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Abstract

As the economy grows, power demand increases accordingly. However, meeting this demand

through traditional generation methods is becoming increasingly impractical due to high capital

costs, significant transmission expenses and losses, declining fossil fuel reserves, and growing

environmental concerns. Renewable-Based Distributed Generation (RBDG) is emerging as the

optimal solution. Historically, conventional energy sources accounted for 76% of global power

generation, while renewable energy contributed 24%. By 2050, projections indicate a dramatic

shift, with RBDGs expected to supply 85% of global power, leaving conventional sources at

just 15%. Additionally, the rise of Electric Vehicles (EVs) is driving the expansion of charging

infrastructure within distribution networks, boosted by advances in battery energy storage systems.

Previously, RBDGs operated at a unity power factor without the capability to control active

or reactive power, limiting their ability to manage network voltage profiles. While reinforcing

the network with reactive power-compensating devices is a straightforward solution, it is costly.

On-Load Tap Changers (OLTC) offer another option, but their limited range and slow response

time, along with their inability to handle bidirectional power flow, reduce their effectiveness in

active distribution networks. With advancements in power electronic inverter technology, RBDGs

can now regulate both active and reactive power, helping maintain network voltage profiles.

Active Power Curtailment (APC) and Reactive Power Compensation (RPC) are common strategies

for RBDG inverters to manage voltage issues. However, arbitrarily selecting RBDGs for voltage

control is not economically optimal. Thus, evaluating the impact of RBDGs on bus voltage is crucial

for developing fast and dynamic voltage control strategies. These strategies are classified into

centralized and decentralized control. Decentralized control is preferred over centralized control

due to better economic efficiency. In decentralized voltage control, coordination with devices like

OLTCs, voltage regulators, and reactive power compensators is necessary. Therefore, a hierarchical

voltage control approach is adopted and implemented in multiple stages. In the primary stage,

optimal settings for voltage-controlling devices are planned based on the stochastic nature of loads

and generation. Subsequently, decentralized control using DGs is carried out.

The increasing integration of RBDGs affects the network’s voltage profile and reduces its Hosting

Capacity (HC) due to their stochastic characteristics. Battery Energy Storage Systems (BESS) help

mitigate these effects through their charging and discharging capabilities. Distribution networks

typically include small (residential), medium (community), and large-scale BESS. Larger BESS

offer a higher benefit-cost ratio for enhancing the network’s HC. However, optimizing the placement

of large BESS is challenging due to varying impacts of power fluctuations from RBDGs depending

on their size and location. The Sobol sensitivity index is used to identify the most influential

RBDGs in the network. Installing BESS with the most dominant RBDG helps improve HC.

By optimally managing the BESS charging and discharging profiles and tuning voltage control

parameters, the network’s HC is further enhanced.

Keywords: Keywords 1;Centralized voltage 2;decentralized voltage control 3;differential entropy

4; renewable based distribted generation 5;state-based probabilistic model 6; probabilistic voltage

sensitivity index
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Chapter 1

Introduction

1.1 Introduction

1.1.1 General

The economic growth of a nation is significantly influenced by the quality of the Electrical Power

System (EPS). An EPS is a network that generates, transmits, and distributes electricity from

power plants to consumers, ensuring reliable and efficient delivery of electrical energy. Traditionally,

power is centrally generated and distributed to consumers, as shown in Fig. 1.1-(a). However, it

is not possible to fulfil our increasing power demand through traditional methods due to land,

economic, and, most importantly, environmental constraints. Subsequently, Renewable-Based

Distributed Generation (RBDG) is used as an alternative. RBDG enhance the availability of

green energy to more consumers and reduces network losses in the transmission and distribution

networks. However, RBDG exhibits stochastic characteristics that introduce uncertainty into the

transmission and distribution network. This uncertainty compromises the stability and reliability

of the EPS.

1.1.2 Active Distribution Networks

The distribution network is a key element of EPS, connecting the transmission system directly to

the load center. It is classified into primary and secondary distribution networks. The voltage

level of primary distribution networks lies between 4 kV to 35 kV, which supplies small-scale

industrial customers, and the secondary distribution network supplies residential customers at

voltage level of 120/240 V [1], [2]. Nowadays, RBDG is being integrated into primary and

secondary distribution networks to meet our power demands due to its economic, operational,

and environmental advantages. Traditional distribution networks are inherently passive. However,

incorporating RBDG transform them into active distribution systems, allowing them to supply

power to local demand [3], [4]. A traditional Active Distribution Network (ADN) is shown in Fig.

1.1-(b).

1.1.3 Motivation

Recently, the expansion of centralized power generation using fossil fuels has been challenged.

This is due to high capital costs, significant transmission expenses and losses, decreasing fossil fuel

reserves, and rising environmental concerns. Historically, conventional energy sources constituted

76% of global power generation, while renewable energy sources contributed 24%. However,

projected trends indicate a substantial transformation by 2050. Renewable energy is expected

to dominate, accounting for 85% of worldwide power generation, while conventional energy will

represent only 15% [5]. In parallel with the development of battery energy storage devices, Electric

Vehicles (EVs) are also increasing in the market [6], [7]. As a consequence, the integration of
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charging infrastructure in the distribution network is also increasing. The stochastic nature of

RBDG and the number of EVs arriving at charging stations significantly impact the voltage

level of the distribution network [8], [9]. Therefore, to ensure the reliable and stable operation

of distribution networks, an effective voltage control technique is needed. This technique must

consider the unpredictable nature of load, generation and the number of EVs arriving at charging

stations.

Previously, RBDG operated at a unity power factor and lacked active and reactive power control

capabilities. This limitation prevented RBDG inverters from contributing to power dispatching.

In this circumstances, advanced voltage control techniques are essential to address voltage issues.

Reinforcing conventional voltage control devices in the active distribution network provides

straightforward solutions among the various techniques. However, this approach is expensive.

Alternatively, the On-Load Tap Changer (OLTC) can manage voltage deviations. However, it

isn’t a universal solution for all over and under voltage scenarios due to its limited operating range

and slow response time. Additionally, the existing OLTC in the active distribution network is not

made for bidirectional power flow. However, with progress in power electronic inverter technology

have made it possible to control voltage by regulating the active and reactive power of RBDGs.

This provides promising solutions for mitigating voltage issues. Active Power Curtailment (APC)

and Reactive Power Compensation (RPC) are commonly used strategies. These strategies enable

RBDG inverters to effectively address voltage problems. However, the random selection of RBDGs

for maintaining the voltage profile is not seems to be a best solution. Therefore, evaluating the

impact of RBDGs on bus voltage is a very crucial factor in formulating fast and dynamic control

voltage techniques. In this context, determining the impact of RBDGs on bus voltage, considering

their stochastic characteristics by traditional Newton-Raphson (NR), Perturb and Observe (P&O),

becomes a computationally burdensome process. It necessitates an analytical approach to minimize

computational effort while assessing the effect of RBDGs on network bus voltage.

The voltage control technique, which utilizes APC and RPC of available RBDGs in the network,

has been classified into centralized and decentralized control techniques. In the centralized voltage

control method, all available RBDGs in the network are used unitedly to maintain the network’s

voltage profile. However, this approach, involving centralized power curtailment, is not considered

economically optimal for the utility grid. Consequently, decentralized voltage control is preferred

due to the reduced participation of number of RBDGs. However, such techniques leverages

the voltage-controlling capabilities of RBDGs without coordinating available voltage-controlling

parameters and thus are not considered to be an effective and optimal solution. For this reason,

a hierarchical voltage control techniques are commonly utilized in the literature. In the primary

stage, the optimal settings of the available voltage-controlling parameter in the network is planned

for the time segment. Furthermore, based on the optimal settings of voltage-controlling parameters,

RBDGs are used to address the network’s voltage issues. However, estimating the optimal setting

of voltage controlling parameters, considering the stochastic characteristics of load and generation

by conventional probabilistic load flow (Monte Carlo simulation) method is a computational

process. Conversely, in the secondary stage, partitioning of the distribution network is adopted

as a part of decentralized control which is inherently a challenging task. The existing literature

used voltage sensitivity, electrical distance, and modularity index as an indices to partition the

network into different clusters. Further, each cluster’s voltage profile is upheld by utilizing the

voltage-controlling ability of RBDGs within their respective clusters. However, a significant

limitation of the aforementioned indices is their failure to consider the uncertainty of RBDGs.

This shortcoming renders conventional two-stage voltage control methods specific to particular

scenarios.
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Fig. 1.1: (a) Distribution network (b) Active distribution network

Enhancing the Hosting Capacity (HC) of a distribution network is crucial for incorporating

cleaner and more sustainable energy sources while ensuring a stable network voltage profile.

HC denotes the maximum capacity of RBDGs that can be added to the distribution system

without compromising its performance. Optimal use of voltage-controlling devices, such as OLTCs,

reactive power compensators, and Battery Energy Storage Systems (BESS), is seen as a potential

solution to increase the HC of the network. BESS enhances the hosting capacity by adjusting the

mismatch between load and generation using their charging and discharging properties. Mostly,

the distribution network consists of small BESS (residential storage), medium BESS (community

storage) and large BESS ( serves the entire network). Larger BESS offers a highest benefit-cost

ratio for increasing HC in RBDG-integrated distribution systems. Placing BESS to neutralize the

impact of RBDG’s uncertainty to enhance hosting capacity is a challenging task. After the optimal

placement of BESS, the HC of the network can be enhanced by optimally utilizing the BESS’s

charging and discharging profile along with optimal voltage-controlling parameters.

Objective of the Thesis

The thesis aims to develop fast and dynamic voltage control techniques and hosting capacity

enhancement techniques for active distribution networks, which is achieved using the following

objectives.

� To investigate the impact of renewable-based generation on bus voltage considering their

stochastic characteristics, a probabilistic voltage sensitivity index has been introduced.

� To determine the optimal setting of voltage-controlling parameters in the active distribution

network considering the uncertain characteristics of load and generation, the state-based

probabilistic method is introduced.

� To maintain the voltage profile of active distribution networks enriched with renewable based

generation, a dual-stage voltage control technique has been proposed.
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� To enhance the hosting capacity of the active distribution network, a strategic placement of

battery energy storage systems is proposed.

1.1.4 Literature Review

A literature review has been meticulously conducted to address the objectives as follows.

1.1.4.1 Impact of Distributed Generation

The distribution network’s low X/R ratio makes its voltage profile highly sensitive to power

perturbations [10], [11]. The growing presence of Renewable-Based Distributed Generators

(RBDGs) leads to voltage perturbation in the distribution network because of their stochastic

nature. Sometimes, voltage fluctuation is converted into voltage limit violation at several buses.

These voltage limit violations not only damage electrical equipment but also reduce the system’s

hosting capacity [12], [13] . Therefore, an effective voltage control technique is essential to maintain

the voltage levels at all buses within their permissible limits. The traditional method of voltage

control, such as OLTC [14], [15], and voltage-regulator [16], have slow response time and are also

not made for bidirectional power flow done by integrated DGs. With advancements in inverter

technology, the voltage control using active and reactive power of inverter interfaced RBDGs in

the network gives a fast and dynamic solution [17], [18]. However, utilizing all available RBDGs

or random RBDGs from the distribution system to maintain the voltage profile is not considered

as a economically optimal solution for the utility grid. In this context, understanding the effect of

power disturbances at RBDG-integrated buses on bus voltage deviations offers valuable insights

for keeping the voltage profile within acceptable limits. This is achieved through voltage sensitivity

analysis, which measures the influence of DGs on bus voltage.

1.1.4.2 Voltage Sensitivity

Voltage sensitivity directly links power disturbances in available DGs in the nework to changes in

bus voltage, as shown in (1.1) [19], [20].

∆Vi =
∑
i

(
dVi

dPj
× ∆Pj +

dVi

dQj
× ∆Qj

)
(1.1)

To obtain ∆Vi,
dVi

dPj
, dVi

dQj
must be acquired. It is basically evaluated by two methods (a) Traditional

methods (b) Analytic Methods.

1.1.4.3 Traditional methods

Traditionally, Newton-Raphson (NR) and Perturbation and Observation (P&O) methods are used

to determine dVi

dPj
, dVi

dQj
as shown in (1.2)-(1.3).

[
∆θi

∆Vi

]
= J−1

[
∆Pj

∆Qj

]
(1.2)

dVi

dPj
≈ ∆Vi

∆Pj
,
dVi

dQj
≈ ∆Vi

∆Qj
(1.3)

Sensitivity analysis is primarily conducted using traditional methods such as NR, while P&O

methods are not optimistic for distribution networks because of their radial configuration and low
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X/R ratio. Simultaneously, these methods become computationally expensive when considering

the stochastic characteristics of load and generation.

1.1.4.4 Analytic methods

In a recent study, several analytic methods of voltage sensitivity have been presented. In [21],

a novel voltage sensitivity method is introduced to determine the most appropriate distributed

generation for maintaining the network’s bus voltage. However, power losses in the network are

neglected, which is not a practical solution. In [22], [23], the voltage-controlling capability of

RBDGs is utilized to maintain the bus voltage of the network. The analytic sensitivity technique

is presented in these literature to find the relationship between voltage variations at any bus with

respect to the reference bus. However, these theoretical findings have not been corroborated with

simulations. The increasing penetration of RBDGs introduces uncertainty in the network, and

it changes the properties of the network. Therefore, the intermittent nature of RBDGs must

be incorporated to determine voltage sensitivity. In [24], a probabilistic method is proposed,

incorporating smart meter measurements and sensitivity analysis to establish limits for operational

indices. In this study, the assumption that real and reactive power consumption by the home

are independent is not accurate for real-time scenarios. Similarly, in [25], regression model is

employed to estimate voltage sensitivity. Method of calculating voltage sensitivity used in [24],

[25] are data dependent. Therefore, the proposed methods are not suitable for large distribution

networks. In [26], differential entropy, Kullback-Leibler distance, and Frechet distance index

are proposed to identify the primary contributer for voltage deviation at any bus. It gives the

effect of power disturbances at DG-integrated buses on bus voltage perturbation. Evaluating

this information by these indexes is computationally high process due to the complex analytic

formula of change in voltage due to power perturbation at DG-integrated bus has been used to

formulate these logarithmic indexes. Previously, DG operated with a unity power factor. However,

with advancements in power electronics converters, voltage control is now achieved through the

management of both active and reactive power [27], [28]. Further, on the basis of impact of DGs,

fast and dynamic voltage control techniques can be formulated, which is described in next sections.

1.1.5 Voltage control techniques

Active Power Curtailment (APC) and Reactive Power Compensation (RPC) are two methods that

are used by inverter-interfaced DGs to tackle voltage issues in the distribution network. Broadly,
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Fig. 1.2: (a) Centralized DG control (b) Decentralized DG control
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voltage control using the voltage-regulating capabilities of DGs is divided into centralized and

decentralized voltage control.

1.1.5.1 Centralized voltage control

APC and RPC are the techniques used by inverter-interfaced DGs to tackle voltage issues in

the distribution network. Voltage control leveraging the voltage-regulating capabilities of DGs

is typically categorized into centralized and decentralized techniques. In [29], utilizing droop

characteristics of available DGs in the network, uniform and nonuniform centralized active power

curtailment have been done to sustain the network’s voltage profile. To preserve the voltage profile

of the network, a multi-agent distributed voltage control technique is presented in [30]. In [31], a

new real power adaptive capping approach has been suggested for preserving the bus voltage in

the ADN. While preserving the voltage profile, real-power curtailments have been done from all

the available DGs in the network. Due to adaptive capping, all the available DGs have an equal

opportunity to share the duty of voltage stabilization. Further, the efficiency and feasibility of

reactive power compensation have been shown in [32], [33]. However, DGs have restricted reactive

power-controlling capabilities due to economic concerns. Therefore, the optimal utilization of

active and reactive power of DGs for voltage control is considered as the optimistic solution for

voltage control. In [33], both active and reactive power of DGs have been utilized to maintain the

voltage control of the network. However, centralized voltage controls all the available DGs that are

utilized together, so it is not an economically optimal solution for utility grids. Simultaneously,

centralized voltage control takes relatively high computation to determine the optimal operating

point of available DGs due to the large size of the distribution network. Therefore, decentralized

voltage control is preferred.

1.1.5.2 Decentralized voltage control

In the decentralized voltage control technique, the distribution network is divided into multiple

subgroups, and the DGs available in that subgroup are utilized to maintain their respective voltage

profile [34]. In [35], ϵ decomposition has been carried out to separate the distribution network

into a subnetwork. Further, optimal use of active and reactive power of available DGs in the

subgroup has been used for maintaining the voltage profile. Similarly, based on an improved

modularity index, a network is segregated into different sub-community [36]. Moreover, to mitigate

the overvoltage issues in the network, a multi-objective optimization problem is solved by Particle

Swarm Optimization (PSO) for curtailing the minimum active power from the available DGs in

the sub-community. A network partitioning technique utilizing the k-means algorithm has been

introduced in [37] to support ancillary services within distribution networks that incorporate DGs.

It is implemented for observing the steady state voltage control in 20kV distribution system. In

[38], an innovative method for forming microgrids by partitioning a distribution network in the

aftermath of a natural disaster. This approach is designed to restore electricity to critical loads by

creating targeted microgrids within the system. In [39], the decentralized optimal inverter dispatch

(DOID) framework was introduced to improve inverter control flexibility. The method divides the

distribution network into clusters, each managed by an energy manager and containing multiple

PV inverters. Clusters are optimized independently with minimal voltage information exchange,

ensuring system-wide voltage coordination. In [40] proposes organizing DGs into clusters within a

typical microgrid to improve their coordinated management.

In the aforementioned work, the coordination of DGs with existing voltage control devices, such as

OLTCs, voltage regulators, and reactive power compensators, have not been addressed to mitigate
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network voltage issues. These devices, however, significantly impact the voltage profile of the

network. Therefore, Hierarchical voltage control is opted for maintain the voltage profile of the

network.

1.1.6 Hierarchical voltage control

Hierarchical voltage control techniques give the autonomy to utilize the available voltage-controlling

parameters in the network with decentralized voltage control by DGs. It is implemented into

multiple layers, and each layer output is implemented into multiple time scales [41].

1.1.6.1 Primary stage voltage control

In the primary stage, the optimal settings for voltage-regulating devices like OLTC, reactive power

compensators, and BESS charging-discharging rates are determined for a defined time interval.

On the basis of that optimal setting, the secondary voltage control technique performed [42], [43].

In [44], [45], several works have been done to evaluate the optimal settings of voltage regulating

parameters for a specific interval. The voltage control method using optimal coordination among

the voltage-controlling capability of DG, OLTC and BESS is proposed in [44], [46]. In this

regard, the optimal operating point for available voltage-controlling components is determined

by solving the centralized optimal power flow. The objective functions include loss minimization,

voltage deviation minimization, and reactive power absorption minimization [47]. The conventional

method of solving OPF is a gradient-based optimization algorithm that uses linear programming,

quadratic programming, the Newton-Raphson method, and the interior point method. The OPF is

a multimodal, non-linear or non-convex problem [47]. Therefore, heuristic optimization techniques

are now prioritized over traditional methods in solving OPF due to their ability to potentially find

global solutions. In [47], [48], a comprehensive literature survey of heuristic optimization techniques

for solving OPF for various objective functions has been presented. The stochastic characteristics

of load and generation severely impact the voltage stability of the network. Therefore, it is essential

to consider their intermittent nature while determining the optimal setting of voltage-controlling

parameters. In [49], the influence of uncertainty in DGs output power on voltage profile has

been evaluated on bus voltage by probabilistic load flow using P-V and Q-V curves. However,

the stochastic characteristics of the load have not been included. To determine the impact

uncertainty on load, generation and network configuration using probabilistic load flow has been

proposed in [45]. In both literature, the effect of load and generation intermittency on the voltage

profile is assessed using probabilistic load flow. This method is challenging to implement when

determining the optimal settings for voltage-controlling parameters. In [50], the optimal placement

of distributed generation is determined with the objective of minimization of network losses.

Further, to consider the intermitent nature of load and generation, a state-based probabilistic

method is used. The state-based probabilistic model estimates all the probable output of any

input variables from their probabilistic model. In the primary stage, centralized OPF is solved to

determine the optimal settings for voltage-controlling parameters. Process is time-consuming and

requires significant computational effort. Increasing penetration of renewable based DGs required

fast dynamic solution due to their intermittent nature. Therefore, in secondary stage decentralized

voltage control is utilized to maintain the voltage profile of the network using voltage control ability

of installed DGs.
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1.1.6.2 Secondary stage voltage control

In this stage, a group of DGs among all the available DGs are utilized to maintain the voltage

profile of the network. Regarding this, portioning the distribution network on the basis of the

impact of DGs on bus voltage is a challenging task. Conventionally, it is done on the basis

of the territorial area or local administration, which is relevant for traditional radial structured

distribution networks. The integration of DGs in the distribution system, the passive distribution

network becomes active. Therefore, an advanced partitioning technique is needed to accommodate

the behaviour of the distribution network with the incorporation of DGs. In this regard, electrical

distance [51], modularity index [52], and sensitivity index [53], [54] are derived as clustering indices,

which establish the relationship between the impact of DGs on bus voltage. Further, based on these

indices, clustering such as K-mean, fuzzy C-mean are performed [54]. Following clustering, diverse

voltage control techniques are employed to sustain the network’s voltage profile. In [52], [51], the

primary level is used to determine the hourly setting of the OLTC setting and charging-discharging

profile of BESS for 24 h planning horizon. Furthermore, the secondary level, a grouped DG,

is utilized for the better voltage level of the network. In [52], the modularity index is utilized

to partition the network, whereas, in [51], the voltage sensitivity index coupled with spectral

clustering is employed for network partitioning. In [55], introduces a structured method that divides

distribution networks into multiple distinct control areas. This segmentation ensures prompt

management of the voltage level in each area, which is essential for real-time execution. Further,

utilizing the reactive power controlling ability of DGs available in each segment, their voltage

level is managed. In [56], proposes a systematic method for dividing smart distribution networks

into microgrids that are self-sufficient. This process uses an objective function that incorporates

multiple performance indices, such as voltage profile and energy loss. Furthermore, to enhance the

benefits and integration of DGs, two control strategies are assessed: OLTC and adaptive power

factor control. A Distributed Adaptive Robust Voltage-Var Control (DAR-VVC) method for active

distribution networks is presented in [57]. The DAR-VVC system uses a distributed algorithm to

coordinate OLTCs, capacitor banks, and PV inverters across various operational stages, aiming to

minimize network power loss. A clustering technique is implemented to minimize data exchange

between neighbouring partitions, thereby improving the algorithm’s overall efficiency. In [58], a

two-stage, zone-based approach for optimizing VOLT-VAR control in ADN is introduced. This

method segments the system into distinct zones according to customer types, such as residential,

commercial, and industrial. The optimal VAR settings for each zone are derived using a hierarchical

distributed algorithm that leverages cordal relaxation and Semi-Definite Programming (SDP).

Increasing penetration of DGs into the network fulfils power demands but also pushes the network

beyond normal operational conditions. Hence, enhancing the hosting capacity of the network while

preserving its voltage profile poses a significant challenge.

Increasing ratio of DG into the network fulfils power demands but also pushes the network

beyond normal operational conditions. Hence, enhancing the hosting capacity of the network

while preserving its voltage profile poses a significant challenge.

1.1.7 Hosting capacity of the network

The Hosting Capacity (HC) is defined as the maximum number of DGs units that can be integrated

into the power distribution network without compromising system performance. Beyond this level

of penetration, the distribution network becomes unacceptable [59]. Fig. 1.3-(a) illustrates the

concept of HC, clearly demonstrating that increasing the system’s HC permits the incorporation

of more DG units without surpassing performance limits. Broadly, the method of calculating HC
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is classified as follows: (a) Analytic method, (b) Stochastic method, (c) Streamlined method [60],

[61]. Analytic and stochastic methods to evaluate the HC is the computational process because

both methods utilize multiple times of load flows. However, the streamlined method is based on

detailed results from the HC study. Therefore, it provides a faster solution compared to analytic

and stochastic methods, but at the cost of reduced accuracy [62]. Assessing HC is a planning issue

where accuracy is more crucial than computation time. Hence, estimating the HC by considering

the uncertain characteristics of generation and load is a challenging task. The traditional approach

of calculating hosting capacity considering stochastic characteristics is presented in [63], [64].

In [65], HC analysis has been done on three Swedish distribution networks. It is concluded

that over-voltage is the primary performance constraint in HC calculations. Simultaneously, it

is observed that reactive power control and transformer tap changer adjustments are effective

techniques for increasing HC and mitigating over-voltage issues. Numerous studies have been

conducted in the literature to improve the network’s HC by maintaining the voltage profile of the

network. The methods utilized for enhancing the HC are as follows: optimal utilization OLTC [66],

distribution network management [67], [68], [69], load balancing [70], optimal DG placement and

sizing [71], [72], [73], reactive power compensator [74] and BESS [75]. The optimal coordination

among all the available voltage-controlling devices in the network with the objective of enhancing

the hosting capacity of the network is determined by solving the OPF problem [76], [77], [78]. The

volt/VAR control problem aimed at maximizing hosting capacity is formulated as a single-objective

optimization problem [79], [80]. This model is further developed into a multiobjective optimization

problem in [81], utilizing a cuckoo search method to enhance voltage profiles and minimize losses

by optimizing the allocation of Distributed Generation (DG). The method proposed for enhancing

the hosting capacity from [65]-[81] is not considered the stochastic characteristics of load and

generation. Monte Carlo Simulation (MCS) is a commonly applied technique in probabilistic

power flow (PPF) analysis to enhance the hosting capacity (HC). Although MCS provides high

accuracy, it can be time-intensive because it requires a large amount of input data, such as load

demand, distributed generation (DG) output, and network configuration [82], [83],[84]. To avoid

the computational burden in [85], a probability density function-based method has been proposed

to enhance the hosting capacity of the network. The intermittent nature of load and generation

hinders the enhancement of the hosting capacity of the network due to fast voltage regulation.

BESS can address voltage issues in the network through optimal charging and discharging of

their energy, thereby increasing the network’s HC. Despite the high cost of BESS, it offers unique

benefits that other solutions cannot provide. To enhance the network’s HC, optimal sizing of BESS

has been explored in [86]. In [75], [87], the BESS of EVs is utilized by its optimal charging and

discharging. BESS is employed to alleviate voltage regulation issues and reduce network losses by

tackling the multiobjective optimal power flow problem in [88]. It is validated on the MV and LV

distribution network of Western Australia. It is observed that the advantage of BESS depends on

the generation, load profile and network configuration.

1.1.8 Organization of the Thesis

The entire thesis work is organized into six chapters. A brief summary of each chapter is given as

follows.

Chapter 1: Introduction

This chapter provides an overview of active distribution networks, emphasizing the various

challenges in maintaining their voltage profiles and hosting capacity. Furthermore, it explores
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Fig. 1.3: (a) Hosting capacity concept and the effect of its enhancement (b) hosting capacity
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existing solutions to achieve specific objectives while recognizing their limitations. Finally, the

chapter outlines the research motivation behind this thesis.

Chapter 2: Probabilistic Approach to Investigate the Impact of Distributed

Generation on Voltage Deviation in Distribution System

In this chapter, an analytical technique for evaluating the effects of power fluctuations on voltage

deviations at any bus within a distribution network integrated with RBSGs is presented. The

growing adoption of RBDGs in distribution networks introduces uncertainty in bus voltages because

of their inherent intermittent nature. This uncertainty can occasionally result in voltage limit

breaches at various buses. Conventional voltage control techniques often fail to manage these issues

due to their delayed response time. Voltage-controlling strategies utilizing the voltage-regulation

feature of present RBDGs in the network give fast and adaptive control solution . In this context,

analyzing the implication of power disturbances at DG-integrated buses on bus voltages is critically

important. Assessing this information with the conventional probabilistic load flow method is

inefficient for real-time applications due to prolonged computational time. To address this, a

novel Probabilistic Voltage Sensitivity Index (PVSI) based on Principal Component Analysis

(PCA) is proposed. This index ranks DG-integrated buses by assessing the repercussions of

power perturbations at these buses on voltage variations throughout the network. The PVSI is

analytically derived to speed up the ranking process by decreasing computation time. Additionally,

the efficiency of proposed PVSI is corroborated on the 69-bus and 141-bus distribution networks

by assessing its performance relative to traditional Monte Carlo Simulation (MCS) and Joint

Differential Entropy (JDE) in terms of accuracy and computation time.

Chapter 3: Optimal Selection of Voltage Controlling Parameter in Uncertain Active

Distribution Network

In this chapter, the optimal setting of the voltage-controlling parameter is determined for the ADN.

The share of Converter-Based Generation (CBG) and charging infrastructure in the distribution

network is growing rapidly. Therefore, sustaining a stable voltage profile in the distribution network

is a challenging task. This difficulty arises due to the unpredictable nature of CBG, the number of

EVs arrival at Charging Stations (CS), and power demands. The voltage profile can be improved by

selecting the optimal voltage-controlling parameters available in the network. This is achieved by

addressing multiobjective OPF problems in a distribution system that includes the uncertainty of

load, CBG like solar and wind and the number of EVs arriving at charging stations. The Modified

Jaya (M-Jaya) algorithm is employed to solve the optimization problem by integrating multiple

objectives such as minimizing line losses, voltage deviation, and maximizing CBG output power.
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The state-based probabilistic modelling is proposed to incorporate the stochastic characteristics of

output from CBG, the number of EVs arriving at the CS and power demand by the load in the

OPF.

Chapter 4: Dual-Stage Voltage Control for Active Distribution Network with High

Penetration of Photovoltaic Distributed Generators using Spectral Clustering

In this chapter, dual-stage voltage control for active distribution networks with high penetration of

Photovoltaic Distributed Generators (PV-DGs) is presented using spectral clustering. It is executed

in two stages. In the primary stage, utilizing the hourly state-based probabilistic modelling of the

output power from PV-DGs, load power demand and available EVs in the charging station, optimal

tap-setting of OLTC, charging-discharging of BESS and optimal charging of EVs is determined for

24 hour (h) time segment. It is done by solving the OPF problem for the minimization of voltage

deviation and network losses. When the optimal hourly settings of the available voltage-controlling

devices fail to maintain the voltage profile due to a high generation-to-load ratio, the voltage

profile is affected. To restore it, CBVC is implemented in the secondary stage. In CBVC,

the voltage-controlling capability of PV-DGs is utilized to mitigate overvoltage issues within the

cluster. The optimal operating power of PV-DGs is determined by solving OPF for each cluster

independently with the objective of reducing the active power curtailment and reactive power

absorption by the available PV-DGs in the cluster. Additionally, the effectiveness of the proposed

method is evaluated by comparing it with the Centralized Voltage Control (CVC) method. The

comparison includes several factors: voltage profile, cumulative active power curtailment, reactive

power absorption by PV-DGs, network losses, and computation time.

Chapter 5: Enhancement of hosting capacity of active distribution network utilizing

optimal placement of battery energy storage system

In this chapter, the hosting capacity of the distribution network is enhanced by placing the

BESS with dominant distributed generation of the network. Increasing power demand requires

enhancement of the HC of a distribution network. Incorporating PV-DGs into the network fulfils

power demands but also pushes the network beyond its normal operational conditions. Hence,

enhancing the hosting capacity of the network while preserving its voltage profile poses a significant

challenge, primarily due to the uncertain nature of PV-DGs. The BESS possesses the capability

to compensate the uncertain characteristics of PV-DG in the network through its charging and

discharging capabilities. In this work, the HC of the distribution network is improved by installing

the BESS with the most dominant PV-DG. The Sobol voltage sensitivity index is used to determine

the dominant PV-DG in the distribution network. Further, through the optimal utilization of the

charging and discharging profile of the BESS with optimal voltage-controlling parameters, the HC

of the network is enhanced.

Chapter 6: Conclusion and future scope

Finally, summarizes the key findings of the research presented in this thesis and for future research

directions.
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Chapter 2

Probabilistic Approach to

Investigate the Impact of

Distributed Generation on Voltage

Deviation in Distribution System

2.1 Introduction

The growing integration of renewable energy sources into the distribution network introduces a

significant degree of variability to the bus voltage, primarily due to the unpredictable nature of

renewable generation. This variability leads to frequent deviations in voltage levels, resulting in

multiple instances where the voltage exceeds the acceptable limits across various buses within the

network. Such voltage limit violations can have detrimental effects, including potential damage to

electrical equipment and a decrease in the network’s ability to accommodate additional renewable

generation. Therefore, it is imperative to implement an effective voltage control strategy to

maintain the voltage levels at all buses within their permissible range, ensuring the stability and

reliability of the distribution network.

As discussed in Chapter 1, the traditional methods of voltage control, such as On Load Tap

Changing Transformers (OLTC) and voltage regulators, have slow response times and are

also not made for bidirectional power flow done by integrated Distributed Generations (DGs).

With advancements in inverter technology, voltage control using active and reactive power of

inverter-interfaced DGs in the network provides a fast and dynamic solution. However, utilizing

all available DGs or random DGs from the distribution system to maintain the voltage profile

is not considered as an economical solution for the utility grid. In this context, an analytical

technique for evaluating the effects of power fluctuations on voltage deviations at any bus within

a distribution network integrated with renewable-based generation is presented. The increasing

adoption of renewable energy sources in distribution networks introduces uncertainty in bus

voltages because of their inherent intermittent nature. This uncertainty can occasionally result

in voltage limit breaches at various buses. Conventional voltage control techniques often fail to

manage these issues due to their sluggish response time. Voltage control strategies utilizing the

voltage-regulation feature of present DGs in the network give fast and adaptive control methods.

To formulate such voltage control technique, determining the implication of power disturbances at

DG-integrated buses on bus voltages is critically important. Assessing this information with the

conventional probabilistic load flow method is inefficient for real-time applications due to prolonged

computational time. To tackle this problem, a novel Probabilistic Voltage Sensitivity Index (PVSI)

based on Principal Component Analysis (PCA) is proposed. This index ranks DG-integrated

buses by determining the repercussions of power perturbations at these buses on voltage variations
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throughout the network. The PVSI is analytically derived to speed up the ranking process by

decreasing computation time. Additionally, the efficiency of the proposed PVSI is corroborated on

the 69-bus and 141-bus distribution networks by assessing its performance relative to traditional

Monte Carlo Simulation (MCS) and Joint Differential Entropy (JDE) in terms of accuracy and

computation time.

This Chapter is organized as follows. In section 2.2, the traditional method for determining the

impact of power perturbation at DG integrated bus on voltage deviation is discussed. A brief

explanation of the analytic method for calculating the upper bound of voltage deviation is detailed

in section 2.3. The formulation of the PV SI using PCA is presented in Section 2.4. The validation

of PV SI on 69-bus and 141-bus distribution systems is discussed in section 2.5. This work is

concluded in Section 2.6.

2.2 Background

o

a1

a2 an-1

an

Zo

Zoa1
Za1

Fig. 2.1: Common impedance of the generic distribution system

Fig. 2.1 shows a schematic of a generic active distribution system coupled with the main AC

grid. a ∈ {a1, a2...an} symbolize the active bus and o symbolize the observer bus. The bus

with distributed generations is taken as an active bus. Similarly, the bus which is selected for

observing the impact of power perturbation at DG-integrated buses is termed an observer bus. If,

the complex power changes at active bus changes Sa1 to Sa1 + ∆Sa1 then voltage at observer bus

becomes Vo to Vo +∆Vo. A brief description of evaluating voltage sensitivity (∆Vo) by traditional

method using MCS and analytic methods is explained in subsections (A) and (B).

2.2.1 Traditional method for voltage sensitivity using Monte-Carlo

Simulation (MCS)

The voltage sensitivity gives a direct relationship between power perturbation at DG-integrated

buses with the change in bus voltage, as in (2.1) [19].

∆Vi =
∑
i

(
dVi

dPj
× ∆Pj +

dVi

dQj
× ∆Qj

)
(2.1)
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To obtain ∆Vi,
dVi

dPj
, dVi

dQj
must be acquired. Traditionally, Newton-Raphson (NR) and Perturbation

and Observation (P&O) methods are used to determine dVi

dPj
, dVi

dQj
.

[
∆θi

∆Vi

]
= J−1

[
∆Pj

∆Qj

]
(2.2)

dVi

dPj
≈ ∆Vi

∆Pj
,
dVi

dQj
≈ ∆Vi

∆Qj
(2.3)

In NR method, dVi

dPj
, dVi

dQj
is determined by Jacobian matrix as in (2.2). When the Jacobian matrix

is not accessible, then the P&O method can be used. dVi

dPj
, dVi

dPj
is obtained through the multi-run

simulation by means of perturb the power at jth active bus and observe the change in voltage at

ith observer bus, then formulate it as shown in (2.3).

For considering the stochastic nature of load and generation, these two methods are applied with

MCS to determine the uncertainty in the voltage deviation. It is computationally expensive; hence

it lacks practical implementation. In this work, it is used to measure the accuracy of the proposed

PV SI. Further, the accuracy study is measured in terms of a ranking index. The steps involved

in ranking the impact of power perturbation at the active bus on the change in voltage at the

observer bus with the MCS method are as follows:

� Determine the variance of change in voltage at the observer bus due to power perturbation

at active buses using the NR method with MCS.

� Consider zero power perturbation for the active bus, whose effect has to be calculated on

change in voltage at the observer bus. Repeat step one.

� The Active bus, which reduces more in the variance of change in voltage at the observer bus,

is considered as the most impactful bus for the observer bus.

2.2.2 Analytic method for voltage sensitivity

The analytic method gives an upper bound of voltage deviation due to power change at active bus

[89]. The upper bound of voltage deviation (∆Vo) at observer has been shown in (2.4).

∆Vo ≤ −∆Soa1Zoa1

∆V ∗
a1

(2.4)

Zbus =



Z11 . . . Z1O . . . Z1n

. . .
. . .

... . . .
...

ZO1

... ZOO . . . ZOn

...
...

...
. . .

...

Zn1

... ZOn . . . Znn


(2.5)

where Zoa1
is the common impedance shared between active bus a1 and observer bus O. In Fig.

2.1, it is represented by the green line. It is determined from the impedance matrix (Zbus), which

is shown in (2.5). The off-diagonal element of (Zbus) is considered as common impedance. To

formulate the (Zbus) , impedance building algorithm is used [90]. ∆V ∗
a1

is a complex conjugate

of pre-perturb voltage at the active bus a1. If complex power changes at multiple buses, then

voltage deviation is calculated at the observation bus by superposition theorem [89]. Expression
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for voltage deviation is shown in (2.6).

∆Vo = −
∑
an

(
∆San

Zoan

∆V ∗
an

)
=
∑
an

(∆Voan
) (2.6)

∆Vo =
∑
an

(
∆V r

oan

)
+ i
∑
an

(
∆V i

oan

)
(2.7)

after simplifying (2.4)

∆V r
oan

= − 1

|Van
|
(∆Pan

(Roan
cos θan

−Xoan
sin θan

)

−∆Qan(Roan sin θan + Xoan cos θan))

(2.8)

∆V i
oan

= − 1

|Van
|
(∆Qan

(Roan
cos θan

−Xoan
sin θan

)

+∆Pan(Roan sin θan + Xoan cos θan))

(2.9)

where ∆V r
oan

, ∆V i
oan

are real and imaginary part of change in voltage at observer bus O due to

power perturbation at active bus an. ∆Pan
and ∆Qan

are active and reactive power perturbation

at nth active bus. ∆Van
, θan

is pre-perturb voltage magnitude and angle of nth active bus. Roan
,

Xoan
is common resistance and reactance between observer bus and nth active bus. It is real and

imaginary part of the common impedance Zoan
. Using (2.8) and (2.9), the real and imaginary part

of the change in voltage due to power perturbation at any buses can be calculated. In general,

the pre-perturb voltage at the active bus of the distribution system always remains within the

permissible limit [91]. Therefore, |Van
|∠θan

= 1∠0 then, (2.8) and (2.9) becomes

∆V r
oan

= − (∆Pan
Roan

− ∆Qan
Xoan

) (2.10)

∆V i
oan

= − (∆QanRoan + ∆PanXoan) (2.11)

∆Sk =∼ N

([
0

0

]
,

[
1 −.04472

−.04472 0.2

])
, k ∈ {2, 8..} (2.12)

Mean(∆V r
o ) =

n∑
k=1

E(∆V r
oak)

= −Roak

n∑
k=1

E(∆Poak) +Xoak

n∑
k=1

E(∆Qoak)

(2.13)

Mean(∆V i
o ) =

n∑
k=1

E(∆V i
oak)

= −Roak

n∑
k=1

E(∆Qoak)−Xoak

n∑
k=1

E(∆Poak)

(2.14)

var(∆V r
o ) =

n∑
k=1

var(∆V r
oak)

=

n∑
k=1

var(∆V r
oak) +

n∑
j=1
k ̸=j

(∆V r
oak∆V r

oaj)
(2.15)

var(∆V i
o ) =

n∑
k=1

var(∆V i
oak)

=

n∑
k=1

var(∆V i
oak) +

n∑
j=1
k ̸=j

(∆V i
oak∆V i

oaj)
(2.16)
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Fig. 2.2: PDF of change in voltage at bus-27 for 69-bus distribution system (a) Real part of change
in voltage ∆V r

27 (b) Imaginary part of change in voltage ∆V i
27

Equation (2.10) and (2.11) give a straightforward relationship between the active and reactive

power perturbation with voltage deviation.

Due to the stochastic nature of injected complex power by the renewable-based generation, it is

highly important to define voltage deviation in a stochastic sense. Therefore, the mean, variance,

and Probability Density Function (PDF) of voltage deviation are the essential components to be

obtained. For validating the stochastic properties of analytic formulation of change in voltage as

shown in (2.10) and (2.11), 69-bus distribution system is considered.

Complex power perturbation is considered at twelve buses, from bus 2 to bus 69, in the interval

of six buses. It is modeled by normal random vector N(0, σ̄2), as shown in (2.12). In the (2.12),

the first and fourth elements of covariance matrix (σ̄2) represents the variance of active (σ2
p) and

reactive (σ2
q ) power, respectively. The third and fourth element represents covariance between

active and reactive power (ρpq
√
σ2
pσ

2
q ). DGs provide reactive power by curtailing active power.

Hence, the active-reactive power correlation coefficient (ρpq) is taken as -0.1. The change in

voltage at bus 27 is calculated using the analytic method. The mean, variance, and PDF of voltage

deviation are determined using (2.13) to (2.16). For evaluating the accuracy of the analytic method,

PDF of the change in voltage at bus 27 is also determined by the NR method using MCS for 10,000

scenarios. In this case, mean and variance are estimated using the normal distribution mean, and

variance formula [92]. After comparing both the PDF of ∆V r
27 and ∆V i

27, it is observed that both

methods give a similar PDF for change in voltage at bus 27, as shown in Fig.2.2. But the analytic

method reduces huge computation time. In this work analytic method of calculating the change in

voltage at the observer bus, as shown in (2.10) and (2.11), are used to formulate PV SI for ranking

the impact of power perturbation at the active bus on change in voltage at observer bus.

2.3 Formulation of PV SI using PCA

The traditional method of finding out the impact of power perturbation at active buses on observer

buses is computationally inefficient. Thus, in this work, novel PV SI is proposed. The proposed

method is based on Principal Component Analysis (PCA). PCA gives the variance of linearly

correlated variable data points by reducing their dimensionality [93]. Linear correlation between



18
Chapter 2. Probabilistic Approach to Investigate the Impact of Distributed Generation on

Voltage Deviation in Distribution System

-1 -0.5 0 0.5 1

10
-3

-1

0

1

10
-4

1

1

( v
r

oa
1

, v
r

o
1

)

Z
2
=- v

r

oa
1

 sin
1
+ v

r

o
1

cos
1

Z
1

Z
2

Z
1
= v

r

oa
1

 cos
1
+ v

r

o
1

sin
1

V
r

o

V
r

oa

Fig. 2.3: Axis transformation of variable data points (∆V r
oa,∆V r

o ) into new set of orthogonal axis
Z1 and Z2

the data points is determined by the correlation coefficient as shown in (2.17).

ρ(∆V r
oa∆V r

o )
=

cov(∆V r
oa,∆V r

o )

σ
∆V r

oa
σ

∆V r
o

, ρ(∆V r
oa∆V r

o )
∈ (−1, 1) (2.17)

The maximum eigenvalue along the principal component axis of the covariance matrix for linearly

correlated variable data points is considered as their variance. Considering this point, in this work,

PCA is used for calculating the variance of correlated data point (∆V r
oa,∆V r

o ), (∆V i
oa,∆V i

o ) and

(∆Voa,∆Vo) along the principal component axis. Here, ∆V r
oa, ∆V r

oa and ∆Voa are the real part

of the change in voltage, the imaginary part of the change in voltage and the absolute change

in voltage at observer bus O due to power perturbation at kth active buses and ∆V r
o , ∆V i

o and

∆Vo are the cumulative real part of the change in voltage, the imaginary part of change in voltage

and absolute change in voltage at the observer bus O due to power perturbation at the active bus

together. The methods to determine the variance of correlated data points (∆V r
oa,∆V r

o ) along

the principal component axis is explained below. Similarly, variance of correlated data points

(∆V i
oa,∆V i

o ) and (∆Voa,∆Vo) along the principal component axis is determined. For evaluating

the variance of correlated data points (∆V r
oa,∆V r

o ) along the principal component axis, first of

all variable data point (∆V r
oa,∆V r

o ) is transformed into new set of orthogonal axis Z1 and Z2 as

illustrated in Fig. 2.3. After that, variance of variable data points (∆V r
oa,∆V r

o ) along Z1 and Z2

is calculated, as shown in (2.18) to (2.41). In Fig. 2.3, transformation of data point (∆vroa1
,∆vro1)

along Z1 and Z2 is shown. Similarly, all the data points present on axis ∆V r
oa and ∆V r

o are

transformed onto the new axis Z1 and Z2 and it is expressed in matrix form as following:

Z = ATX (2.18)

where Zn×1 =

[
Z1

Z2

]
, Xm×2 =

[
vroa1

... vroam
vro1 ....vrom

]T

AT =

[
cos θ1 ... cos θm sin θ1 .... sin θm

− sin θ1 ... − sin θm cos θ1 .... cos θm

]
=

[
a1

a2

]
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The Z1 and Z2 are orthogonal to each other. Therefore it can be written as:

aTnan = 1 n ∈ {1, 2} (2.19)

where A is transformation matrix. Now, variance of data point along the Zn is calculated as using

(2.18) and (2.19) :

var(Zn) = var(aTnX) = var(aTnXaTnan) = aTnvar(Zn)an, n ∈ {1, 2} (2.20)

aTnvar(Zn)an = aTnΣ(∆V r
oa,∆V r

o )an, (2.21)

Σ(∆V r
oa,∆V r

o ) =

[
var(∆V r

oa) cov(∆V r
oa,∆V r

o )

cov(∆V r
oa,∆V r

o ) var(∆V r
o )

]
(2.22)

Σ(∆V r
oa,∆V r

o ) =

[
σ11 σ12

σ21 σ22

]
(2.23)

In (2.21) and (2.22), Σ(∆V r
oa,∆V r

o ) is covariance matrix for calculating the impact on real part of

change in voltage at observer bus due to power perturbation at active bus. Its diagonal element

represents variance and off-diagonal element represents covariance of variable ∆V r
oa and ∆V r

o ,

respectively.

Σ(∆Voak,∆Vo) =

 var(∆V r
oak) cov(∆V i

oak,∆V r
oak) cov(∆V r

oak,∆V i
o ) cov(∆V r

oak,∆V r
o )

cov(∆V i
oak,∆V r

oak) var(∆V i
oak) cov(∆V i

oak,∆V r
o ) cov(∆V i

oak,∆V i
o )

cov(∆V r
o ,∆V r

oak) cov(∆V i
oak,∆V r

o ) var(∆V r
o ) cov(∆V i

o ,∆V r
o )

cov(∆V r
oak,∆V r

o ) cov(∆V i
oak,∆V i

o ) cov(∆V i
o ,∆V r

o ) var(∆V i
o )

 (2.24)

Σ(∆V i
oak,∆V i

o )
=

[
var(∆V i

oak) cov(∆V i
oak,∆V r

o )

cov(∆V i
oak,∆V r

o ) var(∆V i
o )

]
(2.25)

cov(∆V r
oak,∆V r

o ) = E(∆V r
oak,∆V r

o ) = E(∆V r
oak

n∑
j=1

∆V r
oaj) (2.26)

= E(∆V r
oak∆V r

oak) + E(

n∑
j=1
k ̸=j

∆V r
oak∆V r

oaj)

= var(∆V r
oak) +

n∑
j=1
k ̸=j

E(∆V r
oak∆V r

oaj) (2.27)

cov(∆V i
oak,∆V i

o ) = E(∆V i
oak,∆V i

o ) = E(∆V i
oak

n∑
j=1

∆V i
oaj)

= var(∆V i
oak) +

n∑
j=1
k ̸=j

E(∆V i
oak∆V i

oaj) (2.28)

From (2.10)

var(∆V r
oak) = var(∆QakXoak − ∆PakRoak) (2.29)

= X2
oakvar(∆Qak) + R2

oakvar(∆Pak)

−2RoakXoakcov(∆Pak∆Qak)
(2.30)

E(∆V r
oak,∆V r

oaj) = E((∆QakXoak − ∆PakRoak)

(∆QajXoaj − ∆PajRoaj))
(2.31)
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= E(∆Qaj∆QakXoakXoaj) − E(∆Qaj∆PakRoakXoaj)

−E(∆Qak∆PajRoajXoak) + E(∆Paj∆PakRoakXoak)

= XoakXoajE(∆Qaj∆Qak) −RoakXoajE(∆Qaj∆Pak)

−RoajXoaiE(∆Qak∆Paj) + RoaiXoakE(∆Paj∆Pak)

= XoakXoajcov(∆Qaj∆Qak) −RoakXoajcov(∆Qaj∆Pak)

−RoajXoaicov(∆Qak∆Paj) + RoaiXoakcov(∆Paj∆Pak)
(2.32)

From (2.11)

var(∆V i
oak) = var(−∆QakRoak − ∆PakXoak) (2.33)

= Roakvar(∆Qak) + Xoakvar(∆Pak)

+2XoakRoakcov(∆Qak∆Pak)
(2.34)

E(∆V i
oak,∆V i

oaj) = E((−∆QakRoak − ∆PakXoak)

(−∆QajRoaj − ∆PajXoaj))
(2.35)

RoaiRoajcov(∆Qak∆Qaj) + RoajXoakcov(∆Pak∆Qaj)

XoajRoakcov(∆Paj∆Qak) + XoajXoakcov(∆Pak∆Paj)
(2.36)

E(∆V r
oak,∆V i

o ) = E((∆QakRoak − ∆PakXoak)

(−∆QajRoaj − ∆PajXoaj))
(2.37)

−XoakRoajcov(∆Qak∆Qaj) + RoajRoakcov(∆Pak∆Qaj)

−XoakXoakcov(∆Paj∆Qak) + XoakRoajcov(∆Pak∆Paj)

E(∆V i
oak,∆V r

o ) = −XoajRoakcov(∆Qak∆Qaj)

+ RoajRoakcov(∆Paj∆Qak + XoakRoajcov(∆Pak∆Paj)

−XoakXoajcov(∆Pak∆Qaj) (2.38)

Similarly, covariance matrices Σ(∆V i
oa,∆V i

o )
and Σ(∆Voa,∆Vo) are formulated to determine the impact

of power perturbation at active bus on imaginary and absolute part of change in voltage at observer

bus. Elements of covariance matrices Σ(∆V r
oa,∆V r

o ), Σ(∆V i
oa,∆V i

o )
and Σ(∆Voa,∆Vo) is analytically

derived using (2.13)-(2.16) and (2.27)-(2.38). Orthogonality of Z1 and Z2 is show in (2.19). Using

(2.19) and (2.20), Lagrange-multiplier is formulated for determining the maximum variance of

variable data points (∆V r
oa,∆V r

o ) along the new axis Zn, as shown in (2.39).

L = aTnΣ(∆V r
oa,∆V r

o )an − λ(aTnan − 1) (2.39)

dL

dan
=
(
Σ(∆V r

oa,∆V r
o ) − λI

)
an = 0 (2.40)

For determining the maximum variance of variable data points along the new axis Zn,

Lagrange-multiplier is differentiated in term nth row element (an) of transformation matrix

A because the position of variable data points on new transformed axis is decided by (an).

After simplifying (2.39), it is found that, (2.40) represents characteristic of covariance matrix

Σ(∆V r
oa,∆V r

o ); where λ represents the eigenvalue of Σ(∆V r
oa,∆V r

o ). From (17) and (20), it is seen that

the trace of the co-variance matrix and summation of their eigenvalues are equal due to Z1 and
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Z2, as shown in (2.41).
m∑

h=1

σhh = trace (Λ) =

p∑
h=1

(λh) (2.41)

From (2.41), it is concluded that the maximum variance of data point along the principal component

axis is the eigenvalue of the co-variance matrix. Now a selection of principal component axis for

determining the PV SI is done on the basis ηh as given in (2.42). ηh gives a fraction of the total

variance shared by the principal component axis. The higher value of ηh means that higher value

data point lies along that axis. On the basis of variance along that axis, the variance of variable

data point can be estimated. In this work, the axis which has the highest value of ηh that principal

component axis is considered for evaluating PV SI.

ηh =
λh∑M
h=1 λh

, h ∈ {1, 2, 3, .......M} (2.42)

PV SIkr = max{λΣ(∆V r
oak

,∆V r
o )
} (2.43)

where k represents active bus number i.e, k ∈ {2, 4, 6, .......}
To evaluate the impact of power perturbation on the real part of the change in voltage PV SIkr

is formulated as shown in (2.43). Similarly, PV SIki
and PV SIk are formulated to determine the

impact of power perturbation on imaginary and absolute parts of change in voltage, respectively.

Algorithm 1 gives the steps to calculate the PV SIkr
, PV SIki

and PV SIk for ranking the impact

of power perturbation at active buses on ∆V r
o , ∆V i

o and ∆Vo, respectively.

Algorithm 1 calculation of PV SI

1: Construct the impedance matrix (Zbus) to determine common impedance (Zoak
), reactance

(Xoak
), and resistance (Roak

) between the active bus k and observer bus O. The off-diagonal
element of Zbus is the common impedance, and their real and imaginary parts are common
resistance and reactance, respectively; where k ∈ {2, 4, 6, .......}

2: Estimate the power perturbation at all active buses using a zero mean normal probability
density function.

3: Calculate covariance matrices cov(∆V r
oak,∆V r

o ), cov(∆V i
oak,∆V i

o ) and cov(∆Voak,∆Vo). The
elements of covariance matrix are analytically determined as given in (2.24)-(2.38).

4: Evaluate the eigenvalues of covariance matrices cov(∆V r
oak,∆V r

o ), cov(∆V i
oak,∆V i

o ), cov(∆Voak,∆Vo).
5: Calculate PV SIkr

, PV SIki
, PV SIk as following:

[a] The impact of power perturbation at the active bus on the real part of the change in voltage
at the observer bus (∆V r

o ) is determined on the basis of PV SIkr
. PV SIkr

=max(λ(∆V r
oak∆V r

o ))
[b] The impact of power perturbation at active bus on imaginary part of change in voltage at
observer bus (∆V i

o ) is determined on the basis of PV SIki ; PV SIki=max(λ(∆V i
oak,∆V i

o )
)

[c] The impact of power perturbation at active bus on absolute change in voltage at observer
(∆Vo) is determined on the basis of PV SIk PV SIk= max(λ(∆Voak,∆Vo))

6: Rank the active buses on the basis of PV SI. The bus which has highest value of PV SI is
considered as most impactful bus for change in voltage at observer bus.

2.4 Case Study and Discussion

To verify PV SI for ranking the impact of power perturbation at active buses on change in voltage

at observer buses 69-bus and 141-bus distribution system is taken into account. The system data

are given in [94, 95]. The structure, branch data and bus data of 141-bus system is presented

in Chapter-A. The test system’s nominal voltage and power ratings are taken as 12.47 kV and

100 MVA, respectively. The PV SI is capable of determining the impact of power perturbation

at the active bus on voltage deviation at the observer bus with the arbitrary number of DGs at a
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random position. However, for simplicity, in both the test system, the even number bus is selected

as the active bus, and the far-end odd number bus from the grid has been selected as the observer

bus. For finding out PV SI, Algorithm 1 is implemented in MATLAB R2019b with the system

configuration of Intel-Core i7-8700, CPU @ 3.20 GHz. It is verified in three scenarios on 69-bus

and 141-bus distribution systems by comparing the results with the traditional MCS method as

explained in section II-A and JDE method [26].

2.4.1 Change in active power at multiple buses

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35

47 48 49 50
51 52 66 67

68 69

53 54 55 56 57 58 59 60 61 62 63 64 65

36 37 38 39 40 41 42 43 44 45 46

1

Fig. 2.4: 69-bus distribution system

The output power from (DGs) depends on weather conditions, due to which it is very important

to gather information about the impact of active power perturbation on voltage deviation for the

optimal and dynamic solution of voltage control. The variance of power perturbation at any active

bus depends on the size of DG at that bus. In this case, three different sizes of normal random

variables is taken to model the active power perturbation at multiple locations in distribution

systems, as shown in the (2.44), (2.45) and (2.46).

The power perturbation on available DGs in the distribution system is correlated. The correlation

exists among them due to several factors, such as environmental factors like solar irradiance, wind

speed or change in the price of electricity. For incorporating the correlation among the DGs for

active power perturbation, The correlation coefficient (ρp) for active power perturbation has been

taken as 0.2 [89].

∆Pk = N(0, 1
√

2), k ∈ {2, 8.....} (2.44)

∆Pk = N(0, 2
√

2), k ∈ {4, 10.....} (2.45)

∆Pk = N(0, 3
√

2), k ∈ {6, 12, .....} (2.46)

2.4.1.1 69-bus distribution system

Active power perturbation (∆Pk) is considered on thirty-four active buses as given in (2.44),

(2.45) and (2.46); where k represents the active buses k ∈ {2, 4, 6.....68}, and it is shown in Fig.2.4.

Observing their effect on change in voltage, bus 27, bus 45 and bus 51 are selected as observer

buses.

2.4.1.2 141-bus distribution system

Active power perturbation (∆Pk) is considered on seventy active buses as shown in (2.44), (2.45)

and (2.46); where k ∈ {2, 4, 6.....140} and for observing their effect on change in voltage, bus 59,
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bus 129 and bus 141 are selected as observer buses.

2.4.1.3 Calculation of PV SI in 69-bus distribution system for active bus 68

1. For finding out the impact of active power perturbation at bus 68 on real, imaginary

and absolute part of change in voltage at observer bus 27, firstly covariance matrices

Σ(∆V r
27,68,∆V r

27)
, Σ(∆V i

27,68,∆V i
27)

and Σ(∆V27,68,∆V27) are calculated as given below :

Σ(∆V r
68,27,∆V r

27)
= 10−6

[
0.2804 0.0048

0.0048 0.0047

]

Σ(∆V i
27,68,∆V i

27)
= 10−7

[
0.7965 0.0160

0.0160 0.0152

]

Σ(∆V27,68,∆V27) = 10−6


0.0047 0.0014 0.0048 0.0013

0.0014 0.0015 0.0014 0

0.0048 0.0014 0.2804 0.0664

0.0013 0 0.0664 0.0796


2. After that, eigenvalues of covariance matrices Σ(∆V r

27,68,∆V r
27)

, Σ(∆V i
27,68,∆V i

68)
and

Σ(∆V27,68,∆V68) are evaluated as given below:

PV SI68r = max(0.0460 × 10−7, 0.2804 × 10−6)

PV SI68i = max(0.0149 × 10−7, 0.7968 × 10−7)

PV SI68 = max(−0.0010 × 10−6, 0.0051 × 10−6,

0.0596 × 10−6, 0.3005 × 10−6)

3. The eigenvalues which have the highest value of the corresponding covariance matrix

are selected for PV SI68r , PV SI68i and PV SI68 to evaluate the impact of active power

perturbation on real, imaginary and absolute part of the change in voltage at observer bus

27 as shown below:

PV SI68r = 0.2804 × 10−6

PV SI68i = 0.7968 × 10−7

PV SI68 = 0.3005 × 10−6

Similarly, PV SIkr , PV SIki and PV SIk are evaluated for thirty-four active buses in 69-bus

distribution system and for seventy active in 141-bus distribution test systems. On the basis

of PV SI, the impact of power perturbation at active buses on the change in voltage at observer

bus are ranked.

2.4.1.4 Discussion

Ranking of active buses for perturbation in active power are done using proposed PV SI, JDE

and the traditional MCS methods, as explained in section II-A for 10,000 scenarios. For measuring

the accuracy of PV SI, JDE and the traditional MCS method are used. In Table 2.1, the ranking

of an active bus for the 69-bus distribution system is presented. Similarly, the ranking of active

buses for the 141-bus distribution system is presented in Table 5.5. In Table 2.1 and Table 5.5,
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Fig. 2.5: The PV SI of active buses for (a) change in voltage at bus 27, (b) change in voltage at
bus 141 due to active power perturbation at active buses

Table 2.1: Ranking of active bus for change in voltage at observer bus in 69 bus distribution system
by traditional MCS, JDE and proposed PV SI

Ranking MCS∆V27 JDE∆V27 PV SI∆V27

1 24 18 24
2 18 22 18
3 22 24 22
4 16 26 16
5 26 16 26
6 20 20 20
7 12 14 14
8 14 12 12
9 66 66 66
10 68 68 68

(a) For change in voltage at bus 27

Ranking MCS∆V45 JDE∆V45 PV SI∆V45

1 66 66 66
2 60 60 60
3 54 54 54
4 68 68 68
5 58 58 58
6 64 64 64
7 52 52 52
8 36 48 48
9 42 36 36
10 30 42 42

(b) For change in voltage at bus 45

Ranking MCS∆V51 JDE∆V51 PV SI∆V51

1 66 60 66
2 54 24 54
3 60 12 60
4 24 54 18
5 18 18 24
6 12 66 12
7 64 52 52
8 52 64 64
9 58 58 58
10 22 22 22

(c) For change in voltage at bus 51

the top ten active buses are arranged in descending order on the basis of their effect on the change

in voltage at the observer bus. In the first column, ranking by the traditional MCS method; in

the second column, ranking by the JDE method; and in the third column, ranking by PV SI

have been presented. The computation time for all three methods of ranking is given in Table
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Table 2.2: Computation time of ranking for ∆Pk

Distribution System Method Computation time
69-bus Traditional MCS 3250.8sec
69-bus JDE 0.7672ec
69-bus PV SI 0.1091sec
141-bus Traditional MCS 10430sec
141-bus JDE 0.8484sec
141-bus PV SI 0.120sec

5.5. The traditional MCS method runs (k + 1) × 10, 000 times load flow for considering 10, 000

scenarios of power perturbation at active buses to rank the active buses on the basis of their

impacts on the observer bus voltage. Here, k is the number of active buses. Therefore, it takes a

very high computation time for ranking, which makes this method inefficient to use in a real-time

scenario. The JDE takes relatively very less computation time than traditional MCS because it is

analytically derived. However, the analytic formulation of change in voltage at the observer bus due

to power perturbation at active buses used to formulate JDE requires an initial condition voltage

profile at the active buses. And it is determined by load flow which increases the computation

time. To formulate the PV SI, the analytic formula of change in voltage at the observer bus due

to power perturbation at active buses does not require the initial condition of voltage profile at

active buses. Therefore, it takes less computation time than the traditional MCS and JDE. After

comparing PV SI with JDE and traditional MCS methods in terms of accuracy and computation

time, it is observed that PV SI gives a similar ranking as the traditional MCS method in less

computation time than JDE, as shown in Tables 2.1, 5.5 and 2.2. Therefore, it can be applied in

a real-time scenario to determine the impact of active power perturbation on voltage deviation at

any bus.

In this case, PV SI is the maximum variance of a two-dimensional data point (∆V r
oak, ∆V r

o ),

(∆V i
oak, ∆V i

o ) and (∆Voak, ∆Vo) along the principal component axis due to perturbation in active

power at active buses. Here, ∆V r
oak, ∆V i

oak and ∆Voak are real part of change in voltage, imaginary

part of change in voltage and absolute change in voltage at observer bus O due to active power

perturbation at kth active bus. ∆V r
o , ∆V i

o and ∆Vo are the cumulative real part of change in

voltage , imaginary part of change in voltage and absolute change in voltage at the observer bus

O due to active power perturbation at the active bus together.

Fig. 2.5 shows PV SI values for all the active buses due to active power perturbation at active

buses. Considering bus 27 as the observer bus of the 69 bus system, PV SI values are shown in

Fig. 2.5-(a) and considering bus 141 as the observer bus of the 141 bus system, the PV SI value

are shown in Fig. 2.5-(b). In Fig. 2.5 , at the Y-axis PV SI value of all the active buses and at the

X-axis, active-buses k = 2, 3, 6. . . are represented. The brown line represents the value of PV SIkr

for all the active buses, and it shows the impact of active power perturbation on the real part of

the change in voltage. The yellow colour represents the value of PV SIki for all active buses, and it

shows the impact of active power perturbation on the imaginary part of the change in voltage, and

the blue line represents the value of PV SIk and it shows the impact of active power perturbation

on the absolute change in voltage.

In Fig. 2.5, the highest value of PV SIk is observed at active bus 24. Therefore, in the 69-bus

distribution system, bus 24 is selected as the most impactful bus for change in voltage at bus 27.

From all the active buses, bus 24 has the highest impact on the voltage profile of bus 27 due to

active power perturbation at active buses. Similarly, for the observer bus 45 and 51, the highest

value of PV SIk is observed. Thus, bus 66 is selected as the most impactful bus for change in
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Fig. 2.6: The PV SI of active buses for (a) change in voltage at bus 27, (b) change in voltage at
bus 141 due to reactive power perturbation at active buses

voltage at both the observer bus 45 and 51. From all the active buses, 66 has the highest impact

on the voltage profile of both the observer buses 25 and 51 due to active power perturbation at

active buses. In Fig. 2.5, the highest value of PV SIk is observed at bus 138. Thus, in the 141-bus

distribution system, bus 138 is selected as the most impactful bus for change in voltage at bus

141. Similarly, for 59 and 129 the highest value of PV SIk observed at buses 54 and 126. Hence,

buses 54 and 126 have the highest impact on change in voltage at observer buses 59 and 129 due

to active power perturbation at active buses. PV SIkr
gives the impact of power perturbation on

the real part of the change in voltage while PV SIki
gives the impact of power perturbation on the

imaginary part of the change in voltage. In Fig 5, it is seen that the value of PV SIki
is more than

PV SIki for all active buses. Therefore, it is concluded that perturbation in active power has more

influence on PV SIkr than PV SIki at the observer bus.

2.4.2 Change in reactive power at multiple buses

With the development of electronic power inverters, inverter interfaced DG itself offers reactive

power compensation for maintaining the voltage profile. Study the impact of reactive power

perturbation on voltage deviation; reactive power perturbation is considered at multiple buses.

Their effect on change in voltage at the observer bus is determined based on the basis PV SI,

JDE and the traditional MCS method. Perturbation in reactive power are modeled by a zero-mean

normal random variable and as given in (2.47), (2.48) and (2.49). For considering the correlation

among reactive power perturbation among the available DGs, the reactive power correlation

coefficient (ρq) is taken as 0.2.

∆Qk = N(0,
√

2), k ∈ {2, 8.....} (2.47)

∆Qk = N(0, 2
√

2), k ∈ {4, 10.....} (2.48)

∆Qk = N(0, 3
√

2), k ∈ {6, 12.....} (2.49)
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2.4.2.1 69-bus distribution system

Reactive power perturbation (∆Qk) are considered on thirty-four active buses as given in (2.47),

(2.48) and (2.49); where k ∈ {2, 4, 6.....68} and for observing their effect on change in voltage, bus

27, bus 45 and bus 51 are selected as observer buses.

2.4.2.2 141-bus distribution system

Reactive power perturbation (∆Qk) is considered on seventy active buses as shown in (2.47), (2.48)

and (2.49); where k ∈ {2, 4, 6.....140} and for observing their effect on change in voltage, bus 59,

bus 129 and bus 141 are selected as observer buses.

Table 2.3: Ranking of active bus for change in voltage at observer bus in 141-bus distribution
system by traditional MCS, JDE and proposed PV SI

Ranking MCS∆V59
JDE∆V59

PV SI∆V59

1 54 72 54
2 60 60 60
3 48 54 48
4 66 66 66
5 72 44 72
6 84 78 78
7 78 84 84
8 42 48 42
9 56 64 52
10 48 58 48

(a) For change in voltage at bus 59

Ranking MCS∆V129
JDE∆V129

PV SI∆V129

1 126 126 126
2 120 120 120
3 132 132 132
4 138 30 138
5 30 138 30
6 18 18 18
7 124 24 124
8 130 124 130
9 24 130 118
10 118 118 24

(b) For change in voltage at bus 129

Ranking MCS∆V141 JDE∆V141 PV SI∆V141

1 138 138 138
2 120 120 120
3 126 126 126
4 24 24 24
5 18 18 18
6 138 138 138
7 30 130 30
8 124 124 124
9 130 118 130
10 114 124 114

(c) For change in voltage at bus 141

2.4.2.3 Discussion

Ranking of active buses for perturbation in reactive power at active buses is done using the proposed

PV SI, JDE [26] and traditional MCS methods for 10,000 scenarios. After comparing PV SI with

JDE and traditional MCS methods, it is observed that the ranking due to perturbation in reactive

power at active buses gives a similar ranking as active power perturbation at active buses, as shown

in Table 2.1 and Table 5.5. Their computation time is given in Table 2.4. After comparing the

ranking method PV SI with JDE and the traditional method, it is observed that PV SI gives a

similar ranking as traditional MCS in less computation time than the JDE due to their simplistic

analytic formulation.
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In this case, PV SI is the maximum variance of a two-dimensional data point (∆V r
oak,∆V r

o ),

(∆V i
oak,∆V i

o ) and (∆Voak,∆Vo) along the principal component axis due to perturbation in reactive

power at active buses. Here, ∆V r
oak, ∆V r

oak and ∆Voak are the real part of change in voltage,

imaginary part of change in voltage and absolute change in voltage at observer bus O due to

reactive power perturbation at kth active buses and ∆V r
o , ∆V i

o and ∆Vo are the cumulative real

part of change in voltage, imaginary part of of change in voltage and absolute change in voltage

at the observer bus O due to reactive power perturbation at the active bus together.

Fig. 2.6 shows PV SI values for all the active buses due to reactive power perturbation at active

buses. Considering bus 27 as the observer bus of the 69 bus system, PV SI values are shown in

Fig. 2.6-(a) and considering bus 141 as the observer bus of the 141 bus system, the PV SI value

are depicted in Fig. 2.6-(b).

In Fig. 2.6-(a), the highest value of PV SI is observed at bus 24. Therefore, in the case of the

69-bus distribution system, reactive power perturbation at bus 24 is selected as the most impactful

bus for change in voltage at bus 27 due to reactive power perturbation at active buses. Similarly,

the highest value of PV SI is observed at bus 66 for observer buses 45 and 51. Therefore, active

bus 66 is selected as the most impactful bus for observer buses 45 and 51 due to reactive power

perturbation at active buses.

In Fig. 2.6-(b), the maximum value PV SI is observed at bus 132. Therefore, in the case of the

141-bus distribution system, bus 132 is considered as the most impactful bus for change in voltage

at bus 141 due to reactive power perturbation at active buses. Similarly, for the observer bus 59

and 129, the higher value of PV SI is observed at 54 and 126, respectively. Therefore, active bus

54 and 126 is selected as the most impactful bus for observer buses 59 and 129 due to reactive

power perturbation at active buses. In Fig 2.6, it is seen that the value of PV SIki
is more than

PV SIki
for all active buses. Therefore, it is concluded that perturbation in reactive power has

more influence on ∆V i
o than ∆V r

o at the observer bus.

Table 2.4: Computation time of ranking for ∆Qk

Distribution System Method Computation time
69-bus Traditional MCS 3310.8sec
69-bus JDE 0.7723sec
69-bus PV SI 0.1100sec
141-bus Traditional MCS 10694sec
141-bus JDE 0.8658sec
141-bus PV SI 0.1214sec

2.4.3 Change in active and reactive power both at multiple buses

In this case, complex power perturbation is considered at multiple buses, and their effect on change

in voltage at the observer bus is determined on the basis of PV SI, JDE and traditional MCS.

Perturbation in complex power is modeled as bi-variate normal random variable as provided in

(2.50), (2.51) and (2.52). The active and reactive power of inverter-based distributed generation is

negatively correlated. So, the correlation coefficient of active and reactive power perturbation (ρpq)

is taken as −0.1. For considering the correlation among the complex power perturbation at all the

available DGs in the distribution system, the active and reactive power correlation coefficient ρp

and ρq is considered as 0.2.[
∆Pk

∆Qk

]
∼ N

([
0

0

]
,

[
10 −.4472

−.4472 2

])
, k ∈ {2, 8..} (2.50)
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Fig. 2.7: The PV SI of active buses for (a) change in voltage at bus 27, (b) change in voltage at
bus 141 due to complex power perturbation at active buses

[
∆Pk

∆Qk

]
∼ N

([
0

0

]
,

[
20 −.8944

−.8944 4

])
, k ∈ {4, 10...} (2.51)

[
∆Pk

∆Qk

]
∼ N

([
0

0

]
,

[
30 −1.341

−1.341 6

])
, k ∈ {6, 12..} (2.52)

2.4.3.1 69-bus distribution system

Complex power perturbation (∆Sk) is considered at thirty-four active buses as given in (2.50),

(2.51) and (2.52); where k ∈ {2, 4, 6.....68} and for observing their effect on change in voltage,

bus-27, bus-45 and bus-51 are selected as observer buses.

2.4.3.2 141-bus distribution system

Complex power perturbation (∆Sk) is considered at seventy active buses as shown in (2.50), (2.51)

and (2.52), where k ∈ {2, 4, 6....140} and for observing their effect on change in voltage bus 59,

bus 129 and bus 141 is selected as observer bus.

2.4.3.3 Discussion

Ranking of active buses for complex power perturbation at active buses is done using the proposed

PV SI, JDE [26] and traditional MCS method. The ranking of active buses for complex power

perturbation is the same as active power perturbation and reactive power perturbation at active

buses, as shown in Table 2.1 and Table 5.5. The computation time is given in Table 2.5. After

comparing all three methods in terms of accuracy and computation time, it is observed that the

PV SI gives a similar ranking as traditional MCS in less computation time than JDE due to their

simplistic and analytic formulation.

In this case, PV SI is the maximum variance of a two-dimensional data point (∆V r
oak,∆V r

o ),

(∆V i
oak,∆V i

o ) and (∆Voak,∆Vo) along the principal component axis due to perturbation in complex

power at active buses. Here, ∆V r
oak, ∆V r

oak and ∆Voak are the real part of change in voltage,

imaginary part of change in voltage and absolute change in voltage at observer bus O due to
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Table 2.5: Computation time of ranking for ∆Si

Distribution-system Method Computation time
69-bus Traditional MCS 3373.31sec
69-bus JDE 0.8799sec
69-bus PV SI 0.1253sec
141-bus Traditional MCS 10956sec
141-bus JDE 0.9912sec
141-bus PV SI 0.1407sec

complex power perturbation at kth active buses and ∆V r
o , ∆V i

o and ∆Vo are the cumulative real

part of change in voltage, imaginary part of of change in voltage and absolute change in voltage

at the observer bus due to complex power perturbation at the active bus together.

Fig. 2.7 shows PV SI values for all the active buses due to complex power perturbation at active

buses. Considering bus 27 as the observer bus of the 69 bus system, PV SI values are shown in

Fig. 2.7-(a) and considering bus 141 as the observer bus of the 141 bus system, the PV SI value

are shown in Fig. 2.7-(b).

In Fig. 2.7-(a), shows the maximum value of PV SI observed at bus 24. Therefore, in the case

of the 69-bus distribution system, complex power perturbation at bus 24 is selected as the most

impactful bus for change in voltage at bus 27. Similarly, the highest value of PV SI is observed

at bus 66 for observer buses 45 and 51. Therefore, active bus 66 is selected as the most impactful

bus for observer buses 45 and 51 due to complex power perturbation at active buses.

Similarly, in Fig. 2.7-(b), the maximum variation in PV SI occurs at bus 132. Therefore, in the

case of the 141-bus distribution system, complex power perturbation at bus 132 is considered as

the most impactful bus for change in voltage bus 141. Similarly, for the observer bus 59 and

129, the higher value of PV SI is observed at bus 54 and 126, respectively. Therefore, active bus

54 and 126 is selected as the most impactful bus for observer buses 59 and 129 due to complex

power perturbation at active buses. From all three cases, it is observed that the active bus near

to observer bus, where the largest power perturbation is considered, has the highest impact on the

change in voltage at that observer bus. It happens due to the impact of power perturbation on

voltage deviation depending on the size and location of the perturbation. In Fig. 2.7, it is seen

that the value of PV SIkr is more than PV SIki , because perturbation of active power is dominant

over reactive power perturbation due to its size.

2.5 Conclusion

� The traditional Monte Carlo Simulation (MCS) method for evaluating the impact of

power perturbation at active buses on bus voltage is computationally intensive. A

Principal Component Analysis-based novel Probabilistic Voltage Sensitivity Index (PV SI)

is introduced to reduce computation time. The effectiveness of the proposed method is

validated on the 69-bus and 141-bus distribution systems by comparing it with established

Joint Differential Entropy (JDE) and traditional MCS methods.

� To evaluate the impact of power perturbation at active buses on voltage deviation at observer

buses, active, reactive and complex power perturbations are considered at multiple active

buses in three different cases. From all these cases, it is observed that PV SI gives a similar

ranking as the traditional MCS and JDE methods in 85.75% and 85.8% less computation

time than the JDE for 69-bus and 141-bus systems, respectively.
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� Due to the advantage in computation time and accuracy, PV SI can be utilized in many

applications, such as identifying the DG responsible for voltage fluctuation in the distribution

system to enhance grid reliability and clustering the distribution network to implement the

decentralized voltage control.

� One of the strengths of the proposed PV SI is that in the simulation, not only unidirectional

but also bidirectional power flows are taken into account at several active buses. It is done by

taking the variance of power perturbation more than the load at that active bus. Therefore,

the ranking proposed by PV SI is valid for the distribution system where DGs are feeding

power back to the grid.
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Chapter 3

Optimal Selection of Voltage

Controlling Parameter in

Uncertain Active Distribution

Network

3.1 Introduction

The increasing integration of Converter-Based Generation (CBG), such as solar and wind power,

along with the expansion of Electric Vehicle (EV) charging infrastructure, introduces significant

uncertainty into the distribution network. This uncertainty arises from the variable nature of CBG

outputs, the unpredictable number of EVs arriving at Charging Stations (CS), and the fluctuating

power demands from consumers. As a result, maintaining a stable voltage profile within the

distribution system becomes more complex and challenging.

To address these challenges, this work focuses on improving the voltage profile by

optimizing voltage-controlling parameters. It is achieved through formulating a comprehensive

Multi-Objective Optimal Power Flow (OPF) problem that considers various aspects of the

distribution network. The analysis incorporates CBG sources and aims to balance multiple

objectives, such as minimizing line losses, reducing voltage deviation, and maximizing the output

power of CBG sources.

The Modified Jaya (M-Jaya) algorithm is used to solve the optimization problem. This algorithm

is adept at converting multiple objectives into a single objective function, which simplifies the

optimization process while ensuring that all key objectives are considered. The M-Jaya algorithm

iteratively adjusts the voltage-controlling parameters to find the optimal balance that meets all

objectives. Additionally, we integrate a state-based probabilistic model to accurately account

for the inherent uncertainties in the distribution network. This model considers the intermittent

nature of CBG outputs, the varying number of EVs at charging stations, and the dynamic power

demand from the load. By incorporating these uncertainties into the OPF analysis, we ensure

that the solutions are robust and reliable under different operating conditions. To validate our

approach, we conducted numerical tests on two benchmark distribution systems: the enhanced

IEEE-33 bus system and the unbalanced IEEE-123 bus system. These tests involved determining

the optimal settings for voltage-controlling parameters over a 24-hour period, reflecting the typical

daily variations in generation and load.

This approach provides a robust framework for managing the complexities and uncertainties

associated with modern distribution networks, ensuring stable and efficient operation in the face

of increasing renewable energy penetration and EV adoption.

This chapter is organized as follows. In Section 3.2, the modeling of the distribution network is
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presented. The problem formulation for OPF with their constraints is explained in Section 3.3.

The M-Jaya algorithm is used to solve the OPF, and it is explained in Section 3.4. The numerical

test of the multi-objective optimal power flow with the state-based probabilistic model is done on

enhanced IEEE-33 and unbalanced IEEE-123 test system, and their result is explained in Section

3.5. The conclusion of the work is given in Section 3.6.

3.2 Modeling of distribution network

Classify these data points into 24-hour. Find out mean and 

variance of each hourly data point. 

Take the historical  data of solar irradiance, wind speed, load 

demand and number of EVs arrival at charging station form site 

that are under study[18]-[20].

Using hourly  mean and variance of respective data points, 

estimate PDF as follows:

Weibull 

distribution 

function

Normal 

distribution

Beta 

distribution 

function

Normal 

distribution

Solar 

irradiance
Wind speed

 EVs arrival 

at charging 

station

Load 

demand

Fig. 3.1: Steps to model PDF

In this section, formulation for power generation from wind and solar-based energy resources, load

demand and number of EVs arriving at charging stations using respective Probability Density

Function (PDF) has been explained. Simultaneously, the modeling of EVs present at charging

stations as load and charging/discharging of Battery Energy Storage System (BESS) installed at

a charging station is also presented.

3.2.1 Modeling of hourly solar irradiation and power output

Mainly solar irradiation is estimated by Beta distribution. The PDF of solar irradiance is expressed

as shown in equation (3.1).

fb(r) =


Γ(aa+b)

Γ(aa)×Γ(b)
× raa−1 × (1− r)b−1, 0 ≤ r ≤ 1, a ≥ 0, b ≥ 0

0 Otherwise
(3.1)

where r is normalized solar irradiation, fb(r) is Beta distribution function. aa, b are shape

parameter of Beta distribution. As explained in Fig. 3.1, hourly solar irradiance is modeled by the

Beta distribution function using 5-years (365 × 5 × 24) of solar irradiance data [96]. Fig. 3.2-(a)

shows the estimation of 13h solar irradiance by Beta distribution function with shape parameters

aa = 8.9 and b = 3.56.

b = (1− µ)×
(µ× (1− µ)

σ2
− 1
)
, aa =

µb

1− µ
(3.2)

For considering the uncertainty, the continuous hourly PDF of solar irradiation has been classified

into several states. Classification of states is crucial, the high number of states increases accuracy

but it also increases complexity while calculating output power. The probability of solar irradiance
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for any state is calculated from the corresponding continuous PDF as shown in the (3.3).

psy =

∫ sy2

sy1

fb(r)dr (3.3)

psy is probability of solar irradiance in state y. sy1 and sy2 are limits of solar irradiation probability

for state y. The output power from the PV module depends upon solar irradiance, site temperature

and characteristics of the PV module. For each state of the hourly time segment, the calculation

of output power from PV module is shown from (3.4) to (3.8).

TCy
= TA + ray

(NOT − 20

0.8

)
(3.4)

Iy = ray

[
Isc + Ki(Tc − 25))

]
(3.5)

Vy = Voc −Kv ∗ TCy
(3.6)

Pray (t) = N ∗ FF ∗ Vy ∗ Iy (3.7)

FF =
VMPP ∗ IMPP

Voc ∗ Ioc
(3.8)

where Tcy is cell temperature °C during state y. TA is ambient temperature °C. Kv is

voltage temperature coefficient. Ki is current temperature coefficient. NOT is nominal operating

temperature of cell in °C. FF is ill factor. Voc is open-circuit voltage in V. Isc is short-circuit

current in A, IMPP is current at maximum power point in A. VMPP is voltage at maximum power

point in V. Pray
(t) is output power of PV module during state y of time segment ∆t. And ray is

average irradiation of state y.

3.2.2 Modeling of wind speed and output power

Wind speed is modeled as Weibull distribution. As shown in (3.9)

fw(v) =
k

c
× (

v

c
)k−1 × e

[
−
(v
c

)k]
(3.9)

where v is normalized wind speed. fw(v) is Weibull distribution function. k is shape parameter of

Weibull distribution. c is scale parameter of Weibull distribution. As explained in Fig. 3.1, hourly

wind speed is modeled by the Weibull distribution function using 5-years (365 × 5 × 24) of wind

speed data [96]. In Fig. 3.2-(b), the estimation of 15h wind speed data by Weibull distribution

function with shape parameters k = 0.77 and c = 8.56 is shown.

k = (
σ

µ
)−1.86, c =

µ

Γ(1 +
1

k
)

(3.10)

For considering the uncertainty of wind speed, their continuous hourly PDF is classified into several

states. The probability of wind speed for any state is calculated from the corresponding continuous

PDF as shown in the equation (3.11).

pvz =

∫ wz2

wz1

fw(v)dv (3.11)

where pvz is probability of wind speed in state z. wz1 and wz2 are limits of wind speed probability

for state z. The output power from a wind turbine mainly depends upon wind velocity, the size of

the turbine and the length of its blade. For each state of the hourly time segment, the calculation
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of output power from the wind turbine is provided in (3.12).

PVz (t) =



0 0 ≤ vaz ≤ vci

Prated ∗ (vaz−vci)
vaz−vci

vci ≤ vaz ≤ vr

Prated vr ≤ vaz ≤ vco

0 vco ≤ vaz

(3.12)

where vci, vr and vco is cut in speed, rated speed and cut-off speed of wind turbine respectively.

PVz is out put power of wind turbine during state z for time segment ∆t. vaz is average wind

speed of state z.

0.5 0.6 0.7 0.8 0.9

Normalized solar-irradiance

0

1

2

3

4

D
en

si
ty

Histogramof solar irradiance

Beta Fit

(a)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Wind speed

0

1

2

3

4

5

6

D
en

si
ty

Histogram of wind speed

Weibull fit

(b)

0.2 0.3 0.4 0.5 0.6 0.7

Normalized load demand

0

1

2

3

4

5

6

D
en

si
ty

Histogram of load

Normal fit

(c)

4 5 6 7 8 9 10 11

Number of EV arriva at charging station

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

D
en

si
ty

Histogram of number of EV arrival at charging station

Normal fit

(d)

Fig. 3.2: PDF of (a) Solar irradiation of 13h (b) wind speed of 15h (c) load of 13h (d) number of
EVs arrival of 13h

3.2.3 Modeling of Load

The load demand is estimated by the normal distribution function. The PDF of load demand is

expressed as shown in (3.13).

fL(l) =
e

−(l − µl)
2

2(σl)2

σl

√
2π)

(3.13)

where µl, and σl are mean and stander deviation of load for hourly time period. As explained

in Fig. 3.1, hourly load demand is modeled by the Normal distribution function using 5-years

(365 × 5 × 24) of load demand data [97]. Fig. 3.2-(c) shows the estimation of 13h load demand

by Normal distribution function with µl = 0.39 and µl = 0.098. For considering the uncertainty

of load demand, their continuous hourly PDF is classified into several states. The probability of

load demand for any state is calculated from the corresponding continuous PDF as shown in the
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(3.14).

pLs =

∫ sl2

sl1

fL(l)dl (3.14)

where sl1 and sl2 are lower and upper limits of load demand power for state s.

3.2.4 Modeling of EVs as load

The State Of Charge (SOC) of an Electric Vehicle (EV) battery changes with time when the EV

is connected to the distribution network. It is updated for each time interval as shown in (3.15).

SOCE,n,s(t) = SOCE,n,s(t− 1) + ηEch,nPEch,n,s(t)∆t (3.15)

where SOCE,n,s(t) and SOCE,n,s(t − 1) are the present and previous SOC of nth EV available

in the charging station for state s. PEch,n,s(t) is the charging power of nth EV for state s. ∆t is

the time segment of charging. The charging power of an EV is a chunk of the total power of the

charging station. ηEch,n represents efficiency of charging power for nth EV. The charging power of

EVs is expressed in the (3.16).

PEch,n,s(t) =
(Cbatt,n − SOCn,s(t)Cbatt,n)PCS,s(t)

Trem,n ×
∑m

j=1(
1

Trem,j
)(Cbatt,j − SOCj,s(t) × Cbatt,j)

(3.16)

where Trem,n = Td,n − Tarr,n, Cbatt,n represents battery capacity. Tarr,n represents arrival time of

nth EV.

3.2.4.1 Stochastic Nature of EV

The EVs are composed of many random variables, such as (i) Traveling distance during the day,

(ii) Parking time, (iii) Arrival time, and (iv) Driving methods. These variables should be taken

into account in the optimization model. The arrival time of EVs at charging stations is a random

variable, and it is modeled by a normal pdf [98] as described in (3.17) .

fEn
(Tarr) =

e
−(

Tarr − µTarr

2σTarr

)2

σTarr

√
2π

(3.17)

where Tarr,n represents the arrival time of nth EV. µarr and σTarr are the mean and standard

deviation of the daily arrival time of EV at the charging station. The starting SOC depend on

many factors, such as (1) Daily traveled distance dn (2) All-Electric Range (AERn) (3) Battery

SOC at the departure time. The mathematical expression of starting SOC of the EV battery is

shown in (3.18).

SOCstart,n(%) = (1 − dn

AERn
) × 100

AER =
Cbatt,n

Econs/mile,n

(3.18)

Daily distance traveled by EVs is arbitrary in nature, and it is estimated by lognormal pdf as

shown in (3.19).

fEd
(dn) =

1

dn
√

2π(σdn
)2

× e
−

(ln(dn) − µdn)

2(σdn
) , dn > 0 (3.19)

where µdn
and σdn

are mean and stander-deviation of daily distance traveled by EVs.
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3.2.4.2 Evaluation of Number of EVs at Charging station

The number of EVs at charging stations is determined by using a state-based probabilistic method

using equation (3.20).

NEV (Tarr) = 100 ×
∫ t2

t1

fEn(Tarr)dTarr (3.20)

where NEV represents number of EVs arrival at time segment Tarr. Considering the stochastic

nature of the number of EVs arrival at a charging station in time segment ∆t is modeled by normal

random variable as given (3.21) with mean and variance as NEV and 0.2NEV , respectively.

fnEV
(nEV ) =

e

−(nEV − µt
EV )2

2(σt
EV )2

σt
EV

√
2π)

(3.21)

The probability pnEVs
of EVs arrival in state s is calculated as given equation (3.22).

pnEVs
=

∫ sEV2

sEV1

fnEV
(nEV )dnEV (3.22)

where sEV1
and sEV2

are upper and lower limit of EVs arrival at charging station in state s. As

explained in Fig. 3.1, EVs arrival at the charging station is modeled by Normal distribution using

5-years (365×5×24) of travelling end time data given in [99]. Fig. 3.2-(d) shows the estimation of

13h EVs arrival at the charging station by Normal distribution function with µl = 8 and σ2
EV = 4.

3.2.5 Modeling of BESS at Charging Station

The installation of BESS at the charging station mitigates the voltage fluctuation due to uncertain

load demand by EV-load. It assists in maintaining the bus voltage by optimal planning of their

charging and discharging. The mathematical modeling of charging-discharging is shown in [100]

(3.23)

SOCB,s(t) = SOCB,s(t− 1) + ηBchPBch,s(t)∆tα− PBdc,s(t)∆tβ

ηBdc
(3.23)

where α and β ∈ (0, 1), and αβ = 0, because both charge and discharge of the battery are not

possible at a time. ηBch and ηBdc are charging and discharging efficiency of BESS. PBch,s and PBdc,s

represents the charging and discharging power of BESS for state s. SOCB,s(t) and SOCB,s(t− 1)

represents the present and previous SOC of BESS for state s.

3.2.5.1 Charging of BESS

BESS stores a fraction of the power generated by DG if the load at the charging station integrated

bus at time t is less than DG generation as shown (3.24)

PBch,s(t) = ηBchKBch,s(t)PVs(t),KBch,s(t) > 0 (3.24)

where PV (t) represents available DG power in time segment ∆t. KBch(t) represents fraction of

DG power, which is stored by BESS in time segment ∆t for state s.

3.2.5.2 Discharging of BESS

BESS release a fraction of the stored power if the load at the charging station integrated bus at

time t is more than DG generation as shown (3.25).

PBdc,s(t) =
ηBdcKBdc,sSOCB,s(t− 1)CBESS

∆t
(3.25)
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where CBESS represents total capacity of BESS. KBdc,s(t) is fraction of BESS power, which is

release by BESS in time segment ∆t for state s.

3.3 Problem Formulation

OPF is used to determine the optimal solution for control variables by satisfying certain objective

functions. While determining an optimal solution, it also satisfies all constraints. Therefore,

in this work, OPF has been used to determine optimal rating of voltage controlling devices

while considering the objective function as minimization of power losses, minimization of voltage

deviation and maximization of power output from DG in the distribution power network.

3.3.1 Objective Function

The multi-objective function for the OPF problems under consideration aims to minimize network

losses, voltage deviations, and reactive power absorption by the available CBG, as given in (3.26).

minf =

Nt∑
t=1

Ns∑
k=1

(
P abc
Loss,s(t)

+Kv(
∑
Tb

(∆V abc
s (t)))2 +Kq(

∑
DGb

(∆Qabc
s (t)))2

) (3.26)

where f is a multi-variable objective function. Nt and Ns are the total number of time segments

and the total number of states for each time segment. Kv and Kq is penalty factors. In this

work Kv and Kq have been selected as 103. ∆V abc
s (t)) represents phase a, b and c bus voltage

limit violations in state s for a time segment ∆t. ∆Qabc
s represents the reactive power provided

by a CBG in state s during a time segment ∆t across phases a, b and c. Tb and DGb are used to

represent the total number of buses and the total number of CBG-integrated buses in the network,

respectively.

3.3.1.1 Constraints

Two types of constraints has been taken into account, which are explained as following

3.3.1.2 Equality Constraints

P abc
ij,s(t) = −κ(s, 1)P abc

PV
j
(t) − κ(s, 2)P abc

WTj
(t) + κ(s, 3)P abc

Lj
(t)

+κ(s, 4)P abc
Ech

j,s
(t) + P abc

jk,s(t) ± P abc
Bdc/sc,j,s(t)

Qabc
ij,s(t) = ±Qabc

PV
j,s

(t) ±Qabc
WTj,s

(t) + κ(s, 3)Qabc
Lj,s

(t)

+Qabc
sh,j,s(t) + Qabc

jk,s(t)

(V abc
i,s (t))2 = (V abc

j,s (t))2 + 2(Rabc
ij P abc

ij,s(t) + Xabc
ij Qabc

ij,s(t))

+Z2
ijI

abc
ij (t) (3.27)

Iabcij (t) =
(P abc

ij,s(t))2 + (Qabc
ij,s(t))

2

(V abc
i,s (t))2

Qabc
PV,i,s(t) =

√
(Scomp

PVabc,i,s
(t))2 − P abc

PV,s,i(t))
2

Qabc
WT,i,s(t) =

√
(Scomp

WTabc,i,s
(t))2 − P abc

WT,s,i(t))
2

where κ is a matrix with four columns, which comprises all the combination of the states of wind,

solar, the number of EVs arriving at the charging station and load demand. i, j and k represent
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three consecutive buses of the network. P abc
PVj,s

(t) and P abc
WTj,s

(t) are active power generated by solar

and wind type generation in phase a, b and c during time segment ∆t for state s. P abc
Lj,s

(t) is load

demand of phase a, b and c during of time segment ∆t for state s at jth bus. P abc
Ech

j

(t) is phase power

demand by EVs for time segment ∆t of state s. P abc
Bch/dc,j,s(t) is the phase charging-discharging

power of BESS installed at a charging station for state s of time segment ∆t. Qabc
PVj,s

(t), Qabc
WTj,s

(t),

Scomp
PVj,s

(t) and Scomp
WTj,s

(t) are active, reactive power and complex power generated by solar and wind

type converter-based generation integrated in phase a, b and c during time segment ∆t for state

s. Qabc
Cj,s

(t) is reactive power supplied in each phase a, b and c by reactive power compensator for

a time segment ∆t of state s. P abc
ij,s(t) and Qabc

ij,s(t) are phase a, b and c active and reactive power

coming from ith to jth bus. P abc
jk,s(t) and Qabc

jk,s(t) are outgoing active and reactive power from

jth to jth bus. V abc
i,s (t) and V abc

i,s (t) represent phase a, b and c voltage of ith and jth bus during

time segment ∆t for state s. Iabcij (t) is current flowing in each phase a,b and c from it h to jth

buses during time segment ∆t for state s. Rabc
ij , Xabc

ij and Zabc
ij represents resistance, reactance

and impedance of phase a, b and c between line ith and jth buses, respectively.

3.3.1.3 Inequality Constraints

Pmin
PVabc

≤ P abc
PV,j,s(t) ≤ Pmax

PVabc

Pmin
WTabc

≤ P abc
WT,j,s(t) ≤ Pmax

WTabc

Qmin
PVabc

≤ Qabc
PV,j,s(t) ≤ Qmax

PVabc

Qmin
WTabc

≤ Qabc
WT,j,s(t) ≤ Qmax

WTabc

V min
abc ≤ Vj,abc,s(t) ≤ V max

abc

Tmin
tap ≤ Ttap,i ≤ Tmax

tap

Qmin
C,abc ≤ Qabc

C,s(t) ≤ Qmax
C,abc (3.28)

P abc
Ech,n,s(t) ≤ 0.2Cbatt,n

SOCabc
Emin,n ≤ SOCE,n,s,j(t) ≤ SOCabc

Emax,n

P abc
Bchmin

≤ P abc
Bch,s(t) ≤ P abc

Bchmax

P abc
Bdcmin

≤ P abc
Bdc,s(t) ≤ P abc

Bdcmax

SOCabc
Bmin ≤ SOCabc

B,s(t) ≤ SOCabc
Bmax

where Pmax
PVabc

, Pmin
PVabc

, Pmax
WTabc

and Pmin
WTi

are maximum and minimum active power generation from

solar and wind type generation integrated in phase a, b and c, respectively. Tmax
tap and Tmin

tap are

minimum and maximum OLTC tap settings limit. Qmin
C,abc and Qmax

C,abc are shunt compensator limits

integrated in phase a, b and c. Qmax
PVabc

, Qmax
WTabc

, Qmin
PVabc

and Qmin
WTabc

are reactive power limits of

CBG solar and wind type generation integrate in phase a, b and c, respectively. P abc
Ech,n,s(t) charging

power of nth EV connected in phase a, b and c. SOCabc
Emin and SOCabc

Emax are the limit of state

of charge of EVs battery integrated in phase a, b and c. P abc
Bchmax

, P abc
Bchmax

, P abc
Bdcmin

and P abc
Bdcmax

are charging and discharging power limit of battery installed at the charging station in phase a, b

and c. SOCBmax and SOCBmin are the limit of the state of charge of the battery installed at the

charging station in phases a, b and c.
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Input Output

Take the historical 

data of solar 

irradiance, wind speed 

, load profile and 

number of EV arrival 

at charging station 

from the site under 

study.

Generate the hourly 

probabilistic model of 

solar irradiance ,wind 

speed, load profile and 

number of EV arrival 

at charging station. 

 

Read the location of 

charging station, DG 

with types their 

operating constraints 

and their control 

mechanism 

Segregate these hourly 

PDF into multiple 

states and store  all the 

possible combination 

of states (ns) with their 

probability. 

Step:2

Initialize the population for set of voltage 

controlling  devices as shown in equation 

(29) for the combination of state of input 

variable Cn=n

where, n ε{1,2…..ns}

Calculate set average best and worst value 

of set solution for cost function (26)

Update set of solution as show in (30)

If i+1 gives better solution. Select i+1 as 

new solution

Is stopping criteria satisfies 

Store value of optimal  operating point of 

voltage controlling devices by multiplying 

with probability 

Summation of respective stored value of 

voltage controlling device is considered as 

optimal rating of voltage controlling 

devices for hourly time segment

If Cn=ns

Step:1

Step:3

Optimal setting of 

reactive  power 

compensator

Optimal tap-setting 

of OLTC

Optimal DGs 

reactive power

Optimal charging- 

discharging rate of 

BESS 

 Optimal charging 

rate of EVS 

Yes

No

Yes

No

Fig. 3.3: Steps to determine optimal setting of voltage controlling parameters

3.4 Jaya algorithm for solving OPF

Jaya algorithm retains the feature of evolutionary algorithm and swarm-based intelligence. Jaya

algorithm has certain merits over the population-based algorithms, such as it does not require

derivative information for the initial search and algorithmic specific parameters. Jaya algorithm

search for a solution by getting closer to the global best solution and eliminating the worst solution

as shown in equation (3.30) to (3.31).

x̄0 = x̄min + c0(x̄max − x̄min) (3.29)

x̄i+1
k = x̄i

k + c1 × (x̄b− | x̄i
k |) − c2 × (x̄w− | x̄i

k |) (3.30)

x̄ab =
x̄b1 + x̄b2 + x̄b3

3
(3.31)

where x̄0 is an initial set of solutions. x̄i+1
k is set of updated solution. k is population size. i is

the number of iterations. In this work, population size and number of iteration are considered as

20 and 100 respectively. c0 , c1 and c2 are random variables and their values lies between [0, 1].

x̄b and x̄w is set of best and worst solution for it h iteration. x̄ab is average best solution. In this

work, the best solution of the Jaya algorithm has been modified by taking the average of the top

three best solution as shown in (3.31). It improves the convergence rate for the cost function.The

number iteration is considered as convergence criteria for solving the OPF problem. The basic

steps to solve the OPF problem by the Jaya algorithm have been explained in step: 2 of Fig. (3.3).
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SOC for EV batteries
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Fig. 3.5: Enhanced IEEE-33 test system

3.5 Results and Discussion

The optimal setting of the voltage-controlling parameters is determined for the enhanced IEEE-33

[101] and unbalanced IEEE-123 [102] distribution system. For evaluating the optimal setting of the

voltage-controlling parameters for both systems, MATLAB R2019b with the system configuration

Intel-Core i7-8700, CPU @ 3.20GHz, is used. Base power and voltage for IEEE-33; 100 MVA,

12.66 kV and IEEE-123 distribution; 100 kW, 4.16 kV.

3.5.1 Enhanced IEEE-33 distribution system

In this test system, the optimal setting of the voltage-controlling parameters are determined in

three scenarios of power generation by renewable-based generation as follows, (1) Only solar-based

generation, (2) Only wind-based generation, (3) Solar and wind generation together. For

considering the impact of the tap changer on voltage control, at three locations, the transformer

equipped with a tap-changer has been considered as shown in Fig. 3.5. The maximum and

minimum tap settings are considered as -5 and 5. At buses 18, 22, 25, and 33 DG of rating 800 kW

is considered based on voltage sensitivity [101]. At buses 18 and 33, reactive power compensators of

rating 400 kVAR and 600 kVAR are considered, respectively. At buses 22 and 25, a charging station

is considered. Both charging stations can accommodate 100 EVs during the day. It is assumed

that each EV and charging station is installed with 85 kWh and 500 kWh battery, respectively.

Simultaneously, the initial SOC of installed BESS at CS is assumed to be 0.45 pu. The number

of EVs arriving for each hourly time segment of the 24 h time period is determined from end time

data given in [99] using (3.17) and it is shown in Fig. 3.4-(a). The initial SOC of the EV battery

is determined by daily distance traveled data given in [99] using (3.17) to (3.18), and it is shown in

Fig. 3.4-(b). The parking time of EVs is considered 5 h [103]. For finding out the optimal setting

of voltage controlling parameters for maintain the bus voltage variation within the limits of ±5%
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[104], OPF given in (3.26) to (3.28) has been solved using the M-Jaya algorithm.

Table 3.1: State with their Probability of Input Variables for 13 h in case of Solar type DGs

State DG output Prob Load Prob EVs Prob
1 0 ≤ps<0.6 0.267 0≤l<0.5 0.8919 4≤E<9 0.71

2 0.6 ≤ ps <1 0.73983 0.5≤l<1 0.1081 9≤E<11 0.29

Table 3.2: Combination of States of Input Variable for 13 h in case of Solar type DGs

State Combination of DG-output, number of EVs Probability
arrival at CS and load demand

1 0 ≤ps<0.6 ,0≤l<0.5, 4≤E<9 0.1690
2 0≤ps<0.6 ,0≤l<0.5,9≤E<11 0.0695
3 0≤ps<0.6 ,0.5≤l<1,4≤E<9 0.0204
4 0≤ps<0.6 ,0.5≤l<1,9≤E<11 0.0837
5 0.6 ≤ps<1 ,0≤l<0.5, 4≤E<9 0.460
6 0.6≤ps<1 ,0≤l<0.5,9≤E<11 0.1913
7 0.6≤ps<1 ,0.5≤l<1,4≤E<9 0.0576
8 0.6≤ps<1 ,0.5≤l<1,9≤E<11 0.02391
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Fig. 3.6: In case Solar type DGs (a) charging/discharging power with SOC of BESS at bus 22 (b)
tap-setting of OLTC (c) network losses for 24 h time period

3.5.2 Solar Generation

In this case, solar-based generation has been considered for power generation. The stochastic

characteristics of solar generation, load, and number of EVs arriving at the charging station have
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been taken into account while determining the optimal setting of voltage-controlling parameters. As

shown in Fig. 3.3, for implementing the stochastic characteristics of the solar generation, load, and

number of EVs arriving at the charging station in the OPF problem, at first, utilizing respective

five years of historical data of these input variables given in [96]-[99], their hourly probability

density function is formulated, as explained in Section II. The PDF of solar irradiation, load, and

number of EVs arriving at the charging station for 13 h are shown in Fig. 3.2-(a), (b) and, (d),

respectively. Further, hourly PDFs of these variables are segregated into three states. In Table

3.1, states of solar generation, load, and number of EVs arriving at the CS with their probability

for 13 h have been given. Further, all the combination of these states has been given in Table 3.2.

All these combinations are taken as input for the OPF problem. For all eight combinations, the

optimal rating of voltage controlling parameter is determined by the Jaya algorithm. The sum of

the multiplication between the optimal rating of the voltage-controlling parameter of all eight states

with their probability is considered as the optimal rating of the voltage-controlling parameter of the

13 h time segment. Similarly, the optimal rating of voltage-controlling parameters is determined

for the entire 24 h time period. The optimal charging-discharging power with their SOC of BESS

installed in CS at bus 22 is shown in Fig. 3.6-(a). The BESS takes power from (5 h to 16 h)

due to DG generating more power than the required power by the load at this hour. Similarly,

BESS discharges power from (15 h to 4 h) due to the power required by the load is higher than

the power generated by DGs. All three tap changer installed between (2-19), (3-23) and (6-26) is
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shown in Fig.3.6-(b), respectively. In both the cases with and without BESS at CS, almost similar

tap-setting is observed. The losses of the distribution network with and without optimal settings

of voltage-controlling devices show in Fig. 3.6-(c). The total losses of the distribution network

for 24 h, without the optimal setting of voltage-controlling parameters is .0114 pu (1140 kW),

and with the optimal setting of the voltage controlling parameter in the presence and absence of

BESS at CS are 0.005211 pu (521.1 kW) and 0.005686 pu (568.6 kW), respectively. BESS observes

active power penetration generation by DGs, which improves the operating power factor of DGs.

Consequently, the losses of the network get reduced. Fig. 3.7-(a), the optimal charging power

of EVs is shown. The presence of BESS at CS improves the charging rate of EVs. The optimal

reactive power supplied by the reactive power compensator installed at bus 18 and 33 with and

without BESS at CS is shown in Fig. 3.7-(b). The cumulative reactive power supplied by the

reactive power compensator for the 24 h time period with and without BESS at CS is 11.93 pu and

10.05 pu, respectively. BESS reduces the demand of reactive power in the network by supplying

active power in high load power demand condition. The value of the cost function and voltage

profile of the network is shown in Fig. 3.8. The cost function with and without BESS at CS is

shown in Fig. 3.8-(a). The value of the cost function is lesser in the case of BESS installed at

CS because it reduces losses as well as improves the power factor of DGs. In the case of solar

generation, the highest generation-to-load ratio is observed at 14 h. Therefore, at this hour, the

highest value of voltage is observed at all buses. The bus voltage at this hour with and without

optimal setting of voltage controlling parameter is shown in Fig. 3.8-(b). The optimal setting

of the voltage-controlling parameter improves the voltage profile of the network by managing the

active and reactive power demand of the network.
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Fig. 3.9: In case wind type DGs (a) charging/discharging power with SOC of BESS at bus 22 (b)
tap-setting of OLTC (c) network losses for 24 h time period
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Fig. 3.10: In case wind type DGs (a) charging rate of EVs at bus 22 (b) optimal VAR setting of
reactive power compensator

0 20 40 60 80 100

Number of iteration

780

800

820

840

860

880

900

920

C
o

st
 f

u
n

c
ti

o
n

Cost function value without BESS at CS

Cost function value with BESS at CS

(a)

5 10 15 20 25 30 35
Bus number

0.9

0.95

1

1.05

1.1

1.15
B

u
s 

v
o

lt
a

g
e
 (

p
u

)

Bus voltage without optimal setting

Bus voltage with optimal setting in presence of BESS at CS

Bus voltage with optimal setting in absence of BESS at CS

(b)

Fig. 3.11: In case wind type DGs (a) cost Function (b) voltage Levels at all buses with and without
optimal setting for 15 h

3.5.3 Wind Generation

In this case, wind-type generation has been considered for power generation. Similar to

solar-type generation, in this case, also the stochastic characteristics of wind generation, load,

and number of EVs arriving at the charging station have been incorporated into the OPF

problem while determining the optimal setting of voltage-controlling parameters. The optimal

charging-discharging power with their SOC of BESS installed in CS at bus 22 is shown in Fig.

3.9-(a). The BESS takes power from (18 h to 21 h) and (18 h to 21 h) due to surplus of

power generation than the load demand at this hour. Between (15 h to 17 h), BESS neither

takes power nor discharges power because, at this time period, power generation is equal to load

demand. All three tap changer installed between (2 − 19), (3 − 23) and (6 − 26) is shown in Fig.

3.9-(b), respectively. The losses of the distribution network with and without optimal settings of

voltage-controlling devices show in Fig. 3.9-(c). The total losses of the distribution network for

24 h, without the optimal setting of voltage-controlling parameters is 0.0105 pu (1050 kW), and

with the optimal setting of the voltage controlling parameter in the presence and absence of BESS

at CS are 0.003396 pu (339.6 kW) and 0.003449 pu (344.9 kW), respectively. Fig. 3.10-(a), the

optimal charging power of EVs is shown. The presence of BESS at CS improves the charging rate

of EVs. The optimal reactive power supplied by the reactive power compensator installed at bus
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18 and 33 with and without BESS at CS is shown in Fig. 3.10-(a). The cumulative reactive power

supplied by the reactive power compensator for the 24 h time period with and without BESS at

CS is 10.53 pu and 8.941 pu, respectively. The cumulative active power generation by wind-type

generation is relatively higher than a solar-type generation and also consistent. Therefore, the

reactive power supplied by the reactive power compensator and network losses is less in the case

of wind-type generation than in solar-type generation. The value of the cost function and voltage

profile of the network is shown in Fig. 3.11. The cost function with and without BESS at CS is

shown in Fig. 3.11-(a). The cost function with and without BESS at CS is shown in Fig. 3.11-(a).

In the case of wind-type generation, the highest generation-to-load ratio is observed at the instant

of 15 h. Therefore, at this hour, the highest value of voltage is observed at all buses. The bus

voltage at this hour with and without optimal setting of voltage controlling parameter is shown

in Fig. 3.11-(b). The optimal setting of the voltage-controlling parameter improves the voltage

profile of the network.

3.5.4 Mixed Type generation

In this case, both the equal rating of solar and wind types of generation is considered for power

generation. Similar to solar-type generation, in this case, also the stochastic characteristics

of solar-type generation, wind generation, load, and the number of EVs arriving at the

charging station have been incorporated into the OPF problem while determining the optimal

setting of voltage-controlling parameters. In this case, both solar and wind-type generation is

considered together, input variable gets increased. Therefore, for each hourly time segment, all

sixteen combinations of input variables are considered to determine the optimal rating of the

voltage-controlling parameter. The optimal charging-discharging power with their SOC of BESS
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Fig. 3.12: In case mixed type DGs (a) charging/discharging power with SOC of BESS at bus 22
(b) tap-setting of OLTC (c) network losses for 24h time period
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Fig. 3.13: In case mixed type DGs (a) charging rate of EVs at bus 22 (b) optimal VAR setting of
reactive power compensator for 24 h time period
installed in CS at bus 22 is shown in Fig. 3.12-(a). BESS takes power from (18 h to 22 h) and 24 h

due to higher power generation than the load demand at this hour. In this case, the charging time

segment is less in comparison to individual power generation by solar and wind type generation.

The optimal tap setting is shown in Fig. 3.12-(b). The losses of the distribution network with

and without optimal settings of voltage-controlling devices show in Fig. 3.12-(c). The total losses

of the distribution network over 24 h duration, without the optimal setting of voltage-controlling

parameters is 0.0096 pu (960 kW), and with the optimal setting of the voltage controlling parameter

in the presence and absence of BESS at CS are 0.003366 pu (336.6 kW) and 0.3243 pu (324.3 kW),

respectively. The cumulative active power generation by mixed-type generation is relatively higher

than the individual power generation by solar and wind-type generation also consistent. Therefore,

the reactive power supplied by the reactive power compensator, which is shown in Fig. 3.13-(b) and

network losses is lesser than the individual power generation by solar and wind type generation.

The BESS at CS improves the charging rate of EVs. The optimal reactive power supplied by the

reactive power compensator installed at bus 18 and 33 with and without BESS at CS is shown in

Fig. 3.13-(b). The cumulative reactive power supplied by the reactive power compensator for the

24h time period with and without BESS at CS is 10.1 pu and 8.1 pu, respectively. The value of the

cost function and voltage profile of the network is shown in Fig. 3.14. The cost function with and

without BESS at CS is shown in Fig. 3.14-(a). The cost function with and without BESS at CS is

shown in Fig. 3.14-(a). In the case of mixed-type generation, the highest generation-to-load ratio

is observed at 14 h. Therefore, at this hour, the highest value of voltage is observed at all buses.

The bus voltage at this hour with and without optimal setting of voltage controlling parameter

is shown in Fig. 3.14-(b). The optimal setting of the voltage-controlling parameter improves the

voltage profile of the network.

To evaluate the effectiveness of the proposed M-Jaya algorithm, it has been compared with other
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Table 3.3: Comparison of M-Jaya algorithm with PSO and GWO algorithm for 14h on IEEE-33

Para- M-Jaya M-Jaya PSO PSO GWO GWO
meter with without with without with without

BESS BESS BESS BESS BESS BESS
cost- 377.21 608.98 407.21 658.518 397.21 658.98

function
losses 24.7 25.13 27.1 28.68 25.1 25.9
(kW)

(kVAR)
Q18 175.5 275.2 193.2 296 187.4 275.4
Q33 177.3 296 215.4 300.13 197.56 306.4

OLTC1 1.03 1.03 1.01 1.03 1.02 1.02
OLTC2 0.98 0.997 0.987 0.99 099 1.01
OLTC3 1.02 1.013 1.01 1.012 1.01 0.986
SOC(%)
BESS22 73.5 73.4 74.2
BESS25 80.4 72.7 75.23.
Charging

rate of
EVs in CS(kW)

CS22 19.62 14.1 17.8 13.3 18.4 11.9
CS25 14.34 12.4 13.4 12.8 14.1 13.6

algorithms, such as particle swarm optimization (PSO)[105] and grey wolf optimizer (GWO)[106]

in terms of the cost function, optimal setting of voltage controlling parameter, and network losses.

It is compared in two cases: (a) with BESS at the charging station and (2). without BESS at a

charging station. All these comparing parameters are given in the TABLE 3.3. The value of the

cost function for both the cases by M-Jaya algorithm, PSO and GWO is shown in Fig.3.14-(a).

The value of the objective function for both the cases with and without BESS are 377.21 and

608.981, respectively, which is lesser than the value of the objective function by PSO and GWO

without violating any constraints.

3.5.5 Unbalanced IEEE-123 distribution system

In this test system, the optimal setting of the voltage-controlling parameters is determined by

considering both solar and wind-type generation together. For considering the impact of the tap

changer on voltage control, at four locations, the transformer equipped with a tap-changer has been

considered as shown in Fig. 3.5. The maximum and minimum tap settings are considered as -5 and

5. In the different phases of test system, at eleven buses, DGs of rating 800 kW, at four buses, the

reactive power compensator of rating 200 kVAR and Charging Station (CS) are considered. The

location of DGs, reactive power compensator of rating 200 kVAR and CS are shown in Fig. 3.5.

All the charging stations can accommodate 100 EVs during the day. It is assumed that each EV
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Fig. 3.15: IEEE-123 test system

and Charging Station is installed with 85 kWh and 500 kWh battery, respectively. Simultaneously,

the initial SOC of installed BESS at CS is assumed to be 0.45 pu. For this test system also, the

number of EVs arriving for each hourly time segment of the 24 h time period is determined from

end time data given in [99] using (3.17) and it is shown in Fig. 3.4-(a). The initial SOC of the

EV battery is derived from the daily distance travelled data provided in [99], utilizing equations

(3.17) to (3.18). The outcome is depicted in Fig. 3.4-(b). The parking time of EVs is considered 5

h [103]. For finding out the optimal setting of voltage controlling parameters, OPF given in (3.26)

to (3.28) has been solved using the M-Jaya algorithm.

3.5.6 Discussion

In this case, both the equal rating of solar and wind types of generation is considered for power

generation. The stochastic characteristics of solar-type generation, wind-type generation, load, and

the number of EVs arriving at the charging station have been incorporated into the OPF problem

while determining the optimal setting of voltage-controlling parameters. In this case, both solar

and wind-type generation is considered together. Therefore, for each hourly time segment, all

sixteen combinations of input variables are considered to determine the optimal rating of the

voltage-controlling parameter. The optimal charging-discharging power with their SOC of BESS
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Table 3.4: Bus present in each phases

Phases Present Buses
a 1,2,8,9,10,11,12,14,15,19,20,21,22,24,26,27,28,29,30,31,34,41,43

45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,61,62,63,64,65,
66,67,6870,71,72,73,77,78,79,80,81,82,83,84,87,88,89,90,92

94,95,96,98,99,100,101,102,106,109,110,111,112,113,114
115,116,118119,120,121,122,123

b 1,2,8,13,14,19,22,23,24,26,29,30,31,36,37,39,40,41,43,44,45,48,49
50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,73,77
78,79,80,81,82,83,84,87,88,90,91,92,94,96,97,98,99,100,101,102,

106,107,108,109,116,118,119,120,121,122,123
c 1,2,4,5,6,7,8,9,14,16,17,18,19,22,24,25,26,27,28,29,30,31,32

33,34,35,36,41,42,43,45,48,49,50,51,52,53,54,55,56,57,58,61,62
63,64,65,66,67,68,73,7475,76,77,78,79,80,81,82,83,84,85,86,87,88
89,92,93,94,95,96,98,99,100,101,102,103,104,105,106,109,116,118

119,120,121,122,123
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Fig. 3.16: In case mixed type DGs in IEEE-123 test system (a) charging/discharging power with
SOC of BESS at bus 35 (b)tap-setting of OLTC (c) charging rate of EVs at bus 35
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installed in CS at bus 35 of phase a is shown in Fig. 3.16-(a). BESS takes power from (1 h to 12 h)

and (23 h to 24 h) due to higher power generation than the load demand at this hour. Similarly,

BESS supplies power from (16 h to 22 h) due to generation being lesser than load. The optimal

tap setting and optimal charging rate of EVs are shown in Fig. 3.16b-(b) and (c), respectively.

The BESS at CS improves the charging rate of EVs. The optimal reactive power supplied for a

24 h time period by the reactive power compensator installed at phase-a of bus 82, phase-b of

bus 92, phase-c of bus 76 and phase-c of bus 92 with and without BESS at CS is shown in Fig.

3.17-(a) and (b). The cumulative reactive power supplied by the reactive power compensator for

the 24 h time period with and without BESS at CS is 81.24 pu and 104.85 pu, respectively. The

losses of the distribution network with and without optimal settings of voltage-controlling devices

show in Fig. 3.18-(a). The total losses of the distribution network for 24 h, without the optimal

setting of voltage-controlling parameters, is 14.41 pu, and with the optimal setting of the voltage

controlling parameter in the presence and absence of BESS at CS are 11.92 pu and 10.82 pu,

respectively. In the case of mixed-type generation, the highest generation-to-load ratio is observed

at 14 h. Therefore, at this hour, the highest value of voltage is observed at all buses. In the case

of mixed-type generation, the highest generation-to-load ratio is observed at 14 h. Therefore, at

this hour, the highest value of voltage deviation is observed on all buses. The bus voltage of all

the phases at this hour with and without optimal setting of voltage controlling parameter is shown

in Fig. 3.19-(a), (b) and (c), respectively. The available buses in phases a, b, and c are listed in

Table 3.4, and their respective voltage profile is shown in Fig. 3.19. The over-voltage phenomenon

is observed in all three phases at different buses without any control. The optimal setting of the

voltage-controlling parameter improves the voltage profile of the network. The result of the M-Jaya

algorithm is compared with Particle Swarm Optimization (PSO) [105] and Grey Wolf Optimizer

(GWO) [106] in terms of the cost function, optimal setting of voltage controlling parameter, and

network losses. The value of the cost function for both the cases by M-Jaya algorithm, PSO and

GWO is shown in Fig. 3.18b-(b). The value of objective function for both the cases with and

without BESS are 3565.46 and 3715.26, respectively, which is lesser than the value of the objective

function by PSO and GWO without violating any constraints.

3.6 Conclusion

� The increasing integration of renewable energy generation and charging infrastructure

into the distribution network heightens uncertainty within the distribution network. To

maintain voltage profile of the distribution network, these factors must be incorporated while

determining the setting of voltage-controlling parameters.

� This work determines the optimal settings for voltage-controlling parameters over a

24-hour period by considering stochastic characteristics of various types of Converter-Based

Generation (CBG), such as solar, wind, and mixed generation, power demand by loads,

and the number of Electric Vehicles (EVs) arriving at charging stations using an hourly

state-based probabilistic model incorporated into the OPF problem.

� The enhanced IEEE 33 and an unbalanced IEEE 123 test system are used to determine the

effectiveness of the proposed method.

� Optimal settings of voltage-controlling parameters enhance the voltage profile and reduce

losses in the distribution system.
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� Installing BESS at charging stations improves the charging rate of EVs and decreases network

losses by improving the power factor of distributed generation.

� The M-Jaya algorithm achieves better convergence for proposed objective functions without

violating any operating constraints.

� The proposed work provides insights into forecasting the optimal settings of

voltage-controlling parameters for any period in the presence of renewable generation and

charging infrastructure in the distribution network.
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Chapter 4

Dual-Stage Voltage Control For

Active Distribution Network With

High Penetration of Photovoltaic

Distributed Generators Using

Spectral Clustering

4.1 Introduction

The high penetration of power from renewable-based DGs causes reverse power flow, due to which

overvoltage is observed in the Active Distribution Network (ADN). The overvoltage issue not only

causes harm to the electrical equipment present in the ADN but also restricts the hosting capacity

of the network. Hence, addressing the overvoltage issue is imperative to ensure the stable and

reliable operation of the ADN.

In the past, Photovoltaic Distributed Generations (PV-DGs) used to operate at unity power

factor without active and reactive power control capabilities, which restricted PV inverters from

contributing to power dispatching. In this scenario, traditional voltage control techniques are

not considered an optimal solution due to their higher cost, sluggish response times, and lack of

suitability for bidirectional power flow [8]-[107].

With the advancement of power-electronic inverter technology, voltage control by regulating the

active and reactive power of PV-DGs offers optimistic solutions to mitigate the overvoltage issues in

ADN [17]. Active Power Curtailment (APC) and Reactive Power Compensation (RPC) are widely

adopted strategies that can enable PV inverters to address the overvoltage problem. However,

centralized curtailment of active power from available PV-DGs in the network is not considered

an optimal solution for utility grids. In this work, a two-stage voltage control technique is

proposed to deal with this issue. In the primary stage, using state-based probabilistic modeling

of the load-generation scenario and Electric-Vehicles (EVs) present in the Charging Station (CS),

the optimal rating of the On-load Tap changer (OLTC), optimal charging and discharging of

Battery Energy Storage Systems (BESSs) and optimal charging of EVs are estimated for the

entire 24 hour(h) planning horizon with the objective of minimization of overvoltage and network

losses. When the optimal hourly setting of the available voltage-controlling device in the network

fails to maintain the voltage profile due to a high generation-to-load ratio, the voltage profile

is restored by implementing CBVC in the secondary stage. To implement CBVC, the ADN

is divided into multiple clusters using a probabilistic voltage sensitivity index-based spectral

clustering method, ensuring that the available PV-DGs within each cluster can maintain the
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bus voltage within the designated cluster. Further, the optimal operating power of PV-DGs is

determined by independently solving the OPF for each cluster with the objective of reducing the

active power curtailment and reactive power absorption by the available PV-DGs in the cluster.

The proficiency of the proposed method is validated by comparing it with the Centralized Voltage

Control (CVC) method in terms of voltage profile, cumulative active power curtailment and reactive

power absorption by PV-DGs, network losses and computation time.

The remaining sections of the chapter are arranged as follows. In Section 4.2, modeling the active

distribution network is presented. Two-stage voltage control strategy is elucidated in Section

4.3. The implementation of the proposed two-stage voltage control technique on the 37-bus and

modified IEEE 123-bus system is elucidated in section 4.4. The conclusion is presented in section

4.5.

 PRIMARY STAGE

Read the 
historical data of 
daily load, solar 
irradiance, and 

EVs at the 
charging station

Read the 
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Fig. 4.1: Flowchart of two-stage voltage control
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4.2 ADN modeling Strategy

The state-based probabilistic modeling of hourly output from PV-DGs, load demand, available EVs

in the Charging Station(CS), and the operating of BESS with time-varying load and generation is

explained in section 3.2.

4.3 Voltage Control Strategy

In this section two-stage voltage control technique shown in Fig. 4.1 is elaborated. In the primary

stage, the optimal hourly setting of the voltage-controlling device is determined for the 24 h time

period. In case the optimal hourly setting voltage-controlling device fails to maintain the voltage

profile, the secondary stage of voltage control comes into action. It is implemented in clustered

ADN by utilizing voltage-controlling capabilities of available PV-DGs in each cluster independently.

4.3.1 Primary Stage Voltage Control

In this stage, utilizing the probabilistic model of PV-DG output and available EVs in the charging

station, optimal setting of OLTC, charging-discharging of BESS and charging of EVs are planned

for a 24 h planning horizon. The minimization of overvoltage and network losses is considered as

an objective function, as explained in section 3.3. Modified –Jaya (M-Jaya) algorithm is used to

solve hourly optimal power flow problems, as explained in section 3.4.

4.3.2 Secondary Stage voltage Control

In the secondary stage, CBVC is implemented. To execute this, at first, ADN is segregated into

different clusters based on the impact of power perturbation at PV-DGs integrated bus in the

network on bus voltage. It is assessed in terms of the Probabilistic Voltage Sensitivity Index

(PVSI). While calculating PVSI, the analytic formula of voltage sensitivity is utilized. Further,

using spectral clustering, ADN is segregated into multiple clusters. It segregates the ADN in such

a way that existing PV-DGs in the cluster are able to retain the bus voltage within the cluster.

Further, the optimal operating point of available PV-DGs in each cluster is determined by solving

the OPF problem to minimize their active power curtailment and reactive power absorption.

4.3.2.1 Clustering of ADN Using PVSI

4.3.2.2 Formulation of Probabilistic Voltage Sensitivity Index (PVSI)

In this work PVSI is used to determine the impact available PV-DGs on bus voltage. The

formulation of PVSI is explained in section 2.3.

4.3.2.3 Steps of spectral clustering

Spectral clustering is a graph-based algorithm that segregates m× n data matrix into a k cluster.

The steps to execute clustering are explained below.

Step 1: Create the data matrix (Ωm×n), the PVSI of each bus voltage due to power perturbation

at individual DG is arranged in the column of the data matrix. If the size of the network is m,

and the number of PV-DG present in AND is n, then the size of the data matrix becomes m× n.
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Further, spectral clustering is performed for the data matrix to cluster of the ADN.

Ω(m×n) =


PV SI11 PV SI12 . . . PV SI1n

...
. . .

PV SIm1 PV SIm2 . . . PV SImn

 (4.1)

Step 2: For Ωm×m, evaluate the Euclidean distance between the buses of the network utilizing

(4.2) to create the distance matrix λm×m.

λij =


(∑m

i,j=1(PV SIik − PV SIjk)2
)1

2 , ifi ̸= j

0 otherwise

(4.2)

Step 3: Formulate the unnormalized and normalized Laplacian matrices, ( Lun) and (Ln),

respectively, as given in (4.3).

Lun = Dg − λ, Ln = D
−

1

2
g LD

1

2
g (4.3)

Dg is a symmetric diagonal matrix. The element of Dg is determined by summing up the row of

distance matrix (λ) as given (4.4).

Dgii =

m∑
i,j=1

λij (4.4)

Step 4: Formulate the eigenvector matrix Vm×k from normalized Laplacian matrix as given in

(4.5).

Vm×k =
[
v1 v2 . . . vk

]
(4.5)

where vk is eigenvector that corresponding to the smallest eigenvalues of Ln

Step 5: Implement the K-mean clustering for eigenvector-matrix by considering each row as a data

point. Allocate the actual data points of Ω to the same clusters as their respective rows in the

eigenvector matrix Vm×k.

4.3.2.4 Quality of Cluster Index (QCI)

The quality of the cluster is determined by the Silhouette index. It gives the degree of coupling

among the member of the cluster, given in (4.6).

SI(i) =
d(i)− g(i)

max[d(i), g(i)]

d(i) =
1

Np

( Np∑
i,j∈Cp,i ̸=j,j=1

SiCp jCp

)
f(i) = min

1≤l≤k
l ̸=p

1

Nl

( Nl∑
m∈Cl,m=1

SiCpmCl

)
QCI =

1

k

k∑
i=1

( 1

Np

Np∑
i=1

SIi(j)
)

(4.6)

where d(i) and g(i) are the average differential entropy between ith DG integrated bus with all

other buses in the same cluster Cp and different clusters, respectively. Np and Nl are total number

of buses in cluster Cp and Cl, respectively. Values of QCI lie between zero to one. The highest

value of QCI indicates defines perfect clustering [108].
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4.3.2.5 Optimization problem for secondary stage voltage control

To determine the optimal operating point of available PV-DGs, OPF is solved for each cluster

individually. The minimization of active power curtailment and reactive power absorption is taken

as the objective function, and active and reactive power output from PV-DGs is taken as the

decision variable. The objective function and their operating constraints are detailed in (4.7) and

(4.8), respectively.

obj2 =
Mp∑
i=1

[
(∆P pi

curt)
2 +∆Qpi

obs)
2
]

(4.7)

0.95pu ≤ V i
Cp

≤ 1.05pu

P pi

min ≤ ∆P pi

curt ≤ P pi
max

Qpi

min ≤ ∆Qpi

obs ≤ Qpi
max

−0.95 ≤ pfDGpi
≤ 0.95

(4.8)

where pi represents the ith PV-DG of cluster Cp. Mp represents total number of PV-DG in the

cluster Cp. ∆P pi

curt and ∆Qpi

obs are the active and reactive power curtailed and observed by the

ith PV-DG of cluster Cp. P pi
max ,P pi

min, Qpi

min and Qpi
max are maximum and minimum curtailed

active and observed reactive power limit from ith PV-DG of cluster Cp and pfDGpi
represents their

power factor. V i
Cp

represents updated ith bus voltage of pth cluster. To solve the OPF problem

for Cp, PSO is utilized. However, validation of voltage constraints given in (4.8) by full load

flow calculation for each updated active and reactive power of PV-DGs becomes a computational

process.

Consequently, the analytic formula of voltage sensitivity (subsection-2.2.2) is utilized for updating

the bus voltage as given in (4.9).



vCpi

...

vCpk

...

vCpn


=



vCpi0

...

vCpk0

...

vCpn0


+



ZCpi
1 . . . ZCpi

Cpi
. . . ZCpi

n

. . .
. . .

... . . .
...

ZCpk
1

... ZCpk
Cpi

. . . ZCpk
n

...
...

...
. . .

...

ZCpn1

...
. . . . . . ZCpnCpn





∆SCpi

...

∆SCpk

...

∆SCpn


(4.9)

where vCpi
and vCpi0

represents bus voltage of ith bus in cluster p, before and after disturbance

at all the available PV-DGs in the cluster p. ZCpi
n represents the mutual impedance between ith

bus of cluster p and nth bus of the network. ∆SCpi is complex power perturbation at ith PV-DG

integrated bus in cluster p.

The impedance matrix size decreases in cluster-based control, leading to a reduction in the

computation time required to determine the optimal operating point of available PV-DGs in the

cluster. The M-Jaya algorithm is used to solve the OPF problem for the second stage.

In the second stage, the set of variables corresponds to the curtailed active power ∆PDG and the

absorbed reactive power ∆QDG from the available PV-DGs in the clusters. The size of the set of

variables is d = 2nDG. nDG is the total number of DGs participating in voltage control.

4.4 Results and Discussion

For implementing the two-stage voltage control, a practical three-phase balanced 37-bus and

modified IEEE-123 test system are taken into account. It is implemented in MATLAB R2019b

with Intel-Core i7-8700, CPU @ 3.20GHz configuration.
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Fig. 4.2: (a) 37-bus ADN (b) current and future PV-DG installation

4.4.1 37-bus distribution system

The system parameter of the 37-bus system, such as the line impedance, load demand present

and future PV-DG capacity of each bus, are taken from [36]. As shown in Figure 4.2-(a), bus

one is considered as a reference bus with a transformer equipped with OLTC. The minimum and

maximum tap positions are considered as −5 and 5, respectively. As observed by [104], bus voltage

of the network for previously installed PV-DGs stay within the acceptable ±5% of the base bus

voltage, indicating no violations of voltage limits. It is assumed that 18.315 MW is going to be

installed into the distribution system. The present and future values of installed PV-DGs on all

buses are shown in Fig. 4.2-(b). Increasing EVs in the market significantly impacts the voltage

level of the distribution network. Thus, as shown in Fig. 4.2-(a), five charging stations with BESS

are considered at five different locations. Each charging station accommodates 100 EVs during the

day. It is assumed that each EV is installed with an 85 kWh battery and rating of BESS at the

charging station is 500 kWh. The initial SOC and distribution of EVs arrival for each hour are

determined using (3.20)-(3.22) from 2009 NHTS data [109] as shown Fig. 3.4. The maximum EV

charging rate and the separation period from arrival to departure are considered as 0.2CEV and 5

h, respectively [110].

[
∆Pi

∆Qi

]
∼ N

([
0

0

][
Si −0.05Si

−0.05Si 0.31Si

])
(4.10)

where Si is rating of PV-DG integrated at ith bus.
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Fig. 4.4: Charging/discharging rate of BESS installed at bus 25 with CS in 37-bus system

Table 4.1: State with their probability of solar irradiance, number of EVs arrival at CS and load
for 13 h

State PV-DG output Prob Load Prob EVs Prob
1 0 ≤ps<0.5 0.0137 0≤l<0.3 0.23 0≤E<5 0.083

2 0.5≤ps<0.7 0.35 0.3≤l<0.6 0.6972 5≤E<8 0.569
3 0.7 ≤ ps <1 0.6262 0.6≤l<1 0.0728 8≤E<12 0.35

4.4.1.1 Primary Stage

As shown in Fig. 4.1, in the primary stage, the hourly load demand, power generation by PV-DGs

and the number of EVs arrival in the charging station are taken as input to determine the optimal

setting of OLTC, charging rate of available EVs in the charging station and charging-discharging

of BESS. The hourly PV-DG output, load, and EV arrival data are estimated from five years

of historical data [109]-[111] using beta and normal PDFs as explained in section 3.2. Initially

(5× 365× 24) historical data is classified into 24 h time segment. Then, utilizing respective hourly

(5×365×24) data, their hourly PDF is estimated. For 13 h, PDF of solar irradiance, load demand

and the total EVs entering at the CS are depicted in Figs. 3.2-(a), 3.2-(c) and 3.2-(d), respectively.

To consider all input scenarios, their respective PDFs are classified into three states (Table 4.1).

For each state of solar irradiance, the corresponding PV-DG output is calculated using (3.4)-(3.8)

with PV module parameters from [112]. Using states of these input variable, state matrix (τ27×3) is

formulated. It consists of all the combination input variable scenarios, which is used in optimization

formulation as shown (3.27) to determine the optimal hourly setting of OLTC, charging rate of

available EVs in the charging station and charging-discharging of BESS for the entire 24 h planning

horizon.



64
Chapter 4. Dual-Stage Voltage Control For Active Distribution Network With High Penetration

of Photovoltaic Distributed Generators Using Spectral Clustering

8 10 12 14 16 18 20 22 24 2 4 6

Time(h)

0

200

400

600

800

1000
O

p
ti

m
a
l 

lo
ss

es
 (

k
W

)

Losses with BESS

Losses without BESS

(a)

1 2 3 4 5 6 7 8 9 10

Number of cluster

0

0.1

0.2

0.3

0.4

0.5

0.6

Q
C

I

(b)

Fig. 4.5: In 37-bus system, (a) optimal hourly losses (pu), (b) Quality of Cluster Index (QCI) for
different number of clusters

0 5 10 15 20 25 30 35 40

Bus number

0.9

0.95

1

1.05

1.1

1.15

B
us

 v
ol

ta
ge

(p
u)

Base network bus voltage

Bus voltage without control

Primary stage control without BESS

Primary stage control with BESS

Secondary stage cluster based control

Secondary stage centralized control

Fig. 4.6: In 37-bus system, voltage profile of all buses with and without two-stage voltage control
technique for 13 h

       (a)
0

1000

2000
Power generated by DGs

Curtailed active power

Absorbed reactive power

5 10 15 20 25 30 35

Bus number

0

1000

2000

P
V

-D
G

s 
o

u
tp

u
t 

p
o

w
e
r
(k

W
)

Power generated by DGs

Curtailed active power

Absorbed reactive power

(b)

Fig. 4.7: In 37-bus system, (a) DGs output power in CVC, (b) DGs output power in CBVC

The optimization problem is solved by M-Jaya algorithm, as elaborated in section 3.4. The optimal

tap setting and charging rate of EVs with and without BESS are shown by in Fig. 4.3-(a) and Fig.

4.3-(b), respectively. In both cases, similar tap positions are observed, but in the case of a charging

station with a BESS, the charging rate of EVs is improved. The charging-discharging of BESS

depends on generation to load ratio. Fig. 4.4 illustrates the charging-discharging characteristics of

BESS installed with the charging station at bus 25 in terms of their SOC and charging-discharging
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rate. This figure depicts the BESS getting charged from the 8th h to the 16th h due to higher

generation than the load at that bus. Similarly, BESS getting discharged from the 8th h to the

16th h due to lower generation than the load at that bus. BESS stores the power in high-generation

periods and supplies power in low-generation periods. Thus, it enhance the voltage profile of the

network and also reduces network losses. The voltage profile and network losses for both cases

are illustrated in Fig. 4.6 and Fig. 4.5-(a), respectively. The cumulative losses for 24 h with and

without BESS are 5448.3 kW and 5750 kW, respectively. Placement of BESS in charging station

reduces 6% losses than the charging station without BESS. The voltage profile of all the buses

with and without implementing a two-stage voltage control method for 13 h is shown in Fig. 4.6.

Due to the high power penetration by available PV-DGs with respect to load demand at 13 h, the

optimal hourly setting of voltage-controlling devices is not able to maintain the voltage profile in

the network. Thus, a secondary stage of voltage control is required.[
∆Pi

∆Qi

]
∼ N

([
0

0

][
Si −0.05Si

−0.05Si 0.31Si

])
(4.11)

where Si is rating of PV-DG integrated at ith bus.

4.4.1.2 Secondary Stage

A Cluster-Based Voltage Control (CBVC) technique is implemented in the secondary stage.

Before implementing the CBVC, PVSI-based spectral clustering is implemented to separate the

ADN into several clusters. It segregates the ADN into several clusters based on the impact of

PV-DGs on bus voltages, as explained in the section 4.3.2.1. While performing the clustering,

the power perturbation at the PV-DG integrated bus is modelled by zero mean normal random

variables [89] as given in the (4.11). The optimal number of clusters is selected on the basis of

the Quality Cluster Index (QCI). In Fig. 4.5-(b), QCI for the combination of different number of

clusters is shown. The highest value of QCI is obtained for a combination of six clusters which is

0.6. Therefore, ADN is segregated into six clusters.

Utilizing the cluster information, the Distribution System Operator (DSO) implements the CBVC

to mitigate the overvoltage in the network, as illustrated in Fig. 4.1. In Fig. 4.6, overvoltage

occurs from bus 16 to 24 without BESS and from bus 18 to 24 with BESS. From Fig. 4.2-(a), it is

clear that these buses belongs to C6. Further, to mitigate the overvoltage issues, available PV-DGs

in cluster C6 are utilized. The optimal setting of available PV-DGs in cluster C6 is determined

by solving the OPF problem independently with the objective of minimization of active power

curtailment and reactive power absorption from these PV-DGs, as illustrated in section 4.3.2.5.

M-Jaya algorithm solves the OPF problem with the same parameter, which is taken in the primary

stage. The analytic formula of voltage deviation given in (4.9) is used to update the bus voltage for

each iteration, thereby minimizing computation time. Fig. 4.7-(b) illustrate the optimal curtailed

active and observed reactive power from available PV-DGs in the cluster C6. Further, load flow

is solved for the optimal active and reactive power of available PV-DGs in the cluster C6 with

the optimal setting of OLTC, the optimal charging rate of EVs and the optimal discharging rate

of BESS of 13 h, it is observed that the voltage profile of all the buses comes within the limit,

depicted in Fig. 4.6.

For the comparison, the whole network is considered as one cluster, and all the available PV-DGs

in the network are utilized to mitigate the overvoltage issue. Which is called Centralized Voltage

Control (CVC). A similar OPF problem is solved as CBVC by M-Jaya algorithm to evaluate the

optimal operating point of all the available PV-DGs in the network. The optimal operating point

of all the available PV-DGs by CVC is shown in Fig. 4.7-(a). Furthermore, solving the load flow for
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Fig. 4.9: In, IEEE 123-bus system, (a) Quality of Cluster Index (QCI) for different number of
clusters, (b) rating of DGs with locations

the optimal setting of all the available PV-DGs in the network with the optimal setting of voltage

controlling devices of 13 h, it is observed that in this case also the voltage level of all the buses comes

under the limit, as shown in Fig. 4.6 by Centralized Voltage Control. In Table 4.2, a comparison

between CBVC and CVC in terms of total active power curtailment and reactive power absorption

from the PV-DGs, network losses and computation time is presented. In CBVC, overvoltage is

mitigated by lesser cumulative active power curtailment and reactive power absorption from the

available PV-DGs in the network than CVC. As a result, CBVC gives a better voltage profile with

less amount network losses. In CBVC, OPF is solved for each cluster independently. Therefore, it

minimizes huge computation time.

Table 4.2: Comparison table on 37-bus system for 13 h

Total APC of Total RPA of Total Computation
Methods DGs in (kW) DGs (kVAR) Losses (kW) time(sec)

CVC 301.9 1996.3 710.1 11.39
CBVC 76.2 728.7 558.1 3.1

4.4.2 Modified IEEE 123-bus system

In order to verify the proposed CBVC on a larger test system, the modified IEEE 123-bus [102]

system is taken into account. The original IEEE 123-bus system is designed as a multi-phase
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Fig. 4.11: In modified IEEE 123-bus system, (a) Optimal tap setting of OLTCs, (b) Optimal
network losses, for each hourly time segment

unbalanced test system, but in this work, it is modified to be a three-phase balanced system. The

numbering of all the buses is rearranged, and it is shown in Fig. 4.8. The rating of integrated

PV-DGs is shown in Fig. 4.9-(b). The hourly output power from PV-DGs, load profile and number

of EVs arriving at the charging station is calculated from their hourly probabilistic model.

Fig. 4.10 illustrates the voltage profile of all the buses with and without two-stage voltage control

for 13 h. The voltage profile with PV-DGs without any control is represented by bus voltage

without control. The overvoltage is observed from bus 66 to 123. Operating the distribution

network with the optimal hourly setting of available voltage-controlling devices in the network,

which is determined in the primary stage of voltage control, improves the voltage profile but is not

able to mitigate the overvoltage issue from all the buses in the network. Therefore, the secondary

stage of voltage control is implemented as explained in Fig. 4.1. The optimal tap setting of all the

available PV-DGs in the network is shown in Fig. 4.11-(a). Further, Fig. 4.11-(b) illustrate the

hourly losses of the network with and without BESS in the charging station. Cumulative losses

for 24 h with and without BESS are 10428 kW and 11298 kW, respectively. BESS in the charging

station reduces 8% losses than the charging station without BESS.

To implement the secondary stage of voltage control, the network is segregated into five clusters,

as shown in Fig. 4.8, based on the highest value of QCI, and it is observed for the combination

of five clusters, as shown in Fig. 4.9-(a). From Fig. 4.10, it is observed that overvoltage occurs in

C3, C4 and C5. Solving OPF for each cluster independently, the optimal setting of PV-DGs are

determined. Further, Solving the load flow for the obtained optimal operating point of available

PV-DGs in cluster C3, C4 and C5 with 13 h optimal setting of available voltage controlling devices
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in the network, it is observed that voltage profile of all the buses comes under the limit as shown

in Fig. 4.10 by secondary stage cluster based voltage control. For comparison, in this case also

centralized voltage control is implemented as a 37-bus system. The observed voltage profile is

represented in Fig. 4.10 as a secondary stage centralized voltage control. From the comparison

Table 4.3 and Fig. 4.10, it is observed that CBVC mitigate the overvoltage by less amount of

cumulative active power curtailment and reactive power absorption from the available PV-DGs in

the network than CVC. As a result, CBVC gives a better voltage profile with lesser network losses.

Simultaneously, CBVC solves OPF for each cluster independently. Therefore, it reduces significant

computation time.

Table 4.3: Comparison table on IEEE 123-bus system for 13 h

Total APC of Total RPA of Total Computation
Methods DGs in (kW) DGs (kVAR) Losses (kW) time(sec)

CVC 419.1 2673.4 1702.4 160.6
CBVC 319.2 1923.5 1540.2 11.92

4.5 Conclusion

� Maintaining the voltage profile in the distribution network with increasing penetration of

PV-DGs requires an economical and fast solution. Thus, in this work is proposed a two-stage

voltage control technique.

� Primary Stage determines the optimal hourly setting of the voltage-controlling parameter

for the entire 24-hour planning horizon, considering the stochastic characteristics of load

demand, power generation from PV-DGs, and the number of EVs arriving at the charging

station.

� Secondary Stage applies the CBVC control technique if the optimal hourly setting fails

to maintain the voltage profile. The network is segregated using entropy-based spectral

clustering, ensuring that the available PV-DGs within each cluster can maintain the voltage

profile. The optimal operating power of PV-DGs is then determined by independently solving

the OPF problem. The effectiveness of proposed method is evaluated on 37-bus and modified

IEEE 123-bus systems, comparing it with the CVC method.

� Simulation results show that CBVC reduces the operation of PV-DGs at lagging power factor

by 70% in the 37-bus system and by 30% in the modified IEEE-123 test system. Consequently,

CBVC also achieves a reduction in losses by 21.1% in the 37-bus system and by 10% in the

modified IEEE-123 test system compared to the CVC method.

� CBVC solves OPF on a cluster basis, therefore, it reduces 73.1% and 92.5% computation

time for the 37-bus and modified IEEE-123 test system, respectively.



Chapter 5

Enhancement of Hosting Capacity

of Active Distribution Network

Utilizing Optimal Placement of

Battery Energy Storage System

5.1 Introduction

The increasing demand for power necessitates improvements in the hosting capacity of distribution

networks. The hosting capacity refers to the volume of distributed energy resources that the

network can support without negatively affecting its operational limits.

Solar-Based Distributed Generations (PV-DGs) into the network meet power demands but also

push the network beyond its normal operational limits. This creates significant challenges in

maintaining a stable voltage profile due to the intermittent nature of renewable energy sources and

load. Consequently, the hosting capacity of the network gets reduced.

Battery Energy Storage System (BESS) can effectively handle the fluctuations in renewable energy

generation by storing surplus energy during periods of high power generation and discharging

it when power generation is low. This capability helps stabilize the network and supports the

integration of more renewable energy sources without compromising network reliability. The

installation of BESS into the active distribution network increases the cost of operation for utility

grids. Therefore, optimal utilization of BESS is a very crucial factor. In this work, the hosting

capacity of the distribution network is improved by installing the BESS with the most dominant

PV-DG. The Sobol voltage sensitivity index is used to determine the dominant PV-DG in the active

distribution network. Further, the optimal setting of available voltage-controlling parameters is

determined to maximize the network’s hosting capacity by keeping network voltage under the

limit by the Modified-Jaya algorithm (M-Jaya). State-based probabilistic modeling is used to

incorporate the stochastic nature of load and generation into the OPF problem. IEEE-33 balanced

and IEEE-13 unbalanced distribution network is utilized to validate the proposed strategies. From

the simulation, it is observed that placing the BESS with the dominant PV-DGs not only enhances

the hosting capacity of the network but also reduces the network’s losses.

This chapter is organized as follows.

In Section 3.2, the modeling of the distribution network is presented. The problem formulation

for OPF with their constraints is explained in Section 3.3. The M-Jaya algorithm is used to solve

the OPF, and it is explained in Section 3.4. The numerical test of the multi-objective optimal

power flow with the state-based probabilistic model is done on enhanced IEEE-33 and unbalanced

IEEE-13 test system, and their result is explained in Section 3.5. The conclusion of the work is

given in Section 3.6.
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5.2 Formulation of load, generation and Battery Energy

Storage System (BESS)

5.2.1 Modeling of load, generation and BESS

The state-based probabilistic modeling is used to determine hourly output from PV-DGs and load

demand is explained in section 3.2.

5.2.2 Modeling of BESS

The BESS mitigates the stochastic behavior of the PV-DGs by optimal charging and discharging

properties. It supports voltage stability and boosts the network’s hosting capacity [113]. The

mathematical modeling of charging-discharging is shown in (3.23)

SOCB,s(t) = SOCB,s(t− 1) + ηBchPBch,s(t)∆tα− PBdc,s(t)∆tβ

ηBdc
(5.1)

where α and β ∈ (0, 1), and αβ = 0, because both charge and discharge of the battery are not

possible at a time. ηBch and ηBdc are charging and discharging efficiency of BESS. PBch,s and PBdc,s

represents the charging and discharging power of BESS for state s. SOCB,s(t) and SOCB,s(t− 1)

represents the present and previous SOC of BESS for state s.

5.2.3 Charging of BESS

BESS stores a fraction of the cumulative power generated by PV-DG where BESS is installed at

time t, if the load in the network is less than the power generated by PV-DGs, as given (5.2)-(5.3)

PBch,s(t) = ηBchKBch,sPVns
(t),KBch,s(t) > 0 (5.2)

PPVj
(t) > Plj (t) (5.3)

where PPVj
(t) represents available PV-DG power in time segment ∆t. KBch(t) represents fraction

of power generated by available PV-DG, where BESS is installed in the network, which is stored

by BESS in time segment ∆t for state s.

5.2.4 Discharging of BESS

BESS release a fraction of the stored power at time t if the load power of the network is higher

than the power generated by PV-DGs in the network, as given (5.4).

PBdc,s(t) =
ηBdcKBdc,s

SOCB,s(t− 1)CBESS

∆t
(5.4)

where CBESS represents total capacity of BESS. KBdc,s(t) is fraction of BESS power, which is

release by BESS in time segment ∆t for state s.

5.3 Impact of PV-DGs in the active distribution network

Power perturbation at any bus and bus voltage are interconnected and closely linked to one another.

The stochastic nature of PV-DGs impacts bus voltage but is not uniform across the network, which

also impacts the hosting capacity of the network. BESS mitigate the stochastic nature of PV-DG
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Fig. 5.1: Steps to perform sobol indexing method

by their charging and discharging properties. The integration of BESS alongside all the PV-DGs

is not feasible because of economic constraints. Thus, the most dominant PV-DGs are appropriate

for the placement of DGs. In this work, the Sobol sensitivity index is utilized to determine the

dominance of PV-DGs on the bus voltage.

5.3.1 Sobol sensitivity

Sobol indices serve as the data-driven established method for conducting global sensitivity

analyses. Derived from decomposing the model output variance, it enable the attribution of

the impact of uncertain inputs to the variability observed in the model’s output [114]. Let the

y = f(X1, X2. . . Xn) be square integrable with its definition pertaining to the n-dimensional unit

hypercube and X = (X1, X2...Xn) is set of input parameters. According to function decomposition

scheme [114], y = f(X1, X2. . . Xn) can be decomposed in term of variance as shown (5.5)

V (Y ) =
∑
i=1

Vi +
∑
i

∑
i≤j

Vij +
∑
i

∑
i≤j≤l

Vijl..... (5.5)

Vi = Vi([E(y/Xi)])

Vij = VXiXj (E[(y/XiXj)]) − VXi(E[(y/Xi)])

−VXj
(E[(y/Xj)])

(5.6)

where E(y/Xi Xj ..Xn) represents expectation of output in terms of input variable for decomposed

subfunction, V (Y ) variance of output variable and Vij variance of decomposed subfunction of
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output variable. Divide (2.8) by V (Y ),

1 =
∑
i=1

Vi

V (y)
+
∑
i

∑
i≤j

Vij

V (y)
+
∑
i

∑
i≤j≤l

Vijl

V (y)
.....

1 =
∑
i=1

Si +
∑
i

∑
i≤j

Sij +
∑
i

∑
i≤j≤l

Sijl.....

(5.7)

In (5.7), Si, Sijl presents first-order and total-order Sobol sensitivity indices. The first-order index

gives the impact of individual input parameter changes, whereas the total-order sensitivity index

accounts for both the individual input parameter changes and other input parameter changes.

In this work, Sobol sensitivity index has been implemented into multiple steps using a

Multiobjective Evolutionary Algorithm (MOEA) framework [115], as shown in Fig. 5.1. In the

first step, the total number of PV-DGs in the network, their location and power perturbation

range (∆Pn = [0, 0.5∆Pn], ∆Qn = [0, 0.5∆Qn]) with their PDF (Normal distribution) is defined.

Further, sampling is performed using Saltelli for (n × m) data set. n and m are the number of

input variables and sample size. It gives 2m(n + 1) data set, which is a combination of different

scenarios of power generated by PV-DGs. Utilizing 2m(n+1) data sample, Monte-Carlo simulation

is performed and 2m(n + 1) data sample of output variable (∆V ) is observed. Finally, 2m(n + 1)

data set of input and output are set to the MOEA framework format to obtain the first and total

order Sobol sensitivity index. The highest value of the total order Sobol sensitivity index Sijl is

considered as the highest dominant PV-DGs in the network.
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Fig. 5.2: Steps to determine the hosting capacity of the network

5.4 Problem Formulation

Optimal Power Flow (OPF) refers to the computational process of determining the most efficient

operating conditions with certain objective functions. Therefore, in this work, OPF has been

used to determine the optimal rating of voltage-controlling devices while considering the objective

function of maximizing the hosting capacity of the network. The M-Jaya algoritam has been used

to solve the OPF problem.
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5.4.0.1 Objective Function

The objective function of the OPF problems under consideration is the maximization of the Hosting

Capacity of the network, which is shown in (5.8).

HC = max(

nt∑
t=1

ns∑
s=1

npv∑
j=1

P t,abc
pv,s,j) (5.8)

5.4.0.2 Equality Constraints

P abc
ij,s(t) = −k(s, 1)P abc

PVj
(t) + k(s, 2)P abc

Lj
(t) ± P abc

Bch/dc,j,s
(t)

Qabc
ij,s(t) = Qabc

PVj
(t) + Qabc

Lj
(t) + Qabc

Ci,s
(t)

(V abc
i,s (t))2 = (V abc

j,s (t))2 + Z2
ijI

abc
ij (t)

+2(Rabc
ij P abc

ij,s(t) + Xabc
ij Qabc

ij,s(t)) (5.9)

Iabcij (t) =
(P abc

ij,s(t))2 + (Qabc
ij,s(t))

2

(V abc
i,s (t))2

QPV,s(t) =
√

(Sinvabc

PV,s (t))2 − P abc
PV,s(t))

2

where κ is a matrix with two columns, which comprises all the combination of the states of solar

irradiance and load demand. P abc
PVi,s

(t) are active power generated by solar type generation for a

time segment ∆t of state s. P abc
Li,s

(t) is load demand for state s of time segment ∆t. P abc
Bch/dc,j,s

(t) is

the charging-discharging power of BESS installed at a charging station for state s of time segment

∆t. Qabc
PVi,s

(t), and Sinvabc

PVi,s
(t) are reactive power and complex power generated by solar type

converter-based generation. Qabc
Ci,s

(t) is reactive power supplied by reactive power compensator for

a time segment ∆t of state s. V abc
i,s (t) and V abc

k,s (t) are bus voltage of ith and kth bus respectively

for time segment ∆t of state s. δabcki,s represents voltage angle difference between ith and kth bus

on time segment ∆t for state s. Gki and Bki are real and imaginary part of admittance between

kth and ith. N is the total number of buses.

5.4.0.3 Inequality Constraints

P abc
PVmaxi

≤ P abc
PV,s(t) ≤ P abc

PVmini

Qabc
PVmaxi

≤ Qabc
PV,s(t) ≤ Qabc

PVmini

V abc
min ≤ V abc

i,s (t) ≤ V abc
max

Tmin
tap ≤ Ttap,i ≤ Tmax

tap

Qabc
Cmin

≤ QC,s(t)
abc ≤ Qabc

Cmax
(5.10)

P abc
B,n,s(t) ≤ 0.2Cbatt,n

P abc
Bchmin

≤ P abc
Bch,s(t) ≤ P abc

Bchmax

P abc
Bdcmin

≤ P abc
Bdc,s(t) ≤ P abc

Bdcmax

SOCabc
Bmin ≤ SOCabc

B,s(t) ≤ SOCabc
Bmax

where P abc
PVmaxi

, and P abc
PVmini

are maximum and minimum active power generation from solar

based generation, respectively. Tmax
tap and Tmin

tap are minimum and maximum transformer tap
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settings limit. Qabc
Cmin

and Qabc
Cmax

are shunt compensator limit. Qabc
PVmax

, and Qabc
PVmin

are reactive

power limits of solar type generation. P abc
Bchmax

, P abc
Bchmin

, P abc
Bdcmin

and P abc
Bdcmax

are charging and

discharging power limit of battery installed at the charging station. SOCabc
Bmax and SOCabc

Bmin are

the limit of the state of charge of the battery installed at the charging station.

Fig. 5.3: IEEE-33 system

Table 5.1: State with their probability of solar power generation, and load for 13 h

State PV-DG output Prob Load Prob
1 0 ≤ps<0.5 0.0137 0≤l<0.3 0.23
2 0.5≤ps<0.7 0.35 0.3≤l<0.6 0.6972
3 0.7 ≤ ps <1 0.6262 0.6≤l<1 0.0728

Table 5.2: Combination of States of Input Variable for 13 h in case of Solar type DGs

State Combination of PV-DG output, Probability
and load demand

1 0 ≤ps<0.5 ,0≤pl<0.3 0.003151
2 0 ≤ps<0.5 ,0.3≤pl<0.6 0.0099551
3 0 ≤ps<0.5 ,0.6≤pl<1 0.0009738
4 0≤ps<0.7 ,0≤pl<0.3 0.0805
5 0≤ps<0.7,0.3≤pl<0.6 0.2440
6 0≤ps<0.7 ,0.6≤pl<1 0.02548
7 0.7≤ps<1 ,0≤pl<0.3 0.144
8 0.7≤ps<1 ,0.3≤pl<0.6 0.4365
9 0.7≤ps<1 ,0.6≤pl<1 0.045591

5.5 Results and Discussion

In this work, to enhance the hosting capacity of the network, the battery energy storage system

is installed with the most dominant PV-DGs in the network. Further, by utilizing the optimal

setting of the voltage-controlling parameters of the network and the optimal charging and

discharging of BESS, the hosting capacity of the network is enhanced. To determine the optimal

setting of voltage controlling parameter and optimal charging-discharging of BESS, OPF for the

objective of maximizing the hosting capacity of the network is solved using the Modified–Jaya

(M-Jaya) algorithm. The implementation of the proposed method is done on IEEE-33 [101]
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and unbalanced IEEE-13 [116] distribution system using MATLAB R2019b with the system

configuration Intel-Core i7-8700, CPU @ 3.20 GHz. Base power and voltage for IEEE-33: 100

MVA, 12.66 kV and IEEE-13 distribution: 100 kW, 4.16 kV. In both the test systems, the optimal

setting of the OLTC, reactive power compensation by DGs, and the charging-discharging profile

of the BESS is determined for improving the hosting capacity of the network in three cases: (a)

without any control (a) BESS is installed with most dominant PV-DGs (c) BESS is installed with

random PV-DGs.

Table 5.3: Ranking of PV-DGs by Sobol index for IEEE 33 test system

Bus number Value of Sobol index Ranking
with PV-DG

18 0.3672 1
22 0.2575 4
25 0.2970 3
33 0.3057 2

5.5.1 IEEE-33 test system

In this test system, at four locations far end feeders (i.e., in bus no 18, 22, 25, 33) rating of 800

kW solar-based distributed generation is considered as shown in Fig. 2.5. Between buses 1 and 2,

the on-load tap changer is considered, and their maximum and minimum tap settings are set to -5

and 5. The BESS of the rating 500 kW is considered for enhancing the hosting capacity, and their

initial state of charge is taken as 0.45 pu.

5.5.1.1 Discussion

To enhance the hosting capacity of the BESS with dominant PV-DGs in the network is considered.

To determine the dominant PV-DGs, the sobol index has been used, as explained in section 5.3.

In this case, the highest value of the sobol index is observed in bus 18, as shown in the Table 5.3.

Thus, bus 18 is considered as the optimal position for installing BESS in the network. Further, by

utilizing the optimal setting of an available voltage-controlling parameter, such as an on-load tap

changer with charging and discharging rate of installed BESS, the hosting capacity of the network

is determined. In Fig. 5.2, steps to determine the optimal setting of voltage controlling parameter

and charging-discharging of BESS to enhance the hosting capacity of the network are explained.

In the first step,, for considering the stochastic characteristics of load and generation, state-based

probabilistic modeling is utilized as explained in section 3.2. In this work, the hourly PDF of

PV-DGs and load is divided into three states, and their combination is given as input to the OPF

problem to determine the optimal setting of voltage-controlling devices and charging-discharging

of installed BESS. For 13th h, all three states of output power from PV-DGs and load with their

probability is given in Table 5.1 and their nine combinations with their probability is given in Table

5.2. Further, this combination of load and generation is given as input to the OPF problem. In

the second step, the OPF with the objective of maximizing the hosting capacity of the network,

as shown given (5.8)-(5.10) is solved using the M-Jaya algorithm for each combination of PV-DG

output power and load demand to determine the optimal setting of voltage-controlling parameters

and charging and discharging of installed BESS in the network. Furthermore, the summation of the

obtained optimal setting multiplied for each combination of load and generation by their probability

is considered as the hourly optimal setting. The optimal hourly setting of the voltage-controlling

parameter and charging-discharging of BESS is stored in the third step. In this test system, the
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hosting capacity of the network is determined in all three cases given in Table 5.4. The cumulative

hosting capacity for 13th h without any control is 2200.74 kW, BESS installed at bus 22 is 2468 kW

and BESS installed at bus 18 is 2662 kW The impact of PV-DGs on bus voltage depends on common

impedance sharing. Thus, PV-DG installed on bus 18 is considered to be the dominant bus. The

BESS enhance the hosting capacity by mitigating the stochastic characteristics of PV-DGs by

observing and releasing the active power from PV-DGs. The PV-DG installed on bus 18 has a

cumulative higher impact on the voltage level on all buses than on all three buses. Thus, BESS

installed on bus 18 improves the hosting capacity more than BESS installed on bus 22. For all

three cases, the voltage profile for 13th h is shown in Fig. 5.6. In all three cases, voltage profiles

are under limits. The optimal charging-discharging power with their SOC is shown in Fig. 5.4.

For BESS installed at bus 22 is shown in Fig. 5.4-(a), and for the bus location 18 is shown in

Fig. 5.4-(b). The charging rate is higher in the case of BESS installed at bus 22 because PV-DG

installed at that bus has the highest cumulative impact on the bus voltage of the network. The

optimal setting of OLTC for BESS installed at bus 22 is shown in Fig. 5.5. A similar, optimal

setting of OLTC is observed for BESS installed at bus 18. The losses of the network for all three

cases are shown in Fig. 5.7. In all three cases, it is observed that BESS installed with dominant

PV-DG not only improved the hosting capacity of the network but also reduced the network losses.
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Fig. 5.4: Charging/discharging profile of BESS for 24 h time period

Table 5.4: Comparative analysis of different approaches for enhancing hosting capacity

Test case
Hosting Capacity of buses (kW)

Losses(kW)
Bus18 Bus22 Bus25 Bus33

Without any control 590.34 510.1 535.21 565.4 261.23
BESS at bus-18 759.7 597.14 610.23 695.3 240.71
BESS at bus-22 637.1 625.23 595.3 611.23 225.13

5.5.2 IEEE-13 unbalanced test system

In this test system, at each phase of three locations, such as buses 634, 652, and 671 rating of 500

kW solar-based distributed generation is considered as shown in Fig. 5.9. Between bus 650, and

bus 632, the on-load tap changer is considered, and their maximum and minimum tap settings are

considered as -5 and 5. The BESS of the rating 250 kW for each phase at the installed location is
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Table 5.5: Ranking of PV-DGs by Sobol index for IEEE-13 test system

Bus number Value of Sobol index Ranking
with PV-DG

634 0.2143 3
652 0.2213 2
671 0.2771 1

considered for enhancing the hosting capacity, and their initial state of charge is taken as 0.45 pu.

At bus 652, the reactive power compensator of the rating 50 kVAR, 50 kVAR and 30 kVAR are

considered for phase –a, b and c, respectively.

5.5.2.1 Discussion

In this case, enhancing the hosting capacity of the BESS with dominant PV-DGs in the network

is considered. To determine the dominant PV-DGs, the sobol index has been used, as explained in

section 5.3. In this case, the highest value of the sobol index is observed in bus 671, which is shown

in the Table 5.5 . Thus, bus 671 is considered as the optimal position for installing BESS in the

network. Further, by utilizing the optimal setting of an available voltage-controlling parameter,

such as an on-load tap changer with charging and discharging rate of installed BESS, the hosting

capacity of the network is determined. Similarly to the IEEE-33 test system, in this case also,

the hosting capacity of the network is determined in three cases, which are tabulated in Table 5.6.

The cumulative hosting capacity for 13th h without any control is 3293 kW, BESS installed at bus

634 is 4178.1.1 kW and BESS installed at bus 671 is 4535.2 kW The impact of PV-DGs on bus

voltage depends on common impedance sharing. Thus, PV-DG installed on bus 671 is considered

to be the dominant bus. The BESS enhance the hosting capacity by mitigating the stochastic

characteristics of PV-DGs by observing and releasing the active power from PV-DGs. The PV-DG

installed on bus 671 has a cumulative higher impact on the voltage level on all buses than on all

three buses. Thus, BESS installed on bus 671 improves the hosting capacity compared with BESS

installed on bus 634. For all three cases, the voltage profile of all phases for 13th h is shown in

Fig. 5.10. In all three cases, voltage profiles are under limits. The optimal charging-discharging

power with their SOC is shown in Fig. 5.4. In Fig. 5.11-(e), (g), and (j), the charging-discharging

power with their SOC is given for BESS installed at bus 634. In Fig. 5.11-(f), (h), and (k), the

charging-discharging power with their SOC is given for BESS installed at bus 671. From Fig.

5.11, all the phases’ charging and discharging rates are different due to their load profile. The
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charging-discharging rate of BESS is higher in the case of BESS installed with dominant PV-DG

(Bus -671). The optimal tap setting of OLTC is shown in Fig. 5.8-(a), and the optimal setting

reactive power compensator for all phases is shown in Fig. 5.8-(b). The losses of the network for all

three cases are shown in Fig. 5.8-(c). It is observed that the installation of BESS with dominant

PV-DG not only improves the hosting capacity of the network but also the network’s losses.

Table 5.6: Comparative analysis of different approaches for enhancing hosting capacity

Test case
Hosting Capacity of buses (kW)

Losses (kW)
Bus 634 Bus 652 Bus671

Without any control 1325 1029 939 8.03
BESS at bus-634 1503 1325.1 1350 5.90
BESS at bus-671 1480 1425 1630 2.87

5.6 Conclusion

� The rising integration of PV-DGs into distribution networks drives these networks toward

their operational limits. In this context, maintaining a stable voltage profile becomes

challenging due to the intermittent nature of PV-DGs. As a result, the hosting capacity

of the network gets reduced.

� The rising integration of PV-DGs into distribution networks drives these networks toward

their operational limits. In this context, maintaining a stable voltage profile becomes

challenging due to the intermittent nature of PV-DGs. As a result, the hosting capacity

of the network gets reduced.

� BESS mitigates the intermittent nature of PV-DGs by observing surplus active power and

releasing in time of lack of active power. However their location of placement is changing

task.

� In this study, Battery Energy Storage Systems (BESS) are integrated alongside dominant

PV-DGs to enhance the network’s hosting capacity. The dominant PV-DGs within the

network are identified using Sobol indices. Hosting capacity is then improved through optimal

coordination among the charge-discharge profile of BESS with available voltage-controlling

parameters in the network. To achieve this, an optimal power flow problem is solved using

the M-Jaya algorithm, which determines the optimal BESS charge-discharge profile and

voltage-controlling parameter settings.

� The implementation of proposed method has been done on IEEE-33 balanced and IEEE-13

unbalanced test system. From the simulation it is observed that Installation of BESS at with

most dominant PV-DG bus not only enhance the hosting capacity but also reduces the losses

of the network.
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6.1 General

As the economy grows, the increasing power demand makes traditional generation methods

impractical due to high costs, transmission losses, dwindling fossil fuel reserves, and environmental

concerns. Renewable-Based Distributed Generation (RBDG) is seen as the best solution.

Simultaneously, the rise of Electric Vehicles (EVs) in the market also increases the need for charging

infrastructure. The integrated RBDGs, the number of EVs arriving at the charging station and

loading in the distribution network, inherit uncertain characteristics, which causes randomly fast

voltage fluctuations, sometimes leading to voltage limit violations at multiple buses in the network.

Traditional method fail to maintain the voltage profile of the network due their sluggish response

time. Therefore, maintaining the voltage profile in the network fast and dynamic voltage control

is required. Initially, RBDGs could not control voltage profiles due to a lack of active or reactive

power control.In this scenario, reinforcing networks with reactive power-compensating devices or

using On-Load Tap Changers (OLTC) is employed, though these solutions are often considered

costly. Progress in inverter technology now allows RBDGs to control voltage by adjusting both

active and reactive power.

Active Power Curtailment (APC) and Reactive Power Compensation (RPC) are strategies used

to address voltage issues. However, randomly selecting RBDGs for voltage maintenance of the

network is not an economically optimal solution. Evaluating RBDG’s impact on bus voltage is

crucial for making fast and dynamic voltage control techniques. The voltage control technique

utilizes voltage-controlling capabilities of RBDGs are classified into centralized and decentralized

voltage control. The exclusive use of RBDGs, either centralized or decentralized, for maintaining

the voltage profile of the network is not considered as economical solution. A hierarchical approach

to voltage control is preferred, and it is implemented in multiple stages. It offers a window

to coordinate decentralized DGs with all available voltage control parameters to maintain the

network’s voltage profile.

The stochastic nature of RBDG not only hampers the voltage profile of the network but also

reduces its Hosting Capacity (HC). However, increasing power demand requires the enhancement

of the network’s HC. BESS mitigates the stochastic characteristics by their optimal charging and

discharging power. To enhance the hosting capacity of the network, large-size BESS gives the

best benefit-to-cost ratio, but their placement and evaluation of the coordination among available

voltage controlling parameters is challenging. In this thesis, the research problems have been

formulated by considering the above-discussed issues as follows:

� Develop a probabilistic approach to investigate the impact of distributed generation on

voltage deviation in the distribution system.

� Develop a state-based probabilistic method to determine the optimal setting of

voltage-controlling parameters in active distribution networks.
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� Develop a dual-stage voltage control technique for solar generation-enriched active

distribution network.

� Develop a techniques for enhancing the hosting capacity by placing battery energy storage

systems with renewable-based generation.

6.2 Summary of contribution

The work is carried out into the thesis is about making fast and dynamic voltage control techniques

to mitigate voltage issues arising in the network due to high penetration RBDGs. The high

penetration of RBDG also reduces the HC of the network due their stochastic characteristics.

Therefore, the placement of a BESS alongside dominant RBDG to enhance the network’s HC is

also investigated.

In Chapter 2, to evaluate the impact of distributed generation on the bus voltage of the

network, a Principal Component Analysis (PCA) based novel Probabilistic Voltage Sensitivity

Index (PV SI) is proposed. The elements of the covariance matrix are analytically derived to reduce

the computation time. PV SI is implemented in MATLAB R2019b with the system configuration of

Intel-Core i7-8700, CPU @ 3.20GHz. It is verified in three scenarios by considering active, reactive

and complex power perturbation at DG-integrated bus on 69-bus and 141-bus distribution systems

by comparing the results with the traditional Monte-Carlo Simulation (MCS) and Joint Differential

Entropy (JDE) methods. From all three cases, the observation are as follows:

� PV SI gives the same rankings as traditional MCS and JDE methods while cutting

computation time by 85.75% for the 69-bus system and 85.8% for the 141-bus system

compared to JDE.

� Active power perturbation impacts real part of change in voltage (∆V r
O) more than imaginary

part of change in voltage (∆V i
O), whereas reactive power perturbation has a greater effect on

∆V i
O than on ∆V r

O. However, the impact of complex power depends on the variance of both

active and reactive power perturbations.

� Due to computational advantage and accuracy, proposed PV SI can be implemented in

formulation of decentralized voltage control.

In Chapter 3, the optimal settings for voltage-controlling parameters over a 24-hour time period

are determined by considering various types of Converter Based Generations (CBGs), including

solar generation, wind generation, and mixed generation, on an enhanced IEEE 33-bus system

and an unbalanced IEEE 123-bus test system. The state-based probabilistic method is used to

estimate the stochastic characteristics of output power from CBGs, power demand by load and

the number of EVs arriving at the charging station and incorporated into the Optimal Power Flow

(OPF) problem as input. Further, the M-Jaya algorithm is used to solve the OPF problem. From

the simulation results, the observation are as follows:

� The optimal setting of voltage-controlling parameters not only enhances the voltage profile

of the network but also reduces losses in the distribution system.

� The installation of BESS at the charging station not only improves the charging rate of

EVs but also decreases losses of the network by improving the power factor of distributed

generation.
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� The M-Jaya algorithm achieves superior convergence for proposed objective functions without

violating any operational constraints.

� The proposed work offers insights to forecast the optimal setting of available voltage

controlling parameters for a given time segment, considering the intermittent nature of load

and generation of the network.

In Chapter 4, a dual-stage voltage control technique is proposed to establish coordination among

available voltage-controlling devices in the network and clustered renewable-based generation. In

the primary stage, the optimal hourly setting of the voltage-controlling parameter for the entire

24-hour planning horizon is determined, considering the stochastic characteristics of load and

generation. If the optimal hourly voltage control setting proves inadequate for maintaining the

voltage profile, the Cluster Based Voltage Control (CBVC) technique is initiated in the secondary

stage. At this stage, the network is segregated using entropy-based spectral clustering. This

method divides the distribution network so that the available Photovoltaic Distributed Generations

(PV-DGs) within each cluster can maintain the voltage profile. Subsequently, the optimal operating

power of the PV-DGs is determined by independently solving the OPF problem. The effectiveness

of the method is evaluated on 37-bus and modified IEEE 123-bus system by comparing the

Centralized Voltage Control (CVC) method. From the simulation result, the observation are as

follows:

� CBVC achieves a 70% reduction in PV-DGs operating at a lagging power factor in the

37-bus system and a 30% reduction in the modified IEEE-123 test system. As a result,

CBVC reduces losses by 21.1% in the 37-bus system and by 10% in the modified IEEE

123-bus system compared to CVC.

� CBVC solves OPF on a cluster basis, thereby reducing computation time by 73.1% for the

37-bus system and 92.5% for the modified IEEE-123 test system.

In Chapter 5, a BESS is installed alongside the most dominant PV-DG to enhance the network’s

hosting capacity. The Sobol sensitivity index is used to determine the impact of PV-DGs on

the bus voltage of the network. Furthermore, by optimizing the voltage-controlling parameters

of the network and the charging and discharging of the BESS, the network’s hosting capacity is

significantly enhanced. The efficiency of the proposed method is evaluated using the IEEE 33 and

IEEE 13 test systems. From the simulation result, the observation are as follows:

� The BESS improves not only the hosting capacity of the network but also the network’s

losses.

� The BESS with dominant renewable-based generation gives better hosting capacity and loss

profile than the random buses.

6.3 Scope of future work

� Develop the analytic method to determine the influence the distribution generation on bus

voltage in unbalanced distribution network.

� To find the correct proportionality of battery energy storage system to reduce the stochastic

behavior of generations as these resource inherit the different stochastic characteristics.
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� Determination of optimal solution for active and reactive power exchange between

transmission and distribution system for voltage support, considering the stochastic nature

of DG.
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Chapter A

Test System Data

A.1 Test Data

A.2 141-Bus System Data
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98 APPENDIX A. Test System Data

Table A.1: Branch and Bus Data of 141-Bus System

From bus To bus R(pu) X(pu) Bus number Load P(pu) Load Q(pu)
1 2.0 0.003711 0.002630 - P(pu) Q(pu)
2 3.0 0.011093 0.007865 1.0 0 0
3 4.0 0.000058 0.000039 2.0 0 0
4 5.0 0.000592 0.000418 3.0 0 0
5 6.0 0.000437 0.000315 4.0 0 0
6 7.0 0.000602 0.000434 5.0 0 0
7 8.0 0.000449 0.000324 6.0 0 0
8 9.0 0.000702 0.000507 7.0 0 0
9 10.0 0.000307 0.000222 8.0 0 0
10 11.0 0.000303 0.000219 9.0 0 0
11 12.0 0.000272 0.000197 10.0 0 0
12 13.0 0.000600 0.000434 11.0 0 0
13 14.0 0.000332 0.000241 12.0 0 0
14 15.0 0.000363 0.000264 13.0 0 0
15 16.0 0.000483 0.000352 14.0 0 0
16 17.0 0.000298 0.000217 15.0 0 0
17 18.0 0.000618 0.000449 16.0 0 0
18 19.0 0.000661 0.000480 17.0 0 0
19 20.0 0.000406 0.000295 18.0 0 0
20 21.0 0.000403 0.000293 19.0 0 0
21 22.0 0.000329 0.000239 20.0 0 0
22 23.0 0.000231 0.000168 21.0 0 0
23 24.0 0.000448 0.000324 22.0 0 0
24 25.0 0.000621 0.000451 23.0 0 0
25 26.0 0.000488 0.000355 24.0 0 0
26 27.0 0.000251 0.000183 25.0 0 0
27 28.0 0.000353 0.000258 26.0 0 0
28 29.0 0.000474 0.000347 27.0 0 0
29 30.0 0.000344 0.000252 28.0 0 0
30 31.0 0.000394 0.000288 29.0 0 0
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Table A.2: Branch and Bus Data of 141-Bus System

From bus To bus R(pu) X(pu) Bus number Load P(pu) Load Q(pu)
31 32.0 0.000347 0.000253 30.0 0 0
32 33.0 0.000536 0.000390 31.0 0 0
33 34.0 0.000389 0.000283 32.0 0 0
34 35.0 0.000513 0.000370 33.0 0 0
35 36.0 0.000548 0.000396 34.0 0 0
36 37.0 0.000571 0.000414 35.0 0 0
37 38.0 0.000638 0.000463 36.0 0 0
38 39.0 0.000472 0.000342 37.0 0 0
39 40.0 0.000414 0.000300 38.0 0 0
40 41.0 0.000434 0.000315 39.0 0 0
41 42.0 0.000388 0.000282 40.0 0 0
42 43.0 0.000273 0.000198 41.0 0 0
43 44.0 0.000353 0.000258 42.0 0 0
44 45.0 0.000446 0.000327 43.0 0 0
45 46.0 0.000406 0.000298 44.0 0 0
46 47.0 0.000564 0.000412 45.0 0 0
47 48.0 0.000637 0.000464 46.0 0 0
48 49.0 0.000572 0.000416 47.0 0 0
49 50.0 0.000398 0.000290 48.0 0 0
50 51.0 0.000552 0.000402 49.0 0 0
51 52.0 0.000436 0.000317 50.0 0 0
52 53.0 0.000366 0.000267 51.0 0 0
53 54.0 0.000438 0.000319 52.0 0 0
54 55.0 0.000414 0.000302 53.0 0 0
55 56.0 0.000581 0.000423 54.0 0 0
56 57.0 0.000638 0.000465 55.0 0 0
57 58.0 0.000465 0.000339 56.0 0 0
58 59.0 0.000603 0.000440 57.0 0 0
59 60.0 0.000581 0.000423 58.0 0 0
60 61.0 0.000500 0.000364 59.0 0 0
61 62.0 0.000563 0.000410 60.0 0 0
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Table A.3: Branch and Bus Data of 141-Bus System

From bus To bus R(pu) X(pu) Bus number Load P(pu) Load Q(pu)
62 63.0 0.000597 0.000436 61.0 0 0
63 64.0 0.000627 0.000458 62.0 0 0
64 65.0 0.000568 0.000415 63.0 0 0
65 66.0 0.000523 0.000382 64.0 0 0
66 67.0 0.000397 0.000290 65.0 0 0
67 68.0 0.000393 0.000288 66.0 0 0
68 69.0 0.000429 0.000315 67.0 0 0
69 70.0 0.000396 0.000283 68.0 0 0
70 71.0 0.000606 0.000432 69.0 0 0
71 72.0 0.000460 0.000335 70.0 0 0
72 73.0 0.000440 0.000321 71.0 0 0
73 74.0 0.000382 0.000279 72.0 0 0
74 75.0 0.000471 0.000344 73.0 0 0
75 76.0 0.000422 0.000308 74.0 0 0
76 77.0 0.000545 0.000398 75.0 0 0
77 78.0 0.000471 0.000343 76.0 0 0
78 79.0 0.000603 0.000440 77.0 0 0
79 80.0 0.000444 0.000324 78.0 0 0
80 81.0 0.000577 0.000421 79.0 0 0
81 82.0 0.000592 0.000432 80.0 0 0
82 83.0 0.000587 0.000428 81.0 0 0
83 84.0 0.000440 0.000321 82.0 0 0
84 85.0 0.000540 0.000394 83.0 0 0
85 86.0 0.000488 0.000355 84.0 0 0
86 87.0 0.000614 0.000448 85.0 0 0
87 88.0 0.000563 0.000411 86.0 0 0
88 89.0 0.000584 0.000426 87.0 0 0
89 90.0 0.000607 0.000443 88.0 0 0
90 91.0 0.000470 0.000343 89.0 0 0
91 92.0 0.000482 0.000352 90.0 0 0
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Table A.4: Branch and Bus Data of 141-Bus System

From bus To bus R(pu) X(pu) Bus number Load P(pu) Load Q(pu)
92 93.0 0.000539 0.000394 91.0 0 0
93 94.0 0.000670 0.000489 92.0 0 0
94 95.0 0.000409 0.000299 93.0 0 0
95 96.0 0.000528 0.000386 94.0 0 0
96 97.0 0.000379 0.000277 95.0 0 0
97 98.0 0.000408 0.000297 96.0 0 0
98 99.0 0.000497 0.000362 97.0 0 0
99 100.0 0.000509 0.000372 98.0 0 0
100 101.0 0.000476 0.000348 99.0 0 0
101 102.0 0.000456 0.000333 100.0 0 0
102 103.0 0.000562 0.000410 101.0 0 0
103 104.0 0.000581 0.000424 102.0 0 0
104 105.0 0.000417 0.000304 103.0 0 0
105 106.0 0.000526 0.000386 104.0 0 0
106 107.0 0.000486 0.000355 105.0 0 0
107 108.0 0.000458 0.000335 106.0 0 0
108 109.0 0.000532 0.000388 107.0 0 0
109 110.0 0.000472 0.000344 108.0 0 0
110 111.0 0.000474 0.000347 109.0 0 0
111 112.0 0.000589 0.000433 110.0 0 0
112 113.0 0.000400 0.000294 111.0 0 0
113 114.0 0.000533 0.000391 112.0 0 0
114 115.0 0.000386 0.000283 113.0 0 0
115 116.0 0.000395 0.000290 114.0 0 0
116 117.0 0.000517 0.000379 115.0 0 0
117 118.0 0.000595 0.000436 116.0 0 0
118 119.0 0.000565 0.000414 117.0 0 0
119 120.0 0.000621 0.000455 118.0 0 0
120 121.0 0.000405 0.000297 119.0 0 0
121 122.0 0.000361 0.000265 120.0 0 0
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Table A.5: Branch and Bus Data of 141-Bus System

From bus To bus R(pu) X(pu) Bus number Load P(pu) Load Q(pu)
122 123.0 0.000455 0.000334 121.0 0 0
123 124.0 0.000394 0.000288 122.0 0 0
124 125.0 0.000370 0.000270 123.0 0 0
125 126.0 0.000523 0.000382 124.0 0 0
126 127.0 0.000536 0.000390 125.0 0 0
127 128.0 0.000390 0.000283 126.0 0 0
128 129.0 0.000452 0.000334 127.0 0 0
129 130.0 0.000592 0.000437 128.0 0 0
130 131.0 0.000364 0.000269 129.0 0 0
131 132.0 0.000404 0.000298 130.0 0 0
132 133.0 0.000519 0.000380 131.0 0 0
133 134.0 0.000510 0.000373 132.0 0 0
134 135.0 0.000541 0.000395 133.0 0 0
135 136.0 0.000569 0.000415 134.0 0 0
136 137.0 0.000472 0.000344 135.0 0 0
137 138.0 0.000618 0.000449 136.0 0 0
138 139.0 0.000399 0.000290 137.0 0 0
139 140.0 0.000495 0.000362 138.0 0 0
140 141.0 0.003756 0.002662 139.0 0.0425 0.026339

140.0 0.1275 0.079017
141.0 0.06375 0.039509



Chapter B

Appendix List of Publications

List of Publications

Journal

� Digamber Kumar, Bibhu Prasad Padhy, ”Probabilistic approach to investigate the

impact of distributed generation on voltage deviation in distribution system,” Electrical

Engineering 105, no. 5 (2023): 2621-2636.

� Digamber Kumar, Bibhu Prasad Padhy, ”Optimal Selection of Voltage Controlling Parameter

in Uncertain Active Distribution Network,” in IEEE Transactions on Industry Applications,

vol. 60, no. 1, pp. 1576-1588.

� Digamber Kumar,Bibhu Prasad Padhy, ”Dual-Stage Cluster-Based Voltage Control

For Active Distribution Network With High Penetration of Photovoltaic Distributed,”

Transactions on Industry Applications (Under Review).

� Digamber Kumar,Bibhu Prasad Padhy, ”Partition of Active Distribution Network Using

Probabilistic voltage sensitive index by Spectral Clustering,” Journal of Modern Power

Systems and Clean Energy (Under Review).

� D. Kumar and B. P. Padhy, ”Improvement of hosting capacity of active distribution network

utilizing optimal placement of BESS,” Electric Power Systems Research (Under Review).

Conference Proceeding

� D. Kumar and B. Prasad, ”Optimal Selection of Voltage Controlling Parameter in Uncertain

Active Distribution Network,” 2022 4th International Conference on Energy, Power and

Environment (ICEPE), Shillong, India, 2022, pp. 1-6,

� D. Kumar and B. P. Padhy, ”Entropy Based Spectral Clustering For Distribution Network

With High Penetration of DGs,” 2022 22nd National Power Systems Conference (NPSC),

New Delhi, India, 2022, pp. 53-58

103



104 APPENDIX B. Appendix List of Publications

� D. Kumar and B. P. Padhy, ”Group-Based Voltage Control For Distribution System With

High Penetration of PVs,” 2023 IEEE 3rd International Conference on Smart Technologies

for Power, Energy and Control (STPEC), Bhubaneswar, India, 2023, pp. 1-6.


	Declaration
	Acknowledgement
	Certificate
	Abstract
	List of Figures
	List of Tables
	Introduction
	Introduction 
	General
	Active Distribution Networks
	Motivation
	Literature Review
	Voltage control techniques
	Hierarchical voltage control
	Hosting capacity of the network
	Organization of the Thesis


	Probabilistic Approach to Investigate the Impact of Distributed Generation on Voltage Deviation in Distribution System
	Introduction
	Background
	Traditional method for voltage sensitivity using Monte-Carlo Simulation (MCS)
	Analytic method for voltage sensitivity

	Formulation of PVSI using PCA
	Case Study and Discussion
	Change in active power at multiple buses
	Change in reactive power at multiple buses
	Change in active and reactive power both at multiple buses

	Conclusion

	Optimal Selection of Voltage Controlling Parameter in Uncertain Active Distribution Network
	Introduction
	Modeling of distribution network
	Modeling of hourly solar irradiation and power output
	Modeling of wind speed and output power
	Modeling of Load
	Modeling of EVs as load
	Modeling of BESS at Charging Station

	Problem Formulation
	Objective Function

	Jaya algorithm for solving OPF
	Results and Discussion
	Enhanced IEEE-33 distribution system
	Solar Generation
	Wind Generation
	Mixed Type generation
	Unbalanced IEEE-123 distribution system
	Discussion

	Conclusion

	Dual-Stage Voltage Control For Active Distribution Network With High Penetration of Photovoltaic Distributed Generators Using Spectral Clustering
	Introduction
	ADN modeling Strategy
	Voltage Control Strategy
	Primary Stage Voltage Control
	 Secondary Stage voltage Control

	Results and Discussion
	37-bus distribution system
	Modified IEEE 123-bus system

	Conclusion

	Enhancement of Hosting Capacity of Active Distribution Network Utilizing Optimal Placement of Battery Energy Storage System
	Introduction
	Formulation of load, generation and Battery Energy Storage System (BESS)
	Modeling of load, generation and BESS
	Modeling of BESS 
	Charging of BESS
	Discharging of BESS

	Impact of PV-DGs in the active distribution network
	Sobol sensitivity 

	Problem Formulation
	Results and Discussion
	IEEE-33 test system
	IEEE-13 unbalanced test system

	Conclusion

	Conclusion and Future Research
	General
	Summary of contribution
	Scope of future work

	References
	Test System Data
	Test Data
	141-Bus System Data

	Appendix List of Publications



