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Lay Summary

This thesis primarily deals with reproducing kernel Hilbert spaces of vector valued entire functions
based on operator valued reproducing kernels. We extend the notion of de Branges spaces of
vector valued entire functions and introduce de Branges operators as a pair of Fredholm operator
valued functions. Then, de Branges spaces are constructed based on de Branges operators and are
characterized. The Kramer sampling representation of functions in these spaces is presented using
eigenfunctions of a selfadjoint extension of the symmetric multiplication operator. Entire operators
with infinite deficiency indices are studied, and their functional model is obtained. The notion of
a quasi Lagrange-type interpolation is extended, and their connection with de Branges spaces of
vector valued entire functions is discussed. A global factorization of Fredholm operator valued
entire functions invertible at least at one point is described. Associated functions of de Branges
spaces are studied, and their connection with operator nodes is elaborated. We also extend and

parametrize the notion of de Branges matrices for higher dimensions.
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Abstract

This thesis primarily deals with vector valued reproducing kernel Hilbert spaces (RKHS) H
of entire functions associated with operator valued kernel functions. de Branges operators
¢ = (E_, E4) are introduced as a pair of Fredholm operator valued entire functions on X, where
X is an infinite dimensional complex separable Hilbert space. A few explicit examples of these
de Branges operators are discussed. We highlight that the newly defined RKHS 5(€) based on
the de Branges operator &€ = (E_, E) generalizes Paley-Wiener spaces of vector valued entire

functions. These spaces are characterized under some special restrictions.

The complete parametrizations and canonical descriptions of all selfadjoint extensions of the
closed, symmetric multiplication operator by the independent variable have been given in terms
of unitary operators between ranges of reproducing kernels. A sampling formula for the de
Branges space B(€) has been discussed. A particular class of entire operators with infinite
deficiency indices has been dealt with, and it has been shown that they can be considered as the
multiplication operator for a specific class of these de Branges spaces. A brief discussion on the
connection between the characteristic function of a completely nonunitary contraction operator

and the de Branges space B(€) has been given.

We discuss an abstract Kramer sampling theorem for functions within a reproducing kernel
Hilbert space (RKHS) of vector valued holomorphic functions. Additionally, we extend the
concept of quasi Lagrange-type interpolation for functions within an RKHS of vector valued
entire functions. The dependence of having quasi Lagrange-type interpolation on an invariance
condition under the generalized backward shift operator has also been studied. Furthermore, we
establish the connection between quasi Lagrange-type interpolation, operator of multiplication by

the independent variable, and de Branges spaces of vector valued entire functions.

Some factorization and isometric embedding results are extended from the scalar valued theory of
de Branges spaces. In particular, global factorization of Fredholm operator valued entire functions
and analytic equivalence of reproducing kernels of de Branges spaces are discussed. Additionally,
the operator valued entire functions associated with these de Branges spaces are studied, and a

connection with operator nodes is established.

We extend the concept of de Branges matrices to any finite m x m order where m = 2n. We shall
discuss these matrices along with the theory of de Branges spaces of C™-valued entire functions
and their associated functions. A parametrization of these matrices is obtained using the Smirnov
maximum principle for matrix valued functions. Additionally, a factorization of matrix valued

meromorphic functions is discussed.

Keywords: Vector valued de Branges spaces; de Branges operator; Multiplication operator;
Symmetric operators with infinite deficiency indices; Entire operators; Sampling formulas;

Abstract analytic Kramer sampling; Quasi Lagrange-type interpolation; Generalized backward
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shift operator; Fredholm operator valued entire functions; Factorizations; Isometric embedding;
Associated function; Operator nodes; de Branges matrices; Factorization of meromorphic matrix

valued functions.
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Chapter 1

Introduction

Fourier analysis is a crucial mathematical theory with applications in many modern fields, such
as signal processing, quantum mechanics, image processing, computer algorithms, and more. A
significant theory that emerged from the influence of Fourier analysis in the last century is the
theory of Hilbert spaces of entire functions. This area of study traces its root to the classical
Paley-Wiener theorem, which explores the connection between Fourier transforms and entire
functions of exponential type that are square integrable on the real line. In 1959, L. de Branges
introduced the Hilbert spaces of entire functions in [24], which were reproducing kernel Hilbert
spaces (RKHS) and are now known as de Branges spaces. In later years, de Branges published
several articles (see [25-28]) and further developed the theory. A comprehensive study, including
numerous examples and applications of de Branges spaces of entire functions, can be found in
his monograph [30]. Paley-Wiener spaces, a central topic of signal analysis, constitute a crucial
example of de Branges spaces. The initial developments and distinguished properties of de
Branges spaces were motivated by the eigenfunction expansions, the Hamburger moment problem,
and matrix differential equations. For an early history of de Branges spaces of entire functions and
the influence of the aforementioned topics in this theory, we refer to an excellent survey by J.
Rovnyak [72]. L. Golinskii and I. Mikhailova noted in [44] the close relationship between de
Branges spaces and analytic JJ-expansive matrix valued functions for a signature matrix .JJ. They
introduced the concept of de Branges matrices and investigated several results from the theory of
de Branges spaces in terms of these matrices. This thesis primarily focuses on studying various
aspects of de Branges spaces, which consist of entire functions taking values in C" or any infinite
dimensional complex separable Hilbert space.

The basic theory of reproducing kernel Hilbert spaces (RKHS) was developed by the contribution
of many authors (see: [8], [19], [62], [65]). It has been observed that the theory of vector valued
reproducing kernel Hilbert spaces associated with operator valued kernel functions arises naturally
in many areas like probability and stochastic process, machine learning, statistics, etc., and is an
active area of research. For example, the articles [64] and [63] connecting the machine learning
theory with the vector valued RKHS theory are motivating. Let X be an infinite dimensional
complex separable Hilbert space, and B(X) is the collection of all bounded linear operators in
X. Also, for any operator A, ker A denotes the kernel of A, rng A denotes the range of A, and
A* denotes the adjoint operator for A. We call a Hilbert space H of X-valued entire functions a
reproducing kernel Hilbert space (RKHS) if there exists a B(X)-valued function K¢(z) on C x C,

which satisfies the following two conditions:

l. Keu € Hforall{ € Candu € X.
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2. (f, Keuyy = (f(§),u)x forall fe H,{ € Candu € X.

The B(X)-valued function K¢(z) is known as reproducing kernel (RK) for . Equivalently, H is
an RKHS if for all £ € C, the point evaluations

e H—=X, f—= f(

are bounded. The function L¢(z) = 0 z5§ satisfies the two conditions of a reproducing kernel. For
an RKHS, the reproducing kernel is unique. Thus, the B(X)-valued function K¢(2) = 4.7 is
the reproducing kernel for . Clearly, for £,z € C, K¢(2)* = K.(§). In an RKHS #, norm
convergence of a sequence of functions implies pointwise convergence. That is, if {g,} C H
converges to g € H in the norm, then for every z € C, g,(2z) — ¢(z). The linear span of the
collection { K¢u : £ € C,u € X} is dense in H. If there exist countable sets {£1, &2, ...} C Cand
{ui,ua, ...} C X such that { K¢, uy : n € N} is an orthogonal basis of H, then we shall say that
the RKHS has the Kramer sampling property, that is, if any function f € H can be written in the

following form
> K¢, (2)un > Ke, (2)un
= K, un)y 5 = n)HUn)X - 19 -
)= 2 el e = 25 0k

The reproducing kernel K¢(z) is positive in the sense that, for every choice of n € N,

£&1,6,...,&, € Cand uy, uo, ..., u, € X the following is true

n

> <K£m(fz)umyuz>

Il,m=1

= > 0.
x

> 88 (w)
=1

2
H
Clearly, for every £ € C, K¢(§) = 0. A B(X)-valued function K¢(z) on C x C is called a positive
kernel if it is positive in the sense as mentioned above. A detailed study about the reproducing
kernel Hilbert spaces can be found in [67]. The following theorem is an operator version of

Moore’s theorem, which ensures that corresponding to every positive kernel, there exists a unique
RKHS H.

Theorem 1.0.1. [67, Theorem 6.12] Let K : C x C — B(X) be a positive kernel. Then,
corresponding to K, there exists RKHS H of X-valued functions, and K is the reproducing kernel
of H.

The following lemma gives a criterion to construct RKHS of entire functions, whose proof is

similar to the proof of Lemma 5.6 in [11].

Lemma 1.0.2. Let H be an RKHS of X-valued functions defined on C with RK K¢(z). Then H is
an RKHS of X-valued entire functions if and only if K¢(z) is an entire function in z for all { € C
and || K¢(§)|| is bounded on every compact subset of C.

A function f : R — X is said to be integrable if it is Bochner integrable and square integrable if it

satisfies the following condition

/ £ ()2dt < .
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The Fourier transformation of a square integrable function f : R — X is denoted by f and is
defined as

o0

f= [ e

—0o0
Let H be a reproducing kernel Hilbert space of X-valued entire functions. For any 5 € C, we
denote Hg = {f € H : f(B) = 0}. Hp is a closed subspace of H. The multiplication operator in
‘H is denoted as T and is defined as

Tf(z) =zf(z) forall z € C.

For any 5 € C and f in a suitable space of X-valued entire functions, the generalized backward

shift operator is denoted as [75 and is defined as

f(z)—f(B) if 2 7& ﬁ
(Raf)(2) = { ol (1.0.1)
f(B) if 2= p.
For any &,z € C, we define the scalar p¢(2) as pg(z) = —2mi(z — £). We recall some crucial

spaces of vector valued holomorphic functions, which will be used throughout this thesis. Details
about these spaces can be found in [71], [76]. The symbol C, (resp., C_) represents the complex

open upper (resp., lower) half-plane. We denote

Li(R) := {f :R — X | f is weakly measurable and / If(®)]|% dt < oo} ,

Hi(Cy) := {f : C4+ — X| f is holomorphic and supy>0/ | (z +iy)||% dz < oo}

and
Hpx)(Cq) :={f: C4 — B(X) | [ is bounded and holomorphic} .

It is known that :-

1. ng (R) is a Hilbert space with respect to the inner product

()= | TR0, g(0)) et

—00

forall f,g € L%(R).

2. The Hardy space over the upper half-plane H %(CJF) is a Hilbert space with respect to the

inner product

g = [ " (o), go(x))xdz

where fo,g0 € L%(R) are the boundary functions of f and g respectively, which are

mentioned in the next theorem.
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3. Hy iy (C.) is a Banach space with the norm

[[E'lloo = supysol [F'(z +iy)l| )

forall F' € Hp (Cy).

We also denote
S= {F € H3x)(Cy) : [[F(2)]| < Lforall z € <c+} .

The following two theorems give the boundary behaviour of the functions, respectively, in
H%(Cy) and HE(Cy).

Theorem 1.0.3. [71, Theorem B, Chapter 4.8] Let f € HZ%(C..), then there exists a (unique)
nontangential boundary limit fy € L%(R) such that

fo(r) = lylﬁ)l [z +1y)

pointwise a.e. on R. Also, fy satisfies the following identities

I Y iy (107
and -
Y (IO PR (1.0.3)

2m J_ ot — 2
where z = = + 1y.

Conversely, every fy € Lé(R) satisfying (1.0.2) and (1.0.3) gives the corresponding function
feH %(CJF) such that fy is the boundary function of f.

The identity in (1.0.2) is known as the Cauchy integral formula.

Theorem 1.0.4. If F € Hp 4, (C4), then for a.e. x € R there exists Fy(x) € B(X) such that for
allu € X
F(z+iy)u — Fo(x)u  asylO

and
[Fo(x)]| = lim || F(z + iy)]].
y40

Proof. The proof of this theorem can be easily adapted from the discussion in Subsection 1 of
Section 2, Chapter V of [76] (page 193). O

We denote S™ (resp., S™™) as the collection of all functions F € S such that the corresponding
boundary function F(x) € B(X) is an isometry (resp., co-isometry) for a.e. x € R. It is easy
to observe that a B(X)-valued holomorphic function F'(z) on C, belongs to S (resp., Si) if
and only if Ix — F(2)*F(z) = 0 (resp., Ix — F(z)F(z)* = 0) for all z € C, with equality
a.e. on R. The operator valued functions F© € S (resp., SI") are called inner (resp., *-inner)
functions. Functions belonging to both S and S are called inner from both sides. We denote

HZ(R) as the collection of all nontangential boundary limits of elements of H%(C..). Thus, we
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can consider H%(C.) as a closed subspace of L% (R) in terms of H%(R). If we consider the Hardy
space over the lower half-plane, that is, H %((C_), a similar result as Theorem 1.0.3 will also hold.
The identity in (1.0.3) implies that the orthogonal complement of H%(C,.), that is, (Hz(C4))*
can be identified with A 326 (C_). The following theorem indicates the reproducing kernels and the
following lemma provides an essential property of the Hardy spaces H%(C) and H3(C_), whose

proofs are analogous to Example 3.6, Example 3.7 and Lemma 3.14 in [13] respectively.

Theorem 1.0.5. The Hardy spaces over the upper half-plane H%((CJF) and over the lower
half-plane H%((C_) are RKHS of X-valued holomorphic functions on C, and C_ respectively.

The corresponding reproducing kernels are

Iy
K = , C 1.0.4
5(2) pg(z) 5 z € + ( )
and /
(=) _ X
K,/ (\) PRGN a, A€ C_. (1.0.5)

Lemma 1.0.6. Suppose f € H %((CJ’_) and o € C are such that f is holomorphic at «, then

i and R f belong to H3(C.).

Pi

Similarly, suppose g € H%(C,) and B € C are such that g is holomorphic at (3, then

and Rgg belong to H3(C_).

—1

1.1 de Branges spaces of vector valued entire functions

The theory of de Branges spaces B(€&) consisting of C™-valued entire functions based on an n x 2n
entire matrix valued function € = [E_ FE ] has appeared greatly in the works of D. Z. Arov and H.
Dym. These spaces have played a pivotal role in their investigations of direct and inverse problems
for canonical systems of differential equations and Dirac-Krein systems. For more details in this
direction, we refer to the articles [12] and [9] and the references cited therein.

An n X 2n matrix valued entire function
¢(z) = [E_(z) E+(2)] forallz e C (1.1.1)

generates a de Branges space of C™-valued entire functions if the components of & satisfy the

following conditions:
1. det E4(z) # 0, and

2. F:= Ej_lE_ 1s an n X m inner matrix valued function.
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The reproducing kernel of B(&) is given by

()@ B QE@" ip, 4 F

K&(z) =4 - rC) (1.1.2)
9 E, (EL(&)*—E_()E_(&)* . =

+()+()_2m() © if2— ¢,
which is an n x n matrix valued entire function and p¢(z) = —2mi(z — £). An obvious example

of these spaces is Paley-Wiener spaces of C"-valued entire functions. More examples of vector
valued de Branges spaces related to some systems of ordinary differential equations can be found
in [34]. The following theorem (see [13], Theorem 3.10) describes the elements in the space B( &)
and the associated inner product in terms of the Hardy Hilbert space H2 of C"-valued analytic

functions on C and its orthogonal complement (FH2)*.

Theorem 1.1.1. Let B(€) be a de Branges space corresponding to the n x 2n matrix valued entire
function € = [E_ E.], then

B(€)={f:C— C"entire : E{'f € H2and EZ'f € (H2)"} (1.1.3)

and the inner product for any f, g € B(€) is given by

o0
Fdee = | o) (By(@)Ba(o)) fla) do. (114)
One additional characterization of the de Branges space B(€) is provided in [34, Theorem 7.1]. An
in-depth study of these de Branges spaces with matrix valued reproducing kernels in connection
with the theory of J-contractive matrix valued analytic functions and multivariate prediction
theory can be found in [11] and [13], respectively.

The primary motivation for this thesis comes from an effort to examine the transition of the theory
of de Branges spaces based on matrix valued reproducing kernels to B(X)-valued reproducing
kernels. An initial discussion of de Branges spaces of X-valued entire functions appeared in the
work of L. de Branges and J. Rovnyak in [31]. They constructed these spaces as a functional
model for a particular type of closed, symmetric operator. The main motivation was to formulate
quantum scattering theory in terms of self-adjoint operators and analyze the structure of the
invariant subspaces in a scattering problem. However, these spaces do not generalize Paley-Wiener
spaces of X-valued entire functions. In this thesis, our primary goal is to introduce a generalized
definition of the vector valued de Branges spaces so that it could generalize Paley-Wiener spaces

of vector valued entire functions as well as the consideration in [31].

1.2 Entire operators

Suppose A is a closed linear operator in X with dense domain D. A point o € C is a regular point
of A if the operator (A — aI)~! is defined on whole X and bounded. The collection of all regular
points of A is known as the resolvent set of A and is denoted as p(A). The complement of p(A)
in C is called the spectrum of A and is denoted as o(A).
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A point 3 € C is a point of regular type of A if there exists dg > 0 such that

[[(A = BI)gll = dgllg]l

for every g € D. 7(A) denotes the collection of all points of regular type for A. Also, 7(A) is an
open set in C and contains both upper and lower half-planes when A is symmetric. An operator A
is called regular if every number 5 € C is a point of regular type of A.

The subspaces 91, = X © 9, are called deficiency subspaces of a closed symmetric operator A,

where 9, = (A — zI)D and & denotes the orthogonal complement.

Theorem 1.2.1. [7, Theorem 1.1.1] If A is a closed symmetric operator in X and zy € w(A).
Then, the dimension of the deficiency subspaces N, is equal for all z in any neighbourhood of 2y
inside w(A).

Thus, the dimension of deficiency subspaces 91, of a closed symmetric operator A is the same
for all z in the open upper (resp., lower) half-plane. The deficiency indices of A are denoted as
(n4,n_), where ny. = dim9%; and n_ = dim 91_;. If any real number belongs to 7(A), then the

deficiency indices are equal, thatis, n, = n_.

Theorem 1.2.2. [7, Theorem 1.3.4] A symmetric operator A in X has selfadjoint extension within

X if and only if the deficiency indices are the same.

A symmetric operator A in X is said to be simple if there does not exist any nontrivial subspace

invariant for A such that the restriction of A to this subspace is selfadjoint.

Theorem 1.2.3. [45, Theorem 2.1] Let A be a closed symmetric operator in X with dense domain
D. Then the set M.1m.20IM. is the maximal subspace invariant for the operator A on which the

operator A is selfadjoint.

The condition that M1y .20M, = {0} is necessary and sufficient for a symmetric operator
with dense domain to be simple. For more details of symmetric operators and their selfadjoint
extension, we refer to [1] and [7].

M. G. Krein combined the extension theory of symmetric operators and the theory of analytic
functions. The entire operators are a centrepiece of this aspect of his research. In the fundamental
paper [57], he showed that an entire operator with arbitrary finite equal deficiency indices (p, p)
could be considered as the multiplication operator in a Hilbert space of CP-valued entire functions.
Later in this paper [34], it was observed that this Hilbert space is a de Branges space with p X p
matrix valued reproducing kernel. Krein also studied the entire operators with infinite deficiency
indices (see [58]), and a similar connection with the multiplication operator in a Hilbert space of
X-valued entire functions has been mentioned here [45] (Appendix I). Representation of entire
operators with deficiency indices (1,1) can be found in [59] and [60]. Also, the applications
of entire operators with deficiency indices (1, 1) in sampling theory can be found in [73], and
their characterization based on the spectra of their selfadjoint extensions can be found in [74].
This thesis encounters entire operators with infinite deficiency indices and addresses a related
functional model problem. A discussion on entire operators with infinite deficiency indices arising

from differential operators can be found in [46].
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1.3 Kramer sampling and quasi Lagrange-type interpolation

The Kramer sampling theorem, which is the generalization of the well-known sampling result
due to J. M. Whittaker [81], has played a significant role in the development of sampling and
interpolation theory, signal analysis, and, in general, function theory of mathematical analysis.
Suppose I = [a,b] C R be any closed, bounded interval, and the kernel function K (z, u) is
continuous as a function of real variable 1 and belongs to L?(I) for every fixed u. Now, if there
exists a sequence of sampling points { tt, }nez such that { K (z, i, ) }nez is a complete orthogonal

setin L2(I), then the Kramer sampling theorem [56] says, if

b
£ = [ P@)K (o) ds

for some F' € L?[a, ], then
F) = > fun)Fu(p),

where the sampling functions are given by

_ f(f K(z,p)K(z, uy) dml

F,
) = P K da

Numerous examples of the Kramer sampling theorem can be found in connection with the
selfadjoint boundary value problems. Specifically, sampling associated with Sturm-Liouville
problems is discussed in [5], [84]. The extension of this Kramer sampling theorem has been done
in several ways. One interesting approach is extending this theorem to holomorphic functions
associated with holomorphic kernel functions. In this direction, Kramer sampling theorem for
scalar valued holomorphic functions associated with scalar valued holomorphic kernel functions
has been studied in [36]. An abstract version of Kramer sampling theorem in the context of
reproducing kernel Hilbert spaces (RKHS) has been discussed in [40], and the case when the

associated sampling functions F}, can be written as a quasi Lagrange-type interpolation function

H(z) Q(z)
H(zp) (2 — 20) Q' (20)’

F.(z) =

where ()(z) is a scalar valued entire function with only simple zeros at z, and H(z) is a scalar
valued entire function having no zeros, considered in [35]. Also, a connection between de
Branges spaces of scalar valued entire functions and having quasi Lagrange-type interpolation
representation of the sampling functions has been shown in [35], [39].

This thesis introduces an abstract version of the Kramer sampling theorem for functions in
an RKHS of X-valued holomorphic functions. Also, we aim to find a vector analog of
quasi Lagrange-type interpolation and its correlation with de Branges spaces of X-valued entire
functions that we have introduced in Chapter 2. In this direction, sampling and interpolation of
functions in C™-valued Paley-Wiener spaces [15], Lagrange-type interpolation for Hilbert space

valued [83], and Banach space valued [48] functions are worth noting.
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In this quest, our motivation comes from one work of A. I. Zayed [83], where he talked about the
sampling theorem of X-valued functions. Also, it is important to note that a similar approach for
scalar valued functions can be found in [82]. Let {z,}°°; C C be such that |z,| — co as n — oo
and {uy }2° ; be an orthonormal basis of X. Suppose ()(z) is a scalar valued entire function having

only simple zeros at {2, }22 ;, then for each z € C we define the following operator on X:

<‘7un>3€ :
F(z) = { Q5= un iz sz (1.3.1)

Q' (zn) (-, up)xun if 2 = zp,.

Thus, for every u € X, f,(z) = F(z)u is a function from C to X. Now, in this context, we

mention the sampling result due to A. I. Zayed in the following theorem:

Theorem 1.3.1. [83, Theorem 1] Suppose F(z) is the linear operator on X for all z € C as
defined in (1.3.1), then the following implications hold:

1. F(z) is a bounded linear operator on X for every z € C, and ||F(-)|| is uniformly bounded

on every compact subset of C.

2. fu is an X-valued entire function for all v € X and can be recovered from its values

{fulzn)}22, by the following Lagrange-type interpolation formula:

Re Q(2) R
fulz) =) = zn)Q’(zn)fu( ), zeC.

n=1

1.4 Characteristic functions and operator nodes

The notion of characteristic functions of nonselfadjoint operators was introduced by M. S.
Livsic, who also explored their applications to the invariant subspace problem. M. S. Brodskii
later introduced the notion of an operator node, which facilitates a comprehensive study of
nonselfadjoint operators and their characteristic functions. Suppose X and & are two separable
Hilbert spaces and A € B(X),T € B(X,®), and J is a signature operator in B(®), that is,

J=J=J"
Then, the set of these Hilbert spaces and operators is called an operator node if

A— A" =¢T*JT

AT
0= J.
X (o]

The characteristic function of the operator node © is the operator valued function

and is denoted as

Wo(z) = Ig 4 i2T(Ix — zA)'T*J forall z € Zy,
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where
Zy={2€C:(Ix —2zA)"' € B(X)}.

For more details about operator nodes and their characteristic functions, see [20]. Characteristic
functions have also been considered in connection with the functional model problems by various
mathematicians. For instance, B. sz.-Nagy et al. investigated them in connection with the dilation
theory of contraction operators (see [76]), and the study of L. de Branges and J. Rovnyak sprouted
from the theory of de Branges spaces of entire functions. One aspect of this thesis aims to connect
these two significant theories using the characteristic functions. It is known that the characteristic

function of a completely nonunitary contraction operator A € B(X),

Ca(z) = |[—A+2(I — AA*) (I — 2zA*) "M — A*A)ﬂ rng(I — A*A)2

is an inner (resp., *-inner) function on the open unit disc D if and only if A*™ — 0 (resp., A™ — 0)
strongly as n — oo (see [76, Chapter VI, Proposition 3.5]). H. Helson studied in [50], the inner
functions F'(z) from both sides, which are norm differentiable on the real line and satisfy the
following differential equation

F'(x) =i V(z) F(x),

where V' (z) is B(X)-valued norm continuous function, V' (z) > 0 and selfadjoint for all x € R.
Also, S. L. Campbell studied B(X)-valued inner functions (see [22]), which are analytic on the
closed unit disc. If A € B(X) with the spectral radius 7(A) < 1, [|A|| < 1 and AA* # Iy, then

the corresponding Potapov inner function
Va(z) = —A* + 2(Ix — A*A)2 (I — 2A) L (Ix — AA")2

is also analytic on the closed unit disc. We can consider inner functions on the open unit disc D

Z—1

as an inner function on the open upper half-plane C by using the conformal map C(z) = P

between the open upper half-plane and the open unit disc.

1.5 Factorization of operator valued analytic functions

One significant result in complex analysis is the Weierstrass factorization of entire functions,
which effectively separates all the zeros of the function. However, this result generally does
not hold for operator valued entire functions. The notion of zeros for operator valued analytic
functions can be defined differently, and these zeros are typically not isolated. Suppose 2 C C is
a domain and A(z) is a B(X)-valued analytic function on 2. We consider a point zy € €2 to be a
zero of A(z) if A(zp) is not boundedly invertible. The following theorem by S. Steinberg presents

a scenario where the zeros of operator valued analytic functions are isolated.

Theorem 1.5.1. [75, Theorem 1] Let A(z) be a B(X)-valued analytic function on ) is such that
I — A(z) is compact for all z € ). Then either A(z) is not boundedly invertible for all z € Q2 or

A(z)~1 is meromorphic on Q.

L. de Branges and J. Rovnyak proved a generalization of Weierstrass factorization in [31] for an
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operator valued entire function A(z) subject to the condition that / — A(z) is compact for all z € C.
In this thesis, we remove the compactness condition and establish the factorization result for the
Fredholm operator valued entire functions. For the basic theory of operator valued holomorphic
functions, see [51], [6], [43]. Recall that an operator A € B(X) is said to be a Fredholm operator

if it satisfies the following conditions:
1. dim(ker(A)) < oo.
2. rng(A) is closed in X.
3. dim(ker(A*)) < oc.

We denote the collection of all Fredholm operators in B(X) as ®(X). For every A € ®(X), the

corresponding Fredholm index is defined by
ind(A) = dim(ker(A)) — dim(ker(A¥)). (1.5.1)

It is easy to observe from the definition that an operator A is Fredholm if and only if its adjoint A*

is Fredholm.

Theorem 1.5.2. [77, Theorem 13.1, Chapter IV] If A, B € B(X), the following assertions are

true:

1. A, B € ®(X) implies the composition AB € ®(X), and

ind(AB) = ind(A) + ind(B).

2. If AB € &(X), then A € ®(X) ifand only if B € ®(X).

For more details about Fredholm operators, see [55]. The following theorem is a particular form
of analytic Fredholm theorem, which employs the fact that the zeros of Fredholm operator valued

entire functions are isolated.

Theorem 1.5.3. ([41, Theorem 3.3], [42, Section 4.1]) Suppose A C C is open and connected and
F : A — B(X) is analytic such that for all z € 2, F(z) € ®(X). Then one of the two following

assertions is always true:
1. F(2)7' ¢ B(X) forany z € 2.

2. F(2)7t € ®(X) for all z € 2, possibly except for a discrete set D. Also, the function
F(.)~1is holomorphic on 2\ D and meromorphic on 2.

The factorization of operator valued analytic functions has significant connections and applications
across various areas of mathematics. For instance, factorization problems are featured prominently
in the works of M. S. Livsic, particularly with nonselfadjoint operators and their characteristic
functions. Additionally, in this direction, it is worth mentioning some factorizations of matrix

valued analytic functions available in the literature. For instance, the seminal work of Potapov [68]
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regarding the factorization of matrix valued inner functions and its application to multiplicative
representations of matrix valued analytic functions. Recently, this was extended in [23] for
operator valued inner functions. The factorizations of Potapov for J-contractive and J-inner matrix
valued functions and their applications are also available in [11]. Furthermore, a Hadamard
factorization for matrix valued entire functions is discussed in [69]. This thesis will also explore a

factorization of matrix valued meromorphic functions.

1.6 Outline of the thesis

This thesis comprises seven chapters, beginning with an introductory chapter and ending with
a conclusive chapter. In the introduction, we describe the key concepts and review the existing
literature that shapes this thesis, and in the final chapter, we summarize the findings of the thesis

and shed light on the future scope of this work.

In the second chapter, we have constructed de Branges spaces of X-valued entire functions based
on a pair of B(X)-valued functions € = (E_, E;), referred to as the de Branges operator. A key
observation is to consider the components E+ of & as Fredholm operator valued entire functions.
A specific form of the analytic Fredholm theorem, mentioned in Theorem 1.5.3, proved to be
critical for our study. We also provide several examples of de Branges operators. An example of a
Fredholm operator valued holomorphic function from [42, Section 8, Chapter XI] was particularly
inspiring for constructing our example. We highlight that the newly defined RKHS B(€) based
on the de Branges operator € = (E_, F) generalizes Paley-Wiener spaces of vector valued
entire functions as well as the consideration in [31]. We then review results connecting Hg, ‘T,
and Rg and discuss the conditions for Hg and HE to be isometrically isomorphic. Finally, we
characterize the newly constructed de Branges spaces B(€&) corresponding to the de Branges
operator ¢ = (E_, E), where E, () and E_(}3) both are selfadjoint for some 3 € C. This
characterization is a vector generalization of problem 50 in [30] and Theorem 7.1 in [34] and will

play a crucial role in this thesis.

In the third chapter, under general considerations, we discuss the complete parametrizations and
canonical descriptions of all selfadjoint extensions of the symmetric multiplication operator <.
Additionally, we present a sampling formula for de Branges spaces based on eigenfunctions of
a selfadjoint extension of €. This chapter also explores the connection between entire operators
with infinite deficiency indices and the de Branges space B(€). Specifically, we focus on a
particular class of entire operators with infinite deficiency indices, demonstrating that they can be
considered as the multiplication operator for a specific class of de Branges spaces with operator
valued reproducing kernels. Finally, we briefly discuss the connection between the characteristic

function of a completely nonunitary contraction operator and de Branges spaces B(€).

In the fourth chapter, we recall the construction of an RKHS Hr of X-valued functions related
to an operator valued function F' : Q@ C C — B(X). We then consider 7 the RKHS of
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X-valued holomorphic functions on {2 and discuss an arbitrary Kramer sampling representation
for functions f € Hp. Additionally, we discuss a vector version of quasi Lagrange-type
interpolation of sampling functions. The relationship between quasi Lagrange-type interpolation
and the generalized backward shift operator is also demonstrated. Finally, we explore the
connection between quasi Lagrange-type interpolation and de Branges spaces of vector valued

entire functions.

In the fifth chapter, we delve deeper into several results of de Branges operators € = (E_, E)
and address the vector version of problem 45 from [30]. A global factorization of Fredholm
operator valued entire functions invertible at least at one point is studied, which connects the
two de Branges spaces considered in Chapter 2 of this thesis and in [31]. This factorization also
provides a conclusion regarding the analytic equivalence of reproducing kernels of de Branges
spaces. Additionally, this chapter discusses problem 44 from [30] within the context of vector
valued de Branges spaces, utilizing the previous global factorization. We study operator valued
entire functions associated with vector valued de Branges spaces and discuss their connection
with the operator of multiplication by the independent variable. This chapter concludes with a

discussion of operator nodes and their connection with de Branges spaces.

In the sixth chapter, we focus on de Branges spaces, which consist of C”-valued entire
functions. We review definitions of various classes of matrix valued holomorphic functions,
such as the Carathéordory class and the Smirnov class. We highlight special properties of
these classes, including the integral representation of elements in the Carathéordory class and
the Smirnov maximum principle for elements in the Smirnov class. Additionally, we discuss
the Potapov-Ginzburg transform for J-contractive matrix valued functions. This chapter presents
an extension of de Branges matrices and addresses the problem of identifying a common factor
for multiple matrix valued meromorphic functions that encompasses all of their poles. This
factorization helps to establish an analog representation of de Branges matrices, originally known
as the real representation of de Branges matrices. We include examples of these de Branges

matrices and finally parametrize them.
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Chapter 2

de Branges operators and de Branges

spaces of vector valued entire functions

L. de Branges and J. Rovnyak extended de Branges spaces of scalar valued entire functions to
spaces of vector valued entire functions with operator valued reproducing kernels [31]. They
constructed these spaces based on a pair of operator valued functions Q) (z) and @ _(z) such that
Iy — Q4 (z) and Ix — Q_(z) are compact for all = € C. We observe that these spaces do not
generalize Paley-Wiener spaces of vector valued entire functions. The primary aim of this chapter
is to extend de Branges spaces of vector valued entire functions so that they could generalize
Paley-Wiener spaces of vector valued entire functions and de Branges spaces considered in [31].
Now, we briefly explain the contents of this chapter. The first section discusses the RKHS #(F)
corresponding to a function F' € S. Though most of the results in this section are available in
the literature in the matrix setting, to maintain the flow of the study, we mention all the essential
results in the operator setting. In the second section, we introduce de Branges operators as a pair
of Fredholm operators valued entire functions satisfying certain extra conditions, and based on
them, we construct de Branges spaces. In the third section, we present several examples of these
newly constructed de Branges spaces, and we highlight that these de Branges spaces generalize
Paley-Wiener spaces of vector valued entire functions and de Branges spaces considered in [31].
In the fourth section, we describe a condition for the closed subspaces Hg = {f € H : f(8) = 0}
andHz={feH:f (B) = 0} of the RKHS # of X-valued entire functions to be isometrically
isomorphic. Finally, in the fifth section we conclude this chapter by discussing a characterization

of the newly constructed de Branges spaces.

2.1 The RKHS #(F'), characterization and extension

Suppose F' € Hp 4 (C4) with ||F(2)|| < M for all z € C4, then we can define an operator

Mp : H¥(Cy) — H%(Cy) defined by
(Mrg)(2) = F(2)g(2) for g € H¥(Cy). (2.1.1)

The following evaluation shows that M is well defined. For g € H3(C..)

[e o]

/ IF(z + iy)g(e + iy)|[2de < / I1F (@ + i) Pllg(a + iy)] 2de

—00 —00

x

oo
§M2/ gz + iy)|2dz < Mgl 2 ¢, -
—o00
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Proposition 2.1.1. If M is defined as (2.1.1) for some F € H%O(%) (C4), then the following

implications are true:
1. Mp is a bounded operator on H3(C..) with || Mp|| = ||F||.

2. 1’?% = F(f)*%for allu € X and & € Cy, where pe(z) = —2mi(z — &).

Moreover, if F' € S then M is a contractive operator.

Proof. Boundedness of My and ||Mp|| < ||F||« follows from the preceding calculations. Since
. I

the RK for H%(Cy) is K¢(z) = ?é), for any u,v € X, we have i and p”—g belong to H%(Cy).

Now, using the reproducing property of K¢, it can be shown that for all u,v € X and § € C, the

following inequality is true

[(F(&)u, v)x| < [[ME[] [[ul] ||v]]-

This implies for all § € C, ||F(£)|| < ||MFp||. Therefore, || Mp|| = ||F||co-
To show (2), it is sufficient to show that for all u,v € X and &,z € C.

u v u v
F—Hy —)H? — 77FZ*7 2,
1 s = (2 G

which can be similarly shown by using the reproducing property of K. If I’ € S, then My is a

contractive operator follows from (1). O

In view of the preceding proposition, for any F' € S and any n € N,

" /Iy — F(z)F(z)*
Z<as (20) F(2m)

Pzm (Zl> x

Il,m=1

for every choice of uy, ug,...,u, € X and 21, 22, . . ., 2z, € C. Thus the B(X)-valued function

_ I = F()F()”

Fe2) pe(z)

is a positive kernel on C x C,, and we denote the corresponding unique RKHS of X-valued
holomorphic functions on C as H(F'). Now, we recall an analogous characterization of the
space H (F'), which has been discussed in [31] (Appendix), in the context of vector valued analytic
functions on the open unit disc with square summable power series. Subsequently, we extend
‘H(F) to an RKHS of X-valued holomorphic functions on a domain possibly larger than C,.. We
denote P as the orthogonal projection of L2 (R) onto H3(R) and Q = I 2wy — P-For FF e §
and f € H2(C,), we denote

v(f) = sup{||f + Mr(9)l|}2 — llgllF2 : g € HE(C1)}.
Theorem 2.1.2. For ' € S

H(F) = {f € HY(Cy) : v(f) < oo} and || f|[3,p) = v(f)-
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Moreover, if F' € S then
H(F) = H{(Cy) © ogMp and || f |3,y = || f1[p2-

Proof. The proof of this theorem can be readily adapted from Theorem 2 and Lemma 5 in the
appendix of [31]. 0

In view of Theorem 1.0.4, for every F' € S and b € L% (R) the function defined by
x+— Fy(x)b(x) forx eR

belongs to L2 (IR), where Fj is the nontangential boundary limit of F. We denote this function as
F'b. The matrix version of the following lemma can be found in [33, Lemma 2.2].

Lemma 2.1.3. Let F € S, b € L%(R) © H¥(R) and f € H%(Cy) be such that fo = —PFb is
the corresponding nontangential boundary limit. Then for all g € H %(C+)

1S+ Mp(g)lI” = [lgl* < [[bII* - [|QFbI?,

with equality if F € S™.

Proof. Since f and Mp(g) both belong to H%(C..),

I[f + Mp(g)|lg2 = |[fo + Fgol| L2,

where g is the nontangential boundary limit of g. Now,
| = PFb+ Fgol[j2 = ||QFb+ F(go — b)l[72 = ~|QFbl[72 + [|F (g0 — b)[[7

as (QFb,Fgo)rz = 0 and (QFb, Fb);> = ||QFb||2,. Thus the lemma follows from the
following fact that
1F(g0 = b)|[72 < or =|lgoll72 + |[blIZ

according as F belongs to S or S, O

The following theorem is motivated from [33, Theorem 2.3], where we replace the matrix valued
kernels with operator valued kernels. Recall that the generalized backward shift operator at z is

denoted as R, and is defined as

f(%:f(z) if &+ 2

R, =
(R-1)(© {f,(z) S

Theorem 2.14. If F' € S, then for every choice of n € N, z,21,29,...,2, € C4 and

U, UL, U, - . ., Uy € X the following implications hold:

1. (R.F)u € H(F).

2. | Z;L:l(Rle)ulH%{(F) < 472 szzl <%ul, um>3E with equality if F € S,
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3. H(F) is invariant under R, for all z € C.

4. R, is a bounded operator on H(F) for all z € C4 and for all g € H(F), R, satisfy the

following assertion

m((R=g,9)) = rllg ()|

I
R.g||* <
|R-g]]" < Im(2)

(2.1.3)

Proof. Consider

_ u
b_zg—zl'

=1
Clearly, b € H%(C_). Thus it’s nontangential boundary function b (say) belongs to L%(R) &

HZ(C,). Now P P

E—z

is analytic in C, and the nontangential boundary function (R.F)(t)u belongs to H%(R) as

(RF)(§u =

O RP e,

2m J_ o t—«
for all « € C_. Since F(t)b(t) € L%(R) and

F(t)b(t) = (i F(t)ui = Z(ZZ)UI> n (i Jz(jl):l> ’

=1 =1

then .
> (R.,F)u = PFb
=1
and
" F
Clu _ o,
t— Zl

=1

Now applying the preceding lemma, we have for all g € H(C;.)
n
1> (R F)ur + Me(g)l1” = lgl|* < ||b]* — [|QFb|[*. (2.1.4)
=1

Thus (1) follows from (2.1.4) in association with Theorem 2.1.2.

A simple calculation by using the Cauchy integral formula gives

HbH2 - HQFbHQ — 47r2 Z Iy — F(zm)*F(zl)uljum ) (2.1.5)
Pz (21) x

Il,m=1

Thus (2) follows from (2.1.4) with g = 0 and (2.1.5).
Since for every z € C,, R, is linear, and H(F') is an RKHS, to show (3) and (4) it is sufficient to
show that they are valid for I',u for every choice of u € X and o € C.. Since

2mi 1

R.To(§u = La(§)u - m(RzF)(é)F(a)*u (2.1.6)
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and both the terms in RHS of (2.1.6) belongs to H(F'). Thus R.I'yu € H(F') and I'yu satisfies
(2.1.3). O

Suppose F' € S is inner from both sides, that is, F' belongs to both S and Si" and consider
2, = {z € C_: F(7) is invertible}. Since F' is invertible at one point implies it is invertible in a
certain open neighbourhood of that point, (7, is an open subset of C_. Now we can extend F' as

a B(X)-valued holomorphic function on 2. by the following formula
F(z)={FE)*}" forzeUp. (2.1.7)
Also, for almost every z € R

F(z)= lylﬁ)lF(x +iy) = lylﬁ)lF(a; —1y).
Now, for a function F' € S and inner from both sides, we denote § as the extension of F' and Az
(containing C U 2(}) as the domain of holomorphy of .

Once we have the above extension § of F, we can think H(F') as the RKHS of X-valued
holomorphic functions on Az, which we denote as #(§). The following lemma provides more
details of H(F) and it is motivated from [11, Theorem 5.31].

Lemma 2.1.5. If F € S is inner from both sides and § is the corresponding extension of F' as
defined in (2.1.7), the kernel function K g (z) defined by

L—§(2)5)" z
(2) ::{ pe(2) fz#¢ (2.1.8)

LG

on Az x Agz is positive.

Proof. To show that Kg(z) is positive, we need to show that for every choice of n € N,

21,%2,...,%n € Az and ug, ug, ..., u, € X

Zn: (K3, () umy ) > 0. 2.1.9)

I,m=1

Here we only show the case where some points belong to C;. N2z and others belong to C_ N 2Az.
The remaining cases can be deduce from this. Without loss of generality we may assume that
21,22,...,2 € Cp N¥™Uz and &1, &2, ..., € C_ NV™Az with i + j = n and § = 244 for every
k=1,2,...,j. Also we assume that v, = u;yf forallk =1,2,..., 5.

Since F(&)F(€)* = Iy, for z # £ the followings are true

I - 3(2)3(6)°
ki) = s pg((;) ©
_ 300 —3(=)13(0)"
—2mi(z — &)
= (RS @110
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and

L (R:3)(O)3()"

K3 (2)" = -—
£ (2) 271

(2.1.11)

Now we divide the sum in (2.1.9) into four parts and simplify them with the help of (2.1.10) and

(2.1.11). The first part is

> (K (2, ) x.-

I,m=1

The second part is

.

i

ZZ ft Ulﬂ}t

t=1 [=1

(11, 5 (R 8) () §(6) o)

M“‘

H
Il
—_
-
Il
—

I
MQ.
Ms

(w1, (R ) (20)1)

t=1 =1
where z; = 2m §(&) v forallt =1,2,...,7.
The third part is
i 3 i % 1
Z Zs Um, U5>x = Z <%(Rag)(zs)3(€m)*vmv Us>3€
m=1 s:l m=1 s=1
7 %
= Z Z((Ra&y)(zs)xmvus>%
m=1 s=1
The fourth part is

J J *
Z <K§m(£t)vm,’l}t>x = Z <Ix _S(gt%?({m) ’Um,Ut>x

t,m=1 tm=1 Pém (‘St)
_ SEN{B(E)* T(Em) — Ix}F(Em)*
- t,;1< —2mi(& — &m) s )
— Z <{S(§t)_3;(7§2<2t _g})g(g ) Um;%(&t)*vt>x
t,m=1 m
L\ Iy - 3(E)3(Em)
= 47? LA o TE) %
T T g
In view of Theorem 2.1.4, we have
J J
STUES (€vm, vz > 11D (ReB)aml
t,m=1 m=1

Thus the above calculations ensure that

Z <K§ (z1) um,ul> > HZ UH‘Z (R gmmH2>0

Il,m=1 =

(2.1.12)

(2.1.13)

(2.1.14)

(2.1.15)

(2.1.16)
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This completes the proof. O

Since for every £ € sz, Kf(ﬁ ) is bounded, every f € H(F) are X-valued holomorphic functions
on 2z.

2.2 Construction of de Branges spaces based on pairs of Fredholm

operator valued entire functions

This section is dedicated to constructing the de Branges operator & = (E_, F,). Here, we
shall see that the Fredholm operator valued holomorphic functions will play a significant role.
In particular, it will be apparent that the components 'y of the de Branges operator & should
be Fredholm operator valued entire functions with some additional properties to make the theory
compatible with the existing theory of de Branges spaces based on n x 2n matrix valued entire
functions. Let £, E_ : C — B(X) be two entire functions such that F (z), E_(z) € ®(X) for

all z € C and satisfy the following two conditions:
1. B4 and E_ both are invertible at least at one point, and
2. F:=E'E_eS&™"nS™

Since E; and E_ are invertible at least at one point, from Theorem 1.5.3, we can find two discrete
subsets, D1 and Dy of C, such that £ is invertible for every z € C \ D; and E_ is invertible for
every z € C\ Ds. Also, F € 8™ N S implies that for every z € C

By (2)Es(2)" — E_(2)E_(2)" = 0

and for every z € R
E (2)E;+(Z)"—E_(2)E_(Z2)" =0, 2.2.1)

which can be extended to
E,(2)E+(Z)" —E_(2)E_(z2)* =0 forevery z € C. (2.2.2)
We call the pair of operator valued functions
&(z) = (F_(2),E4(z)) forevery z € C (2.2.3)

as de Branges operator. Now, corresponding to the de Branges operator &(z), we define the kernel

BB B QE O if, 4 ¢

¢ — ’— P&(z)/ ra
Ke(2) =9 BL@m©—r @@ ifz=¢

—271

(2.2.4)

on C x C. Observe that the kernel K g(z) is entire in 2 and €.

Now we intend to show that the kernel defined in (2.2.4) is positive on C x C. Here we follow the
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process of extension as mentioned in the previous section. We denote the extended function of F’

as § and the extended domain as 2(z. Observe that 25 is dense in C. Also, for all £, z € A3
K§(2) = By (2)KE(2) By (€) (22.5)

holds, which can be shown with the help of (2.2.2). Since K, g (z) is positive on Az x Az and Ag
is dense in C, K, g(z) is positive on C x C. Thus, we can have a unique RKHS of X-valued entire
functions corresponding to the positive definite kernel K g (z). We denote this RKHS as B(€), and
by observing the structure of the RK, we call it de Branges space. In particular, in a de Branges

space B(¢), if for some 5 € C4, E,(8) and E_(3) are self adjoint, then we denote the space as
Bs(€). A characterization of the space Bz(€) can be found in Section 2.5.

Remark 2.2.1. If X € B(X) is any Fredholm operator and X X* = I, then the pair of operators
¢X(2) = (E_(2)X,E;(2)X) foreveryz € C

is again a de Branges operator, and B(€) = B(&X), as the corresponding reproducing kernels

are equal.

Remark 2.2.2. It is known that corresponding to the Fredholm operator valued holomorphic

function F(z) on a domain 2 the index function defined by
zw indF(z) forallz e

is an integer valued continuous function (See [66, Theorem 2.5]). Since both E1 (z) and E_(z) are
O (X)-valued entire functions, corresponding to the de Branges operator €(z) = (E_(z), E+(2)),
there exists a pair of integers. The invertibility of E4(z) and E_(z) at least at one point and the
fact that index of invertible operator is zero ensure that this pair of integers is always (0, 0) for de

Branges operators.

Similar to Theorem 1.1.1, the following theorem describes the elements of 5(¢€) and the endowed

inner product.

Theorem 2.2.3. If B(€) is a de Branges space as defined above with respect to the de Branges
operator €(z) = (E_(2), E4(z)) for every z € C. Then

B(€) = {f:C— X| fisentire, E_'f € H}(C4)and EZ'f € (HZ(C1))"}.  (2:2.6)

Also with respect to the inner product
oo

(f.9)B(e) = / (Ey' f(2), EX'g(2))x da, (2.2.7)

—0o0

B(€) is an RKHS, and the reproducing kernel is given by (2.2.4).

Proof. The proof is a straightforward adaptation of the proof of Theorem 3.10 in [13]. O
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2.3 Few examples

In this section, we present a few examples of de Branges spaces which we have constructed in the

last section. The first example is the vector version of the classical Paley-Wiener space.

Definition 2.3.1. An entire function g : C — X is said to be of exponential type at most a if for

each € > 0 there exists a constant L, independent of € such that
19(&)|lx < L elellate).

If g : R — X is a square integrable function, vanishes outside the compact interval [—a, a], for
some a > 0, then ¢ and g satisfy the Plancherel’s theorem and § can be extended as an entire

function

§(6) = / e g(n)de

which is of exponential type at most a. These follow from Theorem 1.8.2 and Theorem 1.8.3 of
the book [6].

Example 2.3.2 (Paley-Wiener spaces of vector valued entire functions). For a > 0, the set of

X-valued entire functions
PW, ={§ : g is square integrable and vanishes outside the interval [—a, a]} (2.3.1)

is a Hilbert space with respect to the inner product
@), = [ (600 h(o). 232)

Also PW, is an RKHS with the reproducing kernel

Ke(z) = sinEz —galx’

T2z —

where Ix is the identity operator on X. Since for every u € X and & € C

K¢(z)u = /00 e*iZth(t)dt,

—00

where Qg(t) is a square integrable function defined as

Lty if|t| <a

QE(t) = { 2 (2.3.3)

0 otherwise

and for g € PW,,

(9, K¢u)pw, = (3, Q¢u)pw, [ Kiu=Qfu]

= 2m(g,Q¢u)r> [ by Plancherel’s theorem |
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a 1 -
= 27r/ (g(t),%elgtu)xdt

—a

(oo

Now, it is easy to observe that PW, is a de Branges space corresponding to the de Branges
operator €(z) = (E_(2), E1(2)), where E(z) = e %Iy and E_(z) = €***Iy.

Observe that if we stick to the definition of de Branges spaces considered in [31], the previous
example, that is, the Paley-Wiener space of vector valued entire functions, could not be a de
Branges space as whenever 1 — ¢=%*¢ £ 0, Iy — E,(z) = (1 — ¢7%*%)Iy can not be compact,
and similarly whenever 1 — e¥*? # 0, Iy — E_(z) = (1 — €**?)Ix can not be compact. Thus,
the Hilbert spaces considered in [31] (Theorem 1) are not the proper vector generalization of de
Branges spaces as they cannot generalize Paley-Wiener spaces of vector valued entire functions. In
our consideration, the components @ (z), Q—(z) are considered from a broader class of operator
valued entire functions, namely the class of all Fredholm operator valued entire functions, which
generalizes Paley-Wiener spaces of vector valued entire functions as well as the consideration in
[31]. This relaxation allows a wider range of spaces to qualify as de Branges spaces. The next
example is motivated by a Fredholm operator valued holomorphic function from [42, Chapter XI,
Section 2 & 8]. Here we briefly mention this Fredholm operator valued holomorphic function. We
denote Lo([s,t]) as the collection of all complex valued square integrable functions on [s, t]. Let

us consider the boundary value problem

{ g(n)=Pglp) +h(u), s<p<t (23.4)
u,

Q19(s) +Q29(t) =

where h € L3([s,t]), u € C™ are given and P, Q1, Q)2 are n x n matrices. The task is to find a
solution in G = (W3 ([s,]))", where

W3 ([s,t]) = {g € La([s,]) : g is absolutely continuous, g’ € La([s,t])} (2.3.5)

is the Sobolev space of order one on [s, t]. The operator form of (2.3.4) is

Ag = g/—Pg _ h] .
! [ng@)+ng@)] [u (2.3.6)

In [42], it has been proved that A : G — L(([s, t]) & C™ is a Fredholm operator of index zero.
Suppose G C C is open and connected. Let P(z), Q1(z) and QQ2(z) are n x n matrix valued
holomorphic functions on G. The following boundary value problem gives rise to a Fredholm

operator valued holomorphic function

{dww=ﬂdwm+hWLséuﬁt 2.3.7)

Q1(2) g(s) + Q2(2) g(t) = u,
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Let A(z) : G — L5([s,t]) & C", the corresponding operator with parameter z € G will be of the

A(z)g := g’—P(z)g ] 3.
(g [ Q1(2) 9(s) + Qa(2) g(0) 238

A(-) is a Fredholm operator valued holomorphic function on G with index zero at every point. The

form

boundary value problem considered in (2.3.7) is called the boundary eigenvalue problem. The

details of this kind of problem can be found in [61].

Example 2.3.3. Keeping all the notations same as in the above discussion we consider G = C

Eiiye— | 9§ P29 ]
+2g [ QOF (=) g(s) + Q5 () g()

with the fact that, there exists z4 € C such that

and

Qi (z4) =1I, and Q3 (z4) =0y,
where I, is the n X n identity matrix and 0., is the n X n zero matrix. Also consider

B (2)g = [ g —-P-(2)g ]

Q1 (2) 9(s) + Q3 (2) 9(?)
with the fact that, there exists z_ € C such that
Qi (z2)=1, and Q5(z—)=0,.

Now it is easy to observe that Ey(zy), E_(z_) : G — L§([s, t]) ® C" both are invertible and the

corresponding inverse operators are

o
E+(z+)’1 (Z) (n) = et=8)P(24),, +/ e(u*w)P+(Z+)g(m) dr

and

s

I
E_(z_)™1 <g> (1) = e(h=s)P—(2-),, +/ e(u—m)Pf(zf)g(@ dz

where g € L3([s,t]) and v € C™. Now at this point, if we have the B(G)- valued function
F = E;lE_ belongs to S N S™, then the pair of operator valued functions

¢E(z) = (E_(2),E+(2)) foreveryz e C

will represent a de Branges operator.

We construct the next example with the help of linear operator pencils. More about linear operator
pencils can be found in [42, 61]. Let A, B € B(X), then the linear operator pencil

S(z) =A—-2B
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is a B(X)-valued entire function. Now suppose for some zp € C, S(zp) is invertible, then we can

express S(z) as
S(z) = A— 2B = (20— 2)(A— 2B) [(20 — 2) "1 + (A — 2B)"'B]. (2.3.9)

Now along with the invertible condition, if we choose A € B(X) and B is compact, it is clear

from (2.3.9) that S(z) is a Fredholm operator valued entire function with index zero.

Example 2.3.4. Suppose E.(z) = A — zB and E_(z) = C — zD, where A,C € B(X) and
B, D are compact operators. Also, E; and E_ both are invertible at least at one point in C. If
E*(2)E_(z) = I forall z € C and E4(.)~! € 8™ N 8™, then the pair of operator valued
functions

¢E(z) = (E_(2),E+(2)) foreveryzeC
will represent a de Branges operator.
The following example involves the system of differential equations of operator valued functions.

Example 2.3.5. Let us consider the following initial value problem

dF,(2)
dr

=izF(2)jg+ F.(2)Q(r) 0<r<a,zeC (2.3.10)
with the initial condition (given in the matrix form)

Fo(z) =[Ig Inl, (2.3.11)
where H is a complex separable Hilbert space,

F.(2)=[E"(2) E'(2)]:H®H — H

,_IHO
JH O—IH'

cH®&H—->HeH,

and

Also

Where q(r) is a B(H )-valued continuous function on [0, a. Suppose the solution F,(z) of (2.3.10)
has the property that both E” (z) and E' (z) are Fredholm operator valued entire functions for
all 0 < r < a. Now for every & € C it can be easily shown that

R} = iz~ DR (2)R()" (23.12)

Observe that Fy(z)ju Fo(§)* = 0. Now integrating both sides of (2.3.12) from 0 to r, we get

Fr(2)jnFo(e)” = i(= — F) /0 "Ry () Fu(€) ds. (23.13)
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Now if we use the matrix form of F,.(z) in (2.3.13), we get

B (2)EL ()" — E7 () E" (€)°
pe(2)

=5 / R(:)R(9)"ds. (2.3.14)
2 0

Now if we have fg Fs(§)Fs(§)*ds = 0 for £ € C1 U C_ and there exists & € Cy such that
Jo Fs(&)Fs(&o)*ds, [y Fs(€0)Fs(So)*ds both are invertible and E” (&), E' (&) both are self
adjoint, then the pair of operator valued functions €"(z) = (E” (z), E' (z)) will represent de

Branges operator for all r € [0, al.
For a clear explanation of the last example, see the converse part of the Theorem 2.5.2.

Remark 2.3.6. The system of differential equations that appeared in the last example was studied
widely in the literature. For example, see [4], where the functions under consideration were scalar

and matrix valued.

24 Condition for 73 and 75 to be isometrically isomorphic

In this section, we consider an RKHS # of X-valued entire functions with RK K¢ (z) and for some
peC
Hs={g€H:9(8)=0}

It is clear that Hg is a closed subspace of H and thus an RKHS. Our main goal is to find a
condition such that Hg and 7-[3 are isometrically isomorphic for some § € C,. Recall that T
is the multiplication operator in H where the multiplication is by the independent variable with
domain D, which is also a closed operator. The idea of the Moore-Penrose inverse'of a bounded
linear operator with closed range will be used in this section, and details about it can be found
in [80]. Some of the results of this section can be found in [14], where the operator Kg(/3) is

invertible.

Lemma 2.4.1. Suppose H is an RKHS of X-valued entire functions with RK K¢(z) and assume
that Kg(3) has closed range for some 3 € C. Then the following assertions are true:

1. The RK of Hg can be expressed as
K (2) = Ke(2) — Kp(2)Ks(8) Ke (), (2.4.1)

where K5(B3)" is the Moore-Penrose inverse of the operator K, 3(8).

2. If1lg is the orthogonal projection of H onto ’Hé‘ then

Is(9) = KsK3(B)'g(B) forallge M (2.4.2)

and
Hi = {Kpu:ue X} = {KzKs(B)lv:ve X} (2.4.3)

'The Moore-Penrose inverse of a bounded operator A € B(X%) with closed range is denoted by A'. It is the unique
operator in B(X) satisfying (1) AATA = A; (2) ATAAT = AT; (3) (AAT)" = AAT; (4) (ATA)" = ATA.
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3. The following equivalence condition hold:

RgHg C H if and only if RgHs = D. (2.4.4)

4. rngK3(p) = rng(dp).
Moreover, if K3(f3) is invertible, then Kg(ﬁ)T can be replaced by Kz(3) ™1 in (2.4.1) and (2.4.2).

Proof. We are avoiding the proof as it is a straightforward adaptation of the proof of Lemma 2.6
in [34]. O

Lemma 2.4.2. If in the setting of Lemma 2.4.1, the equivalence condition in (2.4.4) also holds,

then the following implications are true:
1. Rg € B(Hp, H).

2. Hp =rng(%T — BI) and
mg(% — B = {Kgu:u € X} = {KzKs(8) u:u € X}. (2.4.5)

3. If Kg(B) = O, then there exists a unitary operator T from rng(T — BI)* to rngKz(3).

Proof. 1tis clear that Ry is linear. To verify (1), we first show that Rg is a closed operator, and
the rest of the arguments will be clear from the closed graph theorem. Let {g, : n € N} C Hg
be such that g, — g and Rgg,, — h as n — oo. Then g € Hg as in RKHS norm convergence

implies pointwise convergence. Also, for £ £ £,

9(§) —g(B) _ im gn(§) —gn(B) _ im _
§—0 N nl—>oo §—p B nl—mo Rﬁgn(é) h(f)

Thus h(§) = Rgg(&) for all £ € C as h and Rgg are entire functions. This implies that the
operator Rg is closed.
For every g € Hg,

(T - BI)Rgg = g, (2.4.6)

as for & # [ the following holds

B 9@ —yg
(- 6DRsule) ¢ | ") =5
This implies

mg(T—pI)={(T—-pl)g: 9D} ={(T—BI)Raf : f € Hp} = Hp. (2.4.7)

Thus the first assertion of (2) holds. Also from the preceding lemma (2.4.5) is straightforward.
Since K(/5) > 0 and has closed range, rngKg(5) = rngKg(ﬁ)% (see [37]). Now, in view of
(2.4.5), we consider a map T : rng(T — BI)+ — rngK () defined by

Ts(Kgu) = Kg(B)2u forallu € X. (2.4.8)
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It is clear that T} is linear and bijective and for any v € X

K gull3 = (Kgu, Kgu)yu = (Kg(B)u, u)x
1 1
= (K3(8)2u, Kg(B)2u)x
1
= |[Ks(B)2ullx
Hence T} is a unitary operator. O

Lemma 2.4.3. In addition to the setting of Lemma 2.4.2, if we assume D to be dense in 'H, then
forall uw € X, Kgu are the eigen functions of T* corresponding to the eigenvalue B. Also, if we

assume ‘% to be symmetric, then for some u € X, the following equivalence condition holds
paKgu € H if and only if Kgu = 0. (2.4.9)
Proof. Letg € D and u € X, then

(Zg, Kgu)y = ((Tg)(B), w)x = (Bg(B), u)x = (9(B), Bu)x = (9, BKpu)x.

Therefore, (Tg, Kgu)y = (g, BKsu)x for all g € D, which proves the first assertion.
To show the equivalence condition in (2.4.9), it is sufficient to show that for some u € X,
ppKpgu € H implies Kgu = 0, as the opposite direction is self-evident. Now pgKgu € 7—[3
and RgpﬁKgu = —2miKgu € H, which implies Kgu € D. Let g € D and g = Rgh for some
h € Hg and observe that

ppKpu = —2mi(T — BI)K gu. (2.4.10)

Then,

Therefore, pgKgu L D. Now, due to the additional density condition on D, it is clear that
pgKgu = 0. Thus pgKgu € H = Kgu = 0. O

The next lemma characterizes one of the conditions mentioned by de Branges in [30] in terms of

the symmetric condition of ¥.

Lemma 2.4.4. Let H be a nonzero RKHS of X-valued entire functions with RK K¢(z). Suppose

that, for some 3 € Cy, Kg(3), Kg(ﬁ) have closed range and RgHg C H, RgHz C H. Then

(T—BI)Rs:Hs — Hg (2.4.11)
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is an isometric isomorphism if and only if the operator ¥ is symmetric on D.

In particular, if Kg(B) and K5(3) are invertible, then also the above equivalence holds.

Proof. Observe that
(T = BI)Rs(T — BI)Ry = I, and (T — BI)R5(T — BI)Rg = Iy, (2.4.12)

Now to prove the lemma, we only need to show that (T — BI)Rj satisfies the norm preserving

property if and only if T is symmetric, that is, for all g € Hp

(T = BI)Raglln = llglln (2.4.13)

if and only if T is symmetric. In view of (2.4.6) and by using polarization identity, it is easy to
observe that (2.4.13) holds if and only if

((T = BI)Rsg, (T — BI)Rgh)y = (g, h)n (2.4.14)

for every g, h € Hg. Also, for every g, h € Hpg, the following evaluation

((T = BI)Rgy, (T — BI)Rgh)y = (g, h)n
3
({(T=8I)+ (B—B)I}Rsg, {(T— BI) + (B — B)I}Rgh)3 = (g, h)n
3
((T = BI)Rgg, (T — BI)Rgh)y + (T — BI)Rgyg, (B — B)Ragh)x
+((B — B)Rpyg, (T — BI)Rghyy + ((B — B)Rpyg, (8 — B)Rgh)y = (g, h)n
3
(B = BT = BI)Rgg, Rgh)z — (Rgyg, (T — BI)Rgh)x
+ (8 — B){Rgg, Rgh)] = 0

guarantees that (2.4.14) holds if and only if
(T = BI)Rgg, Rsh)y — (Rg, (T — BI)Rh)y + (B — B)(Rsg, Rgh)y = 0. (24.15)
Again for every g, h € Hpg, (2.4.15) holds if and only if
(TRag, Rgh)y = (R3g, TRgh)y. (2.4.16)
The following evaluation

((T = BI)Rgyg, Rgh)y—(Rpg, (T — BI)Rgh)y + (8 — B)(Rag, Rgh)3 = 0
i
({(X = BI) + (B = B)I}Rgg, Rgh)u — (Rgg, (T — BI)Rgh)y =0
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(»

(% — BI)RBQ, Rgh)y—(Rgg, (T — BI)Rgh)y =0
i}

(T Rgg, Rgh)y — B(Rpg, Rgh)n — (Rsg, T Rah)y + B(Rsg, Rgh)y =0
(3

(T Rgg, Rgh)y — (Rpg,T Rgh)n =0

proves the above equivalence condition. Since RgHg = D, the first part of the lemma is proved.

The case when K3(3) and K5(/3) are invertible can be proved similarly. O

2.5 A characterization of the RKHS B;(¢€)

We conclude this chapter by discussing a characterization of B (&) which was initially given by L.
de Branges for RKHS of scalar valued entire functions (see [30, Problem 50, Theorem 23]). This
characterization for the RKHS with p x p entire matrix valued RK can be found in [34, Theorem

7.1]. Our observation is in a more general setting where the RK’s are operator valued functions.

Lemma 2.5.1. Let H = B(€) be an RKHS based on a de Branges operator &(z) =
(E_(z), E4(2)) as mentioned in Section 2.2. Then RgHg C H if

1. B € C; and E4(p) is an invertible operator:
2. B € C_ and E_(p) is an invertible operator.
Proof. The proof is similar to Lemma 6.4 in [34]. ]

Theorem 2.5.2. Let H be an RKHS of X-valued entire functions with B(X)-valued RK K¢(z) and
suppose 3 € C, be such that

Kg(z), K5(z) € ®(X)  forallz € C (2.5.1)

and

K3(B), K5(B) are invertible. (2.5.2)

Then the RKHS H is isometrically equal to a de Branges space B(€) if and only if
RgHg CH, RgHzCH (2.5.3)

and

(T—BIRs : Hp — Hz (2.5.4)

is an isometric isomorphism. In this case, the operators E and E_ are given by the following

formulas:

N

By (2) = ps(2)ps(B) 2 Ks(2)Kp(B) (2.5.5)
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and

[NIES

E_(2) = —pz(2)ps(B) 2 K5() K5(B) 2. (2.5.6)

Moreover, E () and E_(B) are self-adjoint. Thus, we can write H = Bg(&) with the
understanding that all of the above hold true.

Proof. The proof will be similar with few exceptions to Theorem 7.1 in [34]. So here we mostly

avoid similar calculations. Since K3(53) and K5(03) are invertible, in view of Lemma 2.4.1, the

reproducing kernels of #3 and # are

K¢ (2) = Kel2) — Kp(2)Kp(8) ™ Ke(B) (2.5.7)

and

K[ (2) = K¢(2) — K5(2) K5(B8) ' K¢ (B) (2.5.8)

respectively. Also, forany g € Hg and z # 3

(T Rsg)2) = =2

First, suppose H satisfies the constraints in (2.5.3) and (2.5.4). Then, the equation

9(2). (2.5.9)

@I

2= E-B .8
Z_ﬁK?(z) = E_ﬁKﬁ(z). (2.5.10)

can be readily verified in a manner similar to the first part of the proof of Theorem 7.1 in [34].

Now consider

o=

By (2) = pa(2)pp(B) 2 Kp(2)Kp(B)~ (25.11)

and

=

E_(2) = —pz(2)ps(B) 2 K5(2) K5(B) 2.

Then in view of (2.5.1), E4(z), E_(z) are entire and belong to ®(X) forall z € C. Also E,(8) =
pﬁ(ﬁ)%Kg(ﬁ)% and E_(3) = pg(ﬁ)%Kg(ﬁ)%. Thus £, (8) and E_(3) both are invertible and
selfadjoint. Now, from (2.5.11) and using (2.5.7), for any £, z € C, we have

(2.5.12)

By (2)E4(€)" = ps(2)ps(€)ps(B) ' Ks(2) K5
= pp(2)ps(€)ps(B) " Kp(2)Kg
= pp(2)ps(E)pa(B) ' [Ke(2) — KL ().

Similarly, from (2.5.12) and using (2.5.8), we have

E_(2)E-(&)" = pa(=)p5(€)ps(8) " [Ke(2) — K¢ (2)]
For z # £, we calculate the following equations

E_,_(Z)E_A,_(f)* _ (Z _B)(/B _g) [Kg(Z) _ [(ﬂ(zﬂ7 (2.5.13)

pe(2) (8- B)(z—¢)
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and
BB _ (=8B -9 0 .,
e (BB T EeBk @19

Now, for z # E, from the above two equations and using (2.5.10), we have
s =Y

e [E=BB-8 5 (-BB-D 7,

- e - [ G=R g Rle - G5 — il

= K¢(2) (2.5.15)

Therefore,

EL(OEL(E)" = E-(OE-(§)" = pe(§)Ke(§) = 0

for ¢ € C4 and
EL(©)E+(€)" — E_()E_(6) = 0 (25.16)

for £ € R. Thus, E;lE, € 8™ N 8™ and the corresponding pair of operator valued functions
¢(z) = (E_(2), E+(2)) is a de Branges operator. Since the RK’s of the spaces H and Bs(€&) are
equal, H = Bg(€&).

Conversely, let us assume that % = Bg(€) and (2.5.1), (2.5.2) hold. The constraint in (2.5.2) gives

B (B)E+(8) = BE_(3)E_(8)" and E_(B)E_(B) = E-(B)E+(B).  (25.17)

This implies that £, (3)* and E_(3)* both are injective. Also in view of Theorem 1 in [32], we

have

mgE_(8) C mgE,(8) and mgE, (F) C mgE_(B).

Since K3(f) and K7(53) both are invertible £, (8) and E_ () both are surjective. Thus E (5)

and E_ () both are invertible. Now from the preceding lemma, we have
RgHg € H and RzHz CH.

At this point if we prove the norm preserving condition for the operator (T — 3I) R then the rest
of the proof follows from Lemma 2.4.4. Suppose g € Hg, then (T — BI JRgg € HE and
L

-/ (B ) (@) P

—0o0

(BX'g)(@)|Pdw

= 1lglf3, o)
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Chapter 3

Selfadjoint extensions, Kramer sampling

and Functional model

M. G. Krein introduced the notion of entire operators, which combines the theories of symmetric
operators and analytic functions. The book [45] provides a primary exposition of entire operators.
Recently, it was shown in [34] that entire operators with deficiency indices (p, p) for some finite p
is unitarily equivalent to the multiplication operator ¥ in a de Branges space of CP-valued entire
functions. The primary motivation for this chapter is to discuss a similar result involving entire
operators with infinite deficiency indices and de Branges spaces of vector valued entire functions
introduced in the previous chapter. Now, we briefly explain the contents of this chapter. In the first
section, the selfadjoint extensions of the multiplication operator T are discussed, and using their
eigenvalues, de Branges spaces are characterized in terms of having Kramer sampling property.
In the second section, entire operators with infinite deficiency indices are considered, and their
connection with de Branges spaces of vector valued entire functions is studied. We conclude this
chapter by introducing a connection between the characteristic function of a completely nonunitary

contraction operator and de Branges spaces of vector valued entire functions.

3.1 Connection between ¥ and de Branges spaces

In this section, we describe the parametrization and canonical description of selfadjoint extensions
of T with an arbitrary domain D, using the unitary operator V' : rng Kg() — rng KB(B)
as a parameter. Then, with the help of these selfadjoint extensions, we will see that the de
Branges space Bg(€) has Kramer sampling property. Details about the selfadjoint extension of
the multiplication operator can be found in [1] and [7]. In the setting of RKHS, which consists of
entire p X 1 vector valued functions, the parametrization and canonical description of selfadjoint
extensions of the operator € with nondense domain D can be found in [34], where the parameters

are p X p unitary matrices. The following lemma will be useful in proving Theorem 3.1.2.

Lemma 3.1.1. Suppose H is an RKHS of X-valued entire functions with RK K¢(z) having at

least one nonzero vector, the operator T is assumed to be symmetric in its domain D and for some
peCy
» Kg(B) has closed range, Kg(3) = 0 and RgHz C H

. KE(/B) has closed range, Kg(ﬁ) = 0and RgHz C H.

Then D is dense in H if and only if { Kgu : u € X} N [D + {Kzv : v € X}] = {0}.
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Proof. The proof can be readily adapted from Lemma 5.1 in [34]. O

Theorem 3.1.2. Suppose H is an RKHS of X-valued entire functions with RK K¢(z) having at
least one nonzero vector, the operator T is assumed to be symmetric in its domain D and for some
peCy

» Kg(B) has closed range, Kg(3) = 0 and RgHz C H

. KE(/B) has closed range, Kg(ﬁ) - 0and RgHz C H.

Then there exists a unitary operator V. : rngKg(3) — rngKB(B) such that the following

implications are true:

1. The following sum
{(T5" + TB_IV)U cu € ngKs(8)} + D (3.1.1)

is direct, where the operator T : tng(T — BI)+ — rngKg(B) is defined by

Tg(Kgu) = Klg(ﬁ)%u forallu € X.

2. The operator Ty defined as
Tv(g—l—Tleu+T§1Vu) = zg+BT51u+5TB*1Vu (3.1.2)
with the domain mentioned in (3.1.1) is a selfadjoint extension of T and the family
{%v : V is a unitary operator from rngKg(3) to rngKE(B) satisfying (1)}
is the complete list of selfadjoint extensions of ‘X.

Moreover, if D is dense in H, then any unitary operator V : tngKg(f) — rngKB(ﬁ) would
satisfy (3.1.1).

Proof. The proof of the first part of the theorem can be adapted from Lemma 5.2 in [34], in
conjunction with Lemma 3.1.1. Now, we prove the second part. From the assumptions it is easy

to observe that the sum D + {(Tﬁ_1 + TB_IV)u :u € X} is direct and for any u, v € rng K3(5),
(T@T1 +T§1V)u = (TE1 +T§1V)v = u=0.

Therefore, €y is well defined.

To show that Ty, is symmetric, it suffices to show that for every s, s’ € X and g, h € D,

(Tvlg+ (T5" + T3 Vsl h+ (T + T3 V)8 )y

—(g+(T; ' + TE*lV)s,zv[h + (T + Tglv)s’]m =0. (3.1.3)
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Let Kgu = Ty 's, Kgz = T 's', Kzu = Tgflvs and K5y = Tglvs’. Then the left hand side
of (3.1.3) becomes

(Tg + BKpu + BEzv, h+ Kgx + Kgy)n — (9 + Kpu + Kzv, Th + BKpx + BEGy)u,
which reduces to
(Tg,h+ Kga + Kgy)u — (9, Sh + BKgz + BKgy)u = 0, (3.1.4)

(BKgu,h + Kgz + K§y>y — (Kpu, Th + BKpx + 5KEQ>H =(B-PB)(ss)x  (3.1.5)

and
<ﬁK§U, h+ Kgx + Kg?J)H - <KB’U, Th+ BKpx + 6K3y>7{ =(B-PB)(s8)x. (3.1.6)

From the above calculations, we conclude that Ty, is symmetric.
To show that Ty is selfadjoint it is suffices to show that the deficiency indices of Ty are (0, 0).
We have

(Sy = BI)(g + T 'u+ 15 Vu) = (T g+ (B — H)T; .

If h € H is orthogonal to (Ty — BI)(g + Tﬁ_lu + TB_1VU) for every g € D and u € rng Kg(3)
then (T — BI)g + (B — B)T5 "u, h)3 = 0.

In particular, for g = 0, ((8 — B)T/glu, h)yy =0 = h € Hg.

For,u =0, ((T — BI)g,h)y = 0forall g € D. Since D = RzH g, we have h = 0.

Therefore, {rng(Ty — BI)}+ = {0} and similarly {rng(Ty — BI)}+ = {0}.

This proves that Ty is selfadjoint.

Conversely, let T is a selfadjoint extension of ¥. In view of proposition V I 11 of this paper [79],
the collection of selfadjoint extensions T’ of ¥ is in one to one correspondence with the collection

of unitary operators x from rng T} ! onto rng TB_ ! such that the sum
D+{(T/6T1 fxT/gl)u:ueif}
is direct via the formula
T g+ (Ty' = XxT; Yu) =Tg+ (BT " — BXT; u

forg e Dandu € X.
But this is equivalent to the present situation by the first part of the theorem (can be explicitly
adopted from the proof of Lemma 5.2 in [34]). The remaining portion of the theorem follows

from Lemma 3.1.1. O

Remark 3.1.3. Ifin the setting of Theorem 3.1.2, we assume that Kg(83) and K5(3) are invertible,
then the unitary operators mentioned in the theorem belong to B(X), and the domain of Sy will
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be of the following direct sum form
{(T;" + TE_1V)U cu€ X} +D. (3.1.7)

Also, the range of the operator Tg will be X, and the inverse will be of the following form

=

Ty' = KpKp(B) 2. (3.1.8)

Remark 3.1.4. In the context of Theorem 3.1.2, when D is not dense, the adjoint * of T is a
linear relation. A linear relation from ‘H to ‘H is simply a linear subspace of H X H. Although this
thesis does not delve into linear relation extensions of the multiplication operator T, it would be
an interesting problem to characterize self-adjoint linear relation extensions of ¥ when the domain

D is not dense.

Theorem 3.1.5. Suppose H is an RKHS of X-valued entire functions with B(X)-valued RK K¢(z)

having at least one nonzero vector and 8 € C be such that
(1) Kp(z),K5(2) € ®(X) forall z € C and Kﬁ(ﬁ),KE(ﬁ) are invertible.
(3) T : D — H is symmetric.

Then H = Bg(€), where E, (z) and E_(z) are as mentioned in (2.5.11) and (2.5.12) respectively.
Moreover, if for some i € R

(4) Ku(p) = 0and E4(p), E_(p) are selfadjoint.
Then the following implications are true:

(5) R, H, CH, K,(u) is invertible, and the operator
Vi = (E- (1)) ' Es (1) = B ()" (B4 (1)*) " is unitary. (3.1.9)

(6) V), identifies a selfadjoint extension Ty, of L.
(7) {K,u:u € X} is the eigenspace corresponding to the eigenvalue p of Ty,

Proof. Under the first three assumptions, H = Bg(€) follows from Theorem 2.5.2. Now for
u € R, we have

E (W) Ey(p)" — E_(n)E—(p)* =0 (3.1.10)

and
E (WEy(n)* — EL(W)E_(n)* = —2mi K (). (3.1.11)

In view of (3.1.10) and (3.1.11) we have E,(u)*, E_(u)* both are injective.  Since
E (n),E_(n) € ®(X) and selfadjoint, both are invertible. Thus R,#, C H follows from
Lemma 2.5.1 and V), is unitary follows from (3.1.10). Also R, € B(H,,H) and px € 7(%). This
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implies /(1) is invertible.
Since V), is a unitary operator on X, to show that Ty, is a selfadjoint extension of T, it is sufficient
to show that V), satisfies (3.1.7). Now for z € C

_ ps(2)ps(B) 2 Kp(2)Kp(8) "2
ps(2)ps ()2
1 Ey(z)
= 2 3.1.12
ps(B) 5(2) ( )
1[Bi(z)  B—up E+(Z)]
= 2 3.1.13
CleR=re G119
Similarly,
- 1 E_(z)
T=1(2) = — 2 3.1.14
1| Eo(z) | B—pE_(2)
= — 2 + 3.1.15
GOSN P S I G115
For any V' € B(X), we consider the following notation
X (2) = (B=9T5'(2) + (B - TS (2)V. (3.1.16)
In particular,
V, 1] —= E+ E_
e — 2 |(B—p)—= — (B—p)— 3.1.17
X = ps(B) [(5 D) o (8 —n) p (3.1.17)
and XL/" (u) =0. Thus D = {Rux,‘f“u tu € X}
Now from the above considerations we have
1 [EL — E_V,
T3' + 15V = ps(B)? {W} + Ry (3.1.18)
Now multiplying (3.1.18) by £ (p)* from the right, we get
(T3 () + T VB (1) = ps(DF K + (R Ew (). (.119)

Now if for some u € X, (Tﬁ_1 + TE_]-VM)E_A'_(M)*U € D, the above identity gives pquu € H.
Since K, (p1) > 0, this implies u = 0. Thus, assertion (6) holds, and Ty, is a selfadjoint extension
of <.

From (3.1.19) it is clear that K Eu belongs to the domain of Ty, and

(Tv, —p)Kju=0

for all u € X. Thus, assertion (7) holds as K, () is invertible. O
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Theorem 3.1.6. Suppose H is an RKHS of X-valued entire functions with RK K¢(z) having at
least one nonzero vector such that (2.5.1), (2.5.2) hold, and { K i w; } is an orthogonal basis of H
for pi,pa, ... € Rand uy,ug, ... € X. Then

(1) ¥ :D — H is symmetric.
(2) H = Bg(€).

Moreover, if V- € B(X) is a unitary operator satisfying (3.1.7), K,,(i) > 0 and E{(p), E_ (1)
both are selfadjoint, then

(3) 1 € Ris an eigenvalue of v if and only if
{E(p) — E-(n)V}Iu=0 (3.1.20)
and the corresponding eigenfunction
g=AK;(Ex (1)) 'u (3.1.21)

for some nonzero A\ € C and nonzero uw € X. Also, the geometric multiplicity of the

eigenvalue (i is countably infinite.
(4) If E4 (1) — E_(pn)V is invertible, then (T — pl) is a closed operator, and p & o(Ty ).

(5) If Ex(z) — E_(2)V € ®(X) for all z € C and invertible at least at one point, then Ty has

a discrete set of eigenvalues.

Proof. (1), (2) will follow from Theorem 2.5.2 in association with Lemma 2.4.4, once we show

the norm preserving property of the operator (T — B8I)Rs : Hp — Hp. Let g € Hp, then

_ > _ K, u;
(T~ BD)Rsgl3, = 3 (T — BI)Rsg, =) 2

UZHH

=1

= HKﬂzulHH

= > (T = BDRsg) (i), )
- I, uma
= B e

g, e )P = Nlglfe
-2 !K qu bk

=1

Now suppose V' is a unitary operator satisfying (3.1.7), K, (p) > 0 and E{ (1), E_ (1) both are
selfadjoint, then R, H, = D. Let p € R is an eigenvalue of Ty,. Then there exists a nonzero
vector g = h + (TB*1 + TglV)u in domain of Ty, where h € D and v € X. Thus forall z € C

(Tv — ul)g)(2) = (z — wh(2) + X (z)u =0, (3.1.22)
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which gives XL/(H)U =0,h(z) = —(RMXL/)(Z)U and u # 0. This implies Rux}fu € D and
9(2) = (R (2)u+ (T + TV )u.
© B B

Then by using the fact that X,‘f(u)u = 0, g can be expressed in the following form

1 [Ef(z) — E_(2)V
= 2 ) 3.1.23
9() = ps(8) e (3.123)
It can also be proved that
X (u=0 < (Eq(pn) — E_(u)V)u=0. (3.1.24)

Since E (1) and E_ (1) both are invertible, we have
(BEx(u) —E_(uV)u=0 < Vu=FE_(u)*(FEy(pn)*)  u. (3.1.25)

This gives
9(2) = pu(p) 2 KE(2) (B (1)) .

To show the converse part of (3), we first observe that, if for some u # 0, { E4 (1) — E_(u)V}u =
Oand g = AK; (E1 (1)) ' then Vu = Vyuand X u = X,/“u. This implies

1 o - -
9= ps(B) Ky (Ev(w))'u = —Ruxgiu+ (T3 + TV )u

belongs to the domain of Ty and

(Tv — pl)g = —T(Ruxpu) + (BT " + BTE_IV)u + pRyx u — (T + TB_IV)U
={—x + (B - wT5" + (B~ mT5'Viu=0.

Thus, (3) holds.

Now suppose F (u) — E—(u)V is invertible. Since Ty is selfadjoint, the operator (Ty — pl) is
closed. To verify u & o(Ty) we need to show that (Ty — uI) ! exists and is bounded. (3) implies
that (T — ul) is injective on domain of Ty,. Since Ty is selfadjoint and i € R, rng(Ty — ul)
is dense in H. Also it can be proved that (Ty — ul) is surjective (for a similar proof see Theorem
8.5 in [34]). Now the rest of the arguments follow from closed graph theorem. (5) follows from
(3) and Theorem 1.5.3. O

The following theorem gives that under some special conditions, the de Branges space B(€) has

the Kramer sampling property.

Theorem 3.1.7. Suppose H is an RKHS of X-valued entire functions with RK K¢(z) having at
least one nonzero vector such that (2.5.1), (2.5.2) hold, and the operator ¥ : D — H is assumed
to be symmetric. Then the RKHS H is the de Branges space Bg(€).

Moreover, if Kg(z), K5(z) are invertible for all = € R and there exists a unitary operator V' €
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B(X) satisfying (3.1.7) such that E1 (z) — E_(2)V € ®(X) for all z € C and invertible at least
at one point, then Bg(&) has Kramer sampling property.

Proof. H = Bg(€) follows from Theorem 2.5.2. Suppose V' &€ B(X) is a unitary operator
satisfying all the conditions mentioned in the statement. Then we can have a selfadjoint extension
Ty of T and the spectrum o (Ty ) C R. Now for some p € R, if E4 (u) — E_(u)V is invertible,
then from the preceding theorem, it is clear that ;1 & o(Ty). This gives

o(Ty)={peR:E,;(u) — E_(u)V is not invertible },

which is precisely the collection of all eigenvalues of Ty,. Also, o(Ty ) is a discrete set. Since
Kp(z), K5(2) are invertible for all z € R, E,(z), E_(z) both are invertible there. Thus the
eigenfunctions are of the form g = Klfu, and the eigenspaces are countably infinite. Since Ty
is selfadjoint, any two eigenfunctions corresponding to different eigenvalues are orthogonal, and
the Gram-Schmidt orthogonalization process can be used to make the eigen functions orthogonal
corresponding to the same eigenvalue. Also, since Ty is selfadjoint, the spectral theorem implies

that the collection of eigenfunctions is total in /. This completes the proof. O

3.2 Entire operators with infinite deficiency indices

This section revives a functional model problem regarding entire operators with infinite deficiency
indices. We present the newly constructed de Branges spaces in Chapter 2 as the functional model
for a particular class of entire operators with infinite deficiency indices. Assume that Y is an
infinite dimensional closed subspace of X. Let I be a densely defined closed, simple, symmetric
operator on X with infinite deficiency indices. We denote py (E) as the collection of all Y'-regular

points of E, which is defined by
py(E) :={£€C: M =rng(E —&I) =M and X =M + Y}, (3.2.1)

It is known that py (F) is an open subset of C and every £ € py (E) is also a point of regular type
for E. Because of (3.2.1), it is clear that for every £ € py (E), there exists the projection operator
Py (&), that is, for every f € X, there exists a unique g € D(F), the domain of E, such that

f=(E-&hg+ Py(&)/f

Also, for every fixed f € X, we can consider a map from py (F) to Y defined by £ — Py (§)f.
We denote these Y'-valued functions as fy for every f € X and are defined as fy () = Py (§)f,
also assume H := {fy : f € X}. Let{ € py(E), then

mgPy(§) =Y and kerPy(§) = rng(E —¢I).

Since both range and kernel of the projection operator Py (&) are closed subspaces of X, Py () is
bounded for all £ € py (E). Then,
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mgPy (6)* = Xomg(E —¢I) and  kerPy(£)* =Y.

Also, for every £ € py (E), we can have the operator Ty (£) € B(X), which is defined by

Ty (&) = (E — &I)"1(I — Py (€)).

Now following Krein’s definition for entire operators, E is an entire operator if py (E) = C, and
the functions fy are entire. This implies that Py (§) and Ty (§) both are B(X)- valued entire

functions. More properties of these two functions can be found in [45].

Lemma 3.2.1. For any { € py(FE), the restriction of the projection operator Py (§) on i)ﬁé is
invertible, that is, the operator Py (§)|oy L imé- — Y is invertible.

Proof. Suppose f,g € M+ = X © rng(E — £I) be such that

Py (§)f = Py(§)g = h (say).

Then there exist f1, g1 € Mg, such that f = f; + hand g = g1 + h. Since f1 — g1 € M, and
f—gems, PY(§)|fm§i is one-one.

Now for any f € Y, we have the unique sum f = g + h, where g € M and h € imé This
implies Py (£ )|§m§l is onto. O

Since E is simple, the map ¥ : X — H defined by f — fy is injective. Thus H is a vector space
with respect to the point wise addition and scalar multiplication. Consider the inner product in H
defined as

(fy.gv)mn = (f.g)x forall f,geX.

It is clear that H is a Hilbert space with respect to the above inner product, and W is a unitary
operator.
Let f € D(F) and g € X be such that g = E f. For every £ € C there exists unique fé € D(E)
such that

f=(E-&fi+ fr(6)
This gives
g=Ef=(E—¢eNf+&f

=(E-¢D)f +&{(E— &N fi+ fr(8)}
= (B —&N)(f +&fe) +Efv(6).

Because of (3.2.1), it is easy to observe that gy () = £ fy () for all £ € C. Thus the operator E
on X is unitarily equivalent to the multiplication operator on .
Now for any ¢ € C and fy € H, we have

Ly Olly = 1Py () flly < [Py (O f 1z = 1Py (I v [l
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Since for all £ € C, the projection operators Py (§) are bounded, the point evaluation linear maps

in H are bounded. This implies that H is an RKHS with the reproducing kernel
K¢(z) = 6.6 forall§,z e C.

Now, let us observe the range and the kernel of the operator §, : H — Y for any z € C. Let
fy € H be such that U(f) = fy for f € X. Then

0:(fy) = fr(2) = Pr(2)f.
Thus,
rgd, = mgPy(z) =Y and kerd, = {fy = U(f) : f € mg(E — zI)}. (3.2.2)
This implies
kers? = {0} and rngd* = {fy = U(f): f € X o rng(E — zI)}. (3.2.3)

At this point, we also recall a few facts regarding the generalized Cayley transform. Suppose E’ is
a selfadjoint extension of the entire operator £/ within X. Then the generalized Cayley transform
is defined by

T+ (E—2)(E - = (B —2I)(E —€I)™! forallé,z € C\ o(E). (3.2.4)
It is known that the generalized Cayley transform
I+ (E—2)(E —¢n7 ot - smg (3.2.5)

is bijective for all £,z € C\ o(E’). More details about the generalized Cayley transform can
be found in [45, Chapter 1, Section 2]. The following lemma has also been collected from [45],

which will provide a necessary motivation for our final problem.

Lemma 3.2.2. Suppose Re = (E — £I)7! for all € € C for the entire operator E. Then, for any

two numbers £, z € C the operator

I+ (§&—2)Re : Me — M, (3.2.6)
is bijective.
Proof. Let f € Mg, then there exists g € D(F) such that f = (£ — £I)g. Now

[+ (€= )RS = [+ (€ = 2)RJ(E —ED)g
= (E—-&Dg+(§—2)g
=(E—zI)g e M,.
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Since every £ € C is a point of regular type of E, the operator (E — £I) is injective, and this
implies the operator I 4 (£ — z)9R¢ is also injective for every &, z € C. The operator I + (£ — 2)R¢
is also surjective as for any g € M, with g = (E — zI)g’ for ¢ € D(E), the element f =
(E —¢&I)g' € Mg is the pre-image of g. O

Recall that for z € C, R, is the generalized backward-shift operator. Suppose f € X, then for any
€,z € C there exists f{, f; € D(E) such that

f=E-EDfe+ fr(&) = (E—2Dfl + fr(2).

Now a simple calculation gives

fe= o | fr(©) = fv(e)

fi=(B—e=— =

This implies the invariance of H under R, for all z € C.

Since the operator E on X is symmetric and unitarily equivalent to the multiplication operator on
‘H, then the multiplication operator is also symmetric on . Finally, we summarise all the results
we discussed in this section in terms of a theorem, which will also serve the purpose of answering

a problem of functional model of entire operators with infinite deficiency indices.

Theorem 3.2.3. Suppose X is a complex separable Hilbert space and F be an entire operator with
infinite deficiency indices, producing the direct sum decomposition of X as mentioned in (3.2.1).

Also, suppose for at least one 3 € C the following conditions hold:

1. The dimensions of Mg N fmé are finite for all £ € C_, and the dimensions of zmg N fmgL
are finite for all £ € C,..

2. The subspaces Mg + imé- forall€ € C_, and img + Sﬁg' forall £ € C4, are closed.

Then E is unitarily equivalent to the densely defined multiplication operator in a de Branges space
Bs(€). The space Bg(€) is also invariant under the generalized backward-shift operator R, for
all z € C.

Proof. We begin the proof by observing the intersection of some related closed subspaces of X.

Due to Lemma 2.1 in [78], we have
M. NMg ={0} Vz &:Imz-Im¢ > 0. (3.2.7)
Moreover the following direct sum decomposition
X=M4+MF Vz, &:Imz-ImE >0
holds. Now, since any a € R is a point of regular type of E the operator E,,

D(E,) = D(E) + My, Eo(fe + ¢a) = Efs + a ¢a, fr € D(E), ¢a € My
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is selfadjoint (see [78]). Thus every z € C \ R is a regular point of E,. This implies for any
z € C\Rand f € X, there exist unique fr € D(E) and ¢, € M- such that

f=(Ea—2I)(fE + da) = (E = 2I) fE + (0 — 2)Pa-
This gives the following direct sum decomposition
X=9M, +M- VzeC\RandVaecR.
Thus the intersection
M, NME={0} VzeC\RandVaecR. (3.2.8)

Also
M, MM ={0} VzeC\RandVacR. (3.2.9)

As f € M, N ML implies f L ML and £ L 9,. Thus f L (M, + ML) = X, which implies

f = 0. It can also be proved that the direct sum decomposition
X=M, +MS VzeC\RandVacR

holds. Now suppose E’ is a selfadjoint extension of E within X, then due to (3.2.5) and Lemma
3.2.2, we have
I+ (B—&)(E —pI)™! :imﬁmsmg —>smgmsmg

and
I+ (B—-¢&(E -BN) " : smgmmgL — Me N Mz

are bijective for all £ € C\ o(E"). These observations together with condition (1) imply that the
subspaces Mz N ‘,mf;, Ms N imé, Me N 93% and smg N mtg are finite dimensional for all £ € C.
Now, since Kg(§) = d¢6}, we have

dim(ker 0¢d3) = dim(ker §3) + dim(ker 6 N rngdj).
Due to (3.2.2) and (3.2.3), we have for any ¢ € C,
dim(ker K3(¢)) = dim(Me N M5 ) and dim(ker K5(€)*) = dim(Mg N M).

The above observation implies that dim(ker K5(&)) and dim(ker Kg(§)*) are finite for all { € C.
Now, due to [53] (Corollary 2.5), it follows that K3(£)* has closed range if and only if ker d5 +
mgég is closed in H. Since W is a unitary operator, this is equivalent to saying that Mg + imfl is
closed in X for all £ € C. We have already noted that 05 + fmé isclosed forall ¢ € CL UR, as
for all these £, we have Mig + ?33?5L = X. Moreover, the second assumption ensures that K5(§)*
has closed range for all £ € C_. Thus, K3(§)* for all £ € C has closed range, which indeed
implies the closed range of K3(&). Therefore, K3(§) € ®(Y') for all £ € C. Similarly, it can also
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be observed that K75(§) € ®(Y') forall { € C. Also, Lemma 3.2.1 implies that K3(8) and K5(/3)
both are invertible. The rest of the proof follows from the previous discussions in this section and

in association with Theorem 2.5.2 and Lemma 2.4.4. O

3.3 Connection with the characteristic function of a contraction

operator

In this section, we construct RKHS of X-valued analytic functions using the characteristic function
of a completely nonunitary (cnu) contraction operator. The underlying idea is to consider those
cnu contraction operators whose characteristic functions are inner and invertible on . These
inner functions are then considered on the upper half plane with the help of the conformal map
C(z) = j—jr; and construct RKHS using the same technique mentioned in Section 2.1. Here we
dealt with two situations which will be discussed separately. Most of the standard results and
notations used in this section can be found in [76].

Let A € B(X) be a completely nonunitary contraction operator. Recall that the characteristic

function of A is given by

Calz) = [—A bo(] — AAY)I(] — 2A%) (I — A*A)%] rng(l — A*A)3

and it is a bounded linear operator between © 4 = Tng(/ — A*A)% and © 4~ =Ttng(l — AA*)%.

First Situation: Suppose A € C| is similar to a unitary operator and the spectrum o(A) is a
proper subset of T. The existence of nonunitary contractions, specially with a compact spectrum,
can be found in [70]. Now the characteristic function C'4(z) is boundedly invertible on the open
unit disc and is an inner function (see [76, Theorem 4.5]). Also, C'4(z) are unitary operators for
every z on the unit circle except o(A).

As we have mentioned in the introduction, we can consider C'4(z) € S. Also, C4(x) are unitary
operators for all z € R\ &, where & is the pre-image of o(A) under the conformal map C'. Now,

we can extend C'4(z) to the lower half plane by
Ca(z) ={Ca(z)*} ' forzeC_.

We denote the extended function as €4(z). Thus we can have an RKHS similar to the one

mentioned in Lemma 2.1.5 based on € 4(2).

Second Situation: Suppose A € Cj is a unicellular operator with the scalar multiple equal to
the minimal function m 4(z). It is known that the minimal function of this type of operator A is
a singular inner function (see [76, Proposition 7.3]). Thus C'4(z) is invertible for all z € D (by
Theorem 5.1 in [76]). Also, the spectrum o (A) consists of a single point of T, and without loss of
any generality, we can assume that 0(A) = {1}. Thus by using the conformal map C, we can have
an operator valued function x 4(2) (say) in S™ N S, Moreover, x 4(z) is unitary for all z € R.

Now similarly to the first situation, we can extend x 4(z) as an operator valued entire function and
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construct an RKHS H(x 4) of X-valued entire functions.

de Branges spaces of entire functions based on a cnu contraction operator:
Let A be a cnu contraction operator as in the second situation, and E is a Fredholm operator
valued entire function such that £ (z) € B(D 4+,D 4) forall z € C. Also, F (z) is invertible at

least at one point. Now consider
E_(z) = Ef(2)xa(z) forallze C.

Thus E_ is a Fredholm operator valued entire function, E_(z) € B(D 4,9 4) for all z € C and

E_(z) is invertible at least at one point. Also
EJ'E_=x4€8mNnS™M

Classes S™ and Si" should be understood in the present context. Hence the pair of operator valued

functions (E_(z), E4(z)) for every z € C will represent a de Branges operator.



Chapter 4

Quasi Lagrange-type interpolation

Kramer sampling property of de Branges spaces has been discussed in Chapter 3 in connection
with the selfadjoint extensions of the multiplication operator T. The main focus of this chapter is to
introduce a quasi Lagrange-type interpolation series of functions in an RKHS of X-valued entire
functions and their connection with de Branges spaces of vector valued entire functions under
consideration. A study of quasi Lagrange-type interpolation series of functions in an RKHS of
scalar valued entire functions and their connection with de Branges spaces of scalar valued entire
functions can be found in [35]. The reproducing kernel Hilbert spaces considered in this chapter
will be derived from a B(X)-valued entire function, and this construction is described in the first
section. The second section discusses a Kramer sampling series for functions in these RKHS.
In the third section, we introduce a quasi Lagrange-type interpolation series and study the cases
when the Kramer sampling series can be written as a quasi Lagrange-type interpolation series. In
the fourth section, we describe the connection between de Branges spaces of vector valued entire

functions and the property of having quasi Lagrange-type interpolation series.

4.1 RKHS based on operator valued functions

In this section, we recall the construction of an RKHS based on a B(X)-valued function. Also, we
mention some basic results about the multiplication operator ¥ and the generalized backward shift
operator .. Assume that F' is any B(X)-valued function on 2 C C, thatis, F'(z) € B(X) for all
z € Q and F(, X) is the collection of all functions from 2 to X. Now, let us define a mapping
L:X — F(Q,X) defined by L(u) = fy, where

fu(z) = F(2)u, forallz € Qandu € X. (4.1.1)

It is clear that the mapping L is linear and denote Hp = L(X) (H when there is no confusion
about the involvement of F'). Now, we show that Hr can be endowed with an inner product such

that it will become an RKHS. Consider
H:={ueX:L(u) =0} = Nyeqker F(z).

Since H is a closed subspace of X the quotient space X /H is a Banach space corresponding to the
norm
il 1r = int{][u+ hl[x : b € HY,



50 Chapter 4. Quasi Lagrange-type interpolation

where @ = {u + h : h € H} is the coset of u € X. Now, we define the norm in H r by

fullrer = lllx/m = inf{[[u+ hllx : h € H} = inf{[Jul|x : fu = L(u)}.

It can be easily shown that the above infimum is indeed attained, that is, for L(u) = f, € Hp
there exists & € H such that

[allx/m = [lallx = | fullap-

Lemma 4.1.1. Let f,, f, € Hr corresponding to u,v € X such that ||ful|ln, = ||t||x and

| follrr = [[0l|x. Then
LA[fu = follne = lla+ 0llx and || fu = follsr = It = 0[]x-
2. futifollny = lla+i0|lx and || fu = ifollnp = |lt — i0]|x.

Now, by using the above lemma and the polarization identity we can define the following inner

product on H g by

(fus fo)rp 7= (@, 0)x, where || ful[3, = |[al|x and [[fo[[3, = [|0]|2- (4.1.2)

Thus the linear map L : H+ — H is a bijective isometry, that is, a unitary operator. Hence Hr

is a Hilbert space.

Proposition 4.1.2. Let F' be any B(X)-valued function on Q2 and L is the linear map as defined

in (4.1.1). Then the following assertions are equivalent:
1. L is an isometry.
2. L is one-one.
3. Nyeqker F(z) = {0}.
4. U,eq rng F(2)* is complete in X.

Proof. (1) <= (2) is straight forward. Now, suppose L is one-one, then f,, = 0 implies u = 0.
Since for any v € N,ecq ker F(z), f, = 0, v must be zero vector. This gives (2) = (3). Suppose
u € X is such that (u, F'(2)*v)x = 0 forall z € Q and v € X. This implies u € N,cq ker F'(2).
Thus (3) = (4). Suppose for some u € X, f,, = 0. This implies F'(z)u = 0 for all z € Q. Thus
forall z € Qandv € X we have 0 = (F'(2)u, v)x = (u, F(2)*v)x, consequently, (4) = (2). O

In particular, if there exists a sequence {zy, }o2; in  such that U2 ;rng F'(2,)* is complete in X,
then also L is an one-one linear map. Suppose for any v € X, L(u) = f,, and || fu ||, = ||7]]x.

Then for any z € 2,

fu(2)lx = [[fa(2)llx = [[F(2)allx < |[F)] [allx = [[EE] | fullp-
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This implies that the point evaluation linear maps are bounded in H r for all z € 2. Thus H  is an
RKHS of X-valued functions on 2. The reproducing kernel of H r is denoted as K and is given
by K, (z) = F(2)F(v)* forall z,v € Q. In fact,

1. Forany u € X andy € Q, K u € Hp as L(F(v)*u) = K u.

2. Forevery f = f, € Hp with || f||2, = [|T]|x, v € Qand v € X,

Remark 4.1.3. Note that the construction of the RKHS Hr bears some resemblance to the
Gelfand-Naimark-Segal (GNS) construction associated with a C*-algebra. In this context, we
begin with a Hilbert space instead of a C*-algebra and use the inner product of the Hilbert space
itself to define the semi-definite sesquilinear form instead of any positive linear functional. Then,
we apply the quotient space technique in a similar manner to convert the semi-definite sesquilinear

form into an inner product.

In the rest of this section, we recall some results regarding the multiplication operator T and the

generalized backward shift operator R, on an RKHS H of vector valued entire functions.
Lemma 4.1.4. Suppose H is a nonzero RKHS of X-valued entire functions, and K. (z) is the
corresponding RK. Then for any 8 € C,

RgHg C H ifand only if RgHz = D. (4.1.3)

Moreover, if the condition (4.1.3) holds for some 3 € C, then the following implications have:

1. Rg is a bounded linear operator from Hg to H.

2. g (T — BI) = Hg.

3. B is a point of regular type for .
Proof. The proof of this lemma except (3) follows from Lemma 2.4.1 and Lemma 2.4.2. Also,
the proof of (3) can be done by using (1) and the following observation:

Ry(T—BI)f = f forall f €D,

O
The following lemma, which will be used in Section 4.3, gives a bijective map between H ., and
H., for z; # 2zo.

Lemma 4.1.5. Suppose H is a nonzero RKHS of X-valued entire functions, and K. (z) is the
corresponding RK. If R, H., C Hand R.,H., C Hforz1 # 22, then (T—z )R, : H.; — H.,
for 1 <i # j < 2 are bijective maps.
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Proof. The following observation proves the lemma:

(‘Z - ZQI)RZl (‘Z — Zlf)RZQ = IHZQ and (T - Z1I)Rz2 (‘Z - ZQI)RZI = IHzl .

4.2 Analyticity and Kramer Sampling property in {

This section investigates the situations when Hr would be an RKHS of X-valued analytic
functions. Also, we consider a sufficient condition for which every element of Hr can be

represented as a Kramer sampling series.

Theorem 4.2.1. Suppose H is the RKHS corresponding to the B(X)-valued function F' on the
domain Q) C C. Then the elements of H are X-valued analytic functions on ) if and only if F is

analytic on Q.

Proof. The proof of this theorem follows from Theorem 1.2 in chapter V' of [77]. O

Now, suppose {u,}>> is an orthonormal basis of X. We consider a sequence of functions
{F,}>2, in H defined by
F.(z) = F(2)u, forallz € Q.

The next theorem gives another criterion of A being an RKHS of X-valued analytic functions on

2 in terms of the analyticity of the sequence of functions {F}, }>° |

Theorem 4.2.2. Suppose H is the RKHS corresponding to the B(X)-valued function F on the
domain Q) C C. Then the elements of H are X-valued analytic functions on § if and only if the

sequence of functions {F,,}>° | are analytic on Q and ||F (.)|| is bounded on every compact subset
of QL.

Proof. When ‘H is an RKHS of X-valued analytic functions on €2, it is evident that the F;,’s are
analytic functions and ||F'(.)|| is bounded on every compact subset of ). Now, we prove the

converse part. Forany u € X, u = Y 7, (u, up)xUy. Then

fulz) = F(z)u = F(2) ) (u,un)xun

n=1
Z Uy )2 F(2)un = Y (u,un) 2 Fo(2). (4.2.1)
= n=1

Now, for any p € N, we have
p P
n=1 n:l

< [[F(2)]] HZ U, Un) xUn| %
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P
=[PP Kusun)z* < [1F()I]ul 3
n=1
This implies the partial sums of the series in (4.2.1) are analytic and bounded on every compact

subset of 2. Hence, the elements of H are X-valued analytic functions on €2. O

In the remaining portion of this section, we discuss the Kramer sampling series of elements in H.
We assume that there exists a sequence {z,, }°° ; C  and nonzero numbers {c,, }5° ; such that for

all u € X the following relation holds:
F(zp)u = cp(u, up)xu, foralln € N. 4.2.2)

Observe that the sequence of functions {F},}>° ; satisfies the following interpolation property at

{zn}nq:

Fo(2m) = cnOnmUn. (4.2.3)

Equation (4.2.3) indicates that each F}, has zeros at z,, for all m € N with m # n. This also
forcing the fact that |z, | — oo as n — oo; otherwise, the functions F,, would be identically zero.
Thus, if F': 2 C C — B(X) satisfies (4.2.2), the domain §2 should be unbounded. Also, the next
identity follows from (4.2.2) will be used frequently:

F(zn)*uy, =¢, u, foralln € N. 4.2.4)
The subsequent theorem provides a sampling series representation of elements in H.

Theorem 4.2.3. Suppose H is the RKHS corresponding to the B(X)-valued analytic function F’
on the domain Q) C C satisfying (4.2.2). Then every element f € H is completely determined by

the values { f (z,)}5° 1 and can be reconstructed by means of the following sampling series

o

f(Z) = Z(f(zn)7un>x

n=1

n

forall z € Q. 4.2.5)

Proof. Due to the relation (4.2.2), it is clear that L is an isometry. Thus the family of functions

{F,}5°, is an orthonormal basis of 7. Now, any function f = L(u) € H can be written as

f(z) = Z<f7 Fo)uFn(z).
n=1
In addition, we have
U Eade = (e =, Tl oy - (Sl (o)t

O]

Remark 4.2.4. Observe that using (4.2.4), the series (4.2.5) can be written as the Kramer
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sampling series:

N K., (2)un
f(z) = Z(f, KZHUMHHK;,Z:\LP’ forall f € H.

n=1
Thus we call the identity in (4.2.2) as the sampling condition and the family of functions {F,,}72

as the sampling functions.

4.3 Quasi Lagrange-type interpolation property in

In this section, we will discuss the cases when the Kramer sampling series can be written as
a Quasi Lagrange-type interpolation series. Also, in this direction, we consider a special case
related to symmetric operators with compact resolvent. Suppose H is the RKHS corresponding
to the B(X)-valued entire function F' satisfying (4.2.2). Then the sampling series (4.2.5) for any

f € H is called quasi Lagrange-type interpolation series if it has the following representation:

RSN Q(2) AZ)
1) = DG ) (o S TG

n=1

z€C, 4.3.1)

where () is a scalar valued entire function having only simple zeros at {z,}°° ;, and A is an
X-valued entire function such that A(z) # 0 for all z € C. The following theorem gives a
necessary and sufficient condition for the Kramer sampling series to be represented as a quasi
Lagrange-type interpolation series in terms of the invariance of H, under the generalized backward

shift operator R, for all z € C.

Theorem 4.3.1. Suppose H is the RKHS corresponding to the B(X)-valued entire function
F satisfying (4.2.2). Then the sampling formula (4.2.5) for H can be written as the quasi
Lagrange-type interpolation series (4.3.1) if and only if R,H, C H for all z € C.

Proof. Let R,H, C H for all z € C. We prove that {z,},-, are the only zeros of F,, for every
n € N, and these zeros of F,, are all simple. Now, suppose for some 5 € C, F,,(5) = 0, that is,
F,, € Hp, which implies RgF;, € H. Thus (T — 2,1)RgF;,, € H as

Z— Zn

z—p

If 8 # zp forall p € N, it is clear that (T — 2,1)(RgF},)(2p) = 0 for all p € N. Thus due to
the sampling series (4.2.5), we can conclude that (T — z,,I)RgF,, = 0 in H. Since the operator

(T =2 0)(RFy)(2) =

Fo(2) = Fu(2) + (8 — 22)(RgF)(2), z€ C.  (432)

(T —2p1)Rp is injective, we have F},, = 0in #, which is a contradiction. Also, if any z,, p # n is
a multiple zero of F;,, from (4.3.2), it is clear that (T — z,I)(RgFy,)(2p) = 0 for all p € N. Thus
using the same argument as above, we can again arrive at the same contradiction situation.

Now, consider a scalar valued entire function () having only simple zeros at z = z,, foralln € N.
Then, due to the above reasoning, we conclude that there exists a X-valued entire function A,, for
all n € N such that A,,(z) # 0 for all z € C and

(z —2zpn) Fn(2) = Q(2) Ap(z), z€C.
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Moreover, we find a universal X-valued entire function A(z) such that A(z) # 0 for all z € C
and A, (z) = a, A(z) forall z € C, for all n € N with a,, # 0. Since for m # n, the function
(T — zI)R., F,, € H satisfies (T — z,1)(R,, Fp)(z) = 0 forall z € {z,}p2m, by sampling
series (4.2.5), we have the following:

Z— Zm Fn(z) - <(Zm N z”)F;l(zm)v Umh’?

Z— Zn

(T — 2n]) (R, Fy)(2) = ,z€C.

Fixing m = 1 and assuming a1 = 1, A(z) = A;(z), we identify for every n > 2 that A4,,(z) =
anA(z), where A(z) = A1(z) and a, = 2= (F),(21),u1)x # 0. Thus

an@(2)A(z) if 2 # 2
Fo.(z)= = En "
=) { anQ' (2n)A(zn) ifz = 2.

Also, since Fy,(z,) = a,Q'(2n)A(2r) = cnhuy, we have

cn = anQ'(2n) (A(2n), Un)x-

Hence, it is clear that by putting the values of F},(z) and ¢, in the sampling series (4.2.5), one can
get the required quasi Lagrange-type interpolation series (4.3.1).

Conversely, let the sampling formula (4.2.5) for H can be written as a quasi Lagrange-type
interpolation series (4.3.1). Suppose f € H is such that L(u) = f for some u € X. We need to
show that for any 8 € C if f € Hpg, thatis, f(3) = 0, Rgf € H, that is, f(_zﬂ) € H. To be able
to say that Rgf € H, it is sufficient to show that g f can be written as a quasi Lagrange-type

interpolation series and there exists a vector v € X such that L(v) = Rgf. The remaining proof
is similar to the Theorem 3.3 in [35]. In this direction, we would only like to mention that when

B & {zn}>2, then % = F(z)v, where the Fourier coefficients of v € X are given by

n=1:

1
(V,up)x = (u,up)x forallm € N.
B — Zn

Similarly, when 3 = z,, for some m € N, then % = F(z)w, where the Fourier coefficients of
w € X are given by

(“,Unbe 1

AL ifn#£m

<’UJ, un>% — Zln_ZT/n ‘ 7é
a<f (zm)aum>% ifn =m.

O

In the rest of this section, we construct an RKHS 7 based on the resolvent operators of a symmetric
operator with compact resolvent and discuss the quasi Lagrange-type interpolation series for
elements in H. Let T : D(T) C X — X is a densely defined symmetric operator such that
T-! € B(X) and a compact operator. If {u;}fgl are the eigenvectors of 7! corresponding to

the eigenvalue &, and z,, = Ein’ we recall the following basic informations:
1. The sequence {z,} is infinite and |z,| — oo as n — oo.

2. The orthonormal set {ul, : 1 < i < k, }°°; is complete in X.
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3. A number z € o(T) if and only if z € {2,}°; and Tuf, = z,ul,.

4. For z € o(T), the resolvent operator R, = (2I — T)~! is compact and has the following

form
Rou = ; — ;<u,u;>xu; for all u € X. (4.3.3)

For more details in this direction, we recommend [77]. Suppose Q)(z) is a scalar valued entire
function having only simple zeros at z = z, for all n € N. Then we consider the B(X)-valued

function F'(z) = Q(2)R. At this point it is easy to observe that F'(z) is an entire function and

kn

F(zn) = Q' (2n) Z(-,u@xui foralln € N. (4.3.4)
i=1

Thus N9, ker F'(z,) = {0}, and due to Proposition 4.1.2, the operator L is an isometry. We
denote the corresponding RKHS H = {F'(z)u : u € X} with having reproducing kernel

K\ (2) = Q(2)Q(v)R.R’, forally,z e C.

7

Now, we want to discuss the sampling property of the elements in H. We denote F(2) = F(2)ul,

foralln € Nand 1 < i < kj,. Observe that F(2,)*u’, = Q' (2,)u’, holds for all n € N and
1 < i < k,. Thus every function of H can be recovered in terms of the sampling series like in
Theorem 4.2.5. Now, to say that every function in 4 can be represented as a quasi Lagrange-type
interpolation series, we only need to show that R, H, C H forall z € C. Observe that H,, = {0}

for all n € N. Now suppose 3 & {z,}72; and L(u) = f € Hg thatis, f(3) = 0, which means

00 kn
Q(B) Z [/3 _1 - Z<u,uﬁl>x%] =

Thus for all z € C,

flz) _ Q(z)i 1 f}u wl Vgt | (4.3.5)
Bz [ m)(B-m) o S

Now, if we choose v € X such that the Fourier coefficients of v are given by

. 1 .
(v,up)x = (uyur)x, forallm € Nand 1 <i <ky,,

B—zn




Chapter 4. Quasi Lagrange-type interpolation 57

then % = F(z)v € H, which implies R,H, C H for all z € C. Hence every function in # can
be expressed as a quasi Lagrange-type interpolation series. However, in this situation, something
more can be concluded. The functions of H can be recovered in terms of a Lagrange-type

interpolation series.

Theorem 4.3.2. Suppose H is an RKHS of X-valued entire functions corresponding to the
B(X)-valued entire function F(z) = Q(z)R,. Then every element f € H is completely
determined by the values {f(z,)}>2, and can be reconstructed in terms of the following

Lagrange-type interpolation series

= 3 —Q(z) Z orall z
flz)=>Y_ (z—zn)Q’(zn)f( ) forall z € C. (4.3.6)

n=1

Proof. Suppose f € H is such that f(z) = F(z)u for all z € C and the unique u € X. Since
{uf, + 1 < i < k,}S, is an orthonormal basis of X, the family {F? : 1 < i < k,}°°, is an

orthonormal basis of H. Then for any z € C, we have

oo kn oo kn
F@) =3 DL FYF(2) =3 (u,ul)xFi(2). 4377
n=1 i=1 n=1 i=1

From (4.3.3) we deduce the following

Fi(z) = F(2)u!, = Q(2)R.u’, = ul,. (4.3.8)

n

Now, substituting (4.3.4) and (4.3.8) on (4.3.7), we get the following required Lagrange-type

interpolation series:

oo kn 0 kn
1) =3 S o) = Y0 LS
n=1 i=1 n=1 L]
e Q(2) B
-y G o )

O]

The next lemma discusses some consequences of quasi Lagrange-type interpolation in # related

to the multiplication operator .

Lemma 4.3.3. Let H be the RKHS corresponding to the B(X)-valued entire function F satisfying
(4.2.2). Suppose every element in H can be written as a quasi Lagrange-type interpolation series.

Then the following implications hold:
1. T is a closed operator.
2. % is a regular operator.

3. % is a symmetric operator.
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4. Nzamz2orng(T — 21) = {0}, that is, T is simple.

Proof. Since every element in H can be written as a quasi Lagrange-type interpolation series
R.H. C H forall z € C. Now, (1) can be proved using the closed graph theorem, and (2)
follows from Lemma 4.1.4. Using Lemma 7.4, the proof of (3) can be realized from the proof of
Theorem 4.4.2. Now, since rng(T — z/) = H, forall z € C, if f € N..im2orng(T — 21), we
have f(z) = 0 forall z € C\ R. Since f is an entire function f = 0 in . This completes the
proof. O

4.4 Connection with the vector valued de Branges spaces

In this section, we recall vector valued de Branges spaces that we have introduced in Chapter 2 and
discuss when functions of these spaces can be represented as a quasi Lagrange-type interpolation
series. Here, we tactfully choose de Branges operators so that the corresponding de Branges
spaces can be connected in this direction. The subtle change of de Branges operators can be
understood instantly, while all the other important results and notations will be unchanged. Let
M = {z,z29,...} CRbe such that |z,| — oo as n — co. Suppose F, E_ : C — B(X) be two
entire functions such that £ (z), E_(z) € ®(X) forall z € Q = C\ M. Also,

1. E, and E_ both are invertible for atleast at one point in {2, and
2. x = E;lE’, € Snnsr.
The de Branges operator is the pair of B(X)-valued entire functions
€(z) = (E-(2), E4(2)),z€C

and the corresponding positive kernel of the de Branges space B(€&) on C x C is given by

B QP BB i, 4

N . , Pr(2),
K7 (2) == E,.(ME+(v)*—E_(7)E_(7)*

—27m1

4.4.1)

if z="7.

We denote the space B(€) as B(€) if for some 5 € C, E(f) and E_(/3) both are self adjoint.
The following theorem gives a characterization of the space Bg(€&), and its proof is similar to the

proof of Theorem 2.5.2.

Theorem 4.4.1. Let H be an RKHS of X-valued entire functions with B(X)-valued RK K. (z)
and suppose B € C be such that

Kp(z), K5(z) € ®(X) forallz€ Q=C\M

and

Ks(B), KE(B) both are invertible.

Then the RKHS H is the same as the de Branges space Bg(€) if and only if
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1. Rﬁ?‘[ﬂ Q H, RB’HE Q H, and
2. (T—BIRs : Hp — Hg is an isometric isomorphism.

Now, if H is an RKHS of X-valued entire functions corresponding to the B(X)-valued
entire function F', satisfying (4.2.2) and isometrically isometric to a de Branges space B(€)
corresponding to the de Branges operator €(z) = (E_(z), E+(z)), then R,H, C H for all
z € Cif E4(z), E_(z) both are invertible for all z € R. This result follows from Lemma 5.1.7.
Thus it follows from Theorem 4.3.1 that in this case, every function f € B(€) can be written as a

quasi Lagrange-type interpolation series. The following theorem gives a converse to this result.

Theorem 4.4.2. Suppose H is the RKHS corresponding to the B(X)-valued entire function F
satisfying (4.2.2) and F(z) € ®(X) for all z € C\ M. Also, there exists a § € Cy such that

F(B) and F(/3) both are invertible. Then H is a de Branges space Bg(€) if the sampling series

(4.2.5) can be written as a quasi Lagrange-type interpolation series.

Proof. We use the characterization of Bg(€&) to prove this theorem. Since the sampling series
can be written as a quasi Lagrange-type interpolation series, R, 4, C H for all z € C. Thus in
particular,

RgHp C€CH and RBHB CH.

Since F(B) and F'(j) both are invertible K5(8) = F(8)F(B)" and K5(8) = F(8)F(B)* both
are invertible. Also, for any z € C\ M, Kg(z) = F(2)F(8)" and K5(z) = F(2)F(8)"
both belong to ®(X). It only remains to show that (T — SI)Rg : Hg — Hz is an isometric
isomorphism. It is clear that (T — BI)Rg : Hg — M5 is bijective. Now, let f € Hg, that is,

f(B) = 01is such that f(z) = F'(z)u for some u € X. Then

f(z)
z=p

We know that Rgf € H and (Rgf)(z) = F(z)v for all z € C such that the Fourier coefficients
of v € X are given by

(T =B (Rsf)(2) = f(2) + (8- B) ,2€C.

1l
zn — B

Thus the following calculation completes the proof:

(v, up)x = (u,up)x,n € N.

I(E = BDRsf1f3, = |If + (8~ B)Rsfll%

= lju+ (3= Bl
= [u+ (8- B)v,un)x|
n=1
=l + Do )P
= 3 12 Pl ) =l = 1171z

n=1
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Chapter 5

Associated functions of de Branges spaces

and Operator nodes

This chapter delves deeper into various properties of the de Branges space B(€) introduced in
Chapter 2. We briefly outline the contents of this chapter. In the first section, we modify the
characterization of the de Branges space B(&) mentioned in Theorem 2.5.2 by omitting the
selfadjoint condition on the operators £, (3) and E_(3). We also discuss the real zeros of
E. (z) and E_(z) corresponding to a de Branges operator €(z) = (E_(z), E4+(z)). The second
section provides a global factorization of Fredholm operator valued entire functions, generalizing
a factorization result due to L. de Branges and J. Rovnyak [31, Appendix]. This factorization
connects the two de Branges spaces considered in Chapter 2 of this thesis and in [31]. Also, a result
of analytic equivalence between the corresponding two reproducing kernels of de Branges spaces
is concluded. In the third section, we discuss Problem 44 from [30] within the context of vector
valued de Branges spaces, utilizing the previous global factorization. The fourth section explores
associated functions of de Branges spaces of vector valued entire functions and discusses their
connection with the multiplication operator. A discussion of associated functions of de Branges
spaces of vector valued entire functions (as considered in [31]) can be found in [29]. This chapter
concludes by discussing operator nodes and their connection with de Branges spaces of vector

valued entire functions.

5.1 Few additional properties of de Branges spaces

In this section, we explore various properties of the de Branges space B(€&) corresponding to the
de Branges operator &(z) = (E_(z), F4(z)). The following theorem, a slightly updated version

of Theorem 2.5.2, characterizes the space B(€).

Theorem 5.1.1. Let H be a RKHS of X-valued entire functions with B(X)-valued RK K,,(z) and
suppose 8 € C,. be such that

Kp(2), K5(z) € ®(X) forallz€C

and
Kj3(8), KB(B) both are invertible.

Then the RKHS H is the same as the de Branges space B(€) if and only if

1. Rﬁ?‘[ﬁ g H, RE’HE Q 7‘[, and
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2. (T—BIDRs: Hp — Hzg is an isometric isomorphism.

Proof. The proof of this theorem follows similarly to the proof of Theorem 2.5.2 except for the

necessary part where we need to prove £ () and E_(f3) both are surjective. Since Kz(3) and

K75(B) both are invertible, we already know that £, (3)* and E_ ()" both are injective. Now

E. (B) and E_(f3) are also injective follows from (1.5.1). This implies that £ (3) and E_ () are

surjective. Notice that here, we do not insist that £ (3) and E_ () are both self-adjoint operators;

instead, we are using the fact that they are both Fredholm operators with index zero. O

The following two theorems discuss the fact that corresponding to different de Branges operators,

we can get the same de Branges space. This situation is characterized by the jx-unitary operator

oo
Jx 0 L]

matrix on X & X, where

A similar discussion for the matrix case can be found in [13] (Chapter 3.2). Suppose

Un Ui
(U1 Uz

U= (5.1.1)

be an operator matrix such that all its entries belong to B(X). Then U is an jx-unitary operator
matrix if
UjxU"=U"jx U= jx.

The following lemma gives some insightful information about the entries of an jy-unitary operator

matrix. The proof of this lemma follows from [2] (Lemma 5.2).

Lemma 5.1.2. If U is an jx-unitary operator matrix as in (5.1.1), the following assertions are

true:
1. Uy1 and Uss are invertible operators.

2. |UURH| < L, [[UnUM| < 1 ||US Ume]| < 1 and ||US' Us || < 1.

Now, we mention an immediate corollary of the previous lemma and Theorem 3 in [49], which

gives a factorization of the jy-unitary operator matrix U.

Corollary 5.1.3. If U is an jx-unitary operator matrix as in (5.1.1), and

. (I-K*K)2 K*I-KK*) 2
|U-KK*":K (I-KK*) 2

then the following factorizations hold:

1. U =LA, where K = U2}1U21 and

L —

Uy — U K)(I — K*K) ™2 0
0 Up(I — KK*)2 |
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2. U = AR, where K = Uy U}, and

(I — K*K)2Uy, 0

R= .
0 (I — KK*)"2(Uss — KUha)

Theorem 5.1.4. Let B(€&) be a de Branges space of X-valued entire functions corresponding to
a de Branges operator €(z) = (E_(z), E4+(z)) and U be the jx-unitary operator matrix as in
(5.1.1) such that

F_(z) = E_(2) U1 + E4(2) Uz, Fy(z) = E_(2) Ura + E1(2) Unz

belong to ®(X) for all z € C. Then §(z) = (F_(2),F4(z)) is a de Branges operator and
B(€) = B(3).

Proof. F.(z)and F_(z) both are ®(X)-valued entire functions. Fix any 8 € C; to be such that
E(j) and E_(f) both are invertible. Then ||[E'(3)E_(B)|| < 1 together with Lemma 5.1.2

implies that
Fi(8) = Ex(B)EL (B)E-(B)Ur2Us," + I|Use

is invertible. Similarly, it can be proved that F_(f3) is invertible. Also, it only needs a small

calculation to show that, for every z, w € C,
Fy(2)Fy ()" — F_(2)F_(w)" = Ea(2)Ex (w)’ — E_(2)E_(w)".

This implies F, ' F_ € S N S and B(€) = B(F). O
The following theorem gives the converse of this result.

Theorem 5.1.5. Let €(z) = (E_(z),Ey(z)) and §(z) = (F-(z), F+(z)) be two de Branges
operators, and the corresponding de Branges spaces are B(€) and B(§) with reproducing kernels
K&(2) and K3 (%) respectively. Also, suppose that there exists 3 € C be such that Kg(ﬁ) and
Kg (B) both are invertible. Then B(€) = B(T) implies that there exists an jx-unitary operator
matrix U on X © X such that

[F_(z) Fi(2)] = [E-(2) Ex(2)] U forall z € C.

Proof. B(€) = B(F) implies that K (z) = K§(2) for all z,w € C. Also, K§(f) and Kg(ﬁ)
both are invertible gives the following:

1. E4(B) and E_(p) are invertible operators, and

2 ||E7 (B)E-(8)]] < Land [|EZ*(B)E (B)]] < 1.

Consider the following two operator matrices on X & X,

(B) E+(B)
B

Ul =5 3 .3

and Uz(f) =

E_
E_
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It is clear that these operator matrices follow the identity

- K§ 0
Ue(8)jxUe(8)" = | " & ()) sf) o DKED) = Us(6)1xUs(6)"
B

From the Schur complement formula!, it can be seen that the operator matrix Ug(f3) is invertible
if and only if E_(B) — E (B)E;l (8)E_(p) is an invertible operator. Now

E_(B) — E+(B)EL (B)E-(B) = E-(B)I — EZ'(B)E+(B)EX (B)E-(B)]

implies that Ug () is invertible. Similarly, it can be proved that Ug(3) is also invertible. Consider
the operator matrix Uy = Ug(3)*(Uz(B)*) L. Itis clear that Uy is jx-unitary and

[F(2) Fy(2)]5xUs(8)" = [E-(2) E4(2)]jxUe(B)" forall z € C.
Now, choose U = jxUpjx, then U is an jx-unitary operator and
[F_(z) Fy.(2)] = [E_(2) E4+(2)] U forall z € C.
O

The following lemma provides a connection between the real poles of the meromorphic functions
E7'(-)and EZ'()) when €(2) = (E_(z), E4(2)) is a de Branges operator.

Lemma 5.1.6. Let B(€) be a de Branges space of X-valued entire functions corresponding to a
de Branges operator €(z) = (E_(2), E4(2)). Then, a point x € Ris a pole of E;*(-) if and only
if it is a pole of E~1(.).

Proof. In view of Theorem 1.5.3, to prove this lemma, it is sufficient to show that for any « € R,
E. (z) is invertible if and only if E_(x) is invertible. Recall that for all z € R, E; and E_ satisfy
the following identity:

By (2)Ey ()" = B_(2)E_(2)".

Now, a theorem due to Douglas (see [32]) gives rngEy (z) = rngE_(z) for all x € R. Thus
E. (z) is invertible implies rngF, () = X and ker E (z) = {0}. Therefore, rngE_(z) = X
and the equality implies

ker E_(x)* = ker £, (z)* = {0},

which gives E_(x) is invertible. Similarly, when E_(z) is invertible, F; () is invertible. O

The following lemma can be considered the vector generalization of Problem 45 from the book
[30].

A . . . . .
'Suppose M = [ is an operator matrix, where each entry belongs to B(X). If B is an invertible operator,

C D
B I 0 0 B 1 0 1.
then M = [DB_I I} [C— DBA O} [B_IA I} ,and C— DB™ " Ais referred to as the Schur complement

of B with respect to M.
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Lemma 5.1.7. Let B(€) be a de Branges space of X-valued entire functions corresponding to
the de Branges operator €(z) = (E_(z), E1(z)). Assume that f € B(€) and « is any complex
number such that f(«) = 0. Then the following implications hold:

1 1@ ¢ B(€) forall « € C\ R, and

2. 1@ ¢ B(€) for all « € R, where EL () (so too E_(«)) is invertible.

Proof. We divide the proof into the following three cases:

Case 1 (Whena € C,) :

Since f € B(¢), E{'f € H2(Cy) and EZ'f € H2(C4)L. To show that % € B(€) we need
to verify that E7'(2)£Z) € H2(C,) and EZ1(2)E) € H2(C, ). Now,

zZ—x

g L@ _ 221 B ()

Z— Z— zZ—1

Since Z=% is bounded and analytic on C_ and € HE(Cp)t, it is clear that

Eil(z)m € HZ(C4)* . Similarly, we write

- Z—Q

By ) _ 2B (O]

Z— Z— z41

Since % is not analytic and bounded on C_, we can not argue as before. But using the Cauchy
integral formula and the facts that %ﬂ € H?(C4), E{'(2)f(2) € HZ(Cy), it can be proved that

E;l(z)% € HZ%(C4). For the supporting calculations, see Lemma 3.14 in [13].

Case 2 (Whena € C_) :

Since this case can be proved similar to the first one, we avoid the calculations.

Case 3 (When a € R) :

Observe from Lemma 5.1.6 that for any o € R, E, («) is invertible if and only if F_(«) is

invertible. When E («) is invertible, E;l f and E~! f are analytic at a. Now, the remaining

argument follows from Lemma 1.0.6. O

5.2 Global Factorization of Fredholm operator valued entire

functions

This section presents a global factorization of Fredholm operator valued entire functions, which are
invertible at least at one point. Let A(z) be a B(X) valued entire function such that A(z) € ®(X)
for all z € C and I denote the identity operator on X. Suppose A(z) is invertible at zy € C, then
because of Theorem 1.5.3 there exists a discrete set D = {21, 29, ..., 2y, ...} C Csuchthat A(z)
is invertible for all z € C\ D. The case when D is finite, a global factorization was discussed in
[16], and local factorizations of A(z) can be found in [41]. Here, we consider the case when D is
infinite and thus |z,| — oo as n — oo.

The following theorem is due to L. de Branges and J. Rovnyak (see [31, Theorem 19, Appendix]).

For the sake of completeness and detailed exposition of the thesis, we include the proof of the
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theorem. Below, we mention two general inequalities from [31], which will be used in the proof
of Theorem 5.2.1.
For every n € Nand 0 < i < 1 the following inequality holds:

1 2 1 n Mn+1
I—(1—p)exp(p+ spu°+...+ —p") <exp -1 (5.2.1)
2 n 1—p

Suppose n € Nand Ay, Ag, ..., A, are in B(X). Then
1+ ||[A1As. Ay = I <1+ ||AL = I||]... L+ ||An — I]] ] (5.2.2)

Theorem 5.2.1. Let {P,} be a sequence of finite rank orthogonal projections and {z,}5° be a
sequence of complex numbers such that |z,| — oo as n — oo. Suppose a complex number z is
such that z, — zg # 0 for all n. Then

P(z) = lim [I— Z_Zopl]exp[z_zoPl]...

n—oo

Gzl p (523

— — 1
[I—Z zOPn]eXp[Z ZOPn—F...—i—f
2 Zn — 20 n(zn—zo)

converges uniformly in any bounded set with respect to the operator norm and P(z) is a B(X)
valued entire function such that I — P(z) is compact operator for all z € C. Moreover, for all
z € C\ {zn}5°, P(2) is invertible.

Proof. Let

21— 20 1— 20
_ _ 1 o n
[I— S Pn] exp[z Wp o 2R b sy
Zn — 20 Zn — 20 n (zn — 20)"

To prove the first part of the proof, we need to show that {G,,(z)} is a Cauchy sequence in any

bounded set with respect to the operator norm. For every n € N, we consider the entire functions

1 1
fa(z)=1—(1—2)exp(z + 522 +...+ ﬁz") (5.2.5)
and . )
gn(z2) =1 — (I — zP,)exp(zP, + 522]3” +...+ gz”Pn) = fn(2)Py. (5.2.6)
Thus for any k£ € NU {0}, ggk)(z) = fY(Lk)(z)Pn. Also, since
/ n 1 2 1 n
fu(z) =2 exp(z—l—iz —l—...—{—ﬁz ),

it follows that fT(Lk) (0) > 0 for every n and k. Thus

() <D f”k!(o) 12F = £a(]2)). (5.2.7)
k=0
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Now using (5.2.1) for [ ==L | when |z — 2| < |zn — 20| and the above inequality, we get

Z— 20

[gn(
Zn — 20 Zn — 20 Zn — 20

_ o |Zzizz() |n+1
)||§|fn(z ZO)|§fn(!Z 20 ) < exp (11‘2_2” -1 (5.2.8)

Zn—20

For any given z € C, we can choose n so large that |ZZI:%Z°0| < 1forallk > n. Now, forn <r < s,

using (5.2.1), (5.2.2) and the above calculations, we get

S | Z—20 ‘k—i—l
1Gr(2) = Gs(2)]] < IIGn(Z)IIexp< > 1"_’0_0|>

k=n+1 2K —20
T ‘ Z2—20 ‘k+1
—||Gn(2)|| exp ( Z ﬁf(;ZOO . (529
k=n+1 2K —20

2—20
ZE—Z20

Since for z in any bounded set, | | = 0as k — oo, the limit P(z) exists in the operator
norm uniformly for z in any bounded set. Since P(z) is a uniform limit of analytic functions, it is
defined in the whole complex plane and an entire function. For every n, I — G, (z) is a compact
operator for all z € C. This is easy to observe by expanding the exponential function involved
in G, (z) as power series. This implies I — P(z) is a compact operator for every z € C. For
any n, G,(z) is invertible for every z € C \ {z1, 22, ..., 2, } follows from (5.2.11). Thus for

z € C\ {z1, 22, ...} and for every n, G,,(z) is invertible.

Since for every z € C\ {21, 22,...}, limp 00 [ 77| = 0, the following calculation shows that

zZ.

we can choose n so large (depending on 2) that
[|Gn(2) ™1 P(2) = I|| < 1.
Now, using (5.2.1) and (5.2.2), we get

1Ga(2) 7 P(2) = TI| = [|Gu()™" lim Gi(2) 1|
= Jim |G (2) " Gi(2) T

= lim ||Bpt+1 exp(BnH) ... DBy eXP(Bk) — 1]
k—o00

k zZ—20 ‘s+1

< lim ex Z B ——

~ koo b 1— ‘ﬂ| ’
s=n+1 Zs—20

where we have assumed that
Z— Z
Bj = [I - 0 Pj]

2 — 20

and

- — 1 (2 —20)
Bj:[z ZOPj+...+,(zzo).Pj].
Zj — 20 j (2 — 20)

This implies that for every z € C\ {z1, 29, ...}, Gn(2) "1 P(2) is an invertible operator, and hence

P(z) is also an invertible operator. O

The next theorem provides a global factorization of Fredholm operator valued entire functions
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that are invertible at least at one point. This theorem generalizes Theorem 20 from the appendix
in [31]. While our proof follows a similar line of reasoning, we have taken the initiative to provide
a detailed technical explanation specific to our current setting. Moreover, we have included this

proof as the technique of the proof influences a few results in the next section.

Theorem 5.2.2. Let A(z) be a B(X) valued entire function such that A(z) € ®(X) forall z € C

and A(zo) is invertible for some zy € C. Then A can be factored as
A(z) = P(2) E(2) = F(2) Q(2), (5.2.10)

where P(z) and Q(z) are operator valued entire functions of the form (5.2.3) and E(z), F(z) are

invertible operator valued entire functions.

Proof. Since A(z) is a Fredholm operator valued entire function and A(zp) is an invertible
operator, Theorem 1.5.3 implies that there exists a discrete set of complex numbers D =
{z1, z2,...} such that A(z) is an invertible operator for all z € C\ D. Since D is a discrete
set, D can be a finite set or an infinite set such that |z,| — oo as n — co. Now, we focus on
proving the first factorization of A(z) that appeared in (5.2.10).

If D is an empty set, the result follows with P(z) = I and E(z) = A(z). Otherwise, without loss
of generality, we may assume that z1 is the point in D nearest to zg. Since A(z1) is a Fredholm
operator, TngA(z1) is a closed subspace of X, and (rngA(z1))™ is finite dimensional. Let P; be

the orthogonal projection operator on (rngA(z1))*. Then

-1
[I— S Pl] - [I— z_zopl] (5.2.11)

is an operator valued analytic function on C \ {z1}. Also, using the fact that P; A(z1) = 0, we

have

A(z) = A=)

zZ— 21

[I _ AT Pl] A = [ 2) — (= — z0)PA [ } FA()  (52.12)

is an operator valued entire function. This gives A(z) = G1(z) E2(z), where G (2) as in Theorem
5.2.1 and

_ { exp[~ZZ P( — 21— (2 = 20) PO ML + A1) 2 £ 2

Z1—20 z

EQ(Z) : ,
exp(—Pl)[A(zl) — (Zl — Z())PlA (21)], zZ=2z1.

(5.2.13)
It is easy to observe that E»(z) is a Fredholm operator valued entire function, and Es(zp) = A(20)
is an invertible operator. If Es(z) is invertible for all z € C, the proof of this part is complete,
and P(z) = Gi(z), E(z) = Ex(z). Otherwise, let zo € D nearest to zg such that E5(z2) is not
invertible and continue inductively. Now, at the n-th phase, E,,(z) is a Fredholm operator valued
entire function, and E,(zp) is an invertible operator. Suppose z, € D nearest to zy such that
E,.(2,) is not an invertible operator. Again, taking the orthogonal projection P, on (rngE,, (2,))*,
we get A(z) = Gp(2)En+1(2) for all z € C, where G,,(z) as in Theorem 5.2.1 and F,,;1(2) is

a Fredholm operator valued entire function and F,,;1(2¢) is invertible. If E, () is invertible
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for all z € C, we may stop the inductive process and consider P(z) = G,(z), E(z) = Ent1(2).
Otherwise, we will move on to the next phase. If D is finite, this process will stop after finite steps,
and we will get the desired factorization of A(z).

Suppose D is infinite, then |z,| — oo as n — oo and
A(z) = Gn(2)Ept+1(z) forallz € Candn € N. (5.2.14)

Also, all P, are finite rank orthogonal projections. Thus we can apply Theorem 5.2.1 to obtain an
operator valued entire function P(z) such that I — P(z) is compact for every z € C and P(z) is
invertible for all z € C\ D. Now, we want to show that { £,(z)} is a uniformly Cauchy sequence
in any bounded set with respect to the operator norm. By construction, it is clear that, for every
neN

En(z) = By eXP(Bn)En—&-l(Z),

where B,, and B, are as defined in the previous theorem. Thus for any m < n < s, we have

s | 2—20 |k+1
ZE—2Zi
|[Em(2) — En(2)]| < [[Es(2)|| exp (Z 1i|2_z0|>

k=m 2k —Z20

5. | 2= ’k+1
— || Es(2)|] exp (Z 1j|0_0> . (5.2.15)
k=n 2k—20
This implies that F(z) = lim,,—, E,+1(z) exists uniformly on bounded sets with respect to the
operator norm. From (5.2.14), we conclude that A(z) = P(z)E(z). Now, we only need to show
that F(z) is invertible for all z € C.

By construction, it is clear that F,,(z) has invertible values when |z — zp| < |2, — 20|. Now

E,(z) = B, exp(B)En+1(2)
= G11(2)Gn(2) Bny1(2)
= G,11(2)P(2)E().

Since G !, (2)P(z) is invertible when |z — zp| < |2, — 20|, E(z) is also invertible for all 2
belonging to this disk. Since |z,| — 0o as n — oo, E(2) is invertible for all z € C.

The other factorization of A(z) that appeared in (5.2.10) can be proved similarly as above. For
clarification, let us mention the first factorization step. Let 1 be the orthogonal projection on
kerA(z1), which is of finite rank. Then

[I— z — 29 Q1]_1: [I_z—onl]

Z1 — 20 z— Z1

and since A(z1)Q1 = 0,

z— 2 Ql] o [A(z) — A(z)

Z1 — 20

A |1- 16 =2 = = 20+ A,
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The remaining steps can be done in an obvious way. This completes the proof. O

The above theorem can be considered as the operator analog of the well known Weierstrass
factorization theorem for scalar valued entire functions. Also, for any matrix valued entire function
A(z), afactorization of the form (5.2.10) can be readily derived; here, a point zy € C is considered
a zero of A(z) if the determinant of A(z) is equal to zero. The following proposition shows how
de Branges spaces considered in [31] are connected with de Branges spaces under consideration

in this thesis.

Proposition 5.2.3. Suppose €(z) = (E_(z),E+(z)) is a de Branges operator having the
following factorizations of both E_(z) and E(z) as deduced in the previous theorem:

1. E_(2) = F_(2)Q-(z) forall z € C, where I — Q_(z) is compact and F_(z) is invertible
forall z € C. Also, Q_(z) is invertible, whereas E_(z) is invertible.

2. Ei(2) = Fy(2)Q+(2) forall z € C, where I — Q4(z) is compact and F'y (z) is invertible
forall z € C. Also, Q4 (z) is invertible, whereas E (z) is invertible.

Then, if F_(z) = Fy(2) for all z € C, the pair of Fredholm operator valued entire functions
Q(z) = (Q-(2),Q+(2)) is a de Branges operator, and B(€) = F.B(Q).

Proof. Observe that

By (z)EL(§)" — E_(2)E_(§)”

Ke(z) = e
=F.(2) Q+(Z)Q+(§);—Z§2(Z)Q(§)* Fy (&)
= Fy (2)le(2) Fy (§)7, (5.2.16)

where I'¢(z) = Q+(Z)Q+(§);£_(g’(z)Q’(§)* . From (5.2.16), it is clear that ¢ (2) is a positive kernel,
and the pair of Fredholm operator valued entire functions Q(z) = (Q_(z), @+(z)) is a de Branges

operator. Let v € X and for some £ € C, v = F(&)*u, then the following linear map
F,;:U — Kgu = F_;_(-)ng

between B(Q) and B(€) proves that B(€¢) = F, B(Q). O

Remark 5.2.4. Observe that the above proposition implies that, given any de Branges space B(€)
as in our present consideration, if E. (z) and E_(z) have a common factor F'y (z) that is invertible
forall z € C, then B(€) is canonically isomorphic to a de Branges space B(Q) as considered in
[31], differing only by the fixed invertible factor F'(z). However, in general, the hypothesis that
Fi(z) = F_(2) for all z € C need not be true. In the next section (Theorem 5.3.6), we shall see
that though a situation of equal factors occurs, the two de Branges spaces involved there are both

as in our present consideration.
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Remark 5.2.5. Observe that (5.2.16) gives an analytic equivalence between the two reproducing
kernels K¢(z) and T'¢(z), that is,

K, (z) = F1(2)T,(2)Fy(2)* forall z € C.

Details about analytic equivalence of two operator valued entire functions can be found in [42]

and [43].

5.3 Isometric Embedding

In this section, we deal with several isometric embedding results related to the vector valued de
Branges spaces B(€). In Particular, we present the vector version of Problem 44 from the book
[30]. Theorem 5.3.6 is the main result of this section. Moreover, assume that de Branges operators

involved in this section satisfy the following additional two conditions:

Hypothesis 5.3.1. Suppose €(z) = (E_(z), E4(z)) is a de Branges operator, then
1. E,(z) is invertible for all z € C,
2. E_(z) is invertible for all z € C_.

The following two lemmas are motivated by [54], where de Branges spaces under consideration

were Hilbert spaces of scalar valued entire functions.

Lemma 5.3.2. Let B(€) and B(¢°) be two de Branges spaces corresponding to de Branges
operators €(z) = (E_(z), E4(z)) and €°(z) = (E°(z), E%(z)) respectively. Suppose P(z)

is a B(X)-valued entire function such that

E(2) = P(2)EY(z) forallz € C, (5.3.1)
and

E_(2) = P(2)E°(2) forall z € C. (5.3.2)

Then PB(&°) is contained in B(€) isometrically.

Proof. From (5.3.1) and (5.3.2) it is clear that P(z) is ®(X)-valued entire function and is invertible
for all z € C; UC_. Also, due to the Fredholm analytic theorem, we conclude that P(z) is
invertible for all z € R except possibly on a discrete set. Now, suppose f € B(&"), that is,
(E9)~'f € H3(C4) and (EY)~!f € H}(C4)™ . To show the isometric containment of PB(€&?)
in B(€), it is sufficient to show that Pf € B(€) and ||Pf||z@) = [|f|[(e0). The following

supplementary calculations prove the lemma.
E{N(2)P(2)f(2) = (BY) "1 (2)P(2) ' P(2) f(2) = (BY) ' (2)f(2) Vze€Cy,

EZN(2)P(2)f(2) = (B2)"'(2)P(2) ' P(2) f(2) = (B2) ' (2) f(2) VzeC-
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and

1Pslse = [ 1B OPOS 0|

-/ T BT PO P £ Pt

- / 1(E2) 7 (0) £ (1) Pt

—00

= |[f]l5(e0)-

The following lemma is an application of the previous lemma.

Lemma 5.3.3. Let B(¢) and B(§) be two de Branges spaces corresponding to de Branges
operators €(z) = (E_(z),E4(2)) and §(z) = (F_(z), F'{(2)) respectively. Assume that for

all z € C, the following four relations are true:

Fi(2)Eq(2) = E(2)F1(2);
Fi(2)E_(2) = E_(2)F4(2);
F_(2)E4(2) = E4(2)F_(2);
F_(2)E_(z) = E_(2)F_(2).

Then, the pair of Fredholm operator valued entire functions
E5(2) = (B_(2)F_(2), By (=) (2))

will be a de Branges operator. Moreover, if the following two additional relations

are true, then
B(€F) = E+B(T) © F-B(€).

Proof. Only after a few small calculations, it can be easily shown that

(E,F ) Y E_F.) e S™nsSh

(5.3.3)
(5.34)
(5.3.5)
(5.3.6)

(5.3.7)
(5.3.8)

(5.3.9)

This implies that €F(z) = (E_(2)F_(2), E+(2)F1(z)) is a de Branges operator, and B(&F) is
the corresponding de Branges space. If K% (z) is the reproducing kernel of B(¢€) and K3 () is

the reproducing kernel of B(5§), the reproducing kernel K,,(z) of B(&§F) can be represented as

follows:

By (2)Fy(2) By (w) By (w)* — B (2)F_ () F_(w)"E_(w)*

Kulz) = o)



Chapter 5. Associated functions of de Branges spaces and Operator nodes 73

— By (2)KS(2)Ex ()" + F_(2)K$(2) - (w)"

Now, when (5.3.3) and (5.3.7) hold, due to the previous lemma we conclude that
E.B(F) is contained isometrically in B(€F). Also, the following calculation shows that
B, (2)K3(2)Ey(w)* is the reproducing kernel of the Hilbert space £, B(g).

For any f € B(F) and u € X,

(Bif, By K Ey (w) u)pz) = (E+f, B+ K3 By (w)*u) p(eg)

= [ s B OREO B w) )

—00

= (f. K§EL(w)*u)p()
= (f(w), E4+(w) u)x
= (B4 f)(w), u)x.

Similarly, it can be shown that when (5.3.6) and (5.3.8) hold, F_B(€) is isometrically contained
in B(€F), and F_(2)KS(2)F_(w)* is the reproducing kernel of the Hilbert space F_B(€). The
rest of the proof follows from a general complementation theory in Hilbert spaces, which can be
found in [3] (Chapter 1.5). ]

Now, we mention a particular case of the Theorem 5.2.2, which will be used later in this section.

Theorem 5.3.4. Let A(z) be a ®(X)-valued entire function that is invertible at least at one point.
Then a factorization of A(z) of the form A(z) = N (z)Ao(z) holds, where Ay(z) is a ®(X)-valued
entire function that is invertible for all real z and N (z) is a B(X)-valued entire function of the

form (5.2.3). Also, N (z) is invertible for all z except for those z € R where A(z) is not invertible.

Proof. The Fredholm analytic theorem and the fact that A(z) is invertible at least at one point
implies that A(z) is invertible for all z € C except for a discrete set. Without loss of generality,
we may assume that A(z) is invertible at the origin and D is the collection of all real points,
where A(z) is not invertible. If Dy is empty, then the factorization result follows by choosing
N(z) =TI and Ap(z) = A(z). Otherwise, let 21 be an element in D nearest to the origin and P;
be the orthogonal projection operator on (rngA(x1))*. P is a finite rank operator, as A(x) is a

Fredholm operator. Then

—1
[I _ zpl] — [I __z Pl] (5.3.10)
T z— T

is an operator valued analytic function for all z € C except at x1, and Py A(z;) = 0 implies that

A(z) = A(z1)

|:I—2P1:|_1A(Z):(Z_x1_zpl)|: z— 11

} + A(zy) (5.3.11)
1

is an operator valued entire function. Thus A(z) has the factorization A(z) = N (1)(2)A(()2) (2),
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where NV (2) = { - %Pl} exp [xilPl} and

e L Py [AR—A@)

A(()Q) (z) — exp[ T1 Pl”(z 4o ZPl)[ 2—T1 ] + A(.’El)], z ;é I (5312)
eXp(—Pl)[A(.T}l) — $1P1A/($1)], zZ=2X1.

Observe that A[()Q)(z) is a ®(X)-valued entire function invertible at the origin. If Aéz) (2) is
invertible for all real z, the proof is complete, and N (z) = NI (z2), Ag(z) = A(()Z) (z). Otherwise,
let x5 be an element in Dy nearest to the origin such that Aé2) (z2) is not invertible and continue
inductively. At the n-th step of the induction process, we have A(()")(z) is a ®(X)-valued entire
function invertible at the origin. Suppose x,, is an element in Dy nearest to the origin such that
A(()") (xy,) is not invertible. Let P, is the orthogonal projection on (rngA(()") (2,,))*. Again we have

the factorization A(z) = N (")(Z)A((]n+1)(z), where

1 n
N (z) = [I - Zpl] exp [Zpl} [I - zpn] exp [ZPH t...+-2p,
) ) n Tn nan

and A(()nﬂ) (z) is a ®(X)-valued entire function invertible at the origin. If Aénﬂ) (z) is invertible
for all real z, we conclude the proof with N(z) = N (z) and Ag(z) = A(()nﬂ)(z). Otherwise,
we keep the process moving. This discussion already covered the case when Dy is finite. Now,
suppose Dy is infinite with |z, | — oo as n — oo.

Now, we can apply Theorem 5.2.1 to conclude that the sequence { N (z)} converges to some
B(X)-valued entire function N (z) uniformly in any bounded set with respect to the operator norm
such that I — N(z) is compact for all z € C and invertible for all z € C \ {z,}. Also, the proof
of the fact that the sequence {A(()”H) (z)} converges to some B(X)-valued entire function Ag(z),
invertible for all real z, uniformly in any bounded set with respect to operator norm follows from
Theorem 5.2.2. Observe that for every z € C both A(z) and N (z) are Fredholm operators. Thus

Ap(z) is a ¢(X)-valued entire function follows from Proposition 1.5.2. O

Remark 5.3.5. If the finite rank orthogonal projection operators Py, Ps,..., Py, ... in the
previous theorem are pairwise commutative, then for all z € R, N (z)* = N (z). Since
the self-adjoint operators are closed subset of B(X) and N™ (z) — N(z) in operator norm,
N (x) is self-adjoint for all x € R.

The next theorem establishes a connection between the factorization of Fredholm operator valued
entire functions and the structure of vector valued de Branges spaces. Problem 44 from [30] states
that if H(FE) is a given de Branges space of scalar valued entire functions corresponding to a
Hermite-Biehler function E(z) (that is, |E(Z)| < |E(2)|, 2 € Cy), then E(z) = S(2)E°(2),
where H(EY) exists, E°(z) has no real zeros, and the zeros of S(z) are real zeros of E(z).
Moreover, the equality H(E) = SH(E®) holds. The following theorem generalizes this problem

to the setting of vector valued de Branges spaces.

Theorem 5.3.6. Let €(z) = (E_(z),E(2)) is a de Branges operator. Then E.(z) =
N(z) EY(z) and E_(z) = N(z) E°(2), where N(2) is a B(X)-valued entire function of the
form (5.2.3) and €°(z) = (E° (z2), EY.(2)) is a de Branges operator such that
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1. EY(z) are invertible for all z € R, and
2. The equality B(€¢) = NB(&°) holds.

Proof. Since B(€) is a de Branges space, Lemma 5.1.6 implies that the real points where both
E4 and E_ are not invertible are the same, and we denote the collection as D. Now, we want
the factorization of E; and E_ as in the Theorem 5.3.4. Without loss of generality, we may
assume that £ and E_ are invertible at the origin. Suppose z; is an element in D nearest to the
origin, and P is the orthogonal projection operator on (rngFE (z1))* = (rngE_(x1))*. Then

E.(2) = NO(2)Sy(2) and E_(2) = N (2)Ty(z), where NV (2) as in the previous theorem,

Sy(z) = 4 S Pl —a) T = 2Py)[FEHE) + B ()] 2 # (5.3.13)
exp(—Pl)[E+(x1) — .7}1P1Ef|_(33‘1)], zZ =1
and

rey | PRI =)l s PECEE Y B s g
eXp(—Pl)[E_ (.1‘1) — :B1P1E/_ (xl)], zZ=X1.

Here both S3(z) and T5(z) are ®(X)-valued entire functions and S2(0) = E4(0), 72(0) = E_(0).

Also, from the factorizations of £, (z) and E_(z), itis clear that Sa(z) is invertible forall z € C_,

and T(z) is invertible for all z € C_. Then for all z € C. and for almost every z € R, we have

By () E-(2) = 82(2) 'NO () N ()T (2)
= So(2) ' Ty(2).

This implies that So and 75 satisfy Hypothesis 5.3.1. Thus for all x € R, again we have
rngSa(x) = rngTs(x). Now, as in the previous theorem, we continue factoring £ (z) and E_(2)
inductively. Observe that in every inductive step, the first factors of £ (z) and E_(z) are the
same, and the second factors satisfy hypothesis 5.3.1. Finally, whether D is finite or infinite, we

have the factorization of £, and F_ as
E(2) = N(2)EY(z), FE_(z)=N(2)E’(2), (5.3.15)

where N(z) as in the previous theorem and E9, E° satisfy hypothesis 5.3.1. This implies B(¢")
exists with the de Branges operator €°(z) = (EY (z), E{(z)). Now, (5.3.15) and Lemma 5.3.2
together imply that N B(€?) is isometrically contained in B(&). Moreover, since the zeros of N (z)
are only the real zeros of E (z) (same as F_(z)), given any f € B(€), N(z)~f(z) € B(e?).
Hence, the equality B(&) = NB(&?) holds. O

Remark 5.3.7. Observe that the two de Branges spaces B(€) and B(€°) involved in the previous
theorem are in the sense of our present consideration, that is, the components of the corresponding

de Branges operators are in the class of Fredholm operator valued entire functions which need not
be of the form considered in [31].
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5.4 Associated functions and multiplication operator in de Branges

spaces

This section deals with the B(X)-valued entire functions associated with a de Branges space
B(€), where €(z) = (E_(z), E+(2)) is the de Branges operator. The relationship between these
associated functions and the multiplication operator ¥ is also explored. It is worth noting that a
discussion of associated functions for scalar valued de Branges spaces of entire functions can be
found in [30] (Second chapter, Section 25). A similar discussion employing a different approach
within the framework of de Branges spaces of entire functions with matrix valued reproducing
kernels can also be found in [11] and [13]. Moreover, [29] examines operator valued associated
functions S(z), where I — S(z) are compact operators for all z € C. Recall that a B(X)-valued
entire function S(z) is said to be associated with the de Branges space B(€) if S(«) is invertible
for some v € C and for every f € B(€),

f(2) = SG)S@) f) _ g

Z—

(©).

Remark 5.4.1. If o € C is such that K, («) is invertible, then S(z) = K, (z) is associated with
B(¢)

1. foralla € C\ R, and
2. forall & € R, where E(«) is invertible.

Remark 5.4.2. Observe that S(z) = Ix is associated with B(€) if and only if B(€) is invariant
under the generalized backward shift operator R, for every o € C.

The following theorem gives a sufficient condition for a B(X)-valued entire function to be

associated with the de Branges space B(€).

Theorem 5.4.3. Let B(€&) be a vector valued de Branges space corresponding to the de Branges
operator €(z) = (E_(2), E1(z)) and S(z) be a B(X)-valued entire function such that

E'S E~'S
+ Zu e HE(Cy) and ——u € H}(CL)* forallu € X. (5.4.1)

g P—i

Then
1. EIIS is analytic in C...
2. E~'S is analytic in C_.

3. Moreover, if S(«) is invertible for some « € C, the linear transformation Rg(«) : B(€) —
B(€) defined by
_ ~1
roy ey 1) = SIS fl0) 542

Z—

is everywhere defined bounded linear operator on B(€).
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—1
E;'S

Proof. Since u € H2(Cy) forallu € X, no z € Cy is a pole of E7'Su. Now, due to

Fredholm analytic theorem, it is clear that EJ:lS u is analytic in C; for all u € X. Equivalently,
E7'S is analytic in C. Similarly, it can be proved that E_'S is analytic in C_.
Now, it remains to prove (3). Suppose f € B(€) and o € C is such that S(a)~! € B(X). Assume

that

9(2) = E{'(2)[f(2) = 8(2)S(a) "' f(a)]
and
) = S()S(e) ™ f(a)].

E

>
—~
0
N~—
I
i
-
~—~
N
S—
~
—
N

Since f € B(€), we have E'f € H2(C.), which implies

-1
=1 ¢ H(C,). Dueto (5.4.1), it

is also true that E; SS(a)*lf(a) € H(Cy). Thus, we have £ € H(C, ). Similarly, it can be
proved that % € HZ(Cy)*.

Ifac E then

o f(2) = 8(2)S(e) " f(a)

c— :RageH.%(C'i‘)a

as % € H(Cy).Ifa € C_, then

E;lf(z) —5(2)S(a)" fl@) _ pi(2) EII(Z)J%Z) — 5(2)5(e)” f(@)

z—« z—« pi(z)

belongs to H%(Cy) as ’;%(2 € H®°. Similarly, it can be proved that, for all « € C and f € B(¢&),

o1 /(2) = S(E)S() @)

HZ(Cy)*t.
p— € Hx(Cq)

Thus, it is clear that Rg(«) is an everywhere defined linear transformation on B(€&). The

boundedness of Rg(«a) can be proved by the closed graph theorem. O

Given a B(X)-valued entire function S(z), we denote ps = {z € C : S(z)~! € B(X)}. Then,
the preceding theorem implies that if S(z) is an associated function of B(€), Rg(z) is a bounded

linear operator for all z € pg. Also it is satisfying the following resolvent identity

Rg(a) — Rs(B) = (a — B)Rs(a)Rs(B) forany o, 8 € ps. (5.4.3)

Note that if the associated function S(z) is ®(X)-valued entire function, then pg = C\ D, where
D is a discrete set. For example, we can consider E (z) and F_(z). The next theorem gives a

converse result of the previous theorem.

Theorem 5.4.4. Let B(€&) be a vector valued de Branges space corresponding to the de Branges
operator €(z) = (E_(z), E1(2)) and S(z) be a B(X)-valued entire function. Suppose K () is
invertible for some number o € C and for every f € B(€)

f(z) = S(E)S@ (@) _

Z—

(©).

Then (5.4.1) holds.
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Proof. Suppose f € B(€), then EL'f € HZ(Cy) and EZ'f € HZ(C.)*, which enforce
— -1 —

3(Cy) and “=' € HE(C4)". Also =SS I@) ¢ p(g) implies that

E+1f(z) S(Z)S((Xa) RICINYS H2((C+) and E-1£E)= (zz)fgl)ilf(a) € HZ(C4)t. Now, assume

z

9(2) = BEXN(2)[f(2) = 8(2)S ()" f(a)] and h(z) = EZ'(2)[f(2) — S(2)S(@) "' f(e)]. Thus
9(2) _ EZ'(2)[f(2) = 5(2)8(a) " f(a)]

pi(z) pi(2)
B (z — ) E;l(z)[f(z) — S(z)S(a)_lf(a)]
pi(2) z2—« ’
This implies i € Hi(Cy) >y € H> and E;lf(z)_s(zgfaa)_lf(a) € H%(C4). Now, we

2 I ¢ H2(C,). Thus E+ S(a)~1f(a) € HE(C,) forall f € B(€). Since {f(a) :

have £ o0

f € B(¢)} = rngK,(a) and Ka(a) is invertible, 2= Sue HZ(Cy) for all u 6 X. Similarly, it
S(a)"1f(a) € HZ(C4)* forall f € B(&). Thus 2=y ¢ HZ(Cy)*t
forallu € X. O

E°S
can be proved that .

At this point, we can conclude a result regarding the invariance of vector valued de Branges spaces
under the generalized backward shift operator. We write the result as a theorem below, whose proof

is a particular case of the previous two theorems.

Theorem 5.4.5. Suppose B(€) is a vector valued de Branges space corresponding to the de
Branges operator €(z) = (E_(z),E+(z)). Then B(€) is invariant under the generalized
backward shift operator Ry, for all o € C if

—1 —1
* we HE(Cy) and —wu € HE(C)  forallu e X.

Pi P—i

Conversely, if there exists a number o € C is such that K, («) is inertible and R,B(€&) C B(€),

then
-1 -1

tue HE(Cy) and —wu € HE(C)  forallu € X.

i P—i

Now, the following proposition connects associated functions of B(€) and the multiplication
operator T in terms of closed linear relations on B(€&). A linear relation from B(€) to B(€) is
nothing but a linear subspace of B(€) x B(¢&). More details about linear relations can be found in
[18].

Proposition 5.4.6. Let B(&) be a vector valued de Branges space corresponding to the de Branges
operator €(z) = (E_(z), E+(2)) and S(z) is a ®(X)-valued entire function associated to it. Then
there exists a closed linear relation T on B(€) such that ¥ C T and the following identity holds

(T — aI) " f(2) = Rs(a) f(2) forall f € B(€)anda € pg.

Proof. Since S(z) is a ®(X)-valued entire function and associated with B(€), there exists a
discrete set D C C such that pg = C\ D. Also, Rg(«) is a bounded linear operator on
B(€) for all @ € pg and satisfies the resolvent identity (5.4.3) for all o, 3 € pg. Then, due
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to Proposition 1.2.9 in [18], there exists a closed linear relation 7" in B(&) such that ps C p(T)
and (T — al)~! = Rg(a) for all a« € pg. Now, to show that T C T', we only need to show that
(T —al)~! C Rs(a). Observe that if f € rng(T — ), then f(a) = 0. Thus

1)

Z—

Rs(a)f(z) = = (T—al) 7' f(2).

Remark 5.4.7. In the last proposition, the closed linear relation T' is proper if and only if a linear
manifold M exists in X such that S(z)u € B(€) for all w € M. This can easily be proved by
using Lemma 1.1.6 in [18].

We conclude this section with the following proposition, which observes that if S(z) is an
associated function of B(€”), then N(2)S(z) is an associated function of B(€). The notations

and proof of this proposition follow from Theorem 5.3.6 and Theorem 5.4.3.

Proposition 5.4.8. Let B(€), B(¢Y), and N(z) be as in Theorem 5.3.6. S(z) is a B(X)-valued

entire function such that

EO —1S EO —151
(iu € H¥(C,) and (;)u € H¥(Cy )t foralluc X.
Then the following also holds
E;'NS EZ'NS
+Tu € H3(Cy) and _p —u € H%(C)t foralluc X.

5.5 Connection with operator nodes

In this section, we recall the idea of operator nodes and establish a connection with the vector
valued de Branges spaces B(€). A comprehensive study of operator nodes can be found in [20],
and the connection with de Branges spaces with matrix valued reproducing kernels can be found
in [11]. Suppose $) and & are two separable Hilbert spaces and A € B($)), T € B($,®), and J

is a signature operator in B(®), that is,
J=J"=J"
Then, the set of these Hilbert spaces and operators is called an operator node if

A— A" =qT*JT

@:<A T J>'
9 ®

and is denoted as
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Here, §) is called interior space, and & is called exterior space. Also, A is the basic operator, T" is

the canal operator, and J is the directing operator. The operator node © is called simple if
Np—g ker(T'A™) = {0}

and is called dissipative if J = I. The characteristic function of the operator node © is the operator
valued function
We(z) = Ig +i2T (I — 2A) ' T*J forall z € Z4.

Theorem 5.5.1. Let €(z) = (E_(z),E;(2)) is a de Branges operator such that E,(0) =
E_(0) =1and F = EIIE_. Then, F' is the characteristic operator function of the simple,

@:<RE+(O) T I))
B(¢€) x

where T is defined by T f = /27 £(0) for all f € B(€).

dissipative operator node

Proof. Due to (5.4.2), it is clear that Rg, (0) is a bounded operator on B(€), and since B(€) is a
RKHS, T is also a bounded operator from B(€) to X. Now, for every f, g € B(€), using Cauchy

integral formula, we can show that

(Re (0)f,9)8(¢) — (f; RE, (0)9)B(¢)

—00 t
—/Oo <E+1(t)f(t),E+1(t)9(t>—Et+(t)g(0)> »

=im(f(0),9(0))x + im(f(0),9(0))x
= 2im(£(0),9(0))x
= (@T*Tf, 9)B(e)-

Thus, Rg, (0) — (REe,(0))* = «I*T, which implies © is an operator node. Now, suppose f €
N2 ker(T(Rg, (0))"). Then a simple calculation shows that f(™(0) = 0 for all n, which
implies N7 ker(T'(REg, (0))") = {0}. Thus, © is a simple operator node. Now, consider {2 =

{z € C: E4(z) is invertible}. Then, for any z € 2, we can have the following inverse
[I —2Rp, (0)] ' = [I +2Rp, (2)]. (5.5.1)
Now, a straightforward calculation shows the following identity

Wo(z) = I+ i2T(I — 2Rp, (0)) 'T* = E{'(2)E_(z) forall z € Q.
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®:<A T J>.
9 ®

is said to be a Volterra node if the basic operator A is a Volterra operator (that is, A is compact and

An operator node

has the spectrum {0}) and the canal operator 7" is compact. Given an operator A € B(X), recall
that the real and imaginary parts of this operator are respectively
A4 A* A— A

and —.
2 21

We end this section by mentioning a corollary of the previous theorem, which deals with the case

when the operator node connected with B(€&) is a Volterra node.

Corollary 5.5.2. If in the setting of Theorem 5.5.1, we assume that E(z) is invertible for all

z € C, and Ky(0) is a compact operator, then the operator node

@:<RE+(0) T 1)7
B(€) x

is a Volterra node.

Proof. We need to show that Rg, (0) is a Volterra operator and 7" is a compact operator. Due
to (5.5.1), it is clear that the spectrum of Ry, (0) is {0}. Since TT* = 2w K(0) and K;(0) is

compact, T is also a compact operator. Then, the imaginary part of the basic operator Rz, (0) is

T%T, which is compact. Since a bounded operator on a Hilbert space is a Volterra operator, if its

spectrum contains only zero and its imaginary part is compact (see [20], Theorem 10.1), Rz, (0)

is a Volterra operator. O
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Chapter 6

de Branges matrices

In this chapter, we deal with de Branges spaces of C™-valued entire functions based on an n x
2n matrix valued entire function €(z) = [E_(z) E4(z)], which are discussed in Section 1.1.
This chapter aims to extend the concept of de Branges matrices introduced by L. Golinskii and I.
Mikhailova in [44] to any finite m X m order where m = 2n. We shall discuss these matrices along
with the theory of de Branges spaces of C"-valued entire functions and their associated functions.
Now, we briefly explain the contents of this chapter. In the first section, we recall some families of
matrix valued analytic functions, which will be used throughout this chapter. The second section
discusses a factorization of matrix valued meromorphic functions. The third section describes the
extended definition of de Branges matrices, their real representation, and a few examples. Finally,
in the fourth section, these matrices are parametrized using the Smirnov maximum principle for

matrix valued functions.

6.1 Some families of matrix valued analytic functions

In this section, we revisit some results concerning matrix valued holomorphic functions that will
be utilized in the later sections. Although these results can be found in [11], we include them here
for the convenience of our readers. First, we recall some well-known classes of matrix valued
holomorphic functions.

Hardy Hilbert spaces: H2, , denotes the class of n xn matrix valued functions f(z) holomorphic

in C,. and satisfying

1£113 = sup,q /

o

trace{ f(z + iy)" f(z + iy) }dz < oc.

H?2 denotes the same class for C"-valued holomorphic functions in C, thatis, H2 = H2, ;. Itis
known that these classes are Hilbert spaces.
Carathéordory class: C"*" denotes the class of n x n matrix valued functions f(z) holomorphic

in C, such that the real part of f is positive semi-definite for all z € C,, that is,

fz) + ()"

Re f(z) = =

>0 forall z € C,.

A function f(z) € C™*™ if and only if it can be represented as the following integral form

f(z):iQ—izP+1,/oo{ ! i } do(z), 6.1.1)

T ) lT—2 1+ 22
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where ) = Q*, P > 0 are n x n complex matrices and o(x) is a nondecreasing n x n matrix

valued function on R such that ffooo w

Smirnov class: N}*" denotes the class of n x n matrix valued functions f(z) holomorphic in

< 0Q.

C+ such that it can be represented as

where ¢(z) is an n x n matrix valued bounded holomorphic function in C; and h(z) is a scalar
valued bounded outer function in C,. This class is closed under addition and suitable matrix
multiplication. The Smirnov maximum principle (see [11], Theorem 3.59), which will be utilized
in the final section, is one of the important properties of this class.
Additionally, S/*"™ denotes the class of n X n matrix valued functions f(z) holomorphic in C
such that

I|f(2)]] <1 forall z € Cy,

and the corresponding boundary function is unitary almost everywhere on R, that is,
flz)f(x)* =1, forae. xze€R.

Suppose .J is a signature matrix of order m, that is, J = J* = J~!. Consider the orthogonal
projection matrices
Iy +J and Q= Im—J.

2
We denote P(.J), the family of m x m matrix valued meromorphic functions .4(z) in C4 such
that A(z)*JA(z) =< J, where A(z) is holomorphic. Now, if A € P(J) and A(x)*JA(x) = J

for almost every = € R, we call A to be J-inner. We denote the family of m x m J-inner matrix

valued functions as U(J). If A € P(J) the corresponding Potapov-Ginzburg transform is given
by
PG(A)(2) = [PA(2) + Q] [P + QA(2)] ™" = [P — A(=)Q] ' [A(2) P — Q).

Note that A € U(J) if and only if PG(A) € S]"*™.

6.2 Factorization of matrix valued meromorphic functions

In this section, we discuss a factorization of matrix valued meromorphic functions in C.
Specifically, we decompose multiple matrix valued meromorphic functions to identify one
common factor that encompasses all the poles of the original functions. Suppose F'(z) is an
n X n matrix valued meromorphic function in C and det F'(z) # 0. A point zy € C is a pole of
F(z) if it is a pole of one of its entries, and zg is a zero of F(z) if it is a pole of F'(z)~!. For any
29 € C, F(z) can be decomposed into the following form, using the similar method described in
[38, Sections V1.2, VI.3]:

F(z) = M(z)diag((z — 20)"™ ... (2 — 20)"™ )N (2),
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where M (z) and N(z) are analytic and invertible at zy and {rq,r92,...,7,} is an ascending
sequence of integers. When r; < 0, the numbers |r;| are called the partial pole multiplicities
of F'(z) at 29, and when r; > 0, the numbers 7; are called the partial zero multiplicities of F'(z) at
z0. Now, we recall the ideas of eigenvector and pole vector of F'(z) at any point 2y € C. A more
detailed discussion of them and the other related results can be found in [17] (Chapter 2, Section
1). Also, a factorization of meromorphic matrix-valued functions of finite order can be found in
[69].

A nonzero vector u; € C" is called an eigenvector of F'(z) at the zero zg if there exist vectors
{u2,us, ...} C C" such that F'(z) 372 ujy1(2 — 20)7 is analytic at 2o and has a zero at zg. If
this zero has order at least m, then uy, us, . . . , U, is called a zero chain of length m of F'(z) at z.
It can be proved that the number of independent eigenvectors at zg equals the number of partial
zero multiplicities. Furthermore, for a given eigenvector 1, the maximal length of a zero chain
starting at u; corresponds to one of the partial zero multiplicities.

A nonzero vector v; € C™ is called a pole vector of F'(z) at the pole z if there exist vectors
{ve,v3,...} C C" such that F'(z)~! > 20 vj+1(z — z0)7 is analytic at zg and has a zero at zg. If
this zero has order at least [, then vy, v9, . .., v; is called a pole chain of length [ of F'(z) at zo. It
can be proved that the number of independent pole vectors at zg equals the number of partial pole
multiplicities. Furthermore, for a given pole vector v, the maximal length of a pole chain starting
at v; corresponds to one of the partial pole multiplicities.

The following theorem is a matrix analog of Theorem 19 in the appendix of [31], and the proof

can be done similarly.

Theorem 6.2.1. Let { P }7° | be a sequence of orthogonal projection matrices of order n x n and

{21}, be a sequence of nonzero complex numbers such that |z,| — oo as k — oc. Then

P(2) = Tim exp(ZPs+ ...+ 2P (I — 2 Py)
_k:i>oo *P Zk b k‘zllz KA Zk k)

z z
exp(ZP)(In = —-P1) (62.1)

converges uniformly in any bounded set with respect to the operator norm and P(z) is ann X n
matrix valued entire function. Also, det P(z) # 0 for all z € C\ {z}32.

The following theorem gives a factorization of a meromorphic matrix valued function.

Theorem 6.2.2. Let F'(z) be an n x n matrix valued meromorphic function such that det F'(0) #
0. Then

where P(z) is an n x n matrix valued entire function of the form (6.2.1), and G(z) isann x n

matrix valued entire function.

Proof. If F(z) has no pole, the theorem follows with P(z) = I,, and G(z) = F(z) for all z € C.
Otherwise, let z; # 0 be a pole of F'(z) nearest to the origin. We denote N; as the linear span

of the pole vectors of F'(z) at z = z;, and P is the orthogonal projection on Nj. Suppose
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dimP; =r<nand P, = with respect to some orthonormal basis. Now, define

Gi(2) = (I — Zilpl) F(z). (6.2.2)

We denote the partial pole multiplicities of F'(z) at z = 21 by |k1|,...,|K;] (I < n). We now
claim that the partial pole multiplicities of G 1(z) at z = z; are given by the nonzero numbers
among |ky + 1|,..., |k + 1|. Now, suppose that @1, . . ., ¥, is a pole chain of G (2) at 21, that is

U1 # 0 and there exist vectors 9,41, . . . such that

G -1 Z 0j(z — z1)’ Z pi(z — 21) (6.2.3)

Now, from equation (6.2.2), we have

21(z1 —2)7, 0

G = ) - Zpy T = pt |PET T O

Now, we write the vectors ©; = 0;1 + ;2 as the orthogonal sum, where ©;; € Ny and 00 € N 1l

Then from (6.2.3), we can write

o
ij(z—zl)j = 1{2 —21051(2 — z1)? —i—Zv]g z—z) 1
j=m

= F(2) Nz — 21) Y2111 + Z(—Z1i7(j+1)1 + 02)(z — 21)'}.
j=1

Here 917 # 0 since otherwise —z1721 + 012 would be a pole vector of F'(z) at z1, which can be
true only if ¥19 = 0. But if both v;; = 0 and v13 = 0 then 9; = 0, contradicting the assumption

01 # 0. Thus it follows that the vectors
V1 = 21011, V2 = —21021 + V125 -+, Umt1 = —210(m41)1 T Um2

form a pole chain of length m + 1 of F'(2) at 2.

Conversely, let v1, va, ..., Ums1 (m > 1) is a pole chain of F'(z) at z;. Then v; # 0 and
121)]2—,21 Z <Z>Jz—z1
j=m+1

Since F(z)~" = G1(2)(I, — £ Pp), we have

Z quz—zl)]—Gl I{Z——Uﬂ z—21) +ZUJ2 (z— 2171}

j=m+1

= G1(2) (= — 21){vn2 +Z 1111]1 + o)z — 21
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Since v; belongs to N; , v12 = 0. Thus we have a pole chain

U1 = ——011 T 022, -, Um = ——VUm1 + Umt1)2
Z1 21
of length m of G (z) at z1. Due to the correspondence between the partial pole multiplicities and

the lengths of the pole chains, the claim follows. Next we define
z z
Gi(z) = exp(—P1) (I, — —P1)F(2).
21 Z1

Clearly, G (z) has the same partial pole multiplicities as G'1(z). Now, if Gy (z) is entire, consider
P(z) = exp(£ P1)(In — £ P1) and G(z) = G1(z). Otherwise, let 2 be a number nearest to the
origin such that G1(z) has a pole at z9 and continue inductively. If the number of poles of F'(z)
is finite, this process will stop after finite steps, and we will get the desired factorization. Now,
suppose the number of poles of F'(z) is infinite, that is, {25 }7° ; such that |z — oo as k — oo.
Then, using the previous theorem, we conclude that a matrix valued entire function P(z) of the
form (6.2.1) exists. Also, it can be shown that G(z) = limg_,o, Gx(2) converges uniformly on

every bounded set with respect to the operator norm. This completes the proof. O

The following theorem is an extended version of the previous theorem. Here, we simultaneously

factorize two matrix valued meromorphic functions in C.

Theorem 6.2.3. Let A(z) and B(z) be two n x n matrix valued meromorphic functions such that
det A(0) # 0 and det B(0) # 0. Then there exists an n x n matrix valued entire function P(z)
of the form (6.2.1) such that

A(z) = P(2)A(2); B(z) = P(2)B(2),
where A(z) and B(z) are n x n matrix valued entire functions.

Proof. Suppose 21 is a nonzero complex number nearest to the origin at which at least one of A(z)
or B(z) has a pole. We denote Ny (A;z1) and N1(B; z1) as the linear span of the pole vectors of
A(z) and B(z), respectively, at z;. According to our consideration, at least one of these two sets

is nonempty. Now, we consider V7 to be the linear span of the union of Ny (A;z1) and Ny (B; z1),

I, 0
and P; is the orthogonal projection matrix on N;. Suppose dim P, = r < nand P} = (; 0]

with respect to some orthonormal basis. For the definiteness, let us assume that Ny (A;z7) is

nonempty, that is, A(z) has pole at z;. Now, define

~ z
Ai(z) = (I, — z—lPl) A(z). (6.2.4)
We denote the partial pole multiplicities of A(z) at z = 21 by |k1],...,|K;| (I < n). We now

claim that the partial pole multiplicities of A;(z) at z = z; are given by the nonzero numbers

among |k; + 1, ..., |k + 1|. Since N1(A; z1) C Ny, the previous claim, along with its converse,
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can be proved as in the previous theorem. Now, we define
z z

A1(z) = exp(—P1)(In — —P1)A(2).
Z1 Z1

Similarly, we define
z z
Bi(z) = exp(—P1) (I, — —P1)B(2).
Z1 Z1

Note that if N1 (B; z1) is nonempty, the above definition of Bj(z) can be justified as in the case of
A;1(z) and the change of partial pole multiplicities between Bj(z) and B(z) can be observed. If
Ni(B; z1) is empty, in that case, the definition of Bj(z) can still be justified because there is no
difference of poles and partial pole multiplicities between Bj(z) and B(z). Now, if we continue

this process inductively, the desired factorizations can be obtained as in the previous theorem. [

6.3 de Branges matrices and examples

This section extends the idea of de Branges matrices introduced by Golinskii and Mikhailova in
[44], to study them in connection with de Branges spaces of vector valued entire functions. Some
examples of de Branges matrices are also discussed here. We consider two m x m (m = 2n)

signature matrices j,, and _#,, satisfying the condition M* ¢, M = j,, where

I, 0 0 i, 1 |il, —il,
im = i I = M= — . 6.3.1
J [0 —IJ 4 [—iIn 0] V2 [In In] ( )
Let
A(z) = an(z) a(z) (6.3.2)
agl(z) agg(z)

be an m x m matrix valued meromorphic function in C;. and

(6.3.3)

U(z) = A(z)M = [“”(Z) ulz(z)]

u21 (Z) UQQ(Z)

where the entries a,(z) and u,¢(z) are of size n x n. The following lemma describes the intimate
connections between the entries of the _#,,-contractive matrix valued meromorphic functions in
Cs.

Lemma 6.3.1. Let A(2) be an element of the class P(_#y,). Then the following implications hold:
1. U(2)* ZmU(z) < jm forall z € C4, where A(z) is holomorphic.

2. wui2(z) is invertible for all z € C, where A(z) is holomorphic.

CTLX?’L

3. The n x n matrix valued functions ®(z) = —iug(2)uy, (2) € and x(z) =

upy (2)urr(z) € S,
—1
4. The n x n matrix valued function % € H?

nxn*

Moreover, if A(z) belongs to U(_#y,), then
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(5) The n x n matrix valued function x(z) = uﬁ(z){uﬁ(z)}_l e Sy

oH—
(6) The n x n matrix valued function B Y € H2, .
Pi nxn

Proof. The proof of this lemma is similar to Lemma 4.35 in [11]. L]

Now, we extend the definition of de Branges matrices for m x m matrix valued functions, which
was hinted in [10] (Section 7).

Definition 6.3.2. Let A(z) belongs to the class U(_Zy,). Then A(z) is said to be a de Branges

matrix if the n X n matrix valued function
B(2) = —iuga(2)upy (2) = aga(2) — iag1(2)] [a11(2) + iaia(2)] ™ (6.3.4)

is holomorphic in R.

Example 6.3.3. Let A(z) belong to the class U(_#,,) and holomorphic in R. Then A(z) is a de
Branges matrix. Indeed, let 1 € R be a pole of ®(z). Then a11(p) + iai2(u) is not invertible,
as A(z) is holomorphic at j1. Thus det(a11(p) + ia12(p)) = 0 and det(aj; (1) — iajs(p)) = 0.

Also, since A(z2) is _fm-inner, we have

ar(p)ajs(p) = ar2(p)aiy (1),

which implies that det(a11(p)al; (1) + a12(p)ais(p)) = 0. Now, due to Minkowski determinant
theorem, we conclude that det(ai1(p)aj;(p)) = 0 and det(aiz(p)ajs(p)) = 0. But this is
contradicting the fact that A(j1) is 7y, -unitary.

Note that the previous example implies that the elementary Blaschke-Potapov factors (see, [11],
chapter 4.2) of first and second kind are de Branges matrices.

Recall that an n x n matrix valued entire function S(z) is said to be associated with the de Branges
space B(€) of C"-valued entire functions if det S(w) # 0 for some w € C and for any f € B(¢€),

£2) = SRS fw) _

Z—w

(€).
The following theorem is a matrix version of Theorem 5.4.3 and Theorem 5.4.4 from chapter 5.4.

Theorem 6.3.4. Let B(€) be a de Branges space corresponding to the n X 2n matrix valued entire

function of the form (1.1.1), and S(z) is an n X n matrix valued entire function such that

-1
o

E~'S
oxn  and

c (H?
pi p—i

nxn

)t (6.3.5)

Then E_IlS and E~'S are holomorphic in CL and C_ respectively. Moreover, if det S(w) #0
for some w € C, the linear transformation Rg(w) : B(€) — B(€) defined by

f(2) — 8(2)S(w) ™" f(w)

zZ— W

(Rs(w)f)(z) = for f € B(€) (6.3.6)



90 Chapter 6. de Branges matrices

is everywhere defined bounded linear operator on B(€).
Conversely, suppose det Kg(3) # 0 for some 3 € C and B(€) is invariant under Rg(w). Then
(6.3.5) holds.

Now, in the following theorem, we describe a representation of de Branges matrices using the
factorization of matrix valued meromorphic functions discussed in the preceding section. This

representation connects a de Branges matrix to a de Branges space and its associated function.

Theorem 6.3.5. Let A(z) be a de Branges matrix of the form (6.3.2) and U(z) = A(z)M is of
the form (6.3.3). Then the following implications hold:

1. A(z) can have the following representation

(6.3.7)

0 S(Z)_1 &21(2) (ZQQ(Z)

S(Z)fl 0 ] [ELH(Z) &12(2)]

where ay¢(z) are n X n matrix valued entire functions and S(z) is of the form (6.2.1).

2. The entire n X 2n matrix valued function €(z) = [E_(z) E4(z)], where
EJr(Z) = ELH(Z) + idlg(z) and E_ (Z) = (111(2’) — idlg(z), (6.3.8)

generates a de Branges space B(€).
3. S(2) is an associated function of the de Branges space 3(€).

Proof. Due to Theorem 6.2.3, the existence of the n x n matrix valued entire function S(z) is

evident. Now, (1) follows after letting a,+(z) = S(z) ar(2) for r,t € {1,2}. Since
E,(2) = iV25(2)u12(2) and E_(2) = —iv/25(2)u11(2),

(2) follows from the assertions (2) and (5) of Lemma 6.3.1. To show that S(z) is an associated

function of the de Branges space B(€&), it is sufficient to show that

E{'S SHE}!
—+ "~ ecmH?, and STHBZ} € H2,,.
Pi Pi
Now, (3) follows from the assertions (4) and (6) of Lemma 6.3.1. O

We conclude this section with another example of de Branges matrices derived from a particular
class of compact operators in a separable Hilbert space X in terms of their characteristic matrix
functions. The characteristic matrix functions are crucial in the theory of nonselfadjoint operators
in Hilbert spaces. A detailed study of them can be found in [20]. We consider % as the family of

compact operators 7" in X having the following additional conditions:

T-T*

5 of T is of rank m = 2n.

1. The imaginary part

2. T'is a non-dissipative operator.
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3. T has no real eigenvalues.

Note that a similar family of operators was considered in [47] to deal with a functional model
problem in connection with de Branges spaces of scalar valued entire functions. Observe that
every operator T’ € % is a completely nonselfadjoint operator in X. Otherwise, it will contradict

the last condition in the definition of % .

Example 6.3.6. Let T' € J be any operator, and the signature matrix Zp, = (_#yt) as defined

earlier. Then we have the following representation (see, [21], Chapter I)

T — T* "
Z u,ur)x Fre e, (6.3.9)
where u,uy,...,uy, € X. Also, the characteristic matrix function of T is given by
Wr(2) = L +iz({(Ix — 2T) Yup, ui)x) I (6.3.10)

We claim that W (z) is a de Branges matrix. Since T is a compact operator, the characteristic
matrix function Wrp(z) is meromorphic in C. Also, it can be proved that Wr(z) belongs to
U(_Zm). We consider

wn(z) wlg(z)

wo1(2z)  waa(z

Wr(z) = [ ] and ®(z) = [waa(2) — iwo1 (2)] [wi1(2) + iwia(2)] 71,
where wyy are matrices of order n x n for r,t € {1,2}. Due to condition (3) in the definition of
o, we conclude that W (z) is holomorphic in R. Thus, as in example 6.3.3, ®(z) is holomorphic

in R. This justifies our claim.

6.4 Integral representation of ®(z) and parametrization of de

Branges matrices

In this section, we discuss an integral representation of the n x n matrix valued function ®(z) given
by (6.3.4) corresponding to a de Branges matrix of the form (6.3.2), which has a representation of
the form (6.3.7). Additionally, we derive a parametrization of de Branges matrices based on the
integral representation of ®(z). Since ®(z) € C"*™, for all z € C_., it has the following integral

representation

B(2) = iQ — 2P+ — OO{ L ¢ }da(x), (6.4.1)

e r—2z 1422

where Q = Q*, P = 0 are n x n complex matrices and o(z) is a nondecreasing n X n matrix

oo d(trace o(x))
1+22

equation (6.4.1). First we consider the matrix valued function

valued function on R such that f < 00. We find the measure do involved in the

f(2) a;‘ﬁ(z)] | 642)

AF(2) = ARZ)* = Jn AZ) " Jin = [

12(2) ajg(z)
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which gives the inverse of A(z) as

) aZy(2) —a#<z>]
Az 1= 12 ) 6.43
) [—aéﬁ(z) o (2) (043

Due to (6.4.3), ®(z) can be rewritten as

®(2) = [af)(2) + ialy(2)] M [ady(2) — iady (2)], (6.4.4)
and
% (2) = [a](2) — iafy(2)) M [ady(2) +iad (2)]. (6.4.5)

Therefore, we have

W = [afy (2) — iad5(2)] M (2) + dara(2)] !

= S*(){E? (2)} L ETH(2)S8(2), (6.4.6)

and
‘W = iS*(2){E* ()} T EZN(2)S(2) — i®(2). (6.4.7)

We also obtain

[a11(2) +ia12(2)]" [@(2) + @(2)7] [a11(2) + ia12(2)]

:[In _un} [ Fm — A2) FmA(2)] Il on 648

(230

Thus for every z € C, where A(z) is holomorphic, we have

> S(2)*E{*(2)E; N (2)S(2), ifz € Cy,
Re(®(2)) ¢ = S(2)*E;*(2)EL'(2)S(z), ifz€R, (6.4.9)
< S(2)*Er*(2) By (2)S(z), ifz€C_.

Since ®(z) is holomorphic on R, due to (6.4.9), do(z) = S(z)*E *(z)E"(2)S(x)dz, and for
all z € Ct

B(2) = iQ — i2P + /_ h { ! v } S(e) BT ()BT (2)S(2)de  (6.4.10)

i z—2z 1422

Also, due to (6.4.6), we get the following representation of ®(z) forall z € C_

+ SE{EF (2)} TELN(2)S(2). (6.4.11)
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Given a de Branges matrix of the form (6.3.7), we can recover a,; for r,t € {1,2} in terms of
Ei(z), E_(z), S(z) and ®(z). It is immediate that

E (z2)+ E_(2)
2

By(2) —E-(2)

4.12
27 ® )

&11(2) = and &12(2) =

Due to (6.3.4), we have

Goo(2) — id91(2) = S(2)®(2)S(2) Hai(2) + id1a(2)],
and due to (6.4.4), we have

dga(2) + iz (2) = S(2)0%(2)S(2) Vari (z) — iar2(2)],
which give together

®(z) + @ (2)

Gz (2) = S(2) [ 5

(2) — 7 (2)
21

~S(2) [
Now using (6.4.6) and (6.4.7) in the previous two equations, we finally get
ina(2) = S(2)S% () {E* (2)} BTN (2) E_(2) + iS(2)®(2)S(2) Laina(2), (6.4.13)
and
d91(z) = —iS(2)S* (N EF (2)} BT (2)E_(2) +iS(2)®(2)S(2) tan(2).  (6.4.14)

We conclude this chapter with the following theorem, which describes a parametrization of de

Branges matrices under consideration.

Theorem 6.4.1. Given a de Branges matrix of the form (6.3.7), the following conclusions can be

noted

1. The nx2n matrix valued function €(z) = [E_(z) E4(2)], where E4(z) = a11(z)+ia12(2)

and E_(z) = a11(z) — ia12(z) generates a de Branges space B(€).
2. S(z) is an associated function of the de Branges space B(&).

3. The function ®(z) of the form (6.3.4) has the integral representation of the form (6.4.10)
in the upper half plane and of the form (6.4.11) in the lower half plane with parameters
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(P, Q) such that P = 0 and Q = Q*.

Conversely, given such parameters (P, Q) such that P = 0 and QQ = Q™ along with a de Branges
space B(€) corresponding to an n x 2n matrix valued entire function €(z) = [E_(z) E4(2)]

with an associated function S(z), we can construct a de Branges matrix of the form (6.3.7).

Proof. One side of the proof immediately follows from the previous discussion. Now, suppose
B(€) be a de Branges space corresponding to an n x 2n matrix valued entire function €(z) =
[E_(z) E+(2)]. Also, S(z) is associated with B(€). The given parameters (P, () are such that
P > 0and Q = Q*. From the given information, we construct the function ®(z) by using
(6.4.10) and (6.4.11). Due to (6.3.5), we conclude that ®(z) € C™*" and ®(z) is holomorphic
on R follows from Theorem 6.3.4. ®(z) is also satisfying (6.4.6) and (6.4.7). We consider the

following matrix valued function

Szt 0 ][ZLH(Z) alz(z)]

0 S(Z)fl &21(2’) EZQQ(Z)

where a11(z), ai2(z) are defined by (6.4.12) and a21(2), a22(z) are defined by (6.4.14) and
(6.4.13) respectively. Now, it only remains to show that A(z) belongs to U(_#,,). Again, we

consider

W(z) = M*"A(z)M =

[wn(z) wlz(z)] _ (6.4.15)

wgl(z) wgg(z)
Observe that A(z) belongs to U(_#y,) if and only if W (z) belongs to U (jy,). Since Re ®(z) = 0
forall z € C,

wn(2) = lln + ®()] lana(2) + iass(2)]

is invertible in C, and almost everywhere on the real line. Thus the Potapov-Ginzburg transform
of W(z) is

w11 (2) — wia(2)woe(2) " twar (2)  wia(2)wae(2) !

(6.4.16)
—wgg(z)*lwgl(z) 'U)QQ(Z)il

PG(W)(2) = [

Also, W(z) is jm-inner if and only if the Potapov-Ginzburg transform PG(W)(z) belongs to
SM*™ . First, we show that W (z) is jp,-unitary almost everywhere on R. For this purpose, we
consider for z € R:

wnwi‘l — wlgwﬁ — In ’U}stl — w12w§2

W () jmW ()" = jim = [

* * * *
W21Wi] — W22Wy W Wy — WooWsy + Iy

Now, for any x € R where det S(z) # 0, using (2.2.1), the following identities can be noted

immediately
wll(ﬁ)wu(x)* _ |:I”+;I)(x)*:| S($)_1E+($)E+(.I)*S(aj)_* |:In+2¢’(l’>:| :
wneuna)’ = [ 2] s0) 1 () sy [,
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wia(@)wnz(w)" = [I_f”} S(a) By (2) Ba(2)*S (@)~ [I—;W)] ;

wn(yon (@) = |3 @ BB s [P

wiy (z)wan (x) = — [LH-;I’(SC)] S(2) 1B (2) By () S(z)~* [In—f(l’)} ;
and

wna(eun(e)” = - [P s BB s [P0,

Now, using (6.4.9), it can be proved that W (z) is j,,-unitary almost everywhere on R, that is, for

almost every z € R the following identities hold
w1 (2)wi1(2)" — wiz(z)wiz(z)" = In; war(v)war ()" — waa(z)wae(z)” = I,

and
w1 (z)wa (z)" — wiz(x)wee(x)* = 0.
Here, we only show the calculation for the first identity, and the remaining can be done similarly.

Now, for any x € R where det S(z) # 0 and det E (x) # 0, we have

w11 (w)wn (x)* — W12 (x)wm (1‘)*

_ [M;I’(x)} S(x) " By (2) By (2)*S(z) " [I’“f)(‘r)}
_ fn—f@)] S(x) " By (2) Ey ()" S(z)~* [I"_f(‘”)}
= [I” +§)(m)* S(z)” Ey(x)Eq(z)"S(z)™" [In +2q’(37) - _S(x)*]
# [Pl =R s B ) st |
=[P ) By [ 2

= |:In +;I)(-75)*:| S(x)_1E+($)E+(ZC> S(x)_*S(.T)*EJr(.%')_*E+($)_IS($)
() BBy @)@ By @By sty [ 2]

_ In+;1>(w)*} N {In —S(x)*] — 1,

Since W (z) is jn,-unitary almost everywhere on the real line, the Potapov-Ginzburg transform
PG(W)(z) is unitary on the real line. Now, we will apply Smirnov maximum principle for matrix
valued functions to show that PG(WW)(z) € S/ ™. Here, we only need to show that PG(V)(z)
belongs to the Smirnov class. It is sufficient to show that the four blocks of PG(W)(z) belong to
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the Smirnov class N *". We consider
c(2) = [®(2) — L) [®(2) + L] "

Since Re ®(z) = 0 for all z € C,, we have ||c(2)|| < 1 forall z € C4. Now, the (1, 2) block of

PG(W)(z) is of the form

wlg(z)wgg(z)_l =c(z)

belongs to V"™ as ||c(z)|| < 1 forall z € C4. The (2, 2) block of PG(WW)(z) is of the form

waa(2) ' = 2B, (2) 7S (2)[In + ()]
= E1(2)7'S(2)In — ¢(2)]

belongs to N7*™ as E;(2)7'5(z) € NP*™ and I, — c(z) is bounded. The (1,1) block of
PG(W)(z) is of the form

’LU11(Z) — ’LU12(Z>’LU22(Z)_1’IU21(Z)

% [+ 8% (2) — (L~ S + () Iy~ 2% (2)]} 5(2) B ()

_ { [W] [Ty — B(2)][n + B(2)] ! [MH@#(Z)] } S(2)1E_(2)

= {In + (I, — B[ + ()] 1} S*(){E? (2)} BT ()E-(2)
(I, - e(2)]S (HEﬂ)}E+(WJ@

belongs to N™™ as S#(2){E¥ (2)} 7! € N™*™ and E7'(2)E_(z) € SI™. The (2,1) block of
PG(W)(z) is of the form

— waya(2) " wy (2)
=E{M(2)S(2)[In + ®(2)] " I — 2#(2)]S(2) " E_(2)
=E7N(2)8(2)[In + ®(2)] 71 S(2) ' E_(2)
— EZN(2)S(2)In + ®(2)] ' 0% (2)S(2) T E_(2)
=B (2)E_(2) — EZN(2)S(2)[I, + ®(2)] H®(2) + @7 (2)]S(2) L E_(2)
=B N(2)E-(2) — EZ (2)S(2)[In — c(2)]S* (2){EZ (2)} ' By (2) E-(2).

belongs to NP as E7'(2)E_(z) € S, I, — c(z) is bounded and E;'(2)S(2),
S#(2){E¥ (z)} ! belong to N This completes the proof. O

Note that the de Branges matrix that we constructed in the previous theorem from given S(z),
E,(z),and E_(z) is unique subject to the given parameters (P, Q). Now, suppose two de Branges

matrices are

dgl(z) azg(z)

B S(Z)_l 0 &11(2’) dlg(z)
0 S(z)~t
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and

st o ][dn(z) alz(z)]

0 S(z)7H |bar(z)  baa(2)

corresponding to the parameters (P, Q) and (15, Q) respectively. Due to (6.4.14), we have
b1 (2) — a2 (2) = S(2)[(P = P) + 2(Q — Q)]S(2) "an(2).

Similarly, due to (6.4.13), we have

by2(2) — Gg2(2) = S(2)[(P — P) + 2(Q — Q))S(2) " ar2(2).

Thus, the following identity holds
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Chapter 7

Conclusions and Future directions

In this chapter, we concisely describe our research conducted in this thesis and indicate some
probable future research scope of our work. This chapter is divided into two sections: the
first includes conclusions of our research work in this thesis, and the second consists of future

directions of the present work.

7.1 Conclusions of the thesis

The research conducted for this thesis has already been described explicitly and divided into
various chapters. The reproducing kernel Hilbert spaces studied in this thesis consist of vector
valued entire functions, and the central space under consideration is de Branges spaces of vector
valued entire functions. A summary of the research conducted in this thesis is as follows:

In Chapter 2, we have observed that the existing de Branges spaces of vector valued entire
functions due to L. de Branges and J. Rovnyak do not generalize Paley-Wiener spaces of vector
valued entire functions. Thus, we introduce new de Branges spaces of vector valued entire
functions based on a pair of Fredholm operator valued functions, which generalize Paley-Wiener
spaces and the existing de Branges spaces of vector valued entire functions. We provide several
examples of the newly constructed de Branges spaces. An isometric isomorphism between the
subspaces H g and 7—[3 is discussed in Lemma 2.4.4. Then, we used this lemma to characterize de
Branges spaces in Theorem 2.5.2.

In Chapter 3, Theorem 3.1.2 describes the parametrization and canonical description of
selfadjoint extensions of the multiplication operator ¥ with an arbitrary domain D. Then, using
eigenfunctions of a selfadjoint extension, we have discussed Kramer sampling property of de
Branges spaces in Theorem 3.1.7. We have studied entire operators with infinite deficiency
indices and proved in Theorem 3.2.3 that a family of these operators is unitarily equivalent to
the multiplication operator ¥ in de Branges spaces of vector valued entire functions. We conclude
this chapter with a discussion of the characteristic function of a completely nonunitary contraction
operator and a way to construct de Branges operators using them.

In Chapter 4, reproducing kernel Hilbert spaces under consideration are constructed from a
B(X)-valued function. By assuming the sampling condition (4.2.2), we have discussed Kramer
sampling representation of the form (4.2.5) of functions in an RKHS H constructed from an
analytic function F' : @ C C — B(X) in Theorem 4.2.3. We extend a notion of quasi
Lagrange-type interpolation representation (4.3.1) of the Kramer sampling series of functions
in an RKHS of vector valued entire functions. Then we proved in Theorem 4.3.1 that the Kramer

sampling series of functions in an RKHS H of vector valued entire functions can be written as the
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quasi Lagrange-type interpolation series if and only if R,H, C H for all z € C. This chapter
ends with a discussion of quasi Lagrange-type interpolation series representation of functions in
de Branges spaces of vector valued entire functions. We observed that if the components E
and E_ of a de Branges operator &(z) = (E_(z), E;+(z)) do not have any real zeros and the
corresponding de Branges space B(€) is unitarily equivalent to an RKHS # corresponding to a
B(X)-valued entire function F, then every function of the de Branges space can be written as a
quasi Lagrange-type interpolation series. The converse of this result is also discussed in Theorem
4.4.2.

In Chapter 5, we delve deeper into studying various properties of de Branges operators and the
corresponding de Branges spaces. Theorem 5.1.1 modifies the characterization of de Branges
spaces B(€&) earlier described in Theorem 2.5.2. We showed that the selfadjoint condition on the
operators E () and E_(f) is not needed; the operators are Fredholm is sufficient. We have
also extended a few results from the theory of de Branges spaces of scalar valued entire functions.
Lemma 5.1.6 shows that the real zeros of the components of a de Branges operator are the same,
and Lemma 5.1.7 shows that R, f € B(€&), where f € B(€&), f(ar) =0and o € C\ R or « is not
a real zero of E (so too E_). We described a global factorization of Fredholm operator valued
entire functions in Theorem 5.2.2, which are invertible at least at one point. We factorize the
functions into two factors: one contains all the zeros of the original function, and the other factor
is an invertible operator valued function. This factorization provides a connection between the two
de Branges spaces under consideration in Proposition 5.2.3. Theorem 5.3.6 extends another result
from the theory of de Branges spaces of scalar valued entire functions to the present setting using
the factorization result. We also study associated functions of de Branges spaces. A sufficient
and necessary condition for an operator valued entire function to be an associated function of a de
Branges space is described in Theorem 5.4.3 and Theorem 5.4.4, respectively. We conclude this
chapter by discussing operator nodes and their connection with de Branges spaces. Theorem 5.5.1
presents the main results in this direction.

Chapter 6 considers de Branges spaces of C"-valued entire functions. We extend the definition of
de Branges matrices introduced by L. Golinskii and I. Mikhailova to any finite m x m order where
m = 2n. A factorization of matrix valued meromorphic functions is discussed in Theorem 6.2.2.
Moreover, Theorem 6.2.3 simultaneously factorizes two matrix valued meromorphic functions in
C, which is used to show the real representation of the extended de Branges matrices in Theorem
6.3.5. We conclude this chapter with Theorem 6.4.1, which describes a parametrization of de

Branges matrices under consideration.

7.2 Future directions

This section outlines some possible future directions to extend the research conducted in this

thesis. The following problems could be an immediate successor of our present research work.

* de Branges spaces of vector valued entire functions constructed in this thesis based on a
pair of Fredholm operator valued functions could be considered to investigate how they can

contribute for constituting the mathematical models in quantum scattering theory. We are
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also interested to see how these de Branges spaces of vector valued entire functions fit in

the context of the Lax-Phillips scattering scheme.

e The construction of de Branges spaces could be done against the unit circle instead of
the real line, where the multiplication operator would be isometric instead of symmetric.
There, we can again study isometric operators with infinite deficiency indices and their
unitary extensions. As a result, we want to analyze de Branges spaces of vector valued
entire functions constructed from the open unit disc D and its connections with the models

developed by Sz.-Nagy and Foias.

* Motivated by Theorem 2.2.3, which characterizes de Branges spaces of vector valued entire
functions in terms of the Hardy spaces, we aim to characterize these spaces using the

language of Hankel and Toeplitz operators.

* A concept that appears commonly in operator theory and complex function theory is the
idea of nearly invariant subspaces in a Hilbert space H of analytic functions. A subspace
M C H is said to be nearly invariant if f € M and also f € H, that is, if £(0) = 0, then
(Rof)(z) = @ € M. In [52], D. Hitt obtained the following characterization of nearly
invariant subspaces in the Hardy space over unit disc H2(ID), which states that a subspace
M C H?*(D) is nearly invariant if and only if there is an inner function u with u(0) = 0
and a holomorphic function g on D such that M = M,(H? © M, H?) where g is such that
the multiplication operator M, : h(z) — g(z)h(z) acts isometrically from (H? & M, H?)
into H2. We wish to investigate the characterization of all nearly invariant subspaces of a

vector valued de Branges space B(€).

* Orthogonal Kramer sampling representation is obtained in Chapter 4 by considering an
orthonormal basis of the underline Hilbert space X. Our next aim is to investigate
nonorthogonal Kramer sampling representation using a Riesz basis of the Hilbert space X.
The problem of characterizing the situations when these nonorthogonal sampling formulas

can be expressed as a quasi Lagrange-type interpolation series could be considered.

* As an extension of the theory described in Chapter 6, we propose to consider the following
functional model problem. We aim to show that the operator Rg(w) as described in (6.3.6)
on de Branges spaces of C"-valued entire functions serves as a functional model of operators
from the family %j as considered in Example 6.3.6. We could also consider the same
problem for the operator Rg(«) as in (5.4.2) and modify the related family of operators

accordingly.
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