
Enhancing Performance of Intelligent IoT

Applications in Edge-Cloud Continuum

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

by

Ashish Kumar Kaushal

(2019csz0003)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROPAR

SEPTEMBER, 2024



ii

Ashish Kumar Kaushal: Enhancing Performance of Intelligent IoT Applications in

Edge-Cloud Continuum

Copyright©2024, Indian Institute of Technology Ropar

All Rights Reserved



iii

Dedicated to my family !!



iv

Declaration of Originality

I hereby declare that the work which is being presented in the thesis entitled Enhancing

Performance of Intelligent IoT Applications in Edge-Cloud Continuum has been

solely authored by me. It presents the result of my own independent investigation/research

conducted during the time period from July 2019 to August 2024 under the supervision of

Dr. Nitin Auluck and Dr. Balwinder Sodhi at IIT Ropar. To the best of my knowledge,

it is an original work, both in terms of research content and narrative, and has not been

submitted or accepted elsewhere, in part or in full, for the award of any degree, diploma,

fellowship, associateship, or similar title of any university or institution. Further, due

credit has been attributed to the relevant state-of-the-art and collaborations (if any) with

appropriate citations and acknowledgments, in line with established ethical norms and

practices. I also declare that any idea/data/fact/source stated in my thesis has not been

fabricated/falsified/misrepresented. All the principles of academic honesty and integrity

have been followed. I fully understand that if the thesis is found to be unoriginal,

fabricated, or plagiarized, the Institute reserves the right to withdraw the thesis from

its archive and revoke the associated Degree conferred. Additionally, the Institute also

reserves the right to appraise all concerned sections of society of the matter for their

information and necessary action (if any). If accepted, I hereby consent for my thesis to

be available online in the Institute’s Open Access repository, inter-library loan, and the

title & abstract to be made available to outside organizations.

Signature

Ashish Kumar Kaushal

2019csz0003

PhD

Department of CSE

Indian Institute of Technology Ropar

Rupnagar, Punjab 140001

Date: September 10, 2024



v

Acknowledgement

First of all, I begin by expressing my deepest gratitude to almighty God, whose unending

guidance and grace have sustained me throughout this entire journey of PhD. I also want

to thank IIT Ropar for providing me with the platform and all the facilities required for

completing my PhD.

I am profoundly grateful to my supervisor, Dr. Nitin Auluck, for his continuous support

and guidance, as well as the freedom he gave me in pursuing my ideas. I thank him for

his patience and mentorship even when I faced significant challenges. I also would like to

thank my co-supervisor Dr Balwinder Sodhi for his valuable contributions and support.

I must extend my special gratitude to Prof. Omer Rana for being an extraordinary

mentor and collaborator. I have learned a lot of things from him throughout my journey

of PhD. His willingness to share expert insights have significantly contributed to my both

professional and personal growth as a researcher. I am also thankful to my collaborator

and friend Osama Almurshed for all the expertise, suggestions, advice, and brainstorming

sessions which played an important role in completing our work. I am indebted to

my other collaborators Bharadwaj Veeravalli, Areej Alabbas, Asmail Muftah, Osama

Almoghamis for being a part of my work and providing their timely expertise.

I am immensely grateful to all of my doctoral committee members: Dr. Sudarshan

Iyenger (chairperson), Dr. Basant Subba, Dr. Jagpreet Singh, and Dr. Brijesh Kumbhani

for evaluating my work and providing me valuable feedback that improved the quality of

my work.

Special thanks to my friends Akash Anil, Hsuvas Borkakoty, Amit Gajbhiye, Nitesh

Kumar, Vidushi Agarwal, Abhishek Singh Sambyal, Armaan Garg, Gulshan Sharma,

Pooja Bharadwaj, Sahil Kumar, Tirtha Das, Sarbjeet Kaur, Pankaj Singla, Saweta Garg,

Aakriti Gupta for being a source of motivation and inspiration throughout the journey.

I also extend my deepest appreciation to my family for their unconditional love,

understanding, and encouragement. Their faith in me has consistently provided strength

and resilience throughout the challenging times of this academic journey.

This achievement would not have been possible without all of you. Thank you for being

a part of my PhD journey.

– Ashish



vi

Certificate

This is to certify that the thesis entitled Enhancing Performance of Intelligent IoT

Applications in Edge-Cloud Continuum, submitted by Ashish Kumar Kaushal

(2019csz0003) for the award of the degree of Doctor of Philosophy of Indian Institute

of Technology Ropar, is a record of bonafide research work carried out under our guidance

and supervision. To the best of my knowledge and belief, the work presented in this thesis

is original and has not been submitted, either in part or full, for the award of any other

degree, diploma, fellowship, associateship or similar title of any university or institution.

In our opinion, the thesis has reached the standard fulfilling the requirements of the

regulations relating to the Degree.

Signature of the Supervisor

Dr. Nitin Auluck

Department of CSE

Indian Institute of Technology Ropar

Rupnagar, Punjab 140001

Date: December 17, 2024

Signature of the Supervisor

Dr. Balwinder Sodhi

Department of CSE

Indian Institute of Technology Ropar

Rupnagar, Punjab 140001

Date: December 17, 2024



vii

Lay Summary

As the Internet of Things (IoT) continues to grow, more devices than ever are connected

and communicating every day, from smart home appliances to industrial sensors. This

leads to a large amount of data being generated everywhere, all the time. Traditionally,

this data was sent back to large central computers (cloud) for processing. However, to

make things faster and more e�cient, a lot of this processing is now being done closer to

where the data is actually generated – at the “edge” of the network, like on local devices

or nearby servers.

This thesis aims to make intelligent IoT systems work better, faster, and more reliably

by tackling a few key challenges. Initially, the thesis presents a smart way to decide

where and how tasks/jobs should be allocated within this new edge-to-cloud environment

to save time and increase performance, especially when immediate decisions are needed

by IoT applications. It also includes designing a method to e�ciently distribute the

task load on all the available resources considering various factors that directly a↵ect the

e�ciency of the environment. The factors monitor the total running time and resources

utilised of the system and try to minimise them. Another approach is to develop new

methods to improve how these systems learn and make decisions by training them more

e�ciently. This involves choosing the most important parts of a system that need learning

and removing unnecessary parts, making everything run smoother and quicker. Lastly, the

thesis explore how to better manage all the data these devices use and generate, ensuring

that it is stored safely and can be accessed quickly, even if something goes wrong. By

considering these scenarios, this thesis aims to enhance how smart devices operate and

communicate, making them better suited to the needs of our fast-paced, data-driven world.



viii

Abstract

The rapid expansion of the Internet of Things (IoT) has resulted in a paradigm

shift of computing from centralised cloud to edge environments, where data processing

is performed closer to the source. However, the deployment of intelligent IoT

applications within this edge-cloud continuum presents unique challenges, including

resource management, data processing e�ciency, and maintaining system reliability. This

thesis focuses on enhancing the performance of intelligent applications by designing

approaches for optimising task allocation, load distribution, Machine Learning (ML)

operations, and data management in the IoT infrastructure.

The thesis aims to design a framework that supports e�cient and cost-e↵ective

operation of IoT applications across the edge-cloud continuum. I first propose an

algorithm for dynamic task allocation that emphasises on minimising the completion

time while maximising the task execution performance. By formulating the algorithm

that dynamically allocates tasks based on real-time analytics and system state, the

approach e↵ectively reduces execution latency and enhances the accuracy of real-time

decision-making processes. In addition to task allocation, this thesis presents a load

distribution framework for IoT applications deployed on edge computing infrastructure.

The mechanism prioritises completion time, waiting time, resource utilisation, evaluation

overhead, failure rate, and provides a strategic approach that classifies tasks and

computational resources into categories such as restricted, public; and private, shared.

This results in a security-aware load distribution mechanism that handles IoT-based

tasks in real-time. In order to optimise the ML and Artificial Intelligence (AI)

operations, the thesis introduces an approach to select layers for model training using

a genetic algorithm. This method determines the optimal configuration of active and

inactive layers which enhances the model e�ciency and adaptability during training

phases. A pruning mechanism is also developed which utilises heatmap to identify

performance-critical features and simplifies the model by eliminating non-essential

features. This dual approach significantly reduces computational overhead and execution

time while preserving the essential analytical capabilities of the model and maintaining

its accuracy. To handle IoT-based data, the thesis also proposes a methodology that

ensures optimal storage, access, and recovery of data and model files in case any data

loss or system failure occurs. All these methods are designed to enhance the resilience

of the IoT system, ensuring that their performance, data integrity, and availability are

maintained even under adverse conditions. Through mathematical formulation of the

problems and implementation via simulation and testbed, I validate the feasibility and

performance of proposed frameworks on an agricultural (weed detection) use-case scenario.

Keywords: Edge-Cloud Continuum, Internet of Things, Load Distribution, Machine

Learning, Serverless, Task Allocation.



ix

List of Publications

Journal

1. A. Kaushal, O. Almurshed, O. Almoghamis, A. Alabbas, N. Auluck, B. Veeravalli

and O. Rana, “SHIELD: A Secure Heuristic Integrated Environment for Load

Distribution in Rural-AI,” in Elsevier Future Generation Computer Systems (FGCS)

Journal, 2024, vol. 161, pp. 286-301.

Conference

1. A. Kaushal, O. Almurshed, A. Alabbas, N. Auluck and O. Rana, “An Edge-Cloud

Infrastructure for Weed Detection in Precision Agriculture,” in The 21st IEEE

International Conference on Pervasive Intelligence and Computing (PiCom), Abu

Dhabi, UAE, 2023, pp. 0269-0276.

Under Review

1. A. Kaushal, O. Almurshed, A. Muftah, P. Kundan, T. Abhijith, N. Auluck and O.

Rana, “Towards a Sustainable Optimisation Approach for Machine Learning Tasks

in Internet of Things,” in IEEE Internet of Things Journal.

2. A. Kaushal, O. Almurshed, P. Kundan, T. Abhijith, N. Auluck and O. Rana,

“Enhancing Data Management in Machine Learning Applications: Resilience and

Storage Optimisation of Serverless Edge-Cloud,” in IEEE Internet of Things

Magazine.



x

List of Abbreviations

AI Artificial Intelligence
CNN Convolutional Neural Network
EC Erasure Coding
FAO Food and Agriculture Organisation
FaaS Function as a Service
FL Federated Learning
FLOP Floating Point Operation
FR Failure Rate
FSU Field Side Unit
GCP Google Cloud Platform
GHG Greenhouse Gas
GradCAM Gradient-weighted Class Activation Mapping
HMAC Hash-Based Message Authentication Code
IIT Indian Institute of Technology
ILP Integer Linear Programming
IoT Internet of Things
LRC Locally Recoverable Codes
LLM Large Language Model
MD Mobile Device
ML Machine Learning
MCSD Multitype Cloud Storage Dataset
MTBF Mean Time between Failures
MTTF Mean Time to Failure
MTTR Mean Time to Recovery
OW OpenWhisk
QoS Quality of Service
RPi Raspberry Pi
RS Reed Solomon
RU Resource Utilisation
SBC Single Board Computer
SC System Cost
SDG Sustainable Development Goal
SFC Service Function Chain
UAV Unmanned Aerial Vehicle
WSN Wireless Sensor Network



Contents

Declaration iv

Acknowledgement v

Certificate vi

Lay Summary vii

Abstract viii

List of Publications ix

List of Abbreviations x

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Edge-Cloud Continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Architecture for Edge-Cloud Continuum . . . . . . . . . . . . . . . . . . . . 3

1.4 Integrating ML, AI with Edge and Cloud . . . . . . . . . . . . . . . . . . . 4

1.5 IoT Applications Utilising Edge and Cloud . . . . . . . . . . . . . . . . . . 5

1.6 Challenges in Edge-Cloud Infrastructures . . . . . . . . . . . . . . . . . . . 7

1.7 Research Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Primary Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 13

2.1 Adaptive Edge and Cloud Frameworks . . . . . . . . . . . . . . . . . . . . . 13

2.2 Task O✏oading and Resource Allocation in Edge and Cloud Systems . . . . 14

2.3 Intelligent Applications using IoT, Cloud, and Edge . . . . . . . . . . . . . 16

2.4 Load Distribution on Edge and Cloud Nodes . . . . . . . . . . . . . . . . . 17

2.5 Security and Privacy in Edge-Cloud based Systems . . . . . . . . . . . . . . 18

2.6 Challenges with AI Sustainability and IoT . . . . . . . . . . . . . . . . . . . 19

2.7 Data Management in Edge-Cloud Frameworks . . . . . . . . . . . . . . . . . 21

3 Task Allocation in Edge-Cloud Infrastructure 23

3.1 Weed Management Task in Precision Agriculture . . . . . . . . . . . . . . . 23

xi



xii Contents

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Serverless Computing Platforms . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Dataset and ML Models . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 System Design and Use Case . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Monitoring Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 ML Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Signal Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Execution Workflow for Inference Tasks . . . . . . . . . . . . . . . . 31

3.5 Experiments and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Testing ML Model Capabilities . . . . . . . . . . . . . . . . . . . . . 33

3.5.3 Node Selection for Training and Inference . . . . . . . . . . . . . . . 34

3.5.4 Execution Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.5 Communication and Monitoring Setup . . . . . . . . . . . . . . . . . 36

3.6 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Load Distribution in Edge Computing Environment 41

4.1 Distributing Task Load in Rural-AI . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Three-tier Edge-Cloud Architecture . . . . . . . . . . . . . . . . . . 43

4.2.2 Adaptive Control Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3 Task and Resource Classification . . . . . . . . . . . . . . . . . . . . 44

4.2.4 Real-World Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.5 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.6 ML Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.7 Serverless Computing Platforms . . . . . . . . . . . . . . . . . . . . 48

4.2.8 The CIA Triad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 The SHIELD Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Heuristic Function Pipeline . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2 Adaptive Cryptographic Measures for Public Networks . . . . . . . . 55

4.4.3 Load Balancing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.4 Access Control Mechanism . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Performance Comparison: Parsl vs OpenWhisk . . . . . . . . . . . . . . . . 58

4.6 Experimentation Setup and Design . . . . . . . . . . . . . . . . . . . . . . . 60



Contents xiii

4.6.1 Testbed Setup for Parsl . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6.2 Testbed Setup for OpenWhisk . . . . . . . . . . . . . . . . . . . . . 61

4.6.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6.4 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Results and Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7.1 Performance Analysis of Workflows on Limited Resource Environment 65

4.7.2 Interpreting the Additional Time Required for Di↵erent Execution

Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7.3 Exploring Distribution of Load and its Trade-o↵ with other

Performance Critical Factors . . . . . . . . . . . . . . . . . . . . . . 69

4.7.4 Evaluating the Influence of Dynamic k-value on Overall Execution

Time of Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7.5 Analysing Performance with di↵erent Data Distribution and Task

Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7.6 Analysing Performance in Heterogeneous Resource Environment . . 71

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Optimising AI Operations in IoT-based Applications 77

5.1 Integrating ML with IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Agricultural Use-Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 Optimising Layer Selection with Genetic Algorithm . . . . . . . . . 79

5.3.2 E�cient Feature Mapping for Pruning . . . . . . . . . . . . . . . . . 81

5.4 Experimental Design and Setup . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Dataset and Hardware Configuration . . . . . . . . . . . . . . . . . . 84

5.4.2 Estimation of Power Consumption . . . . . . . . . . . . . . . . . . . 84

5.4.3 Experimental Configuration . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Aspects for Further Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 91

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Data Management in Edge-Cloud Environment 95

6.1 Data Management in IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Data Handling in Serverless Environment . . . . . . . . . . . . . . . . . . . 96

6.2.1 Direct Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.2 Use of Intermediate Storage . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Methods for Ensuring Data Availability . . . . . . . . . . . . . . . . . . . . 97

6.4 Challenges with Data Handling . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Challenges in Deploying ML Workflow on Serverless Platforms . . . . . . . 99

6.6 Proposed Approach for Data Handling . . . . . . . . . . . . . . . . . . . . . 99

6.7 Workflow for Data Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



xiv Contents

6.8 Workflow for Model Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.9 Experimentation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusion 107

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

References 111



List of Figures

1.1 Execution mechanism within an IoT network. . . . . . . . . . . . . . . . . . 1

1.2 Architecture for the edge-cloud continuum. . . . . . . . . . . . . . . . . . . 4

1.3 Structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Categorisation of the literature review performed in this thesis. . . . . . . . 13

3.1 Architecture for the task allocation framework. . . . . . . . . . . . . . . . . 24

3.2 Interaction between robot, FSU, and cloud node in the agricultural field. . . 26

3.3 Weed image: (a) original (b) blurred (c) black patched. . . . . . . . . . . . 33

3.4 Average inference time on full models. . . . . . . . . . . . . . . . . . . . . . 36

3.5 Average inference time on lightweight models. . . . . . . . . . . . . . . . . . 36

3.6 Average inference time on 2 platforms. . . . . . . . . . . . . . . . . . . . . . 37

3.7 E↵ect on completion time with change in signal quality. . . . . . . . . . . . 38

3.8 E↵ect on completion time with change in accuracy. . . . . . . . . . . . . . . 38

3.9 E↵ect on accuracy with change in signal quality. . . . . . . . . . . . . . . . 38

4.1 Architecture for the proposed load balancing framework. Private nodes

(red links) available in high-security zone handle sensitive tasks and shared

nodes handle less restricted tasks on the public network. . . . . . . . . . . . 42

4.2 Load distribution of tasks in the agricultural field. . . . . . . . . . . . . . . 45

4.3 Three sample images from the DeepWeeds dataset. . . . . . . . . . . . . . . 47

4.4 SFC for global, local, and prediction workflow. . . . . . . . . . . . . . . . . 47

4.5 Correlation between dynamic k-value and average execution time of the

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Model tuning for public network access. Robot encrypts and generates

HMAC and Fog Node6 manages decryption and verification. . . . . . . . . . 56

4.7 Utilising Parsl for pipelining and orchestrating the execution of workflow. . 61

4.8 The execution of a service function at a process node, with completion times

taking account of MTTF and MTTR. . . . . . . . . . . . . . . . . . . . . . 63

4.9 When the task execution time exceeds its MTBF, it will cycle repeatedly.

At each MTTR interval, the operation halts and then resumes until MTTF

is reached. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.10 Global workflow evaluation on Parsl platform. . . . . . . . . . . . . . . . . . 65

4.11 Global workflow evaluated on OpenWhisk platform. . . . . . . . . . . . . . 65

4.12 Local workflow evaluation on Parsl platform. . . . . . . . . . . . . . . . . . 66

4.13 Local workflow evaluation on OpenWhisk. . . . . . . . . . . . . . . . . . . . 66

4.14 Prediction workflow evaluated on Parsl. . . . . . . . . . . . . . . . . . . . . 67

4.15 Prediction workflow evaluated on OpenWhisk. . . . . . . . . . . . . . . . . 67

xv



xvi List of Figures

4.16 Global workflow evaluation on Parsl platform (with Gaussian Distribution). 71

4.17 Global workflow evaluation on OpenWhisk platform (with Gaussian

Distribution). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.18 Local workflow evaluation on Parsl platform (with Gaussian Distribution). . 71

4.19 Local workflow evaluation on OpenWhisk platform (with Gaussian

Distribution). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.20 Prediction workflow evaluation on Parsl platform (with Gaussian

Distribution). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.21 Prediction workflow evaluation on OpenWhisk platform (with Gaussian

Distribution). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.22 Global workflow evaluation on Parsl with heterogeneous nodes. . . . . . . . 73

4.23 Global workflow evaluation on OpenWhisk having heterogeneous nodes. . . 73

4.24 Local workflow evaluation on Parsl platform having heterogeneous nodes. . 74

4.25 Local workflow evaluation on OpenWhisk with heterogeneous nodes. . . . . 74

4.26 Prediction workflow evaluation on Parsl platform with heterogeneous nodes. 74

4.27 Prediction workflow evaluation on OpenWhisk having heterogeneous nodes. 75

5.1 An overview of our proposed methodology. . . . . . . . . . . . . . . . . . . . 78

5.2 Solution encoding for layer selection. . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Visualisation of the data and its corresponding class activation heatmap for

identified labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Total execution time with di↵erent percentages of trainable layers. . . . . . 87

5.5 Accuracy benchmarks on DeepWeeds dataset for model training. . . . . . . 88

5.6 Change in model accuracy with features retained above the threshold. . . . 88

5.7 E↵ect on model training time with features retained above the threshold. . 89

5.8 Change in model size with features retained above the threshold. . . . . . . 90

6.1 An architecture for data handling in serverless platforms. . . . . . . . . . . 96

6.2 Proposed workflows for data handling. . . . . . . . . . . . . . . . . . . . . . 100

6.3 Encoding time for di↵erent RS configurations. . . . . . . . . . . . . . . . . . 102

6.4 Decoding time for di↵erent RS configurations. . . . . . . . . . . . . . . . . . 102

6.5 Encoding, Decoding, and Preprocessing time. . . . . . . . . . . . . . . . . . 103

6.6 E↵ect on preprocessing time and data size after applying our data storage

mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



List of Tables

2.1 Comparison of various studies focusing on ML workloads, security, load

distribution, and task management in edge-based IoT applications. . . . . . 18

3.1 Model accuracy with and without noisy images. . . . . . . . . . . . . . . . . 33

3.2 Time for training 1 epoch on 1 image. . . . . . . . . . . . . . . . . . . . . . 34

3.3 Concurrent ML inferences on the edge node. . . . . . . . . . . . . . . . . . . 34

3.4 Concurrent ML inferences on the FSU. . . . . . . . . . . . . . . . . . . . . . 35

3.5 Simulation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Symbol Table for the problem formulation. . . . . . . . . . . . . . . . . . . 51

4.2 Performance readings for Parsl and OpenWhisk functions. . . . . . . . . . . 59

4.3 Summary of the simulation parameters. . . . . . . . . . . . . . . . . . . . . 64

4.4 Average additional time on Parsl and OpenWhisk. . . . . . . . . . . . . . . 68

4.5 Evaluating SHIELD framework with 5x and 20x task load. . . . . . . . . . . 73

5.1 Power consumption (watts) of models during training (one epoch) with

di↵erent percentages of layers trainable. . . . . . . . . . . . . . . . . . . . . 87

5.2 Power consumption (watts) of models after pruning with di↵erent

percentages of retained features. . . . . . . . . . . . . . . . . . . . . . . . . 90

xvii



xviii List of Tables



Chapter 1

Introduction

The chapter presents an overview of the Internet of Things (IoT), edge-cloud continuum

architecture, and associated services with them. It also highlights the necessity for

enhancing and improving the performance of intelligent IoT applications using edge and

cloud resources, considering the rise in data volumes and computational demands of

real-life applications.

1.1 Internet of Things

The IoT is a vast network of devices that are connected to the internet where each

node is capable of collecting and sharing data across a network without requiring direct

human-to-human or human-to-machine interaction. This network integrates various types

of objects embedded with electronics, software, sensors, actuators, and connectivity to

enable the exchange of information with other devices and systems [1]. These devices can

range from smart home appliances to sophisticated industrial machines.

IoT networks have the ability to enhance operational e�ciency, improve human

decision-making, and increase the value of services through automation and data

integration. The primary element of an IoT network is a sensor that gathers data from

the nearby environment. This data can include everything from temperature readings to

complex changes in the air, depending on the sensor and its purpose. Once collected, the

data is sent to computing devices located closer to the IoT nodes, which pre-process the

data to reduce latency and network congestion [2]. After initial processing or computation,

the data can be sent for further analysis and storage, enabling more comprehensive data

management and task execution. Figure 1.1 below shows the mechanism for handling

tasks and data within an IoT infrastructure.

Figure 1.1: Execution mechanism within an IoT network.

The growth of IoT has been rising exponentially, leading to a surge in the number of

connected devices in IoT infrastructures. Each year, billions of new devices are connected

which generates large volumes of data very rapidly. This rapid expansion is largely driven



2 Chapter 1. Introduction

by the decreasing cost of sensors and connectivity hardware, as well as the increasing

availability of computational resource nodes [3]. The data produced by connected devices

is also becoming a critical element for businesses and governments as they can use it to

make more informed decisions, optimise operations, and predict future market trends.

However, the huge amount of generated data also presents significant challenges that

necessitate innovative approaches for e�cient IoT management. As the number of

connected devices continues to grow at a rapid pace, the volume of data they produce

is enormous and continues to increase exponentially. This large amount of data requires

sophisticated strategies for storage, processing, and analysis to ensure it can be used

e↵ectively and e�ciently used within task execution infrastructures [4].

1.2 Edge-Cloud Continuum

In order to handle the large amount of data, the traditional approach for computation is

cloud computing. It is a form of computing that relies on shared computing resources

rather than having local servers or personal devices for handling the execution of

applications. It o↵ers a variety of services such as servers, storage, databases, networking,

software, analytics, and intelligence over the internet to enable faster innovation, flexible

resources, and economies of scale. Cloud computing is known for its high availability,

ensuring that services are accessible nearly 100% of the time from anywhere in the world.

This is highly important for services that require continuous uptime in applications [5].

They also have rapid deployment capabilities which allow organisations to launch

applications and services easily while minimising the initialisation time. Moreover, the

cloud providers manage the maintenance and service updates, which reduces the burden

of managing IT operations, allowing them to focus more on features and strategic actions

of the application.

However, the adoption of cloud computing also introduces several challenges. High latency

is a significant issue, particularly for applications requiring real-time processing, as data

travels to and from the cloud servers which usually causes delays. Security vulnerabilities

are another critical concern; despite robust security measures by cloud providers, the risk

of data breaches and other cyber threats persists due to the external management of data.

Vendor lock-in is another drawback where owners may find it di�cult and costly to switch

providers once they have committed to one, due to compatibility issues and contractual

limitations [6]. Additionally, cloud computing also relies heavily on internet connectivity,

and any instability in the connection can disrupt access to services, potentially leading to

significant operational delays and losses.

To handle these primary challenges associated with cloud service providers, edge

computing provides another computational approach. It is a distributed computing

paradigm that improves processing by bringing computation closer to the data source.

This approach is fundamentally distributed as it utilises numerous edge devices to handle

computations locally. This decentralisation helps reduce the distance data or tasks traverse



Chapter 1. Introduction 3

and significantly minimises latency and bandwidth. It also improves the privacy and

security of data by retaining it at the edge (much closer in comparison to centralised

data centres). Edge computing also o↵ers robust support for mobile environments where

connectivity might be intermittent [7]. Mobile devices, vehicles, and other moving entities

can also maintain operational e↵ectiveness by processing data locally, ensuring that they

continue to function e�ciently irrespective of the network status of a central server.

However, edge computing comes with its own set of challenges. The devices used at the

edge typically have limited computational power and storage capacity, which might restrict

the complexity of tasks they can handle and require fallback to more powerful central

computing resources for more demanding processes. Additionally, managing an edge

computing infrastructure introduces significant complexity due to the need to coordinate a

vast number of diverse devices and technologies [8]. This setup involves consistent updates,

security management, and maintaining connectivity across heterogeneous devices, which

can complicate standardisation and broad-scale deployment. Despite these challenges, the

strategic advantages of edge computing – particularly its capacity for low latency and

enhanced local processing – continue to drive its adoption in fields requiring quick, local

data processing and decision-making.

To handle the challenges associated with both cloud and edge computing, a popular

approach is to utilise the edge-cloud continuum for executing tasks. The edge-cloud

continuum represents a transformative approach in computing that takes the distinct

advantages of each approach, optimising data processing and storage across a continuum

from the data source to the cloud. The continuum allows data to be processed at the most

appropriate location depending on the performance, cost, and e�ciency considerations,

selected specifically based on the needs of each application. The edge-cloud continuum

o↵ers a dynamic and flexible approach to data processing for modern applications,

balancing the need for rapid response capabilities at the edge with the powerful processing

and analytic capabilities of the cloud. This integrated approach is particularly well-suited

to the demands of modern IoT applications in smart cities, healthcare etc, where diverse

data processing needs a versatile and adaptive solution.

1.3 Architecture for Edge-Cloud Continuum

The architecture of the edge-cloud continuum is designed to leverage both the localised

processing power of edge computing and the large resource pool of cloud computing. This

hybrid architecture ensures that data is processed e�ciently, quickly, and at the scale

required by modern IoT applications [9]. The architecture typically comprises multiple

layers where each layer serves a specific function in the continuum from data generation

to actionable insights. Figure 1.2 shows an architecture for edge-cloud continuum which

can be used for executing IoT applications.

The first layer of the architecture is an end-user layer, which consists of the physical devices

and sensors that initially capture data. This layer is the closest to the physical world



4 Chapter 1. Introduction

and includes a wide array of IoT devices like cameras, environmental sensors, wearable

devices, and industrial machines. The primary role of these devices is to perform basic data

collection and preliminary processing. They can filter and pre-process the data to reduce

the volume that needs to be transmitted to higher layers, addressing issues of bandwidth

and communication latency e↵ectively. Once the data is preprocessed and filtered, it is

forwarded to the next layer for execution.

Figure 1.2: Architecture for the edge-cloud continuum.

The middle layer is the fog layer which acts as an intermediary between the edge nodes

and the cloud, providing additional processing resources closer to the edge of the network.

This layer facilitates more complex processing that may not be feasible at the edge due

to resource constraints but still requires lower latency than cloud processing. This layer

can manage tasks like advanced analytics, longer-term data retention, and more detailed

real-time processing, distributing these tasks more e�ciently across the network. It is

also possible to have multiple hierarchies within this fog layer, such that each higher layer

can have higher computational and storage capacity whereas the lower layers have better

response time and lower execution delay. At the top of the hierarchy is the cloud layer,

which provides powerful computational resources and massive storage capabilities. This

layer is ideal for execution that requires intensive computation or involves vast amounts

of data that need long-term storage. The cloud can perform complex analytics, machine

learning model training, and comprehensive data mining tasks. Data that requires no

immediate action but is valuable for historical analysis, pattern recognition, and predictive

analytics is typically handled at this layer.

1.4 Integrating ML, AI with Edge and Cloud

Integrating Machine Learning (ML) and Artificial Intelligence (AI) with both edge and

cloud computing has transformed the way data-driven insights are generated and utilised



Chapter 1. Introduction 5

by creating a more responsive and intelligent network infrastructure. This integration

utilises the strengths of ML and AI to enhance the capabilities at the edge-cloud

continuum, enabling smarter decision-making processes and more e�cient operations

across various sectors [10].

At the edge level, ML-AI integration focuses on real-time data processing and immediate

decision-making. Since edge devices operate close to the data sources, they are well

positioned to implement ML models that require quick responses, such as facial recognition

systems, threat detection in farms, immediate tra�c flow optimisation, or predictive

maintenance sensors on industrial equipment. These applications benefit from the low

latency provided by edge computing, as they often need to function in near real-time

without the delay that would come from sending data to a distant cloud server. However,

edge devices typically have limited computational power and storage capacity, which

restricts the complexity of the ML models they can deploy. To address this limitation,

simplified or compressed versions of models are often used at the edge, derived from more

complex models trained in the cloud [11]. This approach allows edge devices to execute

AI-driven tasks e�ciently, using models that are periodically updated and refined in the

cloud.

The cloud layer also has a crucial role in this integrated setup by providing the resources

necessary for more intensive ML tasks, such as training large-scale models and performing

complex analytics that are not time-sensitive. The cloud's powerful computational

capabilities and vast storage options make it ideal for handling high-load AI tasks,

including large language models (LLMs), deep learning models, and large-scale data mining

frameworks. These tasks benefit from the cloud's ability to aggregate and analyse data

collected from multiple edge devices, enabling more comprehensive insights and model

improvements.

Moreover, this integration requires continuous management and coordination to ensure

that AI models are deployed e↵ectively across the network [12]. These layers handle

model updates, data synchronisation, and resource allocation, ensuring that ML tasks are

carried out e�ciently and securely, balancing between edge and cloud based on specific

application needs and network conditions. Integrating ML, AI with edge and cloud

computing not only enhances operational e�ciencies but also opens up new possibilities

for innovation in fields ranging from autonomous driving and smart cities to healthcare

and industrial automation. This dynamic cooperation of computing and AI technologies

can be foundational in designing the next generation of smart, connected IoT applications

for our everyday requirements.

1.5 IoT Applications Utilising Edge and Cloud

The integration of IoT with the edge-cloud continuum can improve various industries

by enabling more e�cient, responsive, and intelligent applications. These applications

leverage the strengths of both edge computing for real-time execution and cloud computing



6 Chapter 1. Introduction

for intensive data analysis. Several key applications in IoT utilising the edge-cloud

continuum are as follows:

• Healthcare Monitoring System: In the healthcare sector, IoT devices utilise

edge computing to monitor patient health metrics in real-time. Wearable devices

can track vital signs like heart rate and blood pressure, and edge devices can process

this data immediately to detect anomalies. This setup allows for prompt medical

responses, potentially saving lives in emergency situations. The cloud nodes can

aggregate patient data over time, providing improved health analytics, research, and

personalised medicine by analysing trends and improving diagnostic algorithms [13].

• Smart Cities: IoT applications in smart cities [14] make extensive use of edge-cloud

architecture to enhance urban management and quality of life. Sensors and IoT

devices deployed throughout a city can monitor tra�c flow, air quality, and energy

usage in real-time. At the edge, data is processed locally on roadside units to

enable immediate responses, such as adjusting tra�c lights, optimising tra�c flow,

or triggering alerts for pollution control. More comprehensive data analysis and

planning tasks are handled in the cloud, facilitating long-term urban planning and

resource management.

• Precision Agriculture: IoT devices are used extensively in the agriculture sector

to monitor soil conditions, crop health, yield prediction, and weather conditions.

Sensors can provide immediate data to edge nodes, which can process the information

to give real-time feedback to actuation systems and optimise resource usage [15].

Cloud computing contributes by analysing seasonal data and longer-term trends

to assist in crop planning, disease prevention strategies, and yield optimisation

techniques. Moreover, in rural agricultural environments where network connection

is inconsistent and unreliable, edge-cloud infrastructure can play a very crucial role.

It can provide local resources for computation and storage along with better security

and reliability.

• Industrial Automation: IoT in industrial automation relies on the edge-cloud

continuum for monitoring and optimising manufacturing processes [16]. Sensors

on machinery can detect operational anomalies or ine�ciencies and process this

information at the edge to make immediate adjustments or shut down equipment

if a malfunction is detected. Meanwhile, data collected across the devices deployed

in a factory can be sent to the cloud for predictive maintenance, overall e�ciency

improvements, and integration with enterprise resource planning systems.

• Autonomous Vehicles: Autonomous vehicles are equipped with numerous sensors

that generate vast amounts of data crucial for safe operation on the roads. Processing

this data on the edge allows for immediate decision-making essential for navigation

and obstacle avoidance. The cloud plays a role in updating navigation maps,

sharing tra�c, music library, weather updates, and improving algorithms based on



Chapter 1. Introduction 7

aggregated data from multiple vehicles, enhancing the overall execution and safety

of autonomous driving systems [17].

1.6 Challenges in Edge-Cloud Infrastructures

Deploying IoT applications within the edge-cloud continuum presents several significant

challenges that can impact the e�ciency and e↵ectiveness of formulated systems. A few

of the critical challenges are as follows:

• Limited connectivity is a major challenge in rural or remote environments where

network infrastructure is often insu�cient. This constraint restricts the ability of

IoT devices to communicate e↵ectively with edge or cloud servers, limiting real-time

data processing and decision-making capabilities [18]. As connectivity is crucial for

the operation of IoT systems, any inconsistency or interruption can degrade the

performance and reliability of the entire IoT ecosystem.

• Variable load distribution is also challenging in IoT applications due to the dynamic

nature of IoT data generation and consumption [19]. For instance, certain events or

times may trigger high volumes of data tra�c, which can over-utilise the system if

not managed properly. This variability can cause performance bottlenecks, especially

when the infrastructure is already under strain, and can complicate the management

of resources across the network.

• E�ciency in resource allocation is crucial in environments where resources are

inherently limited and expensive. Edge computing devices, while beneficial for

processing data locally and reducing latency, often have less computational power

and storage capacity compared to centralised cloud data centres [20]. E�ciently

utilising these limited resources, while ensuring optimal performance across the

IoT network requires careful management and can be a complex task to achieve

consistently.

• Deployment of AI and ML tasks in IoT applications introduces additional

complexities. As the volume and complexity of data generated by IoT devices grow,

deploying advanced AI and ML models becomes more challenging [21]. These models

often require significant computational resources for training and inference, which

might not be readily available in edge scenarios. The large size of modern AI models

also poses a challenge, as they need to be accommodated within the constraints of

the available infrastructure.

• Optimising ML operations to run e↵ectively on resource-constrained edge nodes

is another issue in IoT-based infrastructures [22]. Traditional AI models and

operations are designed for environments with an abundance of computational

resources. Adapting these to work e�ciently within the limitations of edge



8 Chapter 1. Introduction

computing environments requires significant modifications and optimisations, which

can be a complex and time-intensive process.

• Data management in edge-cloud environments involves handling the storage,

processing, and security of large volumes of data. Managing this data e↵ectively

is critical for performance but becomes challenging as the data is distributed across

a multitude of devices and locations [23]. Ensuring data integrity, privacy, and timely

access in such a distributed setup is a critical task that requires sophisticated data

management strategies.

1.7 Research Objectives of the Thesis

The thesis aims to explore the fundamental challenges associated with deploying and

managing ML and AI based IoT applications on edge-cloud infrastructures. I have

evaluated the specific aspects of IoT systems to improve the overall resilience, e�ciency,

and e↵ectiveness of the edge-cloud infrastructures. To achieve this, the following research

objectives have been considered:

How can I enhance the resilience of task placement in IoT applications where

network connectivity is limited and the edge-cloud infrastructure is unreliable?

Execution resilience in this context refers to the system's ability to maintain operational

stability and performance despite disruptions or poor network conditions. The aim is to

develop a technique that allows IoT tasks to be dynamically adjusted and optimally placed

within a network of edge-cloud nodes. This includes exploring how tasks can be e�ciently

allocated or handled locally when connectivity to a central server or cloud is unavailable.

Can I develop a mechanism for distributing the IoT based task load on

edge computing nodes without compromising the performance or resource

utilisation? This research question explores the design of a mechanism that optimally

distributes the workload among available edge computing nodes. The method aims to

ensure that no single node is over-utilised by demands, which could compromise both

performance and resource utilisation. The challenge is to achieve a balance that maximises

the e�ciency of resource use while maintaining or enhancing the performance of IoT

applications. This involves creating adaptive algorithms that can adjust in real time to

changes in the network or application demands, thereby maintaining a balanced operation

across the network.

Is there an approach to improve the execution and deployment of ML and AI

operations in IoT based applications? This question addresses the improvement while

executing machine learning and artificial intelligence operations within IoT frameworks.

As IoT devices generate vast amounts of data, e�ciently processing this data to extract

valuable insights becomes a critical factor. My aim is to explore new methods which

optimise ML and AI algorithms for better suitability in IoT setups, particularly focusing on

minimising latency, reducing computational overhead, and ensuring that these operations

can run e↵ectively even on computationally limited edge computing devices.



Chapter 1. Introduction 9

How can I improve the storage and access of data, ML model files in IoT

based applications in case any loss or failure occurs? The research question seeks

to enhance the management of data, specifically for ML and AI based tasks within IoT

applications operating on edge-cloud infrastructures. E↵ective data management is crucial

for maintaining the performance of IoT systems, which includes ensuring data integrity,

minimising latency in data access, and optimising storage across a distributed network.

The aim is to explore techniques for improving data synchronisation and accessibility,

ensuring that data is e�ciently available to support advanced analytics and real-time

decision-making processes.

1.8 Primary Contributions

The main contributions of the thesis are as follows:

• Propose an architectural framework for a real-time image classification problem with

intermittent network connectivity. This problem is then mapped to a weed detection

use case – widely considered significant in precision agriculture. To demonstrate the

e�cacy of our conceptual architecture, two ML models based on ResNet-50 and

MobileNetV2 have been trained for identifying weeds, using images captured from a

robot mounted camera. Light versions of these two models have been generated

respectively using the model quantization technique. A rule-based algorithm is

also formulated for decision-making, taking into account where to perform this

classification: locally or remotely.

• Formulate a security-aware load balancing framework for edge infrastructure that can

be used to support rural environments. The infrastructure is designed to distribute

computational tasks across multiple resources while also ensuring data privacy

and confidentiality. Our framework divides the tasks into independent categories:

restricted and public. These tasks are allocated to two di↵erent resources: private

and shared, based on security requirements and load characteristics of the node. A

two-function heuristic pipeline is designed to make the resource allocation decision

for each task, taking account of factors that have a direct influence on execution

performance. Completion time, waiting time, failure rate, resource utilisation,

security, and management overhead are the key factors used during evaluation.

• Design two distinct methodologies that enhance the e�ciency of ML operations in

IoT applications – The first method aims to reduce the computational demands

associated with backpropagation by systematically freezing certain layers of the

neural network. This involves fixing the parameters of selected layers to prevent

them from updating during training. The primary objective is to cut down on the

time required for both the current training session and any subsequent adjustments

to model in the future. Another method focuses on refining the architecture of an ML

model by adjusting its parameter count. This strategy uses an automated process to



10 Chapter 1. Introduction

identify and prioritise the most significant parameters for a specific dataset on which

it is trained. Subsequently, parameters that are found less critical are eliminated

from the model through a pruning procedure. This approach enhances the overall

e�ciency of ML operations for both the training and inference phases, by reducing

the model's complexity.

• Presents an approach for managing the distribution, storage, and access of

substantial amounts of data generated by IoT devices within ML and edge computing

environments. The designed method focuses on data reduction at the source,

standardising formats for compatibility, e�cient data compression, and replication

techniques, using the Reed-Solomon erasure coding technique. The aim is to focus

on balancing storage e�ciency with network and processing demands. It enhances

e�ciency by storing the static structure of the ML model separately from its dynamic

parameters. A single instance of the model's static structure is maintained, and

marita coding is applied to the frequently updated parameters. This approach

minimises redundancy and storage requirements, ensuring reliable protection of

dynamic data elements against data loss.

1.9 Structure of the Thesis

The thesis has been organised in the following chapters: Chapter 1 describes the

introduction to IoT and provides an overview of the edge-cloud continuum architecture.

It also highlights the challenges associated with edge-cloud infrastructures while

deploying IoT applications and identifies the research objectives that could improve their

performance. Chapter 2 provides the details about existing work done in the domain of

performance enhancement in edge-cloud frameworks. Chapter 3 explores the allocation

of tasks within an edge-cloud infrastructure, which is crucial for optimising the execution

and scheduling of tasks in IoT applications. The focus is on addressing specific challenges

such as inconsistent internet connectivity, communication delays, and network service

disruptions, which significantly impact the performance and reliability of IoT systems.

Chapter 4 takes the discussion to design a security-aware load balancing framework

specifically designed for edge based infrastructure, with an emphasis on enhancing support

for rural environments. Chapter 5 explores the impact of AI task execution on IoT

based environments. Optimising AI and ML based tasks hold immense potential for

revolutionising various industries and domains. By leveraging optimisation techniques and

methodologies, significant improvements can be achieved in terms of e�ciency, scalability,

and performance of the frameworks. Chapter 6 explores the aspect of data management

where a substantial amount of data is generated in IoT applications utilising ML, AI, and

edge-cloud serverless environments and is prone to failure or data loss. Finally, Chapter 7

provides the conclusion of thesis and scope for future work. Figure 1.3 below graphically

shows the organisation and structure of this thesis.



Chapter 1. Introduction 11

Chapter 1: 
Introduction, Challenges,

Motivation, and
Contributions

Chapter 2:
Background, Scope of work,

Existing Work

Task Data

Chapter 3:
Allocating Tasks in Edge-

Cloud Infrastructure

Chapter 4:
Load Distribution in Edge
Computing Infrastructure

Chapter 5:
Optimising ML Operations
for IoT based Framework

Chapter 6:
Data Management in Edge-

Cloud Framework

Chapter 7:
Conclusion and Future Scope

of the Work

Figure 1.3: Structure of the thesis.



12 Chapter 1. Introduction



Chapter 2

Literature Review

This chapter provides a comprehensive description of existing literature and research

towards the performance enhancement of intelligent IoT-based applications and tasks

within the edge-cloud continuum. It also highlights the research e↵orts towards

designing the applications using edge computing infrastructures. The categorisation and

organisation of the literature review performed in this thesis is shown below in Figure 2.1.

The a↵ordability and easy availability of Single-Board Computers (SBC) like Raspberry Pi,

Nvidia Jetson (nano), or Google Coral have made it possible to deploy on-field distributed

intelligent environments. This rapid growth in a↵ordable IoT and edge-cloud systems

has resulted in the wider deployment of such systems in everyday applications. IoT

infrastructures generally interconnect a diverse set of devices having sensors and actuators,

that utilise communication protocols to exchange and collect data from end-users [24].

Edge and cloud computing [25] provides a task execution framework that critically handles

processing and data communication for IoT based tasks. It enables processing of data at

the network edge along with a central cloud node [26]. This results in faster response

times, higher quality of service and improved security compared to traditional centralised

servers [27, 28].

Li
te

ra
tu

re
 R

ev
ie

w IoT Tasks

AI and ML

IoT Data

Architecture
Adaptive Edge and Cloud Frameworks

Task Offloading and Resource Allocation

Intelligent IoT Applications using Edge-Cloud

Load Distribution

Security and Privacy

AI and ML Deployment on Edge and Cloud

Data Management in Edge-Cloud

Figure 2.1: Categorisation of the literature review performed in this thesis.

2.1 Adaptive Edge and Cloud Frameworks

Nvidia Jetson and Raspberry Pi are now widely used to support edge-based AI

computing. Dependable use of these devices requires addressing operational issues such



14 Chapter 2. Literature Review

as inconsistent internet, communication delays, and service disruptions – that require

proactive strategies [20]. Li et al. [29] propose an adaptive resource allocation method

for edge-cloud based clusters that can reduce the service cost by adjusting the billing

mechanism of resources. By evaluating the impact of shrinking resources and integrity

of the data, the blocks of data on the shrink node can be migrated to other available

resource nodes in the cluster before they are released. An optimised placement model for

resources is designed as a data migration technique in this approach. Fault tolerance is

also a crucial requirement in IoT enabled robots, especially as they need to be operated by

non-experts. Researchers have extensively focused on fault-tolerance across platform and

infrastructure layers, such as the use of self-adaptive systems which provide quick backups

and reduced recovery times [30]. Other methods like the greedy nominator heuristic

ensure service reliability through service replication [31, 18] in the framework. With

the rising demand for AI in rural environments, applications require support for fault

tolerance to ensure performance and e�ciency in most IoT applications. Recent literature

highlights advancements in weed detection and robotic weed management in agriculture,

such as studying weed classification using AI [32] or adapting to rural infrastructure to

securely train an AI model [33]. However, literature addressing infrastructure unreliability,

especially in rural farming areas [20, 34] is limited. Even though researchers are working

on optimising machine learning inference to reduce costs [35], delays [36, 35], and balance

workload [36], they often lack solutions designed for IoT settings in rural areas.

2.2 Task O✏oading and Resource Allocation in Edge and

Cloud Systems

The rapid advancement of IoT and its applications has rapidly increased the need for

real-time processing and advanced computation on end-user nodes or devices. Despite

the increasing power of computing technologies, IoT devices often struggle to fulfil the

increasing demands of these applications [37]. To overcome the constraints related

to computation, storage, and battery life in IoT devices, computationally heavy tasks

can be shifted to nodes having more resources, such as those found in cloud or edge

environments. Cloud computing is a well-established infrastructure that supports this

o✏oading of tasks on remote nodes [38]. Cloud computing o↵ers the significant advantage

of providing self-availed service and network access to these resources, irrespective of

the user's location [39]. This technology facilitates widespread network access to remote

resources and has seen broad application and growth alongside the expansion of cloud

computing [40].

Various studies have used cloud computing to address large-scale computational challenges.

For instance, Sun et al. [41] tackled the task o✏oading issue in vehicular clouds by creating

a learning algorithm that minimises o✏oading delays based on historic latency data.

Chen & Hao [42] explored task o✏oading in ultra-dense networks using software-defined

networks to optimise task execution times and conserve battery life. Similarly, another



Chapter 2. Literature Review 15

work [43] introduced a localised cloud computing model within the IoT setup, enabling

the creation of ad-hoc cloud nodes through nearby computing devices for task o✏oading.

Cloud computing also facilitates data-intensive research; Langmead & Nellore [44] utilised

it for genomics data analysis, handling vast, stored sequencing data sets that require

extensive computing resources. However, despite its many benefits, cloud computing

can introduce significant communication delays, which can be challenging for emerging

time-sensitive applications due to its centralised and remote infrastructure [38]. Bermejo

et al. [45] have also highlighted some limitations of cloud computing, such as the challenges

associated with processing location independence in specific networks like IoT and sensor

networks, where real-time processing is essential.

With the increasing demand for time-sensitive applications and the rising volume of

data, there's a need to position our resource nodes closer to where data is generated

and processed. Edge computing has emerged as a solution to this challenge, o↵ering

computational and storage computing capabilities at the network's edge, closer to end

devices. This setup not only reduces the bandwidth usage of primary cloud networks by

allowing local o✏oading of tasks but also minimises latency, enhances energy e�ciency,

and provides robust computing power for demanding tasks [38, 37].

In recent years, methods such as fog computing, mobile edge computing, and cloudlets

have been developed to operate at the edge of the network. Despite di↵erent naming,

these approaches function as an intermediary layer between end-users and the cloud,

o↵ering quick access to storage, processing power and reducing the delay. Numerous

studies have considered edge o✏oading, especially for applications sensitive to execution

delays. Naouri et al. [46] proposed a three-tier o✏oading architecture, where tasks are

o✏oaded based on their computational and communication needs to minimise delays.

Meanwhile, traditional IoT systems, especially those handling multimedia, face significant

challenges due to bandwidth constraints. Work done by Long, Cao, Jiang, & Zhang [47]

addressed this by designing an edge-based architecture that groups video data to enhance

the accuracy of human detection within a strict time frame. Similarly, Zhang et al. [48]

explored an edge-computing framework using Unmanned Aerial Vehicles (UAVs), allowing

these UAVs to process time-critical tasks for IoT devices e�ciently.

However, as edge servers become overloaded with requests, they may struggle to process

all tasks immediately. This can potentially lead to delays beyond the tolerable limits

for IoT devices [49]. In such scenarios, a combination of edge and cloud resources can

be more e↵ective, ensuring tasks are completed within acceptable time limits even when

the computational load is high. This integration between edge and cloud computing has

been the focus of various research e↵orts aimed at optimising latency across networks.

[50] and [51] studied how to jointly allocate communication and computation resources in

systems that integrate edge and cloud computing. This collaborative approach extends

to processing tasks not just at the edge or cloud servers, but also directly on the mobile

end-user devices. Moreover, Hao et al. [52] introduced an o✏oading framework that utilises

a cognitive engine to manage resources across three layers: the end device, edge-cloud, and



16 Chapter 2. Literature Review

remote-cloud. This system e↵ectively uses resources and processes tasks from intelligent

applications, optimising the overall operation and response times.

2.3 Intelligent Applications using IoT, Cloud, and Edge

Chen et al. [53] introduces a novel approach towards a resource-e�cient edge framework for

emerging intelligent IoT applications, including ad hoc networks for precision agriculture,

e-health, and smart homes. The framework focuses on maximising resource e�ciency by

facilitating optimal task o✏oading among the local device, adjacent edge nodes, and the

nearby cloud node. This ensures that computationally demanding tasks are supported

e↵ectively across the network. The use of robotics in agricultural applications has also

revolutionised farming practices with precision tasks, automated crop management and

data-driven decision-making processes [54]. A multi-robot system usually operates in a

centralised or decentralised control setting [55]. A centralised strategy is proposed by

Conesa-Munoz et al. [56], that involves administering the workflow of a designed system

from a primary base station. The robotic assembly may consist of either aerial or terrestrial

vehicles. The complete integration of these platforms allows the execution of autonomous

operations in outdoor environments. On the contrary, for decentralised cooperative control

of heterogeneous robotic nodes, Dimakos et al. [57] illustrated the interaction of multiple

mobile agents comprising a group of unmanned aerial and ground vehicles that allows

collaborative operation of drones in a parts delivery scenario to enable the operation of

the factories. Ground-based navigation is further adapted to align with the centroid of the

group by utilising a Lyapunov-based optimisation approach. Another work [58] introduces

a smart system for home environments that administers the various nodes and services

within these settings. It activates or deactivates them according to predicted patterns

of a user's service usage. This system is designed to enhance the outcomes of a deep

learning classification model, particularly while the algorithm continues to learn from user

interactions.

Patros et al. [59] propose a solution for rural agricultural challenges of weak connectivity

and high latency. Their framework utilises a serverless framework to facilitate federated

learning tasks in rural applications. The task requirements are specified by analysing the

major challenges in rural agriculture communities of New Zealand. A rural-AI system

for pasture weed detection is considered as the proof-of-concept for demonstration and

evaluation in this work. Another work by Almurshed et al. [60] examined the ways in

which edge-cloud computing can be utilised to address the reliability challenges in rural

areas. A self adaptive system using an optimisation strategy called the greedy nominator

heuristic is proposed that manages the allocation of federated learning tasks in a rural

setting. These approaches yielded e↵ective outcomes and provided e�cient allocation of

tasks. However, in order to optimally utilise all the available resources at the edge layer,

load balancing and distribution also play a crucial role.



Chapter 2. Literature Review 17

2.4 Load Distribution on Edge and Cloud Nodes

Naas et al. [61] proposed a graph partitioning-based data placement strategy for fog

infrastructures. It uses a divide and conquer heuristic approach for splitting the allocation

problem into sub-parts. The proposed solution reduced the task placement latency and

provided a flexible, scalable, less complex method for distributing tasks in a fog network.

Other researchers [62] describe a dynamic task o✏oading mechanism for a resource node

where a task can be deployed. Their work also analyses the optimal path for o✏oading

the task to remote fog nodes. The o✏oading problem is mapped to an Integer Linear

Programming model that considers factors such as energy consumption, network delay

and link utilisation while making the o✏oading decision in the framework. Oueis [63]

proposed an approach with an aim to enhance user's quality of experience by handling the

problem of load balancing in fog computing environments. They addressed the complex

scenario where multiple users require computation o✏oading, necessitating the assignment

of all requests through local computation cluster resources. A customisable algorithm for

fog clustering is designed that establishes small cell clusters with low complexity and

ensures optimised resource management. In another work, researchers [64] introduce a

method that handles the load distribution limitations by (i) incorporating load-balancing

capabilities directly into the soft network edge, such as virtual switches, which eliminates

the need for modifications in the transport layer, customer virtual machines, or network

hardware, and (ii) implementing load balancing using finely segmented, nearly uniform

data units that align with end-host o✏oad techniques to support high-speed networking.

They developed and implemented this load balancing approach (named it Presto) and

assessed its performance on a 10 Gbps physical hardware testbed.

Due to the limited computational power of mobile devices (MDs) and the varied

and constrained resources of cloudlets, a three-objective model has been developed to

simultaneously optimise the time and energy consumption of MDs [65], as well as

the load balancing across cloudlets. The authors introduced an e�cient method for

multi-user, multi-application computational o✏oading in environments with multiple

cloudlets, utilising an enhanced version of the non-dominated sorting genetic algorithm

III. A brief comparative analysis of di↵erent load distribution approaches is shown below

in Table 2.1. Maia et al. [66] explore the idea of load distribution and service placement

using a multi-objective meta-heuristic algorithm. They utilised a concept of heuristic

initialisation that selects an initial population, with an aim to improve the e�ciency

of the genetic algorithm. The method is designed to give priority to latency-sensitive

applications while simultaneously optimising conflicting objectives. These proposed

approaches outperform state of the art algorithms, however, there are other factors such

as security and failure risk that can still improve the performance of load balancing

and distribution systems. Table 2.1 below shows the comparison of factors considered

in existing approaches and our proposed approach SHIELD described in Chapter 4.



18 Chapter 2. Literature Review

Work ML

Tasks

ML

Pipeline

Security

Evaluation

Load

Balanced

Use-Case Failure

Examined

Serverless

Evaluation

Workload

Management

[24] inference centralised no yes smart city no no nil

[26] training distributed no no industry no no nil

[56] none none no yes agriculture no no nil

[67] none none no yes UAVs no no lyapunov

analysis

[59] training,

aggregation

distributed no no agriculture no yes nil

[61] none none no yes smart city no no heuristic/graph

modelling

[62] none none no yes nil no no integer linear

program

[68] none distributed availability no smart

tra�c

yes no greedy

heuristic

[69] none none confidentiality,

integrity

yes nil no no nil

[70] none none no yes nil yes no formal

modeling

SHIELD inference,

training,

aggregation

distributed confidentiality,

integrity,

availability

yes agriculture yes yes meta

heuristics

Table 2.1: Comparison of various studies focusing on ML workloads, security, load
distribution, and task management in edge-based IoT applications.

2.5 Security and Privacy in Edge-Cloud based Systems

Over recent years, IoT-based systems have started to use ML and AI to improve the

e�ciency and sustainability of our everyday applications. However, these mechanisms

also introduce new security risks and vulnerabilities. Vangala et al. [71] and Zanella et

al. [72] highlight the security challenges and issues in smart agriculture. They highlight

the importance of designing a comprehensive security infrastructure to support smart

agriculture. Wiseman et al. [73] also analyse the reluctance of farmers to share their

agri-data and how this is a↵ecting smart agriculture. Another work [74] introduces

a framework that includes key security processes for cloud computing utilised in the

healthcare sector. This framework begins with collecting general information for security

management processes and identifies critical information security processes specifically for

healthcare organisations that utilise cloud computing, taking into account the principal

risks associated with cloud services and the types of information processed. The framework

aims to guide healthcare organisations in prioritising essential ISMS processes, helping

them to develop and maintain these processes despite resource constraints. He et al. [75]

conducted a comprehensive analysis of the potential for attacks and privacy protection

in edge-cloud collaborative systems. They develop a series of new attacks that enable

an untrusted cloud to retrieve any inputs entered into the system, regardless of the

attacker's access to edge device data, computations, or system querying permissions, and

secondly they empirically showed that traditional noise-adding solutions are inadequate

against their specified identified attacks leading them to propose two more robust defense

strategies.



Chapter 2. Literature Review 19

Researchers [76] also introduce an edge-based framework for data collection where raw data

from wireless sensor networks (WSNs) undergoes di↵erential processing by algorithms on

edge servers to support privacy-centric computing. In this model, only a minimal portion

of critical data is retained on edge and local servers, with the remainder sent to the cloud

for storage. This approach o↵ers dual advantages: firstly, it enhances data privacy by

ensuring that original data cannot be reconstructed, even if the data stored in the cloud

is compromised. Secondly, by adopting a di↵erential storage strategy, the edge-based

model transmits less data to the cloud, thereby reducing communication and storage costs

compared to conventional methods. Recent developments in load distribution [66, 77, 78,

70] and security [79, 80] identify possible approaches for managing intelligent applications

in rural areas. However, existing research still lacks focus on security-aware load balancing

infrastructure which considers completion time, task security, load distribution, and failure

risks; especially relevant in a rural environment which is more prone to faults and has

limited resilience.

2.6 Challenges with AI Sustainability and IoT

In order to understand and analyse the problem of sustainable AI deployments, it is

crucial to examine the challenges described by researchers in this domain. The following

subchapters highlight the recent work done in the field and discuss their impact and

potential on sustainability.

Incorporating AI into the IoT provides high e�ciency and intelligence to systems, enabling

devices to process data autonomously. This integration enables devices with the ability

to make decisions, optimise operations, and provide insights without direct or indirect

human intervention. However, utilisation of this potential requires overcoming significant

challenges, particularly in adapting AI technologies to the diverse environments where IoT

devices operate. Mhaisen et al. [81] provide a survey of recent techniques and strategies

designed for handling AI tasks in IoT applications. Another work [82] focuses on security

techniques based on ML describing how it can be used for enhancing security in IoT

systems. ML-based techniques for authentication, malware detection, o✏oading, and

access control are mainly focused in this work. Bu et al. [83] presents an agriculture

system for IoT that utilises AI and cloud computing for making smart decisions such as

determining the amount of water needed for irrigation on the fields.

As IoT networks expand, so do the computational, memory, and energy demands of AI

models used with them, necessitating innovative approaches to manage and reduce this

consumption. Larger AI models require very high computational power and memory,

leading to increased energy consumption during both training and inference phases. The

work by Canziani et al. [84] and Li et al. [85] analyses the trade-o↵s between model

size, performance, and energy e�ciency; illustrating how larger models, while potentially

more accurate, can significantly have high energy consumption and prominent impact



20 Chapter 2. Literature Review

on the environment. The size of an AI model also a↵ects its deployability in real-world

applications, especially in resource constrained environments. Large models may not be

feasible for deployment on mobile devices or in edge computing scenarios, where energy

e�ciency is a critical performance factor. This limitation challenges the scalability of

AI solutions and their ability to be deployed sustainably across a diverse range of IoT

platforms [84].

Many e↵orts to create model architectures such as E�cientNet by Tan and Le [86, 87]

demonstrate the potential to reduce the impact of large AI models. These architectures

aim to maintain or improve performance while reducing the computational demands and

energy consumption, addressing the sustainability concerns associated with model size. Hu

et al. [88] explore a novel channel pruning method which can be used for compressing large

AI models. Another work [89] evaluates the e�ciency of model compression within the

context of energy-e�cient inference. Chen et al. [90] utilise the low-rank approximation

to eliminate the redundancy within filter and accelerate the deep neural network pruning

process. The researchers [91] proposed a mechanism which identifies the sensitive input

values that are highly correlated to the accuracy and applies the low-fidelity quantization

on non critical regions to boost the execution performance. Wu et al. [92] propose a

method based on dynamic gradient compression and knowledge distillation to execute the

federated learning tasks e�ciently.

Along with optimisation, another crucial challenge is to extend sustainable AI development

beyond optimising model e�ciency and training time to cover environmental and societal

impacts. This requires including sustainability in AI's lifecycle, adopting new optimised

techniques and cultivating a culture that prioritises sustainability, including transparent

reporting of environmental impacts and adopting energy-e�cient practices. Addressing

the sustainability issues related to AI model training and size is vital for its performance

advancement, ensuring its societal benefits while minimising environmental damage. The

challenge, as illuminated in [93], revolves around designing machine learning models that

emphasis on model architecture and strategic size reduction highlights the importance

of ensuring e�ciency during the early design stages of AI development, aiming for

high-performance AI methodologies that provide optimal operation within limited resource

conditions.

In deep learning, optimising models is important, particularly when considering the

computational cost of training, which is heavily influenced by floating-point operations.

Strategies such as quantization, pruning, and layer freezing can serve as important

approaches to mitigate these costs and enhance overall performance. A strategic

approach for reducing floating point operations (FLOPs) involves converting data from

32-bit floating-point precision (float-32) to 8-bit integer precision (integer-8), followed

by performing critical operations in integer-8 and subsequently restoring the output to

float-32. This method e↵ectively optimises computational e�ciency and memory usage

while maintaining the accuracy crucial for deep learning tasks. The e↵ectiveness of this

quantization approach has been thoroughly explored with machine learning frameworks



Chapter 2. Literature Review 21

such as TensorFlow, PyTorch – o↵ering specialised tools to facilitate this process.

Based on the concept of computational e�ciency, pruning is another strategy for refining

model's structure [94]. By targeting and removing less impactful parameters rather than

adjusting model precision, pruning enhances e�ciency by focusing on the redundancy of

features. This technique maintains the model's integrity by emphasising on structural

optimisation instead of numerical adjustments of weights and biases. The pruning process

reduces the computational complexity, operational costs, and ensures a balance between

preserving model performance and achieving e�ciency gains. Layer freezing, in addition

to quantization and pruning, allows a strategic selection to either train or freeze neural

network layers, impacting the learning process without altering any internal parameters.

This technique, often achieved through hyperparameter tuning, reduces the number of

calculations and FLOPs, thereby reducing computational load and energy consumption

of the models. Layer freezing improves training e�ciency by allowing training of specific

layers and freezing rest of the layers, thereby presenting another approach for optimising

AI models.

2.7 Data Management in Edge-Cloud Frameworks

Distributed systems for storage are critical in managing the vast increase in generated data

by providing essential support for scalable and reliable data storage solutions [95]. The

integration of Erasure Coding (EC) into these systems is crucial for reconstructing the

missing data with some added redundant information [96]. It enhances the distribution of

data while reducing storage demands and improves durability, making it a highly e↵ective

choice for large-scale storage infrastructures. It also surpasses traditional storage methods

by enhancing time e�ciency, ease of use, and fault resilience. By distributing data across

several devices and creating redundant segments, EC maintains data integrity even when

individual devices or nodes fail, thus minimising the likelihood of data loss. Wang et al. [97]

analyse distributed storage systems and identify issues with replication and recommends

EC as a solution for occurring security concerns, data placement, transfer costs, and

the expenses associated with maintaining synchronised copies of data. Opara-Martins

et al. [98] utilise cloud technologies to manage large volumes of social media data by

proposing a multi-node OpenStack cloud system to deliver Hadoop as a service, facilitating

its integration within the OpenStack environment. Song et al. [99] introduces FACHS

(File Access Characteristics-based Hybrid Storage), a dynamic hybrid storage system that

enhances storage redundancy, parallel read/write performance, and storage capacity by

combining Reed-Solomon Code, multi-copy, and Locally Recoverable Codes (LRC) based

on file access patterns, thereby enhancing e�ciency, speed, and overall storage utilisation

of the system.

Darrous et al. [100] compare replication and erasure coding algorithms in distributed

file systems, focusing on data availability and reliability. They address EC performance

challenges by proposing a bu↵ering and merging mechanism to handle encoded



22 Chapter 2. Literature Review

I/O requests and by developing recovery strategies to tackle decoding issues in

EC-based distributed file systems. Abebe et al. [101] explore erasure encoding

techniques, particularly reed-solomon coding, to identify optimal parameters for reliable

and cost-e↵ective storage systems, considering factors such as storage overhead,

data accessibility, and retrieval e�ciency. Another work [102] present StreamLEC,

a fault-tolerant stream machine learning system that employs erasure coding for

low-redundancy proactive fault tolerance, enhancing performance in failure recovery and

reducing latency. Nachiappan et al. [103] proposes a recovery strategy using EC in data

centres to enhance reliability with minimal overhead, optimising data block selection for

proactive replication based on failure predictions leading to a significant reduction in

storage costs, network usage, and energy consumption.



Chapter 3

Task Allocation in Edge-Cloud

Infrastructure

This chapter introduce and explore the allocation of tasks within an edge-cloud

infrastructure, which is crucial for optimising the execution and scheduling of tasks in

IoT applications. I have considered the weed identification (image classification) task in

precision agriculture as an application use case in this chapter.

3.1 Weed Management Task in Precision Agriculture

With a rapid increase in global population, there is an ever-growing need to ramp up

sustainable food production. The Food and Agriculture Organisation (FAO) estimates

that healthy diets are still una↵ordable to over 3B people across the world, and a majority

of these people are from low and middle income countries [104]. E�cient weed management

in agricultural fields is an important factor that can improve crop productivity. Due

to the spatial and temporal heterogeneity of weeds/plants in agricultural fields, many

robotic weed control methods (aerial and ground) have been developed for site-specific

weed management [105].

The e↵ective use of robotic technology can benefit farmers by improving crop yield and

reducing production costs, but it faces many challenges in real-life rural environments.

Two challenges that a↵ect the performance of such systems are: network availability and

reliability. While network availability ensures that the infrastructure is available and

operational at all times, reliability ensures that the infrastructure has been successfully

deployed, and is operating error-free [106]. It is expected that a reliable network will

maintain a high standard of service, even in the event of system faults [107]. This allows

a system to operate without interruption when one or more faults occur. Fault detection

and automated correction play a key role in supporting a system's fault tolerance.
Moreover, the utilisation of edge computing resources can also considerably benefit rural

infrastructure, as it provides many advantages like low latency, distributed architecture,

security and support for real-time execution. These benefits enable the use of edge-cloud

infrastructure in many real-world agricultural settings that utilise IoT based systems.

One such application, namely Rural-AI, allows the use of ML within rural communities,

with an aim to achieve better performance in terms of productivity, economic growth,

impact of climate change and a↵ordability [108]. Rural-AI [20] is the engineering of

cyber-physical systems for enabling sovereign, sustainable AI in locations with limited



24 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

Figure 3.1: Architecture for the task allocation framework.

and/or unreliable power/networking infrastructure. Due to the lack of proper development

and infrastructure in rural areas, ML/AI applications cannot be utilised to their full

potential. Service outages along with unreliable network connectivity are two key

challenges that significantly a↵ect the growth of rural economy. These issues prevent

IoT infrastructure from being e�ciently deployed and used [109]. Therefore, there is a

need for a framework that is capable of providing a reasonable quality of service (QoS),

even when a connection failure occurs.

A framework for edge-cloud infrastructure that detects connection errors and adapts to

such errors is proposed. It also triggers a fault tolerance mechanism to ensure that

computational/AI tasks are executed with a minimal loss to performance, even when

a network fault occurs. The architecture of our proposed framework is depicted in Figure

3.1. To demonstrate the e�cacy of this conceptual architecture, two ML models based

on ResNet-50 and MobileNetV2 have been trained for identifying weeds, using images

captured from a robot mounted camera. Light versions of these two models have been

generated respectively using model quantization techniques – a process involving size

reduction of the learned model, at the expense of accuracy, e.g. by mapping model

parameters from floating-point numbers to low-precision fixed-point numbers [110].

Our primary goal is to prioritise the use of highly accurate pre-trained models for inference.

As this inference is carried out remotely on computational units of the farm site, it can

take a longer time to execute. However, if we are unable to connect with field side units



Chapter 3. Task Allocation in Edge-Cloud Infrastructure 25

due to network faults, local models are utilised for inference. While this local model is

moderately accurate, its execution time is significantly lower than the full model. An

algorithm based on task deadlines is utilised to determine the location for inference. The

task execution is then evaluated using a testbed created for this framework. The main

contributions of this chapter are as follows:

• formulation of a real-time image classification problem with intermittent network

connectivity. This problem is then mapped to a weed detection use case – widely

considered significant in precision agriculture.

• performance analysis of two ML models trained for plant/weed image classification.

A rule-based algorithm is also formulated for decision making, taking account of

where to perform this classification: locally or remotely.

• development of a testbed consisting of: Raspberry Pi node (RPi), a laptop computer,

and a cloud server – to benchmark the performance of the proposed framework.

3.2 System Model

This subchapter includes a description of software systems used within our proposed

infrastructure. A case study which makes use of this infrastructure is also described.

3.2.1 Serverless Computing Platforms

A number of serverless platforms are available for evaluation – ranging from those that are:

(i) used commercially, such as 1Amazon Lambda, Google functions, Azure functions, etc;

(ii) available as open source systems, such as Apache OpenWhisk, 2Fissions, 3OpenFaaS,

etc. Some variants include pre-deployed commercial versions of open source platforms,

e.g. OpenFaaS Pro, which o↵ers additional features and support.

These platforms di↵er in the types and range of capabilities they o↵er, for instance, some

utilise an existing pre-deployed platform (e.g. Kubernetes) enabling users to write and

o✏oad executable functions. These types of platforms enable users to build and manage

their own functions, rather than the infrastructure on which these functions are hosted.

Others include support for deploying (and managing) the hosting environment on which

these functions are executed (e.g. OpenWhisk). Parsl [111] provides a Python-based

development environment for functions, and can be hosted on both edge devices (e.g. RPi)

and on a high performance computing cluster. This is achieved through the use of custom

executors designed for the resource being used in the architecture. Parsl also provides the

basis for dynamically distributing functions to new devices, using a controller node. A key

benefit of Parsl is the ability to develop a heterogeneous function hosting environment,

which can be modified at run time, especially when node failures occur. A reference to

1https://aws.amazon.com/lambda/
2https://fission.io/
3https://www.openfaas.com/



26 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

functions deployed across Parsl nodes is hosted in a registry, enabling these references to

be updated as new instances of functions are deployed. Lean OpenWhisk represents a

streamlined adaptation of the conventional OpenWhisk platform, optimised specifically

for serverless frameworks within edge computing environments. Distinctively, Lean

OpenWhisk demands fewer resources compared to its original counterpart, incorporating

only the fundamental modules essential for executing serverless operations. Instead of

Kafka, Lean OpenWhisk utilises an in-memory queue structure, substantially diminishing

its overall framework footprint. Moreover, it adopts a more integrated design by placing

the Invoker in close proximity to the Controller module. This strategic design adaptation

enhances its e�cacy on devices with limited resources, such as RPi or Nvidia Jetson,

which are frequently deployed in edge or IoT settings. A significant limitation of Lean

OpenWhisk is its exclusive compatibility with the x64 and x86 infrastructures, omitting

native support for the ARM architecture predominant in RPis. To bridge this gap, I've
devised a Docker-based solution, adapting Lean OpenWhisk for deployment on RPi devices

built on the ARM framework.

3.2.2 Dataset and ML Models

DeepWeeds [112] is a multiclass image dataset for deep learning consisting of 17,509

images. These images belong to 8 di↵erent categories of weeds found in vast regions

of northern Australia. This dataset contains 15K training images and 2.5K test images

of size 256x256 pixels. Two di↵erent ML models: ResNet-50 [113], and MobileNetV2

[112] have been trained on the DeepWeeds image classification dataset and utilised for

plant/weed identification in this chapter.

Figure 3.2: Interaction between robot, FSU, and cloud node in the agricultural field.

3.2.3 System Design and Use Case

I develop a three-tier architecture comprising of IoT devices, storage, and computation

resources positioned in a hierarchical manner. The control flow of the framework is based



Chapter 3. Task Allocation in Edge-Cloud Infrastructure 27

on a master-worker configuration. I consider a rural agriculture use case where robots

identify and remove weeds. Robots interact with Field Side Units (FSUs) that are located

in proximity to a robot on the same field.

Robots act as the master node, whereas the FSUs are the worker nodes. An interaction

between the robot, FSU, and cloud server is depicted in Figure 3.2. Robots move

throughout the field by following a 2-D random walk trajectory. Each robot is equipped

with a camera to take images of nearby plants. To evaluate whether the image captured is

of a weed or a plant, there are two options: the robot can either perform inference locally

or forward the data to the on-farm FSU for remote inference. This decision is taken by

a robot in real time on the basis of the network quality between robot and FSU and the

computational capacity available on the robot. If the plant is identified as a weed, the

robot will initiate the weed removal process, otherwise, the robot will move to a di↵erent

location and repeat the process.

3.3 Problem Formulation

A mathematical formulation of our task-to-resource allocation problem is presented in this

subchapter. I have designed an Integer Linear Programming (ILP) model that o✏oads

machine learning inference tasks on resource nodes for execution. The decision on where

to perform the execution, local node or remote node, can be achieved by optimising the

objective functions later described in this subchapter.

3.3.1 Monitoring Constraints

Let M be a set of ML models that are used for performing the inference tasks in this

framework. These ML models can be represented mathematically as M = {m1, m2,

m3,....,mp}. Let R be a set of resource nodes where the ML models can be deployed for

executing the inference tasks. These resources can be mathematically written as R = {r1,
r2, r3,....,rn}. I have mainly considered two types of resource nodes in this work, a robot

and a FSU. Each resource node r is mapped to one specific ML model m which is used

for performing inference on that resource node. The optimal decision of determining a

location for inference can be a↵ected by numerous factors such as network quality, resource

availability, and ML model characteristics. Therefore, multiple factors for monitoring the

resources and ML models have been considered in this chapter. The following constraints

are utilised for –

a) resource monitoring: signal quality, uplink/downlink speed, execution rate, available

RAM, and storage.

b) ML model monitoring: number of neural network layers, accuracy on test dataset, and

quantisation feasibility.



28 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

3.3.2 Decision Variables

In order to manage all the monitoring constraints (specified earlier) and make a decision

on where to execute the task, the ILP model initialises a set of variables which are used for

forming the decision. To ensure that one inference task is o✏oaded to only one resource

node, I have formulated a binary variable xi such that:

xi =

8
<

:
1, if inference is performed on node i

0, otherwise
(3.1)

where i 2 1, 2, 3, ..., n. I have reserved i = 1 for local execution on the robot whereas

i = 2, 3, ..., n, are reserved for remote nodes (FSUs) available for execution.

Similarly, two other variables yi and zi are introduced to manage signal quality and

availability of resource nodes respectively. They are represented mathematically as:

yi =

8
<

:
1, if qi � ⌧

0, otherwise
(3.2)

where i 2 2, 3, ..., n; qi is the signal quality at node i, and ⌧ is the signal quality threshold.

Here, i = 1 is not considered because connection setup is not required for local executions.

Variable zi ensures that the task is only allocated to a resource node if the node is not

busy with some other inference task. It can be given as:

zi =

8
<

:
1, if node i is free

0, otherwise
(3.3)

Another important factor that a↵ects the execution time of inference tasks is

communication or transmission delay. The transmission time for performing inference

on FSU can be evaluated as the ratio of data size transmitted to the transmission rate

of link. This includes the total data transmitted in both up-link and down-link for ML

inference. Therefore, total approximated transmission time for the framework can be

written as:

tci =
dq
su

+
do
sd

(3.4)

where dq, do are the input and output data size ofmth inference task. The uplink, downlink

speed for o✏oading the inference task and fetching back the results are given as su, sd

respectively. For location i = 1, network transmission time is considered to be 0. This

is because the location has been reserved for local execution and does not require any

transmission of data.

The average time it takes to transmit data depends on the quality of the network

connection. If the quality of signal is 100%, speed will be equal to the actual link speed,



Chapter 3. Task Allocation in Edge-Cloud Infrastructure 29

otherwise it will be reduced depending on the signal quality. Therefore, the approximated

link time for data transmission to ith node can be given as:

tli = sl/qi (3.5)

where sl is the link speed of network and qi is the current signal quality to reach node i.

The total execution time for establishing the connection and transmitting the data in this

framework can be given as:

ti = tci + tli (3.6)

In order to determine the size of ML model, I have calculated the number of arithmetic

operations in each layer j of neural network that has been deployed at location i. It is

described by nij such that

nij =
wY

x=1

eijk (3.7)

where eijk is the kth (out of w) element in jth layer of ML model deployed at location i. If

lij is the time it takes to process jth layer of the model at location i then it can be given

as

lij =
nij

pi
(3.8)

where pi is the rate of processing the model at location i. Therefore, from the previous

three equations, I observed that overall time taken to perform a prediction on location i

can be given as

tpi =
wX

j=1

(lij) + ti (3.9)

The accuracy of ML inference task is another crucial aspect to consider when evaluating

the performance of this framework. It can be given as the ratio of the number of correct

inferences with total number of inferences. Accuracy in this framework can be represented

as:

Am
i = pcr/ptl (3.10)

Here, pcr, ptl are the correct and total number of inferences recorded at location i.

3.3.3 Objective Function

The objective of this chapter is to minimise the total cost of executing all the ML models at

their respective locations while ensuring high performance even if a network fault occurs.

This can be achieved by minimising the execution time and maximising the accuracy for

performing an ML inference. Therefore, the optimisation problem that needs to be solved



30 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

can be represented as:

min

 
nX

i=1

(xi ⇤ yi ⇤ zi ⇤ tpi )
!

(3.11)

max

 
nX

i=1

(xi ⇤ yi ⇤ zi ⇤Am
i )

!
(3.12)

subject to constraints

xi � 0 & xi  1, 8i 2 {1, 2, 3, . . . , n}

yi � 0 & yi  1, 8i 2 {2, 3, . . . , n}

zi ⇤ qi � ⌧, 8i 2 {1, 2, 3, . . . , n}

xi ⇤ yi ⇤ zi  1, 8i 2 {1, 2, 3, . . . , n}

rami + stri � dq + do, 8i 2 {1, 2, 3, . . . , n}

In the case of real-world scenarios, it is di�cult to achieve the optimal allocation of

resources for large-scale problems. Therefore, there is need for a near-optimal solution

that can still meet the problem requirements and balances the trade-o↵ between solution

quality and cost of execution. The objective of our work is to develop an approximate

heuristic approach that allocates tasks to edge-cloud resources while achieving a balance

between minimising inference time and maximising the accuracy of used ML models.

3.4 Proposed Approach

The chapter propose a fault diagnostic mechanism that takes the network quality into

consideration whenever a task is executed by a robot. A brief summary of the ML models,

execution workflow, and decision algorithm for the proposed framework is provided in this

subchapter.

3.4.1 ML Models

Two ML models are considered: ResNet-50 and MobileNetV2. ResNet-50 is considered a

good model for image classification because of its layer depth, residual connection, ease for

transfer learning, and good performance. Due to the large number of hyperparameters,

full models based on ResNet-50 are capable of handling complex image classification tasks.

However, this comes at the cost of high execution time and computational requirements.

Both computational capacity and storage are assumed to be limited in edge environments.

TensorFlow Lite is used to perform model quantization and generate a light version of

ResNet-50, trained on all eight classes of weeds available in the DeepWeeds dataset.

The whole DeepWeeds dataset is gathered from a vast region in northern Australia,



Chapter 3. Task Allocation in Edge-Cloud Infrastructure 31

although it is highly unlikely to find all eight weed classes within a single geographic

region. Another model is based on MobileNetV2 on three classes of weeds available in the

DeepWeeds dataset: Chinee Apple, Lantana, and Snake weed. I have assumed that only

these 3 classes of weeds are found in the specific geographical region. In general, each

geographical region will have a di↵erent model trained on specific categories of weeds that

occur in that region. A light version of MobileNetV2 model is used for local inference on

the robot.

3.4.2 Signal Monitoring

A signal monitor continuously examines the network connectivity between the robot and

the FSU. I have divided the ‘signal’ parameter into three di↵erent categories: no signal,

low signal, and strong signal. When the robot is unable to establish connection with a

FSU, it is considered to have no signal, no distortion between the robot and FSU indicates

a strong signal, and low signal falls between these conditions. During our experiments,

when the signal strength drops below a threshold value, it is considered as a low signal;

otherwise the signal is considered to be a strong signal.

3.4.3 Execution Workflow for Inference Tasks

The light model based on MobileNetV2 is used for local inference on the robot, whereas

the light model based on ResNet-50 has been used for remote inference on an FSU.

MobileNetV2 o↵ers an accuracy of 62.65%, whereas ResNet-50 o↵ers an accuracy of

88.64%.

Our deadline-aware approach starts by initially checking the network connection.

Depending on the current network signal quality, a deadline is established for each task

and the inference process is initiated if the connection is available. The estimated deadline

is the approximate time it takes to perform ML inference on a FSU, if the current signal

quality is maintained throughout the execution of task. It is calculated by considering the

execution time on a FSU, transmission time and link time for completing the inference.

The algorithm o✏oads ML tasks to remote FSUs and starts a timer. If the outcome

of inference task is not retrieved before the deadline, the task is immediately discarded.

Inference is then performed using a local model. I have assumed that if the results are not

retrieved within the deadline, a network fault might have occurred, thereby causing the

delay. Executing a model locally ensures that a reasonably accurate result is achieved, even

when the inference fails on the FSU. The proposed deadline-aware approach is described

in Algorithm 3.1.

Another signal quality-aware approach for the proposed fault tolerance mechanism can be

considered. The signal quality of the network is repeatedly monitored and a threshold value

is fixed before the execution begins. If signal quality is found below the specified threshold

value, it is considered to have low quality for performing the FSU-based execution and

inference is directly performed on a local node. This is because a low signal increases the

probability of task failure in case any network fault occurs. By adjusting the threshold



32 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

Algorithm 3.1 Deadline-Aware Approach

1: procedure Deadline-Aware()
2: (FSU: Field Side Unit)
3: begin connection setup [robot $ FSU]
4: if connection setup ! success then
5: inference task ! calculate deadline
6: inference (FSU) ! start
7: timer ! start
8: if result [robot  FSU] & timer 6= finished then
9: prediction (FSU)  success

10: else if timer = finished then
11: prediction (FSU) ! discard
12: inference (local) ! start
13: prediction (local)  success
14: end if
15: else connection setup ! failure
16: inference (local) ! start
17: prediction (local)  success
18: end if
19: end procedure

value, the sensitivity of model performance can be controlled in the framework. In a

real-life scenario, the threshold can be specified based on the network requirements of that

application.

3.5 Experiments and Simulation

I evaluate the performance of our weed detection model. Multiple faults introduced in the

model are captured in the simulation setup and tested over multiple iterations.

3.5.1 Experimental Setup

The experiments have been evaluated on an edge-cloud environment that consists of one

cloud node and multiple edge nodes connected over the internet. A Google Cloud Platform

(GCP) server is utilised to host the cloud node. This is an NVIDIA Tesla T4 GPU

Computing Accelerator, 16GB GDDR6, 585MHz 2560 CUDA cores with PCIe 3.0 x 16.

The edge nodes are Raspberry Pi (RPi) 4 Model B, Quad core Cortex-A72 (ARM v8)

64-bit SoC, 1.5GHz, 4GB LPDDR4 RAM, 64GB storage. Both edge and cloud nodes are

connected to a FSU – a Dell Latitude 5420 laptop, Core i7-1185G7, 3.00GHz, 8–16GB

RAM and 512GB storage running a 64-bit Ubuntu 22.04.1 LTS. I also make use of an open

source serverless platform, utilising Lean OpenWhisk Invokers running with a maximum

of 3GB memory.



Chapter 3. Task Allocation in Edge-Cloud Infrastructure 33

Figure 3.3: Weed image: (a) original (b) blurred (c) black patched.

3.5.2 Testing ML Model Capabilities

In a real-world application, it is not possible for the robot to capture perfect images of

plants and weeds all the time. Sometimes, due to extraneous factors such as weather

conditions and crop density, the images captured are either unclear or have obstructed

line of sight. This results in unfavourable conditions for model evaluation and can a↵ect

system performance and e�ciency. To test the ML model capabilities for environmental

variations, I have intentionally injected noise in the images and then performed evaluation

of the generated models. The noise has been injected in images in mainly two forms: blur

and black patch. The blur function is applied on the entire image, whereas two random

size black patches are applied at a random location in the image. The blurred image can

simulate a situation when there is dust, rain drops on the camera lens that make the entire

image unclear. In a similar manner, the black patched image can replicate a scenario when

a leaf/insect is covering part of the lens or there is a stem obstructing the line of sight to

the actual object. A sample weed image with blur and black patch is described in Figure

3.3. It is important to note that I have not performed any training using noisy images.

However, blur and black patch noise were injected in all the test images of DeepWeeds

dataset, and then ResNet-50 and MobileNetV2 were used for evaluation. The accuracy

observed with and without noisy images for ResNet-50 andMobileNetV2 models are shown

in Table 3.1.

Table 3.1: Model accuracy with and without noisy images.

w/o noise with blur with black patch

ResNet-50 88.64 % 52.05 % 57.77 %
MobileNetV2 62.65 % 39.36 % 42.91 %

For a real-life application where environmental variations cause unfavourable conditions

for ML model inference, it can be noticed that ResNet-50 is a better option for performing

task evaluation than MobileNetV2.



34 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

3.5.3 Node Selection for Training and Inference

I measured training time for one epoch of weed identification model using one image of

DeepWeeds image classification dataset and analysed the performance on edge, FSU, and

cloud nodes. The benchmarked results for model training are described below in Table

3.2.

Table 3.2: Time for training 1 epoch on 1 image.

ResNet-50 MobileNetV2

Cloud 10.71 sec 04.15 sec
FSU 43.36 sec 16.19 sec
Edge 142.23 sec 38.64 sec

It can be observed that the training time on edge node, FSU is 4x and 10x more

respectively, than the cloud node, for both models. Therefore, I have selected the cloud

node for training our two ML models and generate light versions of these models. It takes

around 64 sec, 42 sec to generate light models of ResNet-50 and MobileNetV2 respectively.

A stress test to analyse the performance capabilities of two models on an edge node and

FSU is also presented in this subchapter. I ran concurrent inferences of weed identification

tasks and observed the change in their waiting and execution times. Tables 3.3 and 3.4

describe the average waiting and execution time for one inference when n concurrent

inferences are performed.

Table 3.3: Concurrent ML inferences on the edge node.

No. of tasks
ResNet-50 MobileNetV2

Waiting

time

Execution

time

Waiting

time

Execution

time

2 18.76 sec 05.36 sec 11.30 sec 0.52 sec
4 21.25 sec 15.90 sec 23.33 sec 1.00 sec
6 33.66 sec 31.94 sec 38.97 sec 1.37 sec
8 53.80 sec 35.62 sec 50.97 sec 1.80 sec
10 1 1 79.05 sec 2.08 sec
14 1 1 124.59 sec 5.43 sec

The symbol 1 is used to describe the event when inference is unable to complete due to

system crash, or other execution failure (as it did not terminate). I was able to achieve

8, 14 concurrent executions for ResNet-50 and MobileNetV2 models respectively on the

edge node, whereas on the FSU, the number of successful concurrent executions observed

was 34 and 40 respectively. I also noticed that waiting and execution time on the edge

node (robot) is much higher than FSU for both models. In terms of a real-life application,

where I might have to perform multiple executions at the same time, MobileNetV2 is a

better option for task execution.

If I consider the following four factors for decision making: (1) model adaptation to a

harsh environment, (2) number of concurrent executions possible, (3) average execution

time, and (4) average waiting time, there is a need to establish the trade-o↵ between



Chapter 3. Task Allocation in Edge-Cloud Infrastructure 35

choosing a more accurate model or reduce time to develop a model. Therefore, in this

work, I have decided to deploy the highly accurate ResNet-50 model on the FSU (as a

primary option), but if the network connection is unreliable/ unavailable, I can resort to

utilising the MobileNetV2 model for local inference, which o↵ers faster processing than

the former (with reasonable accuracy).

Table 3.4: Concurrent ML inferences on the FSU.

No. of tasks
ResNet-50 MobileNetV2

Waiting

time

Execution

time

Waiting

time

Execution

time

2 1.65 sec 0.20 sec 1.24 sec 0.02 sec
6 1.98 sec 0.22 sec 2.14 sec 0.02 sec
12 3.91 sec 0.47 sec 3.39 sec 0.06 sec
18 5.92 sec 1.24 sec 6.02 sec 0.06 sec
26 9.38 sec 1.48 sec 9.39 sec 0.08 sec
34 12.53 sec 2.86 sec 12.99 sec 0.12 sec
40 1 1 13.85 sec 0.13 sec

3.5.4 Execution Workflow

This subchapter describes the runtime workflow of the implemented fault-tolerant

framework. Initially, the model training is performed on the Google GCP server and

the data is then o✏oaded from server to RPi and FSU before beginning the execution.

In this framework, it is assumed that the ML models used for inference have already

been loaded onto the robot, FSU, and incur no extra latency in the execution process.

The interaction between laptop and RPi is managed using Parsl executors. I have

used the HighThroughputExecutor and constructed an Ad-Hoc cluster configuration for

communication between them. The network connection between RPi and laptop is

simulated. Network faults are induced by varying the signal quality of the network

connection. Multiple iterations of inference and fault models have been tested and results

have been formalised by averaging their values.

Table 3.5: Simulation Parameters.

Variable Values/Range

threshold (5% - 95%)
link quality (0% - 100%)
ResNet-50 accuracy 88.64%
MobileNetV2 accuracy 62.65%
image size (10.18KB - 35.11KB)
preprocessing time (4.44ms - 59.31ms)
ResNet-50 time (1.2sec - 4.59sec)
MobileNetV2 time (0.11sec - 0.35sec)
link transfer rate 1Mbps



36 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

3.5.5 Communication and Monitoring Setup

It is di�cult to estimate an exact signal strength throughout the communication channels.

Therefore, I have estimated the signal strength on controller node and used it as a reference

point throughout the inference. In simulation, patterns are generated through a random

process for determining the signal quality of each task. For an ideal circumstance, the time

it takes to send data over the network is given as (link time = data size/link speed).

The link transfer speed considered in this work is 1Mbps. Link delay is determined as

(link delay = link time/quality). When the quality is set to 1.0, the wireless link is utilised

at full capacity and the execution is performed at the fastest possible speed. When quality

drops below 1.0, the link delay increases and the task takes more time to execute. This

technique has been utilised to estimate variable network latency in the wireless network.

A list of all the variables considered in this simulation are also described in Table 3.5.

Figure 3.4: Average inference time on full models.

Figure 3.5: Average inference time on lightweight models.



Chapter 3. Task Allocation in Edge-Cloud Infrastructure 37

Figure 3.6: Average inference time on 2 platforms.

3.6 Results and Evaluation

This subchapter describes the experimental results and evaluation of our weed inference

framework. I have simulated an unreliable connection by adjusting the signal threshold

and testing it with the proposed algorithm. The performance of the system is evaluated

on the basis of two key parameters: time and accuracy.

3.6.1 Results

Figure 3.4 and 3.5 display the average time taken to perform image inference on full and

light models, respectively. I have only utilised lightweight models in this work, but in

order to justify not using full models, I have performed inference on full models as well.

The results show that inference time on full models are almost 10x in comparison to the

light models. Therefore, light models are a better choice over full models for weed/plant

inference. TensorFlow Lite models have a smaller file size compared to TensorFlow, and the

light model can be directly accessed without the need for additional parsing or unpacking

steps, which in turn speeds up the inference process. As a result, this allows a time

e�cient and e↵ective execution of ML inference tasks on resource constrained devices,

having low memory and less computational power in comparison to cloud nodes. Note

that the execution time for MobileNetV2 based model is less than ResNet-50 model – as

ResNet-50 has 177 layers and about 25.5M parameters, while MobileNetV2 has 156 layers

and only 3.5M parameters.

A comparison of inference time on two di↵erent platforms, namely Parsl and Lean

OpenWhisk, is shown in Figure 3.6. I wanted to test our model execution on another

comparable serverless platform. Lean OpenWhisk is a lightweight version of the

open-source OpenWhisk serverless computing platform that can be deployed on the edge

layer and o↵ers all the basic functionalities of the full version of OpenWhisk. I selected the

locally executed MobileNetV2 model as a task for this evaluation. The results show that



38 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

Figure 3.7: E↵ect on completion time with change in signal quality.

Figure 3.8: E↵ect on completion time with change in accuracy.

Figure 3.9: E↵ect on accuracy with change in signal quality.



Chapter 3. Task Allocation in Edge-Cloud Infrastructure 39

execution time on Parsl is significantly less in comparison to OpenWhisk. This is because

Docker instances are created and initialised for performing execution on the OpenWhisk

platform. However, Parsl functions can be directly run on the node using pre-developed

executors. I realised that using these custom executors and dynamic function distribution

makes Parsl a good platform for performing real-time function execution.

Figure 3.7 illustrates the completion time of deadline-aware and quality-aware methods

put forward in the proposed weed inference model. As the threshold for signal quality

increases, the completion time shortens, as more inference tasks will utilise the local model

for predictions instead of the full model. The completion time for the deadline-aware

approach is significantly higher in comparison to signal quality-aware approach. Using the

deadline-aware approach, the system has to wait for the deadline to expire before executing

the local model for prediction, whereas with the signal based approach, it immediately

runs the local predictions if the signal quality is below the specified threshold. Moreover,

the completion time for the random allocation approach is high in this experimentation.

This is because the algorithm selected full models for most of the evaluations, resulting

in high execution time. It can also be verified by high accuracy of random allocation

approach observed in Figure 3.9 (because full models are more accurate). For round-robin

approach, the completion time increased from 0.78sec to 1.28sec with an increase in signal

quality. At low threshold values, most of the jobs are unable to complete execution because

of poor signal quality. However, as the signal quality increases, both completion time and

accuracy increase – as the approach selects full models for execution alternatively and

successfully completes the execution.

The Figure 3.8 illustrates the impact of increasing accuracy on task completion time. It

is observed that completion time increases as high accuracy is achieved by the evaluation

model. To improve accuracy, I need to perform the inference by utilising the full model

(which takes more time to execute). Even at low accuracy, the computation time for the

deadline-aware approach is much higher than that o↵ered by the quality-aware approach.

This is because the deadline-aware approach uses a local model for inference after the

deadline has expired, which adds extra latency to the overall execution time of the proposed

framework.

It can be seen in Figure 3.9 that for low signal quality threshold, the accuracy of inference

is high. This is because for most of the inferences, current signal quality will be above the

threshold and it will be using the full model for inference. However, as the threshold value

increases, a higher number of jobs will be running the local model which is less accurate.

Hence, the accuracy decreases with an increase in the signal threshold. Along with that, it

can also be observed that both approaches give almost the same accuracies with changing

threshold values. This is because, in both approaches, the threshold is a measure that

mainly a↵ects the decision on where the execution will happen. For signal quality-aware

approach, the threshold decides whether to execute the job locally or remotely, whereas

in the deadline-aware approach, the threshold is used for estimating the time it will take

to execute the job remotely. The estimated time is then compared with job deadline to



40 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

evaluate whether the remote execution is a success or not. Therefore, the same model

(either local or remote) is picked for evaluation in both the approaches. The accuracy for

random allocation is high but the completion time for this approach is also higher because

of randomly picking full models for execution. For the round-robin approach, the full

models are selected and successfully executed with an increase in signal threshold. This is

because a high threshold value ensures a higher chance of successful task execution (with

the current signal quality).

3.6.2 Analysis

Based on the experimental results, following observations can be made: (i) The execution

time for full models is almost 10 times that of the light models. (ii) ResNet-50 based models

are more accurate in comparison to MobileNetV2 models, but take longer to execute. (iii)

The signal quality-aware approach generates better results in terms of completion time,

whereas the deadline-aware approach yields more accurate results (if completed within

the deadline). (iv) Changing the threshold value significantly a↵ects the completion time

of the signal quality-aware approach, whereas the completion time of the deadline-aware

approach is less a↵ected by the threshold value. (v) Inference accuracy of the framework

decreases with an increase in signal quality threshold. (vi) A trade-o↵ between accuracy

and execution time can be achieved based on user application requirements.

3.7 Summary

In this chapter, an edge-cloud framework that can be used with mobile agricultural robots

under intermittent network connectivity is proposed. The approach [114] is aimed at

addressing network faults, such as unreliable connections and service outages, that can

significantly a↵ect the performance of precision agriculture applications. Using on-board

ML models for classification and inference, the robot analyses plants/weeds by taking

images through a robot-mounted camera. For demonstration, two ML models were trained

for weed identification and prediction using the DeepWeeds image classification dataset

with two types of noise. I evaluated our algorithm using experiments performed on a

testbed, demonstrating that the approach provides accurate predictions under variable

network signal quality. The proposed approach o↵ers better performance in terms of

completion time, whereas a more traditional deadline-aware approach is more accurate but

takes longer to execute. Although task allocation has been considered in this chapter, the

task arrival and its uneven load can significantly a↵ect the performance of edge-cloud IoT

systems. The next chapter explores the load distribution aspect in IoT-based applications.



Chapter 4

Load Distribution in Edge

Computing Environment

This chapter describes a framework that distributes the task load across various edge

computing nodes available in rural environments. The distribution is performed by

considering multiple factors that directly a↵ect the performance of execution frameworks.

Three di↵erent FL-based workflows performing the weed detection task has been

considered during evaluation of the framework.

4.1 Distributing Task Load in Rural-AI

The use of technology to automate agriculture processes has revolutionised farming,

leading to improved utilisation of resources and decision-making [115, 116]. Agricultural

automation has also provided substantial progress towards attaining the UN Sustainable

Development Goals (SDGs), especially those pertaining to environmental sustainability,

improving agricultural yield, and reducing emissions from farms [117].

While technology o↵ers several benefits in agriculture, rural communities have limited

access to data communications and computational infrastructure [118], compared to urban

environments. Edge-based infrastructure provides a computing architecture that can be

used to enhance agricultural operations and decision-making processes in rural areas. It

involves deploying computation nodes near a data source at the edge of the communication

network for data processing tasks [119]. This infrastructure enables real-time data

processing, dynamic allocation of computational resources, low-latency communication,

and storage (including data caching) at the edge layer. Recent work [120, 121] proposes

edge computing-based frameworks for precision agriculture. Moreover, the integration of

edge infrastructure with Internet of Things (IoT) can be transformative for agriculture.

IoT devices can collect critical data (such as soil nutrients, crop and weed details, and

weather conditions) and o✏oad that task to nearby edge devices for decision-making [122].

This allows farmers to take immediate action on the fields, directly enhancing agricultural

productivity and sustainability.

Unreliable connectivity and environmental variations are factors that a↵ect the

performance of rural agriculture. It is therefore important to e�ciently utilise

these edge-cloud resources in a resource-constrained rural environment [123]. Load

balancing [124, 125] techniques can be used to distribute computing tasks and data

processing workloads across multiple computational resources, such as edge devices and



42 Chapter 4. Load Distribution in Edge Computing Environment

cloud servers. Load balancing also supports e�cient resource utilisation, enhances system

performance, and ensures e�cient data processing in agricultural operations.

Computational Offloading

Fog 
Node2

Fog 
Node3

Fog 
Node1

Publicly Accessible

Function3 Function4

Function2

Pl
at

fo
rm

Resource ProvisioningIn
fra

st
ru

ct
ur

e

Function1
Function4

Function3

Ap
pl

ic
at

io
n Workflow graph

Workflow execution

WAN

LAN

Fog Node6

Fog 
Node6

Fog 
Node5

Privately Accessible

Shared 
FolderShared 

Folder

Function1 Function2

Fog Node1 Fog Node2

Fog 
Node4

Robot Robot

Figure 4.1: Architecture for the proposed load balancing framework. Private nodes (red
links) available in high-security zone handle sensitive tasks and shared nodes handle less
restricted tasks on the public network.

Farmers have started embracing tools and technologies that are transforming their

agricultural practices, reshaping interactions within the agriculture and food sectors.

However, farmers are still concerned about privacy, security, and ownership of agricultural

data [126, 127, 128]. This can arise due to: (i) farming practices that give economic benefit

to individual farmers; (ii) requirement to report greenhouse gas (GHG) emissions; (iii)

pre-negotiated energy pricing and tari↵s; (iv) use of water and other associated resources

(e.g. seed, pesticides, and fertilisers) used on the farm. Moreover, lack of regular software

updates, limited technical expertise, poor data management practices and weak access

control mechanisms can also contribute towards the vulnerability of rural agricultural

data. Considering the limited infrastructure available in rural areas, it is also crucial to

optimally utilise all the available resources and ensure that some specified resources are

not under-utilised or over-utilised.

I propose a security-aware load balancing framework for edge infrastructure that can

be used to support rural environments. The infrastructure is designed to distribute

computational tasks across multiple resources while also ensuring data privacy and

confidentiality. It divides the tasks into independent categories: restricted and public.

These tasks are allocated to two di↵erent resources: private and shared, based on security

requirements and load characteristics of the node on which these tasks are executed.



Chapter 4. Load Distribution in Edge Computing Environment 43

A heuristic approach is designed to perform the resource allocation decision for each

task, taking into account factors that have a direct influence on execution performance.

Completion time, failure rate, resource utilisation, security, and resource management

overhead are the key factors used for evaluation. The proposed architecture for the

framework is shown in Figure 4.1 of this subchapter. The primary contributions of this

chapter are as follows:

• A load balancing strategy for rural infrastructure is designed that also ensure privacy

and security of user data. A weed detection use case is used to demonstrate how

this approach can be used in practice.

• A mathematical optimisation approach is used to determine the objective functions

that a↵ect execution performance, utilising an edge-based load balancing framework.

• Three variants of weed detection functions for evaluation of the proposed framework

are analysed: federated learning (FL) based local model training, global model

aggregation, and model prediction.

• SHIELD (Secure Heuristic Integrated Environment for Load Distribution) is

proposed as a framework that allocates tasks on available resources considering

waiting time, failure rate, security and other attributes that can be used as a basis

of comparison between di↵erent allocation strategies.

• Design of a testbed utilising Raspberry Pi and a laptop-hosted server (which can

be deployed at the farm). Two Python-based software systems are used: Parsl and

OpenWhisk (OW), for evaluating the performance of the proposed framework.

4.2 System Model

This subchapter outlines the key components considered while designing the proposed load

balancing framework. A brief description of edge-based infrastructure, a real-life use-case,

evaluation task, and communication module utilised are also explained in the following

subchapters.

4.2.1 Three-tier Edge-Cloud Architecture

This work implements a three-tier edge-cloud infrastructure, leveraging the strengths of

a layered edge computing and storage system. The foundation of this architecture is an

edge layer, consisting of physical hardware and communication devices. These components

are crucial for collecting real-time, application-specific data. Although these devices can

perform basic data processing and storage, their capabilities in this regard are limited.

The middle layer in our architecture is the fog layer, which plays a crucial role in enhancing

the computational and storage capacities of the system. This layer is composed of fog

nodes, such as base stations or gateways, situated in proximity to the data-generating

edge nodes. The strategic placement of these fog nodes is key to their functionality as



44 Chapter 4. Load Distribution in Edge Computing Environment

intermediaries between the edge devices and the cloud layer. These nodes support faster

processing for applications that require lower levels of computation comparatively, thereby

reducing latency compared to cloud-based models.

At the top of the architecture is a cloud layer, which o↵ers substantial computational and

storage capabilities. This hierarchical arrangement means that as one ascends from the

edge to the cloud, there is an increase in computational power and storage capacity.

However, this also results in increased network latency and complexity in execution.

Therefore, this architecture allows for a strategic trade-o↵ based on the specific needs

of the application. By determining the optimal number of layers to be utilised, the

architecture can be designed to balance immediate data processing needs at the edge

while more complex computational tasks are o✏oaded to the cloud node. This adaptability

makes the architecture suitable for a wide range of applications, optimising e�ciency and

performance.

4.2.2 Adaptive Control Pipeline

The designed system adapts with the execution environment through a sequence of steps

involving data collection, monitoring, analysis, and planning the modifications. The phases

of the adaptive control pipeline are as follows:

• Collecting data: It includes monitoring of the deployment environment and its

performance. All the decision variables that can a↵ect the control mechanism are

selected and their corresponding data is collected.

• Analysing data: This phase is used to understand the current state of system and

its associated decision variables. This could involve identifying patterns, predicting

future states, or selecting optimal nodes.

• Formulating decision: Based on the analysis of all the selected variables, a decision

is formulated by the system to adjust its operation and execution process.

• Implementing action: The system then implements the decisions, adjusting its

operation as per threshold and test conditions on selected variables. This

involves migrating tasks between nodes, avoiding risky nodes, or initiating recovery

procedures for failed tasks.

4.2.3 Task and Resource Classification

In order to limit the access of tasks on di↵erent layers of resources, I have divided them

into multiple categories in this work. The categorisation of tasks is as follows:

• public tasks: These are the set of tasks that have minimal or near zero requirements

in terms of security and do not need protection. It includes tasks that are processing

agri-data with minimal security concerns, such as general environmental data or

non-sensitive operational information. These tasks do not contain any sensitive



Chapter 4. Load Distribution in Edge Computing Environment 45

information, making them suitable for execution on a less secure, more openly

accessible environment.

• restricted tasks: This category of tasks might contain some sensitive information,

such as high-resolution images that could reveal confidential details about farming

operations or farm infrastructure. The critical nature of these tasks necessitates

execution in secure locations where data integrity and confidentiality are prioritised.

Monitoring these restricted tasks is essential for maintaining the privacy and

competitive edge of farming operations, as unauthorised access to this data could

lead to exploitation that could directly or indirectly harm the farmers.

For executing these tasks on resource nodes, two primary categories of resources are utilised

that ensure their security and accessibility needs:

• private resources: These resources are exclusively utilised for processing restricted

tasks due to their high level of security and controlled access. They are owned

and managed by individual farmers or farming organisations that own and monitor

the fields where data is generated. Private resources are deployed to ensure the

confidentiality and integrity of sensitive data, making them ideal for tasks that

require a higher degree of privacy and protection.

• shared resources: These sets of resources are shared between a group of farmers or a

local community that owns and manages the arable land in that neighbouring area.

They are highly cost-e↵ective and scalable but mainly used for public tasks due

to their lower levels of data protection and confidentiality. These resources do not

require stringent security measures, allowing for e�cient resource utilisation among

multiple agricultural farms.

Figure 4.2: Load distribution of tasks in the agricultural field.



46 Chapter 4. Load Distribution in Edge Computing Environment

4.2.4 Real-World Use Case

For evaluation of our proposed framework, the edge-based architecture has been mapped

to a real-life agricultural use case. I assumed that a high-resolution camera is mounted on

a robot that takes pictures of weeds and plants on the field. The robot can take a random

walk throughout the field and keep taking pictures. The aim of the robot is to detect and

remove weeds from agricultural fields. The setup follows a master-worker configuration

such that the robot acts as the master whereas the computation nodes act as the workers.

There are a few computation nodes that are deployed on the field and owned by farmers;

they are the private nodes for that particular farmer. Along with this, the farmer can also

evaluate tasks on a shared set of resources owned by a group of farmers having fields in the

nearby area. These shared resources are set up together by the local community of farmers.

For limiting the access of farmers to the two categories of resources, I have divided tasks

into two types as well: restricted and public. If the images captured for analysis contain

visual data that could reveal sensitive information about the farming operations or farm

infrastructure, they might be valuable to competitors or unauthorised individuals who

could exploit it for their own purposes. These images when sent for evaluation (whether

it's weed or plant) need security and are considered as a restricted task. However, if the

image does not capture any personal information that directly or indirectly a↵ects the

farmer, it's considered as a public task. A graphical description of our load distribution

approach in an agricultural field is shown in Figure 4.2.

4.2.5 Functional Requirements

Rural agricultural applications require a robust and adaptable system that can respond

to real-time environmental variations that a↵ect the infrastructure. The key requirements

for designing our application are as follows:

• Ideal pick for execution: A system can be designed to utilise all the available

resources while executing a task. A two-phase heuristic pipeline is deployed that

uses four unique constraints for selecting ideal resource nodes for execution.

• Mobility of nodes: The mobility factor can impact application performance and

data exchange over a wireless network. Therefore, the robot's location is designed

to influence the nature, size, and latency of supported task execution workflow.

• Addressing workflow necessities: Di↵erent FL workflows exhibit heterogeneity in

their computational demands, requiring di↵erent times for completing the execution.

In scenarios where workflows are interdependent, the outcome of one workflow serves

as the input to another process in FL. Three di↵erent workflows have been considered

for evaluation in our approach.

• Protecting data rights: The edge-based framework is designed with consideration of

protecting farmers' data security and privacy. I have utilised encryption, hash-based



Chapter 4. Load Distribution in Edge Computing Environment 47

Figure 4.3: Three sample images from the DeepWeeds dataset.

message authentication code (HMAC), and access control mechanisms to ensure

confidentiality, availability, and integrity of data.

4.2.6 ML Model Description

In order to perform weed detection on the proposed framework, I have leveraged

the ResNet-50 [68] convolutional neural network model to classify weed species using

the DeepWeeds [69] image classification dataset. This dataset includes nearly 17.5K

agricultural images (15K training, 2.5K test images), providing a broad and diverse set

of observations for eight primary weed species from a wide Australian region, enabling

the comprehensive training of our weed detection model. Three sample images from

the DeepWeeds dataset are shown in Figure 4.3. The ResNet-50 model, known for its

residual learning framework, was specifically selected for its e�cacy in handling complex,

high-dimensional data. I then fine-tuned the model parameters to optimise its ability

to discern unique patterns within the images, thereby enhancing its weed classification

accuracy. The functions that formulate execution workflows utilised in this framework,

can be given as:

Model TuningImage
Pre-processing

Compare 
Accuracy

Local Model

Global Model

Aggregate 
models 

Image
Pre-processing

Validation

Validation

InferenceImage
Pre-processing

Decoding Prediction Result

Figure 4.4: SFC for global, local, and prediction workflow.

(1)- Pre-process images: This initial phase involves manipulating an image to make it

suitable for training or validation. A function reshapes the data into a 224x224 image size

format, which aligns with the requirements of our deep learning model. (2)- Fine-tune

model: This phase focuses on fine-tuning our learning model. It involves initialising the

model with weights from previous iterations, leading to the creation of a new model



48 Chapter 4. Load Distribution in Edge Computing Environment

specifically trained on our DeepWeeds image dataset. (3)- Aggregate model: The step

includes averaging the weights across all neural network models, providing a comprehensive

and combined model representation. (4)- Validation: The newly trained model is tested

using a new dataset to evaluate its performance and accuracy. (5)- Accuracy comparison:

This function uses the validation results as input and compares the accuracy of the previous

model with the new one. The model having higher accuracy is then considered as the

global model for future evaluations. (6)- Inference model: The function utilises the trained

model for performing prediction on new and unseen data. It is used to test the real-world

applicability of the trained models on the specific applications it is trained for. (7)- Data

decoding: This function handles the encryption and decryption of data before it is sent to

a resource node for execution. An algorithm is designed to decide whether data encryption

is required or not.

Figure 4.4 describes the service function chain (SFC) for task variants utilised in this work.

I have evaluated the framework on these three weed detection tasks:

• Local model training: The task includes training the FL model on local data of

each node. It includes pre-processing the end-user data and fine tuning it over a

pre-trained model of another dataset. In our case, the weed detection model was

fine-tuned over a model pre-trained on the ImageNet [129] dataset.

• Global model aggregation: This task collects local models from all the nodes

and aggregates them into a single global model. It includes averaging models,

pre-processing, performing validation, and comparing accuracies. The model having

higher accuracy is selected as a global model for upcoming tasks.

• Prediction model: It uses the trained model for performing evaluation on new

unseen data. The data belongs to real-world applications which might need security,

therefore, the data encryption is also performed before it is sent for execution.

4.2.7 Serverless Computing Platforms

Serverless architecture provides a distributed computing infrastructure where the

management tasks such as managing servers, runtime environments, and the underlying

operating system are entrusted to a third-party service provider. Instead of pre-allocating

resources, serverless architecture dynamically provisions and scales resources for

applications by automatically responding to incoming event triggers or requests. By using

this approach, users can focus more on designing the functionality and logic of their

applications rather than infrastructure, making it a cost-e↵ective and e�cient model that

charges only for the compute time consumed by the applications.

Numerous serverless computing platforms, serving a wide range of use cases and

requirements are available in both commercial and open-source settings for the end-users.

AWS Lambda, MS Azure Functions, and Google Cloud Functions are a few platforms that

are used commercially whereas Apache OpenWhisk, Kuberless, OpenFaaS, and Knative

are a few of the open-source options available for deployment. Commercial platforms are



Chapter 4. Load Distribution in Edge Computing Environment 49

often available to users with built-in integration capabilities of their respective ecosystems,

such as database services, analytics tools, and machine learning platforms but they incur

high execution costs, implementation restrictions on the users. Alternately, open-source

serverless platforms are freely available for anyone to use, modify, and distribute but

they require more hands-on management and operational knowledge, especially for scaling

and maintaining the infrastructure. Parsl and OpenWhisk are two serverless computing

platforms that have been utilised in this chapter.

Parsl [130] is a Python-based scripting library that allows parallel execution of applications

across multiple cores and nodes utilising its pre-developed executors. All the functions

available for execution are wrapped using Python apps and are linked to a shared

input/output data source such that parallel execution of tasks can be performed on a

specific resource node. A configuration object, specifying where and how tasks should

be executed, enables running a Parsl application on any machine. It can be deployed

on a resource-constrained device like RPi, Nvidia Jetson or it can be assigned to a

high-performance computing cluster in the cloud layer. Our work uses Parsl for configuring

an ad-hoc cluster that o↵ers a dynamic workflow for real-time task execution on worker

nodes deployed for remote execution of tasks. Parsl also allows the dynamic distribution

of task load by utilising a controller node. Moreover, function hosting in Parsl supports

a heterogeneous environment that can be modified at runtime, especially in the event of

a node failure. A registry is maintained for all deployed functions and updated with the

arrival or completion of any existing function.

OpenWhisk [131] is a freely available (under Apache Licence 2.0) serverless computing

platform designed to automatically run functions in response to specific triggers or events.

OpenWhisk operates on a Function-as-a-service (FaaS) model, which o↵ers cloud-based

infrastructure and server management for applications. In this platform, functions are

labelled as “actions”, and their executions are termed as “activations”. End-users have

to register the actions, which can be triggered by an event. An event can be an

HTTP request, a timer, or an external resource. Actions can be coded in a variety of

programming languages like Python, Java, GO, Swift, or can be integrated as Docker

images. OpenWhisk operates on the assumption that there is a linear relationship between

a container's memory utilisation and its CPU utilisation. Thus, developers only have the

option to determine the RAM size (memory setting) for executing their actions. Developers

can also provide an action chain, which permits the sequential calling of one action by

another, resulting in complete execution of the entire SFC. The OpenWhisk architecture

consists of two main components: (1) the Controller and (2) the Invoker. Both of these

components are built over Nginx, CouchDB, and Kafka. Initially, the system is accessed by

Nginx, an HTTP server, and a reverse proxy server that allocates incoming HTTP requests

to the Controller node. The Controller node is responsible for the authentication and

authorisation of all incoming OpenWhisk API requests. CouchDB, an open-source data

store securely keeps rules, definitions of triggers, user credentials, metadata, activation,

and actions. Kafka is a streaming platform that handles the real-time data exchange



50 Chapter 4. Load Distribution in Edge Computing Environment

between the Controller and the Invoker. OpenWhisk also has a commercial version of its

platform, it is called IBM Cloud Function. I chose Parsl and OpenWhisk as our serverless

platforms to demonstrate the compatibility of our approach with di↵erent environments

that e�ciently manage and o✏oad workflows. In subchapters 6 and 8, I have presented

detailed results from our experiments with these platforms, validating our approach's
applicability in managing distributed serverless computing tasks.

4.2.8 The CIA Triad

For ensuring the protection of sensitive agricultural data, the fundamental concept of CIA

triad is utilised in this chapter. It consists of mainly three elements: Confidentiality,

Integrity, and Availability.

Confidentiality is the first component of triad which is ensured through the implementation

of advanced encryption methods. Encryption helps to safeguard sensitive agricultural data

by transforming it into an unreadable format, decipherable only by authorised end-users

(or a group of farmers) possessing the correct decryption key. The second principle,

Integrity, is ensured through the use of HMAC in our framework. Using HMAC, a hash

function is applied to the secret key and contents of the agri-task. Any changes, intentional

or accidental, in the data, will result in a di↵erent hash value. Therefore, verifying this

value before and after transmission can ensure that the data has not been tampered

with throughout communication, preserving its integrity. Availability is another crucial

factor which ensures that the system's services are accessible to end-users all the time.

To achieve this, I allocated the task on two best locations selected via hf2() heuristic

function. It provides an alternate solution in case one of the task executions fails. The

techniques used in this chapter to ensure CIA are based on well-known methods utilised

for data protection [132]. I have used these established security methods to enhance the

e↵ectiveness and reliability of our proposed approach. Integrating these security principles

can significantly improve the protection of sensitive agricultural data within an edge-based

infrastructure.

4.3 Problem Formulation

In this subchapter, I present a quantitative objective function for our proposed architecture

which schedules IoT jobs in a load balanced manner. I have interchangeably used the term

‘task’ or ‘job’ in this chapter. Both these terms refer to the execution of a weed detection

function. I have a set of J jobs and R resources such that a job can be sent on any available

resource for execution. All the symbols of this formulation are described in Table 4.1. Each

job can have a unique size and each resource can have a di↵erent capacity, which will result

in di↵erent execution times' on di↵erent resources (depending on their capacities). The

time taken to complete a task/job j on a resource r is known as the completion time, tcmp.

This can be represented as:



Chapter 4. Load Distribution in Edge Computing Environment 51

Table 4.1: Symbol Table for the problem formulation.

Symbol Description

N, N’ total no. of tasks, no. of tasks failed
tr, tp restricted, public security tag
J, R set of jobs, set of resources
j, r a task/job, a resource
tst, texec, tcmp start, execution, completion time
dltrans, dlprop, dlproc transmission, propagation, processing delay
dlqueu, dllat, dlcomm queuing, network, communication delay
tadd additional time
len, bw data packet length, network bandwidth
dis, vl distance, velocity
njq, awt no. of tasks in queue, average waiting time per job
jr, jp restricted, public task
jr0, jp0 restricted, public task failed execution
cset, cexec, ccomm setup, execution, communication costs
FR, SC, RU failure rate, system cost, resource utilisation
⌧ , cap time unit, total execution capacity

tcmp = tst + texec + dllat (4.1)

Here tst is the time when j starts executing on r, texec is the time it takes to execute j on

r, and dllat is the network latency of executing j on r. Here, network latency dllat is the

combination of various delays that arise in the network when j is executed on r. This is

represented as:

dllat = dltrans + dlprop + dlproc + dlqueu (4.2)

where dltrans is the time taken to transmit data from user to the transmission medium,

dlprop is the time taken for propagation of data through the transmission medium, dlproc

is the time taken by processor to process the users' data, and dlqueu is the delay incurred

by waiting of data packets in a queue. Since high performance computational hardware

is easily available nowadays, I have considered that dlproc ⇡ 0 in this chapter. Thus, the

network latency can be written as:

dllat = dltrans + dlprop + dlqueu (4.3)

dllat =
len

bw
+

dis

vl
+ (njq ⇥ awt) (4.4)

such that len is the length of data packet, bw is the bandwidth of adopted IoT network, dis

is the distance that a data packet travels, vl gives the velocity of communication channel,

njq is the total number of jobs in the queue, and awt gives the average waiting time for one

job in the queue. In this model, dltrans, dlprop and dlqueu together depict the communication

delay in the network. This combination of delays is often used interchangeably with dlcomm

in this chapter.



52 Chapter 4. Load Distribution in Edge Computing Environment

It is necessary that the task allocated on the node begins the execution on time. However,

due to system delay or improper garbage collection, the system faces some delay in

beginning the task execution. This results in task failure and may impact overall

completion time. To handle this issue, I have also considered additional time on resource

nodes in this framework. It can be mathematically given as:

tadd = texec ⇥ failure rate (4.5)

such that failure rate gives the failure rate of the resource node where task j is sent for

execution.

The tasks in the proposed architecture are categorised as restricted and public, as described

previously. Let a restricted job be denoted by jr. Similarly, a public job task is given by

jp respectively. The total number of tasks to be executed is given by N such that:

N =
X

jr +
X

jp (4.6)

Furthermore, a restricted and public job that failed execution on the node is denoted by

jr0 and jp0 respectively. The total number of jobs that failed their execution are given by

N 0 such that:

N 0 =
X

jr
0 +
X

jp
0 (4.7)

To analyse the performance of task execution, I use three metrics, namely: Failure Rate

(FR), System Cost (SC), and Resource Utilisation (RU). FR is the ratio of number of

jobs that failed execution to the total number of jobs available for execution. Formally, it

can be given as:

FR =

P
jr0 +

P
jp0P

jr +
P

jp
=

N 0

N
(4.8)

The objective function that needs to be solved for FR can be given as:

argmin
N 0

FR = {FR|FR = f(N 0)} (4.9)

Another crucial parameter to measure the performance of an architecture is the software

and hardware interactions within the network. This factor is given by the SC. It includes

the set-up cost, total execution cost, and cost of communication latency. SC can be

presented mathematically as:

SC = cset + cexec + ccomm (4.10)

Here cset denotes the initial set-up cost, cexec denotes the aggregated execution cost of all

the jobs executed on resource r. Finally, ccomm denotes the total cost of communication

latency in the network. Since SC is directly proportional to the running time of a resource,

it needs to be minimised.

If ⌧ is the standard unit of time considered in this work. then the objective function for



Chapter 4. Load Distribution in Edge Computing Environment 53

SC can be given as:

argmin
⌧

SC = {SC|SC = f(⌧)} (4.11)

Moreover, it is also necessary to keep track of the RU of all available resource nodes. RU

is the ratio of total execution time with the total capacity available in our network. In

order to achieve an optimal utilisation of a resource, RU needs to be maximized. RU is

represented mathematically as:

RU =

P
texec
cap

(4.12)

Here cap gives the total execution capacity of the available resources. The optimisation

function for calculation of RU can be given as:

argmax
texec

RU = {RU |RU = f(texec)} (4.13)

Therefore, the optimisation problem for maximising the performance parameter PR can

be presented as: Minimise FR, Minimise SC, and Maximise RU. By combining equation

9, 11, 13; PR can be written mathematically in the following form:

PR = max

✓
argmin

N 0
FR, argmin

⌧
SC, argmax

texec
RU

◆
(4.14)

Note that by maximising resource utilisation, the aim is to optimally utilise resources for

task execution. Similarly, by minimising the failure rate and total cost, I aim to avoid

failure of tasks and also remove the expenditures which do not provide added value to our

task execution framework. Therefore, there is need for a load distribution framework that

allocates the tasks on di↵erent resource nodes while ensuring that the resource utilisation

is maximised whereas the failure rate and total execution cost is minimised.

4.4 The SHIELD Framework

This subchapter describes the details of our load balancing framework proposed in this

study. It is assumed that there is a uniform mix of restricted and public tasks available

for execution. The term resource is used to signify a node where the execution of tasks

can take place. In order to monitor the utilisation of resources, a few new terms have been

defined in this work.

Definition-1: b-score - is a balance score that estimates whether a particular resource

node is over-utilised or under-utilised in the framework. It is measured by calculating the

di↵erence between current utilisation (utz) of the node and average utilisation (utzavg)

of the infrastructure. The b-score is calculated every time a new task is submitted for

execution. For every task ti evaluated on resource r, b-score can be mathematically given

as:

b� score(i, r) = utzr � utzavg (4.15)

Definition-2: dynamic k-value - In order to reduce the execution complexity, instead of



54 Chapter 4. Load Distribution in Edge Computing Environment

iterating over all the nodes, a more e�cient approach involves selecting k best nodes and

evaluating them for further performance enhancement. However, I observed that di↵erent

functions performed better with di↵erent sets of k-values. For determining the dynamic

k-value, I have utilised a softplus activation function in this work. Given the following:

(1)- function Softplus(x) = ln(1 + ex)

(2)- task execution time (texec)

(3)- total resources (R)

(4)- maximum task execution time (temax)

(5)- load constant (cl)

The system is designed to calculate a value k, which is related to the resource allocation

based on task execution time of our system. The softplus function serves as an

approximation to the rectifier function, compressing extreme values into a smoother range.

The calculation starts by determining �T , as:

�t = texec � temax (4.16)

The �t undergoes the softplus transformation and is normalised by:

softplus(�t)

softplus(temax)
(4.17)

Lastly, the calculation is scaled with R and added to 10% of the total resources already

available. The load constant cl is used to adjust this outcome. The final k-value can be

represented as:

k =

�
R⇥

✓
0.1 + cl ⇥

softplus(�t)

softplus(temax)

◆⌫
(4.18)

The value for load-constant in this work has been fixed at 0.9 (derived experimentally).

Therefore, for the initial 50s of function execution, the allocation will remain constant at

10%. Afterwards, it will be scaled accordingly using equation 4.18. Figure 4.5 shows the

relationship between the dynamic k-value and the average execution time of the function.

4.4.1 Heuristic Function Pipeline

With an aim to optimally allocate public/restricted tasks on available secure/shared

resources, this work uses a two-step heuristic function pipeline for decision-making on

where to execute the task. They are as follows:

hf1(): filtering the load - After determining the waiting time, failure rate, and b-score for

every resource node, the first heuristic function of the pipeline selects the best k nodes that

have the minimum values for all three variables, prioritising them in the order of waiting

time, failure rate, and b-score among all nodes available for execution. These k nodes are

expected to be the nodes that have been least utilised until the current task execution.

All the initial experimentation in this work has been done with k = 20. Afterwards, the

softplus activation was deployed to determine the optimal k-value that will obtain the best



Chapter 4. Load Distribution in Edge Computing Environment 55

Figure 4.5: Correlation between dynamic k-value and average execution time of the
function.

performance results during performance evaluation.

hf2(): evaluating objective functions - This function calculates the completion time of a

task on all nodes in the selected pool of resources. It includes task execution time and total

additional time if the task is executed on a selected node. I have calculated the additional

time using the formula: additional time = texec x failure rate. When a failure occurs

during task execution, the node enters the recovery phase increasing the average execution

time. Additional time manages the risk by reducing the probability of allocating tasks to

a risky node where the failure rate is higher. At last, two best nodes with minimum total

execution time are selected and the process is repeated for every incoming task.

4.4.2 Adaptive Cryptographic Measures for Public Networks

The security solution I implemented uses the file system to transfer data between

di↵erent resource nodes. In instances where this file system is situated on a publicly

accessed network, nodes on the public network must be equipped with security measures.

Confidentiality is primarily achieved through encryption and decryption mechanisms. On

the other hand, to maintain integrity, tokens such as the HMAC value are relayed via a

secure channel. This secure channel, exemplified by the SSH connection is utilised by Parsl

functions as an adaptive out-of-band channel that adjusts in real-time based on security

needs and conditions.

Figure 4.6 depicts the model's tuning procedure. This involves adding a security layer

to nodes that are accessible through public networks. Notably, Fog Node6 is reachable

via such a network. As a result, a cryptographic approach is required to safeguard its

integrity and privacy. In this setup, the robot handles encryption and HMAC generation,

while Fog Node6 manages decryption and verification.

To further enhance the security and robustness of our system during interactions

with publicly accessible networks, I introduced a series of functions that implement

cryptographic encryption:



56 Chapter 4. Load Distribution in Edge Computing Environment

Model TuningImage
Pre-processing

Generate 
HMAC

Symmetric 
Encryption

Verify HMAC

Symmetric 
Decryption

Local Model

Fog Node6
Robot

Fog Node6Fog Node1

Figure 4.6: Model tuning for public network access. Robot encrypts and generates HMAC
and Fog Node6 manages decryption and verification.

Generate HMAC: This function creates an HMAC designed for a particular message

and key using a specified SHA algorithm. This HMAC is fundamental in confirming

the integrity and authenticity of a message, defending against unauthorised changes or

interference.

Verify HMAC: This function validates the authenticity of a received HMAC by comparing

it with a newly created HMAC for a designated message. This creation process makes

use of a cryptographic key and the SHA algorithm. A successful match results in a ‘true’

outcome, validating the message's integrity. On the other hand, a mismatch leads to a

‘false’ outcome, hinting towards a potential security lapse or interference.

Symmetric Encryption: Through this function, a message M undergoes symmetric

encryption, using the Advanced Encryption Standard (AES) in Cipher Block Chaining

(CBC) mode. An auxiliary cryptographic key assists this process, and a random

initialisation vector (IV ) further enhances the encryption. The output includes the IV

and the consequent ciphertext C, preparing it for a potential scenario of decryption.

Symmetric Decryption: This function serves as the complement of an encryption process,

decrypting a given ciphertext C using AES in CBC mode. Initially, it extracts the IV and

ciphertext from C. Then the decryption process continues by leveraging the key and IV .

Any padding is subsequently stripped away, generating the original plaintext message M .

When integrating cryptographic functions into the workflows, there is an added overhead to

the execution times of various tasks. For instance, the pre-processing function experiences

an overhead of about 0.72s, and the model tuning function results in an increase of roughly

1.74s. The compare accuracy function has the most significant increase, with an additional

time of 3.61s. In contrast, the decoding function has a minimal overhead of just 0.03s.

Note that our SHIELD mechanism incorporates these overheads by considering them as

a part of the node's execution duration. This approach provides a comprehensive view of

the time factor while implementing cryptographic security measures on public networks.

4.4.3 Load Balancing Algorithm

The proposed algorithm is designed to identify two best nodes for task execution and

allocate the tasks on those nodes. A set of tasks, a set of resource nodes, and security tags

associated with each task are considered as inputs for the algorithm. The procedure starts

by selecting tasks one at a time, in the order of their arrival. For each selected task ti, the



Chapter 4. Load Distribution in Edge Computing Environment 57

algorithm evaluates its waiting time on all the available nodes and selects the node that

has the lowest waiting time. If the waiting time of multiple nodes is similar, I evaluate

the failure rate of those nodes and select the nodes that have minimum failure rate. If the

nodes have similar failure rates as well, I evaluate the b-score of those nodes and select

nodes with minimum b-score among all available nodes. A softplus activation function is

deployed to identify the optimal k-value for executing task ti in this framework. The first

heuristic function (hf1) is then invoked to select the k-best resource nodes based on the

previously mentioned three factors in the same sequence. The second heuristic function is

then utilised to select two best nodes (r1 and r2) where the task will be finally allocated.

The decision was taken by considering the execution time and additional time on selected

k-nodes. The algorithm then continues examining the task ti and resources r1 and r2. If

the task is private, the algorithm first checks whether the selected node is secure or not,

and then executes the task. The task is encrypted before execution if the node is a shared

node. On the other hand, if the arrived task is public, it is not encrypted on either private

or shared resource node and is directly sent for execution. A pseudocode for the proposed

load balancer is given below in Algorithm 4.1.

4.4.4 Access Control Mechanism

A mechanism that governs the availability of data within di↵erent layers of our edge

computing environment, is utilised to manage access control in this work. The aim is

to restrict the accessibility of specific categories of tasks to certain groups of resources

that are unsuitable for execution. In this work, the unsuitability is evaluated based on the

security requirements of an end-user. If the arriving task is restricted, it would be risky (in

terms of security) to allocate this task on a shared resource as the communication channel

will be accessible to a lot of other users as well. Therefore, a better option would be to

limit allocation of all restricted tasks on private resources only whereas all the public tasks

can be allocated to shared resources for execution. For experimentation, I have utilised

three versions of access control mechanisms. They are as follows:

(1)- Secure Random Placement: When a task arrives for execution, it is randomly allocated

to any of the resource nodes where the security tag matches the task requirements.

For example, when a task with a restricted tag arrives, it will be allocated randomly

to one of the available private resource nodes. Similarly, a task labelled with a public

security tag will be randomly assigned to any available shared resource (and not to any

private resource). (2)- Secure Round Robin: Instead of randomly selecting a node for

task execution, this approach allocates each arriving task to resource nodes in a cyclic

order. However, it is crucial that security tag of the task matches the requirements of

the resource. All restricted tasks will be scheduled on private resources in a cyclic order.

Similarly, all public tasks will be allocated on shared resources in a similar cyclic order.

(3)- Secure Least Loaded: This approach allocates tasks to the resource node which has

been least utilised among the total available pool of resources. However, I make sure that

if the task is restricted, it is allocated to the least loaded resource node in our private pool



58 Chapter 4. Load Distribution in Edge Computing Environment

Algorithm 4.1 SHIELD
Input: set of tasks, set of resource nodes, security tags
Output: two best nodes for task deployment

1: procedure load-balancer()
2: select tasks (one-at-a-time) in the arrival order
3: for selected task ti do
4: calculate waiting time
5: calculate failure rate
6: calculate b� score
7: identify k � value
8: procedure hf1()
9: select k best resource nodes

10: end procedure
11: procedure hf2()
12: identify two best nodes - r1 & r2
13: end procedure
14: end for
15: for task ti and selected node r1 & r2 do
16: if ti ! private then
17: if selected node ! secure then
18: perform execution
19: else if selected node ! shared then
20: encrypt task
21: perform execution
22: end if
23: end if
24: if ti ! public then
25: if selected node ! secure or shared then
26: perform execution
27: end if
28: end if
29: end for
30: end procedure

of resources. Similarly, if the public task arrives, it will be assigned to the shared resource

node which has been least utilised. Whenever a new task arrives, the allocation decision

is made by evaluating the utilisation of all the available nodes.

4.5 Performance Comparison: Parsl vs OpenWhisk

Table 4.2 below provides evaluation metrics for Parsl and OpenWhisk platforms, describing

their performance when executing an FL application on a Raspberry Pi 4. Performance

benchmarks are measured across a range of tasks: pre-processing, model tuning, averaging

models, model validation, comparing accuracy, inference, and decoding. A comparative

analysis of each task with its corresponding average execution time is conducted,

revealing the following findings: (1)- Pre-processing : Parsl displayed high e�ciency in

pre-processing operations, completing the task in approximately 0.33s, while OpenWhisk



Chapter 4. Load Distribution in Edge Computing Environment 59

Functions Parsl Time

(seconds)

OW Time

(seconds)

OW Memory

(MB)

Pre-processing 0.33 1.80 128
Model Tuning 178.21 161.54 1024
Averaging
Models

22.33 17.63 2048

Model
Validation

37.16 47.77 1024

Compare
Accuracy

0.10 0.66 128

Inference 5.36 30.85 1024
Decoding 0.01 0.98 128

Table 4.2: Performance readings for Parsl and OpenWhisk functions.

required significantly more time, averaging around 1.79s. (2)- Model Tuning : OpenWhisk

outperformed Parsl in model tuning, completing the task in approximately 161.54s

compared to Parsl's 178.21s. (3)- Averaging Models: OpenWhisk also demonstrated

better e�ciency in this task, averaging around 17.63s, while Parsl took approximately

22.33s. (4)- Model Validation: Parsl performed better in this task, completing it in

approximately 37.16s compared to OpenWhisk's 47.77s. (5)- Comparing Accuracy : Parsl

demonstrated significant e�ciency in this task, requiring only about 0.10s, a small

di↵erence to OpenWhisk's 0.66s. (6)- Inference: Parsl was far more e�cient in this

task, averaging around 5.36s as compared to OpenWhisk's 30.85s. (7)- Decoding : Parsl

completed the task very quickly in 0.0067s, compared to OpenWhisk's substantially longer

duration of 0.98s.

Running an FL application on Raspberry Pi highlights the strategic di↵erence between

Parsl and OpenWhisk in resource management and their consequential impact on

performance. Moreover, a task-specific di↵erence between performance on two platforms

is observed. For tasks such as pre-processing, model validation, comparing accuracy,

inference, and decoding, Parsl demonstrated higher e�ciency. However, OpenWhisk

performed better in model tuning and model averaging tasks. It can be clearly seen

that Parsl exhibits superior performance in the majority of tasks because it operates

more like a native script execution, where the operating system manages and distributes

resources among processes. If the system runs out of memory, the OS can start paging

whenever the function is called, allowing tasks to be completed, though with some added

time. This accounts for the longer duration observed in the model tuning function

executed using Parsl. On the other hand, OpenWhisk uses containerisation, allocating

a specific amount of memory to each function. If this allocated memory runs out, the

function might not run or more likely will fail, triggering a need for task reallocation.

Also, each function execution in OpenWhisk requires the instantiation of a new container

(cold activation). This process contributes to additional time overhead while executing

the functions. Although this overhead appears to be minimal for longer tasks, it can

significantly impact shorter tasks. For example: in the model tuning function, the 6s cold



60 Chapter 4. Load Distribution in Edge Computing Environment

activation contributes just 3.84% to the total 155.69s execution time. However, for the

decoding task, the 0.95s cold activation accounts for roughly 99.17% of the total execution

time, considerably reducing OpenWhisk's performance for tasks with smaller execution

cycles. Therefore, e�cient resource allocation becomes even more crucial in a multi-user

infrastructure. Defining precise memory requirements for each function, such as the 1GB

(or 25% of Raspberry Pi's memory) needed for model tuning, can be challenging. In such

cases, a choice can be made to prioritise faster execution over e�cient memory utilisation.

Analysing these behaviours, it is possible to optimise performance by dynamically selecting

either Parsl or OpenWhisk for execution, based on the task and available resources. Parsl

could be preferred for tasks such as model tuning when su�cient memory is available to

avoid OS-controlled paging. On the other hand, when memory is insu�cient, OpenWhisk

o↵ers a solution by acquiring all the memory needed for a task beforehand, thus preventing

the act of paging. In all scenarios where available memory is limited, it would be better to

utilise the OpenWhisk framework (because of better control over memory). Such strategic

selection could improve the overall performance and e�ciency of FL applications. This

selection process can be represented as an optimisation problem in itself and has not

been considered in the current approach. Exploring this later could provide a promising

direction for future work.

4.6 Experimentation Setup and Design

This subchapter presents a detailed description of the experimental setup devised for the

implementation of our proposed security-aware load balancing framework. It includes

setting up Parsl, OpenWhisk platforms, and designing a Python-based simulation that

can simulate real-world conditions.

4.6.1 Testbed Setup for Parsl

The experimental configuration for evaluating the proposed framework utilises an edge

computing environment that consists of an edge node and a controller node connected

with each other. The edge node is a Raspberry Pi 4, Quad-core Cortex-A72 Processor,

64-bit SoC, 4-GB RAM, and Nvidia Jetson Nano, Quad-core ARM Cortex-A57 MPCore

Processor, 4-GB RAM, located at Indian Institute of Technology (IIT) Ropar. The

controller node is a Dell Latitude 5420 laptop equipped with an 11th Gen Intel Core

i7-1185G7 processor operating at 3.00GHz with 8 cores, 16GB RAM, and 512GB storage.

This node is also located in IIT Ropar and the connection between controller and edge

node is established using the Parsl framework. Both the laptop and edge node are

equipped with a 64-bit Ubuntu 22.04.1 LTS operating system for experimentation. Virtual

environments were set up on both machines, and all prerequisites were installed before

initiating the task execution process. To facilitate the communication, a Parsl executor

(HighThroughputExecutor) and an Ad-Hoc cluster configuration are utilised in this work.

A graphical description of the Parsl setup that has been utilised for orchestrating the



Chapter 4. Load Distribution in Edge Computing Environment 61

workflows is provided in Figure 4.7.

Resource Allocation

Computing Infrastructure

Virtual Functions

SFC 
Placement

Process

@app

@app @app@app

Executor Executor

Configuration 

Configure Managment

SFC 
path

Controller 

Controller 

D
ataFlow

 Kernel (D
FK)

Executor

Process Process Process

R
esource M

onitoring

Fog 
Node2

Fog 
Node3

Fog 
Node1

Publicly Accessible

WAN

LAN
Fog 

Node6

Fog 
Node5

Privately Accessible

Shared 
FolderShared 

Folder

Fog 
Node4

Fog Node1 Fog Node4 Fog Node6

Figure 4.7: Utilising Parsl for pipelining and orchestrating the execution of workflow.

4.6.2 Testbed Setup for OpenWhisk

In order to test our framework on OpenWhisk platform, I have utilised six Raspberry

Pi 4 Model B computers, operating on Raspberry Pi OS Lite (32-bit) Debian Bullseye.

Every Raspberry Pi is powered by a 1.5GHz 64-bit quad-core CPU (ARM-V8 processor)

with 4GB of RAM. A streamlined version of Apache OpenWhisk (Lean OpenWhisk) is

integrated with edge devices, which eliminates the need for separate Kafka and Invokers.

Currently, the intrinsic compatibility of Lean OpenWhisk is confined to x64 and x86

architectures only (and not ARM). To bridge this gap, I have customised Docker images,

facilitating the installation of Lean OpenWhisk on Raspberry Pi devices equipped with

ARM architectural setups. For a heterogeneous setup, an Nvidia Jetson Nano, Quad-core

ARM Cortex-A57 MPCore Processor, with 4-GB RAM, is also utilised for experimentation

with RPis.

4.6.3 Simulation Setup

I have utilised a two-step simulation process incorporating a queuing model and a failure

model in this chapter.

Queuing Model: This model is designed to determine the waiting times for all tasks

in the queue. It uses a function that considers the arrival time and the current state of



62 Chapter 4. Load Distribution in Edge Computing Environment

the queue to perform this calculation. Another key function identifies the status of a task

(within the queue) and computes its completion time by considering both waiting and

execution times. I utilise a dynamic simulation model for emulating a system with single

server per node, operating under a First-Come-First-Serve policy.

In Algorithm 4.2, the process for handling task arrivals involves calculating the waiting

time (refer to the procedure in lines 3-9) to determine the total completion time, which

is the sum of waiting and execution times. As the task arrives, the system compares its

arrival time with the time when the last task finished waiting (both are timestamps). This

comparison helps to determine if all tasks in the queue have been processed or if there

are still tasks waiting/being executed (refer to line 7). In the event of task allocation, the

completion time is calculated using the procedure described in lines 10-18. If there are no

tasks in the queue (refer to line 13), the system assigns task's execution time as the total

completion time (line 14). However, if the tasks are waiting, system adds the waiting time

to the total execution time and determines the final completion time (line 16) of that task.

Algorithm 4.2 Queue Simulator
Input: arrival time, execution time
Output: waiting time, completion time

1: procedure Queue-Simulator()
2: Initialize: wait end 0, wait time 0
3: procedure calc wait time(arr time)
4: if wait end < arr time then
5: wait end arr time
6: end if
7: wait time max(0, wait end� arr time)
8: return wait time
9: end procedure

10: procedure calc compl time(arr time, exec time)
11: wait time calc wait time(arr time)
12: wait end max(wait end, arr time+ exec time)
13: if wait time = 0 then
14: compl time exec time
15: else if wait time > 0 then
16: compl time wait time+ exec time
17: end if
18: return compl time
19: end procedure
20: end procedure

Failure Model: The model incorporates a Mean Time Between Failures (MTBF) clock

as shown in Figure 4.8, to manage the task executions. If the task execution time surpasses

its MTBF, the task will go through multiple cycles (as depicted in Figure 4.9). This model

is specifically designed to simulate a system where MTBF is a significant factor. Upon

initialisation, the model is provided with two parameters: the Mean Time To Failure

(MTTF) and the Mean Time To Recovery (MTTR). A key function within this model

evaluates the status and expected completion time of a task considering the system's



Chapter 4. Load Distribution in Edge Computing Environment 63

Figure 4.8: The execution of a service function at a process node, with completion times
taking account of MTTF and MTTR.

Figure 4.9: When the task execution time exceeds its MTBF, it will cycle repeatedly. At
each MTTR interval, the operation halts and then resumes until MTTF is reached.

MTBF. It calculates the expected number of MTBF cycles that a task might undergo

and adjusts its completion time accordingly, considering the possibility of a system failure

during the task's execution process.

This failure model simulation considers the impact of system reliability and repair time

on all the operations. The MTBF clock model provides an even more realistic framework

for understanding, planning, and optimising system reliability, maintaining schedule, task

execution, and completion timelines. Our custom-built clock operates on an MTBF cycle,

which is divided into two phases: the MTTF and the MTTR. If the execution time is

less than or equal to the MTTF, the task can be completed within the system's expected
operational time. However, if the execution time exceeds beyond MTTF, the task enters

the MTTR period, during which progress is paused until the system is restored.

In this model, a unique situation occurs when a task arrives during the MTTR period.

In such cases, only the remaining time until system recovery, which is a fraction of the

full MTTR period, is added to the task's completion time. When a task is interrupted

by the MTTR period or begins in between this period, I have also added an appropriate

MTTR time to the total completion time. If the task is interrupted n times by MTTR

periods, then the completion time is calculated as: Completion Time = Execution Time +

n⇥MTTR. For a task initially expected to be completed within one MTBF period but gets

interrupted by an MTTR period, the new completion time would be Completion Time =



64 Chapter 4. Load Distribution in Edge Computing Environment

Parameter Quantity

MTTF (250-500s)
MTTR (20s-100s)
total requests 5,000
local requests 1,500
global requests 500
predictions requests 3,000
fog layers 2
restricted tags 50%
public tags 50%
controllers in field 10
simulation setups 2

Table 4.3: Summary of the simulation parameters.

MTBF + MTTR. If interrupted twice, the completion time extends to Completion Time

= MTBF + 2 ⇥ MTTR, and so on. Please note that – the more frequently a task is

interrupted by downtime, the longer it will take that task to complete in a real-world

setting.

The two models are linked in a sequential manner. The queue model is initiated first,

and its output, indicating the task's waiting and completion times, is used directly as an

input for the failure model. The failure model processes this information, determining

whether the task can be executed before a system failure occurs and calculates the task's
completion time.

4.6.4 Simulation Parameters

Table 4.3 highlights the configuration details of the simulation parameters utilised in

this study. I have evaluated the performance of four algorithms: secure random

placement, secure round robin, secure least loaded, and SHIELD through a simulation

having uniform and normal distribution configuration. The experimentation is carried

out on a two-layered fog infrastructure having a restricted and a public layer, utilising

RPi benchmarks. Separate tests are conducted on two di↵erent platforms: Parsl and

OpenWhisk. Reliability metrics MTTF and MTTR range from 250s-500s and 20s-100s

respectively in our evaluation. I utilised 200 RPis, distributed across both layers. It also

includes three workflows: local model training (1,500 requests), global model aggregation

(500 requests), and model predictions (3,000 requests). Each request and RPi is associated

with a restricted or public security tag based on its characteristics. In the field, 10 RPis

connected to robots act as network controllers. A dynamic k-value is also utilised for

selecting the best k nodes in this work.

4.7 Results and Evaluations

This subchapter presents the experimental findings and evaluations conducted on our

security-aware load balancing framework. I utilised three key metrics to assess the



Chapter 4. Load Distribution in Edge Computing Environment 65

Figure 4.10: Global workflow evaluation on Parsl platform.

performance of proposed system. The first is failure rate which measures the percentage

of tasks that do not meet their deadlines, showing actual cases of task incompletion.

Another important metric is the makespan, which tracks the total time it takes for a

workflow to execute across di↵erent systems, with an emphasis on reducing this duration.

I also explored the utilised location (or utilised resources) metric, indicating the number

of resources involved in a workflow. The goal of this metric is to ensure that resources

are evenly distributed. It is worth noticing that basic load balancers such as round robin,

might link utilised location to the task size in the workflow. The results compare our

proposed SHIELD approach to the random placement method, round robin, and least

loaded load balancing strategies. All these methods are secure, adhering to the access

control procedures described in subchapter 4.4.4.

4.7.1 Performance Analysis of Workflows on Limited Resource

Environment

For understanding the behaviour of framework with less number of resources, I carried

out assessment with k-value set at 20 (equivalent to 10% of the total resources) rather

than relying on the formulation mentioned in Equation 4.18 as depicted in Figure 4.5.

Throughout this stage, I closely monitored the results and analysed the framework's
e↵ectiveness in load distribution with a smaller subset of resource nodes.

Figure 4.11: Global workflow evaluated on OpenWhisk platform.



66 Chapter 4. Load Distribution in Edge Computing Environment

Figure 4.10 and 4.11 display the performance of global workflow on Parsl and OpenWhisk

execution platforms respectively. The analysis indicates that the SHIELD strategy shows

a substantial reduction in makespan (55.11s, 63.83s), reflecting a more e�cient execution

process. Moreover, the failure rate is significantly reduced to just 2.8% and 3.4%,

highlighting the robustness and reliability of our approach compared to other placement

approaches. While round robin distributes tasks evenly across all resources in a cyclic

manner, the Secure Least Loaded method first evaluates the current load on each node,

aiming to allocate tasks to the node having a minimum number of tasks in the queue. This

results in some additional time (around 5s) during the execution of workflows. Moreover,

the average locations utilised (5.93, 6.45) for SHIELD are higher than the other access

control mechanisms. This occurs due to our approach replicating tasks on two locations in

a five-function chain workflow. However, instead of utilising all 10 locations, our framework

selects locations based on performance factors mentioned previously. Selecting locations

for task execution provides better results (in terms of makespan and failure rate) rather

than uniformly distributing the load. When I increased the value of k to 100%, I noticed

that SHIELD algorithm's performance varies slightly between the two configurations. It

utilises more locations (5.93 vs 5.53) and has a marginally lower makespan (55.11s vs

55.97s) with 10% configuration compared to 100% k-value configuration. However, the

failure rate is slightly higher when k value is 100% (3.0 vs 2.8).

Figure 4.12: Local workflow evaluation on Parsl platform.

Figure 4.13: Local workflow evaluation on OpenWhisk.



Chapter 4. Load Distribution in Edge Computing Environment 67

The performance of local workflow on Parsl and OpenWhisk platforms are shown in Figure

4.12, 4.13 respectively. In this workflow, SHIELD also demonstrated better performance

over the other strategies. The makespan observed under SHIELD was 169.61s and 160.16s,

significantly lower than its counterparts. Furthermore, the failure rate is only 21.93% and

19.87%, far less than Secure Random, Secure Round Robin, and Secure Least Loaded. It

can be observed that makespan is significantly higher for all strategies in comparison to

the global workflow. This is because the “model tuning” function has a more substantial

execution time in the local setting (which is not required in a global workflow). The high

execution time not only results in a longer makespan but also increases the probability of

failure. Therefore, the failure rate in the local workflow is also higher than that observed

in the global workflow. The average utilised locations for SHIELD are 3.37 and 3.18, which

is also higher than other three access control mechanisms. The 10% k-value configuration

of the SHIELD algorithm utilises slightly more locations (3.37 vs 3.36) and has a slightly

higher failure rate (21.93 vs 20.67) compared to the 100% configuration. However, the

makespan is marginally higher in the 100% configuration (168.55s vs 169.61s).

Figure 4.14: Prediction workflow evaluated on Parsl.

Figure 4.15: Prediction workflow evaluated on OpenWhisk.

For the prediction workflow, the performance on Parsl and OpenWhisk platforms

are depicted in Figure 4.14 and 4.15 respectively. The proposed SHIELD strategy

demonstrates the highest e�ciency with the lowest makespan (5.63s, 31.58s) on both

platforms. The access control mechanisms – Secure Random, Secure Round Robin, and



68 Chapter 4. Load Distribution in Edge Computing Environment

Secure Least Loaded have slightly higher makespan in comparison to our approach. The

di↵erence in makespan is attributed to the e�ciency of SHIELD in allocating resources,

thereby leading to quicker task completion. A slightly better makespan of round robin

is observed because of its cyclic allocation of tasks on available resources. It is also

observed that the average failure rate for SHIELD is 0.06% and 1.03% respectively. The

prediction chain has a very low completion time and it is optimally placed on locations

using SHIELD framework. This reduces the probability of execution failure and exhibits

a high task execution rate. The performance of the SHIELD algorithm shows a noticeable

di↵erence between the two configurations in this workflow. The 10% configuration has a

slightly higher number of utilised locations (3.64 vs 3.6) and a lower failure rate (0.0 vs

0.03). However, the makespan is almost identical, with a minor di↵erence of 5.63s and

5.64s in 10% and 100% configuration respectively.

4.7.2 Interpreting the Additional Time Required for Di↵erent

Execution Workflows

Another critical factor for analysing the performance of our framework is the additional

time required whenever a task failure occurs and system goes into a recovery phase. The

data presented in Table 4.4 shows the average additional time required by the system

whenever a process node faces an interruption, along with the recovery time following

such interruptions. This analysis focuses on understanding three available workflows on

both available execution platforms.

Table 4.4: Average additional time on Parsl and OpenWhisk.

Approach Global Local Prediction

Parsl
Random 9.93s 10.21s 1.18s
RR 16.95s 21.13s 4.45s
SHIELD 0.77s 0.82s 0.45s

OW
Random 10.98s 11.57s 1.79s
RR 18.63s 15.89s 2.6s
SHIELD 3.39s 4.59s 0.64s

Random Approach: Both Parsl and OW recorded a longer execution time for the global

and local workflows. Parsl is approximately 10s and OW is a bit closer to 11s. However,

the prediction workflow in both platforms shows a much shorter duration.

Round Robin (RR) Approach: In Parsl, the RR approach showed a significant delay,

especially in the local workflow, surpassing 21s. Though global and prediction workflows

also showed an increase, it is relatively less than the local version. In contrast, RR method

on OW showed a faster recovery for the local workflow in comparison to others.

SHIELD Approach: Our algorithm provides better results on both Parsl and OW

platforms. On Parsl, the values range between 0.45s and 0.82s, which provides faster

recovery for all three frameworks. SHIELD on OW is faster in comparison to other

alternative methods but is marginally slower than Parsl. Across both Parsl and OW,

the SHIELD approach succeeds in minimising the additional time. Conversely, the RR



Chapter 4. Load Distribution in Edge Computing Environment 69

strategy, in the Parsl local and OW global workflow, exhibits higher delays. The prediction

workflow consistently recorded shorter additional times, irrespective of the platform. For

applications prioritising the minimisation of additional time, SHIELD is a preferable

choice. However, it is crucial to consider the intrinsic nature of each workflow, especially

the local workflow, which inherently has a longer execution time in comparison to the

prediction and global workflows.

4.7.3 Exploring Distribution of Load and its Trade-o↵ with other

Performance Critical Factors

To analyse the load distribution capability of our proposed framework, I have performed a

comparison with the other three task allocation strategies having uniform load distribution.

The uniform distribution strategy ensures a fair distribution of load across network

resource nodes, independent of specific characteristics of the infrastructure. It focuses

predominantly on maintaining a balance in load distribution, while also considering access

control policies.

The random placement strategy employs a uniform distribution function for allocating

tasks. Despite generating a balanced distribution, this approach still lacks deterministic

predictability. In contrast, the round-robin distribution adopts a more deterministic

approach by systematically allocating tasks among all processing nodes available in the

infrastructure, thereby assuring fair distribution. The e↵ectiveness of these strategies can

be evaluated using the task allocation ratio. Both random placement and round-robin

strategies typically operate with an allocation ratio of 0.5-0.53%, suggesting each node

receives approximately 0.5-0.53% of the total tasks on average. On the other hand,

SHIELD prioritises the reduction of waiting times and failure rates over balanced task

distribution. The nodes chosen by SHIELD exhibit a higher allocation ratio, typically

between 2.47-2.76%. This implies that nodes selected in SHIELD are less likely to

miss deadlines, placing reliability over balancing task distribution. Despite this focus on

reliability, SHIELD also takes account of task distribution among high-performing nodes.

SHIELD increases the allocation ratio of reliable nodes but balances the load between

them based on the currently queued tasks, considering waiting time and b-score.

4.7.4 Evaluating the Influence of Dynamic k-value on Overall Execution

Time of Workflows

To analyse the behaviour of our framework for optimal resource utilisation and overall

execution times, I have used a softplus function for dynamically nominating k number of

resources that can be deployed for executing the selected task. The formula for determining

the k-value (represented in equation 4.18), is essential for the e↵ective distribution of

resources. It dynamically adjusts resource allocation in response to the execution time

of tasks in our given system. For a scenario where task execution times are equal to or

less than 50s, the k-value remains constant. However, if the execution time surpasses

this 50s threshold, there is a gradual increment in the number of nodes designated for



70 Chapter 4. Load Distribution in Edge Computing Environment

future resource allocation. This behaviour indicates a clear positive relationship between

the k-value and execution time. However, in practical scenarios, I observed that it is less

likely to have more than 20% of the nominees being considered for task allocation.

Our empirical analysis of the dynamic k-value also validates its e�ciency. Tasks having

longer execution time such as model tuning may experience interruptions from repeated

recovery actions. As depicted in Figure 4.12 and 4.13, considering a larger group of nodes

within the secondary heuristic function is advantageous in such scenarios.

Interestingly, fewer nominees for global and prediction workflows can lead to improved

results (Parsl: 55.11s, OW: 62.71s and Parsl: 5.63s, OW: 31.03s respectively). This

outcome is obtained by maintaining a balance between exploration and exploitation in

the SHIELD heuristic approach. By applying a dynamic k-value, about 10% of nodes are

nominated to the secondary heuristic functions, leading to enhanced outcomes.

Using a dynamic k-value for adjusting the node count across heuristic functions not only

improves the optimisation process but also ensures e�cient resource allocation. Providing

all resources to the next heuristic function for shorter workflows, such as global (Parsl:

55.97s, OW: 63.83s) and prediction (Parsl: 5.64s, OW: 31.58s), can lead to results that

are not optimal. This emphasises the significance of k-value in ensuring better system

performance, reducing an average of 0.86s on Parsl, 1.12s on OW and 0.01s on Parsl, 0.55s

on OW platform (for global and prediction workflows respectively).

4.7.5 Analysing Performance with di↵erent Data Distribution and Task

Load

All the previous experimentation in the chapter has been performed with uniform data

distribution. To evaluate the proposed framework for a di↵erent probability of task arrival,

I analysed the performance of SHIELD over Gaussian distribution of data, as shown in

Figure 4.16, 4.18, 4.20, 4.17, 4.19, and 4.21. I observed that on global workflow, the failure

rate increased to 6.20% and 9.40%, for Parsl and OpenWhisk, respectively. Similarly,

for local and prediction workflows, the failure rates also increased to 26.27%, 23.93%;

0.07%, 2.47%, respectively, on Parsl and OpenWhisk. I also noticed that the makespan

for both distributions was similar, with a slight variation of 1s-3s, on average. Gaussian

distribution is known to simulate a more realistic and varied workload scenario where

some nodes might be more heavily loaded than others. The experimental results show

that SHIELD still outperformed the other three strategies in successfully completing the

tasks. However, a slight increase in failure rate can be observed due to the changing load

pattern of the distribution, which can be more challenging than managing a consistent,

evenly spread-out load.

Moreover, as I increase the task load to 5x and 20x of the initial load, I observe a

notable trend in both Parsl and OpenWhisk platforms. In most cases, the makespan

marginally increases or remains stable, indicating robust handling of larger workloads by

SHIELD. The utilised locations also vary, reflecting adaptive resource allocation strategies

to accommodate the increased load. Interestingly, the failure rate increases (around 1-10%,



Chapter 4. Load Distribution in Edge Computing Environment 71

Figure 4.16: Global workflow evaluation on Parsl platform (with Gaussian Distribution).

Figure 4.17: Global workflow evaluation on OpenWhisk platform (with Gaussian
Distribution).

Figure 4.18: Local workflow evaluation on Parsl platform (with Gaussian Distribution).

depending on the type of workflow) with a higher task load, suggesting a correlation

between increased workload and the likelihood of task failures. Detailed results about

task load can be seen in Table 4.5 shown below.

4.7.6 Analysing Performance in Heterogeneous Resource Environment

In order to analyse the performance in a heterogeneous resource environment, I evaluated

the SHIELD framework with two types of hardware resources (RPi and Jetson Nano).

I observed that SHIELD outperforms other approaches in utilising locations (4.42, 4.63)



72 Chapter 4. Load Distribution in Edge Computing Environment

Figure 4.19: Local workflow evaluation on OpenWhisk platform (with Gaussian
Distribution).

Figure 4.20: Prediction workflow evaluation on Parsl platform (with Gaussian
Distribution).

Figure 4.21: Prediction workflow evaluation on OpenWhisk platform (with Gaussian
Distribution).

more e↵ectively, achieving lower makespan (81.98s, 85.48s), and ensuring a lower failure

rate (9.73%, 8.75%) across both Parsl and OpenWhisk platforms, respectively. Figure 4.22,

4.24, 4.26, 4.23, 4.25, and 4.27 shows detailed results of workflows on Parsl and OpenWhisk

with heterogeneous resource nodes. The experimentation demonstrates that Parsl is

a better choice for global and prediction workflows, as it o↵ers faster task completion

(6.37s, 26.27s), and high reliability (2%, 1.6%). Its architecture and execution model are



Chapter 4. Load Distribution in Edge Computing Environment 73

Platform Workflow Requests Load Makespan Failure Rate Utilised Locations
Parsl local 5x 169.16 21.52 2.58
Parsl local 20x 170.39 26.16 2.45
Parsl global 5x 54.24 6.68 4.91
Parsl global 20x 54.90 6.87 4.65
Parsl prediction 5x 5.44 0.01 2.26
Parsl prediction 20x 5.44 0.07 2.32
OpenWhisk local 5x 160.11 22.61 2.92
OpenWhisk local 20x 159.57 23.05 2.84
OpenWhisk global 5x 63.71 10.88 4.68
OpenWhisk global 20x 63.95 9.16 4.71
OpenWhisk prediction 5x 30.98 2.22 2.34
OpenWhisk prediction 20x 31.02 2.23 2.31

Table 4.5: Evaluating SHIELD framework with 5x and 20x task load.

well-suited for complex computations and scenarios where faster execution and success

rates are critical for performance. However, OpenWhisk o↵ers better performance than

Parsl in the local workflow, where pre-allocating the resources before task execution can

significantly improve the makespan (22.14s), and reduce the failure rate (4.28%).

Figure 4.22: Global workflow evaluation on Parsl with heterogeneous nodes.

Figure 4.23: Global workflow evaluation on OpenWhisk having heterogeneous nodes.

Comparing the performance of SHIELD, when evaluated on a uniform mix of resources, I

observed similar trends across all workflows, for both Parsl and OpenWhisk. The results



74 Chapter 4. Load Distribution in Edge Computing Environment

Figure 4.24: Local workflow evaluation on Parsl platform having heterogeneous nodes.

Figure 4.25: Local workflow evaluation on OpenWhisk with heterogeneous nodes.

Figure 4.26: Prediction workflow evaluation on Parsl platform with heterogeneous nodes.

show that the resource utilisation in both scenarios is almost similar, whereas there is a

slight increase in makespan and failure rate when execution is performed in a heterogeneous

environment. This increase can be attributed to the overheads incurred from the serverless

architecture and GPU utilisation in the edge layer. In the serverless deployments, as

seen with both Parsl and OpenWhisk, there are significant initialisation overheads, more

dominantly seen in Jetson Nano, due to its complexity and higher memory requirements.

Moreover, Jetson Nano's do not have the advantage of spreading out initialisation costs

over longer periods, since functions are temporary, and do not run continuously. This

results in notable delays every time the node is reloaded, thus resulting in higher execution



Chapter 4. Load Distribution in Edge Computing Environment 75

Figure 4.27: Prediction workflow evaluation on OpenWhisk having heterogeneous nodes.

costs during task execution. Furthermore, their performance is also a↵ected by memory

hierarchy challenges, as frequent data transfers between di↵erent memory layers lead to

bottlenecks, particularly in devices that contain limited GPU memory, such as the Jetson

Nanos used in edge computing infrastructures.

4.8 Summary

This chapter [133] demonstrates a framework for managing computational tasks within a

rural edge infrastructure, establishing a balance between e↵ective load distribution and

maintaining data privacy, security of end-users. A heuristic-based two-function algorithm

is used to assign tasks on private or shared resources, taking into account completion

time, waiting time, failure rate, additional time, overheads, and resource utilisation.

SHIELD (Secure Heuristic Integrated Environment for Load Distribution), utilises three

task scenarios: local model training, global model aggregation, and prediction model

for evaluation of the framework. Our results show that SHIELD not only provides an

improvement in completion time (makespan) and failure rate but also reduces the use of

risky nodes that have a high chance of failure. The designed framework can also be utilised

in other rural applications where load balancing and security are key performance factors.

However, another approach to enhance the performance of framework is to optimise the

ML and AI operations of IoT applications. The next chapter explores this aspect of

improving the ML execution and deployment for an agricultural based use case scenario.



76 Chapter 4. Load Distribution in Edge Computing Environment



Chapter 5

Optimising AI Operations in

IoT-based Applications

5.1 Integrating ML with IoT

In recent years, the advancements in IoT have o↵ered significant opportunities to achieve

Sustainable Development Goals (SDGs) by providing enhanced connectivity and real-time

data analysis across various sectors. By integrating sensors, actuators, and end-user

devices, IoT networks facilitate the collection of vast amounts of data and enable more

informed decision-making with optimised utilisation of resources [134]. Integrating ML

and AI models in IoT can provide a direction for significant advancement in the domain

of computational technology. These models have also seen exponential growth across

numerous real-world tasks such as image classification [114], object detection [135], and

video analysis [136] in the past few years. In order to achieve higher accuracy and

performance, researchers have focused on designing architectures that are both deeper

and broader, like VGG, Inception, ResNet, YOLO etc.

Deploying these complex, deep models on resource constrained nodes, such as mobile

robots, field side units, unmanned aerial vehicles, and end-user IoT devices, presents

significant challenges [137]. Performing convolution operations on these models demands

substantial computational power and energy. Additionally, the extensive number of

network parameters results in high storage requirements, causing further challenges in

resource limited environments [138]. If I consider InceptionV3 and VGG16 models as

an example; they have more than 138 million and 23 million parameters respectively.

Moreover, to process a single 224x224 image, these models require around 6 billion and

30 billion floating-point operations. In order to implement such large-scale deep learning

models on resource constrained infrastructures, it is imperative to tackle the issue of their

computational intensity and memory demands.

Numerous methods have been developed to handle the rising demand of memory

and resources by deep learning models. Model compression techniques like pruning,

quantization, and knowledge distillation are crucial for reducing the size and improving

the speed of these models. Pruning [139] involves removing unnecessary weights from a

neural network, e↵ectively decreasing its complexity and size. Quantization [139] converts

parameter weight values from floating type to integer type, which decreases memory

usage and can speed up inference. Knowledge distillation [140] transfers the knowledge



78 Chapter 5. Optimising AI Operations in IoT-based Applications

from a large, complex model to a smaller, faster one without significant loss in accuracy.

Additionally, creating compact neural architectures and optimising for specific hardware

are a few other strategies used to further accelerate the model performance.

input
layer

output
layer

X

X

X

X
X

Xtrainable layers freezed layers

before pruning

retained features pruned features

after pruning

Figure 5.1: An overview of our proposed methodology.

Optimising ML pipelines and system life cycles often presents significant challenges

and is a very complex task. Training larger neural networks with sparse activations

can enhance model scalability and performance. However, this approach may lead

to increased carbon emissions and energy utilisation due to higher demand of system

resources [141]. O✏oading model training and inference tasks to data centres powered

by carbon-neutral energy sources o↵ers a potential reduction in emissions but might

not be practical for all application use cases. This is because the development of

carbon-neutral infrastructure is often constrained by geographical and material availability

limitations [142]. Moreover, with the rising trend of on-device learning to enhance data

privacy, more computational tasks are being o✏oaded from centralised servers to low-level

edge and IoT devices [143, 144]. Therefore, there is a critical need for a sustainable training

and inference infrastructure that reduces resource utilisation – both in terms of memory

and computation – without compromising the accuracy and performance of the models.

In this chapter, I am evaluating two distinct methodologies that enhance the e�ciency

of ML operations – (1) The first method aims to reduce the computational demands

associated with backpropagation by systematically freezing certain layers of the neural

network. Specifically, this involves fixing the parameters of selected layers to prevent

them from updating during training. The primary objective is to cut down on the

time required for both the current training session and any subsequent adjustments to

model in the future. (2) Another method focuses on refining the architecture of an ML

model by adjusting its parameter count. This strategy uses an automated process to

identify and prioritise the most significant parameters for a specific dataset on which it

is trained. Subsequently, parameters that are found less critical are eliminated from the

model through a pruning procedure. This approach enhances the overall e�ciency of ML



Chapter 5. Optimising AI Operations in IoT-based Applications 79

operations for both the training and inference phases, by reducing the model's complexity.

A brief overview of our proposed approach is shown in Figure 5.1. Implementing these

strategies results in an optimised configuration of models such that models require fewer

resources for training and inference thus reducing the energy, computation, and storage

requirements of the frameworks.

5.2 Agricultural Use-Case

I have considered an agricultural scenario for experimentation with our approach. E↵ective

weed management in precision agriculture is a critical task that can help farmers in

maximising crop yield, reducing cost, and minimising the use of herbicides in agricultural

fields. AI models trained on large datasets of agricultural imagery are capable of

distinguishing between crops and weeds with remarkable accuracy. These models are

deployed through advanced sensors and imaging technologies mounted on drones, robots,

agricultural machinery, scanning fields in real time to identify weed infestations. For

evaluation, I have utilised a weed identification task as the use case in this chapter. Two

ML models namely InceptionV3 and VGG16 have been used for training and inference

procedures with DeepWeeds dataset in the approach.

5.3 Proposed Methodology

This subchapter provides a detailed description about our approach for layer selection

and pruning. The first part describes the genetic algorithm based selection mechanism

for layers and the second part highlights the heatmap visualisation technique for channel

pruning.

5.3.1 Optimising Layer Selection with Genetic Algorithm

In optimisation, the solution encoding consists of a binary array that defines each layer's
selection during the training process. A genetic algorithm is used to manipulate this

encoding by modifying the array to discover an optimal mix of active and inactive layers

for enhancing model's performance. Selecting the optimal layers for training while keeping

the remaining layers frozen to preserve their weights during training, constitutes a complex

computational optimisation challenge. This task is crucial for improving the model's
functionality, especially considering the complexity and scale of neural networks which

make manual selection non-feasible. Therefore, sophisticated optimisation algorithms are

necessary to e�ciently navigate through potential configurations and identify the most

e↵ective ones for deployment.

Genetic algorithms are particularly suited for this task due to their good capability in

handling complex optimisation problems. Inspired by the genetic process of combining

attributes, these algorithms utilise mechanisms such as mutation, crossover, and selection

to refine solutions progressively. For the layer selection approach, GA enables a systematic



80 Chapter 5. Optimising AI Operations in IoT-based Applications

exploration of layer combinations, identifying those layers that can significantly reduce the

computational demand and enhance the performance. I will first describe the formulation

using mathematical notations and then provide details about the selection mechanism.

Problem Formulation

I have formulated our selection approach as an optimisation problem to maximise the

accuracy of a neural network model by strategically selecting layers for training. This

selection process is controlled by binary decision variables for each layer, denoted as:

xi =

8
<

:
1, if layer i is selected for training,

0, otherwise layer i is NOT trained.,
(5.1)

for i = 1, . . . , n, where n is the total number of layers in the model.

The primary objective is to maximise the model's accuracy, which can be represented by

the objective function f(x) described as:

f(x) = model accuracy(M(x)), (5.2)

where M(x) represents the neural network model, configured according to the trainable

status of each layer i, as determined by the binary decision variable xi. This function

directly maps the selection of trainable layers to the overall performance of our model.

The solution's feasibility is constrained by a limit on the total computational resources

allocated for training the selected layers. This constraint ensures that the sum of the

computational weights of the selected layers does not exceed a predefined limit L. It can

be specified as:

nX

i=1

Wi · xi  L, (5.3)

where Wi denotes the computational cost or weight associated with training layer i.

The aim of this formulation is to find an optimal set of layers (xi) that maximises the

neural network's accuracy within the given computational cost L. By identifying the ideal

set of layers which can be used to establish a balance between performance accuracy,

resource utilisation, and computational cost; we can design an approach that performs

the ML model training based on the execution requirements of end-user applications for

which the solution is begin designed.

Genetic Algorithm Based Selection

For the framework, the solution encoding is represented by a binary array which determines

the training status of each layer. A genetic algorithm modifies this array to find the

optimal configuration of layers to improve model performance. Figure 5.2 illustrates our

solution encoding mechanism and its manipulation by the genetic algorithm. The selection

algorithm chooses solutions in each iteration, followed by the crossover and mutation



Chapter 5. Optimising AI Operations in IoT-based Applications 81

operations. Mutation involves flipping bits (‘0’ to ‘1’ or vice versa) by targeting specific

indices based on a random distribution. These operations are repeated multiple times to

generate new probable solutions.

Solution 
Encoding

InputModel 
Architecture Output

Population Selection Crossover Mutation

0

1

Figure 5.2: Solution encoding for layer selection.

Individuals with higher fitness are preferably selected through Binary Tournament

Selection mechanism, ensuring those more suited to the problem are more likely to

reproduce. A 90% chance of Single Point Crossover promotes genetic diversity by mixing

genes from pairs of parents, while a 20% Bit Flip Mutation rate introduces new genetic

variations to explore the solution space e↵ectively. The algorithm runs until a specific

number of fitness evaluations are obtained, maintaining a constant population size. This

setup provides a balance between exploring new possibilities and exploiting already-known

good solutions, aiming for an e�cient search of optimal solution within a limited number

of computational steps.

5.3.2 E�cient Feature Mapping for Pruning

Modern deep neural networks consist of various types of convolutional layers, and the

execution runtime during an inference phase is dominated by evaluation of those layers.

In order to speed up the inference process, our strategy involves pruning complete

feature maps by utilising the analytical capability of GradCAM and performing heatmap

visualisation to identify the impactful features.

Introduction to GradCAM

GradCAM – stands for Gradient-weighted Class Activation Mapping [145], is a technique

that can enhance the interpretability of convolutional neural networks (CNNs) by

analysing gradients in the final layer and quantifying the significance of each neuron in

the decision-making process. This technique visualises the importance of features using

heatmaps, where color intensity represents values between 0 and 1 to show the scale of

significance in the data. Figure 5.3 below shows a step-by-step visualisation of the active

areas in an image that was highlighted during the feature identification process.



82 Chapter 5. Optimising AI Operations in IoT-based Applications

Figure 5.3: Visualisation of the data and its corresponding class activation heatmap for
identified labels.

The method is utilised to identify the crucial areas and bring out the relation between

model parameters and these identified regions. By highlighting the association between

parameters and weights with important features or regions, the technique can be used

for the interpretation of AI models as well as improving their performance. GradCAM

quantifies each weight's importance in values ranging between 0 to 1 and uses it to measure

the parameter's contribution in class identification decision. I have considered a threshold

variable for establishing the separation between the importance value of features and

executing the pruning process to eliminate less critical connections, thus optimising model

performance and e�ciency.

To represent it mathematically, let us consider that C is a set of all channels in the

convolutional neural network's target layer. I(c) is the importance score of channel c,

derived from the GradCAM heatmap values, where c 2 C. Moreover, T is the threshold

value for pruning, a predetermined parameter that distinguishes between essential and

non-essential channels.

For a channel c to be retained, its importance score must be greater than or equal to the

threshold otherwise the channel is pruned, such that:

retainCh(c) =

8
<

:
yes, I(c) � T

no, I(c) < T
(5.4)

The aim is to identify the optimal value of retainCh(c) such that majority of the necessary

features are retained whereas all the other features that do not significantly contribute to

the decision making process are pruned. By optimally selecting limited number of features,

we plan to reduce the overall size of ML model and retain all the necessary features which

contributes in the delivery of output decision obtained during model inference process.



Chapter 5. Optimising AI Operations in IoT-based Applications 83

Pruning Workflow

I have designed the Algorithm 5.1 that shows the step-by-step approach of our pruning

workflow. The process begins with the identification and extraction of the target CNN

layer from the neural network model. Following this, the weights of the designated layer

are extracted before further analysis and manipulation are performed. Next, the channel

importance is calculated by summing up heatmap values per channel, indicating their

contribution to the model's output and assistance in pruning decisions.

The selection of channels to be retained is based on a pre-specified importance threshold

value. Channels with cumulative heatmap values surpassing this threshold are selected

for retention, while those with values below it are considered for removal. This process

ensures the retention of only those channels that significantly contribute to the network's
e↵ectiveness. The pruning phase involves the targeted deletion of weights and biases

associated with channels that are deemed non-essential (below the threshold). This

crucial step aims to decrease the model's computational demands while preserving its

true predictive characteristics.

Following the pruning process, a new CNN layer is created. This layer mirrors the original

layer in terms of its architectural parameters (e.g., kernel size, strides, padding, activation

function) but di↵ers in the number of filters, which are adjusted to match the count

of channels retained. The pruned weights and biases are then allocated to the newly

instantiated CNN layer, ensuring that the layer is properly equipped to perform its function

within the network. The final step replaces the original convolutional layer with its pruned

version, ensuring the model's integrity and connectivity.

Algorithm 5.1 Channel Pruning using Heatmaps

1: Input: model, layerName, impThresh
2: Output: prunedModel
3: targetLayer  GetLayer(model, layerName)
4: w, b  GetWeights(targetLayer)
5: imp  empty map
6: for each ch in targetLayer do
7: imp[ch]  Sum(heatmap[ch])
8: end for
9: retainCh  empty list

10: for each ch, i in imp do
11: if i > impThresh then
12: Append(retainCh, ch)
13: end if
14: end for
15: prunedW, prunedB  PruneWB(w, b, retainCh)
16: newLayer  CreateLayer(len(retainCh), targetLayer.kSize, targetLayer.stride,

targetLayer.pad, targetLayer.act)
17: SetWeights(newLayer, prunedW, prunedB)
18: model  ReplaceLayer(model, layerName, newLayer)
19: return model



84 Chapter 5. Optimising AI Operations in IoT-based Applications

5.4 Experimental Design and Setup

The subchapter describes the experimental tools and detailed configurations that have

been utilised for evaluation of our approach.

5.4.1 Dataset and Hardware Configuration

For both layer selection and pruning, I have used TensorFlow to build and modify

state-of-the-art models including VGG16 and InceptionV3. I have also used JMetalPy1 for

genetic algorithm operations in layer selection. For pruning, I leveraged TensorFlow2 and

Keras built-in capabilities to implement a GradCAM solution. The heatmap generation in

the approach uses TensorFlow's Keras API3, where a function builds a model to observe

a specific convolutional layer's output and model's predictions for an image array. This

process generates heatmap values highlighting key image regions influencing the model's
decisions, showcasing API's ability to analyse and interpret model behavior.

I performed our AI operations on a virtual instance of dual-core Intel(R) Xeon(R) CPU

at 2.00GHz, 12 GB of RAM, and an NVIDIA Tesla T4 GPU with 16 GB of memory. The

system has 79GB of total storage, with 27GB used and 52GB available. Datasets were

pre-loaded from Google Drive as virtual instances to minimise data transfer overhead and

optimise the performance.

Our agricultural use-case considers collecting data from IoT devices at the network's edge,
processing it on a FSU, using the DeepWeeds [32] image classification plant-based dataset.

The DeepWeeds dataset is the first large, public dataset for Australian range-land weeds,

having 17,509 images of eight common species of weeds from eight regions spread across

northern Australia. This dataset is designed to support the development of classification

methods, enabling the use of robotic weed control in challenging environments and

highlighting the role of machine learning in improving weed management and agricultural

tasks.

5.4.2 Estimation of Power Consumption

To estimate the power consumption of Nvidia T4 GPU, based on its running time, I have

used the following approach:

Let Pload be the power consumption in watts when the resource node (GPU) is running

and let Tload be the total time for which our node is executing the tasks.

Given that Pload = 74 watts. The total power consumption (Ptotal) in watt-hours (Wh)

can be calculated as follows:

Ptotal = (Pload ⇥ Tload) (5.5)

1
https://github.com/jMetal/jMetalPy

2
https://www.tensorflow.org

3
https://www.tensorflow.org/guide/keras



Chapter 5. Optimising AI Operations in IoT-based Applications 85

Similarly, in kilowatt-hours (kWh), the power can be calculated as:

Ptotal = (Pload ⇥ Tload) /1000 (5.6)

This model allows us to estimate the T4 GPU's power consumption over the duration for

which GPU was consuming power and executing the ML/AI tasks utilised for evaluation

in our experimentation.

5.4.3 Experimental Configuration

This subchapter describes the configuration details for performing the layer selection and

feature pruning mechanism in this work.

Layer Selection Setup

The first part of our configuration focuses on setting up the layer selection mechanism for

the approach. The steps are as follows:

Data Splitting: The dataset is divided into three segments: 60% for training, 20% for

validation, and 20% for testing. This division is used to ensure e↵ective model training,

fine-tuning, and performance assessment of our approach.

Data Preparation: The process begins with resizing images to standardised input

dimensions, followed by data augmentation techniques such as flipping and rotating.

Additionally, these images are normalised by converting pixel values from integers to floats

and scaling them to the range of [0, 1] and then batched for e�cient processing during the

training process.

Model Customisation: This phase involves updating pre-trained models, specifically

InceptionV3 and VGG16, which were initially trained with the ImageNet dataset. The

models are customised for DeepWeeds dataset by appending new layers and freezing the

original layers to preserve learned/retained features. This customisation aims to leverage

the pre-existing knowledge of the models while making them relevant for the new tasks.

During this process, accuracy metrics are tracked to evaluate the objective function's
performance.

Training Setup: The models are trained with hyperparameters including 10 epochs and

batch sizes of 20. Additionally, the 0/1 knapsack algorithm is utilised to fine-tune the

non-trainable (frozen) layers of the model, enhancing its customisation and improving

performance on the new dataset.

Genetic Algorithm Based Selection: A similar model undergoes brief training to learn the

changes and improve model adaptability. The generated models are then evaluated with

a focus on accuracy and other key performance metrics. The obtained results are used

for further genetic algorithm driven refinements, continuously improving model outcomes.

The genetic algorithm population considered in our experimentation is 10.

Evaluation and Analysis: After training, the models are evaluated on the test dataset

to determine their generalisation capabilities. This evaluation helps in assessing the



86 Chapter 5. Optimising AI Operations in IoT-based Applications

e↵ectiveness of the training and the customisation process. The performance metrics,

specifically training, validation accuracy and loss, are plotted over the epochs to analyse

the model's learning behavior and fit to the data, providing insights into their strengths

and remaining challenges.

Feature Map Pruning Setup

The second part of our approach is designed to use a heatmap visualisation mechanism

for feature pruning. The steps are as follows:

Data Preparation: The process begins by dividing the complete dataset into two separate

parts (referred to as Dataset A and Dataset B) to simplify the training and evaluation

process.

Initial Training: During this phase, the Dataset A is utilised as a base for the model's
initial training process. This phase establishes the benchmark for the model's performance

and provides insights about its learning capabilities.

Pruning Phase: Following the initial training, the model undergoes a pruning process

using the following methodology – I selectively removed some of the model components,

such as weights, biases, or neurons, that have minimal impact on the output. The aim is

to simplify the model's structure and enhance its operational e�ciency. I have used the

approach outlined in subchapter 5.3.2 to selectively remove the model components and

reduce its size.

Fine-Tuning with Dataset B: After pruning, Dataset B is used to fine-tune the selected

model. This phase aims to perform minor adjustments to our model's parameters to

refine its performance, focusing on recovering or improving aspects, generalisations that

potentially got diminished or removed during our earlier pruning phase.

I have used both Dataset A and B as training sets within this experimental approach.

The only key di↵erence is in their usage such that Dataset A is allocated for initial model

training whereas Dataset B is designated for post-pruning fine-tuning.

Evaluation and Analysis: The final step involves an evaluation of the model after its

fine-tuning. This analysis focuses on various performance metrics such as execution time

and accuracy, to verify the rate of improvements I was able to achieve during the pruning

and fine-tuning phases.

5.5 Results and Evaluation

This subchapter highlights the experimental results and their findings after evaluating

the proposed approach. Figure 5.4 compares the training times (in seconds) for one

epoch of the InceptionV3 and VGG16 models across di↵erent percentages of trainable

layers, ranging from 10% to 100% of the total layers in each model. The training time

increases for both models as the percentage of trainable layers increases, which is expected

since more parameters require more computational e↵ort to update the model. Moreover,

VGG16 has consistently higher training time across all percentages of trainable layers



Chapter 5. Optimising AI Operations in IoT-based Applications 87

than InceptionV3. This can be attributed to the architectural complexities and the overall

number of parameters in VGG16, which is known for its simplicity in structure but high

computational cost due to the depth and size of its fully connected layers.

Figure 5.4: Total execution time with di↵erent percentages of trainable layers.

The Table 5.1 below summarises the power consumption, measured in watts, of two deep

learning models (per epoch) during the training sessions with di↵erent percentages of

their layers trainable. Specifically, the table reports measurements for three scenarios:

when 10%, 50%, and 100% of the layers are trainable. For both the models, the power

consumption increase as the percentage of frozen layers decreases.

Trainable (%) InceptionV3 VGG16

0.1 11.61 18.13
0.5 19.11 28.68
1.0 33.50 48.48

Table 5.1: Power consumption (watts) of models during training (one epoch) with di↵erent
percentages of layers trainable.

This progressive increase in power can be attributed to the computational demand

associated with updating a greater number of parameters. With more layers participating

in the training process, the models require more computational resources, leading to

higher energy usage. The comparison between InceptionV3 and VGG16 also reveals the

inherent di↵erences in their architectural e�ciency. InceptionV3 consistently requires less

power than VGG16 across all scenarios, indicating it is a more energy-e�cient model for

training tasks. This can also be due to its more optimised architecture, which might

involve fewer parameters or more e�cient operations compared to the deeper and more

parameter-intensive architecture of VGG16.

The Figure 5.5 outlines the validation accuracies of two distinct convolutional neural

network models considered for optimisation in this work. I performed the model training

utilising the layer selection mechanism described above in previous subchapters. The

accuracies are measured across a span of 10 epochs, providing insight into the learning

e�ciency and performance of each model over time. InceptionV3 demonstrates a starting



88 Chapter 5. Optimising AI Operations in IoT-based Applications

Figure 5.5: Accuracy benchmarks on DeepWeeds dataset for model training.

accuracy of 75.81% at epoch 1, which exhibits a generally upward trend, peaking at 88.32%.

The overall trend indicates improvement in model performance with continued training

and shows the strong ability of InceptionV3 to generalise from training data to unseen

validation data. On the other hand, VGG16 starts with a bit lower accuracy of 65.33% at

epoch 1 and follows an upward trend by peaking at 82.67%. The observed di↵erences in

accuracies between InceptionV3 and VGG16 can be attributed to factors inherent to their

architectures and complexity of the task. InceptionV3 consists of an inception module,

which is designed to e�ciently manage computational resources while capturing complex

features at various scales. This design contributes to its higher accuracy and ability to

better generalise during the validation phase. VGG16, characterised by its simplicity

and depth with repetitive convolutional blocks, demonstrates a considerable capacity for

feature extraction. However, its architecture sometimes has a higher susceptibility to

overfitting and requires more data or regularisation to achieve optimal generalisation,

which explains its lower performance compared to InceptionV3 in this scenario.

Figure 5.6: Change in model accuracy with features retained above the threshold.

The proposed heatmap based pruning approach is also evaluated on two available CNN

models – VGG16 and InceptionV3. Figure 5.6 shows that across both the models, there

is a general trend where accuracy increases when a higher percentage of features are



Chapter 5. Optimising AI Operations in IoT-based Applications 89

retained. This pattern is observed as retaining more features likely preserves more relevant

information necessary for accurate predictions. Models with deeper or more complex

architectures, like the VGG, show a more significant impact from feature pruning, requiring

a higher percentage of features to be retained for optimal accuracy. InceptionV3’s design,

incorporating modules with parallel convolutions of di↵erent kernel sizes, allows it to

capture information at various scales e↵ectively thus ensuring high accuracies across all

percentages.

Figure 5.7: E↵ect on model training time with features retained above the threshold.

The pruning process aims to reduce the computational complexity of the models by

selectively removing less important channels based on their contributions, as determined

by heatmaps in this work. This selective reduction can significantly a↵ect the training

time of the models, as observed in Figure 5.7. The VGG16 model shows an increasing

trend in training time as the percentage of features retained increases. Over the range of

feature percentages, the training time increases from 163 minutes to 271 minutes gradually.

The significant reduction in training time indicates that the pruning process e↵ectively

removes redundant or less important features without compromising the model's predictive
power significantly. For the InceptionV3 model, the training time initially decreases when

the percentage of retained features goes from 10% to 50%; and then increases slightly

when feature retension percentage is increased to 100%. This suggests that InceptionV3

may achieve optimal performance with a moderate level of feature retention, where the

balance between model complexity and computational load is ideal. Beyond this point,

the slight increase in training time as more features are retained could be due to the added

computational burden outweighing the benefits of additional features.

The size of a model is directly related to its complexity and the amount of information it

can process and store, as shown in Figure 5.8. The increase in model size with an increase

in the percentage of features retained indicates a nearly linear relationship between the

two factors. More features mean more channels in the convolutional layers, which in turn

increases the number of weights and biases that need to be stored, thereby increasing the

model size. The InceptionV3 model shows a more complex pattern. The size increases

from 174.405 MBs at 10% feature retention to 217.229 MBs at 100% feature retention. It



90 Chapter 5. Optimising AI Operations in IoT-based Applications

Figure 5.8: Change in model size with features retained above the threshold.

is observed that the increase in size is not as linear as with VGG16, especially in the higher

percentages of feature retention. The larger initial size of InceptionV3 compared to VGG16

at lower feature retention levels suggests that even with fewer features, InceptionV3’s

complex architecture requires more parameters to be stored. This complexity contributes

to the overall increase in model size as more number of features are retained.

Features (%) InceptionV3 VGG16

0.1 164.03 219.53
0.5 194.86 238.03
1.0 224.46 334.23

Table 5.2: Power consumption (watts) of models after pruning with di↵erent percentages
of retained features.

The given Table 5.2 illustrates the e↵ect of pruning process on power consumption of both

the models at specific levels (10%, 50%, and 100%) of retained features. For both models,

the power consumption increases as the percentage of retained features increases. The data

indicates that VGG16 generally consumes more power than InceptionV3 across the same

levels of feature retention, suggesting that VGG16’s architecture may be inherently more

power-intensive or less e�cient at these high levels of feature reduction. Additionally, the

increasing trend in power consumption with higher feature retention percentages highlights

the relationship between model complexity and power needs. This suggests that even slight

increases in retained features can significantly impact power consumption, likely due to the

increased computational workload associated with processing a higher number of features.

Analysing the process of structured training and fine-tuning process, which involves initial

training with Dataset A, followed by model pruning and subsequent fine-tuning with

Dataset B, provides a comprehensive understanding of the approach and its implications

on the model performance. This approach utilises the distinct characteristics of two

datasets to enhance model performance progressively. The initial training on Dataset A

establishes a foundation, allowing the model to learn general features and patterns. The

pruning process then refines the model by eliminating less significant features, reducing



Chapter 5. Optimising AI Operations in IoT-based Applications 91

complexity and computational demand. Finally, fine-tuning with Dataset B adjusts the

model to perform well in specific, possibly more challenging, real-world scenarios. This

method highlights the adaptability of the models to new information and their capacity

for incremental learning. The maximum accuracy achieved after re-training by VGG16

and InceptionV3 models is 86.8% and 93.1% respectively. Comparing these results

with the accuracies recorded after the pruning process, both models exhibit significant

improvements in accuracy after fine-tuning. The VGG16 model observed an average of

6.3% improvement over the initial results whereas InceptionV3 achieved improvements of

4.3%.

5.6 Analysis of Results

The experimental results highlight the di↵erences in performance dynamics of VGG16

and InceptionV3 models under varying configurations of trainable layers, with particular

emphasis on training time, power consumption, and accuracy benchmarks. I observed

that VGG16 has longer training times and higher power consumption across all degrees

of trainable layers. On the other hand, the InceptionV3 has higher accuracy and model

size over the di↵erent percentages of retained features. The InceptionV3 model performs

about 32.63% better than the VGG16 model in terms of execution time with di↵erent

values of trainable layers. The average accuracy of InceptionV3 model is around 6%-7%

higher than VGG16 across the variable degree of retained features in our approach. As

the percentage of retained features decreased, the model size for InceptionV3 and VGG16

decreased by 20.27% and 37.5% when the ratio of features was reduced from 100% to 10%.

Moreover, I also observed that the average power consumption of InceptionV3 model is

26.33% more e�cient than the VGG16 model. The VGG16 model showed a 66.26%

decrease in training time when the number of features are reduced to 10%. In contrast,

the InceptionV3 model exhibits a 27.27% decrease over the same measure. The results

also show that the InceptionV3 model is approximately 18.90% more e�cient in training

time compared to the VGG16 model. Comparing these two architectures highlights that

the model structure, number of features, and trainable layers are some of the critical

parameters that directly a↵ect the performance of AI models and can be a deciding factor

for the e�cient implementation of ML optimisation approaches on limited resource nodes.

Moreover, based on the time, accuracy, and space requirements of limited resource nodes;

a decision can be made using our approach to select the optimal values of parameters that

will generate the best possible results for the end-users and applications for which the ML

models are designed.

5.7 Aspects for Further Optimisation

I observed that our proposed approach achieves desirable results in reducing the training

time and model size, however, in order to contribute towards more sustainable practices



92 Chapter 5. Optimising AI Operations in IoT-based Applications

for IoT applications, it does present certain limitations that can provide options for future

exploration and optimisation.

Our current approach for layer selection is managed as a single-objective optimisation

problem, where the number of layers are predetermined by the user. For improvement, I

can consider the number of layers as an additional objective function along with model

accuracy, using a multi-objective optimisation method. This will allow for a balanced

trade-o↵ between maximising accuracy and minimising the number of layers, addressing

this problem as a connected optimisation challenge.

Moreover, our pruning approach is currently considered as a constraint satisfaction

problem with an aim to meet specific conditions defined by a predetermined threshold. For

improvements, I can consider the pruning approach as an optimisation challenge, rather

than simply satisfying the set constraints. This adjustment can decrease the variability

and transform the pruning threshold value into an adjustable variable. Objective functions

can then be used to evaluate the most e↵ective areas for pruning, identifying the optimal

threshold that aligns best with a particular model and dataset. Furthermore, these

objective functions can prioritise two main factors – accuracy and inference time, as

both of these are important for developing an e�cient model suitable for real-world IoT

applications.

From our experiments, I also observed that each neural network has distinct characteristics

that can significantly influence the model optimisation framework. These characteristics

include layer size, total number of parameters, model branching (which allows for the

concurrent execution of two or more layers), and the parameter count within individual

layers. I can explore the possibility of establishing a method that examines these specific

aspects of each network to support ongoing testing and improvements. By understanding

and addressing these elements, I aim to restructure models to promote energy-e�cient

and sustainable machine learning operations, thereby improving the performance of ML

based tasks in IoT infrastructures.

5.8 Summary

The chapter introduces a sustainable optimisation approach for enhancing the e�ciency of

ML tasks in the IoT based infrastructures. Our approach leverages the ability of genetic

algorithm for layer selection and heatmap visualisation technique for pruning mechanism.

Through systematic experimentation with VGG16 and InceptionV3 models using the

DeepWeeds dataset, I have demonstrated that our proposed methodology significantly

reduces model size and training time, without compromising on accuracy. Experimental

results show that the strategy of selectively freezing neural network layers and pruning

less significant parameters addresses the critical challenge of limited-resource constraints

of IoT devices. The approach also highlights the potential procedure for deployment

of ML and AI capabilities in environments where computational, storage, and energy

resources are in limited capacity. The work can be extended to other AI models and



Chapter 5. Optimising AI Operations in IoT-based Applications 93

di↵erent real-world IoT applications to understand domain-specific challenges and adjust

the approach accordingly. However, this approach considers that the training, evaluation

data, and ML models are available in IoT applications all the time. In a real-world

scenarios, it is highly possible that there can be a form of node crash or failure which will

limit the availability of data in IoT applications. Therefore, the next chapter explores the

data management of applications by ensuring proper access, distribution, and availability

of data in case any unexpected failure occurs.



94 Chapter 5. Optimising AI Operations in IoT-based Applications



Chapter 6

Data Management in Edge-Cloud

Environment

This chapter explores the aspect of data management in IoT applications that utilise

serverless edge-cloud environments. As the available data is prone to failure and loss due

to system crash or any node fault; reliable storage, access, and retrieval of data is a critical

factor for ensuring high performance of the system.

6.1 Data Management in IoT

The rise of IoT represents one of the most significant technological transformations in the

modern era. As a network of interconnected devices, IoT integrates physical objects with

embedded sensors, software, and other tools to collect and exchange data, facilitating a

new level of automation and integration in everyday systems. This evolution has been

adopted in almost every sector, from healthcare and agriculture to manufacturing and

urban development, providing its services [146]. This adoption of IoT across diverse

applications can be attributed to its ability to enhance data communication, streamline

processes, and improve the e�ciency and accuracy of data-driven decisions.

However, the rapid expansion of IoT also brings an enormous amount of data with itself.

Each device connected to the IoT network generates a continuous stream of information.

This large amount of data presents not only opportunities but also significant challenges

in terms of storage, management, and analysis. Cloud computing, edge computing,

and advancements in AI are increasingly crucial for managing big data, ensuring that

the information is processed and utilised e�ciently. Utilising the serverless approach of

computation with the IoT and ML is a popular option to handle data and execute tasks

in modern computing infrastructures. I can utilise its strengths, creating a scenario that

enhances e�ciency, scalability, and cost-e↵ectiveness in handling large amounts of data

and complex computations, particularly within edge-cloud environments [147].

Serverless computing is a paradigm in which the allocation of resources is managed by

service providers without the need for users to configure underlying servers. It o↵ers

several distinct characteristics that can be beneficial in ML-based IoT applications [20].

Firstly, it can provide automatic scaling of the infrastructure. IoT applications can have

variable workloads depending on the tra�c, and serverless platforms can dynamically

adjust computing resources to meet the fluctuating demands of millions of connected

IoT devices. Another key benefit of serverless computing is its event-driven nature.



96 Chapter 6. Data Management in Edge-Cloud Environment

IoT devices can generate events in real time, from sensor data indicating a change in

environmental conditions to alerts triggered by user interactions. Serverless architectures

are designed to respond to such events instantaneously, initiating specific functions or

computations without any delay. This is highly e↵ective in edge-cloud environments, where

latency-sensitive applications require faster decision-making close to the data source. Cost

e�ciency is another significant advantage of serverless platforms. It allows organisations to

only pay for the computation time they consume, with no cost associated with idle server

capacity. This can lead to substantial cost reductions in large-scale deployments of IoT

networks, where devices and end-users have to execute jobs at unspecified intervals. [33]

IoT data management for ML-based tasks deployed on serverless platforms has many

challenges related to storage and resilient execution that need serious consideration.

The following subchapters describe in detail the data handling mechanisms associated

with serverless platforms and ML operations on edge-cloud frameworks. I explore the

implications of data loss during task execution and data storage phase. An e�cient and

optimised approach for data and model management is proposed in this chapter to address

these challenges.

Computing Infrastructure

Virtual Functions

Fog StorageCloud Storage

Instances

Function

Node Node

Configuration 

Data loss X

Fog 
Node

Fog 
Node

Fog 
Node

VM

VM

Cloud Datacenter

Fog 
Infrastructure

Requester

Requester

Node

FunctionFunction
Function

Instances Instances Instances

Instance Invocation
X

Pass by Reference Pass by ValueFetching Data

Fog Node Fog NodeVirtual Machine 

Figure 6.1: An architecture for data handling in serverless platforms.

6.2 Data Handling in Serverless Environment

Serverless computing involves executing functions in a stateless manner, which complicates

data management. Figure 6.1 illustrates the two main types of data handling in a serverless

environment. The approaches are as follows:



Chapter 6. Data Management in Edge-Cloud Environment 97

6.2.1 Direct Data Transfer

This method involves directly transferring data between functions, where the serverless

platform actively manages data duplication. If one function generates data as its output,

and this output is forwarded to multiple subsequent functions, the serverless platform will

handle the replication of this output data to each recipient function. This approach ensures

that each function receives the data it requires to operate. However, such duplication can

impose an additional load on the serverless platform, potentially increasing the time it

takes for data to be transferred from one function to another as the platform manages

the copying process. Moreover, this approach introduces the issue of data volatility. Data

is streamed through input-output bu↵ers and network channels, making it susceptible to

loss in case there is an issue with the server or there are any disruptions in the network.

Therefore, while direct data transfer can be e�cient, it also has significant risks due to

the volatile nature of data handling.

6.2.2 Use of Intermediate Storage

This approach involves storing data in an intermediate system such as a broker or file

system, which acts as a central repository. Functions pass references to the data, rather

than the data itself, minimising direct data transfer. The intermediate storage system

manages access and replication among functions. However, challenges arise related to the

physical locations of function execution and data storage. For instance, if functions are

executed on servers in Europe but the data is stored in India, significant delays can occur

due to the time required to transfer data across these distances. This latency issue, arising

from geographical disparities between servers and storage, can impact performance due

to extended upload and download times, and poses a challenge in maintaining e�cient

connectivity and replication.

6.3 Methods for Ensuring Data Availability

For IoT applications, the traditional data availability techniques focus on ensuring that

data is always accessible for processing and analysis while maintaining integrity and

performance. These techniques can be broadly categorised into three categories, such

that each of them handles availability in a di↵erent manner.

Data replication involves creating multiple copies of data across di↵erent nodes or

locations to ensure high availability and fault tolerance. This approach is particularly

advantageous for IoT environments where device or connection failures are common. By

replicating data, systems can ensure that even if one node fails, others can take over

without data loss or service interruption. However, replication increases the space cost

significantly as multiple copies of data need to be maintained. The execution cost can vary

as read operations are generally faster due to multiple data points but write operations

become more costly and complex for ensuring integrity across all copies.



98 Chapter 6. Data Management in Edge-Cloud Environment

Data partitioning distributes di↵erent parts of a dataset across various database systems

or storage locations. This technique is often used in big data scenarios where handling

large datasets as a single unit is ine�cient. By partitioning data, tasks can be executed

in parallel, significantly improving performance and reducing execution time. However,

the space cost does not necessarily increase unless redundancy is also introduced as part

of the partitioning strategy. In this approach, the main execution cost is for handling the

complexity of managing data integrity and consistency across partitions, which can be a

significant overhead for many AI tasks.

Data compression reduces the size of the data through various algorithms, which is

crucial when dealing with the large volumes of data generated in ML and big data tasks.

Compressed data requires less storage space, e↵ectively reducing space costs. It also

potentially lowers data transfer times, which is useful in distributed systems designed for

scalable IoT environments. However, the execution cost mainly includes the computational

overhead required to compress and decompress data, which can be very high, especially

with complex algorithms utilised in current IoT systems.

6.4 Challenges with Data Handling

Serverless frameworks when handling big-data and ML applications, encounter significant

challenges related to data management and locality. A detailed description of these

challenges is as follows:

Data storage and transfer: In ML, data is often stored for further training which

requires a substantial amount of storage capacity. Transferring this data across di↵erent

locations, such as from edge devices to cloud servers or between storage servers, can be an

issue because of its size. This can significantly slow down the transfer process and increase

communication costs. [20]

Resilience mechanisms: To address issues of data integrity and availability, resilience

mechanisms such as erasure coding can be used [148]. Erasure coding helps ensure data

durability and recoverability by utilising data fragments that can reconstruct the original

data in case of partial loss. However, this technique introduces extra latency in data

operations, as it requires additional time to generate and manage the encoded fragments.

Data locality and recovery: Optimising data locality (placing data close to the

computation source) can enhance data access speeds and reduce latency, which is crucial

for e�cient processing and analysis in ML tasks. In scenarios where data is damaged or

lost, having multiple copies or encoded fragments distributed across di↵erent locations

enables e↵ective data recovery. The process of encoding/decoding these fragments can

protect data but also introduces additional delays and computational overhead.

E�ciency in data handling: Another challenge is to design an infrastructure that

not only manages a large amount of data but also prepares it e�ciently for immediate

execution in ML operations. This requires new approaches that minimise data size and

ensure availability for analysis, thereby reducing the time and resources needed for data



Chapter 6. Data Management in Edge-Cloud Environment 99

preparation.

6.5 Challenges in Deploying ML Workflow on Serverless

Platforms

The implementation of ML tasks on serverless environments encounters data management

challenges that can be mainly classified into two categories:

1. Data Management: It includes the steps associated with collection, preparation,

and processing of datasets. A crucial aspect is to consider data availability and its

distribution across various locations to facilitate access. E↵ective data management

allows data to be strategically distributed, thereby enhancing both availability and

reliability.

2. Model Management: This involves the iterative fine-tuning and periodic updates

of ML models at edge of the network. Model management requires reducing the size

of dynamically changing elements (such as parameters) and ensuring the availability

of replicas to maintain data consistency. Considering that a model size can vary

from small to extremely large, it is essential to design strategic ways to manage

these variations e↵ectively.

The integration of serverless architectures with ML frameworks necessitates new

approaches for the management of data and models. Such approaches can ensure that

despite the stateless nature of serverless platforms, essential data can still remain accessible

and recoverable during ML operations, enabling a seamless and e�cient approach for task

execution.

6.6 Proposed Approach for Data Handling

This subchapter describes the proposed method to address challenges in data storage and

processing within the context of ML and edge-cloud environments. The following aspects

are considered in this chapter:

Data reduction: The approach begins by minimising the volume of data at the edge of

the network, preparing it for subsequent processing. This reduction is aimed at optimising

storage and processing e�ciencies before the data is transferred to servers.

Standardised data format: Data is standardised into a format that is compatible with

cloud-based machine learning operations. This standardisation is part of the preprocessing

stage and improves the e�ciency of subsequent processing steps.

Data compression and replication: To e↵ectively manage data without excessively

increasing storage requirements, the approach includes compressing the data before

replication. This ensures that, even with the redundancy techniques in erasure coding,

the data footprint is limited and controlled.



100 Chapter 6. Data Management in Edge-Cloud Environment

Data recovery and decompression: In case of any issues, the compressed data

can be recovered and decompressed. The restored data can retain its pre-processed

format, facilitating e�cient transmission over networks without significant bandwidth

consumption.

Store Data

Retrieve Data

Start End

Start EndValid Yes

No

Preprocessing Compression

Decompression

Erasure 
Encoding

Distributed 
Storing

Integrity 
Check

Er
as

ur
e 

D
ec

od
in

g

R
ecovered 

D
ata

Fetch 
Data 

Figure 6.2: Proposed workflows for data handling.

A depiction of our data handling approach is shown in Figure 6.2. Our methods

for optimising data management in serverless environments focus on balancing storage

e�ciency with network and processing demands. It enhances e�ciency by storing the

static structure of ML model separately from their dynamic parameters. A single instance

of the model's static structure is maintained, and Marita coding is applied to the frequently

updated parameters. This approach minimises redundancy and storage requirements,

ensuring reliable protection of dynamic data elements against data loss.

6.7 Workflow for Data Handling

This subchapter describes the workflow that is utilised in preparing the data used for

training and inference in ML models. The steps are as follows:

1. Preprocessing: The raw data undergoes preprocessing to optimise its utility for

ML models. This step involves cleansing, normalising, and transforming the data,

thereby enhancing processing speed, reducing its size, and preparing it for e↵ective

training sessions.

2. Compression: After preprocessing, the data is compressed using the Brotli

algorithm. This process reduces the data size further, facilitating a more e�cient

storage and transmission.

3. Erasure Coding: Once the data is compressed, it is encoded using Reed-Solomon

(RS) coding scheme [148]. This erasure coding technique introduces redundancy,



Chapter 6. Data Management in Edge-Cloud Environment 101

thus enhancing data resilience by enabling recovery in cases of corruption, damage,

or connectivity issues.

4. Storage: The prepared data is then stored. At this stage, it has been preprocessed,

compressed, and protected against potential data loss, making it ready for retrieval

and use in our IoT application.

5. Data Recovery and Decompression:

(a) Integrity Check: Upon retrieval, the integrity of the compressed data is first

checked to ensure it has not been damaged or tampered with.

(b) Decoding: If any corruption is detected, RS decoding is used to reconstruct the

original data from the encoded fragments.

(c) Decompression: Once the data is confirmed to be intact or successfully

recovered, it is decompressed and restored to a state which is suitable for ML

training sessions.

6.8 Workflow for Model Storage

This subchapter describes the workflow for storing and managing the versions of ML

models, as the architecture of the considered model is fixed. The steps are as follows:

1. Parameter Extraction: Initially the parameters or weights of the model which

encapsulate the learned information are extracted. This step is crucial as these

parameters need to be preserved properly for model execution.

2. RS Encoding: Once the parameters are extracted, they are immediately encoded

using the RS coding scheme. This process distributes the parameter data and adds

redundancy, ensuring that in the event of data corruption or loss, recovery can be

e�ciently achieved.

3. Storage and Distribution: The encoded parameters are then stored and

distributed across multiple storage locations to further protect against data loss

and enhance its accessibility.

4. Recovery Process:

(a) Damage Check: Upon retrieval, a check is performed to determine if the

parameter data is damaged or corrupted.

(b) RS Decoding: If damage is detected, the RS decoding process is initiated to

recover the corrupted parameters. This step is critical for restoring the data to

its original state.

(c) Model Integration: After decoding, the recovered parameters are re-integrated

with the model. This process involves importing parameters back into the

model's architecture and preparing it for further usage or continued training.



102 Chapter 6. Data Management in Edge-Cloud Environment

Figure 6.3: Encoding time for di↵erent RS configurations.

Figure 6.4: Decoding time for di↵erent RS configurations.

The Figure 6.3 and 6.4 show the performance of various versions of RS scheme without

any compression or optimisation. It depicts the relation between the original data size (in

MBs) and the encoding, decoding time (in seconds) for di↵erent configurations. I have

considered three di↵erent configurations for analysis: RS(10,2), RS(10,4), and RS(10,6),

where the numbers indicate the code parameters, with the first number representing the

total symbols and the second the parity symbols. As the data size increases, both the

encoding and decoding time for all configurations increases, which is expected since larger

data volumes require more computational e↵ort to encode or decode.

RS(10,2) shows the shortest encoding and decoding times across all data sizes. This

configuration has the least number of parity symbols, resulting in less redundancy and

hence faster encoding and decoding. On the other hand, RS(10,6) has the longest encoding

and decoding times among the configurations suggesting the impact of parity symbols on

additional computational overhead in the system. The second part of Figure 6.3 also

shows the decoding time of scenarios where one data fragment is corrupted. It can be

seen that for all configurations, the decoding times increase significantly when a fragment

is corrupted.



Chapter 6. Data Management in Edge-Cloud Environment 103

6.9 Experimentation and Results

In order to evaluate the proposed approach, I have performed our experiment on an

Intel Xeon CPU@2.30 GHz, supported by 13 GBs of RAM, providing a suitable platform

for performing data processing tasks. I have used the Multitype Cloud Storage Dataset

(MCSD-100) dataset for evaluating the performance of storage systems [149]. It has

been specifically designed to assess the system's erasure coding policy and its ability

to e↵ectively handle data fragmentation. I utilised MCSD-100 due to its comprehensive

capability in handling and testing storage aspects of the data, making it highly relevant

for practical assessments.

Figure 6.5: Encoding, Decoding, and Preprocessing time.

The box plots provided in Figure 6.5 represent the distribution of preprocessing, encoding,

and decoding times for our proposed data storage approach. I observed that the median

encoding time for the approach is lower than that for decoding, suggesting that the

proposed approach is optimised for faster encoding. Moreover, the smaller inter-quartile

range compared to preprocessing indicates a more consistent performance during the

encoding process. The results show that our approach showed an average improvement of

96.79%, 97.67%, and 98.72% over the standard RS(10,2), RS(10,4), and RS(10,6) schemes

respectively. I also noticed that the execution time for decoding is higher in comparison

to encoding times, This is typical in systems where more computational e↵ort is required

to reconstruct data from encoded formats. The decoding times for our approach show

92.03%, 96.08%, and 97.38% improvements over standard RS approaches.

Figure 6.6 shows how preprocessing time and compressed data size vary with increasing

original data size in a data processing pipeline. The preprocessing time demonstrates a

rising trend as the size of the original data increases. It suggests that larger datasets require

more time to pre-process, likely due to the increased computational demands of handling



104 Chapter 6. Data Management in Edge-Cloud Environment

Figure 6.6: E↵ect on preprocessing time and data size after applying our data storage
mechanism.

larger volumes of data. The time required for preprocessing is not exactly linear, showing

some ups and downs that may indicate variations in the complexity or type of data being

processed. Due to the careful reduction in size during the preprocessing phase, I have

also achieved an average reduction of 98.44% size over the standard Brotli compression

technique applied on our dataset. On the other side, the compressed data size also shows a

correlation with the original data size. As the original data size increases, the compressed

size also increases but remains significantly reduced compared to the original, highlighting

the e↵ectiveness of the compression technique utilised in the system. This relation

describes the capacity of compression method to maintain a relatively constant reduction

ratio regardless of the original data size, which is crucial for applications requiring e�cient

data storage and processing.

Another experimentation is performed to understand the encoding and decoding times

for VGG16 model files using various configurations of RS coding scheme. For RS(10, 2),

the encoding time is 526.31 seconds and the decoding time is 659.50 seconds, o↵ering

the fastest processing among the schemes. In contrast, RS(6, 3) shows longer times with

790.79 seconds for encoding and 1226.20 seconds for decoding, suggesting more complex

error correction due to higher redundancy. The RS(14, 4) setup also reflects longer

processing times – 769.78 seconds for encoding and 1144.71 seconds for decoding – due to

a greater total number of symbols, enhancing error protection. The most data-intensive

configuration, RS(10, 6), records the longest times of 1044.19 seconds for encoding and

2133.71 seconds for decoding, indicating the most extensive error correction phase among

all the configurations tested.

6.10 Summary

The increasing demand for digital services in the IoT has resulted in a continuous

surge of application usage, leading to a huge number of users and connected devices.

This growth intensifies the challenges associated with managing and storing large data



Chapter 6. Data Management in Edge-Cloud Environment 105

volumes, presenting new challenges in data handling. This chapter presents an approach

for managing the substantial amount of data generated by IoT devices within ML and

edge-cloud environments. Data management in ML-based IoT applications is a crucial

factor as it directly a↵ects the performance of deployed applications. Resilience in

managing stored data and ML model provides a promising direction for ensuring higher

availability of the information. Our work shows that utilising data standardisation,

compression, and error correction techniques can provide significant benefits for handling

applications deployed on serverless edge-cloud infrastructures. A promising future

direction for this work is to design a fault tolerant framework that can handle the failure

at data, task, and resource nodes in the IoT infrastructures.



106 Chapter 6. Data Management in Edge-Cloud Environment



Chapter 7

Conclusion

In this final chapter of the thesis, I summarise the various aspects of edge-cloud frameworks

and describe the research questions considered regarding the performance of intelligent IoT

applications in the edge-cloud continuum. As the rapid increase of IoT devices continues,

ensuring the e�cient operation and e↵ective management of tasks, functions, and data is

a highly crucial aspect.

7.1 Summary

The research highlights the shortcomings of conventional architectures in managing

distributed, heterogeneous IoT deployments across edge and cloud platforms. I first

presented an approach that optimally allocates tasks on edge-cloud resource nodes when

the network connectivity is limited and the connection is unreliable. A deadline-based

heuristic approximation algorithm is proposed to decide where to allocate the task. The

algorithm assigns the tasks to the remote Field Side Unit (FSU) or executes them locally

based on the quality of connection available at that time. Moreover, as these devices

generate and process large volumes of data, e↵ective distribution of load and resource

allocation become critical for avoiding any degradation in performance. To address this, I

introduced a security-aware load distribution mechanism that ensures fair distribution of

tasks based on factors such as failure rate, resource utilisation, completion time, waiting

time, and execution overhead. I designed a two-function heuristic pipeline that initially

selects the best k nodes (out of all available nodes) and then selects the best two nodes for

o✏oading the tasks. To ensure confidentiality, integrity, and availability, I have utilised

encryption, HMAC, and replication mechanisms respectively for all the restricted tasks

that were allocated on shared public resources. I also proposed another approach to

optimise the ML-based operations that can enhance the execution and deployment of

IoT tasks on edge and cloud platforms. This approach uses a genetic algorithm based

selection method for optimally selecting the layers during the model training process. To

improve the inference framework, I utilise a heatmap visualisation technique that prunes

the irrelevant features and only retains the features that directly a↵ect the decision making

process. Finally, a data management approach is designed to address the storage, access,

and retrieval of data in IoT-based systems in case any failure or data loss occurs. A

Reed-Solomen (RS) based encoding method is used to store the data on distributed nodes

and the Brotli compression technique is used to reduce the size of data that is stored on

the nodes.



108 Chapter 7. Conclusion

7.2 Future Directions

There are numerous opportunities for future research in the deployment of IoT applications

within edge-cloud environments. Considering the findings of this thesis, there is a scope

to enhance the e↵ectiveness, flexibility, and robustness of our proposed strategies. This

subchapter outlines some potential directions for future research with an aim to further

improve the performance of frameworks and enhance their e�ciency and reliability. These

future directions are as follows:

• Enhancing ML Classification Results: Future research should focus on

enhancing the classification results of our current approach by incorporating

optimisation techniques such as multi-objective genetic algorithms and particle

swarm optimisation. These methods can be used to fine-tune the parameters and

structure of our models, aiming to identify optimal configurations that significantly

improve accuracy and e�ciency.

• Dynamic Selection of Models: I aim to develop a real-time dynamic approach

that intelligently selects the most appropriate algorithm for inference from a pool

of available options. This selection process can be guided by historical system

performance data and predefined user thresholds for making that decision. Moreover,

the decision for selection of an algorithm can also be made considering other

performance critical factors such as accuracy, task deadline deadline, space available

etc.

• Creation of Local Dataset: A promising direction for extending this thesis

is the development and integration of local datasets. This would strengthen the

applicability of our frameworks in diverse real-world scenarios but also enhance its

relevance to specific societal needs. By creating datasets that reflect local conditions

and challenges, I can refine our solutions to be more precise and ensure that they

are robust across various environments.

• Utilising Reinforcement Learning: Further research can investigate the

application of reinforcement learning, temporal di↵erence learning, and the Markov

decision process as optimisation techniques within our system. By integrating these

methodologies, I can expect significant enhancements in system adaptability and

performance. Additionally, applying reinforcement learning for risk management can

enable improved assessment and response strategies, further enhancing our system's
capability to handle and mitigate risks dynamically.

• Real-time Selection of Platform: I also plan to design an infrastructure that

utilises the strengths of both Parsl and OpenWhisk platforms. This approach aims to

determine specific scenarios where one framework may outperform the other, thereby

selecting that for executing specific federated learning applications. It can ensure

that the cost for performing execution in the infrastructure can be minimised and



Chapter 7. Conclusion 109

also provide failure resistance in case one of the platform's performance decreases

with time.

• Self Healing Mechanism for Handling Failures: I aim to develop a

fault-tolerant framework specifically designed for IoT-based infrastructures, capable

of managing failures at the data, task, and resource node levels. This framework

can be enhanced further by creating a self-healing infrastructure designed to

autonomously detect and resolve those failures. The implementation of this robust

system will significantly increase resilience, ensuring continuous operation and

reliability across diverse IoT applications.

• Reducing Data Footprint without Compromising Performance:: Another

direction is to explore the integration of advanced data compression algorithms to

minimise the data footprint in IoT systems without compromising data quality. I aim

to investigate adaptive compression techniques that dynamically adjust according to

the type of data and prevailing network conditions. This development is expected

to optimise data handling e�ciencies, thereby enhancing the performance and

scalability of IoT applications in variable network environments.

• Sustainable Infrastructure for Managing IoT Tasks: Design a sustainable

infrastructure that not only improves the performance e�ciency but is also optimised

for resource utilisation. This will include improvements in power consumption,

resource usage, communication, latency, and execution cost. By focusing on these

critical factors, I intend to design an infrastructure that enhances operational

e↵ectiveness while minimising environmental and economic impacts, ensuring a

balanced approach for function execution in IoT systems.



110 Chapter 7. Conclusion



References

[1] Karen Rose, Scott Eldridge, and Lyman Chapin. The internet of things: An

overview. The internet society (ISOC), 80(15):1–53, 2015.

[2] Ting Li, Wei Liu, Tian Wang, Zhao Ming, Xiong Li, and Ming Ma. Trust data

collections via vehicles joint with unmanned aerial vehicles in the smart internet of

things. Transactions on Emerging Telecommunications Technologies, 33(5):e3956,

2022.

[3] Xiaoming Li, Hao Liu, Weixi Wang, Ye Zheng, Haibin Lv, and Zhihan Lv. Big data

analysis of the internet of things in the digital twins of smart city based on deep

learning. Future Generation Computer Systems, 128:167–177, 2022.

[4] Mouzhi Ge, Hind Bangui, and Barbora Buhnova. Big data for internet of things: a

survey. Future generation computer systems, 87:601–614, 2018.

[5] William Voorsluys, James Broberg, and Rajkumar Buyya. Introduction to cloud

computing. Cloud computing: Principles and paradigms, pages 1–41, 2011.

[6] Yi Wei and M Brian Blake. Service-oriented computing and cloud computing:

Challenges and opportunities. IEEE Internet Computing, 14(6):72–75, 2010.

[7] Weisong Shi and Schahram Dustdar. The promise of edge computing. Computer,

49(5):78–81, 2016.

[8] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE internet of things journal, 3(5):637–646, 2016.

[9] Luciano Baresi, Danilo Filgueira Mendonça, Martin Garriga, Sam Guinea, and

Giovanni Quattrocchi. A unified model for the mobile-edge-cloud continuum. ACM

Transactions on Internet Technology (TOIT), 19(2):1–21, 2019.

[10] Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, and

Yong Zhang. Auto-split: A general framework of collaborative edge-cloud ai. In

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data

Mining, pages 2543–2553, 2021.

[11] Fan Liang, Wei Yu, Xing Liu, David Gri�th, and Nada Golmie. Toward edge-based

deep learning in industrial internet of things. IEEE Internet of Things Journal, 7

(5):4329–4341, 2020.

[12] Yangguang Cui, Kun Cao, Junlong Zhou, and Tongquan Wei. Optimizing training

e�ciency and cost of hierarchical federated learning in heterogeneous mobile-edge

111



112 References

cloud computing. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2022.

[13] Morghan Hartmann, Umair Sajid Hashmi, and Ali Imran. Edge computing in smart

health care systems: Review, challenges, and research directions. Transactions on

Emerging Telecommunications Technologies, 33(3):e3710, 2022.

[14] Latif U Khan, Ibrar Yaqoob, Nguyen H Tran, SM Ahsan Kazmi, Tri Nguyen Dang,

and Choong Seon Hong. Edge-computing-enabled smart cities: A comprehensive

survey. IEEE Internet of Things Journal, 7(10):10200–10232, 2020.

[15] Gabriele Penzotti, Michele Amoretti, and Stefano Caselli. Enabling precision

irrigation through a hierarchical edge-to-cloud system. In International Conference

on Advanced Information Networking and Applications, pages 277–286. Springer,

2024.

[16] Pasquale Pace, Gianluca Aloi, Ra↵aele Gravina, Giuseppe Caliciuri, Giancarlo

Fortino, and Antonio Liotta. An edge-based architecture to support e�cient

applications for healthcare industry 4.0. IEEE Transactions on Industrial

Informatics, 15(1):481–489, 2018.

[17] Siyuan Liang, Hao Wu, Li Zhen, Qiaozhi Hua, Sahil Garg, Georges Kaddoum,

Mohammad Mehedi Hassan, and Keping Yu. Edge yolo: Real-time intelligent object

detection system based on edge-cloud cooperation in autonomous vehicles. IEEE

Transactions on Intelligent Transportation Systems, 23(12):25345–25360, 2022.

[18] Osama Almurshed, Omer Rana, Yinhao Li, Rajiv Ranjan, Devki Nandan Jha,

Pankesh Patel, Prem Prakash Jayaraman, and Schahram Dustdar. A fault tolerant

workflow composition and deployment automation IoT framework in a multi cloud

edge environment. IEEE Internet Computing, 2021.

[19] Xin Wu, Lan You, Ruofan Wu, Qi Zhang, and Kaixin Liang. Management and

control of load clusters for ancillary services using internet of electric loads based

on cloud–edge–end distributed computing. IEEE Internet of Things Journal, 9(19):

18267–18279, 2022.

[20] Panos Patros, Melanie Ooi, Victoria Huang, Michael Mayo, Chris Anderson, Stephen

Burroughs, Matt Baughman, Osama Almurshed, Omer Rana, Ryan Chard, et al.

Rural AI: Serverless-powered federated learning for remote applications. IEEE

Internet Computing, 2022.

[21] Shaojie Zhuo, Hongyu Chen, Ramchalam Kinattinkara Ramakrishnan, Tommy

Chen, Chen Feng, Yicheng Lin, Parker Zhang, and Liang Shen. An empirical study

of low precision quantization for tinyml. arXiv preprint arXiv:2203.05492, 2022.

[22] Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz. Model

compression in practice: Lessons learned from practitioners creating on-device



References 113

machine learning experiences. In Proceedings of the CHI Conference on Human

Factors in Computing Systems, pages 1–18, 2024.

[23] Yibo Yang, Stephan Mandt, Lucas Theis, et al. An introduction to neural data

compression. Foundations and Trends® in Computer Graphics and Vision, 15(2):

113–200, 2023.

[24] Jianhua He, Jian Wei, Kai Chen, Zuoyin Tang, Yi Zhou, and Yan Zhang. Multitier

fog computing with large-scale IoT data analytics for smart cities. IEEE Internet

of Things Journal, 5(2):677–686, 2017.

[25] Siliang Lu, Jinfeng Lu, Kang An, Xiaoxian Wang, and Qingbo He. Edge computing

on IoT for machine signal processing and fault diagnosis: A review. IEEE Internet

of Things Journal, 2023.

[26] Xiaokang Wang, Lei Ren, Ruixue Yuan, Laurence T Yang, and M Jamal Deen.

Qtt-dlstm: A cloud-edge-aided distributed lstm for cyber-physical-social big data.

IEEE Transactions on Neural Networks and Learning Systems, 2022.

[27] Qiang Duan, Shangguang Wang, and Nirwan Ansari. Convergence of networking

and cloud/edge computing: Status, challenges, and opportunities. IEEE Network,

34(6):148–155, 2020.

[28] Tian Wang, Yuzhu Liang, Xuewei Shen, Xi Zheng, Adnan Mahmood, and Quan Z

Sheng. Edge Computing and Sensor-Cloud: Overview, Solutions, and Directions.

ACM Computing Surveys, 2023.

[29] Chunlin Li, Hezhi Sun, Hengliang Tang, and Youlong Luo. Adaptive resource

allocation based on the billing granularity in edge-cloud architecture. Computer

Communications, 145:29–42, 2019.

[30] Mohamed A Kamel, Xiang Yu, and Youmin Zhang. Formation control and

coordination of multiple unmanned ground vehicles in normal and faulty situations:

A review. Annual reviews in control, 49:128–144, 2020.

[31] Osama Almurshed, Omer Rana, and Kyle Chard. Greedy nominator heuristic:

Virtual function placement on fog resources. Concurrency and Computation:

Practice and Experience, 34(6):e6765, 2022.

[32] Alex Olsen, Dmitry A Konovalov, Bronson Philippa, Peter Ridd, Jake C Wood,

Jamie Johns, Wesley Banks, Benjamin Girgenti, Owen Kenny, James Whinney, et al.

Deepweeds: A multiclass weed species image dataset for deep learning. Scientific

reports, 9(1):1–12, 2019.

[33] Osama Almurshed, Panos Patros, Victoria Huang, Michael Mayo, Melanie Ooi, Ryan

Chard, Kyle Chard, Omer Rana, Harshaan Nagra, Matt Baughman, et al. Adaptive



114 References

edge-cloud environments for rural AI. In 2022 IEEE International Conference on

Services Computing (SCC), pages 74–83. IEEE, 2022.

[34] Ramyad Hadidi, Jiashen Cao, Michael S Ryoo, and Hyesoon Kim. Toward

collaborative inferencing of deep neural networks on internet-of-things devices. IEEE

Internet of Things Journal, 7(6):4950–4960, 2020.

[35] Xing Chen, Jianshan Zhang, Bing Lin, Zheyi Chen, Katinka Wolter, and Geyong

Min. Energy-e�cient o✏oading for DNN-based smart iot systems in cloud-edge

environments. IEEE Transactions on Parallel and Distributed Systems, 33(3):

683–697, 2021.

[36] Saeed Javanmardi, Mohammad Shojafar, Valerio Persico, and Antonio Pescapè.

FPFTS: a joint fuzzy particle swarm optimization mobility-aware approach to fog

task scheduling algorithm for internet of things devices. Software: Practice and

Experience, 51(12):2519–2539, 2021.

[37] Shihong Hu and Guanghui Li. Dynamic request scheduling optimization in mobile

edge computing for iot applications. IEEE Internet of Things Journal, 7(2):

1426–1437, 2019.

[38] Firdose Saeik, Marios Avgeris, Dimitrios Spatharakis, Nina Santi, Dimitrios

Dechouniotis, John Violos, Aris Leivadeas, Nikolaos Athanasopoulos, Nathalie

Mitton, and Symeon Papavassiliou. Task o✏oading in edge and cloud computing:

A survey on mathematical, artificial intelligence and control theory solutions.

Computer Networks, 195:108177, 2021.

[39] Michael Putzier, T Khakzad, M Dreischarf, Sylvia Thun, F Trautwein, and N Taheri.

Implementation of cloud computing in the german healthcare system. NPJ Digital

Medicine, 7(1):12, 2024.

[40] Su Hu and Yinhao Xiao. Design of cloud computing task o✏oading algorithm based

on dynamic multi-objective evolution. Future Generation Computer Systems, 122:

144–148, 2021.

[41] Yuxuan Sun, Xueying Guo, Sheng Zhou, Zhiyuan Jiang, Xin Liu, and Zhisheng Niu.

Learning-based task o✏oading for vehicular cloud computing systems. In 2018 IEEE

International Conference on Communications (ICC), pages 1–7. IEEE, 2018.

[42] Min Chen and Yixue Hao. Task o✏oading for mobile edge computing in software

defined ultra-dense network. IEEE Journal on Selected Areas in Communications,

36(3):587–597, 2018.

[43] Ragib Hasan, Mahmud Hossain, and Rasib Khan. Aura: An incentive-driven ad-hoc

iot cloud framework for proximal mobile computation o✏oading. Future Generation

Computer Systems, 86:821–835, 2018.



References 115

[44] Ben Langmead and Abhinav Nellore. Cloud computing for genomic data analysis

and collaboration. Nature Reviews Genetics, 19(4):208–219, 2018.

[45] Belen Bermejo and Carlos Juiz. Improving cloud/edge sustainability through

artificial intelligence: A systematic review. Journal of Parallel and Distributed

Computing, 176:41–54, 2023.

[46] Abdenacer Naouri, Hangxing Wu, Nabil Abdelkader Nouri, Sahraoui Dhelim, and

Huansheng Ning. A novel framework for mobile-edge computing by optimizing task

o✏oading. IEEE Internet of Things Journal, 8(16):13065–13076, 2021.

[47] Changchun Long, Yang Cao, Tao Jiang, and Qian Zhang. Edge computing

framework for cooperative video processing in multimedia iot systems. IEEE

Transactions on Multimedia, 20(5):1126–1139, 2017.

[48] Tiankui Zhang, Yu Xu, Jonathan Loo, Dingcheng Yang, and Lin Xiao. Joint

computation and communication design for uav-assisted mobile edge computing in

iot. IEEE Transactions on Industrial Informatics, 16(8):5505–5516, 2019.

[49] Jielin Jiang, Zheng Li, Yuan Tian, and Najla Al-Nabhan. A review of techniques

and methods for iot applications in collaborative cloud-fog environment. Security

and Communication Networks, 2020(1):8849181, 2020.

[50] Caihong Kai, Hao Zhou, Yibo Yi, and Wei Huang. Collaborative cloud-edge-end

task o✏oading in mobile-edge computing networks with limited communication

capability. IEEE Transactions on Cognitive Communications and Networking, 7

(2):624–634, 2020.

[51] Jinke Ren, Guanding Yu, Yinghui He, and Geo↵rey Ye Li. Collaborative cloud

and edge computing for latency minimization. IEEE Transactions on Vehicular

Technology, 68(5):5031–5044, 2019.

[52] Yixue Hao, Yingying Jiang, Tao Chen, Donggang Cao, and Min Chen.

itasko✏oading: intelligent task o✏oading for a cloud-edge collaborative system.

IEEE Network, 33(5):82–88, 2019.

[53] Xu Chen, Qian Shi, Lei Yang, and Jie Xu. Thriftyedge: Resource-e�cient edge

computing for intelligent iot applications. IEEE network, 32(1):61–65, 2018.

[54] Robert Sparrow and Mark Howard. Robots in agriculture: prospects, impacts,

ethics, and policy. precision agriculture, 22:818–833, 2021.

[55] G Pantelimon, Kemal Tepe, Rupp Carriveau, and Sabbir Ahmed. Survey of

multi-agent communication strategies for information exchange and mission control

of drone deployments. Journal of Intelligent & Robotic Systems, 95:779–788, 2019.



116 References

[56] Jesús Conesa-Muñoz, João Valente, Jaime Del Cerro, Antonio Barrientos, and

Angela Ribeiro. A multi-robot sense-act approach to lead to a proper acting in

environmental incidents. Sensors, 16(8):1269, 2016.

[57] Angelos Dimakos, Daniel Woodhall, and Seemal Asif. A study on centralised and

decentralised swarm robotics architecture for part delivery system. arXiv preprint

arXiv:2403.07635, 2024.

[58] Albert Rego, Pedro Luis González Ramı́rez, Jose M Jimenez, and Jaime Lloret.

Artificial intelligent system for multimedia services in smart home environments.

Cluster Computing, 25(3):2085–2105, 2022.

[59] Panos Patros, Melanie Ooi, Victoria Huang, Michael Mayo, Chris Anderson, Stephen

Burroughs, Matt Baughman, Osama Almurshed, Omer Rana, Ryan Chard, et al.

Rural-AI: Serverless-powered federated learning for remote applications. IEEE

Internet Computing, 27(2):28–34, 2022.

[60] Osama Almurshed, Panos Patros, Victoria Huang, Michael Mayo, Melanie Ooi, Ryan

Chard, Kyle Chard, Omer Rana, Harshaan Nagra, Matt Baughman, et al. Adaptive

edge-cloud environments for rural AI. In IEEE International Conference on Services

Computing (SCC), pages 74–83, 2022.

[61] Mohammed Islam Naas, Laurent Lemarchand, Jalil Boukhobza, and Philippe

Raipin. A graph partitioning-based heuristic for runtime IoT data placement

strategies in a fog infrastructure. In Proceedings of the 33rd annual ACM symposium

on applied computing, pages 767–774, 2018.

[62] Sudip Misra and Niloy Saha. Detour: Dynamic task o✏oading in software-defined

fog for IoT applications. IEEE Journal on Selected Areas in Communications, 37

(5):1159–1166, 2019.

[63] Jessica Oueis, Emilio Calvanese Strinati, and Sergio Barbarossa. The fog balancing:

Load distribution for small cell cloud computing. In 2015 IEEE 81st vehicular

technology conference (VTC spring), pages 1–6. IEEE, 2015.

[64] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya

Akella. Presto: Edge-based load balancing for fast datacenter networks. ACM

SIGCOMM Computer Communication Review, 45(4):465–478, 2015.

[65] Kai Peng, Hualong Huang, Wenjie Pan, and Jiabin Wang. Joint optimisation for

time consumption and energy consumption of multi-application and load balancing

of cloudlets in mobile edge computing. IET Cyber-Physical Systems: Theory &

Applications, 5(2):196–206, 2020.

[66] Adyson M Maia, Yacine Ghamri-Doudane, Dario Vieira, and Miguel Franklin

de Castro. An improved multi-objective genetic algorithm with heuristic



References 117

initialization for service placement and load distribution in edge computing.

Computer networks, 194:108146, 2021.

[67] Herbert G Tanner and Dimitrios K Christodoulakis. Decentralized cooperative

control of heterogeneous vehicle groups. Robotics and autonomous systems, 55(11):

811–823, 2007.

[68] Brett Koonce. ResNet 50. Convolutional Neural Networks with Swift for Tensorflow:

Image Recognition and Dataset Categorization, pages 63–72, 2021.

[69] Alex Olsen, Dmitry A Konovalov, Bronson Philippa, Peter Ridd, Jake C Wood,

Jamie Johns, Wesley Banks, Benjamin Girgenti, Owen Kenny, James Whinney, et al.

DeepWeeds: A multiclass weed species image dataset for deep learning. Scientific

reports, 9(1):2058, 2019.

[70] Kaustabha Ray and Ansuman Banerjee. Prioritized fault recovery strategies for

multi-access edge computing using probabilistic model checking. IEEE Transactions

on Dependable and Secure Computing, 20(1):797–812, 2023. doi: 10.1109/TDSC.

2022.3143877.

[71] Anusha Vangala, Ashok Kumar Das, Vinay Chamola, Valery Korotaev, and

Joel JPC Rodrigues. Security in IoT-enabled smart agriculture: Architecture,

security solutions and challenges. Cluster Computing, 26(2):879–902, 2023.

[72] Angelita Rettore de Araujo Zanella, Eduardo da Silva, and Luiz Carlos Pessoa

Albini. Security challenges to smart agriculture: Current state, key issues, and

future directions. Array, 8:100048, 2020.

[73] Leanne Wiseman, Jay Sanderson, Airong Zhang, and Emma Jakku. Farmers and

their data: An examination of farmers’ reluctance to share their data through

the lens of the laws impacting smart farming. NJAS-Wageningen Journal of Life

Sciences, 90:100301, 2019.

[74] Jitendra Kumar Samriya, Chinmay Chakraborty, Aditi Sharma, Mohit Kumar, et al.

Adversarial ml-based secured cloud architecture for consumer internet of things of

smart healthcare. IEEE Transactions on Consumer Electronics, 2023.

[75] Zecheng He, Tianwei Zhang, and Ruby B Lee. Attacking and protecting data privacy

in edge–cloud collaborative inference systems. IEEE Internet of Things Journal, 8

(12):9706–9716, 2020.

[76] Tian Wang, Yaxin Mei, Weijia Jia, Xi Zheng, Guojun Wang, and Mande Xie.

Edge-based di↵erential privacy computing for sensor–cloud systems. Journal of

Parallel and Distributed computing, 136:75–85, 2020.

[77] Dingde Jiang, Peng Zhang, Zhihan Lv, and Houbing Song. Energy-e�cient

multi-constraint routing algorithm with load balancing for smart city applications.

IEEE Internet of Things Journal, 3(6):1437–1447, 2016.



118 References

[78] Roberto Beraldi, Claudia Canali, Riccardo Lancellotti, and Gabriele Proietti Mattia.

Distributed load balancing for heterogeneous fog computing infrastructures in smart

cities. Pervasive and Mobile Computing, 67:101221, 2020.

[79] Atakan Aral and Ivona Brandić. Learning spatiotemporal failure dependencies for

resilient edge computing services. IEEE Transactions on Parallel and Distributed

Systems, 32(7):1578–1590, 2021.

[80] Deepak Puthal, Rajiv Ranjan, Ashish Nanda, Priyadarsi Nanda, Prem Prakash

Jayaraman, and Albert Y Zomaya. Secure authentication and load balancing of

distributed edge datacenters. Journal of Parallel and Distributed Computing, 124:

60–69, 2019.

[81] Emna Baccour, Naram Mhaisen, Alaa Awad Abdellatif, Aiman Erbad, Amr

Mohamed, Mounir Hamdi, and Mohsen Guizani. Pervasive ai for iot applications: A

survey on resource-e�cient distributed artificial intelligence. IEEE Communications

Surveys & Tutorials, 24(4):2366–2418, 2022. doi: 10.1109/COMST.2022.3200740.

[82] Liang Xiao, Xiaoyue Wan, Xiaozhen Lu, Yanyong Zhang, and Di Wu. Iot

security techniques based on machine learning: How do iot devices use ai to

enhance security? IEEE Signal Processing Magazine, 35(5):41–49, 2018. doi:

10.1109/MSP.2018.2825478.

[83] Fanyu Bu and Xin Wang. A smart agriculture iot system based on deep

reinforcement learning. Future Generation Computer Systems, 99:500–507, 2019.

[84] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural

network models for practical applications. arXiv preprint arXiv:1605.07678, 2016.

[85] Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. Evaluating the energy

e�ciency of deep convolutional neural networks on cpus and gpus. In 2016

IEEE international conferences on big data and cloud computing (BDCloud), social

computing and networking (SocialCom), sustainable computing and communications

(SustainCom)(BDCloud-SocialCom-SustainCom), pages 477–484. IEEE, 2016.

[86] Mingxing Tan and Quoc Le. E�cientnetv2: Smaller models and faster training. In

International conference on machine learning, pages 10096–10106. PMLR, 2021.

[87] Mingxing Tan and Quoc Le. E�cientnet: Rethinking model scaling for convolutional

neural networks. In International conference on machine learning, pages 6105–6114.

PMLR, 2019.

[88] Yiming Hu, Siyang Sun, Jianquan Li, Xingang Wang, and Qingyi Gu. A novel

channel pruning method for deep neural network compression. arXiv preprint

arXiv:1805.11394, 2018.



References 119

[89] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the e�cacy of

pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.

[90] Zhen Chen, Zhibo Chen, Jianxin Lin, Sen Liu, and Weiping Li. Deep neural network

acceleration based on low-rank approximated channel pruning. IEEE Transactions

on Circuits and Systems I: Regular Papers, 67(4):1232–1244, 2020.

[91] Zhuoran Song, Bangqi Fu, Feiyang Wu, Zhaoming Jiang, Li Jiang, Naifeng Jing,

and Xiaoyao Liang. Drq: dynamic region-based quantization for deep neural

network acceleration. In 2020 ACM/IEEE 47th Annual International Symposium

on Computer Architecture (ISCA), pages 1010–1021. IEEE, 2020.

[92] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie.

Communication-e�cient federated learning via knowledge distillation. Nature

communications, 13(1):2032, 2022.

[93] Eva Garćıa-Mart́ın, Crefeda Faviola Rodrigues, Graham Riley, and H̊akan Grahn.

Estimation of energy consumption in machine learning. Journal of Parallel and

Distributed Computing, 134:75–88, 2019.

[94] Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Alexander Binder, Simon

Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Pruning by explaining: A

novel criterion for deep neural network pruning. Pattern Recognition, 115:107899,

2021.

[95] Yadu N Babuji, Kyle Chard, Aaron Gerow, and Eamon Duede. Cloud kotta:

Enabling secure and scalable data analytics in the cloud. In 2016 IEEE International

Conference on Big Data (Big Data), pages 302–310. IEEE, 2016.

[96] Tianli Zhou and Chao Tian. Fast erasure coding for data storage: A comprehensive

study of the acceleration techniques. ACM Transactions on Storage (TOS), 16(1):

1–24, 2020.

[97] Qianqiu Wang, Xiaoping Ye, Xianlu Luo, Lunjie Li, and Hainan Chen. A distributed

data storage strategy based on LOPs. Arabian Journal for Science and Engineering,

47(8):9767–9779, 2022.

[98] Justice Opara-Martins, Reza Sahandi, and Feng Tian. Critical review of vendor

lock-in and its impact on adoption of cloud computing. In International conference

on information society (i-Society 2014), pages 92–97. IEEE, 2014.

[99] Ying Song, Qiang Zhang, and Bo Wang. FACHS: Adaptive hybrid storage strategy

based on file access characteristics. IEEE Access, 11:16855–16862, 2023.

[100] Jad Darrous and Shadi Ibrahim. Understanding the performance of erasure codes in

hadoop distributed file system. In Proceedings of the Workshop on Challenges and

Opportunities of E�cient and Performant Storage Systems, pages 24–32, 2022.



120 References

[101] Michael Abebe, Khuzaima Daudjee, Brad Glasbergen, and Yuanfeng Tian. Ec-store:

Bridging the gap between storage and latency in distributed erasure coded systems.

In 2018 IEEE 38th international conference on distributed computing systems

(ICDCS), pages 255–266. IEEE, 2018.

[102] Zhinan Cheng, Lu Tang, Qun Huang, and Patrick PC Lee. Enabling low-redundancy

proactive fault tolerance for stream machine learning via erasure coding. In 2021 40th

International Symposium on Reliable Distributed Systems (SRDS), pages 99–108.

IEEE, 2021.

[103] Rekha Nachiappan, Rodrigo N Calheiros, Kenan M Matawie, and Bahman Javadi.

Optimized proactive recovery in erasure-coded cloud storage systems. IEEE Access,

2023.

[104] The State of Food Security and Nutrition in the World 2022 [Online]. Available:

https://www.fao.org/3/cc0639en/online/sofi-2022/ introduction.html.

[105] Chengsong Hu, J Alex Thomasson, and Muthukumar V Bagavathiannan. A

powerful image synthesis and semi-supervised learning pipeline for site-specific weed

detection. Computers and Electronics in Agriculture, 190:106423, 2021.

[106] Sukhpal Singh Gill. Quantum and blockchain based serverless edge computing: A

vision, model, new trends and future directions. Internet Technology Letters, page

e275, 2021.

[107] Amit Samanta, Flavio Esposito, and Tri Gia Nguyen. Fault-tolerant mechanism

for edge-based IoT networks with demand uncertainty. IEEE Internet of Things

Journal, 8(23):16963–16971, 2021. doi: 10.1109/JIOT.2021.3075681.

[108] Heidi Saxby, Menelaos Gkartzios, and Karen Scott. ‘farming on the edge’: wellbeing

and participation in agri-environmental schemes. Sociologia Ruralis, 58(2):392–411,

2018.

[109] N Brisson, C Gary, E Justes, R Roche, B Mary, D Ripoche, D Zimmer, J Sierra,

P Bertuzzi, P Burger, F Bussière, Y.M Cabidoche, P Cellier, P Debaeke, J.P

Gaudillère, C Hénault, F Maraux, B Seguin, and H Sinoquet. An overview of the

crop model stics. European Journal of Agronomy, 18(3):309–332, 2003. Modelling

Cropping Systems: Science, Software and Applications.

[110] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of

neural networks for e�cient integer-arithmetic-only inference. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 2704–2713, 2018.

[111] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Cli↵ord, Rohan

Kumar, Lukasz Lacinski, Ryan Chard, Justin Wozniak, Ian Foster, Mike Wilde,



References 121

and Kyle Chard. parsl : Pervasive parallel programming in python. In 28th ACM

International Symposium on High-Performance Parallel and Distributed Computing

(HPDC), 2019.

[112] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 4510–4520, 2018.

[113] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[114] Ashish Kaushal, Osama Almurshed, Areej Alabbas, Nitin Auluck, and Omer Rana.

An edge-cloud infrastructure for weed detection in precision agriculture. In IEEE

Intl Conf on Pervasive Intelligence and Computing (PiCom), pages 0269–0276, 2023.

[115] Marcelo José Carrer, Hildo Meirelles de Souza Filho, Marcela de Mello Brandao

Vinholis, and Carlos Ivan Mozambani. Precision agriculture adoption and technical

e�ciency: An analysis of sugarcane farms in brazil. Technological Forecasting and

Social Change, 177:121510, 2022.

[116] Peeyush Kumar, Andrew Nelson, Zerina Kapetanovic, and Ranveer Chandra.

A↵ordable artificial intelligence–augmenting farmer knowledge with ai. arXiv

preprint arXiv:2303.06049, 2023.

[117] The State of Food Security and Nutrition in the World 2022 [Online]. Available:

https://www.fao.org/3/cc0639en/online/sofi-2022/ introduction.html.

[118] René Dumont. Types of Rural Economy: Studies in World Agriculture, volume 8.

Taylor & Francis, 2023.

[119] Hui Yuan and Hong Nie. Edge computing driven sustainable development: A case

study on professional farmer cultivation mechanism. Expert Systems, 2023.

[120] Andrew D. Balmos, Fabio A. Castiblanco, Aaron J. Neustedter, James V. Krogmeier,

and Dennis R. Buckmaster. Isoblue avena: A framework for agricultural edge

computing and data sovereignty. IEEE Micro, 42(1):78–86, 2022. doi: 10.1109/

MM.2021.3134830.

[121] Yogeswaranathan Kalyani and Rem Collier. A systematic survey on the role of

cloud, fog, and edge computing combination in smart agriculture. Sensors, (17):

5922, 2021.

[122] Ahmad Ali Alzubi and Kalda Galyna. Artificial intelligence and internet of things

for sustainable farming and smart agriculture. IEEE Access, 2023.



122 References

[123] M Trendov, Samuel Varas, Meng Zeng, et al. Digital technologies in agriculture and

rural areas: status report. Digital technologies in agriculture and rural areas: status

report., 2019.

[124] Sumarga Kumar Sah Tyagi, Amrit Mukherjee, Shiva Raj Pokhrel, and Kamal Kant

Hiran. An intelligent and optimal resource allocation approach in sensor networks

for smart agri-IoT. IEEE Sensors Journal, 21(16):17439–17446, 2020.

[125] Anandarup Mukherjee, Sudip Misra, Anumandala Sukrutha, and Narendra Singh

Raghuwanshi. Distributed aerial processing for IoT-based edge UAV swarms in

smart farming. Computer Networks, 167:107038, 2020.

[126] Othmane Friha, Mohamed Amine Ferrag, Lei Shu, Leandros Maglaras,

Kim-Kwang Raymond Choo, and Mehdi Nafaa. FELIDS: Federated learning-based

intrusion detection system for agricultural Internet of Things. Journal of Parallel

and Distributed Computing, 165:17–31, 2022.

[127] Khalid Haseeb, Ikram Ud Din, Ahmad Almogren, and Naveed Islam. An energy

e�cient and secure iot-based wsn framework: An application to smart agriculture.

Sensors, 20(7):2081, 2020.

[128] Theyazn HH Aldhyani and Hasan Alkahtani. Cyber Security for Detecting

Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model.

Mathematics, 11(1):233, 2023.

[129] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. pages 248–255, 2009.

[130] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Cli↵ord, Rohan

Kumar, Lukasz Lacinski, Ryan Chard, Justin M Wozniak, Ian Foster, et al. Parsl:

Pervasive parallel programming in python. pages 25–36, 2019.

[131] Areej Alabbas, Ashish Kaushal, Osama Almurshed, Omer Rana, Nitin Auluck, and

Charith Perera. Performance analysis of apache openwhisk across the edge-cloud

continuum.

[132] Rainer Diesch, Matthias Pfa↵, and Helmut Krcmar. A comprehensive model of

information security factors for decision-makers. Computers & Security, 92:101747,

2020.

[133] Ashish Kaushal, Osama Almurshed, Osama Almoghamis, Areej Alabbas, Nitin

Auluck, Bharadwaj Veeravalli, and Omer Rana. Shield: A secure heuristic integrated

environment for load distribution in rural-ai. Future Generation Computer Systems,

161:286–301, 2024.

[134] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha

Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai,



References 123

et al. Sustainable AI: Environmental implications, challenges and opportunities.

Proceedings of Machine Learning and Systems, 4:795–813, 2022.

[135] Ling Hu and Qiang Ni. Iot-driven automated object detection algorithm for urban

surveillance systems in smart cities. IEEE Internet of Things Journal, 5(2):747–754,

2017.

[136] Areej Alabbas, Ashish Kaushal, Osama Almurshed, Omer Rana, Nitin Auluck, and

Charith Perera. Performance analysis of apache openwhisk across the edge-cloud

continuum. In 2023 IEEE 16th International Conference on Cloud Computing

(CLOUD), pages 401–407. IEEE, 2023.

[137] Radu Marculescu, Diana Marculescu, and Umit Ogras. Edge ai: Systems design and

ml for iot data analytics. In Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 3565–3566, 2020.

[138] Sudershan Boovaraghavan, Anurag Maravi, Prahaladha Mallela, and Yuvraj

Agarwal. Mliot: An end-to-end machine learning system for the internet-of-things.

In Proceedings of the International Conference on Internet-of-Things Design and

Implementation, pages 169–181, 2021.

[139] Pavana Prakash, Jiahao Ding, Rui Chen, Xiaoqi Qin, Minglei Shu, Qimei Cui,

Yuanxiong Guo, and Miao Pan. Iot device friendly and communication-e�cient

federated learning via joint model pruning and quantization. IEEE Internet of

Things Journal, 9(15):13638–13650, 2022.

[140] Eun Som Jeon, Anirudh Som, Ankita Shukla, Kristina Hasanaj, Matthew P Buman,

and Pavan Turaga. Role of data augmentation strategies in knowledge distillation

for wearable sensor data. IEEE internet of things journal, 9(14):12848–12860, 2021.

[141] Joseph Azar, Abdallah Makhoul, Mahmoud Barhamgi, and Raphaël Couturier. An

energy e�cient iot data compression approach for edge machine learning. Future

Generation Computer Systems, 96:168–175, 2019.

[142] Huirong Ma, Zhi Zhou, Xiaoxi Zhang, and Xu Chen. Towards carbon-neutral edge

computing: Greening edge ai by harnessing spot and future carbon markets. IEEE

Internet of Things Journal, 2023.

[143] Sha Zhu, Kaoru Ota, and Mianxiong Dong. Energy-e�cient artificial intelligence

of things with intelligent edge. IEEE Internet of Things Journal, 9(10):7525–7532,

2022.

[144] Sha Zhu, Kaoru Ota, and Mianxiong Dong. Green ai for iiot: Energy e�cient

intelligent edge computing for industrial internet of things. IEEE Transactions on

Green Communications and Networking, 6(1):79–88, 2021.



124 References

[145] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna

Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from

deep networks via gradient-based localization. pages 618–626, 2017.

[146] Osama Almurshed, Souham Meshoul, Asmail Muftah, Ashish Kumar Kaushal,

Osama Almoghamis, Ioan Petri, Nitin Auluck, and Omer Rana. A framework for

performance optimization of internet of things applications. In European Conference

on Parallel Processing, pages 165–176. Springer, 2023.

[147] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo

Madeira, Marilia Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer Rana.

The internet of things, fog and cloud continuum: Integration and challenges. Internet

of Things, 3:134–155, 2018.

[148] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.

Journal of the society for industrial and applied mathematics, 8(2):300–304, 1960.

[149] Md Sadiqul Islam Sakif, Rezuana Imtiaz Upoma, and Jannatun Noor. Towards

benchmarking erasure coding schemes in object storage system. Available at SSRN

4713329.


	Declaration
	Acknowledgement
	Certificate
	Lay Summary
	Abstract
	List of Publications
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Internet of Things
	Edge-Cloud Continuum
	Architecture for Edge-Cloud Continuum
	Integrating ML, AI with Edge and Cloud
	IoT Applications Utilising Edge and Cloud
	Challenges in Edge-Cloud Infrastructures
	Research Objectives of the Thesis
	Primary Contributions
	Structure of the Thesis

	Literature Review
	Adaptive Edge and Cloud Frameworks
	Task Offloading and Resource Allocation in Edge and Cloud Systems
	Intelligent Applications using IoT, Cloud, and Edge
	Load Distribution on Edge and Cloud Nodes
	Security and Privacy in Edge-Cloud based Systems
	Challenges with AI Sustainability and IoT
	Data Management in Edge-Cloud Frameworks

	Task Allocation in Edge-Cloud Infrastructure
	Weed Management Task in Precision Agriculture
	System Model
	Serverless Computing Platforms
	Dataset and ML Models
	System Design and Use Case

	Problem Formulation
	Monitoring Constraints
	Decision Variables
	Objective Function

	Proposed Approach
	ML Models
	Signal Monitoring
	Execution Workflow for Inference Tasks

	Experiments and Simulation
	Experimental Setup
	Testing ML Model Capabilities
	Node Selection for Training and Inference
	Execution Workflow
	Communication and Monitoring Setup

	Results and Evaluation
	Results
	Analysis

	Summary

	Load Distribution in Edge Computing Environment
	Distributing Task Load in Rural-AI
	System Model
	Three-tier Edge-Cloud Architecture
	Adaptive Control Pipeline
	Task and Resource Classification
	Real-World Use Case
	Functional Requirements
	ML Model Description
	Serverless Computing Platforms
	The CIA Triad

	Problem Formulation
	The SHIELD Framework
	Heuristic Function Pipeline
	Adaptive Cryptographic Measures for Public Networks
	Load Balancing Algorithm
	Access Control Mechanism

	Performance Comparison: Parsl vs OpenWhisk
	Experimentation Setup and Design
	Testbed Setup for Parsl
	Testbed Setup for OpenWhisk
	Simulation Setup
	Simulation Parameters

	Results and Evaluations
	Performance Analysis of Workflows on Limited Resource Environment
	Interpreting the Additional Time Required for Different Execution Workflows
	Exploring Distribution of Load and its Trade-off with other Performance Critical Factors
	Evaluating the Influence of Dynamic k-value on Overall Execution Time of Workflows
	Analysing Performance with different Data Distribution and Task Load
	Analysing Performance in Heterogeneous Resource Environment

	Summary

	Optimising AI Operations in IoT-based Applications
	Integrating ML with IoT
	Agricultural Use-Case
	Proposed Methodology
	Optimising Layer Selection with Genetic Algorithm
	Efficient Feature Mapping for Pruning

	Experimental Design and Setup
	Dataset and Hardware Configuration
	Estimation of Power Consumption
	Experimental Configuration

	Results and Evaluation
	Analysis of Results
	Aspects for Further Optimisation
	Summary

	Data Management in Edge-Cloud Environment
	Data Management in IoT
	Data Handling in Serverless Environment
	Direct Data Transfer
	Use of Intermediate Storage

	Methods for Ensuring Data Availability
	Challenges with Data Handling
	Challenges in Deploying ML Workflow on Serverless Platforms
	Proposed Approach for Data Handling
	Workflow for Data Handling
	Workflow for Model Storage
	Experimentation and Results
	Summary

	Conclusion
	Summary
	Future Directions

	References

