those with a

skewed distribution (where some values are more frequent). In other words, it can stated

as measures of the average amount of information per event, with low probability events

containing more information than high probability ones. Maximum entropy occurs when
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all events are equally probable, while zero entropy indicates certainty in one event and no

information uncertainty. The equation for defining entropy can be written as follows.

Een =
∑
j

−qj log2 qj (4.31)

where, qi is the the probability of each state for all the possible states.

Entropy calculation in signal processing often involves estimating the probability

distribution of signal samples, typically through methods like histograms or density

estimation. The entropy formula is then applied to this resulting distribution to arrive

at a numerical value representing the signal’s information complexity. In scenarios where

the exact probabilities are unknown, the ”hist” function command in MATLAB is used

for this purpose. This function divides the data range into bins of equal size, with the

number of bins either specified by the user or determined by a default value. Selecting an

appropriate number of bins is crucial. If too many bins are chosen, then the histogram

lacks sufficient detail to accurately capture the underlying data distribution. Conversely,

opting for an excessive number of bins can lead to an overly granular representation,

potentially obscuring the overall picture.

To strike a balance between detail and simplicity in the histogram, in this study a default

value of 10 bins is selected. Once the bins have been defined, the function counts the

number of data points that fall into each bin. The relative frequency for each bin is then

calculated by dividing this count by the total number of data points. Finally, by dividing

each value by the bin width, the relative frequencies can be translated into probabilities. As

a result, the relative frequency of a bin divided by its width determines the likelihood that a

data point will fall inside that bin. This ensures that the histogram adequately captures the

underlying distribution while maintaining a clear and interpretable visualization. Figure

4.14 displays the frequency’s entropy’s minimum and maximum ranges under various

FDIAs, as tabulated in Table 4.1.

In Fig. 4.14, it is clearly evident that the Pulse attack occupies a distinct range on the

entropy spectrum, clearly separated from the other FDI attacks under investigation. This

distinction is be made out by establishing entropy thresholds for attack identification.

If the calculated entropy of an attack falls within the range of 0.29 to 0.35, it can be

confidently classified as a Scaling attack. Similarly, an entropy value between 0.73 and 1.26

suggests a Random attack. These clear demarcations based on entropy effectively classify

a significant portion of the attacks. However, the may be such scenarios, where the process

of distinction becomes slightly more intricate for the remaining attack types. Their entropy

ranges exhibit some degree of overlap, making it challenging to differentiate them solely

based on this metric. To address this hurdle, the help from the another statistical tool,

named Shannon Energy is introduced in the proposed rule-based algorithm to establish

a more comprehensive classification framework that could effectively distinguish between

all the various FDI attack types, even those with overlapping entropy ranges.
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Figure 4.14: Ranges of Entropy values under different FDIAs

4.4.4.2 Shannon Energy

Shannon energy emerges as a significant concept, finding applications across diverse fields

like audio and image processing, communication systems, and more. It calculates the

signal’s energy by analyzing its local spectrum at each individual sample. This local

spectrum essentially breaks down the signal into its constituent frequency components,

revealing how much energy is present at each frequency. By summing the energy

contributions across all these frequencies, Shannon energy provides a comprehensive

picture of the signal’s overall energy distribution. It essentially quantifies the total energy

embedded within a signal over a defined time interval. The equation used to calculate the

Shannon energy is

Ese[n] =
∑
j

−p2[n] log2(p2[n]) (4.32)

where, p[n] denotes the normalized signal.

Now, similar to the observations made with entropy, Fig. 4.15 also shows the distinct

ranges of energy content information available between its usual minimum and maximum

range values. This makes it particularly valuable in the context of attack classification

of such sophisticated attacks that have entropy overlapped values. Thus by leveraging

the combined power of entropy and Shannon energy thresholds, a significant portion

of the attacks can now be differentiated. For instance, a Shannon energy value falling

within the narrow band of 258.62 to 258.75 is treated as Random attack. Conversely,

an energy level between 239.7 and 252.77 suggests a Scaling attack. At last, for

all the remaining attacks with overlapping ranges, XGBoost classifier is exploited to

classify the attacks. This classifier is then trained on the meticulously crafted dataset,

possesses the ability to identify subtle patterns and relationships within the data that

might not be readily apparent through basic thresholding. Thus, in the context of
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attack classification, employing entropy from section 4.4.4.1 alongside with the use of

Shannon energy from section 4.4.4.2 in the XGBoost-enabled approach, a rule-based attack

classification framework is developed for identifying and distinguishing between various

types of FDIAs.

Figure 4.15: Ranges of Shannon Energy values under different FDIAs

4.4.4.3 Proposed Rule-based Flowchart

The proposed rule-based method for classifying different categories of FDIAs on a DSFC

controller of islanded AC MG are summarized below:

1. Data Collection: The modified IEEE 13-bus islanded AC MG system was

simulated in RSCAD software of NovaCor RTDS simulator with the time-step size

of 50 µs. From the simulation, various monitoring parameters like frequency, power,

and voltage of each DERs are collected from the RSCAD with an interval of 6.4 ms

and the total simulation time window is chosen to be 10 seconds resulting in total

1562 data point for each monitoring parameters at the end.

2. Attack Detection: The proposed classification scheme can only be initiated when

the proposed MMD-based detector discussed in section 4.3.2 detect the cyber attack

in DER’s controllers. While the metric exceeds the predefined threshold γ, the

captured system parameters are then carry forwarded to the next for classification

task.

3. Entropy-based Classification: If an attack is detected, entropy of the frequency

is then calculated. By leveraging the observations discussed in the respective section
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of entropy, Pulse, Scaling, and Random attacks are classified based on distinct

non-overlapping entropy ranges.

4. Shannon Energy for Overlapping: Remaining attacks with overlapping

entropy ranges are further analyzed using Shannon energy. Similar to entropy,

non-overlapping ranges are used to classify Random and Scaling attacks. These

above two stages creates a formation of rule-based approach to classify the attacks

as an initial screening test.

5. XGBoost for Remaining Cases: Being trained on a meticulously prepared

dataset, subtle patterns and relationships can be identified within the data that

might be difficult to capture using basic thresholding techniques. Therefore, in cases

where both entropy and shannon energy exhibit overlapping ranges, signifying a more

intricate attack scenario, the rule-based method resorts to a machine learning model

named XGBoost for attack classification. In this classification process, selecting

the best possible feature subset from original set is very delicate task in order to

have a highest predictive power for simplifying the analysis and enhance the model

performance. In this work, pearson correlation coefficient is used as the feature

selection technique. This approach is chosen because highly correlated variables tend

to have a strong relationship with the target variable. If two variables are highly

correlated, one variable can effectively predict the other, reducing redundancy in

the model and saving computational resources. A threshold, such as 0.6 in this

case, is set, and if the correlation between two variables exceeds this threshold, the

variable with lower correlation with the target is dropped. Following this approach,

entropy and shannon energy of the frequency were identified as the most correlated

features with the target variable and were consequently chosen to form the basis of

the classification rules.

Figure 4.16 presents a flowchart that visually summarizes this entire XGBoost-assisted

rule-based FDI attack classification process.

4.4.5 Simulation Results Along with its Comparative Performance with

Other ML Classifiers

This section provides the detailed insights of the performance of XGBoost classifier

and compares it with three other popular ML classifiers: Decision Tree (DT), Random

Forest (RF), and Gradient Boosting (GB). These models are trained and tested on

a sizable dataset, split into a 70:30 ratio for training and testing, respectively. To

mitigate any bias within the dataset, standard data normalization is performed using the

”StandardScaler()” function from the sklearn library. Each classifier’s performance relies

on various regularization parameters as discussed previously like learning rate, number of

estimators, maximum tree depth, and objective function are fine-tuned to get the best

result out of the model. Performance evaluation is conducted using the Confusion Matrix

(CM), which compares predicted and actual class labels to assess the classifier’s accuracy
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Figure 4.16: Flowchart of a rule-based XGBoost-enabled attack classification scheme
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and identify misclassification patterns. Derived from the CM, metrics such as accuracy,

precision, recall, and F1 score provide further insights into the classifiers’ performance.

1. True Positives (TP): The number of instances correctly predicted as belonging to

the positive class.

2. True Negatives (TN): The number of instances correctly predicted as belonging

to the negative class.

3. False Positives (FP): Also known as Type I errors, these are instances predicted

as positive but are actually negative.

4. False Negatives (FN): Also known as Type II errors, these are instances predicted

as negative but are actually positive.

Figure 4.17, presents a confusion matrix summarizing the performance of various classifiers

during comparative evaluation. Analyzing the rate of TP, TN, FP and FN, it can be seen

that the DT classifier exhibits the weakest performance among all contenders. The RF and

GB classifiers show improvement over DT, with XGBoost achieving the most remarkable

accuracy. The CM also reveals that Scaling attacks pose the most significant challenge

for classification. Their entropy and energy ranges often overlap with other attack types,

making them difficult to distinguish using simpler models. However owing to advantages

in speed and accuracy of the XGBoost classifier that attacks can be easily detected.

To comprehensively evaluate the model’s performance, in this study k-fold cross validation,

a robust technique widely used in machine learning is adopted. Selecting the optimal value

for ’k’ hinges on two crucial factors: dataset size and available computational resources.

A common practice involves using ’k’ values of 5 or 10. This choice strikes a balance

between bias and variance, which are inherent trade-offs when selecting ’k.’ Research has

empirically shown that ’k’ values of 5 or 10 often yield the most reliable results [216].

Considering these factors, in this chapter, ’k’ is set to 10. Table 4.5 summarizes the

overall accuracy and standard deviation of the model’s accuracy obtained through this

k-fold cross-validation. This basically illustrates correctly classified instances out of the

total number of instances. Notably, the proposed method stands out as the most accurate

classification technique among those evaluated by other ML classifiers, highlighting its

effectiveness in identifying FDI attacks within the islanded AC MG.

Now, leveraging these CM’s information as shown in Fig. 4.17, Table 4.6 provides the other

important comprehensive performance evaluation parameters such as precision, recall and

F1 score for different classifiers under each categories of FDIAs. It is observed from Table

4.6 that as expected, the pulse attack, being the simplest to execute, is effectively detected

by all classifiers with comparable performance. However, the efficacy of the models

diminishes slightly for more intricate attacks like sine and scaling attacks. Nonetheless,

the proposed rule-based XGBoost classifier consistently outperforms the other machine

learning models in terms of precision, recall, and F1-score. This suggests that the XGBoost
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classifier achieves a better balance between correctly identifying attacks and minimizing

misclassifications, even for the more challenging attack types.

(a) Decision Tree (b) Random Forest

(c) Gradient Boosting (d) Proposed XGBoost

Figure 4.17: Confusion matrix for different machine leaning classifier.

Table 4.5: Comparative Assessment on Overall Accuracy of Different ML Classifiers

Classifiers Accuracy (%) Standard deviation in
Model’s Accuracy (%)

Decision Tree 98.47 1.31

Random Forest 98.98 0.74

Gradient Boosting 99.32 0.51

Proposed rule-based XGBoost 99.49 0.68
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4.5 XGBoost Enabled Multi-Label Cyber Attack

Localization Scheme for the Compromised DER Unit

4.5.1 Proposed Cyber Attack Localization Scheme using XGBoost with

Extracting Additional Feature Inputs

Having successfully identified and classified the various attack types targeting the

MG in Section 3 and 4, Section 5 delves into a critical aspect: attack localization.

Precisely pinpointing the location of an attack within the MG equips system operators

with invaluable information for formulating effective protection and defense strategies.

However, pinpointing the attack source presents a significant challenge due to following

two main factors.

1. Firstly, DERs within the MG possess unique characteristics and intricate

interdependencies. These inherent complexities within the DER network make

attack localization a non-trivial task.

2. Secondly, the MG’s network topology itself adds another layer of difficulty. The

interconnected nature of the MG’s components creates a complex web, making it

challenging to isolate the origin of an attack.

To address these challenges, this chapter proposes an extension of the XGBoost classifier

specifically tailored for multi-label classification. Unlike single-label problems, multi-label

classification predicts a set of binary values, each indicating the presence or absence of an

attack on a particular DER within the MG. To accommodate this requirement of assigning

multiple labels simultaneously, the model leverages techniques like sigmoid activation.

This essentially treats each DER as an independent label during the classification process.

However, during the simulation for generating test cases for this localization scheme,

only one DER is considered to be attacked at a particular instant of time. This makes

the localization task simpler. Moreover, to enhance localization accuracy, additional

statistical features beyond Entropy and Shannon energy are explored, including Mean

or median absolute deviation, standard deviation, kurtosis, skewness and crest factor.

These features provide valuable insights into the variability, spread, and distribution of

data points associated with each DER. Significant deviations from normal behavior in any

of these statistical measures can serve as flags, potentially indicating the presence of an

attack at a specific DER. Since the study focuses on four parameters of the DERs, i.e.,

frequency, voltage, active and reactive power - a total of 28 input feature variables are

generated and saved in a .csv file for training the multi-label classification model. Given

the imbalanced nature of real-time data, where certain attack types may be more prevalent

than others, this chapter used 1000 estimators during training to ensure effective learning

from minority classes within the dataset. Moreover, all the other hyperparameters such as

ratio of training and testing data sets, learning rate, maximum depth, pre-processing

and objective functions are kept similar to the previous classification problem. This
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Figure 4.18: Flowchart of proposed XGBoost-enabled attack localization scheme
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comprehensive feature set empowers the model to achieve a more accurate and robust

attack localization within the MG. Once trained, the XGBoost classifier is equipped to

predict the attack location within the test system and it is also used to compare its

performance against established ensemble machine learning techniques for assessing its

effectiveness. A comprehensive flowchart depicting the entire XGBoost-enabled multi-label

classification process is presented in Fig. 4.18.

4.5.2 Performance Metrics for Multi-Label Classification

Apart from the performance metrics discussed in Section 4.4, a multi-label classification

model’s requires specific metrics for accessing its performance tailored to handle the

complexity of multiple labels per instance. Those metrics are discussed below.

1. ROC Curve: In the realm of machine learning, particularly for problems with

multi-label classifications the Receiver Operating Characteristic (ROC) curve and

Area Under the Curve (AUC) are popular metrics for evaluating model performance.

The ROC curve visually depicts a classifier’s ability to distinguish between positive

and negative instances. It plots the True Positive Rate (TPR) on the y-axis against

the False Positive Rate (FPR) on the x-axis. To generate the ROC curve, the

classification threshold is progressively adjusted from 0 to 1. At each threshold, the

TPR and FPR are calculated, forming a series of data points. The closer the ROC

curve sits to the top-left corner of the graph, the better the classifier’s performance.

A random classifier, lacking any discriminatory power, would be represented by a

diagonal line stretching from the bottom-left corner to the top-right corner as shown

in Fig. 4.19. Once the ROC is plotted, the area under this ROC is called as AUC. It

condenses a classifier’s performance across all possible classification thresholds into

a single, numerical metric whose values ranging from 0 (worst) to 1 (perfect). An

AUC of 1 signifies a flawless classifier that flawlessly differentiates between positive

and negative examples, while an AUC of 0.5 indicates a mere random guess.

Figure 4.19: Visual representations of ROC and AUC
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2. Hamming Loss: Alongside accuracy, Hamming Loss is also considered to assess

model performance. It is the metric which calculates the fraction of erroneously

predicted labels and mathematically represented as below:

Hamming Loss =

∑
j y(j) ̸= ŷ(j)

N
(4.33)

where, N is the total number of labels, y(j) is the jth true label, and ŷ(j) is the jth

predicted label.

Hamming Loss offers a thorough evaluation of the model’s overall label accuracy

performance. A lower Hamming loss indicates better performance, as it means that

the classifier is able to predict more labels correctly.

(a) Confusion Matrix for DER-1 (b) Confusion Matrix for DER-2

(c) Confusion Matrix for DER-3 (d) Confusion Matrix for DER-4

Figure 4.20: Confusion matrix for different ML classifier.
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4.5.3 Test Results

The performance of the proposed attack localization scheme is evaluated using CM as

shown in Fig. 4.20 for each DERs within the microgrid system. Each CM visualizes the

model’s ability to distinguish between two classes viz., DER not attacked (0), and DER

attacked (1).

As discussed, in this case, each DERs is considered at a time for the attack and TP,

FP, TN and FN are calculated out of total 504 instances. Analysis of the CMs reveals

that DER-1 has the highest False Positive Rate (FPR) at 0.04%, followed by DER-2 and

DER-3 with a FPR of 0.03%. Conversely, DER-3 exhibits the lowest FPR at 0.01%. On

the other hand, the False Negative Rate (FNR) is highest for DER-4 and DER-1, reaching

0.17% and 0.12% respectively. DER-2 follows with a FNR of 0.09%, and DER-3 has the

lowest FNR at a mere 0.008%.

Using these information above, the performance parameters, namely, Precision, Recall,

Specificity, F1-score and Accuracy, for the proposed FDI attack localization scheme is

calculated and tabulated in the Table 4.7. Examining the table, it is observed that the

Table 4.7: Performance Parameters for the Proposed XGBoost Enabled Attack
Localization Scheme

Attack Location Precision Recall Specificity F1-Score Accuracy (%)

DER-1 0.88 0.88 0.96 0.88 94.44

DER-2 0.92 0.90 0.97 0.91 95.23

DER-3 0.97 0.99 0.99 0.98 99

DER-4 0.89 0.83 0.96 0.86 93.25

model achieves the highest precision and recall for DER-3. This translates to a very low

chance of the model making a false positive or a false negative. This superior performance

can be attributed due to the unique role played by DER-3 as ”leader one” within the

microgrid system. Leader DER always possesses knowledge of voltage and frequency

set-points, making it a more predictable to detect compared to other DERs. Consequently,

attacks launched on DER-3 are easier for the model to detect and classify accurately.

Alongside the precision and recall, F1 score is also evaluated for all the DERs. An F1-score

close to 1 signifies a well-balanced model that excels in both identifying true positives

(attacks) and avoiding false positives. DER-3 shows the highest F1-score, indicating its

well-balanced performance. Conversely, DER-4 has the lowest F1-score, suggesting the

model struggles to accurately predict the attack status for DER-4 compared to others.

This difficulty translates to a higher likelihood of both false positives and false negatives

for DER-4. Finally, the accuracy of the model is shown which also follows the similar

trend i.e highest accuracy is obtained by DER-3 and lowest for DER-4.

Figure 4.21, shows a graphical representation of true positive rate (TPR) and the
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Figure 4.21: ROC curve for different DERs under attack condition

false positive rate (FPR) across different classification thresholds via ROC curve for

each individual DERs. It can be seen that FPR values for DER-1 and DER-2 are

closely aligned due to their similar roles (Degree score) in the prescribed communication

topology, resulting in comparable detectability rates with similar TPR and FPR. The same

interpretation can also be observed by computing the area under the ROC represented

as AUC score. Higher is the AUC score, closer is classifier to the perfect classifier. In

terms of the best attack localization performance, the DERs can be ranked from lowest

to highest as follows: DER-3 > DER-2 > DER-1 > DER-4.

Table 4.8: Performance Comparison Among Different Classification Methods for
Localization of Attacks

Classifier Accuracy (%) Hamming Loss (%)

Decision Tree 73.01 8.3

Random Forest 85.11 4.7

Gradient Boosting 81.34 5.8

Proposed Attack Localization Scheme 87.50 4.5

Now the performance of the proposed attack localization scheme with XGBoost as a

classifier is compared with the other well known ML classifier as shown in Table 4.8. It

is observed that among all the other classifiers such as RF, DT and GB, the accuracy of

the proposed XGBoost assisted classifier is the highest. This is also worth noticing from
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(a) ROC for DER-1 Under Different ML Techniques (b) ROC for DER-2 Under Different ML Techniques

(c) ROC for DER-3 Under Different ML Techniques (d) ROC for DER-4 Under Different ML Techniques

Figure 4.22: ROC curve for different DERs under different ML classifiers.

Table 4.7 and Table 4.8 that the accuracy of localizing the attack on individual DER is

higher than the average accuracy of localizing the attack. The possible reason for the

higher accuracy of individual DER can be the highly imbalanced dataset. Suppose, there

is an attack on DER-4 i.e. the actual target value is [0 0 0 1], but the model predicts the

attack on DER-3 i.e. [0 0 1 0]. Even though the model predicts incorrectly, the individual

prediction for DER-1 and DER-2 is still correct resulting in higher individual accuracy

for DERs. Thus, in multi-label classification, where each instance can be associated with

multiple labels, accuracy alone may not be the most appropriate metric for evaluating

the model performance. This is because accuracy measures the proportion of correctly

predicted labels out of the total number of labels, considering each label prediction

independently. This metric doesn’t differentiate between minor and major classification

errors. In scenarios where labels are imbalanced or where some labels are more prevalent

than others, accuracy can be misleading as discussed previously. Therefore, in parallel
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to accuracy, hamming loss is also calculated by considering both false positives and false

negatives across all classes, offering a more informative assessment of the model’s ability to

accurately predict the presence or absence of multiple labels for each instances. It would

calculate the average number of incorrect labels across all four classes. It can be seen from

the table that the proposed FDI attack localization scheme has the lowest hamming loss

as compared to other considered ensemble ML techniques.

The effectiveness of the proposed attack localization scheme is also evaluated and compared

to other ensemble machine learning techniques using ROC curve in Fig. 4.22. The

AUC metric is employed to quantify the performance for each DER. The proposed

scheme demonstrates that DER-1, DER-2 and DER-4 has significantly higher AUC values

compared to the other ML techniques in the ROC curves. A higher AUC signifies a

stronger ability to differentiate between attack and non-attack instances. For DER-3,

the competition becomes tighter. Here, the AUC values for all the considered techniques,

including the proposed scheme, are relatively close. This suggests that all methods perform

at a similar level in identifying attacks on DER-3. In summary, even though the proposed

approach may not be the best option for every DER, its outstanding results on DER-1,

DER-2 and DER-4 demonstrate its overall effectiveness in attack localization within the

microgrid system.

4.6 Conclusions

With the aim of accurate and timely detection of cyber attacks in the islanded AC

MG, comprising of 4 grid forming inverters sharing the mutual information among each

other through a prescribed communication topology, this chapter first introduces a novel

attack detection mechanism based on Maximum Mean Discrepancy (MMD) test statistic

which can calculate the discrepancies in unbiased estimates of local voltage/frequency

synchronizing tracking errors for each DERs from the samples of two distributions

after applying kernel tricks. Under the compromised situation, this statistical estimate

behave erroneous leading the MMD to cross predefined threshold and raised the flag of

attack detection. Having the attack being detected, in next stage a machine learning

classifier, specifically the XGBoost is utilized with two statistical inconsistency measure

i.e. Entropy and Shannon energy to form a novel rule-based attack classification

approach for classifying various types of injection attacks in the DER’s controllers.

After the classification task being completed, a multi-label attack localization

scheme is performed after exploiting a few more statistical features to be incorporated

in the previous XGBoost classifier, which aids in pinpointing the specific attacked

DERs, streamlining the process of isolating compromised components from the system

in worst-case scenarios. Thus, by combining statistical measures and as well as ML

techniques, this chapter introduced a comprehensive strategy for detecting and localizing

attacks in a modified IEEE 13 bus islanded AC microgrids systems modelled in RTDS

environment. The salient contributions of this chapter are as follows:
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For Maximum Mean Discrepancy Based Attack Detection:

1. Accurate detection of different types of FDIAs on the controller inputs and its

incoming and outgoing communications links.

2. Accurately distinguishes fault/switching events from cyber attacks, leading to no

false alarms.

3. Superior as compared to Kullback Leibler divergence (KLD) [116] in terms of

detection delay and threshold selection problem under varieties of attack models.

4. Due to its lower rate of change detection, the KLD performs worse than MMD under

slow changing attacks with a predetermined threshold and may occasionally evade

the attack.

For Proposed ML-based XGBoost Classifier to Classify and Localize Attack:

1. The proposed novel rule-base XGBoost classifier classify the FDIAs with an accuracy

of 99.49% which outperform the existing ensemble ML techniques.

2. Furthermore, in terms of Precision, Recall, and F1 Score, the proposed rule-based

approach similar to other ML classifiers, achieves 100% for detecting the simplest

attack, such as the pulse attack. Additionally, it demonstrates significant

performance for more complex attacks, such as sine attacks with the values of 97%,

98%, and 97%, respectively.

3. Apart from the classification, the proposed XGBoost enabled attack localization

scheme also shows superior performance in terms of accuracy of 87.5% with a

hamming loss of 4.5% which is significantly better than the existing ML classifier

like Decision Tree, Random Forest, Gradient Boosting.

4. Pertaining to Precision, Recall, Specificity and F1 Score, the proposed localization

scheme achieves superior performance for DER-3 followed by DER-2, DER-1 and

DER-4 respectively. The same proposition is also validated from the plotting of

ROC curve which results in highest AUC for each DERs with values of 92.3%,

93.7%, 99.1% and 89.9% for DER-1, DER-2, DER-3 and DER-4 respectively. The

higher AUC for DER-3 signifies its superior ability to distinguish between attack

and non-attack instances compared to the other DERs.
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Chapter 5

Unknown Input Observer and

Back-stepping Integrated Sliding

Mode Control based Cyber Attack

Mitigation Framework

5.1 Introduction

Having successfully detect the attack, followed by the precise attack classification and

localization in Chapter-4, this chapter proposes a novel scheme to accurately estimate and

mitigate cyber-attacks like unauthorized data manipulation attacks on DER’s controller to

maintain MG’s voltage and frequency stability. This control scheme primarily comprises

of two steps. The goal of the first step is to get a rough estimate of attacked DERs and

the injected amount of attack bias by the perpetrator by utilizing the output of MMD

obtained from Chapter-4 with an Unknown Input Observer (UIO) based control approach.

In second step, the coarse estimated bias so obtained is then utilized in a Backstepping

based Sliding Mode Controller (BSMC) design to generate a suitable control law that

enforces the injected attack to be compensated by finer adjustments of the compensation

signal due to anti-attack signal generation. Hence, from cyber attack detection in Chapter

4 to mitigation in Chapter 5, the development of the entire attack-resilient framework

is outlined across four principal stages: Identification, Reconstruction, Mitigation, and

Update, as depicted in Fig. 5.1. The efficacy of the proposed cyber-attack detection

and mitigation scheme is tested under various types of cyber attacks on the IEEE-13 bus

distribution test feeder operated in an islanded mode, modelled in RSCAD and is validated

with RTDS. Moreover, the performance and superiority of the proposed detection scheme

is compared with exiting ones through Hardware-in-the-Loop (HIL) simulation control

environment.

The rest of the chapter is organized in four sections. Section 4.2 presents the proposed

cyber attack resilient framework with details description of UIO and BSMC design

methodology. The real time implementation results are analysed in Section 4.3 and finally

Section 4.4 concludes the chapter.
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Identification Phase (Obtained from Chapter 4): Detecting the misbehaving agent 
based on Maximum Mean Discrepancy (MMD) Index that calculates unbiased 
empirical estimates of local voltage/frequency synchronizing tracking error.

Reconstruction Phase: Estimating the impact of FDI attacks based on the 
combination of sliding mode control (SMC) and unknown input observers (UIO) to 

provide a reliable performance.

Mitigation Phase: A suitable compensation signal can be achieved with less 
chattering effect by integrating the SMC based controller with backstepping control 

design approach for mitigation..

Update Phase: The modified output from mitigation phase will help to regulate the 
original control input of the secondary control by generating suitable control law that  

ensure desired consensus.

Identification Phase (Obtained from Chapter 4): Detecting the misbehaving agent 
based on Maximum Mean Discrepancy (MMD) Index that calculates unbiased 
empirical estimates of local voltage/frequency synchronizing tracking error.

Reconstruction Phase: Estimating the impact of FDI attacks based on the 
combination of sliding mode control (SMC) and unknown input observers (UIO) to 

provide a reliable performance.

Mitigation Phase: A suitable compensation signal can be achieved with less 
chattering effect by integrating the SMC based controller with backstepping control 

design approach for mitigation..

Update Phase: The modified output from mitigation phase will help to regulate the 
original control input of the secondary control by generating suitable control law that  

ensure desired consensus.

Figure 5.1: Illustration of the four key stages in the attack-resilient framework:
identification, reconstruction, mitigation, and update.

5.2 Proposed Cyber Attack Resilient Framework

The overall proposed cyber-attack resilient framework is shown in Fig. 5.2 wherein a

feedforward compensation method over the existing conventional secondary control system

is proposed to make the existing consensus-based control scheme attack resilient. The

design method initially needs an unknown input observer to monitor the system’s global

parameters affected by cyber-attacks and then make a rough estimation of exogenous

false data injections (FDI) based on the initial observed states trajectory and designed

state matrices. The estimated value of FDI is then used in the next stage, where a

robust controller is designed based on sliding mode control concept and to get rid of the

chattering issues and getting smooth performance, it is integrated with a very popular

back-stepping control design approach so that a suitable counter control law can be

generated that can compensate the effect of FDI attacks in real time on the local controllers

of DERs and maintain the system stability throughout the process. This anti-attack signal

generated from the control law is added with output of conventional secondary control

signal to enforce the attack to be mitigated in secondary control operation of DERs.

The joint utilization of this UIO and BSMC design illustrates excellent tracking and

unknown injection compensation capabilities even under the compromised condition with

no external hardware modifications of the existing MG distributed secondary controller

and also not requiring any additional layers of communication channels.
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Figure 5.2: Proposed cyber attack resilient framework for MG’s Distributed Secondary
Control

5.2.1 UIO Design For DER’s Secondary Control Layer

To start with the design process, the MG’s distributed secondary control for each DERs is

required to be represented in the state space domain with its networked system dynamics

equations as shown below:

ẋ(t) = Ax(t) +Bu(t) +Ef(t)

yi = Cixi(t) (5.1)

where, x(t) ∈ RN and u(t) ∈ RP be the global states (frequency/voltage) and known input

vector containing all the DER’s states and yi(t) ∈ RMi be the output vector available

to DER-i. f(t) ∈ RN be the unknown exogenous attack input scalar injected by the

attacker in any respective state, and E is its associated full column rank vector defined

by the output from MMD[F ,Uωi ,U
a
ωi
], obtained from Chapter-4. A,B,C and E are all

known network system matrices with appropriate dimensions. Additionally, it should be

noted that each agent i.e DER-i have access to its own and received measurements of its

neighboring states.

Definition 5 (Distributed Estimation). In order to develop the proposed attack estimation

and mitigation strategy, let’s assume that each DER-i in the system Eq. (5.1) has

a topological model of the MG secondary layer control systems and that a local set of

measurements, y(t), is accessible. Additionally, if the collection of DERs auxiliary control

inputs respective to its local neighborhood synchronization errors detect the attack and

locates the compromised unit—that is, locates the nonzero elements of E pertaining to

an injection of f(t)—an attack estimation is said to have been acquired using observer’s

structure.
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Definition 6 (Unknown Input Observer (UIO)). Considering the system dynamics in

Eq. (5.1), an observer is defined as an unknown input observer, if error in estimation of

states approaches to zero asymptotically i.e, limt→+∞ e(t) = limt→+∞∥x(t) − x̂(t)∥ = 0

regardless of the presence of any exogenous input f(t) in the system. Thus, the structure

of the full-order UIO is given by the following system of equation [217]:

żki (t) = Fk
i z

k
i (t) + Jk

iBu(t) + Lk
i yi(t)

x̂ki = zki (t) +Kk
i yi(t) (5.2)

Now, if the observer equations Eq. (5.2) is applied to the MG network system dynamics

equation Eq. (5.1), then the governing equation of estimation error of system states can

be written in expandable form as shown below.

ėki (t) = (A−Kk
iCiA− Ĺ

k
iCi)e

k
i (t) + [Fk

i − (A−Kk
iCiA− Ĺ

k
iCi)]z

k
i (t)+

[L̋
k
i − (A−Kk

iCA− Ĺk
iCi)K

k
i ]yi(t) + [Jk

i − (I−Kk
iCi)]Bui(t)

+ (Kk
iCi − I)Efi(t) (5.3)

where kth is the target node/DER compromised by cyber-attacks. Also, żki (t) ∈ RN is

the states of observer and x̂ki ∈ RN is the estimated states decoupled from compromised

node-k and calculated by node-i. It is assumed that each DER is equipped with a UIO,

which only needs its own state and local measurement (yi) information of its neighbor.

The matrices, Fk
i , J

k
i , L

k
i and Kk

i are the design consideration of proper dimensions which

must satisfy the following relations.

Fk
i = (A−Kk

iCiA− Ĺk
iCi)

Kk
i = Ei[(CiEi)

TCiEi]
−1(CiEi)

T

Jk
i = (I−Kk

iCi)

L̋
k
i = Fk

iK
k
i

L = Ĺk
i + L̋

k
i

(Kk
iCi − I) = 0 (5.4)

Henceforth, the state estimation error will be:

ėki (t) = Fk
i e

k
i (t)− Jk

i

∑
n∈N̄i\{k}

Enfn(t) (5.5)

Here, Fk
i is a Hurwitz matrix i.e all the eigenvalues of F are stable, and thus asymptotically

convergence of state estimation errors, e(t) towards zero is guaranteed. Moreover, the

unknown input term is also effectively decoupled from the observed states and gradually x̂

converges to x. It is evident that the error dynamics Eq. (5.5) are stable and independent

of fk(t), which aligns with Definition 2. Here, the observer matrices are designed based on
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pole-placement techniques [218]. Now, for the existence of an UIO and to solve Eq. (5.4),

the necessary and sufficient conditions that need to be checked are as follow:

1. rank(CiEk) = rank(Ek)[
sI −A+ (Ek)

Ci 0

]
= n+ rank(Ek)

2. (C,A1) is an observable pair, where A1 = A − E[(CE)TCE]−1CE)TCA = A −
AKC.

Thus, the estimate of unknown input injection can be obtained as follows:

f̂ = (CiEi)
†[ẏi −CAx̂ki −CBu] (5.6)

In order to prove the observer global stability and asymptotic convergence of estimation

of unknown exogenous input, lets the error is defined as

f̃ = f − f̂ (5.7)

Let, the Lyapunov function be taken as

V =
1

2
f̃T f̃ (5.8)

Combining Eq. (5.1) and Eq. (5.6), the first derivative of V can be written as:

V̇ = f̃T
˙̃
fT

=
˙̃
fT [f − f̂ ]T

=
˙̃
fT [f − (CiEi)

†(ẏi −CAx̂ki −CBu)]T

=
˙̃
fT [f − (CiEi)

†(CiAx
k
i +CiBu+CiEif −CiAx̂

k
i −CiBu)]

T

=
˙̃
fT [f − f − (CiEi)

†CiAe(t)]
T

= −[(CiEi)
†CiAe(t)]

T ˙̃
fT ≤ 0 (5.9)

Therefore, given microgrid system Eq. (5.1) and its initial condition x(t0) = x0, along with

the UIO estimator Eq. (5.2) proposed for this system, if the parameters of the estimator

in Eq. (5.2) meet the above conditions specified in Eq. (5.4) and remains constant, then

as t→∞, z → Jx and f̂ → f . Thus, it is observed that with proper selections of observer

design matrices and following the necessary conditions for UIO existence, the unknown

estimation error approaches to zero asymptotically with the estimation error of observer

states. Figure 5.3 shows the block diagram of designing a UIO dynamic system for MG

network, as described in Eq. (5.2).
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Figure 5.3: Schematic structure of a full order Unknown Input Observer

5.2.2 Back-stepping Integrated Sliding Mode Controller

This is the final stage of the proposed algorithm to design a compelling feedback control

law under a fixed communication graph topology. This involves employing a back-stepping

approach and sliding mode surface to counteract the impact of unknown FDI attacks

on MG secondary controllers. Additionally, it includes the approximate estimation of

injections using the above-mentioned UIO, contributing to the improvement of system

stability and robustness. In the context of non-linear control theory, sliding mode

control (SMC) is a widely reviewed researched area due to its superiority in trajectory

tracking problems in multi-agent system fast response, controlling of model uncertainties,

disturbance, and unmodeled system dynamics, etc [219, 220]. The main philosophy of SMC

is to design a suitable sliding surface such that even in the presence of an unknown attack

or disturbance, the states of the system can reach to this surface and stay over there to

achieve resilient control performance. However, finite-time consensus and chattering issues

in its control input are the major concern of its practical applications. To get rid of these

above issues and to purposefully extract and utilize the benefits of SMC, another very

popular non-linear recursive control technique, i.e., back-stepping control, is integrated

with it, which is formulated based on Lyapunov functions in each step and found out to

be superior for ensuring global stability of strict feedback systems. Initially, the entire

system is splitted into several reduced-order subsystems, and some error or regulatory

variables are introduced to redefine the networked system dynamics based on Lyapunov

functions. Thereafter using the time derivative of those variables at each design step, a

fictitious or virtual control input law is defined that acts as a stabilizing control for its

previous states, and next stability is ensured by making the time derivative of Lyapunov
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functions to be negative definite as briefly described below.

Let, the MG’s distributed secondary frequency control (DSFC) Eq. (5.1) for the topology

shown in Fig. 4.13 of Chapter-4 is modified as follows:

Ẋω = AXω +BpUp +BuUsω +Bf f̂ω

yω = CXω (5.10)

where, Xω and UP be the DER’s frequency and its injected active power input respectively.

f̂ω is the rough estimation of unknown frequency bias output obtained from UIO and Usω

be the desired control law that makes the DSFC cyber attack resilient.

Xω = [ω1, ω2, ω3, ω4]
T , Up = [P1, P2, P3, P4]

T

Usω = [usω1 , usω2 , usω3 , usω4 ]
T , f̂ω = [f̂ω1 , f̂ω2 , f̂ω3 , f̂ω4 ]

T

A =

∣∣∣∣∣∣∣∣∣∣
−2cω cω 0 cω

cω −3cω cω cω

0 0 −2cω cω

cω 0 0 −cω

∣∣∣∣∣∣∣∣∣∣
Bf =

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣
where, cω is the frequency control coupling gain value for MG’s DSFC of voltage source

voltage controlled inverters.

Bp =

∣∣∣∣∣∣∣∣∣∣
−2cω cω 0 cω

cω −3cω cω cω

0 0 −cω cω

cω 0 0 −cω

∣∣∣∣∣∣∣∣∣∣
Bu =

∣∣∣∣∣∣∣∣∣∣
b1 0 0 0

0 b2 0 0

0 0 b3 + cω 0

0 0 0 b4

∣∣∣∣∣∣∣∣∣∣
Firstly, the tracking error of the DER-1’s frequency is defined as:

wω1 = ωref − ω1 (5.11)

The Lyapunov function is chosen as:

V1 =
1

2
w2

ω1
(5.12)

Combining Eq. (5.10) and Eq. (5.11), the first derivative of V1 can be written as

V̇1 = wω1ẇω1

V̇1 = wω1(ω̇ref − ω̇1)



140
Chapter 5. Unknown Input Observer and Back-stepping Integrated Sliding Mode Control

based Cyber Attack Mitigation Framework

V̇1 = wω1(ω̇ref + 2cωω1 − cωω2 − cωω4 + 2cωP1 − cωP2 − cωP4 − b1usω1 − f̂ω1︸ ︷︷ ︸
−k1wω1

) (5.13)

According to the back-stepping control, the virtual control for DER-1 frequency, i.e, ω∗
1

can be defined as

ω∗
1 =

1

2
(ω2 + ω4)− P1 +

1

2
(P1 + P2) +

1

2cω
(b1usω1 + f̂ω1 − k1wω1 − ω̇ref ) (5.14)

Using Eq. (5.13) and Eq. (5.14), the first derivative of V1 is given by

V̇1 = −k1w2
ω1
≤ 0. (5.15)

In the similar fashion, the virtual controls of all other DERs such as ω∗
2, ω

∗
3 and ω∗

4 and its

respective time derivative of Lyapunov functions i.e V̇2 = −k2w2
ω2
≤ 0, V̇3 = −k3w2

ω3
≤ 0

and V̇4 = −k4w2
ω4
≤ 0 are also calculated. Where k1, k2, k3 and k4 are feedback gains and

should be greater than zero. In order to get the output from the controller, the sliding

manifold for DER-1 is defined as follows:

Sω1 = ω̃1 − k5
∫ t

0
ω̃1 dt (5.16)

where, ω̃1 = ω∗
1 − ω1. In the same way, sliding surfaces for all the other DERs are also

calculated and the final Lyapunov function can be written as

V5 =
1

2
(S2

ω1
+ S2

ω2
+ S2

ω3
+ S2

ω4
) (5.17)

Combining Eq. (5.10), Eq. (5.13) and Eq. (5.16) the time derivative of V5 can be written

as

V̇5 = Sω1 [ω̇
∗
1 − ω̇1 − k5ω̃1] + Sω2 [ω̇

∗
2 − ω̇2 − k6ω̃2]

+Sω3 [ω̇
∗
3 − ω̇3 − k7ω̃3] + Sω4 [ω̇

∗
4 − ω̇4 − k8ω̃4] (5.18)

For brevity, only the first term of Eq. (5.18) is expanded as shown below which gives the

suitable control law for DER-1

V̇5(1
st term) = Sω1 [ω̇

∗
1 + k5ω̃1 + 2cωω1 − cωω2 − cωω4︸ ︷︷ ︸

+ 2cωP1 − cωP2 − cωP4 − b1usω1 − f̂ω1︸ ︷︷ ︸
−k9|Sω1 |

1
2 sgn(Sω1 )−k10|Sω1 |

1
2 Sω1

] (5.19)

Now, based on the back-stepping sliding mode principal, the output control law for DER-1

can be expressed as follows:



Chapter 5. Unknown Input Observer and Back-stepping Integrated Sliding Mode Control
based Cyber Attack Mitigation Framework 141

usω1 =
1

b1
[ω̇∗

1 + k5ω̃1 + 2cωω1 − cωω2 − cωω4 + 2cωP1−

cωP2 − cωP4 − f̂ω1 + k9|Sω1 |
1
2 sgn(Sω1) + k10|Sω1 |

1
2Sω1 ] (5.20)

Similar to the above approach, the control law for the other DERs can also be evaluated.

Now according to Eq. (5.18), Eq. (5.19), Eq. (5.20) and the control laws of other DERs,

the time derivative of the Lyapunov function of the entire controller can be written as

V̇5 = −k9|Sω1 |
1
2 sgn(Sω1)− k10|Sω1 |

1
2Sω1 − k11|Sω2 |

1
2 sgn(Sω2)− k12|Sω2 |

1
2Sω2

− k13|Sω3 |
1
2 sgn(Sω3)− k14|Sω3 |

1
2Sω3 − k15|Sω4 |

1
2 sgn(Sω4)− k16|Sω4 |

1
2Sω4 ≤ 0 (5.21)

where all the parameters from k9 to k16 are greater than 0 and V̇5 will be zero if and

only if all the sliding surfaces satisfy i.e., Sω1 = Sω2 = Sω3 = Sω4 = 0. Thus it is proved

that the designed controller is asymptotically stable in a global sense based on Lyapunov

functions. Finally, it can be concluded that in normal conditions, this computed control

law will inject almost zero compensation, but in the presence of any cyber intrusion, a

suitable counter value of the control law will be injected on the DSFC of the respective

attacked DER identified by MMD to make it attack resilient.

The flowchart of the above mentioned unified end-to-end cyber attack detection and

mitigation framework comprising of MMD, UIO and BSMC is depicted in Fig. 5.4.

5.3 Results and Discussion

This section demonstrates the effectiveness of the proposed cyber-attacks mitigation

framework on a modified IEEE 13-node distribution feeder system, depicted in Fig. 4.1 of

Chapter-4. This system incorporates four DERs connected through a 1.0 MVA, 0.48/4.16

kV Yg-Yg transformer, with DER-3 designated as the leader. The hardware-in-loop

laboratory setup, illustrated in Fig. 4.2, collects auxiliary control inputs from each

DER’s RTDS front panel analogue output channels. Subsequently, the MMD-based attack

detection algorithm outlined in Chapter-4 is translated into C code using MATLAB

Simulink® C Coder builder and executed on the DS1104 R&D controller board. The

digitized detection input is then transmitted to the RTDS runtime environment via the

digital I/O panel interface to initiate the mitigation strategy.

5.3.1 Attack Mitigation on DSFC Against Scaling Attack

Figure 5.5 illustrates the applicability and robustness of the proposed mitigation strategy

against a complex attack (State Dependent) i.e., scaling attacks. Here, the attackers use

the attack parameter αsc = 1.04 pu to hijack the DSFC of DER-1 and falsely alter its

frequency information. As soon as the attacked DER is identified by MMD, the column

vector, ”E” of UIO’s governing equation, is updated to get a rough estimates of the
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unknown injection and the state trajectories. The proposed back-stepping assisted sliding

mode-based resilient operation has activated instantly and the counter control law is being

computed to restore the frequency back to normalcy. The controller and observer design

requirements, which are less conservative, enable the control law to be updated in real time

with the estimates of the UIO. In order to enforce robust behavior even in the event that

the attack continues, it enforces the deviated state trajectories to follow back the initial

sliding manifold. Figures 5.5(a) and 5.5(b) show that as soon as the attack is injected, the

frequency begins to shoot out. However, the control law instantly corrects the attack’s

effect and restores the frequency, and within the due period, the frequency tracking error of

DER-1 likewise reaches zero. The sliding manifold self-adjusted in accordance with changes

in frequency deviation, as seen in Fig. 5.5(c). Next, the finer resolution of the injected

control law and its endurance against persistent attack is also shown in Fig. 5.5(d). Thus

it can be concluded that the combined effect of back-stepping and sliding mode control

approach yields a suitable control law to maintain stability and performance of the system

even in the presence of malicious disturbances, ensuring the system’s resilience to cyber

threats.

The estimation accuracy of the states, as resulted by the proposed UIO, is quantified

in terms of mean squared error (MSE) and mean absolute error (MAE) of each

DERs frequency deviation and unknown exogenous input estimation under FDIA,

and is found to be — (0.0020, 3.4959e−06, 2.2979e−06, 0.8132e−07 and 0.0020) and

(0.1004, 0.0027, 0.0019, 5.0747e−04 and 0.2079), respectively.

5.3.2 Attack Mitigation on DSFC Against Step Attack

Similar to the above case study, another type of commonly known attack i.e., step attack

is encountered to replace the DER-1 frequency with the attack parameter of αst = 0.05

pu as modeled in [221]. As in the earlier case, the attack here is also launched at the same

instant, and the proposed mitigation method is found to be working efficiently to damp

out the attack’s impact in DSFC, as shown in Fig. 5.6. At the onset of the step attack,

Fig. 5.6(a) depicts the initial fall back of frequency from its nominal value with the correct

tracking of frequency error terms for DER-1 only as identified from Fig. 5.6(b). This acts

as a triggering instant for the quickest activation of the proposed BSMC assisted mitigation

method, where the intermediate control signal is designed in each steps considering the

system dynamics of each DERS to drive the error state towards a desired values, while

also accounting for the previous control signals. This in turn introduces a resultant change

in the sliding surface as shown in Fig. 5.6(c). This sliding surface henceforth generates

a switching control law as depicted in Fig. 5.6(d) that guides the system trajectory

towards a desired state despite the presence of cyber-attacks. The designed control law is

then augmented with the governing equations of DSFC of each DERs of the MG system

to include terms that actively compensate for the effects of the unknown attack inputs.

In other words, this compensation mechanism dynamically adjusts the control inputs to

counteract the disturbances caused by the attack, thereby minimizing its impact on the
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(a) Frequency (b) Frequency Tracking Error

(c) Sliding Surface (d) Control Law

Figure 5.5: Performance of the proposed attack mitigation scheme for Scaling Attack on
DSFC of DER-1. The figure color labels black, red, blue and green represents parameters
for DER-1, DER-2, DER-3 and DER-4 respectively.
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system.

The MSE and MAE of all four DER’s frequency and unknown exogenous input for

this case are found to be (0.0020, 3.4959e−06, 2.2979e−06, 0.8132e−07 and 0.0020) and

(0.1004, 0.0027, 0.0019, 5.0747e−04 and 0.2079) respectively. Overall, it is observed that

the back-stepping approach helps account for the system’s dynamics and the unknown

attack’s presence in addition to minimize the potential chattering issues in the control

law, while the sliding mode component ensures the system’s state reaches the desired

behavior despite some level of disturbance in the unknown input estimation process.

(a) Frequency (b) Frequency Tracking Error

(c) Sliding Surface (d) Control Law

Figure 5.6: Performance of the proposed attack mitigation scheme for Step Attack on
DSFC of DER-1. The figure color labels black, red, blue and green represents parameters
for DER-1, DER-2, DER-3 and DER-4 respectively.
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5.3.3 Impact on DER’s Bus Voltage Profile by the Proposed Attack

Mitigation Scheme

In reference to the above simulation scenario, Fig. 5.7 shows the explicit results of DER’s

bus voltage profile before and after activation of the proposed mitigation scheme. The

overall stability profile of MG’s bus voltage (Node 650) is compromised as a result of the

attacker’s malicious contamination of the victim DER’s secondary controller’s frequency

input, as shown by the oscillatory behavior shown in Fig. 5.7(a). The remaining

three DERs are connected to other nodes of the MG, and their voltage also deviates

from the typical bus voltage range, as a result of the attack rapidly spreading to those

nodes. Therefore, the stability of the entire system is compromised if the cyber-attack

is not promptly detected and mitigated. As the actual voltage references are now lost

due to such skillful manipulation of DER frequency parameter, the main objectives

of modelling distributed cooperative secondary control in MGs i.e., “All DERs should

co-operate in maintaining consensus among themselves” gets violated. The effectiveness

of the proposed resilient control mechanism is demonstrated in Fig. 5.7(b), where the

attack impact is adaptively mitigated without having a significant impact on the MG’s

DER bus voltage profile, which continues to remain within their acceptable voltage range,

i.e., between 0.9 p.u. and 1.1 p.u., even in the event that the attack persists continuously.

Additionally, it is clear from Fig. 5.7(c) that the MMD-based detection scheme proposed

in Chapter-4 promptly identifies the attacked DER-1 (shown by the yellow curve). This, in

turn, triggers the proposed attack mitigation scheme, in which the proposed back-stepping

integrated sliding mode controller effectively reduces the impact of the attack by creating

an adaptive control law in response to the attack scenario. Overall, this detection and

mitigation stages are completed within a cycle of the nominal system frequency. Thus the

real-time implementation of the proposed controller clearly establish the faster convergence

speed and consensus agreement of MG’s voltage and frequency parameters by the proposed

mitigation scheme under bounded cyber intrusions. Also, the proposed controller is clearly

very adaptive to the unknown bounded attack injections, and thus it does not need

to isolate the infected DER’s information; therefore, the system’s resiliency and DER’s

utilization is increased.

5.4 Conclusions

This chapter uses a sliding mode control-based attack mitigation method integrated with

a back-stepping controller to help achieve consensus agreement even in a compromised

situation. In its first stage, this framework needs the coarse estimation of the unknown

input bias in the secondary frequency controller input obtained from a bank of unknown

input observer (UIO). After that, designing an effective Back-stepping Integrated Sliding

Mode Controller (BSMC) aids in nullifying the effect of the injected false data through

the application of counter control law, pushing the system’s behavior towards the desired

trajectory despite the attack’s influence. The efficacy and robustness of the proposed
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(a) Before Application of Proposed Attack Mitigation Scheme

(b) After Application of Proposed Attack Mitigation Scheme

(c) Estimates of MMD Under Step Attack

Figure 5.7: Impact on DER’s bus voltage profile before and after application of proposed
attack mitigation scheme. The figure color labels black, red, blue and green represents
AC terminal voltage of DER-1, DER-2, DER-3 and DER-4 respectively.



148
Chapter 5. Unknown Input Observer and Back-stepping Integrated Sliding Mode Control

based Cyber Attack Mitigation Framework

mitigation framework are validated by various Real-time digital simulations on the

modified IEEE 13-bus system which led to the following key conclusions of the work.

� The proposed method does not impose any additional limitations on the proposed

mitigation strategy, unlike [131, 116, 119], which assume that the leader DER must

always be secured. Additionally, the number of role statuses (corrupted or healthy)

of nearby DERs does not put any extra limitation over the proposed mitigation

strategy.

� For both the attack cases, the Mean Squared Error (MSE) and Mean Absolute

Error (MAE) values for the frequency of all four DERs and the unknown exogenous

input are with in the acceptable tolerance which justify its accuracy of performance

measure.

� The proposed mitigation method exhibits good robustness and faster convergence

against different attacks and efficiently regulates DER’s frequency and active power

ratio.

� The proposed controller is very adaptive to the unknown bounded attack injections,

and thus it does not need to isolate the infected DER’s information; therefore, the

system’s resiliency and DER’s utilization is increased.



Chapter 6

Synergistic Islanding and Cyber

Attack Detection Scheme

6.1 Introduction

In the previous chapter, a cyber attack mitigation framework against the distributed

consensus secondary control scheme for a MAS within a MG cyber-physical system is

developed to enhance the resiliency and security of the D-Systems. Another pressing

challenge that exists in D-Systems is to accurate detection of islanding scenario considering

the threats of cyber-physical manipulations. Thus the goal of this chapter is to first propose

a simple yet effective statistical parameters based passive islanding detection scheme (IDS)

that relies only on the one phase voltage data, measured at the point of common coupling

(PCC) followed by a signal processing based cyber attack detection method that aims

to make existing islanding detection methods “attack-proof” or less susceptible to cyber

attacks. To this end, at first an accurate islanding detection scheme is proposed, which

is comprised of three main stages. In Stage-1, the scheme performs a quick analysis of

the mean value of the PCC bus voltage under both balanced and unbalanced conditions

to detect islanding in a coarse manner. Stage-2 involves the computation of a Decaying

DC Detector (DDCD) using statistical properties of the input signal. Finally, Stage-3

introduces a Statistical Relay Digital Logic (SRDL) circuit based on output of Stage-1

and Stage-2 to differentiate between islanding and non-islanding events. Next, to prevent

cyber attacks from manipulating the islanding decisions and misleading system operators,

the proposed IDS is combined with a signal processing based Cyber Attack Detector

(CAD) module for the detection of statistically crafted cyber-attacks. The proposed

CAD detects a cyber-attack in the contaminated islanded data by computing a stochastic

non-parametric correlation coefficient, i.e., Spearman’s rank correlation in conjunction

with a deterministic Cosine-Similarity measure.

The efficacy of the proposed method is rigorously tested and assessed under various

circumstances on real-life Banshee industrial microgrid system modelled in the RTDS

simulation environment, on the basis of the IEEE-1547, UL 1741 and IEC-62116 standards.

The rest of the chapter is organized as follows. The statistical analysis of each phase PCC

voltage mean variation under various islanding and non-islanding events is presented in

Section 6.2. The proposed statistical property-based passive islanding detection technique

is explained in Section 6.3. Section 6.4 discusses the simulation results of the proposed
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IDS. Next, Section 6.5 presents the proposed signal processing based cyber attack detection

method. The attack detection results is then depicted in Section 6.6. Finally, Section 6.7

concludes the chapter by drawing the main findings of the overall framework.

6.2 Statistical Analysis of Various Islanding and

Non-Islanding Scenarios

In order to statistically analyze the voltage signal received at the PCC under islanding or

fault/switching scenarios, a test system is implemented in PSCAD/EMTDC as per the

IEEE-1547 and UL 1741 standards listed in Table 6.1 which helps to devise a satisfactory

relay logic in the forthcoming section. The system is shown in Fig. 6.1, where a single

DG is connected to the grid at the PCC, along with a parallel connected RLC load. The

constant current control mode of DG operation is used for the islanding studies, and unity

power factor operation of the inverter is considered. The corresponding parameters details

are also listed in Table 6.1. The sampling frequency of 7.68 kHz is used for 60Hz, which

results in N=128 samples per cycle. Further, the actual voltage signal V PCC , as measured

from the PCC, is used to compute and analyze the absolute mean of the one cycle window

data, as follows.

V PCC
mean =

∣∣∣∣∣ 1N
N∑
i=1

V PCC(i)

∣∣∣∣∣ (6.1)

Table 6.1: Test System details as per IEEE 1547 and UL 1741 standards

S.No Parameter Details S.No Parameter Details

System parameters Load parameters

1 Frequency 60 Hz 6 R (Ω) 2.304

2 Voltage (L-L) 480 7 L (H) 0.00611

3 DG power output 0.1 MW 8 C (F) 11.51.29

4 Input Voltage of DG 900 V 9 Quality Factor 1

5 Switching Frequency 8kHz

Figure 6.1: IEEE 1547 and UL 1741 Standard based Islanding test system
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Figure 6.2: V PCC
mean analysis of various Islanding and Non-Islanding scenarios

Figure 6.2(a) shows the instantaneous three phase voltage, below which is shown the grid

Circuit Breaker (CB) status. Grid CB status = 0 indicates CB is CLOSED and grid CB

status = 1 means CB is OPEN. The statistical analysis of the PCC voltage is done for six

scenarios, as described below.

1. Scenario-1: In this scenario, an islanding event is simulated by opening the grid CB

at 0.1s. It can be observed from Fig. 6.2(b-c) that the islanding condition does not

affect the voltage and frequency due to perfect zero power mismatch of both active

power and reactive power. Figure 6.2(d-f) shows the one cycle average as per Eq.

(6.1) for each three phase signals respectively. From the zoomed portion of all the

three phase one cycle averages of Eq. (6.1), it is observed that there is a significant

change before and after the islanding scenario. A high frequency and low frequency

nature can be observed before and after islanding, respectively in the calculated one

cycle average of each phase.

2. Scenario-2: In this scenario, a non-islanding event is simulated with grid CB closed.

A LG fault is applied at 0.35 s and cleared at 0.45 s in the R-phase with a fault

resistance of 1Ω. Clearly, the voltage and frequency is significantly affected, as
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shown in Fig. 6.2(b-c). One cycle V PCC
mean for R-phase also reveals sudden changes

in its value during the start and end of the fault. The other two healthy phases

do not undergo any significant changes, as shown in Fig. 6.2(d-f). Likewise, under

various fault conditions, calculated one cycle V PCC
mean of each phase as per Eq. (6.1)

has significant transient effect at the start and end of the fault.

3. Scenario-3: In this scenario, grid CB is opened at 0.55 s for the duration of 0.25 s

to analyze the islanding scenario under P mismatch, as shown in Fig. 6.2(a). The

voltage and frequency experience a significant effect under this condition, as can be

observed from Fig. 6.2(b-c). One cycle V PCC
mean for all phases is shown in Fig. 6.2(d-f)

which also depict significant variation.

4. Scenario-4: In this scenario, the system is working under unbalanced conditions in

all the three phases. Islanding scenario is then simulated by opening the grid CB

at 1.1 s under perfect mismatch of P & Q, as shown in Fig. 6.2(a). Under this

scenario, again the voltage and frequency experience significant change as shown in

Fig. 6.2(b-c). One cycle V PCC
mean for all phases is shown in Fig. 6.2(d-f). Due to the

unbalanced operation, magnitude of one cycle average in each phase is different. Yet

V PCC
mean reveals the Islanding condition successfully.

5. Scenario-5: In this scenario, Q mismatch is simulated as an Islandng scenario by

opening the grid CB at 1.4 s. Majorly, the voltage remains unaffected, and frequency

has significant variations, as shown in Fig. 6.2(b-c). Figures 6.2(d-f) depict the

significant changes in one cycle V PCC
mean for all the three phases.

6. Scenario-6: An external load switching is simulated at 1.8 s as a Non-Islanding

scenario, with grid CB as closed, as shown in Fig. 6.2(a). In this case, the external

load is added at 1.8 s and removed at 2 s from the system. Interestingly, the one

cycle V PCC
mean of all phases, as shown in the Fig. 6.2(d-f), reveals a decaying DC effect.

The aforementioned simulated scenarios cover a wide variety of possible conditions in an

MG system, and the signal behavior under these real-world scenarios has been extensively

studied in order to produce a reliable passive islanding detection method.

6.3 Proposed Islanding Detection Method

It is expected that the low-voltage grid will have voltage and frequency relays that trip

the generator in the event that at least one phase’s voltage or frequency restrictions

are exceeded. If the frequency and voltage are both within the allowed ranges, then a

Non-Detection Zone (NDZ) is present. As was discovered in Section 6.2, the voltage mean

V PCC
mean shows a pattern that is constant across all three phase voltages under the various

scenarios evaluated. Therefore, the instantaneous voltage of any one phase at the output

of the DG can be utilized to detect NDZ using one-cycle information. This is accomplished

by computing the V PCC
mean according to Eq. (6.1) utilizing a 128-point buffer.
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It is noteworthy that the statistical analysis carried out in Section 6.2 under different

conditions demonstrates that, under Islanding conditions, a significant shift in V PCC
mean for

one cycle can be observed. However, depending solely on the voltage magnitude could

lead to false alarms when it comes to Non-Islanding events like as failures, external load

switching, etc. The proposed IDS technique thus uses the new idea of detecting the

presence of decaying DC in the signal before making a judgement on the unintentional

Islanding in addition to utilizing V PCC
mean information. To this end, Fig. 6.3 depicts the

overall framework of the Proposed Islanding Detection Method (PIDM). As illustrated in

this figure, the PIDM is comprised of three stages, viz., 1) Mean-based coarse Islanding

Detection (MID), 2) Decaying DC Detector (DDCD, and 3) finally, the Statistical Relay

Digital Logic (SRDL). The description of each stage is discussed briefly in the following

subsections.

Figure 6.3: Block diagram of the proposed data driven Islanding detection scheme

6.3.1 Mean based Coarse Islanding Detection (MID)

A coarse estimation of of islanding detection is produced by this block. At this stage,

islanding is just suspected and is finally confirmed in the last stage of the proposed SRDL.

The input for this stage is V PCC
mean . The following are the procedural steps involved in the

calculation of MID.

Step-1: Create a 32-bit buffer of V PCC
mean values, i.e., VPCC

mean = V PCC
mean [1 : 32], and find the

minimum, V PCC
min , in the buffer. The V PCC

min is significantly influenced by the presence of

fixed DC offset and lower level of decaying DC quantity which arises during faults, load

switching, and harmonics.

Step-2: Via moving window concept, maintain a 32-bit buffer of VPCC
min values, termed

as V PCC
rem , i.e., VPCC

rem = V PCC
min [1 : 32].
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Step-3: Finally, the entropy in V PCC
rem is calculated. The entropy value so obtained is

termed as Mean based Islanding Detector. Inside the observation window of 32-bit buffer,

the value of MID remains fairly constant (less than 1e−4 or zero) under non-islanding

scenarios. On the other hand, an appreciable disorder or uncertainty is shown by MID (in

the range of 0.1-4) during possible/suspected islanding events.

6.3.2 Decaying DC Detector (DDCD)

The DC decay time is not used as a direct indication of an islanding situation but as an

indicator of transient behaviour within the MG. A MG’s electrical topology and operating

circumstances alter during an islanding event, resulting in transient phenomena including

voltage and frequency aberrations. Under such circumstances, the DC offset present in the

signal will decay over time due to the oscillating components present in the signal. The

main objective of this stage is, therefore, to assess the presence of decaying DC component

quantity, which arises due to faults and load switching events.

Estimating DC decaying time: The V PCC
mean information is summed up using a 32-bit

buffer data as Vms =
∑
V PCC
mean [1 : 32]. The rate at which the magnitude of Vms is decaying

is calculated as :

τ(i) = abs(−dt/(4 log(Vms(i)− Vms(i− 1)))) (6.2)

where, dt is the sampling time. τ , thus, represents the amount of time that the decaying

DC quantity (if present) will take to decay to approximately 36.8% of its original amount.

Finally, the entropy in τ [1 : 32], i.e., (Eτ ) is computed in order to see the randomness in

the computed decay time and for deciding if the decaying DC component is present or not

in the signal. For the discretization purpose, the entropy of DC decaying quantity (Eτ )

present in the signal is compared with a threshold of 2 × 10−3. In case, the entropy is

found to be more than the set threshold, DDCD will be set to 1 or 0 otherwise.

(a) Statistical based Relay Logic Tree (b) Statistical based Relay Digital Logic (SRDL) Diagram

Figure 6.4: Proposed Îslanding Detection Method (PIDM) logic
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6.3.3 Statistical based Relay Digital Logic (SRDL)

As seen in Fig. 6.4(a), the output of the MID is utilized in tandem with the output of the

DDCD in this last step to create the breaker logic for the operation. The binary output

variable SRDL is set to 1 to indicate islanding and 0 for a non-islanding situation based

on the following rules:

1. Rule-1: As mentioned in section II.B, if the studied signal is heavily influenced by

the presence of decaying DC, then DDCD will be set 1 as a suspected abnormal

events. In order to ensure that this arises due to event of a non-islanding scenario,

non-zero MID value is then compared with unity. If the MID value is equal to or

greater than 1, it is classified as a non-islanding event; otherwise, it is declared as

an islanding event.

2. Rule-2: If the signal does not have the signature of decaying DC of significant

tolerance, the DDCD will not be triggered and thus it should be set to state 0.

According to Rule-2, in this case, an event is considered an islanding scenario only

when MID ≥ 1. This is due to the fact that ideally DDCD should not respond

and always be obscured during most of the islanding scenarios. Thus, in such case,

unlike the rule-1, now SRDL logic will be set to 1 indicating an islanding scenario

when MID≥1. On contrary, if the MID value falls within between open and closed

interval range such as MID ∈ (1 × 10−4, 1], the event is confirmed as low impacted

Non-islanding event, and SRDL is set to 0 in that case.

3. Rule-3: This is the generalized case where these two main decision making

components i.e DDCD and MID both are found to be zero. To avoid any

misjudgement, MID values less than 1 × 10−4 are treated as 0 in this context,

signifying that neither islanding nor non-islanding events have occurred, indicating

a normal system state.

Based on the above rules, a Statistical Digital Relay Logic (SRDL) is designed to indicate

the presence of islanding and non-islanding scenarios as illustrated in Fig. 6.4(b). At

last, in order to avoid nuisance tripping of DGs due to some stringent scenarios and to

take confirm decision over an event, the toggling outputs of the logic gates are constantly

monitored for a cycle using sliding window concept. If the presence of number of ones i.e.,

non-zeros (NZ) is more than zeros (Z) for that period of time, then the final SRDL decision

confirms the event as an islanding scenario otherwise it indicates ia as a non-islanding

scenario.

6.4 RTDS Simulation Results

Test System: The efficacy of the PIDM is carried out via real time digital simulation

on Banshee power system [222]. Banshee MG system is a real-life small scale industrial

facility that receives power from three utility radial feeders, as shown in Fig. 6.5. This
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three radial feeders provide three zones with different levels of connectivity via normally

open switches. Each area’s mainstream feeder is connected to the utility grid via a

different PCC circuit breaker. The distribution voltage level of this MG has a system

voltage of 13.8 kV. Eighteen aggregated dynamic loads with a power factor of 0.9 lag are

supplied by those feeders. Additionally, there are two 200 horsepower induction motors

that have compressor loads. There is a 4 MVA diesel generator in area-1 and 3.5 MVA

natural gas fired combined heat and power plant operating at 13.8 KV in area-3 and

they usually have a controller operating on 4% linear voltage and frequency (V/F) droop.

Area-2 formed by feeder 2 contains a 2.5 MVA battery energy storage system and 5 MVA

photovoltaic array designed via average modelling with time-varying irradiance profile

and temperature. Additionally, 3 more grid following PV units, i.e., DG1, DG2 and DG3,

of equal 1.25 MW rating, are located at Bus-107, Bus-305 and Bus-209, respectively.

More details about the Banshee MG system layout, configuration and various other

source, line and load component details can be found out in Appendix A.2.

Test Scenario: Following test cases have been considered for establishing the efficacy of

the PIDM.

� Zero Power Mismatch: Representing no or very small net imbalance between active

and reactive power. A passive islanding detection scheme finds it difficult to

discriminate between grid-connected and islanded scenarios.

� Load and Capacitor Switching : Sudden connection/disconnection of load of different

power factor and switching of capacitor introduces transient in the systems which

poses challenges to islanding detection methods (IDMs) to accurately discriminate

them as non-islanding events.

� Fault condition with different resistance: Single-phase faults are very common in

power systems, and their severity can vary based on fault resistance. To assess the

IDM method’s sensitivity to fault characteristics and its capacity to distinguish

between faults and islanding occurrences, PIDM was tested under various fault

resistance situations.

� Loss of parallel feeder (LOPF): Loss of Parallel feeder is a spurious non-islanding

event that usually leads to a false triggering of islanding detection. It is important

to consider such events because such events affect inverter frequency, and may lead

to a cascaded failures in the system.

Apart from the above mentioned test case, the proposed method is rigorously verified

on other events also such as linear and non-linear load switching, capacitor switching,

induction motor starting and tripping of other DG than targeted DG as shown in Table

6.2.
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Table 6.2: Simulated Islanding and non-islanding scenarios.

Islanding Events

Type of Islanding Details

Active Power Mismatch -50% to +50%

Recative Power Mismatch -4% to +4%

Non-Islanding Events

Type of Non-islanding Details

Three Phase to Ground Faults 0.01Ω to 10Ω

Double Phase to Ground Faults 0.01Ω to 10Ω

Single Phase to Ground faults 0.01Ω to 10Ω

Capacitor Switching 500 kVA

Load Switching 125 kVA, 0.8 pf lag

Non-linear Load Switching 100 kW

Induction Motor Load Switching 200 HP, 0.48 kV

Tripping Other DGs Except Targeted DG Trip a 5 MW DG

Loss of Parallel Feeder Trip Feeder-2

6.4.1 Validation of Proposed Method on Banshee Industrial Microgrid

with High Penetration of Renewables

6.4.1.1 Islanding Scenarios

In order to analyse the performance of the proposed method, different cases of islanding

situation based on active and reactive power imbalances are simulated. Figure 6.6(1) shows

the performance result of the proposed method when the load active power and reactive

power was adjusted to 105% and 100% (Case 1) of generated power, respectively. Figure

6.6(1)(a) shows the instantaneous voltage waveform collected from DG1 terminal and Fig.

6.6(1)(b-c) shows the RMS voltage and frequency respectively for all the three DGs. It

can be perceived from the plots that DG1 is islanded, therefore there is some significant

changes can be seen in PCC voltage mean and its entropy of decaying DC as shown in Fig.

6.6(1)(d-e). It is observed from the Fig. 6.6(1)(f) that at the point of time when entropy

of decaying DC just crosses the threshold 2× 10−3, the MID value is lying below 1 which

triggers the SRDL logic as a suspected event. Thereafter, with reducing the decaying DC,

the MID value keeps on increasing for sometime within a 1-cycle window. Now as these

two events hold on for sufficient amount of time in a 1-cycle waiting period, the number

of ones count is found to be more than the zeros and hence the Final SRDL of DG1=1 is

flagged out stating it as an Islanding event as shown in Fig. 6.6(1)(f). But, the same kind

of pattern has not been captured by the SRDLs of non-targeted DGs i.e DG2 and DG3,

thus it does not raise any flag which can be easily visualized from Fig. 6.6(1)(g-h) and

(j-k). Likewise, Case 2 depicts another UL 1741 standard islanding case studies where

the load active and reactive are set to 125% and 100% respectively. The results of Fig.

6.6(2) also demonstrate the efficacy of the PIDM in accurately detecting the condition.
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(1) Case-1 - 105% P and 100% Q

(2) Case-2 - 125% P and 100% Q

Figure 6.6: Power mismatches as Islanding scenario
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6.4.1.2 Non-islanding Scenarios

Case 3 - LLG Fault with 2Ω resistance:- Figure 6.7 shows a non-islanding scenario

where a LLG fault (Case 3) of 2Ω fault resistance took place at 0.2s and persist for 0.3s

as seen from the mean information of Fig. 6.7(d). From Fig. 6.7(e-h), it is observed

that the entropy of decaying DC for all the three DGs are lying below threshold and the

non-zero MID values are also below 1. Therefore, the proposed method gives the final

decision of this event as a non-islanding event for all the DGs based on the designed

SRDL tree as shown in Fig. 6.2. The final SRDL waveforms for all three DGs are shown

in Fig.6.7(i-k). The other variety of faults studies such as LG, LLLG with varying low

to high fault resistance on DG sides are also tested by the proposed method and all the

events are found out to be non-islanding scenarios successfully.

Figure 6.7: Case 3 - LLG Fault with 2Ω resistance

Case 4 - 500 kVA capacitor bank switching:- Figure 6.8 shows another event of

non-islanding test case where a 500kVA capacitor bank (Case 4) is switched on at around

0.2s at Bus 107. Due to such insertion, there are slight changes in the RMS voltages as

shown in Fig. 6.8(b) and consecutively mean value of PCC voltages face some small

variation. Overall, for this event MID and entropy of decaying DC both lies below the

limit for all of the DGS as shown in Fig. 6.8(d-h) and thus SRDL logics treated this event

as non-islanding as shown Fig. 6.8(i-k).

Case 5 - 200HP induction motor switching:- The reliability of the proposed method

is now demonstrated by switching a 200HP, 0.075 MWs/MVA inertia, induction motor
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Figure 6.8: Case 4 - 500 kVA Capacitor bank switching

Figure 6.9: Case 5 - 200 HP Induction motor switching
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(IM) load (Case 5) at the same bus location 107 operating at 0.48kV. The motor load

is switched on at about 0.2s as shown by the RMS voltage and frequency waveforms in

Fig. 6.9(b) and (c) respectively. During the start-up time, IM requires a large amount

of reactive power for a period of time and this, in turn, causes some changes in voltage

and current profile. These abrupt changes sometimes mimic the exact islanding signature

and thus can cause most of the islanding detection methods to fail. But the proposed

method deals this situation well. It can be seen in Fig 6.9(d)-(e) that during the switching

action, the variation in mean and entropy (Eτ ) takes place. It can be seen from Fig.

6.9(e)-(f) that while the entropy of decaying DC is crossing the thresholds at that instant

MID value is not more than one resulting SRDL to be 1, which is an indication of false

islanding scenario. Thereafter, MID value keeps increasing more than one for sufficient

amount of time while the entropy of decaying DC decreasing and finally stayed below

its threshold limit resulting SRDL to be 0 which indicates a non-islanding event. As the

proposed Final SRDL logic take its final decision based on the waiting period of 1-cycle

of the intermittent nature of logic gates output, thus it is found out at the end that the

number of zeros are more than the ones. Therefore, based on majority voting in favour of

non-islanding, the Final SRDL logic is set to 0 which confirms this event as non-islanding.

The above description can also be easily discernible from the Fig. 6.9(f-h). Thus, it can

be verified that the proposed method detects this non-islanding event even if the load is

large induction motor type.

Case 6 - 100kW non-linear load switching:- The response of the proposed method

was also assessed under the influence of nonlinear loads. In this investigation, a 100kW

three-phase diode rectifier (Case 6) with a resistive load was introduced as a nonlinear

load. The connection of this load at bus-107 was simulated at approximately 0.2 seconds.

The observations from Fig. 6.10(f-h) reveal that the switching of the nonlinear load does

not significantly impact either the MID or DDCD criteria for any DGs. Consequently, the

SRDL component of the proposed method correctly classifies this event as non-islanding.

Case 7 - Tripping of other DG except of targeted DG:- Another non-islanding

scenario is also simulated at the feeder-2 i.e., area-2 of the Banshee microgrid model as

shown in Fig. 6.11, where DG2 is kept as the targeted DG and the existing large 5 MW

Banshee PV DG are now suddenly tripped at 0.2s (Case 7). It is clear from the Fig.

20 due to tripping of non-targeted DG causes some level of oscillation in the MID and

entropy of decaying DC index but they are still lies within the threshold. Thus, it can

be stated that tripping of other DG except the targeted DGs does not have any negative

influence on the Final decision over SRDL of the targeted DGs of the proposed method.

Case 8 - Loss of parallel Feeder:- In this case, loss of a parallel feeder that usually

results in nuisance tripping of relays caused by the misinterpretation of a non-island

scenario as an island scenario is simulated. The efficacy of the proposed method is tested

for a sudden disconnection of feeder 2 (Case 8) from the utility grid and the performance
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Figure 6.10: Case 6 - 100 kW Non-linear load switching

Figure 6.11: Case 7 - Tripping of other DG except of targeted DG
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of the three DGs are then monitored as shown in Fig. 6.12. As DG3 is located at Bus 209

which falls under the area of feeder-2, this situation is an islanding from DG3’s perspective

but from the viewpoints of the other two DGs located at Bus 107 and Bus 305 it is a

non-islanding situation. Furthermore, as a sizable 1.25 MW DG3 and a massive 5 MW

PV array simultaneously gets eliminated from the utility grid, a significant imbalance in

the local PCC voltage of the DG3 terminal occurs, as illustrated in Fig. 6.12(a). Since the

disconnection of feeder 2 forms a huge island and all the DGs in that island are designed

to operate in grid following mode, they have lost their voltage and frequency references

which results in fluctuations of the DG3 rms voltage and frequency beyond UV/OV and

UF/OF limits as shown in Fig. 6.12(b-c). But this situation does not create any negative

impact for DG1’s and DG2’s performance as they remain connected to the upstream grid.

Therefore, unlike DG3, MID and DDCD of DG1 and DG2 are lying within their safe limits

and from their viewpoints, this event is successfully treated as non-islanding which can

be seen in Fig. 6.12(f-g) and Fig. 6.12(i-j), respectively. Also, to be noted that the huge

random oscillations in the MID and DDCD of DG3 triggers the SRDL logic intermittently

to consider it as a suspected event. Moreover, this huge amount of power loss because of

feeder disconnection leads to severe distortion in DG3’s rms voltage and frequency beyond

limits, resulted the MID and DDCD to cross their individual respective threshold at the

same time for certain duration. As a consequence, the actual signature or confirmation

details of islanding with respected to DG3 can’t be satisfying periodically on time and

thus it introduce a sufficient delay in responding DG3’s SRDL. As the condition of getting

number of non-zeros values more than zeros in a one cycle window is being achieve late,

an inadvertent delay of 100 ms is observed in Fig. 6.12(k).

Figure 6.12: Case 8 - Loss of parallel feeder
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6.4.2 Comparative Assessment with ROCOV

At the outset, ROCOV [223] methods looks quite similar to the PIDM. Nevertheless,

when there is an imbalance in reactive power, the ROCOV faces significant challenges in

effectively distinguishing islanding conditions. This is primarily because ROCOV relies

on detecting variations in reactive power only as an indicator of islanding. For instance,

unplugging a low power factor load from the network under normal circumstances can

result in a large reactive power imbalance and voltage oscillations. Likewise, during

switching of capacitors, motors or due to low resistance fault high inrush current will

flow, which causes the voltage of PCC to decrease. As a result, the ROCOV value may

surpass the predetermined threshold in this situation and malfunction. On the other

hand, in instances of islanding when the reactive power imbalance is subject to minimal

fluctuations, the ROCOV value might not rise over the predetermined threshold, thereby

failing to identify the islanding condition. The above two scenarios are explained below

through simulation in terms of the ROCOV and PIDM, where the mean of the 1-cycle

single phase PCC voltage information are exploited.

6.4.2.1 Case 1

Figure 6.13(1) shows the Non-islanding case study where a temporary low resistance fault

(1-phase to ground) event of 0.1Ω fault resistance takes place at 0.23s for 0.5s duration.

The mean of the signal shown in Fig. 6.13(1)(b) clearly distinguishing this event and

exhibits its low amplitude and low frequency components. Thus, it does not mal-operate

by treating this event as islanding and do not trip the Over-frequency/Under-frequency

(OF/UF) and Over-voltage/Under-voltage (OF/UF) relays. As the PIDM exploits the

mean features of PCC voltage thus, it behaves in a similar manner, as shown in Fig.

6.13(1)(b). On the contrary, the ROCOV and mean of ROCOV shown in Fig. 6.13(1)(d)

and (e) depicts significant oscillations with very heavy high frequency content along

with high magnitude sharp spikes that creates trouble via nuisance tripping of relays

by misinterpreting this event as an islanding event.

6.4.2.2 Case 2

Figure 6.13(2) shows the case study where an Islanding event is simulated with 0%

active and 2% reactive power imbalance in the PCC voltage. As one can perceive from

Fig. 6.13(2)(b), methods that based on only mean based features exploitation (like

PIDM), there is a clear distinction in the high and low frequency content before and

after Islanding scenario. But the frequency content is not distinctly visible whenever

rms voltage information is used as shown in Fig. 6.13(2)(c). Moreover, with the

implementation of ROCOV, the difficulty of differentiating Islanding and Non-Islanding

situation under reactive power imbalance case is becoming more cumbersome as illustrated

in Fig. 6.13(2)(d). Thus, in that respect the PIDM and ROCOV methods are not found

out to be similar in performance.
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(1) Performance Comparison Between ROCOV and PIDM During Non-Islanding Event

(2) Performance Comparison Between ROCOV and PIDM During Islanding Event

Figure 6.13: Comparative assessment between ROCOV and PIDM
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Clearly, simplicity is an advantage of the ROCOV method, but there are situations in

which a little complex approach can offer a superior performance. To this end, the PIDM

balances this complexity with the aim of achieving better results in terms of detection

accuracy and reliability. This is achieved by integration of the additional feature i.e.,

DDCD with MID, which, in turn, improves the performance in terms of accuracy and

reliability as compared to traditional methods like ROCOV.

6.4.3 NDZ Analysis

Numerous islanding situations with various active and reactive power unbalance levels were

simulated in order to determine the NDZ of the proposed method. Figure 6.14 provides a

comparative illustration of the NDZ results between the proposed method and three other

existing techniques [162, 224, 225]. The selection of these techniques was based on their

relevant features.

Clearly, the proposed method exhibits a notably smaller NDZ compared in terms of active

power imbalances and larger NDZ for reactive power imbalance to the other techniques as

shown in Fig. 6.14. This reduction in the NDZ is attributed to its decreased sensitivity to

non-islanding events. Furthermore, the proposed method is characterized by its simplicity,

rapid response time, high reliability, and low computational complexity.

Figure 6.14: Non-Detection Zone of the proposed method



168 Chapter 6. Synergistic Islanding and Cyber Attack Detection Scheme

6.5 Development of Cyber Attack Immune Secured

Islanding Detection Framework

In the proposed islanding detection framework based on the SRDL output as mentioned

above, the Distribution Management Operator (DMO) relies on the precise signals to

discern between islanding and non-islanding events. However, the inherent vulnerability of

SRDL to cyber attacks may pose a significant challenge. Attackers with prior knowledge

of SRDL’s functionality can take advantage of this vulnerability in a number of ways.

They may manipulate the input voltage signals to mask the genuine islanding events,

subtly altering the parameters to evade detection by SRDL. Alternatively, attackers could

introduce spurious signals that imitate the features of real islanding instances in order to

create fraudulent or fake islanding events. Such tactics can deceive the DMO, leading to

erroneous decisions and potentially catastrophic consequences for grid operations. This

necessitates to include a cyber attack detection module in conjunction with the SRDL

based proposed IDM to strengthen its resilience against adversarial interference. As, it

would be shown in the upcoming subsection of this chapter, that through the integration of

a statistically crafted proposed cyber attack detector module it is possible to successfully

detect and counteract the hostile attempts of the cyber attackers to disrupt the islanding

detection process. This proactive strategy not only safeguards against potential cyber

threats but also enhances overall cyber situational awareness, ensuring the integrity and

reliability of islanding detection in the face of evolving security threats.

6.5.1 Vulnerabilities of the Proposed SRDL’s Output based Islanding

Detection

The vulnerabilities of exploiting the SRDL can result in either camouflaging the actual

occurrence of an islanding event or imitating a non-islanding event occurrence with a fake

islanding event as discussed below.

6.5.1.1 Masking of a Genuine Islanding Event

In this first case study, the performance of SRDL’s output based proposed IDM is

re-evaluated for the islanding test Case 1, shown in Fig. 6.6(1) i.e., at 105% active

and 100% reactive power mismatch condition. In this test case, two types of cyber attacks

are considered i.e FDIA and DoS to falsify the actual decision of SRDL as depicted in

Fig. 6.15(1) and Fig. 6.15(2). As the SRDL takes its final decision based on observing its

toggling outputs pairs i.e presence of ones and zeros of the first one cycle sliding window

buffer, attacker takes the advantage of exploiting those one to three cycle islanding input

signal information by either injecting synthetic false data or intermittently block the signal

by launching Denial of Service (DoS) attack to mislead the DMO about actual islanding

case. In Fig. 6.15(1), a FDIA attack is injected in the instantaneous voltage signal of DG-1

at the same time instant of islanding occurrence i.e., 0.205 sec, which results in change of
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(1) FDIA Launched to Mask the Actual Islanding Event

(2) DoS Attack Launched to Mask the Actual Islanding Event

Figure 6.15: Masking the real Islanding event
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the shape of mean and entropy of decaying DC as shown in Fig. 6.15(1)(b) and (c). It

is observed from Fig. 6.15(1)(d) that at the onset of islanding and attack simultaneously,

there is a delay in pick up of both DDCD and MID to cross its individual threshold and

thus initially SRDL start treating it as non-islanding events. Thereafter, although the

entropy of decaying DC start crossing its threshold 2 × 10−3 but the MID values lying

below 1 for that duration is too small to raise its first flag of suspected islanding for

significant time length. It is also noticed that due to injected FDIA for few cycle, the

decaying DC and MID may persist for the longer time than usual (unlike Fig. 6.6(1))

which results in more number zeros than ones at the end of 1 cycle window of SRDL

signal. This clearly indicates the hostile attempt of masking the actual islanding event as

depicted in Fig. 6.15(1)(g).

The same attacking philosophy also holds equally good for the DoS attack as illustrated

in Fig. 6.15(2), where it can be used to masquerade an islanding event as a non-islanding

scenario. In this scenario, following an islanding event, the perpetrator interrupts the

transmission of legitimate data sample for 40 ms as shown in Fig. 6.15(2)(a). Figure

6.15(2)(b),(c) and(d) demonstrate the significant change in the mean and entropy of

decaying DC information over a longer duration as the aftermath of DoS attack which

successfully hide the islanding scenario.

6.5.1.2 False Triggering of an Islanding Event

The second case study resembles to a very similar non-islanding test i.e., Case 3 of Fig.

6.7, where a 0.75 ohm line to line fault took place at 0.2059 sec. At the same time instant,

the attackers also launched a random FDIA to distort the islanding input signal vigorously

to deceive the SRDL output as illustrated in Fig. 6.16. Here the attacker’s aim is to cease

the DG-1 generation by pretending a non-islanding event as an islanding event. Thus in

that case, neither the attack effort needs to be so rigor nor the attack vector needs to be

devised so stealthily. A simple and constant random injection for a sufficient time duration

on the instantaneous one phase voltage waveform of the DG-1 is sufficient enough to alter

the actual detector’s output. As it is evident from the Fig. 6.16(a), (b) and (c), that due

to such consistent random attack, the mean value of the signal significantly raised to a

high erroneous value throughout the whole attack interval while decaying DC only persist

for very small duration comparatively due to fault. This results in MID value for staying

above 1 for prolong time which obviously introduces more number of ones than zeros in

the SRDL signal over a cycle. This ultimately forces the SRDL detector to flag this event

as an islanding event when actually it isn’t.

6.5.2 Proposed Cyber Attack Detection Framework Using Kalman

Filtering Technique

With the aim of securing the above SRDL’s output based islanding detector, a novel cyber

security framework is first established as demonstrated in Fig. 6.17, which usually works by

representing the instantaneous input voltage waveform into its mathematical state space
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Figure 6.16: Triggering of a fake Islanding event

equations and thereafter applying Kalman Filter (KF) based state estimator method to

estimate the purified states of the model even in the presence of measurement noise and

cyber attacks. This estimated states at the end are reused to reconstruct the estimated

input signal waveform and then two signal processing techniques are applied to find the

discrepancies between the actual raw input and KF-assisted estimated output. This

leads to the development of a novel CAD which comprises of a stochastic non-parametric

correlation coefficient, i.e., Spearman’s rank correlation in conjunction with a deterministic

Cosine-Similarity measure. The proposed KF-based cyber secured islanding detection

framework integrated with CAD can detect onset of any cyber attack within 2 to 3 cycles

window while an unauthorized attempt is made to disrupt the actual DG’s islanding or

non-islanding voltage waveform signal by manipulating its voltage, frequency and phase

information. The key advantages of the proposed detector is that it is simple, fast,

threshold-free, and accurate against sophisticated FDIA even in the presence of white

Gaussian measurement noise of 20 dB. The efficacy of the proposed detection mechanism

is validated on the Banshee MG, modelled in RTDS.

According to the Fig. 6.17, the voltage phasors measurements are firstly collected at each

time step ∆t from RTDS runtime environment, and treated as real-time measurements

(RTM). The RTMs are thereafter utilized in KF based state estimator and the CAD as

described below.
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Figure 6.17: Block diagram of proposed generic KF-assisted cyber security framework

6.5.2.1 Kalman Filter and Its State Space Modelling

The RTMs received from a meter-m, at a time instant-t, can be modelled as a sinusoid,

i.e, X(t) = Am cos(ωt+ϕm), where Am and ϕm are the magnitude and phase, respectively

of the signal. The above equation can be further expanded as follows.

X(t) = Am cos(ωt) cos(ϕm)−Am sin(ωt) sin(ϕm)

X(t) = x1 cos(ωt)− x2 sin(ωt) (6.3)

An equivalent state variable (one cosine projection and another sine projection)

representation of Eq. (6.3) can then be used before it is being processed by KF algorithm,

i.e.,

x(t+ 1) = Fx(t) + ν̌(t) (6.4)

y(t) = H̄x(t) + ℓ(t) (6.5)

where, x = [x1;x2], with the KF state variables x1 = |AXi | cos(ϕXi), and x2 =

|AXi | sin(ϕXi). y represents real time noisy measurement signal, fed to KF estimator

at each Deltat time interval. F is the state transition Identity Matrix, ν̌ is process noise

with noise covariance matrix Q̄k i.e vk N(0, Qk) and ℓ is measurement noise with covariance

matrix Rk i.e ℓk N(0, Rk) assumed to be white Gaussian and statistically independent of

process noise, and row vector H̄ which is dynamic with respect to time is defined as, H̄ =

[cos (2πft) -sin (2πft)]. In this paper the standard deviation of state noise pertaining to

Q̄k is taken as 0.01 pu and Rk contains the scalar variance of measurement noise which
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is calculated from 20 db SNR. Finally, the KF based state estimation is obtained through

the following predict and update steps.

Prediction: x̂−i = Fi−1x
+
i−1 (6.6)

P̄
−
i = Fi−1P̄

+
i−1F

T
i−1 + Q̄i−1 (6.7)

(6.8)

Updation: K̄i = P̄
−
i H̄

T
i (H̄iP̄

−
i H

T
i +Ri)

−1 (6.9)

P̄
+
i = (I− K̄iH̄i)P̄

−
i (6.10)

x̂+i = x̂−i + K̄i(yi − H̄ix̂
−
i ) (6.11)

where predicted (priori) and updated (posteriori) estimates are represented by the

superscripts ’-’ and ’+’ respectively. It essentially means that based on the current input

sensor measurement y at time t and previous estimated states reading x̂− at time (t− 1),

the estimator of the system produces estimated readings x̂+ at time t i.e every states are

being updated at each ∆t time interval of KF run. P̄ and Q̄ are the process covariance and

model error covariance matrix, respectively. R is the sensor measurement noise matrix

and K̄ represents Kalman gain which can quickly be converged in a few steps. After

completion of predict and update operations at each time step, the estimation error in

states is computed as , ĕi = x̂+i − x.

6.5.2.2 Proposed Cyber Attack Detector (CAD)

In order to detect the onset of any cyber attack on the voltage sensor measurements, the

raw input measurements (X) and the reconstructed estimated output (Y) of the KF are

utilized. Since various kinds of cyber attacks are usually crafted statistically in disguise,

any significant dissimilarity between the both, i.e., the actual and estimated measurements,

can enable the system operator to detect and raise a cyber attack flag for further preventive

actions. Now in search for the appropriate statistical tool to measure this degree of

dissimilarity, in this section two different similarity measures are utilized to propose a

new comprehensive cyber attack detection techniques that involves the computation of

stochastic non parametric correlation such as Spearman’s rank correlation in conjunction

with a deterministic Cosine-Similarity measure which is described below. The knowledge

of this correlation coefficients and similarity measures are highly demanding for judging

the robust parameter estimation in presence of high frequency noise and outlier data in

the observation samples which causes instability issues in the system.

Cosine Similarity Coefficient (CSC): In context of deterministic similarity index,

Cosine Similarity Coefficient is now discussed first. This is an interesting measure of

resemblance between two non-null vectors of their inner product space that compute the
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cosine angle between them. Therefore, if majority of observe samples of a bivariate random

variable (X,Y) differ of each other in a continuous data streaming process, the cosine angle

is going to be increased, and therefore indicates lower similarity. Mathematically, CSC

can be expressed as:

CSC(X,Y ) = cos(θ) =

∑
i x̂

+
i yi√∑

i x̂
+2

i

√∑
i y

2
i

=
< X.Y >

||X||||Y ||
(6.12)

Where, x̂+i s and yis as the elements of vectors X and Y respectively. However, CSC suffers

from a drawback that it is not a proper distance metric, and requires threshold value

setting to identify any data manipulation in the measurement data. Further, the sole use

of this detector tend to give false alarms in presence of noise in the measurement.

Spearman Rank’s Correlation Coefficient (rs): To circumvent above stated

drawbacks of CSC, a non-parametric correlation coefficient, i.e., Spearman rank’s

correlation coefficient (rs) is utilized in this work in conjunction with CSC. The

Spearman rank’s correlation coefficient provides a non-parametric correlation that

measures the strength and direction of two monotonically changing random variables based

on assigning ranking on them, and is calculated as,

rs(X,Y ) = 1−
6
∑N

k=1(uk − vk)2

N(N2 − 1)
(6.13)

where, uk and vk are the corresponding ranks of two data vectors X and Y for k = 0...,N-1,

and N be the total number observation pairs.

The performance of Spearman rank-order correlation and CSC is depicted in Figs. 6.18(a)

and 6.18(b) under normal and attack scenario.

Figure 6.18(a) depicts that in case of monotonic relationship Cosine Similarity Coefficient

(CSC) and Spearman rank correlation (rs) both are higher with slight difference in value

because CSC cannot recognize the exact association between the two variables unlike rs

does. Besides from Fig. 6.18(b), it is revealed that rs helps to obtain a valid result as

compared to the CSC for it is more robust in estimation process when data contains strong

outliers or heavy tailed errors. CSC is not a direct measure of statistical association of two

variables and therefore it is not invariant to shifting of data which makes is sensitive to

outliers. While on the other hand, the unique feature gained by the spearman correlation

(rs) is just because of it determination based on ranking the real observation instead of

direct using of raw measurements. Thus it can be stated, if any changes occur in original

measurements that do not have significant impact on the earlier rank order, should not

alter rs unlike CSC. In context of cyber-attack detection, this chapter considers the use

spearman correlation and cosine similarity jointly as a detection index when both diverge

or converge to each other from a certain point. A detailed study of various test cases

revealed that the CSC and rs, although, may follow different pattern but at the onset

of malicious data attack in measurements, their values coalesce. Based on this feature,
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(a) Data with Monotonically Increasing Relationship (b) Data Contain Heavy Tailed Outliers

Figure 6.18: Comparison of performance between Cosine Similarity and Spearman’s Rank
Correlation Coefficient

the proposed cyber attack detector (CAD) is defined as the absolute difference between

Spearman rank-order correlation, rs and CSC values, i.e.,

CAD = |rs − CSC| (6.14)

And, at the time of cyber attack in the measurement, CAD = 0. This implies that the

flag raised by CAD during attack is 1.

The overall working procedure of CAD’s operation is summarized in the flowchart of Fig.

6.19. Here, a small threshold on CAD less than 0.002 is chosen for practical purposes.

Moreover, as the transients involved at the inception of any power system operational

events is hardly lasting for 2 to 3 cycles, twait is fixed to 0.04 sec at the starting of the

simulation. Moreover, in order to judge the efficacy of CAD’s performance along with its

KF-based estimator, a 20 dB white Gaussian noise is also added with the studied input

voltage signal.

6.5.3 Proposed Cyber Attack Immune Islanding Detection Framework

The previous Section 6.5.1, reveals how different intent of a cyber attacker can raise

serious concern about the cyber security issues over the SRDL’s output based islanding

detection to mislead the actual islanding and non-islanding scenarios and in Section 6.5.2,

a KF-assisted attack detection framework incorporating two statistical similarity measure

was demonstrated to identify various cyber attacks in the sensor measurements. It is

evident from the above two that SRDL is very trustworthy in terms of pure islanding and

non-islanding event identification. However, as it lacks anomaly detection awareness, it is
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Figure 6.19: Proposed algorithm for Cyber Attack Detector (CAD)
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expected to maloperate in any kind of cyber intrusion. CAD on the other hand, is faithful

in differentiating between attacked and non-attacked state. This motivated to shift the

focus in achieving a secured islanding detection operations in this subsection where an

attempt is made from the defender perspective to rectify the manipulated SRDL decision

in favor of the accurate assessment of the actual event that had occurred in the MG. In

particular, this can be obtained by combining the proposed islanding detection scheme

with that of proposed CAD. Such integration results in four possibilities of test scenarios

which are illustrated in the truth table shown in Table 6.3. This table presents a variety

of test cases that assess how well the cyber secured islanding detection scheme performs

in various scenarios and against potential attacker actions. It is evident that the flag

Table 6.3: Truth Table for Cyber Immune Islanding Detection Logic

Possible Test
Scenarios

Attacker’s
Motive

Flag
Generated
by SRDL

Flag
Generated
by CAD

Final Relay
Trip Logic
(FRTL)

Considering
Cyber

Intrusion

Actual Decision Made by
the DMS Operator based

on FRTL Output

No Islanding
+ No Attack

No Motive 0 0
0

(No Trip)
Normal State: System
is in healthy condition.

Islanding +
Cyber Attack

Mask Actual
Islanding
Event

0 1
1

(Send Trip
Command)

Masked Islanded State:
System encounter a genuine

islanding in real.

Non Islanding
+ Cyber Attack

Trigger Fake
Islanding
Event

1 1
0

(No Trip)

Fake Islanded State:
System encounter a genuine

non-islanding in real.

Islanding +
No Attack

No Motive 1 0
1

(Send Trip
Command)

True lslanded State:
System face a genuine

islanding in real.

produced by the CAD is always 0 in an islanding or non-islanding event provided there is

no cyber interference on the system. Conversely, when the attacker attempt to manipulate

the sensor measurements of the system via means of FDIA or DoS attack, CAD raise a

flag of 1. This signifies that CAD is insensitive to islanding or non-islanding event but

sensitive to the occurrence of cyber attacks. Thus, based on this behavioral attributes,

a logical XOR operation can be applied over these two flags, generated by both SRDL

and CAD in order to formulate a Final Relay Trip Logic (FRTL), which is secured than

SRDL and considered to be as attack-proof. The simulation results of the next section will

illustrate the compelling evidence of abilities of FRTL in enhancing the cyber situational

awareness of islanding detection problem in presence of cyber intrusions and enabling the

DMO to take proper decision and control action against the real occurring events in the

grid. Therefore, following each possible instances as indicated in Table 6.3, the schematic

architecture of cyber secured FRTL, merging the SRDL’s and CAD’s output is designed

as shown in Fig. 6.20. In that reference, it is also important to highlight two crucial

observations i.e., (1) Decision given by SRDL is relatively faster than CAD and (2) From
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MG’s safety point of view, masking of an actual islanding state is more hazardous or

devastating for the grid functioning than the creation of fake islanding state. Thus, based

on the level of importance in detecting masked and faked islanding state and impact of

attack consequences, it is noteworthy to consider the following two design criteria for

FRTL to get a reliable and safe islanding performance: (a) While SRDL is 0, the FRTL

will be instantly activated when CAD raised a Flag = 1. This is because apart from No

Attack-No Islanding state, SRDL can also be 0 in masked islanded state. In that context,

fastest action in ceasing of islanded DG’s generation is needed with atmost priority to

maintain grid’s voltage and frequency stability. (b) While SRDL is 1, the FRTL will wait

for maximum 2.5 cycles to seek for the Flag raised by the CAD. If the Flag is raised to

1 within the due waiting time, FRTL will be activated instantly as soon as CAD detect

the attack. This criteria is very important to prevent the FRTL in taking wrong decision

(i.e., sending false trip command to circuit breaker) while SRDL is manipulated to 1 but

the CAD is yet to reach its designated threshold to raise an attack detection flag due to

its sluggish operation as compared to SRDL. From the simulation results, it would be

clearly manifested that this maximum waiting cycle introduces a delicate balance between

detecting a camouflaging islanding state and preventing a non-islanding state pretending

to be islanding with an efficient manner.
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Figure 6.20: Schematic architecture of cyber immune Islanding detection scheme

6.6 Attack Detection Simulation Results

6.6.1 Islanding State With No Cyber Intrusion

This is the same islanding case study as shown in Fig. 6.6 where there is no intervention

of the cyber attackers are considered initially. Figure 6.21 depicts the overall performance

of the proposed cyber immune islanding detection scheme. In Fig. 6.21(a), three

different versions of input instantaneous voltage waveform are shown. The green waveform

represents the actual (true) voltage readings at the DG1 terminal. To emulate a realistic

scenario and assess the detector’s robustness, a 20 dB noise signal is added to produce

a measured observation (blue waveform), which serves as the input to the KF-assisted
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estimator. The output of the KF estimated filter, which needs to be processed by the

proposed CAD, is highlighted in the red dotted curve in Fig. 6.21(a). Figure 6.21(b)

and (c) illustrate the performance of the proposed detector, i.e., CAD by observing the

behavior of two similarity indices. In Fig. 6.21(b), it can be observed that in the absence

of any attack, the two coefficients exhibit a non-interactive nature, and therefore, CAD

never reaches a zero value or falls below the set threshold, even in the presence of noise, as

depicted in Fig. 6.21(c). Thus as expected, the SRDL correctly identifies the islanding (flag

= 1) situation as done previously, while the flag of CAD is set to 0 always. Consequently,

based on the XOR operation between these two’s as shown in Fig. 6.20(d), the FRTL issues

a final relay trip command after 2.5 cycle of waiting and informed the DMS operator about

the authenticate true islanded state of the systems.
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Figure 6.21: True Islanding condition with No cyber attack

6.6.2 Non-islanding State With Random Nature of Cyber Attack

In this case, the same non-islanding case study as depicted in Fig. 6.7 is taken but with

considering the fact that now the cyber attacker has access to the DG1’s control interface

to manipulate the input instantaneous voltage signal. A LLG fault with low resistance of

0.75 ohm and a random kind of cyber attack are injected at the same instant of the time

(0.2059 sec) to the input signal as shown in Fig. 6.22(a). Such attack can be generated

at any time instant with randomly crafted mechanisms to introduce some arbitrary errors

into the measurements and state variables of KF to mislead the operation. Random attack
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Figure 6.22: Fake Islanding condition with Random FDI attack

can be modelled as, ya(t) = C(t)xa(t) + yvk(t), where, y
v
k(t) = (1 − βk)Gkδk(t), δk ∈ Rn

be a manipulating signal parameter by the attackers, Gk is known system topological

information i.e about system’s states. βk is an independent Bernouli distributed series

whose values lies in between 0 and 1, deciding the strength of the injected attack. The

first important thing here is to notice that SRDL is failed to detect the non-islanding

event in this case due to the random attack intervention which basically alters the rule of

its computational parameters and as a result it generated the trip signal which is nothing

but the straightforward indication of fake islanding event as illustrated in Fig. 6.22(d).

Thus, once the SRDL’s flag is raised to 1, an alarming suspected islanding situation in

the MG is created which initiate the task of 2.5 cycles observation window to monitor

any compromised behavior exhibited by the CAD. Interestingly, it is observed from Fig.

6.22(b) that initially before the attack, when measurements are clean and normal both

the coefficients (CSC and rs) are behaving independently. But as soon as the malicious

data randomly starts getting injected, the Spearman’s rank correlation, i.e., rs and the

CSC very quickly start to trace the estimated change in the observed data pairs after

the attack’s initiation. Subsequently, the proposed CAD starts converging to zero and

reached below threshold limit (2e−3) at about 0.2414 sec with raising its Flag = 1. This

successful detection of random attack is completed by the due time less than the waiting

cycles as shown in Fig. 6.22(c). This small detection delay, involved in this detection

process may due to their underlying performance measure which is inherently different.
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Finally, it is evident from the Fig. 6.22(d) that this flag, output by the CAD acts as a

correcting measure through the formation of actual FRTL to revert the erroneous trip

signal generated by the SRDL previously due to misinterpretation of the non-islanding

event as an islanding event.

6.6.3 Non-islanding State With Denial-of-Service (DoS) Attack

This test case is very similar to the case study conducted previously with the difference

that this time attacker choose the DoS attack to manipulate the SRDL’s decision. In

context of disruption in islanding detection problem of power systems, a DoS attack

usually be launched by interrupting the legitimate transmission of accurate and timely

data between sensors and monitoring units for sufficient duration which causes the system

to get congested or may overloaded as shown in Fig. 6.23(a). The lack of sensor data due
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Figure 6.23: Fake Islanding condition with DoS attack

to such DoS attack posses challenges to SRDL’s output based PIDM in terms of delaying

detection of actual islanding event, potentially leading to blackouts and equipment damage

or may make the input data missing or incomplete resulting in inaccurate and falsified

islanding detection decision. This same observation is very well validated from Fig.

6.23(d), where SRDL’s operation is found to be deceived in accurately distinguishing

between genuine islanding data or non-islanding state. As a result of such misconception,

SRDL inadvertently trigger false alarms against the actual non-islanding scenario, causing

DMO to take unnecessary system actions that further complicate and compromised system
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reliability and security. Figure 6.23(b) and (c) shows the evidence of how the proposed

detector, CAD assist in rectifying the vulnerable SRDL’s control decision by tracing the

independent behavior of rs and CSC before and after attack. It can be seen that within

a few cycles of SRDL’s trip command, the proposed CAD reached the below threshold at

0.2178 sec which finally restricts the FRTL to raise Flag = 1 unlike SRDL and thus the

fake islanding decision given by SRDL is successfully suspended.

6.6.4 Islanding State With False Data Injection (FDI) Attack

This case study represents an another motive of attacker’s where the attempt is to mask

a genuine islanding event through the strategic execution of FDI attack into the islanded

voltage waveform data with the aim of jeopardizing the stability of the grid, leading to

cascading failures and equipment damage. Here the islanding event has been taken place

from 0.2059 sec and thereafter a small amplitude of false data are being injected very

stealthily by the adversary in each positive and negative half cycles of the instantaneous

voltage waveform for an attack duration of 2 cycles. From Fig. 6.24(d) it is revealed

that, as this is a case of real islanding event, SRDL is expected to raise its flag to 1. But

due to such synthetic injection of carefully constructed stealthy attack, SRDL is deviated

from its actual expected decision by raising its Flag = 0 and treat this islanding event

wrongly as a no-islanding case which may impose serious repercussions on DG’s operation.

Nevertheless, as the defender is equipped with an attack detector, CAD in parallel with
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Figure 6.24: Masking of an Islanding condition with stealthy FDI attack
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that of SRDL, it is observed from Fig. 6.24(b) and (c) that at around 0.249 sec, the rs and

CSC are converged to a desired value where the absolute difference between these two’s

lies below the threshold limit (2e−3). Therefore CAD has raised its flag to 1 instantly at

that timing instant. Now, as the SRDL was 0 previously, the instant change in CAD’s

output immediately raise the FRTL to change to 1 as illustrated in Fig. Fig. 6.24(d)

and send the trip command to the circuit breaker by informing the DMO that an actual

islanding state is being attempted to mask by the adversary and therefore a prompt action

of ceasing DG1’s generation is required.

6.7 Conclusions

In this chapter, primarily a data driven passive islanding detection technique is proposed

which is later being integrated with an attack detection framework to keep it safe and

secured against unprecedented cyber intervention. The proposed islanding detection

technique first exploit the voltage mean value and the entropy information of any one

phase to develop a Mean based Islanding Detector (MID) along with an entropy-based

Decaying DC Detector (DDCD). The MID and DDCD information is finally utilized

to design a Statistical Relay Digital Logic (SRDL) that accurately distinguishes the

islanding and non-islanding events. The Proposed Islanding Detection Method (PIDM)

is rigorously tested on Banshee industrial MG system, modelled in Real-Time Digital

Simulation platform revealing the following notable conclusions.

1. Simple implementation, requiring only 254 samples/scan.

2. Requires only one phase voltage mean information.

3. A small non-detection zone (NDZ) of approx 0.25% is resulted.

4. Fast islanding detection within 2 cycles.

5. Integration of the additional feature i.e., DDCD with MID improves the performance

in terms of accuracy and reliability as compared to traditional like ROCOV.

6. Loss of Parallel Feeder (LOPF) case establishes the capability to accurately locate

exact point of disconnection.

In conclusion, the PIDM has been demonstrated to be fast, reliable, and capable of

accurately detecting island formation at the point of DG interconnection. However,

its vulnerability to cyber attacks, stemming from a lack of cyber situational awareness,

presents a significant challenge to achieve a faithful islanding detection operation. These

attacks could involve malevolent actions aimed at masking an islanding event or falsifying

a non-islanding event as an islanding scenario. To overcome these challenges, this

chapter also introduces a statistical similarity-based Cyber Attack Detector (CAD)

within a Kalman filtering framework where two similarity coefficients, viz., Cosine

Similarity Coefficient (CSC) and Spearsman’s Rank order coefficient (rs) are explored



184 Chapter 6. Synergistic Islanding and Cyber Attack Detection Scheme

to identify potentially corrupted samples of the input islanding data. The CAD operates

synergistically with the PIDM, providing a smooth and cyber-secured islanding detection

experience. Variety of cases studies led to the following key conclusions about the proposed

CAD.

1. Accurately detects the onset of cyber attacks with a maximum delay of two and half

cycle.

2. Performance is fairly immune to noise.

3. Integrating CAD with the existing PIDM, the system gains enhanced resilience

against cyber threats, ensuring more robust and accurate detection of islanding

events while mitigating the risk of false alarms caused by malicious cyber activities.



Chapter 7

Conclusions and Future Scope

7.1 General

The integration of advanced sensing, computing, communication, internet and networking

technologies in the power sector has transformed electrical grids, making them more

flexible, reliable, and efficient. This evolution enables the grid to actively manage

electricity flow, monitor consumption, optimize resources, and integrate renewable energy.

However, due to extensive dependencies of grid over the communication and several

layers of the cyber network, this transformation at both the transmission (T-system)

as well as the distribution (D-system) level has exposed the power grid to unprecedented

vulnerabilities, primarily stemming from the increasing threat of cyber-attacks.

In response to the emerging cyber-attack concern, this research aims to assess power

system vulnerabilities at transmission and distribution level with focus on detection and

mitigation of cyber threats across the spectrum of transmission to active distribution

power networks, safeguarding the reliability and security of our vital energy management

system applications. To begin with the T-systems first, the thesis developed a cyber-attack

resilient secured metering infrastructure through optimal placement of PMUs (OPP)

to ascertain full topological observability and global situational awareness against false

injection attack on top ranked transmission lines that are structurally more vulnerable.

Next, by exploiting those secured meters’ information resulting from OPP, a reliable

replay attack detection and correction framework is devised to safeguard one of the core

instrument of power grid energy management system i.e Power System State Estimation

(PSSE). While conventionally, cyber attacks have been perceived as primary threats to

transmission systems due to the significant power flows associated with these networks, it is

imperative to recognize the growing importance of safeguarding active distribution systems

as well, specifically the microgrid (MG) in light of the heavy integration of distributed

energy resources (DERs). DERs requires seamless communication among its neighboring

units or master controller units to regulate power flows and maintain stability within MG,

yet this interconnectedness makes them susceptible to cyber threats. Therefore, as the

cyber security landscape is in the process of shifting from transmission to distribution

systems, the next focus of this thesis is to explore the vulnerabilities in communication

architectures and controllers of DERs of MG to develop an end-to-end attack resilient and

control framework for D-systems that offers a multifaceted defense mechanism capable of

detecting, classifying, isolating, and neutralizing cyber-attacks in distribution grid with

unprecedented efficiency and efficacy. At the last, the thesis deals with an another looming
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challenge in the distribution side of MG i.e developing of a cyber-vigilant robust passive

islanding detection technique for a cyber-physical smart grids. In particular, the major

contributions of thesis can stated as follows,

� Assessment of the structural vulnerability of power grid network and thereby

development of a cyber-attack resilient secured metering infrastructure for the

T-system based on optimal placement of PMUs.

� Development of a novel replay attack detection and mitigation framework for power

system state estimation by exploiting the limited secured measurements obtained

from OPP locations.

� Accurate detection, classification and localization of cyber attacks tailored to

D-system specifically islanded AC MG system.

� Following the attack detection and localization information, devise an Unknown

Input Observer (UIO) and Back-stepping Integrated Sliding Mode Control (BSMC)

based Cyber Attack Mitigation Framework for MG system.

� Development of a passive islanding detection scheme (IDS) in MG which is immune

to maloperation caused by possible cyber attacks.

7.2 Summary of Contributions

The first crucial steps towards the development and implementation of the aforementioned

Cyber Attack Resilient Monitoring and Control Framework for fortifying

T-system’s resilience against cyber attacks involves performing structural vulnerability

analysis to identify vulnerable points within the grid that require protection or

reinforcement. This analysis emphasis on understanding the physical behavior of power

systems with its topological structure which in turn serves as a proactive measure

to identify and mitigate potential cyber-physical vulnerabilities within power systems.

In this regards, Chapter-2 firstly introduced a novel attack strategy, termed Hybrid

Between-ness Centrality (HBC) from the perspective attackers to identify top-ranked

transmission lines vulnerable to malicious tripping, thereby compromising system

observability and situational awareness. In next, the framework strategically places

Phasor Measurement Units (PMUs) through a unique objective function to protect

those vulnerable lines against false data injection attacks (FDIAs), ensuring secure

measurements and system integrity. This proactive approach inturn enhances system

resilience and maintains observability even during data integrity attacks. The effectiveness

of the proposed framework conducted on the IEEE 14-bus and New England (NE) 39-bus

systems provide the following conclusions:

� The Hybrid Between-ness Centrality (HBC) index emerges as a proficient attack

strategy, effectively identifying groups of transmission lines whose sequential outages
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top 20% lines could lead to significant structural breakdowns within the system. This

results in a total of 4 vulnerable lines for IEEE 14-bus and 6 lines for NE 39-bus

system respectively.

� In comparison of HBC with another two conventional attack strategies i.e.,

Topological Betweenness Centrality (TBC) and Electrical Betweenness Centrality

(EBC), the HBC results in maximum decline in Giant component size (Sl). For

IEEE-14 bus system, after all the top four vulnerable links are consecutively

attacked, the TBC strategy results in no change in reduction of Sl, where as EBC

has 87% and HBC has highest 57% reduction. Similarly for NE-39 bus system the

reduction of Sl for TBC, EBC and HBC are 69%, 71% and below 50% respectively.

� The novel PMU deployment framework developed to prioritize full system topological

observability demonstrates effectiveness in enhancing system resilience against

HBC-based attacks and defending against data integrity threats. By strategically

placing PMUs to the almost 1
3

rd
of total busses, the framework ensures the

availability of secure measurements, thereby safeguarding system integrity.

� Finally, based upon number of secured measurements attained through optimal

PMU deployment, the resiliency score of IEEE 14-bus and NE-39 bus systems are

found out to be 46% and 57% respectively.

Building upon a secured metering infrastructure through optimal PMU placement in the

previous chapter, Chapter-3 delves into the another critical aspect of safeguarding the

heart of the Energy Management System (EMS), the Power System State Estimation

(PSSE), against stealthy cyber threats, particularly Replay Attacks (RAs). To this

end, this chapter firstly leverage the topographical information along with branch and

nodal version of Power Transfer Distribution Factor (PTDF) to identify most sensible

vulnerable Remote Terminal Unit (RTU) meters and thereafter these are exploited to

launch two different variants of RAs (i.e., MDDA, RDCA) to disrupt the decision making

operation of control center operator via compromising PSSE. Subsequently, a detection

and correction approach is developed to safeguard the PSSE against RAs, utilizing secured

phasor measurements from optimally placed PMUs in a Hybrid State Estimation (SE)

algorithm. The effectiveness of the proposed framework, demonstrated on the previous

two standard test system modelled in RSCAD software of Real-Time Digital Simulator

(RTDS) leads to the following key conclusions.

� In this study, the proposed branch and nodal PTDF based attack strategy leads to

identification of total 36% and 40% of vulnerable meters from the available RTU

measurement set for IEEE 14-bus NE 39-bus system respectively.

� The likelihood of detection of the two proposed attack strategies, i.e., Repetitive

Data Cloning Attack (RDCA) and Multiple Data Dropping Attack (MDDA), is



188 Chapter 7. Conclusions and Future Scope

evaluated, with average detection rates of 94.6% and 90%, respectively. Despite

some False Positives (FPs) and False Negatives (FNs) in both algorithms, from

being attacker perspective RDCA exhibits slightly inferior performance to MDDA.

� The accuracy estimation of the correction method against MDDA and RDCA is

assessed, revealing accuracy rates of 82% for MDDA and 93.27% for RDCA. This

indicates that more precise correction of RAs is achieved for RDCA.

� The Root Mean Square Error (RMSE) of estimated states of the PSSE is evaluated

under both MDDA and RDCA, resulting in RMSE values of 0.4% and 0.45%,

respectively, after applying the attack correction algorithm.

� The true negative rates for both attack types are approximately 100%, indicating

the high specificity of the suggested detection and correction techniques. This

indicates the robustness of the algorithms in correctly identifying instances that

do not belong to the attack class after correction, thereby ensuring the integrity of

system operations.

Besides addressing the vulnerabilities inherent to T-system, the next three chapters

contributes significantly for enhancing the overall security and reliability of D-system

as well particularly in realm of communicative MG environment via development of

Cyber Attack Resilient Monitoring and Control Framework. To this end, Chapter-4

firstly utilized a statistical two-sample hypothesis test called the Maximum Mean

Discrepancy (MMD) for the attack detection process over DER’s controller or its

associated communication links. Having the attack detected, thereafter few more

statistical properties are exploited to formulate a rule-based algorithmic flowchart

integrated with a popular ML classifier i.e XGBoost for the efficient attack classification

and precise attack localization inflicted to perverted DERs. The main findings of the

proposed approach which were verified on a modified IEEE 13-bus islanded AC microgrid

system modeled in the RTDS environment, are listed below.

For MMD Based Cyber Attack Detection in Distributed Secondary Frequency Control

(DSFC) of MG

� The proposed non-parametric statistical test, MMD successfully able to detect FDIA

targeted in either the secondary frequency controller’s DERs or its incoming and

outgoing communication links.

� The proposed detection strategy is not further limited by the number of role statuses

(corrupted or healthy) of nearby DERs, nor is it subject to the strict premise that

the leader DER must always be secured.

� It is successfully able to differentiate between an cyber events and normal physical

events i.e fault/ switching events, leading to no false alarms.
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� The proposed detection strategy shows its superiority over the existing Kullback

Leibler divergence (KLD) based detection method in terms of evading delay in

detectability and threshold selection problem under varieties of attack models.

For XGBoost Enabled Proposed Rule-based Precise Attack Classification and Localization

Scheme

� The proposed novel rule-based XGBoost classifier exhibits exceptional performance

in classifying FDIAs, achieving an accuracy of 99.49%. This outperforms existing

ensemble machine learning (ML) techniques.

� The rule-based approach demonstrates remarkable precision, recall, and F1 Score

for detecting various attack types. It achieves 100% in detecting simpler attacks

like pulse attacks and maintains high performance for more complex attacks such

as sine attacks, with precision, recall, and F1 Score values of 97%, 98%, and 97%

respectively.

� The proposed XGBoost-enabled attack localization scheme showcases superior

accuracy (87.5%) and a lower hamming loss (4.5%) compared to existing ML

classifiers like Decision Tree, Random Forest, and Gradient Boosting.

� In terms of precision, recall, specificity, and F1 Score, the proposed localization

scheme excels particularly for DER-3, followed by DER-2, DER-1, and DER-4.

This observation is further supported by the Receiver Operating Characteristics

(ROC) curve analysis, which demonstrates the Area Under the Curve (AUC) for

each DER: i.e., 92.3% for DER-1, 93.7% for DER-2, 99.1% for DER-3, and 89.9%

for DER-4. The higher AUC for DER-3 indicates that the proposed localization

method perform better in differentiating between attack and non-attack instances

for the attacked in DER-3 compared to other DERs.

After successful detection, classification and localization of attacks in Chapter-4, the

next very crucial step is to nullify the effect of attack in compromised DER’s secondary

controller to bring back the MG system to normalcy. With this as an aim, Chapter-5

develops an unified cyber attack resilient framework comprising of an Unknown Input

Observer (UIO) and Back-stepping Integrated Sliding Mode Controller (BSMC). The UIO

estimates attack bias injected into the controller, which is then used by adaptive BSMC

to generate a counter control law that enforce the attack to be mitigated. The validation

of the aforementioned detection and mitigation techniques in Chapter-4 and Chapter-5 is

performed on an modified IEEE 13-bus distribution system through the hardware-in-loop

testing environment which extract the following key concluding remarks of the proposed

attack resilient framework.

� The main advantage of the proposed attack mitigation method is that it neither

depends on the limitation of the number of indegree healthy DERs of the

compromised unit nor the role-status of leader DER information to be secured.
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� The proposed scheme does not demand any modification of the existing hardware of

the DSFC or the inclusion of additional communication channels to achieve this

resilient action. Therefore, it is simple, cost effective and less computationally

expensive.

� The key highlight of the proposed resilient method is due to its faster convergence

and good robustness against different attacks. Moreover, it efficiently regulate the

power sharing between DERs in the MG even in the presence of attacks.

� The proposed controller is very adaptive to the unknown bounded attack injections

and offers higher resilience and better utilization of DERs as the information of

infected DERs no longer needs to be separated now from the existing communication

topology to stop the spread of the attack effect.

Finally, the Chapter-6 delves into an another challenge of accurately detecting islanding

events in smart active distribution cyber-physical systems amidst emerging cyber threats.

It introduces a novel passive islanding detection method (IDM) based on entropy

information from decaying DC detector (DDCD) and mean-based coarse islanding detector

(MID). Later, the decision of this proposed islanding scheme has been integrated with

a novel kalman-filter based cyber attack detector (CAD) module in order to identify

statistical inconsistency in the signal that confirms potential manipulation of islanding

input. Testing on the Banshee industrial MG system in the Real-Time Digital Simulation

(RTDS) platform validates the effectiveness of the proposed hybrid method with following

concluding remarks.

� The statistical property inherited by IDM with kalman filter assisted attack detector

makes the system operator well-informed from being taken any wrong decision over

any suspected islanding event caused due to cyber attacks.

� With a maximum half-cycle delay, the proposed CAD reliably identifies the onset of

the attacks.

� The CAD’s performance is fairly noise-immune, and no threshold selection is

required.

� Besides the reliable performance of CAD to detect attack from cyber manipulation

perspective, the proposed IDM also exhibits its robustness in identifying various

islanding cases like different active and reactive power mismatches and various

non-islanding cases like fault, linear and non-linear load and capacitor switching

etc.

� Unlike the most of the other islanding method, the proposed AID schme also shows

its superior performance in terms of not falsely detecting the loss of parallel feeder

and removal of other DERs except targeted DER as an islanding event.
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� The proposed AID method is also simple as it only need one cycle (254 samples/scan)

voltage data of any one phase for the implementation and resulted only a small

non-detection zone (NDZ) of 0.25%.

� With the integration of DDCD with MID as an additional features enhances the

performance accuracy and reliability of AID scheme compared to traditional ROCOV

method.

7.3 Scope for Future Work

This thesis investigated the growing cyber security challenges faced by the power grid

due to strong interdependence over the critical cyber infrastructure and heavy integration

of communication and networking technologies within the transmission (D-system) and

active distribution systems (T-system). The research in this area can be further extended

as follows.

� In order to develop an end-to-end attack detection and control framework from

cyber-physical smart grid’s perspective, there are still few research areas that are

untouched and needs more defense-in-depth research studies. The examples for

such future research avenues are: (1) Generation Side Perspective: Resilient defense

against FDIA on measurements and control signals for the normal operation of

Automatic Generation Control and Load Frequency Control etc, (2) Transmission

Side Perspective: Defensive measures to resist the line current differential relays from

being maliciously tripped against cyber attacks, (3) Distribution Side Perspective:

Enhancing security and reliability of deregulated electricity market and its trading

application through proposing an offer-breach detection process.

� While the focus of existing studies has predominantly centered on AC MGs,

the growing prominence of hybrid AC-DC architectures underscores the need to

extend and adapt proposed cyber resilience framework to encompass and address

vulnerabilities of these systems as well. Therefore, testing and validating its

effectiveness in a hybrid microgrid would be a valuable area of exploration which

significantly contribute to the overall security posture of modern distribution grid.

� Moreover, as the cyber threat security landscape is ever evolving, the proposed cyber

attack resilient control framework for the D-Systems needs further enhancement to

deal with hybrid attack model and unbounded attack scenarios while guarantee the

asymptotic convergence of the control response.

By addressing these above areas of future research, it is possible to advance the

state-of-the-art in cyber-attack resilience for power systems, ultimately ensuring the

reliability, security, and resilience of critical infrastructure in the face of unprecedented

cyber threats.



192 Chapter 7. Conclusions and Future Scope



References

[1] Ahmed S. Musleh, Guo Chen, and Zhao Yang Dong. A survey on the detection

algorithms for false data injection attacks in smart grids. IEEE Transactions on

Smart Grid, 11(3):2218–2234, 2020. doi: 10.1109/TSG.2019.2949998.

[2] Xiaoge Huang, Zhijun Qin, and Hui Liu. A survey on power grid cyber security:

From component-wise vulnerability assessment to system-wide impact analysis.

IEEE Access, 6:69023–69035, 2018. doi: 10.1109/ACCESS.2018.2879996.

[3] Chih-Che Sun, Chen-Ching Liu, and Jing Xie. Cyber-physical system security of a

power grid: State-of-the-art. Electronics, 5(3), 2016. ISSN 2079-9292. doi: 10.3390/

electronics5030040.

[4] Haftu Tasew Reda, Adnan Anwar, and Abdun Mahmood. Comprehensive survey

and taxonomies of false data injection attacks in smart grids: attack models, targets,

and impacts. Renewable and Sustainable Energy Reviews, 163:112423, 2022. ISSN

1364-0321. doi: https://doi.org/10.1016/j.rser.2022.112423.

[5] Ics-cert year in review 2016, Nov 2016. URL https://www.cisa.gov/sites/

default/files/Annual_Reports/Year_in_Review_FY2016_Final_S508C.pdf.

[6] Threat landscape for industrial automation systems statistics for h2 2020, Jan 2023.

URL https://ics-cert.kaspersky.com/publications/reports/2021/03/25/

threat-landscape-for-industrial-automation-systems-statistics-for-h2-2020.

[7] Kevin E. Hemsley and Dr. Ronald E. Fisher. History of industrial control system

cyber incidents. Idaho National Lab. (INL), Idaho Falls, ID (United States), 12

2018. doi: 10.2172/1505628. URL https://www.osti.gov/biblio/1505628.

[8] Utpal Bhaskar. India’s power industry comes under increasing cyberattacks

from hackers, Sep 2019. URL https://www.livemint.com/industry/energy/

how-cyber-attacks-are-increasing-in-india-s-power-sector-1568107532851.

html.

[9] Cert-in cyber incident reporting guidelines, Feb 2024. URL

https://www2.deloitte.com/in/en/pages/risk/articles/

CERT-IN-direction-for-reporting-cyber-incidents.html.

[10] Dou An, Feiye Zhang, Feifei Cui, and Qingyu Yang. Toward data integrity attacks

against distributed dynamic state estimation in smart grid. IEEE Transactions on

Automation Science and Engineering, 21(1):881–894, 2024. doi: 10.1109/TASE.

2023.3236102.

193

https://www.cisa.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2016_Final_S508C.pdf
https://www.cisa.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2016_Final_S508C.pdf
https://ics-cert.kaspersky.com/publications/reports/2021/03/25/threat-landscape-for-industrial-automation-systems-statistics-for-h2-2020
https://ics-cert.kaspersky.com/publications/reports/2021/03/25/threat-landscape-for-industrial-automation-systems-statistics-for-h2-2020
https://www.osti.gov/biblio/1505628
https://www.livemint.com/industry/energy/how-cyber-attacks-are-increasing-in-india-s-power-sector-1568107532851.html
https://www.livemint.com/industry/energy/how-cyber-attacks-are-increasing-in-india-s-power-sector-1568107532851.html
https://www.livemint.com/industry/energy/how-cyber-attacks-are-increasing-in-india-s-power-sector-1568107532851.html
https://www2.deloitte.com/in/en/pages/risk/articles/CERT-IN-direction-for-reporting-cyber-incidents.html
https://www2.deloitte.com/in/en/pages/risk/articles/CERT-IN-direction-for-reporting-cyber-incidents.html


194 References

[11] Patrick Wlazlo, Abhijeet Sahu, Zeyu Mao, Hao Huang, Ana Goulart, Katherine

Davis, and Saman Zonouz. Man-in-the-middle attacks and defence in a power system

cyber-physical testbed. IET Cyber-Physical Systems: Theory & Applications, 6(3):

164–177, 2021. doi: https://doi.org/10.1049/cps2.12014.

[12] Matthew Porter, Pedro Hespanhol, Anil Aswani, Matthew Johnson-Roberson, and

Ramanarayan Vasudevan. Detecting generalized replay attacks via time-varying

dynamic watermarking. IEEE Transactions on Automatic Control, 66(8):3502–3517,

2021. doi: 10.1109/TAC.2020.3022756.

[13] Sara Siamak, Maryam Dehghani, and Mohsen Mohammadi. Dynamic gps spoofing

attack detection, localization, and measurement correction exploiting pmu and

scada. IEEE Systems Journal, 15(2):2531–2540, 2021. doi: 10.1109/JSYST.2020.

3001016.

[14] Elif Ustundag Soykan, Mustafa Bagriyanik, and Gurkan Soykan. Disrupting the

power grid via ev charging: The impact of the sms phishing attacks. Sustainable

Energy, Grids and Networks, 26:100477, 2021. ISSN 2352-4677. doi: https://doi.

org/10.1016/j.segan.2021.100477.

[15] Wei Chen, Derui Ding, Hongli Dong, and Guoliang Wei. Distributed resilient

filtering for power systems subject to denial-of-service attacks. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 49(8):1688–1697, 2019. doi: 10.1109/

TSMC.2019.2905253.

[16] Fei Tao and Dan Ye. Secure state estimation against eavesdropping attacks based

on time-varying coding and noise-adding. IEEE Transactions on Network Science

and Engineering, 11(1):174–184, 2024. doi: 10.1109/TNSE.2023.3293106.
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[53] Gabriel J. Correa and José M. Yusta. Grid vulnerability analysis based on scale-free

graphs versus power flow models. Electric Power Systems Research, 101:71–79, 2013.

ISSN 0378-7796. doi: https://doi.org/10.1016/j.epsr.2013.04.003.

[54] X. Liu and G. Joos. Transmission grid vulnerability assessment by eigen-sensitivity

and cut-set screening. In IEEE PES T&D 2010, pages 1–8, 2010. doi: 10.1109/

TDC.2010.5484204.

[55] Anurag K. SRIVASTAVA, Timothy A. ERNSTER, Ren LIU, and Vignesh G.

KRISHNAN. Graph-theoretic algorithms for cyber-physical vulnerability analysis

of power grid with incomplete information. Journal of Modern Power Systems

and Clean Energy, 6(5):887–899, Sep 2018. ISSN 2196-5420. doi: 10.1007/

s40565-018-0448-7.

[56] Ettore Bompard, Enrico Pons, and Di Wu. Extended topological metrics for the

analysis of power grid vulnerability. IEEE Systems Journal, 6(3):481–487, 2012.

doi: 10.1109/JSYST.2012.2190688.

[57] Tianlei Zang, Shibin Gao, Tao Huang, Xiaoguang Wei, and Tao Wang. Complex

network-based transmission network vulnerability assessment using adjacent graphs.

IEEE Systems Journal, 14(1):572–581, 2020. doi: 10.1109/JSYST.2019.2934317.

[58] Hale Cetinay, Karel Devriendt, and Piet Mieghem. Nodal vulnerability to targeted

attacks in power grids. Applied Network Science, 3, 08 2018. doi: 10.1007/

s41109-018-0089-9.

[59] Qingyu Yang, Dou An, Rui Min, Wei Yu, Xinyu Yang, and Wei Zhao. On optimal

pmu placement-based defense against data integrity attacks in smart grid. IEEE

Transactions on Information Forensics and Security, 12(7):1735–1750, 2017. doi:

10.1109/TIFS.2017.2686367.

[60] Sanjay Kumar, Barjeev Tyagi, Vishal Kumar, and Sunita Chohan. Optimization of

phasor measurement units placement under contingency using reliability of network

components. IEEE Transactions on Instrumentation and Measurement, 69(12):

9893–9906, 2020. doi: 10.1109/TIM.2020.3004680.

[61] Jinping Hao, Robert J. Piechocki, Dritan Kaleshi, Woon Hau Chin, and Zhong Fan.

Sparse malicious false data injection attacks and defense mechanisms in smart grids.

IEEE Transactions on Industrial Informatics, 11(5):1–12, 2015. doi: 10.1109/TII.

2015.2475695.

[62] Shamsun Nahar Edib, Yuzhang Lin, Vinod M. Vokkarane, Feng Qiu, Rui Yao, and

Dongbo Zhao. Optimal pmu restoration for power system observability recovery



References 199

after massive attacks. IEEE Transactions on Smart Grid, 12(2):1565–1576, 2021.

doi: 10.1109/TSG.2020.3028761.

[63] Mohammad Hossein Rezaeian and Saeid Esmaeili. Power system monitoring

ensuring direct observation of critical buses and transmission lines using a bi-level

approach. In 2016 Smart Grids Conference (SGC), pages 1–6, 2016. doi: 10.1109/

SGC.2016.7882948.

[64] Mohammad Hossein Rezaeian Koochi and Mohammad Hasan Hemmatpour. A

general pmu placement approach considering both topology and system aspects of

contingencies. International Journal of Electrical Power & Energy Systems, 118:

105774, 2020. ISSN 0142-0615. doi: https://doi.org/10.1016/j.ijepes.2019.105774.

[65] Chao Pei, Yang Xiao, Wei Liang, and Xiaojia Han. Pmu placement protection

against coordinated false data injection attacks in smart grid. IEEE Transactions

on Industry Applications, 56(4):4381–4393, 2020. doi: 10.1109/TIA.2020.2979793.

[66] Ahmed S. Musleh, Haris M. Khalid, S. M. Muyeen, and Ahmed Al-Durra. A

prediction algorithm to enhance grid resilience toward cyber attacks in wamcs

applications. IEEE Systems Journal, 13(1):710–719, 2019. doi: 10.1109/JSYST.

2017.2741483.

[67] Aditya Ashok, Manimaran Govindarasu, and Jianhui Wang. Cyber-physical

attack-resilient wide-area monitoring, protection, and control for the power grid.

Proceedings of the IEEE, 105(7):1389–1407, 2017. doi: 10.1109/JPROC.2017.

2686394.

[68] Zakaria El Mrabet, Naima Kaabouch, Hassan El Ghazi, and Hamid El Ghazi.

Cyber-security in smart grid: Survey and challenges. Computers & Electrical

Engineering, 67:469–482, 2018. ISSN 0045-7906. doi: https://doi.org/10.1016/j.

compeleceng.2018.01.015.

[69] Lei Su, Dan Ye, and Xin-Gang Zhao. Distributed secure state estimation for

cyber-physical systems against replay attacks via multisensor method. IEEE Systems

Journal, 16(4):5720–5728, 2022. doi: 10.1109/JSYST.2021.3123617.

[70] Jing Wang, Dongji Wang, Huaicheng Yan, and Hao Shen. Composite

anti-disturbance H∞ control for hidden markov jump systems with multi-sensor

against replay attacks. IEEE Transactions on Automatic Control, pages 1–7, 2023.

doi: 10.1109/TAC.2023.3326861.

[71] Bo Chen, Daniel W. C. Ho, Guoqiang Hu, and Li Yu. Secure fusion estimation

for bandwidth constrained cyber-physical systems under replay attacks. IEEE

Transactions on Cybernetics, 48(6):1862–1876, 2018. doi: 10.1109/TCYB.2017.

2716115.



200 References

[72] Dan Li, Nagi Gebraeel, and Kamran Paynabar. Detection and differentiation

of replay attack and equipment faults in scada systems. IEEE Transactions on

Automation Science and Engineering, 18(4):1626–1639, 2021. doi: 10.1109/TASE.

2020.3013760.

[73] Minghui Zhu and Sonia Mart́ınez. On the performance analysis of resilient networked

control systems under replay attacks. IEEE Transactions on Automatic Control, 59

(3):804–808, 2014. doi: 10.1109/TAC.2013.2279896.

[74] Ying Sun, Yamei Ju, Derui Ding, and Hongjian Liu. Distributed h∞ filtering of

replay attacks over sensor networks. ISA Transactions, 141:113–120, 2023. ISSN

0019-0578. doi: https://doi.org/10.1016/j.isatra.2023.04.018.

[75] Minal Chougule and Shreevardhan A Soman. Real-time data-assisted replay

attack detection in wide-area protection system. IET Generation, Transmission

& Distribution, 14(19):4021–4032, 2020. doi: https://doi.org/10.1049/iet-gtd.2020.

0215.

[76] Kaustav Chatterjee and S. A. Khaparde. Data-driven online detection of replay

attacks on wide-area measurement systems. In 2018 20th National Power Systems

Conference (NPSC), pages 1–6, 2018. doi: 10.1109/NPSC.2018.8771807.
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Saludes, and Joseba Quevedo. Detection of replay attacks in cyber-physical systems



References 201

using a frequency-based signature. Journal of the Franklin Institute, 356(5):

2798–2824, 2019. ISSN 0016-0032. doi: https://doi.org/10.1016/j.jfranklin.2019.

01.005.

[83] Bharadwaj Satchidanandan and P. R. Kumar. Dynamic watermarking: Active

defense of networked cyber–physical systems. Proceedings of the IEEE, 105(2):

219–240, 2017. doi: 10.1109/JPROC.2016.2575064.

[84] Yilin Mo, Sean Weerakkody, and Bruno Sinopoli. Physical authentication of control

systems: Designing watermarked control inputs to detect counterfeit sensor outputs.

IEEE Control Systems Magazine, 35(1):93–109, 2015. doi: 10.1109/MCS.2014.

2364724.
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Chapter A

Test System Data

A.1 Modified IEEE 13-Bus Distribution Network

The IEEE 13-Bus system is a multi-phase radial distribution network, considered as a

standard reference model in various power distribution studies, is basically characterized

by short transmission lines, unbalanced structure and highly loaded feeders containing

multi phase laterals with distributed and spot loads. The system has a nominal frequency

and line-to-line voltage of 60 Hz and 4.16 kV respectively. The total active, reactive

and apparent power of the system are 3.466 MW, 2.102 MVAr (Inductive), 0.7 MVAr

(Capacitive)and 3.739 MVA respectively with power factor of 0.927 For the shake of

simplicity in modeling and developing an attack resilient steady state control mechanism in

Chapter - 5, this test system is modeled in RSCAD software of NovaCoR Real-Time Digital

Simulator, following certain customization’s in its structure to make it a balanced three

phase distribution feeder. The major modifications and use of simplifying assumptions

considered for modeling the modified version of the conventional IEEE 13-Bus radial

network into a balanced standard test system are as follows:

� The utility is removed as the whole network is designed to be operated in islanded

mode.

� Four Solar Photovoltaic (PV)-based grid forming DER units of equal one per unit

active power and voltage rating are connected through a 1.0/0.5 MVA, 0.48/4.16

kV Yg-Yg transformer at 4 distinct locations i.e Node-650, Node-633, Node-671 and

Node-692 respectively. The modified single diagram of the test feeder is shown in

Fig. A.1.

� The IEEE 13-Node test feeder undergoes through the following simplified

assumptions.

– All laterals are transformed into the three phase section from whence they

originate.

– It is assumed that the self and mutual impedances of phases are

equal to the averages of their respective self and mutual impedances,

transposing the three-phase sections used to mitigate the unequal distribution

of electromagnetic forces and impedance in overhead transmission lines.

Thereafter, for each section, positive and zero sequence impedances are
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computed as follows.

Zabc =


Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

 (A.1)

To transpose the system and compute the average self and mutual impedances,

while taking into account the distributed nature of the line and the effect of

ground, the modified Carson and Kron reduction equations are used as:

Zs =
1

3
[Zaa + Zbb + Zcc] (A.2)

Zm =
1

3
[Zab + Zbc + Zca] (A.3)

Therefore, the positive and zero sequence impedance are calculated as:

Z11 = Zs − Zm (A.4)

Z00 = Zs + 2Zm (A.5)

– To get the overall three phase balanced loads, the unbalanced phase loads in

each of the three phase sections are added together.

� Tables A.1-A.4 provides component details for the IEEE 13-Bus distribution

network, including transformers, spot and distributed loads, line segments and

capacitor banks, and line configurations (impedance matrix as symmetric).

Figure A.1: Modified IEEE 13-Bus distribution feeder network with PV DERs
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Table A.1: Overhead and underground line configuration data

Overhead Line Configurations

Config. Phasing Phase Neutral Spacing

ACSR ACSR ID

601 B A C N 556,500 26/7 4/0 6/1 500

602 C A B N 4/0 6/1 4/0 6/1 500

603 C B N 1/0 1/0 505

604 A C N 1/0 1/0 505

605 C N 1/0 1/0 510

Underground Line Configurations

Config. Phasing Cable Neutral Space ID

606 A B C N 250,000 AA, CN None 515

607 A N 1/0 AA, TS 1/0 Cu 520

Table A.2: Transformer details

kVA kV-high kV-low R - % X - %

Substation 5,000 115 - D 4.16 Gr. Y 1 8

633-634 500 4.16 - Gr.W 0.48 - Gr.W 1.1 2

Table A.3: Both spot load and distributed load details

Spot Loads

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3

Model kW kVAr kW kVAr kW kVAr

634 Y-PQ 160 110 120 90 120 90

645 Y-PQ 0 0 170 125 0 0

646 D-Z 0 0 230 132 0 0

652 Y-Z 128 86 0 0 0 0

671 D-PQ 385 220 385 220 385 220

675 Y-PQ 485 190 68 60 290 212

692 D-I 0 0 0 0 170 151

611 Y-I 0 0 0 0 170 80

TOTAL 1158 606 973 627 1135 753

Distributed Loads

Node A Node B Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3

Model kW kVAr kW kVAr kW kVAr

632 671 Y-PQ 17 10 66 38 117 68
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A.2 Banshee, A Real-Life Industrial Microgrid Network

The Banshee distribution network is a small scale, real-life, reconfigurable, industrial

facility used as a pivotal benchmark model in the realm of microgrid research and

development. Widely acknowledged for its real-world applicability and adaptability

within the community microgrid, it is very popular as a quintessential standard and

used by various academic scholars, industry frontrunners, practitioners and esteemed

research laboratories for assessing microgrid performance. This model can be utilized for

multifaceted analyses such as exploring various operational scenarios, evaluating control

strategies, and assessing resilience and reliability measures. In this thesis, the Banshee

system is used in Chapter 6 for evaluating the efficacy of the proposed islanding detection

method. The system’s layout and its different components depicted in its one line diagram

is shown in Fig. 6.5. The major facilities and its key components are listed as follows:

1. Banshee MG is composed of three radial distribution feeders carrying load with

minimum and maximum ranges between 5 MW to 14 MW and formed three areas

with limited connectivity through normally open switches (NOS) to the utility grid.

2. Each mainstream feeders are rated with medium voltage of 13.8 kV at distribution

level and service voltage levels of 4.16 kV, 480 V, and 208 V. There are total 18

aggregated dynamic loads with power factor of 0.9 lag, categorized as either critical,

priority or interruptible. Additionally, there are two 200 hp induction motors that

serves chiller compressor loads.

3. There are typical 4 different types of generation assets are available within the

Banshee MG. A 4 MVA diesel generator (DieGen) in area-1, 2.5 MVA battery energy

storage system (BESS) and 5 MW PV array designed via average modelling with

time-varying irradiance profile and temperature is area-2, and 3.5 MVA natural gas

fired combined heat and power plant (CHP) operating at 13.8 KV in area-3

4. Moreover, the system is further modified by integrating 3 more grid following average

modeled VSC based DGs, i.e., DG1, DG2 and DG3, of equal 1.25 MW rating, are

located at Bus-107, Bus-305 and Bus-209, respectively.

Tables A.5-A.13 provides the summary of the each component details of Banshee MG.

Table A.5: Short Circuit Levels Respective to Each Feeders

3Ph(kA) X/R SLG (kA) X/R

Feeder 1 14.58 4.6 10.57 0.9

Feeder 2 15.73 7.9 10.24 2.6

Feeder 3 15.73 4.6 10.57 0.9
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Table A.6: Aggregated Load Details For Each Feeders of Banshee MG

Load ID Category Feeder Number kVA Demand

C1 Critical 1 1200

C2 Critical 1 1500

C3 Critical 2 1000

C4 Critical 2 1000

C5 Critical 3 1000

C6 Critical 3 800

P1 Priority 1 1000

P2 Priority 2 1000

P3 Priority 2 1000

P4 Priority 3 600

P5 Priority 2 700

P6 Priority 3 1000

I1 Interruptible 1 300

I2 Interruptible 1 250

I3 Interruptible 2 300

I4 Interruptible 2 600

I5 Interruptible 2 400

I6 Interruptible 3 600

Table A.7: Parameter Details of Induction Machines Load

Name Description Value Unit

vbsll Rated Stator Voltage ( L-L RMS ) 0.48 kV

trato Turns Ratio, Rotor over Stator 1 p.u.

pbase Rated MVA 0.1597 MVA

hrtz Rated Frequency 60 Hertz

ra Stator Resistance 2.0110E-02 p.u.

xa Stator Leakage Reactance 1.0448E-01 p.u.

xmd0 Unsaturated Magnetizing Reactance 9.0424E+00 p.u.

rfd First Cage Rotor Resistance 4.5768E-02 p.u.

xfd First Cage Rotor Leakage Reactance 1.0448E-01 p.u.

rkd Second Cage Rotor Resistance N/A p.u.

xkd Second Cage Rotor Leakage Reactance N/A p.u.

xkf Rotor Mutual Leakage Reactance N/A p.u.
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Table A.9: Parameter Details of Cables

Name Length [ft] AWG or kcmil R [ohms/1000ft] X [ohms/1000ft]

C101 1800 1-#500 0.0284 0.0351

C102 5500 1-#500 0.0284 0.0351

C103 1000 1-4/0 0.064 0.0389

C104 3000 1-#500 0.0284 0.0351

C105 3000 1-#500 0.0284 0.0351

C106 1500 1-#500 0.0284 0.0351

C107 2000 2-#500 0.0284 0.0351

C108 1000 1-#500 0.0294 0.0349

C109 2000 2-#500 0.0284 0.0351

C201 5500 1-4/0 0.064 0.0389

C202 2000 1-#500 0.0284 0.0351

C203 3000 1-#500 0.0284 0.0351

C204 1500 2-#500 0.0284 0.0351

C205 1500 2-#500 0.0284 0.0351

C206 1500 2-#500 0.0284 0.0351

C301 2500 1-#500 0.0284 0.0351

C302 2000 1-4/0 0.064 0.0389

C303 2000 1-#500 0.0284 0.0351

C304 1500 2-4/0 0.064 0.0389

Table A.10: Parameter Details of Natural Gas CHP and Diesel Generator Located at Bus
306 and Bus 103 Respectively

Parameter Description Units Value

Mmva Rated MVA of the Machine MVA
3.5 [CHP]
4 [DieGen]

Vbsll Rated RMS Line-to-Line Voltage kV 13.8

HTZ Base Angular Frequency Hz 60

H Inertia Constant MWs/MVA 0.3468

D Synchronous Mechanical Damping pu/pu 0

XS1 Stator Leakage Reactance pu 0.05

XMD0 D-axis Unsaturated Magnetization Reactance pu 2.35

X230 D: Field-Damper Mutual Leakage Reactance pu 0

X2D D: Field Leakage Reactance pu 0.511

X3D D: Damper Leakage Reactance pu 3.738

XMQ Q-axis Magnetizing Reactance pu 1.72

X2Q 1st Q-axis Damper Leakage Reactance pu 0.2392

X3Q 2nd Q-axis Damper Leakage Reactance pu 0.0942

RS1 Stator Resistance pu 0.008979

R2D Field Resistance pu 0.00206

R3D Direct-Axis Damper Resistance pu 0.2826

R2Q 1st Q-axis Damper Resistance pu 0.2392

R3Q 2nd Q-axis Damper Resistance pu 0.0082
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Table A.11: Technical Specifications of PV array Module Located at Bus 203

Sr. No Description Value

1 Insolation 1000 Watt/m2

2 Temperature 25 Degree

3 Shading Effect N/A

4 No. of Series Connected Cells in a Module 60

5 No. of Parallel Connected Cells in a Module 1

6 No. of Series Connected Modules 95

7 No. of Parallel Connected Modules 168

8 Open Circuit Voltage 45 V

9 Short Circuit Current 9.2 A

10 Voltage at Max Power @STD = 25 deg Centrigrade 37 V

11 Current at Max Power @STD = 25 deg Centrigrade 8.5 A

12 Open Circuit Series Resistance 0.349 Ohms

13 Short Circuit Shunt Resistance 111.55 Ohms

14 Rated Power Output 5 MW

15 Maximum Power Point Tracking Enabled

16 AC Side Filter Resistance (Rf) 2.38E-3 Ohms

17 AC Side Filter Inductance (Lf) 200 UH

18 DC Voltage Set Point 1 kV

19 DC Bus Voltage Proportional Control (Gp) 0.899

20 DC Bus Voltage Integral Time Constant (TI) 0.0585 sec

21 Max DC Volatge Limit 6

22 Min DC Volatge Limit -6 V

23 dq axis Proportional Gain For Current Controller (Gp) 0.2

24 dq axis Integral Time Constant For Current Controller (TI) 0.30675 sec

Table A.12: Technical Specifications of BESS Located at Bus 204

Sr. No Description Value

1 Battery Type Lithium-ion

2 No. of Cells in Series in a Stack 460

3 N. of Stacks in Parallel 428

4 Capacity of a Single Cell (AH) 1

5 Initial State of Charge (SOC) of a Single Cell 85%

6 Nominal Voltage 0.48 kV

7 Power Rating 2.5 MVA

8 dq axis Proportional Gain For Current Controller (Gp) 0.2

9 dq axis Integral Time Constant For Current Controller (TI) 0.30675 sec

10 dq axis Proportional Gain For Voltage Controller (Gp) 1

11 dq axis Integral Time Constant For Voltage Controller (TI) 0.006 sec

12 d axis voltage reference 1.04614

13 q axis voltage reference 0
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Table A.13: Parameter Details of Average Modeled DGs Located at Bus 107, Bus 305 and
Bus 209

Sr. No Description Value

1

DC Bus Voltage Control

DC Voltage Set Point 1 kV

2 Proportional Control (Kp) 0.5

3 Integral Control (KI) 5

4 Max DC Volatge Limit 5 V

5 Min DC Volatge Limit -5 V

6

Outer Loop Control

Reactive Power Reference 0

7 Reactive Power, Kp 1

8 Reactive Power, KI 5

9 Reactive Power, Upper Limit (UL) 5

10 Reactive Power, Upper Limit (LL) -5

11

AC Bus Voltage Control

Reated Capacity 1.25 MW

12 Ref Voltage (Peak) 0.392 kV

13 Voltage, Kp 0.025

14 Voltage, KI 3

15

Inner Loop Control

dq axis current controller, Kp 0.025

16 dq axis current controller, KI 0.5

17 dq axis Current, UL 5

18 dq axis Current, LL -5
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