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Abstract

In today’s world, our power grids are becoming smarter, due to the rapid and
wide spread integration of digital sensors, computers, Internet and Communication
Technologies (ICTs) etc. The remarkable advancements of such modernized technologies
and far-reaching use of various sophisticated remotely control devices have transformed
our age old traditional energy sector from purely physical system to somewhat complex
Cyber Physical Systems (CPS). While this CPS infrastructure has effectively prevented
various disastrous scenarios like blackouts, uncontrolled shutdowns, unwanted frequency
and voltage fluctuations, power loss and grid instability, nevertheless the close integration
of power system’s physical operation with that of unsecured cyber networks brings
a new risk of cyber threats via unauthorized control access to the communication
channels, exploitation of networking protocols, forced equipment outage and damage,
manipulation of sensing and control signals and any kind of other sabotaging activities
that jeopardize the normal monitoring and control functionality of power grid ranging
from power transmission to power distribution. Thus this thesis aims to provide an overall
comprehensive security solution towards developing a Cyber Attack Resilient Monitoring
and Control (CARMC) framework by unveiling vulnerabilities across transmission
(T-System) to distribution (D-System) power networks.

The research begins by identifying and addressing the key vulnerabilities introduced in
the T-System networks. Following this, a comprehensive attack resilient framework is
developed based on strategic placement of Phasor Measurement Units (PMUs) at such
optimal locations that safeguard a minimal sets of measurements in order to make the
system resilient against any kind of False Data Injection Attacks (FDIAs) on those selected
vulnerable lines. After securing a set of critical meters by developing a secured metering
infrastructure, the next research study of T-System focused on the detection and control
technique of another simple but impactful attack named, Replay Attack (RA) that targets
one of the core power system monitoring application of energy management system i.e
Power System State Estimation (PSSE). In order to safeguard the PSSE against RA, the
proposed technique leverages the secured phasor measurements obtained from the optimal
PMU locations through a hybrid state estimator (HYB-SE) to correct the manipulated
conventional meter readings.

The later half of the thesis focuses on detecting and mitigating vulnerabilities associated
to the D-System networks, specifically Microgrids (MGs), where the Distributed Energy
Resource (DER) controller’s and its communication links are being targeted by the
attacker to cause voltage and frequency instability to the grid. To this end, for
the detection, classification and localization of cyber attacks, a statistical two-sample
hypothesis test, called as Maximum Mean Discrepancy (MMD) index and a rule based
algorithm coupled with XGBoost classifier is utilized respectively. After the attack being
detected and classified successfully, the next study aims to develop a cyber-attack resilient
control framework for the MG system based on designing Unknown Input Observer’s
(UIO) states and Back-stepping Integrated Sliding Mode Controller (BSMC) to mitigate



ix

the overall effect of injected attack into the DER’s secondary controller. Finally, with
the aim of having a secured monitoring infrastructure in D-System, the last research
study addressed the problem of accurate detection of islanding event in the presence of
cyber-attacks.

The effectiveness of the proposed CARMC framework is validated through extensive
offline simulation performed in MATLAB, PSCAD, RSCAD software and real-time testing
incorporating various hardware platforms such as Real-Time Digital Simulator (RTDS)
and dSPACE 1104 Research & Development controller board. The results demonstrate
the ability of the CARMC framework to bolster the resilience of transmission and active

distribution networks against diverse cyber threats.

Keywords: Topological Vulnerability; Phasor Measurements Units; Power System
State Estimation; False Data Injection Attack; Replay Attack; AC Microgrid;
Distributed Secondary Control; Maximum Mean Discrepancy; Unknown Input Observer;

Back-stepping Integrated Sliding Mode Controller; Secured Passive Islanding Detection.
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Chapter 1

Introduction

1.1 General: Cyber Physical Integration of Smart Grid

In recent decades, the integration of advanced sensing, computing, Internet of Things
(IoTs), Information and Communication Technologies (ICT) within the power sector
has undoubtedly revolutionized the flexibility, reliability, efficiency and management of
electrical grids to a considerable extent. This revolutionary and evolutionary changes have
made a profound impact on national critical infrastructures, such as Power Systems (PSs);
transforming them into the present-day complex Cyber-Physical Systems (CPS), known
as Smart Grids (SGs) with offering numerous benefits such as, control of the two-way
flow of electricity and information, efficient monitoring and control of real-time electricity
generation and consumption, optimized resource utilization, reduced operational costs,
increased renewable energy, empowering consumers through real-time visibility and control

over their energy usage etc.

While such involvements of CPS in monitoring and control operations of PS have effectively
prevented various disastrous scenarios like blackouts, uncontrolled shutdowns, unwanted
frequency and voltage fluctuations, power losses, and grid instability, they have also
introduced new challenges to the PS operators in terms of device-level and network-level
security [1, 2, 3]. Many remote devices located in the physical layer of SGs like digital
sensors, actuators, smart meters, digital relays, Remote Terminal Units (RTUs), Intelligent
Electronic Devices (IEDs), etc, and servers of communication and ICT interface layer
like SCADA Server, Communication Server, Human Machine Interface Server (HMI)
and, Database Server are connected to the open network via some corporate networks
for being more flexible in management process which acts as a back-door access for the
cyber attackers to get into operator’s supervisory network control layer to disrupt various
managerial decisions as shown in Fig. 1.1. Moreover, a large number of systems have been
using third-party web-based applications for the monitoring of physical process and this
direct connection to the internet could be an another possible path for the cyber attacker
to penetrate into the enterprise network. Thus, the increasing dependence of the SG on
the critical cyber networks and extensive interlaced with data communication layers at its
various levels has exposed the power grid to potential vulnerabilities and persistent cyber
threats such as forced equipment outage, manipulation of sensing and actuation signals
by malicious actors, theft of intellectual property, exploiting financial arbitrage, and other

kind of sabotage which ultimately hampers the normal grid functioning [4].
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Figure 1.1: Generic illustration of a cyber-physical Smart Grid architecture and its
vulnerable surface

1.1.1 Historical Events of Some Major Cyber Attacks in Smart Grid

As per the standards defined by the industry, a Cyber-Attack is an intrusion that can
jeopardize the availability, confidentiality, or integrity of an information system or the data
it processes, stores, or transmits. Additionally, it is noteworthy to mention that out of all
network infrastructures, the energy sector has faced the greatest number of cyber intrusions
and thus it is placed at significantly higher security risks in terms of attack severity and
impact, according to vulnerability reports from the US ICS-CERT [5] and Kaspersky
ICS-CERT [6]. One of its main reason is that the current communication networks for
PSs and most SCADA network protocols e.g., Modbus, DNP3, TCP/IP, IEC 61850, etc,
are not designed to be adequately protected from potential cyber threats. Hence, recent
years have witnessed that power plants and electrical grids are becoming increasingly an
attractive target for hackers due to the large number of individuals who could be impacted

and the extent of damage that could be inflicted nationwide [7]. Notably, various reported
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historical incidents worldwide as listed in Table 1.1 have highlighted significant challenges

stemming from such cyber-attacks in the cyber-layer of energy-sector infrastructures.

Table 1.1: Some reported major cyber attacks events targeted to energy sector

. Attack
Year Attack Location Type/Method Attack Target Attack Impacts
Manipulate the speed
Natanz Nuclear PLCs, ICS Network, | and rotation cycles of
/< < Y
Oct, 2010 Power Plant, Iran Malware STUXNET and HMI PLC controlled
centrifuges
Steal sensitive
Nuclear and Malware. Social information such as
Dec, 2014 | Hydroelectric Plant, ware, Dol ICT Interface design documents,
Engineering )
South Korea operation manuals,
and employee data.
Wide spread blackout
Dec, 2015 . . . ICS, Relay and took place in 3 major
and 2016 Power Grid, Ukraine FDIA, MitM Circuit Breaker power distribution
companies
Petro-chemical Plant Malware c?irligfn?szezzflls??i?e
Aug, 2017 _ | BLACKENERGY, ICT Interface P NS
Saudi Aramco . . . data, and inflict
Social Engineering .
financial loss
Gained illegal access
. to technological
Feb, 2019 Power Grid, Russia Unconfirmed ICS, Sl.letatlonS control systems to
Equipment
affect dozens of
settlements
Water treatment Malware, Remote Access to Ma.mpulates jche
Feb, 2020 . . . chemical levels in the
’ plant in Florida, US Eavesdropping HMI Software
water supply.
Led to fuel shortages,
Mav. 2021 Colonial Oil Ransomware (Via Fuel Storage Units, urgent shut down
b Pipeline, US —Spear Phishing Email) IT Systems operations and
economic loss
Multiple Oil
terminals across Ransomware Oil Refining Ports Disable computers
Feb, 2022 Belgium and DOSW ’ and Storage of Energy
Germany, Facilities Department
Northern Europe
Compromised systems
. . and establish remote
Power Grid, South Eavesdropping SCADA Servers, .
Mar, 2023 . . connections on the
Africa attack EMS, Substations . ..
electric utility to
change the payloads

According to the statistics reviewed, China, Singapore, Russia, and the countries of the

Commonwealth of Independent States (CIS) collectively account for the majority of cyber
attacks. In July 2018, the U.S. Department of Homeland Security (DHS) and Industrial
Control Systems Cyber Emergency Team (ICS-CERT) has issued the warning alerts

against the international threat actors, who have constantly targeted the energy sector

in the past. India, as a nation, is also undergoing rapid digitization across its various

sectors, and is also not immune to the increasing number and severity of cyber threats.

Figure 1.2 depicts the most affected countries which is very frequently been targeted by the

cyber attacks where India continues to be one of the top-three most attacked countries
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by nation-state actors in the Asia-Pacific (APAC) region, accounting for 13% of cyber

attacks. According to information reviewed by Mint [8], several high profile cyber attacks

MOST TARGETED COUNTRIES BY NATION-STATE ACTORS

Korea, 17%

Others, 21%

Tiwan, 15%
Pakistan, 4%

Indonesia, 4%

Thailand, 5%

Australia, 5%
India, 13%

Japan, 5%

Figure 1.2: Global landscape of cyber attacks

incidents that Indian power sector has been encountered so far includes,

e The March 2018 attack on Haryana distribution company (DISCOM), which
involved hacking into the commercial billing software of the highest-paying industrial

customers.

e The November 2017 malware attack on THDC Ltd’s Tehri dam in Uttarakhand,

India, which targeted the critical infrastructure to steal sensitive operational data.

e The May 2017 ransomware attack on West Bengal State Electricity Distribution Co.
Ltd (WBSEDCL), which affected the operations of the utility company and caused

a prolong blackout.

e The February 2018 attack on a Rajasthan discom website, which disrupted online

services and potentially compromised sensitive information.

Figure. 1.3 shows the statistical record of total number of cyber intrusions happened in
India as reported in the annual report of CERT-IN. The data reveals an exponential surge
in reported cyber incidents throughout last 6 years span upto year 2022 where year 2021
and 2022 has been found as the worst year so far for India when it comes to cyber attacks
[9]. Tt has also been noticed that Indian power sector are facing such cyber threats with
at least 30 events reported daily. All these aforementioned incidents highlight the growing
threat of cyber attacks on power sector and the need for enhanced and sustainable cyber
security measures to protect it against such threats. Therefore, to cope up with those
cyber physical challenges, countries like the U.S. Government, Department of Energy
(DoE) and NATO nations with the Cyber Defense Center of Excellence (CDCOE), are
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actively investing in research, development, and guidelines to enhance the cyber security

of their power infrastructure.

Cyber Security Incidents in India (Source : CERT-IN)

1600000

1402809 1391457
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2018 2019 2020 2021

Figure 1.3: Statistics of reported cyber attack incidents in India since 2017-22

1.1.2 Types of Cyber Attacks in Power Grid

There are numerous types of attacks that could be carried out in SG. The most commonly
occurring attacks in SG are constructed with each aimed at compromising one or more of
the three security objectives: Confidentiality, Integrity, and Availability as shown in Fig.
1.4.

Integrity attacks [10, 11, 12, 13] target the legitimacy and consistency of information
within the system. Unauthorized individuals may gain access to the operator network
to modify or destroy legitimate data, compromising its accuracy and trustworthiness.
Integrity attacks seek to illicitly delay and alter the original data’s content, including
customer account and billing information, voltage and sensor readings, control commands
and device status to obscure the limited visibility of PS. In the context of power substation
networks, integrity attacks may involve broadcasting fake Address Resolution Protocol
(ARP) network packets to induce malfunction or disconnect RTUs and IEDs from the
substation gateway. Attackers typically penetrate the system’s network security through
methods such as password cracking, wiretapping, or exploiting software vulnerabilities to
gain authentication and access control. Once inside, they may inject false data, manipulate
code, obscure identity of legitimate devices or replay malicious data packets to mislead
system operators into making incorrect decisions regarding system operations.

On the other hand, Confidentiality and Availability attacks [14, 15, 16] aim to disclose
or steal intellectual property, personal privacy, and proprietary information, while also
restricting timely and reliable access to relevant information. These attacks can result in
loss of network availability, leading to adverse consequences such as the loss of real-time

monitoring of the power grid and major power blackouts. Attackers may conduct port
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Figure 1.4: Most commonly occurring attacks in SG

scanning and packet sniffing to capture network tariff information and execute Denial
of Service (DoS) attacks by flooding the network with illegitimate requests or jamming
communication channels, rendering them inaccessible for intended use. IP-based protocols
such as TCP/IP and IEC 61850 are mainly vulnerable to such availability attacks.
Additionally, confidentiality attacks like phishing, social engineering involve hackers
impersonating authorized users and surreptitiously enters a communication channel
between two parties. After then, attacker has gained the ability to eavesdrop on the
conversation, potentially steal data, or even spoof the messages between source and

destination.

The aforementioned attacks underscore the significance of implementing strong cyber
security methods to safeguard SG systems from malevolent acts. From the network
layer perspective, the risks presented by integrity, confidentiality, and availability threats
in the SG domain can be reduced by putting measures like encryption, access control,
intrusion detection, and security awareness training into practice. However, to keep
SG infrastructure secure and resilient in the face of challenging cyber threats from PS
applications or physical layer perspective, proactive attack detection, correction and
resilient monitoring and control framework is of urgent need for the overall defense to

secure our power grids.
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1.1.3 Taxonomy of False Data Injection Attacks in Smart Grid Based
on its Attack Model, Target and Impact

False data injection (FDI) attack, has emerged as a most sophisticated form of cyber
attacks in recent times and seems to be a topic of great interest for both, the SG industry
and research. Therefore, this subsection presents a comprehensive taxonomic overview of
FDI attacks particularly focusing on SG based on several key dimensions such as attack

construction model, end target applications, and its impact as shown in Fig. 1.5.

( False Data Injection (FDI) Attacks in Smart Grid )
! { |
—( FDI Attack Models ) —( FDI Target Applications ) —( Impacts of FDI Attacks )
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Information Physical Damage

—_ .
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Figure 1.5: Taxonomy of FDI attacks in Smart Grid

FDI Attack Models: Various threat models exist for FDI attacks in Smart Grids, aiming
to disrupt grid operations. As per the existing literature, earlier the main assumptions for
the method of attack vector construction was attackers possessed complete knowledge
of system topology to remain undetected [17, 18]. However, this assumption is not
always realistic, as attackers often lack resources for extracting topological information
or face restricted physical access to sensitive meters. Later, it was well established, that
based on obeying some observability criteria between the attacking and non-attacking
region of a larger PS, a stealthy attack can also be constructed by exploiting the partial
topological information [19, 20]. Besides, recently alternative approaches of employing
data-driven model-free techniques and load redistribution adversarial models are also
gaining significant popularity. However, the stealthiness of an attack construction model
mainly depends on the nature of power flow (DC or AC) method considered in the

construction process [21]. This usually may differ in terms of attacker’s key motives such
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as minimum allowable threshold selection criteria for successful attack launch, minimum
investment of attack resources and degree of complexity and attack efforts involving in
formulation of stealth attack vector. Although DC-based attacks are less complex and
stealthier, they’re less practical due to the majority of PS applications being nonlinear
with AC dynamics [22, 23]. Now, in the distribution side specially multiagent microgrid
(MG) system, another aspect is added with FDI attack model formation which defines the
centralized or distributed structure of MG network. Both of the structures associated with
low bandwidth communications channels for exchange of information among Distributed

Energy Resources (DER) units, equally vulnerable to FDI attacks.

FDI Target Applications: Cyber attackers typically target specific SG applications,
components, or functional entities across power generation, transmission, distribution,
and active distribution networks. As far as the generation and transmission sides are
concerned, Automatic Generation Control (AGC) is critical for maintaining grid frequency
by regulating load generation balancing. Attackers may target AGC sensor measurements
or control commands to cause frequency violations, triggering remedial actions leading to
system-wide blackouts [24]. Similar to this, State Estimation (SE) [10], another vulnerable
application in the Energy Management System (EMS), is also a prime target for the cyber
adversaries because its malfunction or large error in the estimated output could seriously
impair all other crucial ancillary services and applications, like economic dispatch, Optimal
Power Flow, and Contingency Analysis (CA). Attackers may deceive the CA process by
deliberately adding a transmission line contingency to the standard contingency list by
introducing fictitious data into the SE process which ultimately causes line overloading
and cascaded blackouts [25]. Aftermath of such event could also impact the Market
Management System (MMS) which aims at facilitating the electricity market operation
by setting location marginal price along with managing transaction between electricity
service providers and utility consumers [26]. Last but not the least, because DERs are
connected with insecure and unencrypted communication protocols on Active Distribution
Network (ADN) side, they are also most likely to be targeted by the PS hackers [27].

Impacts of FDI Attacks: The threat of cyber-attacks primarily impacts the stability,
reliability, dependability, economy, consumer privacy, and social welfare of Smart Grids.
First of all, FDI attacks can manipulate sensor data or control signals to cause voltage
and frequency instabilities in the grid which thereby initiates wrong control commands
that potentially leads to equipment malfunction, overload and physical damage. Injecting
false data disrupt normal power flow calculations, which by mistake, triggers unnecessary
outages on transmission lines [28, 29]. Reliability is also compromised by erroneous
data in decision-making processes, increasing the risk of equipment failures and service
interruptions. Successful FDI attacks weaken the grid’s ability to withstand disturbances,
making it more susceptible to blackouts. Attackers accessing MMS can misuse SCADA
advanced metering infrastructure to manipulate meter readings or falsify customer billing
information, leading to electricity theft [30]. Moreover, by manipulating the real-time and

day ahead pricing signal of electricity market operation through biased transmission line
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congestion, attacker can exploit huge financial profit in virtual bidding process. Finally,
the cumulative impact of FDI attacks, including equipment damage, service interruptions,
compromised grid resilience and energy theft, can result in significant economic losses for
utilities, businesses, and consumers, affecting productivity, revenue, and overall economic

stability of SG [2].

1.2 Literature Review

The aim of the present thesis work is to develop a holistic attack-resilient monitoring and
control framework. To this end, both, the transmission as well as the active distribution
network is considered in the study. A detailed literature survey is carried out in this
section, exploring the existing research, focusing on the cyber attack vulnerabilities,
current monitoring and control solutions, identifying the research gaps and emerging

challenges in the current cyber security frameworks.

1.2.1 Vulnerability Assessment and Its Resiliency Analysis

One of the most important tasks when it comes to power grid cyber security is knowing how
to identify and evaluate the system’s weaknesses as well as how resilient it is to external
events. The foundation of any cyber security strategy lies in vulnerability assessment,
which offers a methodical way to find flaws, openings, and other points of entry that could
be used by a perpetrator. As was previously mentioned, the modern installations of a
variety of equipment, including distributed sources, digital relays, phasor measurement
units (PMUs), RTUs, and IEDs, have become essential parts of this vital infrastructure,
spanning from the generation of electricity to its transmission and distribution which
makes the grid large, sophisticated, interconnected, and complex. This interconnected
nature results in a scenario where a single failure can have severe consequences, ranging
from medium-scale to large-scale blackouts and the destruction of major power equipment
such as transmission lines, transformers, and generators [31]. These failures can result

from two main categories of extreme events.

e Natural, having medium to high impact, high frequency events e.g., violent weather

condition, floods, earthquakes, etc.[32, 33];

e Synthetic, having high impact, low frequency events like cyber and physical attacks,

blended attacks, and human made accidents, etc.[34, 35].

Due to the wide-spread deployment of distributed sensors based technologies and highly
integrated nature of cyber-physical control systems, various critical infrastructures are
now a days becoming targets of various synthetic attack i.e man made attack. These
attacks pose a significant threat to the resilience and security of these infrastructures as
it is witnessed by 2015 Ukrainian power grid attack [36, 37]. A review of current trends
suggests that such attacks are expected to increase in the near future, and thus it is

imperative to focus on prevention, mitigation, and detailed vulnerability assessment in
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a holistic manner. By taking proactive measures to identify and address vulnerabilities
within the power grid, it is possible to enhance their resilience against potential synthetic
attacks. Therefore, the next two subsequent subsection will broadly discuss about the
literature pertaining to existing vulnerability assessment and the framework for resiliency

improvement.

1.2.1.1 Vulnerability Assessment

Reference [38] investigated how coordinated cyber-physical attacks can exploit
vulnerabilities in power systems that follow the N-1 security standard, potentially
overloading transmission lines, resulting cascading failures. A tri-level model is proposed in
to analyze these attacks by utilizing semi-definite programming relaxation and primal-dual
formulation for optimization. Case studies show that in N-1 secure systems, the proposed
attack can trigger the tripping of additional lines, or can creates N-1-1 contingency.
However, the attack’s impact is severely constrained by the load measurements’ bound of
change. A dynamic risk assessment model for CPS against cyber attacks is constructed in
[39] considering both software vulnerabilities in cyber devices and physical consequences
in power systems. It estimates the physical effects of minimum shedding loads in N-1
circumstances brought on by a maliciously controlled SCADA system in a substation.
Another multi contingency vulnerability algorithm is proposed in [40, 41], using graph
theory and DC power flow based linear sensitivity factors. As an aspect of a novel
vulnerability assessment model, [42] utilized a stochastic counterfactual risk analysis
method to get around data limitations of topological information. The research conducted
in [43] evaluates power system cyber vulnerabilities incorporating both physical failures
and cyber security risks by developing a statistical framework. This framework was built
upon human dynamic theory where attacker versus defender interactions are modeled via
static and Markov decision model. Reference [44] addressed the vulnerability of CPS
considering the impact of cyber layer failures on cascading failures. Vulnerability indices
are established based on network structure and power flow properties under different
interface and attack strategies, which helps to analyze the CPS performance before and
after cascading failures. The findings demonstrate that malicious attacks and critical cyber
nodes significantly increase vulnerability. Similarly in [45], a clustering-based vulnerability
evaluation framework is proposed adopting a mixed-integer linear programming (MILP)
approach for searching minimum combination of the most vulnerable communication
channels under certain extreme operational constraints.

Aforementioned literature survey reveals that majority of the reported cyber attack
strategies, and hence, their defense frameworks heavily rely on an aprior detailed system
studies. However, such a detailed analysis of the system along with so much of real-time
data might not be accessible to the attacker for devising an attack. Thus, it will be
beneficial if a vulnerability evaluation approach can be developed which exploits the
topological structure of the system, and thereafter, develops a cyber attack resilient

framework against such power grid structural vulnerabilities. Recently, the concept of
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Complex Network Theory (CNT), has gained considerable attention from the research
community for evaluating the structural aspects of the network’s system vulnerabilities
because of its prominent features and simpler approach of solving various large scale
problems in the domain of different complex networks i.e social networks, biological
networks, citation networks, brain network etc. [46, 47]. Centrality measures are the
essential tools of CNT, which estimate the significance of certain features of complex
networks according to the structural properties of nodes, edges, and their level of
connectedness. There are essentially two categories of centrality metrics exits that are
frequently used to assess the effectiveness of any real world network dynamics and analyze
its influential nodes or edges depending upon the network structure: those that use local
information and those that use global information [48]. Since it only looks for local
information, the local metric has the advantage of a somewhat faster computing speed,
whereas the global metric has a moderate to high computational complexity but measure

network’s overall performance from a wider angle.

Numerous interdisciplinary studies have been conducted by modeling conventional power
grid within the framework of CNT, which used various fundamental traditional centrality
indices, such as degree centrality, betweenness centrality, closeness centrality etc., to assess
the structural vulnerabilities of power network by quantifying the structural importance
of any nodes or edges [49, 50, 51, 52, 53]. The results have shown that electric power
networks not only have the characteristics of small-world networks [52], but also have
the crucial characteristics of scale-free networks [51, 53], which make it vulnerable to
deliberate attack and sturdy to random attack or accidental failure of transmission lines.
In [54], a two-step screening-and-ranking approach is proposed to assess the vulnerability
of transmission grids under extreme contingencies i.e natural and synthetic attack event.
At its first step, vulnerable transmission lines are selected based on critical eigenvalue
sensitivities and topology analysis that searches for the cutsets in the system leading to
islanding. In the next ranking step, time domain simulation are performed to rank those
screened out transmission lines according to their actual dynamic impacts. Since most
cyber criminals will only possess a limited amount of system information, a standard
power grid N—1 security analysis cannot be expanded to fully evaluate the risk. Therefore,
authors of [55] make use of graph theory based closeness and edge betweenness centrality
metric to investigate cyber physical vulnerabilities for N-X contingencies with limited
resources. The simulation results of the method shows that pertaining to the loss of bus or
node injection, closeness centrality seems to be a superior vulnerability assessment tool for
identifying high impact event than the edge betweenness centrality which aim to assess the
loss of multiple line outages. However this centrality based methods have a limitation on
selecting maximum number of top contingencies upto three. In reference [56], an extended
betweenness centrality metric is used by incorporating some electrical parameters in the
formulation of traditional centrality to identify vulnerable components of the network. But
in that ranking scheme topological attributes are completely ignored and dynamic ranking

are also not incorporated for power system vulnerability analysis. Therefore, it will not be
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as good as contingency ranking metric to identify critical components. In [57], an improved
betweenness is proposed over adjacent graph based on mapping of topological parameters
to electrical network to assess the vulnerable features of the transmission networks. But
this proposed approach, includes the effect of overload mechanism only due to spontaneous
fault but not the impact of attack. The authors of [58] developed various node-attacking
strategies and conducted an empirical analysis of their effects on the structural perspective
and operational performance of the power grid using a number of conventional centrality
metrics. But the only attacks shown are node attacks, which are less probable than line

attacks.

1.2.1.2 PMU Equipped Secured Metering Framework

One way of utilising the vulnerability assessment results is to exploit the vulnerable points
in designing of a secured metering groundwork to prevent or mitigate the effect of the
cyber-physical attack on the grid infrastructure. Identification and then protection of
basic measurements set with advanced information technology (IT) security measure or
safeguarding certain measurements with the deployment of PMU are the key ideas to
improve the resiliency in attack detection frameworks [59, 60]. A greedy approach was
presented in [17, 61] to choose a small subset of measurements that must be protected
against data integrity attacks by strategically placing secured PMUs so that the attacker’s
attack resources rise several times higher than they would if there was no protection.
However, the greedy approach based methods may stuck in local optima and thus not
able to assure the best optimal choices of PMU location all the times. Finding the bare
minimum number of connected lines in a system architecture to maintain observability
requirement is also crucial for executing vulnerability evaluations and enhancing online
security monitoring, in addition to identifying critical PMU deployment locations. An
observability recovery problem is thus formulated as a MILP problem in [62] to find the
locations for sequential restoration of PMUs after a massive cyber attack on the grid
that affects the situational awareness and cyber physical resilience. However, a priori
information of optimal sets of PMU based on greedy and random strategies are required
in advance to accelerate the recovery process. Reference [63] have effectively addressed
this issue through the development of a bi-level optimization problem where the lower level
problem carries out the job of finding traditional Optimal PMU Placement (OPP) for some
selected combination of secured lines and the upper level problem is used to determine the
optimal allocation of specific lines, allowing utilities to make better decisions regarding
power system monitoring based on available information of critical buses and transmission
lines. The major difficulties that arise out of the optimization problem are lack of
transparency between two levels which obscures interpretability of accurate line selections,
convergence issues over a large scale system and computationally expensive and complex
solutions. Another methodology for optimizing the placement of PMUs considering both
system and topology aspects of disturbances are presented in [64]. The proposed approach

intends to improve the accuracy of pre- and post-disturbance monitoring, especially for
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single transmission line outages, by articulating the PMU placement problem to assure full
observability of power systems and integrating post-disturbance variations. The authors
of [65] demonstrate an ingenious pre-deployment PMU technique that works in harmony
with the current PMU deployment approach. This is capable of deterring an attacker
from successfully launching a linear FDI attacks. In order to combat different injection
in wide-area monitoring and control systems, a multi-sensor temporal prediction based
wide-area control method is developed in [66]. This method collects real-time measurement
data from available PMUs, modifies those estimates using a temporal prediction filter
to find any discrepancies. However, the effectiveness of the temporal prediction filter
heavily relies on its ability to identify patterns specific to malicious injections thus it
might lead to false positives, where discrepancies are identified even when no malicious
injection is present. This can trigger unnecessary control actions and disrupt normal grid
operations. Modified Teaching-Learning Based Optimization has been used to solve this
multi-objective PMU placement problem. An end to end PMU-based attack resilient cyber
physical framework in Wide Area Monitoring and Control System has also been portrayed
in [67]. In this work, an in-depth resilient architecture, various attack resilient algorithms
are developed which effectively denominate the aspects of cyber-security risk assessment,
attack detection, prevention and mitigation approaches. The above mentioned literature
survey reveals that majority of the existing approaches are computationally expensive,
complex, requiring apriori system information, struggling to find global optimal PMU
locations, often settling for suboptimal solutions and mainly focusing on observability
without considering the order in which they installed in face of multi-layer of line outages
which mainly caused due to cyber attacks. Thus, a simple yet effective smart metering
placement framework is still of interest which can secure an optimal set of measurements

using minimum investment.

1.2.2 Replay Attack Resilient State Estimation Framework at

Transmission-Level

Once a secure PMU infrastructure is established throughout the system, the next
subsequent critical task is leveraging these secure measurements in EMS applications,
notably Power System State Estimation (PSSE). However, the PSSE is highly susceptible
to various data integrity attacks, specially Replay Attack (RA), emphasizing the need
for an attack-resilient framework to safeguard PSSE, upon which many other EMS
applications like optimal power flows, economic dispatch, contingency analysis rely.
Therefore, the following subsection will delve into existing literature on available security
measures for attack-resilient PSSE against RAs. It has been acknowledged by various
research studies that sophisticated data integrity attack such as FDI attacks, RAs etc are
designed with the intention to fool the traditional state estimator and remains undetected
from the defender’s surveillance which ultimately arises the concerns of detection and
control of attack extremely challenging. There mainly three broad categories of cyber

attack that very frequent to been seen in CPS are: denial of service attacks, where
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superfluous illegitimate requests are being sent to the host machine to temporarily or
indefinitely disrupts it services; data injection attack, where a carefully designed synthetic
unknown value is injected with the original measurement set to falsify it without being
noticed by defender’s security mechanism; and replay attack, where a valid transmission of
data is first fraudulently recorded and then maliciously repeated or delayed with the use of
a record-with-replay attack script features as shown in Fig. 1.6. The first two categories
of attacks can be somewhat minimized or prevented to some extent by using anomaly
identification and multi factor based authentication tools, implementing strong firewall,
intrusion detection and data loss prevention mechanism, advanced statistical and signal
processing based attack detection methods [68]. However, as compared to above two types,
on one hand replay attacks are in general very easy to be executed in real practice and on
the other hand a bit difficult to be spotted due to maintaining statistical similarities of
the replayed signal with the original observations and thereby having capability of passing
examination of cryptographic keys, resulting interrupting the power delivery and degrade
system performances. Thus, this subsection explores those literature that intend to replay
attack (RA) detection and its secured isolation from the CPS.
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Figure 1.6: Execution of Replay Attack and its impact on Power System State Estimation

To ensure the security and reliability of CPS in the face of RAs, various defense mechanisms
have been proposed out of which attack detection is considered as a fundamental element
of security measures. The existing literature classifies these defense approaches into two

main categories: Passive Approaches and Active Approaches.
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1.2.2.1 Passive Approaches:

The Passive Approaches are the ones which utlise some observatory parameters such
as model residuals, measurement estimates, computational and sensory resources etc.
References [69, 70] investigate the issue of RAs in securing distributed state estimation
using a multisensor approach. At first, the compromised sensors are identified and then
with the help of designed distributed observers the adverse effects of the attacks can
be eliminated. Another approach for secure state estimation in CPS is presented in
[71], emphasizing multisensors information fusion. However, the above-mentioned studies
needs for further development in improving the detection rates of RAs. Additionally, this
multi-sensor based RA detection method assumes proactive protection of some sensors by
operators, making them immune to manipulation but involving computationally expensive
operations, limiting real-time implementations. Kalman filter integrated with linear
quadratic Gaussian regulator is used in [72] to develop a data driven methodology to
detect RAs in SCADA sensor or meters. At first, the state space modelling of plant and
measurement function is derived and then statistical measure over the model residuals are
utilized to detect RA. However the proposed approach is limited to liner-time invariant
system only. Reference [73] introduces a modified receding-horizon control approach for
discrete-time linear time invariant system to address RAs and assesses its impact on
the system performance. In sensor networks, the issue of distributed Hoo filtering in
discrete-time nonlinear systems susceptible to RAs is examined in [74]. It establishes
a pattern to explain the temporal behavior of RAs and adds an indicator variable to
detect them. A real-time, PMU-based data-driven cyber-attack detection mechanism is
proposed in [75] to detect continuous RAs in wide-area monitoring, protection, and control
system employing Autoregressive Integrated Moving Average modeling and Kullback
Leibler divergence analysis. However, a major disadvantage of this time-series model
based replay attack detection method is the substantial amount of data preprocessing
and tuning work required. It is highly dependent on precise topology knowledge and
system parameters, which may vary according on the load conditions, as well as a
precise understanding of the probability distribution of time-series data. In order to
successfully identify RA, the authors in [76] use the relative changes in eigen value
information derived from singular value decomposition and Pearson correlation of PMU
measurements. However, there are growing concerns over the method’s effectiveness and
a significant computing overhead, especially when dealing with RAs that exhibit delays
or long playback duration. A new control strategy is proposed in [77] utilizing standard
Model Predictive Control (MPC) scheme to detect replay attacks and take corrective
actions. It leverages the receding horizon nature of MPC and the concept of controllable
sets to identify inconsistencies caused by replayed data. An idea of using blockchain-based
decentralized framework to addresses the challenge of detecting cyber attacks in large-scale
power systems with real-time sensor data is first conveyed in [78]. This approach focuses
on detecting coordinated RAs based on locally reported alarms and associated statistics,

while preserving data privacy. In general, the major limitations of the above-mentioned
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passive approaches lies in the fact that, firstly some of the methods are not suitable for
bulk power delivery systems as in such case it is very difficult to get suitable linearized
model without much approximations. The accuracy of some of the model-based techniques
heavily depends on the topology information and knowledge of system parameters which

may change in loading condition.

1.2.2.2 Active Approaches:

Active approaches to RA detection involve intentionally injecting an external signal, such
as noise or a specific watermarking signal, into the system to monitor its response. These
methods rely on analyzing the system’s output in relation to the injected input to detect
RAs effectively. The receiver compares the system’s response to the injected challenge
with a pre-defined expected response based on the challenge design. Unlike passive
approaches that rely solely on analyzing existing data patterns, active methods create
a dynamic environment where deviations from expected behavior can reveal anomalous
sensor readings caused by replay attempts of the adversary. A popular strategy for RA
detection in active techniques is the addition of watermarking signals [79, 80, 81, 82, 83],
i.e., encrypt the measurement signals and control inputs with embedding watermark.
Subsequently, a range of statistical tests are conducted in an attempt to potentially detect
RA signals and suggest countermeasures for attacks. This watermark can be a random
sequence, a cryptographic hash, or any signal designed to be easily detectable by the
receiver. For example, an intriguing approach for periodical injections of independently
Gaussian noise or any harmonic oscillation to the control signal which is only known
to defender was carried out in [79, 81]. This carefully chosen "noise” introduced into
the system is commonly known as watermarking, which deliberately creates discrepancies
between the genuine system states and the compromised ones in the event of RA. Unlike
the previous method, authors in [82] proposed a frequency-based detector for RA detection
in CPS where a sinusoidal watermarking signal with a time varying frequency as an
authentication signal was injected in the closed-loop systems and then checks if the
frequency components in the output signal match the time profile of authentication signal
or not. However, these strategies are effective in achieving high accuracy in detection,
but it necessitates meticulous design and safeguarding of the authentication signal with
compromises in controller performance. In reference [83], the authors explored a dynamic
variation of watermarking which involves embedding unalterable patterns into a medium,
capable of detecting any manipulation of sensor measurements. Apart from these, there are
other variants of watermarking methods can also be found out in literature such as additive
[84], multiplicative [85], time-varying [12] and optimal watermarking [86]. Additional
complexity with increased cost in the design and implementation of those watermarking
signal generator is one of its major hindrance with this class. Also the assumption of taking
full access of all the available sensors in the CPSs followed by some of the papers seems not
to be so realistic in practical sense. Nevertheless, this approach has also certain weakness

such as: Need of improved detection rate, RAs identification may gets failed if signal be
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encrypted by the attacker before coded and limited tolerance for extended-duration RAs.
The preceding literature surveys have effectively underscored the critical need for secure
metering and resilient infrastructure at the transmission (T-system) level, along with
existing approaches to address these challenges. However, as the focus of this thesis extends
to provide an end-to-end cyber attack resilient monitoring and control framework, it is
crucial that power system researchers should also consider the distribution (D-system)
side’s cyber attack vulnerabilities as well. This is particularly relevant in the context
of microgrid systems, which are currently been experiencing rapid growth in distributed
renewable energy penetration but often lack robust cyber security measures. Therefore,
the subsequent literature survey sections will now delve into the detection and security
measures of D-systems, necessary to maintain reliable and resilient distributed energy
infrastructure. Thus, to start with, the next literature review section will now explore
methods for accurately detecting, classifying, and localizing cyber attacks within MG,

aiming to enhance the overall cyber security posture of critical energy systems.

1.2.3 Cyber Attack Detection and Classification Techniques in Islanded
Microgrid at Distribution-Level

The concept of microgrid brings up a new dimension in monitoring, protection and control
of information and power flow to the existing distribution management system (DMS)
which fulfills the gap between the reliability and sustainability requirements and manages
diverse power demand issues economically with the advantages of significant reduction of
pollution margin, higher energy utilization rate, lower power transmission loss, etc with
the effective and coordinated integration of (DERs). All of these multifaceted benefits
makes MG to be a promising solution for future self-reliant autonomous power delivery
networks which can operate in either grid-connected or islanded (autonomous) mode via
three-level hierarchical control architecture: primary, secondary, and tertiary [87, 88].
Among these hierarchies, secondary control is the main critical component which guarantee
the reliable operation of MG by compensating any deviation in the voltage and frequency
parameter with the help of exchanging global information among the neighboring DERs.
In that perspective, MG is also be a part of complex CPS and familiar to be known
as an networked control multiagent system where each DER is treated as an agent and
they have the privilege to communicate among themselves to serve certain system-level
objectives and thus reach to a global consensus agreement [89]. Figure 1.7(a) and 1.7(b)
shows two commonly used communication architecture of DMS i.e (a) Centralized and (b)
Distributed, where the co-operative secondary control mechanism for both of the above
control structures are equally vulnerable to high risk of data manipulation attacks due to
widespread use of remote sensing, transmitting and computing devices such as sensors,
actuators, controllers, and vulnerable communication links. Alongside the high volume
deployment of power electronic converters with their cloud-based software-intensive
controllers integrated with unencrypted susceptible communication protocols such as
Modbus, DNP3, IEC 61850, TCP/IP, make the sensors to be easily compromised, alter the
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data of communication ports via packet sniffing and thus creates a treacherous channel
for the intruders that allows them to take full access of DMS for hijacking the DER’s
controllers and thereby perform numerous malevolent activity in the grid [90, 91]. The
injection of corrupted data either in the secondary controller of DERSs or in its neighboring
communication links forcefully introduces significant errors in the voltage and frequency
distributed secondary consensus law that drives the whole system towards instability.
Under these circumstances, timely detection of malicious attacks with correct identification
of either the misbehaving agents or the corrupted incoming communication link is very

important in the aspect of cooperative network-based MG system. The existing literature
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Figure 1.7: Microgrid control structures, its communication network and its arena that’s
prone to be attacked. (i) Controller hijacking attacks, (ii) False data injection to
communication channels, and (iii) Sensor compromised.

on cyber security issues in islanded MGs can be broadly categorized into three main groups.
The first group focuses solely on cyber attack detection, classification, and localization,
techniques aiming to quickly identify and isolate the affected DERs to restore normal MG
operation. However, this approach may result in compromised DER utilization and impede
maximum power serving capabilities of the MG system. The next two research groups
focus on developing resilient frameworks to mitigate the effects of injected attacks, ensuring
continued reliability and functionality despite persistent potential security threats. Thus,
this current subsection highlights the works belonging to the first group only, while the
next subsection will delve into the details of the next two groups.

In that reference, to address the issues related to cyber attack detection, the authors in
[92] exploit the difference in output of secondary voltage sublayers of DERs to propose a
cooperative vulnerability factor index that can differentiate the attacks on the voltage
sensors of the corrupted agents. At the onset of attack this factor will converge to

some non-zero steady state value, indicating the possibilities of cyber manipulation. A
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unified anomaly detection approach is presented in [93] to calculate a data integrity index
using the Laplacian disagreement function which is nothing but the consensus error of
the communication graph topology following which agents are communicating among
each other within a MG cluster. The False Data Injection Attacks (FDIA) detection
problem in [94] was formalized as monitoring a change in the set of some MG candidate
invariant parameters and identified DERs are then removed from the system in order to
regain MG stability. A discordant-based detection method is proposed in [95] using the
local and neighboring measurements to distinguish the attack nodes under deception and
destabilization attacks on the current sensors. In reference [96], parametric time—frequency
logic was employed to classify cyber attacks and fault-based anomalies in MG. The
proposed detector utilizes time—frequency information extracted from training datasets,
which include anomalous data. During the testing phase, this information is applied to
identify abnormal elements among the normal inputs. Authors in [97], present an idea
to detect FDIA and DoS attacks in the sensors or communication networks based on
signal temporal logic which basically works by evaluating output voltage and currents
of a MG against desired specifications and comparing it with some operational bounds.
A robust cyber-attack detection algorithm is proposed in [98, 99] based on the safe
estimation of states using the Kalman Filtration techniques while modeling the whole
MG in state space. Apart from the above-mentioned model-based methods, a few more
existing works had used various data driven neural network and machine learning-related
model-free methods, such as Artificial Neural Networks [100, 101], Recurrent Neural
Networks [102], Reinforcement Learning [103, 104, 105] and Deep Learning [106, 107]
to detect, classify and localized the attacked node i.e., DERs in MG. However, the issues
with the above-mentioned methods seem to be quite complex and need accurate model
verification tools. Alongside these model-free approaches also increase the computational
burden and system complications due to requirement of voluminous labeled data to train
the detectors.

It has been observed from the above literature that most of the existing works are
implemented keeping voltage regulation and current sharing of DC MGs as a target
application and only few works among [108, 109, 110, 111, 112, 113, 114, 115, 116] are
primarily focused on detection of cyber attacks over consensus-based distributed secondary
control of AC MGs. In [108], a time-dependent cryptographic technique, named as Link

Error Counter is used to detect any data manipulation on the communication links.

A chi-square test enabled, residual-based cyber attack detection method is proposed
in [109] which utilizes a cyber physical real-time reference model built upon a digital
real-time simulator. Authors in [110], used subspace identification method of control
theory as an integrated approach for the detection of attacks in AC MG’s sensors,
controller’s input and local loads via modelling the MG as a state space representation
of CPS. The overall detection framework however is based on centralized secondary
control infrastructure which is computationally expensive and prone to be affected by

single point failure. Additionally, although the above proposed detectors able to quickly
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spotted the multiple attacks with different level of accuracy, but such chi-square test
based attack detection method failed to work faithfully for stealthy attack in the MG
[117]. A fully distributed synchronous detection method is proposed in [111] to detect the
attack DERs by relying only local neighboring communication information. Reference
[112] introduced a novel noninvasive anomaly diagnosis mechanism for inverter based
resources, aiming to ensure reliable and secure operations by classifying grid faults and
cyber-attacks. After collecting locally measured voltage and frequency inputs and mapping
them in a XY-plane, the proposed approach can able to draw the characterization process
by utilizing physics-informed empirical laws and sample-based trajectory analysis. It
still needs qualitative data for training related to various fault scenarios even though
it does not require complicated mathematical models. Designing mechanisms for such
high-accuracy anomaly diagnosis is further restricted by the availability of such qualitative
data. Authors in [113] proposed a framework for developing cyber-security test bed that
counteracts with emerging vulnerable cyber intrusions in power distribution systems which
can jeopardize the safe and reliable operation of DERs. Various types of non-parametric
and parametric attacks, their effects and the proposed countermeasure are demonstrated
via HIL simulation. An attack detection and identification method based on dynamic state
estimation using an unknown input observer (UIO) can be found in [114, 115]. This method
estimates MG states and generates a residual function to detect FDI attacks, triggering
a detection alarm for attack isolation and mitigation. In order to achieve the objectives
of correct identification of attacked agent in the distributive communication network,
a relative entropy based attack detection technique utilizing kullback-liebler divergence
(KLD) criterion is presented in [116]. As per this method, by exploiting the statistical
properties inherited by KLD of auxiliary secondary frequency control input of a DERs
under normal and compromised situation, attack can be detected. However, the technique
described imposes a considerable communication overhead and computational burden on
distributed secondary control. Recent research, such as [118], has also highlighted concerns
regarding the complete detectability of the KLD method. It has been demonstrated
that attackers can still achieve stealthiness by exploiting mathematical expectations,
covariance, and probability distribution knowledge on normal innovation and designed

upper bound parameters of KLD statistics.

While the first group of methods is able to detect attack and is able to mitigate it by
only restricting its spread through the complete isolation of infected DERs, they may
suffer with following major drawbacks: (1) Decreasing system utilization efficiency, (2)
Requiring upgradation of existing secondary control hardwares, and (3) Undermining
consensus agreement in case of severe attacks. Moreover, majority of the above literature
is based on two pessimistic assumptions [119]: (1) The information communicated from the
leader DER is not attackable as the operator strongly safeguards such links through some
expensive advanced security mechanisms, and 2) the resiliency of the network controlled
multiagent system depends on the characteristic features of the network topology, i.e., the

network should always posses graph connectivity of at least more than 2f. That means,
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to prevent f malicious DERs from disrupting the operation of its neighbouring DERs in
distributed consensus rule, the minimum connectivity requirement for detecting attacks
and achieving resiliency with disseminating information reliably is to make at least (2f+1)
neighbours DERs to be intact. Both these assumptions are not always practically possible.
Thus, an efficient cyber attack detection scheme is of interest which can work accurately
even if these assumptions are relaxed.

This motivated to explore the following literature that solves the issues highlighted above,
in the first group by designing a suitable framework where the resiliency against persistent
attack penetration into the MG system can be achieved through successful mitigation of
the attack effect.

1.2.4 Cyber Attack Resilient Control and Mitigation Techniques in
Islanded Microgrid

The second group of research literature involves incorporating additional data signals
alongside commonly transmitted signals in the secondary control layers. This necessitates
the implementation of an extra communication layer commonly called as Hidden Layers
to design a special control laws to mitigate the attack and thus achieve resilient operation.
For instance, in [120] a robust hidden layer-based attack resilient distributed secondary
frequency control (DSFC) scheme is proposed to eradicate attacker’s effort. This scheme
is based on designing a suitable hidden-layer of a virtual system placed on the top of
communication layer and securely coupled with the entities of physical and communication
nodes. However, this method has limitation in selecting some carefully designed
virtual system parameters which if being accessible by the attacker can cause loss of
synchronization among DERs. A similar kind of attack containment based control method
is presented in [121] where, a virtual control layer is designed with hidden networks in a
cooperative and adversarial multi-inverter MG network. The concept of proposing resilient
cooperative distributed secondary control scheme with integration of original MG system
to a virtual system via interconnection of some virtual communication layers, shielded from
being subjected to cyber attack is also fostered in [122]. Reference [123] introduces another
cross-layer resilient control strategy for an islanded AC MG against FDIA and DoS attack
where the bottom layer comprises of physical inverters and load, middle layer contains
communication network for relative information exchange among inverters and the top
layer represents a masked virtual parallel control network that execute resilient control
commands in face of cyber attacks. A few more resilient methods that contain an original
system, a virtual network and its associated hidden layers can also be found in [124, 125].
This competitive design criteria of those methods are verified by the Lyapunov-based
stability theorem to ascertain guaranteed consensus dynamics while the attackers either
intercept the DERs communication networks and corrupt its local state feedback input.
In [126], a novel intrusion mitigation approach is proposed based on a weighted mean
subsequence reduced (WMSR) technique to control the information flow of corrupted

DER via a virtual communication graph. However, the applicability WMSR technique is
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limited by the minimum algebraic connectivity requirement of the communication graph
for providing consensus among the DERs. To enhance the maximum resilience of the
AC MG in the scenarios where DSFC of all DERs are compromised, the authors in [127]
proposed a resilient co-operative frequency control framework. This framework introduces
a few auxiliary state and resiliency index variables into the conventional secondary control
scheme which basically counterbalance the negative effects of the attack penetration by
regulating auxiliary control inputs. However, aforementioned mitigation methods are
effective in dealing FDIAs in DSFC controllers and communication links, but the additional
cost and computational burden due to incorporation of additional hidden communication

layer is a mater of concern for its practical implementation, specially for large systems.

The third group of work mainly focuses on using some observer-based finite time control
scheme or computation of some off-set compensatory terms to control the impact of
the attack on MG secondary control action. For instance, the detection and isolation
problem of FDI attacks are effectively dealt in [128] by introducing an interval observer
to estimate the interval state of the physical system accurately and then utilizes interval
residuals as a detection threshold. Additionally, an attack signature logical judgment
matrix-based isolation algorithm is also proposed to isolate sensors where FDI attacks
may be injected. Another residual observer based attack detection and mitigation method
is discussed in [129] which exhibits it effectiveness in dealing with intermittent integrity
attack in MG while satisfying network and stability constraints. Using distributed
observer, an improvised attack detection and compensation method based on confidence
and trust factor with faster convergence speed are proposed in [130, 131]. In [132],
conventional secondary control is replaced by a novel integrated distributed control for
frequency and voltage regulation to make the controllers resilient to cyber-attacks. A
distributed adaptive algorithm is proposed in [133, 125] by combining a distributed state
observer and H.,, controller to mitigate the deception attacks on the MG controllers
and sensors. In [134, 135], the authors employed distributed sliding mode control to
estimate false signals and calculate cyber-resilient offset compensation terms, aiming to
effectively mitigate cyber attacks in AC MGs. However, such methods necessitate heavy
tuning efforts to properly scale hyper-parameters of the models and hence dynamic load
sharing performance and retaining system stability against persistent attack situation is

questionable.

Table 1.2 presents a comparative state-of-the-art summary of the existing literature on
cyber-attack detection and mitigation strategies, emphasizing its key differentiating factors
such as type of system considered, requirement of additional resources, computational
overhead, resiliency capacity, response against natural events, and detection and mitigation
capability. Furthermore, it highlights the validation tools adopted by each approach,

providing insights into their effectiveness and applicability in real-world scenarios.
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Table 1.2: Comparative Performance of various Cyber Attack Detection and Mitigation
Schemes for Islanded MGs

Effectiveness Localization Attack
Grid | Processing | Resilience | Additional | During Fault | Attack Detection | . .. ., | Validation
Ref e of Attacked Mitigation
Types | Overhead | Capability | Resources | and Load | Types DERs and Tools
Change Isolation
[136] AC High N/2 VHCL X ngé/ X v X Matlab
[137] AC High N/2 X Load FDIA X v X }];i%%) C{
[138,98] | DC High NS LO+UIO X FDIA v v X Matlab
(131, 130] . Case s
13 AC High N/2 DO Load FDIA X v Dependent! Matlah
Opal-RT
: FDIA/ Case HIL+
[116,108] | AC High N2 X X DS " v Dependent! | Raspberry
Pi
126,10 | AC | Medium N VHCL X FDIA X X G Nl
Dependent
Typhoon
: HIL+
[121] AC High N/2 VHCL X FDIA X X v ISPACE
1202
: FDIA/ PSCAD/
[123] AC High NS VHCL Load DeS X X v EMTDC
[132] AC Medium N DO+AC Both FDIA v X v }]?]?\?TAII)) é
[133,140) | AC High N DO+AC Load FDIA X X v Matlah
[141] AC Low N-1 X Both FDIA v Detection v Matlab
14 | ACDC| Medum | Np2 DO Y I | x N Depiszeml ggﬁf;{g
(143, 144] o FDIA/ |
110 DC Medium NS X X DeS v v X Matlab
. Case ‘
[145] DC Medium N/2 DO X FDIA " v 1| Matlab
Dependent
0] | DC | High Ng | Trining Load | FDIA X X v Matlab
Data
46 | AC | High NS Trgifg Load | FDIA X v x Matlab
7 | e | High Ng | Taduing X FDIA X / x RTDS
[147] g
Data
[111] AC Low NS X Load FDIA v v X Matlab
[148] AC Medium N/2 X Load FDIA v Detection v Matlab
"Depends on the nature of algebraic graph connectivity, N: Number DERs unit in MG, NS: Not Specified, VHCL: Virtual hidden Control Layer,
DO: Distributed Observer, LO: Luenberger Observer, UIO: Unknown Input Observer, BSMC: Backstepping Sliding Mode Control, AC:
Adaptive Controller/Compensator, HIL: Hardware-in-Loop
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1.2.5 Cyber-Secured Islanding Detection

The rise of DG systems has brought about the critical issue of islanding, wherein a section
of the distribution network becomes electrically isolated from the main power grid but
remains powered by DGs. It is imperative for DG systems to possess robust islanding
detection capabilities to mitigate the risks associated with islanded operation. Failure
to promptly disconnect islanded generators within 2 second of its formation can lead to
various complications for both the generators and the connected loads, including safety
hazards and equipment damage. This issue however is now becoming more complicated
due to recent rapid digital innovations happening within the grid which enables physical
and remote access to the sensor measurements and local controls to be easy and unsecured,
makes widesperad use of communication servers and networks immensely vulnerable and
heightened the infidelity about the quality and integrity of received islanding data. To this
end, the first segment in this section explores various conventionally available methods for
detecting islanding and non-islanding events, while the second segment delves into efforts
to fortify islanding detection schemes against cyber manipulation or preemptively detect

cyber interference prior to islanding decisions.

1.2.5.1 Conventional Islanding Detection Methods:

In the event of any abnormal condition or fault at utility side, the accurate identification of
islanding is very crucial for changing the operating control modes of DGs to autonomously
operate in islanded condition and ensure reliability of power supply. Thus, to provide
guidelines and requirements for the grid interconnection reliability and performance
requirements for DGs under unintentional islanding scenarios, various islanding detection
standards are prepared as listed in Table. 1.3. However, as far as the detection is
concerned, the existing literature of conventional islanding detection methods (IDMs) are
primarily classified into three categories: (1) Remote or Communication-based Methods,

(2) Active Methods and (3) Passive methods.

Table 1.3: Islanding detection standards

Parameters IEEE-1547 IEEE-929-2000 IEC-62116
Quality Factor 1 2.5 1
Detection time (Sec) t<2s t<2s t<2s

Frequency range (Hz) | 59.3 < f < 60.5 59.3 <f < 60.5 | (58.5) < f<61.5)
Voltage range (p.u.) 088 < V<110 | 0.88<V <1.10 0.8 <V <<1.15

Remote or Communication-based Methods: This method need a dedicated communication
infrastructure between control unit of DGs and utility grid to determine the islanding
state [149]. In [150], a power line carrier communication signal is broadcasted from
the utility substation to a designated distribution feeders path. In case the signal is
lost by the receiver of DGs, an islanding scenario is suspected. There is an idea of

using transfer trip which majorly monitors the status of all the circuit breakers and
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reclosers of an area to take decision over islanding events. This scheme needs standard
data communication for the practical implementation [151, 152] . There are some other
types of remote-based method also exists which necessitates installation of some electronic
component such as inductor or capacitors which are normally connected in open state.
However as soon as islanding occurred, the circuitry of the component gets closed due
to significant changes of impedances detected at Point of Common Couplings (PCC) side
[153, 154]. Nevertheless the remote or communication-based IDMs are very fast with
having almost zero Non Detection Zone (NDZ), but the major obstacles of the practical
implementation of such methods is huge capital investment over specialized hardware
and expensive communication infrastructure requirements which might gets failed in any

adverse system condition.

Active Methods: This philosophy of this method is to inject some minor disturbances
in to the DGs control unit to observe how that influence the power system parameters.
This observances introduced a large impact against such a modest disturbance injected
when the DGs are actually islanded, whereas the impact can be usually negligible in grid
connected condition. In [155], a disturbance is generated by injecting a signal equivalent
to 1% of the d-axis current reference at a frequency of 20 Hz. Additionally, in [156], a
disturbance is introduced into the maximum power point tracking controller when the
absolute deviation of the output voltage exceeds a predefined threshold. In addition,
various other considerable contributions to the active islanding detection techniques are:
harmonic current injection and harmonic distortion-based technique [157, 158], impedance
based active frequency drift [159], sandia frequency shift [160], active slip frequency [155],
phase angle shift [161, 162], Active correlation [163, 164], negative sequence current
injection [165] etc. Although active methods have a zero Non Detection Zone (NDZ),
injecting disturbances into the inverter control circuit can degrade power quality, cause
unwanted transients, and result in reduced performance, particularly in scenarios with

multiple DG systems.

Passive Methods: Continuous monitoring of power system quantities and electrical signals
at the PCC and thereafter compare its natural variations with a predefined thresholds are
the key working ideology of this method. The conventional passive islanding detection
methods such as over/under voltage (OUV), and over/under frequency (OUF) are now
modified or combined with some other signal-processing and machine learning based
techniques as reported in various literature. For example, support vector machine
[166, 167], principal component analysis [161], Decision Tree [168], Wavelet Transform [169]
and other neural network based [170, 171] approaches are the example of few modernized
ML techniques commonly familiar for islanding detection. Reactive power control based
method [172] is another very popular passive anti-islanding detection technique which rely
on monitoring reactive power variations within the power system to detect islanding events
passively, without the need for actively injecting signals or modifying system parameters.
Reference [173] utilize the rate of change of dynamic load behavior to devise an passive

islanding scheme consisting of both synchronous and inverter based generation. Apart
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from this, a few more passive islanding techniques such as Rate of Change of Frequency,
Rate of Change of Voltage Phase angle, mathematical morphology, modal decomposition,
transient event detection along with positive sequence superimposed current angle at PCC
has been found in [174, 175, 176, 177, 178|.

A detailed literature review of the most popular islanding detection scheme under all the
available IDMs and their comparative performance on various parameters are summarized
in Table 1.4.

1.2.5.2 Cyber Secured Islanding Detection Methods:

The islanding detection problem is highly susceptible to cyber attacks in following three
ways [189)].

1. It is feasible that cyber physical attacks of any type can target the grid, changing
a crucial signal parameters (voltage, frequency, phase angle, current etc) before it
reaches to an IDM and creates a false, inadvertent islanding scenario. This fake
action not only compromise the reliability and resiliency of the microgrid but also
disrupts the power supply to critical loads, posing potential safety hazards and

economic losses.

2. On the contrary, if a genuine islanding scenario occurs, but the attacker manipulates
the results to mask it, the microgrid may experience severe fluctuations in frequency
and voltage. This can lead to a significant reduction in power quality, causing damage

to electrical equipment, particularly sensitive loads.

3. Furthermore, some islanding detection techniques heavily rely on proliferation of
communication channels and gateways to transmit measurement data to the control
center for processing via software-defined algorithms. However, this reliance poses
significant risks of unauthorized data manipulation, DoS attacks, or damage to the

communication channel, potentially disrupting actual islanding detection algorithms.

Currently, there is a scarcity of literature available addressing this crucial issue of
cyber-secured islanding, which are now being discussed below.

Literature suggests that the first crucial step towards enhancing the D-System’s resiliency
is to integrate synchrophasor technologies. The advent of yPMUs has emerged as a
valuable tool in the MG environment, offering high precision sampling rates for monitoring
purposes which in turn increased visibility and situational awareness to DMS. Thus, owing
to high resolution measurements obtained with high speed data acquisition, it is evident
from the literature that there is an ongoing trends of making use of pPMUs in various
pioneering work of unintentional islanding detection with the aim of achieving fastest
response time, accurate identification of point of disconnection, lower cost, negligible NDZ
and finally maintaining grid stability and prevent potential safety hazards [190, 181]. In
terms of cyber security as well, the inherent intelligence of pPMUs can contribute to

reducing the risk of cyber attacks aimed at manipulating islanding scenarios [191]. In
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extreme conditions when the communication channels between the control center and
the pyPMU may be compromised, uPMUs equipped with such intelligent autonomous
upgraded module will be of great assistance to reduce the cyber security risk and bolster
the resilience of islanding detection in MGs. This similar concept is also utilized in
[192, 193] for reducing the risk of cyber attack, where uPMUs are first deployed in each
busses of MG to obtain the voltage information. Then an intelligent separate subroutine
is implanted within uPMU architecture that exploits the angle difference between positive
and negative sequence component for generating decision over an islanding event. The
data transmission channel employed in conventional pPMU applications for island
detection is not used in the suggested method which reduced the risk of cyber attacks.
However, cost of placing pPMUs at every bus will be a major hindrance of its practical
implementation. The difference in positive sequence superimposed impedance angle
between PCC and DG ends are used in [194] for devising a secured islanding detection
method. The distinction between non-islanding and islanding event is confirmed based on
observing the changes of the index value in positive and negative direction respectively.
However, the proposed method need the PCC signals to be transmitted in each cycle to
the DG end which is designed to be secured by integrating advanced security measures

and encryption protocols.

With the research gaps identified through the comprehensive literature survey done in
previous section, several potential areas for further investigation are revealed which sets
up the motivation for the undertaken research. Thus, the next section is dedicated for
delineating the motivation to elucidate how these identified gaps serve as the driving force
for the research endeavors and highlight the significance of addressing them in advancing
the field.

1.3 Motivation

Traditional power systems operation primarily focused on creating strategies to manage
physical faults or disturbances in the system, such as outages, deviations from normal
frequencies, and voltage imbalances. But present-day smart grids are getting equipped
with more sensing, communication, and distributed control techniques to accommodate
renewable generations, electric vehicle loads, storage, demand response, and other
emerging technologies. This substantially increases the data transfers at both the
transmission (T-system) as well as the distribution-level (D-system) grids, and makes
the grid more vulnerable to cyber attacks. This thesis has, therefore, undertaken the
task of developing an end-to-end cyber-attack resilient monitoring and control framework,
considering both the T and D systems.

The transmitted data when reaches at the CC, is first used to carry out the observability
analysis of the PS. In case, the received set of measurements are sufficient enough to

estimate all the system voltages, the real-time measurements are fed to the very crucial



Chapter 1. Introduction 29

application , i.e., the Power System State Estimation (PSSE). The output of the PSSE
thereafter serves to many critical applications’ decisions such as optimal power flow,
economic dispatch, contingency analysis, etc. Clearly, the very first step towards building
an attack-resilient framework demands the system operators to perform wvulnerability
analysis in order to pinpoint the weak points in their system that need to be protected
from the possible data breaches, or have a fallback in order to make it more resilient to
external threats. Vulnerability analysis is associated with the physical behaviour of PS
which mainly has two aspects: (i) topological structure and (ii) operational states. Thus,
there are two types of vulnerability analysis in power systems: structural vulnerability
analysis and conventional vulnerability analysis. Large-scale power systems face challenges
for conventional vulnerability analysis, which is based on complete operational data,
topological information, and standard engineering models. Conversely, a power system’s
physical behaviour and its topological structure are closely related because a structural
alteration may affect a power system’s operating conditions, which, in turn, may affect the
system’s physical behaviour. Unfortunately, current research often overlooks this structural
vulnerability perspective, leaving a critical gap in understanding the full range of threats
and unobserveability issues posed by such attacks. Subsequently, this gap also leads to
a potential solution which can make the grid resilient from cyber threats. Making some
of the meters immune to attack so that the observeability of the system is maintained
even in attacked scenario can be one of the effective approach towards devising potential

remedies.

After safeguarding a set of critical meters in the system, the next vulnerable point to be
strengthened in an attack-resilient framework naturally becomes the heart of the EMS,
i.e., Power System State Estimation. The manipulation of operational states of the system
via injection of false data into the unprotected sensor measurements or replaying them
with previously recorded data after some alteration can greatly impact the outcome
of the PSSE, and thereby, of the subsequent critical decisions. Commonly observed
attacks in the PSSE are data injection attacks, where a synthetically designed value is
injected to falsify measurements without detection; and replay attacks, where valid data
transmission is fraudulently recorded and maliciously repeated or delayed with the use
of a record-with-replay attack script features. The first category of attacks has been
well researched in the literature, and can be minimized or prevented by using anomaly
identification and multi factor based authentication tools, implementing strong firewall,
intrusion detection and data loss prevention mechanism and advanced statistical and
signal processing based attack detection methods. The impact of RAs, however, has
not been rigorously analysed on the PSSE. The execution of RAs is very simple and
straightforward, but it is difficult to be spotted due to maintaining statistical similarities
of the replayed signal with the original observations and thereby having capability of
passing data intrusion detection test. So, in order to safeguard the PSSE against RAs,
first, (from an attacker’s perspective) the modelling and injection of the RAs on a limited

(but impactful) number of PS sensors needs to be carried out. Next, (from defender’s
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perspective) a defensive correction approach needs to be developed for the PSSE to identify
and resist different kinds of RAs by utilizing the secured sensor measurements in the

estimation process.

Conventionally, cyber attacks are perceived as primary threats to transmission systems
(T-system) owing to huge power flows associated with the transmission network, and
thereby, the amount of impact these attacks could create in T-systems. It is, however,
crucial to acknowledge vulnerabilities in D-systems as well, particularly in the light
of heavy integration of the DERs at D-level, in order to develop end-to-end defense
strategies. In D-systems, MG involves the communication and networking architecture
for the efficient monitoring and control operation of DER units. To maintain the
voltage and frequency stability throughout the grid, DERs need to communicate their
information to its neighbouring DERs, or master controller unit through a prescribed
communication architecture i.e., either centralized or distributed, both of which are
equally vulnerable to attacks. Cyber criminals focus their attacks on components of the
power system that heavily rely on information technology. These include the controller
network, responsible for executing DER’s distributed secondary control algorithms and
programmed logics, the sensors network, which comprises software-based RT'Us and IEDs,
and the communication network, utilizing cables and diverse protocols for efficient data
transmission. Consequently, cyber attacks can manipulate data transmitted within the
smart distribution grid architecture, affecting parameters such as power injection, voltage
measurement, line flow, and the operational state of relays, breakers, and switches. This
motivates to establish a coherent attack resilient unified framework for stable functioning
of MG. As per the literature review, the existing knowledge gap fuels two compelling
research pursuits: (1) precise attack detection, localization and classifications to identify
the vulnerabilities exploited, and (2) the design of robust mitigation measures to counter
the attacks on DERs controllers. As far as the attack detection is concerned, most of the
study focused in contributing to identify any observed abnormal event is FDIA or not.
A critical gap still remains i.e, to dissect and pinpoint these attacks because absence of
this information hinders the effective mitigation strategies. So, in D-system domain, it is
envisaged to first accurately detect an attack, followed by the precise attack classification
and localization. Finally, this information is exploited to develop a novel attack mitigation

scheme.

Another pressing challenge within MG networks is the islanding operation of DERs,
wherein these resources persist in operation even after disconnecting from the power
grids. This isolation can have disastrous consequences in terms of power system stability
and quality, as DERs may struggle to maintain stable voltage and frequency within
safe operating ranges. Therefore, detecting islanding conditions becomes imperative
to prevent catastrophic damage to sensitive loads in MG. However, the smart-active
distribution grid, constituting a cyber-physical system with various components such as
Renewable Energy Resources, ICTs, IoTs, and IEDs, faces coordination and security

challenges. These issues make islanding detection methods significantly challenging in
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the presence of emerging cyber threats. Unauthorized access to islanding detection data,
encompassing internal voltage, phase angles, and power output of inverters, can disrupt
the actual islanding detection algorithm, leading to adverse consequences for all grid
components. However, it has been perceived from the literature that current islanding
detection methods often fall short in the face of these sophisticated cyber threats. This
observation propels the motivation to conduct research and devise a novel islanding
detection scheme integrated with a cyber attack detection method. This integrated
approach aims to synergistically address the issues of unauthorized access and data
manipulation, empowering system operators with accurate information and preventing

false decisions regarding suspected islanding events caused by cyber attacks.

Hence, the present-day smart grids requires an end-to-end cyber attack resilient monitoring
and control framework considering the challenges at both, the transmission-level
(T-system) as well as distribution-level (D-system). The framework must encompass
the essential stages of developing a cyber attack resilient strategies, viz., vulnerability
assessment, attack detection, localization and mitigation, extending seamlessly from the

transmission to the microgrid level.

1.4 Aim and Objectives of Thesis

The primary aim and main research objectives for this thesis are meticulously designed in
light of the above-identified research gaps and motivational background.

The overall workflow and the holistic view of thesis organization is depicted in the
Fig. 1.8. This thesis comprehensively investigates cyber security vulnerabilities for both
Transmission Systems (T-Systems) and Distribution Systems (D-Systems) within a
unified framework. For T-Systems, the focus of research contribution is on securing
meter monitoring infrastructure and developing reliable attack detection and control
mechanisms. For D-Systems, the work addresses challenges through resilient control
and mitigation schemes, along with secured islanding detection monitoring. Each aspect of
cyber security challenges is meticulously examined from both the attacker’s and defender’s
perspectives, ensuring a comprehensive understanding of the threats and the corresponding
protective measures.

Aligned with the comprehensive workflow described above, the thesis is designed to meet

the following objectives:

Objectives:

1. To carry out a topological vulnerability assessment, and to develop a cyber-attack

resilient secured metering infrastructure for the T-system.

2. To devise a novel framework for safeguarding the power system state estimation
from replay attacks by exploiting the limited secured measurements obtained from

objective-1.
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3. To accurately detect, classify and localise cyber attacks in an islanded AC microgrid

System.

4. Following the detection and attack localization information from objective-3, to
devise a robust attack resilient control framework to compensate the effect of attack

over DER’s secondary control and retain MG’s stability.

5. To develop a cyber attack-immune islanding detection Schemes (IDS) in MGs.

Cyber Attack Resilient Monitoring and Control Framework
from Transmission to Active Distribution Power Networks

..............................................................................................................
K

. Transmission Level Distribution Level
Systems (T-System) Yo Systems (D-System)
; | |
: Secured Meter Monitoring Reliable Attack Detection Resilient Control and Mitigation Secured Monitoring of
Infrastructure and Control Framework : : Scheme of Islanded AC Microgrid ~ Islanding Detection Scheme
Attacker’s POV: At.tacker — w: Attacker’s POV:
: S Modelling Replay Attacks @ & Compromise Distributed | ~
1 Topological Vulnerability — (e o E Vulnerability Issueson &
i (RAS) and Identification P Secondary Control of AC ; ] :
H Assessment . HE Islanding Detection Method :
of Sensible RTU Meters I Microgrid :
Defender’s POV: Defender’s POV: Defender’s POV: Mf
i Cyber Resilient PMU L— Detectionand Control of ! iL— Detect, Classify, Localize Synerglsltlc Islanding
i Ple@Emet Hememei RAs, Safeguarding Power & and Mitigate Cyber [.)ete.ctlon Scheme i
System State Estimation ~ § % Attacks By leniig ey iz
...... Covered in Chap. 2 and Chap. 3 . Covered in Chap. 4, Chap. 5 and Chap. 6

Figure 1.8: Flowchart of overall research work reported in thesis

1.5 Assumptions Considered in the Thesis

1. PMU is considered to be calibrated, error free, resilient and cyber secured device due
to its advanced cyber security features. Information flow through the PMU channels

are safeguarded with proper authentication and key encryption mechanisms.

2. Meter measurements that are kept under the strict surveillance of PMU’s

observability coverage range are assumed to be faithful and tamper-proof.

3. Attackers are assumed to have knowledge and access to critical components such
as substation, human machine interface, communication port and network switches,
enabling them to execute cyber physical attacks on the grid. However it is realistic to
assume that they are always bounded by the limited number of sensor’s manipulation

due to their finite amount of attack budget or resources.
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4. In the context of attack localization and mitigation in D-Systems, only one DER  is

assumed to be targeted at a time by the adversary.

1.6 Thesis Organization

Finally, the thesis work has been organized in the following seven chapters. The brief

summary of each chapter is given as follows,

Chapter 1: Introduction

This chapter starts with the basic overview of cyber-physical critical infrastructure of the
smart grid along with the brief explanation on most commonly seen cyber attack and its
security challenges arising due to modern digitization of the grid. After presenting the
literature survey on the proposed research work, it highlights the key research gaps in
the literature. Then it sets the motivation behind carrying out the vulnerability analysis
and attack detection and mitigation within contemporary power systems, particularly
in the face of intricate cyber-attacks both at transmission (T-system) level as well as
distribution level (D-system). Finally, it outline the thesis’s proposed objectives and

presents the preface of whole thesis work.

Chapter 2: Cyber Attack Immune Metering Framework

This chapter proposes a robust cyber-attack resilient framework, designed to address
structural vulnerabilities in SGs. The proposal is mainly divided into two parts. In
the first part, a novel and effective attack strategy known as Hybrid Between-ness
Centrality (HBC) is proposed from the attacker’s point of view to rank the most
vulnerable transmission lines whose malicious tripping causes severe structural damage
to the power system, losing system’s observability and situational awareness. With the
line ranking information obtained from the HBC, in the next part, a unique objective
function is developed for the strategic placement of PMUs, aiming to safeguard those
resulted vulnerable lines against FDIAs. The outcomes of this strategic PMU placement
yields minimal sets of secure measurements that need strong protection to guarantee
state variable integrity. This helps in enhancing system’s resiliency index and to remain
observable even in presence of a data integrity attack i.e., FDIA in some top vulnerable
lines. The effectiveness of this framework is demonstrated through case studies on the
IEEE 14-bus and New England (NE) 39-bus test systems.

Chapter 3: Novel Replay Attack Detection and Mitigation Framework for

Power System State Estimation

This chapter deals with the problem of detection and correction of a very stealthy cyber
threat i.e., Replay Attacks which can pose significant risks in various monitoring and

control applications of T-systems. The work proposed in this chapter first explores
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the exploitation of topographical information and Power Transfer Distribution Factor to
identify the most vulnerable SCADA meters whose compromised state could jeopardize
the system stability. These vulnerable meters are sniffed and compromised for launching
the replay attacks. Next, based on the secured phasor measurements from optimally
placed PMU locations (as obtained from Chapter 2), a Hybrid state estimation algorithm
is proposed which successfully detects and mitigates any replay attacks, if launched, from
the PSSE measurement set. The effectiveness of the proposed scheme is demonstrated
through simulating the model using the Real Time Digital Simulator (RTDS) on the
IEEE 14-bus and NE 39-bus test systems.

Chapter 4: Detection, Classification and Localization of Cyber Attacks in
Islanded AC Microgrid

This chapter focuses on the cyber attacks in D-systems, more specifically in AC
islanded MG systems. Unlike the existing methods, the precise localization of the source
of the attack is also explored as a key strategy in this chapter, thereby, allowing for
the isolation of affected DERs from the system and minimizing the overall impact.
In order to achieve this goal, two comprehensive detection approaches are presented.
The first method relies on a two-sample distance-based probabilistic measure called the
maximum mean discrepancy in a distributed cooperative secondary control of islanded
MG for the timely detection of any malicious attack with correct identification of the
misbehaving DERs. In addition to this statistical measures based detection, this chapter
also introduces a second approach utilizing a machine learning based classifier, specifically
the XGBoost algorithm to detect, classify and locate attacks. Once the attack is detected,
two statistical inconsistency measure i.e. shannon energy and entropy are calculated
and is utilized to introduce a novel rule-based attack classification approach integrated
with the same XGBoost classifier to classify various types of injection attacks in the
DER’s controllers. Having detected the type of cyber-attacks, lastly a multi-class attack
localization schemes after exploiting a few more statistical features to be incorporated in
the XGBoost classifier, which aids in pinpointing the specific attacked DERs, streamlining
the process of isolating compromised components from the system in worst-case scenarios.
The proposed scheme is validated on a modified IEEE 13-bus islanded AC MGs systems

modelled in the Real Time Digital Simulation environment.

Chapter 5: Unknown Input Observer and Back-stepping Integrated Sliding
Mode Control based Cyber Attack Mitigation Framework

This chapter focuses on developing an attack resilient control framework that has the
ability to mitigate the impact of the attack inflicted onto DER, units. The framework is
built upon the secondary control layer functionalities of the MG as it is most prone to be
targeted by the attackers; aftermath of which leads to cascaded blackouts, endangering

system stability. The proposed resilient controller first assesses the output of the attack
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detector obtained from Chapter 4 for the designing of an unknown input observer that can
keep track the system states which, in turn, helps in computing the injected amount of
attack bias by the perpetrator under compromised situation. Later, the coarse estimated
bias obtained via previous step is further utilized in the backstepping-based sliding mode
controller design approach to generate a suitable control law that enforces the injected
attack to be compensated by finer adjustments of the compensation signal. Notably,
this is achieved without necessitating any modifications to the existing hardware of the
Distributed Secondary Frequency Controller or the addition of extra communication
channels. To thoroughly validate the effectiveness of the proposed mitigation scheme, the
modified IEEE-13 bus distribution test feeder operating in an islanded mode is modelled
in detail with RSCAD software of RTDS. Furthermore, a Hardware-in-Loop (HIL)
simulation control environment incorporating RTDS and dSPACE 1104 R&D controller
is set up for the real time implementation of this proposed scheme to demonstrates
its accelerated convergence speed and superior performance in handling unknown

disturbances, uncertainties, and potential stealthy attacks.

Chapter 6: Synergistic Islanding and Cyber Attack Detection Scheme

Accurate and timely detection of an unintentional islanding in D-systems heavily
depends upon the quality of data and its precise time of arrivals. FDIA, if launched
on the key signal parameter before it being fed to any islanding detection algorithm
may trigger a false unintentional islanding alarm. Cyber attacks can also delay the
islanding decision, prolonging the exposure of vulnerable equipment and increasing
the risk of catastrophic failures. This chapter, thus, proposes a cyber-attack resilient
Islanding detection scheme. Initially, a Kalman filter based cyber attack detector (CAD)
is utilized as a first layer of defense to check the integrity of the measurement of interest
before being used as an input for the novel islanding detection scheme. The proposed
detector, CAD is constructed based on the absolute difference between two very popular
statistical correlation measure named Spearman’s rank correlation and Cosine-Similarity
respectively. As soon as the estimated data obtained from Kalman filtering are found to
be contaminated due to any kind of attack, the proposed CAD quickly tries to trace the
estimated change in the observed data pairs. Apparently when the error difference i.e.,
CAD approaches to zero, a flag is generated to identify the event as cyber attacks. Next,
if the proposed CAD confirms absence of any cyber attack, a novel statistical property
inherited passive islanding detection technique is activated to detect the unintentional
islanding. The voltage mean value and the entropy information is exploited to develop a
Mean based Islanding Detector (MID) along with an entropy-based Decaying DC Detector
(DDCD). The MID and DDCD information is finally utilized to design a statistical relay
digital logic (SRDL) that accurately distinguishes the islanding and non-islanding events.
The proposed scheme is rigorously tested on a real life small scale industrial facility i.e.,
Banshee’s industrial microgrid test system, modelled in the RTDS, on the basis of the
IEEE-1547, UL 1741 standards.
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Chapter 7: Conclusions

This chapter finally summarizes the key findings of the research work carried out in this

thesis, along with a few areas for the future research.

Appendix A: Test System Data

Appendix A discusses the details of various test networks used in the thesis.



Chapter 2

Cyber Attack Immune Metering

Framework

2.1 Introduction

As discussed in Chapter-1, since our future smart grids are going to be integrated with
more monitoring, communications and distributed sensor-based technologies, they are
becoming large, sophisticated, interconnected and complex Cyber Physical Systems (CPS)
which is now being targeted by man-made or synthetic attacks. Therefore, assessment of
vulnerability in the power grid network subject to extreme contingencies, cyber-physical
attack or an unwanted natural disaster becomes a paramount importance to improve
power grid’s safety and resiliency against such unprecedented events. In order to assess
the vulnerability of any network purely from a graph theoretical perspective, this chapter
exploits some of the centrality metrics to investigate power system vulnerabilities from
purely topological perspective by introducing a novel attacking mechanism to attack the
most critical lines of transmission network which leads to major loss of system integrity,
network structure and efficiency. The aim of the proposed work is to equip a given
system with minimum number of Phasor Measurement Units (PMUs) such that the system
remains observable even in presence of a data integrity attack i.e., False Data Injection
Attack (FDIA) in some top vulnerable lines.

The rest of this chapter is organized as follows. Section 2.2 describes the preliminary
concept of graph theory pertaining to the application of Complex Network Theory
(CNT) on a power grid network. The proposed hybrid betweenness centrality attack
strategy is discussed in detail in Section 2.3. Taking the vulnerable lines locations
into account, Section 2.4 proposes a new optimization formulation to obtain optimum
PMU locations with improved redundancy and complete topological observability under
attacking condition. Secured measurements resulting from Optimal PMU Placements
(OPP) are used for resiliency assessment of the network, as discussed in Section 2.5.
Simulation results of the proposed method for vulnerability assessment and attack-resilient
PMU placement are illustrated on the IEEE 14-bus and New England 39-bus systems in

Section 2.6. Finally, the chapter is ended with concluding remarks in Section 2.7.
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2.2 Preliminaries to Graph Representation of Power Grid

To access the power system vulnerabilities, the power network is seen as a complex,
scale-free network modelled using graph theoretic approach. This graphical approach
is useful to obtain the information of the nature of interconnection and the topological
behaviour of the network. The abstract graph is formally defined as G = (V, £, W), where
V is a finite set of vertices, € is a finite set of edges which is analogous to bus node and
transmission lines of a power network respectively and W represents the set of weights of

edge set €.

1. The edges in the set € can be expressed as € = {e; j|v;,v; € V}, where v; and v; are
the extreme nodes of e; ;. e;; = %1, if node i and j are interconnected, otherwise

GZ'J =0.

2. The weights of the edge set € of a weighted graph G, can be symbolized as W =
{wi j|vi,v; € £}, where w; ; € N and w; j C €. If w; ; = 1, the graph is called to be

unweighted.

3. The cardinality of node set V and edge set € is N and M, respectively which
constitutes an undirected adjacency matrix A,g;, of size N X N of a graph network
G, where the elements of the matrix A,q, a;; = w;j.e;j, if node 7 and j are

interconnected, otherwise a; ; = 0.

4. Let d;; be the shortest path between two pairs of node i.e v; and v; and the square
matrix ® is termed as graph distance matrix that takes all-pairs of shortest path of

node set V into the account.

5. G is said to be undirected if e; ; € € is same as that e;; € € and therefore a;; =

Wi j.€55: A5 = Wj4.€44, where €ij = 1.

In this chapter, for the analysis of vulnerability in power network, the graph representation
is considered to be connected, undirected, unweighted with no loops and parallel

transmission lines is associated.

2.3 Hybrid Betweenness Centrality: A Novel Vulnerable
Link Identification Metric

The vulnerability of a transmission line towards cyber-attack is assessed based on
the proposed Hybrid Betweenness Centrality (HBC) index. The proposed HBC index
considers the combined effect of two centrality indices, (a) Eigenvector Centrality and
(b) Current Flow-based Centrality. The first centrality index provides more robust
comprehensive information about most influential set of nodes in a network that gives a
better insight into the dynamical view of the network. Whereas the second centrality index

gives an intermediate measures of global and local characterization of nodes. This doesn’t
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follow the exact shortest path philosophy; therefore, it bears more valuable information
spread from one node to another. That make it a suitable measure of application in a
power network or any other network where information flows in a random direction based

on network parameters properties.

2.3.1 Eigenvector Centrality Metric

Computing eigenvector centrality is a popular tool for measuring the influence of a node
based on the importance of its neighbours, as well as its 2-hop and 3-hop neighbouring
nodes. It works with the philosophy of assigning relatively higher importance to all
the high-index nodes that contribute more to the score than lower-indexed nodes of
the network. Therefore, the global eigenvector centrality of a node is the summation
of centralities of its adjacent nodes. For a graph G, the eigenvector centrality is computed
as mentioned below:

Let say A1, A2,A3,..., AN, are the eigenvalues of A4, mentioned in Section 2.2, of the
network G such that for each {\;,;i € N}, there exists a non-negative eigenvector U
which satisfy the relation Aaq;U = AU. Now, the non-zero solution of the equation
(Aaq; — AI)U = 0 gives a principal eigenvector (U = [u1, ug, us, ..., un]’) i.e eigenvector
corresponding to the largest eigenvalues (\,q.) are considered here to measure the

centrality denoted as Cg(v;) of a node v; as shown below:

QUL (2.1)

To find the absolute relative score of a node, the results need to be normalized such that

sum over all the nodes is equal to 1.

2.3.2 Current Flow-based Centrality Metric

There are some real-world scale-free networks (e.g Power Networks, Water-flow Networks,
Mechanical or Thermal Networks etc.), where conventional shortest (geodesic) path
betweenness concept fails to extract the accurate dynamics and actual behaviour of the
system as information can flow in such network in any direction efficiently through the
various available paths. Due to this drawback, conventional centrality indices based on
the pure topological concepts will not work well in power network as it disregards the real
physical properties and the operative constraints of power grids. This is primarily because
the flow of electricity in power network can pass through various available path governing
the physical law of KCL and KVL, unlike the other commonly seen networks. The second
differentiating factor between power networks and other commonly seen networks (such
as, Biological networks, Transport road networks, Communication networks etc.) is that,
in other network each vertex is used to either function as a source node or sink node
though which some physical quantities are transmitted, but in power network we already

designated nodes based on their unique functionality such as some nodes are called as
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generation nodes, and some are load nodes. And power flow can only take place from
generation nodes to load nodes. Thus, influence of high flow degree centrality node is found
to be most destructive to the network. These issues are now taken into the consideration
where a flow-based centrality as a measure of betweenness is now introduced in to the

picture with the two following steps.

2.3.2.1 Computing potential (v;) of any node-i under a unit current injection

at source node-s and unit current extraction at target node-t:

Currentn (ls)

® Current Out (Iy)

Figure 2.1: An example of electrical circuit

Let I and I; is the external current injected at node s and extracted at node ¢ as shown in
Fig. 2.1. Let v; and v; is the potential of two random nodes 7 and j. Applying Kirchhoft’s
current law i.e summation of all incoming and outgoing currents at any particular node is

equal to zero, which implies the following equation need to be satisfied.

d; d;

Z I; = Z L;vj (2.2)

j=1 j=1 Y
where d; is the degree of the node-i and v; — v; is the potential difference between 7 and
j. Applying Eq. (2.2) to every node of G yields

QV =0 (2.3)

where Q € RV*¥ ig the conductance matrix with elements ¢ij = 1/ri;. V e RVXL ig the
voltage vector and O € RV*L is external injected /extracted current vector and it can be

defined as follows.

+1I; fori=s,
Q=< -1, fori=t, (2.4)
0 otherwise

In Eq. (2.3), Q is termed as laplacian matrix and using Eq. (2.4), Eq. (2.3) can be

rewritten as following matrix form:

Q =B,VB; (2.5)
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where, B, € RV*M is the Bus incidence matrix and V = (¢;;) € RM*M 5 a diagonal

matrix with conductance specified to its graph edges.

qij for i = ja
dij =14 (2.6)
0 fori#j

Now, it is to be noted that we can’t directly take the inverse of Q, from Eq. (2.3), as this
graph Laplacian matrix Q is singular. It basically indicates one of the equation among
N number of algebraic equations is redundant. So, Kirchhoff’s current conversion law
is violated. To get rid of this problem, consider any one node of the test electrical circuit
say, r to be as reference node and therefore, potential of this node is zero i.e v, = 0. This
assumption allows us to remove the r** row and 7" column from the Laplacian matrix Q
and thereby reduce the dimension of Q by one i.e (N —1) x (N —1). The newly obtained
reduced matrix denoted as Q € RW=DX(N=1) i5 now a non-singular, invertible matrix.
Later, to maintain the cardinality of set V, the 7" row and r*" column of the matrix Q
is reintroduced in matrix Q after inversion process is completed. The resultant matrix is
denoted by H = hij € RVXN,

~—1
H= [?)T g] (2.7)

This H matrix of Eq. (2.7) is now going to be used for computation of voltage vector 1%

using the relation below:
V = HQ (2.8)

Now put the value of external current vector 2 into Eq. (2.8) yields

—

V =IH, - L (2.9)

where H, and H, are the s and ¢ column vector of matrix H respectively. As I, = I,

therefore Eq. (2.9) can rewritten as follows:
V = I,(H; — Hy) (2.10)

Thus, the voltage (v;) of a node i of the graph G under an amount of current injection at

source node-s and current extraction at target node-t can now be expressed as:

)

vt = I(his — hit) (2.11)

)
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2.3.2.2 Computation of current flow matrix (IS*) over all possible

source-target (st) pairs:

Using Eq. (2.12), one can compute potential drop across any node for all st pairs, i.e

{s,t € V}. Thus current-flow I$* over all st pairs can also be calculated as follows:

d;

1 lvi — v,
st . — ? J
I'=3Y S (2.12)
=1

Now replacing Eq. (2.11) in Eq. (2.12) and put 1/r;; = g;;, then
I N
Ift = fzqzj ’his—hit—hjs-i-hjt‘, fOIi?éS,t (2.13)
J

It is also to be noted that as the currents are specified in source node-s and target node-t,

therefore, one can simply write

I, ifs,te|fi,, (),
Ist: tSt: s |fs—)t(j)| (214)

0 if st ¢ |fi()]

where, fi_,(j) denotes the current flow routes between node i and node j.

2.3.3 Proposed Hybrid Betweenness Centrality Metric

So, it is realized from the above two centrality indices that while eigenvector provides
information about the presence of the most influential nodes from a structural perspective,
current flow-based centrality, fundamentally based on the idea of inclusion of non-geodesic
paths, aids in identifying the presence of such potential super-spreader nodes that involves
those current flow paths and also the quantity of information that passes through those
specific nodes. Thus, to identify those critical paths of the network through which
optimal information flows while considering the weight of those super influential nodes, a
novel Hybrid Betweenness Centrality is proposed in this work as a measure of centrality.
Therefore, in simple words the HBC index will screen out the most vulnerable lines that
the attacker might target to impose maximum structural damage to the system.

While defining HBC, it is assumed that the power can flow from generating nodes to load
nodes through all the probable paths, and all the generating nodes (g) belong to the source
set (s) and all the load nodes (d) belong to the target node set (¢). Next, if P defines the
total number of combinations of source-target (st) pairs, the first step of HBC formulation
is to create the external current injected matrix (ISt € RY xP ) over all (st) pairs using Eq.

(2.13). Thereafter, the flow-energy of dominant node-i, (F%) is calculated as,

Fjy = COp(v;) x of = Clvi) x Y It (2.15)
s#teEV
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F} = Cp(vj) x of = Cplv;) x Y I3 (2.16)
s#LEV

where, Uf denotes the aggregate sum of injection currents at node-i over all st pairs.
Finally, the proposed HBC index is defined for each transmission line (1), associated with

two end nodes, i.e, “From Node” (i) and “To Node” (j), as,

Fi _ Fj
HBC(lioj) = —x E_—£ (2.17)
2i=1 Lieg) X 2j=1 Ljeq)
where, 1z) = 1, if the condition [=] is true, otherwise 1;z) = 0. Denominator of Eq. (2.17)

is used for normalization process which represents the number of (st)-pairs considered for
the calculation. The HBC index represents the relative drop of the flow-energy between
two extreme nodes of each lines, and acts as a vulnerability indicator for a line. Once
all the lines are ranked as per their HBC values, clearly, the top-ranked lines associated
with maximum drop of flow energy are most likely to be chosen first by the attacker to
launch an attack as it indicates the most influential path of information flow in a power
system graph. The rest of the lines will thereafter be selected based on their vulnerability
index value. The overall formulation steps of HBC in graph G using Eq. (2.17) for a unit

current injection (i.e.,I; = 1) is outlined in Algorithm 1.

2.4 Development of PMU Assisted Cyber-attack Resilient

Framework

A literature survey reveals that PMUs are one of the best candidate devices to detect
many unobservable attacks [59],[195]. Therefore, the developing of various placement
algorithms for identifying strategic locations of PMUs to defend any kind of data integrity
attack has now become a growing interest to the researcher community due to its higher
synchronization rate, advanced security measure and impervious communication [196] and
networking architecture [197]. All the measurements with greater accuracy collected by
PMUs from different locations of a geographically dispersed area are correctly labelled
with real-time stamps, which increases inherent robustness against attacks. Therefore,
if the System Operator (SO) can get the complete system observability through phasor
measurements alone, they can make an informed decision even in the event that any of
the data on the vulnerable lines is compromised. Therefore, it becomes a natural step
forward to include the information of vulnerable links while equipping a power system
network with PMUs to provide it a maximum protective covering against cyber-physical
attack. To achieve this goal, in this chapter, a novel objective function is formulated that
incorporates the line serviceability index when the system is under attack, which is then
utilized in a Mixed-integer Linear Programming model to guarantee complete topological

observability.
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Algorithm 1: Hybrid Betweenness Centrality

Input: A is the Adjacency Matrix of an Unweighted and Undirected Graph
G(V,E,W).
& = {e; j|vi,v; € V}, the Edge-list.
Q € RYXN be the graph laplacian matrix of G.
Output: Hybrid Betweenness Centrality, HBC(l;—;)
begin
HBC(ZZ_J) € R™ < 0;
CE(’UZ) — (b;
value <— 0;
Solve for eigenvector U € RY corresponding to Apaz, by |A — M| = 0;
for : <1 to m do
for j <1 to m do
if Q4,45 7§ 0 then
| value = value + a; ; * u(j)
end
end
Cg(v) = ﬁ*value;

value = 0 -
end

H e RNxN . Q e R(Nfl)X(Nfl);
fort<+dtot>1do
for s+ g tos<tdo
for each e;; € E do
if ¢ # s,t then
‘ Il‘gf — Ift + (1/2)“;@5 — Eit — 71]'5 + 7ljt|
end

end
end

end
for 1 < 1 to m do

AFp = (Cp(vi) X Xonev I = Cuvi) X Xopev 1Y)
l
HBC(l;,_j) = Sk

REEY
end

end
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2.4.1 Conventional Optimal PMU Placement

In graph theoretic approach, a power system network equipped with PMUs are said to be
topologically observable if all the nodes of the graph are directly or indirectly traversed by
optimally placed PMUs. Such problem can be solved by integer Linear Programming (ILP)
[198] by minimizing the conventional optimization formulation from cost minimization

perspective as shown below:

N
minimize fo(z) = Zl Cjxj, zj €R,Z
T , (2.18)
subject to AX > 1= (Aaqj+DX >1

xzj = (0/1), a binary variable
where,

e ¢; is the cost of PMU placement at bus-j. In this study, PMU installation cost at
all buses are assumed to be unity. It is also assumed that PMU has equipped with
sufficient channels to measure voltage and current phasor at its installation bus and

all its incidents lines respectively.

e x; represents an element of the output vector X, where a value of 1 indicates the

presence of a PMU at the j% bus location.
o I is the identity matrix of size N x N.

e A is the binary connectivity matrix of size N x N with entries ;; as:

1 if i =j or, if i and j are connected,
aij = (2.19)
0 otherwise

The above objective function is used to solved using conventional ILP for the values of x;.

2.4.2 Proposed Modified Objective Function for ILP-based Attack
Resilient PMU Placement

Minimization of the objective function in Eq. (2.18), results in multiple PMU locations
with same cost and only valid when the system is in intact condition i.e free from any
attacks. When the system is subjected to any attacks the lines are going to be removed as
per the attacking strategy, then the system topology gets modified and therefore earlier
ILP-based PMU placement technique will give incomplete observability of the systems.
Moreover, as PMU deployment process is an offline procedure and is considered in power
system planning stage only, therefore modification of constraints at each round of PMU
placement is not feasible. Considering this problem as a motivation, in this chapter a
novel objective function is formulated which will take care of this issues associated with

HBC attacking strategy. As the attackers are always constrained with limited resources
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in terms of time and information to outline an attack, the proposed work assumes that it
is sufficient to safeguard the system against FDI attack in top 20% of the most vulnerable
lines in the system in order to enhance the system resilience. To this end, the strategic
selection of vulnerable lines is carefully orchestrated by the HBC ranking based attack
model in Section 2.2. Top 20% vulnerable lines are, thereafter, utilized in the proposed
PMU placement problem as an input in line serviceability indicator (£) and branch-to-node
incident matrix (2B), defined in Eq. (2.22) and Eq. (2.23) respectively. These ‘£’ vector
and ‘B’ matrix modifies as these critical lines are attacked, and go out of service. Thus,

the resilient Optimal PMU Placement (OPP) problem is formulated as -

N
Mmgmze flx) = z:lﬁj xj, zj € R, Z
]:

o ) (2.20)
subject to AX > 1= (Aagj+DX >1

xj = (0/1),a binary variable

& in Eq. (2.20) is termed as the merit of far-ness which is analogous to cost function of

PMU placements, and is defined as

§=Lixm Buxn Onxn (2.21)
where,

e £ is the line serviceability indicator for N bus system as: £ = [a1,a9,as,...,ay],
M € R. Where the entries £ as:

1 if line [ is in service,
a = (2.22)
0 if line [ is in out of service

e ‘B is the undirected branch-to-node incident matrix of size M x N with entries /;_;

as:

1 if v; and v; are connected, v;,v; € V and l;_; € E
lij = (2.23)
0 otherwise

e The matrix ® represents the graph distance, with dimensions N x N, containing the
shortest path between all pairs of vertices in a network. In this context, considering
the network as unweighted and undirected ensures that the distances are always
positive. The values of the elements d;; in matrix ® are computed using established
techniques such as the Floyd-Warshall algorithm. The distance metric examined in

this study adheres to three fundamental axioms.

— Main diagonal entries of ® are set to 0 corresponding to v;, i.e dj; =0V 1 <
i> N.

— Off-diagonal entries of ® are non-negative i.e d;; > 0, if v; # v;. d;; will be 0,
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if there is no shortest route available between the node v; and v;.

— As the graph is undirected here, the matrix ® should be symmetric in nature

ie dij = djl' for Vi, V5 € V.

The weight &; assigns significance to each node in the network based on the average
far-ness between all pairs of source and target nodes. The first term of the vector £
considers the influence of outage of lines according to their ranking in the HBC schemes.
The matrix 2 captures the effect of the network breaking into islands following an
attack, indirectly reflecting the size of the system’s giant component through branch and
node connectivity. Furthermore, the evaluation of the distance matrix ® matrix involves
searching for best optimal path by reducing the far-ness between pair of nodes when the
system is subjected to an attack. At the same time, it also takes care of the total system
topological observability in account with improved redundancy. Minimizing this objective
function aims to maximize the system’s full topological observability while identifying
optimal locations for a minimal number of PMU placements in case of line outages due to
attack.

As depicted in Fig. 2.2, the IEEE 5-bus system serves as an example. According to the
proposed HBC ranking, Line 4-5 (L7) and Line 2-5 (L5) (highlighted in red) emerge as the
top two critical lines. This vulnerable line information is then used in the proposed attack
resilient OPP problem formulation as summarized in the Table 2.1. The results in Table
2.1 demonstrate that the proposed PMU placement approach effectively incorporates line
vulnerability information from the HBC ranking into its objective function. It conducts
a search for optimal PMU locations while not altering the existing system constraints.
Clearly, if the bus-2 and bus-5 are equipped with PMUs, then even in the event of FDIA in
the conventional measurements of these lines and lines being out, the system still remains

observable with phasor measurements.

G | o

Figure 2.2: Single line diagram of IEEE 5-bus system identifying the critical lines
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Table 2.1: Attack resilient OPP solution details in the IEEE 5-Bus network

Vulnerable Line Serviceability Branch-to-Node Distance RAeZ;laii{lt

Links Indicator (£) Incident Matrix (28) Matrix (D) OPP Results
11000 ) )
10100 0112 2
01100 1 0111

Lined5 1£=11 1 1 1110 [B=jo1010[®=|1 1012 Bus-2
01001 2110 2
00110 2 1 2 2 0
00000
11000 ) .
10100 01120

Line 4-5 01100 Lo 110 Bus-2

Liile“;_g) f=lh 111010 |B=lo1to0o10[®=|11010 Bajs%
00000 21100
00110 000 0 0
00000

2.5 Evaluating Cyber-Attack Resilience Using Secure PMU

Measurements

After developing a PMU-equipped network in section 2.4, this section proposes a
performance-based metric to assess the network’s resilience against false data injection
attack on AC state estimator [199]. It is presumed that (1) the resilience of a power
system network to attacks is contingent upon several factors, including the number
of PMUs, number of measurements, number of attacked buses, and attack magnitude
(U). (2) Because PMUs are extremely complex devices with cutting-edge security
features, an attacker cannot access PMU measurements because of their encrypted, secure
communication protocols [59].

In order to survive an attack, a system should have sufficient number of secured
measurements so that following an attack on a vulnerable link, the attack is still
detectable. The resiliency, in the proposed work, is quantified as the fraction of the
secured phasor measurements obtained from the proposed PMU placement strategy in

the total measurement vector of the state estimator, i.e.,

(Number of secured phasor measurements)

Critical Measurement Ratio Index =
(T'otal number of measurements)

(2.24)
The higher the Critical Measurement Ratio Index (CMRI) is the more cyber-attack

resilient system is.
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Figure 2.3: Flowchart of the proposed PMU-assisted cyber-attack resilient framework

The flowchart in Fig. 2.3 illustrates the entire proposed framework for enhancing
cyberattack resilience using PMU measurements. This framework comprises three main
stages viz., 1) Identification of vulnerable links in the network, 2) Developing a cyber
attack-resilient network with PMU integration, and 3) Evaluating cyber-attack resiliency
using the proposed CMRI. These stages are clearly delineated in the flowchart of Fig.
2.3. In Stage 1, the topological properties of the power system is analyzed to device a
new attacking strategy and also estimate the impact of line outages due to the proposed
attack over the topological breakdown of the studied power networks. Initially, the graph’s
connectivity is determined by computing the adjacency matrix using network topological
parameters. Subsequently, a HBC attack strategy is formulated based on a combination
of (i) eigenvector centrality and (ii) current flow-based matrix information. The former
takes the contribution of influential nodes based on their adjacent nodes’ importance,
from purely topological perspective while the latter considers current flow information
into account to bring-in the dynamic behaviour of the system too. Finally, all system lines

are ranked according to their HBC values to assess their vulnerability to cyber-attacks.

Given the attackers’ limited resources in terms of time and information, the proposed
approach focuses on safeguarding the system against cyberattacks by targeting the top
20% of the most vulnerable lines. To this end, the information of the top 20% vulnerable
lines, obtained from Stage 1, is utilized in the proposed PMU placement problem of Stage
2 as an input in line serviceability indicator (£) and branch-to-node incident matrix (28)
of the Eq. (2.20) as detailed in Section-2.4. The ’£’ vector and '’ matrix modifies
as these vulnerable lines are attacked, and goes out of service. The attack-resilient
optimal PMU placement conducted in Stage 2 ensures system observability even in
the event of a data integrity attack, such as a FDIA, on these vulnerable lines. The
outcome of this attack resilient OPP provides twofold benefits- i) the state estimation
results become more accurate and reliable, and ii) due to the secure communication

infrastructure of PMUs, a set of safe and secured measurements is obtained which is
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difficult to manipulate by the adversary. Stage 3 validates these observations through
the proposed Resiliency Index, which assesses the system’s resilience from the perspective
of obtained secured measurements among total number of available measurements to run
reliable state estimation followed by the successful detection of data injection attacks based

on largest normalized residual (LNR) testing.

2.6 Results and Discussion

The test results of proposed PMU-assisted cyber-attack resilient framework is presented
on the standard IEEE 14-bus and the New England 39-bus test systems. The simulation
work was performed in MATLAB R2018a, loaded on a laboratory PC (an HP ProDesk 600
G4 SFF) with specifications including a 64-bit Windows-10 operating system, an Intel(R)
Core(TM) i7-8700 CPU running at 3.20 GHz, and 16 GB of RAM.

To evaluate the qualitative measures of the vulnerability assessment on the power grid
subjected to attack, a well-known popular performance parameter named as “Giant-
Component Size (5)”, is used in the Chapter. This metric quantifies both the topological
and operation characteristics of the power grid. In the case, removal of lines strategically
causes the network to be partitioned into several components, which are basically the
disjointed version of original graph. The graph statistics, giant component mechanism
seeks for the largest connected components of the graph that contains maximal fraction
of nodes of the parental graph’s nodes. It is usually calculated by the ratio of current
giant size of the network after attack to the initial network size N. Mathematically its is
expressed as shown below:

Zz]i Lica
SU%) = 1TEGH % 100 (2.25)

where,1/=z) is an indicant function as explained in Section 2.3. G’ZH is the current giant
component of the initial graph after removing of line-l. After calculating the proposed
centrality value, giant component is evaluated after every attack to show how it cause
structural damage to the network. A steeper fall of giant-component metric, signifies

substantial damage of the grid with higher degree.

2.6.1 IEEE 14-bus Test Systems
2.6.1.1 Vulnerable links identification

The TEEE 14-bus system consists of 5 generators and 20 transmission lines. The top-4
vulnerable lines identified as per the proposed HBC based method are tabulated in Table
2.2 and also being shown in Fig. 2.4(a). Figure 2.4(b) depicts the drop of giant component
size of the system when the attacks lines are physically out from the system in the
subsequent order of the attack strategy.

The test result is also compared with two other conventional attack approaches i.e
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Figure 2.4: Effectiveness of HBC on IEEE 14-bus test system
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Table 2.2: Ranking of Lines of IEEE 14-Bus System

Hybrid Betweenness Centrality

Line No | Line Info Value
16 Line 9-10 1.0
6 Line 4-3 0.9304
17 Line 9-14 | 0.7809
10 Line 5-6 0.4346

Topological Betweenness Centrality (TBC) [200] and Electrical Betweenness Centrality
(EBC) [56]. Attacks on vulnerable links based on TBC ranking do not result in the creation
of islands in the system, as shown in Fig. 2.4(b) where the Giant Component Size stays
at 100%. In contrast to EBC, which was 87%, the proposed HBC-based attacks, however,
caused the largest reduction in the system’s Giant component size, reaching 57% following
the simultaneous attack on all four of the most vulnerable links. This demonstrates
the supremacy of the HBC-based attack technique above all others pertaining to severe
structural fragmentation and substantial damage of the systems. Therefore, HBC-based

attack has more potential to create cascades failures which may lead to severe blackout.

2.6.1.2 Cyber-attack resilient PMU placement

The vulnerable lines, as identified in Table 2.2, are incorporated in PMU placement
strategy of Eq. (2.20) and Eq. (2.21). Table 2.3 lists the optimal number of PMUs
that are resistant to cyber-attacks. The results are also compared with the locations
that arise when the typical unity cost function is used in place of the objective function in
formulation Eq. (2.20), and vulnerable lines are eliminated from the system by altering the
observability requirements in accordance with [201]. Although both the methods results
in same number of PMU locations, as listed in Table 2.3. However, incorporating §; in Eq.
(2.21) as the merit of far-ness has increased the resiliency in the system as is demonstrated

in the next subsection.

Table 2.3: Optimal PMU Locations For IEEE 14-Bus System Under Attack condition

Attack Resilient Normal
I at Bus-2, 7, 11, 13 | 4 at Bus-2, 7, 10, 13

2.6.1.3 Cyber-security resiliency assessment

To evaluate the impact of the proposed PMU placement strategy on system resilience,
various test cases are conducted with varying levels of attack intensity and target bus
locations for attack. The attack vector is modelled as a false data injection attack as
described in [202] targeting non-linear state estimations running in the control centre.
Across all test cases, a total of 79 measurements are available for SE algorithm execution.
In Fig. 2.4(a), the IEEE 14-bus system is depicted, highlighting the placement of PMUs
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at four distinct locations: Bus-2, 7, 11, and 13, as determined by the proposed resilient
PMU placement approach. With each PMU installed at a designated bus — ¢, the
associated state variables V;, 6; and related power injections and flow measurements for
that bus — i are assumed to be secured (tamper-proof). Thus, Table 2.4 details all the
secured measurements, resulted from the proposed resilient PMU placement. It can be
observed from Table 2.4 that the total number of secured phasor measurements are found
to be 36 in the IEEE 14-bus test system. These secured measurements are subsequently
utilized in the Weighted Least Square AC state estimator, alongside conventional SCADA
measurements, to ensure reliable state estimation and to detect any attacks tampering
conventional measurements. Consequently, based on Eq. (2.24) detailed in Section 2.5
and the identified PMU locations from Section 2.4, the RI for this test system is calculated

to be 45.56%. To illustrate the impact of a FDIA on state estimation performance, two

Table 2.4: Summary of secured measurements of the IEEE 14-bus system resulted from
the attack-resilient PMU placement

IEEE 14-Bus System
PMU Bus No Secured Measurements
2 Va, P, Qo, Piog, Pos, Pay, Po3, Qi2, Q2-5, Q2-4, Q23
7 Va, Pr, Q7 Pa—7, Prog, Prg, Qu—17, Q7-5, Q19
11 Vi, Pi1, Qu, Po—11, Pro-11, Qe-11, Qio-11
13 Vis, P13, Qi3, Po—13, Pr2-13, Pi3—14, Q6-13, Qi2-13, Q13-14
Total Secured Measurements = 36

scenarios are considered. In Case-1), only conventional SCADA measurements are utilized
in the state estimation process, while in Case-2), secured phasor measurements are also
included. It is assumed that the attacker has access to multiple measurements, enabling
them to inject false data (G) into the original measurements set, (Z) via vulnerable
SCADA communication channels. The attacker can thus compromise the measurement
set as, Z, = Z + 4, and can, thereby, deviate the original estimates of system states ()
to some arbitrary bad states (Zpaq = @ + ¥). This injection vector is generated based on
the AC power flow model as ¢ = H(Zpoq) — H(Z) to circumvent conventional bad data
detection mechanisms [202] such that LN Ry,q = LN R, where LN Ryoq = || Z0 — H(Zpaa)||
and LNR = ||Z —H(2)||. H is the Jacobian matrix relating available measurements with

the state vector.

Case-1) When meters are not secured i.e., non-inclusion of PMU in the system: The
effect of the FDI attack on the bus voltage magnitude of Bus-3, Bus-5, and Bus-9 is
depicted in Fig. 2.5. FDIA targeted a fraction of attack buses, introduced bias to the
magnitude of these attacked state variables, which causes incorrect estimation.

Based on the verification of residual checking, this attack remained undetected as
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shown in Fig. 2.6. This is because of the continuous adjustment of the associated
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Figure 2.6: Performance of residue detector in presence of FDIA (Case-1)

measurements of those attack state variables. It is evident that the residue remained
almost same for both type of cases i.e., with FDIA and without FDIA. The residual
plot’s threshold, as displayed below, is determined by using a chi-square distribution with
a 95% confidence interval. Thus, the weighted sum of squares and L2 norm, or LNR,

stayed below threshold to allow the attack to remain stealthy even in the presence of FDIA.

Case-2) When measurements are secured by optimal PMUs deployment: The performance
of residual detector, in this case when the selected meters are inherently secured by

the direct supervision of PMU is shown in Fig. 2.7. It can be observed that through
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the proposed PMU deployment process and full rank nature of the phasor measurement
Jacobian matrix, most of the attacks get eliminated because their injection is hindered in

the first place itself.
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Figure 2.7: Performance of residue detector in presence of FDIA (Case-2)

2.6.2 New England 39-bus Test Systems

2.6.2.1 Vulnerable links identification

The New England 39-bus test system consists of 10 generators and 46 transmission lines are
shown in Fig. 2.8(a). Table 2.5 shows the top-6 vulnerable lines identified by the proposed
HBC-based attack strategy, and Fig. 2.8(b) depicts the drop of giant component size of
the system when the attack lines are physically out from the system in subsequent order
of this attack strategy. Here, the TBC- and EBC-based attack mechanisms demonstrate
that, according to their respective techniques, the system giant component size reduction
begins when one line goes out; nevertheless, the HBC-based attack mechanism experiences
the same thing for a consecutive two lines outage. As shown in Fig. 2.8(b), the TBC-based
attack method reduces the giant size to 69% after three consecutive line outages, and then
it also stays constant for subsequent outages of other lines. In contrast, the EBC-based
attack method drops the largest system size from 100% to 71% after one line outage, and
then it remains almost constant for other remaining line outages. It is important to note
that, despite its initial slight delay in system fragmentation compared to TBC and EBC,
the HBC-based attack causes the network to be more torment as giant component size
is drastically reduced below to 50%. Figure 2.8(c) explains that when top two lines are
went out, the HBC-based method did not create any partition on the network, unlike the
TBC and EBC-based attack mechanism had created same number of system components.

However, after that the number of system partitions due to HBC keeps increasing gradually
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Table 2.5: Ranking of Lines of IEEE 39-Bus System

Hybrid Betweenness Centrality

Line No Line Info Value
4 Line 2-25 1.0
20 Line 15-16 | 0.7279
45 Line 29-38 | 0.7056
43 Line 25-37 | 0.7030
6 Line 3-18 0.6079
22 Line 16-19 | 0.5977

with increasing vulnerability measures, indicating more severe damage to the system.
Another noticeable fact observed in EBC-based attack is that although the number of
system segments keep increasing when line outage increases from three to five, the giant
size has not shown any changes as shown by the HBC results. This is due to the fact that
the nature of selection of vulnerable links for EBC is not so optimal and thus, in such
period, it may pick up some unimportant links from some already created smaller partition,
which basically has no contribution to the reduction of largest system component. That is
why TBC and EBC depicts flat profile after certain line outages. So, it is hereby concluded
that by developing such hybrid a betweenness centrality measure, one can anticipate a
better understanding of the importance of nodes and lines of a specific complex network

which assist operator in exploring the vulnerabilities more efficiently.

2.6.2.2 Cyber-attack resilient PMU placement

The top six vulnerable lines of the New-England Power System, as identified in Table 2.5,
are now incorporated in proposed PMU placement scheme of Eq. (2.20) and Eq. (2.21).
Table 2.6 shows the final number and locations of PMUs for both, the proposed placement

scheme as well as for the normal PMU placement case. Once more, it is seen that although

Table 2.6: Optimal PMU Locations For NE 39-Bus System Under Attack condition

Attack Resilient Normal

14 at Bus-2, 6, 9, 10, 11, 14, 17, 19, | 14 at Bus-2, 6, 9, 12, 14, 17, 19, 20,
20, 22, 23, 26, 37, 38 22, 23, 29, 32, 37, 38

the number of PMU locations that are optimal for both the cyber-resilient and the normal
procedures stays the same, the locations that are produced differ. The objective function
in Eq. (2.21) traces the reduction of giant component at each step of attack execution
strategy and based on that, the defense philosophy searches for new optimal locations of
PMU based on available algebraic connectivity of the graph with shortest route features.
It should be noted that at the end of the attack, the proposed PMU deployment method
with some different PMU locations enhances the system resiliency while maintaining the

full topological observability of the system throughout.



Chapter 2. Cyber Attack Immune Metering Framework

57

@ g @ PMU Location
30 4

éll—ll" T JJ;IL

2 -@ _T 27 .
24 5
. 1arﬁ| 17 _
- I
3 ——1— 16 355-;
@ $+&15 l 21 lﬁv\wzz
39 a T s _ e l
s
—_— 2 _ as 23 T
7 W
11 a3 I.ﬂ’ v
L i 36 —i
8 o _V\N 10 m 23 L
9 @— > I 32 > é

(a) Single Line Diagram

Drop of Giant Component Size of NE 39 Bus System

100 $———— b=
-
90 1
80 - 1
53 L
- 70-  gememaze= - »
60 - HBC Unweighted
--o-=TBC Unweighted
EBC
50 [
40 Il Il Il Il Il
0 1 2 3 4 5 6
No. of lines removed
(b) Giant Component Size
5 Network Partitioning
I HBC Unweighted
I TBC Unweighted
4 [ .
v [lesc
N
=]
L
g3 ]
(="
=)
3
52 1
=
4
1 [ .
0 ]
0 1 2 3 4 5 6

No. of lines removed

(c) No. of Components

Figure 2.8: Effectiveness of HBC-based attacking strategy on NE 39-bus system



58 Chapter 2. Cyber Attack Immune Metering Framework

2.6.2.3 Cyber-security resiliency assessment

Similar to the FDIA test cases performed in the IEEE-14 bus system, same test cases are
also carried out in NE 39-bus system. The total number of meters that are available in this
system is 195. Figure 2.8(a) shows that the proposed OPP formulation strategy allocates
fourteen specific bus locations dispersed geographically for the installation of PMUs. Due
to the installations of PMUs at the those locations, a subset of measurements pertaining
to PMU enabled bus injection meters and flow meters incident to the PMU equipped
buses are being treated as secured and it is tabulated in Table 2.7. The table shows that

Table 2.7: Summary of secured measurements of NE 39-bus resulted from the
attack-resilient PMU placement

NE 39-Bus System
PMU Bus No Secured Measurements
2 Vo, Py, Q2, P1_o, Po_3, Pa_y4, Po o5, Q2-30, Q1-2, @2-3, Q2—4, Q2_25, Q2_30
6 Ve, Ps, Qo, Ps—6, Ps—7, Po—11, Po—31, Q5-6, Q6-7, Qo-11, Q631
9 Vo, Py, Qo, Ps—g, Po_39, Qs—9, Qy—39
10 Vio, Pro, Qio, Pro—11, Pro—13, Pro-32, Qui—10, Q10-13, Q1o-32
11 Vir, P, Qui, P12, Qu-12
14 Vig, Pia, Qua, Prz—14, Pa—14, Pra—15, Q13-14, Qu-14, Qr4-15
17 Viz, Prr, Qur, Pis—17, Pir—1s, Pir—27, Que—17, Q17-18, Qi7-27
19 Vig, Pro, Quo, Pi6—19, Pr9—20;, Pro-33, Q16-19, Q19-20, Q19-33
20 Vao, Pao, @20, P20-34, Q20-34
22 Vaz, Pa2, Qa2, Poi—22, Paz—23, Pao—35, Q21-22, Qa2-23, Q22-35
23 Vag, Pa3, Qa3, Paz—04, Pa3—36, Q23—24, Q23-36
26 Vag, Pas, Qa6, Pos—26, 6—27, Pos—28, Pas—29, Q25-26, Q26-27, Q26-28, Q26—29
37 Var, Ps7, Qs7, Pas—37, Qas—37
38 Vas, Pss, Qss, Pa9—38, Q2938
Total Secured Measurements = 112

there have been total 112 secured phasor measurements found for this test case. It can be
observed that through the proposed PMU deployment process and full rank nature of the
phasor measurement Jacobian matrix, most of the attacks get eliminated because their
injection is hindered in the first place itself due to presence of 112 secured measurements.

Thus, calculated value of the proposed RI for this test case is as 57%.
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2.7 Conclusions

In addition to natural random failures, modern power systems face increasing threats
from malicious attacks, where adversaries aim to target influential nodes or critical lines
to disrupt the system’s functionality. To mitigate the risks posed by cyber-attacks, this
chapter proposes a novel PMU-assisted framework designed to enhance the resilience of
power systems. The primary goal of this framework is to strategically deploy a minimal
number of PMUs to ensure system observability, even in the event of a data integrity
attack such as FDIA in some top vulnerable lines. The proposed scheme is developed in
three stages viz., (1) Identification of vulnerable links in the network, (2) Development
of cyber-attack resilient PMU equipped network, and (3) Assessing the cyber-attack

resiliency via proposed Resiliency Index.

e The proposed hybrid between-ness centrality index is found to be proficient attack
strategy to identify group of transmission lines whose sequential outages may severely

affect the system performance due to major structural breakdown.

e To prioritize the full system topological observability with higher resiliency in
the presence of HBC-based attack, the novel development of PMU deployment
framework works well and also defend the system from any data integrity types
of attacks.

e The newly introduced resiliency index provides a quantitative measure of obtaining
resiliency limit for the system operator to defend the system against typical ranges

of stealth attacks in terms of meters found to be inherently secured.

e The proposed PMU placement strategy results in 46% and 57% secured
measurements in the IEEE 14-bus and NE 39-bus system, respectively.
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Chapter 3

A Novel Replay Attack Detection
and Mitigation Framework for

State Estimation

3.1 Introduction

In Chapter-2, a cyber-attack-immune metering framework was developed, wherein
a vulnerability assessment in the transmission-level networks was carried out first.
Thereafter, the system was made completely observable with minimum number of
temper-proof PMUs to ensure system observability. Nonetheless, the attackers can still
falsify the legacy SCADA measurements received from the Remote Terminal Unit (RTUs)
via Replay Attacks (RAs), in order to hamper the critical state estimation application.
This chapter, therefore, tries to develop a simple yet effective replay attack detection and
mitigation framework in order to make Power System State Estimation (PSSE) application

more resilient. To this end,

1. From attacker’s viewpoint, Stage-1 of the proposed scheme identifies a minimal set of
SCADA measurements from power flow, power injection, and voltage sensors which,

if compromised, would result maximum error in the State Estimation (SE) results.

2. Stage-2 models different RAs which the attacker may inject into the measurement

vector of the SE application.

3. Finally, Stage-3 presents a simple yet effective scheme for the detection and

correction of RAs.

The rest of the chapter is organized as follows: In order to identify the highly sensitive
active power flows, voltages, and injection sensor data that are vulnerable to RAs and could
seriously disrupt PSSE estimates, a unique scheme is presented in Section 3.2. Section 3.3
represents the modeling of various RAs based on recording and replaying attack techniques
with those vulnerable measurements. Section 3.4 depicts the flowchart for the SE, based
on the mixed vulnerable SCADA and partial synchrophasors measurements, coherently
detecting and correcting the RAs, if any. Section 3.5 details the validation results of the
proposed algorithm on the two standard IEEE test systems i.e the IEEE-14 and IEEE
39-bus system, modelled in the Real-Time Digital Simulator (RTDS). Finally, Section 3.6
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summarizes the major findings made from the work as is also illustrated in Fig. 3.1 below.
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Figure 3.1: Distribution of contributions: A Quadrant Perspective Visualization

3.2 Stage-1: Identification of the Vulnerable SCADA

Measurements

This is an offline stage, wherein a minimal number of power flows, voltages and injection
sensors are identified, from an attacker’s perspective, which can be compromised by RAs
resulting serious disruption in performance as well as obtaining actual operational states
of the power system. In pursuit of it, at the core of this scheme, a very commonly used
factor known as Power Transfer Distribution Factor (PTDF) is exploited, which is usually
defined as the incremental change in active flows of the line caused by the incremental
change in active power injection at some nodes of the system [203]. Firstly, for finding
minimum number of active power flow meters, an optimization problem is formed based
on Branch PTDF (BR-PTDF) matrix which analyzes sensitivities of each lines towards
change in 1 p.u. power injection and withdrawal at both the edge bus of each available
transmission lines of the system, respectively. Finally, the top few sensitive lines are
extracted, potentially resulting in significant vulnerabilities such as line overloads, load
shedding, cascading failures, and blackouts if they are externally tampered with. Similarly,
for minimum active power injection meters, a criteria is defined based on Nodal PTDF
(N-PTDF) matrix information. The detailed descriptions of both the proposed schemes

are elucidated as follows:

3.2.1 Selecting Critical Active and Reactive Power Flow Meters using
Branch Power Transfer Distribution Factor (BR-PTDF)

BR-PTDF, defined as a factor that gives the fraction of power that is sent into the network

at bus-s (source bus) to the bus-r (receiving bus) which flows over line ! from bus-i to
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bus-j can be expressed as follows:

1 * * * *
PTDFy i = — |(Xis = Xir) = (Xjs = X;) (3.1)

Tij

*
where, x;; is the I line reactance, connecting bus-i and bus-j and X, denotes the

*
elements of bus reactance matrix X of size (N x N) pertaining to i row and &' column.

Alternatively, in matrix notation, the same can also be written as:

PTDF = B, x A x X x (A)” (3.2)

where, Bx and j& are the branch network suspentance matrix of order M x M and line
incidence matrix of order M x N respectively. A is the modified version of j& by setting
the entry of the corresponding radial bus for any radial lines to be zero. Similarly, X is
also be modified to )*( by setting zero entries in the row corresponding to the reference bus
and also for the rows corresponding to radial bus except its diagonal element to be placed

as one.

At the end, each rows of the computed PTDF matrix denotes the line flow pairs i <> j
and columns denotes the injected/withdrawal pairs s <> r. This s <> r can actually be
any bus pairs of the network but for the simplicity, in this chapter, the chosen s > r pairs
can be considered as only the end pairs of each lines. Now with the aim of maximizing the
impact of RAs in terms of having highest flow changes in each line pairs by considering
the cumulative effect of all s <> 7 pairs into the account and also simultaneously search
for the minimum number of meters of those highest sensible lines, the following novel
optimization function with the linear constraint are formulated which is solved using usual

Integer Linear Programming Model as shown below.

n
Mlnémlze flx) = le] T zj € R, Z
J:

subject to ©TX <1

xj = (0/1),a binary variable

y (3.3)
where, (i) = ni X ZPTDF(Z'J)
Nt
©(j) = Y PTDF(j,i)

j=1

Equation 3.3 introduces the binary variable x; which serves as a selector index for active
and reactive power flow sensors or measurements targeted for the attack. Specifically, when
the decision variable, x; = 1, it signifies that the ith sensor is targeted and compromised,
while a value of x; = 0, signifies that the it" sensor readings are plausible. The constraint
outlined in Eq. (3.3) plays a crucial role in establishing a lower limit on the number of

line flow sensors chosen for tampering by potential replay attackers. In order to obtained
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minimal sensors output, the design criteria is formed such that while 1 p.u power is injected
to any one source bus “$” and extracted from any one withdrawal bus “R”, the cumulative
effect of all lines flows for that transaction are bounded by 1 p.u. Resulting it constitutes
a right balance between selection of sensors for tampering while maximizing the overall

vulnerability index to unity.

3.2.2 Selecting Active Power Injections and Voltage Meters using Nodal
Power Transfer Distribution Factor (N-PTDF)

The N-PTDF matrix characterizes the influence of power injections at each node on a given
individual line. In this matrix, there is a designated reference node i.e the slack bus through
which all power transactions i.e withdrawal takes place between each injection node. By
assuming a reference node (slack bus) available in the network, the N-PTDF are limited
to only nodal bus injections instead of all combinations of transactions between each pair
of busses. Thus, if m is designated as slack bus for corresponding power withdrawal and
n be the bus where 1 p.u power is injected, in such case the distribution of power change

on each line can be calculated from N-PTDF as follows:
N-PTDF,,—, = PTDF, — PTDF,, (3.4)

Hence, the above N-PTDF matrix of size n; x n; can alternatively be written as following
matrix notation:

N-PTDF = By x A x X (3.5)

The above N-PTDF matrix is exploited in this chapter as mentioned in the following
sequential steps to find the index of vulnerable injection meters. Same index of voltage

meters can also be targeted by the attackers to maximize the impact of attack.

Algorithm 2: Selection of injections/voltage meters

Step-1: Calculate the Nodal PTDF (N-PTDF) matrix using Eq. (3.5).

Step-2: Compute a row vector containing the absolute sum of each column. This
vector gives total absolute change for all the lines corresponding to each
nodal point.

Step-3: Normalized and ranked the vector obtained from the Step-2 in descending
sequence and then select top 25% of the total bus injection meters from it as
target meters.

3.3 Stage-2: Modelling of Replay Attacks

Replay attacks involve unauthorized access by an intruder to secretly record the sensing
data, which is later delayed or replayed with fraudulent manipulation to the control center
(CC) during a sabotaging activities on the physical system without being noticed by the
operator. In this process of data sniffing, the adversary analyzes the captured dataset to

identify periods of disturbance and kept it separate from ambient data. The pre-recorded
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disturbance data is then subsequently replayed from sensor terminals, deceiving CC
operators into taking falsified actions that may potentially favour the adversary. As these
recorded packets are the duplicate copies of some original measured readings and adhere
to the same protocol, conventional anomaly detection methods usually cannot recognize
them as anomalies.

The above-mentioned intrusion strategy primarily consists of followings two steps:

3.3.1 Recording Window Phase:

This is the initial phase when the intruder infiltrates the system by breaking conventional
IT network security gateways and discreetly records observed sensor values without
altering any data for sufficiently long finite-time interval in a buffer. As the adversary
has usage limitation of attack resources associated with this phase, it is reasonable to
assume that they can only store n data packets of i sensor and the set of the capture
data is denoted by Y;(t) = {vi(to), vi(t1),vi(t2), ..., yi(tn)}, where tg # t1 # ta # ... # tn
be the discrete time instants of whole time period T. Therefore, if the adversary starts
eavesdropping at time instant o (Let’s denote it as, T5) to gather knowledge of sensor’s
data and continues to do so till time instant say T, then the recorded interval is designated
as tree = {t € Nt € [Ty, Te] = [to,to + [ — 1]}, where, [ € N denotes the window size of
the attacker’s recording phase and the recorded output follows the below mathematical
equation:

g:(t) = yi(t)a 1€ trec (36)

3.3.2 Replaying Window Phase:

In the second phase, the attacker commences the tampering of pre-determined sensors
identified in Section 3.2. This involves manipulating current observed values of those
sensor measurements by substituting them with any related /unrelated previously recorded
values for some specific time duration. Lets say, the replaying functionalities are initiated
by the adversary at T, + h sec and continues to persist for the whole duration up to 7T sec,
then the playback time interval is denoted as t,.p = {t € N: ¢t € [T+ h, (n+1)T. — T]},
where, 7 = 1,2,... and h accounts for the total number of replay attack sequence and
sampling period respectively. Thus, finally at the end of this second stage the malicious

sensor reading that fraudulently transmitted to CC can be written as:

Yrt—17), ifFi=1andt € tyep,
i) = : (3.7)
Yi(t), otherwise

where, 7 is the time elapse between the onset of above two phases and F is the binary
variable whose value is unity when RA is triggered and zero otherwise. Also, it is to be
noted that in Eq. (3.6) and Eq. (3.7) the subscripts " and ¢ denotes the sensor output

during the record and replay window phase respectively.
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3.3.3 Different RA Models Influencing PSSE:

Accurately estimating the state in real-time is crucial, especially in power systems, as
it relies on sensor data from RTUs for monitoring and control. However, the integrity
of these results is jeopardized by the occurrence of replay attacks, potentially leading
to security breaches and power system instability. In pursuit of showing its impact on
PSSE according to the execution plan mentioned above, two different RA models that
aim to interfere with trend-based power system applications and cause possible failures,

are discussed in this subsection below.

e Multiple Data Dropping Attack (MDDA): In this MDDA-type replay attacks,
attacker aims to capture the actual dynamic trends from the normal RTU sensor
readings at distinct and convenient time intervals of attacker’s choice in its recording
window phase. During replaying window phase, the attacker substitutes the current
stream of RTU readings with an interpolated data sequence derived from the

previously recorded data as described in the following Algorithm. 3.

Algorithm 3: MDDA with interpolated data sequence

Step-1: Start eavesdrop and record the i** RTU readings upto t* sec with a gap of
k sec intervals such that Y7 () = {vi(t0), i (fo+k): i (fo+2k), - ¥i(ty 1 3.) )
where ¢, < t, is satisfied.

Step-2: The incomplete recorded dataset due to dropout of multiple data at each
(l’k: — 1)* interval is then filled up by the computed steady state
interpolated trends from the existing available i** RTU dataset.

Step-3: In the replaying window phase, the original RTU measurements data from
tf{ﬂrl sec to t% sec are being replayed by the interpolated and recorded data
provided by Step-2.

¢ Repetitive Data Cloning Attack (RDCA): Replay attack can be launched
via impersonating as a natural disturbance or an equipment fault. Therefore, the
primary objective of RDCA here is to replace the current trends in multiple sensors
with the cloning of pre-saved historical measurement data across repetitive time
instances. With the aim of manipulating the dynamic signatures, in RDCA the
attackers replaces the original dynamic data trends of the various RTU sensors
with repeated sequences of pre-saved unrelated high disturbance or faulted signature
trends. The following two algorithms i.e Algorithms. 4 and Algorithms. 5 outlines
the modeling steps of different RDCAs.

3.4 Stage-3: PMU Sensor-Assisted RA Detection and
Correction
In SCADA system, the traditional state estimation (SE) relies on non-linear weighted least

square (WLS) algorithm for finding the best fit of the of system states, utilizing sensor

measurements from RTUs across a wide geographical area. However, the susceptibility
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Algorithm 4: RDCA with cloning of high disturbance event historical data

(LT-RDCA)

Step-1: Choose a pre-saved unrelated historical huge load disturbance dataset from
a historical database archives.

Step-2: Start recording of a k' sec window from the above disturbance dataset such
that H;‘(t) = {yi(tg),yi(tl),yi(tg), ...,yi(tk)}, where ¢, < 7.

Step-3: Now in the playback period, the current RTU data streams are being
replaced by the recorded dataset and the same being replayed periodically
from ¢ | sec onwards.

Algorithm 5: RDCA with cloning of Faulted event historical data (ST-RDCA)

Step-1: Choose a pre-saved unrelated historical Faulted dataset from a historical
database archives.

Step-2: Record the fault signature from the chosen dataset from t; sec to tx14 sec
duration.

Step-3: Now replace the original RT'U measurements of a non-fault case by the same
duration recorded data and replay it between t; sec to tiy4 sec to
misinterpret the non-fault case as fault case.

to high dB noise or replay attacks in the transmitted data between RTUs and other
network components due to the absence of robust security mechanisms in telemetry poses
a substantial threat. This lack of security measures leads to notable discrepancies in
estimation accuracy and may also introduces potential catastrophic vulnerabilities in the
physical system. However, the state-of-the-art PMU sensors, on the other hand, are
considered to be resilient and cyber-secured due to their advanced cybersecurity features
and robust design, providing accurate and time-stamped real-time data of voltage and
current phasors [204, 65]. These devices play a crucial role in enhancing the grid’s
situational awareness and ensuring the integrity of the system against cyber threats.
Nevertheless, the large scale deployment of these devices are quite expensive due to its
requirement of communication infrastructure and maintenance cost and thus complete
replacement of RTU device with PMU is not possible in near future. Therefore, the
coexistence and complimentary co-operative support of both the sensors i.e., RTUs and
limited PMUs is the only viable option to jointly estimates the power system states as well
as ensuring global network observability and robustness against implausible cyber threats.
Thus, in order to detect and correct the RAs in SE, the methodology proposed in this
section is based on the improved synchrophasor-assisted hybrid state estimator (HYB-SE)

and a model based residual check technique, as discussed in the following subsections.

3.4.1 Hybrid SE (HYB-SE) Model

In the WLS-assisted conventional SE, the measurement vectors (Zgrry), comprising of

M RTU readings (voltages, power injections, and power flows), are linked to the 2N — 1
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system states (Xpgpy) of order N using the following non-linear relationships:

Zrru = hrru(XrrU) + €RTU (3.8)

where hppy(+) is the non-linear mapping function that relates the RTU measurements with
its corresponding state variables and erry € N(0,rry) is the measurement Gaussian

noise or errors associated with RTU sensors.

Then, the conventional estimates of system state vector are obtained if the objective
function (J(Xgrry)) defined as the weighted sum of squares of measurement errors can be

minimized through WLS method as shown below:

3(Xrrv) = [Zrrv — herv(Xrro))]" Ry Zrru — hrro (Xerv))] (3.9)

where Rrru be the M x M order RT'U measurements error covariance matrix defined as
Rrru = Elerru - EII;LTU] The reciprocal of this matrix is called as weight matrix (Wgrru)
whose each diagonal elements represents the weightage of the corresponding available RTU
measurements. It depends on the accuracy level of RTU sensors. At the end, solving the
above objective function through iterative approach, the final estimated value of the states
can be obtained as: [205]

AZrrv(Xbro) = Zrru — hrro (X iry) (3.10)
AXfry = [HiruReruHrrul 'HRruRrruAZrry (XErv) (3.11)
X}%EJ = Xhpu + AXI]%TU (3.12)

where, Hrry is measurement Jacobian matrix of size M x N, HgTURleRTU is called
as gain matrix and X %TU = [VﬁTU HA%TU]T be the conventional estimated states at k"

iteration.

Now, to enhance the estimation accuracy, capturing dynamic state trends, and mitigate
uncertainties, the PMU-derived bus voltage and current phasor measurements, in
conjunction with the latest WLS-assisted conventional SE estimates, are utilised to form
a new measurement vector (Zgyp). Since voltage and current exhibit linear relationships
with the relevant state variables, the new measurement vector is expressed in rectangular

coordinates, forming a hybrid linear estimator model as shown below.

1T [1 o] [ cVre ]

[[A/Re} ERTU

Vim] gy 0 I 5V’7£"U
Zuyp = XRB =G 0 Ve + |epiu (3.13)

Im] pyu 0 G Vim Epm

IRe C3 C, EPR]\e/[U

LU ppgr ) [C5 Cql _6531]\"2[]_

Zuyp = HuyB XuyB +cnyB (3.14)
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The subscripts ‘Re’ and ‘Im’ in the above equation denotes the real and imaginary
components of the measurements and hybrid states (Xgyp). Symbols I and 0 represents
an unit matrix and zero matrix respectively. C; and Cy are the matrices where each row
corresponds to a specific PMU location, with ones placed in the columns corresponding
to the measured voltage phasors by the respective PMU’s row index. The elements of
matrices C3 to Cg are represented in linear combinations consisting of line conductance
and susceptance for the lines where current phasors are available. Finally, the WLS
solution (X gy B) for the above linear model can be obtained in non-iterative manner and

expressed in the same form as stated in Eq. (3.11) and Eq. (3.12).
Xuve = (HiysWaysHuys) ' Hiys Ways Zuyvs (3.15)

where, Wyyp be the reciprocal of covariance matrix of hybrid estimator (Ryyp) consist
of error covariance matrices of conventional SE, PMU voltage phasors and PMU current
phasors converted into rectangular format based on error propagation theory [206] of

measurement transformation.
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3.4.2 Proposed Phasor Measurement Based RA Detection and

Correction

The detection and correction of the RAs on PSSE can be effectively achieved through
the use of above described 2-stage hybrid state estimation model, considering real-time
measurements collected using both RTUs and PMUs with different time scan periods.
Usually, the measurement set updated by the RTU is within a time scan of few seconds
and for PMU the reporting rate is quite high i.e., typically up to 60 frames per seconds. The
aim here is to effectively integrate information from both the devices operating at different
sampling rates, within the dynamic HYB-SE framework such that any manipulations in
RTUs can be noticed easily. In this context, this chapter assumes that HYB-SE is executed
whenever a new set of PMU data arrives, with a refresh rate of 20 frames per second for
a 60 Hz system. Simultaneously, the conventional non-linear SE is executed at each
one-second interval upon the arrival of a new RTU measurement dataset. This implies
that between two consecutive RTU measurements, 20 PMU measurements are reported.
The whole timeline diagram, including the arrival of the complete set of RTU and PMU

measurements both and the HYB SE’s execution cycle, is shown in Fig. 3.2. During
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periods when only PMU measurements are available, the latest states estimated solely by
the conventional non-linear SE are incorporated to fill the incomplete measurement set and
execute the HYB-SE. This is due to the fact that existing power system is observable by
the available RTU measurements, but the inclusion of additional PMUs serves the purpose
of transforming any critical existing measurements into redundant ones, thereby improving
the overall accuracy of the measurement reconstruction process. This enhancement also
aids in the identification of compromised RTU sensor readings and distinguishing the
moment when a RA is initiated. After the Stage-1 and Stage-2, steps have been followed
in block (1)-(3) in Fig. 3.3, and a few critical RTU measurements are compromised, the
RAs may be initiated by the attacker at any opportune time. The steb-by-step procedure

for detecting and correcting the RAs in SE, are described as follows.

(1) In block-(4), the WLS-assisted SE algorithms estimate system states (Xgrry) once
every second. The linearized HYB-SE also runs through blocks 5-6 in parallel. The
dynamic estimates Xuyp are produced recursively in HYB-SE using the estimates
of the WLS estimator until new RTU data is received.

(2) Because the secured PMU measurements are quite accurate, (X HyB) can be used,
using standard power flow equations, to reconstruct the estimation of the original

RTU readings at each second interval following the arrival of Zrry in block-(7).

(3) In block-(8), a measurement residue (A) is computed using the original RTU sensor
readings (Z rru) (which may or may not be compromised) and the reconstructed
measurements (ZAJ%YI}B ).

(4) If the residue lies within an upper (+6Y?) and lower bound (—d6%?) in block-(9), the
RTU measurements are labeled as Normal with a Flag=0 in block-(10), compromised
otherwise. The measurements that have Flag=1 assigned to them are considered

vulnerable and are kept in a variable called Z, in block (11).

(5) To fix the bugged measurements, Z,, block-(12) replaces the malicious RTU sensor
readings with the reconstructed measurements by hybrid states and the toggling

switch, S,, is set to position (2) as shown in Fig. 3.3.

(6) The conventional SE stage in block-(4) executes in loop, thereafter, to estimate the

attack-free states with the corrected measurements through blocks (5)-(12).

The overall flowchart of the proposed scheme with various intermediate blocks is presented
in Fig. 3.3.

3.5 Real-Time Digital Simulation (RTDS) Results

The proposed RA detection and correction framework is tested and validated on the
IEEE 14-bus and New England (NE) 39-bus systems using the RSCAD software in the

RTDS. The RTDS modeling closely mimics real field scenarios, providing accurate results.
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Figure 3.3: Flowchart of the proposed RA detection and correction scheme
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Dynamic conditions of the grid are emulated by varying loads from £10% to £30% with
user-defined logic sequences in RSCAD. Gaussian noise is introduced to both RTU and
PMU readings to simulate measurement uncertainties. PMUs are installed at the same bus
locations as specified in [207]. A MATLAB script implementing HYB-SE is then executed
for randomly generated RA test scenarios. The framework’s performance is evaluated
based on factors such as correct identification of vulnerable measurements, detection time
for launched RAs, and key metrics including True Negative (TN), False Negative (FN),

False Positive (FP), and True Positive (TP), along with other derived evaluation indices.

3.5.1 IEEE 14 Bus Test System:

To assess the accuracy of the proposed method for detecting and correcting replay attacks,
the IEEE 14-bus test system is initially selected. The system is tested against two
attack strategies: MDDA and the RDCA algorithm (4), as discussed in Section 3.3.
The details associated with various RTU, PMU and vulnerable measurements along with
their standard deviation (SD) for the IEEE 14-bus system is tabulated in Table 3.1.
Additionally, PMU sensors are installed at Bus-2, Bus-7, Bus-10, and Bus-13 to obtain
voltage and current phasors for the execution of HYB-SE, which is used to generate refined
reconstructed measurements. For this test system, the upper (+6Y7) and lower threshold

(-6LB) values are fixed at 0.03 p.u. through out the total simulation duration.

Table 3.1: Conventional, Compromised and Synchrophasor Measurements for IEEE
14-Bus Test System
IEEE 14-bus System
Bus Location Bus Locaftlon Bus LOCat.IOIl Line Location for
for Active for Reactive . .
for Voltages Active and Reactive
P t (Bi) Power Power Power Flows (Li-j) No. of RTU
arameters Injections (Bi) Injections (Bi) J Sensors
SD: 0.006 p.u. SD: 0.01 p.u. SD: 0.01 p.u. SD: 0.01 p.u.
L1-2, L15, L2-3, L24,
B1, B2, B6, B1, B2, B4, B1, B4, B6, L4-5, L4-7, L4-9, L5-6, 74848
Zrrv B9, B10, B12, B6, BS, B10, B7, B9, B11, L6-11, L6-12, L7-8, 16416 — 55
Bl4 B12, Bl4 B12, B13 L7-9, L9-10, L9-14, -
L12-13, L13-14
L2-3, L2-4, L4-7, L5-6, -
Zy B10, B12 BS, B10, B12 L7-8, L7-9, L13-14 24-347+7 =19
Bus Location for Line Location for
Voltages Phasors Current Phasors No. of PMU
Parameters
Sensors
SD: 1.0e-05 p.u (Mag), 0.001 (Ang) | SD: 1.0e-05 p.u (Mag), 0.001 (Ang)
L2-1, L2-3, L2-4, L2-5, L7-4, L.7-8, L7-9, _
Zpmu B2, B7, BI0, BI3 L10-9, L10-11, L13-6, L13-12, L13-14 4+12 =16
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3.5.1.1 Multiple Data Dropping Attack (MDDA) Detection

In this study, before the attack initiation, the model is running in steady state with
dynamic load variations are performed at the load bus 4, bus 5 and bus 9 to bus 13. The
variations are simulated chronologically, with the model running at its base load for the
initial 0 to 2 sec. Then, the load is increased by 30% for the next 3 sec, followed by
another increment of 30% of the previous load for the next 3 sec. Finally, after 8 seconds,
the load is reduced to its base load again. Throughout the first 5 sec simulation duration,
in MDDA, the attacker eavesdrops and sniffs data packets to capture dynamic snapshots
of the current simulation case at three distinct intervals: 0 sec, 2 sec, and 4 sec based on
resource availability. Now to generate a complete set of replay attack vector for a 5 sec
duration, interpolated steady-state values are computed for 1 sec and 3 sec based on the
captured data set. Following this, the attacker is prepared to replace the current streaming
of RTU sensor data with the pre-recorded data for a playback time of 5 sec, which is then
transmitted to the control center from 5 sec onward.

As per the flowchart of Fig. 3.3, with the onset of the attack, direct residue (A) in Fig.
3.4(a) exhibits significant changes in the model residual of some of the measurements
crossing the thresholds limit denoted with red and the blue horizontal lines. At the end,
the residual matrix is converted to a binary matrix by placing one while the observed
residuals crossing upper and lower bound thresholds and place 0 otherwise. Then by
calculating the total number of zeros and non-zeros at the end of simulation duration
pertaining to individual measurements, a plot is generated as shown in Fig. 3.4(b) which
represents the cluster of the measurements Flagged as normal (blue dots) and the ones
flagged as vulnerable (Flag=1, with red dots). The same information is quantitatively
assessed through confusion matrix as shown in Fig. 3.4(c) to count the number of correctly
identified and labeled attacked and non-attacked RTU sensor measurements based on TP,
TN, FP, and FN. These information also help to calculate some other crucial metrics
such as precision, recall, and F1 score to gain profound quantitative insights into the
efficacy of proposed attack detection method. It is noticed that the proposed method has
relatively higher true positive rate (89.47%), accuracy (81.85%) with a little compromise
in true negative rate (77.79%), F1 score (77.27%) and precision (68%). This is due to
the presence of bad data in the measurement vector which is not attacked. Moreover,
in order to visualize the timing instants of replay attack and to potentially identify
the uncorrelated attacked measurements or outliers, various statistical study in terms
of computing correlation coefficients via correlation matrix and box plot are conducted
based on residual features matrix as shown in Fig. 3.4(d) and 3.4(e). The correlation
matrix shown in Fig. 3.4(d) measures the relationships between different measurements
over time for discerning distinct behavioral patterns during attack and non-attack periods.
Thus, during 5 sec attack duration of MDDA, the coefficients values get surprisingly very
high as compared to the same computed in other timings as visualized by the heatmap.
The same can also be perceived by the boxplot as shown in Fig. 3.4(e) which facilitated

the identification of outliers or potentially corrupted data using the symbol '+’ during
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Figure 3.4: Detection phase of MDDA for IEEE 14-bus test system

the attack periods (5 sec to 9 sec), as many data points significantly deviating from the

expected distribution and lying outside of the interquartile range of the box.

3.5.1.2 Repetitive Data Cloning Attack (RDCA) Detection

In contrast to the previous case, now the chronological load variation is done with low
step load changes in such a way that the model is allowed to run under normal conditions
for the initial 0 to 2 sec followed by 12% decrement for next 3 sec. In subsequent next 3

sec, the load is increased by 17% from its previous load value and finally the load settles
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at 10% below the previous value after 8 sec onwards. As per the RDCA algorithm 4, it
is assumed that the attacker already got control access into the operator’s network before
and recorded an unrelated historical load disturbance data for 4 sec window span. Now
in this case study, attackers start replaying those recorded data packets periodically in
the replacement of original RTU data from 4 sec onwards. The direct residual plots, as
shown in Fig. 3.5(a) reveals the presence of RDCA in some of the measurements. Figure
3.5(b) also successfully identified most of the vulnerable measurements marked as red dot
while it crossing the set threshold limits. It is also noticed from the confusion matrix of
Fig. 3.5(c) that the number of FN and FP are 1 and 2 respectively which is significantly
improved then previous case study. Moreover, improvement can also be observed in other
derived metrices such as true positive rate and true negative rate is almost 94.5% with
precision, accuracy and F1 score are 90%, 94.6% and 92.3% respectively. To analyze
temporal patterns in the context of potential replay attacks on those attack time instants,
correlation matrix is also shown in Fig. 3.5(d). Stronger associations were shown by bright
hues on the heatmap, which provided a visual representation of this increased correlation.
This observation implies that replay attacks occurring at those specific time instance can
have a noticeable impact on the temporal correlations between observations, resulting
in patterns that can be identified in the correlation matrix. As the attack being start
replayed from 4 sec by the adversary, the box plot depicted in Fig. 3.5(e) also shows
a sudden increase in corrupted uncorrelated measurement readings which clearly discern

irregularities and variations which corresponded with the occurrence of cyber attacks.

3.5.1.3 Attack Correction

The correction phase of the proposed methodology against these two above mentioned
attacks i.e MDDA and RDCA algorithm 4 is shown in Fig. 3.6. The vulnerable
measurements identified by the above detection phase is now corrected with the
reconstructed RTU measurements using the refined estimates of hybrid states
incorporating secured PMU measurements. The re-execution of SE process thereafter
takes place as per the algorithm explained in Section 3.4.2. As a result it can be evident
from the direct residue plots of Fig. 3.6(a) and Fig. 3.6(b), that now the residuals are
confined within the range selected by upper and lower level thresholds and thus none
of the measurements are now treated as attacked or compromised. It clearly reveals
that the error under compromised condition, i.e., before RA correction was maximum
in the range of 0.2 pu, whereas after the correction as per the proposed scheme, the
residual drops to a maximum value of about 0.02 pu. On the similar line, the correlation
matrix depicted in Fig. 3.6(c) also demonstrates the strong correlation coefficients with
its diagonal entity only which implies that the measurements received at different time
instances are consistent and correlated with their respective time of arrival and there
was existence of no anomalous readings. Also by exploring the temporal and spatial
relationships between time, measurements, and attack labels, the 3-D scatter plot shown

in Fig. 3.6(d) indicates that there is no measurements in the corrected RTU vector set
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Figure 3.5: Detection phase of RDCA Algorithm 4 for IEEE 14-bus test system

that are corrupted by any of the aforementioned attacks. Furthermore, in the correction
phase of the MDDA, the maximum reduction in residue from the attacked state to the
corrected state ranges between 83.33% (upper bound) and 89.73% (Lower bound). The
highest root mean square error of the hybrid estimated states, post-correction for MDDA,
is recorded at 0.4%. Similarly, during the correction phase of the RDCA, the maximum
decrease in residue from the attacked state to the corrected state falls within the range
of 89.51% (upper bound) and 83.65% (Lower bound). The maximum root mean square
error of the hybrid estimated states, after correcting for RDCA, is observed to be 0.6%.
Notably, in both case studies, following the correction process, the true negative rate

reach 100%. The consolidated results derived from all the above post-correction plots
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Figure 3.6: Correction phase of proposed scheme for IEEE 14-bus test system

provide compelling evidence of the attack mitigation. Thus, the efficacy of proposed
attack correction strategy has been proven to evident through its ability to restore the

integrity of attacked measurements.

3.5.2 New England (NE) 39-Bus Test System:

To assess the effectiveness of the proposed attack detection and control approach on larger
system, two different variants of RDCA as mentioned in algorithm 4 and algorithm 5 are
now employed in NE 39-Bus test system. The details pertaining to various measurements
have been summarized in Table 3.2. As the threshold selection is system specific, the
upper (+6YB) and lower (-6%P) threshold level are set at 0.05 pu, corresponding to this

test system.

3.5.2.1 Long Term Repetitive Data Cloning Attack (LT-RDCA):

This case study is similar to the RDCA Algorithm 4 as described in IEEE 14 test
system where the adversary recorded the unrelated high disturbance data for replaying
compromised RT'U measurements periodically from 4 sec onward. Dynamic load variations
are sequentially applied to 10 different bus locations: bus-3, bus-4, bus-8, bus-15, bus-16,
bus-20, bus-24, bus-26, bus-29, and bus-39.The impact of these adversarial actions is
evident in the direct residual (A) plot, illustrated in Fig. 3.7(a), which shows the clear
evidence of adversarial action by effectively flagging out any potential corrupted sensor
readings resulting from the attack. Figure 3.7(b) provides a granular visualization in
pinpointing specific measurements affected during whole attack duration. Figure 3.7(c)
shows the confusion matrix that provides a comprehensive picture of attack detection
performance with very lower value of FP and FN, specifically 3 and 6, respectively. This

leads to improved model’s ability to successfully detect attacks while minimizing false
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Table 3.2: Conventional, Compromised and Synchrophasor Measurements for NE 39-Bus
Test System

NE 39-bus System
. Bus, Location for | Bus Location for | Line Location for
%gﬁ}%(;aic]l?())ir)l for| Active Power | Reactive Power | Active and Reactive
Parameters g Injections (Bi) Injections (Bi Power Flows (Li-j No. of RTU
Sensors
SD: 0.006 p.u. SD: 0.01 p.u. SD: 0.01 p.u. SD: 0.01 p.u.
L1-2, L1-39, 1.2-3, 1.2-25,
BI, B2, B3, B5, B6, | BL B2, B3, B5, B, | Bl %2103%1134]3]?‘ L3-18, L4-14, L5-8, L6-7,
B7, B8, B10, B12,| B7, B8, B10, B12, B16, BI8, B20 BQT L6-11, L7-8, L8-9, L9-39,
B15, B16, B18, B20, | B15, B16, B18, B20, 323 B24. B2 B2 L10- 13 L13-14, L14-15,
- B21, B22, B23, B25, | B21, B22, B23, B25, B27 B8 B2§A B30 L15- 16, L16-19, L16-21,| 30430430+
RTU B26, B2S, B29, B30, | B26, B28, B29, B30, | B2+ 2% 529 580 | [16-4, L17-18, 121-22 | 32+32 = 154
B31, B32, B33, B34, | B31, B32, B33, B34, B35 B3C B3 Das, | L2223, L2627, L26-29.
B35, B36, B37, B38, | B35, B36, B37, B33, BSBV » B3l L28-29, L12-11, L12-13,
B39 B39 ' 1L10-32, L23-36, 1.25-37,
L.29- 38 L19-20
L1-2, L3-18, L4-14, L5-8,
L6-7, L6-11, L7-8, L8-9,
B20, B22, B23, B28, | B20, B22, B23, B2, L9-30, L1043, [13-14 10410493
Z, B29, B33, B34, B35, | B29, B33, B34, B35, L14-15, L15-16, L16-19, +;L3 _+66
B36, B38 B36, B38 L16-21, L1624, L17-18 «“
1.21-22, L.26-27, L12-11,
LlQ—lS7 L10-32, L.19-20
Bus Location for Voltages Phasors Line Location for Current Phasors
No. of PMU
Parameters Sensors
SD: 1.0e-05 p.u (Mag), 0.001 (Ang)| SD: 1.0e-05 p.u (Mag), 0.001 (Ang)
L2-1, L2-3, 1.2-25, 1.2-30, L6-5, L6-7, L6-11,
L6-31, L9-8, L9- 39 L10-11, L10- 13, L10-32,
) L11-6, L11-10, L11-12, L14- 4 L14- 13 L14-15,
Zeowo | B2y B0 B BI0BLL B4 BIT. B9, B20, | [y7.16 " 11718, L1797, LI0-16, L19-20.| 14439 = 53
) ) ) ) L19-33, L20-19, L20-34, L22-21, L22-23,
1.22-35, 123-22. 123-24, 123-36, L26-25,
1.26-27, L26- 28, 1.26-29, L37-25, L38 29

alarms. The resulted performance metrics includes: true positive rate of 91%, true negative
rate of 97%, precision of 95.2%, accuracy of 94.2% and F1 score of 93.02%. To identify
timing instances of potentially uncorrelated and compromised RTU measurement’s arrival,
based on columns features of residual matrix, the correlation coefficients are calculated as
shown in correlation matrix of Fig. 3.7(d). By leveraging the heatmap’s color intensity
associated with elevated correlation coefficients, the timing of replaying historical recorded

measurements are now clearly discernible.

3.5.2.2 Short Term Repetitive Data Cloning Attack (ST-RDCA)

In the second variant of RDCA, the attacker initially recorded a 2 second windowed
RTU data of a single phase to ground fault from any historical database and then these
faulted RTU readings are being replaced with the normal RTU readings at 3 sec as per
the Algorithm 5 to impersonate a normal event as a faulty one. Thus unlike previous
attack cases, this attack features with limited duration but seemingly more hazardous as
it could lead to false tripping of relays even if the system is in healthy condition. The

proposed detection method effectively identifies such replay attacks, as evident from the
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Figure 3.7: Detection phase of LT-RDCA (Algorithm 4) for NE 39-bus test system

residue plot in Fig. 3.8(a). For the clear distinction of replay attack occurrence, in the
above plot the pre-attack, during attack and post attack time legends are only shown. The
distinct categorization between compromised RTU sensors data from the normal sensor
data, offering a holistic view of measurement cluster during both routine and adversarial
scenarios as depicted in Fig. 3.8(b). The confusion matrix in Fig. 3.8(c) reveals that
application of proposed detection techniques over this test case results in 13 FPs and 1 FN
in total. By analyzing the distribution of TP, TN, FP, and FN in the confusion matrix, a
comprehensive evaluation of the model’s success rates in detecting attacks can be accessed
through the calculated values of other derived metrics such as true positive rate (98.49%),
true negative rate (85.23%), precision (83.33%), accuracy (91%) and F1 score (90.3%).
Lastly, the box plot in Fig. 3.8(d) offers detailed insights into the temporal dynamics
of meter corruption, showcasing whiskers and individual data points. This visualization
reveals high variability and skewed distributions in RT'U sensor data during the initiation

of replay attacks from 3 sec to 5 sec, highlighting anomalous behavior in detected meters.

3.5.2.3 Attack Correction

The correction phase of the proposed methodology against the aforementioned two attack
variants of RDCA is depicted in Fig. 3.9. The vulnerable measurements identified
in the detection phase are now corrected using the reconstructed RTU measurements,
incorporating refined estimates of hybrid states with secured PMU measurements. The
resulted residue plot of LT-RDCA, depicted in Fig. 3.9(a) is updated after incorporating
corrected RTU measurements into the state estimation process. Notably, it is observed

that the corrected residues consistently maintained a profile within the predefined range
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Figure 3.8: Detection phase of ST-RDCA (Algorithm 5) for NE 39-bus test system
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Figure 3.9: Correction phase of proposed scheme for NE 39-bus test system
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delineated by the upper and lower level thresholds. This observation signified a successful
mitigation of the detected attacks, as the corrected measurements no longer surpassed
these established boundaries. As a result none of the RT'U meters reading is now suspected
as compromised which is clearly illustrated by all the measurements marked as blue dots
in Fig. 3.9(b). Correlation matrix analysis of ST-RDCA is depicted in Fig. 3.9(c)
reveals strong correlation coefficients only along the diagonal, indicating consistent and
non-anomalous measurements at various time instances. Furthermore, for LT-RDCA
correction, the maximum residue drop is approximately 96.5%, with a post-correction
root mean square error of 0.4%. In ST-RDCA correction, the residue drop ranges between
97.81% (upper bound) and 82.87% (lower bound), and the root mean square error is 0.5%.
The true negative rate for both the attack variant reach at 100% after the end of correction

steps.

3.6 Conclusions

The aim of detecting and correcting replay-attacked measurements in the power
system dynamic state estimator is achieved in this chapter based on developing three
sequential stages. In Stage-1, based on nodal and branch power transfer distribution
factors vulnerable RTU measurements are first identified, followed by corrupting those
measurement values based on designing two novel RA models in Stage-2. Finally, in
Stage-3, with the utilization of secured PMU sensors readings in a hybrid state estimator
model, an attack detection and correction algorithm is developed to counteract the
RAs. Rigorous testing on two popular standard IEEE test systems, i.e., IEEE-14 and
NE-39, modelled in Real time Digital Simulators and the computational results of many
performance indices has validated the effectiveness and remediation of proposed attack
detection and correction strategy which in turn fortify resilience of cyber-physical systems
against adversarial interventions. At the end, this chapter comes up with following salient

features of the proposed method:

e The average detection rate for RDCA and MDDA is determined to be 94.6% and
90%, respectively. In the IEEE 14-bus system, there are a total of 8 FPs and 2 FNs
for the MDDA and 2 FPs and 1 FN for the RDCA.

e The accuracy estimation for both MDDA and RDCA is found to be 82% and 93.27%

respectively.

e The RMSE of estimated states of the estimator under MDDA and RDCA becomes
0.4% and 0.45%, respectively, after applying the attack correction algorithm.

e For both attack variations, the true negative rate constantly approaches 100%.
This indicates the high specificity of the proposed algorithm in correctly identifying

instances that do not belong to the attack class after correction.

e The resilience of the PSSE is enabled by secured PMUs, placed at approximately
1/3' of the system buses.



Chapter 4

Detection, Classification  and

Localisation of Cyber Attacks in
Islanded AC Microgrid

4.1 Introduction

While Chapter-2 and Chapter-3 highlights the vulnerability of T-systems to cyber-attacks,
it is also crucial to acknowledge the vulnerabilities that constantly faced by Distributed
Energy Resources (DERs) at active distribution level network as well, particularly within
the control mechanisms of Microgrids (MGs). MGs rely in seamless interconnections
with various DERs for exchanging their own local information to the controllers and also
highly interdependence with diversified communication and networking architecture for
the efficient monitoring and control process. Consequently, now-a-days cyber criminals are
increasingly shifting their attention to D-system, especially in the complex environment
of islanded AC MG systems where the DERs controllers and its communication links
are purposely targeted to be compromised, posing challenges for voltage and frequency
stability. Thus, in D-System domain, particularity in the realm of MG, this chapter
envisages for timely detection, classification and localization of cyber attacks which is of
paramount importance for successful isolation of corrupted DERs from the MG topology
under worst case situation. Thereafter, this detection and locational information will be
utilized in next chapter to develop an effective resilient defense mechanisms to neutralize
the cyber threats.

This chapter attains the above-mentioned objectives in 3 sequential steps. At first,
Maximum Mean Discrepancy (MMD) based two-sample statistical hypothesis test is
employed for analyzing and comparing distribution of the actual and estimated local
frequency neighborhood tracking errors to detect the presence of misbehaving DERs
or its corrupted incoming communication links. In next step, following detection of
an attack, two statistical inconsistency measures—Shannon energy and entropy—are
computed and used in a novel rule-based attack classification method that is integrated
with the same XGBoost classifier to categorize different kinds of injection attacks in the
controllers of the DERs. Upon classifying the nature of cyber-attacks, in the last step,
this chapter introduces a multi-class attack localization scheme that leverages additional

statistical features to be integrated into the XGBoost classifier. This facilitates the easier
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identification and quick isolation of compromised i.e., targeted DERs units from the system
in the worst-case scenario.

This chapter is organized in six sections. In Section 4.2, a brief background of conventional
primary control with communication based distributed secondary control of MG system
is reviewed. Next, three consecutive sections i.e Section 4.3, Section 4.4 and Section
4.5 provides detailed description of the proposed methodology along with the real time
digital simulation results pertaining to MMD based attack detection, proposed rule-based
attack XGBoost-enabled attack classification and multi label attack localization scheme
respectively. Finally, the key inferences are drawn and highlighted in conclusion Section
4.6.

4.2 Modelling Preliminaries of Islanded AC Microgrid

4.2.1 Cyber Graph Theory Terminology

Being a multiagent system [208], the distributed communication network of a microgrid
are usually represented by a directed cyber graph topology such as § = (V,¢&, ),
where each DERs are treated as vertices and the communication links associated with
it are viewed as edges having a directed adjacency matrix &/. In such communicative
microgrid environment, if the DER of vertex-j, v; transmitting its own information to
an another DER of vertex-i, v; then the entity, a;; of adjacency matrix &7 is defined
as a;; = 1, if (vj,v;) € € otherwise a;; = 0. The immediate neighbours of DER of
vertex-i are represented mathematically by the set as N; = {j|(v;,v;) € €}. Every vertex
of G is associated with in-degree and out-degree based on the information it received and
transmitted respectively. Thus, the diagonal in-degree matrix of entire G is denied as
P = diag{d;} € RNV with d; = >_jen, @ij- This in-degree matrix indirectly helps to
analyze the convergence rate of the system dynamics via calculating the graph Laplacian
matrix as . = ¥ — o with the assumption that the graph should have a spanning tree. If
this assumption holds true, then A\; = 0 will be the simplest eigenvalue of .Z and @& = c1
becomes the solution to Zw = 0, c is any constant, which guaranteed the voltage and
frequency synchronization of distributed secondary consensus law.

In such network multiagent system, there must be atleast one DER, who has the knowledge
of MG’s voltage and frequency reference values are considered to be as leader and its
corresponding edge weight in the distributed secondary control is taken as g; > 0 which is

called as pinning gain [131].

4.2.2 Droop-Characteristics Based Primary Control

In an islanded operation, the voltage and frequency instability issues arise in MG due
to the mismatch in power consumption and generation. In such critical scenario, power
converters are used to operate in grid-forming mode where the primary control takes the

control action for voltage and frequency regulation, and also to facilitate a proper active
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and reactive power sharing among parallelly operating voltage controlled voltage source
inverters (VCVSI) without the use of communication links. This control can be achieved
by designing the active power versus frequency and reactive power versus voltage droop

characteristics as follows.

W; = w;;_ — mpl.Pi (4.1)
%di = VTZ — nQiQi (4.2)

where, wy, and V' are primary control nominal frequency and d-axis voltage reference
respectively, obtained from secondary level control. mp, and ng, are the active and reactive
power droop coefficients, respectively which is selected based on converter power ratings
and allowable maximum f and v deviations. P; and @); are the filtered active and reactive
power of i" VCVSI, respectively [208, 145]. The output from the droop control acts as
reference points for the internal zero level control loops of the VCVSI which generate

switching modulation pulses for the DER’s operation.

4.2.3 Communication Based Distributed Secondary Control

As the primary control of VCVSI only utilizes locally measured variables, it often leads
to significant deviations in the global parameters of the MG system, such as frequency
and voltage, from their reference values (wy.y and #ref). To address this, cooperative
distributed secondary control leverages information from neighboring DERs through a
defined cyber graph topology, enabling proportionate load power sharing and stable MG
operation. To do so, the distributed secondary control provides the frequency and voltage
set points, wy; and V;; in Eq. (4.1) and Eq. (4.2) for each DER-i in such a way such that
the global frequency and voltage tracking synchronizing error quickly converges to zero as

shown below:

Jim [lo; (t) = wregl| =0 Vi (4.3)
Jin [[764i(t) = Vregll = 0 Vi (4.4)

Therefore, the secondary control inputs for the frequency and voltage of a distributive
multiagent system can be written by differentiating the frequency and voltage droop

characteristics in Eq. (4.1) and Eq. (4.2) respectively.

of =i+ mp P =U,, i=1,..,N (4.5)
Vi, = Yoai +m,Qi = Uy, i=1,..,N (4.6)

where, U, and Uy, are the frequency and voltage auxiliary control inputs for DER-4
respectively. At this stage, the value of those control inputs at which synchronization of
VSVClIs can be attainable if all DERs communicate its own information with its neighbours

through a prescribed communication digraph G as.
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Uy, = —Cwu, (4.7)
U«,/i = —04,/5%. (48)

where J,, and 0y, are the local neighbourhood synchronization errors for distributed
secondary frequency control (DSFC) and distributed secondary voltage control (DSVC)
respectively. ¢, € R and ¢y € R are the control gains of DSFC and DSVC respectively

which are choosen as per the following condition:

1

w=Cy > ——————————— 4.9
T EOT (71 9) (4.9)

where, ¢ is the pinning gain matrix associated with communication graph § and )\jm-n
is the minimum positive eigenvalue of matrix (£ 4+ ¢). This auxiliary control inputs
(U, , Uy, ) for any DER-i are governed by a single integrator dynamics based on the v, f

and power information of its own and its immediate neighbour as follows [209, 210]:

Sw; = Z aij(w; — w;) + gi(wi — wref) + Z a;j(mp,P; — ijP;) (4.10)
JEN; JEN;

5y, = > aij(Voai = Vo) + 9i(Yodi = Yrep) + Y aij(ng,Qi — ng, Q%) (4.11)
JEN; JjEN;

where, w?, “//()’;ij, P]? and Q; are the frequency, voltage, active power and reactive power of
DER-j, respectively that are being communicated to DER-¢ through separate channels.
It is assumed that the MG is operating in an islanded mode with balanced loading and

feeder model.

4.3 Cyber Attack Modelling and Proposed Attack

Detection Scheme

Attack modeling and maximum mean discrepancy based detection mechanism are
presented in this section for the distributed secondary control of the microgrid. Let’s

first define two usual definitions, that will be extensively used throughout the chapter.

Definition 1 (Compromised DER). A compromised DER is one that is under direct
attack.

Definition 2 (Intact DER). An intact DER is one that is not under direct attack or

compromised.

4.3.1 Attack Modeling

It is assumed that the adversary launches the FDI attacks in sensors, controllers or
any decision-making units of the DERs in order to disrupt its operation and transmit
the corrupted data to the control unit, affecting the MG data integrity and, thereby,

jeopardizing its overall functioning. Based on the knowledge of distributive communication
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networks topology and DER’s local information, perpetrators can hijack secondary
controllers/corrupt the communication links which in turn, results in the auxiliary control
inputs of each DERs being converged to some arbitrary wrong non-zero values that leads
to frequency and voltage instability resulting collapse of the grid. A direct attack on the
sensors or controller of the DER-i is modelled as, (#%4k = ¢;+ Y, f%, where, (; is the actual
local frequency or voltage signal recorded by the sensors that is to be used by DSFC or
DSVC for generating primary droop control reference, (#°* is the resulted compromised
output after the data manipulation with attacker injected input denoted as f*. T; is unity

when attack is initiated otherwise zero.

In a same manner, if the communication channel for outgoing frequency information of

DER-i to DER-j is tampered with FDIA, then the malicious signal received by DER-j can

be modelled as (w!)* = w{ + Y f, where, (w])® is the final manipulated information that
has been transmitted to DER-j. Table 4.1 summarizes different types of attacks which

have been studied and detected in the present work.

Table 4.1: FDIA Details

FDIA Types Attack Signal Model (f¢) Parameters
Step Attack [ = ast ast 1S a constant.
Ramp Attack 2= Qrq.t arq is a varying slope.

Qsc is scaling gain.

. . ‘
Scaling Attack Ji' = Qi ast is the original signal.
a _ Qpy is a constant.
Pulse Attack I = opu(t), t € 7p Tp is the attack duration
Sine Attack fo = asinwt « 18 a constant.

w is the injected frequency

4.3.2 Proposed Attack Detection Scheme
4.3.2.1 Maximum Mean Discrepancy (MMD)

At heart, the proposed cyber attack detection scheme exploits a two-sample distance-based
measure called the maximum mean discrepancy (MMD) in a distributed cooperative
secondary control of islanded MG. The distance of two distributions is calculated on
the space of their probability measure based on the mean embeddings of two samples
mapped into a reproducing kernel hilbert space (RKHS). In this chapter, basically, the
most commonly used Gaussian radial basis function (RBF) kernel with kernel width v,
K(X;, X;) = exp(—||X; — X;||?/2v?), which represents as a feature vector in some input
space, is first applied over the two sample distributions and then the unbiased estimate of
MMD is computed. RBF is a strictly continuous positive definite function. So, in formal
sense, if P and K be the given probability measure and real-valued kernel defined on a

topological space x respectively, then the embedded mean for the samples drawn from P
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map to hilbert space H can be expressed as follows:
p :/UC(:L",.) dP(x) (4.12)
X

where, = be the observation samples of distribution X. The expression of MMD can
be easily represented in a more compact form by introducing the functional evaluation

reproducing properties of RKHS in the following definition.

Definition 3 (Reproducing Kernal Property). Let, 3 be a Hilbert space of real valued

functions on topological set x i.e, (f : x = R). Then the kernal function X : x x x = R
is called to be reproducing kernal of 3, if the following conditions holds [211]:

1. Vy e x, K(z,.) € H and

2.V, € X,Vf € H, there must be a valid feature map ¢(x) from x that map f eH
to f(z) € R such that f(z) =< @(z), f(.) > where p(z) = K(z,.) represents the

canonical representation of feature mappings.

3. In particular,  and y be the two samples drawn from two distributions that belongs

to the non-empty set x, then X(z,y) =< ¢(x), p(y) >5=< K(z,.),K(y,.) >9.

Therefore, by computing means via linearity, up can also be expressed as expectation of

feature map ¢(x) as follows:

e = Ewa(af) [(p(l‘)] = EJ,WP(JJ) [fK(.%', )] (4'13)

MMD, being a similarity measure, is applied over wide variety of problems, ranging from
bio-informatics, neuroscience, machine learning to any other engineering applications to
verify whether the two test samples defined on domain x under study are statistically
indistinguishable or not. The empirical estimates of MMDs heavily rely on the RBF class
F( f : x = R) to be the unit ball in the universal RKHS, should have quick convergence
and cheap computation, i.e for each m and n given points from two distributions, the cost

is quadratic in time i.e O(m + n)?.

Definition 4 (Maximum Mean Discrepancy). Let % be a class of functions, f :x = R
P = {p1,p2,.-esm} and Q = {q1,q2,...,qn} are the observations that are being drawn
independently and identically distributed (iid) from distributions X and Y be defined in the
domain x. Then the maximum mean discrepancy (MMD) can be written as [212, 213]:

MMDIF, X,Y] := sup (Bpox[f(p)] = Egov [f(9)]) (4.14)

fez

Now, from the properties described in Definition 1, one can write EpNX[f(p)] =< pux, f>
and Equ[f(q)] =< py, f >. Therefore, applying it Eq. (4.14) yields,

MMDIZ,X,Y] = sup < pux —py, [ >=|ux —py s (4.15)
Il flloc<1
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As in practice, it is hard to compute expectations of px and py, an empirical estimate of
MMD 1is obtained by replacing the population expectations with empirical expectations on

the sample of P and Q as follows:

m n
MMDL#,2,0] = sup (1 RS f’<q1~>> (4.16)
fe7 \" = i
The empirical estimates of MMD can be defined in a framework of statistical hypothesis
testing where the computed estimates, MM D[.%,P, Q] are compared with a predefined
threshold ~. If the two distributions are found to be similar, MM D[.%,P, Q] will be
evaluated as zero and the null hypothesis .#j: X =Y gets accepted. On the other hand,
if the distribution deviates far apart and become statistically distinguishable with loosing
homogeneity, MM D[.%,P,Q] result in crossing the threshold limit, which essentially
means the alternative hypothesis gets accepted i.e J4: X #Y.

4.3.2.2 MMD based Cyber Attack Detection

Since MMD acts as a similarity measure to verify whether the two test series, defined on
a domain y, under study are statistically indistinguishable or not, it is applied on the
frequency and voltage auxiliary control input signals of each DER in order to determine
whether they are correctly participating as per the distributed secondary consensus-based
protocol or not. While the controller of any DER or any of its incoming communication
links is subjected to attacks, their local neighbourhood synchronization errors also get
corrupted, resulting in a change in the statistical properties of the auxiliary control
variables of DSFC and DSVC. As an example, under the typical satisfactory performance
of DSFC, the frequency auxiliary control output (U,,) of any DER, say DER-i can
be represented by Eq. (4.7). But, while attackers penetrate into the MG multiagent
system through any security breaches and take control of the frequency input of DSFC via
hijacking the controller, then the auxiliary control variables of DER~¢ will get modified as,

Ug, = —cwdy, (4.17)
where, the previously clean local neighborhood frequency synchronization error (d,,) is
now corrupted by some exogenous input A;. This had been injected adversely due to
the adversary’s action while compromising the local frequency information of DER~7, (w¢)

1

used as an input for secondary control of the VSVCI inverter.

a
58

Ow; + A (4.18)
O = Ouw; + Z aij + gi | wi — Z aijwj- (4.19)
jENi ]ENl

Similarly, for each incoming link related to a particular DER, the corrupted auxiliary

control inputs are computed in order to identify compromised communication lines. In
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general, the corrupted frequency auxiliary control required for the MMD calculation under

attack in the communication links can be written as,

527 = Oy, + Z ai; + gi | wi — Z aijw§ — aik(w,i)a (4.20)
Z JEN; JEN;
J#k

7 K3

It is to be noted that in the presence of an attack, based on the communication cyber
graph topology and distributed secondary cooperative control framework, one can easily
inspect the corrupted frequency of DERs and thus, based on this corrupted frequency,

compromised auxiliary controls (U, or Uzj) can also be observed [116]. But the overall

(3

exogenous input, (A; or A{ ) injected by the attacker, is not required to be known or not
measurable explicitly. Thus based on the statistical properties inferred from the both U,
and U,,, one can compute the unbiased empirical MMD estimates by taking squares of
Eq. (4.15) and then applying reproducing kernel properties to detect compromised DER

as follows.

lnx — pyllfe = < px — py, ix — py >%

lux — MY||3{ = < px, px >0+ < py, py >e —2X < px, py >

lex = py |3 = Ex,x < (Uuy), 0(WUL,) >ac +Ex x < o(US,), p(US,) >0
—2Exy < o(Us,), p(UG,)) >3

(4.22)

Substituting empirical estimates of the features spaces based on samples from U, =

{ur,ug, ..., upm } and U, == {uf, us, ..., uy, }, the final expression would be written as,
1 m m
MMD[F Uy, UL =] —5 > Klug,w) = —5 > K(ug, uf)
s,t=1 s,t=1

1

1 & :
+— > K(ug,uf)] (4.23)
s,t=1

Likewise, the communication link attack can also be detected by replacing the Ug, with
U®,. Finally, the effect of the attacks on either DSFC or DSVC can be easily detected

w!”
when the empirical MMD estimates cross some predefined design threshold .

4.3.3 Real-Time Digital Simulation Results

The efficacy of the proposed cyber attack detection scheme using the RTDS under various
types of attacks are listed in Table 4.1 of Section 4.3. The experiments were conducted
on a modified IEEE 13-node distribution feeder system, as depicted in Fig. 4.1, with
averaged line parameters [214]. The detailed description of the modified test system

with line specifications can be found in Appendix A.1. The system operates at a nominal
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frequency of 60 Hz and a line-to-line voltage of 4.16 kV. Four DERs, each with equal active
power (1 p.u) and voltage rating (1 p.u), are interconnected via a 1.0 MVA, 0.48/4.16 kV
Yg-Yg transformer, supplying power to an islanded AC MG. DER-3 is designated as the
leader with a pinning gain of g3 = 1, and communication between DERs is facilitated
by a specified communication digraph. Conventional secondary control for voltage and
frequency, based on Eq. (4.10) and Eq. (4.11), is implemented with control gains ¢y and
¢, taken as 10 and 20, respectively. Real and reactive power droop coefficients are set to
2 x 107% and 1 x 1073 respectively. The converter filter resistance (Ry), inductance (L)
and capacitance (C) is set to 0.02 ohms, 100 micro-henry and 50 micro-farad respectively.
Figure 4.2 shows the schematic laboratory hardware setup where the auxiliary control
inputs of each DER are collected from the RTDS front analogue output panel, and then
the proposed MMD-based attack detection algorithm has been converted to C code via
MATLAB Simulink® C Coder builder, which is next compiled and run into DS1104 R&D

controller board to observe its output via oscilloscope’s screen.
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Figure 4.1: Single line diagram of the IEEE 13-node Microgrid test system

4.3.3.1 Single Attack Detection on Conventional DSFC

In the first case study (Case A), a step-type attack is modeled to breach DER-1’s DSFC
as shown in Fig. 4.3. As seen in Fig. 4.3(a), a step attack with parameter as = 0.05
pu is injected to the frequency input of the DSFC at about 3.4 seconds which causes

a large variation in the local frequencies of all DERs below 220 rad/sec. Furthermore,
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Figure 4.2: RTDS setup for HIL validation of the proposed scheme

Fig. 4.3(b) demonstrates the impact of this attack on the active power sharing among the
individual inverters, revealing a consequential disruption in grid stability. Notably, DER-3,
functioning as the leader DER with knowledge of the grid’s reference voltage and frequency,
experiences comparatively less impact than others. Nevertheless, as Figs. 4.3(a) and 4.3(b)
show, it is difficult to identify compromised DERs because of the distributive cooperative
consensus law that regulates DER interactions and the particular communication graph
topology as depicted in Fig. 4.1. Additionally, Fig. 4.3(c) showcases the response of
proposed MMD-based detector under attack condition, focusing on the irregularities in
observed frequency auxiliary control input of DER-~1. Since this attack is localized to
DER-1, only the compromised inverter’s MMD shows a notable rise, suggesting that local

control variables differ from those of other DERs.

In the second case study (Case B), a pulse type of attack with specific parameters of
apy, = 0.06 p.u magnitude and 7, = 0.5 sec duration are being modeled and then
injected to the controller of DSFC of leader DER-3 to compromise it frequency output
as shown in Fig. 4.4. Similar to previous case, this manipulation results in significant
deviation of local frequency of all DERs below 340 rad/sec as shown in Fig. 4.4(a).
Figure 4.4(b) shows the impact of sharing active power among the inverters as a dire
consequence of this periodic pulse attack, where the leader DER, i.e., DER-3 knows
the overall reference voltage and frequency of the grid. Therefore, it drives down the
frequency of all DERs in a coherent manner. But as all the DERs are also participating
among themselves, obeying distributive cooperative consensus law for maintaining the
grid stability through some specific predefined communication digraph, therefore, the
direct attack impact of compromised DERs is inflicted differently to other DERs and thus

correct identification of compromised DERs are also found to be very difficult as shown



Chapter 4. Detection, Classification and Localisation of Cyber Attacks in Islanded AC

Microgrid 97
OmegqaSys OmedgaSysxZ OmedqaSysx3 OmegaSysxd

400
o
]
= 300
=
=
(=]
=
@D
=3
D
&= 200
B
=3
f=2]
oy
<t

100

0 3.333 6.667 10 13.333 16.667 20
Time(sec)
(a) Frequency
Pmeas Pmeasx2 Pmeasx3 Pmeasx<d

20

10 =T
=
s
g o
[=)
o
QL
2
& -10 L ] ] ] 1 I

-20

0 3.333 6.667 10 13.333 16.667 20

Time (sec)

(b) Active Power Sharing

1001
001

0.0

1.00:1 | DC

(c¢) Estimates of MMD Under Step Attack

Figure 4.3: Case A: Effect of Step Attack on DSFC of DER-1 and MMD estimates. In (a)
and (b) the figure color labels black, red, blue and green represents frequency and active
power of DER-1. DER-2, DER-3 and DER-4 respectively.
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Figure 4.4: Case B: Effect of Pulse Attack on DSFC of DER-3 and MMD estimates. In (a)
and (b) the figure color labels black, red, blue and green represents frequency and active
power of DER-1. DER-2, DER-3 and DER-4 respectively.
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in Fig. 4.4(a) and 4.4(b). Figure 4.4(c) exhibits the behaviour of MMD based detector
under attack, targeting frequency auxiliary control input of DER-3. It is clearly revealed
that the proposed MMD successfully captured the drift created between the actual and
estimated local synchronization error after the attack launch which results in fulling the
criteria of accepting null hypothesis as discussed in Section 4.3. As a results, MMD of
the compromised inverter rises up to a significantly higher value due to disparity in local
control variables, flagging out the alarm of cyber attack detection.

In the third case study (Case C), a time-varying and non-linear sine attack signal
(f = sin(0.01t)) is injected into the DSFC of DER-1 around 3.5 seconds, aiming to
disrupt the functioning of primary droop control techniques as shown in Fig. 4.5. Initially,
all DERs’ frequency and output power are regulated by conventional secondary control.
However, upon injection of the malicious signal, consensus agreement is lost, leading
to unstable frequency and active power exceeding acceptable limits across all DERs as
shown in Fig. 4.5(a) and 4.5(b). This destabilization occurs as the victim DER begins
to share falsified frequency, voltage, and power outputs with other DERs due to the
addition of this time-dependent ambiguous input, disrupting their consensus protocols.
As the aforementioned frequency attack model is updated with each second intervals,
the simulation shows that the frequency and active power response exhibits a stair-case
and oscillatory pattern, respectively. However, with the objective of correct and on-time
identification of compromised units, the proposed detector successfully detect the attack
instant based on observing the discrepancies in their embedding mean of theirs actual and

observed auxiliary frequency control variables as shown in Fig. 4.5(c).

4.3.3.2 Single Attack Detection on Conventional DSVC

Similar to the previous case study, in this test scenario (Case D), the attacker targets the
secondary voltage controller of DER-2 as shown in Fig. 4.6. They’re manipulating the
DER’s controller input signal with a scaling attack of attack parameter: agz. = 1.05 pu, on
the DSVC. The on-set of the attack significantly impacts the voltage and reactive power
profiles of the inverter, as depicted in Fig. 4.6(a) and Fig. 4.6(b). This manipulation
leads to a erroneous voltage and reactive power response suggests all DERs lose their
coordinated control, with global parameters deviating from normal due to the constant
injection of false data. Failure to promptly address this issue and remove the compromised
DER from the topology risks driving the microgrid towards instability. In this regard, it
is observed from Fig. 4.6(c), that the proposed MMD algorithm demonstrates exceptional
ability to identify such attacks and pinpoint the faulty DER.

4.3.3.3 Attack Detection for Simultaneous Attacks on Multiple DERS

Similar to the case studies described earlier, in this test cases (Case E) and (Case F),
the DSFC of multiple DERs are now being targeted at the same time with a ramp type
of signal first followed by a pulse attack as depicted in Fig. 4.7 and 4.8. In the first

case, a slowly varying ramp attack signal, dynamically generated from a step signal with
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parameters «,, = 1.2 pu and a time constant of 500 sec, is injected into the frequency
control of DER-1 and DER-3. This aims to disrupt the global parameters of all DERs and
push them away from their desired consensus. And in the second case study, a pulse attack
of magnitude oy, = 0.04 pu with duration of 0.5 sec are also injected to dishonestly alter
the frequency setpoints for the primary control action of both the DERs affecting the MG’s
frequency and voltage stability. As shown in Fig. 4.7(a), 4.7(b) and Fig. 4.8(a), 4.8(b)
the frequency and power of all DERs significantly disrupted due to such unbound attack
effect. On the other hand, Fig. 4.7(c) and 4.8(c) shows the competence of the proposed
MMD-based detector to correctly identify the DERs, victim of such severe attack. Here
also, it is noticed that as this malignant attack is limited to DER-1 and DER-3, only the
compromised inverter’s MMD shows a notable rise, suggesting that local control variables
differ from those of other DERs. Henceforth, this demonstrates the detector’s effectiveness

even in handling multi-DER attacks occurring simultaneously.

4.3.3.4 Attack Detection on Communication Links

This case study (Case G) examines the impact of short-length pulse and slow-varying
ramp frequency attacks on the communication links of an inverter, leading to deviations in
DER parameters beyond acceptable ranges, challenging the detection of the compromised
DER as illustrated in Fig. 4.9. The case studies is divided into two subparts: (a) Single
communication link attack and (b) Multiple communication links attack. In the first
subpart, a short-length pulse attack signal with a parameter of a;, = 0.06 pu, falsifies
the frequency information of leader DER-3 while communicating with DER-2 for 0.5 sec,
resulting in a significant frequency deviation, as depicted in Fig. 4.9(a). Since DER-3
serves as the reference for achieving consensus among all other DERs in a networked
control MG system, compromising its outgoing information has a pronounced effect on
the other DERs due to the rapid propagation of attack signals. Consequently, all DERs
exhibit similar behavior to the corrupted DER. In this compromised scenario, the proposed
detection scheme’s performance is validated by calculating MMD for all the working links.
Figure 4.9(b) illustrates that the MMD remains nearly zero for all intact communication
links except the corrupted one, underscoring the proposed MMD’s efficacy in identifying
compromised links even when the leader DER information itself is compromised. On a
similar line, another case study is being conducted in Fig. 4.9 where all the outgoing
communication links of DER-1 are compromised with a slow varying ramp frequency
attack signal of parameter a,, = 0.06 pu. With multiple attacks on DER-1’s outgoing
communication channels, the integrity of the communication graph topology is significantly
compromised, resulting in the rapid and widespread dissemination of attack signals to
other healthy DERs as depicted in Fig. 4.9(c). As the MMD calculation is now based on
localized estimates of corrupted auxiliary control variables for each link, thus, as a next
corrective step, the MMD calculation is carried out for all the available links. Clearly, Fig.
4.9(d) depicts that due to disparity of information received via any link with respect to

the other neighboring links for each particular DER causes the respective link’s MMD to
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Figure 4.9: Case G: Attack on communication link. (a),(b) Single line attack while
transmitting w3 between DER-3 to DER-2. (c),(d) All outgoing communication links
from DER-1 is compromised.

be remained almost zero for all the intact communication links except the corrupted one.
This underscores the effectiveness of the proposed MMD-based detection scheme, even in

scenarios where multiple communication lines are under attack.

4.3.3.5 Performance of the Proposed Attack Detector Against Natural Events

Power system undergoes certain changes in their operating states in the event of either any
frequent natural disturbances or any unprecedented cyber-attacks. It is, therefore, crucial
to differentiate between these two distinct events so that the operator should not initiate
any adverse control action by misinterpreting a cyber attempt as a natural disturbance.
To this end, in this test case (Case H), a sudden single phase to ground (AG) fault of
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almost 10-cycles duration is created at Bus-632 of the IEEE 13 bus distribution test feeder
as shown in Fig. 4.1. The frequency response and the MMD pattern are shown in Fig.
4.10(a) and 4.10(b). In contrast, another disturbance of load switching is performed in
the system where a balanced load of 0.4MW active and 0.15MV AR reactive power are
suddenly switched on at Bus-632. Figure 4.10(c) and 4.10(d) depict the change in active
power sharing and the MMD detector performance, respectively, under such scenarios. It
is well perceived from Fig. 4.10 that under both the events, MMD values come out to be
significantly less than the threshold (v = 0.25V) and henceforth the proposed detector is
capable of accurately distinguishing cyber attack from fault and sudden load variations,

ensuring that no false alarms are generated.
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Figure 4.10: Case H: Performance of MMD against natural disturbances: (a),(b) Inception
of a single-line-ground fault. (c),(d) Sudden switching of a balanced load.
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4.3.3.6 Performance of the Proposed Attack on Comparative Assessment

The performance of the proposed MMD-based attack detection method has also been
checked against a popular entropy-based attack strategy, i.e., Kullback-Leibler Divergence
(KLD) [116]. To this end, Fig. 4.11(a) and 4.11(b) reveal the comparative behaviour
of MMD and KLD in case of ramp and step type attack scenarios. The comparative
assessment reveals that the response time of KLD is fairly sluggish as compared to that of
the MMD. Also, the amplitude of KLD change is found to be very minimal with response
to any attack event as it is not an exact measure of disparity and hence less sensitive,
whereas, MMD is found to be simpler and more effective as compared to the entropy

based method.
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Figure 4.11: Case I: Performance between MMD and KLD: (a) Channel 1 (Yellow) —
MMD, (b) Channel 2 (Blue) - KLD.
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4.4 Rule-based EXtreme Gradient Boosting (XGBoost)
Assisted Cyber Attack Classification

In the ever-evolving landscape of cyber security, accurately classifying cyber-attacks
remains paramount importance for implementing effective defense strategies. With
this as an aim, attack classification, in particular, plays a crucial role in identifying
and categorizing different types of cyber threats on DERs controllers of MG system
as mentioned in Table 4.1. To achieve this goal, a novel rule-based algorithm for
feature extraction along with a renowned machine learning classifier i.e EXtreme Gradient
Boosting (XGBoost) is utilized to classify those above detected attacks by the proposed
detector in Section 4.2. In the domain of classification problem, XGBoost has emerged as
a leading ensemble machine learning technique due to its exceptional performance across
a multitude of tasks, especially in handling structured data with high dimensionality.
Moreover, XGBoost’s scalability and efficiency enable rapid training and deployment
of attack classification models, crucial for real-time detection and response to cyber
threats. XGBoost’s core lies in its gradient boosting framework as shown in Fig. 4.12,
which sequentially builds a set of weak learners, typically shallow decision trees, into a
single, highly accurate ”strong learner.” Each new tree corrects the errors made by the
previous ones through the minimization of the loss function, resulting in a model that
can capture complex relationships within data. This iterative process allows XGBoost
to continuously improve its predictive capabilities, achieving remarkable accuracy and
generalization on various datasets. This makes XGBoost particularly well-suited for
cyber attack classification tasks. Additionally, XGBoost’s robustness to overfitting and its
capacity to handle imbalanced datasets are particularly advantageous in the cyber security
domain, where data may be scarce and class distributions uneven. Thus, by analyzing
network topological features, system model and DER’s control parameters XGBoost can

learn to distinguish between normal network behavior and various attack types.

4.4.1 Introduction to Mathematical Operation of XGBoost Classifier

In boosting algorithm, in order to minimize the objective function, at first a base learner is
chosen to fit it with the negative gradient of loss function at each iteration and thereafter
the predicted outcome is added with the output from previous iteration value after being
multiplied with some constant. In other sense it acts as performing gradient decent to the
loss function and this negative gradients are usually termed as pseudo residuals. As it is
known that XGBoost is nothing but the ensemble of several weak learners then the final
prediction from a given dataset D = (x;,y;) with n rows and m features is described as

average weighted output of all the base learners as follows:

Ji=0(x;) =Y filzi), fieF. (4.24)

t=1



Chapter 4. Detection, Classification and Localisation of Cyber Attacks in Islanded AC
Microgrid 109

®|. v ® g | Weicht - ._.
. . !'3‘ ‘]!l\ A ® cmmmenn l:JL‘L\-:a\'L:{\ o .
assier £ Pamee=="""g N - mme
[ ] ® 9 e 9 —» —
9 [ Peo
Original dataset . ——— . .
P @ L ®
[} __‘i\ Increased \
Weak — "_’—;. . 1' .  — —
Classifier 2 Qe ..

ssanss

AUC for ensemble model
o @ V o .
s ° 0 °® (f 2

V

vk | @) o B
Classifier 1 .. ..

Final classifier is AUC for each classifier
a combination of
weak classifiers

Figure 4.12: Visual representations of Gradient Boosting

where, F' = f(z) = wy(z)(p: R™ — T, w € RT}) denotes the domain of regression trees,
also referred to as CART (Classification and Regression Trees). Here, Tk, represents the
total number of leaves in the tree and each ft corresponds to a distinct tree configuration
p and leaf weights w. This approach is based on approximating functions through the
optimization of certain loss functions (£) and the use of multiple regularization strategies

as described below.

n

LO =3 "Lys, g + fi(xi) + 9(f1)
i=1
N 1 B
where, 9(f;) = 8Tk + 577||w||2 (4.25)

Here, L is termed as differential convex loss function which calculates the difference
between the target y; and predicted outcome ;. The second term 1 encounters the
regularization concept, used to regulate the final weights to prevent over-fitting of the
model. If this terms becomes zero, then it will become equivalent to conventional gradient
boosting approach. The learning rate is represented by f; the larger the value of 3, the
simpler the tree. Another regularization term that lowers the step size in cumulative
expansion is called shrinkage 7. Now, to approximately calculate the value of the loss
function for different possible base learners, taylor series expansion (up to second order

derivative terms) must be applied to Eq. (4.25).

ey, L' 7Y) 1 OL(y;, =Y
ZL i) a(zun) falws) + 2((9y<t1)ft () +0(fi)  (4:26)
——

gi hl‘
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As the first term is a constant and free from ft, Eq. (4.26) can be simplified as:

20 = 5 (o) + ghed?e| + 00, (427

)

Let us define I be the set of instances belonging to leaf node 'k’. Now, expanding 1 from
Eq. (4.25) in Eq. (4.27) yields as follows:

Tk

B0 =3 (X &)+ 5 (3 he+m)if | + BT (4.28)

k=1 | i€l i€l

Now, the optimal weight, w;, for each leaf node-j, can be obtained by equating derivative

of loss function with respect to each leaf node’s weight i.e., %Liig = 0, as follows:

Ozzgi+%(2hi+n)x2xw,’;

i€l icly
—x - Zie]k gi

Wi = - (4.29)
Zielk hz + n

The obtained optimal weights is then substituted in Eq. (4.28) to get final optimal loss

function value for a fixed tree structure p as shown below:

Tk

P 1 Z (X ier, 8)°

po__1 281 L, (4.30)
=1 2oier, hi

2

XGBoost employs several techniques to speed up training and reduce overfitting. It utilizes
random subsampling of data and columns during tree building, introducing randomization.
Additionally, XGBoost leverages a compressed, pre-sorted data structure that eliminates
redundant sorting, significantly accelerating the search for optimal splits in decision trees.

This allows for faster training and more efficient models [215].

4.4.2 Tuning of Hyper-parameters in XGBoost

The key features of XGBoost algorithm is its ability to handle missing and complex
data, regularization and auto pruning techniques to prevent the model from being
over/under-fitted and mostly excellent performance due to its parallelization feature
concept to have efficient computation. However, such merits are obtained by carefully
selecting and choosing values of some hyper-parameters through validation techniques like
k-fold cross validation that drive the XGBoost model to enhance its performance and

control its bias and variance in training and testing stages.

4.4.2.1 Learning Rate

The learning rate () parameter in XGBoost classifiers plays a crucial role in controlling

how much each new tree in the ensemble contributes to the overall model. It is used
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to prevent the overfitting issues faced by the individual base learners but may increase
training time. A smaller learning rate leads to more conservative updates, requiring
more trees to achieve the desired accuracy. Conversely, a larger learning rate leads to
more aggressive updates, potentially leading to faster training but also increasing the risk
of overfitting. The optimal learning rate is achieved and set to the value 0.5 through

experimentation or techniques like grid search.

4.4.2.2 Number of Estimator (n_estimator)

In XGBoost, a critical hyper-parameter for achieving optimal performance is the number
of estimators (n_estimator), which refers to the quantity of decision trees built sequentially
during the boosting process. While intuitively, a larger number of trees suggests a more
intricate and potentially more accurate model, this isn’t always the case. Increasing the
number of estimators can lead to diminishing returns in terms of accuracy, and even
introduce the phenomenon of overfitting and conversely, reducing the number of estimators
can lead to underfitting and decreased accuracy. Therefore choosing a suitable count of
n_estimator, necessitates a delicate balancing act between accuracy and model complexity.
In this chapter, experimenting with a wide range of estimator values revealed 100 as the

optimal choice, balancing accuracy and computational complexity.

4.4.2.3 Auto-pruning Hyper-parameter

XGBoost offers an automated approach to controlling tree complexity through the
parameter denoted as p, also known as the auto pruning parameter. This parameter
establishes a minimum gain threshold, say 'max_depth’ determining when splits are made
during tree growth. Splits producing gains below this threshold are disregarded, preventing
overfitting by focusing on informative splits that contribute meaningfully to the prediction
accuracy. Similarly, if the 'max_depth is set to very low, underfitting situation may arise
as the model is not able to be trained well to capture all the relevant patterns in the data.
Thus While the 'max_depth’ parameter sets an upper limit on tree depth, the auto pruning
feature with the p parameter allows for more granular control within that limit, leading
to more efficient and potentially more accurate models. In this study, the max_depth is

chosen to be 5 to balance between overfitting and underfitting.

4.4.2.4 Objective or Loss Function

The objective function in XGBoost is crucial for guiding the model’s training process by
evaluating its performance on the training data and calculating gradients for improvement.
The choice of objective function depends on the task at hand; for binary classification,
the binary logistic regression function is suitable, while for multi-class problems like the
one addressed in this chapter, the ’softprob’ function is recommended. This function is
specifically designed to handle the complexities of multi-class classification tasks, ensuring

that XGBoost learns effectively in these scenarios. Given that this chapter centers around
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a multi-class attack classification problem, the, softprob’ objective function is opted in

this study to calculate the probability of an observation belonging to a predicted class.

4.4.3 Dataset Preparation

For the generation of testing and training dataset for the chosen machine learning (ML)
model, the same modified IEEE 13-bus islanded AC MG system incorporating 4 DERs
with the pre-defined communication topology as shown in Fig. 4.13 is utilized for
the classification problem. In this topology, the single head arrow represents one-way
communication whereas the two head arrow represents two-way communication between
the DERs. There are in total 5 different types of attacks are simulated: Pulse,
Ramp, Random, Scaling and Sine. The attack is launched in the DERs by corrupting
the frequency input of their respective secondary controllers as per the attack model
summarized in Table 4.1. The generation of attacked dataset are prepared based on
either increasing the attack impact through magnitude alteration or varying attack length
through changing attack duration as described below and tabulated in Table 4.2 and 4.3.
Finally, this comprehensive dataset would be used to train and evaluate the XGBoost

model’s effectiveness in detecting these attacks.

DG DG
Disributed Generation
1 4
<:| One-way communication
between DGs
<:> Two-way communication
between DGs
DG DG
2 3

Figure 4.13: Communication topology of participating DERs in co-operative Distributed
Secondary Control

In reference to dataset preparation, the first case study is dedicated for generation of
such dataset which is later used to investigate the efficacy of the XGBoost model in
pinpointing attacks that exhibited varying duration. To achieve this, they kept the
attack magnitude (strength) constant while meticulously adjusting the time period during
which the attack was launched. This manipulation allowed them to observe the system’s
response under different attack scenarios and identify the ”sweet spot” from the attacker’s
perspective. A total window of 10 seconds was chosen to monitor the system behavior
under various FDI attacks. Initially, the attack amplitude remains constant, while the
attack duration increases incrementally for all distinct attack types to account for their
inherent characteristics. For Pulse attacks, the time step is set to 0.01 seconds, while for

other attack types, it is 0.05 seconds. The shorter duration for Pulse attacks is chosen to
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simulate the effects of very brief attacks, starting from 0.01 seconds and increasing up to
0.11 seconds. Similarly, the initial duration for other attacks is 0.5 seconds, increasing in

steps of 0.05 seconds until reaching 1 second, as detailed in Table 4.2.

Table 4.2: First Case: Constant Attack Magnitude and Varying Attack Duration

Attack Types Magnitude Initia! Attack | Step Size Final- Attack
(p.u) Duration (sec) (sec) Duration (sec)
Pulse Attack 0.01 0.01 0.01 0.11
Ramp Attack 0.5 0.5 0.05 1.0
Random Attack 0.01 0.5 0.05 1.0
Scaling Attack 1.03 0.5 0.05 1.0
Sine Attack 0.3 0.5 0.05 1.0

In second scenario, the classifier ability is also need to be checked for such FDI attacks
whose intensities (amplitudes) are varying while holding the attack duration constant.
Here, the attack duration for the Pulse attack at its maximum value identified earlier (0.11
seconds) and for all other attack types at 1 second are fixed. However, the amplitude was
now systematically increased in small increments (0.01 units) for a total of 10 steps. It’s
important to note that the attackers deliberately chose distinct initial amplitudes for each
attack types. This strategic selection aimed to incorporate a broad spectrum of variations
within the system parameters. In essence, they were creating a diverse dataset that
reflected a wide range of attack intensities across different FDI attack types. A detailed
breakdown of the initial amplitude values chosen for each attack type can be found in
Table 4.3.

Table 4.3: Second Case: Constant Attack Duration and Varying Attack Magnitude

Attack Types Magnitude Initia! Attack | Step Size Final- Attack
(p.u) Duration (sec) (sec) Duration (sec)
Pulse Attack 0.11 0.01 0.01 0.1
Ramp Attack 1 0.5 0.01 0.59
Random Attack 1 0.01 0.01 0.1
Scaling Attack 1 1.03 0.01 1.12
Sine Attack 1 0.3 0.01 0.39

Therefore, in a nutshell for the training and evaluation of the XGBoost model, a

comprehensive dataset is generated encompassing variation in both attack duration and
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intensity as discussed above. For each simulated attack scenario, attackers meticulously
targeted a single DER at a time. Throughout the attack, four critical system parameters:
frequency, active power, reactive power, and voltage are monitored and recorded. This
data collection process encompassed all four DGs within the system, even though only one
was under direct attack at any given moment. Therefore, by capturing all these parameters
from all four DGs, under each attack scenario, 16 parameters are available for recording.
Now referring back to Table 2.2, a total of 11 distinct attack scenarios were simulated.
Considering the 16 parameters recorded for each attack on each DG, this translates to a
total of 3520 attack instances. Similarly, Table 2.3, presented 10 unique attack scenarios.
Following the same logic, this translates to an additional 3200 attack instances. Thus, by
meticulously simulating attacks under various conditions , finally a total of 6720 attack
instances (3520 instances from Table 4.2 + 3200 instances from Table 4.3) as summarized
in Table. 4.4.

Table 4.4: Comprehensive Attack Dataset Generation

Description Values
Number of DERs 4
Number of Attacks 5
Number of Recorded Parameters 16

Number of Attack Instances Generated from Table 4.2 3520
Number of Attack Instances Generated from Table 4.3 3200
Total Attack Instances 6720

4.4.4 Proposed Rule-based XGBoost Enabled Cyber Attack

Classification Scheme

To effectively differentiate between statistically crafted cyber-attacks from the normal
measurements received at the control centers, its crucial to identify and leverage distinctive
patterns within the data. These patterns can significantly enhance the performance of
XGBoost classifiers in detecting attacks. With this objective, this chapter delve into two
key metrics: Entropy and Shannon Energy. These metrics are specifically chosen to help

extract these crucial distinguishing patterns from the measured quantities.

4.4.4.1 Entropy

In signal processing, entropy reflects the information content within a signal to predict
the outcomes of a random process. Essentially, entropy measures the average surprise
or unexpectedness associated with each event in the signal. Signals with a more even
distribution (all samples are equally likely) have higher entropy compared to those with a
skewed distribution (where some values are more frequent). In other words, it can stated
as measures of the average amount of information per event, with low probability events

containing more information than high probability ones. Maximum entropy occurs when
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all events are equally probable, while zero entropy indicates certainty in one event and no

information uncertainty. The equation for defining entropy can be written as follows.
Een = Z —dqj log, q; (4'31)
J

where, ¢; is the the probability of each state for all the possible states.

Entropy calculation in signal processing often involves estimating the probability
distribution of signal samples, typically through methods like histograms or density
estimation. The entropy formula is then applied to this resulting distribution to arrive
at a numerical value representing the signal’s information complexity. In scenarios where
the exact probabilities are unknown, the ”hist” function command in MATLAB is used
for this purpose. This function divides the data range into bins of equal size, with the
number of bins either specified by the user or determined by a default value. Selecting an
appropriate number of bins is crucial. If too many bins are chosen, then the histogram
lacks sufficient detail to accurately capture the underlying data distribution. Conversely,
opting for an excessive number of bins can lead to an overly granular representation,

potentially obscuring the overall picture.

To strike a balance between detail and simplicity in the histogram, in this study a default
value of 10 bins is selected. Omnce the bins have been defined, the function counts the
number of data points that fall into each bin. The relative frequency for each bin is then
calculated by dividing this count by the total number of data points. Finally, by dividing
each value by the bin width, the relative frequencies can be translated into probabilities. As
a result, the relative frequency of a bin divided by its width determines the likelihood that a
data point will fall inside that bin. This ensures that the histogram adequately captures the
underlying distribution while maintaining a clear and interpretable visualization. Figure
4.14 displays the frequency’s entropy’s minimum and maximum ranges under various
FDIAs, as tabulated in Table 4.1.

In Fig. 4.14, it is clearly evident that the Pulse attack occupies a distinct range on the
entropy spectrum, clearly separated from the other FDI attacks under investigation. This
distinction is be made out by establishing entropy thresholds for attack identification.
If the calculated entropy of an attack falls within the range of 0.29 to 0.35, it can be
confidently classified as a Scaling attack. Similarly, an entropy value between 0.73 and 1.26
suggests a Random attack. These clear demarcations based on entropy effectively classify
a significant portion of the attacks. However, the may be such scenarios, where the process
of distinction becomes slightly more intricate for the remaining attack types. Their entropy
ranges exhibit some degree of overlap, making it challenging to differentiate them solely
based on this metric. To address this hurdle, the help from the another statistical tool,
named Shannon Energy is introduced in the proposed rule-based algorithm to establish
a more comprehensive classification framework that could effectively distinguish between

all the various FDI attack types, even those with overlapping entropy ranges.
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Entropy range under different FDI attacks
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Figure 4.14: Ranges of Entropy values under different FDIAs

4.4.4.2 Shannon Energy

Shannon energy emerges as a significant concept, finding applications across diverse fields
like audio and image processing, communication systems, and more. It calculates the
signal’s energy by analyzing its local spectrum at each individual sample. This local
spectrum essentially breaks down the signal into its constituent frequency components,
revealing how much energy is present at each frequency. By summing the energy
contributions across all these frequencies, Shannon energy provides a comprehensive
picture of the signal’s overall energy distribution. It essentially quantifies the total energy
embedded within a signal over a defined time interval. The equation used to calculate the
Shannon energy is

Ege[n) = —p*[n]log,(p°[n]) (4.32)

J

where, p[n| denotes the normalized signal.
Now, similar to the observations made with entropy, Fig. 4.15 also shows the distinct
ranges of energy content information available between its usual minimum and maximum
range values. This makes it particularly valuable in the context of attack classification
of such sophisticated attacks that have entropy overlapped values. Thus by leveraging
the combined power of entropy and Shannon energy thresholds, a significant portion
of the attacks can now be differentiated. For instance, a Shannon energy value falling
within the narrow band of 258.62 to 258.75 is treated as Random attack. Conversely,
an energy level between 239.7 and 252.77 suggests a Scaling attack. At last, for
all the remaining attacks with overlapping ranges, XGBoost classifier is exploited to
classify the attacks. This classifier is then trained on the meticulously crafted dataset,
possesses the ability to identify subtle patterns and relationships within the data that
might not be readily apparent through basic thresholding. Thus, in the context of
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attack classification, employing entropy from section 4.4.4.1 alongside with the use of
Shannon energy from section 4.4.4.2 in the XGBoost-enabled approach, a rule-based attack
classification framework is developed for identifying and distinguishing between various
types of FDIAs.

Shannon Energy range under different FDI attacks
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Figure 4.15: Ranges of Shannon Energy values under different FDIAs

4.4.4.3 Proposed Rule-based Flowchart

The proposed rule-based method for classifying different categories of FDIAs on a DSFC

controller of islanded AC MG are summarized below:

1. Data Collection: The modified IEEE 13-bus islanded AC MG system was
simulated in RSCAD software of NovaCor RTDS simulator with the time-step size
of 50 us. From the simulation, various monitoring parameters like frequency, power,
and voltage of each DERs are collected from the RSCAD with an interval of 6.4 ms
and the total simulation time window is chosen to be 10 seconds resulting in total

1562 data point for each monitoring parameters at the end.

2. Attack Detection: The proposed classification scheme can only be initiated when
the proposed MMD-based detector discussed in section 4.3.2 detect the cyber attack
in DER’s controllers. While the metric exceeds the predefined threshold ~y, the
captured system parameters are then carry forwarded to the next for classification
task.

3. Entropy-based Classification: If an attack is detected, entropy of the frequency

is then calculated. By leveraging the observations discussed in the respective section
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of entropy, Pulse, Scaling, and Random attacks are classified based on distinct

non-overlapping entropy ranges.

4. Shannon Energy for Overlapping: Remaining attacks with overlapping
entropy ranges are further analyzed using Shannon energy. Similar to entropy,
non-overlapping ranges are used to classify Random and Scaling attacks. These
above two stages creates a formation of rule-based approach to classify the attacks

as an initial screening test.

5. XGBoost for Remaining Cases: Being trained on a meticulously prepared
dataset, subtle patterns and relationships can be identified within the data that
might be difficult to capture using basic thresholding techniques. Therefore, in cases
where both entropy and shannon energy exhibit overlapping ranges, signifying a more
intricate attack scenario, the rule-based method resorts to a machine learning model
named XGBoost for attack classification. In this classification process, selecting
the best possible feature subset from original set is very delicate task in order to
have a highest predictive power for simplifying the analysis and enhance the model
performance. In this work, pearson correlation coefficient is used as the feature
selection technique. This approach is chosen because highly correlated variables tend
to have a strong relationship with the target variable. If two variables are highly
correlated, one variable can effectively predict the other, reducing redundancy in
the model and saving computational resources. A threshold, such as 0.6 in this
case, is set, and if the correlation between two variables exceeds this threshold, the
variable with lower correlation with the target is dropped. Following this approach,
entropy and shannon energy of the frequency were identified as the most correlated
features with the target variable and were consequently chosen to form the basis of

the classification rules.

Figure 4.16 presents a flowchart that visually summarizes this entire XGBoost-assisted

rule-based FDI attack classification process.

4.4.5 Simulation Results Along with its Comparative Performance with
Other ML Classifiers

This section provides the detailed insights of the performance of XGBoost classifier
and compares it with three other popular ML classifiers: Decision Tree (DT), Random
Forest (RF), and Gradient Boosting (GB). These models are trained and tested on
a sizable dataset, split into a 70:30 ratio for training and testing, respectively. To
mitigate any bias within the dataset, standard data normalization is performed using the
”StandardScaler()” function from the sklearn library. Each classifier’s performance relies
on various regularization parameters as discussed previously like learning rate, number of
estimators, maximum tree depth, and objective function are fine-tuned to get the best
result out of the model. Performance evaluation is conducted using the Confusion Matrix

(CM), which compares predicted and actual class labels to assess the classifier’s accuracy
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Figure 4.16: Flowchart of a rule-based XGBoost-enabled attack classification scheme
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and identify misclassification patterns. Derived from the CM, metrics such as accuracy,

precision, recall, and F1 score provide further insights into the classifiers’ performance.

1. True Positives (TP): The number of instances correctly predicted as belonging to

the positive class.

2. True Negatives (TN): The number of instances correctly predicted as belonging

to the negative class.

3. False Positives (FP): Also known as Type I errors, these are instances predicted

as positive but are actually negative.

4. False Negatives (FIN): Also known as Type II errors, these are instances predicted

as negative but are actually positive.

Figure 4.17, presents a confusion matrix summarizing the performance of various classifiers
during comparative evaluation. Analyzing the rate of TP, TN, FP and FN, it can be seen
that the DT classifier exhibits the weakest performance among all contenders. The RF and
GB classifiers show improvement over DT, with XGBoost achieving the most remarkable
accuracy. The CM also reveals that Scaling attacks pose the most significant challenge
for classification. Their entropy and energy ranges often overlap with other attack types,
making them difficult to distinguish using simpler models. However owing to advantages
in speed and accuracy of the XGBoost classifier that attacks can be easily detected.

To comprehensively evaluate the model’s performance, in this study k-fold cross validation,
a robust technique widely used in machine learning is adopted. Selecting the optimal value
for ’k’ hinges on two crucial factors: dataset size and available computational resources.
A common practice involves using 'k’ values of 5 or 10. This choice strikes a balance
between bias and variance, which are inherent trade-offs when selecting ’k.” Research has
empirically shown that 'k’ values of 5 or 10 often yield the most reliable results [216].
Considering these factors, in this chapter, 'k’ is set to 10. Table 4.5 summarizes the
overall accuracy and standard deviation of the model’s accuracy obtained through this
k-fold cross-validation. This basically illustrates correctly classified instances out of the
total number of instances. Notably, the proposed method stands out as the most accurate
classification technique among those evaluated by other ML classifiers, highlighting its
effectiveness in identifying FDI attacks within the islanded AC MG.

Now, leveraging these CM’s information as shown in Fig. 4.17, Table 4.6 provides the other
important comprehensive performance evaluation parameters such as precision, recall and
F1 score for different classifiers under each categories of FDIAs. It is observed from Table
4.6 that as expected, the pulse attack, being the simplest to execute, is effectively detected
by all classifiers with comparable performance. However, the efficacy of the models
diminishes slightly for more intricate attacks like sine and scaling attacks. Nonetheless,
the proposed rule-based XGBoost classifier consistently outperforms the other machine

learning models in terms of precision, recall, and F1-score. This suggests that the XGBoost
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classifier achieves a better balance between correctly identifying attacks and minimizing

misclassifications, even for the more challenging attack types.
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Figure 4.17: Confusion matrix for different machine leaning classifier.

Table 4.5: Comparative Assessment on Overall Accuracy of Different ML Classifiers

Classifiers Accuracy (%) | Standard deviation in
Model’s Accuracy (%)
Decision Tree 98.47 1.31
Random Forest 98.98 0.74
Gradient Boosting 99.32 0.51
Proposed rule-based XGBoost 99.49 0.68
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4.5 XGBoost Enabled Multi-Label Cyber Attack
Localization Scheme for the Compromised DER Unit

4.5.1 Proposed Cyber Attack Localization Scheme using XGBoost with
Extracting Additional Feature Inputs

Having successfully identified and classified the various attack types targeting the
MG in Section 3 and 4, Section 5 delves into a critical aspect: attack localization.
Precisely pinpointing the location of an attack within the MG equips system operators
with invaluable information for formulating effective protection and defense strategies.
However, pinpointing the attack source presents a significant challenge due to following

two main factors.

1. Firstlyy, DERs within the MG possess unique characteristics and intricate
interdependencies. These inherent complexities within the DER network make

attack localization a non-trivial task.

2. Secondly, the MG’s network topology itself adds another layer of difficulty. The
interconnected nature of the MG’s components creates a complex web, making it

challenging to isolate the origin of an attack.

To address these challenges, this chapter proposes an extension of the XGBoost classifier
specifically tailored for multi-label classification. Unlike single-label problems, multi-label
classification predicts a set of binary values, each indicating the presence or absence of an
attack on a particular DER within the MG. To accommodate this requirement of assigning
multiple labels simultaneously, the model leverages techniques like sigmoid activation.
This essentially treats each DER as an independent label during the classification process.
However, during the simulation for generating test cases for this localization scheme,
only one DER is considered to be attacked at a particular instant of time. This makes
the localization task simpler. Moreover, to enhance localization accuracy, additional
statistical features beyond Entropy and Shannon energy are explored, including Mean
or median absolute deviation, standard deviation, kurtosis, skewness and crest factor.
These features provide valuable insights into the variability, spread, and distribution of
data points associated with each DER. Significant deviations from normal behavior in any
of these statistical measures can serve as flags, potentially indicating the presence of an
attack at a specific DER. Since the study focuses on four parameters of the DERs, i.e.,
frequency, voltage, active and reactive power - a total of 28 input feature variables are
generated and saved in a .csv file for training the multi-label classification model. Given
the imbalanced nature of real-time data, where certain attack types may be more prevalent
than others, this chapter used 1000 estimators during training to ensure effective learning
from minority classes within the dataset. Moreover, all the other hyperparameters such as
ratio of training and testing data sets, learning rate, maximum depth, pre-processing

and objective functions are kept similar to the previous classification problem. This
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comprehensive feature set empowers the model to achieve a more accurate and robust
attack localization within the MG. Once trained, the XGBoost classifier is equipped to
predict the attack location within the test system and it is also used to compare its
performance against established ensemble machine learning techniques for assessing its
effectiveness. A comprehensive flowchart depicting the entire XGBoost-enabled multi-label

classification process is presented in Fig. 4.18.

4.5.2 Performance Metrics for Multi-Label Classification

Apart from the performance metrics discussed in Section 4.4, a multi-label classification
model’s requires specific metrics for accessing its performance tailored to handle the

complexity of multiple labels per instance. Those metrics are discussed below.

1. ROC Curve: In the realm of machine learning, particularly for problems with
multi-label classifications the Receiver Operating Characteristic (ROC) curve and
Area Under the Curve (AUC) are popular metrics for evaluating model performance.
The ROC curve visually depicts a classifier’s ability to distinguish between positive
and negative instances. It plots the True Positive Rate (TPR) on the y-axis against
the False Positive Rate (FPR) on the x-axis. To generate the ROC curve, the
classification threshold is progressively adjusted from 0 to 1. At each threshold, the
TPR and FPR are calculated, forming a series of data points. The closer the ROC
curve sits to the top-left corner of the graph, the better the classifier’s performance.
A random classifier, lacking any discriminatory power, would be represented by a
diagonal line stretching from the bottom-left corner to the top-right corner as shown
in Fig. 4.19. Once the ROC is plotted, the area under this ROC is called as AUC. It
condenses a classifier’s performance across all possible classification thresholds into
a single, numerical metric whose values ranging from 0 (worst) to 1 (perfect). An
AUC of 1 signifies a flawless classifier that flawlessly differentiates between positive

and negative examples, while an AUC of 0.5 indicates a mere random guess.
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Figure 4.19: Visual representations of ROC and AUC
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2. Hamming Loss: Alongside accuracy, Hamming Loss is also considered to assess

Actual Values

Actual Values

model performance. It is the metric which calculates the fraction of erroneously

predicted labels and mathematically represented as below:

> y0) # 90))

¥ (4.33)

Hamming Loss =

where, N is the total number of labels, y(j) is the 5% true label, and §(j) is the j**
predicted label.

Hamming Loss offers a thorough evaluation of the model’s overall label accuracy
performance. A lower Hamming loss indicates better performance, as it means that

the classifier is able to predict more labels correctly.
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Figure 4.20: Confusion matrix for different ML classifier.
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4.5.3 Test Results

The performance of the proposed attack localization scheme is evaluated using CM as
shown in Fig. 4.20 for each DERs within the microgrid system. Each CM visualizes the
model’s ability to distinguish between two classes viz., DER not attacked (0), and DER
attacked (1).

As discussed, in this case, each DERs is considered at a time for the attack and TP,
FP, TN and FN are calculated out of total 504 instances. Analysis of the CMs reveals
that DER-1 has the highest False Positive Rate (FPR) at 0.04%, followed by DER-2 and
DER-3 with a FPR of 0.03%. Conversely, DER-3 exhibits the lowest FPR at 0.01%. On
the other hand, the False Negative Rate (FNR) is highest for DER-4 and DER-1, reaching
0.17% and 0.12% respectively. DER-2 follows with a FNR of 0.09%, and DER-3 has the
lowest FNR at a mere 0.008%.

Using these information above, the performance parameters, namely, Precision, Recall,
Specificity, Fl-score and Accuracy, for the proposed FDI attack localization scheme is
calculated and tabulated in the Table 4.7. Examining the table, it is observed that the

Table 4.7: Performance Parameters for the Proposed XGBoost Enabled Attack
Localization Scheme

Attack Location | Precision | Recall | Specificity | F1-Score | Accuracy (%)
DER-1 0.88 0.88 0.96 0.88 94.44
DER-2 0.92 0.90 0.97 0.91 95.23
DER-3 0.97 0.99 0.99 0.98 99
DER-4 0.89 0.83 0.96 0.86 93.25

model achieves the highest precision and recall for DER-3. This translates to a very low
chance of the model making a false positive or a false negative. This superior performance
can be attributed due to the unique role played by DER-3 as ”leader one” within the
microgrid system. Leader DER always possesses knowledge of voltage and frequency
set-points, making it a more predictable to detect compared to other DERs. Consequently,
attacks launched on DER-3 are easier for the model to detect and classify accurately.
Alongside the precision and recall, F'1 score is also evaluated for all the DERs. An Fl-score
close to 1 signifies a well-balanced model that excels in both identifying true positives
(attacks) and avoiding false positives. DER-3 shows the highest Fl-score, indicating its
well-balanced performance. Conversely, DER-4 has the lowest Fl-score, suggesting the
model struggles to accurately predict the attack status for DER-4 compared to others.
This difficulty translates to a higher likelihood of both false positives and false negatives
for DER-4. Finally, the accuracy of the model is shown which also follows the similar
trend i.e highest accuracy is obtained by DER-3 and lowest for DER-4.

Figure 4.21, shows a graphical representation of true positive rate (TPR) and the
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Figure 4.21: ROC curve for different DERs under attack condition

false positive rate (FPR) across different classification thresholds via ROC curve for
each individual DERs. It can be seen that FPR values for DER-1 and DER-2 are
closely aligned due to their similar roles (Degree score) in the prescribed communication
topology, resulting in comparable detectability rates with similar TPR and FPR. The same
interpretation can also be observed by computing the area under the ROC represented
as AUC score. Higher is the AUC score, closer is classifier to the perfect classifier. In
terms of the best attack localization performance, the DERs can be ranked from lowest

to highest as follows: DER-3 > DER-2 > DER-1 > DER-4.

Table 4.8: Performance Comparison Among Different Classification Methods for
Localization of Attacks
Classifier Accuracy (%) | Hamming Loss (%)
Decision Tree 73.01 8.3
Random Forest 85.11 4.7
Gradient Boosting 81.34 5.8
Proposed Attack Localization Scheme 87.50 4.5

Now the performance of the proposed attack localization scheme with XGBoost as a
classifier is compared with the other well known ML classifier as shown in Table 4.8. It
is observed that among all the other classifiers such as RF, DT and GB, the accuracy of

the proposed XGBoost assisted classifier is the highest. This is also worth noticing from
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Figure 4.22: ROC curve for different DERs under different ML classifiers.

Table 4.7 and Table 4.8 that the accuracy of localizing the attack on individual DER is
higher than the average accuracy of localizing the attack. The possible reason for the
higher accuracy of individual DER can be the highly imbalanced dataset. Suppose, there
is an attack on DER-4 i.e. the actual target value is [0 0 0 1], but the model predicts the
attack on DER-3 i.e. [0 0 1 0]. Even though the model predicts incorrectly, the individual
prediction for DER-1 and DER-2 is still correct resulting in higher individual accuracy
for DERs. Thus, in multi-label classification, where each instance can be associated with
multiple labels, accuracy alone may not be the most appropriate metric for evaluating
the model performance. This is because accuracy measures the proportion of correctly
predicted labels out of the total number of labels, considering each label prediction
independently. This metric doesn’t differentiate between minor and major classification
errors. In scenarios where labels are imbalanced or where some labels are more prevalent

than others, accuracy can be misleading as discussed previously. Therefore, in parallel
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to accuracy, hamming loss is also calculated by considering both false positives and false
negatives across all classes, offering a more informative assessment of the model’s ability to
accurately predict the presence or absence of multiple labels for each instances. It would
calculate the average number of incorrect labels across all four classes. It can be seen from
the table that the proposed FDI attack localization scheme has the lowest hamming loss
as compared to other considered ensemble ML techniques.

The effectiveness of the proposed attack localization scheme is also evaluated and compared
to other ensemble machine learning techniques using ROC curve in Fig. 4.22. The
AUC metric is employed to quantify the performance for each DER. The proposed
scheme demonstrates that DER-1, DER-2 and DER-4 has significantly higher AUC values
compared to the other ML techniques in the ROC curves. A higher AUC signifies a
stronger ability to differentiate between attack and non-attack instances. For DER-3,
the competition becomes tighter. Here, the AUC values for all the considered techniques,
including the proposed scheme, are relatively close. This suggests that all methods perform
at a similar level in identifying attacks on DER-3. In summary, even though the proposed
approach may not be the best option for every DER, its outstanding results on DER-1,
DER-2 and DER-4 demonstrate its overall effectiveness in attack localization within the

microgrid system.

4.6 Conclusions

With the aim of accurate and timely detection of cyber attacks in the islanded AC
MG, comprising of 4 grid forming inverters sharing the mutual information among each
other through a prescribed communication topology, this chapter first introduces a novel
attack detection mechanism based on Maximum Mean Discrepancy (MMD) test statistic
which can calculate the discrepancies in unbiased estimates of local voltage/frequency
synchronizing tracking errors for each DERs from the samples of two distributions
after applying kernel tricks. Under the compromised situation, this statistical estimate
behave erroneous leading the MMD to cross predefined threshold and raised the flag of
attack detection. Having the attack being detected, in next stage a machine learning
classifier, specifically the XGBoost is utilized with two statistical inconsistency measure
i.e. Entropy and Shannon energy to form a novel rule-based attack classification
approach for classifying various types of injection attacks in the DER’s controllers.
After the classification task being completed, a multi-label attack localization
scheme is performed after exploiting a few more statistical features to be incorporated
in the previous XGBoost classifier, which aids in pinpointing the specific attacked
DERs, streamlining the process of isolating compromised components from the system
in worst-case scenarios. Thus, by combining statistical measures and as well as ML
techniques, this chapter introduced a comprehensive strategy for detecting and localizing
attacks in a modified IEEE 13 bus islanded AC microgrids systems modelled in RTDS

environment. The salient contributions of this chapter are as follows:
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For Maximum Mean Discrepancy Based Attack Detection:

1.

Accurate detection of different types of FDIAs on the controller inputs and its

incoming and outgoing communications links.

. Accurately distinguishes fault/switching events from cyber attacks, leading to no

false alarms.

Superior as compared to Kullback Leibler divergence (KLD) [116] in terms of

detection delay and threshold selection problem under varieties of attack models.

. Due to its lower rate of change detection, the KLD performs worse than MMD under

slow changing attacks with a predetermined threshold and may occasionally evade
the attack.

For Proposed ML-based XGBoost Classifier to Classify and Localize Attack:

1.

The proposed novel rule-base XGBoost classifier classify the FDIAs with an accuracy
of 99.49% which outperform the existing ensemble ML techniques.

Furthermore, in terms of Precision, Recall, and F1 Score, the proposed rule-based
approach similar to other ML classifiers, achieves 100% for detecting the simplest
attack, such as the pulse attack. Additionally, it demonstrates significant
performance for more complex attacks, such as sine attacks with the values of 97%,
98%, and 97%, respectively.

Apart from the classification, the proposed XGBoost enabled attack localization
scheme also shows superior performance in terms of accuracy of 87.5% with a
hamming loss of 4.5% which is significantly better than the existing ML classifier

like Decision Tree, Random Forest, Gradient Boosting.

. Pertaining to Precision, Recall, Specificity and F1 Score, the proposed localization

scheme achieves superior performance for DER-3 followed by DER-2, DER-1 and
DER-4 respectively. The same proposition is also validated from the plotting of
ROC curve which results in highest AUC for each DERs with values of 92.3%,
93.7%, 99.1% and 89.9% for DER-1, DER-2, DER-3 and DER-4 respectively. The
higher AUC for DER-3 signifies its superior ability to distinguish between attack

and non-attack instances compared to the other DERs.
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Chapter 5

Unknown Input Observer and
Back-stepping Integrated Sliding
Mode Control based Cyber Attack

Mitigation Framework

5.1 Introduction

Having successfully detect the attack, followed by the precise attack classification and
localization in Chapter-4, this chapter proposes a novel scheme to accurately estimate and
mitigate cyber-attacks like unauthorized data manipulation attacks on DER’s controller to
maintain MG’s voltage and frequency stability. This control scheme primarily comprises
of two steps. The goal of the first step is to get a rough estimate of attacked DERs and
the injected amount of attack bias by the perpetrator by utilizing the output of MMD
obtained from Chapter-4 with an Unknown Input Observer (UIO) based control approach.
In second step, the coarse estimated bias so obtained is then utilized in a Backstepping
based Sliding Mode Controller (BSMC) design to generate a suitable control law that
enforces the injected attack to be compensated by finer adjustments of the compensation
signal due to anti-attack signal generation. Hence, from cyber attack detection in Chapter
4 to mitigation in Chapter 5, the development of the entire attack-resilient framework
is outlined across four principal stages: Identification, Reconstruction, Mitigation, and
Update, as depicted in Fig. 5.1. The efficacy of the proposed cyber-attack detection
and mitigation scheme is tested under various types of cyber attacks on the IEEE-13 bus
distribution test feeder operated in an islanded mode, modelled in RSCAD and is validated
with RTDS. Moreover, the performance and superiority of the proposed detection scheme
is compared with exiting ones through Hardware-in-the-Loop (HIL) simulation control

environment.

The rest of the chapter is organized in four sections. Section 4.2 presents the proposed
cyber attack resilient framework with details description of UIO and BSMC design
methodology. The real time implementation results are analysed in Section 4.3 and finally

Section 4.4 concludes the chapter.
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Identification Phase (Obtained from Chapter 4): Detecting the misbehaving agent
based on Maximum Mean Discrepancy (MMD) Index that calculates unbiased
empirical estimates of local voltage/frequency synchronizing tracking error.

:

Reconstruction Phase: Estimating the impact of FDI attacks based on the
combination of sliding mode control (SMC) and unknown input observers (UIO) to
provide a reliable performance.

{

Mitigation Phase: A suitable compensation signal can be achieved with less
chattering effect by integrating the SMC based controller with backstepping control
design approach for mitigation..

;

Update Phase: The modified output from mitigation phase will help to regulate the
original control input of the secondary control by generating suitable control law that
ensure desired consensus.

(1)
€«

(1)
\ %

&
\

(&%)
%

Figure 5.1: Illustration of the four key stages in the attack-resilient framework:
identification, reconstruction, mitigation, and update.

5.2 Proposed Cyber Attack Resilient Framework

The overall proposed cyber-attack resilient framework is shown in Fig. 5.2 wherein a
feedforward compensation method over the existing conventional secondary control system
is proposed to make the existing consensus-based control scheme attack resilient. The
design method initially needs an unknown input observer to monitor the system’s global
parameters affected by cyber-attacks and then make a rough estimation of exogenous
false data injections (FDI) based on the initial observed states trajectory and designed
state matrices. The estimated value of FDI is then used in the next stage, where a
robust controller is designed based on sliding mode control concept and to get rid of the
chattering issues and getting smooth performance, it is integrated with a very popular
back-stepping control design approach so that a suitable counter control law can be
generated that can compensate the effect of FDI attacks in real time on the local controllers
of DERs and maintain the system stability throughout the process. This anti-attack signal
generated from the control law is added with output of conventional secondary control
signal to enforce the attack to be mitigated in secondary control operation of DERs.
The joint utilization of this UIO and BSMC design illustrates excellent tracking and
unknown injection compensation capabilities even under the compromised condition with
no external hardware modifications of the existing MG distributed secondary controller

and also not requiring any additional layers of communication channels.
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Figure 5.2: Proposed cyber attack resilient framework for MG’s Distributed Secondary
Control

5.2.1 UIO Design For DER’s Secondary Control Layer

To start with the design process, the MG’s distributed secondary control for each DERs is
required to be represented in the state space domain with its networked system dynamics

equations as shown below:

i(t) = Ax(t) + Bu(t) + Ef(t)
yi = Cixi(t) (5.1)

where, z(t) € RY and u(t) € R be the global states (frequency/voltage) and known input
vector containing all the DER’s states and y;(t) € RMi be the output vector available
to DER-i. f(t) € RY be the unknown exogenous attack input scalar injected by the
attacker in any respective state, and E is its associated full column rank vector defined
by the output from MM D[.#,U,,, U, ], obtained from Chapter-4. A,B,C and E are all
known network system matrices with appropriate dimensions. Additionally, it should be
noted that each agent i.e DER~i have access to its own and received measurements of its

neighboring states.

Definition 5 (Distributed Estimation). In order to develop the proposed attack estimation
and mitigation strategy, let’s assume that each DER-i in the system Eq. (5.1) has
a topological model of the MG secondary layer control systems and that a local set of
measurements, y(t), is accessible. Additionally, if the collection of DERs auxiliary control
mputs respective to its local neighborhood synchronization errors detect the attack and
locates the compromised unit—that is, locates the nonzero elements of E pertaining to
an injection of f(t)—an attack estimation is said to have been acquired using observer’s

structure.
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Definition 6 (Unknown Input Observer (UIO)). Considering the system dynamics in
Eq. (5.1), an observer is defined as an unknown input observer, if error in estimation of
states approaches to zero asymptotically i.e, imy_, o e(t) = limy_ 1 oo||z(t) — Z(t)]] = 0
regardless of the presence of any exogenous input f(t) in the system. Thus, the structure

of the full-order UIO is given by the following system of equation [217]:

(1) = Fiz (t) + JiBu(t) + Liy;(t)
2} = 2 (t) + Kiyi(t) (5.2)

7

Now, if the observer equations Eq. (5.2) is applied to the MG network system dynamics
equation Eq. (5.1), then the governing equation of estimation error of system states can
be written in expandable form as shown below.

¢E(t) = (A — KEC, A — L7 C)ek(t) + [FF — (A — KECA — 1,,C))2 (1) +

i

(L5 — (A~ KECA — LEC)Kyi() + [3F — (1 - K C)|Bus(!)

+ (KEC —DEf (1) (5.3)
where k' is the target node/DER compromised by cyber-attacks. Also, 2F(t) € RV is
the states of observer and i“f € RV is the estimated states decoupled from compromised
node-k and calculated by node-i. It is assumed that each DER is equipped with a UIO,
which only needs its own state and local measurement (y;) information of its neighbor.
The matrices, F¥, J¥ L¥ and K¥ are the design consideration of proper dimensions which

must satisfy the following relations.

Fl = (A - KICA - LEC))
K' = E;[(CE)TCE] Y CE)T

Jf = (1-KICy)

I = FrKk

(]
L=LF4 1
(KFC; —1) =0 (5.4)

Henceforth, the state estimation error will be:

) =Fref(t) = IF > Enfalt) (5.5)
neN;\{k}

Here, Ff is a Hurwitz matrix i.e all the eigenvalues of F are stable, and thus asymptotically
convergence of state estimation errors, e(t) towards zero is guaranteed. Moreover, the
unknown input term is also effectively decoupled from the observed states and gradually &
converges to x. It is evident that the error dynamics Eq. (5.5) are stable and independent

of fi(t), which aligns with Definition 2. Here, the observer matrices are designed based on
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pole-placement techniques [218]. Now, for the existence of an UIO and to solve Eq. (5.4),

the necessary and sufficient conditions that need to be checked are as follow:

1. rank(C;E;) = rank(Ey)

sl — A+ (Ek)

=n +rank(E
C; 0 (Er)

2. (C,A;) is an observable pair, where A; = A — E[(CE)CE|"!CE)"CA = A —
AKC.

Thus, the estimate of unknown input injection can be obtained as follows:
f = (C:E)'ly; - CA2} — CBuy] (5:6)

In order to prove the observer global stability and asymptotic convergence of estimation

of unknown exogenous input, lets the error is defined as

f=r—r (5.7)
Let, the Lyapunov function be taken as
1 ~T ~
Combining Eq. (5.1) and Eq. (5.6), the first derivative of V can be written as:
V=T ]éT

== fr

= ['1f — (GiE)!(si — CA&} — CBu)]"

— fTIf - (CiE)|(CiAa} + CBu + C,E,f — C;A#} — C;Bu)|”

— fTIf = f — (CE)) CiAe(t)]"

— [(CE) CAe(t)TfT <0 (5.9)

Therefore, given microgrid system Eq. (5.1) and its initial condition x(t9) = xg, along with
the UIO estimator Eq. (5.2) proposed for this system, if the parameters of the estimator
in Eq. (5.2) meet the above conditions specified in Eq. (5.4) and remains constant, then
ast — 00, z — Jxr and f — f. Thus, it is observed that with proper selections of observer
design matrices and following the necessary conditions for UIO existence, the unknown
estimation error approaches to zero asymptotically with the estimation error of observer
states. Figure 5.3 shows the block diagram of designing a UIO dynamic system for MG
network, as described in Eq. (5.2).
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Figure 5.3: Schematic structure of a full order Unknown Input Observer

5.2.2 Back-stepping Integrated Sliding Mode Controller

This is the final stage of the proposed algorithm to design a compelling feedback control
law under a fixed communication graph topology. This involves employing a back-stepping
approach and sliding mode surface to counteract the impact of unknown FDI attacks
on MG secondary controllers. Additionally, it includes the approximate estimation of
injections using the above-mentioned UIO, contributing to the improvement of system
stability and robustness. In the context of non-linear control theory, sliding mode
control (SMC) is a widely reviewed researched area due to its superiority in trajectory
tracking problems in multi-agent system fast response, controlling of model uncertainties,
disturbance, and unmodeled system dynamics, etc [219, 220]. The main philosophy of SMC
is to design a suitable sliding surface such that even in the presence of an unknown attack
or disturbance, the states of the system can reach to this surface and stay over there to
achieve resilient control performance. However, finite-time consensus and chattering issues
in its control input are the major concern of its practical applications. To get rid of these
above issues and to purposefully extract and utilize the benefits of SMC, another very
popular non-linear recursive control technique, i.e., back-stepping control, is integrated
with it, which is formulated based on Lyapunov functions in each step and found out to
be superior for ensuring global stability of strict feedback systems. Initially, the entire
system is splitted into several reduced-order subsystems, and some error or regulatory
variables are introduced to redefine the networked system dynamics based on Lyapunov
functions. Thereafter using the time derivative of those variables at each design step, a
fictitious or virtual control input law is defined that acts as a stabilizing control for its

previous states, and next stability is ensured by making the time derivative of Lyapunov
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functions to be negative definite as briefly described below.

Let, the MG’s distributed secondary frequency control (DSFC) Eq. (5.1) for the topology
shown in Fig. 4.13 of Chapter-4 is modified as follows:

Xw =AX,+ BpUp +BuUsw + Bffw
Yo = CXy (5.10)

where, X, and Up be the DER’s frequency and its injected active power input respectively.
fw is the rough estimation of unknown frequency bias output obtained from UIO and Uk,

be the desired control law that makes the DSFC cyber attack resilient.

X, = w1, w2, w3, wi]”, U, = [P1, Py, P, Py)"
Usw = [USW17U.9W27USW3)U/SUJ4]T) fw = [fwufwz’ fo.)3’ fw4]T

—2c,, Cow 0 Cow 1 0 0O

A Co —3c, Co Cow B, — 01 0 0

0 0 —2¢c, ¢, 0 01 0

Cow 0 0 —Cy 0 0 0 1

where, ¢, is the frequency control coupling gain value for MG’s DSFC of voltage source

voltage controlled inverters.

—2¢y Cw 0 Cw by 0 0 0
— 0 b 0 0
B, - Cu 3¢, Cu Co B, — 2
0 0 —cu ¢ 0 0 b3+c, O
Co 0 0 —c, 0O 0 0 by

Firstly, the tracking error of the DER-1’s frequency is defined as:
Wi, = Wref — W1 (5.11)
The Lyapunov function is chosen as:
Vi =-w (5.12)
Combining Eq. (5.10) and Eq. (5.11), the first derivative of Vi can be written as

Vi = Wy Weq

Vl = Wuq (wref - wl)
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Vl = W, (d}ref + 2c w1 — cuwr — Cuwa + 2¢,P1 — ¢y Py — ¢y Py — b1u8w1 - fwl) (513)

_klwwl

According to the back-stepping control, the virtual control for DER-1 frequency, i.e, w

can be defined as

N 1 1 1 A . .
Wy = 5(‘*}2 +W4) - P+ §(P1 + P2) + f(bluswl + fwl - klwwl - wref) (514)
w

Using Eq. (5.13) and Eq. (5.14), the first derivative of V; is given by

Vi =—kw:, <O0. (5.15)

w

In the similar fashion, the virtual controls of all other DERs such as w3, w3 and wj and its
respective time derivative of Lyapunov functions i.e V2 = _kQWS}Q <0, Vg = —kgWig <0
and V4 = —k:4Wf] , < 0 are also calculated. Where k1, k2, k3 and k4 are feedback gains and
should be greater than zero. In order to get the output from the controller, the sliding
manifold for DER-1 is defined as follows:

t
Sy = @1 — k5/ &y dt (5.16)
0

where, W; = w] —w;. In the same way, sliding surfaces for all the other DERs are also

calculated and the final Lyapunov function can be written as
1
Vs = (82, + 85, + 55, + 52 (5.17)

Combining Eq. (5.10), Eq. (5.13) and Eq. (5.16) the time derivative of V5 can be written

as

Vs = Sy, [wf — w1 — k5] + S, [wh — o — keio)

+Sw3 [w§ — w3 — /{7(;)3] + Sw4 [wi — Wy — kgd)z;] (5.18)

For brevity, only the first term of Eq. (5.18) is expanded as shown below which gives the
suitable control law for DER-1

V5(1St term) = Sy, [w] + ks@1 + 2c,w1 — cuwa — Cuwy

+ 2¢,P1 — e, Py — ¢, Py — bluswl — fuq] (519)

1 1
_kg‘Swl ‘? sgn(Swl )—klo‘swl ‘7 S"Jl

Now, based on the back-stepping sliding mode principal, the output control law for DER-1

can be expressed as follows:
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1. -
Usw, = a[wf + k51 + 2c,w1 — Cpwa — Cpwa + 2¢, P —

CoPo = cuPs = fuy + kolSuy |7590(Swy) + k10| Sy |2 S ] (5.20)

Similar to the above approach, the control law for the other DERs can also be evaluated.
Now according to Eq. (5.18), Eq. (5.19), Eq. (5.20) and the control laws of other DERs,

the time derivative of the Lyapunov function of the entire controller can be written as

Vi = —ko| Sy |7597(Suy ) — k10151 |2 Sy — k11 Sus|2597(Sus) — F12]Sus |7 Sy
— k13]Sus |2 591( Sy ) — K14l Sig |2 Sy — K151 Sus| 2 59n(Sus) — K16]Sus|2 Sy <0 (5.21)

where all the parameters from kg to kg are greater than 0 and \75 will be zero if and
only if all the sliding surfaces satisfy i.e., So, = Sy, = Swy = Sw, = 0. Thus it is proved
that the designed controller is asymptotically stable in a global sense based on Lyapunov
functions. Finally, it can be concluded that in normal conditions, this computed control
law will inject almost zero compensation, but in the presence of any cyber intrusion, a
suitable counter value of the control law will be injected on the DSFC of the respective
attacked DER identified by MMD to make it attack resilient.

The flowchart of the above mentioned unified end-to-end cyber attack detection and

mitigation framework comprising of MMD, UIO and BSMC is depicted in Fig. 5.4.

5.3 Results and Discussion

This section demonstrates the effectiveness of the proposed cyber-attacks mitigation
framework on a modified IEEE 13-node distribution feeder system, depicted in Fig. 4.1 of
Chapter-4. This system incorporates four DERs connected through a 1.0 MVA, 0.48/4.16
kV Yg-Yg transformer, with DER-3 designated as the leader. The hardware-in-loop
laboratory setup, illustrated in Fig. 4.2, collects auxiliary control inputs from each
DER’s RTDS front panel analogue output channels. Subsequently, the MMD-based attack
detection algorithm outlined in Chapter-4 is translated into C code using MATLAB
Simulink@®) C Coder builder and executed on the DS1104 R&D controller board. The
digitized detection input is then transmitted to the RTDS runtime environment via the

digital I/O panel interface to initiate the mitigation strategy.

5.3.1 Attack Mitigation on DSFC Against Scaling Attack

Figure 5.5 illustrates the applicability and robustness of the proposed mitigation strategy
against a complex attack (State Dependent) i.e., scaling attacks. Here, the attackers use
the attack parameter az. = 1.04 pu to hijack the DSFC of DER-1 and falsely alter its
frequency information. As soon as the attacked DER is identified by MMD, the column

vector, ”E” of UIO’s governing equation, is updated to get a rough estimates of the
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Figure 5.4: Flowchart of an unified cyber attack mitigation framework
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unknown injection and the state trajectories. The proposed back-stepping assisted sliding
mode-based resilient operation has activated instantly and the counter control law is being
computed to restore the frequency back to normalcy. The controller and observer design
requirements, which are less conservative, enable the control law to be updated in real time
with the estimates of the UIO. In order to enforce robust behavior even in the event that
the attack continues, it enforces the deviated state trajectories to follow back the initial
sliding manifold. Figures 5.5(a) and 5.5(b) show that as soon as the attack is injected, the
frequency begins to shoot out. However, the control law instantly corrects the attack’s
effect and restores the frequency, and within the due period, the frequency tracking error of
DER-1 likewise reaches zero. The sliding manifold self-adjusted in accordance with changes
in frequency deviation, as seen in Fig. 5.5(c). Next, the finer resolution of the injected
control law and its endurance against persistent attack is also shown in Fig. 5.5(d). Thus
it can be concluded that the combined effect of back-stepping and sliding mode control
approach yields a suitable control law to maintain stability and performance of the system
even in the presence of malicious disturbances, ensuring the system’s resilience to cyber
threats.

The estimation accuracy of the states, as resulted by the proposed UIO, is quantified
in terms of mean squared error (MSE) and mean absolute error (MAE) of each
DERs frequency deviation and unknown exogenous input estimation under FDIA,
and is found to be — (0.0020,3.4959¢76 2.2979¢7% 0.8132¢7°7 and 0.0020) and
(0.1004, 0.0027,0.0019, 5.0747¢~% and 0.2079), respectively.

5.3.2 Attack Mitigation on DSFC Against Step Attack

Similar to the above case study, another type of commonly known attack i.e., step attack
is encountered to replace the DER-1 frequency with the attack parameter of ag = 0.05
pu as modeled in [221]. As in the earlier case, the attack here is also launched at the same
instant, and the proposed mitigation method is found to be working efficiently to damp
out the attack’s impact in DSFC, as shown in Fig. 5.6. At the onset of the step attack,
Fig. 5.6(a) depicts the initial fall back of frequency from its nominal value with the correct
tracking of frequency error terms for DER-1 only as identified from Fig. 5.6(b). This acts
as a triggering instant for the quickest activation of the proposed BSMC assisted mitigation
method, where the intermediate control signal is designed in each steps considering the
system dynamics of each DERS to drive the error state towards a desired values, while
also accounting for the previous control signals. This in turn introduces a resultant change
in the sliding surface as shown in Fig. 5.6(c). This sliding surface henceforth generates
a switching control law as depicted in Fig. 5.6(d) that guides the system trajectory
towards a desired state despite the presence of cyber-attacks. The designed control law is
then augmented with the governing equations of DSFC of each DERs of the MG system
to include terms that actively compensate for the effects of the unknown attack inputs.
In other words, this compensation mechanism dynamically adjusts the control inputs to

counteract the disturbances caused by the attack, thereby minimizing its impact on the
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Figure 5.5: Performance of the proposed attack mitigation scheme for Scaling Attack on
DSFC of DER-1. The figure color labels black, red, blue and green represents parameters
for DER-1, DER-2, DER-3 and DER-4 respectively.
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system.

The MSE and MAE of all four DER’s frequency and unknown exogenous input for
this case are found to be (0.0020,3.4959¢=%,2.2979¢796 0.8132¢=97 and 0.0020) and
(0.1004,0.0027,0.0019, 5.0747¢~% and 0.2079) respectively. Overall, it is observed that
the back-stepping approach helps account for the system’s dynamics and the unknown
attack’s presence in addition to minimize the potential chattering issues in the control
law, while the sliding mode component ensures the system’s state reaches the desired

behavior despite some level of disturbance in the unknown input estimation process.
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Figure 5.6: Performance of the proposed attack mitigation scheme for Step Attack on
DSFC of DER-1. The figure color labels black, red, blue and green represents parameters
for DER-1, DER-2, DER-3 and DER-4 respectively.
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5.3.3 Impact on DER’s Bus Voltage Profile by the Proposed Attack
Mitigation Scheme

In reference to the above simulation scenario, Fig. 5.7 shows the explicit results of DER’s
bus voltage profile before and after activation of the proposed mitigation scheme. The
overall stability profile of MG’s bus voltage (Node 650) is compromised as a result of the
attacker’s malicious contamination of the victim DER’s secondary controller’s frequency
input, as shown by the oscillatory behavior shown in Fig. 5.7(a). The remaining
three DERs are connected to other nodes of the MG, and their voltage also deviates
from the typical bus voltage range, as a result of the attack rapidly spreading to those
nodes. Therefore, the stability of the entire system is compromised if the cyber-attack
is not promptly detected and mitigated. As the actual voltage references are now lost
due to such skillful manipulation of DER frequency parameter, the main objectives
of modelling distributed cooperative secondary control in MGs i.e., “All DERs should
co-operate in maintaining consensus among themselves” gets violated. The effectiveness
of the proposed resilient control mechanism is demonstrated in Fig. 5.7(b), where the
attack impact is adaptively mitigated without having a significant impact on the MG’s
DER bus voltage profile, which continues to remain within their acceptable voltage range,
i.e., between 0.9 p.u. and 1.1 p.u., even in the event that the attack persists continuously.
Additionally, it is clear from Fig. 5.7(c) that the MMD-based detection scheme proposed
in Chapter-4 promptly identifies the attacked DER-1 (shown by the yellow curve). This, in
turn, triggers the proposed attack mitigation scheme, in which the proposed back-stepping
integrated sliding mode controller effectively reduces the impact of the attack by creating
an adaptive control law in response to the attack scenario. Overall, this detection and
mitigation stages are completed within a cycle of the nominal system frequency. Thus the
real-time implementation of the proposed controller clearly establish the faster convergence
speed and consensus agreement of MG’s voltage and frequency parameters by the proposed
mitigation scheme under bounded cyber intrusions. Also, the proposed controller is clearly
very adaptive to the unknown bounded attack injections, and thus it does not need
to isolate the infected DER’s information; therefore, the system’s resiliency and DER’s

utilization is increased.

5.4 Conclusions

This chapter uses a sliding mode control-based attack mitigation method integrated with
a back-stepping controller to help achieve consensus agreement even in a compromised
situation. In its first stage, this framework needs the coarse estimation of the unknown
input bias in the secondary frequency controller input obtained from a bank of unknown
input observer (UIO). After that, designing an effective Back-stepping Integrated Sliding
Mode Controller (BSMC) aids in nullifying the effect of the injected false data through
the application of counter control law, pushing the system’s behavior towards the desired

trajectory despite the attack’s influence. The efficacy and robustness of the proposed
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mitigation framework are validated by various Real-time digital simulations on the

modified ITEEE 13-bus system which led to the following key conclusions of the work.

e The proposed method does not impose any additional limitations on the proposed
mitigation strategy, unlike [131, 116, 119], which assume that the leader DER must
always be secured. Additionally, the number of role statuses (corrupted or healthy)
of nearby DERs does not put any extra limitation over the proposed mitigation

strategy.

e For both the attack cases, the Mean Squared Error (MSE) and Mean Absolute
Error (MAE) values for the frequency of all four DERs and the unknown exogenous
input are with in the acceptable tolerance which justify its accuracy of performance

measure.

e The proposed mitigation method exhibits good robustness and faster convergence
against different attacks and efficiently regulates DER’s frequency and active power

ratio.

e The proposed controller is very adaptive to the unknown bounded attack injections,
and thus it does not need to isolate the infected DER’s information; therefore, the

system’s resiliency and DER’s utilization is increased.



Chapter 6

Synergistic Islanding and Cyber
Attack Detection Scheme

6.1 Introduction

In the previous chapter, a cyber attack mitigation framework against the distributed
consensus secondary control scheme for a MAS within a MG cyber-physical system is
developed to enhance the resiliency and security of the D-Systems. Another pressing
challenge that exists in D-Systems is to accurate detection of islanding scenario considering
the threats of cyber-physical manipulations. Thus the goal of this chapter is to first propose
a simple yet effective statistical parameters based passive islanding detection scheme (IDS)
that relies only on the one phase voltage data, measured at the point of common coupling
(PCC) followed by a signal processing based cyber attack detection method that aims
to make existing islanding detection methods “attack-proof” or less susceptible to cyber
attacks. To this end, at first an accurate islanding detection scheme is proposed, which
is comprised of three main stages. In Stage-1, the scheme performs a quick analysis of
the mean value of the PCC bus voltage under both balanced and unbalanced conditions
to detect islanding in a coarse manner. Stage-2 involves the computation of a Decaying
DC Detector (DDCD) using statistical properties of the input signal. Finally, Stage-3
introduces a Statistical Relay Digital Logic (SRDL) circuit based on output of Stage-1
and Stage-2 to differentiate between islanding and non-islanding events. Next, to prevent
cyber attacks from manipulating the islanding decisions and misleading system operators,
the proposed IDS is combined with a signal processing based Cyber Attack Detector
(CAD) module for the detection of statistically crafted cyber-attacks. The proposed
CAD detects a cyber-attack in the contaminated islanded data by computing a stochastic
non-parametric correlation coefficient, i.e., Spearman’s rank correlation in conjunction

with a deterministic Cosine-Similarity measure.

The efficacy of the proposed method is rigorously tested and assessed under various
circumstances on real-life Banshee industrial microgrid system modelled in the RTDS
simulation environment, on the basis of the IEEE-1547, UL 1741 and IEC-62116 standards.

The rest of the chapter is organized as follows. The statistical analysis of each phase PCC
voltage mean variation under various islanding and non-islanding events is presented in
Section 6.2. The proposed statistical property-based passive islanding detection technique

is explained in Section 6.3. Section 6.4 discusses the simulation results of the proposed
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IDS. Next, Section 6.5 presents the proposed signal processing based cyber attack detection
method. The attack detection results is then depicted in Section 6.6. Finally, Section 6.7

concludes the chapter by drawing the main findings of the overall framework.

6.2 Statistical of

Non-Islanding Scenarios

Analysis Various Islanding and

In order to statistically analyze the voltage signal received at the PCC under islanding or
fault /switching scenarios, a test system is implemented in PSCAD/EMTDC as per the
IEEE-1547 and UL 1741 standards listed in Table 6.1 which helps to devise a satisfactory
relay logic in the forthcoming section. The system is shown in Fig. 6.1, where a single
DG is connected to the grid at the PCC, along with a parallel connected RLC load. The
constant current control mode of DG operation is used for the islanding studies, and unity
power factor operation of the inverter is considered. The corresponding parameters details
are also listed in Table 6.1. The sampling frequency of 7.68 kHz is used for 60Hz, which
results in N=128 samples per cycle. Further, the actual voltage signal V¢C | as measured
from the PCC, is used to compute and analyze the absolute mean of the one cycle window

data, as follows.
1 N
i=1

VPCC —

mean

(6.1)

Table 6.1: Test System details as per IEEE 1547 and UL 1741 standards

S.No ‘ Parameter ‘ Details | S.No ‘ Parameter ‘ Details
System parameters Load parameters
1 Frequency | 60 Hz 6 R (2) | 2.304
2 Voltage (L-L) 480 7 L (H) | 0.00611
3 DG power output | 0.1 MW 8 C (F) | 11.51.29
4 Input Voltage of DG | 900 V 9 Quality Factor 1
5 Switching Frequency 8kHz

Phase voltage

of inverter |
e SRDL Output
¢ LCL Filter
: \
L u o ...
DC -AC IOV oI :
Vie ; CDO—
de Converter |ID G abe l ' C‘ .
o o i Cirguit
I Cr I ve ™ ! Breaker :
Pulses N g |
------------------------- Source ELS :
Qref Impedance!
Ve Rs
Constant Current ' ' ]
Mode Qdg 'RLCLoad /N7
and P Mceeees ; '
Voltage control ref Utility Grid
Mode Pdg T

Figure 6.1: IEEE 1547 and UL 1741 Standard based Islanding test system
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Figure 6.2: V,PCC analysis of various Islanding and Non-Islanding scenarios

Figure 6.2(a) shows the instantaneous three phase voltage, below which is shown the grid
Circuit Breaker (CB) status. Grid CB status = 0 indicates CB is CLOSED and grid CB
status = 1 means CB is OPEN. The statistical analysis of the PCC voltage is done for six

scenarios, as described below.

1. Scenario-1: In this scenario, an islanding event is simulated by opening the grid CB
at 0.1s. It can be observed from Fig. 6.2(b-c) that the islanding condition does not
affect the voltage and frequency due to perfect zero power mismatch of both active
power and reactive power. Figure 6.2(d-f) shows the one cycle average as per Eq.
(6.1) for each three phase signals respectively. From the zoomed portion of all the
three phase one cycle averages of Eq. (6.1), it is observed that there is a significant
change before and after the islanding scenario. A high frequency and low frequency
nature can be observed before and after islanding, respectively in the calculated one

cycle average of each phase.

2. Scenario-2: In this scenario, a non-islanding event is simulated with grid CB closed.
A LG fault is applied at 0.35 s and cleared at 0.45 s in the R-phase with a fault

resistance of 1§2. Clearly, the voltage and frequency is significantly affected, as
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VPC’C'

mean

shown in Fig. 6.2(b-c). One cycle for R-phase also reveals sudden changes

in its value during the start and end of the fault. The other two healthy phases

do not undergo any significant changes, as shown in Fig. 6.2(d-f). Likewise, under
VPCC

mean

various fault conditions, calculated one cycle of each phase as per Eq. (6.1)

has significant transient effect at the start and end of the fault.

3. Scenario-3: In this scenario, grid CB is opened at 0.55 s for the duration of 0.25 s
to analyze the islanding scenario under P mismatch, as shown in Fig. 6.2(a). The

voltage and frequency experience a significant effect under this condition, as can be
VPCC

mean

observed from Fig. 6.2(b-c). One cycle for all phases is shown in Fig. 6.2(d-f)

which also depict significant variation.

4. Scenario-4: In this scenario, the system is working under unbalanced conditions in
all the three phases. Islanding scenario is then simulated by opening the grid CB
at 1.1 s under perfect mismatch of P & Q, as shown in Fig. 6.2(a). Under this
scenario, again the voltage and frequency experience significant change as shown in
Fig. 6.2(b-c). One cycle V,PCC for all phases is shown in Fig. 6.2(d-f). Due to the

mean

unbalanced operation, magnitude of one cycle average in each phase is different. Yet
VPCC

ean Teveals the Islanding condition successfully.

5. Scenario-5: In this scenario, Q mismatch is simulated as an Islandng scenario by
opening the grid CB at 1.4 s. Majorly, the voltage remains unaffected, and frequency

has significant variations, as shown in Fig. 6.2(b-c). Figures 6.2(d-f) depict the
VPCC

mean

significant changes in one cycle for all the three phases.

6. Scenario-6: An external load switching is simulated at 1.8 s as a Non-Islanding
scenario, with grid CB as closed, as shown in Fig. 6.2(a). In this case, the external

load is added at 1.8 s and removed at 2 s from the system. Interestingly, the one
VPCC

mean

cycle of all phases, as shown in the Fig. 6.2(d-f), reveals a decaying DC effect.

The aforementioned simulated scenarios cover a wide variety of possible conditions in an
MG system, and the signal behavior under these real-world scenarios has been extensively

studied in order to produce a reliable passive islanding detection method.

6.3 Proposed Islanding Detection Method

It is expected that the low-voltage grid will have voltage and frequency relays that trip
the generator in the event that at least one phase’s voltage or frequency restrictions
are exceeded. If the frequency and voltage are both within the allowed ranges, then a

Non-Detection Zone (NDZ) is present. As was discovered in Section 6.2, the voltage mean
VPCC'

mean Shows a pattern that is constant across all three phase voltages under the various

scenarios evaluated. Therefore, the instantaneous voltage of any one phase at the output

of the DG can be utilized to detect NDZ using one-cycle information. This is accomplished
VPCC

by computing the V), ., according to Eq. (6.1) utilizing a 128-point buffer.
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It is noteworthy that the statistical analysis carried out in Section 6.2 under different
conditions demonstrates that, under Islanding conditions, a significant shift in V,2C¢ for
one cycle can be observed. However, depending solely on the voltage magnitude could
lead to false alarms when it comes to Non-Islanding events like as failures, external load
switching, etc. The proposed IDS technique thus uses the new idea of detecting the

presence of decaying DC in the signal before making a judgement on the unintentional
VPCC

mean

overall framework of the Proposed Islanding Detection Method (PIDM). As illustrated in
this figure, the PIDM is comprised of three stages, viz., 1) Mean-based coarse Islanding
Detection (MID), 2) Decaying DC Detector (DDCD, and 3) finally, the Statistical Relay
Digital Logic (SRDL). The description of each stage is discussed briefly in the following

Islanding in addition to utilizing information. To this end, Fig. 6.3 depicts the

subsections.
Input Signal
E [ Signal Parameter Estimator (SPE) ] E
+ X'mean :
Step- A : N;:;I:lg?;ed Decaying DC . Step-B
Mean based : Detecti Igl Detector Decaying
Islanding Detection ' ctectio ' DC Estimation
l MID DDCD :
1 A !
. Step- i Statistical based Relay Digital Logic E
Statistical based Relay (SRDL) :
Digital Logic (SRDL) ‘
S SRDL—IL \;SRDL—O S

Island Non Island

Figure 6.3: Block diagram of the proposed data driven Islanding detection scheme

6.3.1 Mean based Coarse Islanding Detection (MID)

A coarse estimation of of islanding detection is produced by this block. At this stage,

islanding is just suspected and is finally confirmed in the last stage of the proposed SRDL.
VPCC

mean

The input for this stage is
calculation of MID.
Step-1: Create a 32-bit buffer of V.2CC values, i.e., VECC = VPCC11 - 39] and find the

mean mean mean

The following are the procedural steps involved in the

minimum, anigc, in the buffer. The anigc is significantly influenced by the presence of
fixed DC offset and lower level of decaying DC quantity which arises during faults, load
switching, and harmonics.

Step-2: Via moving window concept, maintain a 32-bit buffer of Vfl:(i:nc values, termed

as VECC e, VECC = v POCT1 . 32].

rem ) “°Y) rem min
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VPCC

e is calculated. The entropy value so obtained is

Step-3: Finally, the entropy in
termed as Mean based Islanding Detector. Inside the observation window of 32-bit buffer,
the value of MID remains fairly constant (less than le™* or zero) under non-islanding
scenarios. On the other hand, an appreciable disorder or uncertainty is shown by MID (in

the range of 0.1-4) during possible/suspected islanding events.

6.3.2 Decaying DC Detector (DDCD)

The DC decay time is not used as a direct indication of an islanding situation but as an
indicator of transient behaviour within the MG. A MG’s electrical topology and operating
circumstances alter during an islanding event, resulting in transient phenomena including
voltage and frequency aberrations. Under such circumstances, the DC offset present in the
signal will decay over time due to the oscillating components present in the signal. The
main objective of this stage is, therefore, to assess the presence of decaying DC component

quantity, which arises due to faults and load switching events.
VPCC

mean information is summed up using a 32-bit

Estimating DC decaying time: The
buffer data as V;,s = S V.PCC[] : 32]. The rate at which the magnitude of V,, is decaying

mean

is calculated as :
7(i) = abs(—dt/(41og(Vins(i) — Vins (i — 1)))) (6.2)

where, dt is the sampling time. 7, thus, represents the amount of time that the decaying
DC quantity (if present) will take to decay to approximately 36.8% of its original amount.
Finally, the entropy in 7[1 : 32], i.e., (E;) is computed in order to see the randomness in
the computed decay time and for deciding if the decaying DC component is present or not
in the signal. For the discretization purpose, the entropy of DC decaying quantity (FE;)
present in the signal is compared with a threshold of 2 x 1073. In case, the entropy is
found to be more than the set threshold, DDCD will be set to 1 or 0 otherwise.

DDCD=1 ifE, < 2e-03
1) Calculate VESS,, using (1) [;DCD =0 — j
1-Phase PCC meat en|
No Yes V:I::ge |2 Caleulatel =LV 13 (1- Islanding)
V) 3) Calculate T using (2) - {0 - Non-islanding)
4) Calculate E, [1:32) ifE;>= 2e-03
DDCD==1 |—
- end
D20 MID 21 (From Stage-2) No Events
ifMID==0
M M Out_1=1
end
. . MID ifMID~= 0
No Event MiD21 Islanding Non-Islanding {From Stage-1) out1=0 [—y E
Event Event end
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nnz(MATLAB __,, humber of non-zero out 220 4\@-
. . ) J ! else M_ID >=1
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Figure 6.4: Proposed Islanding Detection Method (PIDM) logic
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6.3.3 Statistical based Relay Digital Logic (SRDL)

As seen in Fig. 6.4(a), the output of the MID is utilized in tandem with the output of the
DDCD in this last step to create the breaker logic for the operation. The binary output
variable SRDL is set to 1 to indicate islanding and 0 for a non-islanding situation based

on the following rules:

1. Rule-1: As mentioned in section II.B, if the studied signal is heavily influenced by
the presence of decaying DC, then DDCD will be set 1 as a suspected abnormal
events. In order to ensure that this arises due to event of a non-islanding scenario,
non-zero MID value is then compared with unity. If the MID value is equal to or
greater than 1, it is classified as a non-islanding event; otherwise, it is declared as

an islanding event.

2. Rule-2: If the signal does not have the signature of decaying DC of significant
tolerance, the DDCD will not be triggered and thus it should be set to state O.
According to Rule-2, in this case, an event is considered an islanding scenario only
when MID > 1. This is due to the fact that ideally DDCD should not respond
and always be obscured during most of the islanding scenarios. Thus, in such case,
unlike the rule-1, now SRDL logic will be set to 1 indicating an islanding scenario
when MID>1. On contrary, if the MID value falls within between open and closed
interval range such as MID € (1 x 1074, 1], the event is confirmed as low impacted

Non-islanding event, and SRDL is set to 0 in that case.

3. Rule-3: This is the generalized case where these two main decision making
components i.e DDCD and MID both are found to be zero. To avoid any
misjudgement, MID values less than 1 x 10™* are treated as 0 in this context,
signifying that neither islanding nor non-islanding events have occurred, indicating

a normal system state.

Based on the above rules, a Statistical Digital Relay Logic (SRDL) is designed to indicate
the presence of islanding and non-islanding scenarios as illustrated in Fig. 6.4(b). At
last, in order to avoid nuisance tripping of DGs due to some stringent scenarios and to
take confirm decision over an event, the toggling outputs of the logic gates are constantly
monitored for a cycle using sliding window concept. If the presence of number of ones i.e.,
non-zeros (NZ) is more than zeros (Z) for that period of time, then the final SRDL decision
confirms the event as an islanding scenario otherwise it indicates ia as a non-islanding

scenario.

6.4 RTDS Simulation Results

Test System: The efficacy of the PIDM is carried out via real time digital simulation
on Banshee power system [222]. Banshee MG system is a real-life small scale industrial

facility that receives power from three utility radial feeders, as shown in Fig. 6.5. This
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three radial feeders provide three zones with different levels of connectivity via normally
open switches. Each area’s mainstream feeder is connected to the utility grid via a
different PCC circuit breaker. The distribution voltage level of this MG has a system
voltage of 13.8 kV. Eighteen aggregated dynamic loads with a power factor of 0.9 lag are
supplied by those feeders. Additionally, there are two 200 horsepower induction motors
that have compressor loads. There is a 4 MVA diesel generator in area-1 and 3.5 MVA
natural gas fired combined heat and power plant operating at 13.8 KV in area-3 and
they usually have a controller operating on 4% linear voltage and frequency (V/F) droop.
Area-2 formed by feeder 2 contains a 2.5 MVA battery energy storage system and 5 MVA
photovoltaic array designed via average modelling with time-varying irradiance profile
and temperature. Additionally, 3 more grid following PV units, i.e., DG1, DG2 and DG3,
of equal 1.25 MW rating, are located at Bus-107, Bus-305 and Bus-209, respectively.
More details about the Banshee MG system layout, configuration and various other

source, line and load component details can be found out in Appendix A.2.

Test Scenario: Following test cases have been considered for establishing the efficacy of
the PIDM.

o Zero Power Mismatch: Representing no or very small net imbalance between active
and reactive power. A passive islanding detection scheme finds it difficult to

discriminate between grid-connected and islanded scenarios.

e Load and Capacitor Switching: Sudden connection/disconnection of load of different
power factor and switching of capacitor introduces transient in the systems which
poses challenges to islanding detection methods (IDMs) to accurately discriminate

them as non-islanding events.

o Fault condition with different resistance: Single-phase faults are very common in
power systems, and their severity can vary based on fault resistance. To assess the
IDM method’s sensitivity to fault characteristics and its capacity to distinguish
between faults and islanding occurrences, PIDM was tested under various fault

resistance situations.

e Loss of parallel feeder (LOPF): Loss of Parallel feeder is a spurious non-islanding
event that usually leads to a false triggering of islanding detection. It is important
to consider such events because such events affect inverter frequency, and may lead

to a cascaded failures in the system.

Apart from the above mentioned test case, the proposed method is rigorously verified
on other events also such as linear and non-linear load switching, capacitor switching,
induction motor starting and tripping of other DG than targeted DG as shown in Table
6.2.
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Table 6.2: Simulated Islanding and non-islanding scenarios.

Islanding Events
Type of Islanding Details
Active Power Mismatch -50% to +50%
Recative Power Mismatch -4% to +4%
Non-Islanding Events
Type of Non-islanding Details
Three Phase to Ground Faults 0.01€2 to 1082
Double Phase to Ground Faults 0.01€2 to 102
Single Phase to Ground faults 0.01€2 to 1052
Capacitor Switching 500 kVA
Load Switching 125 kVA, 0.8 pf lag
Non-linear Load Switching 100 kW
Induction Motor Load Switching 200 HP, 0.48 kV
Tripping Other DGs Except Targeted DG | Trip a 5 MW DG
Loss of Parallel Feeder Trip Feeder-2

6.4.1 Validation of Proposed Method on Banshee Industrial Microgrid
with High Penetration of Renewables

6.4.1.1 Islanding Scenarios

In order to analyse the performance of the proposed method, different cases of islanding
situation based on active and reactive power imbalances are simulated. Figure 6.6(1) shows
the performance result of the proposed method when the load active power and reactive
power was adjusted to 105% and 100% (Case 1) of generated power, respectively. Figure
6.6(1)(a) shows the instantaneous voltage waveform collected from DG1 terminal and Fig.
6.6(1)(b-c) shows the RMS voltage and frequency respectively for all the three DGs. It
can be perceived from the plots that DG1 is islanded, therefore there is some significant
changes can be seen in PCC voltage mean and its entropy of decaying DC as shown in Fig.
6.6(1)(d-e). It is observed from the Fig. 6.6(1)(f) that at the point of time when entropy
of decaying DC just crosses the threshold 2 x 1073, the MID value is lying below 1 which
triggers the SRDL logic as a suspected event. Thereafter, with reducing the decaying DC,
the MID value keeps on increasing for sometime within a 1-cycle window. Now as these
two events hold on for sufficient amount of time in a 1-cycle waiting period, the number
of ones count is found to be more than the zeros and hence the Final SRDL of DG1=1 is
flagged out stating it as an Islanding event as shown in Fig. 6.6(1)(f). But, the same kind
of pattern has not been captured by the SRDLs of non-targeted DGs i.e DG2 and DG3,
thus it does not raise any flag which can be easily visualized from Fig. 6.6(1)(g-h) and
(j-k). Likewise, Case 2 depicts another UL 1741 standard islanding case studies where
the load active and reactive are set to 125% and 100% respectively. The results of Fig.
6.6(2) also demonstrate the efficacy of the PIDM in accurately detecting the condition.
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Figure 6.6: Power mismatches as Islanding scenario
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6.4.1.2 Non-islanding Scenarios

Case 3 - LLG Fault with 2() resistance:-
where a LLG fault (Case 3) of 2() fault resistance took place at 0.2s and persist for 0.3s
as seen from the mean information of Fig. 6.7(d). From Fig. 6.7(e-h), it is observed

that the entropy of decaying DC for all the three DGs are lying below threshold and the

Figure 6.7 shows a non-islanding scenario

non-zero MID values are also below 1. Therefore, the proposed method gives the final
decision of this event as a non-islanding event for all the DGs based on the designed
SRDL tree as shown in Fig. 6.2. The final SRDL waveforms for all three DGs are shown
in Fig.6.7(i-k). The other variety of faults studies such as LG, LLLG with varying low
to high fault resistance on DG sides are also tested by the proposed method and all the

events are found out to be non-islanding scenarios successfully.
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Figure 6.7: Case 3 - LLG Fault with 2Q resistance

Case 4 - 500 kVA capacitor bank switching;:-

non-islanding test case where a 500kVA capacitor bank (Case 4) is switched on at around

Figure 6.8 shows another event of

0.2s at Bus 107. Due to such insertion, there are slight changes in the RMS voltages as
shown in Fig. 6.8(b) and consecutively mean value of PCC voltages face some small
variation. Overall, for this event MID and entropy of decaying DC both lies below the
limit for all of the DGS as shown in Fig. 6.8(d-h) and thus SRDL logics treated this event

as non-islanding as shown Fig. 6.8(i-k).

Case 5 - 200HP induction motor switching:- The reliability of the proposed method

is now demonstrated by switching a 200HP, 0.075 MWs/MVA inertia, induction motor
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Figure 6.9: Case 5 - 200 HP Induction motor switching
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(IM) load (Case 5) at the same bus location 107 operating at 0.48kV. The motor load
is switched on at about 0.2s as shown by the RMS voltage and frequency waveforms in
Fig. 6.9(b) and (c) respectively. During the start-up time, IM requires a large amount
of reactive power for a period of time and this, in turn, causes some changes in voltage
and current profile. These abrupt changes sometimes mimic the exact islanding signature
and thus can cause most of the islanding detection methods to fail. But the proposed
method deals this situation well. It can be seen in Fig 6.9(d)-(e) that during the switching
action, the variation in mean and entropy (E;) takes place. It can be seen from Fig.
6.9(e)-(f) that while the entropy of decaying DC is crossing the thresholds at that instant
MID value is not more than one resulting SRDL to be 1, which is an indication of false
islanding scenario. Thereafter, MID value keeps increasing more than one for sufficient
amount of time while the entropy of decaying DC decreasing and finally stayed below
its threshold limit resulting SRDL to be 0 which indicates a non-islanding event. As the
proposed Final SRDL logic take its final decision based on the waiting period of 1-cycle
of the intermittent nature of logic gates output, thus it is found out at the end that the
number of zeros are more than the ones. Therefore, based on majority voting in favour of
non-islanding, the Final SRDL logic is set to 0 which confirms this event as non-islanding.
The above description can also be easily discernible from the Fig. 6.9(f-h). Thus, it can
be verified that the proposed method detects this non-islanding event even if the load is

large induction motor type.

Case 6 - 100kW non-linear load switching:- The response of the proposed method
was also assessed under the influence of nonlinear loads. In this investigation, a 100kW
three-phase diode rectifier (Case 6) with a resistive load was introduced as a nonlinear
load. The connection of this load at bus-107 was simulated at approximately 0.2 seconds.
The observations from Fig. 6.10(f-h) reveal that the switching of the nonlinear load does
not significantly impact either the MID or DDCD criteria for any DGs. Consequently, the

SRDL component of the proposed method correctly classifies this event as non-islanding.

Case 7 - Tripping of other DG except of targeted DG:- Another non-islanding
scenario is also simulated at the feeder-2 i.e., area-2 of the Banshee microgrid model as
shown in Fig. 6.11, where DG2 is kept as the targeted DG and the existing large 5 MW
Banshee PV DG are now suddenly tripped at 0.2s (Case 7). It is clear from the Fig.
20 due to tripping of non-targeted DG causes some level of oscillation in the MID and
entropy of decaying DC index but they are still lies within the threshold. Thus, it can
be stated that tripping of other DG except the targeted DGs does not have any negative
influence on the Final decision over SRDL of the targeted DGs of the proposed method.

Case 8 - Loss of parallel Feeder:- In this case, loss of a parallel feeder that usually
results in nuisance tripping of relays caused by the misinterpretation of a non-island
scenario as an island scenario is simulated. The efficacy of the proposed method is tested

for a sudden disconnection of feeder 2 (Case 8) from the utility grid and the performance
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Figure 6.11: Case 7 - Tripping of other DG except of targeted DG
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of the three DGs are then monitored as shown in Fig. 6.12. As DG3 is located at Bus 209
which falls under the area of feeder-2, this situation is an islanding from DG3’s perspective
but from the viewpoints of the other two DGs located at Bus 107 and Bus 305 it is a
non-islanding situation. Furthermore, as a sizable 1.25 MW DG3 and a massive 5 MW
PV array simultaneously gets eliminated from the utility grid, a significant imbalance in
the local PCC voltage of the DG3 terminal occurs, as illustrated in Fig. 6.12(a). Since the
disconnection of feeder 2 forms a huge island and all the DGs in that island are designed
to operate in grid following mode, they have lost their voltage and frequency references
which results in fluctuations of the DG3 rms voltage and frequency beyond UV/OV and
UF/OF limits as shown in Fig. 6.12(b-c). But this situation does not create any negative
impact for DG1’s and DG2’s performance as they remain connected to the upstream grid.
Therefore, unlike DG3, MID and DDCD of DG1 and DG2 are lying within their safe limits
and from their viewpoints, this event is successfully treated as non-islanding which can
be seen in Fig. 6.12(f-g) and Fig. 6.12(i-j), respectively. Also, to be noted that the huge
random oscillations in the MID and DDCD of DG3 triggers the SRDL logic intermittently
to consider it as a suspected event. Moreover, this huge amount of power loss because of
feeder disconnection leads to severe distortion in DG3’s rms voltage and frequency beyond
limits, resulted the MID and DDCD to cross their individual respective threshold at the
same time for certain duration. As a consequence, the actual signature or confirmation
details of islanding with respected to DG3 can’t be satisfying periodically on time and
thus it introduce a sufficient delay in responding DG3’s SRDL. As the condition of getting
number of non-zeros values more than zeros in a one cycle window is being achieve late,

an inadvertent delay of 100 ms is observed in Fig. 6.12(k).
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Figure 6.12: Case 8 - Loss of parallel feeder
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6.4.2 Comparative Assessment with ROCOV

At the outset, ROCOV [223] methods looks quite similar to the PIDM. Nevertheless,
when there is an imbalance in reactive power, the ROCOV faces significant challenges in
effectively distinguishing islanding conditions. This is primarily because ROCOV relies
on detecting variations in reactive power only as an indicator of islanding. For instance,
unplugging a low power factor load from the network under normal circumstances can
result in a large reactive power imbalance and voltage oscillations. Likewise, during
switching of capacitors, motors or due to low resistance fault high inrush current will
flow, which causes the voltage of PCC to decrease. As a result, the ROCOV value may
surpass the predetermined threshold in this situation and malfunction. On the other
hand, in instances of islanding when the reactive power imbalance is subject to minimal
fluctuations, the ROCOV value might not rise over the predetermined threshold, thereby
failing to identify the islanding condition. The above two scenarios are explained below
through simulation in terms of the ROCOV and PIDM, where the mean of the 1-cycle

single phase PCC voltage information are exploited.

6.4.2.1 Case l

Figure 6.13(1) shows the Non-islanding case study where a temporary low resistance fault
(1-phase to ground) event of 0.1 fault resistance takes place at 0.23s for 0.5s duration.
The mean of the signal shown in Fig. 6.13(1)(b) clearly distinguishing this event and
exhibits its low amplitude and low frequency components. Thus, it does not mal-operate
by treating this event as islanding and do not trip the Over-frequency/Under-frequency
(OF/UF) and Over-voltage/Under-voltage (OF /UF) relays. As the PIDM exploits the
mean features of PCC voltage thus, it behaves in a similar manner, as shown in Fig.
6.13(1)(b). On the contrary, the ROCOV and mean of ROCOV shown in Fig. 6.13(1)(d)
and (e) depicts significant oscillations with very heavy high frequency content along
with high magnitude sharp spikes that creates trouble via nuisance tripping of relays

by misinterpreting this event as an islanding event.

6.4.2.2 Case 2

Figure 6.13(2) shows the case study where an Islanding event is simulated with 0%
active and 2% reactive power imbalance in the PCC voltage. As one can perceive from
Fig. 6.13(2)(b), methods that based on only mean based features exploitation (like
PIDM), there is a clear distinction in the high and low frequency content before and
after Islanding scenario. But the frequency content is not distinctly visible whenever
rms voltage information is used as shown in Fig. 6.13(2)(c). Moreover, with the
implementation of ROCOV, the difficulty of differentiating Islanding and Non-Islanding
situation under reactive power imbalance case is becoming more cumbersome as illustrated
in Fig. 6.13(2)(d). Thus, in that respect the PIDM and ROCOV methods are not found

out to be similar in performance.
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Clearly, simplicity is an advantage of the ROCOV method, but there are situations in
which a little complex approach can offer a superior performance. To this end, the PIDM
balances this complexity with the aim of achieving better results in terms of detection
accuracy and reliability. This is achieved by integration of the additional feature i.e.,
DDCD with MID, which, in turn, improves the performance in terms of accuracy and
reliability as compared to traditional methods like ROCOV.

6.4.3 NDZ Analysis

Numerous islanding situations with various active and reactive power unbalance levels were
simulated in order to determine the NDZ of the proposed method. Figure 6.14 provides a
comparative illustration of the NDZ results between the proposed method and three other
existing techniques [162, 224, 225]. The selection of these techniques was based on their

relevant features.

Clearly, the proposed method exhibits a notably smaller NDZ compared in terms of active
power imbalances and larger NDZ for reactive power imbalance to the other techniques as
shown in Fig. 6.14. This reduction in the NDZ is attributed to its decreased sensitivity to
non-islanding events. Furthermore, the proposed method is characterized by its simplicity,

rapid response time, high reliability, and low computational complexity.
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Figure 6.14: Non-Detection Zone of the proposed method
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6.5 Development of Cyber Attack Immune Secured

Islanding Detection Framework

In the proposed islanding detection framework based on the SRDL output as mentioned
above, the Distribution Management Operator (DMO) relies on the precise signals to
discern between islanding and non-islanding events. However, the inherent vulnerability of
SRDL to cyber attacks may pose a significant challenge. Attackers with prior knowledge
of SRDL’s functionality can take advantage of this vulnerability in a number of ways.
They may manipulate the input voltage signals to mask the genuine islanding events,
subtly altering the parameters to evade detection by SRDL. Alternatively, attackers could
introduce spurious signals that imitate the features of real islanding instances in order to
create fraudulent or fake islanding events. Such tactics can deceive the DMO, leading to
erroneous decisions and potentially catastrophic consequences for grid operations. This
necessitates to include a cyber attack detection module in conjunction with the SRDL
based proposed IDM to strengthen its resilience against adversarial interference. As, it
would be shown in the upcoming subsection of this chapter, that through the integration of
a statistically crafted proposed cyber attack detector module it is possible to successfully
detect and counteract the hostile attempts of the cyber attackers to disrupt the islanding
detection process. This proactive strategy not only safeguards against potential cyber
threats but also enhances overall cyber situational awareness, ensuring the integrity and

reliability of islanding detection in the face of evolving security threats.

6.5.1 Vulnerabilities of the Proposed SRDL’s Output based Islanding

Detection

The vulnerabilities of exploiting the SRDL can result in either camouflaging the actual
occurrence of an islanding event or imitating a non-islanding event occurrence with a fake

islanding event as discussed below.

6.5.1.1 Masking of a Genuine Islanding Event

In this first case study, the performance of SRDL’s output based proposed IDM is
re-evaluated for the islanding test Case 1, shown in Fig. 6.6(1) i.e., at 105% active
and 100% reactive power mismatch condition. In this test case, two types of cyber attacks
are considered i.e FDIA and DoS to falsify the actual decision of SRDL as depicted in
Fig. 6.15(1) and Fig. 6.15(2). As the SRDL takes its final decision based on observing its
toggling outputs pairs i.e presence of ones and zeros of the first one cycle sliding window
buffer, attacker takes the advantage of exploiting those one to three cycle islanding input
signal information by either injecting synthetic false data or intermittently block the signal
by launching Denial of Service (DoS) attack to mislead the DMO about actual islanding
case. In Fig. 6.15(1), a FDIA attack is injected in the instantaneous voltage signal of DG-1

at the same time instant of islanding occurrence i.e., 0.205 sec, which results in change of
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the shape of mean and entropy of decaying DC as shown in Fig. 6.15(1)(b) and (c). It
is observed from Fig. 6.15(1)(d) that at the onset of islanding and attack simultaneously,
there is a delay in pick up of both DDCD and MID to cross its individual threshold and
thus initially SRDL start treating it as non-islanding events. Thereafter, although the
entropy of decaying DC start crossing its threshold 2 x 1073 but the MID values lying
below 1 for that duration is too small to raise its first flag of suspected islanding for
significant time length. It is also noticed that due to injected FDIA for few cycle, the
decaying DC and MID may persist for the longer time than usual (unlike Fig. 6.6(1))
which results in more number zeros than ones at the end of 1 cycle window of SRDL
signal. This clearly indicates the hostile attempt of masking the actual islanding event as
depicted in Fig. 6.15(1)(g).

The same attacking philosophy also holds equally good for the DoS attack as illustrated
in Fig. 6.15(2), where it can be used to masquerade an islanding event as a non-islanding
scenario. In this scenario, following an islanding event, the perpetrator interrupts the
transmission of legitimate data sample for 40 ms as shown in Fig. 6.15(2)(a). Figure
6.15(2)(b),(c) and(d) demonstrate the significant change in the mean and entropy of
decaying DC information over a longer duration as the aftermath of DoS attack which

successfully hide the islanding scenario.

6.5.1.2 False Triggering of an Islanding Event

The second case study resembles to a very similar non-islanding test i.e., Case 3 of Fig.
6.7, where a 0.75 ohm line to line fault took place at 0.2059 sec. At the same time instant,
the attackers also launched a random FDIA to distort the islanding input signal vigorously
to deceive the SRDL output as illustrated in Fig. 6.16. Here the attacker’s aim is to cease
the DG-1 generation by pretending a non-islanding event as an islanding event. Thus in
that case, neither the attack effort needs to be so rigor nor the attack vector needs to be
devised so stealthily. A simple and constant random injection for a sufficient time duration
on the instantaneous one phase voltage waveform of the DG-1 is sufficient enough to alter
the actual detector’s output. As it is evident from the Fig. 6.16(a), (b) and (c), that due
to such consistent random attack, the mean value of the signal significantly raised to a
high erroneous value throughout the whole attack interval while decaying DC only persist
for very small duration comparatively due to fault. This results in MID value for staying
above 1 for prolong time which obviously introduces more number of ones than zeros in
the SRDL signal over a cycle. This ultimately forces the SRDL detector to flag this event

as an islanding event when actually it isn’t.

6.5.2 Proposed Cyber Attack Detection Framework Using Kalman
Filtering Technique

With the aim of securing the above SRDL’s output based islanding detector, a novel cyber
security framework is first established as demonstrated in Fig. 6.17, which usually works by

representing the instantaneous input voltage waveform into its mathematical state space
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Figure 6.16: Triggering of a fake Islanding event

equations and thereafter applying Kalman Filter (KF) based state estimator method to
estimate the purified states of the model even in the presence of measurement noise and
cyber attacks. This estimated states at the end are reused to reconstruct the estimated
input signal waveform and then two signal processing techniques are applied to find the
discrepancies between the actual raw input and KF-assisted estimated output. This
leads to the development of a novel CAD which comprises of a stochastic non-parametric
correlation coefficient, i.e., Spearman’s rank correlation in conjunction with a deterministic
Cosine-Similarity measure. The proposed KF-based cyber secured islanding detection
framework integrated with CAD can detect onset of any cyber attack within 2 to 3 cycles
window while an unauthorized attempt is made to disrupt the actual DG’s islanding or
non-islanding voltage waveform signal by manipulating its voltage, frequency and phase
information. The key advantages of the proposed detector is that it is simple, fast,
threshold-free, and accurate against sophisticated FDIA even in the presence of white
Gaussian measurement noise of 20 dB. The efficacy of the proposed detection mechanism
is validated on the Banshee MG, modelled in RTDS.

According to the Fig. 6.17, the voltage phasors measurements are firstly collected at each
time step At from RTDS runtime environment, and treated as real-time measurements
(RTM). The RTMs are thereafter utilized in KF based state estimator and the CAD as

described below.
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Figure 6.17: Block diagram of proposed generic KF-assisted cyber security framework

6.5.2.1 Kalman Filter and Its State Space Modelling

The RTMs received from a meter-m, at a time instant-t, can be modelled as a sinusoid,
ie, X(t) = Ay, cos(wt+ ¢p,), where A, and ¢, are the magnitude and phase, respectively

of the signal. The above equation can be further expanded as follows.

X (t) = Ay, cos(wt) cos(dm) — A sin(wt) sin(dp,)
X(t) = 1 cos(wt) — x9 sin(wt) (6.3)

An equivalent state variable (one cosine projection and another sine projection)

representation of Eq. (6.3) can then be used before it is being processed by KF algorithm,

ie.,
ot +1) =Fu(t) + v(t) (6.4)
y(t) = Ha(t) + £(t) (6.5)
where, * = [x1;22], with the KF state variables 1 = |Ax,| cos(¢x,), and xo =

|Ax,| sin(¢x;). y represents real time noisy measurement signal, fed to KF estimator
at each Deltat time interval. F is the state transition Identity Matrix,  is process noise
with noise covariance matrix Q, i.e vy N (0, Q) and £ is measurement noise with covariance
matrix Ry i.e £ N(0, Ry) assumed to be white Gaussian and statistically independent of
process noise, and row vector H which is dynamic with respect to time is defined as, H =
[cos (27ft) -sin (27ft)]. In this paper the standard deviation of state noise pertaining to

Q) is taken as 0.01 pu and Ry contains the scalar variance of measurement noise which
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is calculated from 20 db SNR. Finally, the KF based state estimation is obtained through
the following predict and update steps.

Prediction: T, = i—1$;i1 (6.6)
P, = i—lpj—lg?—l +Qi (6.7)

(6.8)

Updation: K, =P, H (HP,H +R;)"! (6.9)
P, = (1-KH)P; 6.10)

& =a; +Ki(y — Hidy) (6.11)

where predicted (priori) and updated (posteriori) estimates are represented by the
superscripts -’ and '+’ respectively. It essentially means that based on the current input
sensor measurement y at time ¢ and previous estimated states reading &~ at time (¢t — 1),
the estimator of the system produces estimated readings £ at time ¢ i.e every states are
being updated at each At time interval of KF run. P and Q are the process covariance and
model error covariance matrix, respectively. R is the sensor measurement noise matrix
and K represents Kalman gain which can quickly be converged in a few steps. After

completion of predict and update operations at each time step, the estimation error in
+

states is computed as , €; = Z;” — x.

6.5.2.2 Proposed Cyber Attack Detector (CAD)

In order to detect the onset of any cyber attack on the voltage sensor measurements, the
raw input measurements (X) and the reconstructed estimated output (Y) of the KF are
utilized. Since various kinds of cyber attacks are usually crafted statistically in disguise,
any significant dissimilarity between the both, i.e., the actual and estimated measurements,
can enable the system operator to detect and raise a cyber attack flag for further preventive
actions. Now in search for the appropriate statistical tool to measure this degree of
dissimilarity, in this section two different similarity measures are utilized to propose a
new comprehensive cyber attack detection techniques that involves the computation of
stochastic non parametric correlation such as Spearman’s rank correlation in conjunction
with a deterministic Cosine-Similarity measure which is described below. The knowledge
of this correlation coefficients and similarity measures are highly demanding for judging
the robust parameter estimation in presence of high frequency noise and outlier data in

the observation samples which causes instability issues in the system.

Cosine Similarity Coefficient (CSC): In context of deterministic similarity index,
Cosine Similarity Coefficient is now discussed first. This is an interesting measure of

resemblance between two non-null vectors of their inner product space that compute the



174 Chapter 6. Synergistic Islanding and Cyber Attack Detection Scheme

cosine angle between them. Therefore, if majority of observe samples of a bivariate random
variable (X,Y) differ of each other in a continuous data streaming process, the cosine angle
is going to be increased, and therefore indicates lower similarity. Mathematically, CSC

can be expressed as:

S dty _<XY >
42 XY
SN

Where, i:;rs and y;s as the elements of vectors X and Y respectively. However, CSC suffers

CSC(X,Y) = cos(0) = (6.12)

from a drawback that it is not a proper distance metric, and requires threshold value
setting to identify any data manipulation in the measurement data. Further, the sole use

of this detector tend to give false alarms in presence of noise in the measurement.

Spearman Rank’s Correlation Coefficient (r,): To circumvent above stated
drawbacks of CSC, a non-parametric correlation coefficient, i.e., Spearman rank’s
correlation coefficient (rg) is utilized in this work in conjunction with CSC. The
Spearman rank’s correlation coefficient provides a non-parametric correlation that
measures the strength and direction of two monotonically changing random variables based

on assigning ranking on them, and is calculated as,

N U — U 2
reo(X,Y)=1- 0 ZJG(]lv(Q L 5 k) (6.13)

where, u and vy are the corresponding ranks of two data vectors X and Y for k = 0...,N-1,
and N be the total number observation pairs.

The performance of Spearman rank-order correlation and CSC is depicted in Figs. 6.18(a)
and 6.18(b) under normal and attack scenario.

Figure 6.18(a) depicts that in case of monotonic relationship Cosine Similarity Coefficient
(CSC) and Spearman rank correlation (r5) both are higher with slight difference in value
because CSC cannot recognize the exact association between the two variables unlike 7
does. Besides from Fig. 6.18(b), it is revealed that rs helps to obtain a valid result as
compared to the CSC for it is more robust in estimation process when data contains strong
outliers or heavy tailed errors. CSC is not a direct measure of statistical association of two
variables and therefore it is not invariant to shifting of data which makes is sensitive to
outliers. While on the other hand, the unique feature gained by the spearman correlation
(rs) is just because of it determination based on ranking the real observation instead of
direct using of raw measurements. Thus it can be stated, if any changes occur in original
measurements that do not have significant impact on the earlier rank order, should not
alter r; unlike CSC. In context of cyber-attack detection, this chapter considers the use
spearman correlation and cosine similarity jointly as a detection index when both diverge
or converge to each other from a certain point. A detailed study of various test cases
revealed that the CSC and 74, although, may follow different pattern but at the onset

of malicious data attack in measurements, their values coalesce. Based on this feature,



Chapter 6. Synergistic Islanding and Cyber Attack Detection Scheme 175

Correlation Matrix Correlation Matrix

Spearman correlation = 1.0
Cosine Similarity = 0.839

Spearman correlation = 0.57
Cosine Similarity = 0.69

Var1

Spearman correlation= 1.0
Cosine Similarity = 0.839
5 B

Spearman correlation = 0.57
Cosine Similarity = 0.69

30 -
(5] o
| |
© o
> > 20
Wt =
o 0¥
0
2 0 2 . 5 10 15 20 0 20 40
Var1 Var2 Var1 Var2
(a) Data with Monotonically Increasing Relationship (b) Data Contain Heavy Tailed Outliers

Figure 6.18: Comparison of performance between Cosine Similarity and Spearman’s Rank
Correlation Coeflicient

the proposed cyber attack detector (CAD) is defined as the absolute difference between

Spearman rank-order correlation, rs and CSC values, i.e.,
CAD = |rs — CSC| (6.14)

And, at the time of cyber attack in the measurement, CAD = 0. This implies that the
flag raised by CAD during attack is 1.

The overall working procedure of CAD’s operation is summarized in the flowchart of Fig.
6.19. Here, a small threshold on CAD less than 0.002 is chosen for practical purposes.
Moreover, as the transients involved at the inception of any power system operational
events is hardly lasting for 2 to 3 cycles, tyqst is fixed to 0.04 sec at the starting of the
simulation. Moreover, in order to judge the efficacy of CAD’s performance along with its
KF-based estimator, a 20 dB white Gaussian noise is also added with the studied input

voltage signal.

6.5.3 Proposed Cyber Attack Immune Islanding Detection Framework

The previous Section 6.5.1, reveals how different intent of a cyber attacker can raise
serious concern about the cyber security issues over the SRDL’s output based islanding
detection to mislead the actual islanding and non-islanding scenarios and in Section 6.5.2,
a KF-assisted attack detection framework incorporating two statistical similarity measure
was demonstrated to identify various cyber attacks in the sensor measurements. It is
evident from the above two that SRDL is very trustworthy in terms of pure islanding and

non-islanding event identification. However, as it lacks anomaly detection awareness, it is
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Figure 6.19: Proposed algorithm for Cyber Attack Detector (CAD)
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expected to maloperate in any kind of cyber intrusion. CAD on the other hand, is faithful
in differentiating between attacked and non-attacked state. This motivated to shift the
focus in achieving a secured islanding detection operations in this subsection where an
attempt is made from the defender perspective to rectify the manipulated SRDL decision
in favor of the accurate assessment of the actual event that had occurred in the MG. In
particular, this can be obtained by combining the proposed islanding detection scheme
with that of proposed CAD. Such integration results in four possibilities of test scenarios
which are illustrated in the truth table shown in Table 6.3. This table presents a variety
of test cases that assess how well the cyber secured islanding detection scheme performs

in various scenarios and against potential attacker actions. It is evident that the flag

Table 6.3: Truth Table for Cyber Immune Islanding Detection Logic

Final Relay
Trip Logic . .
. Flag Flag Actual Decision Made by
b
Pc;ssézfri’gzst A;t;[iili(:: S | Generated | Generated Co(r]i‘sli{dr.l:;i)n the DMS Operator based
by SRDL by CAD & on FRTL Output
Cyber
Intrusion
No Islanding P 0 Normal State: System
+ No Attack No Motive 0 0 (No Trip) is in healthy condition.
Islanding + Mask Actual 1 Masked Islanded State:
Cvber Atgtack Islanding 0 1 (Send Trip | System encounter a genuine
Y Event Command) islanding in real.
Non Wanding | SRR ! 0| System encounter a gomne
+ Cyber Attack Event (No Trip) . non-islanding in real.
Islanding + 1 True Islanded State:
& No Motive 1 0 (Send Trip System face a genuine
No Attack . L
Command) islanding in real.

produced by the CAD is always 0 in an islanding or non-islanding event provided there is
no cyber interference on the system. Conversely, when the attacker attempt to manipulate
the sensor measurements of the system via means of FDIA or DoS attack, CAD raise a
flag of 1. This signifies that CAD is insensitive to islanding or non-islanding event but
sensitive to the occurrence of cyber attacks. Thus, based on this behavioral attributes,
a logical XOR, operation can be applied over these two flags, generated by both SRDL
and CAD in order to formulate a Final Relay Trip Logic (FRTL), which is secured than
SRDL and considered to be as attack-proof. The simulation results of the next section will
illustrate the compelling evidence of abilities of FRTL in enhancing the cyber situational
awareness of islanding detection problem in presence of cyber intrusions and enabling the
DMO to take proper decision and control action against the real occurring events in the
grid. Therefore, following each possible instances as indicated in Table 6.3, the schematic
architecture of cyber secured FRTL, merging the SRDL’s and CAD’s output is designed
as shown in Fig. 6.20. In that reference, it is also important to highlight two crucial

observations i.e., (1) Decision given by SRDL is relatively faster than CAD and (2) From
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MG’s safety point of view, masking of an actual islanding state is more hazardous or
devastating for the grid functioning than the creation of fake islanding state. Thus, based
on the level of importance in detecting masked and faked islanding state and impact of
attack consequences, it is noteworthy to consider the following two design criteria for
FRTL to get a reliable and safe islanding performance: (a) While SRDL is 0, the FRTL
will be instantly activated when CAD raised a Flag = 1. This is because apart from No
Attack-No Islanding state, SRDL can also be 0 in masked islanded state. In that context,
fastest action in ceasing of islanded DG’s generation is needed with atmost priority to
maintain grid’s voltage and frequency stability. (b) While SRDL is 1, the FRTL will wait
for mazximum 2.5 cycles to seek for the Flag raised by the CAD. If the Flag is raised to
1 within the due waiting time, FRTL will be activated instantly as soon as CAD detect
the attack. This criteria is very important to prevent the FRTL in taking wrong decision
(i.e., sending false trip command to circuit breaker) while SRDL is manipulated to 1 but
the CAD is yet to reach its designated threshold to raise an attack detection flag due to
its sluggish operation as compared to SRDL. From the simulation results, it would be
clearly manifested that this maximum waiting cycle introduces a delicate balance between
detecting a camouflaging islanding state and preventing a non-islanding state pretending

to be islanding with an efficient manner.

Statistical Relay

— Digital Logic T ————— =
(=] /
(SRDL) \Final Relay
A If SRDL=0 | Trip Logic
| F |Outputf Twar=0 Cycles | (FRTL)
3 | >| Elseif SRDL=1 | | o
| Flag Twait= 2.5 Cycles| |
| B end |
[ |

\ Decision Making Unit for DMOs //
~

Cyber Attack
Detector (CAD)

Instantaneous Voltage —
Waveform

Figure 6.20: Schematic architecture of cyber immune Islanding detection scheme

6.6 Attack Detection Simulation Results

6.6.1 Islanding State With No Cyber Intrusion

This is the same islanding case study as shown in Fig. 6.6 where there is no intervention
of the cyber attackers are considered initially. Figure 6.21 depicts the overall performance
of the proposed cyber immune islanding detection scheme. In Fig. 6.21(a), three
different versions of input instantaneous voltage waveform are shown. The green waveform
represents the actual (true) voltage readings at the DG1 terminal. To emulate a realistic
scenario and assess the detector’s robustness, a 20 dB noise signal is added to produce

a measured observation (blue waveform), which serves as the input to the KF-assisted
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estimator. The output of the KF estimated filter, which needs to be processed by the
proposed CAD, is highlighted in the red dotted curve in Fig. 6.21(a). Figure 6.21(b)
and (c) illustrate the performance of the proposed detector, i.e., CAD by observing the
behavior of two similarity indices. In Fig. 6.21(b), it can be observed that in the absence
of any attack, the two coefficients exhibit a non-interactive nature, and therefore, CAD
never reaches a zero value or falls below the set threshold, even in the presence of noise, as
depicted in Fig. 6.21(c). Thus as expected, the SRDL correctly identifies the islanding (flag
= 1) situation as done previously, while the flag of CAD is set to 0 always. Consequently,
based on the XOR operation between these two’s as shown in Fig. 6.20(d), the FRTL issues
a final relay trip command after 2.5 cycle of waiting and informed the DMS operator about

the authenticate true islanded state of the systems.
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Figure 6.21: True Islanding condition with No cyber attack

6.6.2 Non-islanding State With Random Nature of Cyber Attack

In this case, the same non-islanding case study as depicted in Fig. 6.7 is taken but with
considering the fact that now the cyber attacker has access to the DG1’s control interface
to manipulate the input instantaneous voltage signal. A LLG fault with low resistance of
0.75 ohm and a random kind of cyber attack are injected at the same instant of the time
(0.2059 sec) to the input signal as shown in Fig. 6.22(a). Such attack can be generated
at any time instant with randomly crafted mechanisms to introduce some arbitrary errors

into the measurements and state variables of KF to mislead the operation. Random attack
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Instantenous One Phase Voltage Signal of DG1
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Figure 6.22: Fake Islanding condition with Random FDI attack

can be modelled as, y*(t) = C(t)x*(t) + y;(t), where, y7(t) = (1 — Br)Grop(t), o € R”
be a manipulating signal parameter by the attackers, G is known system topological
information i.e about system’s states. (i is an independent Bernouli distributed series
whose values lies in between 0 and 1, deciding the strength of the injected attack. The
first important thing here is to notice that SRDL is failed to detect the non-islanding
event in this case due to the random attack intervention which basically alters the rule of
its computational parameters and as a result it generated the trip signal which is nothing
but the straightforward indication of fake islanding event as illustrated in Fig. 6.22(d).
Thus, once the SRDL’s flag is raised to 1, an alarming suspected islanding situation in
the MG is created which initiate the task of 2.5 cycles observation window to monitor
any compromised behavior exhibited by the CAD. Interestingly, it is observed from Fig.
6.22(b) that initially before the attack, when measurements are clean and normal both
the coefficients (CSC and r5) are behaving independently. But as soon as the malicious
data randomly starts getting injected, the Spearman’s rank correlation, i.e., rs and the
CSC very quickly start to trace the estimated change in the observed data pairs after
the attack’s initiation. Subsequently, the proposed CAD starts converging to zero and
reached below threshold limit (2e~3) at about 0.2414 sec with raising its Flag = 1. This
successful detection of random attack is completed by the due time less than the waiting
cycles as shown in Fig. 6.22(c). This small detection delay, involved in this detection

process may due to their underlying performance measure which is inherently different.
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Finally, it is evident from the Fig. 6.22(d) that this flag, output by the CAD acts as a
correcting measure through the formation of actual FRTL to revert the erroneous trip
signal generated by the SRDL previously due to misinterpretation of the non-islanding

event as an islanding event.

6.6.3 Non-islanding State With Denial-of-Service (DoS) Attack

This test case is very similar to the case study conducted previously with the difference
that this time attacker choose the DoS attack to manipulate the SRDL’s decision. In
context of disruption in islanding detection problem of power systems, a DoS attack
usually be launched by interrupting the legitimate transmission of accurate and timely
data between sensors and monitoring units for sufficient duration which causes the system

to get congested or may overloaded as shown in Fig. 6.23(a). The lack of sensor data due
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Figure 6.23: Fake Islanding condition with DoS attack

to such DoS attack posses challenges to SRDL’s output based PIDM in terms of delaying
detection of actual islanding event, potentially leading to blackouts and equipment damage
or may make the input data missing or incomplete resulting in inaccurate and falsified
islanding detection decision. This same observation is very well validated from Fig.
6.23(d), where SRDL’s operation is found to be deceived in accurately distinguishing
between genuine islanding data or non-islanding state. As a result of such misconception,
SRDL inadvertently trigger false alarms against the actual non-islanding scenario, causing

DMO to take unnecessary system actions that further complicate and compromised system
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reliability and security. Figure 6.23(b) and (c) shows the evidence of how the proposed
detector, CAD assist in rectifying the vulnerable SRDL’s control decision by tracing the
independent behavior of ry and CSC before and after attack. It can be seen that within
a few cycles of SRDL’s trip command, the proposed CAD reached the below threshold at
0.2178 sec which finally restricts the FRTL to raise Flag = 1 unlike SRDL and thus the
fake islanding decision given by SRDL is successfully suspended.

6.6.4 Islanding State With False Data Injection (FDI) Attack

This case study represents an another motive of attacker’s where the attempt is to mask
a genuine islanding event through the strategic execution of FDI attack into the islanded
voltage waveform data with the aim of jeopardizing the stability of the grid, leading to
cascading failures and equipment damage. Here the islanding event has been taken place
from 0.2059 sec and thereafter a small amplitude of false data are being injected very
stealthily by the adversary in each positive and negative half cycles of the instantaneous
voltage waveform for an attack duration of 2 cycles. From Fig. 6.24(d) it is revealed
that, as this is a case of real islanding event, SRDL is expected to raise its flag to 1. But
due to such synthetic injection of carefully constructed stealthy attack, SRDL is deviated
from its actual expected decision by raising its Flag = 0 and treat this islanding event
wrongly as a no-islanding case which may impose serious repercussions on DG’s operation.

Nevertheless, as the defender is equipped with an attack detector, CAD in parallel with
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Figure 6.24: Masking of an Islanding condition with stealthy FDI attack
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that of SRDL, it is observed from Fig. 6.24(b) and (c) that at around 0.249 sec, the rs and
CSC are converged to a desired value where the absolute difference between these two’s
lies below the threshold limit (2e~3). Therefore CAD has raised its flag to 1 instantly at
that timing instant. Now, as the SRDL was 0 previously, the instant change in CAD’s
output immediately raise the FRTL to change to 1 as illustrated in Fig. Fig. 6.24(d)
and send the trip command to the circuit breaker by informing the DMO that an actual
islanding state is being attempted to mask by the adversary and therefore a prompt action

of ceasing DG1’s generation is required.

6.7 Conclusions

In this chapter, primarily a data driven passive islanding detection technique is proposed
which is later being integrated with an attack detection framework to keep it safe and
secured against unprecedented cyber intervention. The proposed islanding detection
technique first exploit the voltage mean value and the entropy information of any one
phase to develop a Mean based Islanding Detector (MID) along with an entropy-based
Decaying DC Detector (DDCD). The MID and DDCD information is finally utilized
to design a Statistical Relay Digital Logic (SRDL) that accurately distinguishes the
islanding and non-islanding events. The Proposed Islanding Detection Method (PIDM)
is rigorously tested on Banshee industrial MG system, modelled in Real-Time Digital

Simulation platform revealing the following notable conclusions.
1. Simple implementation, requiring only 254 samples/scan.
2. Requires only one phase voltage mean information.
3. A small non-detection zone (NDZ) of approx 0.25% is resulted.
4. Fast islanding detection within 2 cycles.

5. Integration of the additional feature i.e., DDCD with MID improves the performance

in terms of accuracy and reliability as compared to traditional like ROCOV.

6. Loss of Parallel Feeder (LOPF) case establishes the capability to accurately locate

exact point of disconnection.

In conclusion, the PIDM has been demonstrated to be fast, reliable, and capable of
accurately detecting island formation at the point of DG interconnection. However,
its vulnerability to cyber attacks, stemming from a lack of cyber situational awareness,
presents a significant challenge to achieve a faithful islanding detection operation. These
attacks could involve malevolent actions aimed at masking an islanding event or falsifying
a non-islanding event as an islanding scenario. To overcome these challenges, this
chapter also introduces a statistical similarity-based Cyber Attack Detector (CAD)
within a Kalman filtering framework where two similarity coefficients, viz., Cosine

Similarity Coefficient (CSC) and Spearsman’s Rank order coefficient (r5) are explored
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to identify potentially corrupted samples of the input islanding data. The CAD operates
synergistically with the PIDM, providing a smooth and cyber-secured islanding detection

experience. Variety of cases studies led to the following key conclusions about the proposed
CAD.

1. Accurately detects the onset of cyber attacks with a maximum delay of two and half

cycle.
2. Performance is fairly immune to noise.

3. Integrating CAD with the existing PIDM, the system gains enhanced resilience
against cyber threats, ensuring more robust and accurate detection of islanding

events while mitigating the risk of false alarms caused by malicious cyber activities.



Chapter 7

Conclusions and Future Scope

7.1 General

The integration of advanced sensing, computing, communication, internet and networking
technologies in the power sector has transformed electrical grids, making them more
flexible, reliable, and efficient. This evolution enables the grid to actively manage
electricity flow, monitor consumption, optimize resources, and integrate renewable energy.
However, due to extensive dependencies of grid over the communication and several
layers of the cyber network, this transformation at both the transmission (T-system)
as well as the distribution (D-system) level has exposed the power grid to unprecedented
vulnerabilities, primarily stemming from the increasing threat of cyber-attacks.

In response to the emerging cyber-attack concern, this research aims to assess power
system vulnerabilities at transmission and distribution level with focus on detection and
mitigation of cyber threats across the spectrum of transmission to active distribution
power networks, safeguarding the reliability and security of our vital energy management
system applications. To begin with the T-systems first, the thesis developed a cyber-attack
resilient secured metering infrastructure through optimal placement of PMUs (OPP)
to ascertain full topological observability and global situational awareness against false
injection attack on top ranked transmission lines that are structurally more vulnerable.
Next, by exploiting those secured meters’ information resulting from OPP, a reliable
replay attack detection and correction framework is devised to safeguard one of the core
instrument of power grid energy management system i.e Power System State Estimation
(PSSE). While conventionally, cyber attacks have been perceived as primary threats to
transmission systems due to the significant power flows associated with these networks, it is
imperative to recognize the growing importance of safeguarding active distribution systems
as well, specifically the microgrid (MG) in light of the heavy integration of distributed
energy resources (DERs). DERs requires seamless communication among its neighboring
units or master controller units to regulate power flows and maintain stability within MG,
yet this interconnectedness makes them susceptible to cyber threats. Therefore, as the
cyber security landscape is in the process of shifting from transmission to distribution
systems, the next focus of this thesis is to explore the vulnerabilities in communication
architectures and controllers of DERs of MG to develop an end-to-end attack resilient and
control framework for D-systems that offers a multifaceted defense mechanism capable of
detecting, classifying, isolating, and neutralizing cyber-attacks in distribution grid with

unprecedented efficiency and efficacy. At the last, the thesis deals with an another looming
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challenge in the distribution side of MG i.e developing of a cyber-vigilant robust passive
islanding detection technique for a cyber-physical smart grids. In particular, the major

contributions of thesis can stated as follows,

e Assessment of the structural vulnerability of power grid network and thereby
development of a cyber-attack resilient secured metering infrastructure for the

T-system based on optimal placement of PMUs.

e Development of a novel replay attack detection and mitigation framework for power
system state estimation by exploiting the limited secured measurements obtained

from OPP locations.

e Accurate detection, classification and localization of cyber attacks tailored to

D-system specifically islanded AC MG system.

e Following the attack detection and localization information, devise an Unknown
Input Observer (UIO) and Back-stepping Integrated Sliding Mode Control (BSMC)
based Cyber Attack Mitigation Framework for MG system.

e Development of a passive islanding detection scheme (IDS) in MG which is immune

to maloperation caused by possible cyber attacks.

7.2 Summary of Contributions

The first crucial steps towards the development and implementation of the aforementioned
Cyber Attack Resilient Monitoring and Control Framework for fortifying
T-system’s resilience against cyber attacks involves performing structural vulnerability
analysis to identify vulnerable points within the grid that require protection or
reinforcement. This analysis emphasis on understanding the physical behavior of power
systems with its topological structure which in turn serves as a proactive measure
to identify and mitigate potential cyber-physical vulnerabilities within power systems.
In this regards, Chapter-2 firstly introduced a novel attack strategy, termed Hybrid
Between-ness Centrality (HBC) from the perspective attackers to identify top-ranked
transmission lines vulnerable to malicious tripping, thereby compromising system
observability and situational awareness. In next, the framework strategically places
Phasor Measurement Units (PMUs) through a unique objective function to protect
those vulnerable lines against false data injection attacks (FDIAs), ensuring secure
measurements and system integrity. This proactive approach inturn enhances system
resilience and maintains observability even during data integrity attacks. The effectiveness
of the proposed framework conducted on the IEEE 14-bus and New England (NE) 39-bus

systems provide the following conclusions:

e The Hybrid Between-ness Centrality (HBC) index emerges as a proficient attack

strategy, effectively identifying groups of transmission lines whose sequential outages
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top 20% lines could lead to significant structural breakdowns within the system. This
results in a total of 4 vulnerable lines for IEEE 14-bus and 6 lines for NE 39-bus

system respectively.

e In comparison of HBC with another two conventional attack strategies i.e.,
Topological Betweenness Centrality (TBC) and Electrical Betweenness Centrality
(EBC), the HBC results in maximum decline in Giant component size (S'). For
IEEE-14 bus system, after all the top four vulnerable links are consecutively
attacked, the TBC strategy results in no change in reduction of S!, where as EBC
has 87% and HBC has highest 57% reduction. Similarly for NE-39 bus system the
reduction of S! for TBC, EBC and HBC are 69%, 71% and below 50% respectively.

e The novel PMU deployment framework developed to prioritize full system topological
observability demonstrates effectiveness in enhancing system resilience against
HBC-based attacks and defending against data integrity threats. By strategically
placing PMUs to the almost %Td of total busses, the framework ensures the

availability of secure measurements, thereby safeguarding system integrity.

e Finally, based upon number of secured measurements attained through optimal
PMU deployment, the resiliency score of IEEE 14-bus and NE-39 bus systems are
found out to be 46% and 57% respectively.

Building upon a secured metering infrastructure through optimal PMU placement in the
previous chapter, Chapter-3 delves into the another critical aspect of safeguarding the
heart of the Energy Management System (EMS), the Power System State Estimation
(PSSE), against stealthy cyber threats, particularly Replay Attacks (RAs). To this
end, this chapter firstly leverage the topographical information along with branch and
nodal version of Power Transfer Distribution Factor (PTDF) to identify most sensible
vulnerable Remote Terminal Unit (RTU) meters and thereafter these are exploited to
launch two different variants of RAs (i.e., MDDA, RDCA) to disrupt the decision making
operation of control center operator via compromising PSSE. Subsequently, a detection
and correction approach is developed to safeguard the PSSE against RAs, utilizing secured
phasor measurements from optimally placed PMUs in a Hybrid State Estimation (SE)
algorithm. The effectiveness of the proposed framework, demonstrated on the previous
two standard test system modelled in RSCAD software of Real-Time Digital Simulator
(RTDS) leads to the following key conclusions.

¢ In this study, the proposed branch and nodal PTDF based attack strategy leads to
identification of total 36% and 40% of vulnerable meters from the available RTU
measurement set for IEEE 14-bus NE 39-bus system respectively.

e The likelihood of detection of the two proposed attack strategies, i.e., Repetitive
Data Cloning Attack (RDCA) and Multiple Data Dropping Attack (MDDA), is
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evaluated, with average detection rates of 94.6% and 90%, respectively. Despite
some False Positives (FPs) and False Negatives (FNs) in both algorithms, from
being attacker perspective RDCA exhibits slightly inferior performance to MDDA.

e The accuracy estimation of the correction method against MDDA and RDCA is
assessed, revealing accuracy rates of 82% for MDDA and 93.27% for RDCA. This

indicates that more precise correction of RAs is achieved for RDCA.

e The Root Mean Square Error (RMSE) of estimated states of the PSSE is evaluated
under both MDDA and RDCA, resulting in RMSE values of 0.4% and 0.45%,

respectively, after applying the attack correction algorithm.

e The true negative rates for both attack types are approximately 100%, indicating
the high specificity of the suggested detection and correction techniques. This
indicates the robustness of the algorithms in correctly identifying instances that
do not belong to the attack class after correction, thereby ensuring the integrity of

system operations.

Besides addressing the vulnerabilities inherent to T-system, the next three chapters
contributes significantly for enhancing the overall security and reliability of D-system
as well particularly in realm of communicative MG environment via development of
Cyber Attack Resilient Monitoring and Control Framework. To this end, Chapter-4
firstly utilized a statistical two-sample hypothesis test called the Maximum Mean
Discrepancy (MMD) for the attack detection process over DER’s controller or its
associated communication links. Having the attack detected, thereafter few more
statistical properties are exploited to formulate a rule-based algorithmic flowchart
integrated with a popular ML classifier i.e XGBoost for the efficient attack classification
and precise attack localization inflicted to perverted DERs. The main findings of the
proposed approach which were verified on a modified IEEE 13-bus islanded AC microgrid

system modeled in the RTDS environment, are listed below.

For MMD Based Cyber Attack Detection in Distributed Secondary Frequency Control
(DSFC) of MG

e The proposed non-parametric statistical test, MMD successfully able to detect FDIA
targeted in either the secondary frequency controller’s DERs or its incoming and

outgoing communication links.

e The proposed detection strategy is not further limited by the number of role statuses
(corrupted or healthy) of nearby DERs, nor is it subject to the strict premise that
the leader DER must always be secured.

e [t is successfully able to differentiate between an cyber events and normal physical

events i.e fault/ switching events, leading to no false alarms.
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e The proposed detection strategy shows its superiority over the existing Kullback
Leibler divergence (KLD) based detection method in terms of evading delay in

detectability and threshold selection problem under varieties of attack models.

For XGBoost Enabled Proposed Rule-based Precise Attack Classification and Localization

Scheme

e The proposed novel rule-based XGBoost classifier exhibits exceptional performance
in classifying FDIAs, achieving an accuracy of 99.49%. This outperforms existing

ensemble machine learning (ML) techniques.

e The rule-based approach demonstrates remarkable precision, recall, and F1 Score
for detecting various attack types. It achieves 100% in detecting simpler attacks
like pulse attacks and maintains high performance for more complex attacks such
as sine attacks, with precision, recall, and F1 Score values of 97%, 98%, and 97%

respectively.

e The proposed XGBoost-enabled attack localization scheme showcases superior
accuracy (87.5%) and a lower hamming loss (4.5%) compared to existing ML

classifiers like Decision Tree, Random Forest, and Gradient Boosting.

e In terms of precision, recall, specificity, and F1 Score, the proposed localization
scheme excels particularly for DER-3, followed by DER-2, DER-1, and DER-4.
This observation is further supported by the Receiver Operating Characteristics
(ROC) curve analysis, which demonstrates the Area Under the Curve (AUC) for
each DER: i.e., 92.3% for DER-1, 93.7% for DER-2, 99.1% for DER-3, and 89.9%
for DER-4. The higher AUC for DER-3 indicates that the proposed localization
method perform better in differentiating between attack and non-attack instances
for the attacked in DER~3 compared to other DERs.

After successful detection, classification and localization of attacks in Chapter-4, the
next very crucial step is to nullify the effect of attack in compromised DER’s secondary
controller to bring back the MG system to normalcy. With this as an aim, Chapter-5
develops an unified cyber attack resilient framework comprising of an Unknown Input
Observer (UIO) and Back-stepping Integrated Sliding Mode Controller (BSMC). The UIO
estimates attack bias injected into the controller, which is then used by adaptive BSMC
to generate a counter control law that enforce the attack to be mitigated. The validation
of the aforementioned detection and mitigation techniques in Chapter-4 and Chapter-5 is
performed on an modified IEEE 13-bus distribution system through the hardware-in-loop
testing environment which extract the following key concluding remarks of the proposed

attack resilient framework.

e The main advantage of the proposed attack mitigation method is that it neither
depends on the limitation of the number of indegree healthy DERs of the

compromised unit nor the role-status of leader DER information to be secured.
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e The proposed scheme does not demand any modification of the existing hardware of

the DSFC or the inclusion of additional communication channels to achieve this
resilient action. Therefore, it is simple, cost effective and less computationally

expensive.

The key highlight of the proposed resilient method is due to its faster convergence
and good robustness against different attacks. Moreover, it efficiently regulate the

power sharing between DERs in the MG even in the presence of attacks.

The proposed controller is very adaptive to the unknown bounded attack injections
and offers higher resilience and better utilization of DERs as the information of
infected DERs no longer needs to be separated now from the existing communication

topology to stop the spread of the attack effect.

Finally, the Chapter-6 delves into an another challenge of accurately detecting islanding

events in smart active distribution cyber-physical systems amidst emerging cyber threats.

It introduces a novel passive islanding detection method (IDM) based on entropy

information from decaying DC detector (DDCD) and mean-based coarse islanding detector

(MID). Later, the decision of this proposed islanding scheme has been integrated with

a novel kalman-filter based cyber attack detector (CAD) module in order to identify

statistical inconsistency in the signal that confirms potential manipulation of islanding

input. Testing on the Banshee industrial MG system in the Real-Time Digital Simulation

(RTDS) platform validates the effectiveness of the proposed hybrid method with following

concluding remarks.

The statistical property inherited by IDM with kalman filter assisted attack detector
makes the system operator well-informed from being taken any wrong decision over

any suspected islanding event caused due to cyber attacks.

With a maximum half-cycle delay, the proposed CAD reliably identifies the onset of
the attacks.

The CAD’s performance is fairly noise-immune, and no threshold selection is

required.

Besides the reliable performance of CAD to detect attack from cyber manipulation
perspective, the proposed IDM also exhibits its robustness in identifying various
islanding cases like different active and reactive power mismatches and various
non-islanding cases like fault, linear and non-linear load and capacitor switching

etc.

Unlike the most of the other islanding method, the proposed AID schme also shows
its superior performance in terms of not falsely detecting the loss of parallel feeder

and removal of other DERs except targeted DER as an islanding event.
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e The proposed AID method is also simple as it only need one cycle (254 samples/scan)
voltage data of any one phase for the implementation and resulted only a small
non-detection zone (NDZ) of 0.25%.

e With the integration of DDCD with MID as an additional features enhances the
performance accuracy and reliability of AID scheme compared to traditional ROCOV
method.

7.3 Scope for Future Work

This thesis investigated the growing cyber security challenges faced by the power grid
due to strong interdependence over the critical cyber infrastructure and heavy integration
of communication and networking technologies within the transmission (D-system) and
active distribution systems (T-system). The research in this area can be further extended

as follows.

e In order to develop an end-to-end attack detection and control framework from
cyber-physical smart grid’s perspective, there are still few research areas that are
untouched and needs more defense-in-depth research studies. The examples for
such future research avenues are: (1) Generation Side Perspective: Resilient defense
against FDIA on measurements and control signals for the normal operation of
Automatic Generation Control and Load Frequency Control etc, (2) Transmission
Side Perspective: Defensive measures to resist the line current differential relays from
being maliciously tripped against cyber attacks, (3) Distribution Side Perspective:
Enhancing security and reliability of deregulated electricity market and its trading

application through proposing an offer-breach detection process.

e While the focus of existing studies has predominantly centered on AC MGs,
the growing prominence of hybrid AC-DC architectures underscores the need to
extend and adapt proposed cyber resilience framework to encompass and address
vulnerabilities of these systems as well. Therefore, testing and validating its
effectiveness in a hybrid microgrid would be a valuable area of exploration which

significantly contribute to the overall security posture of modern distribution grid.

e Moreover, as the cyber threat security landscape is ever evolving, the proposed cyber
attack resilient control framework for the D-Systems needs further enhancement to
deal with hybrid attack model and unbounded attack scenarios while guarantee the

asymptotic convergence of the control response.

By addressing these above areas of future research, it is possible to advance the
state-of-the-art in cyber-attack resilience for power systems, ultimately ensuring the
reliability, security, and resilience of critical infrastructure in the face of unprecedented

cyber threats.
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Chapter A

Test System Data

A.1 DModified IEEE 13-Bus Distribution Network

The IEEE 13-Bus system is a multi-phase radial distribution network, considered as a
standard reference model in various power distribution studies, is basically characterized
by short transmission lines, unbalanced structure and highly loaded feeders containing
multi phase laterals with distributed and spot loads. The system has a nominal frequency
and line-to-line voltage of 60 Hz and 4.16 kV respectively. The total active, reactive
and apparent power of the system are 3.466 MW, 2.102 MVAr (Inductive), 0.7 MVAr
(Capacitive)and 3.739 MVA respectively with power factor of 0.927 For the shake of
simplicity in modeling and developing an attack resilient steady state control mechanism in
Chapter - 5, this test system is modeled in RSCAD software of NovaCoR Real-Time Digital
Simulator, following certain customization’s in its structure to make it a balanced three
phase distribution feeder. The major modifications and use of simplifying assumptions
considered for modeling the modified version of the conventional IEEE 13-Bus radial

network into a balanced standard test system are as follows:

e The utility is removed as the whole network is designed to be operated in islanded

mode.

e Four Solar Photovoltaic (PV)-based grid forming DER units of equal one per unit
active power and voltage rating are connected through a 1.0/0.5 MVA, 0.48/4.16
kV Yg-Yg transformer at 4 distinct locations i.e Node-650, Node-633, Node-671 and
Node-692 respectively. The modified single diagram of the test feeder is shown in
Fig. A.1.

e The IEEE 13-Node test feeder undergoes through the following simplified

assumptions.

— All laterals are transformed into the three phase section from whence they

originate.

— It is assumed that the self and mutual impedances of phases are
equal to the averages of their respective self and mutual impedances,
transposing the three-phase sections used to mitigate the unequal distribution
of electromagnetic forces and impedance in overhead transmission lines.

Thereafter, for each section, positive and zero sequence impedances are
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computed as follows.

Zaa Zab Zac
Zabe = | Zva  Zbb  Zpe (A.1)
an Zcb ch

To transpose the system and compute the average self and mutual impedances,
while taking into account the distributed nature of the line and the effect of

ground, the modified Carson and Kron reduction equations are used as:

Zs = [Zaa + be + ch] (AQ)
Zm = [Zab + Zbc + an] (A3)

W =Wl

Therefore, the positive and zero sequence impedance are calculated as:

Zn = Zs— (A.4)
Zoo= Zs+ 27, (A5)

— To get the overall three phase balanced loads, the unbalanced phase loads in

each of the three phase sections are added together.

e Tables A.1-A.4 provides component details for the IEEE 13-Bus distribution
network, including transformers, spot and distributed loads, line segments and

capacitor banks, and line configurations (impedance matrix as symmetric).

DER 1

1.0 MVA DER 4
4.16/0.48 kv

650 G’g &

4.16/0.48 kv

646 645 632 633
L ® > .
634
0.5 MVA
1.0 MVA 4.16/0.48 kV
DER2 4 16/0.48 kv
692 675
bd ®
611 DER 3
652 ® 680 1L.OMVA %
4.16/0.48 kV

Figure A.1: Modified IEEE 13-Bus distribution feeder network with PV DERs
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Table A.1: Overhead and underground line configuration data

Overhead Line Configurations
Config. | Phasing Phase Neutral | Spacing
ACSR ACSR 1D
601 BACN 556,500 26/7 4/0 6/1 500
602 CABN 4/0 6/1 4/0 6/1 500
603 CBN 1/0 1/0 505
604 ACN 1/0 1/0 505
605 CN 1/0 1/0 510
Underground Line Configurations
Config. | Phasing Cable Neutral | Space ID
606 A B CN | 250,000 AA, CN | None 515
607 AN 1/0 AA, TS 1/0 Cu 520
Table A.2: Transformer details
kVA kV-high kV-low R-%| X-%
Substation | 5,000 115-D 4.16 Gr. Y 1 8
633-634 500 | 4.16 - Gr.W | 048 - Gr.W 1.1 2

Table A.3: Both spot load and distributed load details

Spot Loads
Node Load Ph-1 | Ph-1 | Ph-2 | Ph-2 | Ph-3 | Ph-3
Model kW | kVAr | kW | kVAr | kW | kVAr
634 Y-PQ 160 110 120 90 120 90
645 Y-PQ 0 0 170 125 0 0
646 D-Z 0 0 230 132 0 0
652 Y-7Z 128 86 0 0 0 0
671 D-PQ 385 220 385 220 385 220
675 Y-PQ 485 190 68 60 290 212
692 D-1 0 0 0 0 170 151
611 Y-1 0 0 0 0 170 80
TOTAL | 1158 606 973 627 1135 753
Distributed Loads
Node A | Node B | Load Ph-1 | Ph-1 | Ph-2 | Ph-2 | Ph-3 | Ph-3
Model kW | kVAr | kW | kVAr | kW | kVAr
632 671 Y-PQ 17 10 66 38 117 68
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Configuration 601 Configuration 605
Z = R 4+ jX in ohms per mile Z = R 4+ jX in ohms per mile
0.3465 +31.0179 0.1560 +30.5017 | 0.1580 +30.4236 0 +j0 0 +joO 0 +jO
0.3375 +j 1.0478 | 0.1535 +j0.3849 0 +joO 0 +jO
0.3414 +31.0348 1.3292 +j1.3475
B in microsiemens per mile B in microsiemens per mile
6.2998 -1.9958 -1.2595 0 0 0
5.9597 -0.7417 0 0
5.6386 4.5193
Configuration 602 Configuration 606
Z = R 4+ jX in ohms per mile Z = R 4+ j7X in ohms per mile
0.7526 +31.1814 | 0.1580 +j0.4236 0.1560 +j0.5017 | 0.7982-+j 0.4463 | 0.3192 +j0.0328 0.2849 -j0.0143
0.7475 +31.1983 0.1535 +30.3849 0.7891 +30.4041 | 0.3192 +j0.0328
0.7436 +j31.2112 0.7982 +j0.4463
B in microsiemens per mile B in microsiemens per mile
5.699 -1.0817 -1.6905 96.8897 0 0
5.1795 -0.6588 96.8897 0
5.4246 96.8897
Configuration 603 Configuration 607
Z = R 4+ jX in ohms per mile Z = R + j7Xin ohms per mile
0 +j0 0 +jO 0 +30 1.3425 +30.5124 0 +joO 0 +jO
1.3294 4-j1.3471 0.2066-+j 0.4591 0 +jO 0 +jO
1.3238 +j1.3569 0 +jO
B in microsiemens per mile B in microsiemens per mile
0 0 0] 88.9912 0 0
4.7097 -0.8999 0 0
4.6658 0
Configuration 604 Configuration 604
Z = R + 7Xin ohms per mile B in microsiemens per mile
1.3238 +j1.3569 0 +j0 0.2066 +30.4591 4.6658 -1.0817 -0.8999
0 +joO 0 +j0 0 0
1.3294 +3j1.3471 4.7097
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A.2 Banshee, A Real-Life Industrial Microgrid Network

The Banshee distribution network is a small scale, real-life, reconfigurable, industrial
facility used as a pivotal benchmark model in the realm of microgrid research and
development. Widely acknowledged for its real-world applicability and adaptability
within the community microgrid, it is very popular as a quintessential standard and
used by various academic scholars, industry frontrunners, practitioners and esteemed
research laboratories for assessing microgrid performance. This model can be utilized for
multifaceted analyses such as exploring various operational scenarios, evaluating control
strategies, and assessing resilience and reliability measures. In this thesis, the Banshee
system is used in Chapter 6 for evaluating the efficacy of the proposed islanding detection
method. The system’s layout and its different components depicted in its one line diagram

is shown in Fig. 6.5. The major facilities and its key components are listed as follows:

1. Banshee MG is composed of three radial distribution feeders carrying load with
minimum and maximum ranges between 5 MW to 14 MW and formed three areas

with limited connectivity through normally open switches (NOS) to the utility grid.

2. Each mainstream feeders are rated with medium voltage of 13.8 kV at distribution
level and service voltage levels of 4.16 kV, 480 V, and 208 V. There are total 18
aggregated dynamic loads with power factor of 0.9 lag, categorized as either critical,
priority or interruptible. Additionally, there are two 200 hp induction motors that

serves chiller compressor loads.

3. There are typical 4 different types of generation assets are available within the
Banshee MG. A 4 MVA diesel generator (DieGen) in area-1, 2.5 MVA battery energy
storage system (BESS) and 5 MW PV array designed via average modelling with
time-varying irradiance profile and temperature is area-2, and 3.5 MVA natural gas

fired combined heat and power plant (CHP) operating at 13.8 KV in area-3

4. Moreover, the system is further modified by integrating 3 more grid following average
modeled VSC based DGs, i.e., DG1, DG2 and DG3, of equal 1.25 MW rating, are
located at Bus-107, Bus-305 and Bus-209, respectively.

Tables A.5-A.13 provides the summary of the each component details of Banshee MG.

Table A.5: Short Circuit Levels Respective to Each Feeders

3Ph(kA) | X/R | SLG (kA) | X/R
Feeder 1 14.58 4.6 10.57 0.9
Feeder 2 15.73 7.9 10.24 2.6
Feeder 3 15.73 4.6 10.57 0.9
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Table A.6: Aggregated Load Details For Each Feeders of Banshee MG

Load ID | Category | Feeder Number | kVA Demand
C1 Critical 1 1200
C2 Critical 1 1500
C3 Critical 2 1000
C4 Critical 2 1000
Ch Critical 3 1000
C6 Critical 3 800
P1 Priority 1 1000
P2 Priority 2 1000
P3 Priority 2 1000
P4 Priority 3 600
P5 Priority 2 700
P6 Priority 3 1000
11 Interruptible 1 300
12 Interruptible 1 250
13 Interruptible 2 300
14 Interruptible 2 600
15 Interruptible 2 400
16 Interruptible 3 600

Table A.7: Parameter Details of Induction Machines Load

Name Description Value Unit
vbsll Rated Stator Voltage ( L-L RMS ) 0.48 kV
trato Turns Ratio, Rotor over Stator 1 p-u.
pbase | Rated MVA 0.1597 MVA
hrtz Rated Frequency 60 Hertz
ra Stator Resistance 2.0110E-02 | p.u.
xa Stator Leakage Reactance 1.0448E-01 p-u.
xmd0 | Unsaturated Magnetizing Reactance 9.0424E+00 | p.u.
rfd First Cage Rotor Resistance 4.5768E-02 | p.u.
xfd First Cage Rotor Leakage Reactance 1.0448E-01 p-u.
rkd Second Cage Rotor Resistance N/A p-u.
xkd Second Cage Rotor Leakage Reactance N/A p-u.
xkf Rotor Mutual Leakage Reactance N/A p.u.
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Table A.9: Parameter Details of Cables
Name | Length [ft] | AWG or kcmil | R [ohms/1000ft] | X [ohms/1000ft]
C101 1800 1-#500 0.0284 0.0351
C102 5500 1-#500 0.0284 0.0351
C103 1000 1-4/0 0.064 0.0389
C104 3000 1-#500 0.0284 0.0351
C105 3000 1-#500 0.0284 0.0351
C106 1500 1-#500 0.0284 0.0351
C107 2000 2-#500 0.0284 0.0351
C108 1000 1-#500 0.0294 0.0349
C109 2000 2-#500 0.0284 0.0351
C201 5500 1-4/0 0.064 0.0389
C202 2000 1-#500 0.0284 0.0351
C203 3000 1-#500 0.0284 0.0351
C204 1500 2-#500 0.0284 0.0351
C205 1500 2-#500 0.0284 0.0351
C206 1500 2-#500 0.0284 0.0351
C301 2500 1-#500 0.0284 0.0351
C302 2000 1-4/0 0.064 0.0389
C303 2000 1-#500 0.0284 0.0351
C304 1500 2-4/0 0.064 0.0389

Table A.10: Parameter Details of Natural Gas CHP and Diesel Generator Located at Bus
306 and Bus 103 Respectively

Parameter Description Units Value
Mmva Rated MVA of the Machine MVA 35 [.CHP]
4 [DieGen]
Vbsll Rated RMS Line-to-Line Voltage kV 13.8
HTZ Base Angular Frequency Hz 60
H Inertia Constant MWs/MVA 0.3468
D Synchronous Mechanical Damping pu/pu 0
XS1 Stator Leakage Reactance pu 0.05
XMDO D-axis Unsaturated Magnetization Reactance pu 2.35
X230 D: Field-Damper Mutual Leakage Reactance pu 0
X2D D: Field Leakage Reactance pu 0.511
X3D D: Damper Leakage Reactance pu 3.738
XMQ Q-axis Magnetizing Reactance pu 1.72
X2Q 1st Q-axis Damper Leakage Reactance pu 0.2392
X3Q 2nd Q-axis Damper Leakage Reactance pu 0.0942
RS1 Stator Resistance pu 0.008979
R2D Field Resistance pu 0.00206
R3D Direct-Axis Damper Resistance pu 0.2826
R2Q 1st Q-axis Damper Resistance pu 0.2392
R3Q 2nd Q-axis Damper Resistance pu 0.0082
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Table A.11: Technical Specifications of PV array Module Located at Bus 203
Sr. No | Description Value
1 Insolation 1000 Watt/m?
2 Temperature 25 Degree
3 Shading Effect N/A
4 No. of Series Connected Cells in a Module 60
5) No. of Parallel Connected Cells in a Module 1
6 No. of Series Connected Modules 95
7 No. of Parallel Connected Modules 168
8 Open Circuit Voltage 45V
9 Short Circuit Current 9.2 A
10 Voltage at Max Power @QSTD = 25 deg Centrigrade 37V
11 Current at Max Power @QSTD = 25 deg Centrigrade 8.5 A
12 Open Circuit Series Resistance 0.349 Ohms
13 Short Circuit Shunt Resistance 111.55 Ohms
14 Rated Power Output 5 MW
15 Maximum Power Point Tracking Enabled
16 AC Side Filter Resistance (Rf) 2.38E-3 Ohms
17 AC Side Filter Inductance (Lf) 200 UH
18 DC Voltage Set Point 1kV
19 DC Bus Voltage Proportional Control (Gp) 0.899
20 DC Bus Voltage Integral Time Constant (TT) 0.0585 sec
21 Max DC Volatge Limit 6
22 Min DC Volatge Limit -6V
23 dq axis Proportional Gain For Current Controller (Gp) 0.2
24 dq axis Integral Time Constant For Current Controller (TT) 0.30675 sec
Table A.12: Technical Specifications of BESS Located at Bus 204
Sr. No Description Value
1 Battery Type Lithium-ion
2 No. of Cells in Series in a Stack 460
3 N. of Stacks in Parallel 428
4 Capacity of a Single Cell (AH) 1
5 Initial State of Charge (SOC) of a Single Cell 85%
6 Nominal Voltage 0.48 kV
7 Power Rating 2.5 MVA
8 dq axis Proportional Gain For Current Controller (Gp) 0.2
9 dq axis Integral Time Constant For Current Controller (TI) | 0.30675 sec
10 dq axis Proportional Gain For Voltage Controller (Gp) 1
11 dq axis Integral Time Constant For Voltage Controller (TI) 0.006 sec
12 d axis voltage reference 1.04614
13 q axis voltage reference 0
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Table A.13: Parameter Details of Average Modeled DGs Located at Bus 107, Bus 305 and
Bus 209

Sr. No Description Value
1 DC Voltage Set Point 1kV
2 Proportional Control (Kp) 0.5
3 Integral Control (KI) 5
4 DC Bus Voltage Control | yp, DC Volatge Limit 5V
5 Min DC Volatge Limit -5V
6 Reactive Power Reference 0
7 Reactive Power, Kp 1
8 Reactive Power, KI )
9 Outer Loop Control Reactive Power, Upper Limit (UL) 5
10 Reactive Power, Upper Limit (LL) -5
11 Reated Capacity 1.25 MW
12 Ref Voltage (Peak) 0.392 kV
13 AC Bus Voltage Control | Voltage, Kp 0.025
14 Voltage, KI 3
15 dq axis current controller, Kp 0.025
16 dq axis current controller, KI 0.5
17 Inner Loop Control dq axis Current, UL 5
18 dq axis Current, LL -5
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