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Lay Summary

This thesis primarily deals with reproducing kernel Hilbert spaces of vector valued entire functions

based on operator valued reproducing kernels. We extend the notion of de Branges spaces of

vector valued entire functions and introduce de Branges operators as a pair of Fredholm operator

valued functions. Then, de Branges spaces are constructed based on de Branges operators and are

characterized. The Kramer sampling representation of functions in these spaces is presented using

eigenfunctions of a selfadjoint extension of the symmetric multiplication operator. Entire operators

with infinite deficiency indices are studied, and their functional model is obtained. The notion of

a quasi Lagrange-type interpolation is extended, and their connection with de Branges spaces of

vector valued entire functions is discussed. A global factorization of Fredholm operator valued

entire functions invertible at least at one point is described. Associated functions of de Branges

spaces are studied, and their connection with operator nodes is elaborated. We also extend and

parametrize the notion of de Branges matrices for higher dimensions.
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Abstract
This thesis primarily deals with vector valued reproducing kernel Hilbert spaces (RKHS) H
of entire functions associated with operator valued kernel functions. de Branges operators

E = (E−, E+) are introduced as a pair of Fredholm operator valued entire functions on X, where

X is an infinite dimensional complex separable Hilbert space. A few explicit examples of these

de Branges operators are discussed. We highlight that the newly defined RKHS B(E) based on

the de Branges operator E = (E−, E+) generalizes Paley-Wiener spaces of vector valued entire

functions. These spaces are characterized under some special restrictions.

The complete parametrizations and canonical descriptions of all selfadjoint extensions of the

closed, symmetric multiplication operator by the independent variable have been given in terms

of unitary operators between ranges of reproducing kernels. A sampling formula for the de

Branges space B(E) has been discussed. A particular class of entire operators with infinite

deficiency indices has been dealt with, and it has been shown that they can be considered as the

multiplication operator for a specific class of these de Branges spaces. A brief discussion on the

connection between the characteristic function of a completely nonunitary contraction operator

and the de Branges space B(E) has been given.

We discuss an abstract Kramer sampling theorem for functions within a reproducing kernel

Hilbert space (RKHS) of vector valued holomorphic functions. Additionally, we extend the

concept of quasi Lagrange-type interpolation for functions within an RKHS of vector valued

entire functions. The dependence of having quasi Lagrange-type interpolation on an invariance

condition under the generalized backward shift operator has also been studied. Furthermore, we

establish the connection between quasi Lagrange-type interpolation, operator of multiplication by

the independent variable, and de Branges spaces of vector valued entire functions.

Some factorization and isometric embedding results are extended from the scalar valued theory of

de Branges spaces. In particular, global factorization of Fredholm operator valued entire functions

and analytic equivalence of reproducing kernels of de Branges spaces are discussed. Additionally,

the operator valued entire functions associated with these de Branges spaces are studied, and a

connection with operator nodes is established.

We extend the concept of de Branges matrices to any finite m×m order where m = 2n. We shall

discuss these matrices along with the theory of de Branges spaces of Cn-valued entire functions

and their associated functions. A parametrization of these matrices is obtained using the Smirnov

maximum principle for matrix valued functions. Additionally, a factorization of matrix valued

meromorphic functions is discussed.

Keywords: Vector valued de Branges spaces; de Branges operator; Multiplication operator;

Symmetric operators with infinite deficiency indices; Entire operators; Sampling formulas;

Abstract analytic Kramer sampling; Quasi Lagrange-type interpolation; Generalized backward
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shift operator; Fredholm operator valued entire functions; Factorizations; Isometric embedding;

Associated function; Operator nodes; de Branges matrices; Factorization of meromorphic matrix

valued functions.
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Chapter 1

Introduction

Fourier analysis is a crucial mathematical theory with applications in many modern fields, such

as signal processing, quantum mechanics, image processing, computer algorithms, and more. A

significant theory that emerged from the influence of Fourier analysis in the last century is the

theory of Hilbert spaces of entire functions. This area of study traces its root to the classical

Paley-Wiener theorem, which explores the connection between Fourier transforms and entire

functions of exponential type that are square integrable on the real line. In 1959, L. de Branges

introduced the Hilbert spaces of entire functions in [24], which were reproducing kernel Hilbert

spaces (RKHS) and are now known as de Branges spaces. In later years, de Branges published

several articles (see [25–28]) and further developed the theory. A comprehensive study, including

numerous examples and applications of de Branges spaces of entire functions, can be found in

his monograph [30]. Paley-Wiener spaces, a central topic of signal analysis, constitute a crucial

example of de Branges spaces. The initial developments and distinguished properties of de

Branges spaces were motivated by the eigenfunction expansions, the Hamburger moment problem,

and matrix differential equations. For an early history of de Branges spaces of entire functions and

the influence of the aforementioned topics in this theory, we refer to an excellent survey by J.

Rovnyak [72]. L. Golinskii and I. Mikhailova noted in [44] the close relationship between de

Branges spaces and analytic J-expansive matrix valued functions for a signature matrix J . They

introduced the concept of de Branges matrices and investigated several results from the theory of

de Branges spaces in terms of these matrices. This thesis primarily focuses on studying various

aspects of de Branges spaces, which consist of entire functions taking values in Cn or any infinite

dimensional complex separable Hilbert space.

The basic theory of reproducing kernel Hilbert spaces (RKHS) was developed by the contribution

of many authors (see: [8], [19], [62], [65]). It has been observed that the theory of vector valued

reproducing kernel Hilbert spaces associated with operator valued kernel functions arises naturally

in many areas like probability and stochastic process, machine learning, statistics, etc., and is an

active area of research. For example, the articles [64] and [63] connecting the machine learning

theory with the vector valued RKHS theory are motivating. Let X be an infinite dimensional

complex separable Hilbert space, and B(X) is the collection of all bounded linear operators in

X. Also, for any operator A, kerA denotes the kernel of A, rng A denotes the range of A, and

A∗ denotes the adjoint operator for A. We call a Hilbert space H of X-valued entire functions a

reproducing kernel Hilbert space (RKHS) if there exists a B(X)-valued function Kξ(z) on C×C,

which satisfies the following two conditions:

1. Kξu ∈ H for all ξ ∈ C and u ∈ X.
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2. ⟨f,Kξu⟩H = ⟨f(ξ), u⟩X for all f ∈ H, ξ ∈ C and u ∈ X.

The B(X)-valued function Kξ(z) is known as reproducing kernel (RK) for H. Equivalently, H is

an RKHS if for all ξ ∈ C, the point evaluations

δξ : H → X, f 7→ f(ξ)

are bounded. The function Lξ(z) = δzδ
∗
ξ satisfies the two conditions of a reproducing kernel. For

an RKHS, the reproducing kernel is unique. Thus, the B(X)-valued function Kξ(z) = δzδ
∗
ξ is

the reproducing kernel for H. Clearly, for ξ, z ∈ C, Kξ(z)
∗ = Kz(ξ). In an RKHS H, norm

convergence of a sequence of functions implies pointwise convergence. That is, if {gn} ⊆ H
converges to g ∈ H in the norm, then for every z ∈ C, gn(z) → g(z). The linear span of the

collection {Kξu : ξ ∈ C, u ∈ X} is dense in H. If there exist countable sets {ξ1, ξ2, . . .} ⊂ C and

{u1, u2, . . .} ⊂ X such that {Kξnun : n ∈ N} is an orthogonal basis of H, then we shall say that

the RKHS has the Kramer sampling property, that is, if any function f ∈ H can be written in the

following form

f(z) =
∞∑
n=1

⟨f,Kξnun⟩H
Kξn(z)un

||Kξnun||2H
=

∞∑
n=1

⟨f(ξn), un⟩X
Kξn(z)un

||Kξnun||2H
.

The reproducing kernel Kξ(z) is positive in the sense that, for every choice of n ∈ N,

ξ1, ξ2, . . . , ξn ∈ C and u1, u2, . . . , un ∈ X the following is true

n∑
l,m=1

〈
Kξm(ξl)um, ul

〉
X

=

∥∥∥∥∥
n∑

l=1

δ∗ξl(ul)

∥∥∥∥∥
2

H

≥ 0.

Clearly, for every ξ ∈ C, Kξ(ξ) ⪰ 0. AB(X)-valued functionKξ(z) on C×C is called a positive

kernel if it is positive in the sense as mentioned above. A detailed study about the reproducing

kernel Hilbert spaces can be found in [67]. The following theorem is an operator version of

Moore’s theorem, which ensures that corresponding to every positive kernel, there exists a unique

RKHS H.

Theorem 1.0.1. [67, Theorem 6.12] Let K : C × C → B(X) be a positive kernel. Then,

corresponding to K, there exists RKHS H of X-valued functions, and K is the reproducing kernel

of H.

The following lemma gives a criterion to construct RKHS of entire functions, whose proof is

similar to the proof of Lemma 5.6 in [11].

Lemma 1.0.2. Let H be an RKHS of X-valued functions defined on C with RK Kξ(z). Then H is

an RKHS of X-valued entire functions if and only if Kξ(z) is an entire function in z for all ξ ∈ C
and ||Kξ(ξ)|| is bounded on every compact subset of C.

A function f : R → X is said to be integrable if it is Bochner integrable and square integrable if it

satisfies the following condition ∫ ∞

−∞
||f(t)||2dt <∞.



Chapter 1. Introduction 3

The Fourier transformation of a square integrable function f : R → X is denoted by f̂ and is

defined as

f̂(t) =

∫ ∞

−∞
e−istf(s)ds.

Let H be a reproducing kernel Hilbert space of X-valued entire functions. For any β ∈ C, we

denote Hβ = {f ∈ H : f(β) = 0}. Hβ is a closed subspace of H. The multiplication operator in

H is denoted as T and is defined as

Tf(z) = zf(z) for all z ∈ C.

For any β ∈ C and f in a suitable space of X-valued entire functions, the generalized backward

shift operator is denoted as Rβ and is defined as

(Rβf)(z) :=

{
f(z)−f(β)

z−β if z ̸= β

f ′(β) if z = β.
(1.0.1)

For any ξ, z ∈ C, we define the scalar ρξ(z) as ρξ(z) = −2πi(z − ξ). We recall some crucial

spaces of vector valued holomorphic functions, which will be used throughout this thesis. Details

about these spaces can be found in [71], [76]. The symbol C+ (resp., C−) represents the complex

open upper (resp., lower) half-plane. We denote

L2
X(R) :=

{
f : R → X | f is weakly measurable and

∫ ∞

−∞
||f(t)||2X dt <∞

}
,

H2
X(C+) :=

{
f : C+ → X | f is holomorphic and supy>0

∫ ∞

−∞
||f(x+ iy)||2X dx <∞

}
and

H∞
B(X)(C+) := {f : C+ → B(X) | f is bounded and holomorphic} .

It is known that :-

1. L2
X(R) is a Hilbert space with respect to the inner product

⟨f, g⟩L2 =

∫ ∞

−∞
⟨f(t), g(t)⟩Xdt

for all f, g ∈ L2
X(R).

2. The Hardy space over the upper half-plane H2
X(C+) is a Hilbert space with respect to the

inner product

⟨f, g⟩H2 =

∫ ∞

−∞
⟨f0(x), g0(x)⟩Xdx

where f0, g0 ∈ L2
X(R) are the boundary functions of f and g respectively, which are

mentioned in the next theorem.
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3. H∞
B(X)(C+) is a Banach space with the norm

||F ||∞ = supy>0||F (x+ iy)||B(X)

for all F ∈ H∞
B(X)(C+).

We also denote

S =
{
F ∈ H∞

B(X)(C+) : ||F (z)|| ≤ 1 for all z ∈ C+

}
.

The following two theorems give the boundary behaviour of the functions, respectively, in

H2
X(C+) and H∞

B(X)(C+).

Theorem 1.0.3. [71, Theorem B, Chapter 4.8] Let f ∈ H2
X(C+), then there exists a (unique)

nontangential boundary limit f0 ∈ L2
X(R) such that

f0(x) = lim
y↓0

f(x+ iy)

pointwise a.e. on R. Also, f0 satisfies the following identities

f(z) =
1

2πi

∫ ∞

−∞

f0(t)

t− z
dt , y > 0 (1.0.2)

and
1

2πi

∫ ∞

−∞

f0(t)

t− z
dt = 0 , y < 0 (1.0.3)

where z = x+ iy.

Conversely, every f0 ∈ L2
X(R) satisfying (1.0.2) and (1.0.3) gives the corresponding function

f ∈ H2
X(C+) such that f0 is the boundary function of f .

The identity in (1.0.2) is known as the Cauchy integral formula.

Theorem 1.0.4. If F ∈ H∞
B(X)(C+), then for a.e. x ∈ R there exists F0(x) ∈ B(X) such that for

all u ∈ X

F (x+ iy)u→ F0(x)u as y ↓ 0

and

||F0(x)|| = lim
y↓0

||F (x+ iy)||.

Proof. The proof of this theorem can be easily adapted from the discussion in Subsection 1 of

Section 2, Chapter V of [76] (page 193).

We denote Sin (resp., Sin
∗ ) as the collection of all functions F ∈ S such that the corresponding

boundary function F (x) ∈ B(X) is an isometry (resp., co-isometry) for a.e. x ∈ R. It is easy

to observe that a B(X)-valued holomorphic function F (z) on C+ belongs to Sin (resp., Sin
∗ ) if

and only if IX − F (z)∗F (z) ⪰ 0 (resp., IX − F (z)F (z)∗ ⪰ 0) for all z ∈ C+ with equality

a.e. on R. The operator valued functions F ∈ Sin (resp., Sin
∗ ) are called inner (resp., ∗-inner)

functions. Functions belonging to both Sin and Sin
∗ are called inner from both sides. We denote

H2
X(R) as the collection of all nontangential boundary limits of elements of H2

X(C+). Thus, we
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can considerH2
X(C+) as a closed subspace of L2

X(R) in terms ofH2
X(R). If we consider the Hardy

space over the lower half-plane, that is, H2
X(C−), a similar result as Theorem 1.0.3 will also hold.

The identity in (1.0.3) implies that the orthogonal complement of H2
X(C+), that is, (H2

X(C+))
⊥

can be identified with H2
X(C−). The following theorem indicates the reproducing kernels and the

following lemma provides an essential property of the Hardy spacesH2
X(C+) andH2

X(C−), whose

proofs are analogous to Example 3.6, Example 3.7 and Lemma 3.14 in [13] respectively.

Theorem 1.0.5. The Hardy spaces over the upper half-plane H2
X(C+) and over the lower

half-plane H2
X(C−) are RKHS of X-valued holomorphic functions on C+ and C− respectively.

The corresponding reproducing kernels are

Kξ(z) =
IX
ρξ(z)

ξ, z ∈ C+ (1.0.4)

and

K(−)
α (λ) = − IX

ρα(λ)
α, λ ∈ C−. (1.0.5)

Lemma 1.0.6. Suppose f ∈ H2
X(C+) and α ∈ C are such that f is holomorphic at α, then

f

ρi
and Rαf belong to H2

X(C+).

Similarly, suppose g ∈ H2
X(C−) and β ∈ C are such that g is holomorphic at β, then

g

ρ−i
and Rβg belong to H2

X(C−).

1.1 de Branges spaces of vector valued entire functions

The theory of de Branges spaces B(E) consisting of Cn-valued entire functions based on an n×2n

entire matrix valued function E = [E− E+] has appeared greatly in the works of D. Z. Arov and H.

Dym. These spaces have played a pivotal role in their investigations of direct and inverse problems

for canonical systems of differential equations and Dirac-Krein systems. For more details in this

direction, we refer to the articles [12] and [9] and the references cited therein.

An n× 2n matrix valued entire function

E(z) = [E−(z) E+(z)] for all z ∈ C (1.1.1)

generates a de Branges space of Cn-valued entire functions if the components of E satisfy the

following conditions:

1. detE+(z) ̸≡ 0, and

2. F := E−1
+ E− is an n× n inner matrix valued function.
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The reproducing kernel of B(E) is given by

KE
ξ (z) :=


E+(z)E+(ξ)∗−E−(z)E−(ξ)∗

ρξ(z)
if z ̸= ξ

E
′
+(ξ)E+(ξ)∗−E

′
−(ξ)E−(ξ)∗

−2πi if z = ξ,
(1.1.2)

which is an n × n matrix valued entire function and ρξ(z) = −2πi(z − ξ). An obvious example

of these spaces is Paley-Wiener spaces of Cn-valued entire functions. More examples of vector

valued de Branges spaces related to some systems of ordinary differential equations can be found

in [34]. The following theorem (see [13], Theorem 3.10) describes the elements in the space B(E)
and the associated inner product in terms of the Hardy Hilbert space H2

n of Cn-valued analytic

functions on C+ and its orthogonal complement (H2
n)

⊥.

Theorem 1.1.1. Let B(E) be a de Branges space corresponding to the n×2nmatrix valued entire

function E = [E− E+], then

B(E) = {f : C → Cn entire : E−1
+ f ∈ H2

n and E−1
− f ∈ (H2

n)
⊥} (1.1.3)

and the inner product for any f, g ∈ B(E) is given by

⟨f, g⟩B(E) =
∫ ∞

−∞
g(x)∗{E+(x)E+(x)

∗}−1f(x) dx. (1.1.4)

One additional characterization of the de Branges space B(E) is provided in [34, Theorem 7.1]. An

in-depth study of these de Branges spaces with matrix valued reproducing kernels in connection

with the theory of J-contractive matrix valued analytic functions and multivariate prediction

theory can be found in [11] and [13], respectively.

The primary motivation for this thesis comes from an effort to examine the transition of the theory

of de Branges spaces based on matrix valued reproducing kernels to B(X)-valued reproducing

kernels. An initial discussion of de Branges spaces of X-valued entire functions appeared in the

work of L. de Branges and J. Rovnyak in [31]. They constructed these spaces as a functional

model for a particular type of closed, symmetric operator. The main motivation was to formulate

quantum scattering theory in terms of self-adjoint operators and analyze the structure of the

invariant subspaces in a scattering problem. However, these spaces do not generalize Paley-Wiener

spaces of X-valued entire functions. In this thesis, our primary goal is to introduce a generalized

definition of the vector valued de Branges spaces so that it could generalize Paley-Wiener spaces

of vector valued entire functions as well as the consideration in [31].

1.2 Entire operators

Suppose A is a closed linear operator in X with dense domain D. A point α ∈ C is a regular point

of A if the operator (A− αI)−1 is defined on whole X and bounded. The collection of all regular

points of A is known as the resolvent set of A and is denoted as ρ(A). The complement of ρ(A)

in C is called the spectrum of A and is denoted as σ(A).
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A point β ∈ C is a point of regular type of A if there exists dβ > 0 such that

||(A− βI)g|| ≥ dβ||g||

for every g ∈ D. π(A) denotes the collection of all points of regular type for A. Also, π(A) is an

open set in C and contains both upper and lower half-planes when A is symmetric. An operator A

is called regular if every number β ∈ C is a point of regular type of A.

The subspaces Nz = X ⊖Mz are called deficiency subspaces of a closed symmetric operator A,

where Mz = (A− zI)D and ⊖ denotes the orthogonal complement.

Theorem 1.2.1. [7, Theorem 1.1.1] If A is a closed symmetric operator in X and z0 ∈ π(A).

Then, the dimension of the deficiency subspaces Nz is equal for all z in any neighbourhood of z0
inside π(A).

Thus, the dimension of deficiency subspaces Nz of a closed symmetric operator A is the same

for all z in the open upper (resp., lower) half-plane. The deficiency indices of A are denoted as

(n+, n−), where n+ = dimNi and n− = dimN−i. If any real number belongs to π(A), then the

deficiency indices are equal, that is, n+ = n−.

Theorem 1.2.2. [7, Theorem 1.3.4] A symmetric operator A in X has selfadjoint extension within

X if and only if the deficiency indices are the same.

A symmetric operator A in X is said to be simple if there does not exist any nontrivial subspace

invariant for A such that the restriction of A to this subspace is selfadjoint.

Theorem 1.2.3. [45, Theorem 2.1] Let A be a closed symmetric operator in X with dense domain

D. Then the set ∩z:Imz ̸=0Mz is the maximal subspace invariant for the operator A on which the

operator A is selfadjoint.

The condition that ∩z:Imz ̸=0Mz = {0} is necessary and sufficient for a symmetric operator

with dense domain to be simple. For more details of symmetric operators and their selfadjoint

extension, we refer to [1] and [7].

M. G. Krein combined the extension theory of symmetric operators and the theory of analytic

functions. The entire operators are a centrepiece of this aspect of his research. In the fundamental

paper [57], he showed that an entire operator with arbitrary finite equal deficiency indices (p, p)

could be considered as the multiplication operator in a Hilbert space of Cp-valued entire functions.

Later in this paper [34], it was observed that this Hilbert space is a de Branges space with p × p

matrix valued reproducing kernel. Krein also studied the entire operators with infinite deficiency

indices (see [58]), and a similar connection with the multiplication operator in a Hilbert space of

X-valued entire functions has been mentioned here [45] (Appendix I). Representation of entire

operators with deficiency indices (1, 1) can be found in [59] and [60]. Also, the applications

of entire operators with deficiency indices (1, 1) in sampling theory can be found in [73], and

their characterization based on the spectra of their selfadjoint extensions can be found in [74].

This thesis encounters entire operators with infinite deficiency indices and addresses a related

functional model problem. A discussion on entire operators with infinite deficiency indices arising

from differential operators can be found in [46].
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1.3 Kramer sampling and quasi Lagrange-type interpolation

The Kramer sampling theorem, which is the generalization of the well-known sampling result

due to J. M. Whittaker [81], has played a significant role in the development of sampling and

interpolation theory, signal analysis, and, in general, function theory of mathematical analysis.

Suppose I = [a, b] ⊆ R be any closed, bounded interval, and the kernel function K(x, µ) is

continuous as a function of real variable µ and belongs to L2(I) for every fixed µ. Now, if there

exists a sequence of sampling points {µn}n∈Z such that {K(x, µn)}n∈Z is a complete orthogonal

set in L2(I), then the Kramer sampling theorem [56] says, if

f(µ) =

∫ b

a
F (x)K(x, µ) dx

for some F ∈ L2[a, b], then

f(µ) =

∞∑
n=−∞

f(µn)Fn(µ),

where the sampling functions are given by

Fn(µ) =

∫ b
a K(x, µ)K(x, µn) dx∫ b

a |K(x, µ)|2 dx
.

Numerous examples of the Kramer sampling theorem can be found in connection with the

selfadjoint boundary value problems. Specifically, sampling associated with Sturm-Liouville

problems is discussed in [5], [84]. The extension of this Kramer sampling theorem has been done

in several ways. One interesting approach is extending this theorem to holomorphic functions

associated with holomorphic kernel functions. In this direction, Kramer sampling theorem for

scalar valued holomorphic functions associated with scalar valued holomorphic kernel functions

has been studied in [36]. An abstract version of Kramer sampling theorem in the context of

reproducing kernel Hilbert spaces (RKHS) has been discussed in [40], and the case when the

associated sampling functions Fn can be written as a quasi Lagrange-type interpolation function

Fn(z) =
H(z)

H(zn)

Q(z)

(z − zn)Q′(zn)
,

where Q(z) is a scalar valued entire function with only simple zeros at zn and H(z) is a scalar

valued entire function having no zeros, considered in [35]. Also, a connection between de

Branges spaces of scalar valued entire functions and having quasi Lagrange-type interpolation

representation of the sampling functions has been shown in [35], [39].

This thesis introduces an abstract version of the Kramer sampling theorem for functions in

an RKHS of X-valued holomorphic functions. Also, we aim to find a vector analog of

quasi Lagrange-type interpolation and its correlation with de Branges spaces of X-valued entire

functions that we have introduced in Chapter 2. In this direction, sampling and interpolation of

functions in Cn-valued Paley-Wiener spaces [15], Lagrange-type interpolation for Hilbert space

valued [83], and Banach space valued [48] functions are worth noting.
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In this quest, our motivation comes from one work of A. I. Zayed [83], where he talked about the

sampling theorem of X-valued functions. Also, it is important to note that a similar approach for

scalar valued functions can be found in [82]. Let {zn}∞n=1 ⊆ C be such that |zn| → ∞ as n→ ∞
and {un}∞n=1 be an orthonormal basis of X. SupposeQ(z) is a scalar valued entire function having

only simple zeros at {zn}∞n=1, then for each z ∈ C we define the following operator on X:

F (z) =

{
Q(z) ⟨·,un⟩X

z−zn
un if z ̸= zn

Q′(zn)⟨·, un⟩Xun if z = zn.
(1.3.1)

Thus, for every u ∈ X, fu(z) = F (z)u is a function from C to X. Now, in this context, we

mention the sampling result due to A. I. Zayed in the following theorem:

Theorem 1.3.1. [83, Theorem 1] Suppose F (z) is the linear operator on X for all z ∈ C as

defined in (1.3.1), then the following implications hold:

1. F (z) is a bounded linear operator on X for every z ∈ C, and ||F (·)|| is uniformly bounded

on every compact subset of C.

2. fu is an X-valued entire function for all u ∈ X and can be recovered from its values

{fu(zn)}∞n=1 by the following Lagrange-type interpolation formula:

fu(z) =

∞∑
n=1

Q(z)

(z − zn)Q′(zn)
fu(zn), z ∈ C.

1.4 Characteristic functions and operator nodes

The notion of characteristic functions of nonselfadjoint operators was introduced by M. S.

Livsic, who also explored their applications to the invariant subspace problem. M. S. Brodskii

later introduced the notion of an operator node, which facilitates a comprehensive study of

nonselfadjoint operators and their characteristic functions. Suppose X and G are two separable

Hilbert spaces and A ∈ B(X), T ∈ B(X,G), and J is a signature operator in B(G), that is,

J = J∗ = J−1.

Then, the set of these Hilbert spaces and operators is called an operator node if

A−A∗ = iT ∗JT

and is denoted as

Θ =

(
A T J

X G

)
.

The characteristic function of the operator node Θ is the operator valued function

WΘ(z) = IG + izT (IX − zA)−1T ∗J for all z ∈ ZA,
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where

ZA = {z ∈ C : (IX − zA)−1 ∈ B(X)}.

For more details about operator nodes and their characteristic functions, see [20]. Characteristic

functions have also been considered in connection with the functional model problems by various

mathematicians. For instance, B. sz.-Nagy et al. investigated them in connection with the dilation

theory of contraction operators (see [76]), and the study of L. de Branges and J. Rovnyak sprouted

from the theory of de Branges spaces of entire functions. One aspect of this thesis aims to connect

these two significant theories using the characteristic functions. It is known that the characteristic

function of a completely nonunitary contraction operator A ∈ B(X),

CA(z) =
[
−A+ z(I −AA∗)

1
2 (I − zA∗)−1(I −A∗A)

1
2

]∣∣∣ rng(I −A∗A)
1
2

is an inner (resp., ∗-inner) function on the open unit disc D if and only ifA∗n → 0 (resp.,An → 0)

strongly as n → ∞ (see [76, Chapter VI, Proposition 3.5]). H. Helson studied in [50], the inner

functions F (z) from both sides, which are norm differentiable on the real line and satisfy the

following differential equation

F ′(x) = i V (x) F (x),

where V (x) is B(X)-valued norm continuous function, V (x) ⪰ 0 and selfadjoint for all x ∈ R.

Also, S. L. Campbell studied B(X)-valued inner functions (see [22]), which are analytic on the

closed unit disc. If A ∈ B(X) with the spectral radius r(A) < 1, ||A|| ≤ 1 and AA∗ ̸= IX, then

the corresponding Potapov inner function

VA(z) = −A∗ + z(IX −A∗A)
1
2 (IX − zA)−1(IX −AA∗)

1
2

is also analytic on the closed unit disc. We can consider inner functions on the open unit disc D
as an inner function on the open upper half-plane C+ by using the conformal map C(z) = z−i

z+i

between the open upper half-plane and the open unit disc.

1.5 Factorization of operator valued analytic functions

One significant result in complex analysis is the Weierstrass factorization of entire functions,

which effectively separates all the zeros of the function. However, this result generally does

not hold for operator valued entire functions. The notion of zeros for operator valued analytic

functions can be defined differently, and these zeros are typically not isolated. Suppose Ω ⊆ C is

a domain and A(z) is a B(X)-valued analytic function on Ω. We consider a point z0 ∈ Ω to be a

zero of A(z) if A(z0) is not boundedly invertible. The following theorem by S. Steinberg presents

a scenario where the zeros of operator valued analytic functions are isolated.

Theorem 1.5.1. [75, Theorem 1] Let A(z) be a B(X)-valued analytic function on Ω is such that

I − A(z) is compact for all z ∈ Ω. Then either A(z) is not boundedly invertible for all z ∈ Ω or

A(z)−1 is meromorphic on Ω.

L. de Branges and J. Rovnyak proved a generalization of Weierstrass factorization in [31] for an
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operator valued entire functionA(z) subject to the condition that I−A(z) is compact for all z ∈ C.

In this thesis, we remove the compactness condition and establish the factorization result for the

Fredholm operator valued entire functions. For the basic theory of operator valued holomorphic

functions, see [51], [6], [43]. Recall that an operator A ∈ B(X) is said to be a Fredholm operator

if it satisfies the following conditions:

1. dim(ker(A)) <∞.

2. rng(A) is closed in X.

3. dim(ker(A∗)) <∞.

We denote the collection of all Fredholm operators in B(X) as Φ(X). For every A ∈ Φ(X), the

corresponding Fredholm index is defined by

ind(A) = dim(ker(A))− dim(ker(A∗)). (1.5.1)

It is easy to observe from the definition that an operator A is Fredholm if and only if its adjoint A∗

is Fredholm.

Theorem 1.5.2. [77, Theorem 13.1, Chapter IV] If A,B ∈ B(X), the following assertions are

true:

1. A,B ∈ Φ(X) implies the composition AB ∈ Φ(X), and

ind(AB) = ind(A) + ind(B).

2. If AB ∈ Φ(X), then A ∈ Φ(X) if and only if B ∈ Φ(X).

For more details about Fredholm operators, see [55]. The following theorem is a particular form

of analytic Fredholm theorem, which employs the fact that the zeros of Fredholm operator valued

entire functions are isolated.

Theorem 1.5.3. ([41, Theorem 3.3], [42, Section 4.1]) Suppose A ⊆ C is open and connected and

F : A → B(X) is analytic such that for all z ∈ A, F (z) ∈ Φ(X). Then one of the two following

assertions is always true:

1. F (z)−1 ̸∈ B(X) for any z ∈ A.

2. F (z)−1 ∈ Φ(X) for all z ∈ A, possibly except for a discrete set D. Also, the function

F (.)−1 is holomorphic on A \D and meromorphic on A.

The factorization of operator valued analytic functions has significant connections and applications

across various areas of mathematics. For instance, factorization problems are featured prominently

in the works of M. S. Livsic, particularly with nonselfadjoint operators and their characteristic

functions. Additionally, in this direction, it is worth mentioning some factorizations of matrix

valued analytic functions available in the literature. For instance, the seminal work of Potapov [68]
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regarding the factorization of matrix valued inner functions and its application to multiplicative

representations of matrix valued analytic functions. Recently, this was extended in [23] for

operator valued inner functions. The factorizations of Potapov for J-contractive and J-inner matrix

valued functions and their applications are also available in [11]. Furthermore, a Hadamard

factorization for matrix valued entire functions is discussed in [69]. This thesis will also explore a

factorization of matrix valued meromorphic functions.

1.6 Outline of the thesis

This thesis comprises seven chapters, beginning with an introductory chapter and ending with

a conclusive chapter. In the introduction, we describe the key concepts and review the existing

literature that shapes this thesis, and in the final chapter, we summarize the findings of the thesis

and shed light on the future scope of this work.

In the second chapter, we have constructed de Branges spaces of X-valued entire functions based

on a pair of B(X)-valued functions E = (E−, E+), referred to as the de Branges operator. A key

observation is to consider the components E± of E as Fredholm operator valued entire functions.

A specific form of the analytic Fredholm theorem, mentioned in Theorem 1.5.3, proved to be

critical for our study. We also provide several examples of de Branges operators. An example of a

Fredholm operator valued holomorphic function from [42, Section 8, Chapter XI] was particularly

inspiring for constructing our example. We highlight that the newly defined RKHS B(E) based

on the de Branges operator E = (E−, E+) generalizes Paley-Wiener spaces of vector valued

entire functions as well as the consideration in [31]. We then review results connecting Hβ , T,

and Rβ and discuss the conditions for Hβ and Hβ to be isometrically isomorphic. Finally, we

characterize the newly constructed de Branges spaces B(E) corresponding to the de Branges

operator E = (E−, E+), where E+(β) and E−(β) both are selfadjoint for some β ∈ C+. This

characterization is a vector generalization of problem 50 in [30] and Theorem 7.1 in [34] and will

play a crucial role in this thesis.

In the third chapter, under general considerations, we discuss the complete parametrizations and

canonical descriptions of all selfadjoint extensions of the symmetric multiplication operator T.

Additionally, we present a sampling formula for de Branges spaces based on eigenfunctions of

a selfadjoint extension of T. This chapter also explores the connection between entire operators

with infinite deficiency indices and the de Branges space B(E). Specifically, we focus on a

particular class of entire operators with infinite deficiency indices, demonstrating that they can be

considered as the multiplication operator for a specific class of de Branges spaces with operator

valued reproducing kernels. Finally, we briefly discuss the connection between the characteristic

function of a completely nonunitary contraction operator and de Branges spaces B(E).

In the fourth chapter, we recall the construction of an RKHS HF of X-valued functions related

to an operator valued function F : Ω ⊆ C → B(X). We then consider HF the RKHS of
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X-valued holomorphic functions on Ω and discuss an arbitrary Kramer sampling representation

for functions f ∈ HF . Additionally, we discuss a vector version of quasi Lagrange-type

interpolation of sampling functions. The relationship between quasi Lagrange-type interpolation

and the generalized backward shift operator is also demonstrated. Finally, we explore the

connection between quasi Lagrange-type interpolation and de Branges spaces of vector valued

entire functions.

In the fifth chapter, we delve deeper into several results of de Branges operators E = (E−, E+)

and address the vector version of problem 45 from [30]. A global factorization of Fredholm

operator valued entire functions invertible at least at one point is studied, which connects the

two de Branges spaces considered in Chapter 2 of this thesis and in [31]. This factorization also

provides a conclusion regarding the analytic equivalence of reproducing kernels of de Branges

spaces. Additionally, this chapter discusses problem 44 from [30] within the context of vector

valued de Branges spaces, utilizing the previous global factorization. We study operator valued

entire functions associated with vector valued de Branges spaces and discuss their connection

with the operator of multiplication by the independent variable. This chapter concludes with a

discussion of operator nodes and their connection with de Branges spaces.

In the sixth chapter, we focus on de Branges spaces, which consist of Cn-valued entire

functions. We review definitions of various classes of matrix valued holomorphic functions,

such as the Carathéordory class and the Smirnov class. We highlight special properties of

these classes, including the integral representation of elements in the Carathéordory class and

the Smirnov maximum principle for elements in the Smirnov class. Additionally, we discuss

the Potapov-Ginzburg transform for J-contractive matrix valued functions. This chapter presents

an extension of de Branges matrices and addresses the problem of identifying a common factor

for multiple matrix valued meromorphic functions that encompasses all of their poles. This

factorization helps to establish an analog representation of de Branges matrices, originally known

as the real representation of de Branges matrices. We include examples of these de Branges

matrices and finally parametrize them.
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Chapter 2

de Branges operators and de Branges
spaces of vector valued entire functions

L. de Branges and J. Rovnyak extended de Branges spaces of scalar valued entire functions to

spaces of vector valued entire functions with operator valued reproducing kernels [31]. They

constructed these spaces based on a pair of operator valued functions Q+(z) and Q−(z) such that

IX − Q+(z) and IX − Q−(z) are compact for all z ∈ C. We observe that these spaces do not

generalize Paley-Wiener spaces of vector valued entire functions. The primary aim of this chapter

is to extend de Branges spaces of vector valued entire functions so that they could generalize

Paley-Wiener spaces of vector valued entire functions and de Branges spaces considered in [31].

Now, we briefly explain the contents of this chapter. The first section discusses the RKHS H(F )

corresponding to a function F ∈ S . Though most of the results in this section are available in

the literature in the matrix setting, to maintain the flow of the study, we mention all the essential

results in the operator setting. In the second section, we introduce de Branges operators as a pair

of Fredholm operators valued entire functions satisfying certain extra conditions, and based on

them, we construct de Branges spaces. In the third section, we present several examples of these

newly constructed de Branges spaces, and we highlight that these de Branges spaces generalize

Paley-Wiener spaces of vector valued entire functions and de Branges spaces considered in [31].

In the fourth section, we describe a condition for the closed subspaces Hβ = {f ∈ H : f(β) = 0}
and Hβ = {f ∈ H : f(β) = 0} of the RKHS H of X-valued entire functions to be isometrically

isomorphic. Finally, in the fifth section we conclude this chapter by discussing a characterization

of the newly constructed de Branges spaces.

2.1 The RKHS H(F ), characterization and extension

Suppose F ∈ H∞
B(X)(C+) with ||F (z)|| ≤ M for all z ∈ C+, then we can define an operator

MF : H2
X(C+) → H2

X(C+) defined by

(MF g)(z) = F (z)g(z) for g ∈ H2
X(C+). (2.1.1)

The following evaluation shows that MF is well defined. For g ∈ H2
X(C+)∫ ∞

−∞
||F (x+ iy)g(x+ iy)||2Xdx ≤

∫ ∞

−∞
||F (x+ iy)||2||g(x+ iy)||2Xdx

≤M2

∫ ∞

−∞
||g(x+ iy)||2Xdx ≤M2||g||2H2

X(C+).
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Proposition 2.1.1. If MF is defined as (2.1.1) for some F ∈ H∞
B(X)(C+), then the following

implications are true:

1. MF is a bounded operator on H2
X(C+) with ||MF || = ||F ||∞.

2. M∗
F

u
ρξ

= F (ξ)∗ u
ρξ

for all u ∈ X and ξ ∈ C+, where ρξ(z) = −2πi(z − ξ).

Moreover, if F ∈ S then MF is a contractive operator.

Proof. Boundedness of MF and ||MF || ≤ ||F ||∞ follows from the preceding calculations. Since

the RK for H2
X(C+) is Kξ(z) =

IX
ρξ(z)

, for any u, v ∈ X, we have u
ρξ

and v
ρξ

belong to H2
X(C+).

Now, using the reproducing property of Kξ, it can be shown that for all u, v ∈ X and ξ ∈ C+, the

following inequality is true

|⟨F (ξ)u, v⟩X| ≤ ||MF || ||u|| ||v||.

This implies for all ξ ∈ C+, ||F (ξ)|| ≤ ||MF ||. Therefore, ||MF || = ||F ||∞.

To show (2), it is sufficient to show that for all u, v ∈ X and ξ, z ∈ C+

⟨MF
u

ρξ
,
v

ρz
⟩H2 = ⟨ u

ρξ
, F (z)∗

v

ρz
⟩H2 ,

which can be similarly shown by using the reproducing property of Kξ. If F ∈ S, then MF is a

contractive operator follows from (1).

In view of the preceding proposition, for any F ∈ S and any n ∈ N,

n∑
l,m=1

〈
IX − F (zl)F (zm)∗

ρzm(zl)
um, ul

〉
X

≥ 0 (2.1.2)

for every choice of u1, u2, . . . , un ∈ X and z1, z2, . . . , zn ∈ C+. Thus the B(X)-valued function

Γξ(z) =
IX − F (z)F (ξ)∗

ρξ(z)

is a positive kernel on C+ × C+, and we denote the corresponding unique RKHS of X-valued

holomorphic functions on C+ as H(F ). Now, we recall an analogous characterization of the

space H(F ), which has been discussed in [31] (Appendix), in the context of vector valued analytic

functions on the open unit disc with square summable power series. Subsequently, we extend

H(F ) to an RKHS of X-valued holomorphic functions on a domain possibly larger than C+. We

denote P as the orthogonal projection of L2
X(R) onto H2

X(R) and Q = IL2
X(R)

− P . For F ∈ S
and f ∈ H2

X(C+), we denote

ν(f) = sup
{
||f +MF (g)||2H2 − ||g||2H2 : g ∈ H2

X(C+)
}
.

Theorem 2.1.2. For F ∈ S

H(F ) =
{
f ∈ H2

X(C+) : ν(f) <∞
}

and ||f ||2H(F ) = ν(f).



Chapter 2. de Branges operators and de Branges spaces of vector valued entire functions 17

Moreover, if F ∈ Sin, then

H(F ) = H2
X(C+)⊖ rngMF and ||f ||2H(F ) = ||f ||2H2 .

Proof. The proof of this theorem can be readily adapted from Theorem 2 and Lemma 5 in the

appendix of [31].

In view of Theorem 1.0.4, for every F ∈ S and b ∈ L2
X(R) the function defined by

x 7→ F0(x)b(x) for x ∈ R

belongs to L2
X(R), where F0 is the nontangential boundary limit of F . We denote this function as

Fb. The matrix version of the following lemma can be found in [33, Lemma 2.2].

Lemma 2.1.3. Let F ∈ S , b ∈ L2
X(R) ⊖H2

X(R) and f ∈ H2
X(C+) be such that f0 = −PFb is

the corresponding nontangential boundary limit. Then for all g ∈ H2
X(C+)

||f +MF (g)||2 − ||g||2 ≤ ||b||2 − ||QFb||2,

with equality if F ∈ Sin.

Proof. Since f and MF (g) both belong to H2
X(C+),

||f +MF (g)||H2 = ||f0 + Fg0||L2 ,

where g0 is the nontangential boundary limit of g. Now,

|| − PFb+ Fg0||2L2 = ||QFb+ F (g0 − b)||2L2 = −||QFb||2L2 + ||F (g0 − b)||2L2

as ⟨QFb, Fg0⟩L2 = 0 and ⟨QFb, Fb⟩L2 = ||QFb||2L2 . Thus the lemma follows from the

following fact that

||F (g0 − b)||2L2 ≤ or = ||g0||2L2 + ||b||2L2

according as F belongs to S or Sin.

The following theorem is motivated from [33, Theorem 2.3], where we replace the matrix valued

kernels with operator valued kernels. Recall that the generalized backward shift operator at z is

denoted as Rz and is defined as

(Rzf)(ξ) :=

{
f(ξ)−f(z)

ξ−z if ξ ̸= z

f ′(z) if ξ = z.

Theorem 2.1.4. If F ∈ S, then for every choice of n ∈ N, z, z1, z2, . . . , zn ∈ C+ and

u, u1, u2, . . . , un ∈ X the following implications hold:

1. (RzF )u ∈ H(F ).

2. ||
∑n

l=1(RzlF )ul||2H(F ) ≤ 4π2
∑n

l,m=1

〈
IX−F (zm)∗F (zl)

ρzm (zl)
ul, um

〉
X

with equality if F ∈ Sin.
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3. H(F ) is invariant under Rz for all z ∈ C+.

4. Rz is a bounded operator on H(F ) for all z ∈ C+ and for all g ∈ H(F ), Rz satisfy the

following assertion

||Rzg||2 ≤
Im(⟨Rzg, g⟩)− π||g(z)||2

Im(z)
. (2.1.3)

Proof. Consider

b =
n∑

l=1

ul
ξ − zl

.

Clearly, b ∈ H2
X(C−). Thus it’s nontangential boundary function b (say) belongs to L2

X(R) ⊖
H2

X(C+). Now

(RzF )(ξ)u =
F (ξ)u− F (z)u

ξ − z

is analytic in C+, and the nontangential boundary function (RzF )(t)u belongs to H2
X(R) as

1

2πi

∫ ∞

−∞

(RzF )(t)u

t− α
dt = 0

for all α ∈ C−. Since F (t)b(t) ∈ L2
X(R) and

F (t)b(t) =

(
n∑

l=1

F (t)ul − F (zl)ul
t− zl

)
+

(
n∑

l=1

F (zl)ul
t− zl

)
,

then
n∑

l=1

(RzlF )ul = PFb

and
n∑

l=1

F (zl)ul
t− zl

= QFb.

Now applying the preceding lemma, we have for all g ∈ H2
X(C+)

||
n∑

l=1

(RzlF )ul +MF (g)||2 − ||g||2 ≤ ||b||2 − ||QFb||2. (2.1.4)

Thus (1) follows from (2.1.4) in association with Theorem 2.1.2.

A simple calculation by using the Cauchy integral formula gives

||b||2 − ||QFb||2 = 4π2
n∑

l,m=1

〈
IX − F (zm)∗F (zl)

ρzm(zl)
ul, um

〉
X

. (2.1.5)

Thus (2) follows from (2.1.4) with g ≡ 0 and (2.1.5).

Since for every z ∈ C+, Rz is linear, and H(F ) is an RKHS, to show (3) and (4) it is sufficient to

show that they are valid for Γαu for every choice of u ∈ X and α ∈ C+. Since

RzΓα(ξ)u =
2πi

ρα(z)
Γα(ξ)u− 1

ρα(z)
(RzF )(ξ)F (α)

∗u (2.1.6)
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and both the terms in RHS of (2.1.6) belongs to H(F ). Thus RzΓαu ∈ H(F ) and Γαu satisfies

(2.1.3).

Suppose F ∈ S is inner from both sides, that is, F belongs to both Sin and Sin
∗ and consider

A−
F = {z ∈ C− : F (z) is invertible}. Since F is invertible at one point implies it is invertible in a

certain open neighbourhood of that point, A−
F is an open subset of C−. Now we can extend F as

a B(X)-valued holomorphic function on A−
F by the following formula

F (z) = {F (z)∗}−1 for z ∈ A−
F . (2.1.7)

Also, for almost every x ∈ R

F (x) = lim
y↓0

F (x+ iy) = lim
y↓0

F (x− iy).

Now, for a function F ∈ S and inner from both sides, we denote F as the extension of F and AF

(containing C+ ∪ A−
F ) as the domain of holomorphy of F.

Once we have the above extension F of F , we can think H(F ) as the RKHS of X-valued

holomorphic functions on AF, which we denote as H(F). The following lemma provides more

details of H(F) and it is motivated from [11, Theorem 5.31].

Lemma 2.1.5. If F ∈ S is inner from both sides and F is the corresponding extension of F as

defined in (2.1.7), the kernel function KF
ξ (z) defined by

KF
ξ (z) :=

{
IX−F(z)F(ξ)∗

ρξ(z)
if z ̸= ξ

F′(ξ)F(ξ)∗

2πi if z = ξ
(2.1.8)

on AF × AF is positive.

Proof. To show that KF
ξ (z) is positive, we need to show that for every choice of n ∈ N,

z1, z2, . . . , zn ∈ AF and u1, u2, . . . , un ∈ X

n∑
l,m=1

〈
KF

zm(zl)um, ul

〉
X
≥ 0. (2.1.9)

Here we only show the case where some points belong to C+ ∩AF and others belong to C− ∩AF.

The remaining cases can be deduce from this. Without loss of generality we may assume that

z1, z2, . . . , zi ∈ C+ ∩ AF and ξ1, ξ2, . . . , ξj ∈ C− ∩ AF with i + j = n and ξk = zi+k for every

k = 1, 2, . . . , j. Also we assume that vk = ui+k for all k = 1, 2, . . . , j.

Since F(ξ)F(ξ)∗ = IX, for z ̸= ξ the followings are true

KF
ξ (z) =

IX − F(z)F(ξ)∗

ρξ(z)

=
{F(ξ)− F(z)}F(ξ)∗

−2πi(z − ξ)

=
1

2πi
(RξF)(z)F(ξ)

∗ (2.1.10)
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and

KF
ξ (z)

∗ =
1

2πi
(RzF)(ξ)F(z)

∗. (2.1.11)

Now we divide the sum in (2.1.9) into four parts and simplify them with the help of (2.1.10) and

(2.1.11). The first part is
i∑

l,m=1

⟨KF
zl
(zm)ul, um⟩X. (2.1.12)

The second part is

j∑
t=1

i∑
l=1

⟨KF
zl
(ξt)ul, vt⟩X =

j∑
t=1

i∑
l=1

⟨ul,
1

2πi
(Rξt

F)(zl)F(ξt)
∗vt⟩X

=

j∑
t=1

i∑
l=1

⟨ul, (Rξt
F)(zl)xt⟩X, (2.1.13)

where xt = 1
2πiF(ξt)

∗vt for all t = 1, 2, . . . , j.

The third part is

j∑
m=1

i∑
s=1

⟨KF
ξm

(zs)vm, us⟩X =

j∑
m=1

i∑
s=1

⟨ 1

2πi
(Rξm

F)(zs)F(ξm)∗vm, us⟩X

=

j∑
m=1

i∑
s=1

⟨(Rξm
F)(zs)xm, us⟩X. (2.1.14)

The fourth part is

j∑
t,m=1

⟨KF
ξm

(ξt)vm, vt⟩X =

j∑
t,m=1

⟨IX − F(ξt)F(ξm)∗

ρξm(ξt)
vm, vt⟩X

=

j∑
t,m=1

⟨F(ξt){F(ξt)
∗F(ξm)− IX}F(ξm)∗

−2πi(ξt − ξm)
vm, vt⟩X

=

j∑
t,m=1

⟨{F(ξt)
∗F(ξm)− IX}F(ξm)∗

−2πi(ξt − ξm)
vm,F(ξt)

∗vt⟩X

= 4π2
j∑

t,m=1

⟨IX − F(ξt)
∗F(ξm)

ρξt(ξm)
xm, xt⟩X. (2.1.15)

In view of Theorem 2.1.4, we have

j∑
t,m=1

⟨KF
ξm

(ξt)vm, vt⟩X ≥ ||
j∑

m=1

(Rξm
F)xm||2. (2.1.16)

Thus the above calculations ensure that

n∑
l,m=1

〈
KF

zm(zl)um, ul

〉
X
≥ ||

i∑
l=1

KF
zl
ul +

j∑
m=1

(Rξm
F)xm||2 ≥ 0.
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This completes the proof.

Since for every ξ ∈ AF, KF
ξ (ξ) is bounded, every f ∈ H(F) are X-valued holomorphic functions

on AF.

2.2 Construction of de Branges spaces based on pairs of Fredholm
operator valued entire functions

This section is dedicated to constructing the de Branges operator E = (E−, E+). Here, we

shall see that the Fredholm operator valued holomorphic functions will play a significant role.

In particular, it will be apparent that the components E± of the de Branges operator E should

be Fredholm operator valued entire functions with some additional properties to make the theory

compatible with the existing theory of de Branges spaces based on n × 2n matrix valued entire

functions. Let E+, E− : C → B(X) be two entire functions such that E+(z), E−(z) ∈ Φ(X) for

all z ∈ C and satisfy the following two conditions:

1. E+ and E− both are invertible at least at one point, and

2. F := E−1
+ E− ∈ Sin ∩ Sin

∗ .

SinceE+ andE− are invertible at least at one point, from Theorem 1.5.3, we can find two discrete

subsets, D1 and D2 of C, such that E+ is invertible for every z ∈ C \D1 and E− is invertible for

every z ∈ C \D2. Also, F ∈ Sin ∩ Sin
∗ implies that for every z ∈ C+

E+(z)E+(z)
∗ − E−(z)E−(z)

∗ ⪰ 0

and for every z ∈ R
E+(z)E+(z)

∗ − E−(z)E−(z)
∗ = 0, (2.2.1)

which can be extended to

E+(z)E+(z)
∗ − E−(z)E−(z)

∗ = 0 for every z ∈ C. (2.2.2)

We call the pair of operator valued functions

E(z) = (E−(z), E+(z)) for every z ∈ C (2.2.3)

as de Branges operator. Now, corresponding to the de Branges operator E(z), we define the kernel

KE
ξ (z) :=


E+(z)E+(ξ)∗−E−(z)E−(ξ)∗

ρξ(z)
if z ̸= ξ

E
′
+(ξ)E+(ξ)∗−E

′
−(ξ)E−(ξ)∗

−2πi if z = ξ
(2.2.4)

on C× C. Observe that the kernel KE
ξ (z) is entire in z and ξ.

Now we intend to show that the kernel defined in (2.2.4) is positive on C×C. Here we follow the
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process of extension as mentioned in the previous section. We denote the extended function of F

as F and the extended domain as AF. Observe that AF is dense in C. Also, for all ξ, z ∈ AF

KE
ξ (z) = E+(z)K

F
ξ (z)E+(ξ)

∗ (2.2.5)

holds, which can be shown with the help of (2.2.2). Since KF
ξ (z) is positive on AF × AF and AF

is dense in C, KE
ξ (z) is positive on C× C. Thus, we can have a unique RKHS of X-valued entire

functions corresponding to the positive definite kernelKE
ξ (z). We denote this RKHS as B(E), and

by observing the structure of the RK, we call it de Branges space. In particular, in a de Branges

space B(E), if for some β ∈ C+, E+(β) and E−(β) are self adjoint, then we denote the space as

Bβ(E). A characterization of the space Bβ(E) can be found in Section 2.5.

Remark 2.2.1. If X ∈ B(X) is any Fredholm operator and XX∗ = I , then the pair of operators

EX(z) = (E−(z)X,E+(z)X) for every z ∈ C

is again a de Branges operator, and B(E) = B(EX), as the corresponding reproducing kernels

are equal.

Remark 2.2.2. It is known that corresponding to the Fredholm operator valued holomorphic

function F (z) on a domain A the index function defined by

z 7→ indF (z) for all z ∈ A

is an integer valued continuous function (See [66, Theorem 2.5]). Since bothE+(z) andE−(z) are

Φ(X)-valued entire functions, corresponding to the de Branges operator E(z) = (E−(z), E+(z)),

there exists a pair of integers. The invertibility of E+(z) and E−(z) at least at one point and the

fact that index of invertible operator is zero ensure that this pair of integers is always (0, 0) for de

Branges operators.

Similar to Theorem 1.1.1, the following theorem describes the elements of B(E) and the endowed

inner product.

Theorem 2.2.3. If B(E) is a de Branges space as defined above with respect to the de Branges

operator E(z) = (E−(z), E+(z)) for every z ∈ C. Then

B(E) = {f : C → X | f is entire, E−1
+ f ∈ H2

X(C+) and E−1
− f ∈ (H2

X(C+))
⊥}. (2.2.6)

Also with respect to the inner product

⟨f, g⟩B(E) =
∫ ∞

−∞
⟨E−1

+ f(x), E−1
+ g(x)⟩X dx, (2.2.7)

B(E) is an RKHS, and the reproducing kernel is given by (2.2.4).

Proof. The proof is a straightforward adaptation of the proof of Theorem 3.10 in [13].
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2.3 Few examples

In this section, we present a few examples of de Branges spaces which we have constructed in the

last section. The first example is the vector version of the classical Paley-Wiener space.

Definition 2.3.1. An entire function g : C → X is said to be of exponential type at most a if for

each ϵ > 0 there exists a constant L, independent of ξ such that

||g(ξ)||X ≤ L e|ξ|(a+ϵ).

If g : R → X is a square integrable function, vanishes outside the compact interval [−a, a], for

some a > 0, then ĝ and g satisfy the Plancherel’s theorem and ĝ can be extended as an entire

function

ĝ(ξ) =

∫ ∞

−∞
e−iξtg(t)dt

which is of exponential type at most a. These follow from Theorem 1.8.2 and Theorem 1.8.3 of

the book [6].

Example 2.3.2 (Paley-Wiener spaces of vector valued entire functions). For a > 0, the set of

X-valued entire functions

PWa = {ĝ : g is square integrable and vanishes outside the interval [−a, a]} (2.3.1)

is a Hilbert space with respect to the inner product

⟨ĝ, ĥ⟩PWa =

∫ ∞

−∞
⟨ĝ(t), ĥ(t)⟩Xdt. (2.3.2)

Also PWa is an RKHS with the reproducing kernel

Ka
ξ (z) =

sin(z − ξ)a

π(z − ξ)
IX,

where IX is the identity operator on X. Since for every u ∈ X and ξ ∈ C

Ka
ξ (z)u =

∫ ∞

−∞
e−iztQa

ξ (t)dt,

where Qa
ξ (t) is a square integrable function defined as

Qa
ξ (t) :=

{
1
2πe

iξtu if |t| ≤ a

0 otherwise
(2.3.3)

and for ĝ ∈ PWa,

⟨ĝ, Ka
ξ u⟩PWa = ⟨ĝ, Q̂a

ξu⟩PWa [ ∵ Ka
ξ u = Q̂a

ξu ]

= 2π⟨g,Qa
ξu⟩L2 [ by Plancherel’s theorem ]
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= 2π

∫ a

−a
⟨g(t), 1

2π
eiξtu⟩Xdt

=

〈∫ a

−a
g(t)e−iξtdt, u

〉
X

= ⟨ĝ(ξ), u⟩X.

Now, it is easy to observe that PWa is a de Branges space corresponding to the de Branges

operator E(z) = (E−(z), E+(z)), where E+(z) = e−izaIX and E−(z) = eizaIX.

Observe that if we stick to the definition of de Branges spaces considered in [31], the previous

example, that is, the Paley-Wiener space of vector valued entire functions, could not be a de

Branges space as whenever 1 − e−izd ̸= 0, IX − E+(z) = (1 − e−izd)IX can not be compact,

and similarly whenever 1 − eizd ̸= 0, IX − E−(z) = (1 − eizd)IX can not be compact. Thus,

the Hilbert spaces considered in [31] (Theorem 1) are not the proper vector generalization of de

Branges spaces as they cannot generalize Paley-Wiener spaces of vector valued entire functions. In

our consideration, the components Q+(z), Q−(z) are considered from a broader class of operator

valued entire functions, namely the class of all Fredholm operator valued entire functions, which

generalizes Paley-Wiener spaces of vector valued entire functions as well as the consideration in

[31]. This relaxation allows a wider range of spaces to qualify as de Branges spaces. The next

example is motivated by a Fredholm operator valued holomorphic function from [42, Chapter XI,

Section 2 & 8]. Here we briefly mention this Fredholm operator valued holomorphic function. We

denote L2([s, t]) as the collection of all complex valued square integrable functions on [s, t]. Let

us consider the boundary value problem{
g′(µ) = P g(µ) + h(µ), s ≤ µ ≤ t

Q1 g(s) +Q2 g(t) = u,
(2.3.4)

where h ∈ Ln
2 ([s, t]), u ∈ Cn are given and P,Q1, Q2 are n × n matrices. The task is to find a

solution in G =
(
W 1

2 ([s, t])
)n, where

W 1
2 ([s, t]) = {g ∈ L2([s, t]) : g is absolutely continuous, g′ ∈ L2([s, t])} (2.3.5)

is the Sobolev space of order one on [s, t]. The operator form of (2.3.4) is

Ag :=

[
g′ − P g

Q1 g(s) +Q2 g(t)

]
=

[
h

u

]
. (2.3.6)

In [42], it has been proved that A : G→ Ln
2 ([s, t])⊕ Cn is a Fredholm operator of index zero.

Suppose G ⊆ C is open and connected. Let P (z), Q1(z) and Q2(z) are n × n matrix valued

holomorphic functions on G. The following boundary value problem gives rise to a Fredholm

operator valued holomorphic function{
g′(µ) = P (z) g(µ) + h(µ), s ≤ µ ≤ t

Q1(z) g(s) +Q2(z) g(t) = u,
(2.3.7)
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Let A(z) : G → Ln
2 ([s, t])⊕ Cn, the corresponding operator with parameter z ∈ G will be of the

form

A(z)g :=

[
g′ − P (z) g

Q1(z) g(s) +Q2(z) g(t)

]
. (2.3.8)

A(·) is a Fredholm operator valued holomorphic function on G with index zero at every point. The

boundary value problem considered in (2.3.7) is called the boundary eigenvalue problem. The

details of this kind of problem can be found in [61].

Example 2.3.3. Keeping all the notations same as in the above discussion we consider G = C
and

E+(z)g :=

[
g′ − P+(z) g

Q+
1 (z) g(s) +Q+

2 (z) g(t)

]
with the fact that, there exists z+ ∈ C such that

Q+
1 (z+) = In and Q+

2 (z+) = 0n,

where In is the n× n identity matrix and 0n is the n× n zero matrix. Also consider

E−(z)g :=

[
g′ − P−(z) g

Q−
1 (z) g(s) +Q−

2 (z) g(t)

]

with the fact that, there exists z− ∈ C such that

Q−
1 (z−) = In and Q−

2 (z−) = 0n.

Now it is easy to observe that E+(z+), E−(z−) : G→ Ln
2 ([s, t])⊕Cn both are invertible and the

corresponding inverse operators are

E+(z+)
−1

(
g

v

)
(µ) = e(µ−s)P+(z+)v +

∫ µ

s
e(µ−x)P+(z+)g(x) dx

and

E−(z−)
−1

(
g

v

)
(µ) = e(µ−s)P−(z−)v +

∫ µ

s
e(µ−x)P−(z−)g(x) dx

where g ∈ Ln
2 ([s, t]) and v ∈ Cn. Now at this point, if we have the B(G)- valued function

F := E−1
+ E− belongs to Sin ∩ Sin

∗ , then the pair of operator valued functions

E(z) = (E−(z), E+(z)) for every z ∈ C

will represent a de Branges operator.

We construct the next example with the help of linear operator pencils. More about linear operator

pencils can be found in [42, 61]. Let A,B ∈ B(X), then the linear operator pencil

S(z) = A− zB
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is a B(X)-valued entire function. Now suppose for some z0 ∈ C, S(z0) is invertible, then we can

express S(z) as

S(z) = A− zB = (z0 − z)(A− z0B)
[
(z0 − z)−1I + (A− z0B)−1B

]
. (2.3.9)

Now along with the invertible condition, if we choose A ∈ B(X) and B is compact, it is clear

from (2.3.9) that S(z) is a Fredholm operator valued entire function with index zero.

Example 2.3.4. Suppose E+(z) = A − zB and E−(z) = C − zD, where A,C ∈ B(X) and

B,D are compact operators. Also, E+ and E− both are invertible at least at one point in C. If

E∗
−(z)E−(z) = I for all z ∈ C and E+(.)

−1 ∈ Sin ∩ Sin
∗ , then the pair of operator valued

functions

E(z) = (E−(z), E+(z)) for every z ∈ C

will represent a de Branges operator.

The following example involves the system of differential equations of operator valued functions.

Example 2.3.5. Let us consider the following initial value problem

dFr(z)

dr
= izFr(z)jH + Fr(z)Q(r) 0 ≤ r ≤ a, z ∈ C (2.3.10)

with the initial condition (given in the matrix form)

F0(z) = [IH IH ], (2.3.11)

where H is a complex separable Hilbert space,

Fr(z) = [Er
−(z) Er

+(z)] : H ⊕H → H

and

jH =

[
IH 0

0 − IH

]
.

Also

Q(r) =

[
0 q(r)

q(r)∗ 0

]
: H ⊕H → H ⊕H,

Where q(r) is aB(H)-valued continuous function on [0, a]. Suppose the solution Fr(z) of (2.3.10)

has the property that both Er
−(z) and Er

+(z) are Fredholm operator valued entire functions for

all 0 ≤ r ≤ a. Now for every ξ ∈ C it can be easily shown that

d

ds
{Fs(z)jHFs(ξ)

∗} = i(z − ξ)Fs(z)Fs(ξ)
∗. (2.3.12)

Observe that F0(z)jHF0(ξ)
∗ = 0. Now integrating both sides of (2.3.12) from 0 to r, we get

Fr(z)jHFr(ξ)
∗ = i(z − ξ)

∫ r

0
Fs(z)Fs(ξ)

∗ds. (2.3.13)
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Now if we use the matrix form of Fr(z) in (2.3.13), we get

Er
+(z)E

r
+(ξ)

∗ − Er
−(z)E

r
−(ξ)

∗

ρξ(z)
=

1

2π

∫ r

0
Fs(z)Fs(ξ)

∗ds. (2.3.14)

Now if we have
∫ r
0 Fs(ξ)Fs(ξ)

∗ds ≻ 0 for ξ ∈ C+ ∪ C− and there exists ξ0 ∈ C+ such that∫ r
0 Fs(ξ0)Fs(ξ0)

∗ds,
∫ r
0 Fs(ξ0)Fs(ξ0)

∗ds both are invertible and Er
−(ξ0), E

r
+(ξ0) both are self

adjoint, then the pair of operator valued functions Er(z) = (Er
−(z), E

r
+(z)) will represent de

Branges operator for all r ∈ [0, a].

For a clear explanation of the last example, see the converse part of the Theorem 2.5.2.

Remark 2.3.6. The system of differential equations that appeared in the last example was studied

widely in the literature. For example, see [4], where the functions under consideration were scalar

and matrix valued.

2.4 Condition for Hβ and Hβ to be isometrically isomorphic

In this section, we consider an RKHS H of X-valued entire functions with RKKξ(z) and for some

β ∈ C
Hβ = {g ∈ H : g(β) = 0}.

It is clear that Hβ is a closed subspace of H and thus an RKHS. Our main goal is to find a

condition such that Hβ and Hβ are isometrically isomorphic for some β ∈ C+. Recall that T

is the multiplication operator in H where the multiplication is by the independent variable with

domain D, which is also a closed operator. The idea of the Moore-Penrose inverse1of a bounded

linear operator with closed range will be used in this section, and details about it can be found

in [80]. Some of the results of this section can be found in [14], where the operator Kβ(β) is

invertible.

Lemma 2.4.1. Suppose H is an RKHS of X-valued entire functions with RK Kξ(z) and assume

that Kβ(β) has closed range for some β ∈ C. Then the following assertions are true:

1. The RK of Hβ can be expressed as

Kβ
ξ (z) = Kξ(z)−Kβ(z)Kβ(β)

†Kξ(β), (2.4.1)

where Kβ(β)
† is the Moore-Penrose inverse of the operator Kβ(β).

2. If Πβ is the orthogonal projection of H onto H⊥
β then

Πβ(g) = KβKβ(β)
†g(β) for all g ∈ H (2.4.2)

and

H⊥
β = {Kβu : u ∈ X} = {KβKβ(β)

†v : v ∈ X}. (2.4.3)
1The Moore-Penrose inverse of a bounded operator A ∈ B(X) with closed range is denoted by A†. It is the unique

operator in B(X) satisfying (1) AA†A = A; (2) A†AA† = A†; (3) (AA†)∗ = AA†; (4) (A†A)∗ = A†A.
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3. The following equivalence condition hold:

RβHβ ⊆ H if and only if RβHβ = D. (2.4.4)

4. rngKβ(β) = rng(δβ).

Moreover, if Kβ(β) is invertible, then Kβ(β)
† can be replaced by Kβ(β)

−1 in (2.4.1) and (2.4.2).

Proof. We are avoiding the proof as it is a straightforward adaptation of the proof of Lemma 2.6

in [34].

Lemma 2.4.2. If in the setting of Lemma 2.4.1, the equivalence condition in (2.4.4) also holds,

then the following implications are true:

1. Rβ ∈ B(Hβ,H).

2. Hβ = rng(T− βI) and

rng(T− βI)⊥ = {Kβu : u ∈ X} = {KβKβ(β)
†u : u ∈ X}. (2.4.5)

3. If Kβ(β) ≻ 0, then there exists a unitary operator Tβ from rng(T− βI)⊥ to rngKβ(β).

Proof. It is clear that Rβ is linear. To verify (1), we first show that Rβ is a closed operator, and

the rest of the arguments will be clear from the closed graph theorem. Let {gn : n ∈ N} ⊆ Hβ

be such that gn → g and Rβgn → h as n → ∞. Then g ∈ Hβ as in RKHS norm convergence

implies pointwise convergence. Also, for ξ ̸= β,

g(ξ)− g(β)

ξ − β
= lim

n→∞

gn(ξ)− gn(β)

ξ − β
= lim

n→∞
Rβgn(ξ) = h(ξ).

Thus h(ξ) = Rβg(ξ) for all ξ ∈ C as h and Rβg are entire functions. This implies that the

operator Rβ is closed.

For every g ∈ Hβ ,

(T− βI)Rβg = g, (2.4.6)

as for ξ ̸= β the following holds

(T− βI)Rβg(ξ) = ξ

[
g(ξ)− g(β)

ξ − β

]
− β

[
g(ξ)− g(β)

ξ − β

]
= g(ξ).

This implies

rng(T− βI) = {(T− βI)g : g ∈ D} = {(T− βI)Rβf : f ∈ Hβ} = Hβ. (2.4.7)

Thus the first assertion of (2) holds. Also from the preceding lemma (2.4.5) is straightforward.

Since Kβ(β) ≻ 0 and has closed range, rngKβ(β) = rngKβ(β)
1
2 (see [37]). Now, in view of

(2.4.5), we consider a map Tβ : rng(T− βI)⊥ → rngKβ(β) defined by

Tβ(Kβu) = Kβ(β)
1
2u for all u ∈ X. (2.4.8)
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It is clear that Tβ is linear and bijective and for any u ∈ X

||Kβu||2H = ⟨Kβu,Kβu⟩H = ⟨Kβ(β)u, u⟩X
= ⟨Kβ(β)

1
2u,Kβ(β)

1
2u⟩X

= ||Kβ(β)
1
2u||2X.

Hence Tβ is a unitary operator.

Lemma 2.4.3. In addition to the setting of Lemma 2.4.2, if we assume D to be dense in H, then

for all u ∈ X, Kβu are the eigen functions of T∗ corresponding to the eigenvalue β. Also, if we

assume T to be symmetric, then for some u ∈ X, the following equivalence condition holds

ρβKβu ∈ H if and only if Kβu = 0. (2.4.9)

Proof. Let g ∈ D and u ∈ X, then

⟨Tg,Kβu⟩H = ⟨(Tg)(β), u⟩X = ⟨βg(β), u⟩X = ⟨g(β), βu⟩X = ⟨g, βKβu⟩X.

Therefore, ⟨Tg,Kβu⟩H = ⟨g, βKβu⟩X for all g ∈ D, which proves the first assertion.

To show the equivalence condition in (2.4.9), it is sufficient to show that for some u ∈ X,

ρβKβu ∈ H implies Kβu = 0, as the opposite direction is self-evident. Now ρβKβu ∈ Hβ

and RβρβKβu = −2πiKβu ∈ H, which implies Kβu ∈ D. Let g ∈ D and g = Rβh for some

h ∈ Hβ and observe that

ρβKβu = −2πi(T− βI)Kβu. (2.4.10)

Then,

⟨g, ρβKβu⟩H = 2πi⟨g, (T− βI)Kβu⟩H
= 2πi⟨(T− βI)Rβh,Kβu⟩H
= 2πi⟨h,Kβu⟩H
= 2πi⟨h(β), u⟩X
= 0.

Therefore, ρβKβu ⊥ D. Now, due to the additional density condition on D, it is clear that

ρβKβu = 0. Thus ρβKβu ∈ H ⇒ Kβu = 0.

The next lemma characterizes one of the conditions mentioned by de Branges in [30] in terms of

the symmetric condition of T.

Lemma 2.4.4. Let H be a nonzero RKHS of X-valued entire functions with RK Kξ(z). Suppose

that, for some β ∈ C+, Kβ(β),Kβ(β) have closed range and RβHβ ⊆ H, RβHβ ⊆ H. Then

(T− βI)Rβ : Hβ → Hβ (2.4.11)
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is an isometric isomorphism if and only if the operator T is symmetric on D.

In particular, if Kβ(β) and Kβ(β) are invertible, then also the above equivalence holds.

Proof. Observe that

(T− βI)Rβ(T− βI)Rβ = IHβ
and (T− βI)Rβ(T− βI)Rβ = IHβ

. (2.4.12)

Now to prove the lemma, we only need to show that (T − βI)Rβ satisfies the norm preserving

property if and only if T is symmetric, that is, for all g ∈ Hβ

||(T− βI)Rβg||H = ||g||H (2.4.13)

if and only if T is symmetric. In view of (2.4.6) and by using polarization identity, it is easy to

observe that (2.4.13) holds if and only if

⟨(T− βI)Rβg, (T− βI)Rβh⟩H = ⟨g, h⟩H (2.4.14)

for every g, h ∈ Hβ . Also, for every g, h ∈ Hβ , the following evaluation

⟨(T− βI)Rβg, (T− βI)Rβh⟩H = ⟨g, h⟩H
⇕

⟨{(T− βI) + (β − β)I}Rβg, {(T− βI) + (β − β)I}Rβh⟩H = ⟨g, h⟩H
⇕

⟨(T− βI)Rβg, (T− βI)Rβh⟩H + ⟨(T− βI)Rβg, (β − β)Rβh⟩H
+⟨(β − β)Rβg, (T− βI)Rβh⟩H + ⟨(β − β)Rβg, (β − β)Rβh⟩H = ⟨g, h⟩H

⇕

(β − β)[⟨(T− βI)Rβg,Rβh⟩H − ⟨Rβg, (T− βI)Rβh⟩H
+ (β − β)⟨Rβg,Rβh⟩H] = 0

guarantees that (2.4.14) holds if and only if

⟨(T− βI)Rβg,Rβh⟩H − ⟨Rβg, (T− βI)Rβh⟩H + (β − β)⟨Rβg,Rβh⟩H = 0. (2.4.15)

Again for every g, h ∈ Hβ , (2.4.15) holds if and only if

⟨TRβg,Rβh⟩H = ⟨Rβg,TRβh⟩H. (2.4.16)

The following evaluation

⟨(T− βI)Rβg,Rβh⟩H−⟨Rβg, (T− βI)Rβh⟩H + (β − β)⟨Rβg,Rβh⟩H = 0

⇕

⟨{(T− βI) + (β − β)I}Rβg,Rβh⟩H − ⟨Rβg, (T− βI)Rβh⟩H = 0
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⇕

⟨(T− βI)Rβg,Rβh⟩H−⟨Rβg, (T− βI)Rβh⟩H = 0

⇕

⟨T Rβg,Rβh⟩H − β⟨Rβg,Rβh⟩H − ⟨Rβg,T Rβh⟩H + β⟨Rβg,Rβh⟩H = 0

⇕

⟨T Rβg,Rβh⟩H − ⟨Rβg,T Rβh⟩H = 0

proves the above equivalence condition. Since RβHβ = D, the first part of the lemma is proved.

The case when Kβ(β) and Kβ(β) are invertible can be proved similarly.

2.5 A characterization of the RKHS Bβ(E)

We conclude this chapter by discussing a characterization of Bβ(E) which was initially given by L.

de Branges for RKHS of scalar valued entire functions (see [30, Problem 50, Theorem 23]). This

characterization for the RKHS with p× p entire matrix valued RK can be found in [34, Theorem

7.1]. Our observation is in a more general setting where the RK’s are operator valued functions.

Lemma 2.5.1. Let H = B(E) be an RKHS based on a de Branges operator E(z) =

(E−(z), E+(z)) as mentioned in Section 2.2. Then RβHβ ⊆ H if

1. β ∈ C+ and E+(β) is an invertible operator.

2. β ∈ C− and E−(β) is an invertible operator.

Proof. The proof is similar to Lemma 6.4 in [34].

Theorem 2.5.2. Let H be an RKHS of X-valued entire functions withB(X)-valued RKKξ(z) and

suppose β ∈ C+ be such that

Kβ(z),Kβ(z) ∈ Φ(X) for all z ∈ C (2.5.1)

and

Kβ(β),Kβ(β) are invertible. (2.5.2)

Then the RKHS H is isometrically equal to a de Branges space B(E) if and only if

RβHβ ⊆ H, RβHβ ⊆ H (2.5.3)

and

(T− βI)Rβ : Hβ → Hβ (2.5.4)

is an isometric isomorphism. In this case, the operators E+ and E− are given by the following

formulas:

E+(z) = ρβ(z)ρβ(β)
− 1

2Kβ(z)Kβ(β)
− 1

2 (2.5.5)
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and

E−(z) = −ρβ(z)ρβ(β)
− 1

2Kβ(z)Kβ(β)
− 1

2 . (2.5.6)

Moreover, E+(β) and E−(β) are self-adjoint. Thus, we can write H = Bβ(E) with the

understanding that all of the above hold true.

Proof. The proof will be similar with few exceptions to Theorem 7.1 in [34]. So here we mostly

avoid similar calculations. Since Kβ(β) and Kβ(β) are invertible, in view of Lemma 2.4.1, the

reproducing kernels of Hβ and Hβ are

Kβ
ξ (z) = Kξ(z)−Kβ(z)Kβ(β)

−1Kξ(β) (2.5.7)

and

Kβ
ξ (z) = Kξ(z)−Kβ(z)Kβ(β)

−1Kξ(β) (2.5.8)

respectively. Also, for any g ∈ Hβ and z ̸= β

((T− βI)Rβg)(z) =
z − β

z − β
g(z). (2.5.9)

First, suppose H satisfies the constraints in (2.5.3) and (2.5.4). Then, the equation

z − β

z − β
Kβ

ξ (z) =
ξ − β

ξ − β
Kβ

ξ (z). (2.5.10)

can be readily verified in a manner similar to the first part of the proof of Theorem 7.1 in [34].

Now consider

E+(z) = ρβ(z)ρβ(β)
− 1

2Kβ(z)Kβ(β)
− 1

2 (2.5.11)

and

E−(z) = −ρβ(z)ρβ(β)
− 1

2Kβ(z)Kβ(β)
− 1

2 . (2.5.12)

Then in view of (2.5.1),E+(z),E−(z) are entire and belong to Φ(X) for all z ∈ C. AlsoE+(β) =

ρβ(β)
1
2Kβ(β)

1
2 and E−(β) = ρβ(β)

1
2Kβ(β)

1
2 . Thus E+(β) and E−(β) both are invertible and

selfadjoint. Now, from (2.5.11) and using (2.5.7), for any ξ, z ∈ C, we have

E+(z)E+(ξ)
∗ = ρβ(z)ρβ(ξ)ρβ(β)

−1Kβ(z)Kβ(β)
−1Kβ(ξ)

∗

= ρβ(z)ρβ(ξ)ρβ(β)
−1Kβ(z)Kβ(β)

−1Kξ(β)

= ρβ(z)ρβ(ξ)ρβ(β)
−1[Kξ(z)−Kβ

ξ (z)].

Similarly, from (2.5.12) and using (2.5.8), we have

E−(z)E−(ξ)
∗ = ρβ(z)ρβ(ξ)ρβ(β)

−1[Kξ(z)−Kβ
ξ (z)].

For z ̸= ξ, we calculate the following equations

E+(z)E+(ξ)
∗

ρξ(z)
=

(z − β)(β − ξ)

(β − β)(z − ξ)
[Kξ(z)−Kβ

ξ (z)], (2.5.13)
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and
E−(z)E−(ξ)

∗

ρξ(z)
=

(z − β)(β − ξ)

(β − β)(z − ξ)
[Kξ(z)−Kβ

ξ (z)]. (2.5.14)

Now, for z ̸= ξ, from the above two equations and using (2.5.10), we have

E+(z)E+(ξ)
∗ − E−(z)E−(ξ)

∗

ρξ(z)
= Kξ(z)−

[
(z − β)(β − ξ)

(β − β)(z − ξ)
Kβ

ξ (z)−
(z − β)(β − ξ)

(β − β)(z − ξ)
Kβ

ξ (z)

]
= Kξ(z)−

[
(z − β)(β − ξ)

(β − β)(z − ξ)
Kβ

ξ (z)−
(z − β)(β − ξ)

(β − β)(z − ξ)
Kβ

ξ (z)

]
= Kξ(z). (2.5.15)

Therefore,

E+(ξ)E+(ξ)
∗ − E−(ξ)E−(ξ)

∗ = ρξ(ξ)Kξ(ξ) ⪰ 0

for ξ ∈ C+ and

E+(ξ)E+(ξ)
∗ − E−(ξ)E−(ξ)

∗ = 0 (2.5.16)

for ξ ∈ R. Thus, E−1
+ E− ∈ Sin ∩ Sin

∗ and the corresponding pair of operator valued functions

E(z) = (E−(z), E+(z)) is a de Branges operator. Since the RK’s of the spaces H and Bβ(E) are

equal, H = Bβ(E).

Conversely, let us assume that H = Bβ(E) and (2.5.1), (2.5.2) hold. The constraint in (2.5.2) gives

E+(β)E+(β)
∗ ≻ E−(β)E−(β)

∗ and E−(β)E−(β)
∗ ≻ E+(β)E+(β)

∗. (2.5.17)

This implies that E+(β)
∗ and E−(β)

∗ both are injective. Also in view of Theorem 1 in [32], we

have

rngE−(β) ⊆ rngE+(β) and rngE+(β) ⊆ rngE−(β).

Since Kβ(β) and Kβ(β) both are invertible E+(β) and E−(β) both are surjective. Thus E+(β)

and E−(β) both are invertible. Now from the preceding lemma, we have

RβHβ ⊆ H and RβHβ ⊆ H.

At this point if we prove the norm preserving condition for the operator (T− βI)Rβ then the rest

of the proof follows from Lemma 2.4.4. Suppose g ∈ Hβ , then (T− βI)Rβg ∈ Hβ and

||(T− βI)Rβg||2Bβ(E)
=

∫ ∞

−∞
||x− β

x− β
(E−1

+ g)(x)||2dx

=

∫ ∞

−∞
||(E−1

+ g)(x)||2dx

= ||g||2Bβ(E)
.
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Chapter 3

Selfadjoint extensions, Kramer sampling
and Functional model

M. G. Krein introduced the notion of entire operators, which combines the theories of symmetric

operators and analytic functions. The book [45] provides a primary exposition of entire operators.

Recently, it was shown in [34] that entire operators with deficiency indices (p, p) for some finite p

is unitarily equivalent to the multiplication operator T in a de Branges space of Cp-valued entire

functions. The primary motivation for this chapter is to discuss a similar result involving entire

operators with infinite deficiency indices and de Branges spaces of vector valued entire functions

introduced in the previous chapter. Now, we briefly explain the contents of this chapter. In the first

section, the selfadjoint extensions of the multiplication operator T are discussed, and using their

eigenvalues, de Branges spaces are characterized in terms of having Kramer sampling property.

In the second section, entire operators with infinite deficiency indices are considered, and their

connection with de Branges spaces of vector valued entire functions is studied. We conclude this

chapter by introducing a connection between the characteristic function of a completely nonunitary

contraction operator and de Branges spaces of vector valued entire functions.

3.1 Connection between T and de Branges spaces

In this section, we describe the parametrization and canonical description of selfadjoint extensions

of T with an arbitrary domain D, using the unitary operator V : rng Kβ(β) → rng Kβ(β)

as a parameter. Then, with the help of these selfadjoint extensions, we will see that the de

Branges space Bβ(E) has Kramer sampling property. Details about the selfadjoint extension of

the multiplication operator can be found in [1] and [7]. In the setting of RKHS, which consists of

entire p × 1 vector valued functions, the parametrization and canonical description of selfadjoint

extensions of the operator T with nondense domain D can be found in [34], where the parameters

are p× p unitary matrices. The following lemma will be useful in proving Theorem 3.1.2.

Lemma 3.1.1. Suppose H is an RKHS of X-valued entire functions with RK Kξ(z) having at

least one nonzero vector, the operator T is assumed to be symmetric in its domain D and for some

β ∈ C+

• Kβ(β) has closed range, Kβ(β) ≻ 0 and RβHβ ⊆ H

• Kβ(β) has closed range, Kβ(β) ≻ 0 and RβHβ ⊆ H.

Then D is dense in H if and only if {Kβu : u ∈ X} ∩ [D + {Kβv : v ∈ X}] = {0}.
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Proof. The proof can be readily adapted from Lemma 5.1 in [34].

Theorem 3.1.2. Suppose H is an RKHS of X-valued entire functions with RK Kξ(z) having at

least one nonzero vector, the operator T is assumed to be symmetric in its domain D and for some

β ∈ C+

• Kβ(β) has closed range, Kβ(β) ≻ 0 and RβHβ ⊆ H

• Kβ(β) has closed range, Kβ(β) ≻ 0 and RβHβ ⊆ H.

Then there exists a unitary operator V : rngKβ(β) → rngKβ(β) such that the following

implications are true:

1. The following sum

{(T−1
β + T−1

β
V )u : u ∈ rngKβ(β)}+D (3.1.1)

is direct, where the operator Tβ : rng(T− βI)⊥ → rngKβ(β) is defined by

Tβ(Kβu) = Kβ(β)
1
2u for all u ∈ X.

2. The operator TV defined as

TV (g + T−1
β u+ T−1

β
V u) = Tg + βT−1

β u+ βT−1
β
V u (3.1.2)

with the domain mentioned in (3.1.1) is a selfadjoint extension of T and the family

{TV : V is a unitary operator from rngKβ(β) to rngKβ(β) satisfying (1)}

is the complete list of selfadjoint extensions of T.

Moreover, if D is dense in H, then any unitary operator V : rngKβ(β) → rngKβ(β) would

satisfy (3.1.1).

Proof. The proof of the first part of the theorem can be adapted from Lemma 5.2 in [34], in

conjunction with Lemma 3.1.1. Now, we prove the second part. From the assumptions it is easy

to observe that the sum D + {(T−1
β + T−1

β
V )u : u ∈ X} is direct and for any u, v ∈ rng Kβ(β),

(T−1
β + T−1

β
V )u = (T−1

β + T−1
β
V )v =⇒ u = v.

Therefore, TV is well defined.

To show that TV is symmetric, it suffices to show that for every s, s′ ∈ X and g, h ∈ D,

⟨TV [g + (T−1
β + T−1

β
V )s], h+ (T−1

β + T−1
β
V )s′⟩H

− ⟨g + (T−1
β + T−1

β
V )s,TV [h+ (T−1

β + T−1
β
V )s′]⟩H = 0. (3.1.3)
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Let Kβu = T−1
β s, Kβx = T−1

β s′, Kβv = T−1
β
V s and Kβy = T−1

β
V s′. Then the left hand side

of (3.1.3) becomes

⟨Tg + βKβu+ βKβv, h+Kβx+Kβy⟩H − ⟨g +Kβu+Kβv,Th+ βKβx+ βKβy⟩H,

which reduces to

⟨Tg, h+Kβx+Kβy⟩H − ⟨g,Th+ βKβx+ βKβy⟩H = 0, (3.1.4)

⟨βKβu, h+Kβx+Kβy⟩H − ⟨Kβu,Th+ βKβx+ βKβy⟩H = (β − β)⟨s, s′⟩X (3.1.5)

and

⟨βKβv, h+Kβx+Kβy⟩H − ⟨Kβv,Th+ βKβx+ βKβy⟩H = (β − β)⟨s, s′⟩X. (3.1.6)

From the above calculations, we conclude that TV is symmetric.

To show that TV is selfadjoint it is suffices to show that the deficiency indices of TV are (0, 0).

We have

(TV − βI)(g + T−1
β u+ T−1

β
V u) = (T− βI)g + (β − β)T−1

β u.

If h ∈ H is orthogonal to (TV − βI)(g + T−1
β u+ T−1

β
V u) for every g ∈ D and u ∈ rng Kβ(β)

then ⟨(T− βI)g + (β − β)T−1
β u, h⟩H = 0.

In particular, for g = 0, ⟨(β − β)T−1
β u, h⟩H = 0 =⇒ h ∈ Hβ .

For, u = 0, ⟨(T− βI)g, h⟩H = 0 for all g ∈ D. Since D = RβHβ , we have h = 0.

Therefore, {rng(TV − βI)}⊥ = {0} and similarly {rng(TV − βI)}⊥ = {0}.

This proves that TV is selfadjoint.

Conversely, let T′ is a selfadjoint extension of T. In view of proposition V III of this paper [79],

the collection of selfadjoint extensions T′ of T is in one to one correspondence with the collection

of unitary operators χ from rng T−1
β onto rng T−1

β
such that the sum

D + {(T−1
β − χT−1

β )u : u ∈ X}

is direct via the formula

T′(g + (T−1
β − χT−1

β )u) = Tg + (βT−1
β − βχT−1

β )u

for g ∈ D and u ∈ X.

But this is equivalent to the present situation by the first part of the theorem (can be explicitly

adopted from the proof of Lemma 5.2 in [34]). The remaining portion of the theorem follows

from Lemma 3.1.1.

Remark 3.1.3. If in the setting of Theorem 3.1.2, we assume thatKβ(β) andKβ(β) are invertible,

then the unitary operators mentioned in the theorem belong to B(X), and the domain of TV will
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be of the following direct sum form

{(T−1
β + T−1

β
V )u : u ∈ X}∔D. (3.1.7)

Also, the range of the operator Tβ will be X, and the inverse will be of the following form

T−1
β = KβKβ(β)

− 1
2 . (3.1.8)

Remark 3.1.4. In the context of Theorem 3.1.2, when D is not dense, the adjoint T∗ of T is a

linear relation. A linear relation from H to H is simply a linear subspace of H×H. Although this

thesis does not delve into linear relation extensions of the multiplication operator T, it would be

an interesting problem to characterize self-adjoint linear relation extensions of T when the domain

D is not dense.

Theorem 3.1.5. Suppose H is an RKHS of X-valued entire functions withB(X)-valued RKKξ(z)

having at least one nonzero vector and β ∈ C+ be such that

(1) Kβ(z),Kβ(z) ∈ Φ(X) for all z ∈ C and Kβ(β),Kβ(β) are invertible.

(2) RβHβ ⊆ H and RβHβ ⊆ H.

(3) T : D → H is symmetric.

Then H = Bβ(E), whereE+(z) andE−(z) are as mentioned in (2.5.11) and (2.5.12) respectively.

Moreover, if for some µ ∈ R

(4) Kµ(µ) ≻ 0 and E+(µ), E−(µ) are selfadjoint.

Then the following implications are true:

(5) RµHµ ⊆ H, Kµ(µ) is invertible, and the operator

Vµ = (E−(µ))
−1E+(µ) = E−(µ)

∗(E+(µ)
∗)−1 is unitary. (3.1.9)

(6) Vµ identifies a selfadjoint extension TVµ of T.

(7) {Kµu : u ∈ X} is the eigenspace corresponding to the eigenvalue µ of TVµ .

Proof. Under the first three assumptions, H = Bβ(E) follows from Theorem 2.5.2. Now for

µ ∈ R, we have

E+(µ)E+(µ)
∗ − E−(µ)E−(µ)

∗ = 0 (3.1.10)

and

E′
+(µ)E+(µ)

∗ − E′
−(µ)E−(µ)

∗ = −2πi KE
µ (µ). (3.1.11)

In view of (3.1.10) and (3.1.11) we have E+(µ)
∗, E−(µ)

∗ both are injective. Since

E+(µ), E−(µ) ∈ Φ(X) and selfadjoint, both are invertible. Thus RµHµ ⊆ H follows from

Lemma 2.5.1 and Vµ is unitary follows from (3.1.10). Also Rµ ∈ B(Hµ,H) and µ ∈ π(T). This
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implies Kµ(µ) is invertible.

Since Vµ is a unitary operator on X, to show that TVµ is a selfadjoint extension of T, it is sufficient

to show that Vµ satisfies (3.1.7). Now for z ∈ C

T−1
β (z) = Kβ(z)Kβ(β)

− 1
2

=
ρβ(z)ρβ(β)

− 1
2Kβ(z)Kβ(β)

− 1
2

ρβ(z)ρβ(β)
− 1

2

= ρβ(β)
1
2
E+(z)

ρβ(z)
(3.1.12)

= ρβ(β)
1
2

[
E+(z)

ρµ(z)
+
β − µ

z − µ

E+(z)

ρβ(z)

]
. (3.1.13)

Similarly,

T−1
β

(z) = −ρβ(β)
1
2
E−(z)

ρβ(z)
(3.1.14)

= −ρβ(β)
1
2

[
E−(z)

ρµ(z)
+
β − µ

z − µ

E−(z)

ρβ(z)

]
. (3.1.15)

For any V ∈ B(X), we consider the following notation

χV
ξ (z) = (β − ξ)T−1

β (z) + (β − ξ)T−1
β

(z)V. (3.1.16)

In particular,

χ
Vµ
µ = ρβ(β)

1
2

[
(β − µ)

E+

ρβ
− (β − µ)

E−
ρβ

]
(3.1.17)

and χVµ
µ (µ) = 0. Thus D = {Rµχ

Vµ
µ u : u ∈ X}.

Now from the above considerations we have

T−1
β + T−1

β
Vµ = ρβ(β)

1
2

[
E+ − E−Vµ

ρµ

]
+Rµχ

Vµ
µ . (3.1.18)

Now multiplying (3.1.18) by E+(µ)
∗ from the right, we get

(T−1
β (z) + T−1

β
(z)Vµ)E+(µ)

∗ = ρβ(β)
1
2KE

µ (z) + (Rµχ
Vµ
µ )(z)E+(µ)

∗. (3.1.19)

Now if for some u ∈ X, (T−1
β + T−1

β
Vµ)E+(µ)

∗u ∈ D, the above identity gives ρµKE
µu ∈ H.

SinceKµ(µ) ≻ 0, this implies u = 0. Thus, assertion (6) holds, and TVµ is a selfadjoint extension

of T.

From (3.1.19) it is clear that KE
µu belongs to the domain of TVµ and

(TVµ − µI)KE
µu = 0

for all u ∈ X. Thus, assertion (7) holds as Kµ(µ) is invertible.
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Theorem 3.1.6. Suppose H is an RKHS of X-valued entire functions with RK Kξ(z) having at

least one nonzero vector such that (2.5.1), (2.5.2) hold, and {Kµiui} is an orthogonal basis of H
for µ1, µ2, . . . ∈ R and u1, u2, . . . ∈ X. Then

(1) T : D → H is symmetric.

(2) H = Bβ(E).

Moreover, if V ∈ B(X) is a unitary operator satisfying (3.1.7), Kµ(µ) ≻ 0 and E+(µ), E−(µ)

both are selfadjoint, then

(3) µ ∈ R is an eigenvalue of TV if and only if

{E+(µ)− E−(µ)V }u = 0 (3.1.20)

and the corresponding eigenfunction

g = λKE
µ (E+(µ)

∗)−1u (3.1.21)

for some nonzero λ ∈ C and nonzero u ∈ X. Also, the geometric multiplicity of the

eigenvalue µ is countably infinite.

(4) If E+(µ)− E−(µ)V is invertible, then (TV − µI) is a closed operator, and µ ̸∈ σ(TV ).

(5) If E+(z)−E−(z)V ∈ Φ(X) for all z ∈ C and invertible at least at one point, then TV has

a discrete set of eigenvalues.

Proof. (1), (2) will follow from Theorem 2.5.2 in association with Lemma 2.4.4, once we show

the norm preserving property of the operator (T− βI)Rβ : Hβ → Hβ . Let g ∈ Hβ , then

||(T− βI)Rβg||2H =
∞∑
i=1

|⟨(T− βI)Rβg,
Kµiui

||Kµiui||H
⟩|2

=
∞∑
i=1

|⟨((T− βI)Rβg)(µi),
ui

||Kµiui||H
⟩|2

=
∞∑
i=1

|µi − β

µi − β
|2 |⟨g, Kµiui

||Kµiui||H
⟩|2

=
∞∑
i=1

|⟨g, Kµiui
||Kµiui||H

⟩|2 = ||g||2H.

Now suppose V is a unitary operator satisfying (3.1.7), Kµ(µ) ≻ 0 and E+(µ), E−(µ) both are

selfadjoint, then RµHµ = D. Let µ ∈ R is an eigenvalue of TV . Then there exists a nonzero

vector g = h+ (T−1
β + T−1

β
V )u in domain of TV , where h ∈ D and u ∈ X. Thus for all z ∈ C

((TV − µI)g)(z) = (z − µ)h(z) + χV
µ (z)u = 0, (3.1.22)
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which gives χV
µ (µ)u = 0, h(z) = −(Rµχ

V
µ )(z)u and u ̸= 0. This implies Rµχ

V
µ u ∈ D and

g(z) = −(Rµχ
V
µ )(z)u+ (T−1

β + T−1
β
V )u.

Then by using the fact that χV
µ (µ)u = 0, g can be expressed in the following form

g(z) = ρβ(β)
1
2

[
E+(z)− E−(z)V

ρµ(z)
u

]
. (3.1.23)

It can also be proved that

χV
µ (µ)u = 0 ⇐⇒ (E+(µ)− E−(µ)V )u = 0. (3.1.24)

Since E+(µ) and E−(µ) both are invertible, we have

(E+(µ)− E−(µ)V )u = 0 ⇐⇒ V u = E−(µ)
∗(E+(µ)

∗)−1u. (3.1.25)

This gives

g(z) = ρµ(µ)
1
2KE

µ (z)(E+(µ)
∗)−1u.

To show the converse part of (3), we first observe that, if for some u ̸= 0, {E+(µ)−E−(µ)V }u =

0 and g = λKE
µ (E+(µ)

∗)−1u then V u = Vµu and χV
µ u = χ

Vµ
µ u. This implies

g = ρβ(β)
1
2KE

µ (E+(µ)
∗)−1u = −Rµχ

V
µ u+ (T−1

β + T−1
β
V )u

belongs to the domain of TV and

(TV − µI)g = −T(Rµχ
V
µ u) + (βT−1

β + βT−1
β
V )u+ µRµχ

V
µ u− µ(T−1

β + T−1
β
V )u

= {−χV
µ + (β − µ)T−1

β + (β − µ)T−1
β
V }u = 0.

Thus, (3) holds.

Now suppose E+(µ)− E−(µ)V is invertible. Since TV is selfadjoint, the operator (TV − µI) is

closed. To verify µ ̸∈ σ(TV ) we need to show that (TV −µI)−1 exists and is bounded. (3) implies

that (TV − µI) is injective on domain of TV . Since TV is selfadjoint and µ ∈ R, rng(TV − µI)

is dense in H. Also it can be proved that (TV − µI) is surjective (for a similar proof see Theorem

8.5 in [34]). Now the rest of the arguments follow from closed graph theorem. (5) follows from

(3) and Theorem 1.5.3.

The following theorem gives that under some special conditions, the de Branges space Bβ(E) has

the Kramer sampling property.

Theorem 3.1.7. Suppose H is an RKHS of X-valued entire functions with RK Kξ(z) having at

least one nonzero vector such that (2.5.1), (2.5.2) hold, and the operator T : D → H is assumed

to be symmetric. Then the RKHS H is the de Branges space Bβ(E).

Moreover, if Kβ(z),Kβ(z) are invertible for all z ∈ R and there exists a unitary operator V ∈
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B(X) satisfying (3.1.7) such that E+(z) − E−(z)V ∈ Φ(X) for all z ∈ C and invertible at least

at one point, then Bβ(E) has Kramer sampling property.

Proof. H = Bβ(E) follows from Theorem 2.5.2. Suppose V ∈ B(X) is a unitary operator

satisfying all the conditions mentioned in the statement. Then we can have a selfadjoint extension

TV of T and the spectrum σ(TV ) ⊆ R. Now for some µ ∈ R, if E+(µ)− E−(µ)V is invertible,

then from the preceding theorem, it is clear that µ ̸∈ σ(TV ). This gives

σ(TV ) = {µ ∈ R : E+(µ)− E−(µ)V is not invertible},

which is precisely the collection of all eigenvalues of TV . Also, σ(TV ) is a discrete set. Since

Kβ(z),Kβ(z) are invertible for all z ∈ R, E+(z), E−(z) both are invertible there. Thus the

eigenfunctions are of the form g = KE
µu, and the eigenspaces are countably infinite. Since TV

is selfadjoint, any two eigenfunctions corresponding to different eigenvalues are orthogonal, and

the Gram-Schmidt orthogonalization process can be used to make the eigen functions orthogonal

corresponding to the same eigenvalue. Also, since TV is selfadjoint, the spectral theorem implies

that the collection of eigenfunctions is total in H. This completes the proof.

3.2 Entire operators with infinite deficiency indices

This section revives a functional model problem regarding entire operators with infinite deficiency

indices. We present the newly constructed de Branges spaces in Chapter 2 as the functional model

for a particular class of entire operators with infinite deficiency indices. Assume that Y is an

infinite dimensional closed subspace of X. Let E be a densely defined closed, simple, symmetric

operator on X with infinite deficiency indices. We denote ρY (E) as the collection of all Y -regular

points of E, which is defined by

ρY (E) := {ξ ∈ C : Mξ = rng(E − ξI) = Mξ and X = Mξ ∔ Y }. (3.2.1)

It is known that ρY (E) is an open subset of C and every ξ ∈ ρY (E) is also a point of regular type

for E. Because of (3.2.1), it is clear that for every ξ ∈ ρY (E), there exists the projection operator

PY (ξ), that is, for every f ∈ X, there exists a unique g ∈ D(E), the domain of E, such that

f = (E − ξI)g + PY (ξ)f.

Also, for every fixed f ∈ X, we can consider a map from ρY (E) to Y defined by ξ 7→ PY (ξ)f .

We denote these Y -valued functions as fY for every f ∈ X and are defined as fY (ξ) = PY (ξ)f ,

also assume H := {fY : f ∈ X}. Let ξ ∈ ρY (E), then

rngPY (ξ) = Y and kerPY (ξ) = rng(E − ξI).

Since both range and kernel of the projection operator PY (ξ) are closed subspaces of X, PY (ξ) is

bounded for all ξ ∈ ρY (E). Then,



Chapter 3. Selfadjoint extensions, Kramer sampling and Functional model 43

rngPY (ξ)
∗ = X⊖ rng(E − ξI) and kerPY (ξ)

∗ = Y ⊥.

Also, for every ξ ∈ ρY (E), we can have the operator TY (ξ) ∈ B(X), which is defined by

TY (ξ) := (E − ξI)−1(I − PY (ξ)).

Now following Krein’s definition for entire operators, E is an entire operator if ρY (E) = C, and

the functions fY are entire. This implies that PY (ξ) and TY (ξ) both are B(X)- valued entire

functions. More properties of these two functions can be found in [45].

Lemma 3.2.1. For any ξ ∈ ρY (E), the restriction of the projection operator PY (ξ) on M⊥
ξ is

invertible, that is, the operator PY (ξ)|M⊥
ξ
: M⊥

ξ → Y is invertible.

Proof. Suppose f, g ∈ M⊥
ξ = X⊖ rng(E − ξI) be such that

PY (ξ)f = PY (ξ)g = h (say).

Then there exist f1, g1 ∈ Mξ, such that f = f1 + h and g = g1 + h. Since f1 − g1 ∈ Mξ and

f − g ∈ M⊥
ξ , PY (ξ)|M⊥

ξ
is one-one.

Now for any f ∈ Y , we have the unique sum f = g + h, where g ∈ Mξ and h ∈ M⊥
ξ . This

implies PY (ξ)|M⊥
ξ

is onto.

Since E is simple, the map Ψ : X → H defined by f 7→ fY is injective. Thus H is a vector space

with respect to the point wise addition and scalar multiplication. Consider the inner product in H
defined as

⟨fY , gY ⟩H := ⟨f, g⟩X for all f, g ∈ X.

It is clear that H is a Hilbert space with respect to the above inner product, and Ψ is a unitary

operator.

Let f ∈ D(E) and g ∈ X be such that g = Ef . For every ξ ∈ C there exists unique f ′ξ ∈ D(E)

such that

f = (E − ξI)f ′ξ + fY (ξ).

This gives

g = Ef = (E − ξI)f + ξf

= (E − ξI)f + ξ{(E − ξI)f ′ξ + fY (ξ)}

= (E − ξI)(f + ξf ′ξ) + ξfY (ξ).

Because of (3.2.1), it is easy to observe that gY (ξ) = ξfY (ξ) for all ξ ∈ C. Thus the operator E

on X is unitarily equivalent to the multiplication operator on H.

Now for any ξ ∈ C and fY ∈ H, we have

||fY (ξ)||Y = ||PY (ξ)f ||Y ≤ ||PY (ξ)|| ||f ||X = ||PY (ξ)|| ||fY ||H.



44 Chapter 3. Selfadjoint extensions, Kramer sampling and Functional model

Since for all ξ ∈ C, the projection operators PY (ξ) are bounded, the point evaluation linear maps

in H are bounded. This implies that H is an RKHS with the reproducing kernel

Kξ(z) = δzδ
∗
ξ for all ξ, z ∈ C.

Now, let us observe the range and the kernel of the operator δz : H → Y for any z ∈ C. Let

fY ∈ H be such that Ψ(f) = fY for f ∈ X. Then

δz(fY ) = fY (z) = PY (z)f.

Thus,

rngδz = rngPY (z) = Y and kerδz = {fY = Ψ(f) : f ∈ rng(E − zI)}. (3.2.2)

This implies

kerδ∗z = {0} and rngδ∗z = {fY = Ψ(f) : f ∈ X⊖ rng(E − zI)}. (3.2.3)

At this point, we also recall a few facts regarding the generalized Cayley transform. Suppose E′ is

a selfadjoint extension of the entire operator E within X. Then the generalized Cayley transform

is defined by

I + (ξ − z)(E′ − ξI)−1 = (E′ − zI)(E′ − ξI)−1 for all ξ, z ∈ C \ σ(E′). (3.2.4)

It is known that the generalized Cayley transform

I + (ξ − z)(E′ − ξI)−1 : M⊥
z → M⊥

ξ
(3.2.5)

is bijective for all ξ, z ∈ C \ σ(E′). More details about the generalized Cayley transform can

be found in [45, Chapter 1, Section 2]. The following lemma has also been collected from [45],

which will provide a necessary motivation for our final problem.

Lemma 3.2.2. Suppose Rξ = (E − ξI)−1 for all ξ ∈ C for the entire operator E. Then, for any

two numbers ξ, z ∈ C the operator

I + (ξ − z)Rξ : Mξ → Mz (3.2.6)

is bijective.

Proof. Let f ∈ Mξ, then there exists g ∈ D(E) such that f = (E − ξI)g. Now

[I + (ξ − z)Rξ]f = [I + (ξ − z)Rξ](E − ξI)g

= (E − ξI)g + (ξ − z)g

= (E − zI)g ∈ Mz.
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Since every ξ ∈ C is a point of regular type of E, the operator (E − ξI) is injective, and this

implies the operator I+(ξ−z)Rξ is also injective for every ξ, z ∈ C. The operator I+(ξ−z)Rξ

is also surjective as for any g ∈ Mz with g = (E − zI)g′ for g′ ∈ D(E), the element f =

(E − ξI)g′ ∈ Mξ is the pre-image of g.

Recall that for z ∈ C, Rz is the generalized backward-shift operator. Suppose f ∈ X, then for any

ξ, z ∈ C there exists f ′ξ, f
′
z ∈ D(E) such that

f = (E − ξI)f ′ξ + fY (ξ) = (E − zI)f ′z + fY (z).

Now a simple calculation gives

f ′z = (E − ξI)
f ′ξ − f ′z

ξ − z
+
fY (ξ)− fY (z)

ξ − z
.

This implies the invariance of H under Rz for all z ∈ C.

Since the operator E on X is symmetric and unitarily equivalent to the multiplication operator on

H, then the multiplication operator is also symmetric on H. Finally, we summarise all the results

we discussed in this section in terms of a theorem, which will also serve the purpose of answering

a problem of functional model of entire operators with infinite deficiency indices.

Theorem 3.2.3. Suppose X is a complex separable Hilbert space andE be an entire operator with

infinite deficiency indices, producing the direct sum decomposition of X as mentioned in (3.2.1).

Also, suppose for at least one β ∈ C+ the following conditions hold:

1. The dimensions of Mβ ∩ M⊥
ξ are finite for all ξ ∈ C−, and the dimensions of Mβ ∩ M⊥

ξ

are finite for all ξ ∈ C+.

2. The subspaces Mβ +M⊥
ξ for all ξ ∈ C−, and Mβ +M⊥

ξ for all ξ ∈ C+, are closed.

ThenE is unitarily equivalent to the densely defined multiplication operator in a de Branges space

Bβ(E). The space Bβ(E) is also invariant under the generalized backward-shift operator Rz for

all z ∈ C.

Proof. We begin the proof by observing the intersection of some related closed subspaces of X.

Due to Lemma 2.1 in [78], we have

Mz ∩M⊥
ξ = {0} ∀ z, ξ : Im z · Im ξ > 0. (3.2.7)

Moreover the following direct sum decomposition

X = Mz ∔M⊥
ξ ∀ z, ξ : Im z · Im ξ > 0

holds. Now, since any a ∈ R is a point of regular type of E the operator Ẽa,

D(Ẽa) = D(E)∔M⊥
a , Ẽa(fE + ϕa) = EfE + a ϕa, fE ∈ D(E), ϕa ∈ M⊥

a
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is selfadjoint (see [78]). Thus every z ∈ C \ R is a regular point of Ẽa. This implies for any

z ∈ C \ R and f ∈ X, there exist unique fE ∈ D(E) and ϕa ∈ M⊥
a such that

f = (Ẽa − zI)(fE + ϕa) = (E − zI)fE + (a− z)ϕa.

This gives the following direct sum decomposition

X = Mz ∔M⊥
a ∀ z ∈ C \ R and ∀ a ∈ R.

Thus the intersection

Mz ∩M⊥
a = {0} ∀ z ∈ C \ R and ∀ a ∈ R. (3.2.8)

Also

Ma ∩M⊥
z = {0} ∀ z ∈ C \ R and ∀ a ∈ R. (3.2.9)

As f ∈ Ma ∩M⊥
z implies f ⊥ M⊥

a and f ⊥ Mz . Thus f ⊥ (Mz ∔M⊥
a ) = X, which implies

f = 0. It can also be proved that the direct sum decomposition

X = Ma ∔M⊥
z ∀ z ∈ C \ R and ∀ a ∈ R

holds. Now suppose E′ is a selfadjoint extension of E within X, then due to (3.2.5) and Lemma

3.2.2, we have

I + (β − ξ)(E′ − βI)−1 : Mβ ∩M⊥
ξ
→ Mξ ∩M⊥

β

and

I + (β − ξ)(E′ − βI)−1 : Mβ ∩M⊥
ξ
→ Mξ ∩M⊥

β

are bijective for all ξ ∈ C \ σ(E′). These observations together with condition (1) imply that the

subspaces Mξ ∩M⊥
β , Mβ ∩M⊥

ξ , Mξ ∩M⊥
β

and Mβ ∩M⊥
ξ are finite dimensional for all ξ ∈ C.

Now, since Kβ(ξ) = δξδ
∗
β , we have

dim(ker δξδ
∗
β) = dim(ker δ∗β) + dim(ker δξ ∩ rngδ∗β).

Due to (3.2.2) and (3.2.3), we have for any ξ ∈ C,

dim(kerKβ(ξ)) = dim(Mξ ∩M⊥
β ) and dim(kerKβ(ξ)

∗) = dim(Mβ ∩M⊥
ξ ).

The above observation implies that dim(kerKβ(ξ)) and dim(kerKβ(ξ)
∗) are finite for all ξ ∈ C.

Now, due to [53] (Corollary 2.5), it follows that Kβ(ξ)
∗ has closed range if and only if ker δβ +

rngδ∗ξ is closed in H. Since Ψ is a unitary operator, this is equivalent to saying that Mβ +M⊥
ξ is

closed in X for all ξ ∈ C. We have already noted that Mβ +M⊥
ξ is closed for all ξ ∈ C+ ∪ R, as

for all these ξ, we have Mβ ∔M⊥
ξ = X. Moreover, the second assumption ensures that Kβ(ξ)

∗

has closed range for all ξ ∈ C−. Thus, Kβ(ξ)
∗ for all ξ ∈ C has closed range, which indeed

implies the closed range of Kβ(ξ). Therefore, Kβ(ξ) ∈ Φ(Y ) for all ξ ∈ C. Similarly, it can also
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be observed that Kβ(ξ) ∈ Φ(Y ) for all ξ ∈ C. Also, Lemma 3.2.1 implies that Kβ(β) and Kβ(β)

both are invertible. The rest of the proof follows from the previous discussions in this section and

in association with Theorem 2.5.2 and Lemma 2.4.4.

3.3 Connection with the characteristic function of a contraction
operator

In this section, we construct RKHS of X-valued analytic functions using the characteristic function

of a completely nonunitary (cnu) contraction operator. The underlying idea is to consider those

cnu contraction operators whose characteristic functions are inner and invertible on D. These

inner functions are then considered on the upper half plane with the help of the conformal map

C(z) = z−i
z+i and construct RKHS using the same technique mentioned in Section 2.1. Here we

dealt with two situations which will be discussed separately. Most of the standard results and

notations used in this section can be found in [76].

Let A ∈ B(X) be a completely nonunitary contraction operator. Recall that the characteristic

function of A is given by

CA(z) =
[
−A+ z(I −AA∗)

1
2 (I − zA∗)−1(I −A∗A)

1
2

]∣∣∣ rng(I −A∗A)
1
2

and it is a bounded linear operator between DA = rng(I −A∗A)
1
2 and DA∗ = rng(I −AA∗)

1
2 .

First Situation: Suppose A ∈ C.0 is similar to a unitary operator and the spectrum σ(A) is a

proper subset of T. The existence of nonunitary contractions, specially with a compact spectrum,

can be found in [70]. Now the characteristic function CA(z) is boundedly invertible on the open

unit disc and is an inner function (see [76, Theorem 4.5]). Also, CA(z) are unitary operators for

every z on the unit circle except σ(A).

As we have mentioned in the introduction, we can consider CA(z) ∈ S. Also, CA(x) are unitary

operators for all x ∈ R \S, where S is the pre-image of σ(A) under the conformal map C. Now,

we can extend CA(z) to the lower half plane by

CA(z) = {CA(z)
∗}−1 for z ∈ C−.

We denote the extended function as CA(z). Thus we can have an RKHS similar to the one

mentioned in Lemma 2.1.5 based on CA(z).

Second Situation: Suppose A ∈ C0 is a unicellular operator with the scalar multiple equal to

the minimal function mA(z). It is known that the minimal function of this type of operator A is

a singular inner function (see [76, Proposition 7.3]). Thus CA(z) is invertible for all z ∈ D (by

Theorem 5.1 in [76]). Also, the spectrum σ(A) consists of a single point of T, and without loss of

any generality, we can assume that σ(A) = {1}. Thus by using the conformal mapC, we can have

an operator valued function χA(z) (say) in Sin ∩ Sin
∗ . Moreover, χA(x) is unitary for all x ∈ R.

Now similarly to the first situation, we can extend χA(z) as an operator valued entire function and
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construct an RKHS H(χA) of X-valued entire functions.

de Branges spaces of entire functions based on a cnu contraction operator:
Let A be a cnu contraction operator as in the second situation, and E+ is a Fredholm operator

valued entire function such that E+(z) ∈ B(DA∗ ,DA) for all z ∈ C. Also, E+(z) is invertible at

least at one point. Now consider

E−(z) = E+(z)χA(z) for all z ∈ C.

Thus E− is a Fredholm operator valued entire function, E−(z) ∈ B(DA,DA) for all z ∈ C and

E−(z) is invertible at least at one point. Also

E−1
+ E− = χA ∈ Sin ∩ Sin

∗ .

Classes Sin and Sin
∗ should be understood in the present context. Hence the pair of operator valued

functions (E−(z), E+(z)) for every z ∈ C will represent a de Branges operator.



Chapter 4

Quasi Lagrange-type interpolation

Kramer sampling property of de Branges spaces has been discussed in Chapter 3 in connection

with the selfadjoint extensions of the multiplication operator T. The main focus of this chapter is to

introduce a quasi Lagrange-type interpolation series of functions in an RKHS of X-valued entire

functions and their connection with de Branges spaces of vector valued entire functions under

consideration. A study of quasi Lagrange-type interpolation series of functions in an RKHS of

scalar valued entire functions and their connection with de Branges spaces of scalar valued entire

functions can be found in [35]. The reproducing kernel Hilbert spaces considered in this chapter

will be derived from a B(X)-valued entire function, and this construction is described in the first

section. The second section discusses a Kramer sampling series for functions in these RKHS.

In the third section, we introduce a quasi Lagrange-type interpolation series and study the cases

when the Kramer sampling series can be written as a quasi Lagrange-type interpolation series. In

the fourth section, we describe the connection between de Branges spaces of vector valued entire

functions and the property of having quasi Lagrange-type interpolation series.

4.1 RKHS based on operator valued functions

In this section, we recall the construction of an RKHS based on a B(X)-valued function. Also, we

mention some basic results about the multiplication operator T and the generalized backward shift

operator Rz . Assume that F is any B(X)-valued function on Ω ⊆ C, that is, F (z) ∈ B(X) for all

z ∈ Ω and F(Ω,X) is the collection of all functions from Ω to X. Now, let us define a mapping

L : X → F(Ω,X) defined by L(u) = fu, where

fu(z) = F (z)u, for all z ∈ Ω and u ∈ X. (4.1.1)

It is clear that the mapping L is linear and denote HF = L(X) (H when there is no confusion

about the involvement of F ). Now, we show that HF can be endowed with an inner product such

that it will become an RKHS. Consider

H := {u ∈ X : L(u) = 0} = ∩z∈Ω kerF (z).

Since H is a closed subspace of X the quotient space X/H is a Banach space corresponding to the

norm

||u||X/H := inf{||u+ h||X : h ∈ H},
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where u = {u+ h : h ∈ H} is the coset of u ∈ X. Now, we define the norm in HF by

||fu||HF
:= ||u||X/H = inf{||u+ h||X : h ∈ H} = inf{||u||X : fu = L(u)}.

It can be easily shown that the above infimum is indeed attained, that is, for L(u) = fu ∈ HF

there exists ũ ∈ H⊥ such that

||u||X/H = ||ũ||X = ||fu||HF
.

Lemma 4.1.1. Let fu, fv ∈ HF corresponding to u, v ∈ X such that ||fu||HF
= ||ũ||X and

||fv||HF
= ||ṽ||X. Then

1. ||fu + fv||HF
= ||ũ+ ṽ||X and ||fu − fv||HF

= ||ũ− ṽ||X.

2. ||fu + ifv||HF
= ||ũ+ iṽ||X and ||fu − ifv||HF

= ||ũ− iṽ||X.

Now, by using the above lemma and the polarization identity we can define the following inner

product on HF by

⟨fu, fv⟩HF
:= ⟨ũ, ṽ⟩X,where ||fu||HF

= ||ũ||X and ||fv||HF
= ||ṽ||X. (4.1.2)

Thus the linear map L : H⊥ → HF is a bijective isometry, that is, a unitary operator. Hence HF

is a Hilbert space.

Proposition 4.1.2. Let F be any B(X)-valued function on Ω and L is the linear map as defined

in (4.1.1). Then the following assertions are equivalent:

1. L is an isometry.

2. L is one-one.

3. ∩z∈Ω kerF (z) = {0}.

4. ∪z∈Ω rng F (z)∗ is complete in X.

Proof. (1) ⇐⇒ (2) is straight forward. Now, suppose L is one-one, then fu = 0 implies u = 0.

Since for any v ∈ ∩z∈Ω kerF (z), fv = 0, v must be zero vector. This gives (2) ⇒ (3). Suppose

u ∈ X is such that ⟨u, F (z)∗v⟩X = 0 for all z ∈ Ω and v ∈ X. This implies u ∈ ∩z∈Ω kerF (z).

Thus (3) ⇒ (4). Suppose for some u ∈ X, fu = 0. This implies F (z)u = 0 for all z ∈ Ω. Thus

for all z ∈ Ω and v ∈ X we have 0 = ⟨F (z)u, v⟩X = ⟨u, F (z)∗v⟩X, consequently, (4) ⇒ (2).

In particular, if there exists a sequence {zn}∞n=1 in Ω such that ∪∞
n=1rng F (zn)

∗ is complete in X,

then also L is an one-one linear map. Suppose for any u ∈ X, L(u) = fu and ||fu||HF
= ||ũ||X.

Then for any z ∈ Ω,

||fu(z)||X = ||fũ(z)||X = ||F (z)ũ||X ≤ ||F (z)|| ||ũ||X = ||F (z)|| ||fu||HF
.
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This implies that the point evaluation linear maps are bounded in HF for all z ∈ Ω. Thus HF is an

RKHS of X-valued functions on Ω. The reproducing kernel of HF is denoted as K and is given

by Kγ(z) = F (z)F (γ)∗ for all z, γ ∈ Ω. In fact,

1. For any u ∈ X and γ ∈ Ω, Kγu ∈ HF as L(F (γ)∗u) = Kγu.

2. For every f = fu ∈ HF with ||f ||HF
= ||ũ||X, γ ∈ Ω and v ∈ X,

⟨f,Kγv⟩HF
= ⟨ũ, F (γ)∗v⟩X
= ⟨F (γ)ũ, v⟩X
= ⟨f(γ), v⟩X.

Remark 4.1.3. Note that the construction of the RKHS HF bears some resemblance to the

Gelfand-Naimark-Segal (GNS) construction associated with a C∗-algebra. In this context, we

begin with a Hilbert space instead of a C∗-algebra and use the inner product of the Hilbert space

itself to define the semi-definite sesquilinear form instead of any positive linear functional. Then,

we apply the quotient space technique in a similar manner to convert the semi-definite sesquilinear

form into an inner product.

In the rest of this section, we recall some results regarding the multiplication operator T and the

generalized backward shift operator Rz on an RKHS H of vector valued entire functions.

Lemma 4.1.4. Suppose H is a nonzero RKHS of X-valued entire functions, and Kγ(z) is the

corresponding RK. Then for any β ∈ C,

RβHβ ⊆ H if and only if RβHβ = D. (4.1.3)

Moreover, if the condition (4.1.3) holds for some β ∈ C, then the following implications have:

1. Rβ is a bounded linear operator from Hβ to H.

2. rng (T− βI) = Hβ .

3. β is a point of regular type for T.

Proof. The proof of this lemma except (3) follows from Lemma 2.4.1 and Lemma 2.4.2. Also,

the proof of (3) can be done by using (1) and the following observation:

Rβ(T− βI)f = f for all f ∈ D.

The following lemma, which will be used in Section 4.3, gives a bijective map between Hz1 and

Hz2 for z1 ̸= z2.

Lemma 4.1.5. Suppose H is a nonzero RKHS of X-valued entire functions, and Kγ(z) is the

corresponding RK. IfRz1Hz1 ⊆ H andRz2Hz2 ⊆ H for z1 ̸= z2, then (T−ziI)Rzj : Hzj → Hzi

for 1 ≤ i ̸= j ≤ 2 are bijective maps.



52 Chapter 4. Quasi Lagrange-type interpolation

Proof. The following observation proves the lemma:

(T− z2I)Rz1(T− z1I)Rz2 = IHz2
and (T− z1I)Rz2(T− z2I)Rz1 = IHz1

.

4.2 Analyticity and Kramer Sampling property in H

This section investigates the situations when HF would be an RKHS of X-valued analytic

functions. Also, we consider a sufficient condition for which every element of HF can be

represented as a Kramer sampling series.

Theorem 4.2.1. Suppose H is the RKHS corresponding to the B(X)-valued function F on the

domain Ω ⊆ C. Then the elements of H are X-valued analytic functions on Ω if and only if F is

analytic on Ω.

Proof. The proof of this theorem follows from Theorem 1.2 in chapter V of [77].

Now, suppose {un}∞n=1 is an orthonormal basis of X. We consider a sequence of functions

{Fn}∞n=1 in H defined by

Fn(z) = F (z)un for all z ∈ Ω.

The next theorem gives another criterion of H being an RKHS of X-valued analytic functions on

Ω in terms of the analyticity of the sequence of functions {Fn}∞n=1.

Theorem 4.2.2. Suppose H is the RKHS corresponding to the B(X)-valued function F on the

domain Ω ⊆ C. Then the elements of H are X-valued analytic functions on Ω if and only if the

sequence of functions {Fn}∞n=1 are analytic on Ω and ||F (.)|| is bounded on every compact subset

of Ω.

Proof. When H is an RKHS of X-valued analytic functions on Ω, it is evident that the Fn’s are

analytic functions and ||F (.)|| is bounded on every compact subset of Ω. Now, we prove the

converse part. For any u ∈ X, u =
∑∞

n=1⟨u, un⟩Xun. Then

fu(z) = F (z)u = F (z)
∞∑
n=1

⟨u, un⟩Xun

=
∞∑
n=1

⟨u, un⟩XF (z)un =
∞∑
n=1

⟨u, un⟩XFn(z). (4.2.1)

Now, for any p ∈ N, we have

||
p∑

n=1

⟨u, un⟩XFn(z)||2X = ||F (z)
p∑

n=1

⟨u, un⟩Xun||2X

≤ ||F (z)||2||
p∑

n=1

⟨u, un⟩Xun||2X
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= ||F (z)||2
p∑

n=1

|⟨u, un⟩X|2 ≤ ||F (z)||2||u||2X.

This implies the partial sums of the series in (4.2.1) are analytic and bounded on every compact

subset of Ω. Hence, the elements of H are X-valued analytic functions on Ω.

In the remaining portion of this section, we discuss the Kramer sampling series of elements in H.

We assume that there exists a sequence {zn}∞n=1 ⊆ Ω and nonzero numbers {cn}∞n=1 such that for

all u ∈ X the following relation holds:

F (zn)u = cn⟨u, un⟩Xun for all n ∈ N. (4.2.2)

Observe that the sequence of functions {Fn}∞n=1 satisfies the following interpolation property at

{zn}∞n=1:

Fn(zm) = cnδn,mun. (4.2.3)

Equation (4.2.3) indicates that each Fn has zeros at zm for all m ∈ N with m ̸= n. This also

forcing the fact that |zn| → ∞ as n → ∞; otherwise, the functions Fn would be identically zero.

Thus, if F : Ω ⊆ C → B(X) satisfies (4.2.2), the domain Ω should be unbounded. Also, the next

identity follows from (4.2.2) will be used frequently:

F (zn)
∗un = cn un for all n ∈ N. (4.2.4)

The subsequent theorem provides a sampling series representation of elements in H.

Theorem 4.2.3. Suppose H is the RKHS corresponding to the B(X)-valued analytic function F

on the domain Ω ⊆ C satisfying (4.2.2). Then every element f ∈ H is completely determined by

the values {f(zn)}∞n=1 and can be reconstructed by means of the following sampling series

f(z) =

∞∑
n=1

⟨f(zn), un⟩X
Fn(z)

cn
for all z ∈ Ω. (4.2.5)

Proof. Due to the relation (4.2.2), it is clear that L is an isometry. Thus the family of functions

{Fn}∞n=1 is an orthonormal basis of H. Now, any function f = L(u) ∈ H can be written as

f(z) =

∞∑
n=1

⟨f, Fn⟩HFn(z).

In addition, we have

⟨f, Fn⟩H = ⟨u, un⟩X = ⟨u, F (zn)
∗un

cn
⟩X =

⟨F (zn)u, un⟩X
cn

=
⟨f(zn), un⟩X

cn
.

Remark 4.2.4. Observe that using (4.2.4), the series (4.2.5) can be written as the Kramer
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sampling series:

f(z) =
∞∑
n=1

⟨f,Kznun⟩H
Kzn(z)un
||Kznun||2

, for all f ∈ H.

Thus we call the identity in (4.2.2) as the sampling condition and the family of functions {Fn}∞n=1

as the sampling functions.

4.3 Quasi Lagrange-type interpolation property in H

In this section, we will discuss the cases when the Kramer sampling series can be written as

a Quasi Lagrange-type interpolation series. Also, in this direction, we consider a special case

related to symmetric operators with compact resolvent. Suppose H is the RKHS corresponding

to the B(X)-valued entire function F satisfying (4.2.2). Then the sampling series (4.2.5) for any

f ∈ H is called quasi Lagrange-type interpolation series if it has the following representation:

f(z) =

∞∑
n=1

⟨f(zn), un⟩X
Q(z)

(z − zn)Q′(zn)

A(z)

⟨A(zn), un⟩X
, z ∈ C, (4.3.1)

where Q is a scalar valued entire function having only simple zeros at {zn}∞n=1, and A is an

X-valued entire function such that A(z) ̸= 0 for all z ∈ C. The following theorem gives a

necessary and sufficient condition for the Kramer sampling series to be represented as a quasi

Lagrange-type interpolation series in terms of the invariance of Hz under the generalized backward

shift operator Rz for all z ∈ C.

Theorem 4.3.1. Suppose H is the RKHS corresponding to the B(X)-valued entire function

F satisfying (4.2.2). Then the sampling formula (4.2.5) for H can be written as the quasi

Lagrange-type interpolation series (4.3.1) if and only if RzHz ⊆ H for all z ∈ C.

Proof. Let RzHz ⊆ H for all z ∈ C. We prove that {zp}p ̸=n are the only zeros of Fn for every

n ∈ N, and these zeros of Fn are all simple. Now, suppose for some β ∈ C, Fn(β) = 0, that is,

Fn ∈ Hβ , which implies RβFn ∈ H. Thus (T− znI)RβFn ∈ H as

(T− znI)(RβFn)(z) =
z − zn
z − β

Fn(z) = Fn(z) + (β − zn)(RβFn)(z), z ∈ C. (4.3.2)

If β ̸= zp for all p ∈ N, it is clear that (T − znI)(RβFn)(zp) = 0 for all p ∈ N. Thus due to

the sampling series (4.2.5), we can conclude that (T − znI)RβFn = 0 in H. Since the operator

(T− znI)Rβ is injective, we have Fn = 0 in H, which is a contradiction. Also, if any zp, p ̸= n is

a multiple zero of Fn, from (4.3.2), it is clear that (T− znI)(RβFn)(zp) = 0 for all p ∈ N. Thus

using the same argument as above, we can again arrive at the same contradiction situation.

Now, consider a scalar valued entire function Q having only simple zeros at z = zn for all n ∈ N.

Then, due to the above reasoning, we conclude that there exists a X-valued entire function An for

all n ∈ N such that An(z) ̸= 0 for all z ∈ C and

(z − zn) Fn(z) = Q(z) An(z), z ∈ C.
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Moreover, we find a universal X-valued entire function A(z) such that A(z) ̸= 0 for all z ∈ C
and An(z) = an A(z) for all z ∈ C, for all n ∈ N with an ̸= 0. Since for m ̸= n, the function

(T − znI)RzmFn ∈ H satisfies (T − znI)(RzmFn)(z) = 0 for all z ∈ {zp}p ̸=m, by sampling

series (4.2.5), we have the following:

(T− znI)(RzmFn)(z) =
z − zn
z − zm

Fn(z) = ⟨(zm − zn)F
′
n(zm), um⟩X

Fm(z)

cm
, z ∈ C.

Fixing m = 1 and assuming a1 = 1, A(z) = A1(z), we identify for every n ≥ 2 that An(z) =

anA(z), where A(z) = A1(z) and an = z1−zn
c1

⟨F ′
n(z1), u1⟩X ̸= 0. Thus

Fn(z) =

{
anQ(z)A(z)

z−zn
if z ̸= zn

anQ
′(zn)A(zn) if z = zn.

Also, since Fn(zn) = anQ
′(zn)A(zn) = cnun, we have

cn = anQ
′(zn)⟨A(zn), un⟩X.

Hence, it is clear that by putting the values of Fn(z) and cn in the sampling series (4.2.5), one can

get the required quasi Lagrange-type interpolation series (4.3.1).

Conversely, let the sampling formula (4.2.5) for H can be written as a quasi Lagrange-type

interpolation series (4.3.1). Suppose f ∈ H is such that L(u) = f for some u ∈ X. We need to

show that for any β ∈ C if f ∈ Hβ , that is, f(β) = 0, Rβf ∈ H, that is, f(z)
z−β ∈ H. To be able

to say that Rβf ∈ H, it is sufficient to show that Rβf can be written as a quasi Lagrange-type

interpolation series and there exists a vector v ∈ X such that L(v) = Rβf . The remaining proof

is similar to the Theorem 3.3 in [35]. In this direction, we would only like to mention that when

β ̸∈ {zn}∞n=1, then f(z)
β−z = F (z)v, where the Fourier coefficients of v ∈ X are given by

⟨v, un⟩X =
1

β − zn
⟨u, un⟩X for all n ∈ N.

Similarly, when β = zm for some m ∈ N, then f(z)
z−zm

= F (z)w, where the Fourier coefficients of

w ∈ X are given by

⟨w, un⟩X =

{
⟨u,un⟩X
zn−zm

if n ̸= m
1
cm

⟨f ′(zm), um⟩X if n = m.

In the rest of this section, we construct an RKHS H based on the resolvent operators of a symmetric

operator with compact resolvent and discuss the quasi Lagrange-type interpolation series for

elements in H. Let T : D(T ) ⊆ X → X is a densely defined symmetric operator such that

T−1 ∈ B(X) and a compact operator. If {uin}
kn
i=1 are the eigenvectors of T−1 corresponding to

the eigenvalue ξn and zn = 1
ξn

, we recall the following basic informations:

1. The sequence {zn} is infinite and |zn| → ∞ as n→ ∞.

2. The orthonormal set {uin : 1 ≤ i ≤ kn}∞n=1 is complete in X.
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3. A number z ∈ σ(T ) if and only if z ∈ {zn}∞n=1 and Tuin = znu
i
n.

4. For z ̸∈ σ(T ), the resolvent operator Rz = (zI − T )−1 is compact and has the following

form

Rzu =
∞∑
n=1

[
1

z − zn

kn∑
i=1

⟨u, uin⟩Xuin

]
for all u ∈ X. (4.3.3)

For more details in this direction, we recommend [77]. Suppose Q(z) is a scalar valued entire

function having only simple zeros at z = zn for all n ∈ N. Then we consider the B(X)-valued

function F (z) = Q(z)Rz . At this point it is easy to observe that F (z) is an entire function and

F (zn) = Q′(zn)

kn∑
i=1

⟨·, uin⟩Xuin for all n ∈ N. (4.3.4)

Thus ∩∞
n=1 kerF (zn) = {0}, and due to Proposition 4.1.2, the operator L is an isometry. We

denote the corresponding RKHS H = {F (z)u : u ∈ X} with having reproducing kernel

Kγ(z) = Q(z)Q(γ)RzR
∗
γ for all γ, z ∈ C.

Now, we want to discuss the sampling property of the elements in H. We denote F i
n(z) = F (z)uin

for all n ∈ N and 1 ≤ i ≤ kn. Observe that F (zn)∗uin = Q′(zn)u
i
n holds for all n ∈ N and

1 ≤ i ≤ kn. Thus every function of H can be recovered in terms of the sampling series like in

Theorem 4.2.5. Now, to say that every function in H can be represented as a quasi Lagrange-type

interpolation series, we only need to show that RzHz ⊆ H for all z ∈ C. Observe that Hzn = {0}
for all n ∈ N. Now suppose β ̸∈ {zn}∞n=1 and L(u) = f ∈ Hβ that is, f(β) = 0, which means

Q(β)

∞∑
n=1

[
1

β − zn

kn∑
i=1

⟨u, uin⟩Xuin

]
= 0.

Since Q(β) ̸= 0, we have

f(z) = Q(z)

∞∑
n=1

[
1

z − zn

kn∑
i=1

⟨u, uin⟩Xuin

]
−Q(z)

∞∑
n=1

[
1

β − zn

kn∑
i=1

⟨u, uin⟩Xuin

]

= (β − z)Q(z)

∞∑
n=1

[
1

(z − zn)(β − zn)

kn∑
i=1

⟨u, uin⟩Xuin

]
.

Thus for all z ∈ C,

f(z)

β − z
= Q(z)

∞∑
n=1

[
1

(z − zn)(β − zn)

kn∑
i=1

⟨u, uin⟩Xuin

]
. (4.3.5)

Now, if we choose v ∈ X such that the Fourier coefficients of v are given by

⟨v, uin⟩X =
1

β − zn
⟨u, uin⟩X, for all n ∈ N and 1 ≤ i ≤ kn,
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then f(z)
β−z = F (z)v ∈ H, which implies RzHz ⊆ H for all z ∈ C. Hence every function in H can

be expressed as a quasi Lagrange-type interpolation series. However, in this situation, something

more can be concluded. The functions of H can be recovered in terms of a Lagrange-type

interpolation series.

Theorem 4.3.2. Suppose H is an RKHS of X-valued entire functions corresponding to the

B(X)-valued entire function F (z) = Q(z)Rz . Then every element f ∈ H is completely

determined by the values {f(zn)}∞n=1 and can be reconstructed in terms of the following

Lagrange-type interpolation series

f(z) =

∞∑
n=1

Q(z)

(z − zn)Q′(zn)
f(zn) for all z ∈ C. (4.3.6)

Proof. Suppose f ∈ H is such that f(z) = F (z)u for all z ∈ C and the unique u ∈ X. Since

{uin : 1 ≤ i ≤ kn}∞n=1 is an orthonormal basis of X, the family {F i
n : 1 ≤ i ≤ kn}∞n=1 is an

orthonormal basis of H. Then for any z ∈ C, we have

f(z) =

∞∑
n=1

kn∑
i=1

⟨f, F i
n⟩HF i

n(z) =

∞∑
n=1

kn∑
i=1

⟨u, uin⟩XF i
n(z). (4.3.7)

From (4.3.3) we deduce the following

F i
n(z) = F (z)uin = Q(z)Rzu

i
n =

Q(z)

z − zn
uin. (4.3.8)

Now, substituting (4.3.4) and (4.3.8) on (4.3.7), we get the following required Lagrange-type

interpolation series:

f(z) =
∞∑
n=1

kn∑
i=1

⟨u, uin⟩XF i
n(z) =

∞∑
n=1

Q(z)

z − zn

kn∑
i=1

⟨u, uin⟩Xuin

=
∞∑
n=1

Q(z)

(z − zn)Q′(zn)
f(zn).

The next lemma discusses some consequences of quasi Lagrange-type interpolation in H related

to the multiplication operator T.

Lemma 4.3.3. Let H be the RKHS corresponding to the B(X)-valued entire function F satisfying

(4.2.2). Suppose every element in H can be written as a quasi Lagrange-type interpolation series.

Then the following implications hold:

1. T is a closed operator.

2. T is a regular operator.

3. T is a symmetric operator.
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4. ∩z:Imz ̸=0rng(T− zI) = {0},that is, T is simple.

Proof. Since every element in H can be written as a quasi Lagrange-type interpolation series

RzHz ⊆ H for all z ∈ C. Now, (1) can be proved using the closed graph theorem, and (2)

follows from Lemma 4.1.4. Using Lemma 7.4, the proof of (3) can be realized from the proof of

Theorem 4.4.2. Now, since rng(T − zI) = Hz for all z ∈ C, if f ∈ ∩z:Imz ̸=0rng(T − zI), we

have f(z) = 0 for all z ∈ C \ R. Since f is an entire function f = 0 in H. This completes the

proof.

4.4 Connection with the vector valued de Branges spaces

In this section, we recall vector valued de Branges spaces that we have introduced in Chapter 2 and

discuss when functions of these spaces can be represented as a quasi Lagrange-type interpolation

series. Here, we tactfully choose de Branges operators so that the corresponding de Branges

spaces can be connected in this direction. The subtle change of de Branges operators can be

understood instantly, while all the other important results and notations will be unchanged. Let

M = {z1, z2, . . .} ⊆ R be such that |zn| → ∞ as n→ ∞. Suppose E+, E− : C → B(X) be two

entire functions such that E+(z), E−(z) ∈ Φ(X) for all z ∈ Ω = C \M . Also,

1. E+ and E− both are invertible for atleast at one point in Ω, and

2. χ := E−1
+ E− ∈ Sin ∩ Sin

∗ .

The de Branges operator is the pair of B(X)-valued entire functions

E(z) = (E−(z), E+(z)), z ∈ C

and the corresponding positive kernel of the de Branges space B(E) on C× C is given by

KE
γ (z) :=


E+(z)E+(γ)∗−E−(z)E−(γ)∗

ργ(z)
if z ̸= γ

E
′
+(γ)E+(γ)∗−E

′
−(γ)E−(γ)∗

−2πi if z = γ.
(4.4.1)

We denote the space B(E) as Bβ(E) if for some β ∈ C+, E+(β) and E−(β) both are self adjoint.

The following theorem gives a characterization of the space Bβ(E), and its proof is similar to the

proof of Theorem 2.5.2.

Theorem 4.4.1. Let H be an RKHS of X-valued entire functions with B(X)-valued RK Kγ(z)

and suppose β ∈ C+ be such that

Kβ(z),Kβ(z) ∈ Φ(X) for all z ∈ Ω = C \M

and

Kβ(β), Kβ(β) both are invertible.

Then the RKHS H is the same as the de Branges space Bβ(E) if and only if



Chapter 4. Quasi Lagrange-type interpolation 59

1. RβHβ ⊆ H, RβHβ ⊆ H, and

2. (T− βI)Rβ : Hβ → Hβ is an isometric isomorphism.

Now, if H is an RKHS of X-valued entire functions corresponding to the B(X)-valued

entire function F , satisfying (4.2.2) and isometrically isometric to a de Branges space B(E)
corresponding to the de Branges operator E(z) = (E−(z), E+(z)), then RzHz ⊆ H for all

z ∈ C if E+(z), E−(z) both are invertible for all z ∈ R. This result follows from Lemma 5.1.7.

Thus it follows from Theorem 4.3.1 that in this case, every function f ∈ B(E) can be written as a

quasi Lagrange-type interpolation series. The following theorem gives a converse to this result.

Theorem 4.4.2. Suppose H is the RKHS corresponding to the B(X)-valued entire function F

satisfying (4.2.2) and F (z) ∈ Φ(X) for all z ∈ C \M . Also, there exists a β ∈ C+ such that

F (β) and F (β) both are invertible. Then H is a de Branges space Bβ(E) if the sampling series

(4.2.5) can be written as a quasi Lagrange-type interpolation series.

Proof. We use the characterization of Bβ(E) to prove this theorem. Since the sampling series

can be written as a quasi Lagrange-type interpolation series, RzHz ⊆ H for all z ∈ C. Thus in

particular,

RβHβ ⊆ H and RβHβ ⊆ H.

Since F (β) and F (β) both are invertible Kβ(β) = F (β)F (β)∗ and Kβ(β) = F (β)F (β)∗ both

are invertible. Also, for any z ∈ C \ M , Kβ(z) = F (z)F (β)∗ and Kβ(z) = F (z)F (β)∗

both belong to Φ(X). It only remains to show that (T − βI)Rβ : Hβ → Hβ is an isometric

isomorphism. It is clear that (T − βI)Rβ : Hβ → Hβ is bijective. Now, let f ∈ Hβ , that is,

f(β) = 0 is such that f(z) = F (z)u for some u ∈ X. Then

(T− βI)(Rβf)(z) = f(z) + (β − β)
f(z)

z − β
, z ∈ C.

We know that Rβf ∈ H and (Rβf)(z) = F (z)v for all z ∈ C such that the Fourier coefficients

of v ∈ X are given by

⟨v, un⟩X =
1

zn − β
⟨u, un⟩X, n ∈ N.

Thus the following calculation completes the proof:

||(T− βI)Rβf ||2H = ||f + (β − β)Rβf ||2H
= ||u+ (β − β)v||2X

=

∞∑
n=1

|⟨u+ (β − β)v, un⟩X|2

=

∞∑
n=1

|⟨u, un⟩X +
β − β

zn − β
⟨u, un⟩X|2

=
∞∑
n=1

|zn − β

zn − β
|2|⟨u, un⟩X|2 = ||u||2X = ||f ||2H.
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Chapter 5

Associated functions of de Branges spaces
and Operator nodes

This chapter delves deeper into various properties of the de Branges space B(E) introduced in

Chapter 2. We briefly outline the contents of this chapter. In the first section, we modify the

characterization of the de Branges space B(E) mentioned in Theorem 2.5.2 by omitting the

selfadjoint condition on the operators E+(β) and E−(β). We also discuss the real zeros of

E+(z) and E−(z) corresponding to a de Branges operator E(z) = (E−(z), E+(z)). The second

section provides a global factorization of Fredholm operator valued entire functions, generalizing

a factorization result due to L. de Branges and J. Rovnyak [31, Appendix]. This factorization

connects the two de Branges spaces considered in Chapter 2 of this thesis and in [31]. Also, a result

of analytic equivalence between the corresponding two reproducing kernels of de Branges spaces

is concluded. In the third section, we discuss Problem 44 from [30] within the context of vector

valued de Branges spaces, utilizing the previous global factorization. The fourth section explores

associated functions of de Branges spaces of vector valued entire functions and discusses their

connection with the multiplication operator. A discussion of associated functions of de Branges

spaces of vector valued entire functions (as considered in [31]) can be found in [29]. This chapter

concludes by discussing operator nodes and their connection with de Branges spaces of vector

valued entire functions.

5.1 Few additional properties of de Branges spaces

In this section, we explore various properties of the de Branges space B(E) corresponding to the

de Branges operator E(z) = (E−(z), E+(z)). The following theorem, a slightly updated version

of Theorem 2.5.2, characterizes the space B(E).

Theorem 5.1.1. Let H be a RKHS of X-valued entire functions with B(X)-valued RK Kw(z) and

suppose β ∈ C+ be such that

Kβ(z),Kβ(z) ∈ Φ(X) for all z ∈ C

and

Kβ(β), Kβ(β) both are invertible.

Then the RKHS H is the same as the de Branges space B(E) if and only if

1. RβHβ ⊆ H, RβHβ ⊆ H, and
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2. (T− βI)Rβ : Hβ → Hβ is an isometric isomorphism.

Proof. The proof of this theorem follows similarly to the proof of Theorem 2.5.2 except for the

necessary part where we need to prove E+(β) and E−(β) both are surjective. Since Kβ(β) and

Kβ(β) both are invertible, we already know that E+(β)
∗ and E−(β)

∗ both are injective. Now

E+(β) andE−(β) are also injective follows from (1.5.1). This implies thatE+(β) andE−(β) are

surjective. Notice that here, we do not insist thatE+(β) andE−(β) are both self-adjoint operators;

instead, we are using the fact that they are both Fredholm operators with index zero.

The following two theorems discuss the fact that corresponding to different de Branges operators,

we can get the same de Branges space. This situation is characterized by the jX-unitary operator

matrix on X⊕ X, where

jX =

[
IX 0

0 −IX

]
.

A similar discussion for the matrix case can be found in [13] (Chapter 3.2). Suppose

U =

[
U11 U12

U21 U22

]
(5.1.1)

be an operator matrix such that all its entries belong to B(X). Then U is an jX-unitary operator

matrix if

U jX U
∗ = U∗ jX U = jX.

The following lemma gives some insightful information about the entries of an jX-unitary operator

matrix. The proof of this lemma follows from [2] (Lemma 5.2).

Lemma 5.1.2. If U is an jX-unitary operator matrix as in (5.1.1), the following assertions are

true:

1. U11 and U22 are invertible operators.

2. ||U12U
−1
22 || < 1, ||U21U

−1
11 || < 1, ||U−1

11 U12|| < 1 and ||U−1
22 U21|| < 1.

Now, we mention an immediate corollary of the previous lemma and Theorem 3 in [49], which

gives a factorization of the jX-unitary operator matrix U .

Corollary 5.1.3. If U is an jX-unitary operator matrix as in (5.1.1), and

A =

[
(I −K∗K)−

1
2 K∗(I −KK∗)−

1
2

(I −KK∗)−
1
2K (I −KK∗)−

1
2

]

then the following factorizations hold:

1. U = LA, where K = U−1
22 U21 and

L =

[
(U11 − U12K)(I −K∗K)−

1
2 0

0 U22(I −KK∗)
1
2

]
.
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2. U = AR, where K = U21U
−1
11 and

R =

[
(I −K∗K)

1
2U11 0

0 (I −KK∗)−
1
2 (U22 −KU12)

]
.

Theorem 5.1.4. Let B(E) be a de Branges space of X-valued entire functions corresponding to

a de Branges operator E(z) = (E−(z), E+(z)) and U be the jX-unitary operator matrix as in

(5.1.1) such that

F−(z) = E−(z) U11 + E+(z) U21, F+(z) = E−(z) U12 + E+(z) U22

belong to Φ(X) for all z ∈ C. Then F(z) = (F−(z), F+(z)) is a de Branges operator and

B(E) = B(F).

Proof. F+(z) and F−(z) both are Φ(X)-valued entire functions. Fix any β ∈ C+ to be such that

E+(β) and E−(β) both are invertible. Then ||E−1
+ (β)E−(β)|| ≤ 1 together with Lemma 5.1.2

implies that

F+(β) = E+(β)[E
−1
+ (β)E−(β)U12U

−1
22 + I]U22

is invertible. Similarly, it can be proved that F−(β) is invertible. Also, it only needs a small

calculation to show that, for every z, w ∈ C,

F+(z)F+(w)
∗ − F−(z)F−(w)

∗ = E+(z)E+(w)
∗ − E−(z)E−(w)

∗.

This implies F−1
+ F− ∈ Sin ∩ Sin

∗ and B(E) = B(F).

The following theorem gives the converse of this result.

Theorem 5.1.5. Let E(z) = (E−(z), E+(z)) and F(z) = (F−(z), F+(z)) be two de Branges

operators, and the corresponding de Branges spaces are B(E) and B(F) with reproducing kernels

KE
w(z) and KF

w(z) respectively. Also, suppose that there exists β ∈ C+ be such that KE
β (β) and

KE
β
(β) both are invertible. Then B(E) = B(F) implies that there exists an jX-unitary operator

matrix U on X⊕ X such that

[F−(z) F+(z)] = [E−(z) E+(z)] U for all z ∈ C.

Proof. B(E) = B(F) implies that KE
w(z) = KF

w(z) for all z, w ∈ C. Also, KE
β (β) and KE

β
(β)

both are invertible gives the following:

1. E+(β) and E−(β) are invertible operators, and

2. ||E−1
+ (β)E−(β)|| < 1 and ||E−1

− (β)E+(β)|| < 1.

Consider the following two operator matrices on X⊕ X,

UE(β) =

[
E−(β) E+(β)

E−(β) E+(β)

]
and UF(β) =

[
F−(β) F+(β)

F−(β) F+(β)

]
.
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It is clear that these operator matrices follow the identity

UE(β)jXUE(β)
∗ =

[
−ρβ(β)KE

β (β) 0

0 −ρβ(β)K
F

β
(β)

]
= UF(β)jXUF(β)

∗.

From the Schur complement formula1, it can be seen that the operator matrix UE(β) is invertible

if and only if E−(β)− E+(β)E
−1
+ (β)E−(β) is an invertible operator. Now

E−(β)− E+(β)E
−1
+ (β)E−(β) = E−(β)[I − E−1

− (β)E+(β)E
−1
+ (β)E−(β)]

implies that UE(β) is invertible. Similarly, it can be proved that UF(β) is also invertible. Consider

the operator matrix U0 = UE(β)
∗(UF(β)

∗)−1. It is clear that U0 is jX-unitary and

[F−(z) F+(z)]jXUF(β)
∗ = [E−(z) E+(z)]jXUE(β)

∗ for all z ∈ C.

Now, choose U = jXU0jX, then U is an jX-unitary operator and

[F−(z) F+(z)] = [E−(z) E+(z)] U for all z ∈ C.

The following lemma provides a connection between the real poles of the meromorphic functions

E−1
+ (·) and E−1

− (·) when E(z) = (E−(z), E+(z)) is a de Branges operator.

Lemma 5.1.6. Let B(E) be a de Branges space of X-valued entire functions corresponding to a

de Branges operator E(z) = (E−(z), E+(z)). Then, a point x ∈ R is a pole of E−1
+ (·) if and only

if it is a pole of E−1
− (·).

Proof. In view of Theorem 1.5.3, to prove this lemma, it is sufficient to show that for any x ∈ R,

E+(x) is invertible if and only if E−(x) is invertible. Recall that for all x ∈ R, E+ and E− satisfy

the following identity:

E+(x)E+(x)
∗ = E−(x)E−(x)

∗.

Now, a theorem due to Douglas (see [32]) gives rngE+(x) = rngE−(x) for all x ∈ R. Thus

E+(x) is invertible implies rngE+(x) = X and kerE+(x) = {0}. Therefore, rngE−(x) = X

and the equality implies

kerE−(x)
∗ = kerE+(x)

∗ = {0},

which gives E−(x) is invertible. Similarly, when E−(x) is invertible, E+(x) is invertible.

The following lemma can be considered the vector generalization of Problem 45 from the book

[30].

1Suppose M =

[
A B
C D

]
is an operator matrix, where each entry belongs to B(X). If B is an invertible operator,

then M =

[
I 0

DB−1 I

] [
0 B

C −DB−1A 0

] [
I 0

B−1A I

]
, and C−DB−1A is referred to as the Schur complement

of B with respect to M .
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Lemma 5.1.7. Let B(E) be a de Branges space of X-valued entire functions corresponding to

the de Branges operator E(z) = (E−(z), E+(z)). Assume that f ∈ B(E) and α is any complex

number such that f(α) = 0. Then the following implications hold:

1. f(z)
z−α ∈ B(E) for all α ∈ C \ R, and

2. f(z)
z−α ∈ B(E) for all α ∈ R, where E+(α) (so too E−(α)) is invertible.

Proof. We divide the proof into the following three cases:

Case 1 (When α ∈ C+) :

Since f ∈ B(E), E−1
+ f ∈ H2

X(C+) and E−1
− f ∈ H2

X(C+)
⊥. To show that f(z)

z−α ∈ B(E) we need

to verify that E−1
+ (z) f(z)z−α ∈ H2

X(C+) and E−1
− (z) f(z)z−α ∈ H2

X(C+)
⊥. Now,

E−1
− (z)

f(z)

z − α
=

z − i

z − α

E−1
− (z)f(z)

z − i
.

Since z−i
z−α is bounded and analytic on C− and

E−1
− (z)f(z)

z−i ∈ H2
X(C+)

⊥, it is clear that

E−1
− (z) f(z)z−α ∈ H2

X(C+)
⊥. Similarly, we write

E−1
+ (z)

f(z)

z − α
=

z + i

z − α

E−1
+ (z)f(z)

z + i
.

Since z+i
z−α is not analytic and bounded on C+, we can not argue as before. But using the Cauchy

integral formula and the facts that 1
z+i ∈ H2(C+), E−1

+ (z)f(z) ∈ H2
X(C+), it can be proved that

E−1
+ (z) f(z)z−α ∈ H2

X(C+). For the supporting calculations, see Lemma 3.14 in [13].

Case 2 (When α ∈ C−) :

Since this case can be proved similar to the first one, we avoid the calculations.

Case 3 (When α ∈ R) :
Observe from Lemma 5.1.6 that for any α ∈ R, E+(α) is invertible if and only if E−(α) is

invertible. When E+(α) is invertible, E−1
+ f and E−1

− f are analytic at α. Now, the remaining

argument follows from Lemma 1.0.6.

5.2 Global Factorization of Fredholm operator valued entire
functions

This section presents a global factorization of Fredholm operator valued entire functions, which are

invertible at least at one point. Let A(z) be a B(X) valued entire function such that A(z) ∈ Φ(X)

for all z ∈ C and I denote the identity operator on X. Suppose A(z) is invertible at z0 ∈ C, then

because of Theorem 1.5.3 there exists a discrete set D = {z1, z2, . . . , zn, . . .} ⊂ C such that A(z)

is invertible for all z ∈ C \D. The case when D is finite, a global factorization was discussed in

[16], and local factorizations of A(z) can be found in [41]. Here, we consider the case when D is

infinite and thus |zn| → ∞ as n→ ∞.

The following theorem is due to L. de Branges and J. Rovnyak (see [31, Theorem 19, Appendix]).

For the sake of completeness and detailed exposition of the thesis, we include the proof of the
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theorem. Below, we mention two general inequalities from [31], which will be used in the proof

of Theorem 5.2.1.

For every n ∈ N and 0 ≤ µ < 1 the following inequality holds:

1− (1− µ) exp(µ+
1

2
µ2 + . . .+

1

n
µn) ≤ exp

(
µn+1

1− µ

)
− 1. (5.2.1)

Suppose n ∈ N and A1, A2, . . . , An are in B(X). Then

1 + ||A1A2 . . . An − I|| ≤ [1 + ||A1 − I|| ] . . . [1 + ||An − I|| ]. (5.2.2)

Theorem 5.2.1. Let {Pn} be a sequence of finite rank orthogonal projections and {zn}∞1 be a

sequence of complex numbers such that |zn| → ∞ as n → ∞. Suppose a complex number z0 is

such that zn − z0 ̸= 0 for all n. Then

P (z) = lim
n→∞

[
I − z − z0

z1 − z0
P1

]
exp

[
z − z0
z1 − z0

P1

]
. . .[

I − z − z0
zn − z0

Pn

]
exp

[
z − z0
zn − z0

Pn + . . .+
1

n

(z − z0)
n

(zn − z0)n
Pn

]
(5.2.3)

converges uniformly in any bounded set with respect to the operator norm and P (z) is a B(X)

valued entire function such that I − P (z) is compact operator for all z ∈ C. Moreover, for all

z ∈ C \ {zn}∞1 , P (z) is invertible.

Proof. Let

Gn(z) =

[
I − z − z0

z1 − z0
P1

]
exp

[
z − z0
z1 − z0

P1

]
. . .[

I − z − z0
zn − z0

Pn

]
exp

[
z − z0
zn − z0

Pn + . . .+
1

n

(z − z0)
n

(zn − z0)n
Pn

]
. (5.2.4)

To prove the first part of the proof, we need to show that {Gn(z)} is a Cauchy sequence in any

bounded set with respect to the operator norm. For every n ∈ N, we consider the entire functions

fn(z) = 1− (1− z) exp(z +
1

2
z2 + . . .+

1

n
zn) (5.2.5)

and

gn(z) = I − (I − zPn) exp(zPn +
1

2
z2Pn + . . .+

1

n
znPn) = fn(z)Pn. (5.2.6)

Thus for any k ∈ N ∪ {0}, g(k)n (z) = f
(k)
n (z)Pn. Also, since

f ′n(z) = zn exp(z +
1

2
z2 + . . .+

1

n
zn),

it follows that f (k)n (0) ≥ 0 for every n and k. Thus

|fn(z)| ≤
∞∑
k=0

f
(k)
n (0)

k!
|z|k = fn(|z|). (5.2.7)
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Now using (5.2.1) for | z−z0
zn−z0

| when |z − z0| < |zn − z0| and the above inequality, we get

||gn(
z − z0
zn − z0

)|| ≤ |fn(
z − z0
zn − z0

)| ≤ fn(|
z − z0
zn − z0

|) ≤ exp

(
| z−z0
zn−z0

|n+1

1− | z−z0
zn−z0

|

)
− 1. (5.2.8)

For any given z ∈ C, we can choose n so large that | z−z0
zk−z0

| < 1 for all k ≥ n. Now, for n ≤ r ≤ s,

using (5.2.1), (5.2.2) and the above calculations, we get

||Gr(z)−Gs(z)|| ≤ ||Gn(z)|| exp

(
s∑

k=n+1

| z−z0
zk−z0

|k+1

1− | z−z0
zk−z0

|

)

− ||Gn(z)|| exp

(
r∑

k=n+1

| z−z0
zk−z0

|k+1

1− | z−z0
zk−z0

|

)
. (5.2.9)

Since for z in any bounded set, | z−z0
zk−z0

| → 0 as k → ∞, the limit P (z) exists in the operator

norm uniformly for z in any bounded set. Since P (z) is a uniform limit of analytic functions, it is

defined in the whole complex plane and an entire function. For every n, I − Gn(z) is a compact

operator for all z ∈ C. This is easy to observe by expanding the exponential function involved

in Gn(z) as power series. This implies I − P (z) is a compact operator for every z ∈ C. For

any n, Gn(z) is invertible for every z ∈ C \ {z1, z2, . . . , zn} follows from (5.2.11). Thus for

z ∈ C \ {z1, z2, . . .} and for every n, Gn(z) is invertible.

Since for every z ∈ C \ {z1, z2, . . .}, limn→∞ | z−z0
zn−z0

| = 0, the following calculation shows that

we can choose n so large (depending on z) that

||Gn(z)
−1P (z)− I|| < 1.

Now, using (5.2.1) and (5.2.2), we get

||Gn(z)
−1P (z)− I|| = ||Gn(z)

−1 lim
k→∞

Gk(z)− I||

= lim
k→∞

||Gn(z)
−1Gk(z)− I||

= lim
k→∞

||Bn+1 exp(B̃n+1) . . . Bk exp(B̃k)− I||

≤ lim
k→∞

exp

[
k∑

s=n+1

| z−z0
zs−z0

|s+1

1− | z−z0
zs−z0

|

]
− 1,

where we have assumed that

Bj =

[
I − z − z0

zj − z0
Pj

]
and

B̃j =

[
z − z0
zj − z0

Pj + . . .+
1

j

(z − z0)
j

(zj − z0)j
Pj

]
.

This implies that for every z ∈ C\{z1, z2, . . .}, Gn(z)
−1P (z) is an invertible operator, and hence

P (z) is also an invertible operator.

The next theorem provides a global factorization of Fredholm operator valued entire functions
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that are invertible at least at one point. This theorem generalizes Theorem 20 from the appendix

in [31]. While our proof follows a similar line of reasoning, we have taken the initiative to provide

a detailed technical explanation specific to our current setting. Moreover, we have included this

proof as the technique of the proof influences a few results in the next section.

Theorem 5.2.2. Let A(z) be a B(X) valued entire function such that A(z) ∈ Φ(X) for all z ∈ C
and A(z0) is invertible for some z0 ∈ C. Then A can be factored as

A(z) = P (z) E(z) = F (z) Q(z), (5.2.10)

where P (z) and Q(z) are operator valued entire functions of the form (5.2.3) and E(z), F (z) are

invertible operator valued entire functions.

Proof. Since A(z) is a Fredholm operator valued entire function and A(z0) is an invertible

operator, Theorem 1.5.3 implies that there exists a discrete set of complex numbers D =

{z1, z2, . . .} such that A(z) is an invertible operator for all z ∈ C \ D. Since D is a discrete

set, D can be a finite set or an infinite set such that |zn| → ∞ as n → ∞. Now, we focus on

proving the first factorization of A(z) that appeared in (5.2.10).

If D is an empty set, the result follows with P (z) = I and E(z) = A(z). Otherwise, without loss

of generality, we may assume that z1 is the point in D nearest to z0. Since A(z1) is a Fredholm

operator, rngA(z1) is a closed subspace of X, and (rngA(z1))
⊥ is finite dimensional. Let P1 be

the orthogonal projection operator on (rngA(z1))
⊥. Then[

I − z − z0
z1 − z0

P1

]−1

=

[
I − z − z0

z − z1
P1

]
(5.2.11)

is an operator valued analytic function on C \ {z1}. Also, using the fact that P1A(z1) = 0, we

have[
I − z − z0

z1 − z0
P1

]−1

A(z) = [(z − z1)− (z − z0)P1]

[
A(z)−A(z1)

z − z1

]
+A(z1) (5.2.12)

is an operator valued entire function. This givesA(z) = G1(z)E2(z), whereG1(z) as in Theorem

5.2.1 and

E2(z) :=

{
exp[− z−z0

z1−z0
P1][(z − z1 − (z − z0)P1)[

A(z)−A(z1)
z−z1

] +A(z1)], z ̸= z1

exp(−P1)[A(z1)− (z1 − z0)P1A
′(z1)], z = z1.

(5.2.13)

It is easy to observe thatE2(z) is a Fredholm operator valued entire function, andE2(z0) = A(z0)

is an invertible operator. If E2(z) is invertible for all z ∈ C, the proof of this part is complete,

and P (z) = G1(z), E(z) = E2(z). Otherwise, let z2 ∈ D nearest to z0 such that E2(z2) is not

invertible and continue inductively. Now, at the n-th phase, En(z) is a Fredholm operator valued

entire function, and En(z0) is an invertible operator. Suppose zn ∈ D nearest to z0 such that

En(zn) is not an invertible operator. Again, taking the orthogonal projection Pn on (rngEn(zn))
⊥,

we get A(z) = Gn(z)En+1(z) for all z ∈ C, where Gn(z) as in Theorem 5.2.1 and En+1(z) is

a Fredholm operator valued entire function and En+1(z0) is invertible. If En+1(z) is invertible
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for all z ∈ C, we may stop the inductive process and consider P (z) = Gn(z), E(z) = En+1(z).

Otherwise, we will move on to the next phase. IfD is finite, this process will stop after finite steps,

and we will get the desired factorization of A(z).

Suppose D is infinite, then |zn| → ∞ as n→ ∞ and

A(z) = Gn(z)En+1(z) for all z ∈ C and n ∈ N. (5.2.14)

Also, all Pn are finite rank orthogonal projections. Thus we can apply Theorem 5.2.1 to obtain an

operator valued entire function P (z) such that I − P (z) is compact for every z ∈ C and P (z) is

invertible for all z ∈ C \D. Now, we want to show that {En(z)} is a uniformly Cauchy sequence

in any bounded set with respect to the operator norm. By construction, it is clear that, for every

n ∈ N
En(z) = Bn exp(B̃n)En+1(z),

where Bn and B̃n are as defined in the previous theorem. Thus for any m ≤ n ≤ s, we have

||Em(z)− En(z)|| ≤ ||Es(z)|| exp

(
s∑

k=m

| z−z0
zk−z0

|k+1

1− | z−z0
zk−z0

|

)

− ||Es(z)|| exp

(
s∑

k=n

| z−z0
zk−z0

|k+1

1− | z−z0
zk−z0

|

)
. (5.2.15)

This implies that E(z) = limn→∞En+1(z) exists uniformly on bounded sets with respect to the

operator norm. From (5.2.14), we conclude that A(z) = P (z)E(z). Now, we only need to show

that E(z) is invertible for all z ∈ C.

By construction, it is clear that En(z) has invertible values when |z − z0| < |zn − z0|. Now

En(z) = Bn exp(B̃n)En+1(z)

= G−1
n−1(z)Gn(z)En+1(z)

= G−1
n−1(z)P (z)E(z).

Since G−1
n−1(z)P (z) is invertible when |z − z0| < |zn − z0|, E(z) is also invertible for all z

belonging to this disk. Since |zn| → ∞ as n→ ∞, E(z) is invertible for all z ∈ C.

The other factorization of A(z) that appeared in (5.2.10) can be proved similarly as above. For

clarification, let us mention the first factorization step. Let Q1 be the orthogonal projection on

kerA(z1), which is of finite rank. Then[
I − z − z0

z1 − z0
Q1

]−1

=

[
I − z − z0

z − z1
Q1

]
and since A(z1)Q1 = 0,

A(z)

[
I − z − z0

z1 − z0
Q1

]−1

=

[
A(z)−A(z1)

z − z1

]
[(z − z1)− (z − z0)Q1] +A(z1).
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The remaining steps can be done in an obvious way. This completes the proof.

The above theorem can be considered as the operator analog of the well known Weierstrass

factorization theorem for scalar valued entire functions. Also, for any matrix valued entire function

A(z), a factorization of the form (5.2.10) can be readily derived; here, a point z0 ∈ C is considered

a zero of A(z) if the determinant of A(z0) is equal to zero. The following proposition shows how

de Branges spaces considered in [31] are connected with de Branges spaces under consideration

in this thesis.

Proposition 5.2.3. Suppose E(z) = (E−(z), E+(z)) is a de Branges operator having the

following factorizations of both E−(z) and E+(z) as deduced in the previous theorem:

1. E−(z) = F−(z)Q−(z) for all z ∈ C, where I −Q−(z) is compact and F−(z) is invertible

for all z ∈ C. Also, Q−(z) is invertible, whereas E−(z) is invertible.

2. E+(z) = F+(z)Q+(z) for all z ∈ C, where I −Q+(z) is compact and F+(z) is invertible

for all z ∈ C. Also, Q+(z) is invertible, whereas E+(z) is invertible.

Then, if F−(z) = F+(z) for all z ∈ C, the pair of Fredholm operator valued entire functions

Q(z) = (Q−(z), Q+(z)) is a de Branges operator, and B(E) = F+B(Q).

Proof. Observe that

Kξ(z) =
E+(z)E+(ξ)

∗ − E−(z)E−(ξ)
∗

ρξ(z)

= F+(z)

[
Q+(z)Q+(ξ)

∗ −Q−(z)Q−(ξ)
∗

ρξ(z)

]
F+(ξ)

∗

= F+(z)Γξ(z)F+(ξ)
∗, (5.2.16)

where Γξ(z) =
Q+(z)Q+(ξ)∗−Q−(z)Q−(ξ)∗

ρξ(z)
. From (5.2.16), it is clear that Γξ(z) is a positive kernel,

and the pair of Fredholm operator valued entire functions Q(z) = (Q−(z), Q+(z)) is a de Branges

operator. Let u ∈ X and for some ξ ∈ C, v = F+(ξ)
∗u, then the following linear map

Γξv 7→ Kξu = F+(·)Γξv

between B(Q) and B(E) proves that B(E) = F+B(Q).

Remark 5.2.4. Observe that the above proposition implies that, given any de Branges space B(E)
as in our present consideration, ifE+(z) andE−(z) have a common factor F+(z) that is invertible

for all z ∈ C, then B(E) is canonically isomorphic to a de Branges space B(Q) as considered in

[31], differing only by the fixed invertible factor F+(z). However, in general, the hypothesis that

F+(z) = F−(z) for all z ∈ C need not be true. In the next section (Theorem 5.3.6), we shall see

that though a situation of equal factors occurs, the two de Branges spaces involved there are both

as in our present consideration.
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Remark 5.2.5. Observe that (5.2.16) gives an analytic equivalence between the two reproducing

kernels Kξ(z) and Γξ(z), that is,

Kz(z) = F+(z)Γz(z)F+(z)
∗ for all z ∈ C.

Details about analytic equivalence of two operator valued entire functions can be found in [42]

and [43].

5.3 Isometric Embedding

In this section, we deal with several isometric embedding results related to the vector valued de

Branges spaces B(E). In Particular, we present the vector version of Problem 44 from the book

[30]. Theorem 5.3.6 is the main result of this section. Moreover, assume that de Branges operators

involved in this section satisfy the following additional two conditions:

Hypothesis 5.3.1. Suppose E(z) = (E−(z), E+(z)) is a de Branges operator, then

1. E+(z) is invertible for all z ∈ C+,

2. E−(z) is invertible for all z ∈ C−.

The following two lemmas are motivated by [54], where de Branges spaces under consideration

were Hilbert spaces of scalar valued entire functions.

Lemma 5.3.2. Let B(E) and B(E0) be two de Branges spaces corresponding to de Branges

operators E(z) = (E−(z), E+(z)) and E0(z) = (E0
−(z), E

0
+(z)) respectively. Suppose P (z)

is a B(X)-valued entire function such that

E+(z) = P (z)E0
+(z) for all z ∈ C, (5.3.1)

and

E−(z) = P (z)E0
−(z) for all z ∈ C. (5.3.2)

Then PB(E0) is contained in B(E) isometrically.

Proof. From (5.3.1) and (5.3.2) it is clear that P (z) is Φ(X)-valued entire function and is invertible

for all z ∈ C+ ∪ C−. Also, due to the Fredholm analytic theorem, we conclude that P (z) is

invertible for all z ∈ R except possibly on a discrete set. Now, suppose f ∈ B(E0), that is,

(E0
+)

−1f ∈ H2
X(C+) and (E0

−)
−1f ∈ H2

X(C+)
⊥. To show the isometric containment of PB(E0)

in B(E), it is sufficient to show that Pf ∈ B(E) and ||Pf ||B(E) = ||f ||B(E0). The following

supplementary calculations prove the lemma.

E−1
+ (z)P (z)f(z) = (E0

+)
−1(z)P (z)−1P (z)f(z) = (E0

+)
−1(z)f(z) ∀z ∈ C+,

E−1
− (z)P (z)f(z) = (E0

−)
−1(z)P (z)−1P (z)f(z) = (E0

−)
−1(z)f(z) ∀z ∈ C−
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and

||Pf ||B(E) =
∫ ∞

−∞
||E−1

+ (t)P (t)f(t)||2dt

=

∫ ∞

−∞
||(Eo

+)
−1(t)P (t)−1P (t)f(t)||2dt

=

∫ ∞

−∞
||(Eo

+)
−1(t)f(t)||2dt

= ||f ||B(E0).

The following lemma is an application of the previous lemma.

Lemma 5.3.3. Let B(E) and B(F) be two de Branges spaces corresponding to de Branges

operators E(z) = (E−(z), E+(z)) and F(z) = (F−(z), F+(z)) respectively. Assume that for

all z ∈ C, the following four relations are true:

F+(z)E+(z) = E+(z)F+(z); (5.3.3)

F+(z)E−(z) = E−(z)F+(z); (5.3.4)

F−(z)E+(z) = E+(z)F−(z); (5.3.5)

F−(z)E−(z) = E−(z)F−(z). (5.3.6)

Then, the pair of Fredholm operator valued entire functions

EF(z) = (E−(z)F−(z), E+(z)F+(z))

will be a de Branges operator. Moreover, if the following two additional relations

E−(z)F−(z) = E+(z)F−(z); (5.3.7)

E+(z)F+(z) = F−(z)E+(z) (5.3.8)

are true, then

B(EF) = E+B(F)⊕ F−B(E). (5.3.9)

Proof. Only after a few small calculations, it can be easily shown that

(E+F+)
−1(E−F−) ∈ Sin ∩ Sin

∗ .

This implies that EF(z) = (E−(z)F−(z), E+(z)F+(z)) is a de Branges operator, and B(EF) is

the corresponding de Branges space. If KE
w(z) is the reproducing kernel of B(E) and KF

w(z) is

the reproducing kernel of B(F), the reproducing kernel Kw(z) of B(EF) can be represented as

follows:

Kw(z) =
E+(z)F+(z)F+(w)

∗E+(w)
∗ − E−(z)F−(z)F−(w)

∗E−(w)
∗

ρw(z)
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= E+(z)K
F
w(z)E+(w)

∗ + F−(z)K
E
w(z)F−(w)

∗.

Now, when (5.3.3) and (5.3.7) hold, due to the previous lemma we conclude that

E+B(F) is contained isometrically in B(EF). Also, the following calculation shows that

E+(z)K
F
w(z)E+(w)

∗ is the reproducing kernel of the Hilbert space E+B(F).
For any f ∈ B(F) and u ∈ X,

⟨E+f,E+K
F
wE+(w)

∗u⟩B(F) = ⟨E+f,E+K
F
wE+(w)

∗u⟩B(EF)

=

∫ ∞

−∞
⟨F−1

+ (t)f(t), F−1
+ (t)KF

w(t)E+(w)
∗u⟩Xdt

= ⟨f,KF
wE+(w)

∗u⟩B(F)
= ⟨f(w), E+(w)

∗u⟩X
= ⟨(E+f)(w), u⟩X.

Similarly, it can be shown that when (5.3.6) and (5.3.8) hold, F−B(E) is isometrically contained

in B(EF), and F−(z)K
E
w(z)F−(w)

∗ is the reproducing kernel of the Hilbert space F−B(E). The

rest of the proof follows from a general complementation theory in Hilbert spaces, which can be

found in [3] (Chapter 1.5).

Now, we mention a particular case of the Theorem 5.2.2, which will be used later in this section.

Theorem 5.3.4. Let A(z) be a Φ(X)-valued entire function that is invertible at least at one point.

Then a factorization ofA(z) of the formA(z) = N(z)A0(z) holds, whereA0(z) is a Φ(X)-valued

entire function that is invertible for all real z and N(z) is a B(X)-valued entire function of the

form (5.2.3). Also, N(z) is invertible for all z except for those z ∈ R whereA(z) is not invertible.

Proof. The Fredholm analytic theorem and the fact that A(z) is invertible at least at one point

implies that A(z) is invertible for all z ∈ C except for a discrete set. Without loss of generality,

we may assume that A(z) is invertible at the origin and D0 is the collection of all real points,

where A(z) is not invertible. If D0 is empty, then the factorization result follows by choosing

N(z) = I and A0(z) = A(z). Otherwise, let x1 be an element in D0 nearest to the origin and P1

be the orthogonal projection operator on (rngA(x1))
⊥. P1 is a finite rank operator, as A(x1) is a

Fredholm operator. Then [
I − z

x1
P1

]−1

=

[
I − z

z − x1
P1

]
(5.3.10)

is an operator valued analytic function for all z ∈ C except at x1, and P1A(x1) = 0 implies that[
I − z

x1
P1

]−1

A(z) = (z − x1 − zP1)

[
A(z)−A(x1)

z − x1

]
+A(x1) (5.3.11)

is an operator valued entire function. Thus A(z) has the factorization A(z) = N (1)(z)A
(2)
0 (z),
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where N (1)(z) =
[
I − z

x1
P1

]
exp

[
z
x1
P1

]
and

A
(2)
0 (z) :=

{
exp[− z

x1
P1][(z − x1 − zP1)[

A(z)−A(x1)
z−x1

] +A(x1)], z ̸= x1

exp(−P1)[A(x1)− x1P1A
′(x1)], z = x1.

(5.3.12)

Observe that A(2)
0 (z) is a Φ(X)-valued entire function invertible at the origin. If A(2)

0 (z) is

invertible for all real z, the proof is complete, and N(z) = N (1)(z), A0(z) = A
(2)
0 (z). Otherwise,

let x2 be an element in D0 nearest to the origin such that A(2)
0 (x2) is not invertible and continue

inductively. At the n-th step of the induction process, we have A(n)
0 (z) is a Φ(X)-valued entire

function invertible at the origin. Suppose xn is an element in D0 nearest to the origin such that

A
(n)
0 (xn) is not invertible. Let Pn is the orthogonal projection on (rngA

(n)
0 (xn))

⊥. Again we have

the factorization A(z) = N (n)(z)A
(n+1)
0 (z), where

N (n)(z) =

[
I − z

x1
P1

]
exp

[
z

x1
P1

]
. . .

[
I − z

xn
Pn

]
exp

[
z

xn
Pn + . . .+

1

n

zn

xnn
Pn

]

and A(n+1)
0 (z) is a Φ(X)-valued entire function invertible at the origin. If A(n+1)

0 (z) is invertible

for all real z, we conclude the proof with N(z) = N (n)(z) and A0(z) = A
(n+1)
0 (z). Otherwise,

we keep the process moving. This discussion already covered the case when D0 is finite. Now,

suppose D0 is infinite with |xn| → ∞ as n→ ∞.

Now, we can apply Theorem 5.2.1 to conclude that the sequence {N (n)(z)} converges to some

B(X)-valued entire functionN(z) uniformly in any bounded set with respect to the operator norm

such that I −N(z) is compact for all z ∈ C and invertible for all z ∈ C \ {xn}. Also, the proof

of the fact that the sequence {A(n+1)
0 (z)} converges to some B(X)-valued entire function A0(z),

invertible for all real z, uniformly in any bounded set with respect to operator norm follows from

Theorem 5.2.2. Observe that for every z ∈ C both A(z) and N(z) are Fredholm operators. Thus

A0(z) is a Φ(X)-valued entire function follows from Proposition 1.5.2.

Remark 5.3.5. If the finite rank orthogonal projection operators P1, P2, . . . , Pn, . . . in the

previous theorem are pairwise commutative, then for all x ∈ R, N (n)(x)∗ = N (n)(x). Since

the self-adjoint operators are closed subset of B(X) and N (n)(x) → N(x) in operator norm,

N(x) is self-adjoint for all x ∈ R.

The next theorem establishes a connection between the factorization of Fredholm operator valued

entire functions and the structure of vector valued de Branges spaces. Problem 44 from [30] states

that if H(E) is a given de Branges space of scalar valued entire functions corresponding to a

Hermite-Biehler function E(z) (that is, |E(z)| < |E(z)|, z ∈ C+), then E(z) = S(z)E0(z),

where H(E0) exists, E0(z) has no real zeros, and the zeros of S(z) are real zeros of E(z).

Moreover, the equality H(E) = SH(E0) holds. The following theorem generalizes this problem

to the setting of vector valued de Branges spaces.

Theorem 5.3.6. Let E(z) = (E−(z), E+(z)) is a de Branges operator. Then E+(z) =

N(z) E0
+(z) and E−(z) = N(z) E0

−(z), where N(z) is a B(X)-valued entire function of the

form (5.2.3) and E0(z) = (E0
−(z), E

0
+(z)) is a de Branges operator such that
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1. E0
±(z) are invertible for all z ∈ R, and

2. The equality B(E) = NB(E0) holds.

Proof. Since B(E) is a de Branges space, Lemma 5.1.6 implies that the real points where both

E+ and E− are not invertible are the same, and we denote the collection as D. Now, we want

the factorization of E+ and E− as in the Theorem 5.3.4. Without loss of generality, we may

assume that E+ and E− are invertible at the origin. Suppose x1 is an element in D nearest to the

origin, and P1 is the orthogonal projection operator on (rngE+(x1))
⊥ = (rngE−(x1))

⊥. Then

E+(z) = N (1)(z)S2(z) and E−(z) = N (1)(z)T2(z), where N (1)(z) as in the previous theorem,

S2(z) :=

{
exp[− z

x1
P1][((z − x1)I − zP1)[

E+(z)−E+(x1)
z−x1

] + E+(x1)], z ̸= x1

exp(−P1)[E+(x1)− x1P1E
′
+(x1)], z = x1

(5.3.13)

and

T2(z) :=

{
exp[− z

x1
P1][((z − x1)I − zP1)[

E−(z)−E−(x1)
z−x1

] + E−(x1)], z ̸= x1

exp(−P1)[E−(x1)− x1P1E
′
−(x1)], z = x1.

(5.3.14)

Here both S2(z) and T2(z) are Φ(X)-valued entire functions and S2(0) = E+(0), T2(0) = E−(0).

Also, from the factorizations ofE+(z) andE−(z), it is clear that S2(z) is invertible for all z ∈ C+,

and T2(z) is invertible for all z ∈ C−. Then for all z ∈ C+ and for almost every z ∈ R, we have

E+(z)
−1E−(z) = S2(z)

−1N (1)(z)−1N (1)(z)T2(z)

= S2(z)
−1T2(z).

This implies that S2 and T2 satisfy Hypothesis 5.3.1. Thus for all x ∈ R, again we have

rngS2(x) = rngT2(x). Now, as in the previous theorem, we continue factoring E+(z) and E−(z)

inductively. Observe that in every inductive step, the first factors of E+(z) and E−(z) are the

same, and the second factors satisfy hypothesis 5.3.1. Finally, whether D is finite or infinite, we

have the factorization of E+ and E− as

E+(z) = N(z)E0
+(z), E−(z) = N(z)E0

−(z), (5.3.15)

where N(z) as in the previous theorem and E0
+, E0

− satisfy hypothesis 5.3.1. This implies B(E0)

exists with the de Branges operator E0(z) = (E0
−(z), E

0
+(z)). Now, (5.3.15) and Lemma 5.3.2

together imply thatNB(E0) is isometrically contained in B(E). Moreover, since the zeros ofN(z)

are only the real zeros of E+(z) (same as E−(z)), given any f ∈ B(E), N(z)−1f(z) ∈ B(E0).

Hence, the equality B(E) = NB(E0) holds.

Remark 5.3.7. Observe that the two de Branges spaces B(E) and B(E0) involved in the previous

theorem are in the sense of our present consideration, that is, the components of the corresponding

de Branges operators are in the class of Fredholm operator valued entire functions which need not

be of the form considered in [31].
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5.4 Associated functions and multiplication operator in de Branges
spaces

This section deals with the B(X)-valued entire functions associated with a de Branges space

B(E), where E(z) = (E−(z), E+(z)) is the de Branges operator. The relationship between these

associated functions and the multiplication operator T is also explored. It is worth noting that a

discussion of associated functions for scalar valued de Branges spaces of entire functions can be

found in [30] (Second chapter, Section 25). A similar discussion employing a different approach

within the framework of de Branges spaces of entire functions with matrix valued reproducing

kernels can also be found in [11] and [13]. Moreover, [29] examines operator valued associated

functions S(z), where I − S(z) are compact operators for all z ∈ C. Recall that a B(X)-valued

entire function S(z) is said to be associated with the de Branges space B(E) if S(α) is invertible

for some α ∈ C and for every f ∈ B(E),

f(z)− S(z)S(α)−1f(α)

z − α
∈ B(E).

Remark 5.4.1. If α ∈ C is such that Kα(α) is invertible, then S(z) = Kα(z) is associated with

B(E)

1. for all α ∈ C \ R, and

2. for all α ∈ R, where E+(α) is invertible.

Remark 5.4.2. Observe that S(z) = IX is associated with B(E) if and only if B(E) is invariant

under the generalized backward shift operator Rα for every α ∈ C.

The following theorem gives a sufficient condition for a B(X)-valued entire function to be

associated with the de Branges space B(E).

Theorem 5.4.3. Let B(E) be a vector valued de Branges space corresponding to the de Branges

operator E(z) = (E−(z), E+(z)) and S(z) be a B(X)-valued entire function such that

E−1
+ S

ρi
u ∈ H2

X(C+) and
E−1

− S

ρ−i
u ∈ H2

X(C+)
⊥ for all u ∈ X. (5.4.1)

Then

1. E−1
+ S is analytic in C+.

2. E−1
− S is analytic in C−.

3. Moreover, if S(α) is invertible for some α ∈ C, the linear transformation RS(α) : B(E) →
B(E) defined by

f(z) 7→ f(z)− S(z)S(α)−1f(α)

z − α
, (5.4.2)

is everywhere defined bounded linear operator on B(E).
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Proof. Since
E−1

+ S

ρi
u ∈ H2

X(C+) for all u ∈ X, no z ∈ C+ is a pole of E−1
+ Su. Now, due to

Fredholm analytic theorem, it is clear that E−1
+ Su is analytic in C+ for all u ∈ X. Equivalently,

E−1
+ S is analytic in C+. Similarly, it can be proved that E−1

− S is analytic in C−.

Now, it remains to prove (3). Suppose f ∈ B(E) and α ∈ C is such that S(α)−1 ∈ B(X). Assume

that

g(z) = E−1
+ (z)[f(z)− S(z)S(α)−1f(α)]

and

h(z) = E−1
− (z)[f(z)− S(z)S(α)−1f(α)].

Since f ∈ B(E), we have E−1
+ f ∈ H2

X(C+), which implies
E−1

+ f

ρi
∈ H2

X(C+). Due to (5.4.1), it

is also true that
E−1

+ S

ρi
S(α)−1f(α) ∈ H2

X(C+). Thus, we have g
ρi

∈ H2
X(C+). Similarly, it can be

proved that h
ρ−i

∈ H2
X(C+)

⊥.

If α ∈ C+, then

E−1
+

f(z)− S(z)S(α)−1f(α)

z − α
= Rαg ∈ H2

X(C+),

as g
ρi

∈ H2
X(C+). If α ∈ C−, then

E−1
+

f(z)− S(z)S(α)−1f(α)

z − α
=
ρi(z)

z − α
E−1

+ (z)
f(z)− S(z)S(α)−1f(α)

ρi(z)

belongs to H2
X(C+) as ρi(z)

z−α ∈ H∞. Similarly, it can be proved that, for all α ∈ C and f ∈ B(E),

E−1
−
f(z)− S(z)S(α)−1f(α)

z − α
∈ H2

X(C+)
⊥.

Thus, it is clear that RS(α) is an everywhere defined linear transformation on B(E). The

boundedness of RS(α) can be proved by the closed graph theorem.

Given a B(X)-valued entire function S(z), we denote ρS = {z ∈ C : S(z)−1 ∈ B(X)}. Then,

the preceding theorem implies that if S(z) is an associated function of B(E), RS(z) is a bounded

linear operator for all z ∈ ρS . Also it is satisfying the following resolvent identity

RS(α)−RS(β) = (α− β)RS(α)RS(β) for any α, β ∈ ρS . (5.4.3)

Note that if the associated function S(z) is Φ(X)-valued entire function, then ρS = C \D, where

D is a discrete set. For example, we can consider E+(z) and E−(z). The next theorem gives a

converse result of the previous theorem.

Theorem 5.4.4. Let B(E) be a vector valued de Branges space corresponding to the de Branges

operator E(z) = (E−(z), E+(z)) and S(z) be a B(X)-valued entire function. Suppose Kα(α) is

invertible for some number α ∈ C and for every f ∈ B(E)

f(z)− S(z)S(α)−1f(α)

z − α
∈ B(E).

Then (5.4.1) holds.
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Proof. Suppose f ∈ B(E), then E−1
+ f ∈ H2

X(C+) and E−1
− f ∈ H2

X(C+)
⊥, which enforce

that
E−1

+ f

ρi
∈ H2

X(C+) and
E−1

− f

ρ−i
∈ H2

X(C+)
⊥. Also f(z)−S(z)S(α)−1f(α)

z−α ∈ B(E) implies that

E−1
+

f(z)−S(z)S(α)−1f(α)
z−α ∈ H2

X(C+) and E−1
−

f(z)−S(z)S(α)−1f(α)
z−α ∈ H2

X(C+)
⊥. Now, assume

g(z) = E−1
+ (z)[f(z)− S(z)S(α)−1f(α)] and h(z) = E−1

− (z)[f(z)− S(z)S(α)−1f(α)]. Thus

g(z)

ρi(z)
=
E−1

+ (z)[f(z)− S(z)S(α)−1f(α)]

ρi(z)

=
(z − α)

ρi(z)

E−1
+ (z)[f(z)− S(z)S(α)−1f(α)]

z − α
.

This implies g
ρi

∈ H2
X(C+) as z−α

ρi(z)
∈ H∞ and E−1

+
f(z)−S(z)S(α)−1f(α)

z−α ∈ H2
X(C+). Now, we

have g
ρi
,
E−1

+ f

ρi
∈ H2

X(C+). Thus
E−1

+ S

ρi
S(α)−1f(α) ∈ H2

X(C+) for all f ∈ B(E). Since {f(α) :

f ∈ B(E)} = rngKα(α) and Kα(α) is invertible,
E−1

+ S

ρi
u ∈ H2

X(C+) for all u ∈ X. Similarly, it

can be proved that
E−1

− S

ρ−i
S(α)−1f(α) ∈ H2

X(C+)
⊥ for all f ∈ B(E). Thus

E−1
− S

ρ−i
u ∈ H2

X(C+)
⊥

for all u ∈ X.

At this point, we can conclude a result regarding the invariance of vector valued de Branges spaces

under the generalized backward shift operator. We write the result as a theorem below, whose proof

is a particular case of the previous two theorems.

Theorem 5.4.5. Suppose B(E) is a vector valued de Branges space corresponding to the de

Branges operator E(z) = (E−(z), E+(z)). Then B(E) is invariant under the generalized

backward shift operator Rα for all α ∈ C if

E−1
+

ρi
u ∈ H2

X(C+) and
E−1

−
ρ−i

u ∈ H2
X(C+)

⊥ for all u ∈ X.

Conversely, if there exists a number α ∈ C is such that Kα(α) is inertible and RαB(E) ⊆ B(E),
then

E−1
+

ρi
u ∈ H2

X(C+) and
E−1

−
ρ−i

u ∈ H2
X(C+)

⊥ for all u ∈ X.

Now, the following proposition connects associated functions of B(E) and the multiplication

operator T in terms of closed linear relations on B(E). A linear relation from B(E) to B(E) is

nothing but a linear subspace of B(E)×B(E). More details about linear relations can be found in

[18].

Proposition 5.4.6. Let B(E) be a vector valued de Branges space corresponding to the de Branges

operator E(z) = (E−(z), E+(z)) and S(z) is a Φ(X)-valued entire function associated to it. Then

there exists a closed linear relation T on B(E) such that T ⊆ T and the following identity holds

(T − αI)−1f(z) = RS(α)f(z) for all f ∈ B(E) and α ∈ ρS .

Proof. Since S(z) is a Φ(X)-valued entire function and associated with B(E), there exists a

discrete set D ⊂ C such that ρS = C \ D. Also, RS(α) is a bounded linear operator on

B(E) for all α ∈ ρS and satisfies the resolvent identity (5.4.3) for all α, β ∈ ρS . Then, due
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to Proposition 1.2.9 in [18], there exists a closed linear relation T in B(E) such that ρS ⊆ ρ(T )

and (T − αI)−1 = RS(α) for all α ∈ ρS . Now, to show that T ⊆ T , we only need to show that

(T− αI)−1 ⊆ RS(α). Observe that if f ∈ rng(T− αI), then f(α) = 0. Thus

RS(α)f(z) =
f(z)

z − α
= (T− αI)−1f(z).

Remark 5.4.7. In the last proposition, the closed linear relation T is proper if and only if a linear

manifold M exists in X such that S(z)u ∈ B(E) for all u ∈ M . This can easily be proved by

using Lemma 1.1.6 in [18].

We conclude this section with the following proposition, which observes that if S(z) is an

associated function of B(E0), then N(z)S(z) is an associated function of B(E). The notations

and proof of this proposition follow from Theorem 5.3.6 and Theorem 5.4.3.

Proposition 5.4.8. Let B(E), B(E0), and N(z) be as in Theorem 5.3.6. S(z) is a B(X)-valued

entire function such that

(E0
+)

−1S

ρi
u ∈ H2

X(C+) and
(E0

−)
−1S

ρ−i
u ∈ H2

X(C+)
⊥ for all u ∈ X.

Then the following also holds

E−1
+ NS

ρi
u ∈ H2

X(C+) and
E−1

− NS

ρ−i
u ∈ H2

X(C+)
⊥ for all u ∈ X.

5.5 Connection with operator nodes

In this section, we recall the idea of operator nodes and establish a connection with the vector

valued de Branges spaces B(E). A comprehensive study of operator nodes can be found in [20],

and the connection with de Branges spaces with matrix valued reproducing kernels can be found

in [11]. Suppose H and G are two separable Hilbert spaces and A ∈ B(H), T ∈ B(H,G), and J

is a signature operator in B(G), that is,

J = J∗ = J−1.

Then, the set of these Hilbert spaces and operators is called an operator node if

A−A∗ = iT ∗JT

and is denoted as

Θ =

(
A T J

H G

)
.
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Here, H is called interior space, and G is called exterior space. Also, A is the basic operator, T is

the canal operator, and J is the directing operator. The operator node Θ is called simple if

∩∞
n=0 ker(TA

n) = {0}

and is called dissipative if J = I . The characteristic function of the operator node Θ is the operator

valued function

WΘ(z) = IG + izT (IH − zA)−1T ∗J for all z ∈ ZA.

Theorem 5.5.1. Let E(z) = (E−(z), E+(z)) is a de Branges operator such that E+(0) =

E−(0) = I and F = E−1
+ E−. Then, F is the characteristic operator function of the simple,

dissipative operator node

Θ =

(
RE+(0) T I

B(E) X

)
,

where T is defined by Tf =
√
2πf(0) for all f ∈ B(E).

Proof. Due to (5.4.2), it is clear that RE+(0) is a bounded operator on B(E), and since B(E) is a

RKHS, T is also a bounded operator from B(E) to X. Now, for every f, g ∈ B(E), using Cauchy

integral formula, we can show that

⟨RE+(0)f, g⟩B(E) − ⟨f,RE+(0)g⟩B(E)

=

∫ ∞

−∞
⟨E−1

+ (t)
f(t)− E+(t)f(0)

t
, E−1

+ (t)g(t)⟩X dt

−
∫ ∞

−∞
⟨E−1

+ (t)f(t), E−1
+ (t)

g(t)− E+(t)g(0)

t
⟩X dt

= iπ⟨f(0), g(0)⟩X + iπ⟨f(0), g(0)⟩X
= 2iπ⟨f(0), g(0)⟩X
= ⟨iT ∗Tf, g⟩B(E).

Thus, RE+(0) − (RE+(0))
∗ = iT ∗T , which implies Θ is an operator node. Now, suppose f ∈

∩∞
n=0 ker(T (RE+(0))

n). Then a simple calculation shows that f (n)(0) = 0 for all n, which

implies ∩∞
n=0 ker(T (RE+(0))

n) = {0}. Thus, Θ is a simple operator node. Now, consider Ω =

{z ∈ C : E+(z) is invertible}. Then, for any z ∈ Ω, we can have the following inverse

[I − zRE+(0)]
−1 = [I + zRE+(z)]. (5.5.1)

Now, a straightforward calculation shows the following identity

WΘ(z) = I + izT (I − zRE+(0))
−1T ∗ = E−1

+ (z)E−(z) for all z ∈ Ω.
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An operator node

Θ =

(
A T J

H G

)
.

is said to be a Volterra node if the basic operator A is a Volterra operator (that is, A is compact and

has the spectrum {0}) and the canal operator T is compact. Given an operator A ∈ B(X), recall

that the real and imaginary parts of this operator are respectively

A+A∗

2
and

A−A∗

2i
.

We end this section by mentioning a corollary of the previous theorem, which deals with the case

when the operator node connected with B(E) is a Volterra node.

Corollary 5.5.2. If in the setting of Theorem 5.5.1, we assume that E+(z) is invertible for all

z ∈ C, and K0(0) is a compact operator, then the operator node

Θ =

(
RE+(0) T I

B(E) X

)
,

is a Volterra node.

Proof. We need to show that RE+(0) is a Volterra operator and T is a compact operator. Due

to (5.5.1), it is clear that the spectrum of RE+(0) is {0}. Since TT ∗ = 2πK0(0) and K0(0) is

compact, T is also a compact operator. Then, the imaginary part of the basic operator RE+(0) is
T ∗T
2 , which is compact. Since a bounded operator on a Hilbert space is a Volterra operator, if its

spectrum contains only zero and its imaginary part is compact (see [20], Theorem 10.1), RE+(0)

is a Volterra operator.
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Chapter 6

de Branges matrices

In this chapter, we deal with de Branges spaces of Cn-valued entire functions based on an n ×
2n matrix valued entire function E(z) = [E−(z) E+(z)], which are discussed in Section 1.1.

This chapter aims to extend the concept of de Branges matrices introduced by L. Golinskii and I.

Mikhailova in [44] to any finitem×m order wherem = 2n. We shall discuss these matrices along

with the theory of de Branges spaces of Cn-valued entire functions and their associated functions.

Now, we briefly explain the contents of this chapter. In the first section, we recall some families of

matrix valued analytic functions, which will be used throughout this chapter. The second section

discusses a factorization of matrix valued meromorphic functions. The third section describes the

extended definition of de Branges matrices, their real representation, and a few examples. Finally,

in the fourth section, these matrices are parametrized using the Smirnov maximum principle for

matrix valued functions.

6.1 Some families of matrix valued analytic functions

In this section, we revisit some results concerning matrix valued holomorphic functions that will

be utilized in the later sections. Although these results can be found in [11], we include them here

for the convenience of our readers. First, we recall some well-known classes of matrix valued

holomorphic functions.

Hardy Hilbert spaces: H2
n×n denotes the class of n×nmatrix valued functions f(z) holomorphic

in C+ and satisfying

||f ||22 = supy>0

∫ ∞

−∞
trace{f(x+ iy)∗f(x+ iy)}dx <∞.

H2
n denotes the same class for Cn-valued holomorphic functions in C+, that is, H2

n = H2
n×1. It is

known that these classes are Hilbert spaces.

Carathéordory class: Cn×n denotes the class of n×nmatrix valued functions f(z) holomorphic

in C+ such that the real part of f is positive semi-definite for all z ∈ C+, that is,

Re f(z) =
f(z) + f(z)∗

2
⪰ 0 for all z ∈ C+.

A function f(z) ∈ Cn×n if and only if it can be represented as the following integral form

f(z) = iQ− izP +
1

πi

∫ ∞

−∞

{
1

x− z
− x

1 + x2

}
dσ(x), (6.1.1)
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where Q = Q∗, P ⪰ 0 are n × n complex matrices and σ(x) is a nondecreasing n × n matrix

valued function on R such that
∫∞
−∞

d(trace σ(x))
1+x2 <∞.

Smirnov class: N n×n
+ denotes the class of n × n matrix valued functions f(z) holomorphic in

C+ such that it can be represented as

f(z) = h(z)−1g(z),

where g(z) is an n × n matrix valued bounded holomorphic function in C+ and h(z) is a scalar

valued bounded outer function in C+. This class is closed under addition and suitable matrix

multiplication. The Smirnov maximum principle (see [11], Theorem 3.59), which will be utilized

in the final section, is one of the important properties of this class.

Additionally, Sn×n
in denotes the class of n × n matrix valued functions f(z) holomorphic in C+

such that

||f(z)|| ≤ 1 for all z ∈ C+,

and the corresponding boundary function is unitary almost everywhere on R, that is,

f(x)f(x)∗ = In for a.e. x ∈ R.

Suppose J is a signature matrix of order m, that is, J = J∗ = J−1. Consider the orthogonal

projection matrices

P =
Im + J

2
and Q =

Im − J

2
.

We denote P (J), the family of m × m matrix valued meromorphic functions A(z) in C+ such

that A(z)∗JA(z) ⪯ J , where A(z) is holomorphic. Now, if A ∈ P (J) and A(x)∗JA(x) = J

for almost every x ∈ R, we call A to be J-inner. We denote the family of m×m J-inner matrix

valued functions as U(J). If A ∈ P (J) the corresponding Potapov-Ginzburg transform is given

by

PG(A)(z) = [PA(z) +Q] [P +QA(z)]−1 = [P −A(z)Q]−1[A(z)P −Q].

Note that A ∈ U(J) if and only if PG(A) ∈ Sm×m
in .

6.2 Factorization of matrix valued meromorphic functions

In this section, we discuss a factorization of matrix valued meromorphic functions in C.

Specifically, we decompose multiple matrix valued meromorphic functions to identify one

common factor that encompasses all the poles of the original functions. Suppose F (z) is an

n × n matrix valued meromorphic function in C and detF (z) ̸≡ 0. A point z0 ∈ C is a pole of

F (z) if it is a pole of one of its entries, and z0 is a zero of F (z) if it is a pole of F (z)−1. For any

z0 ∈ C, F (z) can be decomposed into the following form, using the similar method described in

[38, Sections V I.2, V I.3]:

F (z) =M(z)diag((z − z0)
r1 . . . (z − z0)

rn)N(z),
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where M(z) and N(z) are analytic and invertible at z0 and {r1, r2, . . . , rn} is an ascending

sequence of integers. When rj < 0, the numbers |rj | are called the partial pole multiplicities

of F (z) at z0, and when rj > 0, the numbers rj are called the partial zero multiplicities of F (z) at

z0. Now, we recall the ideas of eigenvector and pole vector of F (z) at any point z0 ∈ C. A more

detailed discussion of them and the other related results can be found in [17] (Chapter 2, Section

1). Also, a factorization of meromorphic matrix-valued functions of finite order can be found in

[69].

A nonzero vector u1 ∈ Cn is called an eigenvector of F (z) at the zero z0 if there exist vectors

{u2, u3, . . .} ⊂ Cn such that F (z)
∑∞

j=0 uj+1(z − z0)
j is analytic at z0 and has a zero at z0. If

this zero has order at least m, then u1, u2, . . . , um is called a zero chain of length m of F (z) at z0.

It can be proved that the number of independent eigenvectors at z0 equals the number of partial

zero multiplicities. Furthermore, for a given eigenvector u1, the maximal length of a zero chain

starting at u1 corresponds to one of the partial zero multiplicities.

A nonzero vector v1 ∈ Cn is called a pole vector of F (z) at the pole z0 if there exist vectors

{v2, v3, . . .} ⊂ Cn such that F (z)−1
∑∞

j=0 vj+1(z − z0)
j is analytic at z0 and has a zero at z0. If

this zero has order at least l, then v1, v2, . . . , vl is called a pole chain of length l of F (z) at z0. It

can be proved that the number of independent pole vectors at z0 equals the number of partial pole

multiplicities. Furthermore, for a given pole vector v1, the maximal length of a pole chain starting

at v1 corresponds to one of the partial pole multiplicities.

The following theorem is a matrix analog of Theorem 19 in the appendix of [31], and the proof

can be done similarly.

Theorem 6.2.1. Let {Pk}∞k=1 be a sequence of orthogonal projection matrices of order n×n and

{zk}∞k=1 be a sequence of nonzero complex numbers such that |zk| → ∞ as k → ∞. Then

P (z) = lim
k→∞

exp(
z

zk
Pk + . . .+

1

k

zk

zkk
Pk)(In − z

zk
Pk) . . .

exp(
z

z1
P1)(In − z

z1
P1) (6.2.1)

converges uniformly in any bounded set with respect to the operator norm and P (z) is an n × n

matrix valued entire function. Also, detP (z) ̸= 0 for all z ∈ C \ {zk}∞k=1.

The following theorem gives a factorization of a meromorphic matrix valued function.

Theorem 6.2.2. Let F (z) be an n×n matrix valued meromorphic function such that detF (0) ̸=
0. Then

G(z) = P (z) F (z),

where P (z) is an n × n matrix valued entire function of the form (6.2.1), and G(z) is an n × n

matrix valued entire function.

Proof. If F (z) has no pole, the theorem follows with P (z) = In and G(z) = F (z) for all z ∈ C.

Otherwise, let z1 ̸= 0 be a pole of F (z) nearest to the origin. We denote N1 as the linear span

of the pole vectors of F (z) at z = z1, and P1 is the orthogonal projection on N1. Suppose
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dimP1 = r ≤ n and P1 =

[
Ir 0

0 0

]
with respect to some orthonormal basis. Now, define

G̃1(z) = (In − z

z1
P1) F (z). (6.2.2)

We denote the partial pole multiplicities of F (z) at z = z1 by |k1|, . . . , |Kl| (l ≤ n). We now

claim that the partial pole multiplicities of G̃1(z) at z = z1 are given by the nonzero numbers

among |k1 + 1|, . . . , |kl + 1|. Now, suppose that ṽ1, . . . , ṽm is a pole chain of G̃1(z) at z1, that is

ṽ1 ̸= 0 and there exist vectors ṽm+1, . . . such that

G̃1(z)
−1

∞∑
j=1

ṽj(z − z1)
j−1 =

∞∑
j=m

ψj(z − z1)
j . (6.2.3)

Now, from equation (6.2.2), we have

G̃1(z)
−1 = F (z)−1(In − z

z1
P1)

−1 = F (z)−1

[
z1(z1 − z)−1Ir 0

0 In−r

]
.

Now, we write the vectors ṽj = ṽj1 + ṽj2 as the orthogonal sum, where ṽj1 ∈ N1 and ṽj2 ∈ N⊥
1 .

Then from (6.2.3), we can write

∞∑
j=m

ψj(z − z1)
j = F (z)−1{

∞∑
j=1

−z1ṽj1(z − z1)
j−2 +

∞∑
j=1

ṽj2(z − z1)
j−1}

= F (z)−1(z − z1)
−1{−z1ṽ11 +

∞∑
j=1

(−z1ṽ(j+1)1 + ṽj2)(z − z1)
j}.

Here ṽ11 ̸= 0 since otherwise −z1ṽ21 + ṽ12 would be a pole vector of F (z) at z1, which can be

true only if ṽ12 = 0. But if both ṽ11 = 0 and ṽ12 = 0 then ṽ1 = 0, contradicting the assumption

ṽ1 ̸= 0. Thus it follows that the vectors

v1 = z1ṽ11, v2 = −z1ṽ21 + ṽ12, . . . , vm+1 = −z1ṽ(m+1)1 + ṽm2

form a pole chain of length m+ 1 of F (z) at z1.

Conversely, let v1, v2, . . . , vm+1 (m ≥ 1) is a pole chain of F (z) at z1. Then v1 ̸= 0 and

F (z)−1
∞∑
j=1

vj(z − z1)
j−1 =

∞∑
j=m+1

ϕj(z − z1)
j .

Since F (z)−1 = G̃1(z)(In − z
z1
P1), we have

∞∑
j=m+1

ϕj(z − z1)
j = G̃1(z)

−1{
∞∑
j=1

− 1

z1
vj1(z − z1)

j +

∞∑
j=1

vj2(z − z1)
j−1}

= G̃1(z)
−1(z − z1){v12 +

∞∑
j=1

(− 1

z1
vj1 + v(j+1)2)(z − z1)

j−1}.
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Since v1 belongs to N1 , v12 = 0. Thus we have a pole chain

ṽ1 = − 1

z1
v11 + v22, . . . , ṽm = − 1

z1
vm1 + v(m+1)2

of length m of G̃1(z) at z1. Due to the correspondence between the partial pole multiplicities and

the lengths of the pole chains, the claim follows. Next we define

G1(z) = exp(
z

z1
P1)(In − z

z1
P1)F (z).

Clearly, G1(z) has the same partial pole multiplicities as G̃1(z). Now, if G1(z) is entire, consider

P (z) = exp( z
z1
P1)(In − z

z1
P1) and G(z) = G1(z). Otherwise, let z2 be a number nearest to the

origin such that G1(z) has a pole at z2 and continue inductively. If the number of poles of F (z)

is finite, this process will stop after finite steps, and we will get the desired factorization. Now,

suppose the number of poles of F (z) is infinite, that is, {zk}∞k=1 such that |zk| → ∞ as k → ∞.

Then, using the previous theorem, we conclude that a matrix valued entire function P (z) of the

form (6.2.1) exists. Also, it can be shown that G(z) = limk→∞Gk(z) converges uniformly on

every bounded set with respect to the operator norm. This completes the proof.

The following theorem is an extended version of the previous theorem. Here, we simultaneously

factorize two matrix valued meromorphic functions in C.

Theorem 6.2.3. Let A(z) and B(z) be two n× n matrix valued meromorphic functions such that

detA(0) ̸= 0 and detB(0) ̸= 0. Then there exists an n × n matrix valued entire function P (z)

of the form (6.2.1) such that

Ã(z) = P (z)A(z); B̃(z) = P (z)B(z),

where Ã(z) and B̃(z) are n× n matrix valued entire functions.

Proof. Suppose z1 is a nonzero complex number nearest to the origin at which at least one ofA(z)

or B(z) has a pole. We denote N1(A; z1) and N1(B; z1) as the linear span of the pole vectors of

A(z) and B(z), respectively, at z1. According to our consideration, at least one of these two sets

is nonempty. Now, we consider N1 to be the linear span of the union of N1(A; z1) and N1(B; z1),

and P1 is the orthogonal projection matrix on N1. Suppose dimP1 = r ≤ n and P1 =

[
Ir 0

0 0

]
with respect to some orthonormal basis. For the definiteness, let us assume that N1(A; z1) is

nonempty, that is, A(z) has pole at z1. Now, define

Ã1(z) = (In − z

z1
P1) A(z). (6.2.4)

We denote the partial pole multiplicities of A(z) at z = z1 by |k1|, . . . , |Kl| (l ≤ n). We now

claim that the partial pole multiplicities of Ã1(z) at z = z1 are given by the nonzero numbers

among |k1 + 1|, . . . , |kl + 1|. Since N1(A; z1) ⊆ N1, the previous claim, along with its converse,
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can be proved as in the previous theorem. Now, we define

A1(z) = exp(
z

z1
P1)(In − z

z1
P1)A(z).

Similarly, we define

B1(z) = exp(
z

z1
P1)(In − z

z1
P1)B(z).

Note that if N1(B; z1) is nonempty, the above definition of B1(z) can be justified as in the case of

A1(z) and the change of partial pole multiplicities between B1(z) and B(z) can be observed. If

N1(B; z1) is empty, in that case, the definition of B1(z) can still be justified because there is no

difference of poles and partial pole multiplicities between B1(z) and B(z). Now, if we continue

this process inductively, the desired factorizations can be obtained as in the previous theorem.

6.3 de Branges matrices and examples

This section extends the idea of de Branges matrices introduced by Golinskii and Mikhailova in

[44], to study them in connection with de Branges spaces of vector valued entire functions. Some

examples of de Branges matrices are also discussed here. We consider two m × m (m = 2n)

signature matrices jm and Jm satisfying the condition M∗JmM = jm, where

jm =

[
In 0

0 −In

]
; Jm =

[
0 iIn

−iIn 0

]
; M =

1√
2

[
iIn −iIn
In In

]
. (6.3.1)

Let

A(z) =

[
a11(z) a12(z)

a21(z) a22(z)

]
(6.3.2)

be an m×m matrix valued meromorphic function in C+ and

U(z) = A(z)M =

[
u11(z) u12(z)

u21(z) u22(z)

]
, (6.3.3)

where the entries art(z) and urt(z) are of size n×n. The following lemma describes the intimate

connections between the entries of the Jm-contractive matrix valued meromorphic functions in

C+.

Lemma 6.3.1. Let A(z) be an element of the class P (Jm). Then the following implications hold:

1. U(z)∗JmU(z) ≤ jm for all z ∈ C+, where A(z) is holomorphic.

2. u12(z) is invertible for all z ∈ C+, where A(z) is holomorphic.

3. The n × n matrix valued functions Φ(z) = −iu22(z)u−1
12 (z) ∈ Cn×n and χ(z) =

u−1
12 (z)u11(z) ∈ Sn×n.

4. The n× n matrix valued function u−1
12
ρi

∈ H2
n×n.

Moreover, if A(z) belongs to U(Jm), then
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(5) The n× n matrix valued function χ(z) = u#12(z){u
#
11(z)}−1 ∈ Sn×n

in .

(6) The n× n matrix valued function −i{u#
11}−1

ρi
∈ H2

n×n.

Proof. The proof of this lemma is similar to Lemma 4.35 in [11].

Now, we extend the definition of de Branges matrices for m ×m matrix valued functions, which

was hinted in [10] (Section 7).

Definition 6.3.2. Let A(z) belongs to the class U(Jm). Then A(z) is said to be a de Branges

matrix if the n× n matrix valued function

Φ(z) = −iu22(z)u−1
12 (z) = [a22(z)− ia21(z)] [a11(z) + ia12(z)]

−1 (6.3.4)

is holomorphic in R.

Example 6.3.3. Let A(z) belong to the class U(Jm) and holomorphic in R. Then A(z) is a de

Branges matrix. Indeed, let µ ∈ R be a pole of Φ(z). Then a11(µ) + ia12(µ) is not invertible,

as A(z) is holomorphic at µ. Thus det(a11(µ) + ia12(µ)) = 0 and det(a∗11(µ) − ia∗12(µ)) = 0.

Also, since A(z) is Jm-inner, we have

a11(µ)a
∗
12(µ) = a12(µ)a

∗
11(µ),

which implies that det(a11(µ)a∗11(µ) + a12(µ)a
∗
12(µ)) = 0. Now, due to Minkowski determinant

theorem, we conclude that det(a11(µ)a∗11(µ)) = 0 and det(a12(µ)a
∗
12(µ)) = 0. But this is

contradicting the fact that A(µ) is Jm-unitary.

Note that the previous example implies that the elementary Blaschke-Potapov factors (see, [11],

chapter 4.2) of first and second kind are de Branges matrices.

Recall that an n×nmatrix valued entire function S(z) is said to be associated with the de Branges

space B(E) of Cn-valued entire functions if detS(w) ̸= 0 for some w ∈ C and for any f ∈ B(E),

f(z)− S(z)S(w)−1f(w)

z − w
∈ B(E).

The following theorem is a matrix version of Theorem 5.4.3 and Theorem 5.4.4 from chapter 5.4.

Theorem 6.3.4. Let B(E) be a de Branges space corresponding to the n×2nmatrix valued entire

function of the form (1.1.1), and S(z) is an n× n matrix valued entire function such that

E−1
+ S

ρi
∈ H2

n×n and
E−1

− S

ρ−i
∈ (H2

n×n)
⊥. (6.3.5)

Then E−1
+ S and E−1

− S are holomorphic in C+ and C− respectively. Moreover, if detS(w) ̸= 0

for some w ∈ C, the linear transformation RS(w) : B(E) → B(E) defined by

(RS(w)f)(z) =
f(z)− S(z)S(w)−1f(w)

z − w
for f ∈ B(E) (6.3.6)
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is everywhere defined bounded linear operator on B(E).
Conversely, suppose detKβ(β) ̸= 0 for some β ∈ C and B(E) is invariant under RS(w). Then

(6.3.5) holds.

Now, in the following theorem, we describe a representation of de Branges matrices using the

factorization of matrix valued meromorphic functions discussed in the preceding section. This

representation connects a de Branges matrix to a de Branges space and its associated function.

Theorem 6.3.5. Let A(z) be a de Branges matrix of the form (6.3.2) and U(z) = A(z)M is of

the form (6.3.3). Then the following implications hold:

1. A(z) can have the following representation

A(z) =

[
S(z)−1 0

0 S(z)−1

][
ã11(z) ã12(z)

ã21(z) ã22(z)

]
, (6.3.7)

where ãrt(z) are n× n matrix valued entire functions and S(z) is of the form (6.2.1).

2. The entire n× 2n matrix valued function E(z) = [E−(z) E+(z)], where

E+(z) = ã11(z) + iã12(z) and E−(z) = ã11(z)− iã12(z), (6.3.8)

generates a de Branges space B(E).

3. S(z) is an associated function of the de Branges space B(E).

Proof. Due to Theorem 6.2.3, the existence of the n × n matrix valued entire function S(z) is

evident. Now, (1) follows after letting ãrt(z) = S(z) art(z) for r, t ∈ {1, 2}. Since

E+(z) = i
√
2S(z)u12(z) and E−(z) = −i

√
2S(z)u11(z),

(2) follows from the assertions (2) and (5) of Lemma 6.3.1. To show that S(z) is an associated

function of the de Branges space B(E), it is sufficient to show that

E−1
+ S

ρi
∈ H2

n×n and
S#{E#

−}−1

ρi
∈ H2

n×n.

Now, (3) follows from the assertions (4) and (6) of Lemma 6.3.1.

We conclude this section with another example of de Branges matrices derived from a particular

class of compact operators in a separable Hilbert space X in terms of their characteristic matrix

functions. The characteristic matrix functions are crucial in the theory of nonselfadjoint operators

in Hilbert spaces. A detailed study of them can be found in [20]. We consider K0 as the family of

compact operators T in X having the following additional conditions:

1. The imaginary part T−T ∗

2i of T is of rank m = 2n.

2. T is a non-dissipative operator.
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3. T has no real eigenvalues.

Note that a similar family of operators was considered in [47] to deal with a functional model

problem in connection with de Branges spaces of scalar valued entire functions. Observe that

every operator T ∈ K0 is a completely nonselfadjoint operator in X. Otherwise, it will contradict

the last condition in the definition of K0 .

Example 6.3.6. Let T ∈ K0 be any operator, and the signature matrix Jm = (Jrt) as defined

earlier. Then we have the following representation (see, [21], Chapter I)

T − T ∗

i
u =

m∑
r,t=1

⟨u, ur⟩XJrt ut, (6.3.9)

where u, u1, . . . , um ∈ X. Also, the characteristic matrix function of T is given by

WT (z) = Im + iz(⟨(IX − zT )−1ur, ut⟩X)Jm. (6.3.10)

We claim that WT (z) is a de Branges matrix. Since T is a compact operator, the characteristic

matrix function WT (z) is meromorphic in C. Also, it can be proved that WT (z) belongs to

U(Jm). We consider

WT (z) =

[
w11(z) w12(z)

w21(z) w22(z)

]
and Φ(z) = [w22(z)− iw21(z)] [w11(z) + iw12(z)]

−1,

where wrt are matrices of order n × n for r, t ∈ {1, 2}. Due to condition (3) in the definition of

K0, we conclude thatWT (z) is holomorphic in R. Thus, as in example 6.3.3, Φ(z) is holomorphic

in R. This justifies our claim.

6.4 Integral representation of Φ(z) and parametrization of de
Branges matrices

In this section, we discuss an integral representation of the n×nmatrix valued function Φ(z) given

by (6.3.4) corresponding to a de Branges matrix of the form (6.3.2), which has a representation of

the form (6.3.7). Additionally, we derive a parametrization of de Branges matrices based on the

integral representation of Φ(z). Since Φ(z) ∈ Cn×n, for all z ∈ C+, it has the following integral

representation

Φ(z) = iQ− izP +
1

πi

∫ ∞

−∞

{
1

x− z
− x

1 + x2

}
dσ(x), (6.4.1)

where Q = Q∗, P ⪰ 0 are n × n complex matrices and σ(x) is a nondecreasing n × n matrix

valued function on R such that
∫∞
−∞

d(trace σ(x))
1+x2 < ∞. We find the measure dσ involved in the

equation (6.4.1). First we consider the matrix valued function

A#(z) = A(z)∗ = Jm A(z)−1Jm =

[
a#11(z) a#21(z)

a#12(z) a#22(z)

]
, (6.4.2)
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which gives the inverse of A(z) as

A(z)−1 =

[
a#22(z) −a#12(z)
−a#21(z) a#11(z)

]
. (6.4.3)

Due to (6.4.3), Φ(z) can be rewritten as

Φ(z) = [a#11(z) + ia#12(z)]
−1[a#22(z)− ia#21(z)], (6.4.4)

and

Φ#(z) = [a#11(z)− ia#12(z)]
−1[a#22(z) + ia#21(z)]. (6.4.5)

Therefore, we have

Φ(z) + Φ#(z)

2
= [a#11(z)− ia#12(z)]

−1[a11(z) + ia12(z)]
−1

= S#(z){E#
− (z)}−1E−1

+ (z)S(z), (6.4.6)

and
Φ(z)− Φ#(z)

2i
= iS#(z){E#

− (z)}−1E−1
+ (z)S(z)− iΦ(z). (6.4.7)

We also obtain

[a11(z) + ia12(z)]
∗ [Φ(z) + Φ(z)∗] [a11(z) + ia12(z)]

=
[
In −iIn

]
[Jm −A(z)∗JmA(z)]

[
In

iIn

]
+ 2In. (6.4.8)

Thus for every z ∈ C, where A(z) is holomorphic, we have

Re(Φ(z))


≥ S(z)∗E−∗

+ (z)E−1
+ (z)S(z), if z ∈ C+,

= S(z)∗E−∗
+ (z)E−1

+ (z)S(z), if z ∈ R,
≤ S(z)∗E−∗

+ (z)E−1
+ (z)S(z), ifz ∈ C−.

(6.4.9)

Since Φ(z) is holomorphic on R, due to (6.4.9), dσ(x) = S(x)∗E−∗
+ (x)E−1

+ (x)S(x)dx, and for

all z ∈ C+

Φ(z) = iQ− izP +
1

πi

∫ ∞

−∞

{
1

x− z
− x

1 + x2

}
S(x)∗E−∗

+ (x)E−1
+ (x)S(x)dx (6.4.10)

Also, due to (6.4.6), we get the following representation of Φ(z) for all z ∈ C−

Φ(z) = iQ− izP +
1

πi

∫ ∞

−∞

{
1

x− z
− x

1 + x2

}
S(x)∗E−∗

+ (x)E−1
+ (x)S(x)dx

+ S#(z){E#
− (z)}−1E−1

+ (z)S(z). (6.4.11)
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Given a de Branges matrix of the form (6.3.7), we can recover ãrt for r, t ∈ {1, 2} in terms of

E+(z), E−(z), S(z) and Φ(z). It is immediate that

ã11(z) =
E+(z) + E−(z)

2
and ã12(z) =

E+(z)− E−(z)

2i
. (6.4.12)

Due to (6.3.4), we have

ã22(z)− iã21(z) = S(z)Φ(z)S(z)−1[ã11(z) + iã12(z)],

and due to (6.4.4), we have

ã22(z) + iã21(z) = S(z)Φ#(z)S(z)−1[ã11(z)− iã12(z)],

which give together

ã22(z) = S(z)

[
Φ(z) + Φ#(z)

2

]
S(z)−1ã11(z)

− S(z)

[
Φ(z)− Φ#(z)

2i

]
S(z)−1ã12(z),

and

ã21(z) = −S(z)
[
Φ(z) + Φ#(z)

2

]
S(z)−1ã12(z)

− S(z)

[
Φ(z)− Φ#(z)

2i

]
S(z)−1ã11(z).

Now using (6.4.6) and (6.4.7) in the previous two equations, we finally get

ã22(z) = S(z)S#(z){E#
− (z)}−1E−1

+ (z)E−(z) + iS(z)Φ(z)S(z)−1ã12(z), (6.4.13)

and

ã21(z) = −iS(z)S#(z){E#
− (z)}−1E−1

+ (z)E−(z) + iS(z)Φ(z)S(z)−1ã11(z). (6.4.14)

We conclude this chapter with the following theorem, which describes a parametrization of de

Branges matrices under consideration.

Theorem 6.4.1. Given a de Branges matrix of the form (6.3.7), the following conclusions can be

noted

1. The n×2nmatrix valued function E(z) = [E−(z)E+(z)], whereE+(z) = ã11(z)+iã12(z)

and E−(z) = ã11(z)− iã12(z) generates a de Branges space B(E).

2. S(z) is an associated function of the de Branges space B(E).

3. The function Φ(z) of the form (6.3.4) has the integral representation of the form (6.4.10)

in the upper half plane and of the form (6.4.11) in the lower half plane with parameters
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(P,Q) such that P ⪰ 0 and Q = Q∗.

Conversely, given such parameters (P,Q) such that P ⪰ 0 and Q = Q∗ along with a de Branges

space B(E) corresponding to an n × 2n matrix valued entire function E(z) = [E−(z) E+(z)]

with an associated function S(z), we can construct a de Branges matrix of the form (6.3.7).

Proof. One side of the proof immediately follows from the previous discussion. Now, suppose

B(E) be a de Branges space corresponding to an n × 2n matrix valued entire function E(z) =

[E−(z) E+(z)]. Also, S(z) is associated with B(E). The given parameters (P,Q) are such that

P ⪰ 0 and Q = Q∗. From the given information, we construct the function Φ(z) by using

(6.4.10) and (6.4.11). Due to (6.3.5), we conclude that Φ(z) ∈ Cn×n and Φ(z) is holomorphic

on R follows from Theorem 6.3.4. Φ(z) is also satisfying (6.4.6) and (6.4.7). We consider the

following matrix valued function

A(z) =

[
S(z)−1 0

0 S(z)−1

][
ã11(z) ã12(z)

ã21(z) ã22(z)

]
,

where ã11(z), ã12(z) are defined by (6.4.12) and ã21(z), ã22(z) are defined by (6.4.14) and

(6.4.13) respectively. Now, it only remains to show that A(z) belongs to U(Jm). Again, we

consider

W (z) =M∗A(z)M =

[
w11(z) w12(z)

w21(z) w22(z)

]
. (6.4.15)

Observe that A(z) belongs to U(Jm) if and only if W (z) belongs to U(jm). Since Re Φ(z) ⪰ 0

for all z ∈ C+,

w22(z) =
1

2
[In +Φ(z)] [a11(z) + ia12(z)]

is invertible in C+ and almost everywhere on the real line. Thus the Potapov-Ginzburg transform

of W (z) is

PG(W )(z) =

[
w11(z)− w12(z)w22(z)

−1w21(z) w12(z)w22(z)
−1

−w22(z)
−1w21(z) w22(z)

−1

]
. (6.4.16)

Also, W (z) is jm-inner if and only if the Potapov-Ginzburg transform PG(W )(z) belongs to

Sm×m
in . First, we show that W (z) is jm-unitary almost everywhere on R. For this purpose, we

consider for x ∈ R:

W (x)jmW (x)∗ − jm =

[
w11w

∗
11 − w12w

∗
12 − In w11w

∗
21 − w12w

∗
22

w21w
∗
11 − w22w

∗
12 w21w

∗
21 − w22w

∗
22 + In

]
.

Now, for any x ∈ R where detS(x) ̸= 0, using (2.2.1), the following identities can be noted

immediately

w11(x)w11(x)
∗ =

[
In +Φ(x)∗

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In +Φ(x)

2

]
;

w22(x)w22(x)
∗ =

[
In +Φ(x)

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In +Φ(x)∗

2

]
;
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w12(x)w12(x)
∗ =

[
In − Φ(x)

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In − Φ(x)∗

2

]
;

w21(x)w21(x)
∗ =

[
In − Φ(x)∗

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In − Φ(x)

2

]
;

w11(x)w21(x)
∗ = −

[
In +Φ(x)∗

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In − Φ(x)

2

]
;

and

w12(x)w22(x)
∗ = −

[
In − Φ(x)

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In +Φ(x)∗

2

]
.

Now, using (6.4.9), it can be proved that W (z) is jm-unitary almost everywhere on R, that is, for

almost every x ∈ R the following identities hold

w11(x)w11(x)
∗ − w12(x)w12(x)

∗ = In; w21(x)w21(x)
∗ − w22(x)w22(x)

∗ = −In

and

w11(x)w21(x)
∗ − w12(x)w22(x)

∗ = 0.

Here, we only show the calculation for the first identity, and the remaining can be done similarly.

Now, for any x ∈ R where detS(x) ̸= 0 and detE+(x) ̸= 0, we have

w11(x)w11(x)
∗ − w12(x)w12(x)

∗

=

[
In +Φ(x)∗

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In +Φ(x)

2

]
−
[
In − Φ(x)

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In − Φ(x)∗

2

]
=

[
In +Φ(x)∗

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In +Φ(x)

2
− In − Φ(x)∗

2

]
+

[
In +Φ(x)∗

2
− In − Φ(x)

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In − Φ(x)∗

2

]
=

[
In +Φ(x)∗

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
Φ(x) + Φ(x)∗

2

]
+

[
Φ(x) + Φ(x)∗

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗
[
In − Φ(x)∗

2

]
=

[
In +Φ(x)∗

2

]
S(x)−1E+(x)E+(x)

∗S(x)−∗S(x)∗E+(x)
−∗E+(x)

−1S(x)

+ S(x)∗E+(x)
−∗E+(x)

−1S(x)S(x)−1E+(x)E+(x)
∗S(x)−∗

[
In − Φ(x)∗

2

]
=

[
In +Φ(x)∗

2

]
+

[
In − Φ(x)∗

2

]
= In.

Since W (z) is jm-unitary almost everywhere on the real line, the Potapov-Ginzburg transform

PG(W )(z) is unitary on the real line. Now, we will apply Smirnov maximum principle for matrix

valued functions to show that PG(W )(z) ∈ Sm×m
in . Here, we only need to show that PG(W )(z)

belongs to the Smirnov class. It is sufficient to show that the four blocks of PG(W )(z) belong to
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the Smirnov class N n×n
+ . We consider

c(z) = [Φ(z)− In] [Φ(z) + In]
−1.

Since Re Φ(z) ⪰ 0 for all z ∈ C+, we have ||c(z)|| ≤ 1 for all z ∈ C+. Now, the (1, 2) block of

PG(W )(z) is of the form

w12(z)w22(z)
−1 = c(z)

belongs to N n×n
+ as ||c(z)|| ≤ 1 for all z ∈ C+. The (2, 2) block of PG(W )(z) is of the form

w22(z)
−1 = 2E+(z)

−1S(z)[In +Φ(z)]−1

= E+(z)
−1S(z)[In − c(z)]

belongs to N n×n
+ as E+(z)

−1S(z) ∈ N n×n
+ and In − c(z) is bounded. The (1, 1) block of

PG(W )(z) is of the form

w11(z)− w12(z)w22(z)
−1w21(z)

=
1

2

{
[In +Φ#(z)− [In − Φ(z)][In +Φ(z)]−1[In − Φ#(z)]

}
S(z)−1E−(z)

=

{[
Φ(z) + Φ#(z)

2

]
+ [In − Φ(z)][In +Φ(z)]−1

[
Φ(z) + Φ#(z)

2

]}
S(z)−1E−(z)

=
{
In + [In − Φ(z)][In +Φ(z)]−1

}
S#(z){E#

− (z)}−1E−1
+ (z)E−(z)

=[In − c(z)]S#(z){E#
− (z)}−1E−1

+ (z)E−(z)

belongs to N n×n
+ as S#(z){E#

− (z)}−1 ∈ N n×n
+ and E−1

+ (z)E−(z) ∈ Sn×n
in . The (2, 1) block of

PG(W )(z) is of the form

− w22(z)
−1w21(z)

=E−1
+ (z)S(z)[In +Φ(z)]−1[In − Φ#(z)]S(z)−1E−(z)

=E−1
+ (z)S(z)[In +Φ(z)]−1S(z)−1E−(z)

− E−1
+ (z)S(z)[In +Φ(z)]−1Φ#(z)S(z)−1E−(z)

=E−1
+ (z)E−(z)− E−1

+ (z)S(z)[In +Φ(z)]−1[Φ(z) + Φ#(z)]S(z)−1E−(z)

=E−1
+ (z)E−(z)− E−1

+ (z)S(z)[In − c(z)]S#(z){E#
− (z)}−1E−1

+ (z)E−(z).

belongs to N n×n
+ as E−1

+ (z)E−(z) ∈ Sn×n
in , In − c(z) is bounded and E−1

+ (z)S(z),

S#(z){E#
− (z)}−1 belong to N n×n

+ . This completes the proof.

Note that the de Branges matrix that we constructed in the previous theorem from given S(z),

E+(z), andE−(z) is unique subject to the given parameters (P,Q). Now, suppose two de Branges

matrices are

A(z) =

[
S(z)−1 0

0 S(z)−1

][
ã11(z) ã12(z)

ã21(z) ã22(z)

]
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and

B(z) =

[
S(z)−1 0

0 S(z)−1

][
ã11(z) ã12(z)

b̃21(z) b̃22(z)

]

corresponding to the parameters (P,Q) and (P̃ , Q̃) respectively. Due to (6.4.14), we have

b̃21(z)− ã21(z) = S(z)[(P − P̃ ) + z(Q̃−Q)]S(z)−1ã11(z).

Similarly, due to (6.4.13), we have

b̃22(z)− ã22(z) = S(z)[(P − P̃ ) + z(Q̃−Q)]S(z)−1ã12(z).

Thus, the following identity holds

B(z) =

[
In 0

(P − P̃ ) + z(Q̃−Q) In

]
A(z).
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Chapter 7

Conclusions and Future directions

In this chapter, we concisely describe our research conducted in this thesis and indicate some

probable future research scope of our work. This chapter is divided into two sections: the

first includes conclusions of our research work in this thesis, and the second consists of future

directions of the present work.

7.1 Conclusions of the thesis

The research conducted for this thesis has already been described explicitly and divided into

various chapters. The reproducing kernel Hilbert spaces studied in this thesis consist of vector

valued entire functions, and the central space under consideration is de Branges spaces of vector

valued entire functions. A summary of the research conducted in this thesis is as follows:

In Chapter 2, we have observed that the existing de Branges spaces of vector valued entire

functions due to L. de Branges and J. Rovnyak do not generalize Paley-Wiener spaces of vector

valued entire functions. Thus, we introduce new de Branges spaces of vector valued entire

functions based on a pair of Fredholm operator valued functions, which generalize Paley-Wiener

spaces and the existing de Branges spaces of vector valued entire functions. We provide several

examples of the newly constructed de Branges spaces. An isometric isomorphism between the

subspaces Hβ and Hβ is discussed in Lemma 2.4.4. Then, we used this lemma to characterize de

Branges spaces in Theorem 2.5.2.

In Chapter 3, Theorem 3.1.2 describes the parametrization and canonical description of

selfadjoint extensions of the multiplication operator T with an arbitrary domain D. Then, using

eigenfunctions of a selfadjoint extension, we have discussed Kramer sampling property of de

Branges spaces in Theorem 3.1.7. We have studied entire operators with infinite deficiency

indices and proved in Theorem 3.2.3 that a family of these operators is unitarily equivalent to

the multiplication operator T in de Branges spaces of vector valued entire functions. We conclude

this chapter with a discussion of the characteristic function of a completely nonunitary contraction

operator and a way to construct de Branges operators using them.

In Chapter 4, reproducing kernel Hilbert spaces under consideration are constructed from a

B(X)-valued function. By assuming the sampling condition (4.2.2), we have discussed Kramer

sampling representation of the form (4.2.5) of functions in an RKHS H constructed from an

analytic function F : Ω ⊆ C → B(X) in Theorem 4.2.3. We extend a notion of quasi

Lagrange-type interpolation representation (4.3.1) of the Kramer sampling series of functions

in an RKHS of vector valued entire functions. Then we proved in Theorem 4.3.1 that the Kramer

sampling series of functions in an RKHS H of vector valued entire functions can be written as the
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quasi Lagrange-type interpolation series if and only if RzHz ⊆ H for all z ∈ C. This chapter

ends with a discussion of quasi Lagrange-type interpolation series representation of functions in

de Branges spaces of vector valued entire functions. We observed that if the components E+

and E− of a de Branges operator E(z) = (E−(z), E+(z)) do not have any real zeros and the

corresponding de Branges space B(E) is unitarily equivalent to an RKHS H corresponding to a

B(X)-valued entire function F , then every function of the de Branges space can be written as a

quasi Lagrange-type interpolation series. The converse of this result is also discussed in Theorem

4.4.2.

In Chapter 5, we delve deeper into studying various properties of de Branges operators and the

corresponding de Branges spaces. Theorem 5.1.1 modifies the characterization of de Branges

spaces B(E) earlier described in Theorem 2.5.2. We showed that the selfadjoint condition on the

operators E+(β) and E−(β) is not needed; the operators are Fredholm is sufficient. We have

also extended a few results from the theory of de Branges spaces of scalar valued entire functions.

Lemma 5.1.6 shows that the real zeros of the components of a de Branges operator are the same,

and Lemma 5.1.7 shows that Rαf ∈ B(E), where f ∈ B(E), f(α) = 0 and α ∈ C \R or α is not

a real zero of E+ (so too E−). We described a global factorization of Fredholm operator valued

entire functions in Theorem 5.2.2, which are invertible at least at one point. We factorize the

functions into two factors: one contains all the zeros of the original function, and the other factor

is an invertible operator valued function. This factorization provides a connection between the two

de Branges spaces under consideration in Proposition 5.2.3. Theorem 5.3.6 extends another result

from the theory of de Branges spaces of scalar valued entire functions to the present setting using

the factorization result. We also study associated functions of de Branges spaces. A sufficient

and necessary condition for an operator valued entire function to be an associated function of a de

Branges space is described in Theorem 5.4.3 and Theorem 5.4.4, respectively. We conclude this

chapter by discussing operator nodes and their connection with de Branges spaces. Theorem 5.5.1

presents the main results in this direction.

Chapter 6 considers de Branges spaces of Cn-valued entire functions. We extend the definition of

de Branges matrices introduced by L. Golinskii and I. Mikhailova to any finitem×m order where

m = 2n. A factorization of matrix valued meromorphic functions is discussed in Theorem 6.2.2.

Moreover, Theorem 6.2.3 simultaneously factorizes two matrix valued meromorphic functions in

C, which is used to show the real representation of the extended de Branges matrices in Theorem

6.3.5. We conclude this chapter with Theorem 6.4.1, which describes a parametrization of de

Branges matrices under consideration.

7.2 Future directions

This section outlines some possible future directions to extend the research conducted in this

thesis. The following problems could be an immediate successor of our present research work.

• de Branges spaces of vector valued entire functions constructed in this thesis based on a

pair of Fredholm operator valued functions could be considered to investigate how they can

contribute for constituting the mathematical models in quantum scattering theory. We are
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also interested to see how these de Branges spaces of vector valued entire functions fit in

the context of the Lax-Phillips scattering scheme.

• The construction of de Branges spaces could be done against the unit circle instead of

the real line, where the multiplication operator would be isometric instead of symmetric.

There, we can again study isometric operators with infinite deficiency indices and their

unitary extensions. As a result, we want to analyze de Branges spaces of vector valued

entire functions constructed from the open unit disc D and its connections with the models

developed by Sz.-Nagy and Foias.

• Motivated by Theorem 2.2.3, which characterizes de Branges spaces of vector valued entire

functions in terms of the Hardy spaces, we aim to characterize these spaces using the

language of Hankel and Toeplitz operators.

• A concept that appears commonly in operator theory and complex function theory is the

idea of nearly invariant subspaces in a Hilbert space H of analytic functions. A subspace

M ⊆ H is said to be nearly invariant if f ∈ M and also f ∈ H0, that is, if f(0) = 0, then

(R0f)(z) = f(z)
z ∈ M. In [52], D. Hitt obtained the following characterization of nearly

invariant subspaces in the Hardy space over unit disc H2(D), which states that a subspace

M ⊆ H2(D) is nearly invariant if and only if there is an inner function u with u(0) = 0

and a holomorphic function g on D such that M =Mg(H
2 ⊖MuH

2) where g is such that

the multiplication operator Mg : h(z) → g(z)h(z) acts isometrically from (H2 ⊖MuH
2)

into H2. We wish to investigate the characterization of all nearly invariant subspaces of a

vector valued de Branges space B(E).

• Orthogonal Kramer sampling representation is obtained in Chapter 4 by considering an

orthonormal basis of the underline Hilbert space X. Our next aim is to investigate

nonorthogonal Kramer sampling representation using a Riesz basis of the Hilbert space X.

The problem of characterizing the situations when these nonorthogonal sampling formulas

can be expressed as a quasi Lagrange-type interpolation series could be considered.

• As an extension of the theory described in Chapter 6, we propose to consider the following

functional model problem. We aim to show that the operator RS(w) as described in (6.3.6)

on de Branges spaces of Cn-valued entire functions serves as a functional model of operators

from the family K0 as considered in Example 6.3.6. We could also consider the same

problem for the operator RS(α) as in (5.4.2) and modify the related family of operators

accordingly.
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