Enhancing Performance of Intelligent IoT

Applications in Edge-Cloud Continuum

A Thesis Submitted
in Partial Fulfilment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

by
Ashish Kumar Kaushal

(2019¢sz0003)

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROPAR

SEPTEMBER, 2024

ii

Ashish Kumar Kaushal: FEnhancing Performance of Intelligent IoT Applications in
Edge-Cloud Continuum

Copyright(©)2024, Indian Institute of Technology Ropar

All Rights Reserved

iii

Dedicated to my family !!

iv

Declaration of Originality

I hereby declare that the work which is being presented in the thesis entitled Enhancing
Performance of Intelligent IoT Applications in Edge-Cloud Continuum has been
solely authored by me. It presents the result of my own independent investigation/research
conducted during the time period from July 2019 to August 2024 under the supervision of
Dr. Nitin Auluck and Dr. Balwinder Sodhi at IIT Ropar. To the best of my knowledge,
it is an original work, both in terms of research content and narrative, and has not been
submitted or accepted elsewhere, in part or in full, for the award of any degree, diploma,
fellowship, associateship, or similar title of any university or institution. Further, due
credit has been attributed to the relevant state-of-the-art and collaborations (if any) with
appropriate citations and acknowledgments, in line with established ethical norms and
practices. I also declare that any idea/data/fact/source stated in my thesis has not been
fabricated /falsified /misrepresented. All the principles of academic honesty and integrity
have been followed. 1 fully understand that if the thesis is found to be unoriginal,
fabricated, or plagiarized, the Institute reserves the right to withdraw the thesis from
its archive and revoke the associated Degree conferred. Additionally, the Institute also
reserves the right to appraise all concerned sections of society of the matter for their
information and necessary action (if any). If accepted, I hereby consent for my thesis to
be available online in the Institute’s Open Access repository, inter-library loan, and the

title & abstract to be made available to outside organizations.

W

Signature

Ashish Kumar Kaushal

2019¢sz0003

PhD

Department of CSE

Indian Institute of Technology Ropar
Rupnagar, Punjab 140001

Date: September 10, 2024

Acknowledgement

First of all, I begin by expressing my deepest gratitude to almighty God, whose unending
guidance and grace have sustained me throughout this entire journey of PhD. I also want
to thank II'T Ropar for providing me with the platform and all the facilities required for
completing my PhD.

I am profoundly grateful to my supervisor, Dr. Nitin Auluck, for his continuous support
and guidance, as well as the freedom he gave me in pursuing my ideas. I thank him for
his patience and mentorship even when I faced significant challenges. I also would like to
thank my co-supervisor Dr Balwinder Sodhi for his valuable contributions and support.
I must extend my special gratitude to Prof. Omer Rana for being an extraordinary
mentor and collaborator. I have learned a lot of things from him throughout my journey
of PhD. His willingness to share expert insights have significantly contributed to my both
professional and personal growth as a researcher. I am also thankful to my collaborator
and friend Osama Almurshed for all the expertise, suggestions, advice, and brainstorming
sessions which played an important role in completing our work. I am indebted to
my other collaborators Bharadwaj Veeravalli, Areej Alabbas, Asmail Muftah, Osama
Almoghamis for being a part of my work and providing their timely expertise.

I am immensely grateful to all of my doctoral committee members: Dr. Sudarshan
Iyenger (chairperson), Dr. Basant Subba, Dr. Jagpreet Singh, and Dr. Brijesh Kumbhani
for evaluating my work and providing me valuable feedback that improved the quality of
my work.

Special thanks to my friends Akash Anil, Hsuvas Borkakoty, Amit Gajbhiye, Nitesh
Kumar, Vidushi Agarwal, Abhishek Singh Sambyal, Armaan Garg, Gulshan Sharma,
Pooja Bharadwaj, Sahil Kumar, Tirtha Das, Sarbjeet Kaur, Pankaj Singla, Saweta Garg,
Aakriti Gupta for being a source of motivation and inspiration throughout the journey.

I also extend my deepest appreciation to my family for their unconditional love,
understanding, and encouragement. Their faith in me has consistently provided strength

and resilience throughout the challenging times of this academic journey.

This achievement would not have been possible without all of you. Thank you for being
a part of my PhD journey.
— Ashish

vi

Certificate

This is to certify that the thesis entitled Enhancing Performance of Intelligent IoT
Applications in Edge-Cloud Continuum, submitted by Ashish Kumar Kaushal
(2019c¢sz0003) for the award of the degree of Doctor of Philosophy of Indian Institute
of Technology Ropar, is a record of bonafide research work carried out under our guidance
and supervision. To the best of my knowledge and belief, the work presented in this thesis
is original and has not been submitted, either in part or full, for the award of any other
degree, diploma, fellowship, associateship or similar title of any university or institution.
In our opinion, the thesis has reached the standard fulfilling the requirements of the

regulations relating to the Degree.

Wbk

Signature of the Supervisor

Dr. Nitin Auluck

Department of CSE

Indian Institute of Technology Ropar
Rupnagar, Punjab 140001

Date: December 17, 2024

g

Signature of the Supervisor

Dr. Balwinder Sodhi

Department of CSE

Indian Institute of Technology Ropar
Rupnagar, Punjab 140001

Date: December 17, 2024

vii

Lay Summary

As the Internet of Things (IoT) continues to grow, more devices than ever are connected
and communicating every day, from smart home appliances to industrial sensors. This
leads to a large amount of data being generated everywhere, all the time. Traditionally,
this data was sent back to large central computers (cloud) for processing. However, to
make things faster and more efficient, a lot of this processing is now being done closer to
where the data is actually generated — at the “edge” of the network, like on local devices
or nearby servers.

This thesis aims to make intelligent IoT systems work better, faster, and more reliably
by tackling a few key challenges. Initially, the thesis presents a smart way to decide
where and how tasks/jobs should be allocated within this new edge-to-cloud environment
to save time and increase performance, especially when immediate decisions are needed
by IoT applications. It also includes designing a method to efficiently distribute the
task load on all the available resources considering various factors that directly affect the
efficiency of the environment. The factors monitor the total running time and resources
utilised of the system and try to minimise them. Another approach is to develop new
methods to improve how these systems learn and make decisions by training them more
efficiently. This involves choosing the most important parts of a system that need learning
and removing unnecessary parts, making everything run smoother and quicker. Lastly, the
thesis explore how to better manage all the data these devices use and generate, ensuring
that it is stored safely and can be accessed quickly, even if something goes wrong. By
considering these scenarios, this thesis aims to enhance how smart devices operate and

communicate, making them better suited to the needs of our fast-paced, data-driven world.

viii

Abstract

The rapid expansion of the Internet of Things (IoT) has resulted in a paradigm
shift of computing from centralised cloud to edge environments, where data processing
is performed closer to the source. However, the deployment of intelligent IoT
applications within this edge-cloud continuum presents unique challenges, including
resource management, data processing efficiency, and maintaining system reliability. This
thesis focuses on enhancing the performance of intelligent applications by designing
approaches for optimising task allocation, load distribution, Machine Learning (ML)
operations, and data management in the IoT infrastructure.

The thesis aims to design a framework that supports efficient and cost-effective
operation of IoT applications across the edge-cloud continuum. I first propose an
algorithm for dynamic task allocation that emphasises on minimising the completion
time while maximising the task execution performance. By formulating the algorithm
that dynamically allocates tasks based on real-time analytics and system state, the
approach effectively reduces execution latency and enhances the accuracy of real-time
decision-making processes. In addition to task allocation, this thesis presents a load
distribution framework for IoT applications deployed on edge computing infrastructure.
The mechanism prioritises completion time, waiting time, resource utilisation, evaluation
overhead, failure rate, and provides a strategic approach that classifies tasks and
computational resources into categories such as restricted, public; and private, shared.
This results in a security-aware load distribution mechanism that handles IoT-based
tasks in real-time. In order to optimise the ML and Artificial Intelligence (AI)
operations, the thesis introduces an approach to select layers for model training using
a genetic algorithm. This method determines the optimal configuration of active and
inactive layers which enhances the model efficiency and adaptability during training
phases. A pruning mechanism is also developed which utilises heatmap to identify
performance-critical features and simplifies the model by eliminating non-essential
features. This dual approach significantly reduces computational overhead and execution
time while preserving the essential analytical capabilities of the model and maintaining
its accuracy. To handle IoT-based data, the thesis also proposes a methodology that
ensures optimal storage, access, and recovery of data and model files in case any data
loss or system failure occurs. All these methods are designed to enhance the resilience
of the IoT system, ensuring that their performance, data integrity, and availability are
maintained even under adverse conditions. Through mathematical formulation of the
problems and implementation via simulation and testbed, I validate the feasibility and

performance of proposed frameworks on an agricultural (weed detection) use-case scenario.

Keywords: Edge-Cloud Continuum, Internet of Things, Load Distribution, Machine

Learning, Serverless, Task Allocation.

ix

List of Publications

Journal

1. A. Kaushal, O. Almurshed, O. Almoghamis, A. Alabbas, N. Auluck, B. Veeravalli
and O. Rana, “SHIELD: A Secure Heuristic Integrated Environment for Load
Distribution in Rural-Al,” in Elsevier Future Generation Computer Systems (FGCS)
Journal, 2024, vol. 161, pp. 286-301.

Conference

1. A. Kaushal, O. Almurshed, A. Alabbas, N. Auluck and O. Rana, “An Edge-Cloud
Infrastructure for Weed Detection in Precision Agriculture,” in The 21st IEFEE
International Conference on Pervasive Intelligence and Computing (PiCom), Abu
Dhabi, UAE, 2023, pp. 0269-0276.

Under Review

1. A. Kaushal, O. Almurshed, A. Muftah, P. Kundan, T. Abhijith, N. Auluck and O.
Rana, “Towards a Sustainable Optimisation Approach for Machine Learning Tasks
in Internet of Things,” in IEEE Internet of Things Journal.

2. A. Kaushal, O. Almurshed, P. Kundan, T. Abhijith, N. Auluck and O. Rana,
“Enhancing Data Management in Machine Learning Applications: Resilience and
Storage Optimisation of Serverless Edge-Cloud,” in IEEFE Internet of Things

Magazine.

Al
CNN
EC
FAO
FaaS
FL
FLOP
FR
FSU
GCP
GHG
GradCAM
HMAC
IIT
ILP
IoT
LRC
LLM
MD
ML
MCSD
MTBF
MTTF
MTTR
oW
QoS
RPi
RS

RU
SBC
SC
SDG
SFC
UAV
WSN

List of Abbreviations

Artificial Intelligence
Convolutional Neural Network
Erasure Coding

Food and Agriculture Organisation
Function as a Service

Federated Learning

Floating Point Operation

Failure Rate

Field Side Unit

Google Cloud Platform
Greenhouse Gas
Gradient-weighted Class Activation Mapping
Hash-Based Message Authentication Code
Indian Institute of Technology
Integer Linear Programming
Internet of Things

Locally Recoverable Codes

Large Language Model

Mobile Device

Machine Learning

Multitype Cloud Storage Dataset
Mean Time between Failures
Mean Time to Failure

Mean Time to Recovery
OpenWhisk

Quality of Service

Raspberry Pi

Reed Solomon

Resource Utilisation

Single Board Computer

System Cost

Sustainable Development Goal
Service Function Chain
Unmanned Aerial Vehicle
Wireless Sensor Network

Contents

Declaration iv
Acknowledgement v
Certificate vi
Lay Summary vii
Abstract viii
List of Publications ix
List of Abbreviations X
List of Figures XV
List of Tables xvii
1 Introduction 1
1.1 Imnternet of Things 1
1.2 Edge-Cloud Continuum 2
1.3 Architecture for Edge-Cloud Continuum 3
1.4 Integrating ML, Al with Edge and Cloud 4
1.5 TIoT Applications Utilising Edge and Cloud 5
1.6 Challenges in Edge-Cloud Infrastructures 7
1.7 Research Objectives of the Thesis 8
1.8 Primary Contributions 9
1.9 Structure of the Thesis 10
2 Literature Review 13
2.1 Adaptive Edge and Cloud Frameworks 13
2.2 Task Offloading and Resource Allocation in Edge and Cloud Systems 14
2.3 Intelligent Applications using IoT, Cloud, and Edge 16
2.4 Load Distribution on Edge and Cloud Nodes 17
2.5 Security and Privacy in Edge-Cloud based Systems 18
2.6 Challenges with AI Sustainability and IoT, 19
2.7 Data Management in Edge-Cloud Frameworks 21
3 Task Allocation in Edge-Cloud Infrastructure 23
3.1 Weed Management Task in Precision Agriculture 23

X1

xii Contents
3.2 System Model L 25
3.2.1 Serverless Computing Platforms 25
3.2.2 Dataset and ML Models 26
3.2.3 System Design and Use Case 26

3.3 Problem Formulation o L 27
3.3.1 Monitoring Constraints 27
3.3.2 Decision Variables 0 o 28
3.3.3 Objective Function 29

3.4 Proposed Approach 30
341 ML Models e 30
3.4.2 Signal Monitoring 31
3.4.3 Execution Workflow for Inference Tasks 31

3.5 Experiments and Simulation 0 L0 32
3.5.1 Experimental Setup 32
3.5.2 Testing MLL Model Capabilities 33
3.5.3 Node Selection for Training and Inference 34
3.5.4 Execution Workflow 35
3.5.5 Communication and Monitoring Setup 36

3.6 Results and Evaluation. oL 37
3.6.1 Results 37
3.6.2 Analysis 40

3.7 Summary ... Lo 40
4 Load Distribution in Edge Computing Environment 41
4.1 Distributing Task Load in Rural-AI. 41
4.2 System Model L 43
4.2.1 Three-tier Edge-Cloud Architecture 43
4.2.2 Adaptive Control Pipeline 44
4.2.3 Task and Resource Classification 44
424 Real-World Use Case i 46
4.2.5 Functional Requirements 46
4.2.6 ML Model Description o oL 47
4.2.7 Serverless Computing Platforms 48
4.2.8 The CIA Triad e 50

4.3 Problem Formulation L0 L 50
4.4 The SHIELD Framework 53
4.4.1 Heuristic Function Pipeline o4
4.4.2 Adaptive Cryptographic Measures for Public Networks 55
4.4.3 Load Balancing Algorithm 56
4.4.4 Access Control Mechanism 57

4.5 Performance Comparison: Parsl vs OpenWhisk 58

4.6 Experimentation Setup and Design 60

Contents xiii
4.6.1 Testbed Setup for Parsl 0L, 60

4.6.2 Testbed Setup for OpenWhisk 61

4.6.3 Simulation Setupo 61

4.6.4 Simulation Parameters 64

4.7 Results and Evaluations L 64

4.7.1 Performance Analysis of Workflows on Limited Resource Environment 65

4.7.2 Interpreting the Additional Time Required for Different Execution
Workflows oL
4.7.3 Exploring Distribution of Load and its Trade-off with other
Performance Critical Factors
4.7.4 Evaluating the Influence of Dynamic k-value on Overall Execution
Time of Workflows
4.7.5 Analysing Performance with different Data Distribution and Task

4.7.6 Analysing Performance in Heterogeneous Resource Environment

4.8 SUMMATY o e e e e

Optimising AI Operations in IoT-based Applications
5.1 Imtegrating ML with IoT,
5.2 Agricultural Use-Case
5.3 Proposed Methodology
5.3.1 Optimising Layer Selection with Genetic Algorithm
5.3.2 Efficient Feature Mapping for Pruning
5.4 Experimental Design and Setup,
5.4.1 Dataset and Hardware Configuration
5.4.2 Estimation of Power Consumption
5.4.3 Experimental Configuration
5.5 Results and Evaluation. o0 0oL
5.6 Analysisof Results
5.7 Aspects for Further Optimisation

5.8 Summary

Data Management in Edge-Cloud Environment
6.1 Data Management in IoT L.
6.2 Data Handling in Serverless Environment
6.2.1 Direct Data Transfer
6.2.2 Use of Intermediate Storage,
6.3 Methods for Ensuring Data Availability
6.4 Challenges with Data Handling
6.5 Challenges in Deploying ML Workflow on Serverless Platforms
6.6 Proposed Approach for Data Handling
6.7 Workflow for Data Handling

77
7
79
79
79
81
84
84
84
85
86
91
91
92

xiv

Contents

6.8 Workflow for Model Storage

6.9 Experimentation and Results

6.10 Summary

7 Conclusion

7.1 Summary
7.2 Future Directions
References

List of Figures

1.1
1.2
1.3

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1

4.2
4.3
4.4
4.5

4.6

4.7
4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15

Execution mechanism within an IoT network. 1
Architecture for the edge-cloud continuum. 4
Structure of the thesis. o L 11
Categorisation of the literature review performed in this thesis. 13
Architecture for the task allocation framework. 24
Interaction between robot, FSU, and cloud node in the agricultural field. . . 26
Weed image: (a) original (b) blurred (c) black patched. 33
Average inference time on full models. 36
Average inference time on lightweight models. 36
Average inference time on 2 platforms. 37
Effect on completion time with change in signal quality. 38
Effect on completion time with change in accuracy. 38
Effect on accuracy with change in signal quality. 38

Architecture for the proposed load balancing framework. Private nodes

(red links) available in high-security zone handle sensitive tasks and shared

nodes handle less restricted tasks on the public network. 42
Load distribution of tasks in the agricultural field. 45
Three sample images from the DeepWeeds dataset. 47
SFC for global, local, and prediction workflow. 47

Correlation between dynamic k-value and average execution time of the
function. 55
Model tuning for public network access. Robot encrypts and generates
HMAC and Fog Nodeg manages decryption and verification. 56
Utilising Parsl for pipelining and orchestrating the execution of workflow. . 61
The execution of a service function at a process node, with completion times
taking account of MTTF and MTTR. 63
When the task execution time exceeds its MTBF, it will cycle repeatedly.
At each MTTR interval, the operation halts and then resumes until MTTF

isreached. 63
Global workflow evaluation on Parsl platform. 65
Global workflow evaluated on OpenWhisk platform. 65
Local workflow evaluation on Parsl platform. 66
Local workflow evaluation on OpenWhisk. 66
Prediction workflow evaluated on Parsl. 67
Prediction workflow evaluated on OpenWhisk. 67

XV

xvi List of Figures
4.16 Global workflow evaluation on Parsl platform (with Gaussian Distribution). 71
4.17 Global workflow evaluation on OpenWhisk platform (with Gaussian

Distribution). 71
4.18 Local workflow evaluation on Parsl platform (with Gaussian Distribution). . 71
4.19 Local workflow evaluation on OpenWhisk platform (with Gaussian

Distribution). L 72
4.20 Prediction workflow evaluation on Parsl platform (with Gaussian

Distribution). 72
4.21 Prediction workflow evaluation on OpenWhisk platform (with Gaussian

Distribution). 72
4.22 Global workflow evaluation on Parsl with heterogeneous nodes. 73
4.23 Global workflow evaluation on OpenWhisk having heterogeneous nodes. . . 73
4.24 Local workflow evaluation on Parsl platform having heterogeneous nodes. . 74
4.25 Local workflow evaluation on OpenWhisk with heterogeneous nodes. 74
4.26 Prediction workflow evaluation on Parsl platform with heterogeneous nodes. 74
4.27 Prediction workflow evaluation on OpenWhisk having heterogeneous nodes. 75
5.1 An overview of our proposed methodology. 78
5.2 Solution encoding for layer selection. L. 81
5.3 Visualisation of the data and its corresponding class activation heatmap for

identified labels. 82
5.4 Total execution time with different percentages of trainable layers. 87
5.5 Accuracy benchmarks on DeepWeeds dataset for model training. 88
5.6 Change in model accuracy with features retained above the threshold. . . . 88
5.7 Effect on model training time with features retained above the threshold. . 89
5.8 Change in model size with features retained above the threshold. 90
6.1 An architecture for data handling in serverless platforms. 96
6.2 Proposed workflows for data handling. 100
6.3 Encoding time for different RS configurations. 102
6.4 Decoding time for different RS configurations. 102
6.5 Encoding, Decoding, and Preprocessing time. 103
6.6 Effect on preprocessing time and data size after applying our data storage

mechanism. 104

List of Tables

21

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

5.1

5.2

Comparison of various studies focusing on ML workloads, security, load

distribution, and task management in edge-based IoT applications. 18
Model accuracy with and without noisy images. 33
Time for training 1 epoch on 1 image. 34
Concurrent ML inferences on the edge node. 34
Concurrent ML inferences on the FSU. 35
Simulation Parameters. Lo oo 35
Symbol Table for the problem formulation. 51
Performance readings for Parsl and OpenWhisk functions. 59
Summary of the simulation parameters. 64
Average additional time on Parsl and OpenWhisk. 68
Evaluating SHIELD framework with 5x and 20x task load.. 73

Power consumption (watts) of models during training (one epoch) with
different percentages of layers trainable. 87
Power consumption (watts) of models after pruning with different

percentages of retained features. oL 90

xvii

xviii List of Tables

Chapter 1

Introduction

The chapter presents an overview of the Internet of Things (IoT), edge-cloud continuum
architecture, and associated services with them. It also highlights the necessity for
enhancing and improving the performance of intelligent IoT applications using edge and
cloud resources, considering the rise in data volumes and computational demands of

real-life applications.

1.1 Internet of Things

The IoT is a vast network of devices that are connected to the internet where each
node is capable of collecting and sharing data across a network without requiring direct
human-to-human or human-to-machine interaction. This network integrates various types
of objects embedded with electronics, software, sensors, actuators, and connectivity to
enable the exchange of information with other devices and systems [1]. These devices can
range from smart home appliances to sophisticated industrial machines.

IoT networks have the ability to enhance operational efficiency, improve human
decision-making, and increase the value of services through automation and data
integration. The primary element of an IoT network is a sensor that gathers data from
the nearby environment. This data can include everything from temperature readings to
complex changes in the air, depending on the sensor and its purpose. Once collected, the
data is sent to computing devices located closer to the IoT nodes, which pre-process the
data to reduce latency and network congestion [2]. After initial processing or computation,
the data can be sent for further analysis and storage, enabling more comprehensive data
management and task execution. Figure 1.1 below shows the mechanism for handling

tasks and data within an IoT infrastructure.

v

-y srad e s

A 20) 7 G=l

& ° 1
‘) =N !

sensors connectivity processing user experience

l A
__________ J N

Figure 1.1: Execution mechanism within an IoT network.

The growth of IoT has been rising exponentially, leading to a surge in the number of
connected devices in IoT infrastructures. Each year, billions of new devices are connected

which generates large volumes of data very rapidly. This rapid expansion is largely driven

2 Chapter 1. Introduction

by the decreasing cost of sensors and connectivity hardware, as well as the increasing
availability of computational resource nodes [3]. The data produced by connected devices
is also becoming a critical element for businesses and governments as they can use it to
make more informed decisions, optimise operations, and predict future market trends.

However, the huge amount of generated data also presents significant challenges that
necessitate innovative approaches for efficient IoT management. As the number of
connected devices continues to grow at a rapid pace, the volume of data they produce
is enormous and continues to increase exponentially. This large amount of data requires
sophisticated strategies for storage, processing, and analysis to ensure it can be used

effectively and efficiently used within task execution infrastructures [4].

1.2 Edge-Cloud Continuum

In order to handle the large amount of data, the traditional approach for computation is
cloud computing. It is a form of computing that relies on shared computing resources
rather than having local servers or personal devices for handling the execution of
applications. It offers a variety of services such as servers, storage, databases, networking,
software, analytics, and intelligence over the internet to enable faster innovation, flexible
resources, and economies of scale. Cloud computing is known for its high availability,
ensuring that services are accessible nearly 100% of the time from anywhere in the world.
This is highly important for services that require continuous uptime in applications [5].
They also have rapid deployment capabilities which allow organisations to launch
applications and services easily while minimising the initialisation time. Moreover, the
cloud providers manage the maintenance and service updates, which reduces the burden
of managing I'T operations, allowing them to focus more on features and strategic actions
of the application.

However, the adoption of cloud computing also introduces several challenges. High latency
is a significant issue, particularly for applications requiring real-time processing, as data
travels to and from the cloud servers which usually causes delays. Security vulnerabilities
are another critical concern; despite robust security measures by cloud providers, the risk
of data breaches and other cyber threats persists due to the external management of data.
Vendor lock-in is another drawback where owners may find it difficult and costly to switch
providers once they have committed to one, due to compatibility issues and contractual
limitations [6]. Additionally, cloud computing also relies heavily on internet connectivity,
and any instability in the connection can disrupt access to services, potentially leading to
significant operational delays and losses.

To handle these primary challenges associated with cloud service providers, edge
computing provides another computational approach. It is a distributed computing
paradigm that improves processing by bringing computation closer to the data source.
This approach is fundamentally distributed as it utilises numerous edge devices to handle

computations locally. This decentralisation helps reduce the distance data or tasks traverse

Chapter 1. Introduction 3

and significantly minimises latency and bandwidth. It also improves the privacy and
security of data by retaining it at the edge (much closer in comparison to centralised
data centres). Edge computing also offers robust support for mobile environments where
connectivity might be intermittent [7]. Mobile devices, vehicles, and other moving entities
can also maintain operational effectiveness by processing data locally, ensuring that they
continue to function efficiently irrespective of the network status of a central server.
However, edge computing comes with its own set of challenges. The devices used at the
edge typically have limited computational power and storage capacity, which might restrict
the complexity of tasks they can handle and require fallback to more powerful central
computing resources for more demanding processes. Additionally, managing an edge
computing infrastructure introduces significant complexity due to the need to coordinate a
vast number of diverse devices and technologies [8]. This setup involves consistent updates,
security management, and maintaining connectivity across heterogeneous devices, which
can complicate standardisation and broad-scale deployment. Despite these challenges, the
strategic advantages of edge computing — particularly its capacity for low latency and
enhanced local processing — continue to drive its adoption in fields requiring quick, local
data processing and decision-making.

To handle the challenges associated with both cloud and edge computing, a popular
approach is to utilise the edge-cloud continuum for executing tasks. The edge-cloud
continuum represents a transformative approach in computing that takes the distinct
advantages of each approach, optimising data processing and storage across a continuum
from the data source to the cloud. The continuum allows data to be processed at the most
appropriate location depending on the performance, cost, and efficiency considerations,
selected specifically based on the needs of each application. The edge-cloud continuum
offers a dynamic and flexible approach to data processing for modern applications,
balancing the need for rapid response capabilities at the edge with the powerful processing
and analytic capabilities of the cloud. This integrated approach is particularly well-suited
to the demands of modern IoT applications in smart cities, healthcare etc, where diverse

data processing needs a versatile and adaptive solution.

1.3 Architecture for Edge-Cloud Continuum

The architecture of the edge-cloud continuum is designed to leverage both the localised
processing power of edge computing and the large resource pool of cloud computing. This
hybrid architecture ensures that data is processed efficiently, quickly, and at the scale
required by modern IoT applications [9]. The architecture typically comprises multiple
layers where each layer serves a specific function in the continuum from data generation
to actionable insights. Figure 1.2 shows an architecture for edge-cloud continuum which
can be used for executing IoT applications.

The first layer of the architecture is an end-user layer, which consists of the physical devices

and sensors that initially capture data. This layer is the closest to the physical world

4 Chapter 1. Introduction

and includes a wide array of IoT devices like cameras, environmental sensors, wearable
devices, and industrial machines. The primary role of these devices is to perform basic data
collection and preliminary processing. They can filter and pre-process the data to reduce
the volume that needs to be transmitted to higher layers, addressing issues of bandwidth

and communication latency effectively. Once the data is preprocessed and filtered, it is

o Cloud Node
1. |
& — W Tier-2 FN

forwarded to the next layer for execution.

Tier-1 FN

Y - 2 9@ Sensors
l_l_J: - 0 .\ "% Actuators
- - AR, : End-users

Figure 1.2: Architecture for the edge-cloud continuum.

The middle layer is the fog layer which acts as an intermediary between the edge nodes
and the cloud, providing additional processing resources closer to the edge of the network.
This layer facilitates more complex processing that may not be feasible at the edge due
to resource constraints but still requires lower latency than cloud processing. This layer
can manage tasks like advanced analytics, longer-term data retention, and more detailed
real-time processing, distributing these tasks more efficiently across the network. It is
also possible to have multiple hierarchies within this fog layer, such that each higher layer
can have higher computational and storage capacity whereas the lower layers have better
response time and lower execution delay. At the top of the hierarchy is the cloud layer,
which provides powerful computational resources and massive storage capabilities. This
layer is ideal for execution that requires intensive computation or involves vast amounts
of data that need long-term storage. The cloud can perform complex analytics, machine
learning model training, and comprehensive data mining tasks. Data that requires no
immediate action but is valuable for historical analysis, pattern recognition, and predictive

analytics is typically handled at this layer.

1.4 Integrating ML, AI with Edge and Cloud

Integrating Machine Learning (ML) and Artificial Intelligence (AI) with both edge and

cloud computing has transformed the way data-driven insights are generated and utilised

Chapter 1. Introduction 5

by creating a more responsive and intelligent network infrastructure. This integration
utilises the strengths of ML and AI to enhance the capabilities at the edge-cloud
continuum, enabling smarter decision-making processes and more efficient operations
across various sectors [10].

At the edge level, ML-AI integration focuses on real-time data processing and immediate
decision-making. Since edge devices operate close to the data sources, they are well
positioned to implement ML models that require quick responses, such as facial recognition
systems, threat detection in farms, immediate traffic flow optimisation, or predictive
maintenance sensors on industrial equipment. These applications benefit from the low
latency provided by edge computing, as they often need to function in near real-time
without the delay that would come from sending data to a distant cloud server. However,
edge devices typically have limited computational power and storage capacity, which
restricts the complexity of the ML models they can deploy. To address this limitation,
simplified or compressed versions of models are often used at the edge, derived from more
complex models trained in the cloud [11]. This approach allows edge devices to execute
Al-driven tasks efficiently, using models that are periodically updated and refined in the
cloud.

The cloud layer also has a crucial role in this integrated setup by providing the resources
necessary for more intensive ML tasks, such as training large-scale models and performing
complex analytics that are not time-sensitive. The cloud's powerful computational
capabilities and vast storage options make it ideal for handling high-load AI tasks,
including large language models (LLMs), deep learning models, and large-scale data mining
frameworks. These tasks benefit from the cloud's ability to aggregate and analyse data
collected from multiple edge devices, enabling more comprehensive insights and model
improvements.

Moreover, this integration requires continuous management and coordination to ensure
that AI models are deployed effectively across the network [12]. These layers handle
model updates, data synchronisation, and resource allocation, ensuring that ML tasks are
carried out efficiently and securely, balancing between edge and cloud based on specific
application needs and network conditions. Integrating ML, Al with edge and cloud
computing not only enhances operational efficiencies but also opens up new possibilities
for innovation in fields ranging from autonomous driving and smart cities to healthcare
and industrial automation. This dynamic cooperation of computing and Al technologies
can be foundational in designing the next generation of smart, connected IoT applications

for our everyday requirements.

1.5 IoT Applications Utilising Edge and Cloud

The integration of IoT with the edge-cloud continuum can improve various industries
by enabling more efficient, responsive, and intelligent applications. These applications

leverage the strengths of both edge computing for real-time execution and cloud computing

6 Chapter 1. Introduction

for intensive data analysis. Several key applications in IoT utilising the edge-cloud

continuum are as follows:

e Healthcare Monitoring System: In the healthcare sector, IoT devices utilise
edge computing to monitor patient health metrics in real-time. Wearable devices
can track vital signs like heart rate and blood pressure, and edge devices can process
this data immediately to detect anomalies. This setup allows for prompt medical
responses, potentially saving lives in emergency situations. The cloud nodes can
aggregate patient data over time, providing improved health analytics, research, and

personalised medicine by analysing trends and improving diagnostic algorithms [13].

e Smart Cities: IoT applications in smart cities [14] make extensive use of edge-cloud
architecture to enhance urban management and quality of life. Sensors and IoT
devices deployed throughout a city can monitor traffic flow, air quality, and energy
usage in real-time. At the edge, data is processed locally on roadside units to
enable immediate responses, such as adjusting traffic lights, optimising traffic flow,
or triggering alerts for pollution control. More comprehensive data analysis and
planning tasks are handled in the cloud, facilitating long-term urban planning and

resource management.

e Precision Agriculture: IoT devices are used extensively in the agriculture sector
to monitor soil conditions, crop health, yield prediction, and weather conditions.
Sensors can provide immediate data to edge nodes, which can process the information
to give real-time feedback to actuation systems and optimise resource usage [15].
Cloud computing contributes by analysing seasonal data and longer-term trends
to assist in crop planning, disease prevention strategies, and yield optimisation
techniques. Moreover, in rural agricultural environments where network connection
is inconsistent and unreliable, edge-cloud infrastructure can play a very crucial role.
It can provide local resources for computation and storage along with better security

and reliability.

e Industrial Automation: IoT in industrial automation relies on the edge-cloud
continuum for monitoring and optimising manufacturing processes [16]. Sensors
on machinery can detect operational anomalies or inefficiencies and process this
information at the edge to make immediate adjustments or shut down equipment
if a malfunction is detected. Meanwhile, data collected across the devices deployed
in a factory can be sent to the cloud for predictive maintenance, overall efficiency

improvements, and integration with enterprise resource planning systems.

e Autonomous Vehicles: Autonomous vehicles are equipped with numerous sensors
that generate vast amounts of data crucial for safe operation on the roads. Processing
this data on the edge allows for immediate decision-making essential for navigation
and obstacle avoidance. The cloud plays a role in updating navigation maps,

sharing traffic, music library, weather updates, and improving algorithms based on

Chapter 1. Introduction 7

aggregated data from multiple vehicles, enhancing the overall execution and safety

of autonomous driving systems [17].

1.6 Challenges in Edge-Cloud Infrastructures

Deploying IoT applications within the edge-cloud continuum presents several significant
challenges that can impact the efficiency and effectiveness of formulated systems. A few

of the critical challenges are as follows:

e Limited connectivity is a major challenge in rural or remote environments where
network infrastructure is often insufficient. This constraint restricts the ability of
ToT devices to communicate effectively with edge or cloud servers, limiting real-time
data processing and decision-making capabilities [18]. As connectivity is crucial for
the operation of IoT systems, any inconsistency or interruption can degrade the

performance and reliability of the entire IoT ecosystem.

e Variable load distribution is also challenging in IoT applications due to the dynamic
nature of IoT data generation and consumption [19]. For instance, certain events or
times may trigger high volumes of data traffic, which can over-utilise the system if
not managed properly. This variability can cause performance bottlenecks, especially
when the infrastructure is already under strain, and can complicate the management

of resources across the network.

e Efficiency in resource allocation is crucial in environments where resources are
inherently limited and expensive. Edge computing devices, while beneficial for
processing data locally and reducing latency, often have less computational power
and storage capacity compared to centralised cloud data centres [20]. Efficiently
utilising these limited resources, while ensuring optimal performance across the
IoT network requires careful management and can be a complex task to achieve

consistently.

e Deployment of Al and ML tasks in IoT applications introduces additional
complexities. As the volume and complexity of data generated by IoT devices grow,
deploying advanced AT and ML models becomes more challenging [21]. These models
often require significant computational resources for training and inference, which
might not be readily available in edge scenarios. The large size of modern Al models
also poses a challenge, as they need to be accommodated within the constraints of

the available infrastructure.

e Optimising ML operations to run effectively on resource-constrained edge nodes
is another issue in IoT-based infrastructures [22]. Traditional AI models and
operations are designed for environments with an abundance of computational

resources. Adapting these to work efficiently within the limitations of edge

8 Chapter 1. Introduction

computing environments requires significant modifications and optimisations, which

can be a complex and time-intensive process.

e Data management in edge-cloud environments involves handling the storage,
processing, and security of large volumes of data. Managing this data effectively
is critical for performance but becomes challenging as the data is distributed across
a multitude of devices and locations [23]. Ensuring data integrity, privacy, and timely
access in such a distributed setup is a critical task that requires sophisticated data

management strategies.

1.7 Research Objectives of the Thesis

The thesis aims to explore the fundamental challenges associated with deploying and
managing ML and Al based IoT applications on edge-cloud infrastructures. 1 have
evaluated the specific aspects of IoT systems to improve the overall resilience, efficiency,
and effectiveness of the edge-cloud infrastructures. To achieve this, the following research
objectives have been considered:

How can I enhance the resilience of task placement in IoT applications where
network connectivity is limited and the edge-cloud infrastructure is unreliable?
Execution resilience in this context refers to the system's ability to maintain operational
stability and performance despite disruptions or poor network conditions. The aim is to
develop a technique that allows IoT tasks to be dynamically adjusted and optimally placed
within a network of edge-cloud nodes. This includes exploring how tasks can be efficiently
allocated or handled locally when connectivity to a central server or cloud is unavailable.
Can I develop a mechanism for distributing the IoT based task load on
edge computing nodes without compromising the performance or resource
utilisation? This research question explores the design of a mechanism that optimally
distributes the workload among available edge computing nodes. The method aims to
ensure that no single node is over-utilised by demands, which could compromise both
performance and resource utilisation. The challenge is to achieve a balance that maximises
the efficiency of resource use while maintaining or enhancing the performance of IoT
applications. This involves creating adaptive algorithms that can adjust in real time to
changes in the network or application demands, thereby maintaining a balanced operation
across the network.

Is there an approach to improve the execution and deployment of ML and Al
operations in IoT based applications? This question addresses the improvement while
executing machine learning and artificial intelligence operations within IoT frameworks.
As ToT devices generate vast amounts of data, efficiently processing this data to extract
valuable insights becomes a critical factor. My aim is to explore new methods which
optimise ML and AT algorithms for better suitability in IoT setups, particularly focusing on
minimising latency, reducing computational overhead, and ensuring that these operations

can run effectively even on computationally limited edge computing devices.

Chapter 1. Introduction 9

How can I improve the storage and access of data, ML model files in IoT
based applications in case any loss or failure occurs? The research question seeks
to enhance the management of data, specifically for ML and Al based tasks within IoT
applications operating on edge-cloud infrastructures. Effective data management is crucial
for maintaining the performance of IoT systems, which includes ensuring data integrity,
minimising latency in data access, and optimising storage across a distributed network.
The aim is to explore techniques for improving data synchronisation and accessibility,
ensuring that data is efficiently available to support advanced analytics and real-time

decision-making processes.

1.8 Primary Contributions
The main contributions of the thesis are as follows:

e Propose an architectural framework for a real-time image classification problem with
intermittent network connectivity. This problem is then mapped to a weed detection
use case — widely considered significant in precision agriculture. To demonstrate the
efficacy of our conceptual architecture, two ML models based on ResNet-50 and
MobileNet V2 have been trained for identifying weeds, using images captured from a
robot mounted camera. Light versions of these two models have been generated
respectively using the model quantization technique. A rule-based algorithm is
also formulated for decision-making, taking into account where to perform this

classification: locally or remotely.

e Formulate a security-aware load balancing framework for edge infrastructure that can
be used to support rural environments. The infrastructure is designed to distribute
computational tasks across multiple resources while also ensuring data privacy
and confidentiality. Our framework divides the tasks into independent categories:
restricted and public. These tasks are allocated to two different resources: private
and shared, based on security requirements and load characteristics of the node. A
two-function heuristic pipeline is designed to make the resource allocation decision
for each task, taking account of factors that have a direct influence on execution
performance. Completion time, waiting time, failure rate, resource utilisation,

security, and management overhead are the key factors used during evaluation.

e Design two distinct methodologies that enhance the efficiency of ML operations in
IoT applications — The first method aims to reduce the computational demands
associated with backpropagation by systematically freezing certain layers of the
neural network. This involves fixing the parameters of selected layers to prevent
them from updating during training. The primary objective is to cut down on the
time required for both the current training session and any subsequent adjustments
to model in the future. Another method focuses on refining the architecture of an ML

model by adjusting its parameter count. This strategy uses an automated process to

10 Chapter 1. Introduction

identify and prioritise the most significant parameters for a specific dataset on which
it is trained. Subsequently, parameters that are found less critical are eliminated
from the model through a pruning procedure. This approach enhances the overall
efficiency of ML operations for both the training and inference phases, by reducing

the model's complexity.

e Presents an approach for managing the distribution, storage, and access of
substantial amounts of data generated by IoT devices within ML and edge computing
environments. The designed method focuses on data reduction at the source,
standardising formats for compatibility, efficient data compression, and replication
techniques, using the Reed-Solomon erasure coding technique. The aim is to focus
on balancing storage efficiency with network and processing demands. It enhances
efficiency by storing the static structure of the ML model separately from its dynamic
parameters. A single instance of the model's static structure is maintained, and
marita coding is applied to the frequently updated parameters. This approach
minimises redundancy and storage requirements, ensuring reliable protection of

dynamic data elements against data loss.

1.9 Structure of the Thesis

The thesis has been organised in the following chapters: Chapter 1 describes the
introduction to IoT and provides an overview of the edge-cloud continuum architecture.
It also highlights the challenges associated with edge-cloud infrastructures while
deploying IoT applications and identifies the research objectives that could improve their
performance. Chapter 2 provides the details about existing work done in the domain of
performance enhancement in edge-cloud frameworks. Chapter 3 explores the allocation
of tasks within an edge-cloud infrastructure, which is crucial for optimising the execution
and scheduling of tasks in IoT applications. The focus is on addressing specific challenges
such as inconsistent internet connectivity, communication delays, and network service
disruptions, which significantly impact the performance and reliability of IoT systems.
Chapter 4 takes the discussion to design a security-aware load balancing framework
specifically designed for edge based infrastructure, with an emphasis on enhancing support
for rural environments. Chapter 5 explores the impact of Al task execution on IoT
based environments. Optimising Al and ML based tasks hold immense potential for
revolutionising various industries and domains. By leveraging optimisation techniques and
methodologies, significant improvements can be achieved in terms of efficiency, scalability,
and performance of the frameworks. Chapter 6 explores the aspect of data management
where a substantial amount of data is generated in IoT applications utilising ML, AI, and
edge-cloud serverless environments and is prone to failure or data loss. Finally, Chapter 7
provides the conclusion of thesis and scope for future work. Figure 1.3 below graphically

shows the organisation and structure of this thesis.

Chapter 1. Introduction 11

Motivation, and

Chapter 1:
Introduction, Challenges,
Contributions

\ 4
Chapter 2:
Background, Scope of work,
Existing Work
\ 4
Chapter 3:
Allocating Tasks in Edge-
Cloud Infrastructure
\ 4
Chapter 4:
Load Distribution in Edge
Computing Infrastructure
Y
Chapter 5:
Optimising ML Operations
for [oT based Framework
\ 4
Chapter 6:

Data Management in Edge-
Cloud Framework

\ 4

Chapter 7:
Conclusion and Future Scope
of the Work

Figure 1.3: Structure of the thesis.

12

Chapter 1.

Introduction

Chapter 2

Literature Review

This chapter provides a comprehensive description of existing literature and research
towards the performance enhancement of intelligent IoT-based applications and tasks
within the edge-cloud continuum. It also highlights the research efforts towards
designing the applications using edge computing infrastructures. The categorisation and
organisation of the literature review performed in this thesis is shown below in Figure 2.1.
The affordability and easy availability of Single-Board Computers (SBC) like Raspberry Pi,
Nvidia Jetson (nano), or Google Coral have made it possible to deploy on-field distributed
intelligent environments. This rapid growth in affordable IoT and edge-cloud systems
has resulted in the wider deployment of such systems in everyday applications. IoT
infrastructures generally interconnect a diverse set of devices having sensors and actuators,
that utilise communication protocols to exchange and collect data from end-users [24].
Edge and cloud computing [25] provides a task execution framework that critically handles
processing and data communication for IoT based tasks. It enables processing of data at
the network edge along with a central cloud node [26]. This results in faster response
times, higher quality of service and improved security compared to traditional centralised
servers [27, 28].

Adaptive Edge and Cloud Frameworks

—>» Architecture

loT Tasks

—>» Aland ML

Intelligent loT Applications using Edge-Cloud

Task Offloading and Resource Allocation

|
dovd

Security and Privacy

Literature Review

Al and ML Deployment on Edge and Cloud

|
It

1
|
J
J
|
]

!

loT Data Data Management in Edge-Cloud

Figure 2.1: Categorisation of the literature review performed in this thesis.

2.1 Adaptive Edge and Cloud Frameworks

Nvidia Jetson and Raspberry Pi are now widely used to support edge-based Al

computing. Dependable use of these devices requires addressing operational issues such

14 Chapter 2. Literature Review

as inconsistent internet, communication delays, and service disruptions — that require
proactive strategies [20]. Li et al. [29] propose an adaptive resource allocation method
for edge-cloud based clusters that can reduce the service cost by adjusting the billing
mechanism of resources. By evaluating the impact of shrinking resources and integrity
of the data, the blocks of data on the shrink node can be migrated to other available
resource nodes in the cluster before they are released. An optimised placement model for
resources is designed as a data migration technique in this approach. Fault tolerance is
also a crucial requirement in IoT enabled robots, especially as they need to be operated by
non-experts. Researchers have extensively focused on fault-tolerance across platform and
infrastructure layers, such as the use of self-adaptive systems which provide quick backups
and reduced recovery times [30]. Other methods like the greedy nominator heuristic
ensure service reliability through service replication [31, 18] in the framework. With
the rising demand for AI in rural environments, applications require support for fault
tolerance to ensure performance and efficiency in most IoT applications. Recent literature
highlights advancements in weed detection and robotic weed management in agriculture,
such as studying weed classification using AI [32] or adapting to rural infrastructure to
securely train an AT model [33]. However, literature addressing infrastructure unreliability,
especially in rural farming areas [20, 34] is limited. Even though researchers are working
on optimising machine learning inference to reduce costs [35], delays [36, 35], and balance

workload [36], they often lack solutions designed for IoT settings in rural areas.

2.2 Task Offloading and Resource Allocation in Edge and
Cloud Systems

The rapid advancement of IoT and its applications has rapidly increased the need for
real-time processing and advanced computation on end-user nodes or devices. Despite
the increasing power of computing technologies, IoT devices often struggle to fulfil the
increasing demands of these applications [37]. To overcome the constraints related
to computation, storage, and battery life in IoT devices, computationally heavy tasks
can be shifted to nodes having more resources, such as those found in cloud or edge
environments. Cloud computing is a well-established infrastructure that supports this
offloading of tasks on remote nodes [38]. Cloud computing offers the significant advantage
of providing self-availed service and network access to these resources, irrespective of
the user's location [39]. This technology facilitates widespread network access to remote
resources and has seen broad application and growth alongside the expansion of cloud
computing [40].

Various studies have used cloud computing to address large-scale computational challenges.
For instance, Sun et al. [41] tackled the task offloading issue in vehicular clouds by creating
a learning algorithm that minimises offloading delays based on historic latency data.
Chen & Hao [42] explored task offloading in ultra-dense networks using software-defined

networks to optimise task execution times and conserve battery life. Similarly, another

Chapter 2. Literature Review 15

work [43] introduced a localised cloud computing model within the IoT setup, enabling
the creation of ad-hoc cloud nodes through nearby computing devices for task offloading.
Cloud computing also facilitates data-intensive research; Langmead & Nellore [44] utilised
it for genomics data analysis, handling vast, stored sequencing data sets that require
extensive computing resources. However, despite its many benefits, cloud computing
can introduce significant communication delays, which can be challenging for emerging
time-sensitive applications due to its centralised and remote infrastructure [38]. Bermejo
et al. [45] have also highlighted some limitations of cloud computing, such as the challenges
associated with processing location independence in specific networks like IoT and sensor

networks, where real-time processing is essential.

With the increasing demand for time-sensitive applications and the rising volume of
data, there's a need to position our resource nodes closer to where data is generated
and processed. Edge computing has emerged as a solution to this challenge, offering
computational and storage computing capabilities at the network's edge, closer to end
devices. This setup not only reduces the bandwidth usage of primary cloud networks by
allowing local offloading of tasks but also minimises latency, enhances energy efficiency,

and provides robust computing power for demanding tasks [38, 37].

In recent years, methods such as fog computing, mobile edge computing, and cloudlets
have been developed to operate at the edge of the network. Despite different naming,
these approaches function as an intermediary layer between end-users and the cloud,
offering quick access to storage, processing power and reducing the delay. Numerous
studies have considered edge offloading, especially for applications sensitive to execution
delays. Naouri et al. [46] proposed a three-tier offloading architecture, where tasks are
offloaded based on their computational and communication needs to minimise delays.
Meanwhile, traditional IoT systems, especially those handling multimedia, face significant
challenges due to bandwidth constraints. Work done by Long, Cao, Jiang, & Zhang [47]
addressed this by designing an edge-based architecture that groups video data to enhance
the accuracy of human detection within a strict time frame. Similarly, Zhang et al. [48]
explored an edge-computing framework using Unmanned Aerial Vehicles (UAVs), allowing

these UAVs to process time-critical tasks for IoT devices efficiently.

However, as edge servers become overloaded with requests, they may struggle to process
all tasks immediately. This can potentially lead to delays beyond the tolerable limits
for ToT devices [49]. In such scenarios, a combination of edge and cloud resources can
be more effective, ensuring tasks are completed within acceptable time limits even when
the computational load is high. This integration between edge and cloud computing has
been the focus of various research efforts aimed at optimising latency across networks.
[50] and [51] studied how to jointly allocate communication and computation resources in
systems that integrate edge and cloud computing. This collaborative approach extends
to processing tasks not just at the edge or cloud servers, but also directly on the mobile
end-user devices. Moreover, Hao et al. [52] introduced an offloading framework that utilises

a cognitive engine to manage resources across three layers: the end device, edge-cloud, and

16 Chapter 2. Literature Review

remote-cloud. This system effectively uses resources and processes tasks from intelligent

applications, optimising the overall operation and response times.

2.3 Intelligent Applications using IoT, Cloud, and Edge

Chen et al. [53] introduces a novel approach towards a resource-efficient edge framework for
emerging intelligent IoT applications, including ad hoc networks for precision agriculture,
e-health, and smart homes. The framework focuses on maximising resource efficiency by
facilitating optimal task offloading among the local device, adjacent edge nodes, and the
nearby cloud node. This ensures that computationally demanding tasks are supported
effectively across the network. The use of robotics in agricultural applications has also
revolutionised farming practices with precision tasks, automated crop management and
data-driven decision-making processes [54]. A multi-robot system usually operates in a
centralised or decentralised control setting [55]. A centralised strategy is proposed by
Conesa-Munoz et al. [56], that involves administering the workflow of a designed system
from a primary base station. The robotic assembly may consist of either aerial or terrestrial
vehicles. The complete integration of these platforms allows the execution of autonomous
operations in outdoor environments. On the contrary, for decentralised cooperative control
of heterogeneous robotic nodes, Dimakos et al. [57] illustrated the interaction of multiple
mobile agents comprising a group of unmanned aerial and ground vehicles that allows
collaborative operation of drones in a parts delivery scenario to enable the operation of
the factories. Ground-based navigation is further adapted to align with the centroid of the
group by utilising a Lyapunov-based optimisation approach. Another work [58] introduces
a smart system for home environments that administers the various nodes and services
within these settings. It activates or deactivates them according to predicted patterns
of a user's service usage. This system is designed to enhance the outcomes of a deep
learning classification model, particularly while the algorithm continues to learn from user

interactions.

Patros et al. [59] propose a solution for rural agricultural challenges of weak connectivity
and high latency. Their framework utilises a serverless framework to facilitate federated
learning tasks in rural applications. The task requirements are specified by analysing the
major challenges in rural agriculture communities of New Zealand. A rural-Al system
for pasture weed detection is considered as the proof-of-concept for demonstration and
evaluation in this work. Another work by Almurshed et al. [60] examined the ways in
which edge-cloud computing can be utilised to address the reliability challenges in rural
areas. A self adaptive system using an optimisation strategy called the greedy nominator
heuristic is proposed that manages the allocation of federated learning tasks in a rural
setting. These approaches yielded effective outcomes and provided efficient allocation of
tasks. However, in order to optimally utilise all the available resources at the edge layer,

load balancing and distribution also play a crucial role.

Chapter 2. Literature Review 17

2.4 Load Distribution on Edge and Cloud Nodes

Naas et al. [61] proposed a graph partitioning-based data placement strategy for fog
infrastructures. It uses a divide and conquer heuristic approach for splitting the allocation
problem into sub-parts. The proposed solution reduced the task placement latency and
provided a flexible, scalable, less complex method for distributing tasks in a fog network.
Other researchers [62] describe a dynamic task offloading mechanism for a resource node
where a task can be deployed. Their work also analyses the optimal path for offloading
the task to remote fog nodes. The offloading problem is mapped to an Integer Linear
Programming model that considers factors such as energy consumption, network delay
and link utilisation while making the offloading decision in the framework. Oueis [63]
proposed an approach with an aim to enhance user's quality of experience by handling the
problem of load balancing in fog computing environments. They addressed the complex
scenario where multiple users require computation offloading, necessitating the assignment
of all requests through local computation cluster resources. A customisable algorithm for
fog clustering is designed that establishes small cell clusters with low complexity and
ensures optimised resource management. In another work, researchers [64] introduce a
method that handles the load distribution limitations by (i) incorporating load-balancing
capabilities directly into the soft network edge, such as virtual switches, which eliminates
the need for modifications in the transport layer, customer virtual machines, or network
hardware, and (ii) implementing load balancing using finely segmented, nearly uniform
data units that align with end-host offload techniques to support high-speed networking.
They developed and implemented this load balancing approach (named it Presto) and

assessed its performance on a 10 Gbps physical hardware testbed.

Due to the limited computational power of mobile devices (MDs) and the varied
and constrained resources of cloudlets, a three-objective model has been developed to
simultaneously optimise the time and energy consumption of MDs [65], as well as
the load balancing across cloudlets. The authors introduced an efficient method for
multi-user, multi-application computational offloading in environments with multiple
cloudlets, utilising an enhanced version of the non-dominated sorting genetic algorithm
ITI. A brief comparative analysis of different load distribution approaches is shown below
in Table 2.1. Maia et al. [66] explore the idea of load distribution and service placement
using a multi-objective meta-heuristic algorithm. They utilised a concept of heuristic
initialisation that selects an initial population, with an aim to improve the efficiency
of the genetic algorithm. The method is designed to give priority to latency-sensitive
applications while simultaneously optimising conflicting objectives. These proposed
approaches outperform state of the art algorithms, however, there are other factors such
as security and failure risk that can still improve the performance of load balancing
and distribution systems. Table 2.1 below shows the comparison of factors considered

in existing approaches and our proposed approach SHIELD described in Chapter 4.

18 Chapter 2. Literature Review

Work ML ML Security Load Use-Case | Failure Serverless| Workload
Tasks Pipeline | Evaluation Balanced Examined | Fvaluation Management
[24] inference centralised | no yes smart city | no no nil
26 training distributed| no no industry no no nil
56 none none no yes agriculture | no no nil
[67] none none no yes UAVs no no lyapunov
analysis
[59] training, distributed| no no agriculture | no yes nil
aggregation
[61] none none no yes smart city | no no heuristic/graph
modelling
[62] none none no yes nil no no integer linear
program
[68] none distributed| availability no smart yes no greedy
traffic heuristic
[69] none none confidentiality,| yes nil no no nil
integrity
[70] none none no yes nil yes no formal
modeling
SHIELD | inference, distributed| confidentiality,| yes agriculture | yes yes meta
training, integrity, heuristics
aggregation availability

Table 2.1: Comparison of various studies focusing on ML workloads, security, load
distribution, and task management in edge-based IoT applications.

2.5 Security and Privacy in Edge-Cloud based Systems

Over recent years, loT-based systems have started to use ML and Al to improve the
efficiency and sustainability of our everyday applications. However, these mechanisms
also introduce new security risks and vulnerabilities. Vangala et al. [71] and Zanella et
al. [72] highlight the security challenges and issues in smart agriculture. They highlight
the importance of designing a comprehensive security infrastructure to support smart
agriculture. Wiseman et al. [73] also analyse the reluctance of farmers to share their
agri-data and how this is affecting smart agriculture. Another work [74] introduces
a framework that includes key security processes for cloud computing utilised in the
healthcare sector. This framework begins with collecting general information for security
management processes and identifies critical information security processes specifically for
healthcare organisations that utilise cloud computing, taking into account the principal
risks associated with cloud services and the types of information processed. The framework
aims to guide healthcare organisations in prioritising essential ISMS processes, helping
them to develop and maintain these processes despite resource constraints. He et al. [75]
conducted a comprehensive analysis of the potential for attacks and privacy protection
in edge-cloud collaborative systems. They develop a series of new attacks that enable
an untrusted cloud to retrieve any inputs entered into the system, regardless of the
attacker's access to edge device data, computations, or system querying permissions, and
secondly they empirically showed that traditional noise-adding solutions are inadequate
against their specified identified attacks leading them to propose two more robust defense

strategies.

Chapter 2. Literature Review 19

Researchers [76] also introduce an edge-based framework for data collection where raw data
from wireless sensor networks (WSNs) undergoes differential processing by algorithms on
edge servers to support privacy-centric computing. In this model, only a minimal portion
of critical data is retained on edge and local servers, with the remainder sent to the cloud
for storage. This approach offers dual advantages: firstly, it enhances data privacy by
ensuring that original data cannot be reconstructed, even if the data stored in the cloud
is compromised. Secondly, by adopting a differential storage strategy, the edge-based
model transmits less data to the cloud, thereby reducing communication and storage costs
compared to conventional methods. Recent developments in load distribution [66, 77, 78,
70] and security [79, 80] identify possible approaches for managing intelligent applications
in rural areas. However, existing research still lacks focus on security-aware load balancing
infrastructure which considers completion time, task security, load distribution, and failure
risks; especially relevant in a rural environment which is more prone to faults and has

limited resilience.

2.6 Challenges with AI Sustainability and IoT

In order to understand and analyse the problem of sustainable Al deployments, it is
crucial to examine the challenges described by researchers in this domain. The following
subchapters highlight the recent work done in the field and discuss their impact and

potential on sustainability.

Incorporating Al into the IoT provides high efficiency and intelligence to systems, enabling
devices to process data autonomously. This integration enables devices with the ability
to make decisions, optimise operations, and provide insights without direct or indirect
human intervention. However, utilisation of this potential requires overcoming significant
challenges, particularly in adapting Al technologies to the diverse environments where IoT
devices operate. Mhaisen et al. [81] provide a survey of recent techniques and strategies
designed for handling Al tasks in IoT applications. Another work [82] focuses on security
techniques based on ML describing how it can be used for enhancing security in IoT
systems. ML-based techniques for authentication, malware detection, offloading, and
access control are mainly focused in this work. Bu et al. [83] presents an agriculture
system for IoT that utilises Al and cloud computing for making smart decisions such as
determining the amount of water needed for irrigation on the fields.

As IoT networks expand, so do the computational, memory, and energy demands of Al
models used with them, necessitating innovative approaches to manage and reduce this
consumption. Larger Al models require very high computational power and memory,
leading to increased energy consumption during both training and inference phases. The
work by Canziani et al. [84] and Li et al. [85] analyses the trade-offs between model
size, performance, and energy efficiency; illustrating how larger models, while potentially

more accurate, can significantly have high energy consumption and prominent impact

20 Chapter 2. Literature Review

on the environment. The size of an AI model also affects its deployability in real-world
applications, especially in resource constrained environments. Large models may not be
feasible for deployment on mobile devices or in edge computing scenarios, where energy
efficiency is a critical performance factor. This limitation challenges the scalability of
AT solutions and their ability to be deployed sustainably across a diverse range of IoT
platforms [84].

Many efforts to create model architectures such as EfficientNet by Tan and Le [86, 87]
demonstrate the potential to reduce the impact of large Al models. These architectures
aim to maintain or improve performance while reducing the computational demands and
energy consumption, addressing the sustainability concerns associated with model size. Hu
et al. [88] explore a novel channel pruning method which can be used for compressing large
AT models. Another work [89] evaluates the efficiency of model compression within the
context of energy-efficient inference. Chen et al. [90] utilise the low-rank approximation
to eliminate the redundancy within filter and accelerate the deep neural network pruning
process. The researchers [91] proposed a mechanism which identifies the sensitive input
values that are highly correlated to the accuracy and applies the low-fidelity quantization
on non critical regions to boost the execution performance. Wu et al. [92] propose a
method based on dynamic gradient compression and knowledge distillation to execute the

federated learning tasks efficiently.

Along with optimisation, another crucial challenge is to extend sustainable Al development
beyond optimising model efficiency and training time to cover environmental and societal
impacts. This requires including sustainability in Al's lifecycle, adopting new optimised
techniques and cultivating a culture that prioritises sustainability, including transparent
reporting of environmental impacts and adopting energy-efficient practices. Addressing
the sustainability issues related to Al model training and size is vital for its performance
advancement, ensuring its societal benefits while minimising environmental damage. The
challenge, as illuminated in [93], revolves around designing machine learning models that
emphasis on model architecture and strategic size reduction highlights the importance
of ensuring efficiency during the early design stages of Al development, aiming for
high-performance AI methodologies that provide optimal operation within limited resource

conditions.

In deep learning, optimising models is important, particularly when considering the
computational cost of training, which is heavily influenced by floating-point operations.
Strategies such as quantization, pruning, and layer freezing can serve as important
approaches to mitigate these costs and enhance overall performance. A strategic
approach for reducing floating point operations (FLOPSs) involves converting data from
32-bit floating-point precision (float-32) to 8-bit integer precision (integer-8), followed
by performing critical operations in integer-8 and subsequently restoring the output to
float-32. This method effectively optimises computational efficiency and memory usage
while maintaining the accuracy crucial for deep learning tasks. The effectiveness of this

quantization approach has been thoroughly explored with machine learning frameworks

Chapter 2. Literature Review 21

such as TensorFlow, PyTorch — offering specialised tools to facilitate this process.

Based on the concept of computational efficiency, pruning is another strategy for refining
model's structure [94]. By targeting and removing less impactful parameters rather than
adjusting model precision, pruning enhances efficiency by focusing on the redundancy of
features. This technique maintains the model's integrity by emphasising on structural
optimisation instead of numerical adjustments of weights and biases. The pruning process
reduces the computational complexity, operational costs, and ensures a balance between
preserving model performance and achieving efficiency gains. Layer freezing, in addition
to quantization and pruning, allows a strategic selection to either train or freeze neural
network layers, impacting the learning process without altering any internal parameters.
This technique, often achieved through hyperparameter tuning, reduces the number of
calculations and FLOPs, thereby reducing computational load and energy consumption
of the models. Layer freezing improves training efficiency by allowing training of specific
layers and freezing rest of the layers, thereby presenting another approach for optimising
AT models.

2.7 Data Management in Edge-Cloud Frameworks

Distributed systems for storage are critical in managing the vast increase in generated data
by providing essential support for scalable and reliable data storage solutions [95]. The
integration of Erasure Coding (EC) into these systems is crucial for reconstructing the
missing data with some added redundant information [96]. It enhances the distribution of
data while reducing storage demands and improves durability, making it a highly effective
choice for large-scale storage infrastructures. It also surpasses traditional storage methods
by enhancing time efficiency, ease of use, and fault resilience. By distributing data across
several devices and creating redundant segments, EC maintains data integrity even when
individual devices or nodes fail, thus minimising the likelihood of data loss. Wang et al. [97]
analyse distributed storage systems and identify issues with replication and recommends
EC as a solution for occurring security concerns, data placement, transfer costs, and
the expenses associated with maintaining synchronised copies of data. Opara-Martins
et al. [98] utilise cloud technologies to manage large volumes of social media data by
proposing a multi-node OpenStack cloud system to deliver Hadoop as a service, facilitating
its integration within the OpenStack environment. Song et al. [99] introduces FACHS
(File Access Characteristics-based Hybrid Storage), a dynamic hybrid storage system that
enhances storage redundancy, parallel read/write performance, and storage capacity by
combining Reed-Solomon Code, multi-copy, and Locally Recoverable Codes (LRC) based
on file access patterns, thereby enhancing efficiency, speed, and overall storage utilisation
of the system.

Darrous et al. [100] compare replication and erasure coding algorithms in distributed
file systems, focusing on data availability and reliability. They address EC performance

challenges by proposing a buffering and merging mechanism to handle encoded

22 Chapter 2. Literature Review

I/O requests and by developing recovery strategies to tackle decoding issues in
EC-based distributed file systems. Abebe et al. [101] explore erasure encoding
techniques, particularly reed-solomon coding, to identify optimal parameters for reliable
and cost-effective storage systems, considering factors such as storage overhead,
data accessibility, and retrieval efficiency. Another work [102] present StreamLEC,
a fault-tolerant stream machine learning system that employs erasure coding for
low-redundancy proactive fault tolerance, enhancing performance in failure recovery and
reducing latency. Nachiappan et al. [103] proposes a recovery strategy using EC in data
centres to enhance reliability with minimal overhead, optimising data block selection for
proactive replication based on failure predictions leading to a significant reduction in

storage costs, network usage, and energy consumption.

Chapter 3

Task Allocation in Edge-Cloud

Infrastructure

This chapter introduce and explore the allocation of tasks within an edge-cloud
infrastructure, which is crucial for optimising the execution and scheduling of tasks in
IoT applications. I have considered the weed identification (image classification) task in

precision agriculture as an application use case in this chapter.

3.1 Weed Management Task in Precision Agriculture

With a rapid increase in global population, there is an ever-growing need to ramp up
sustainable food production. The Food and Agriculture Organisation (FAO) estimates
that healthy diets are still unaffordable to over 3B people across the world, and a majority
of these people are from low and middle income countries [104]. Efficient weed management
in agricultural fields is an important factor that can improve crop productivity. Due
to the spatial and temporal heterogeneity of weeds/plants in agricultural fields, many
robotic weed control methods (aerial and ground) have been developed for site-specific
weed management [105].

The effective use of robotic technology can benefit farmers by improving crop yield and
reducing production costs, but it faces many challenges in real-life rural environments.
Two challenges that affect the performance of such systems are: network availability and
reliability. While network availability ensures that the infrastructure is available and
operational at all times, reliability ensures that the infrastructure has been successfully
deployed, and is operating error-free [106]. It is expected that a reliable network will
maintain a high standard of service, even in the event of system faults [107]. This allows
a system to operate without interruption when one or more faults occur. Fault detection
and automated correction play a key role in supporting a system's fault tolerance.
Moreover, the utilisation of edge computing resources can also considerably benefit rural
infrastructure, as it provides many advantages like low latency, distributed architecture,
security and support for real-time execution. These benefits enable the use of edge-cloud
infrastructure in many real-world agricultural settings that utilise IoT based systems.
One such application, namely Rural-Al, allows the use of ML within rural communities,
with an aim to achieve better performance in terms of productivity, economic growth,
impact of climate change and affordability [108]. Rural-AI [20] is the engineering of

cyber-physical systems for enabling sovereign, sustainable Al in locations with limited

24 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

Response Time
| | | | | | | | k | 1| | 1
1 I 1 I 1 I 1 i I I L} I 1 I 1
<1lms. |]
v ‘ IWAN
- b &
2)ﬁide 1 (2]
S Units %] Virual
= - = Machine;
] m: Virtual
® o ch Machi
- Field-Side s achiney '
= uni Fela-Side |
leld-Side
Fog unt, Cloud
Nodes . Datacenters
- i = Resource Provisioning j - -
Local execution Remote execution
g EOnboard Computer Virtual Machine; Field Side Unit,
e MobileNetV2 -
-4— = Retain = 1 - = ; =Computational Offloading-*_ -
s :
D Monitor Optimize Execute \
'S (Local Remote |
%} i { - :
1] Network ‘ > Pan ‘ | Execution | | Execution ;
[a) \ Ji St
- I = = Decision-Making = _A_ -
c L] T .
.g Image Machine Learning Models Prediction Robot
% > n_[g 0
S p - - =
£ .1 ‘f | . MobikeNetv2 - -1 b =
o |/ L
< ©
~

Figure 3.1: Architecture for the task allocation framework.

and/or unreliable power/networking infrastructure. Due to the lack of proper development
and infrastructure in rural areas, ML/AI applications cannot be utilised to their full
potential. Service outages along with unreliable network connectivity are two key
challenges that significantly affect the growth of rural economy. These issues prevent
IoT infrastructure from being efficiently deployed and used [109]. Therefore, there is a
need for a framework that is capable of providing a reasonable quality of service (QoS),

even when a connection failure occurs.

A framework for edge-cloud infrastructure that detects connection errors and adapts to
such errors is proposed. It also triggers a fault tolerance mechanism to ensure that
computational /Al tasks are executed with a minimal loss to performance, even when
a network fault occurs. The architecture of our proposed framework is depicted in Figure
3.1. To demonstrate the efficacy of this conceptual architecture, two ML models based
on ResNet-50 and MobileNetV2 have been trained for identifying weeds, using images
captured from a robot mounted camera. Light versions of these two models have been
generated respectively using model quantization techniques — a process involving size
reduction of the learned model, at the expense of accuracy, e.g. by mapping model

parameters from floating-point numbers to low-precision fixed-point numbers [110].

Our primary goal is to prioritise the use of highly accurate pre-trained models for inference.
As this inference is carried out remotely on computational units of the farm site, it can

take a longer time to execute. However, if we are unable to connect with field side units

Chapter 3. Task Allocation in Edge-Cloud Infrastructure 25

due to network faults, local models are utilised for inference. While this local model is
moderately accurate, its execution time is significantly lower than the full model. An
algorithm based on task deadlines is utilised to determine the location for inference. The
task execution is then evaluated using a testbed created for this framework. The main

contributions of this chapter are as follows:

e formulation of a real-time image classification problem with intermittent network
connectivity. This problem is then mapped to a weed detection use case — widely

considered significant in precision agriculture.

e performance analysis of two ML models trained for plant/weed image classification.
A rule-based algorithm is also formulated for decision making, taking account of

where to perform this classification: locally or remotely.

e development of a testbed consisting of: Raspberry Pinode (RPi), a laptop computer,

and a cloud server — to benchmark the performance of the proposed framework.

3.2 System Model

This subchapter includes a description of software systems used within our proposed

infrastructure. A case study which makes use of this infrastructure is also described.

3.2.1 Serverless Computing Platforms

A number of serverless platforms are available for evaluation — ranging from those that are:
(i) used commercially, such as ! Amazon Lambda, Google functions, Azure functions, etc;
(ii) available as open source systems, such as Apache OpenWhisk, 2Fissions, 3OpenFaa$S,
etc. Some variants include pre-deployed commercial versions of open source platforms,
e.g. OpenFaaS Pro, which offers additional features and support.

These platforms differ in the types and range of capabilities they offer, for instance, some
utilise an existing pre-deployed platform (e.g. Kubernetes) enabling users to write and
offload executable functions. These types of platforms enable users to build and manage
their own functions, rather than the infrastructure on which these functions are hosted.
Others include support for deploying (and managing) the hosting environment on which
these functions are executed (e.g. OpenWhisk). Parsl [111] provides a Python-based
development environment for functions, and can be hosted on both edge devices (e.g. RPi)
and on a high performance computing cluster. This is achieved through the use of custom
executors designed for the resource being used in the architecture. Parsl also provides the
basis for dynamically distributing functions to new devices, using a controller node. A key
benefit of Parsl is the ability to develop a heterogeneous function hosting environment,

which can be modified at run time, especially when node failures occur. A reference to

Lhttps: //aws.amazon.com/lambda/

2hitps://fission.io/
3 hitps: //www. openfaas.com/

26 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

functions deployed across Parsl nodes is hosted in a registry, enabling these references to
be updated as new instances of functions are deployed. Lean OpenWhisk represents a
streamlined adaptation of the conventional OpenWhisk platform, optimised specifically
for serverless frameworks within edge computing environments. Distinctively, Lean
OpenWhisk demands fewer resources compared to its original counterpart, incorporating
only the fundamental modules essential for executing serverless operations. Instead of
Kafka, Lean OpenWhisk utilises an in-memory queue structure, substantially diminishing
its overall framework footprint. Moreover, it adopts a more integrated design by placing
the Invoker in close proximity to the Controller module. This strategic design adaptation
enhances its efficacy on devices with limited resources, such as RPi or Nvidia Jetson,
which are frequently deployed in edge or IoT settings. A significant limitation of Lean
OpenWhisk is its exclusive compatibility with the x64 and x86 infrastructures, omitting
native support for the ARM architecture predominant in RPis. To bridge this gap, I've
devised a Docker-based solution, adapting Lean OpenWhisk for deployment on RPi devices
built on the ARM framework.

3.2.2 Dataset and ML Models

DeepWeeds [112] is a multiclass image dataset for deep learning consisting of 17,509
images. These images belong to 8 different categories of weeds found in vast regions
of northern Australia. This dataset contains 15K training images and 2.5K test images
of size 256x256 pixels. Two different ML models: ResNet-50 [113], and MobileNetV2
[112] have been trained on the DeepWeeds image classification dataset and utilised for

plant/weed identification in this chapter.

model training and

CLOUD U guantization
SERVER
o offloading MobileNetV2
<(° model
)
2
EA
é\(\% obz
S0
0 o

failed execution

FIELD,
SIDE
UNIT

remote execution

‘ ROBOT

Figure 3.2: Interaction between robot, FSU, and cloud node in the agricultural field.

3.2.3 System Design and Use Case

I develop a three-tier architecture comprising of IoT devices, storage, and computation

resources positioned in a hierarchical manner. The control flow of the framework is based

Chapter 3. Task Allocation in Edge-Cloud Infrastructure 27

on a master-worker configuration. I consider a rural agriculture use case where robots
identify and remove weeds. Robots interact with Field Side Units (FSUs) that are located

in proximity to a robot on the same field.

Robots act as the master node, whereas the FSUs are the worker nodes. An interaction
between the robot, FSU, and cloud server is depicted in Figure 3.2. Robots move
throughout the field by following a 2-D random walk trajectory. Each robot is equipped
with a camera to take images of nearby plants. To evaluate whether the image captured is
of a weed or a plant, there are two options: the robot can either perform inference locally
or forward the data to the on-farm FSU for remote inference. This decision is taken by
a robot in real time on the basis of the network quality between robot and FSU and the
computational capacity available on the robot. If the plant is identified as a weed, the
robot will initiate the weed removal process, otherwise, the robot will move to a different

location and repeat the process.

3.3 Problem Formulation

A mathematical formulation of our task-to-resource allocation problem is presented in this
subchapter. I have designed an Integer Linear Programming (ILP) model that offloads
machine learning inference tasks on resource nodes for execution. The decision on where
to perform the execution, local node or remote node, can be achieved by optimising the

objective functions later described in this subchapter.

3.3.1 Monitoring Constraints

Let M be a set of ML models that are used for performing the inference tasks in this
framework. These ML models can be represented mathematically as M = {ms, my,
mg,....,mp}. Let R be a set of resource nodes where the ML models can be deployed for
executing the inference tasks. These resources can be mathematically written as R = {r,
T2, T3,....,Tn}. 1 have mainly considered two types of resource nodes in this work, a robot
and a FSU. Each resource node r is mapped to one specific ML model m which is used
for performing inference on that resource node. The optimal decision of determining a
location for inference can be affected by numerous factors such as network quality, resource
availability, and ML model characteristics. Therefore, multiple factors for monitoring the
resources and ML models have been considered in this chapter. The following constraints
are utilised for —

a) resource monitoring: signal quality, uplink/downlink speed, execution rate, available
RAM, and storage.

b) ML model monitoring: number of neural network layers, accuracy on test dataset, and

quantisation feasibility.

28 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

3.3.2 Decision Variables

In order to manage all the monitoring constraints (specified earlier) and make a decision
on where to execute the task, the ILP model initialises a set of variables which are used for
forming the decision. To ensure that one inference task is ofloaded to only one resource

node, I have formulated a binary variable x; such that:

1, if inference is performed on node 4
Xr; = (3.1)
0, otherwise
where ¢ € 1,2,3,...,n. I have reserved i = 1 for local execution on the robot whereas
i=2,3,...,n, are reserved for remote nodes (FSUs) available for execution.

Similarly, two other variables y; and z; are introduced to manage signal quality and

availability of resource nodes respectively. They are represented mathematically as:

1, ifg>r71
Y, = ’ (3.2)
0, otherwise

where ¢ € 2,3, ...,n; g; is the signal quality at node ¢, and 7 is the signal quality threshold.
Here, ¢ = 1 is not considered because connection setup is not required for local executions.
Variable z; ensures that the task is only allocated to a resource node if the node is not

busy with some other inference task. It can be given as:

1, if node i is free
Z; = (33)
0, otherwise

Another important factor that affects the execution time of inference tasks is
communication or transmission delay. The transmission time for performing inference
on FSU can be evaluated as the ratio of data size transmitted to the transmission rate
of link. This includes the total data transmitted in both up-link and down-link for ML
inference. Therefore, total approximated transmission time for the framework can be

written as:

t; = fZ + CSZZ (3.4)
where dy, d, are the input and output data size of m™ inference task. The uplink, downlink
speed for offloading the inference task and fetching back the results are given as sy, sg4
respectively. For location ¢ = 1, network transmission time is considered to be 0. This
is because the location has been reserved for local execution and does not require any
transmission of data.

The average time it takes to transmit data depends on the quality of the network

connection. If the quality of signal is 100%, speed will be equal to the actual link speed,

Chapter 3. Task Allocation in Edge-Cloud Infrastructure 29

otherwise it will be reduced depending on the signal quality. Therefore, the approximated

link time for data transmission to i*" node can be given as:

té =5/¢ (3.5)

where s; is the link speed of network and ¢; is the current signal quality to reach node 1.
The total execution time for establishing the connection and transmitting the data in this
framework can be given as:

t; = t5 +tk (3.6)

In order to determine the size of ML model, I have calculated the number of arithmetic
operations in each layer j of neural network that has been deployed at location 7. It is

described by n;; such that

nij = [e (3.7)
r=1

where e; 5, is the k'™ (out of w) element in j*® layer of ML model deployed at location i. If
l;; is the time it takes to process 4" layer of the model at location i then it can be given

as

_ My

lij = 3.8
=" (33

where p; is the rate of processing the model at location ¢. Therefore, from the previous
three equations, I observed that overall time taken to perform a prediction on location i

can be given as
t = Z(li]‘) +t (3.9)

The accuracy of ML inference task is another crucial aspect to consider when evaluating
the performance of this framework. It can be given as the ratio of the number of correct
inferences with total number of inferences. Accuracy in this framework can be represented

as:
A;n = pcr/ptl (310)

Here, per, py are the correct and total number of inferences recorded at location i.

3.3.3 Objective Function

The objective of this chapter is to minimise the total cost of executing all the ML models at
their respective locations while ensuring high performance even if a network fault occurs.
This can be achieved by minimising the execution time and maximising the accuracy for

performing an ML inference. Therefore, the optimisation problem that needs to be solved

30 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

can be represented as:

min < (i % y; * 2; * tf)) (3.11)
i=1
max (Z(xz * U k 2k AT)) (3.12)
i=1

subject to constraints

;>0 & z; <1, Vie{l,2,3,...,n}
v >0 & y; <1, Vie{23,...,n}
zixq >T1, Vie{l,2,3,...,n}
Tikyixz <1, Vie{l,2,3,...,n}
ram; + str; > dg +d,, Vi€ {1,2,3,...,n}

In the case of real-world scenarios, it is difficult to achieve the optimal allocation of
resources for large-scale problems. Therefore, there is need for a near-optimal solution
that can still meet the problem requirements and balances the trade-off between solution
quality and cost of execution. The objective of our work is to develop an approximate
heuristic approach that allocates tasks to edge-cloud resources while achieving a balance

between minimising inference time and maximising the accuracy of used ML models.

3.4 Proposed Approach

The chapter propose a fault diagnostic mechanism that takes the network quality into
consideration whenever a task is executed by a robot. A brief summary of the ML models,
execution workflow, and decision algorithm for the proposed framework is provided in this

subchapter.

3.4.1 ML Models

Two ML models are considered: ResNet-50 and MobileNetV2. ResNet-50 is considered a
good model for image classification because of its layer depth, residual connection, ease for
transfer learning, and good performance. Due to the large number of hyperparameters,
full models based on ResNet-50 are capable of handling complex image classification tasks.
However, this comes at the cost of high execution time and computational requirements.
Both computational capacity and storage are assumed to be limited in edge environments.
TensorFlow Lite is used to perform model quantization and generate a light version of
ResNet-50, trained on all eight classes of weeds available in the DeepWeeds dataset.

The whole DeepWeeds dataset is gathered from a vast region in northern Australia,

Chapter 3. Task Allocation in Edge-Cloud Infrastructure 31

although it is highly unlikely to find all eight weed classes within a single geographic
region. Another model is based on MobileNetV2 on three classes of weeds available in the
DeepWeeds dataset: Chinee Apple, Lantana, and Snake weed. I have assumed that only
these 3 classes of weeds are found in the specific geographical region. In general, each
geographical region will have a different model trained on specific categories of weeds that
occur in that region. A light version of MobileNetV2 model is used for local inference on
the robot.

3.4.2 Signal Monitoring

A signal monitor continuously examines the network connectivity between the robot and
the FSU. I have divided the ‘signal’ parameter into three different categories: no signal,
low signal, and strong signal. When the robot is unable to establish connection with a
FSU, it is considered to have no signal, no distortion between the robot and FSU indicates
a strong signal, and low signal falls between these conditions. During our experiments,
when the signal strength drops below a threshold value, it is considered as a low signal;

otherwise the signal is considered to be a strong signal.

3.4.3 Execution Workflow for Inference Tasks

The light model based on MobileNetV2 is used for local inference on the robot, whereas
the light model based on ResNet-50 has been used for remote inference on an FSU.
MobileNet V2 offers an accuracy of 62.65%, whereas ResNet-50 offers an accuracy of
88.64%.

Our deadline-aware approach starts by initially checking the network connection.
Depending on the current network signal quality, a deadline is established for each task
and the inference process is initiated if the connection is available. The estimated deadline
is the approximate time it takes to perform ML inference on a FSU, if the current signal
quality is maintained throughout the execution of task. It is calculated by considering the
execution time on a FSU, transmission time and link time for completing the inference.
The algorithm offloads ML tasks to remote FSUs and starts a timer. If the outcome
of inference task is not retrieved before the deadline, the task is immediately discarded.
Inference is then performed using a local model. I have assumed that if the results are not
retrieved within the deadline, a network fault might have occurred, thereby causing the
delay. Executing a model locally ensures that a reasonably accurate result is achieved, even
when the inference fails on the FSU. The proposed deadline-aware approach is described
in Algorithm 3.1.

Another signal quality-aware approach for the proposed fault tolerance mechanism can be
considered. The signal quality of the network is repeatedly monitored and a threshold value
is fixed before the execution begins. If signal quality is found below the specified threshold
value, it is considered to have low quality for performing the FSU-based execution and
inference is directly performed on a local node. This is because a low signal increases the

probability of task failure in case any network fault occurs. By adjusting the threshold

32 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

Algorithm 3.1 Deadline-Aware Approach

1: procedure DEADLINE- AWARE()

2 (FSU: Field Side Unit)

3 begin connection setup [robot <+ FSU]

4 if connection setup — success then

5: inference task — calculate deadline

6 inference (FSU) — start

7 timer — start

8 if result [robot <— FSU] & timer # finished then
9 prediction (FSU) < success

10: else if timer = finished then
11: prediction (FSU) — discard
12: inference (local) — start

13: prediction (local) + success
14: end if

15: else connection setup — failure
16: inference (local) — start

17: prediction (local) « success

18: end if
19: end procedure

value, the sensitivity of model performance can be controlled in the framework. In a
real-life scenario, the threshold can be specified based on the network requirements of that

application.

3.5 Experiments and Simulation

I evaluate the performance of our weed detection model. Multiple faults introduced in the

model are captured in the simulation setup and tested over multiple iterations.

3.5.1 Experimental Setup

The experiments have been evaluated on an edge-cloud environment that consists of one
cloud node and multiple edge nodes connected over the internet. A Google Cloud Platform
(GCP) server is utilised to host the cloud node. This is an NVIDIA Tesla T4 GPU
Computing Accelerator, 16GB GDDR6, 585MHz 2560 CUDA cores with PCle 3.0 x 16.
The edge nodes are Raspberry Pi (RPi) 4 Model B, Quad core Cortex-A72 (ARM v8)
64-bit SoC, 1.5GHz, 4GB LPDDR4 RAM, 64GB storage. Both edge and cloud nodes are
connected to a FSU — a Dell Latitude 5420 laptop, Core i7-1185G7, 3.00GHz, 8-16GB
RAM and 512GB storage running a 64-bit Ubuntu 22.04.1 LTS. I also make use of an open
source serverless platform, utilising Lean OpenWhisk Invokers running with a maximum

of 3GB memory.

Chapter 3. Task Allocation in FEdge-Cloud Infrastructure 33

Figure 3.3: Weed image: (a) original (b) blurred (c) black patched.

3.5.2 Testing ML Model Capabilities

In a real-world application, it is not possible for the robot to capture perfect images of
plants and weeds all the time. Sometimes, due to extraneous factors such as weather
conditions and crop density, the images captured are either unclear or have obstructed
line of sight. This results in unfavourable conditions for model evaluation and can affect
system performance and efficiency. To test the ML model capabilities for environmental
variations, I have intentionally injected noise in the images and then performed evaluation
of the generated models. The noise has been injected in images in mainly two forms: blur
and black patch. The blur function is applied on the entire image, whereas two random
size black patches are applied at a random location in the image. The blurred image can
simulate a situation when there is dust, rain drops on the camera lens that make the entire
image unclear. In a similar manner, the black patched image can replicate a scenario when
a leaf/insect is covering part of the lens or there is a stem obstructing the line of sight to
the actual object. A sample weed image with blur and black patch is described in Figure
3.3. It is important to note that I have not performed any training using noisy images.
However, blur and black patch noise were injected in all the test images of DeepWeeds
dataset, and then ResNet-50 and MobileNetV2 were used for evaluation. The accuracy
observed with and without noisy images for ResNet-50 and MobileNet V2 models are shown
in Table 3.1.

Table 3.1: Model accuracy with and without noisy images.

w/o noise with blur with black patch
ResNet-50 88.64 % 52.05 % 57.77 %
MobileNetV2 62.65 % 39.36 % 42.91 %

For a real-life application where environmental variations cause unfavourable conditions
for ML model inference, it can be noticed that ResNet-50 is a better option for performing
task evaluation than MobileNet V2.

34 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

3.5.3 Node Selection for Training and Inference

I measured training time for one epoch of weed identification model using one image of
DeepWeeds image classification dataset and analysed the performance on edge, FSU, and
cloud nodes. The benchmarked results for model training are described below in Table

3.2.

Table 3.2: Time for training 1 epoch on 1 image.

ResNet-50 MobileNetV2

Cloud 10.71 sec 04.15 sec
FSU 43.36 sec 16.19 sec
Edge 142.23 sec 38.64 sec

It can be observed that the training time on edge node, FSU is 4x and 10x more
respectively, than the cloud node, for both models. Therefore, I have selected the cloud
node for training our two ML models and generate light versions of these models. It takes
around 64 sec, 42 sec to generate light models of ResNet-50 and MobileNet V2 respectively.
A stress test to analyse the performance capabilities of two models on an edge node and
FSU is also presented in this subchapter. I ran concurrent inferences of weed identification
tasks and observed the change in their waiting and execution times. Tables 3.3 and 3.4
describe the average waiting and execution time for one inference when n concurrent

inferences are performed.

Table 3.3: Concurrent ML inferences on the edge node.

No. of tasks N ResNet-50 ' ' .MobileNetVQ '
Waiting Execution Waiting Execution
time time time time

2 18.76 sec 05.36 sec 11.30 sec 0.52 sec

4 21.25 sec 15.90 sec 23.33 sec 1.00 sec

6 33.66 sec 31.94 sec 38.97 sec 1.37 sec

8 53.80 sec 35.62 sec 50.97 sec 1.80 sec

10 o0 00 79.05 sec 2.08 sec

14 00 00 124.59 sec 5.43 sec

The symbol oo is used to describe the event when inference is unable to complete due to
system crash, or other execution failure (as it did not terminate). I was able to achieve
8, 14 concurrent executions for ResNet-50 and MobileNetV2 models respectively on the
edge node, whereas on the FSU, the number of successful concurrent executions observed
was 34 and 40 respectively. I also noticed that waiting and execution time on the edge
node (robot) is much higher than FSU for both models. In terms of a real-life application,
where I might have to perform multiple executions at the same time, MobileNetV2 is a
better option for task execution.

If I consider the following four factors for decision making: (1) model adaptation to a
harsh environment, (2) number of concurrent executions possible, (3) average execution

time, and (4) average waiting time, there is a need to establish the trade-off between

Chapter 3. Task Allocation in Edge-Cloud Infrastructure 35

choosing a more accurate model or reduce time to develop a model. Therefore, in this
work, I have decided to deploy the highly accurate ResNet-50 model on the FSU (as a
primary option), but if the network connection is unreliable/ unavailable, I can resort to
utilising the MobileNetV2 model for local inference, which offers faster processing than

the former (with reasonable accuracy).

Table 3.4: Concurrent ML inferences on the FSU.

No. of tasks ResNet-50 MobileNetV2
Waiting Execution Waiting Execution
time time time time

2 1.65 sec 0.20 sec 1.24 sec 0.02 sec

6 1.98 sec 0.22 sec 2.14 sec 0.02 sec

12 3.91 sec 0.47 sec 3.39 sec 0.06 sec

18 5.92 sec 1.24 sec 6.02 sec 0.06 sec

26 9.38 sec 1.48 sec 9.39 sec 0.08 sec

34 12.53 sec 2.86 sec 12.99 sec 0.12 sec

40 00 00 13.85 sec 0.13 sec

3.5.4 Execution Workflow

This subchapter describes the runtime workflow of the implemented fault-tolerant
framework. Initially, the model training is performed on the Google GCP server and
the data is then offloaded from server to RPi and FSU before beginning the execution.
In this framework, it is assumed that the ML models used for inference have already
been loaded onto the robot, FSU, and incur no extra latency in the execution process.
The interaction between laptop and RPi is managed using Parsl executors. I have
used the HighThroughputFExecutor and constructed an Ad-Hoc cluster configuration for
communication between them. The network connection between RPi and laptop is
simulated. Network faults are induced by varying the signal quality of the network
connection. Multiple iterations of inference and fault models have been tested and results

have been formalised by averaging their values.

Table 3.5: Simulation Parameters.

Variable Values/Range
threshold (5% - 95%)
link quality (0% - 100%)

ResNet-50 accuracy 88.64%
MobileNet V2 accuracy 62.65%

image size (10.18KB - 35.11KB)
preprocessing time (4.44ms - 59.31ms)
ResNet-50 time (1.2sec - 4.59sec)
MobileNet V2 time (0.11sec - 0.35sec)

link transfer rate 1Mbps

36 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

3.5.5 Communication and Monitoring Setup

It is difficult to estimate an exact signal strength throughout the communication channels.
Therefore, I have estimated the signal strength on controller node and used it as a reference
point throughout the inference. In simulation, patterns are generated through a random
process for determining the signal quality of each task. For an ideal circumstance, the time
it takes to send data over the network is given as (link time = data size/link speed).
The link transfer speed considered in this work is 1Mbps. Link delay is determined as
(link delay = link time/quality). When the quality is set to 1.0, the wireless link is utilised
at full capacity and the execution is performed at the fastest possible speed. When quality
drops below 1.0, the link delay increases and the task takes more time to execute. This
technique has been utilised to estimate variable network latency in the wireless network.

A list of all the variables considered in this simulation are also described in Table 3.5.

20.0 8 min
—_ maXx
g 17.5 N avg
a .

-]
" 15.0 ' —
€ 125]
=]
o 10.0 | - ‘
g] I
S 75 | |
hu] I
()]] []
= 5.0] |
c ’] = \
2.5] I
] [|
00 g = = N
ResNet-50 MobileNetV2
Full ML Models

Figure 3.4: Average inference time on full models.

@4 min
S 25 max
] mw avg
L
o 2.0
£
— 15
Q I
& V’ =
1.0 .
o - ’ |
—
Q)
o N
£ o5 |
N
.
0.0 d [— m.
ResNet-50 MobileNetV2

Light ML Models

Figure 3.5: Average inference time on lightweight models.

" BE E
- BE EN

Parsl OpenWhisk
Execution Platform

Figure 3.6: Average inference time on 2 platforms.

3.6 Results and Evaluation

This subchapter describes the experimental results and evaluation of our weed inference
framework. I have simulated an unreliable connection by adjusting the signal threshold
and testing it with the proposed algorithm. The performance of the system is evaluated

on the basis of two key parameters: time and accuracy.

3.6.1 Results

Figure 3.4 and 3.5 display the average time taken to perform image inference on full and
light models, respectively. I have only utilised lightweight models in this work, but in
order to justify not using full models, I have performed inference on full models as well.
The results show that inference time on full models are almost 10x in comparison to the
light models. Therefore, light models are a better choice over full models for weed/plant
inference. TensorFlow Lite models have a smaller file size compared to TensorFlow, and the
light model can be directly accessed without the need for additional parsing or unpacking
steps, which in turn speeds up the inference process. As a result, this allows a time
efficient and effective execution of ML inference tasks on resource constrained devices,
having low memory and less computational power in comparison to cloud nodes. Note
that the execution time for MobileNetV2 based model is less than ResNet-50 model — as
ResNet-50 has 177 layers and about 25.5M parameters, while MobileNetV2 has 156 layers
and only 3.5M parameters.

A comparison of inference time on two different platforms, namely Parsl and Lean
OpenWhisk, is shown in Figure 3.6. I wanted to test our model execution on another
comparable serverless platform. Lean OpenWhisk is a lightweight version of the
open-source OpenWhisk serverless computing platform that can be deployed on the edge
layer and offers all the basic functionalities of the full version of OpenWhisk. I selected the
locally executed MobileNetV2 model as a task for this evaluation. The results show that

Chapter 3. Task Allocation in Edge-Cloud Infrastructure

4.0- - —&— Deadline-aware
[8) —A- Quality-aware

;8, 35- 1 ¢ - Random-allocation
23.07 ’ —4 - Round-robin

i: "

c 2.5- v

S KX

S AR Y

%20 ""‘ ‘-*.’,‘-‘.“’_‘_‘
€ 15-

o t: v :‘W
O A~

1.0- o—tt- H*Jﬁﬂf*b‘_**‘_‘

0.2 0.4 0.6 0.8
Signal Quality Threshold

Figure 3.7: Effect on completion time with change in signal quality.

1.5 _@= Deadline-aware
O 1.4- == Quality-aware

3 i
E/ 1.3’ /
= &«
= 1.2 &
,(
S 1.1 *
=
Q10-
o s
g 0.9- ‘A‘
O A
0.8- r,‘
0.72 0.73 0.74 0.75 0.76 0.77 0.78
Accuracy(%)

Figure 3.8: Effect on completion time with change in accuracy.

0.78-

0.76 ot
X A2 ‘.‘.‘ "’
= 74- =@ Deadline-aware)

O =—&= Quality-aware
© = 4 - Random-allocation
5) e
8 0.72- =% - Round-robin
< %a—*"“
0.70 e
»
%

0.68- | i))

0.2 0.4 0.6 0.8

Signal Quality Threshold

Figure 3.9: Effect on accuracy with change in signal quality.

Chapter 3. Task Allocation in Edge-Cloud Infrastructure 39

execution time on Parsl is significantly less in comparison to OpenWhisk. This is because
Docker instances are created and initialised for performing execution on the OpenWhisk
platform. However, Parsl functions can be directly run on the node using pre-developed
executors. I realised that using these custom executors and dynamic function distribution

makes Parsl a good platform for performing real-time function execution.

Figure 3.7 illustrates the completion time of deadline-aware and quality-aware methods
put forward in the proposed weed inference model. As the threshold for signal quality
increases, the completion time shortens, as more inference tasks will utilise the local model
for predictions instead of the full model. The completion time for the deadline-aware
approach is significantly higher in comparison to signal quality-aware approach. Using the
deadline-aware approach, the system has to wait for the deadline to expire before executing
the local model for prediction, whereas with the signal based approach, it immediately
runs the local predictions if the signal quality is below the specified threshold. Moreover,
the completion time for the random allocation approach is high in this experimentation.
This is because the algorithm selected full models for most of the evaluations, resulting
in high execution time. It can also be verified by high accuracy of random allocation
approach observed in Figure 3.9 (because full models are more accurate). For round-robin
approach, the completion time increased from 0.78sec to 1.28sec with an increase in signal
quality. At low threshold values, most of the jobs are unable to complete execution because
of poor signal quality. However, as the signal quality increases, both completion time and
accuracy increase — as the approach selects full models for execution alternatively and

successfully completes the execution.

The Figure 3.8 illustrates the impact of increasing accuracy on task completion time. It
is observed that completion time increases as high accuracy is achieved by the evaluation
model. To improve accuracy, I need to perform the inference by utilising the full model
(which takes more time to execute). Even at low accuracy, the computation time for the
deadline-aware approach is much higher than that offered by the quality-aware approach.
This is because the deadline-aware approach uses a local model for inference after the
deadline has expired, which adds extra latency to the overall execution time of the proposed

framework.

It can be seen in Figure 3.9 that for low signal quality threshold, the accuracy of inference
is high. This is because for most of the inferences, current signal quality will be above the
threshold and it will be using the full model for inference. However, as the threshold value
increases, a higher number of jobs will be running the local model which is less accurate.
Hence, the accuracy decreases with an increase in the signal threshold. Along with that, it
can also be observed that both approaches give almost the same accuracies with changing
threshold values. This is because, in both approaches, the threshold is a measure that
mainly affects the decision on where the execution will happen. For signal quality-aware
approach, the threshold decides whether to execute the job locally or remotely, whereas
in the deadline-aware approach, the threshold is used for estimating the time it will take

to execute the job remotely. The estimated time is then compared with job deadline to

40 Chapter 3. Task Allocation in Edge-Cloud Infrastructure

evaluate whether the remote execution is a success or not. Therefore, the same model
(either local or remote) is picked for evaluation in both the approaches. The accuracy for
random allocation is high but the completion time for this approach is also higher because
of randomly picking full models for execution. For the round-robin approach, the full
models are selected and successfully executed with an increase in signal threshold. This is
because a high threshold value ensures a higher chance of successful task execution (with

the current signal quality).

3.6.2 Analysis

Based on the experimental results, following observations can be made: (i) The execution
time for full models is almost 10 times that of the light models. (ii) ResNet-50 based models
are more accurate in comparison to MobileNet V2 models, but take longer to execute. (iii)
The signal quality-aware approach generates better results in terms of completion time,
whereas the deadline-aware approach yields more accurate results (if completed within
the deadline). (iv) Changing the threshold value significantly affects the completion time
of the signal quality-aware approach, whereas the completion time of the deadline-aware
approach is less affected by the threshold value. (v) Inference accuracy of the framework
decreases with an increase in signal quality threshold. (vi) A trade-off between accuracy

and execution time can be achieved based on user application requirements.

3.7 Summary

In this chapter, an edge-cloud framework that can be used with mobile agricultural robots
under intermittent network connectivity is proposed. The approach [114] is aimed at
addressing network faults, such as unreliable connections and service outages, that can
significantly affect the performance of precision agriculture applications. Using on-board
ML models for classification and inference, the robot analyses plants/weeds by taking
images through a robot-mounted camera. For demonstration, two ML models were trained
for weed identification and prediction using the DeepWeeds image classification dataset
with two types of noise. I evaluated our algorithm using experiments performed on a
testbed, demonstrating that the approach provides accurate predictions under variable
network signal quality. The proposed approach offers better performance in terms of
completion time, whereas a more traditional deadline-aware approach is more accurate but
takes longer to execute. Although task allocation has been considered in this chapter, the
task arrival and its uneven load can significantly affect the performance of edge-cloud IoT

systems. The next chapter explores the load distribution aspect in IoT-based applications.

Chapter 4

Load Distribution in Edge

Computing Environment

This chapter describes a framework that distributes the task load across various edge
computing nodes available in rural environments. The distribution is performed by
considering multiple factors that directly affect the performance of execution frameworks.
Three different FL-based workflows performing the weed detection task has been

considered during evaluation of the framework.

4.1 Distributing Task Load in Rural-AIl

The use of technology to automate agriculture processes has revolutionised farming,
leading to improved utilisation of resources and decision-making [115, 116]. Agricultural
automation has also provided substantial progress towards attaining the UN Sustainable
Development Goals (SDGs), especially those pertaining to environmental sustainability,
improving agricultural yield, and reducing emissions from farms [117].

While technology offers several benefits in agriculture, rural communities have limited
access to data communications and computational infrastructure [118], compared to urban
environments. Edge-based infrastructure provides a computing architecture that can be
used to enhance agricultural operations and decision-making processes in rural areas. It
involves deploying computation nodes near a data source at the edge of the communication
network for data processing tasks [119]. This infrastructure enables real-time data
processing, dynamic allocation of computational resources, low-latency communication,
and storage (including data caching) at the edge layer. Recent work [120, 121] proposes
edge computing-based frameworks for precision agriculture. Moreover, the integration of
edge infrastructure with Internet of Things (IoT) can be transformative for agriculture.
IoT devices can collect critical data (such as soil nutrients, crop and weed details, and
weather conditions) and offload that task to nearby edge devices for decision-making [122].
This allows farmers to take immediate action on the fields, directly enhancing agricultural
productivity and sustainability.

Unreliable connectivity and environmental variations are factors that affect the
performance of rural agriculture. It is therefore important to efficiently utilise
these edge-cloud resources in a resource-constrained rural environment [123]. Load
balancing [124, 125] techniques can be used to distribute computing tasks and data

processing workloads across multiple computational resources, such as edge devices and

42 Chapter 4. Load Distribution in Edge Computing Environment

cloud servers. Load balancing also supports efficient resource utilisation, enhances system

performance, and ensures efficient data processing in agricultural operations.

Privately Accessible Publicly Accessible

o a $ WAN | !og (!o
S og Node, Nodes
= l
3] Nodes
S
s
v | comR
I
= i

—o= Node; Shared

Shared Folder

Folder

- - - j— = =Resource Provisioning= = — i - —_-
o | Fog Node;: : Fog Node;: : Fog Nodeg
o - Function, ! - Function,
Workflow execution

- == T = == Computational Offloading = = T - -

c

o 1

® Functlonz- ~ - Function; = P——

S S e

= ol o
2 B
SR Workflow graph e8d8d

geegg Yy L s B 1 111
-

Figure 4.1: Architecture for the proposed load balancing framework. Private nodes (red
links) available in high-security zone handle sensitive tasks and shared nodes handle less
restricted tasks on the public network.

Farmers have started embracing tools and technologies that are transforming their
agricultural practices, reshaping interactions within the agriculture and food sectors.
However, farmers are still concerned about privacy, security, and ownership of agricultural
data [126, 127, 128]. This can arise due to: (i) farming practices that give economic benefit
to individual farmers; (ii) requirement to report greenhouse gas (GHG) emissions; (iii)
pre-negotiated energy pricing and tariffs; (iv) use of water and other associated resources
(e.g. seed, pesticides, and fertilisers) used on the farm. Moreover, lack of regular software
updates, limited technical expertise, poor data management practices and weak access
control mechanisms can also contribute towards the vulnerability of rural agricultural
data. Considering the limited infrastructure available in rural areas, it is also crucial to
optimally utilise all the available resources and ensure that some specified resources are
not under-utilised or over-utilised.

I propose a security-aware load balancing framework for edge infrastructure that can
be used to support rural environments. The infrastructure is designed to distribute
computational tasks across multiple resources while also ensuring data privacy and
confidentiality. It divides the tasks into independent categories: restricted and public.
These tasks are allocated to two different resources: private and shared, based on security

requirements and load characteristics of the node on which these tasks are executed.

Chapter 4. Load Distribution in Edge Computing Environment 43

A heuristic approach is designed to perform the resource allocation decision for each
task, taking into account factors that have a direct influence on execution performance.
Completion time, failure rate, resource utilisation, security, and resource management
overhead are the key factors used for evaluation. The proposed architecture for the
framework is shown in Figure 4.1 of this subchapter. The primary contributions of this

chapter are as follows:

e A load balancing strategy for rural infrastructure is designed that also ensure privacy
and security of user data. A weed detection use case is used to demonstrate how

this approach can be used in practice.

e A mathematical optimisation approach is used to determine the objective functions

that affect execution performance, utilising an edge-based load balancing framework.

e Three variants of weed detection functions for evaluation of the proposed framework
are analysed: federated learning (FL) based local model training, global model

aggregation, and model prediction.

e SHIELD (Secure Heuristic Integrated FEnvironment for Load Distribution) is
proposed as a framework that allocates tasks on available resources considering
waiting time, failure rate, security and other attributes that can be used as a basis

of comparison between different allocation strategies.

e Design of a testbed utilising Raspberry Pi and a laptop-hosted server (which can
be deployed at the farm). Two Python-based software systems are used: Parsl and
OpenWhisk (OW), for evaluating the performance of the proposed framework.

4.2 System Model

This subchapter outlines the key components considered while designing the proposed load
balancing framework. A brief description of edge-based infrastructure, a real-life use-case,
evaluation task, and communication module utilised are also explained in the following

subchapters.

4.2.1 Three-tier Edge-Cloud Architecture

This work implements a three-tier edge-cloud infrastructure, leveraging the strengths of
a layered edge computing and storage system. The foundation of this architecture is an
edge layer, consisting of physical hardware and communication devices. These components
are crucial for collecting real-time, application-specific data. Although these devices can
perform basic data processing and storage, their capabilities in this regard are limited.

The middle layer in our architecture is the fog layer, which plays a crucial role in enhancing
the computational and storage capacities of the system. This layer is composed of fog
nodes, such as base stations or gateways, situated in proximity to the data-generating

edge nodes. The strategic placement of these fog nodes is key to their functionality as

44 Chapter 4. Load Distribution in Edge Computing Environment

intermediaries between the edge devices and the cloud layer. These nodes support faster
processing for applications that require lower levels of computation comparatively, thereby
reducing latency compared to cloud-based models.

At the top of the architecture is a cloud layer, which offers substantial computational and
storage capabilities. This hierarchical arrangement means that as one ascends from the
edge to the cloud, there is an increase in computational power and storage capacity.
However, this also results in increased network latency and complexity in execution.
Therefore, this architecture allows for a strategic trade-off based on the specific needs
of the application. By determining the optimal number of layers to be utilised, the
architecture can be designed to balance immediate data processing needs at the edge
while more complex computational tasks are offloaded to the cloud node. This adaptability
makes the architecture suitable for a wide range of applications, optimising efficiency and

performance.

4.2.2 Adaptive Control Pipeline

The designed system adapts with the execution environment through a sequence of steps
involving data collection, monitoring, analysis, and planning the modifications. The phases

of the adaptive control pipeline are as follows:

o (ollecting data: It includes monitoring of the deployment environment and its
performance. All the decision variables that can affect the control mechanism are

selected and their corresponding data is collected.

e Analysing data: This phase is used to understand the current state of system and
its associated decision variables. This could involve identifying patterns, predicting

future states, or selecting optimal nodes.

o Formulating decision: Based on the analysis of all the selected variables, a decision

is formulated by the system to adjust its operation and execution process.

o Implementing action: The system then implements the decisions, adjusting its
operation as per threshold and test conditions on selected variables. This
involves migrating tasks between nodes, avoiding risky nodes, or initiating recovery

procedures for failed tasks.

4.2.3 Task and Resource Classification

In order to limit the access of tasks on different layers of resources, I have divided them

into multiple categories in this work. The categorisation of tasks is as follows:

e public tasks: These are the set of tasks that have minimal or near zero requirements
in terms of security and do not need protection. It includes tasks that are processing
agri-data with minimal security concerns, such as general environmental data or

non-sensitive operational information. These tasks do not contain any sensitive

Chapter 4. Load Distribution in Edge Computing Environment 45

information, making them suitable for execution on a less secure, more openly

accessible environment.

e restricted tasks: This category of tasks might contain some sensitive information,
such as high-resolution images that could reveal confidential details about farming
operations or farm infrastructure. The critical nature of these tasks necessitates
execution in secure locations where data integrity and confidentiality are prioritised.
Monitoring these restricted tasks is essential for maintaining the privacy and
competitive edge of farming operations, as unauthorised access to this data could

lead to exploitation that could directly or indirectly harm the farmers.

For executing these tasks on resource nodes, two primary categories of resources are utilised

that ensure their security and accessibility needs:

e private resources: These resources are exclusively utilised for processing restricted
tasks due to their high level of security and controlled access. They are owned
and managed by individual farmers or farming organisations that own and monitor
the fields where data is generated. Private resources are deployed to ensure the
confidentiality and integrity of sensitive data, making them ideal for tasks that

require a higher degree of privacy and protection.

e shared resources: These sets of resources are shared between a group of farmers or a
local community that owns and manages the arable land in that neighbouring area.
They are highly cost-effective and scalable but mainly used for public tasks due
to their lower levels of data protection and confidentiality. These resources do not
require stringent security measures, allowing for efficient resource utilisation among

multiple agricultural farms.

<r>
s 1
Sstyy, shared
Cley
lq
ks resurces with encryption

w/o encryption

\'d
x2°
A Ce
d?”(
o o Pprivate ‘ o) A et
resources) WS

<rl, restricted tasks A 5

Bb
‘ ROBOT (r1)

Figure 4.2: Load distribution of tasks in the agricultural field.

46 Chapter 4. Load Distribution in Edge Computing Environment

4.2.4 Real-World Use Case

For evaluation of our proposed framework, the edge-based architecture has been mapped
to a real-life agricultural use case. I assumed that a high-resolution camera is mounted on
a robot that takes pictures of weeds and plants on the field. The robot can take a random
walk throughout the field and keep taking pictures. The aim of the robot is to detect and
remove weeds from agricultural fields. The setup follows a master-worker configuration
such that the robot acts as the master whereas the computation nodes act as the workers.
There are a few computation nodes that are deployed on the field and owned by farmers;
they are the private nodes for that particular farmer. Along with this, the farmer can also
evaluate tasks on a shared set of resources owned by a group of farmers having fields in the
nearby area. These shared resources are set up together by the local community of farmers.
For limiting the access of farmers to the two categories of resources, I have divided tasks
into two types as well: restricted and public. If the images captured for analysis contain
visual data that could reveal sensitive information about the farming operations or farm
infrastructure, they might be valuable to competitors or unauthorised individuals who
could exploit it for their own purposes. These images when sent for evaluation (whether
it's weed or plant) need security and are considered as a restricted task. However, if the
image does not capture any personal information that directly or indirectly affects the
farmer, it's considered as a public task. A graphical description of our load distribution

approach in an agricultural field is shown in Figure 4.2.

4.2.5 Functional Requirements

Rural agricultural applications require a robust and adaptable system that can respond
to real-time environmental variations that affect the infrastructure. The key requirements

for designing our application are as follows:

o Ideal pick for execution: A system can be designed to utilise all the available
resources while executing a task. A two-phase heuristic pipeline is deployed that

uses four unique constraints for selecting ideal resource nodes for execution.

o Mobility of nodes: The mobility factor can impact application performance and
data exchange over a wireless network. Therefore, the robot's location is designed

to influence the nature, size, and latency of supported task execution workflow.

e Addressing workflow mecessities: Different FL. workflows exhibit heterogeneity in
their computational demands, requiring different times for completing the execution.
In scenarios where workflows are interdependent, the outcome of one workflow serves
as the input to another process in FL. Three different workflows have been considered

for evaluation in our approach.

e Protecting data rights: The edge-based framework is designed with consideration of

protecting farmers' data security and privacy. I have utilised encryption, hash-based

Chapter 4. Load Distribution in Edge Computing Environment 47

Chinee apple

Snake weed

"-’ @ i %
oy 1

Figure 4.3: Three sample images from the DeepWeeds dataset.

message authentication code (HMAC), and access control mechanisms to ensure

confidentiality, availability, and integrity of data.

4.2.6 ML Model Description

In order to perform weed detection on the proposed framework, I have leveraged
the ResNet-50 [68] convolutional neural network model to classify weed species using
the DeepWeeds [69] image classification dataset. This dataset includes nearly 17.5K
agricultural images (15K training, 2.5K test images), providing a broad and diverse set
of observations for eight primary weed species from a wide Australian region, enabling
the comprehensive training of our weed detection model. Three sample images from
the DeepWeeds dataset are shown in Figure 4.3. The ResNet-50 model, known for its
residual learning framework, was specifically selected for its efficacy in handling complex,
high-dimensional data. I then fine-tuned the model parameters to optimise its ability
to discern unique patterns within the images, thereby enhancing its weed classification
accuracy. The functions that formulate execution workflows utilised in this framework,

can be given as:
Aggregate

— hodels Validation
Compare > Global Model
i Accuracy
—» mage Validation

Pre-processing

_ Image Model Tuning - Local Model
Pre-processing

Image

— e Inference . Decoding . Prediction Result |
Pre-processing

Figure 4.4: SFC for global, local, and prediction workflow.

(1)- Pre-process images: This initial phase involves manipulating an image to make it
suitable for training or validation. A function reshapes the data into a 224x224 image size
format, which aligns with the requirements of our deep learning model. (2)- Fine-tune
model: This phase focuses on fine-tuning our learning model. It involves initialising the

model with weights from previous iterations, leading to the creation of a new model

48 Chapter 4. Load Distribution in Edge Computing Environment

specifically trained on our DeepWeeds image dataset. (3)- Aggregate model: The step
includes averaging the weights across all neural network models, providing a comprehensive
and combined model representation. (4)- Validation: The newly trained model is tested
using a new dataset to evaluate its performance and accuracy. (5)- Accuracy comparison:
This function uses the validation results as input and compares the accuracy of the previous
model with the new one. The model having higher accuracy is then considered as the
global model for future evaluations. (6)- Inference model: The function utilises the trained
model for performing prediction on new and unseen data. It is used to test the real-world
applicability of the trained models on the specific applications it is trained for. (7)- Data
decoding: This function handles the encryption and decryption of data before it is sent to
a resource node for execution. An algorithm is designed to decide whether data encryption
is required or not.

Figure 4.4 describes the service function chain (SFC) for task variants utilised in this work.

I have evaluated the framework on these three weed detection tasks:

e Local model training: The task includes training the FL model on local data of
each node. It includes pre-processing the end-user data and fine tuning it over a
pre-trained model of another dataset. In our case, the weed detection model was

fine-tuned over a model pre-trained on the ImageNet [129] dataset.

o Global model aggregation: This task collects local models from all the nodes
and aggregates them into a single global model. It includes averaging models,
pre-processing, performing validation, and comparing accuracies. The model having

higher accuracy is selected as a global model for upcoming tasks.

e Prediction model: It uses the trained model for performing evaluation on new
unseen data. The data belongs to real-world applications which might need security,

therefore, the data encryption is also performed before it is sent for execution.

4.2.7 Serverless Computing Platforms

Serverless architecture provides a distributed computing infrastructure where the
management tasks such as managing servers, runtime environments, and the underlying
operating system are entrusted to a third-party service provider. Instead of pre-allocating
resources, serverless architecture dynamically provisions and scales resources for
applications by automatically responding to incoming event triggers or requests. By using
this approach, users can focus more on designing the functionality and logic of their
applications rather than infrastructure, making it a cost-effective and efficient model that
charges only for the compute time consumed by the applications.

Numerous serverless computing platforms, serving a wide range of use cases and
requirements are available in both commercial and open-source settings for the end-users.
AWS Lambda, MS Azure Functions, and Google Cloud Functions are a few platforms that
are used commercially whereas Apache OpenWhisk, Kuberless, OpenFaaS, and Knative

are a few of the open-source options available for deployment. Commercial platforms are

Chapter 4. Load Distribution in Edge Computing Environment 49

often available to users with built-in integration capabilities of their respective ecosystems,
such as database services, analytics tools, and machine learning platforms but they incur
high execution costs, implementation restrictions on the users. Alternately, open-source
serverless platforms are freely available for anyone to use, modify, and distribute but
they require more hands-on management and operational knowledge, especially for scaling
and maintaining the infrastructure. Parsl and OpenWhisk are two serverless computing

platforms that have been utilised in this chapter.

Parsl [130] is a Python-based scripting library that allows parallel execution of applications
across multiple cores and nodes utilising its pre-developed executors. All the functions
available for execution are wrapped using Python apps and are linked to a shared
input/output data source such that parallel execution of tasks can be performed on a
specific resource node. A configuration object, specifying where and how tasks should
be executed, enables running a Parsl application on any machine. It can be deployed
on a resource-constrained device like RPi, Nvidia Jetson or it can be assigned to a
high-performance computing cluster in the cloud layer. Our work uses Parsl for configuring
an ad-hoc cluster that offers a dynamic workflow for real-time task execution on worker
nodes deployed for remote execution of tasks. Parsl also allows the dynamic distribution
of task load by utilising a controller node. Moreover, function hosting in Parsl supports
a heterogeneous environment that can be modified at runtime, especially in the event of
a node failure. A registry is maintained for all deployed functions and updated with the

arrival or completion of any existing function.

OpenWhisk [131] is a freely available (under Apache Licence 2.0) serverless computing
platform designed to automatically run functions in response to specific triggers or events.
OpenWhisk operates on a Function-as-a-service (FaaS) model, which offers cloud-based
infrastructure and server management for applications. In this platform, functions are
labelled as “actions”, and their executions are termed as “activations”. End-users have
to register the actions, which can be triggered by an event. An event can be an
HTTP request, a timer, or an external resource. Actions can be coded in a variety of
programming languages like Python, Java, GO, Swift, or can be integrated as Docker
images. OpenWhisk operates on the assumption that there is a linear relationship between
a container's memory utilisation and its CPU utilisation. Thus, developers only have the
option to determine the RAM size (memory setting) for executing their actions. Developers
can also provide an action chain, which permits the sequential calling of one action by
another, resulting in complete execution of the entire SFC. The OpenWhisk architecture
consists of two main components: (1) the Controller and (2) the Invoker. Both of these
components are built over Nginx, CouchDB, and Kafka. Initially, the system is accessed by
Nginx, an HTTP server, and a reverse proxy server that allocates incoming HTTP requests
to the Controller node. The Controller node is responsible for the authentication and
authorisation of all incoming OpenWhisk API requests. CouchDB, an open-source data
store securely keeps rules, definitions of triggers, user credentials, metadata, activation,

and actions. Kafka is a streaming platform that handles the real-time data exchange

50 Chapter 4. Load Distribution in Edge Computing Environment

between the Controller and the Invoker. OpenWhisk also has a commercial version of its
platform, it is called IBM Cloud Function. I chose Parsl and OpenWhisk as our serverless
platforms to demonstrate the compatibility of our approach with different environments
that efficiently manage and offload workflows. In subchapters 6 and 8, I have presented
detailed results from our experiments with these platforms, validating our approach's

applicability in managing distributed serverless computing tasks.

4.2.8 The CIA Triad

For ensuring the protection of sensitive agricultural data, the fundamental concept of CIA
triad is utilised in this chapter. It consists of mainly three elements: Confidentiality,
Integrity, and Availability.

Confidentiality is the first component of triad which is ensured through the implementation
of advanced encryption methods. Encryption helps to safeguard sensitive agricultural data
by transforming it into an unreadable format, decipherable only by authorised end-users
(or a group of farmers) possessing the correct decryption key. The second principle,
Integrity, is ensured through the use of HMAC in our framework. Using HMAC, a hash
function is applied to the secret key and contents of the agri-task. Any changes, intentional
or accidental, in the data, will result in a different hash value. Therefore, verifying this
value before and after transmission can ensure that the data has not been tampered
with throughout communication, preserving its integrity. Availability is another crucial
factor which ensures that the system's services are accessible to end-users all the time.
To achieve this, I allocated the task on two best locations selected via hf2() heuristic
function. It provides an alternate solution in case one of the task executions fails. The
techniques used in this chapter to ensure CIA are based on well-known methods utilised
for data protection [132]. T have used these established security methods to enhance the
effectiveness and reliability of our proposed approach. Integrating these security principles
can significantly improve the protection of sensitive agricultural data within an edge-based

infrastructure.

4.3 Problem Formulation

In this subchapter, I present a quantitative objective function for our proposed architecture
which schedules IoT jobs in a load balanced manner. I have interchangeably used the term
‘task’ or ‘job’ in this chapter. Both these terms refer to the execution of a weed detection
function. I have a set of J jobs and R resources such that a job can be sent on any available
resource for execution. All the symbols of this formulation are described in Table 4.1. Each
job can have a unique size and each resource can have a different capacity, which will result
in different execution times' on different resources (depending on their capacities). The
time taken to complete a task/job j on a resource r is known as the completion time, tepyp.

This can be represented as:

Chapter 4. Load Distribution in Edge Computing Environment 51
Table 4.1: Symbol Table for the problem formulation.
Symbol Description
N, N’ total no. of tasks, no. of tasks failed
tr, tp restricted, public security tag
J, R set of jobs, set of resources
J, T a task/job, a resource
tsty texec, temp start, execution, completion time
dlirans, dlprop, dlproc transmission, propagation, processing delay
dlgueus dliats dlecomm queuing, network, communication delay
tadd additional time
len, bw data packet length, network bandwidth
dis, vl distance, velocity
njq, awt no. of tasks in queue, average waiting time per job
jrs Jp restricted, public task
g gy’ restricted, public task failed execution
Cset, Cexecs Ccomm setup, execution, communication costs
FR, SC, RU failure rate, system cost, resource utilisation
T, cap time unit, total execution capacity
tcmp - tst + texec + dllat (41)

Here tg is the time when j starts executing on 7, t.;e. is the time it takes to execute j on
r, and dlj,; is the network latency of executing j on r. Here, network latency dlj,; is the
combination of various delays that arise in the network when j is executed on r. This is
represented as:

dllat = dltrans + dlprop + dlproc + dlqueu (42)

where dlqns 1 the time taken to transmit data from user to the transmission medium,
dlyrop is the time taken for propagation of data through the transmission medium, dlpyo.
is the time taken by processor to process the users' data, and dlyye, is the delay incurred
by waiting of data packets in a queue. Since high performance computational hardware
is easily available nowadays, I have considered that dl,.,. ~ 0 in this chapter. Thus, the

network latency can be written as:

dllat = dltrans + dlprop + dlqueu (4'3)
len dis

= — + —] 4.4

dhag = 7+~ + (njg x awt) (4.4)

such that len is the length of data packet, bw is the bandwidth of adopted IoT network, dis
is the distance that a data packet travels, vl gives the velocity of communication channel,
njq is the total number of jobs in the queue, and awt gives the average waiting time for one
job in the queue. In this model, dliqns, dlprop and dlyye, together depict the communication
delay in the network. This combination of delays is often used interchangeably with dl.omm

in this chapter.

52 Chapter 4. Load Distribution in Edge Computing Environment

It is necessary that the task allocated on the node begins the execution on time. However,
due to system delay or improper garbage collection, the system faces some delay in
beginning the task execution. This results in task failure and may impact overall
completion time. To handle this issue, I have also considered additional time on resource

nodes in this framework. It can be mathematically given as:
tadd = tewec X failure rate (4.5)

such that failure rate gives the failure rate of the resource node where task j is sent for

execution.

The tasks in the proposed architecture are categorised as restricted and public, as described
previously. Let a restricted job be denoted by j,.. Similarly, a public job task is given by
Jp respectively. The total number of tasks to be executed is given by N such that:

N=>"j+> jp (4.6)

Furthermore, a restricted and public job that failed execution on the node is denoted by

Jr' and jp' respectively. The total number of jobs that failed their execution are given by

N’ such that:
N'=% 5+ (4.7)

To analyse the performance of task execution, I use three metrics, namely: Failure Rate
(FR), System Cost (SC'), and Resource Utilisation (RU). FR is the ratio of number of
jobs that failed execution to the total number of jobs available for execution. Formally, it

can be given as:

FR: er,+2jp/ _ N/

. — = - 4.8
it 2ip N (48)
The objective function that needs to be solved for F'R can be given as:
argmin FR = {FR|FR = f(N')} (4.9)
N/

Another crucial parameter to measure the performance of an architecture is the software
and hardware interactions within the network. This factor is given by the SC. It includes
the set-up cost, total execution cost, and cost of communication latency. SC can be

presented mathematically as:
SC = Cset + Cexec + Ccomm (410)

Here cget denotes the initial set-up cost, cexec denotes the aggregated execution cost of all
the jobs executed on resource r. Finally, ccomm denotes the total cost of communication
latency in the network. Since SC' is directly proportional to the running time of a resource,
it needs to be minimised.

If 7 is the standard unit of time considered in this work. then the objective function for

Chapter 4. Load Distribution in Edge Computing Environment 53

SC' can be given as:

argmin SC = {SC|SC = f(r)} (4.11)

Moreover, it is also necessary to keep track of the RU of all available resource nodes. RU
is the ratio of total execution time with the total capacity available in our network. In
order to achieve an optimal utilisation of a resource, RU needs to be maximized. RU is

represented mathematically as:

RU = 2 texee (4.12)
cap

Here cap gives the total execution capacity of the available resources. The optimisation

function for calculation of RU can be given as:

argmax RU = {RU|RU = f(texec)} (4.13)

texec
Therefore, the optimisation problem for maximising the performance parameter PR can
be presented as: Minimise FR, Minimise SC, and Maximise RU. By combining equation

9,11,13; PR can be written mathematically in the following form:

PR = max < argmin F'R, argmin SC, argmax RU) (4.14)
N’ T texec

Note that by maximising resource utilisation, the aim is to optimally utilise resources for

task execution. Similarly, by minimising the failure rate and total cost, I aim to avoid

failure of tasks and also remove the expenditures which do not provide added value to our

task execution framework. Therefore, there is need for a load distribution framework that

allocates the tasks on different resource nodes while ensuring that the resource utilisation

is maximised whereas the failure rate and total execution cost is minimised.

4.4 The SHIELD Framework

This subchapter describes the details of our load balancing framework proposed in this
study. It is assumed that there is a uniform mix of restricted and public tasks available
for execution. The term resource is used to signify a node where the execution of tasks
can take place. In order to monitor the utilisation of resources, a few new terms have been
defined in this work.

Definition-1: b-score - is a balance score that estimates whether a particular resource
node is over-utilised or under-utilised in the framework. It is measured by calculating the
difference between current utilisation (utz) of the node and average utilisation (utzayg)
of the infrastructure. The b-score is calculated every time a new task is submitted for
execution. For every task ¢; evaluated on resource r, b-score can be mathematically given
as:

b — score(i,r) = utz; — utZayg (4.15)

Definition-2: dynamic k-value - In order to reduce the execution complexity, instead of

54 Chapter 4. Load Distribution in Edge Computing Environment

iterating over all the nodes, a more efficient approach involves selecting k£ best nodes and
evaluating them for further performance enhancement. However, I observed that different
functions performed better with different sets of k-values. For determining the dynamic
k-value, I have utilised a softplus activation function in this work. Given the following:
(1)- function Softplus(z) = In(1 + €*)

The system is designed to calculate a value k, which is related to the resource allocation
based on task execution time of our system. The softplus function serves as an
approximation to the rectifier function, compressing extreme values into a smoother range.

The calculation starts by determining 7, as:
515 = tezec — temas (416)

The d; undergoes the softplus transformation and is normalised by:

softplus(dy)
softplus(temaz)

(4.17)

Lastly, the calculation is scaled with R and added to 10% of the total resources already

available. The load constant ¢; is used to adjust this outcome. The final k-value can be

softplus(dy)
= 1 _ 4.1
K {R % <0 tax softplus(temaz) (4.18)

represented as:

The value for load-constant in this work has been fixed at 0.9 (derived experimentally).
Therefore, for the initial 50s of function execution, the allocation will remain constant at
10%. Afterwards, it will be scaled accordingly using equation 4.18. Figure 4.5 shows the

relationship between the dynamic k-value and the average execution time of the function.

4.4.1 Heuristic Function Pipeline

With an aim to optimally allocate public/restricted tasks on available secure/shared
resources, this work uses a two-step heuristic function pipeline for decision-making on
where to execute the task. They are as follows:

hfl(): filtering the load - After determining the waiting time, failure rate, and b-score for
every resource node, the first heuristic function of the pipeline selects the best k£ nodes that
have the minimum values for all three variables, prioritising them in the order of waiting
time, failure rate, and b-score among all nodes available for execution. These k£ nodes are
expected to be the nodes that have been least utilised until the current task execution.
All the initial experimentation in this work has been done with k = 20. Afterwards, the

softplus activation was deployed to determine the optimal k-value that will obtain the best

Chapter 4. Load Distribution in Edge Computing Environment 55

200 A

175 4

150 -

125 4

100 -

Number of Nominees

75 4

50 A

25 1

0 20 40 60 80 100
Task Execution Time

Figure 4.5: Correlation between dynamic k-value and average execution time of the
function.

performance results during performance evaluation.

hf2(): evaluating objective functions - This function calculates the completion time of a
task on all nodes in the selected pool of resources. It includes task execution time and total
additional time if the task is executed on a selected node. I have calculated the additional
time using the formula: additional time = tezee x failure rate. When a failure occurs
during task execution, the node enters the recovery phase increasing the average execution
time. Additional time manages the risk by reducing the probability of allocating tasks to
a risky node where the failure rate is higher. At last, two best nodes with minimum total

execution time are selected and the process is repeated for every incoming task.

4.4.2 Adaptive Cryptographic Measures for Public Networks

The security solution I implemented uses the file system to transfer data between
different resource nodes. In instances where this file system is situated on a publicly
accessed network, nodes on the public network must be equipped with security measures.
Confidentiality is primarily achieved through encryption and decryption mechanisms. On
the other hand, to maintain integrity, tokens such as the HMAC value are relayed via a
secure channel. This secure channel, exemplified by the SSH connection is utilised by Parsl
functions as an adaptive out-of-band channel that adjusts in real-time based on security
needs and conditions.

Figure 4.6 depicts the model's tuning procedure. This involves adding a security layer
to nodes that are accessible through public networks. Notably, Fog Nodeg is reachable
via such a network. As a result, a cryptographic approach is required to safeguard its
integrity and privacy. In this setup, the robot handles encryption and HMAC generation,
while Fog Nodeg manages decryption and verification.

To further enhance the security and robustness of our system during interactions
with publicly accessible networks, I introduced a series of functions that implement

cryptographic encryption:

56 Chapter 4. Load Distribution in Edge Computing Environment

o s s+ o)

w5 Fog Node;

o s s+ 0)

5 Fog Nodeg

B Fog Nodeg

ITYT) Robot

Generate M verify HMAC

HMAC

Image |

Pre-processing " .
Symmetric N Symmetric

Encryption @ Decryption

Figure 4.6: Model tuning for public network access. Robot encrypts and generates HMAC
and Fog Nodeg manages decryption and verification.

‘» Model Tuning — Local Model

Generate HMAC: This function creates an HMAC designed for a particular message
and key using a specified SHA algorithm. This HMAC is fundamental in confirming
the integrity and authenticity of a message, defending against unauthorised changes or
interference.

Verify HMAC: This function validates the authenticity of a received HMAC by comparing
it with a newly created HMAC for a designated message. This creation process makes
use of a cryptographic key and the SHA algorithm. A successful match results in a ‘true’
outcome, validating the message's integrity. On the other hand, a mismatch leads to a
‘false’ outcome, hinting towards a potential security lapse or interference.

Symmetric Encryption: Through this function, a message M undergoes symmetric
encryption, using the Advanced Encryption Standard (AES) in Cipher Block Chaining
(CBC) mode. An auxiliary cryptographic key assists this process, and a random
initialisation vector (IV) further enhances the encryption. The output includes the I'V
and the consequent ciphertext C, preparing it for a potential scenario of decryption.
Symmetric Decryption: This function serves as the complement of an encryption process,
decrypting a given ciphertext C' using AES in CBC mode. Initially, it extracts the IV and
ciphertext from C. Then the decryption process continues by leveraging the key and I'V'.
Any padding is subsequently stripped away, generating the original plaintext message M.
When integrating cryptographic functions into the workflows, there is an added overhead to
the execution times of various tasks. For instance, the pre-processing function experiences
an overhead of about 0.72s, and the model tuning function results in an increase of roughly
1.74s. The compare accuracy function has the most significant increase, with an additional
time of 3.61s. In contrast, the decoding function has a minimal overhead of just 0.03s.
Note that our SHIELD mechanism incorporates these overheads by considering them as
a part of the node's execution duration. This approach provides a comprehensive view of

the time factor while implementing cryptographic security measures on public networks.

4.4.3 Load Balancing Algorithm

The proposed algorithm is designed to identify two best nodes for task execution and
allocate the tasks on those nodes. A set of tasks, a set of resource nodes, and security tags
associated with each task are considered as inputs for the algorithm. The procedure starts

by selecting tasks one at a time, in the order of their arrival. For each selected task ¢;, the

Chapter 4. Load Distribution in Edge Computing Environment 57

algorithm evaluates its waiting time on all the available nodes and selects the node that
has the lowest waiting time. If the waiting time of multiple nodes is similar, I evaluate
the failure rate of those nodes and select the nodes that have minimum failure rate. If the
nodes have similar failure rates as well, I evaluate the b-score of those nodes and select
nodes with minimum b-score among all available nodes. A softplus activation function is
deployed to identify the optimal k-value for executing task ¢; in this framework. The first
heuristic function (hfl) is then invoked to select the k-best resource nodes based on the
previously mentioned three factors in the same sequence. The second heuristic function is
then utilised to select two best nodes (r; and ry) where the task will be finally allocated.
The decision was taken by considering the execution time and additional time on selected
k-nodes. The algorithm then continues examining the task ¢; and resources r; and ro. If
the task is private, the algorithm first checks whether the selected node is secure or not,
and then executes the task. The task is encrypted before execution if the node is a shared
node. On the other hand, if the arrived task is public, it is not encrypted on either private
or shared resource node and is directly sent for execution. A pseudocode for the proposed

load balancer is given below in Algorithm 4.1.

4.4.4 Access Control Mechanism

A mechanism that governs the availability of data within different layers of our edge
computing environment, is utilised to manage access control in this work. The aim is
to restrict the accessibility of specific categories of tasks to certain groups of resources
that are unsuitable for execution. In this work, the unsuitability is evaluated based on the
security requirements of an end-user. If the arriving task is restricted, it would be risky (in
terms of security) to allocate this task on a shared resource as the communication channel
will be accessible to a lot of other users as well. Therefore, a better option would be to
limit allocation of all restricted tasks on private resources only whereas all the public tasks
can be allocated to shared resources for execution. For experimentation, I have utilised
three versions of access control mechanisms. They are as follows:

(1)- Secure Random Placement: When a task arrives for execution, it is randomly allocated
to any of the resource nodes where the security tag matches the task requirements.
For example, when a task with a restricted tag arrives, it will be allocated randomly
to one of the available private resource nodes. Similarly, a task labelled with a public
security tag will be randomly assigned to any available shared resource (and not to any
private resource). (2)- Secure Round Robin: Instead of randomly selecting a node for
task execution, this approach allocates each arriving task to resource nodes in a cyclic
order. However, it is crucial that security tag of the task matches the requirements of
the resource. All restricted tasks will be scheduled on private resources in a cyclic order.
Similarly, all public tasks will be allocated on shared resources in a similar cyclic order.
(3)- Secure Least Loaded: This approach allocates tasks to the resource node which has
been least utilised among the total available pool of resources. However, I make sure that

if the task is restricted, it is allocated to the least loaded resource node in our private pool

58 Chapter 4. Load Distribution in Edge Computing Environment

Algorithm 4.1 SHIELD
Input: set of tasks, set of resource nodes, security tags
Output: two best nodes for task deployment

1: procedure LOAD-BALANCER()

2 select tasks (one-at-a-time) in the arrival order
3 for selected task t; do

4 calculate waiting time

5: calculate failure rate
6
7
8
9

calculate b — score
identify k — value
procedure HF1()
select k best resource nodes

10: end procedure

11: procedure HF2()

12: identify two best nodes - r1 & 7o

13: end procedure

14: end for

15: for task t; and selected node r; & r9 do

16: if t; — private then

17: if selected node — secure then

18: perform execution

19: else if selected node — shared then
20: encrypt task

21: perform execution

22: end if

23: end if

24: if t; — public then

25: if selected node — secure or shared then
26: perform execution

27: end if

28: end if

29: end for

30: end procedure

of resources. Similarly, if the public task arrives, it will be assigned to the shared resource
node which has been least utilised. Whenever a new task arrives, the allocation decision

is made by evaluating the utilisation of all the available nodes.

4.5 Performance Comparison: Parsl vs OpenWhisk

Table 4.2 below provides evaluation metrics for Parsl and OpenWhisk platforms, describing
their performance when executing an FL application on a Raspberry Pi 4. Performance
benchmarks are measured across a range of tasks: pre-processing, model tuning, averaging
models, model validation, comparing accuracy, inference, and decoding. A comparative
analysis of each task with its corresponding average execution time is conducted,
revealing the following findings: (1)- Pre-processing: Parsl displayed high efficiency in

pre-processing operations, completing the task in approximately 0.33s, while OpenWhisk

Chapter 4. Load Distribution in Edge Computing Environment 59

Functions Parsl Time | OW Time | OW Memory
(seconds) (seconds) (MB)

Pre-processing | 0.33 1.80 128

Model Tuning | 178.21 161.54 1024

Averaging 22.33 17.63 2048

Models

Model 37.16 47.77 1024

Validation

Compare 0.10 0.66 128

Accuracy

Inference 5.36 30.85 1024

Decoding 0.01 0.98 128

Table 4.2: Performance readings for Parsl and OpenWhisk functions.

required significantly more time, averaging around 1.79s. (2)- Model Tuning: OpenWhisk
outperformed Parsl in model tuning, completing the task in approximately 161.54s
compared to Parsl's 178.21s. (3)- Awveraging Models: OpenWhisk also demonstrated
better efficiency in this task, averaging around 17.63s, while Parsl took approximately
22.33s. (4)- Model Validation: Parsl performed better in this task, completing it in
approximately 37.16s compared to OpenWhisk's 47.77s. (5)- Comparing Accuracy: Parsl
demonstrated significant efficiency in this task, requiring only about 0.10s, a small
difference to OpenWhisk's 0.66s. (6)- Inference: Parsl was far more efficient in this
task, averaging around 5.36s as compared to OpenWhisk's 30.85s. (7)- Decoding: Parsl
completed the task very quickly in 0.0067s, compared to OpenWhisk's substantially longer
duration of 0.98s.

Running an FL application on Raspberry Pi highlights the strategic difference between
Parsl and OpenWhisk in resource management and their consequential impact on
performance. Moreover, a task-specific difference between performance on two platforms
is observed. For tasks such as pre-processing, model validation, comparing accuracy,
inference, and decoding, Parsl demonstrated higher efficiency. However, OpenWhisk
performed better in model tuning and model averaging tasks. It can be clearly seen
that Parsl exhibits superior performance in the majority of tasks because it operates
more like a native script execution, where the operating system manages and distributes
resources among processes. If the system runs out of memory, the OS can start paging
whenever the function is called, allowing tasks to be completed, though with some added
time. This accounts for the longer duration observed in the model tuning function
executed using Parsl. On the other hand, OpenWhisk uses containerisation, allocating
a specific amount of memory to each function. If this allocated memory runs out, the
function might not run or more likely will fail, triggering a need for task reallocation.
Also, each function execution in OpenWhisk requires the instantiation of a new container
(cold activation). This process contributes to additional time overhead while executing
the functions. Although this overhead appears to be minimal for longer tasks, it can

significantly impact shorter tasks. For example: in the model tuning function, the 6s cold

60 Chapter 4. Load Distribution in Edge Computing Environment

activation contributes just 3.84% to the total 155.69s execution time. However, for the
decoding task, the 0.95s cold activation accounts for roughly 99.17% of the total execution
time, considerably reducing OpenWhisk's performance for tasks with smaller execution
cycles. Therefore, efficient resource allocation becomes even more crucial in a multi-user
infrastructure. Defining precise memory requirements for each function, such as the 1GB
(or 25% of Raspberry Pi's memory) needed for model tuning, can be challenging. In such
cases, a choice can be made to prioritise faster execution over efficient memory utilisation.
Analysing these behaviours, it is possible to optimise performance by dynamically selecting
either Parsl or OpenWhisk for execution, based on the task and available resources. Parsl
could be preferred for tasks such as model tuning when sufficient memory is available to
avoid OS-controlled paging. On the other hand, when memory is insufficient, OpenWhisk
offers a solution by acquiring all the memory needed for a task beforehand, thus preventing
the act of paging. In all scenarios where available memory is limited, it would be better to
utilise the OpenWhisk framework (because of better control over memory). Such strategic
selection could improve the overall performance and efficiency of FL applications. This
selection process can be represented as an optimisation problem in itself and has not
been considered in the current approach. Exploring this later could provide a promising

direction for future work.

4.6 Experimentation Setup and Design

This subchapter presents a detailed description of the experimental setup devised for the
implementation of our proposed security-aware load balancing framework. It includes
setting up Parsl, OpenWhisk platforms, and designing a Python-based simulation that

can simulate real-world conditions.

4.6.1 Testbed Setup for Parsl

The experimental configuration for evaluating the proposed framework utilises an edge
computing environment that consists of an edge node and a controller node connected
with each other. The edge node is a Raspberry Pi 4, Quad-core Cortex-A72 Processor,
64-bit SoC, 4-GB RAM, and Nvidia Jetson Nano, Quad-core ARM Cortex-A57 MPCore
Processor, 4-GB RAM, located at Indian Institute of Technology (IIT) Ropar. The
controller node is a Dell Latitude 5420 laptop equipped with an 11th Gen Intel Core
i7-1185G7 processor operating at 3.00GHz with 8 cores, 16GB RAM, and 512GB storage.
This node is also located in IIT Ropar and the connection between controller and edge
node is established using the Parsl framework. Both the laptop and edge node are
equipped with a 64-bit Ubuntu 22.04.1 LTS operating system for experimentation. Virtual
environments were set up on both machines, and all prerequisites were installed before
initiating the task execution process. To facilitate the communication, a Parsl executor
(HighThroughputExecutor) and an Ad-Hoc cluster configuration are utilised in this work.
A graphical description of the Parsl setup that has been utilised for orchestrating the

Chapter 4. Load Distribution in Edge Computing Environment 61

workflows is provided in Figure 4.7.

gFeFog Node;

Executor Executor Executor

H Process Process| i Process Process H
f * Resource Alliation *
B \ \ \ : o
{ \ \ \ .

20—] | 1 * —o =
%] | — T N D
Q /@app T @app" —— — @app l']
S -~ AN -
o @app) _ s
D Controller Virtual Functions * =

/ F
§ a M@w / 4 -Confi ; ‘ > o O] g
3 M — - — — —i— — — — Configuration- = — = = = = — - = 3
= -0 o - - o =
Qo -~
=3 Privately Accessible Publicly Accessible Controller RS
. w X

WAN 09 0g
‘ ‘ 0g Node, Nodes
S

Nodes ™~

" —e

............

—o= Node; Shared
Shared Folder

Computing Infrastructure

Configure == ——pp Managment H
SFC

SFC = =— = _— -
path

Placement

Figure 4.7: Utilising Parsl for pipelining and orchestrating the execution of workflow.

4.6.2 Testbed Setup for OpenWhisk

In order to test our framework on OpenWhisk platform, I have utilised six Raspberry
Pi 4 Model B computers, operating on Raspberry Pi OS Lite (32-bit) Debian Bullseye.
Every Raspberry Pi is powered by a 1.5GHz 64-bit quad-core CPU (ARM-V8 processor)
with 4GB of RAM. A streamlined version of Apache OpenWhisk (Lean OpenWhisk) is
integrated with edge devices, which eliminates the need for separate Kafka and Invokers.
Currently, the intrinsic compatibility of Lean OpenWhisk is confined to x64 and x86
architectures only (and not ARM). To bridge this gap, I have customised Docker images,
facilitating the installation of Lean OpenWhisk on Raspberry Pi devices equipped with
ARM architectural setups. For a heterogeneous setup, an Nvidia Jetson Nano, Quad-core
ARM Cortex-A57 MPCore Processor, with 4-GB RAM, is also utilised for experimentation
with RPis.

4.6.3 Simulation Setup
I have utilised a two-step simulation process incorporating a queuing model and a failure

model in this chapter.

Queuing Model: This model is designed to determine the waiting times for all tasks

in the queue. It uses a function that considers the arrival time and the current state of

62 Chapter 4. Load Distribution in Edge Computing Environment

the queue to perform this calculation. Another key function identifies the status of a task
(within the queue) and computes its completion time by considering both waiting and
execution times. I utilise a dynamic simulation model for emulating a system with single
server per node, operating under a First-Come-First-Serve policy.

In Algorithm 4.2, the process for handling task arrivals involves calculating the waiting
time (refer to the procedure in lines 3-9) to determine the total completion time, which
is the sum of waiting and execution times. As the task arrives, the system compares its
arrival time with the time when the last task finished waiting (both are timestamps). This
comparison helps to determine if all tasks in the queue have been processed or if there
are still tasks waiting/being executed (refer to line 7). In the event of task allocation, the
completion time is calculated using the procedure described in lines 10-18. If there are no
tasks in the queue (refer to line 13), the system assigns task's execution time as the total
completion time (line 14). However, if the tasks are waiting, system adds the waiting time

to the total execution time and determines the final completion time (line 16) of that task.

Algorithm 4.2 Queue Simulator

Input: arrival time, execution time
Output: waiting time, completion time

1: procedure QUEUE-SIMULATOR()

2 Initialize: wait_end < 0, wait_time < 0

3 procedure CALC_WAIT_TIME(arr_time)

4 if wait_end < arr_time then

5: wait_end < arr_time

6 end if

7 wait_time <— max(0, wait_end — arr_time)

8 return wait_time

9: end procedure
10: procedure CALC_COMPL_TIME(arr_time, exec_time)
11: wait_time <~ CALC_WAIT_TIME(arr_time)
12: wait_end < max(wait_end, arr_time + exec_time)
13: if wait_time = 0 then
14: compl_time < exec_time
15: else if wait_time > 0 then
16: compl_time < wait_time + exec_time
17: end if
18: return compl_time
19: end procedure

20: end procedure

Failure Model: The model incorporates a Mean Time Between Failures (MTBF) clock
as shown in Figure 4.8, to manage the task executions. If the task execution time surpasses
its MTBF, the task will go through multiple cycles (as depicted in Figure 4.9). This model
is specifically designed to simulate a system where MTBF is a significant factor. Upon
initialisation, the model is provided with two parameters: the Mean Time To Failure
(MTTF) and the Mean Time To Recovery (MTTR). A key function within this model

evaluates the status and expected completion time of a task considering the system's

Chapter 4. Load Distribution in Edge Computing Environment 63

MTTR
TBF-Clock
Arrival
Arrival
MTTF Completion
Arrival F I
/ ; Completion X et
- | ompletion
Waiting Execution

i Arrival
time time

Figure 4.8: The execution of a service function at a process node, with completion times
taking account of MTTF and MTTR.

Completion

Figure 4.9: When the task execution time exceeds its MTBF, it will cycle repeatedly. At
each MTTR interval, the operation halts and then resumes until MTTF is reached.

MTBEF. It calculates the expected number of MTBF cycles that a task might undergo
and adjusts its completion time accordingly, considering the possibility of a system failure
during the task's execution process.

This failure model simulation considers the impact of system reliability and repair time
on all the operations. The MTBF clock model provides an even more realistic framework
for understanding, planning, and optimising system reliability, maintaining schedule, task
execution, and completion timelines. Our custom-built clock operates on an MTBF cycle,
which is divided into two phases: the MTTF and the MTTR. If the execution time is
less than or equal to the MTTF, the task can be completed within the system's expected
operational time. However, if the execution time exceeds beyond MTTF, the task enters
the MTTR period, during which progress is paused until the system is restored.

In this model, a unique situation occurs when a task arrives during the MTTR period.
In such cases, only the remaining time until system recovery, which is a fraction of the
full MTTR period, is added to the task's completion time. When a task is interrupted
by the MTTR period or begins in between this period, I have also added an appropriate
MTTR time to the total completion time. If the task is interrupted n times by MTTR
periods, then the completion time is calculated as: Completion Time = Execution Time +
nxX MTTR. For a task initially expected to be completed within one MTBEF period but gets

interrupted by an MTTR period, the new completion time would be Completion Time =

64 Chapter 4. Load Distribution in Edge Computing Environment

Parameter Quantity
MTTF (250-500s)
MTTR (20s-100s)
total requests 5,000
local requests 1,500
global requests 500
predictions requests 3,000
fog layers 2
restricted tags 50%
public tags 50%
controllers in field 10
stmulation setups 2

Table 4.3: Summary of the simulation parameters.

MTBF + MTTR. If interrupted twice, the completion time extends to Completion Time
= MTBF + 2 x MTTR, and so on. Please note that — the more frequently a task is
interrupted by downtime, the longer it will take that task to complete in a real-world
setting.

The two models are linked in a sequential manner. The queue model is initiated first,
and its output, indicating the task's waiting and completion times, is used directly as an
input for the failure model. The failure model processes this information, determining
whether the task can be executed before a system failure occurs and calculates the task's

completion time.

4.6.4 Simulation Parameters

Table 4.3 highlights the configuration details of the simulation parameters utilised in
this study. I have evaluated the performance of four algorithms: secure random
placement, secure round robin, secure least loaded, and SHIELD through a simulation
having uniform and normal distribution configuration. The experimentation is carried
out on a two-layered fog infrastructure having a restricted and a public layer, utilising
RPi benchmarks. Separate tests are conducted on two different platforms: Parsl and
OpenWhisk. Reliability metrics MTTF and MTTR range from 250s-500s and 20s-100s
respectively in our evaluation. I utilised 200 RPis, distributed across both layers. It also
includes three workflows: local model training (1,500 requests), global model aggregation
(500 requests), and model predictions (3,000 requests). Each request and RP1 is associated
with a restricted or public security tag based on its characteristics. In the field, 10 RPis
connected to robots act as network controllers. A dynamic k-value is also utilised for

selecting the best k nodes in this work.

4.7 Results and Evaluations

This subchapter presents the experimental findings and evaluations conducted on our

security-aware load balancing framework. I utilised three key metrics to assess the

Chapter 4. Load Distribution in Edge Computing Environment 65

82.29

80 76.98

75.34 5.8

<70
) @
L 5.93
c 60 7 55.11 56§
© b=
250 &
g 5.4
S 40 3
&30 £
° 525
$20
<

10 2.80 5.0

Secure_Random Secure_Round_Robin Secure_Least_Loaded SHIELD

@wzn Utilised Locations (X7 Makespan ™ Failure Rate

Figure 4.10: Global workflow evaluation on Parsl platform.

performance of proposed system. The first is failure rate which measures the percentage
of tasks that do not meet their deadlines, showing actual cases of task incompletion.
Another important metric is the makespan, which tracks the total time it takes for a
workflow to execute across different systems, with an emphasis on reducing this duration.
I also explored the wtilised location (or utilised resources) metric, indicating the number
of resources involved in a workflow. The goal of this metric is to ensure that resources
are evenly distributed. It is worth noticing that basic load balancers such as round robin,
might link utilised location to the task size in the workflow. The results compare our
proposed SHIELD approach to the random placement method, round robin, and least
loaded load balancing strategies. All these methods are secure, adhering to the access

control procedures described in subchapter 4.4.4.

4.7.1 Performance Analysis of Workflows on Limited Resource

Environment

For understanding the behaviour of framework with less number of resources, I carried
out assessment with k-value set at 20 (equivalent to 10% of the total resources) rather
than relying on the formulation mentioned in Equation 4.18 as depicted in Figure 4.5.
Throughout this stage, I closely monitored the results and analysed the framework's

effectiveness in load distribution with a smaller subset of resource nodes.

83.10 6.4
80 77.02 77.60
6.2
?) 70 6.45 63.83
°a 7R 6.0 2
< 60 5
@50 587
[0} o
2 3
= 40 5.6 5
v Ryl
530 5.4_5:
z 20 5.2
10
3.40 5.0
0
Secure_Random Secure_Round_Robin Secure_Least_Loaded SHIELD

@z Utilised Locations X’ Makespan N Failure Rate

Figure 4.11: Global workflow evaluated on OpenWhisk platform.

66 Chapter 4. Load Distribution in Edge Computing Environment

Figure 4.10 and 4.11 display the performance of global workflow on Parsl and OpenWhisk
execution platforms respectively. The analysis indicates that the SHIELD strategy shows
a substantial reduction in makespan (55.11s, 63.83s), reflecting a more efficient execution
process. Moreover, the failure rate is significantly reduced to just 2.8% and 3.4%,
highlighting the robustness and reliability of our approach compared to other placement
approaches. While round robin distributes tasks evenly across all resources in a cyclic
manner, the Secure Least Loaded method first evaluates the current load on each node,
aiming to allocate tasks to the node having a minimum number of tasks in the queue. This
results in some additional time (around 5s) during the execution of workflows. Moreover,
the average locations utilised (5.93, 6.45) for SHIELD are higher than the other access
control mechanisms. This occurs due to our approach replicating tasks on two locations in
a five-function chain workflow. However, instead of utilising all 10 locations, our framework
selects locations based on performance factors mentioned previously. Selecting locations
for task execution provides better results (in terms of makespan and failure rate) rather
than uniformly distributing the load. When I increased the value of k to 100%, I noticed
that SHIELD algorithm's performance varies slightly between the two configurations. It
utilises more locations (5.93 vs 5.53) and has a marginally lower makespan (55.11s vs
55.97s) with 10% configuration compared to 100% k-value configuration. However, the
failure rate is slightly higher when k value is 100% (3.0 vs 2.8).

200 200.25 199.87 20443
3.2
fg 175 10961
<150 300
]
S o
2125 2.87
g S
g 100 2673
& 75 £
5 50 53 80 53 70 245
2 337 22
25 199 2.00 21.93
/ N
0 2.0

Secure_Random Secure Round_Robin Secure_Least_Loaded SHIELD

w7 Utilised Locations X% Makespan NUNX Failure Rate

Figure 4.12: Local workflow evaluation on Parsl platform.

181.83 18347

179.13
160.16

175
150
125
75
50 51 3 50.00
25 987
0

Secure_Random Secure Round_Robin Secure_Least_Loaded SHIELD

w
=)

N
o

N
i

Average Makespan (sec)
o
o
N
o
Utilised Locations

N
N

%@W

g
o

w7 Utilised Locations X% Makespan NUNX Failure Rate

Figure 4.13: Local workflow evaluation on OpenWhisk.

Chapter 4. Load Distribution in Edge Computing Environment 67

The performance of local workflow on Parsl and OpenWhisk platforms are shown in Figure
4.12, 4.13 respectively. In this workflow, SHIELD also demonstrated better performance
over the other strategies. The makespan observed under SHIELD was 169.61s and 160.16s,
significantly lower than its counterparts. Furthermore, the failure rate is only 21.93% and
19.87%, far less than Secure Random, Secure Round Robin, and Secure Least Loaded. It
can be observed that makespan is significantly higher for all strategies in comparison to
the global workflow. This is because the “model tuning” function has a more substantial
execution time in the local setting (which is not required in a global workflow). The high
execution time not only results in a longer makespan but also increases the probability of
failure. Therefore, the failure rate in the local workflow is also higher than that observed
in the global workflow. The average utilised locations for SHIELD are 3.37 and 3.18, which
is also higher than other three access control mechanisms. The 10% k-value configuration
of the SHIELD algorithm utilises slightly more locations (3.37 vs 3.36) and has a slightly
higher failure rate (21.93 vs 20.67) compared to the 100% configuration. However, the
makespan is marginally higher in the 100% configuration (168.55s vs 169.61s).

_3.64 3.6

w
v

w
o
W
IS

N

w
N
rs
3
N
o
o

Average Makespan (sec)
) S

EE

w
N

=
w

11.15

N
©

SO

o
3
2
N
N
7/
_|

N
o

SN\

2.63
0.00

Secure_Random Secure_Round_Robin Secure_Least_Loaded SHIELD

7awzn Utilised Locations X7 Makespan ™ Failure Rate

Figure 4.14: Prediction workflow evaluated on Parsl.

42.33
40 3.4
- 36.45 183 351
Y 35 /o
(9]
A 3158 "
= 30 7 328
F=
* 3.03
s 20 °
o k]
215 2.85
[} 5
z10
5 2.6
103
gecure_Random_PIacemerﬁecure_Round_Robin Secure_Least_Loaded SHIELD

ziza Utilised Locations WX/ Makespan X Failure Rate

Figure 4.15: Prediction workflow evaluated on OpenWhisk.

For the prediction workflow, the performance on Parsl and OpenWhisk platforms
are depicted in Figure 4.14 and 4.15 respectively. The proposed SHIELD strategy
demonstrates the highest efficiency with the lowest makespan (5.63s, 31.58s) on both

platforms. The access control mechanisms — Secure Random, Secure Round Robin, and

68 Chapter 4. Load Distribution in Edge Computing Environment

Secure Least Loaded have slightly higher makespan in comparison to our approach. The
difference in makespan is attributed to the efficiency of SHIELD in allocating resources,
thereby leading to quicker task completion. A slightly better makespan of round robin
is observed because of its cyclic allocation of tasks on available resources. It is also
observed that the average failure rate for SHIELD is 0.06% and 1.03% respectively. The
prediction chain has a very low completion time and it is optimally placed on locations
using SHIELD framework. This reduces the probability of execution failure and exhibits
a high task execution rate. The performance of the SHIELD algorithm shows a noticeable
difference between the two configurations in this workflow. The 10% configuration has a
slightly higher number of utilised locations (3.64 vs 3.6) and a lower failure rate (0.0 vs
0.03). However, the makespan is almost identical, with a minor difference of 5.63s and

5.64s in 10% and 100% configuration respectively.

4.7.2 Interpreting the Additional Time Required for Different

Execution Workflows

Another critical factor for analysing the performance of our framework is the additional
time required whenever a task failure occurs and system goes into a recovery phase. The
data presented in Table 4.4 shows the average additional time required by the system
whenever a process node faces an interruption, along with the recovery time following
such interruptions. This analysis focuses on understanding three available workflows on

both available execution platforms.

Table 4.4: Average additional time on Parsl and OpenWhisk.

Approach Global Local Prediction
Random 9.93s 10.21s 1.18s

Parsl RR 16.95s 21.13s 4.45s
SHIELD 0.77s 0.82s 0.45s
Random 10.98s 11.57s 1.79s

OW RR 18.63s 15.89s 2.6s
SHIELD 3.39s 4.59s 0.64s

Random Approach: Both Parsl and OW recorded a longer execution time for the global
and local workflows. Parsl is approximately 10s and OW is a bit closer to 11s. However,
the prediction workflow in both platforms shows a much shorter duration.

Round Robin (RR) Approach: In Parsl, the RR approach showed a significant delay,
especially in the local workflow, surpassing 21s. Though global and prediction workflows
also showed an increase, it is relatively less than the local version. In contrast, RR method
on OW showed a faster recovery for the local workflow in comparison to others.

SHIELD Approach: Our algorithm provides better results on both Parsl and OW
platforms. On Parsl, the values range between 0.45s and 0.82s, which provides faster
recovery for all three frameworks. SHIELD on OW is faster in comparison to other
alternative methods but is marginally slower than Parsl. Across both Parsl and OW,

the SHIELD approach succeeds in minimising the additional time. Conversely, the RR

Chapter 4. Load Distribution in Edge Computing Environment 69

strategy, in the Parsl local and OW global workflow, exhibits higher delays. The prediction
workflow consistently recorded shorter additional times, irrespective of the platform. For
applications prioritising the minimisation of additional time, SHIELD is a preferable
choice. However, it is crucial to consider the intrinsic nature of each workflow, especially
the local workflow, which inherently has a longer execution time in comparison to the

prediction and global workflows.

4.7.3 Exploring Distribution of Load and its Trade-off with other

Performance Critical Factors

To analyse the load distribution capability of our proposed framework, I have performed a
comparison with the other three task allocation strategies having uniform load distribution.
The uniform distribution strategy ensures a fair distribution of load across network
resource nodes, independent of specific characteristics of the infrastructure. It focuses
predominantly on maintaining a balance in load distribution, while also considering access
control policies.

The random placement strategy employs a uniform distribution function for allocating
tasks. Despite generating a balanced distribution, this approach still lacks deterministic
predictability. In contrast, the round-robin distribution adopts a more deterministic
approach by systematically allocating tasks among all processing nodes available in the
infrastructure, thereby assuring fair distribution. The effectiveness of these strategies can
be evaluated using the task allocation ratio. Both random placement and round-robin
strategies typically operate with an allocation ratio of 0.5-0.53%, suggesting each node
receives approximately 0.5-0.53% of the total tasks on average. On the other hand,
SHIELD prioritises the reduction of waiting times and failure rates over balanced task
distribution. The nodes chosen by SHIELD exhibit a higher allocation ratio, typically
between 2.47-2.76%. This implies that nodes selected in SHIELD are less likely to
miss deadlines, placing reliability over balancing task distribution. Despite this focus on
reliability, SHIELD also takes account of task distribution among high-performing nodes.
SHIELD increases the allocation ratio of reliable nodes but balances the load between

them based on the currently queued tasks, considering waiting time and b-score.

4.7.4 Evaluating the Influence of Dynamic k-value on Overall Execution
Time of Workflows

To analyse the behaviour of our framework for optimal resource utilisation and overall
execution times, I have used a softplus function for dynamically nominating & number of
resources that can be deployed for executing the selected task. The formula for determining
the k-value (represented in equation 4.18), is essential for the effective distribution of
resources. It dynamically adjusts resource allocation in response to the execution time
of tasks in our given system. For a scenario where task execution times are equal to or
less than 50s, the k-value remains constant. However, if the execution time surpasses

this 50s threshold, there is a gradual increment in the number of nodes designated for

70 Chapter 4. Load Distribution in Edge Computing Environment

future resource allocation. This behaviour indicates a clear positive relationship between
the k-value and execution time. However, in practical scenarios, I observed that it is less
likely to have more than 20% of the nominees being considered for task allocation.

Our empirical analysis of the dynamic k-value also validates its efficiency. Tasks having
longer execution time such as model tuning may experience interruptions from repeated
recovery actions. As depicted in Figure 4.12 and 4.13, considering a larger group of nodes
within the secondary heuristic function is advantageous in such scenarios.

Interestingly, fewer nominees for global and prediction workflows can lead to improved
results (Parsl: 55.11s, OW: 62.71s and Parsl: 5.63s, OW: 31.03s respectively). This
outcome is obtained by maintaining a balance between exploration and exploitation in
the SHIELD heuristic approach. By applying a dynamic k-value, about 10% of nodes are
nominated to the secondary heuristic functions, leading to enhanced outcomes.

Using a dynamic k-value for adjusting the node count across heuristic functions not only
improves the optimisation process but also ensures efficient resource allocation. Providing
all resources to the next heuristic function for shorter workflows, such as global (Parsl:
55.97s, OW: 63.83s) and prediction (Parsl: 5.64s, OW: 31.58s), can lead to results that
are not optimal. This emphasises the significance of k-value in ensuring better system
performance, reducing an average of 0.86s on Parsl, 1.12s on OW and 0.01s on Parsl, 0.55s

on OW platform (for global and prediction workflows respectively).

4.7.5 Analysing Performance with different Data Distribution and Task
Load

All the previous experimentation in the chapter has been performed with uniform data
distribution. To evaluate the proposed framework for a different probability of task arrival,
I analysed the performance of SHIELD over Gaussian distribution of data, as shown in
Figure 4.16, 4.18, 4.20, 4.17, 4.19, and 4.21. I observed that on global workflow, the failure
rate increased to 6.20% and 9.40%, for Parsl and OpenWhisk, respectively. Similarly,
for local and prediction workflows, the failure rates also increased to 26.27%, 23.93%;
0.07%, 2.47%, respectively, on Parsl and OpenWhisk. I also noticed that the makespan
for both distributions was similar, with a slight variation of 1s-3s, on average. Gaussian
distribution is known to simulate a more realistic and varied workload scenario where
some nodes might be more heavily loaded than others. The experimental results show
that SHIELD still outperformed the other three strategies in successfully completing the
tasks. However, a slight increase in failure rate can be observed due to the changing load
pattern of the distribution, which can be more challenging than managing a consistent,
evenly spread-out load.

Moreover, as I increase the task load to 5x and 20x of the initial load, I observe a
notable trend in both Parsl and OpenWhisk platforms. In most cases, the makespan
marginally increases or remains stable, indicating robust handling of larger workloads by
SHIELD. The utilised locations also vary, reflecting adaptive resource allocation strategies

to accommodate the increased load. Interestingly, the failure rate increases (around 1-10%,

Chapter 4. Load Distribution in Edge Computing Environment 71

80 78.34 5.00
74.37 75.15
4.95
70
™
2 60 490
\C/ 54.40 g
50 4852
(%]
¢ 4808
= 4753
%30 2
© 4.70
820 >
< 10 4.65
4.60

Secure_Random Secure_Round_Robin Secure_Least_Loaded SHIELD

7wz Utilised Locations X! Makespan N Failure Rate‘

Figure 4.16: Global workflow evaluation on Parsl platform (with Gaussian Distribution).

5.20
80
S 70 5.15
ﬁ 62.45 "
c 60 5105
250 g
% 5.059
S 40 3
&30 5.00:2
8 5
[
220 4.95
10
4.90

Secure_Random Secure_Round_Robin Secure_Least_Loaded SHIELD

7wz Utilised Locations LXK Makespan U\ Failure Rate ‘

Figure 4.17: Global workflow evaluation on OpenWhisk platform (with Gaussian
Distribution).

200 198.80 201.25
2.7
~ 175
2.6
i«’ 150 g
252
2125 8
9] 2.49
v -
g 100 , 33
& 75 38
g S0 5187 55.21 22>
2
25 1.98 2.00 2.1
0 2.0

Secure_Random Secure_Round_Robin Secure_Least Loaded SHIELD

Wwzw Utilised Locations X% Makespan NN Failure RateJ

Figure 4.18: Local workflow evaluation on Parsl platform (with Gaussian Distribution).

depending on the type of workflow) with a higher task load, suggesting a correlation
between increased workload and the likelihood of task failures. Detailed results about

task load can be seen in Table 4.5 shown below.

4.7.6 Analysing Performance in Heterogeneous Resource Environment

In order to analyse the performance in a heterogeneous resource environment, I evaluated
the SHIELD framework with two types of hardware resources (RPi and Jetson Nano).
I observed that SHIELD outperforms other approaches in utilising locations (4.42, 4.63)

72 Chapter 4. Load Distribution in Edge Computing Environment
182.13 }87'46
175 3.0
3 150
\2 2.8 §
g 125 $
£ 100 263
= el
v 75 @
g 50 >
< 2.2
25
i 2.0
Secure_Random Secure_Round_Robin Secure_Least_Loaded SHIELD
Wwzw Utilised Locations X Makespan NN Failure RateJ
Figure 4.19: Local workflow evaluation on OpenWhisk platform (with Gaussian
Distribution).
25 2.48 2.51 2.50 2.500
232 ’
S 2.475
|9
g20 "
= 2.450 5
g =)
o15 24258
Aré)
s el
© 10 9.74 2.4003
[=
g 657 692 0% 23755
o < X > 5.44
Z 5 QL R
< Q0 5 2R 2.350
[2.325
Secure_Random Secure_Round_Robin Secure_Least Loaded SHIELD
w7z Utilised Locations XX Makespan NN Failure Rate‘
Figure 4.20: Prediction workflow evaluation on Parsl platform (with Gaussian
Distribution).
40 2.52
35
3
230 2500
< S
a 25 ©
g 2.488
© 20 =
= 3
Y15 2.46:2
g 5
g10
< 2.44
5
0 2.42

7wz Utilised Locations

X Makespan

SHIELD

@\ Failure RateJ

Figure 4.21: Prediction workflow evaluation on OpenWhisk platform (with Gaussian

Distribution).

more effectively, achieving lower makespan (81.98s, 85.48s), and ensuring a lower failure
rate (9.73%, 8.75%) across both Parsl and OpenWhisk platforms, respectively. Figure 4.22,
4.24, 4.26, 4.23, 4.25, and 4.27 shows detailed results of workflows on Parsl and OpenWhisk

with heterogeneous resource nodes.

The experimentation demonstrates that Parsl is

a better choice for global and prediction workflows, as it offers faster task completion
(6.37s, 26.27s), and high reliability (2%, 1.6%). Its architecture and execution model are

Chapter 4. Load Distribution in Edge Computing Environment

73

Platform Workflow | Requests Load | Makespan | Failure Rate | Utilised Locations
Parsl local 554 169.16 21.52 2.58
Parsl local 20x 170.39 26.16 2.45
Parsl global 5x 54.24 6.68 4.91
Parsl global 20x 54.90 6.87 4.65
Parsl prediction | 5x 5.44 0.01 2.26
Parsl prediction | 20x 5.44 0.07 2.32
OpenWhisk | local 5x 160.11 22.61 2.92
OpenWhisk | local 20x 159.57 23.05 2.84
OpenWhisk | global 55'¢ 63.71 10.88 4.68
OpenWhisk | global 20x 63.95 9.16 4.71
OpenWhisk | prediction | 5x 30.98 2.22 2.34
OpenWhisk | prediction | 20x 31.02 2.23 2.31

Table 4.5: Evaluating SHIELD framework with 5x and 20x task load.

well-suited for complex computations and scenarios where faster execution and success

rates are critical for performance. However, OpenWhisk offers better performance than

Parsl in the local workflow, where pre-allocating the resources before task execution can

significantly improve the makespan (22.14s), and reduce the failure rate (4.28%).

80

N
o

Average Makespan (sec)

80.51 81.48

86.29

58.72

41.30

N

5.6

AT L L L.]
- N w i w
Utilised Locations

v
o

Secure_Random

7wz Utilised Locations

Secure_Round_Robin Secure_Least Loaded

WX/ Makespan

SHIELD

N Failure Rate

»
©

Figure 4.22: Global workflow evaluation on Parsl with heterogeneous nodes.

80

N
o

Average Makespan (sec)

82.42 81.98

87.14

65.09

45.00

\

S .
N £~ o [e¢] o N
Utilised Locations

v
o

Secure_Random

7z Utilised Locations

Secure_Round_Robin Secure_Least Loaded

WX/ Makespan

SHIELD

N Failure Rate

Figure 4.23: Global workflow evaluation on OpenWhisk having heterogeneous nodes.

Comparing the performance of SHIELD, when evaluated on a uniform mix of resources, 1

observed similar trends across all workflows, for both Parsl and OpenWhisk. The results

74 Chapter 4. Load Distribution in Edge Computing Environment

212.84 A2 3.6
200
9 181.35 3.4
a 322
< 150 s
=
% 30®
" o
9] o
3 .-
= 100 83
g 262
o
] 55.80
z 50 N 2.4
2,07 2.2
0 Secure_Random Secure_Round_Robin Secure_Least_Loaded SHIELD

7w Utilised Locations X Makespan NUNX Failure Rate

Figure 4.24: Local workflow evaluation on Parsl platform having heterogeneous nodes.

200 197.42 4.00
3.75
_ 175
£150 350,
c o
3125 3255
¢
o
% 100 3.003
= ®
g 75 2.75%’
S E
g 50 2.50
<<
25 2.25
2.00

Secure_Random Secure_Round_Robin Secure_Least_Loaded SHIELD

zwza Utilised Locations (X7 Makespan X Failure Rate

Figure 4.25: Local workflow evaluation on OpenWhisk with heterogeneous nodes.

3.66
35 7 30
g 30 / 3.4
a 0
c 25 2.49 /2.51 2.50 / S
@ =
g / // / / 327
£20 / / / / 8
= 3.0
o 15 / / / / %
> / / =
§ 10 / 7.82 / / K / 2.8~
z / / 7.02 / 5.89
5 3.38 / 2.88 284 /
. ; : 2.6
0 %\] \ 0.00
Secure_Random Secure_Round_Robin Secure_Least Loaded SHIELD

zzn Utilised Locations WX/ Makespan N Failure Rate

Figure 4.26: Prediction workflow evaluation on Parsl platform with heterogeneous nodes.

show that the resource utilisation in both scenarios is almost similar, whereas there is a
slight increase in makespan and failure rate when execution is performed in a heterogeneous
environment. This increase can be attributed to the overheads incurred from the serverless
architecture and GPU utilisation in the edge layer. In the serverless deployments, as
seen with both Parsl and OpenWhisk, there are significant initialisation overheads, more
dominantly seen in Jetson Nano, due to its complexity and higher memory requirements.
Moreover, Jetson Nano's do not have the advantage of spreading out initialisation costs
over longer periods, since functions are temporary, and do not run continuously. This

results in notable delays every time the node is reloaded, thus resulting in higher execution

Chapter 4. Load Distribution in Edge Computing Environment 75

41.37
40 37.09 37.58 350 34
535 / :
g 32.16 "
% 30 / 3_2-5
S
225 g
% 3.03
820 3
(%]
515 285
= D
Y10
< 5 2.6
1.06
0 2.4

Secure_Random Secure_Round_Robin Secure_Least_Loaded SofNet

azn Utilised Locations (XU Makespan ™ Failure Rate

Figure 4.27: Prediction workflow evaluation on OpenWhisk having heterogeneous nodes.

costs during task execution. Furthermore, their performance is also affected by memory
hierarchy challenges, as frequent data transfers between different memory layers lead to
bottlenecks, particularly in devices that contain limited GPU memory, such as the Jetson

Nanos used in edge computing infrastructures.

4.8 Summary

This chapter [133] demonstrates a framework for managing computational tasks within a
rural edge infrastructure, establishing a balance between effective load distribution and
maintaining data privacy, security of end-users. A heuristic-based two-function algorithm
is used to assign tasks on private or shared resources, taking into account completion
time, waiting time, failure rate, additional time, overheads, and resource utilisation.
SHIELD (Secure Heuristic Integrated Environment for Load Distribution), utilises three
task scenarios: local model training, global model aggregation, and prediction model
for evaluation of the framework. Our results show that SHIELD not only provides an
improvement in completion time (makespan) and failure rate but also reduces the use of
risky nodes that have a high chance of failure. The designed framework can also be utilised
in other rural applications where load balancing and security are key performance factors.
However, another approach to enhance the performance of framework is to optimise the
ML and AI operations of IoT applications. The next chapter explores this aspect of

improving the ML execution and deployment for an agricultural based use case scenario.

76

Chapter 4. Load Distribution in Edge Computing Environment

Chapter 5

Optimising AI Operations in
IoT-based Applications

5.1 Integrating ML with IoT

In recent years, the advancements in IoT have offered significant opportunities to achieve
Sustainable Development Goals (SDGs) by providing enhanced connectivity and real-time
data analysis across various sectors. By integrating sensors, actuators, and end-user
devices, IoT networks facilitate the collection of vast amounts of data and enable more
informed decision-making with optimised utilisation of resources [134]. Integrating ML
and Al models in IoT can provide a direction for significant advancement in the domain
of computational technology. These models have also seen exponential growth across
numerous real-world tasks such as image classification [114], object detection [135], and
video analysis [136] in the past few years. In order to achieve higher accuracy and
performance, researchers have focused on designing architectures that are both deeper
and broader, like VGG, Inception, ResNet, YOLO etc.

Deploying these complex, deep models on resource constrained nodes, such as mobile
robots, field side units, unmanned aerial vehicles, and end-user IoT devices, presents
significant challenges [137]. Performing convolution operations on these models demands
substantial computational power and energy. Additionally, the extensive number of
network parameters results in high storage requirements, causing further challenges in
resource limited environments [138]. If I consider InceptionV3 and VGG16 models as
an example; they have more than 138 million and 23 million parameters respectively.
Moreover, to process a single 224x224 image, these models require around 6 billion and
30 billion floating-point operations. In order to implement such large-scale deep learning
models on resource constrained infrastructures, it is imperative to tackle the issue of their

computational intensity and memory demands.

Numerous methods have been developed to handle the rising demand of memory
and resources by deep learning models. Model compression techniques like pruning,
quantization, and knowledge distillation are crucial for reducing the size and improving
the speed of these models. Pruning [139] involves removing unnecessary weights from a
neural network, effectively decreasing its complexity and size. Quantization [139] converts
parameter weight values from floating type to integer type, which decreases memory

usage and can speed up inference. Knowledge distillation [140] transfers the knowledge

78 Chapter 5. Optimising AI Operations in loT-based Applications

from a large, complex model to a smaller, faster one without significant loss in accuracy.
Additionally, creating compact neural architectures and optimising for specific hardware

are a few other strategies used to further accelerate the model performance.

after pruning

input layer

layer before pruning

.] trainable layers . freezed layers .] retained features E pruned features

Figure 5.1: An overview of our proposed methodology.

Optimising ML pipelines and system life cycles often presents significant challenges
and is a very complex task. Training larger neural networks with sparse activations
can enhance model scalability and performance. However, this approach may lead
to increased carbon emissions and energy utilisation due to higher demand of system
resources [141]. Offloading model training and inference tasks to data centres powered
by carbon-neutral energy sources offers a potential reduction in emissions but might
not be practical for all application use cases. This is because the development of
carbon-neutral infrastructure is often constrained by geographical and material availability
limitations [142]. Moreover, with the rising trend of on-device learning to enhance data
privacy, more computational tasks are being offloaded from centralised servers to low-level
edge and IoT devices [143, 144]. Therefore, there is a critical need for a sustainable training
and inference infrastructure that reduces resource utilisation — both in terms of memory

and computation — without compromising the accuracy and performance of the models.

In this chapter, I am evaluating two distinct methodologies that enhance the efficiency
of ML operations — (1) The first method aims to reduce the computational demands
associated with backpropagation by systematically freezing certain layers of the neural
network. Specifically, this involves fixing the parameters of selected layers to prevent
them from updating during training. The primary objective is to cut down on the
time required for both the current training session and any subsequent adjustments to
model in the future. (2) Another method focuses on refining the architecture of an ML
model by adjusting its parameter count. This strategy uses an automated process to
identify and prioritise the most significant parameters for a specific dataset on which it
is trained. Subsequently, parameters that are found less critical are eliminated from the

model through a pruning procedure. This approach enhances the overall efficiency of ML

Chapter 5. Optimising AI Operations in loT-based Applications 79

operations for both the training and inference phases, by reducing the model's complexity.
A brief overview of our proposed approach is shown in Figure 5.1. Implementing these
strategies results in an optimised configuration of models such that models require fewer
resources for training and inference thus reducing the energy, computation, and storage

requirements of the frameworks.

5.2 Agricultural Use-Case

I have considered an agricultural scenario for experimentation with our approach. Effective
weed management in precision agriculture is a critical task that can help farmers in
maximising crop yield, reducing cost, and minimising the use of herbicides in agricultural
fields. Al models trained on large datasets of agricultural imagery are capable of
distinguishing between crops and weeds with remarkable accuracy. These models are
deployed through advanced sensors and imaging technologies mounted on drones, robots,
agricultural machinery, scanning fields in real time to identify weed infestations. For
evaluation, I have utilised a weed identification task as the use case in this chapter. Two
ML models namely InceptionV3 and VGG16 have been used for training and inference

procedures with DeepWeeds dataset in the approach.

5.3 Proposed Methodology

This subchapter provides a detailed description about our approach for layer selection
and pruning. The first part describes the genetic algorithm based selection mechanism
for layers and the second part highlights the heatmap visualisation technique for channel

pruning.

5.3.1 Optimising Layer Selection with Genetic Algorithm

In optimisation, the solution encoding consists of a binary array that defines each layer's
selection during the training process. A genetic algorithm is used to manipulate this
encoding by modifying the array to discover an optimal mix of active and inactive layers
for enhancing model's performance. Selecting the optimal layers for training while keeping
the remaining layers frozen to preserve their weights during training, constitutes a complex
computational optimisation challenge. This task is crucial for improving the model's
functionality, especially considering the complexity and scale of neural networks which
make manual selection non-feasible. Therefore, sophisticated optimisation algorithms are
necessary to efficiently navigate through potential configurations and identify the most
effective ones for deployment.

Genetic algorithms are particularly suited for this task due to their good capability in
handling complex optimisation problems. Inspired by the genetic process of combining
attributes, these algorithms utilise mechanisms such as mutation, crossover, and selection

to refine solutions progressively. For the layer selection approach, GA enables a systematic

80 Chapter 5. Optimising AI Operations in loT-based Applications

exploration of layer combinations, identifying those layers that can significantly reduce the
computational demand and enhance the performance. I will first describe the formulation

using mathematical notations and then provide details about the selection mechanism.

Problem Formulation

I have formulated our selection approach as an optimisation problem to maximise the
accuracy of a neural network model by strategically selecting layers for training. This

selection process is controlled by binary decision variables for each layer, denoted as:

1, if layer i is selected for training,
0, otherwise layer ¢ is NOT trained.,
for i =1,...,n, where n is the total number of layers in the model.
The primary objective is to maximise the model's accuracy, which can be represented by

the objective function f(x) described as:

f(z) = model_accuracy (M (z)), (5.2)

where M (z) represents the neural network model, configured according to the trainable
status of each layer ¢, as determined by the binary decision variable x;. This function
directly maps the selection of trainable layers to the overall performance of our model.

The solution's feasibility is constrained by a limit on the total computational resources
allocated for training the selected layers. This constraint ensures that the sum of the
computational weights of the selected layers does not exceed a predefined limit L. It can

be specified as:

Z Wi * Ty S L, (5.3)
=1

where W; denotes the computational cost or weight associated with training layer i.

The aim of this formulation is to find an optimal set of layers (z;) that maximises the
neural network's accuracy within the given computational cost L. By identifying the ideal
set of layers which can be used to establish a balance between performance accuracy,
resource utilisation, and computational cost; we can design an approach that performs
the ML model training based on the execution requirements of end-user applications for

which the solution is begin designed.

Genetic Algorithm Based Selection

For the framework, the solution encoding is represented by a binary array which determines
the training status of each layer. A genetic algorithm modifies this array to find the
optimal configuration of layers to improve model performance. Figure 5.2 illustrates our
solution encoding mechanism and its manipulation by the genetic algorithm. The selection

algorithm chooses solutions in each iteration, followed by the crossover and mutation

Chapter 5. Optimising AI Operations in loT-based Applications 81

operations. Mutation involves flipping bits (‘0’ to ‘1’ or vice versa) by targeting specific
indices based on a random distribution. These operations are repeated multiple times to

generate new probable solutions.

— Layer,

Model |
Architecture }_’-7 —» Layers ——|ousu
~

Solution -

Encoding X4
Fr=—g- -==" r- === (" "~-~-=-===- I 2
| Population | | Selection P Crossover 1 Mutation |
pLofo o], [o]o] P o I
I IR R o1 [T
| kg ™% O " @ |
1 11 1 | 11 1
I o] [o] 1 I I
I, D L I R J

Figure 5.2: Solution encoding for layer selection.

Individuals with higher fitness are preferably selected through Binary Tournament
Selection mechanism, ensuring those more suited to the problem are more likely to
reproduce. A 90% chance of Single Point Crossover promotes genetic diversity by mixing
genes from pairs of parents, while a 20% Bit Flip Mutation rate introduces new genetic
variations to explore the solution space effectively. The algorithm runs until a specific
number of fitness evaluations are obtained, maintaining a constant population size. This
setup provides a balance between exploring new possibilities and exploiting already-known
good solutions, aiming for an efficient search of optimal solution within a limited number

of computational steps.

5.3.2 Efficient Feature Mapping for Pruning

Modern deep neural networks consist of various types of convolutional layers, and the
execution runtime during an inference phase is dominated by evaluation of those layers.
In order to speed up the inference process, our strategy involves pruning complete
feature maps by utilising the analytical capability of GradCAM and performing heatmap

visualisation to identify the impactful features.

Introduction to GradCAM

GradCAM - stands for Gradient-weighted Class Activation Mapping [145], is a technique
that can enhance the interpretability of convolutional neural networks (CNNs) by
analysing gradients in the final layer and quantifying the significance of each neuron in
the decision-making process. This technique visualises the importance of features using
heatmaps, where color intensity represents values between 0 and 1 to show the scale of
significance in the data. Figure 5.3 below shows a step-by-step visualisation of the active

areas in an image that was highlighted during the feature identification process.

82 Chapter 5. Optimising AI Operations in loT-based Applications

2 - blockl_conv2

8 - block3_conv2

100 150

13 - blockd_conv3

150 150 200

Figure 5.3: Visualisation of the data and its corresponding class activation heatmap for
identified labels.

The method is utilised to identify the crucial areas and bring out the relation between
model parameters and these identified regions. By highlighting the association between
parameters and weights with important features or regions, the technique can be used
for the interpretation of Al models as well as improving their performance. GradCAM
quantifies each weight's importance in values ranging between 0 to 1 and uses it to measure
the parameter's contribution in class identification decision. I have considered a threshold
variable for establishing the separation between the importance value of features and
executing the pruning process to eliminate less critical connections, thus optimising model

performance and efficiency.

To represent it mathematically, let us consider that C' is a set of all channels in the
convolutional neural network's target layer. I(c) is the importance score of channel ¢,
derived from the GradCAM heatmap values, where ¢ € C. Moreover, T is the threshold
value for pruning, a predetermined parameter that distinguishes between essential and

non-essential channels.

For a channel ¢ to be retained, its importance score must be greater than or equal to the

threshold otherwise the channel is pruned, such that:

yes, I(c)>T
no, I(c)<T

retainCh(c) = (5.4)

The aim is to identify the optimal value of retainCh(c) such that majority of the necessary
features are retained whereas all the other features that do not significantly contribute to
the decision making process are pruned. By optimally selecting limited number of features,
we plan to reduce the overall size of ML model and retain all the necessary features which

contributes in the delivery of output decision obtained during model inference process.

Chapter 5. Optimising AI Operations in loT-based Applications 83

Pruning Workflow

I have designed the Algorithm 5.1 that shows the step-by-step approach of our pruning
workflow. The process begins with the identification and extraction of the target CNN
layer from the neural network model. Following this, the weights of the designated layer
are extracted before further analysis and manipulation are performed. Next, the channel
importance is calculated by summing up heatmap values per channel, indicating their
contribution to the model's output and assistance in pruning decisions.

The selection of channels to be retained is based on a pre-specified importance threshold
value. Channels with cumulative heatmap values surpassing this threshold are selected
for retention, while those with values below it are considered for removal. This process
ensures the retention of only those channels that significantly contribute to the network's
effectiveness. The pruning phase involves the targeted deletion of weights and biases
associated with channels that are deemed non-essential (below the threshold). This
crucial step aims to decrease the model's computational demands while preserving its
true predictive characteristics.

Following the pruning process, a new CNN layer is created. This layer mirrors the original
layer in terms of its architectural parameters (e.g., kernel size, strides, padding, activation
function) but differs in the number of filters, which are adjusted to match the count
of channels retained. The pruned weights and biases are then allocated to the newly
instantiated CNN layer, ensuring that the layer is properly equipped to perform its function
within the network. The final step replaces the original convolutional layer with its pruned

version, ensuring the model's integrity and connectivity.

Algorithm 5.1 Channel Pruning using Heatmaps

Input: model, layerName, impThresh
Output: prunedModel
targetLayer < GETLAYER(model, layerName)
w, b + GETWEIGHTS(targetLayer)
1mp 4 empty map
for each ch in targetLayer do

imp[ch] < Sum(heatmap[ch])
end for
retainCh < empty list
for each ch, i in imp do

if i > impThresh then

APPEND(retainCh, ch)

end if
: end for
. pruned W, prunedB < PRUNEWB(w, b, retainCh)
: newLayer < CREATELAYER(len(retainCh), targetLayer.kSize, targetLayer.stride,

targetLayer.pad, targetLayer.act)

17: SETWEIGHTS(newLayer, prunedW, prunedB)
18: model <— REPLACELAYER(model, layerName, newLayer)
19: return model

T e S e S e G et
A > el

84 Chapter 5. Optimising AI Operations in loT-based Applications

5.4 Experimental Design and Setup

The subchapter describes the experimental tools and detailed configurations that have

been utilised for evaluation of our approach.

5.4.1 Dataset and Hardware Configuration

For both layer selection and pruning, I have used TensorFlow to build and modify
state-of-the-art models including VGG16 and InceptionV3. I have also used JMetalPy! for
genetic algorithm operations in layer selection. For pruning, I leveraged TensorFlow? and
Keras built-in capabilities to implement a GradCAM solution. The heatmap generation in
the approach uses TensorFlow's Keras API?, where a function builds a model to observe
a specific convolutional layer's output and model's predictions for an image array. This
process generates heatmap values highlighting key image regions influencing the model's
decisions, showcasing API's ability to analyse and interpret model behavior.

I performed our AI operations on a virtual instance of dual-core Intel(R) Xeon(R) CPU
at 2.00GHz, 12 GB of RAM, and an NVIDIA Tesla T4 GPU with 16 GB of memory. The
system has 79GB of total storage, with 27GB used and 52GB available. Datasets were
pre-loaded from Google Drive as virtual instances to minimise data transfer overhead and
optimise the performance.

Our agricultural use-case considers collecting data from IoT devices at the network's edge,
processing it on a FSU, using the DeepWeeds [32] image classification plant-based dataset.
The DeepWeeds dataset is the first large, public dataset for Australian range-land weeds,
having 17,509 images of eight common species of weeds from eight regions spread across
northern Australia. This dataset is designed to support the development of classification
methods, enabling the use of robotic weed control in challenging environments and
highlighting the role of machine learning in improving weed management and agricultural
tasks.

5.4.2 Estimation of Power Consumption

To estimate the power consumption of Nvidia T4 GPU, based on its running time, I have
used the following approach:

Let Pjyqq be the power consumption in watts when the resource node (GPU) is running
and let Tj,qq be the total time for which our node is executing the tasks.

Given that Pj,,q = 74 watts. The total power consumption (Piyq) in watt-hours (Wh)

can be calculated as follows:
Ptotal == (Boad X ,—Tload) (55)

"https://github.com/jMetal /jMetalPy
Zhttps:/ /www.tensorflow.org
3https://www.tensorflow.org/guide/keras

Chapter 5. Optimising AI Operations in loT-based Applications 85

Similarly, in kilowatt-hours (kWh), the power can be calculated as:
Ptotal = (Pload X CTload) /1000 (56)

This model allows us to estimate the T4 GPU's power consumption over the duration for
which GPU was consuming power and executing the ML /AT tasks utilised for evaluation

in our experimentation.

5.4.3 Experimental Configuration

This subchapter describes the configuration details for performing the layer selection and

feature pruning mechanism in this work.

Layer Selection Setup

The first part of our configuration focuses on setting up the layer selection mechanism for
the approach. The steps are as follows:

Data Splitting: The dataset is divided into three segments: 60% for training, 20% for
validation, and 20% for testing. This division is used to ensure effective model training,
fine-tuning, and performance assessment of our approach.

Data Preparation: The process begins with resizing images to standardised input
dimensions, followed by data augmentation techniques such as flipping and rotating.
Additionally, these images are normalised by converting pixel values from integers to floats
and scaling them to the range of [0, 1] and then batched for efficient processing during the
training process.

Model Customisation: This phase involves updating pre-trained models, specifically
InceptionV3 and VGG16, which were initially trained with the ImageNet dataset. The
models are customised for DeepWeeds dataset by appending new layers and freezing the
original layers to preserve learned/retained features. This customisation aims to leverage
the pre-existing knowledge of the models while making them relevant for the new tasks.
During this process, accuracy metrics are tracked to evaluate the objective function's
performance.

Training Setup: The models are trained with hyperparameters including 10 epochs and
batch sizes of 20. Additionally, the 0/1 knapsack algorithm is utilised to fine-tune the
non-trainable (frozen) layers of the model, enhancing its customisation and improving
performance on the new dataset.

Genetic Algorithm Based Selection: A similar model undergoes brief training to learn the
changes and improve model adaptability. The generated models are then evaluated with
a focus on accuracy and other key performance metrics. The obtained results are used
for further genetic algorithm driven refinements, continuously improving model outcomes.
The genetic algorithm population considered in our experimentation is 10.

Evaluation and Analysis: After training, the models are evaluated on the test dataset

to determine their generalisation capabilities. This evaluation helps in assessing the

86 Chapter 5. Optimising AI Operations in loT-based Applications

effectiveness of the training and the customisation process. The performance metrics,
specifically training, validation accuracy and loss, are plotted over the epochs to analyse
the model's learning behavior and fit to the data, providing insights into their strengths

and remaining challenges.

Feature Map Pruning Setup

The second part of our approach is designed to use a heatmap visualisation mechanism
for feature pruning. The steps are as follows:

Data Preparation: The process begins by dividing the complete dataset into two separate
parts (referred to as Dataset A and Dataset B) to simplify the training and evaluation
process.

Initial Training: During this phase, the Dataset A is utilised as a base for the model's
initial training process. This phase establishes the benchmark for the model's performance
and provides insights about its learning capabilities.

Pruning Phase: Following the initial training, the model undergoes a pruning process
using the following methodology — I selectively removed some of the model components,
such as weights, biases, or neurons, that have minimal impact on the output. The aim is
to simplify the model's structure and enhance its operational efficiency. I have used the
approach outlined in subchapter 5.3.2 to selectively remove the model components and
reduce its size.

Fine-Tuning with Dataset B: After pruning, Dataset B is used to fine-tune the selected
model. This phase aims to perform minor adjustments to our model's parameters to
refine its performance, focusing on recovering or improving aspects, generalisations that
potentially got diminished or removed during our earlier pruning phase.

I have used both Dataset A and B as training sets within this experimental approach.
The only key difference is in their usage such that Dataset A is allocated for initial model
training whereas Dataset B is designated for post-pruning fine-tuning.

Evaluation and Analysis: The final step involves an evaluation of the model after its
fine-tuning. This analysis focuses on various performance metrics such as execution time
and accuracy, to verify the rate of improvements I was able to achieve during the pruning

and fine-tuning phases.

5.5 Results and Evaluation

This subchapter highlights the experimental results and their findings after evaluating
the proposed approach. Figure 5.4 compares the training times (in seconds) for one
epoch of the InceptionV3 and VGG16 models across different percentages of trainable
layers, ranging from 10% to 100% of the total layers in each model. The training time
increases for both models as the percentage of trainable layers increases, which is expected
since more parameters require more computational effort to update the model. Moreover,

VGG16 has consistently higher training time across all percentages of trainable layers

Chapter 5. Optimising AI Operations in loT-based Applications 87

than InceptionV3. This can be attributed to the architectural complexities and the overall
number of parameters in VGG16, which is known for its simplicity in structure but high

computational cost due to the depth and size of its fully connected layers.

50
== VGG16 -

= InceptionV3 -
45

w &
a S

Execution Time (sec)
w
8

N
S

01 02 03 04 05 06 07 08 0.9 10
Trainable Layers (%)

Figure 5.4: Total execution time with different percentages of trainable layers.

The Table 5.1 below summarises the power consumption, measured in watts, of two deep
learning models (per epoch) during the training sessions with different percentages of
their layers trainable. Specifically, the table reports measurements for three scenarios:
when 10%, 50%, and 100% of the layers are trainable. For both the models, the power

consumption increase as the percentage of frozen layers decreases.

Trainable (%) | InceptionV3 | VGG16
0.1 11.61 18.13
0.5 19.11 28.68
1.0 33.50 48.48

Table 5.1: Power consumption (watts) of models during training (one epoch) with different
percentages of layers trainable.

This progressive increase in power can be attributed to the computational demand
associated with updating a greater number of parameters. With more layers participating
in the training process, the models require more computational resources, leading to
higher energy usage. The comparison between InceptionV3 and VGG16 also reveals the
inherent differences in their architectural efficiency. InceptionV3 consistently requires less
power than VGG16 across all scenarios, indicating it is a more energy-efficient model for
training tasks. This can also be due to its more optimised architecture, which might
involve fewer parameters or more efficient operations compared to the deeper and more
parameter-intensive architecture of VGG16.

The Figure 5.5 outlines the validation accuracies of two distinct convolutional neural
network models considered for optimisation in this work. I performed the model training
utilising the layer selection mechanism described above in previous subchapters. The
accuracies are measured across a span of 10 epochs, providing insight into the learning

efficiency and performance of each model over time. InceptionV3 demonstrates a starting

88 Chapter 5. Optimising AI Operations in loT-based Applications

= InceptionV3
- = VGG16

0.85

Accuracy (%)

0.70 ’ ~or

0.65

2 4 6 8 10
Number of Epochs

Figure 5.5: Accuracy benchmarks on DeepWeeds dataset for model training.

accuracy of 75.81% at epoch 1, which exhibits a generally upward trend, peaking at 88.32%.
The overall trend indicates improvement in model performance with continued training
and shows the strong ability of InceptionV3 to generalise from training data to unseen
validation data. On the other hand, VGG16 starts with a bit lower accuracy of 65.33% at
epoch 1 and follows an upward trend by peaking at 82.67%. The observed differences in
accuracies between InceptionV3 and VGG16 can be attributed to factors inherent to their
architectures and complexity of the task. InceptionV3 consists of an inception module,
which is designed to efficiently manage computational resources while capturing complex
features at various scales. This design contributes to its higher accuracy and ability to
better generalise during the validation phase. VGG16, characterised by its simplicity
and depth with repetitive convolutional blocks, demonstrates a considerable capacity for
feature extraction. However, its architecture sometimes has a higher susceptibility to
overfitting and requires more data or regularisation to achieve optimal generalisation,

which explains its lower performance compared to InceptionV3 in this scenario.

0.900

0.875

0.850

o
@
N
v

Accuracy (%)
o
@
o
o
N
N

0.775 7
0.750 -

== VGG16
~ -
0.725 - = InceptionV3

20 40 60 80 100
Features (%)

Figure 5.6: Change in model accuracy with features retained above the threshold.

The proposed heatmap based pruning approach is also evaluated on two available CNN
models — VGG16 and InceptionV3. Figure 5.6 shows that across both the models, there

is a general trend where accuracy increases when a higher percentage of features are

Chapter 5. Optimising AI Operations in loT-based Applications 89

retained. This pattern is observed as retaining more features likely preserves more relevant
information necessary for accurate predictions. Models with deeper or more complex
architectures, like the VGG, show a more significant impact from feature pruning, requiring
a higher percentage of features to be retained for optimal accuracy. InceptionV3’s design,
incorporating modules with parallel convolutions of different kernel sizes, allows it to
capture information at various scales effectively thus ensuring high accuracies across all

percentages.

== VGG16

= InceptionV3
260 /

240 /
220 /

200 -

180 -
——————
-
—————
160

20 40 60 80 100
Features (%)

Training Time (mins)
\
\

Figure 5.7: Effect on model training time with features retained above the threshold.

The pruning process aims to reduce the computational complexity of the models by
selectively removing less important channels based on their contributions, as determined
by heatmaps in this work. This selective reduction can significantly affect the training
time of the models, as observed in Figure 5.7. The VGG16 model shows an increasing
trend in training time as the percentage of features retained increases. Over the range of
feature percentages, the training time increases from 163 minutes to 271 minutes gradually.
The significant reduction in training time indicates that the pruning process effectively
removes redundant or less important features without compromising the model's predictive
power significantly. For the InceptionV3 model, the training time initially decreases when
the percentage of retained features goes from 10% to 50%; and then increases slightly
when feature retension percentage is increased to 100%. This suggests that InceptionV3
may achieve optimal performance with a moderate level of feature retention, where the
balance between model complexity and computational load is ideal. Beyond this point,
the slight increase in training time as more features are retained could be due to the added
computational burden outweighing the benefits of additional features.

The size of a model is directly related to its complexity and the amount of information it
can process and store, as shown in Figure 5.8. The increase in model size with an increase
in the percentage of features retained indicates a nearly linear relationship between the
two factors. More features mean more channels in the convolutional layers, which in turn
increases the number of weights and biases that need to be stored, thereby increasing the
model size. The InceptionV3 model shows a more complex pattern. The size increases
from 174.405 MBs at 10% feature retention to 217.229 MBs at 100% feature retention. It

920 Chapter 5. Optimising AI Operations in loT-based Applications

2201 —~ vee16

= InceptionV3

200

=
@
o

Model Size (MBs)
>
o
\
\

,_.
=
S
\
\

1004 =

20 40 60 80 100
Features (%)

Figure 5.8: Change in model size with features retained above the threshold.

is observed that the increase in size is not as linear as with VGG16, especially in the higher
percentages of feature retention. The larger initial size of InceptionV3 compared to VGG16
at lower feature retention levels suggests that even with fewer features, InceptionV3’s
complex architecture requires more parameters to be stored. This complexity contributes

to the overall increase in model size as more number of features are retained.

Features (%) | InceptionV3 | VGG16
0.1 164.03 219.53
0.5 194.86 238.03
1.0 224.46 334.23

Table 5.2: Power consumption (watts) of models after pruning with different percentages
of retained features.

The given Table 5.2 illustrates the effect of pruning process on power consumption of both
the models at specific levels (10%, 50%, and 100%) of retained features. For both models,
the power consumption increases as the percentage of retained features increases. The data
indicates that VGG16 generally consumes more power than InceptionV3 across the same
levels of feature retention, suggesting that VGG16’s architecture may be inherently more
power-intensive or less efficient at these high levels of feature reduction. Additionally, the
increasing trend in power consumption with higher feature retention percentages highlights
the relationship between model complexity and power needs. This suggests that even slight
increases in retained features can significantly impact power consumption, likely due to the
increased computational workload associated with processing a higher number of features.
Analysing the process of structured training and fine-tuning process, which involves initial
training with Dataset A, followed by model pruning and subsequent fine-tuning with
Dataset B, provides a comprehensive understanding of the approach and its implications
on the model performance. This approach utilises the distinct characteristics of two
datasets to enhance model performance progressively. The initial training on Dataset A
establishes a foundation, allowing the model to learn general features and patterns. The

pruning process then refines the model by eliminating less significant features, reducing

Chapter 5. Optimising AI Operations in loT-based Applications 91

complexity and computational demand. Finally, fine-tuning with Dataset B adjusts the
model to perform well in specific, possibly more challenging, real-world scenarios. This
method highlights the adaptability of the models to new information and their capacity
for incremental learning. The maximum accuracy achieved after re-training by VGG16
and InceptionV3 models is 86.8% and 93.1% respectively. Comparing these results
with the accuracies recorded after the pruning process, both models exhibit significant
improvements in accuracy after fine-tuning. The VGG16 model observed an average of
6.3% improvement over the initial results whereas InceptionV3 achieved improvements of

4.3%.

5.6 Analysis of Results

The experimental results highlight the differences in performance dynamics of VGG16
and InceptionV3 models under varying configurations of trainable layers, with particular
emphasis on training time, power consumption, and accuracy benchmarks. I observed
that VGG16 has longer training times and higher power consumption across all degrees
of trainable layers. On the other hand, the InceptionV3 has higher accuracy and model
size over the different percentages of retained features. The InceptionV3 model performs
about 32.63% better than the VGG16 model in terms of execution time with different
values of trainable layers. The average accuracy of InceptionV3 model is around 6%-7%
higher than VGG16 across the variable degree of retained features in our approach. As
the percentage of retained features decreased, the model size for InceptionV3 and VGG16
decreased by 20.27% and 37.5% when the ratio of features was reduced from 100% to 10%.
Moreover, I also observed that the average power consumption of InceptionV3 model is
26.33% more efficient than the VGG16 model. The VGG16 model showed a 66.26%
decrease in training time when the number of features are reduced to 10%. In contrast,
the InceptionV3 model exhibits a 27.27% decrease over the same measure. The results
also show that the InceptionV3 model is approximately 18.90% more efficient in training
time compared to the VGG16 model. Comparing these two architectures highlights that
the model structure, number of features, and trainable layers are some of the critical
parameters that directly affect the performance of AI models and can be a deciding factor
for the efficient implementation of ML optimisation approaches on limited resource nodes.
Moreover, based on the time, accuracy, and space requirements of limited resource nodes;
a decision can be made using our approach to select the optimal values of parameters that
will generate the best possible results for the end-users and applications for which the ML

models are designed.

5.7 Aspects for Further Optimisation

I observed that our proposed approach achieves desirable results in reducing the training

time and model size, however, in order to contribute towards more sustainable practices

92 Chapter 5. Optimising AI Operations in loT-based Applications

for IoT applications, it does present certain limitations that can provide options for future
exploration and optimisation.

Our current approach for layer selection is managed as a single-objective optimisation
problem, where the number of layers are predetermined by the user. For improvement, I
can consider the number of layers as an additional objective function along with model
accuracy, using a multi-objective optimisation method. This will allow for a balanced
trade-off between maximising accuracy and minimising the number of layers, addressing
this problem as a connected optimisation challenge.

Moreover, our pruning approach is currently considered as a constraint satisfaction
problem with an aim to meet specific conditions defined by a predetermined threshold. For
improvements, I can consider the pruning approach as an optimisation challenge, rather
than simply satisfying the set constraints. This adjustment can decrease the variability
and transform the pruning threshold value into an adjustable variable. Objective functions
can then be used to evaluate the most effective areas for pruning, identifying the optimal
threshold that aligns best with a particular model and dataset. Furthermore, these
objective functions can prioritise two main factors — accuracy and inference time, as
both of these are important for developing an efficient model suitable for real-world IoT
applications.

From our experiments, I also observed that each neural network has distinct characteristics
that can significantly influence the model optimisation framework. These characteristics
include layer size, total number of parameters, model branching (which allows for the
concurrent execution of two or more layers), and the parameter count within individual
layers. I can explore the possibility of establishing a method that examines these specific
aspects of each network to support ongoing testing and improvements. By understanding
and addressing these elements, I aim to restructure models to promote energy-efficient
and sustainable machine learning operations, thereby improving the performance of ML

based tasks in IoT infrastructures.

5.8 Summary

The chapter introduces a sustainable optimisation approach for enhancing the efficiency of
ML tasks in the IoT based infrastructures. Our approach leverages the ability of genetic
algorithm for layer selection and heatmap visualisation technique for pruning mechanism.
Through systematic experimentation with VGG16 and InceptionV3 models using the
DeepWeeds dataset, I have demonstrated that our proposed methodology significantly
reduces model size and training time, without compromising on accuracy. Experimental
results show that the strategy of selectively freezing neural network layers and pruning
less significant parameters addresses the critical challenge of limited-resource constraints
of IoT devices. The approach also highlights the potential procedure for deployment
of MLL and AI capabilities in environments where computational, storage, and energy

resources are in limited capacity. The work can be extended to other Al models and

Chapter 5. Optimising AI Operations in loT-based Applications 93

different real-world IoT applications to understand domain-specific challenges and adjust
the approach accordingly. However, this approach considers that the training, evaluation
data, and ML models are available in IoT applications all the time. In a real-world
scenarios, it is highly possible that there can be a form of node crash or failure which will
limit the availability of data in IoT applications. Therefore, the next chapter explores the
data management of applications by ensuring proper access, distribution, and availability

of data in case any unexpected failure occurs.

94

Chapter 5. Optimising AI Operations in loT-based Applications

Chapter 6

Data Management in Edge-Cloud

Environment

This chapter explores the aspect of data management in IoT applications that utilise
serverless edge-cloud environments. As the available data is prone to failure and loss due
to system crash or any node fault; reliable storage, access, and retrieval of data is a critical

factor for ensuring high performance of the system.

6.1 Data Management in IoT

The rise of IoT represents one of the most significant technological transformations in the
modern era. As a network of interconnected devices, IoT integrates physical objects with
embedded sensors, software, and other tools to collect and exchange data, facilitating a
new level of automation and integration in everyday systems. This evolution has been
adopted in almost every sector, from healthcare and agriculture to manufacturing and
urban development, providing its services [146]. This adoption of IoT across diverse
applications can be attributed to its ability to enhance data communication, streamline
processes, and improve the efficiency and accuracy of data-driven decisions.

However, the rapid expansion of IoT also brings an enormous amount of data with itself.
Each device connected to the IoT network generates a continuous stream of information.
This large amount of data presents not only opportunities but also significant challenges
in terms of storage, management, and analysis. Cloud computing, edge computing,
and advancements in Al are increasingly crucial for managing big data, ensuring that
the information is processed and utilised efficiently. Utilising the serverless approach of
computation with the IoT and ML is a popular option to handle data and execute tasks
in modern computing infrastructures. I can utilise its strengths, creating a scenario that
enhances efficiency, scalability, and cost-effectiveness in handling large amounts of data
and complex computations, particularly within edge-cloud environments [147].

Serverless computing is a paradigm in which the allocation of resources is managed by
service providers without the need for users to configure underlying servers. It offers
several distinct characteristics that can be beneficial in ML-based IoT applications [20].
Firstly, it can provide automatic scaling of the infrastructure. IoT applications can have
variable workloads depending on the traffic, and serverless platforms can dynamically
adjust computing resources to meet the fluctuating demands of millions of connected

IoT devices. Another key benefit of serverless computing is its event-driven nature.

96 Chapter 6. Data Management in Edge-Cloud Environment

IoT devices can generate events in real time, from sensor data indicating a change in
environmental conditions to alerts triggered by user interactions. Serverless architectures
are designed to respond to such events instantaneously, initiating specific functions or
computations without any delay. This is highly effective in edge-cloud environments, where
latency-sensitive applications require faster decision-making close to the data source. Cost
efficiency is another significant advantage of serverless platforms. It allows organisations to
only pay for the computation time they consume, with no cost associated with idle server
capacity. This can lead to substantial cost reductions in large-scale deployments of IoT
networks, where devices and end-users have to execute jobs at unspecified intervals. [33]

IoT data management for ML-based tasks deployed on serverless platforms has many
challenges related to storage and resilient execution that need serious consideration.
The following subchapters describe in detail the data handling mechanisms associated
with serverless platforms and ML operations on edge-cloud frameworks. 1 explore the
implications of data loss during task execution and data storage phase. An efficient and
optimised approach for data and model management is proposed in this chapter to address

these challenges.

0 : i
Node I '

Virtual Machine

Node

I I : lnstancesé-é"b
éCIoud Storageg * \ Instance Invo&eﬁon *
: : : : ,, \ \ |\I
Requester I \ \ |
XX Fi i »F ion— —pFi
. — — —»Function/

Computing Infrastructure

Data loss X Pass by Reference — —p» Fetching Data 4—» Pass by Value e—_p».

Figure 6.1: An architecture for data handling in serverless platforms.

6.2 Data Handling in Serverless Environment

Serverless computing involves executing functions in a stateless manner, which complicates
data management. Figure 6.1 illustrates the two main types of data handling in a serverless

environment. The approaches are as follows:

Chapter 6. Data Management in Edge-Cloud Environment 97

6.2.1 Direct Data Transfer

This method involves directly transferring data between functions, where the serverless
platform actively manages data duplication. If one function generates data as its output,
and this output is forwarded to multiple subsequent functions, the serverless platform will
handle the replication of this output data to each recipient function. This approach ensures
that each function receives the data it requires to operate. However, such duplication can
impose an additional load on the serverless platform, potentially increasing the time it
takes for data to be transferred from one function to another as the platform manages
the copying process. Moreover, this approach introduces the issue of data volatility. Data
is streamed through input-output buffers and network channels, making it susceptible to
loss in case there is an issue with the server or there are any disruptions in the network.
Therefore, while direct data transfer can be efficient, it also has significant risks due to

the volatile nature of data handling.

6.2.2 Use of Intermediate Storage

This approach involves storing data in an intermediate system such as a broker or file
system, which acts as a central repository. Functions pass references to the data, rather
than the data itself, minimising direct data transfer. The intermediate storage system
manages access and replication among functions. However, challenges arise related to the
physical locations of function execution and data storage. For instance, if functions are
executed on servers in Europe but the data is stored in India, significant delays can occur
due to the time required to transfer data across these distances. This latency issue, arising
from geographical disparities between servers and storage, can impact performance due
to extended upload and download times, and poses a challenge in maintaining efficient

connectivity and replication.

6.3 Methods for Ensuring Data Availability

For IoT applications, the traditional data availability techniques focus on ensuring that
data is always accessible for processing and analysis while maintaining integrity and
performance. These techniques can be broadly categorised into three categories, such
that each of them handles availability in a different manner.

Data replication involves creating multiple copies of data across different nodes or
locations to ensure high availability and fault tolerance. This approach is particularly
advantageous for IoT environments where device or connection failures are common. By
replicating data, systems can ensure that even if one node fails, others can take over
without data loss or service interruption. However, replication increases the space cost
significantly as multiple copies of data need to be maintained. The execution cost can vary
as read operations are generally faster due to multiple data points but write operations

become more costly and complex for ensuring integrity across all copies.

98 Chapter 6. Data Management in Edge-Cloud Environment

Data partitioning distributes different parts of a dataset across various database systems
or storage locations. This technique is often used in big data scenarios where handling
large datasets as a single unit is inefficient. By partitioning data, tasks can be executed
in parallel, significantly improving performance and reducing execution time. However,
the space cost does not necessarily increase unless redundancy is also introduced as part
of the partitioning strategy. In this approach, the main execution cost is for handling the
complexity of managing data integrity and consistency across partitions, which can be a
significant overhead for many Al tasks.

Data compression reduces the size of the data through various algorithms, which is
crucial when dealing with the large volumes of data generated in ML and big data tasks.
Compressed data requires less storage space, effectively reducing space costs. It also
potentially lowers data transfer times, which is useful in distributed systems designed for
scalable IoT environments. However, the execution cost mainly includes the computational
overhead required to compress and decompress data, which can be very high, especially

with complex algorithms utilised in current IoT systems.

6.4 Challenges with Data Handling

Serverless frameworks when handling big-data and ML applications, encounter significant
challenges related to data management and locality. A detailed description of these
challenges is as follows:

Data storage and transfer: In ML, data is often stored for further training which
requires a substantial amount of storage capacity. Transferring this data across different
locations, such as from edge devices to cloud servers or between storage servers, can be an
issue because of its size. This can significantly slow down the transfer process and increase
communication costs. [20]

Resilience mechanisms: To address issues of data integrity and availability, resilience
mechanisms such as erasure coding can be used [148]. Erasure coding helps ensure data
durability and recoverability by utilising data fragments that can reconstruct the original
data in case of partial loss. However, this technique introduces extra latency in data
operations, as it requires additional time to generate and manage the encoded fragments.
Data locality and recovery: Optimising data locality (placing data close to the
computation source) can enhance data access speeds and reduce latency, which is crucial
for efficient processing and analysis in ML tasks. In scenarios where data is damaged or
lost, having multiple copies or encoded fragments distributed across different locations
enables effective data recovery. The process of encoding/decoding these fragments can
protect data but also introduces additional delays and computational overhead.
Efficiency in data handling: Another challenge is to design an infrastructure that
not only manages a large amount of data but also prepares it efficiently for immediate
execution in ML operations. This requires new approaches that minimise data size and

ensure availability for analysis, thereby reducing the time and resources needed for data

Chapter 6. Data Management in Edge-Cloud Environment 99

preparation.

6.5 Challenges in Deploying ML Workflow on Serverless

Platforms

The implementation of ML tasks on serverless environments encounters data management

challenges that can be mainly classified into two categories:

1. Data Management: It includes the steps associated with collection, preparation,
and processing of datasets. A crucial aspect is to consider data availability and its
distribution across various locations to facilitate access. Effective data management
allows data to be strategically distributed, thereby enhancing both availability and
reliability.

2. Model Management: This involves the iterative fine-tuning and periodic updates
of ML models at edge of the network. Model management requires reducing the size
of dynamically changing elements (such as parameters) and ensuring the availability
of replicas to maintain data consistency. Considering that a model size can vary
from small to extremely large, it is essential to design strategic ways to manage

these variations effectively.

The integration of serverless architectures with ML frameworks necessitates new
approaches for the management of data and models. Such approaches can ensure that
despite the stateless nature of serverless platforms, essential data can still remain accessible
and recoverable during ML operations, enabling a seamless and efficient approach for task

execution.

6.6 Proposed Approach for Data Handling

This subchapter describes the proposed method to address challenges in data storage and
processing within the context of ML and edge-cloud environments. The following aspects
are considered in this chapter:

Data reduction: The approach begins by minimising the volume of data at the edge of
the network, preparing it for subsequent processing. This reduction is aimed at optimising
storage and processing efficiencies before the data is transferred to servers.
Standardised data format: Data is standardised into a format that is compatible with
cloud-based machine learning operations. This standardisation is part of the preprocessing
stage and improves the efficiency of subsequent processing steps.

Data compression and replication: To effectively manage data without excessively
increasing storage requirements, the approach includes compressing the data before
replication. This ensures that, even with the redundancy techniques in erasure coding,

the data footprint is limited and controlled.

100 Chapter 6. Data Management in Edge-Cloud Environment

Data recovery and decompression: In case of any issues, the compressed data
can be recovered and decompressed. The restored data can retain its pre-processed

format, facilitating efficient transmission over networks without significant bandwidth

consumption.
Store Data
,ﬂgéiz::)_uﬁtu_v’ B
Start—| [T > R > > |»(End
Z|HiH o
\ 1238
Preprocessing Compression Erasure Distributed
Encoding Storing
Py
[=2) . Ky
LS sty o
5= &2 4 .98
3| 35 — 7|5
Y u .d_‘ a
w2 g

v

N
Np
& @O - @ -
j)

Fetch Integrity Decompression

Data Check .
Retrieve Data

Figure 6.2: Proposed workflows for data handling.

A depiction of our data handling approach is shown in Figure 6.2. Our methods
for optimising data management in serverless environments focus on balancing storage
efficiency with network and processing demands. It enhances efficiency by storing the
static structure of ML model separately from their dynamic parameters. A single instance
of the model's static structure is maintained, and Marita coding is applied to the frequently
updated parameters. This approach minimises redundancy and storage requirements,

ensuring reliable protection of dynamic data elements against data loss.

6.7 Workflow for Data Handling

This subchapter describes the workflow that is utilised in preparing the data used for

training and inference in ML models. The steps are as follows:

1. Preprocessing: The raw data undergoes preprocessing to optimise its utility for
ML models. This step involves cleansing, normalising, and transforming the data,
thereby enhancing processing speed, reducing its size, and preparing it for effective

training sessions.

2. Compression: After preprocessing, the data is compressed using the Brotli
algorithm. This process reduces the data size further, facilitating a more efficient

storage and transmission.

3. Erasure Coding: Once the data is compressed, it is encoded using Reed-Solomon

(RS) coding scheme [148]. This erasure coding technique introduces redundancy,

Chapter 6. Data Management in Edge-Cloud Environment 101

thus enhancing data resilience by enabling recovery in cases of corruption, damage,

or connectivity issues.

4. Storage: The prepared data is then stored. At this stage, it has been preprocessed,
compressed, and protected against potential data loss, making it ready for retrieval

and use in our IoT application.
5. Data Recovery and Decompression:

(a) Integrity Check: Upon retrieval, the integrity of the compressed data is first

checked to ensure it has not been damaged or tampered with.

(b) Decoding: If any corruption is detected, RS decoding is used to reconstruct the

original data from the encoded fragments.

(¢) Decompression: Once the data is confirmed to be intact or successfully
recovered, it is decompressed and restored to a state which is suitable for ML

training sessions.

6.8 Workflow for Model Storage

This subchapter describes the workflow for storing and managing the versions of ML

models, as the architecture of the considered model is fixed. The steps are as follows:

1. Parameter Extraction: Initially the parameters or weights of the model which
encapsulate the learned information are extracted. This step is crucial as these

parameters need to be preserved properly for model execution.

2. RS Encoding: Once the parameters are extracted, they are immediately encoded
using the RS coding scheme. This process distributes the parameter data and adds
redundancy, ensuring that in the event of data corruption or loss, recovery can be

efficiently achieved.

3. Storage and Distribution: The encoded parameters are then stored and
distributed across multiple storage locations to further protect against data loss

and enhance its accessibility.
4. Recovery Process:

(a) Damage Check: Upon retrieval, a check is performed to determine if the

parameter data is damaged or corrupted.

(b) RS Decoding: If damage is detected, the RS decoding process is initiated to
recover the corrupted parameters. This step is critical for restoring the data to
its original state.

(c) Model Integration: After decoding, the recovered parameters are re-integrated
with the model. This process involves importing parameters back into the

model's architecture and preparing it for further usage or continued training.

102 Chapter 6. Data Management in Edge-Cloud Environment

250
—-= RS(10,2)
-=- RS(10,4)
20014 — RS(10,6)

150

100 +

Encoding Time (sec)

50

0 20 s 60 80 100
Data Size (MBs)

Figure 6.3: Encoding time for different RS configurations.

17504 —== RS(10,2)
=== RS(10,4)
15001 — RS(10,6) _
— RS(10,2) corrupted s
1250 4 —*= RS(10,4) corrupted /,/

----- RS(10,6) corrupted o~

1000 -

750

Decoding Time (sec)

500 4

250

Data Size (MBs)

Figure 6.4: Decoding time for different RS configurations.

The Figure 6.3 and 6.4 show the performance of various versions of RS scheme without
any compression or optimisation. It depicts the relation between the original data size (in
MBs) and the encoding, decoding time (in seconds) for different configurations. I have
considered three different configurations for analysis: RS(10,2), RS(10,4), and RS(10,6),
where the numbers indicate the code parameters, with the first number representing the
total symbols and the second the parity symbols. As the data size increases, both the
encoding and decoding time for all configurations increases, which is expected since larger

data volumes require more computational effort to encode or decode.

RS(10,2) shows the shortest encoding and decoding times across all data sizes. This
configuration has the least number of parity symbols, resulting in less redundancy and
hence faster encoding and decoding. On the other hand, RS(10,6) has the longest encoding
and decoding times among the configurations suggesting the impact of parity symbols on
additional computational overhead in the system. The second part of Figure 6.3 also
shows the decoding time of scenarios where one data fragment is corrupted. It can be
seen that for all configurations, the decoding times increase significantly when a fragment

is corrupted.

Chapter 6. Data Management in Edge-Cloud Environment 103

6.9 Experimentation and Results

In order to evaluate the proposed approach, I have performed our experiment on an
Intel Xeon CPU@2.30 GHz, supported by 13 GBs of RAM, providing a suitable platform
for performing data processing tasks. I have used the Multitype Cloud Storage Dataset
(MCSD-100) dataset for evaluating the performance of storage systems [149]. It has
been specifically designed to assess the system's erasure coding policy and its ability
to effectively handle data fragmentation. I utilised MCSD-100 due to its comprehensive
capability in handling and testing storage aspects of the data, making it highly relevant

for practical assessments.

3.54 i
0.8 1
0.7 1 3.01
0.6 2.5
@ 0.51 3 2.0
L)
g 0.4 i g 1.5 4
£ .
0.31
1.0 1
0.2 1 H
0.5 1
0.1 J_
| 0.0 1 .
Encoding Decoding Preprocessing

Figure 6.5: Encoding, Decoding, and Preprocessing time.

The box plots provided in Figure 6.5 represent the distribution of preprocessing, encoding,
and decoding times for our proposed data storage approach. I observed that the median
encoding time for the approach is lower than that for decoding, suggesting that the
proposed approach is optimised for faster encoding. Moreover, the smaller inter-quartile
range compared to preprocessing indicates a more consistent performance during the
encoding process. The results show that our approach showed an average improvement of
96.79%, 97.67%, and 98.72% over the standard RS(10,2), RS(10,4), and RS(10,6) schemes
respectively. I also noticed that the execution time for decoding is higher in comparison
to encoding times, This is typical in systems where more computational effort is required
to reconstruct data from encoded formats. The decoding times for our approach show
92.03%, 96.08%, and 97.38% improvements over standard RS approaches.

Figure 6.6 shows how preprocessing time and compressed data size vary with increasing
original data size in a data processing pipeline. The preprocessing time demonstrates a
rising trend as the size of the original data increases. It suggests that larger datasets require

more time to pre-process, likely due to the increased computational demands of handling

104 Chapter 6. Data Management in Edge-Cloud Environment

w
5

] ==~ time for preprocessing mmm===

—— size of compressed data -
0.14

w
<)

0.12

N
]

N
<)
o
N
o

=
v

Preprocessing Time (sec)
o
o
@

,_.
by
Size After Compression (MBs)

o
o
o

I
[

0.04

0.0

0 20 40 60 80 100
Original Data Size (MBs)

Figure 6.6: Effect on preprocessing time and data size after applying our data storage
mechanism.

larger volumes of data. The time required for preprocessing is not exactly linear, showing
some ups and downs that may indicate variations in the complexity or type of data being
processed. Due to the careful reduction in size during the preprocessing phase, I have
also achieved an average reduction of 98.44% size over the standard Brotli compression
technique applied on our dataset. On the other side, the compressed data size also shows a
correlation with the original data size. As the original data size increases, the compressed
size also increases but remains significantly reduced compared to the original, highlighting
the effectiveness of the compression technique utilised in the system. This relation
describes the capacity of compression method to maintain a relatively constant reduction
ratio regardless of the original data size, which is crucial for applications requiring efficient
data storage and processing.

Another experimentation is performed to understand the encoding and decoding times
for VGG16 model files using various configurations of RS coding scheme. For RS(10, 2),
the encoding time is 526.31 seconds and the decoding time is 659.50 seconds, offering
the fastest processing among the schemes. In contrast, RS(6, 3) shows longer times with
790.79 seconds for encoding and 1226.20 seconds for decoding, suggesting more complex
error correction due to higher redundancy. The RS(14, 4) setup also reflects longer
processing times — 769.78 seconds for encoding and 1144.71 seconds for decoding — due to
a greater total number of symbols, enhancing error protection. The most data-intensive
configuration, RS(10, 6), records the longest times of 1044.19 seconds for encoding and
2133.71 seconds for decoding, indicating the most extensive error correction phase among

all the configurations tested.

6.10 Summary

The increasing demand for digital services in the IoT has resulted in a continuous
surge of application usage, leading to a huge number of users and connected devices.

This growth intensifies the challenges associated with managing and storing large data

Chapter 6. Data Management in Edge-Cloud Environment 105

volumes, presenting new challenges in data handling. This chapter presents an approach
for managing the substantial amount of data generated by IoT devices within ML and
edge-cloud environments. Data management in ML-based IoT applications is a crucial
factor as it directly affects the performance of deployed applications. Resilience in
managing stored data and ML model provides a promising direction for ensuring higher
availability of the information. Our work shows that utilising data standardisation,
compression, and error correction techniques can provide significant benefits for handling
applications deployed on serverless edge-cloud infrastructures. A promising future
direction for this work is to design a fault tolerant framework that can handle the failure

at data, task, and resource nodes in the IoT infrastructures.

106 Chapter 6. Data Management in Edge-Cloud Environment

Chapter 7

Conclusion

In this final chapter of the thesis, I summarise the various aspects of edge-cloud frameworks
and describe the research questions considered regarding the performance of intelligent IoT
applications in the edge-cloud continuum. As the rapid increase of IoT devices continues,
ensuring the efficient operation and effective management of tasks, functions, and data is

a highly crucial aspect.

7.1 Summary

The research highlights the shortcomings of conventional architectures in managing
distributed, heterogeneous IoT deployments across edge and cloud platforms. 1 first
presented an approach that optimally allocates tasks on edge-cloud resource nodes when
the network connectivity is limited and the connection is unreliable. A deadline-based
heuristic approximation algorithm is proposed to decide where to allocate the task. The
algorithm assigns the tasks to the remote Field Side Unit (FSU) or executes them locally
based on the quality of connection available at that time. Moreover, as these devices
generate and process large volumes of data, effective distribution of load and resource
allocation become critical for avoiding any degradation in performance. To address this, I
introduced a security-aware load distribution mechanism that ensures fair distribution of
tasks based on factors such as failure rate, resource utilisation, completion time, waiting
time, and execution overhead. I designed a two-function heuristic pipeline that initially
selects the best k nodes (out of all available nodes) and then selects the best two nodes for
offloading the tasks. To ensure confidentiality, integrity, and availability, I have utilised
encryption, HMAC, and replication mechanisms respectively for all the restricted tasks
that were allocated on shared public resources. I also proposed another approach to
optimise the ML-based operations that can enhance the execution and deployment of
IoT tasks on edge and cloud platforms. This approach uses a genetic algorithm based
selection method for optimally selecting the layers during the model training process. To
improve the inference framework, I utilise a heatmap visualisation technique that prunes
the irrelevant features and only retains the features that directly affect the decision making
process. Finally, a data management approach is designed to address the storage, access,
and retrieval of data in IoT-based systems in case any failure or data loss occurs. A
Reed-Solomen (RS) based encoding method is used to store the data on distributed nodes
and the Brotli compression technique is used to reduce the size of data that is stored on

the nodes.

108 Chapter 7. Conclusion

7.2 Future Directions

There are numerous opportunities for future research in the deployment of IoT applications
within edge-cloud environments. Considering the findings of this thesis, there is a scope
to enhance the effectiveness, flexibility, and robustness of our proposed strategies. This
subchapter outlines some potential directions for future research with an aim to further
improve the performance of frameworks and enhance their efficiency and reliability. These

future directions are as follows:

e Enhancing ML Classification Results: Future research should focus on
enhancing the classification results of our current approach by incorporating
optimisation techniques such as multi-objective genetic algorithms and particle
swarm optimisation. These methods can be used to fine-tune the parameters and
structure of our models, aiming to identify optimal configurations that significantly

improve accuracy and efficiency.

e Dynamic Selection of Models: I aim to develop a real-time dynamic approach
that intelligently selects the most appropriate algorithm for inference from a pool
of available options. This selection process can be guided by historical system
performance data and predefined user thresholds for making that decision. Moreover,
the decision for selection of an algorithm can also be made considering other
performance critical factors such as accuracy, task deadline deadline, space available

etc.

e Creation of Local Dataset: A promising direction for extending this thesis
is the development and integration of local datasets. This would strengthen the
applicability of our frameworks in diverse real-world scenarios but also enhance its
relevance to specific societal needs. By creating datasets that reflect local conditions
and challenges, I can refine our solutions to be more precise and ensure that they

are robust across various environments.

e Utilising Reinforcement Learning: Further research can investigate the
application of reinforcement learning, temporal difference learning, and the Markov
decision process as optimisation techniques within our system. By integrating these
methodologies, I can expect significant enhancements in system adaptability and
performance. Additionally, applying reinforcement learning for risk management can
enable improved assessment and response strategies, further enhancing our system's

capability to handle and mitigate risks dynamically.

e Real-time Selection of Platform: I also plan to design an infrastructure that
utilises the strengths of both Parsl and OpenWhisk platforms. This approach aims to
determine specific scenarios where one framework may outperform the other, thereby
selecting that for executing specific federated learning applications. It can ensure

that the cost for performing execution in the infrastructure can be minimised and

Chapter 7. Conclusion 109

also provide failure resistance in case one of the platform's performance decreases

with time.

e Self Healing Mechanism for Handling Failures: 1 aim to develop a
fault-tolerant framework specifically designed for IoT-based infrastructures, capable
of managing failures at the data, task, and resource node levels. This framework
can be enhanced further by creating a self-healing infrastructure designed to
autonomously detect and resolve those failures. The implementation of this robust
system will significantly increase resilience, ensuring continuous operation and

reliability across diverse IoT applications.

¢ Reducing Data Footprint without Compromising Performance:: Another
direction is to explore the integration of advanced data compression algorithms to
minimise the data footprint in IoT systems without compromising data quality. I aim
to investigate adaptive compression techniques that dynamically adjust according to
the type of data and prevailing network conditions. This development is expected
to optimise data handling efficiencies, thereby enhancing the performance and

scalability of IoT applications in variable network environments.

e Sustainable Infrastructure for Managing IoT Tasks: Design a sustainable
infrastructure that not only improves the performance efficiency but is also optimised
for resource utilisation. This will include improvements in power consumption,
resource usage, communication, latency, and execution cost. By focusing on these
critical factors, I intend to design an infrastructure that enhances operational
effectiveness while minimising environmental and economic impacts, ensuring a

balanced approach for function execution in IoT systems.

110 Chapter 7. Conclusion

References

1]

2]

[10]

[11]

[12]

Karen Rose, Scott Eldridge, and Lyman Chapin. The internet of things: An
overview. The internet society (ISOC), 80(15):1-53, 2015.

Ting Li, Wei Liu, Tian Wang, Zhao Ming, Xiong Li, and Ming Ma. Trust data
collections via vehicles joint with unmanned aerial vehicles in the smart internet of
things. Transactions on Emerging Telecommunications Technologies, 33(5):3956,
2022.

Xiaoming Li, Hao Liu, Weixi Wang, Ye Zheng, Haibin Lv, and Zhihan Lv. Big data
analysis of the internet of things in the digital twins of smart city based on deep

learning. Future Generation Computer Systems, 128:167-177, 2022.

Mouzhi Ge, Hind Bangui, and Barbora Buhnova. Big data for internet of things: a
survey. Future generation computer systems, 87:601-614, 2018.

William Voorsluys, James Broberg, and Rajkumar Buyya. Introduction to cloud

computing. Cloud computing: Principles and paradigms, pages 1-41, 2011.

Yi Wei and M Brian Blake. Service-oriented computing and cloud computing:
Challenges and opportunities. IEEFE Internet Computing, 14(6):72-75, 2010.

Weisong Shi and Schahram Dustdar. The promise of edge computing. Computer,
49(5):78-81, 2016.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE internet of things journal, 3(5):637—646, 2016.

Luciano Baresi, Danilo Filgueira Mendonca, Martin Garriga, Sam Guinea, and
Giovanni Quattrocchi. A unified model for the mobile-edge-cloud continuum. ACM
Transactions on Internet Technology (TOIT), 19(2):1-21, 2019.

Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, and
Yong Zhang. Auto-split: A general framework of collaborative edge-cloud ai. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pages 2543-2553, 2021.

Fan Liang, Wei Yu, Xing Liu, David Griffith, and Nada Golmie. Toward edge-based
deep learning in industrial internet of things. IEFE Internet of Things Journal, 7
(5):4329-4341, 2020.

Yangguang Cui, Kun Cao, Junlong Zhou, and Tongquan Wei. Optimizing training

efficiency and cost of hierarchical federated learning in heterogeneous mobile-edge

111

112

References

[14]

[17]

[18]

[19]

[21]

22]

cloud computing. IEEFE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2022.

Morghan Hartmann, Umair Sajid Hashmi, and Ali Imran. Edge computing in smart
health care systems: Review, challenges, and research directions. Transactions on

Emerging Telecommunications Technologies, 33(3):e3710, 2022.

Latif U Khan, Ibrar Yaqoob, Nguyen H Tran, SM Ahsan Kazmi, Tri Nguyen Dang,
and Choong Seon Hong. Edge-computing-enabled smart cities: A comprehensive
survey. IEEFE Internet of Things Journal, 7(10):10200-10232, 2020.

Gabriele Penzotti, Michele Amoretti, and Stefano Caselli. FEnabling precision
irrigation through a hierarchical edge-to-cloud system. In International Conference
on Advanced Information Networking and Applications, pages 277-286. Springer,
2024.

Pasquale Pace, Gianluca Aloi, Raffaele Gravina, Giuseppe Caliciuri, Giancarlo
Fortino, and Antonio Liotta. An edge-based architecture to support efficient
applications for healthcare industry 4.0. IEEE Transactions on Industrial
Informatics, 15(1):481-489, 2018.

Siyuan Liang, Hao Wu, Li Zhen, Qiaozhi Hua, Sahil Garg, Georges Kaddoum,
Mohammad Mehedi Hassan, and Keping Yu. Edge yolo: Real-time intelligent object
detection system based on edge-cloud cooperation in autonomous vehicles. IEEE
Transactions on Intelligent Transportation Systems, 23(12):25345-25360, 2022.

Osama Almurshed, Omer Rana, Yinhao Li, Rajiv Ranjan, Devki Nandan Jha,
Pankesh Patel, Prem Prakash Jayaraman, and Schahram Dustdar. A fault tolerant
workflow composition and deployment automation IoT framework in a multi cloud

edge environment. IEEE Internet Computing, 2021.

Xin Wu, Lan You, Ruofan Wu, Qi Zhang, and Kaixin Liang. Management and
control of load clusters for ancillary services using internet of electric loads based
on cloud—edge—end distributed computing. IEEE Internet of Things Journal, 9(19):
1826718279, 2022.

Panos Patros, Melanie Ooi, Victoria Huang, Michael Mayo, Chris Anderson, Stephen
Burroughs, Matt Baughman, Osama Almurshed, Omer Rana, Ryan Chard, et al.
Rural AI: Serverless-powered federated learning for remote applications. IEEFE

Internet Computing, 2022.

Shaojie Zhuo, Hongyu Chen, Ramchalam Kinattinkara Ramakrishnan, Tommy
Chen, Chen Feng, Yicheng Lin, Parker Zhang, and Liang Shen. An empirical study
of low precision quantization for tinyml. arXiv preprint arXiv:2203.05492, 2022.

Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz. Model

compression in practice: Lessons learned from practitioners creating on-device

References 113

[28]

[29]

[31]

[33]

machine learning experiences. In Proceedings of the CHI Conference on Human

Factors in Computing Systems, pages 1-18, 2024.

Yibo Yang, Stephan Mandt, Lucas Theis, et al. An introduction to neural data
compression. Foundations and Trends®) in Computer Graphics and Vision, 15(2):
113-200, 2023.

Jianhua He, Jian Wei, Kai Chen, Zuoyin Tang, Yi Zhou, and Yan Zhang. Multitier
fog computing with large-scale IoT data analytics for smart cities. IEEE Internet
of Things Journal, 5(2):677-686, 2017.

Siliang Lu, Jinfeng Lu, Kang An, Xiaoxian Wang, and Qingbo He. Edge computing
on IoT for machine signal processing and fault diagnosis: A review. IEEE Internet
of Things Journal, 2023.

Xiaokang Wang, Lei Ren, Ruixue Yuan, Laurence T Yang, and M Jamal Deen.
Qtt-dlstm: A cloud-edge-aided distributed Istm for cyber-physical-social big data.
IFEEFE Transactions on Neural Networks and Learning Systems, 2022.

Qiang Duan, Shangguang Wang, and Nirwan Ansari. Convergence of networking
and cloud/edge computing: Status, challenges, and opportunities. IEEE Network,
34(6):148-155, 2020.

Tian Wang, Yuzhu Liang, Xuewei Shen, Xi Zheng, Adnan Mahmood, and Quan Z
Sheng. Edge Computing and Sensor-Cloud: Overview, Solutions, and Directions.
ACM Computing Surveys, 2023.

Chunlin Li, Hezhi Sun, Hengliang Tang, and Youlong Luo. Adaptive resource
allocation based on the billing granularity in edge-cloud architecture. Computer
Communications, 145:29-42, 2019.

Mohamed A Kamel, Xiang Yu, and Youmin Zhang. Formation control and
coordination of multiple unmanned ground vehicles in normal and faulty situations:
A review. Annual reviews in control, 49:128—-144, 2020.

Osama Almurshed, Omer Rana, and Kyle Chard. Greedy nominator heuristic:
Virtual function placement on fog resources. Concurrency and Computation:
Practice and Experience, 34(6):e6765, 2022.

Alex Olsen, Dmitry A Konovalov, Bronson Philippa, Peter Ridd, Jake C Wood,
Jamie Johns, Wesley Banks, Benjamin Girgenti, Owen Kenny, James Whinney, et al.
Deepweeds: A multiclass weed species image dataset for deep learning. Scientific
reports, 9(1):1-12, 2019.

Osama Almurshed, Panos Patros, Victoria Huang, Michael Mayo, Melanie Ooi, Ryan
Chard, Kyle Chard, Omer Rana, Harshaan Nagra, Matt Baughman, et al. Adaptive

114

References

[34]

[35]

[38]

[41]

[43]

edge-cloud environments for rural Al. In 2022 IEEE International Conference on

Services Computing (SCC), pages 74-83. IEEE, 2022.

Ramyad Hadidi, Jiashen Cao, Michael S Ryoo, and Hyesoon Kim. Toward
collaborative inferencing of deep neural networks on internet-of-things devices. IEEE
Internet of Things Journal, 7(6):4950-4960, 2020.

Xing Chen, Jianshan Zhang, Bing Lin, Zheyi Chen, Katinka Wolter, and Geyong
Min. Energy-efficient offloading for DNN-based smart iot systems in cloud-edge
environments. [EEE Transactions on Parallel and Distributed Systems, 33(3):
683-697, 2021.

Saeed Javanmardi, Mohammad Shojafar, Valerio Persico, and Antonio Pescape.
FPFTS: a joint fuzzy particle swarm optimization mobility-aware approach to fog
task scheduling algorithm for internet of things devices. Software: Practice and
Ezperience, 51(12):2519-2539, 2021.

Shihong Hu and Guanghui Li. Dynamic request scheduling optimization in mobile
edge computing for iot applications. IEEE Internet of Things Journal, 7(2):
1426-1437, 2019.

Firdose Saeik, Marios Avgeris, Dimitrios Spatharakis, Nina Santi, Dimitrios
Dechouniotis, John Violos, Aris Leivadeas, Nikolaos Athanasopoulos, Nathalie
Mitton, and Symeon Papavassiliou. Task offloading in edge and cloud computing:
A survey on mathematical, artificial intelligence and control theory solutions.
Computer Networks, 195:108177, 2021.

Michael Putzier, T Khakzad, M Dreischarf, Sylvia Thun, F Trautwein, and N Taheri.
Implementation of cloud computing in the german healthcare system. NPJ Digital
Medicine, 7(1):12, 2024.

Su Hu and Yinhao Xiao. Design of cloud computing task offloading algorithm based
on dynamic multi-objective evolution. Future Generation Computer Systems, 122:
144-148, 2021.

Yuxuan Sun, Xueying Guo, Sheng Zhou, Zhiyuan Jiang, Xin Liu, and Zhisheng Niu.
Learning-based task offloading for vehicular cloud computing systems. In 2018 IEEFE
International Conference on Communications (ICC), pages 1-7. IEEE, 2018.

Min Chen and Yixue Hao. Task offloading for mobile edge computing in software
defined ultra-dense network. IEEFE Journal on Selected Areas in Communications,
36(3):587-597, 2018.

Ragib Hasan, Mahmud Hossain, and Rasib Khan. Aura: An incentive-driven ad-hoc
iot cloud framework for proximal mobile computation offloading. Future Generation
Computer Systems, 86:821-835, 2018.

References 115

[44]

[48]

[49]

[50]

[54]

[55]

Ben Langmead and Abhinav Nellore. Cloud computing for genomic data analysis
and collaboration. Nature Reviews Genetics, 19(4):208-219, 2018.

Belen Bermejo and Carlos Juiz. Improving cloud/edge sustainability through
artificial intelligence: A systematic review. Journal of Parallel and Distributed
Computing, 176:41-54, 2023.

Abdenacer Naouri, Hangxing Wu, Nabil Abdelkader Nouri, Sahraoui Dhelim, and
Huansheng Ning. A novel framework for mobile-edge computing by optimizing task
offloading. IEEFE Internet of Things Journal, 8(16):13065-13076, 2021.

Changchun Long, Yang Cao, Tao Jiang, and Qian Zhang. Edge computing
framework for cooperative video processing in multimedia iot systems. I[FEFE
Transactions on Multimedia, 20(5):1126-1139, 2017.

Tiankui Zhang, Yu Xu, Jonathan Loo, Dingcheng Yang, and Lin Xiao. Joint
computation and communication design for uav-assisted mobile edge computing in
iot. IEEFE Transactions on Industrial Informatics, 16(8):5505-5516, 2019.

Jielin Jiang, Zheng Li, Yuan Tian, and Najla Al-Nabhan. A review of techniques
and methods for iot applications in collaborative cloud-fog environment. Security
and Communication Networks, 2020(1):8849181, 2020.

Caihong Kai, Hao Zhou, Yibo Yi, and Wei Huang. Collaborative cloud-edge-end
task offloading in mobile-edge computing networks with limited communication

capability. IFEFE Transactions on Cognitive Communications and Networking, 7
(2):624-634, 2020.

Jinke Ren, Guanding Yu, Yinghui He, and Geoffrey Ye Li. Collaborative cloud
and edge computing for latency minimization. IEEE Transactions on Vehicular

Technology, 68(5):5031-5044, 2019.

Yixue Hao, Yingying Jiang, Tao Chen, Donggang Cao, and Min Chen.
itaskoflloading: intelligent task offloading for a cloud-edge collaborative system.
IEEE Network, 33(5):82-88, 2019.

Xu Chen, Qian Shi, Lei Yang, and Jie Xu. Thriftyedge: Resource-efficient edge
computing for intelligent iot applications. IEEE network, 32(1):61-65, 2018.

Robert Sparrow and Mark Howard. Robots in agriculture: prospects, impacts,

ethics, and policy. precision agriculture, 22:818-833, 2021.

G Pantelimon, Kemal Tepe, Rupp Carriveau, and Sabbir Ahmed. Survey of
multi-agent communication strategies for information exchange and mission control
of drone deployments. Journal of Intelligent € Robotic Systems, 95:779-788, 2019.

116

References

[56]

[58]

[61]

[64]

[66]

Jestis Conesa-Munoz, Joao Valente, Jaime Del Cerro, Antonio Barrientos, and
Angela Ribeiro. A multi-robot sense-act approach to lead to a proper acting in
environmental incidents. Sensors, 16(8):1269, 2016.

Angelos Dimakos, Daniel Woodhall, and Seemal Asif. A study on centralised and
decentralised swarm robotics architecture for part delivery system. arXiv preprint
arXiv:2403.07635, 2024.

Albert Rego, Pedro Luis Gonzédlez Ramirez, Jose M Jimenez, and Jaime Lloret.
Artificial intelligent system for multimedia services in smart home environments.
Cluster Computing, 25(3):2085-2105, 2022.

Panos Patros, Melanie Ooi, Victoria Huang, Michael Mayo, Chris Anderson, Stephen
Burroughs, Matt Baughman, Osama Almurshed, Omer Rana, Ryan Chard, et al.
Rural-Al: Serverless-powered federated learning for remote applications. I[EEFE
Internet Computing, 27(2):28-34, 2022.

Osama Almurshed, Panos Patros, Victoria Huang, Michael Mayo, Melanie Ooi, Ryan
Chard, Kyle Chard, Omer Rana, Harshaan Nagra, Matt Baughman, et al. Adaptive
edge-cloud environments for rural Al. In IEEFE International Conference on Services
Computing (SCC), pages 74-83, 2022.

Mohammed Islam Naas, Laurent Lemarchand, Jalil Boukhobza, and Philippe
Raipin. A graph partitioning-based heuristic for runtime IoT data placement
strategies in a fog infrastructure. In Proceedings of the 33rd annual ACM symposium

on applied computing, pages 767-774, 2018.

Sudip Misra and Niloy Saha. Detour: Dynamic task offloading in software-defined
fog for IoT applications. IEEE Journal on Selected Areas in Communications, 37
(5):1159-1166, 2019.

Jessica Oueis, Emilio Calvanese Strinati, and Sergio Barbarossa. The fog balancing:
Load distribution for small cell cloud computing. In 2015 IEEE 81st vehicular
technology conference (VTC spring), pages 1-6. IEEE, 2015.

Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. Presto: Edge-based load balancing for fast datacenter networks. ACM
SIGCOMM Computer Communication Review, 45(4):465-478, 2015.

Kai Peng, Hualong Huang, Wenjie Pan, and Jiabin Wang. Joint optimisation for
time consumption and energy consumption of multi-application and load balancing
of cloudlets in mobile edge computing. IET Cyber-Physical Systems: Theory &
Applications, 5(2):196-206, 2020.

Adyson M Maia, Yacine Ghamri-Doudane, Dario Vieira, and Miguel Franklin

de Castro. An improved multi-objective genetic algorithm with heuristic

References 117

[68]

[69]

[70]

[71]

[72]

[77]

initialization for service placement and load distribution in edge computing.
Computer networks, 194:108146, 2021.

Herbert G Tanner and Dimitrios K Christodoulakis. Decentralized cooperative
control of heterogeneous vehicle groups. Robotics and autonomous systems, 55(11):
811-823, 2007.

Brett Koonce. ResNet 50. Convolutional Neural Networks with Swift for Tensorflow:
Image Recognition and Dataset Categorization, pages 63-72, 2021.

Alex Olsen, Dmitry A Konovalov, Bronson Philippa, Peter Ridd, Jake C Wood,
Jamie Johns, Wesley Banks, Benjamin Girgenti, Owen Kenny, James Whinney, et al.
DeepWeeds: A multiclass weed species image dataset for deep learning. Scientific
reports, 9(1):2058, 2019.

Kaustabha Ray and Ansuman Banerjee. Prioritized fault recovery strategies for
multi-access edge computing using probabilistic model checking. IEEE Transactions
on Dependable and Secure Computing, 20(1):797-812, 2023. doi: 10.1109/TDSC.
2022.3143877.

Anusha Vangala, Ashok Kumar Das, Vinay Chamola, Valery Korotaev, and
Joel JPC Rodrigues. Security in IoT-enabled smart agriculture: Architecture,
security solutions and challenges. Cluster Computing, 26(2):879-902, 2023.

Angelita Rettore de Araujo Zanella, Eduardo da Silva, and Luiz Carlos Pessoa
Albini. Security challenges to smart agriculture: Current state, key issues, and
future directions. Array, 8:100048, 2020.

Leanne Wiseman, Jay Sanderson, Airong Zhang, and Emma Jakku. Farmers and
their data: An examination of farmers’ reluctance to share their data through
the lens of the laws impacting smart farming. NJAS-Wageningen Journal of Life
Sciences, 90:100301, 2019.

Jitendra Kumar Samriya, Chinmay Chakraborty, Aditi Sharma, Mohit Kumar, et al.
Adversarial ml-based secured cloud architecture for consumer internet of things of

smart healthcare. IEEE Transactions on Consumer Electronics, 2023.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Attacking and protecting data privacy
in edge—cloud collaborative inference systems. IEEE Internet of Things Journal, 8
(12):9706-9716, 2020.

Tian Wang, Yaxin Mei, Weijia Jia, Xi Zheng, Guojun Wang, and Mande Xie.
Edge-based differential privacy computing for sensor—cloud systems. Journal of
Parallel and Distributed computing, 136:75-85, 2020.

Dingde Jiang, Peng Zhang, Zhihan Lv, and Houbing Song. Energy-efficient
multi-constraint routing algorithm with load balancing for smart city applications.
IEEFE Internet of Things Journal, 3(6):1437-1447, 2016.

118

References

(78]

[80]

(8]

Roberto Beraldi, Claudia Canali, Riccardo Lancellotti, and Gabriele Proietti Mattia.
Distributed load balancing for heterogeneous fog computing infrastructures in smart
cities. Pervasive and Mobile Computing, 67:101221, 2020.

Atakan Aral and Ivona Brandi¢. Learning spatiotemporal failure dependencies for
resilient edge computing services. IEEE Transactions on Parallel and Distributed
Systems, 32(7):1578-1590, 2021.

Deepak Puthal, Rajiv Ranjan, Ashish Nanda, Priyadarsi Nanda, Prem Prakash
Jayaraman, and Albert Y Zomaya. Secure authentication and load balancing of
distributed edge datacenters. Journal of Parallel and Distributed Computing, 124:
60-69, 2019.

Emna Baccour, Naram Mhaisen, Alaa Awad Abdellatif, Aiman Erbad, Amr
Mohamed, Mounir Hamdi, and Mohsen Guizani. Pervasive ai for iot applications: A
survey on resource-efficient distributed artificial intelligence. IEEE Communications
Surveys € Tutorials, 24(4):2366-2418, 2022. doi: 10.1109/COMST.2022.3200740.

Liang Xiao, Xiaoyue Wan, Xiaozhen Lu, Yanyong Zhang, and Di Wu. Iot
security techniques based on machine learning: How do iot devices use ai to
enhance security? IEEE Signal Processing Magazine, 35(5):41-49, 2018. doi:
10.1109/MSP.2018.2825478.

Fanyu Bu and Xin Wang. A smart agriculture iot system based on deep

reinforcement learning. Future Generation Computer Systems, 99:500-507, 2019.

Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural

network models for practical applications. arXiv preprint arXiv:1605.07678, 2016.

Da Li, Xinbo Chen, Michela Becchi, and Ziliang Zong. Evaluating the energy
efficiency of deep convolutional neural networks on cpus and gpus. In 2016
IEEE international conferences on big data and cloud computing (BDCloud), social
computing and networking (SocialCom), sustainable computing and communications
(SustainCom)(BDCloud-SocialCom-SustainCom,), pages 477-484. IEEE, 2016.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In

International conference on machine learning, pages 10096-10106. PMLR, 2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning, pages 6105-6114.
PMLR, 2019.

Yiming Hu, Siyang Sun, Jianquan Li, Xingang Wang, and Qingyi Gu. A novel
channel pruning method for deep neural network compression. arXiv preprint
arXiv:1805.11894, 2018.

References 119

[89]

[90]

[91]

[92]

[94]

[95]

[96]

[98]

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of
pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.

Zhen Chen, Zhibo Chen, Jianxin Lin, Sen Liu, and Weiping Li. Deep neural network
acceleration based on low-rank approximated channel pruning. IEEE Transactions
on Circuits and Systems I: Regular Papers, 67(4):1232-1244, 2020.

Zhuoran Song, Bangqi Fu, Feiyang Wu, Zhaoming Jiang, Li Jiang, Naifeng Jing,
and Xiaoyao Liang. Drq: dynamic region-based quantization for deep neural
network acceleration. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pages 1010-1021. IEEE, 2020.

Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie.
Communication-efficient federated learning via knowledge distillation. Nature
communications, 13(1):2032, 2022.

Eva Garcia-Martin, Crefeda Faviola Rodrigues, Graham Riley, and Hakan Grahn.
Estimation of energy consumption in machine learning. Journal of Parallel and
Distributed Computing, 134:75-88, 2019.

Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Alexander Binder, Simon
Wiedemann, Klaus-Robert Miiller, and Wojciech Samek. Pruning by explaining: A
novel criterion for deep neural network pruning. Pattern Recognition, 115:107899,
2021.

Yadu N Babuji, Kyle Chard, Aaron Gerow, and Eamon Duede. Cloud kotta:
Enabling secure and scalable data analytics in the cloud. In 2016 IEEFE International
Conference on Big Data (Big Data), pages 302-310. IEEE, 2016.

Tianli Zhou and Chao Tian. Fast erasure coding for data storage: A comprehensive
study of the acceleration techniques. ACM Transactions on Storage (TOS), 16(1):
1-24, 2020.

Qiangiu Wang, Xiaoping Ye, Xianlu Luo, Lunjie Li, and Hainan Chen. A distributed
data storage strategy based on LOPs. Arabian Journal for Science and Engineering,

47(8):9767-9779, 2022.

Justice Opara-Martins, Reza Sahandi, and Feng Tian. Critical review of vendor
lock-in and its impact on adoption of cloud computing. In International conference
on information society (i-Society 2014), pages 92-97. IEEE, 2014.

Ying Song, Qiang Zhang, and Bo Wang. FACHS: Adaptive hybrid storage strategy
based on file access characteristics. IEEE Access, 11:16855-16862, 2023.

Jad Darrous and Shadi Ibrahim. Understanding the performance of erasure codes in
hadoop distributed file system. In Proceedings of the Workshop on Challenges and
Opportunities of Efficient and Performant Storage Systems, pages 24-32, 2022.

120

References

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

109

[110]

[111]

Michael Abebe, Khuzaima Daudjee, Brad Glasbergen, and Yuanfeng Tian. Ec-store:
Bridging the gap between storage and latency in distributed erasure coded systems.
In 2018 IEEE 38th international conference on distributed computing systems
(ICDCS), pages 255-266. IEEE, 2018.

Zhinan Cheng, Lu Tang, Qun Huang, and Patrick PC Lee. Enabling low-redundancy
proactive fault tolerance for stream machine learning via erasure coding. In 2021 40th
International Symposium on Reliable Distributed Systems (SRDS), pages 99-108.
IEEE, 2021.

Rekha Nachiappan, Rodrigo N Calheiros, Kenan M Matawie, and Bahman Javadi.
Optimized proactive recovery in erasure-coded cloud storage systems. IEFE Access,
2023.

The State of Food Security and Nutrition in the World 2022 [Online]. Available:
https://www.fao.org/3/cc0639en/online/sofi-2022/ introduction.html.

Chengsong Hu, J Alex Thomasson, and Muthukumar V Bagavathiannan. A
powerful image synthesis and semi-supervised learning pipeline for site-specific weed
detection. Computers and FElectronics in Agriculture, 190:106423, 2021.

Sukhpal Singh Gill. Quantum and blockchain based serverless edge computing: A
vision, model, new trends and future directions. Internet Technology Letters, page
€275, 2021.

Amit Samanta, Flavio Esposito, and Tri Gia Nguyen. Fault-tolerant mechanism
for edge-based IoT networks with demand uncertainty. IEFE Internet of Things
Journal, 8(23):16963-16971, 2021. doi: 10.1109/J10T.2021.3075681.

Heidi Saxby, Menelaos Gkartzios, and Karen Scott. ‘farming on the edge’: wellbeing
and participation in agri-environmental schemes. Sociologia Ruralis, 58(2):392-411,
2018.

N Brisson, C Gary, E Justes, R Roche, B Mary, D Ripoche, D Zimmer, J Sierra,
P Bertuzzi, P Burger, F Bussiéere, Y.M Cabidoche, P Cellier, P Debaeke, J.P
Gaudillere, C Hénault, F Maraux, B Seguin, and H Sinoquet. An overview of the
crop model stics. European Journal of Agronomy, 18(3):309-332, 2003. Modelling

Cropping Systems: Science, Software and Applications.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2704-2713, 2018.

Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin Wozniak, Tan Foster, Mike Wilde,

References 121

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

and Kyle Chard. parsl: Pervasive parallel programming in python. In 28th ACM
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC), 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4510-4520, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770-778, 2016.

Ashish Kaushal, Osama Almurshed, Areej Alabbas, Nitin Auluck, and Omer Rana.
An edge-cloud infrastructure for weed detection in precision agriculture. In IEEFE
Intl Conf on Pervasive Intelligence and Computing (PiCom,), pages 02690276, 2023.

Marcelo José Carrer, Hildo Meirelles de Souza Filho, Marcela de Mello Brandao
Vinholis, and Carlos Ivan Mozambani. Precision agriculture adoption and technical
efficiency: An analysis of sugarcane farms in brazil. Technological Forecasting and
Social Change, 177:121510, 2022.

Peeyush Kumar, Andrew Nelson, Zerina Kapetanovic, and Ranveer Chandra.
Affordable artificial intelligence—augmenting farmer knowledge with ai. arXiv
preprint arXiv:2303.06049, 2023.

The State of Food Security and Nutrition in the World 2022 [Online]. Available:
hitps://www.fao.org/3/cc0639en/online/sofi-2022/ introduction.html.

René Dumont. Types of Rural Economy: Studies in World Agriculture, volume 8.
Taylor & Francis, 2023.

Hui Yuan and Hong Nie. Edge computing driven sustainable development: A case

study on professional farmer cultivation mechanism. Ezpert Systems, 2023.

Andrew D. Balmos, Fabio A. Castiblanco, Aaron J. Neustedter, James V. Krogmeier,
and Dennis R. Buckmaster. Isoblue avena: A framework for agricultural edge
computing and data sovereignty. IEEE Micro, 42(1):78-86, 2022. doi: 10.1109/
MM.2021.3134830.

Yogeswaranathan Kalyani and Rem Collier. A systematic survey on the role of
cloud, fog, and edge computing combination in smart agriculture. Sensors, (17):

0922, 2021.

Ahmad Ali Alzubi and Kalda Galyna. Artificial intelligence and internet of things

for sustainable farming and smart agriculture. IEEFE Access, 2023.

122

References

[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

[131]

[132]

[133)]

134]

M Trendov, Samuel Varas, Meng Zeng, et al. Digital technologies in agriculture and
rural areas: status report. Digital technologies in agriculture and rural areas: status
report., 2019.

Sumarga Kumar Sah Tyagi, Amrit Mukherjee, Shiva Raj Pokhrel, and Kamal Kant
Hiran. An intelligent and optimal resource allocation approach in sensor networks
for smart agri-IoT. IEEE Sensors Journal, 21(16):17439-17446, 2020.

Anandarup Mukherjee, Sudip Misra, Anumandala Sukrutha, and Narendra Singh
Raghuwanshi. Distributed aerial processing for IoT-based edge UAV swarms in
smart farming. Computer Networks, 167:107038, 2020.

Othmane Friha, Mohamed Amine Ferrag, Lei Shu, Leandros Maglaras,
Kim-Kwang Raymond Choo, and Mehdi Nafaa. FELIDS: Federated learning-based
intrusion detection system for agricultural Internet of Things. Journal of Parallel
and Distributed Computing, 165:17-31, 2022.

Khalid Haseeb, Ikram Ud Din, Ahmad Almogren, and Naveed Islam. An energy
efficient and secure iot-based wsn framework: An application to smart agriculture.
Sensors, 20(7):2081, 2020.

Theyazn HH Aldhyani and Hasan Alkahtani. Cyber Security for Detecting
Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model.
Mathematics, 11(1):233, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. pages 248-255, 2009.

Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M Wozniak, Ian Foster, et al. Parsl:
Pervasive parallel programming in python. pages 25-36, 2019.

Areej Alabbas, Ashish Kaushal, Osama Almurshed, Omer Rana, Nitin Auluck, and
Charith Perera. Performance analysis of apache openwhisk across the edge-cloud

continuum.

Rainer Diesch, Matthias Pfaff, and Helmut Krcmar. A comprehensive model of
information security factors for decision-makers. Computers € Security, 92:101747,
2020.

Ashish Kaushal, Osama Almurshed, Osama Almoghamis, Areej Alabbas, Nitin
Auluck, Bharadwaj Veeravalli, and Omer Rana. Shield: A secure heuristic integrated

environment for load distribution in rural-ai. Future Generation Computer Systems,
161:286-301, 2024.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha
Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai,

References 123

[135]

[136]

[137]

138

[139)]

[140]

[141]

[142]

[143]

[144]

et al. Sustainable AI: Environmental implications, challenges and opportunities.
Proceedings of Machine Learning and Systems, 4:795-813, 2022.

Ling Hu and Qiang Ni. Iot-driven automated object detection algorithm for urban
surveillance systems in smart cities. IEEE Internet of Things Journal, 5(2):747-754,
2017.

Areej Alabbas, Ashish Kaushal, Osama Almurshed, Omer Rana, Nitin Auluck, and
Charith Perera. Performance analysis of apache openwhisk across the edge-cloud
continuum. In 2023 IEEE 16th International Conference on Cloud Computing
(CLOUD), pages 401-407. IEEE, 2023.

Radu Marculescu, Diana Marculescu, and Umit Ogras. Edge ai: Systems design and
ml for iot data analytics. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 3565—-3566, 2020.

Sudershan Boovaraghavan, Anurag Maravi, Prahaladha Mallela, and Yuvraj
Agarwal. Mliot: An end-to-end machine learning system for the internet-of-things.
In Proceedings of the International Conference on Internet-of-Things Design and

Implementation, pages 169-181, 2021.

Pavana Prakash, Jiahao Ding, Rui Chen, Xiaoqi Qin, Minglei Shu, Qimei Cui,
Yuanxiong Guo, and Miao Pan. Iot device friendly and communication-efficient
federated learning via joint model pruning and quantization. I[IEFE Internet of
Things Journal, 9(15):13638-13650, 2022.

Eun Som Jeon, Anirudh Som, Ankita Shukla, Kristina Hasanaj, Matthew P Buman,
and Pavan Turaga. Role of data augmentation strategies in knowledge distillation
for wearable sensor data. IEEE internet of things journal, 9(14):12848-12860, 2021.

Joseph Azar, Abdallah Makhoul, Mahmoud Barhamgi, and Raphaél Couturier. An
energy efficient iot data compression approach for edge machine learning. Future
Generation Computer Systems, 96:168-175, 2019.

Huirong Ma, Zhi Zhou, Xiaoxi Zhang, and Xu Chen. Towards carbon-neutral edge
computing: Greening edge ai by harnessing spot and future carbon markets. IFEFE
Internet of Things Journal, 2023.

Sha Zhu, Kaoru Ota, and Mianxiong Dong. Energy-efficient artificial intelligence
of things with intelligent edge. IEEE Internet of Things Journal, 9(10):7525-7532,
2022.

Sha Zhu, Kaoru Ota, and Mianxiong Dong. Green ai for iiot: Energy efficient
intelligent edge computing for industrial internet of things. IEEE Transactions on
Green Communications and Networking, 6(1):79-88, 2021.

124

References

[145]

[146]

[147)

[148]

[149]

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from

deep networks via gradient-based localization. pages 618-626, 2017.

Osama Almurshed, Souham Meshoul, Asmail Muftah, Ashish Kumar Kaushal,
Osama Almoghamis, Ioan Petri, Nitin Auluck, and Omer Rana. A framework for
performance optimization of internet of things applications. In European Conference

on Parallel Processing, pages 165-176. Springer, 2023.

Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo
Madeira, Marilia Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer Rana.
The internet of things, fog and cloud continuum: Integration and challenges. Internet
of Things, 3:134-155, 2018.

Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics, 8(2):300-304, 1960.

Md Sadiqul Islam Sakif, Rezuana Imtiaz Upoma, and Jannatun Noor. Towards
benchmarking erasure coding schemes in object storage system. Awailable at SSRN
4713529.

	Declaration
	Acknowledgement
	Certificate
	Lay Summary
	Abstract
	List of Publications
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Internet of Things
	Edge-Cloud Continuum
	Architecture for Edge-Cloud Continuum
	Integrating ML, AI with Edge and Cloud
	IoT Applications Utilising Edge and Cloud
	Challenges in Edge-Cloud Infrastructures
	Research Objectives of the Thesis
	Primary Contributions
	Structure of the Thesis

	Literature Review
	Adaptive Edge and Cloud Frameworks
	Task Offloading and Resource Allocation in Edge and Cloud Systems
	Intelligent Applications using IoT, Cloud, and Edge
	Load Distribution on Edge and Cloud Nodes
	Security and Privacy in Edge-Cloud based Systems
	Challenges with AI Sustainability and IoT
	Data Management in Edge-Cloud Frameworks

	Task Allocation in Edge-Cloud Infrastructure
	Weed Management Task in Precision Agriculture
	System Model
	Serverless Computing Platforms
	Dataset and ML Models
	System Design and Use Case

	Problem Formulation
	Monitoring Constraints
	Decision Variables
	Objective Function

	Proposed Approach
	ML Models
	Signal Monitoring
	Execution Workflow for Inference Tasks

	Experiments and Simulation
	Experimental Setup
	Testing ML Model Capabilities
	Node Selection for Training and Inference
	Execution Workflow
	Communication and Monitoring Setup

	Results and Evaluation
	Results
	Analysis

	Summary

	Load Distribution in Edge Computing Environment
	Distributing Task Load in Rural-AI
	System Model
	Three-tier Edge-Cloud Architecture
	Adaptive Control Pipeline
	Task and Resource Classification
	Real-World Use Case
	Functional Requirements
	ML Model Description
	Serverless Computing Platforms
	The CIA Triad

	Problem Formulation
	The SHIELD Framework
	Heuristic Function Pipeline
	Adaptive Cryptographic Measures for Public Networks
	Load Balancing Algorithm
	Access Control Mechanism

	Performance Comparison: Parsl vs OpenWhisk
	Experimentation Setup and Design
	Testbed Setup for Parsl
	Testbed Setup for OpenWhisk
	Simulation Setup
	Simulation Parameters

	Results and Evaluations
	Performance Analysis of Workflows on Limited Resource Environment
	Interpreting the Additional Time Required for Different Execution Workflows
	Exploring Distribution of Load and its Trade-off with other Performance Critical Factors
	Evaluating the Influence of Dynamic k-value on Overall Execution Time of Workflows
	Analysing Performance with different Data Distribution and Task Load
	Analysing Performance in Heterogeneous Resource Environment

	Summary

	Optimising AI Operations in IoT-based Applications
	Integrating ML with IoT
	Agricultural Use-Case
	Proposed Methodology
	Optimising Layer Selection with Genetic Algorithm
	Efficient Feature Mapping for Pruning

	Experimental Design and Setup
	Dataset and Hardware Configuration
	Estimation of Power Consumption
	Experimental Configuration

	Results and Evaluation
	Analysis of Results
	Aspects for Further Optimisation
	Summary

	Data Management in Edge-Cloud Environment
	Data Management in IoT
	Data Handling in Serverless Environment
	Direct Data Transfer
	Use of Intermediate Storage

	Methods for Ensuring Data Availability
	Challenges with Data Handling
	Challenges in Deploying ML Workflow on Serverless Platforms
	Proposed Approach for Data Handling
	Workflow for Data Handling
	Workflow for Model Storage
	Experimentation and Results
	Summary

	Conclusion
	Summary
	Future Directions

	References

