Exploring the Reactivities of Donor-Acceptor Cyclopropanes

Ph.D. Thesis

By Braj Gopal

DEPARTMENT OF CHEMISTRY INDIAN INSITUTE OF TECHNOLOGY ROPAR RUPNAGAR, PUNJAB 140001, INDIA

Braj Gopal: Exploring the Reactivities of Donor-Acceptor Cyclopropanes

Copyright © 2024, Indian Institute of Technology Ropar

All Rights Reserved

Dedicated to My Parents, My Love and My Lord Shiva

Indian Institute of Technology Ropar Department of Chemistry

DECLARATION BY THE CANDIDATE

I, Mr. BRAJ GOPAL, hereby declare that the work presented in the thesis entitled "Exploring the Reactivities of Donor-Acceptor Cyclopropanes", submitted for the degree of **Doctor of Philosophy** in Chemistry to the Indian Institute of Technology Ropar, Rupnagar, India has been carried out by me under the supervision of **Dr. Avijit Goswami** in the Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, India. The work is original, based on experimental findings and has not been submitted in part or full by me elsewhere for a degree.

In keeping parity with the general practice of reporting scientific observations, due acknowledgement has been made wherever the described work is based on the findings of other investigators.

Ropar

May, 2025

Braj Gopal

(Ph.D. Student)

Indian Institute of Technology Ropar Department of Chemistry

CERTIFICATE

This is to certify that the work incorporated in the thesis entitled "Exploring the Reactivities of Donor-Acceptor Cyclopropanes" was carried out by the candidate, Mr. Braj Gopal under my supervision in the Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, India. I am forwarding the above-mentioned thesis of him being submitted for the degree of Doctor of Philosophy in Chemistry of this Institute. To the best of my knowledge, the present work or any part thereof has not been submitted elsewhere for a degree.

Ropar

May, 2025

Dr. Avijit Goswami

Department of Chemistry
Indian Institute of Technology Ropar

Rupnagar, Punjab 140001

ACKNOWLEDGEMENT

I would like to take this opportunity for acknowledging some very special people who are integral parts of my journey this far. In the course of my Ph.D. study, I am indebted to many people for their illimitable support, which has made a significant contribution directly or indirectly to my research. Without the supports, this research would not have been valuable at this level. In this section, I would like to extend my gratitude to all those shortly.

Firstly, I would like to express my heartfelt gratitude to my research supervisor Dr. Avijit Goswami for his continuous and unwavering support in the form of constructive suggestions, patient redressal of my queries and constant motivation in bouts of self-doubts and introspection. His guidance lasted throughout the research period and writing of the thesis. I shall forever remain indebted to him for his unfeigned inspiration which moulded by years of perspiration to this present form. It has been a great privilege and honor to be associated with him.

I would like to convey my sincere thankfulness to my DC members **Dr. Prabal Banerjee**, **Dr. Yashveer Singh**, **Dr. Durba Pal** and **Dr. T J Dhilip Kumar** for their valuable suggestions regarding my research offering useful suggestions during the half-yearly assessment of my thesis work.

It is my privilege to thank the present director of IIT Ropar, **Prof. Rajeev Ahuja** for providing world-class research infrastructures.

I am extremely grateful to **Dr. T J Dhilip Kumar** and **Dr. Tarak Karmakar** for the DFT calculations done in this thesis.

I am grateful to all other faculty members, especially **Dr. Soumyajit Das** and **Dr. Aslam C sheikh**, for supporting staff and research scholars of the Chemistry Department.

I am thankful to Indian Institute of Technology, Ropar for providing fellowship during the entire period as well as International Travel Support to attend the 24th Tetrahedron Symposium at Montpellier, France.

My extraordinary lab-mates deserve special thanks for their friendly cooperation and invaluable helps whenever required. I cannot express in words how much fortunate I am to have them at my workplace. I owe my sincere thanks to my senior labmates **Dr. Avinash Srivastava**, **Dr. Divya Bhatt**, **Dr. Pratibha Kalaramn**a and **Dr. Chandresh Kumari** for their valuable guidance during the initial years of my research work. I would like to express special thanks to my labmate cum

friend **Dr. Prasoon Raj Singh** and **Dr. Manisha Lamba** for their continuous support and help. I also want to acknowledge my extremely talented junior labmates **Madan**, **Soniya**, **Narendra**, **Ankush**, **Shamshad**, **Pratibha**, **Abhilash**, **Jubayer**, **Divyasha**, **Shubham**, **Ramesh** and **Sadhna Singh** for maintaining a healthy environment and useful discussions in the lab which helped me in learning and understanding various aspects of research. It was really great to work and spend times with all of them being full enjoyment package in the busy lab schedule. And I will always relish these memories throughout my life. I wish them great success in every aspect of their life. I am grateful to my co-authors for their contribution to my work. I also thank all the summer trainees and project students who worked on short-time projects in our lab.

It is a pleasure for me to remember all my friends and colleagues during different phases of my research tenure. I would like to thank my friends, especially **Srishti Kamboj**, **Esha Saha**, **Kanika Rajain**, **Himanshu Sharma**, **Naresh**, **Amit Nagar**, **kirti**, **Ayush Pratap Singh**, **Jay**, **Abhinav Maurya**, **Ketan**, **Tinu**, **Sukhjot**, **Daisy**, **Raghunath Dey** who treasured me for my hard work, supported me during the hard times and encouraged me throughout this period.

I am also thankful to friends from Different IITs and NITs, especially Rajesh Yadav (NIT Rourkela), Jatin (NIT RKL), Karan Piplani (NIT RKL), Amar Singh Chauhan (IIT Jodhpur), Yogesh Gupta (DIAT), Sikhar S Goel (IIT Kanpur), Rik Laha (IIT Mumbai), Pragya Sharma (IIT Delhi), Jeetendra arya (NIT Rourkela), Reetu Shura (DU), Srishti Kamboj (IIT Roorkee) for always helping me out of critical situations with their supports and suggestions, both in personal and professional life. In addition, I would like to thank Karan Mutreja, Karan Bajaj, Gaurav Rao, Nishant Nehra, Gaurav Agrawat, Mankamal Preet Kaur, Amit Shukla, Harmeet Singh, Aman Kumar, Kunal, Tejas Acharya, Mukesh Anuj Mishra, Yogita, Arvind Yadav, Rajni, Late Palak Jain for their care, help and affection throughout my educational journey.

I acknowledge the help and support provided by the technical staff especially **Manish**, **Kamlesh**, **Nazre**, and **Anuj Babbar** for their timely help with HRMS and NMR data, and non-teaching staff especially, **Nagendra**, **Sushil**, **Poonam**, and **Samita Saini** of the department of Chemistry.

Last but not the least, I would like to acknowledge my family as my constant backbone in this journey for the incessant encouragement and immense mental support they provided me which made this feat possible. Finally, I fold my hands in all humility in front of the Almighty who guided my destiny to a logical end.

Braj Gopal

ABSTRACT

This thesis's main motive is to synthesized various functionalized heterocycles with the reactions of donor-acceptor cyclopropanes.

Chapter-1: Introduction

In modern synthetic chemistry, various small and strained molecules are harnessed as building blocks to synthesize complex compounds due to their high ring strain, easy accessibility, and diverse reactivity patterns. Cyclopropanes, the smallest three-membered carbocycles found in nature, are incredibly stable and have gained significant attention in organic chemistry, particularly as building blocks for the synthesis of cyclic and acyclic compounds. By adding donor and acceptor moieties at the vicinal position, cyclopropanes can be made reactive towards unsaturated compounds or polarophiles. The unique structural and electronic properties of cyclopropanes make them ideal and unique building blocks for a wide range of exciting transformations.

Chapter-2A In the first part of chapter 2A I have developed Synthesis of Indole-Fused Dihydrothiopyrano Scaffolds *via* (3+3)-Annulations of Donor-Acceptor Cyclopropanes with Indoline-2-Thiones. The newly developed methodology provided access to a variety of indole-fused dihydrothiopyrano molecules in good to excellent yields. In addition, the we have described transformation of the furnished product into an *N*-fused thiazino indole molecule.

R¹
$$+$$
 R² $+$ CO₂R³ $+$ R² $+$ CO₂R³ $+$ CO₃R³ $+$ CO₂R³ $+$ CO₃R³ $+$ CO

- Key Features
- · New C-C & C-S bond formation
- · Mild reaction conditions
- Broader substrate scope
- · Yields up to 87%

Chapter-2B

In the first part of chapter 2B I developed a straightforward and efficient LiAlH₄-mediated protocol has been developed for the construction of thiazino indoles. This procedure provides

efficient thiazino indoles derivatives in good to satisfactory yields. DFT calculation has been done to shed light into reaction mechanism.

Chapter 3: In this study, I developed BF₃·OEt₂ Mediated (3+2) Cycloaddition Reactions of DACs with Cyanamides: Access to Cyclic Amidines. A BF₃·OEt₂ promoted facile synthesis of cyclic amidines has been developed via the (3+2)-cycloaddition of cyanamides with donoracceptor cyclopropanes (DACs). In addition to this, the protocol has been successfully extended to construct dimerized amidine derivative and gram-scale synthesis with great efficiency.

- Broad Functional Group Tolorence
- Gram-Scale Synthesis
- Mild Reaction Conditions

Chapter 4: Nucleophilic Ring Opening of DACs through Umpolung Reactivity of Organochlorophosphines: Phosphine Oxide Functionalized Boron Pendanted Compounds. I present a BF₃·OEt₂ promoted protocol that offers umpolung reactivity of R¹R²PCl/CN (R¹, R² = aryl, alkyl) towards donor-acceptor cyclopropanes (DACs) via nucleophilic ring-opening reactions to provide phosphinated O, O-chelated boron diester compounds. The newly established metaland additive-free one-pot multicomponent reaction protocol delivers the desired products in good to excellent yields under mild reaction conditions. The compounds exist in both the forms- keto and enol, with the majority being in the keto form, according to NMR analysis. The enolic form is identified by single crystal XRD analysis and DFT calculations indicate that the keto form is more stable than the corresponding enolic form.

Ar
$$CO_2R^1$$
 + R^2 R^3 R^3 OEt_2 (1.5 eq.)

neat, rt, 6 h
"open flask"

Rev Features

Rev Features

Key Features

- •Metal-, base- and Additive-Free
- •Multi-Component Reaction
- •Mild Reaction Conditions
- •High Yields
- •Broad substrate scope
- •Scale-up

Chapter 5. In this chapter, I present a comprehensive summary of the work accomplishments in the thesis entitled as "Exploring the Reactivities of Donor-Acceptor Cyclopropanes".

Keywords: Donor-Acceptor cyclopropanes (DACs), Lewis-acids, Brønsted acids, Metal-free, Indoline-2-thione, Pyrrolines, chlorodiphenylphosphine, Phosphine Oxide Functionalized Boron Pendanted Compounds, amidine, indole-fused dihydrothiopyrano, thiazino indole.

Table of Contents

Chapter 1	Introduction 1			
1.2	Small-Strained Molecules in organic chemistry			
1.2.1	Reactivity of Cyclopropanes			
1.2.2	Bonding in Cyclopropane	3		
1.2.3	Donor-Acceptor Cyclopropanes	6		
1.2.4	Reactivity of Donor Acceptor Cyclopropanes	6		
1.2.5	Reaction of Donor-Acceptor Cyclopropanes with Nucleophiles	7		
1.2.6	Reactions of Donor-Acceptor Cyclopropanes with	11		
	Dipolarophiles			
1.2.6.1	Formal (3+2) Cycloadditions	11		
1.2.6.2	Formal (3+3) cycloadditions			
1.2.6.3	Formal (4+3) Cycloadditions			
1.2.6.4	Formal (5+3) cycloadditions			
1.2.7	Rearrangement reactions of D-A Cyclopropanes			
1.4	Aim of the Thesis			
1.5	References 2			

Chapter 2A	Synthesis of indole-rused Dinydrothiopyrano Scattolds via
	(3 + 3)-Annulations of Donor–Acceptor Cyclopropanes with
	Indoline-2-Thiones

2A.1	Introduction	31
2A.2	Results and Discussions	35
2A.3	Conclusions	42

2A.4	Experimental Section	43
2A.4.1	Preparation of starting materials	44
2A.4.2	General procedures	45
2A.4.3	Characterization of compounds	46
2A.5	References	55
2A.6	NMR spectra of compounds	60
Chapter 2B	Ring-opening & Closing of dihydrothiopyrane using Lithium aluminium hydride	
2B.1	Introduction	84
2B.2	Results and Discussions	86
2B.3	Conclusions	91
2B.4	Experimental Section	91
2B.4.1	Synthesis of starting materials	91
2B.4.2	General Procedures	93
2B.4.3	Characterization of compounds	93
2B.5	References	97
2B.6	NMR spectra of compounds	99
Chapter 3	BF ₃ ·OEt ₂ -Mediated (3+2) Cycloaddition Reactions of	
Chaptel 3	Donor-Acceptor Cyclopropanes (DACs) with Cyanamides:	
	Access to Cyclic Amidines	
3.1	Introduction	110

3.2	Result and Discussions	114
3.3	Conclusions	119
3.4	Experimental Section	119
3.4.1	Preparation of Starting Materials	120
3.4.2	General Procedures	121
3.4.3	Characterization data	123
3.5	References	131
3.6	NMR spectra of compounds	135
Chapter 4	Nucleophilic Ring Opening of DACs through Umpolung	g
	Reactivity of Organochlorophosphines: Phosphine Oxid	e
	Functionalized Boron Pendanted Compounds	
4.1	Introduction	162
4.2	Results and Discussions	165
4.3	Conclusions	174
4.4	Experimental Section	175
4.4.1	Preparation of Starting Materials	176
4.4.2	General Procedures	179
4.4.5	Characterization data	182
4.5	References	193
4.6	NMR spectra of compound	199
Chapter 5	Conclusions	
5.1	Conclusions	262
Appendix A	Chapter 2A	264
Appendix B	Chapter 2B	267
Appendix C	Chapter 4	270

List of Schemes

Scheme 1.1	Ring-opening reactions of donor-acceptor (D–A) cyclopropanes	7
	leading to mono- and bis-functionalized products	
Scheme 1.2	Nucleophilic ring-opening of D-A cyclopropane with nitrogen	8
	nucleophile	
Scheme 1.3	Nucleophilic ring-opening of D-A cyclopropanes with indoles	9
	nucleophile	
Scheme 1.4	1,3-Bifunctionalization of D-A cyclopropanes	9
Scheme 1.5	Brønsted acid catalyzed nucleophilic ring opening of a wide	10
	range of D-A cyclopropanes	
Scheme 1.6	1,3-Aminothiolation of DACs using sulfenamides	10
Scheme 1.7	1,3-Bifunctionalization of D-A cyclopropanes	10
Scheme 1.7	1,3 Biranetionalization of B 11 cyclopropanes	
Scheme 1.8	(3+2) cycloaddition reactions of donor-acceptor cyclopropanes	12
Scheme 1.9	Reissig's approach for furan synthesis	13
Scheme 1.10	Enantioselective synthesis of tetrahydrofurans and pyrrolidine	13
Scheme 1.11	Formal (3+2) cyclo-additions reactions of DACs with 3-	14
	indolyl-4,5 dihydrothiophenes	
Scheme 1.12	Synthesis of oxazines from (3+3) cycloadditions	14
Scheme 1.13	Synthesis of triazinines <i>via</i> [3+3] cycloadditions	15
Scheme 1.14	Synthesis of tetrahydrothiopyranols	15
Scheme 1.15	Synthesis of Benzo- fused dithiepine via (4+3) annulations	16
Scheme 1.16	(4+3) Cycloaddition of D-A cyclopropanes with thiochalcones	17
Scheme 1.17	Formal (4+3) Cycloaddition of D-A cyclopropanes with	17
	dihydro-2 <i>H</i> -thiepino[2,3- <i>b</i>]indole	
Scheme 1.18	(5+3) cycloaddition reactivity of D-A cyclopropanes	18
Scheme 1.19	Cloke-Wilson type rearrangement of cyclopropyl ketones	19
Scheme 2A.1	Ye and Sun's work on the <i>N</i> -Heterocyclic Carbene-Catalyzed	33
	(3+3) Annulation of Indoline-2-thiones with Bromoenals	
Scheme 2A.2	Namboothiri's work on the Synthesis of	34

	tetrahydrothiopyrano[2,3-b]indoles via (3+3) annulation of	
	nitroallylic acetates with indoline-2-thiones	
Scheme 2A.3	Jiang's work on the MgI ₂ -Catalyzed Nucleophilic Ring-	34
	Opening Reactions of Donor-Acceptor Cyclopropanes with	
	Indoline-2-thiones	
Scheme 2A.4	Synthesis of Indole-Fused Dihydrothiopyrano derivatives	35
Scheme 2A.5	Substrate scope of Dihydrothiopyrano	38
Scheme 2A.6	Nucleophilic Ring-Opening Product 4, with reactions of	39
	Donor—Acceptor Cyclopropanes and N-methyl Indoline-2-	
	thiones	
Scheme 2A.7	Reaction Conditions for NBS and NCS	39
Scheme 2A.8a	Preparation of (2-phenyl-3,4-dihydro-2 <i>H</i> -[1,3]thiazino[3,2-	40
	<i>a</i>]indole-4,4-diyl)dimethanol 5	
Scheme 2A.8b	Gram scale synthesis of 3ac	40
Scheme 2A.9	control experiments to investigate the mechanistic insight	41
Scheme 2A.10	Plausible Mechanism of dihydrothiopyrano	42
Scheme 2B.1	Synthesis of thiazino indoles via Ullman Coupling	85
Scheme 2B.2	Synthesis of <i>N</i> -Iodo indole fused dihydrothio pyrans	85
Scheme 2B.3	Proposed hypothesis for construction of thiazino indoles	86
Scheme 2B.4	Scope of thiazino indoles	88
Scheme 2B.5	Gram scale synthesis of thiazino indole	89
Scheme 3.1	Pagenkopf's work on the (3+2) cycloaddition of DACs with	111
	nitriles	
Scheme 3.2	Construction of 1-pyrrolines	112
Scheme 3.3	TfOH mediated (3+2) cyccloaddition of DACs with nitriles	112
Scheme 3.4	Synthesis of γ-butyrolactone-fused 1-pyrrolines	113
Scheme 3.5	Synthesis of thio/-seleno pyrroline derivatives and propargylic	114
	cyclic imine derivatives	
Scheme 3.6	Synthesis of cyclic amidine derivatives	114
Scheme 3.7	Substrate scope of cyclic amidine derivatives	117
Scheme 3.8a	Preparation of dimer of pyrazine 3aka	118

Scheme 3.8b	Gram scale synthesis of 3aa	119
Scheme 4.1	Doulgas protocol for the reaction by using FLP	164
Scheme 4.2	Wu's work on the Nucleophilic ring opening reactions	164
Scheme 4.3	Yuefa Gon's protocol for the construction of enol phosphates	164
	derivat	
Scheme 4.4	Our Hypothesis for the construction of Phosphine Oxide	164
	Functionalized Boron-Pendanted Compounds derivatives	
Scheme 4.5	Substrate Scope	168-169
Scheme 4.6	The reaction scope, donor-acceptor cyclopropane with	170
	phosphine-based carbonitrile	
Scheme 4.7a	Competitive experiment between electron-rich and electron-	171
	deficient DACs	
Scheme 4.7b	Formation of adduct	171
Scheme 4.7c	Ring-Opening of DACs in presence of adduct	171
Scheme 4.7d	Reactions of DACs in the presence of Diphenylphosphine oxide	171
Scheme 4.7e	Stability experiment	171
Scheme 4.8	Gram scale synthesis of 3aa	172
Scheme 4.9.	Synthetic transformations of 3'ea	172
Scheme 4.10	Synthetic transformations of 3aa	172

List of Figures

Figure 1.1	key processes involved in the synthesis of heterocyclic	1
	compounds	
Figure 1.2	Ring Strain in cyclopropane molecule	3
Figure 1.3	Explanation of bonding in cyclopropane by orbital models	4
Figure 1.4	Differently categorized substituted cyclopropanes	5
Figure 1.5	Reactivity of various activated cyclopropanes	5
Figure 1.6	Difference between germinal and vicinal donor-acceptor	6
	cyclopropanes	
Figure 1.7	Reactivity of donor-acceptor cyclopropanes	7
Figure 1.14	Cycloaddition type reactivity of D-A cyclopropanes	11
Figure 2A	Representative examples of indole-fused tricyclic bioactive	32
	agents	
Figure 2A.4.1	Used Indoline-2-thione 1	44
Figure 2A 4.2	Head evelopments 1.1 director derivatives 2	45
Figure 2A.4.2	Used cyclopropane-1,1-diester derivatives 2	45
Figure 2B.1	Thiazino indoles as bio-active candidates	85
Figure 2B.2	Free energy profile showing the reaction mechanism of 2a	90
	reaction	
Figure 2B.4.1	Used <i>N</i> -iodo indole fused dihydrothio pyrans 1	92
E' 2.1		110
Figure 3.1	Some examples of biologically active 1-Pyrroline embedded	110
71 244	molecules	101
Figure 3.4.1	Used Donor-Acceptor Cyclopropanes in this study	121
Figure 3.4.2	Used Cyanamides in this study	121
Figure 4.1	Selected examples of Biologically active <i>P</i> & B-containing	163
	drugs	
Figure 4.2	DFT Calculations	174
Figure 4.3	Used Donor-Acceptor Cyclopropane	177
Figure 4.4	Used diphenylphosphanecarbonitrile	178
Figure 4.5	Used Organochlorophosphines	178

Figure S1	X-ray crystal structure of compound 3ae with 30% probability level	264
Figure S2	X-ray crystal structure of compound 2d with 30% probability level	267
Figure S3	X-ray crystal structure of compound 3aa with 30% probability level	270
Figure S4	X-ray crystal structure of compound 3ha with 30% probability level	274

List of Tables

Table 2A.1	Optimization of the reaction conditions	36
Table 2B.1	Optimization of the reaction conditions	87
Table 3.1	Optimization of the reaction conditions	116
Table 4.1	Optimization of Reaction Conditions	167
Appendix A	Chapter 2A	
Table 1	Crystal data and structure refinement of 3ae	265
Table 2	Selected bond lengths of 3ae	265
Table 3	Selected bond angles of 3ae	266
Appendix B	Chapter 2B	
Table 4	Crystal data and structure refinement of 2d	267
Table 5	Selected bond lengths of 2d	268
Table 6	Selected bond lengths of 2d	269
Appendix C	Chapter 4	
Table 7	Crystal data and structure refinement of 3aa	271
Table 8	Selected bond lengths of 3aa	272
Table 9	Selected bond angles of 3aa	273
Table 10	Crystal data and structure refinement of 3ha	274
Table 11	Selected bond lengths of 3ha	275
Table 12	Selected bond angles of 3ha	276

List of Abbreviations

Ac acetyl

ACN/MeCN acetonitrile

aq aqueous

atm atmospheric

 α alfa

BA Brønsted Acid

Bn benzyl

Boc *tert*-butyloxycarbonyl

brs broad singlet

ⁿBu butyl

^tBu tert-butyl

calcd. calculated

Cy cyclohexyl

CuO copper oxide

d doublet

DABCO 1,4-diazabicyclo[2.2.2]octane

DAC donor-acceptor cyclopropanes

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCE 1,2-dichloroethane

DCM dichloromethane

dd doublet of a doublet

DKR dynamic kinetic resolution

DMAP 4-dimethylaminopyridine

DME 1,2-dimethoxyethane

DMF *N,N'*-dimethyl formamide

DMSO dimethyl sulfoxide

dq doublet of a quartet

dr diastereomeric ratio

dt doublet of a triplet

DFT density functional theory

ee enantiomeric excess

eq. equivalents

ESI electron spray ionization

FT-IR Fourier-transform infrared spectroscopy

FC Friedel-Crafts

Gem geminal

h hour(s)

HFIP 1,1,1,3,3,3-hexafluoroisopropanol

HPLC high-performance liquid chromatography

HRMS high-resolution mass spectrum Hz Hertz Jcoupling constant LDA lithium diisopropylamide LA Lewis Acid multiplet m milligram(s) mg MHz megahertz min minute(s) milliliter(s) mLmmol millimole(s) melting point M.P molecular sieves MS m/z mass/charge Nuclear Magnetic Resonance NMR parts per million ppm ⁿPr *n*-propyl i Pr isopropyl p-TSA para-toluenesulfonic acid quartet q room temperature rt singlet S

sept septet

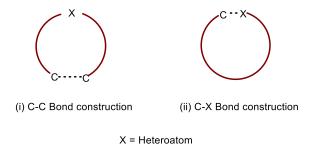
t triplet

td triplet of a doublet

tert tertiary

TFE 2,2,2-trifluoroethanol

THF tetrahydrofuran


TMS trimethylsilyl

TLC thin layer chromatography

Introduction

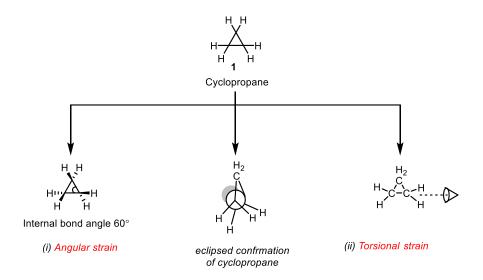
1 Introduction

Heterocycles represent one of the most important categories of organic compounds that possess a ring structure containing, at least, one or more atoms in the ring that are not carbon. These compounds often include nitrogen (N), oxygen (O), sulfur (S), and occasionally phosphorus (P) as key heteroatom. These heterocyclic moieties are present in pharmaceuticals, agrochemicals, organic synthesis and catalysis, optoelectronics, flavor and fragrance industry. Organic chemistry researchers have been dedicating significant efforts to the synthesis of heterocyclic molecules, recognizing their critical importance in advancing human progress. These reactions facilitate the formation of complex molecules from Accessible starting materials under moderate conditions, making them highly efficient and practical in both academic and industrial contexts. Professor Yamamoto classifies transition-metal-catalyzed reactions into two distinct categories, depending on the type of bond that is formed: the first involves the creation of C-C bonds from acyclic starting materials, while the second involves the formation of C-heteroatom bonds from acyclic precursors. (Figure 1.1).

Figure 1.1 Key processes involved in the synthesis of heterocyclic compounds.

In modern synthetic art, various small and strained molecules are also harnessed as building blocks. Cyclopropanes, the smallest cyclic hydrocarbons, exhibit unique structural and chemical properties. In this sense, donor-acceptor cyclopropanes (DACs) as versatile intermediates in organic and medicinal chemistry, because of their high ring strain, easy accessibility and diverse reactivity patterns.

1.2 Small-Strained Molecules in organic chemistry

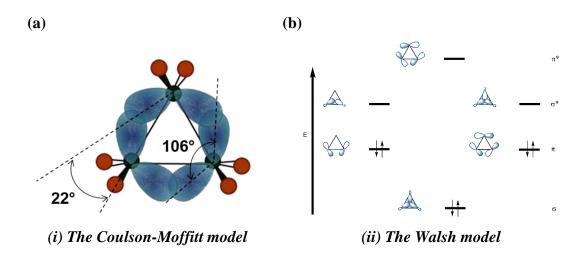

In 1858, *Kekule* and *Couper* both put forward the idea of carbon's tetrahedral framework, which completely transformed the way people thought about organic molecules.⁷ This theory revolutionized the understanding of organic chemistry and became a fundamental concept and cornerstone in the field. Later on, in 1885, *Adolf von Baeyer* proposed the theory of strained molecules for the first time.⁸ He provided an accurate explanation of the unstable nature of small ring-sized (three and four membered) molecules due to deviations in bond angles from tetrahedral values. *Pekin*, who worked in *von Baeyer's* laboratory, successfully synthesized derivatives of cyclopropanes and cyclobutanes.⁹ However, due to insufficient informations at that time, the exact chemical structures were not determined until 1985. The discovery of carbine during the mid-19th century led to a significant advancement in the synthesis of small-ring sized molecules.

In recent decades, the construction of biologically active heterocyclic molecules utilizing small, strained ring-sized molecules has experienced noteworthy growth. In the series of small molecules, cyclopropanes are highly compact and strained three-membered carbocycles that have piqued the attention of organic chemists for their potential as fundamental components in the creation of pharmaceuticals and natural products. With their small size and high strain energy, cyclopropanes offer a versatile platform for the creation of complex molecular structures. As such, they have become a significant focus of research in organic chemistry and hold great promise for the future of drug discovery.

1.2.1 Reactivity of Cyclopropanes

Cyclopropanes **1** are widely recognized for their high level of strain, which arises from their ring structure. This strain is typically measured by the conventional ring strain energy, which is found to be approximately 27.5 kcal/mol. This ring strain can be imputed to two primary factors: angular strain and torsional strain (Figure 1.2). It is well known that, ideal tetrahedral angle of sp³-carbon

is 109.5°, however, due to three membered ring system the angle between C-C-C in cyclopropanes is 60°. This indicates that the electron clouds surrounding each atom in cyclopropanes 1, are extensively closer than anticipated, resulting in higher energy levels than in a linear alkane. Another side, the CH₂ groups of cyclopropanes 1 are observed to be in a disfavored eclipsed conformation, resulting in torsional strain. This conformational rigidity is attributed to the restricted bond angles in cyclopropanes 1, which limit the free rotation of the CH₂ groups.


Figure 1.2 Ring Strain in cyclopropane molecule.

1.2.2 Bonding in Cyclopropane

In 1947, two main models came in to light which majorly explain the bonding in cyclopropane system: (I) The Coulson-Moffitt model and (II) The Walsh model.

(I) The Coulson-Moffitt model: *Coulson* and *Moffitt* theoretically explained the building of cyclopropane ring from three sp³-hybridized –CH₂-groups.¹¹ These sp³-hybridized carbon orbitals require at least two orbitals from each carbon to make a 106° angle with one another. However, these sp³-hybrid orbitals exhibit a pointed orientation of approximately 22° away from the imaginary line linking the nuclei (Figure 1.3a). As a result, the effective overlap is reduced by approximately 20% compared to the C-C bond present in ethane. For this reason, bonds between cyclopropane molecules are commonly known as "bent bonds" or "banana bonds".

(II) The Walsh model: According to the Walsh Model, cyclopropane is composed of three sp²-hybridized methylene carbons, where both σ and π -type orbitals of the methylene groups play a role in forming the C-C bonds within the structure. This model proposes that all sp² orbitals in cyclopropane are directed toward the center of the ring, forming one bonding molecular orbital and two antibonding molecular orbitals. Furthermore, the interaction of p-orbitals within the plane of the ring leads to the creation of two C-C bonding interactions and one curved antibonding interaction. Due to the inadequate overlap among them, these molecular orbitals are arranged with enough angular strain (Figure 1.3b).

Figure 1.3 Explanation of bonding in cyclopropane by orbital models.

Cyclopropane motifs are known to be kinetically inert due to their high strain and weaker C-C bonds. Therefore, they require activation in order to participate in reactions. Activation can be achieved through two factors: external or internal. Although, High temperature or photochemical conditions can activate cyclopropanes externally, but these drastic conditions can result in the formation of various by-products. Alternatively, introducing a new functional group to cyclopropane internally can alter their properties in an efficien way, making them reactive towards other counter partners. Activation of cyclopropanes is generally done via the incorporation of electron-donor substituents (nucleophilic cyclopropanes), electron-withdrawing groups (electrophilic cyclopropanes), and electron-donor and withdrawing substituents at vicinal and

geminal positions (donor-acceptor cyclopropanes), which stimulate diverse reactivity patterns (Figure 1.4).

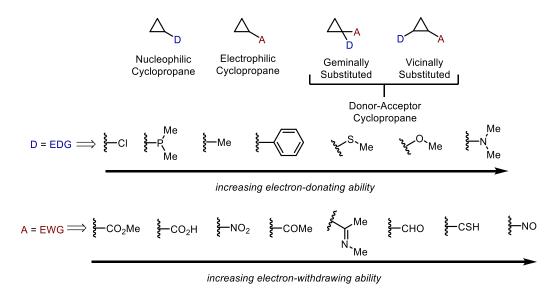


Figure 1.4 Differently categorized substituted cyclopropanes.

The incorporation of donor substituents in ring system, provide stabilization through their attached donor groups can aid in the facilitation of the electrophilic ring-opening of cyclopropane and demonstrate homo-enolate type reactivity (Figure 1.5a). On the other hand, electron-acceptor attached to the cyclopropanes facilitates ring-opening of cyclopropanes through nucleophile and offer homo Michael nucleophilic addition type products (Figure 1.5b). Although, in the existence of both electron-donor and acceptor substituents

Figure 1.5 Reactivity of various activated cyclopropanes.

within the cyclopropane ring system, leads to the formation of 1,3-zwitterionic species. Through the cooperative efforts of the electron-donor and withdrawing systems in cyclopropanes, these species are stabilized and exhibit a *push-pull effect* (Figure 1.5c).

1.2.3 Donor-Acceptor Cyclopropanes

The ring-opening process of vicinally substituted donor-acceptor cyclopropanes is facilitated by the push-pull effect. When donor and acceptor groups are located in a vicinal position, they engage in a cooperative manner that is subject to *push-pull* effect. This cooperative interaction results in a pronounced segmentation of the C₁-C₃ bond bounded by the two groups, resulting in a relatively weak bond (Figure 1.6). This characteristic enables donor-acceptor cyclopropanes to function as efficient zwitterionic structural frameworks. A carbocation is stabilized by an electron-donating group, whereas a carbanion is balanced by an electron-withdrawing group. At the same time, in germinal donor-acceptor cyclopropanes the absence of synergistic action among the substituents reveals that the polarization of the C-C bond is not a crucial factor. However, vicinally substituted donor-acceptor offers number of synthetic applications because the electronic arrangement of the cyclopropane ensures for the activation of the ring. In this thesis I will discuss about vicinally substituted cyclopropanes.

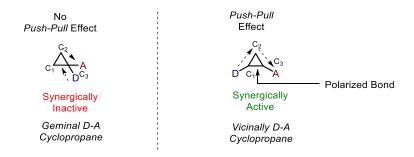


Figure 1.6 Difference between germinal and vicinal donor-acceptor cyclopropanes

1.2.4 Reactivity of Donor-Acceptor Cyclopropanes

In the late 1980s, Reissig formulated the term "donor-acceptor" for these types of molecules. Since then, donor-acceptor cyclopropanes have become a major area of study. Extensive research

has been conducted for the synthesis of heterocycles and carbocycles, utilizing the aforementioned small molecules.¹⁴ The push-pull effect induces polarization of the C-C bond and produces different routeways for the ring-opening reaction of D-A cyclopropanes. When a nucleophile, electrophile, or dipolarophiles approach DACs, it undergoes a heterolytic ring-opening process, giving rise to a variety of reactions as shown in (Figure 1.7).

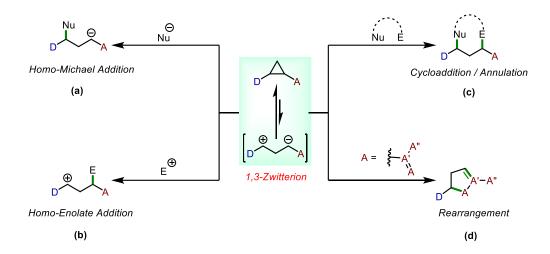


Figure 1.7 Reactivity of donor-acceptor cyclopropanes

In the subsequent lines, an in-depth analysis will be presented on distinct reactivity profiles, offering an extensive overview of the reactivity of donor-acceptor cyclopropanes.

1.2.5 Reaction of Donor-Acceptor Cyclopropanes with Nucleophiles:

Activated donor–acceptor (D–A) cyclopropanes **2** readily undergo ring-opening reactions with nucleophiles, electrophiles, or radicals, providing an efficient method for constructing open-chain structures. In these processes, a nucleophile generally strikes the donor site of the three-membered ring, leading to the origination of a stabilized anion. This anion can either undergo protonation to produce monofunctionalized products **3** or react further with an electrophile to form 1,3-bisfunctionalized frameworks **4**, as illustrated in (Scheme 1.1).

Scheme 1.1 Ring-opening reactions of donor-acceptor (D–A) cyclopropanes leading to mono- and bis-functionalized products.

Nucleophilic ring-opening reactions of donor-acceptor cyclopropanes with diverse nucleophiles are the most fundamental transformations and straightforward approach to accessing 1,3-bifunctional acyclic compounds. In a simpler way, we can define this kind of reaction as homo conjugate addition or homo Michael addition. In this process of transformation, the open-chain system that possesses 1,3-zwitterion undergoes a reaction with a nucleophile including electron-rich arenes or heteroatom. During this reaction, the counterpart of zwitterion is balanced by a proton or other electrophilic partner. In general, amines, ¹⁵ azides, ¹⁶ alcohols, ¹⁷ thiols, ¹⁸ carboxylic acids ¹⁹ have been employed as heteroatom nucleophiles in nucleophilic ring-opening reactions of donor-acceptor cyclopropanes. The aforementioned transformations in DACs were made possible through the use of Lewis acid catalysis and occasionally Brønsted acids were employed additionally. Like nucleophiles, electrophiles also follow the same reaction mechanism for the functionalization of donor-acceptor cyclopropanes.

For instance, Charette and co-workers reported a study on the enantioselective nucleophilic ring opening of donor – acceptor cyclopropanes 2 using an amine nucleophile under nickel-based Lewis acid catalysis (Scheme 1.2). The reactions occurred with an S_N2 inversion of the absolute stereochemistry at C-1 when utilizing enantioenriched cyclopropanes as starting materials.

Ar
$$\frac{\text{Ni(CIO}_4)_{2.6}\text{H}_2\text{O} (10 \text{ mol}\%)}{\text{DCM, rt, 17 h}}$$
 R1 $\frac{\text{Ni(CIO}_4)_{2.6}\text{H}_2\text{O} (10 \text{ mol}\%)}{\text{DCM, rt, 17 h}}$ R1 $\frac{\text{R}^2}{\text{NO}_2}$ Ar $\frac{\text{NO}_2}{\text{CO}_2\text{Me}}$ 6 up to 94% ee = 90-92%

Scheme 1.2 Nucleophilic ring-opening of D-A cyclopropane with nitrogen nucleophile.

In 2011, Kerr *et al.* showed that cyclopropane hemimalonates **7** undergo nucleophilic ring-opening reactions with indoles **8** under catalyst-free conditions, resulting in 1,3-bifunctionalization of DA cyclopropanes (Scheme 1.3)²⁰.

Scheme 1.3 Nucleophilic ring-opening of D-A cyclopropanes with indoles nucleophile

In 2017, Studer *et. al.* documented an article for 1,3-bifunctionalization of D-A cyclopropanes **10** for the stereospecific 1,3-aminobifunctionalization of cyclopropanes under Lewis acid catalysis.²¹ A multicomponent reaction involving D-A cyclopropanes, amines, and NBS proceeds in the presence of $Sn(OTf)_2$, delivered γ -aminated α -brominated malonic diesters **13** as products (Scheme 1.4).

Scheme 1.4 1,3-Bifunctionalization of D-A cyclopropanes.

In 2018, Joseph Moran *et al.* published a study describing the nucleophilic ring-opening of donor–acceptor cyclopropanes **14**, mediated by Brønsted acids. This approach enabled the synthesis of 1,3-bifunctionalized products using a diverse array of nucleophiles, including arenes, indoles, azides, diketones, and alcohols (Scheme 1.5).²²

Ar
$$CO_2R$$
 + Nu-H $TfOH (10 mol\%)$ Nu CO_2R

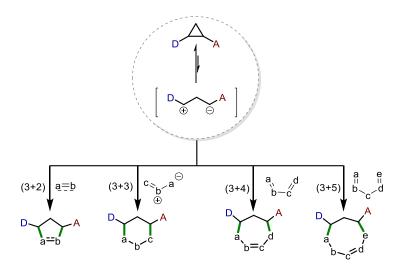
14 15 $Round 16$

Nu = arenes, TMSN₃, alcohols up to 79%

Scheme 1.5 Brønsted acid catalyzed nucleophilic ring opening of a broad range of D-A cyclopropanes.

In 2020, Biju *et al.* presented an elegant study that resulted in akin products by using sulfenamides **17** as both nucleophilic and electrophilic sources, as shown in the scheme. Under Yb(OTf)₃ catalysis, they indicated a reliable concord for the synthesis of γ -aminated α -thiolated acyclic scaffolds of type **18**, with broad group tolerance, mild reaction conditions, and yields up to 87%. Further exploration revealed that the stereospecific nucleophilic ring-opening reaction accompany an S_N2-like mechanism (Scheme 1.6).²³

Ar
$$CO_2R$$
 + Ar^1 N-S DCE , 25 °C Me Ar^2 CO_2R 18 up to 85%

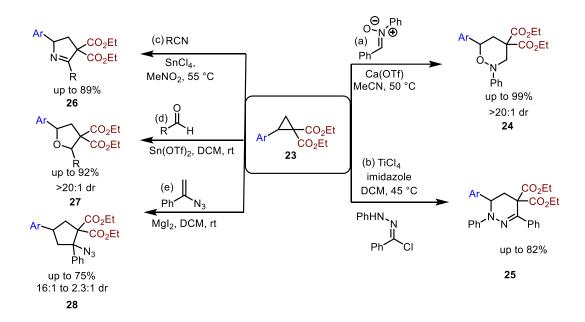

Scheme 1.6 1,3-Aminothiolation of DACs using sulfenamides.

Recently, Werz *et al.* published studies on the nucleophilic ring-opening reactions of donor-acceptor cyclopropanes with sulfinate salts **19**, electrophilic fluorination reagents, and 5-mercaptotetrazoles **21** under Lewis acid conditions, leading to the formation of γ -fluorosulfones **20** and sulfanes **22** (Scheme 1.7).^{24a, 24b}

Scheme 1.7 1,3-Bifunctionalization of D-A cyclopropanes.

1.2.6 Reactions of Donor-Acceptor Cyclopropanes with Dipolarophiles

The interaction between donor-acceptor cyclopropanes and dipolar species leads to either cycloaddition or annulation reactions, resulting in the expansion of the ring. Initially, It was recognized that dipolarophiles could engage in (3+n) cycloadditions through 1,3-zwitterionic intermediates, resulting in the formation of five-, six-, seven-, and sometimes eight-membered ring structures through these cycloaddition reactions (Figure 1.8).


Figure 1.8 Cycloaddition type reactivity of D-A cyclopropanes.

After all, donor-acceptor (D-A) cyclopropanes can also be tuned to generate 1,4-zwitterionic species, which ultimately leads to the formation of carbo-/heterocycles with ring enlargement. This highlights the versatility of D-A cyclopropanes in forming larger ring structures through cycloaddition reactions with dipolar species.

1.2.6.1 Formal (3+2) Cycloadditions

The (3+2) cycloaddition reaction involving D-A cyclopropanes and various dipolarophiles is a widely explored reactivities of D-A cyclopropanes. Dipolarophiles commonly used in this reaction includes alkenes,²⁵ alkynes,²⁶ nitriles,²⁷ isocyanates,²⁸, nitrosoarenes²⁹ and nitrosocarbonyl³⁰ for

(3+2) cycloaddition reactions. There are some few illustrations of cycloaddition reactions of donor-acceptor cyclopropanes have been reported with nitrones (Scheme 1.8a),³¹ nitriles (Scheme 1.8c),^{32,33} amines aldehydes (Scheme 1.8d), (Scheme 1.8b),^{34,35} nitriles and with vinyl azides (Scheme 1.8e).³⁶ Each of these reactions are catalyzed by a Lewis acid on 1,1-dicarboxylate esters, and association with the ester carbonyl oxygens can be monodentate or bidentate, generally unspecified, with bidentate coordination offering the highest degree of stabilization for ring opening. The reaction temperature is determined by the extent of activation of the donor-acceptor cyclopropane for ring opening facilitated by the Lewis acid catalyst. Polar solvents that can stabilize charged intermediates were initially favored for cycloaddition reactions, but some of these solvents lower the rate of reaction because of their coordination with the Lewis acid catalyst. Dichloromethane is most used currently.

Scheme 1.8 (3+2) cycloaddition reactions of donor-acceptor cyclopropanes.

The first documented instance of (3+2) cycloaddition was presented by *Reissig*, who successfully executed the reaction between trimethylsiloxycyclopropanecarboxylate **29** and benzophenone **30** in the existence of TiCl₄ as a Lewis acid catalyst.³⁷ The reaction resulted in a diastereomeric mixture of lactol **31**, obtained in 95% yield (Scheme 1.9).

Scheme 1.9 *Reissig's* approach for furan synthesis.

After that, huge advancement has been witnessed for the methodology development in (3+2) cycloaddition of donor-acceptor cyclopropanes with dipolarophiles with high stereo and regioselectively. In the same line, Johnson and team developed enantiospecific method for affording stereoslective tetrahydrofuran derivatives 34 *via* kinetic asymmetric [3+2] cycloaddition between donor-acceptor cyclopropanes and aldehydes by using a chiral Mg(II) catalyst (Scheme 1.10). In cycloaddition process, a chiral catalyst was observed to exhibit a preference for one enantiomer of cyclopropane through a diastereomeric transition state. Additionally, the catalyst was found to facilitate the interconversion of enantiomers by S_N2 mechanism.

Scheme 1.10 Enantioselective synthesis of tetrahydrofurans and pyrrolidine.

In 2024, Wang *et al.* published a study on a (3 + 2) cycloaddition/sulfur rearrangement reaction involving donor—acceptor cyclopropanes **35** with a single keto acceptor and indoline-2-thiones **36**, catalyzed by Sn(OTf)2. This reaction led to the formation of a range of functionalized 3-indolyl-4,5-dihydrothiophenes **37**. (Scheme 1.11).³⁹

$$R^{2}$$
 R^{3}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{4

Scheme 1.11 Formal (3+2) cyclo-additions reactions of DACs with 3-indolyl-4,5 dihydrothiophenes.

1.2.6.2 Formal (3+3) cycloadditions

The [3+3] cycloaddition methodology is one of the highly effective means of expeditiously constructing six-membered cyclic frameworks. This approach involves the utilization of a donor-acceptor cyclopropane as a 1,3-dipole with other 1,3-dipolarophile. The majority of research in this field has engaged on Lewis acid-catalyzed reactions, where nitrones serve as the third component in the three-atom system. ⁴⁰ For instance, In this line, Tang and team documented an asymmetric construction of 1,2- oxazines **40** from (3+3) cycloaddition of D-A cyclopropanes **38** with nitrones **39** under nickel catalysis (Scheme 1.12). ^{40a}

Scheme 1.12 Synthesis of oxazines from (3+3) cycloadditions.

In 2014, Xu et al. presented a study on the utilization of titanium-based Lewis acids to facilitate formal [3+3] cycloaddition reactions between donor-acceptor cyclopropanes **41** and organic azides **42**. This method enabled the generation of highly functionalized triazinines **43** (Scheme 1.13)⁴¹

Chapter-1

The technique was further refined to include the utilization of a catalytic amount of TiCl₄ (20 mol%) with the involvement of HFIP as the solvent for the reaction.

Scheme 1.13 Synthesis of triazinines *via* [3+3] cycloadditions.

In 2016, Feng *et al.* reported a highly diastereo- and enantioselective [3+3] annulation of donor–acceptor cyclopropanes **14** with mercaptoacetaldehyde **44**. This was accomplished using a catalytic system conforming to a chiral N, N'-dioxide L-PiPr3–Sc(OTf)₃ complex. The reaction produced chiral tetrahydrothiopyranols **45** in moderate yields, with excellent diastereoselectivities (up to >20:1 dr) and enantioselectivities (up to 99% ee).⁴²

Scheme 1.14 Synthesis of tetrahydrothiopyranols *via* [3+3] cycloadditions.

1.2.6.3 Formal (4+3) Cycloadditions

The [4+3] cycloadditions of donor-acceptor cyclopropanes with dienophiles are recognized for yielding important seven-membered ring structures. However, the extent of the exploration of these molecules through [4+3] cycloadditions remains limited. The dienophiles like, 1,3-diphenylisobenzofurans, 43 anthracenes, 44 dienes, 45 and thiochalcones, 46 containing conjugated four atoms which react with cyclopropanes to deliver cycloheptene moiety. The first hetero-(4+3) cycloaddition reaction was reported by Werz *et al.* in 2016, involving formal orthobisthioquinones, which act as hetero- 4π components. In this study, donor-acceptor (D-A) cyclopropanes were treated with amphiphilic benzodithioloimines **46**, acting as surrogates for ortho-bisthioquinones, under TiF₄ catalysis to produce seven-membered heterocycles of type **47** (Scheme 1.15). 47

Scheme 1.15 Synthesis of Benzo- fused dithiepine *via* (4+3) annulations.

In 2019, Werz *et al.* reported on the successful (4+3) annulation reaction of diester donor-acceptor cycloproanes **48** with various thiochalcones **49** for the synthesis of tetrahydrothiepine **50** derivatives. They utilized scandium triflate as a catalyst under gentle reaction conditions (Scheme 1.16).⁴⁸ they suggested that the D-A cyclopropane follows an S_N2-type ring-opening mechanism, which occurs via the nucleophilic attack of thiochalcone form S-center. Based on the reaction mechanism and control experiments

$$R^{1} \xrightarrow{CO_{2}R^{2}} + Ar^{1} \xrightarrow{S} Sc(OTf)_{3} (20 \text{ mol}\%)$$

$$DCM, 40 °C, 2 \text{ h}$$

$$Ar^{2} R^{2}O_{2}C CO_{2}R^{2}$$

$$49$$

$$50$$

$$\text{up to } 87\%$$

Scheme 1.16 Formal (4+3) Cycloaddition of D-A cyclopropanes with thiochalcones.

In 2023 Yang *et al.* reported an article, formal (4 + 3) cycloaddition reaction of donor—acceptor cyclopropanes **52** with 3 benzylideneindoline-2-thiones **51** under the catalysis of Yb(OTf)₃ for the facile synthesis of 5,10-dihydro 2H-thiepino[2,3-b]indole **53** (Scheme 1.17).⁴⁹

$$R^{2}$$
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2

Scheme 1.17 Formal (4+3) Cycloaddition of D-A cyclopropanes with dihydro-2*H*-thiepino[2,3-*b*]indole.

1.2.6.4 Formal (5+3) cycloadditions

Due to the challenges of higher order cycloadditions, the formal (5+3) cycloadditions of donor-acceptor cyclopropanes with their counterpart are relatively infrequent. For the first time, Nishida and co-workers proposed a procedure for the synthesis of cycloacta[b]indoles *via* (5+3) cycloadditions of donor-acceptor cyclopropanes with C-2 allyl containing indoles under Lewis

$$R^{1} \xrightarrow{CO_{2}R^{2}} + Ar \xrightarrow{N-Ar} \xrightarrow{Cu(OTf)_{2} (20 \text{ mol}\%)} DCM, \text{ rt, } 12 \text{ h}} \xrightarrow{S6} Up \text{ to } 93\%$$

$$Cu(OTf)_{2} (20 \text{ mol}\%)$$

$$SaBOX (24 \text{ mol}\%)$$

$$DCM, -40 °C, 72 \text{ h}} \xrightarrow{S7} Up \text{ to } 99\% \text{ ee}$$

Scheme 1.18 Formal (5+3) cycloaddition reactivity of D-A cyclopropanes.

acids catalysis.⁵⁰ Very recently, Peng *et. al* documented the documented asymmetric formal (5+3) annulation of donor–acceptor cyclopropanes **54** with imidazolidines **55** to support the advancement of 1,4-diazocanes **56** and **57** using copper triflate as a catalyst (Scheme 1.18).⁵¹

1.2.7 Rearrangement reactions of D-A Cyclopropanes

In addition to cycloadditions and nucleophilic ring-opening, donor-acceptor (D-A) cyclopropanes possess a remarkable potential to undergo rearrangement processes, resulting in the formation of more stable cyclic products. These rearrangements relieve the ring strain inherent in cyclopropanes, typically leading to the formation of less strained cyclic adducts. Such rearrangement reactions are significant in organic chemistry, as they provide a strategy for synthesizing complex cyclic compounds from simpler starting materials. In this regard, Cloke-Wilson rearrangement is most popular rearrangement process for cyclopropyl ketones or carbaldehydes for the construction of multisubstituted dihydrofuran derivatives.⁵² For example, Yadav *et. al* reported the Cloke-Wilson type rearrangement of (tert-butyldiphenylsilyl) methylcyclopropylketones **58** in the presence of TiCl₄ for the construction of dihydrofuran derivatives **60** *via* Cyclization of a titanium enolate onto a silicon-stabilized carbocation **Int-59** (Scheme 1.19).⁵³

Scheme 1.19 Cloke-Wilson type rearrangement of cyclopropyl ketones.

1.4 Aim of the Thesis

In light of the current high demand for functionalized heterocycles, it has become imperative to invest in their development. The synthesis of these heterocycles has been a subject of research for several decades, and their use spans various fields such as materials science, pharmaceuticals, and agrochemicals. Therefore, I envisioned to explore the reactivities of D-A cyclopropanes. The research conducted in this thesis majorly focused on the following points:

- (I) Construction of functionalized heterocycles: The central objective of this research is to leverage the reactivity of donor-acceptor cyclopropanes to synthesize functionalized heterocyclic compounds, like, functionalized like, pyrrolines, indole-fused dihydrothiopyrano, thiazino-indoles and phosphine oxide-functionalized boron-pendanted compounds which are indispensable molecules in the domains of pharmaceuticals, agrochemicals. By developing innovative methods to assemble such compounds, this thesis seeks to make a notable contribution to the creation of novel, diverse chemical structures.
- (II) Methodology development: The proposed thesis endeavors to develop novel synthetic methodologies through the implementation of donor-acceptor cyclopropanes. Our research has culminated in the synthesis of functionalized heterocycles and O-O chelated boron diester containing molecules, which were achieved through the implementation of (3+2) cycloaddition, (3+3) cycloaddition, and Nucleophilic substitution reactions. These diverse synthetic routes enabled us to obtain a library of compounds that exhibit a range of structural and electronic diversity. The proposed methods will offer a streamlined approach to the synthesis of heterocyclic compounds, which bear significant promise in diverse areas of chemistry.

To sum up, this thesis provides a comprehensive study of the reactivities of donor-acceptor cyclopropanes. The study particularly focuses on their potential in constructing functionalized heterocyclic compounds. The entitled thesis as "Exploring the Reactivities of Donor-Acceptor"

Chapter-1

Cyclopropanes" contains the synthesis of functionalized indole-fused dihydothipyrano, and thiazinoindole in Chapter-2 (2a and 2b), synthesis of pyrrolines in Chapter-3 followed by phosphine oxide functionalized boron-pendanted cssompounds in chapter-4 is the prime focus of this thesis. This research includes mechanistic insights, method development, and practical applications. The main goal is exploring the reactivity of strained carbocyclic ring for the synthesis of various important organic molecules. the field of organic synthesis and potentially lead to the discovery of new compounds with significant applications in pharmaceutical science and industry.

1.5 References

- (a) Cabrele, C.; Reiser, O. The Modern Face of Synthetic Heterocyclic Chemistry. J. Org. Chem. 2016, 81, 10109–10125. (b) Michael, J. P. Indolizidine and Quinolizidine Alkaloids. Nat. Prod. Rep. 2008, 25, 139–165. (c) Pozharskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications; John Wiley & Sons, 2011. (d) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles: Structure, Reactions, Synthesis and Applications; Wiley-VCH, 2013. (e) Walsh, C. T. Nature Loves Nitrogen Heterocycles. Tetrahedron Lett. 2015, 56, 3075–3081. (f) Taylor, A. P.; Robinson, R. P.; Fobian, Y. M.; Blakemore, D. C.; Jones, L. H.; Fadeyi, O. Modern Advances in Heterocyclic Chemistry in Drug Discovery. Org. Biomol. Chem. 2016, 14, 6611–6637. (g) Heravi, M. M.; Zadsirjan, V. Prescribed Drugs Containing Nitrogen Heterocycles: An Overview. RSC Adv. 2020, 10, 44247–44311.
- 2. Lamberth, C. Heterocyclic chemistry in crop protection. *Pest Manag. Sci.* **2013**, *69*, 1106–1114.
- 3. (a) Constable, E. C.; Housecroft, C. E. The Early Years of 2,2'-Bipyridine—A Ligand in Its Own Lifetime. *Molecules* **2019**, *24*, 3951. (b) Pugh, D.; Danopoulos, A. A. Metal complexes with 'pincer'-type ligands incorporating N-heterocyclic carbene functionalities *Coord. Chem. Rev.* **2007**, *251*, 610-641. (c) Gunanathan, C.; Milstein, D. Bond Activation and Catalysis by Ruthenium Pincer Complexes. *Chem. Rev.* **2014**, *114*, 12024—12087. (d) Peris, E.; Crabtree, R. H. Key factors in pincer ligand design. *Chem. Soc. Rev.* **2018**, *47*, 1959—1968.
- 4. Chen, D.; Su, S.-J.; Cao, Y. Nitrogen Heterocycle-Containing Materials for Highly Efficient Phosphorescent OLEDs with Low Operating Voltage. *J. Mater. Chem. C* **2014**, 2, 9565–9578.
- 5. Zviely, M. (2004) Aroma chemicals II: heterocycles. *Chemistry and Technology of Flavors and Fragrances*, p 85.

- 6. Nakamura, I.; Yamamoto, Y. Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis. *Chem. Rev.* **2004**, *104*, 2127–2198.
- 7. Wiberg, K. B. The Concept of Strain in Organic Chemistry. *Angew. Chem., Int. Ed. Engl.* **1986**, 25, 312–322.
- 8. von Baeyer, A. Ber. Dtsch. Chem. Ges. 1885, 18, 2269.
- 9. Perkin, W. H. Ber. Dtsch. Chem. Ges. 1884, 17, 54.
- 10. (a) (a) Tang, P.; Qin, Y. Recent Applications of Cyclopropane-Based Strategies to Natural Product Synthesis. *Synthesis* **2012**, *44*, 2969–2984; (b) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Biosynthesis and Metabolism of Cyclopropane Rings in Natural Compounds. *Chem. Rev.* **2003**, *103*, 1625–1648; (c) Schröder, F. Present and Future of Cyclopropanations in Fragrance Chemistry. *Chemistry* & *Biodiversity* **2014**, *11*, 1734–1751.
- 11. Coulson, C. A.; Moffitt, W. E. Strain in Non-Tetrahedral Carbon Atoms. *J. Chem. Phys.* **1947**, *15*, 151–151.
- 12. Walsh, A. D. Structures of Ethylene Oxide and Cyclopropane. *Nature* **1947**, *159*, 165–166.
- 13. (a) Reissig, H.-U.; Hirsch, E. Donor-Acceptor Substituted Cyclopropanes: Synthesis and Ring Opening to 1,4-Dicarbonyl Compounds. *Angew. Chem., Int. Ed. Engl.* **1980**, *19*, 813–814. (b) Wenkert, E.; Alonso, M. E.; Buckwalter, B. L.; Chou, K. J. A Method of Synthesis of β-Methylfurans and α-Methylene and β-Methylene γ-Lactones. Two Menthofuran Syntheses. *J. Am. Chem. Soc.* **1977**, *99*, 4778–4782. (c) Piers, E.; Reissig, H.-U. Synthesis of *cis-*2-Vinylcyclopropyl Ketones; a New Synthesis of 4-Cycloheptenones. *Angew. Chem., Int. Ed. Engl.* **1979**, *18*, 791–792.
- 14. (a) Reissig, H. U.; Zimmer, R. Donor-Acceptor-Substituted Cyclopropane Derivatives and their Application in Organic Synthesis. Chem. Rev. 2003, 103, 1151–1196. (b) Yu, M.; Pagenkopf, В. (DA) L. Recent Advances in Donor-Acceptor Cyclopropanes. *Tetrahedron* **2005**, *61*, 321–347. (c) Carson, C. A.; Kerr, M. A. Heterocycles from Cyclopropanes: Applications in Natural Product Synthesis. Chem. Soc. Rev. 2009, 38, 3051–3060. (d) Schneider, T. F.; Kaschel, J.; Werz, D. B. A New

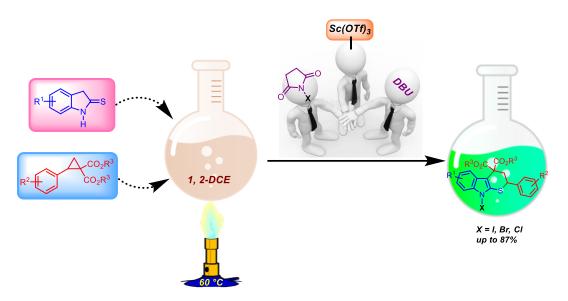
Golden Age for Donor-Acceptor Cyclopropanes. *Angew*. Chem., Int. Ed. 2014, 53, 5504–5523. (e) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Carbocycles from Donor-Acceptor Cyclopropanes. Org. Biomol. Chem. 2015, 13, 655–671. (f) Mel'nikov, M. Y.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. Recent advances in reactions ring-forming of donor-acceptor cyclopropanes Mendeleev Commun. 2011, 21, 293–301. (g) Reiser, O. Catalytic Conversion of Furans and Pyrroles to Natural Products and Analogues Utilizing Donor-Acceptor Substituted Cyclopropanes as Key Intermediates. Isr. J. Chem. 2016, 56, 531–539. (h) Pandey, A. K.; Ghosh, A.; Banerjee, P. Reactivity of Donor-Acceptor Cyclopropanes with Saturated and Unsaturated Heterocyclic Compounds. Isr. J. Chem. 2016, 56, 512–521. (i) O'Connor, N. R.; Wood, J. L.; Stoltz, B. M. Synthetic Applications and Methodological Developments of Donor-Acceptor Cyclopropanes Related Compounds. Isr. and J. Chem. 2016, 56, 431–444. (j) Pirenne, V.; Muriel, B.; Waser, J. Catalytic Enantioselective Ring-Opening Reactions of Cyclopropanes. Chem. Rev. 2021, 121, 227–263. (k) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Carbocycles from Donor-Acceptor Cyclopropanes. Org. Biomol. Chem. 2015, 13, 655–671. (1) Ivanova, O. A.; Trushkov, I. V. Donor-Acceptor Cyclopropanes in the **Synthesis** of Carbocycles. Chem. Rec. 2019, 19, 2189–2208.

15. (a) Blanchard, L. A.; Schneider, J. A. Diethylaluminum Chloride-Amine Complex Mediated Aminolysis of Activated Cyclopropanes. *J. Org. Chem.* 1986, *51*, 1372–1374.
(b) Wurz, R. P.; Charette, A. B. Doubly Activated Cyclopropanes as Synthetic Precursors for the Preparation of 4-Nitro- and 4-Cyano-dihydropyrroles and Pyrroles *Org. Lett.* 2005, *7*, 2313–2316. (c) Lifchits, O.; Charette, A. B. A Mild Procedure for the Lewis Acid-Catalyzed Ring-Opening of Activated Cyclopropanes with Amine Nucleophiles. *Org. Lett.* 2008, *10*, 2809–2812. (d) Nickerson, D. M.; Angeles, V. V.; Auvil, T. J.; So, S. S.; Mattson, A. E.; Internal Lewis acid assisted ureas: tunable hydrogen bond donor catalysts *Chem. Commun.* 2013, *49*, 4289-4291. (e) Martin, M. C.; Patil, D. V.; France, S. Functionalized 4-Carboxy- and 4-Keto-2,3-dihydropyrroles via Ni(II)-Catalyzed Nucleophilic Amine Ring-Opening Cyclization of Cyclopropanes. *J. Org.*

- Chem. 2014, 79, 3030–3039. (f) Deswal, S.; Guin, A.; Biju, A. T. Benzotriazole-Triggered Three-Component Lewis Acid-Catalyzed Ring-Opening 1,3-Aminofunctionalization of Donor–Acceptor Cyclopropanes. Org. Lett. 2023, 25, 1643–1648. (g) Zhou, Y.-Y.; Wang, L.-J.; Li, J.; Sun, X.-L.; Tang, Y. Side-Arm-Promoted Highly Enantioselective Ring-Opening Reactions and Kinetic Resolution of Donor–Acceptor Cyclopropanes with Amines. *J. Am. Chem. Soc.* 2012, *134*, 9066–9069.
- 16. (a) Emmett, M. R.; Grover, H. K.; Kerr, M. A. Tandem Ring-Opening Decarboxylation of Cyclopropane Hemimalonates with Sodium Azide: A Short Route to γ-Aminobutyric Acid Esters. *J. Org. Chem.* 2012, 77, 6634–6637. (b) Ivanov, K. L.; Villemson, E. V.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V.; Melnikov, M. Y. Ring Opening of Donor-Acceptor Cyclopropanes with the Azide Ion: A Tool for Construction of N-Heterocycles. *Chem. Eur. J.* 2015, 21, 4975–4987.
- 17. (a) Lifchits, O.; Alberico, D.; Zakharian, I.; Charette, A. B. Nucleophilic Addition of Phenol Derivatives 1-Nitrocyclopropanecarboxylates. J. Methyl to Org. *Chem.* **2008**, *73*, 6838–6840. (b) Zhu, X.; Hong, G.; Hu, C.; Wu, S.; Wang, L. Scandium(III) Trifluoromethanesulfonate Catalyzed Selective Reactions of Donor-Acceptor Cyclopropanes with 1,1-Diphenylethanols: An Approach to Polysubstituted Olefins. Eur. J. Org. Chem. 2017, 2017, 1547–1551. (c) Kang, Q.-K.; Wang, L.; Liu, Q.-J.; Li, J.-F.; Tang, Y. Asymmetric H₂O-Nucleophilic Ring Opening of D–A Cyclopropanes: Catalyst Serves Source of Water. J. Chem. as a Am. Soc. 2015, 137, 14594–14597. (d) Xia, Y.; Lin, L.; Chang, F.; Fu, X.; Liu, X.; Feng, X. Asymmetric Ring-Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral N,N'-Dioxide-Scandium(III) Complex. Angew. Chem., Int. Ed. 2015, 54, 13748–13752.
- 18. (a) Braun, C. M.; Shema, A. M.; Dulin, C. C.; Nolin, K. A. The Homologous Conjugate Addition of Thiols to Electron-Deficient Cyclopropanes Catalyzed by a Calcium(II) Complex. *Tetrahedron Lett.* **2013**, *54*, 5889–5891. (b) Wang, H.-P.; Zhang, H.-H.; Hu, X.-Q.; Xu, P.-F.; Luo, Y.-C. Sc(OTf)₃-Catalysed [3+3] Annulation of Cyclopropane 1,1-Diesters with Mercaptoacetaldehyde: A Facile Strategy for the Synthesis of

- Tetrahydrothiopyranols. *Eur. J. Org. Chem.* **2015**, 2015, 3486–3494. (c) Augustin, A. U.; Werz, D. B. Exploiting Heavier Organochalcogen Compounds in Donor-Acceptor Cyclopropane Chemistry *Acc. Chem. Res.* **2021**, *54*, 1528–1541.
- 19. (a) Xia, Y.; Lin, L.; Chang, F.; Fu, X.; Liu, X.; Feng, X. Asymmetric Ring-Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral N, N'-dioxide—Scandium (III) Complex. *Angew. Chem.*, *Int. Ed.* **2015**, *54*, 13748–13752.
- 20. Emmett, M. R.; Kerr, M. A. Nucleophilic Ring Opening of Cyclopropane Hemimalonates Using Internal Brønsted Acid Activation. *Org.Lett.* **2011**, *10*, 13-16.
- 21. Das, S.; Daniliuc, C. G.; Studer, A. Stereospecific 1,3-Aminobromination of Donor-Acceptor Cyclopropanes. *Angew. Chem., Int. Ed.* **2017**, *56*, 11554–11558.
- 22. Richmond, E.; Vuković, V. D.; Moran, J. Nucleophilic Ring-Opening of Donor-Acceptor Cyclopropanes Catalyzed by a BrønstedAcid in Hexafluoroisopropanol. *Org. Lett.* **2018**, 20, 574.
- 23. Guin, A.; Rathod, T.; Gaykar, R. N.; Roy, T.; Biju, A. T. Lewis Acid Catalyzed Ring-Opening 1,3-Aminothiolation of Donor-Acceptor Cyclopropanes Using Sulfenamides. *Org. Lett.* **2020**, *22*, 2276–2280
- 24. (a) Beal, R. B.; Dombroski, M. A.; Snider, B. B. Dichloroethylaluminum-catalyzed reactions of alkenes with electrophilic cyclopropanes. A new cyclopentane annelation reaction. *J. Org. Chem.* **1986**, *51*, 4391–4399. (b) Sugita, Y.; Yamadoi, S.; Hosoya, H.; Yokoe, I. Lewis Acid-Promoted Cycloaddition Reaction of Cyclopropanes with Allylsilanes. *Chem. Pharm. Bull.* **2001**, *49*, 657–658.
- 25. (a) Mlostoń, G.; Celeda, M.; Kowalczyk, M.; Oliver, G. A.; Werz, D. B. Ring-Opening Reactions of Donor-Acceptor Cyclopropaneswith Enolizable 5-Mercapto-1H-tetrazoles. *Eur. J. Org. Chem.* **2024**, *e202400831* (b) Oliver, G. A.; Werz, D. B. Ring-Opening 1,3-Sulfonylation-Fluorination of Donor–Acceptor Cyclopropanes: Three-ComponentAccess to γ-Fluorosulfones. Org. Lett. 2023, 25, 3568–3572
- 26. (a) Yadav, V. K.; Sriramurthy, V. Formal [3 + 2] Addition of Acceptor-Substituted Cyclopropylmethylsilanes with Aryl Acetylenes. *Angew. Chem.*, *Int.*

- Ed. 2004, 43, 2669–2671. (b) MacKay, W. D.; Fistikci, M.; Carris, R. M.; Johnson, J. S. Lewis acid catalyzed [3 + 2]-annulations of donor-acceptor cyclopropanes and ynamides. *Org. Lett.* 2014, 16, 1626–1629.
- 27. (a) Yu, M.; Pagenkopf, B. L. Formal [3 + 2] Cycloadditions of Donor-Acceptor Cyclopropanes and Nitriles. *J. Am. Chem. Soc.* 2003, 125, 8122–8123. (b) Sathishkannan, G.; Srinivasan, K. Highly Diastereoselective Synthesis of 1-Pyrrolines *via* SnCl₄-Promoted [3+2] Cycloaddition between Activated Donor-Acceptor Cyclopropanes and Nitriles. *Org. Lett.* 2011, 13, 6002–6005.
- 28. Goldberg, A. F. G.; O'Connor, N. R.; Craig, R. A.; Stoltz, B. M. Lewis Acid Mediated (3 + 2) Cycloadditionsof Donor-Acceptor Cyclopropanes with Heterocumulenes. *Org. Lett.* **2012**, *14*, 5314–531.
- 29. Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C. G.; Studer, A. Stereospecific Formal [3 + 2] Dipolar Cycloaddition of Cyclopropanes with Nitrosoarenes: An Approach to Isoxazolidines. *Angew. Chem., Int. Ed.* **2014**, *53*, 5964–5968.
- 30. Varshnaya, R. K.; Banerjee, P. Construction of Isoxazolidines through Formal [3+2] Cycloaddition Reactions of in situ Generated Nitrosocarbonyls with Donor–Acceptor Cyclopropanes: Synthesis of α-Amino γ-Butyrolactones *Eur. J. Org. Chem.* **2016**, 2016, 4059-4066.
- 31. Braun, C. M.; Congdon, E. A.; Nolin, K. A. Diastereoselective 1,3-dipolar cycloaddition of nitrones to donor-acceptor cyclopropanes catalyzed by a calcium (II) complex. *J. Org. Chem.* **2015**, *80*, 1979–1984.
- 32. Garve, L. K. B.; Petzold, M.; Jones, P. G.; Werz, D. B. [3 + 3]-cycloaddition of donor–acceptor cyclopropanes with nitrile imines generated in situ: access to tetrahydropyridazines. Org. Lett. **2016**, *18*, 564–567.
- 33. Sathish-kannan, G.; Srinivasan, K. Highly Diastereoselective Synthesis of 1-Pyrrolines via SnCl₄-Promoted [3 + 2] Cycloaddition between activated Donor–Acceptor Cyclopropanes and Nitriles. *Org. Lett.* **2011**, *13* (22), 6002–6005.
- 34. Agenkopf, B. L.; Vemula, N. Cycloadditions of Donor-Acceptor Cyclopropanes and Nitriles. *Eur. J. Org. Chem.* **2017**, 2017, 2561–2567.

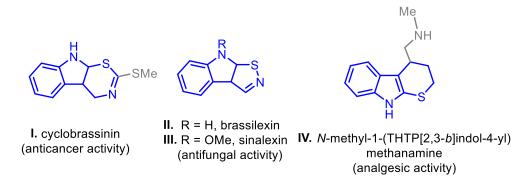

- 35. Pohlhaus, P. D.; Johnson, J. S. Highly diastereoselective synthesis of tetrahydrofurans via Lewis acid-catalyzed cyclopropane/aldehyde cycloadditions. *J. Org. Chem.* **2005**, *70*, 1057–1059.
- 36. Dey, R.; Banerjee, P. Lewis Acid-Catalyzed Diastereoselective Cycloaddition Reactions of Donor–Acceptor Cyclopropanes and Vinyl Azides: Synthesis of Functionalized Azidocyclopentane and Tetrahydropyridine Derivatives. Org.Lett. **2017**, *19*, 304–307.
- 37. Reissig, H.-U. Lewis-Acid-Promoted Additions of Carbonyl Compounds to Donor-Acceptor Substituted Cyclopropanes: A New Synthesis of 2,3-Dihydrofurane Derivatives. *Tetrahedron Lett.* **1981**, 22, 2981.
- 38. Parsons, A. T.; Johnson, J. S. Catalytic Enantioselective Synthesis of Tetrahydrofurans: A Dynamic Kinetic Asymmetric [3 + 2] Cycloaddition of Racemic Cyclopropanes and Aldehydes. *J. Am. Chem. Soc.* **2009**, *131*, 3122–3123.
- 39. (a) Kang, Y.-B.; Sun, X.-L.; Tang, Y. Highly Enantioselective and Diastereoselective Cycloaddition of Cyclopropanes with Nitrones and Its Application in the Kinetic Resolution of 2-Substituted Cyclopropane-1,1-dicarboxylates. Angew. Chem., Int. Ed. 2007, 46, 3918–3921. (b) Sibi, M. P.; Ma, Z.; Jasperse, C. P. Enantioselective Addition of **Nitrones** to Activated Cyclopropanes. J. Am. Chem. Soc. 2005, 127, 5764–5765. (c) Xu, P. W.; Liu, J. K.; Shen, L.; Cao, Z. Y.; Zhao, X. L.; Yan, J.; Zhou, J. Diastereo- and Enantioselective [3 + 3] Cycloaddition of Spirocyclopropyl Oxindoles Using Both Aldonitrones and Ketonitrones. Nat. Commun. 2017, 8, 1619, DOI: 10.1038/s41467-017-01451-1. (d) Johansen, M. B.; Kerr, M. A. Expedient Synthesis of Pyrrolo[1,2-a]indoles: Preparation of the Core of Yuremamine. Org. Lett. 2008, 10, 3497–3500. (e) Young, I. S.; Kerr, M. A. A Homo [3 + 2] Dipolar Cycloaddition: The Reaction of Nitrones with Cyclopropanes. Angew. Chem., *Int. Ed.* **2003**, *42*, 3023–3026.
- 40. Jiang, Y.; Ma, H.-J.; Zhai, C.-Y.; Wang, X.-L. Sn(OTf)₂-Catalyzed (3 + 2) Cycloaddition/Sulfur RearrangementReaction of Donor–Acceptor Cyclopropanes with Indoline-2-thiones. Org. Lett. **2024**, *26*, 1672–1676.

- 41. Zhang, H.-H.; Luo, Y.-C.; Wang, H.-P.; Chen, W.; Xu, P. F. TiCl₄ Promoted Formal [3+3] Cycloadditions of Cyclopropane-1,1-Diesters with Azides: Synthesis of Highly Functionalized Triazinines and Azetidines. *Org. Lett.* **2014**, *16*, 4896–4899.
- 42. Wang, H.-P.; Zhang, H.-H.; Hu, X.-Q.; Xu, P.-F.; Luo, Y.-C. Sc(OTf)₃-Catalysed [3 + 3] Annulation of Cyclopropane 1,1-Diesters with Mercaptoacetaldehyde: A Facile Strategy for the Synthesis of Tetrahydrothiopyranols. *Eur. J. Org. Chem.* **2015**, 2015, 3486–3494.
- 43. (a) Ivanova, O. A.; Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Donor–Acceptor Cyclopropanes as Three-Carbon Components in a [4+3] Cycloaddition Reaction with 1,3-Diphenylisobenzofuran Angew. Chem., Int. Ed. **2008**, 47, 1107–1110.
- 44. Ivanova, O. A.; Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Lewis Acid Catalyzed Reactions of Donor–Acceptor Cyclopropanes with Anthracenes Eur. J. Org. Chem. **2008**, 5329–5335.
- 45. Xu, H.; Hu, J.-L.; Wang, L.; Liao, S.; Tang, Y. Asymmetric Annulation of Donor–Acceptor Cyclopropanes with Dienes. *J. Am. Chem. Soc.* **2015**, *137*, 8006–8009.
- 46. Augustin, A. U.; Merz, J. L.; Jones, P. G.; Mlostoń, G.; Werz, D. B. (4 + 3)-Cycloaddition of Donor-Acceptor Cyclopropanes with Thiochalcones: A Diastereoselective Access to Tetrahydrothiepines. *Org. Lett.* **2019**, *21*, 9405–9409.
- 47. Garve, L. K. B.; Pawliczek, M.; Wallbaum, J.; Jones, P. G.; Werz, D. B. [4 + 3] Cycloaddition of Donor–Acceptor Cyclopropanes with Amphiphilic Benzodithioloimine as Surrogate for ortho-Bisthioquinone. *Chem.- Eur. J.* **2016**, 22, 521–525.
- 48. Jiang, Y.; Ma, H.-J.; Wang, X.-L.; Yang, Y. Yb(OTf)₃-Catalyzed Formal (4 + 3) Cycloaddition Reactions of 3-Benzylideneindoline-2-thiones with Donor–Acceptor Cyclopropanes. *J. Org. Chem.* **2023**, 88, 20, 14587–14600.
- 49. Jiang, Y.; Ma, H.-J.; Wang, X.-L.; Yang, Y. Yb(OTf)₃-Catalyzed Formal (4 + 3) Cycloaddition Reactions of 3-Benzylideneindoline-2-thiones with Donor–Acceptor Cyclopropanes. *J. Org. Chem.* **2023**, 88, 20, 14587–14600.
- 50. Okabe, A.; Harada, S.; Takeda, T.; Nishida, A. One-pot synthesis of cycloocta[*b*]indole through formal [5 + 3] cycloaddition using donor–acceptor cyclopropanes. *Eur. J. Org. Chem.* **2019**, 2019, 3916–3920.

- 51. Yang, L.; He, J.; Wang, H.; Xu, W.; Zhang, X.; Lang, M.; Wang, J.; Peng, S. Asymmetric (5 + 3) Annulation of Donor–Acceptor Cyclopropanes with Imidazolidines: Access to Saturated 1,4-Diazocanes *ACS Catal.* **2023**, *13*, 5752–5758.
- 52. (a) Ortega, A.; Uria, U.; Tejero, T.; Prieto, L.; Reyes, E.; Merino, P.; Vicario, J. L. Bronsted Acid Catalyzed (4 + 2) Cyclocondensation of 3-Substituted Indoles with Donor-Acceptor Cyclopropanes. Org. Lett. 2021, 23, 2326–2331. (b) Piotrowski, M. L.; Kerr, M. A. Tandem Cyclopropanation/Vinylogous Cloke-Wilson Rearrangement for the Synthesis of Heterocyclic Scaffolds. Org. Lett. 2018, 20, 7624–7627. (c) Babu, K. R.; He, X.; Xu, S. Lewis Base Catalysis Based on Homoconjugate Addition: Rearrangement of Electron-Deficient Their Cyclopropanes and Derivatives. Synlett 2020, 31, 117-124. (d) Zhang, J.; Tang, Y.; Wei, W.; Wu, Y.; Li, Y.; Zhang, J.; Zheng, Y.; Xu, S. Organocatalytic Cloke–Wilson Rearrangement: DABCO-Catalyzed Ring Expansion of Cyclopropyl Ketones to 2,3-Dihydrofurans. Org. Lett. 2017, 19, 3043-3046. (e) Wilson, C. L. Reactions of Furan Compounds. VII. Thermal Interconversion of 2,3-Dihydrofuran and Cyclopropane Aldehyde1. J. Am. Chem. Soc. 1947, 69, 3002–3004. (f) Cloke, J. B. The formation of pyrrolines from gammachloropropyl and cyclopropyl ketimines. J. Am. Chem. Soc. 1929, 51, 1174–1187. (g) Kumar, P.; Kumar, R.; Banerjee, P. Accessing Dihydro-1,2-oxazine via Cloke-Wilson Type Annulation of Cyclopropyl Carbonyls: Application toward the Diastereoselective Synthesis of Pyrrolo[1,2-b][1,2]oxazine. J. Org. Chem. 2020, 85, 6535–6550. (h) Nambu, H.; Ono, N.; Yakura, T. Acid-Catalyzed Ring-Opening Cyclization of Spirocyclopropanes for the Construction of a 2-Arylbenzofuran Skeleton: Total Synthesis of Cuspidan B. Synthesis 2016, 48, 1892–1901.
- 53. Yadav, V. K.; Balamurugan, R. Silicon-Assisted Ring Opening of Donor-Acceptor Substituted Cyclopropanes. An Expedient Entry to Substituted Dihydrofurans. *Org. Lett.* **2001**, *3*, 2717–2719.

Chapter-2A

Synthesis of Indole~Fused Dihydrothiopyrano Scaffolds via (3 + 3)~ Annulations of Donor–Acceptor Cyclopropanes with Indoline~2~Thiones


✓ New C-C & C-S bond formation ✓ Mild reaction conditions ✓ Broader substrate scope

2A.1 Introduction

Sulfur-containing organic frameworks have a wide range of utilities viz., pharmaceuticals, natural products, agro-chemicals, material industry, polymer industry and in synthetic organic chemistry. Among all the known organosulfur heterocycles, thiopyran motifs are one of the most vital classes of molecules found in a variety of pharma and bioactive compounds.² Since the past few years, indoline-2-thione has arisen as a versatile synthon for the synthesis of indolefused/spiro organosulfur compounds. In Figure 2A, several indole-fused tricyclic heterocyclic natural products or drugs are shown, having antitumor, antifungal, antibacterial and analgesic activities.3 To the best of our knowledge, a handful numbers of methodologies for accessing the fused-indole thiopyrano derivatives are known, however, there is no strategy that involves donor-acceptor cyclopropanes (DACs). DACs received much attention in recent decades due to their outstanding strained arrangement and immense synthetic application.⁵ The push-pull effect of these three-membered cyclic rings has been extensively exploited for the synthesis of acyclic, carbocyclic and heterocyclic architectures. 6 In continuation to this, there are many reports available that address the formation of organosulfur compounds from DACs in the presence of Lewis acids.7 In 2015, Wang and co-workers reported an enantioselective protocol for the construction of spiro[thiopyranoindolebenzoisothiazole] derivatives in good to excellent yields via (3+3)-spiroannulation of indoline-2-thione with azadienes in the presence of chiral bifunctional tertiary amine-thiourea catalyst.8 Later, in 2016 Ye et al. postulated spirocyclic reaction between cyclic dienones and indoline-2-thione using cinchona-derived primary amine catalyst. Ye and Sun nicely utilized 2-indolinethiones and bromoenals as starting materials to furnish indolo[2,3-b]dihydrothiopyranone derivatives through N-heterocyclic carbene catalysis (Scheme 2A.1). ¹⁰ In 2020, Namboothiri and his team engineered and characterized the formation of tetrahydrothiopyrano[2,3-b]indoles from (3+3) annulation of nitro allylic acetates and indoline-2-thiones in the presence of base at mild conditions (Scheme 2A.2).¹¹ While preparing the present manuscript, Jiang et. al reported nucleophilic ring-opening reactions of D-A cyclopropanes with indoline-2-thiones in the presence of MgI₂ as a catalyst (Scheme 2A.3).¹² Keeping the potential of indole-fused thiopyrano compounds in mind, we hypothesized the

Chapter~2A

reaction route in which initially DACs will be attacked by indoline-2-thione to open the ring. Once nucleophilic ring-opening is done, the C-center attached to the ester groups need to change its nucleophilic character to electrophilic character for further cyclization to furnish the indole fused sulphur containing a six-membered ring. Therefore, after ring-opening of cyclopropane good leaving group on the C-center attached to carboxylic esters need to be incorporated. Having this assumption in mind, we planned to conduct (3+3) annulation reactions of D-A cyclopropanes with indoline-2-thiones to access highly functionalized *N*-iodo-2,3-dihydrothiopyrano[2,3-*b*]indole scaffolds in the presence of Sc(OTf)₃ as a Lewis acid catalyst. (Scheme 2A.4).

Figure 2A. Representative examples of indole-fused tricyclic bioactive agents.

Scheme 2A.1 Ye and Sun's work on the *N*-Heterocyclic Carbene-Catalyzed (3+3) Annulation of Indoline-2-thiones with Bromoenals.

Synthesis of tetrahydrothiopyrano[2,3-b]indoles

Scheme 2A.2 Namboothiri's work on the Synthesis of tetrahydrothiopyrano[2,3-*b*]indoles via (3+3) annulation of nitroallylic acetates with indoline-2-thiones.

Synthesis of C2-sulfur-containing indole derivatives

Jiang, 2022

Scheme 2A.3 Jiang's work on the MgI₂-Catalyzed Nucleophilic Ring-Opening Reactions of Donor–Acceptor Cyclopropanes with Indoline-2-thiones.

This Work

$$R^{1} + R^{2} + R^{2} + CO_{2}R^{3}$$

$$CO_{2}R^{3}$$

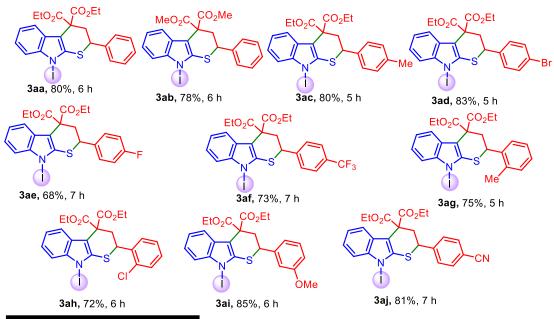
$$CO_{$$

Scheme 2A.4 Synthesis of Indole-Fused Dihydrothiopyrano derivatives.

2A.2 Results and Discussions

At the onset, The present study was commenced by treating indoline-2-thione (1 eq.) 1a with 1,1-diester cyclopropane 2a (1 eq.) in the presence of Lewis acids like SnCl₄, FeCl₃ and Cu(OTf)₂ in presence of N-iodosuccinimide (NIS) and DBU in DCE at 60 °C (Table 2A.1, entries 1-3). These Lewis acid catalysts were unable to deliver the targeted product 3aa. Meanwhile, we tried reaction with InCl₃ and MgI₂, to our delight with these Lewis acids, reaction proceeds well and compound 3aa formed in 46% and 60% yields, respectively (Table 2A.1, entries 4, 5). Further improvement in the yield was observed when the reaction was performed with Sc(OTf)₃ (Table 2A.1, entry 6). Next, the reaction was optimized in terms of base, in this case, K₂CO₃ and Et₃N failed to deliver the product (Table 2A.1, entries 7, 8). Moreover, once we increase the base (DBU) loading up to 2.5 eq. the yield of 3aa was surprisingly increased to 80% in only 6 h (Table 1, entry 9). During the optimization, NIS concentration was also varied from 1 eq. - 3 eq. and found 2 eq. of NIS loading is the best choice for the transformation (Not shown in the Table 1). Increasing temperature is found reductant for the conversion of indoline-2-thione 1a to indole fused thiopyrano derivative 3aa (Table 2A.1, entries 11, 12). Next, we allow to react the starting materials at room temperature under the same conditions, unfortunately, we ended up with a relatively low yield of **3aa** (Table 2A.1, entry 12). Subsequently, for further improvements in the reaction yield we scanned in the presence of several solvents like DCM, chloroform, toluene, and THF, but none of the solvents used resulted in better yields when compared to DCE (Table 2A.1, entries 13-16).

Table 2A.1 Optimization of the reaction conditions^a:


Entry	Catalyst	Base	Solvent	Time (h)	Temp.(°C)	Yield of 3aa (%) ^b
1	SnCl ₄	DBU	DCE	24	60	n.r.
2	FeCl ₃	DBU	DCE	24	60	n.r.
3	Cu(OTf) ₂	DBU	DCE	24	60	n.r.
4	InCl ₃	DBU	DCE	24	60	46
5	MgI ₂	DBU	DCE	24	60	60
6	Sc(OTf) ₃	DBU	DCE	24	60	67
7	Sc(OTf) ₃	K ₂ CO ₃	DCE	24	60	n.r.
8	Sc(OTf) ₃	Et ₃ N	DCE	24	60	n.r.
9 ^c	Sc(OTf) ₃	DBU	DCE	6	60	80
10 ^c	Sc(OTf) ₃	DBU	DCE	8	70	72
11 ^c	Sc(OTf) ₃	DBU	DCE	8	80	56
12°	Sc(OTf) ₃	DBU	DCE	24	25	53
13 °	Sc(OTf) ₃	DBU	DCM	6	25	55
14 °	Sc(OTf) ₃	DBU	CHCl ₃	6	60	39
15 °	Sc(OTf) ₃	DBU	toluene	6	60	66
16°	Sc(OTf) ₃	DBU	THF	6	60	62

^aOptimized reaction conditions for **3aa**: Reactions were performed with **1a** (0.6 mmol), **2a** (0.6 mmol) Lewis acid catalyst (0.06 mmol, 0.1 eq.), Base (1 eq.), NIS (2 eq.), Solvent (2 ml), N₂ atmosphere. ^bIsolated yields. ^creaction performed with base loading 2.5 eq.

With the optimized conditions in hand (Table 2A.1, entry 9), we further examine the substrate scope of (3+3)-annulation of indoline-2-thiones 1 with D-A cyclopropanes 2 for the formation of novel *N*-iododihydrothiopyrano indole 3 scaffolds (Scheme 2A.5). A wide variety of electronically and structurally diverse D-A cyclopropanes and indoline-2-thiones provided a library of *N*-iododihydrothiopyrano indole derivatives 3 in good to excellent yields. First, we explored the scope of various D-A cyclopropanes 2 in (3+3) annulation with various indoline-2-thione 1a (Scheme 2A.5). Having different ester functionality in D-A cyclopropanes such as ethyl and methyl worked very smoothly for the said reaction and led to the formation of 3aa and 3ab in 80% and 78%, respectively. Moreover, when electron-withdrawing substituents at the *para*-position of aromatic ring attached to D-A cyclopropanes were allowed to react with indoline-2-thiones, they transformed into the corresponding products in good to excellent yields 3ad, 3ae, 3af and 3aj. Electronically hindered ortho-arene decorated cyclopropane derivatives performed well under optimized conditions and furnished *N*-iododihydrothiopyrano indole skeletons 3ag and 3ah.

the same manner, a *meta*-substituted arene ring attached to cyclopropane provided the desired product **3ai**. Inspired by these results, we were keen to scrutinize the reaction scope of various electronically diverse thioindolenes with phenyl D-A cyclopropanes using the aforementioned methodology. Indole-2-thiones bearing electron-donating substituents at 5-position were well tolerated in reaction conditions and delivered the corresponding annulated products **3ba**, **3ca** and **3bb** in moderate yields. At the same time, C-5 and C-6 halogen (i.e., Br, Cl and F) substituted indole-2-thiones were also provided dihydrothiopyrano indoles **3da-3eb** in good to excellent yields.

Scope of D-A Cyclopropanes

Scope of Indoline-2-thiones

Scheme 2A.5 Substrate scope of Dihydrothiopyrano^a. ^a Reaction Conditions: **1** (0.6 mmol, 1 eq.), **2** (0.6 mmol, 1eq.) Sc(OTf)₃ (0.06 mmol, 0.1 eq.), DBU (2.5 eq.), NIS (2 eq.), DCE (2 ml), 60 °C, inert conditions; ^bIsolated yield.

Additionally, when we were allowed to react N-methyl indolene-2-thione **1h** with DAC **2a** under the same optimized conditions, furnishes nucleophilic ring opening product **4** rather than cyclized one (Scheme 2A.6).

Scheme 2A.6: Nucleophilic Ring-Opening Product **4**, with reactions of Donor–Acceptor Cyclopropanes and *N*-methyl Indoline-2-thiones.

In addition, we further check the reaction scope with *N*-bromosuccinimide (NBS) and *N*-chlorosuccinimide (NCS) under the standard reaction conditions, which provide corresponding *N*-haloindole fused dihydrothiopyrano derivatives in good to moderate yield (Scheme 2A.7).

Scheme 2A.7: ^aReaction Conditions: **1a** (0.6 mmol, 1 eq.), **2a** (0.6 mmol, 1eq.) Sc(OTf)₃ (0.06 mmol, 0.1 eq.), DBU (2.5 eq.), NBS/NCS (2 eq.), DCE (2 ml), 60 °C, N₂ atmosphere; ^bIsolated yield. [#]Trace amount of unidentified compound along with **3**" was obtained.

After constructing the series of indole fused thipyrano derivatives, we further check the synthetic transformation of **3aa**. The compound **3aa** was treated with lithium aluminum hydride, and to our delight *N*-fused thiazino indole derivative **5** has been formed in excellent yield (Scheme 2A.8a). To establish the credentials of this methodology, gram-scale synthesis was also carried out. The reaction was performed in the presence of 3 mmol of **1a** with 3 mmol **2c** by using the optimized reaction conditions, compound **3ac** was achieved in 73% (1.2 g) yield (Scheme 2A.8b).

Scheme 2A.8a Preparation of (2-phenyl-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole-4,4-diyl)dimethanol **5**.

Scheme 2A.8b Gram scale synthesis of **3ac.**^a Reaction conditions: **1d** (0.447 g, 3 mmol), **2a** (0.829 g, 3 mmol), Sc(OTf)₃ (150 mg, 30 mol%), NIS, (6 mmol, 1.35 g, 2 eq.) and DBU (7.5 mmol, 1.9 ml, 2.5 eq.), 1,2-DCE (5 mL).

Chapter-2A

To investigate the mechanistic insight of the aforementioned protocol, we performed several control experiments (Scheme 2A.9). Initially, when the reaction was screened in the presence of Sc(OTf)₃, without NIS and DBU the anticipated open-chain thio-indole intermediate **4**' was observed in good yield. Next, we applied base and NIS with **4**', which led to the formation of the desired compound **3aa** in 92% yield. Furthermore, it was observed that in the absence of either DBU or NIS compound **4**' remained unreacted.

Scheme 2A.9: control experiments to investigate the mechanistic insight.

Based on our controlled experiments attempted, following reaction mechanism is proposed (Scheme 2A.10). Initially, Lewis acid $Sc(OTf)_3$ coordinates with acceptor moieties in D-A cyclopropane 1 and forms activated ring intermediate I-1. This activated ring gets attacked by nucleophilic S-center of indoline-2-thione in S_N^2 fashion and leads to the formation of isolated intermediate 4'. In the presence of DBU and NIS, iodination takes place on the carbon attached

to ester groups, as a result, the nature of said C-center changed from nucleophilic to electrophilic center. Subsequently, nucleophilic attack from C-3 indole to emerging electrophilic C-center followed by re-aromatization and iodination of indole nitrogen leads to furnish desired product 3.

Ar
$$CO_2R$$
 $Sc(OTf)_3$ $Sc(OT$

Scheme 2A.10: Plausible Mechanism of dihydrothiopyrano.

2A.3 Conclusions

In summary, an efficient and straightforward strategy for the synthesis of N-haloindole fused dihydrothiopyrano derivatives has been developed via $Sc(OTf)_3$ catalyzed (3+3)-annulation reactions of DACs and indole-2-thiones under mild conditions in good to excellent yields. We are currently exploiting this protocol for synthesizing targeted biologically important molecules.

2A.4 Experimental Section

All the reactions were carried out under an inert atmosphere using the schlenk technique. All solvents were dried and stored over molecular sieves under argon atmosphere. All chemicals and reagents were purchased from commercial suppliers and used without further purification. Thin-layer chromatography (TLC) was performed using pre-coated plates purchased from E. Merck (silica gel 60 PF254, 0.25 mm). Column chromatography was performed using E. Merck silica gel 60 (100–200 mesh). 1 H, 13 C, and DPT-135 NMR spectra were recorded in CDCl₃, on JEOL JNM-ECS spectrometer at operating frequencies of 400 MHz (1 H) or 100 MHz (13 C) as indicated in the individual spectrum. Chemical shifts (δ) are given in parts per million (ppm) relative to residual solvent (chloroform, δ = 7.26 for 1 H and 77.16 for proton decoupled 13 C NMR) and coupling constants (J) in Hz. Multiplicity is tabulated as s for singlet, d for doublet, dd for doublet of doublet, t for triplet, td for triplet of doublet, q for quartet, and m for multiplet. High-resolution mass spectra (HRMS) were recorded using electron spray ionization (ESI) methods on waters mass spectrometer (XEVO G2-XS QTOF).

2A.4.1 Preparation of starting materials

General Procedure for the synthesis of indoline-2-thiones (1a-1g)¹³: A mixture of 2-oxindole (1.63 mmol, 1.63 eq.) and NaHCO₃ (3.26 mmol, 3.26 eq.) in THF (25 mL) was allowed to stir for 5 min at room temperature. After that P₂S₅ (1 mmol, 1.0 eq.) was added, and the reaction mixture was stirred for 4 h at room temperature. The excess THF was removed under reduced pressure. After that ice-cold water (50 mL) was added to the residue with vigorous stirring to afford a light-yellow precipitate that was filtered and air-dried.

Figure 2A.4.1 Used Indoline-2-thione 1

General procedure for the preparation of cyclopropane-1,1-diester derivatives¹⁴: Trimethylsulfoxonium iodide (TMSOI) (1.5 eq.) was added drop-wise into the suspension of sodium hydride (NaH) (60% suspension in mineral oil, 1.5 eq.) and dry dimethyl sulfoxide (DMSO) under nitrogen atmosphere. *Caution!*: Reaction of trimethylsulfoxonium iodide with sodium hydride is exothermic (evolution of H₂ and heat). So, the suspension was maintained at 0 °C before adding trimethylsulfoxonium iodide. After 15-20 min. vigorous stirring, a solution of benzylidenemalonate (1.0 eq.) in DMSO was added, mixture was allowed to warm up to room temperature. Upon completion (as determined by TLC analysis) of the reaction, crushed ice was added in the crude solution and extracted with diethyl ether. The combined organic layers were washed once with brine, dried over sodium sulfate (Na₂SO₄), filtered and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl actetate as an eluent.

Figure 2A.4.2 Used cyclopropane-1,1-diester derivatives 2

2A.4.2 General procedures

General Procedures for the synthesis of *N*-iodoindole fused dihydrothiopyrano derivatives (3): In a schlenk tube, indoline-2-thione 1 (0.6 mmol, 1.0 eq.), donor-acceptor cyclopropanes 2 (0.6 mmol, 1.0 eq.), and Sc(OTf)₃ (0.06 mmol, 30 mg, 0.1 eq.) were dissolved in anhydrous DCE (1 mL) under N₂ atmosphere. After that *N*-iodosuccinimide (NIS) (1.2 mmol, 270 mg, 2.0 eq) and DBU (1.5 mmol, 0.22 ml, 2.5 eq.) were added subsequently. The reaction mixture was allowed to stir for 5–8 h at 60 °C (oil bath). After completion (by TLC analysis) of the reaction, the crude mixture was filtered off and the filtrate was concentrated under reduced pressure. The collected crude was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents.

Gram scale synthesis of Diethyl 9-iodo-2-(*p*-tolyl)-2,3-dihydrothiopyrano[2,3-*b*]indole-4,4(9H)-dicarboxylate (3ac): In a schlenk tube, indoline-2-thione 1a (3 mmol, 0.447 g, 1 eq.), donor-acceptor cyclo-propane 2c (3 mmol, 0.829 g, 1 eq.), and Sc(OTf)₃ (0.3 mmol, 0.147 g, 0.1 eq.) were dissolved in anhydrous DCE (6 mL) under N₂ atmosphere. After that NIS, (6 mmol,

1.35 g, 2 eq.) and DBU (7.5 mmol, 1.9 ml, 2.5 eq.) were added subsequently. The reaction mixture was stirred for 9 h at 60 0 C (oil bath). After completion (by TLC analysis) of reaction, the crude mixture was filtered off and filtrate was concentrated under reduced pressure. The collected crude was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents.

General Procedures for the synthesis of *N*-haloindole fused dihydrothiopyrano derivatives (3' and 3"): In a schlenk tube, indoline-2-thione **1a** (0.1 mmol, 15 mg, 1 eq.), donor-acceptor cyclopropane **2a** (0.1 mmol, 26.2 mg, 1 eq.), and Sc(OTf)₃ (0.01 mmol, 5 mg, 0.1 eq.) were dissolved in anhydrous DCE (1 mL) under N₂ atmosphere. After that, NBS (for 3') or NCS (for 3") (0.2 mmol, 2 eq.) and DBU (0.25 mmol, 0.03 ml, 2.5 eq.) were added subsequently. The reaction mixture was allowed to stir for 6 h at 60 °C (oil bath). After completion of reaction, as monitored by TLC, crude mixture was filtered and concentrated under reduced pressure. The collected crude was further purified by silica gel column chromatography using hexane and ethyl acetate as an eluent.

2A.4.3 Characterization of compounds

Synthesis of Diethyl 9-bromo-2-phenyl-2,3-dihydrothiopyrano[2,3-*b*]indole-4,4(9*H*)-dicarboxylate (3'): Isolated by chromatography on silica gel, (*n*-hexane/EA = 10/1) 37 mg, 77 %, yield Brown solid; mp = 104 - 106 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49 – 7.36 (m, 6H), 7.19 – 7.14 (m, 1H), 7.12 – 7.09 (m, 2H), 4.52 (dd, *J* = 12.0, 1.9 Hz, 1H), 4.41 – 4.16 (m, 4H), 3.36 (dd, *J* = 13.8, 1.9 Hz, 1H), 2.91 (dd, *J* = 13.8, 12.0 Hz, 1H), 1.24 – 1.19 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 168.1, 167.3, 138.4, 137.6, 129.3, 128.9, 128.2, 127.9, 127.7, 121.8, 121.4, 117.7, 111.7, 89.6, 70.1, 63.5, 63.1, 40.9, 40.6, 14.1, 14.0; HRMS: *m/z* calculated for C₂₃H₂₃NO₄SBr [M+H]⁺ 488.0532, found 488.0531; IR (neat) ($\tilde{\upsilon}$): 2925, 2854, 1740, 1501, 1449, 1368, 1255, 1228, 1023, 739, 699 cm⁻¹.

Synthesis of Diethyl 9-Chloro-2-phenyl-2,3-dihydrothiopyrano[2,3-b]indole-4,4(9H)-dicarboxylate (3"): Isolated by chromatography on silica gel, (n-hexane/EA = 10/1) 40 mg, 62 %, yield Brown viscous liquid. ^{1}H NMR (400 MHz, DMSO-d₆) δ 7.76 (d, J = 7.3 Hz, 1H), 7.53

-7.49 (m, 4H), 7.38 - 7.30 (m, 5H), 5.30 (dd, J = 8.1, 5.9 Hz, 1H), 4.30 - 4.14 (m, 4H), 3.77 (dd, J = 10.6, 7.3 Hz, 1H), 3.62 (dd, J = 10.8, 7.1 Hz, 1H), 3.19 - 3.16 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, DMSO-d₆) δ 177.4, 165.7, 164.7, 149.1, 138.4, 137.9, 132.5, 128.9, 128.6, 128.5, 128.5, 128.4, 128.1, 127.7, 127.6, 127.1, 123.2, 119.8, 81.2, 69.2, 63.3, 62.9, 45.5, 41.8, 13.6, 13.4; HRMS: m/z calculated for $C_{23}H_{22}NO_4SCl$ [M+H]⁺ 444.1037, found 444.1036; IR (neat) (δ): 2924, 2853, 1741, 1501, 1446, 1366, 1254, 1227, 1023, 736, 698 cm⁻¹.

Diethyl 2-(2-((1-methyl-1*H***-indol-2-yl)thio)-2-phenylethyl)malonate(4):** In a schlenk tube, indoline-2-thione **1a** (3 mmol, 0.447 g, 1 eq.), donor-acceptor cyclopropane **2c** (3 mmol, 0.829 g, 1 eq.), and Sc(OTf)₃ (0.3 mmol, 0.147 g, 0.1 eq) were dissolved in anhydrous DCE (6 mL) under N₂ atmosphere. The reaction mixture was stirred for 6 h at 60 0 C (oil bath). After completion (by TLC analysis) of reaction, the crude mixture was filtered off and filtrate was concentrated under reduced pressure. The collected crude was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents. Isolated by chromatography on silica gel (*n*-hexane/EA = 10/1) 166 mg, 65 % yield, Viscous Yellow liquid; 1 H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.7 Hz, 1H), 7.24 – 7.17 (m, 5H), 7.12 – 7.08 (m, 1H), 7.04 – 7.02 (m, 2H), 6.72 (s, 1H), 4.20 – 4.08 (m, 4H), 3.97 (t, *J* = 7.8 Hz, 1H), 3.56 (t, *J*=7.3 Hz, 1H), 3.31 (s, 3H), 2.69 – 2.62 (m, 1H), 2.56 – 2.49 (m, 1H), 1.25 – 1.21 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 169.1, 169.0, 140.5, 138.4, 129.1, 128.7, 128.1, 127.91, 127.85, 127.6, 127.3, 122.7, 120.7, 119.8, 111.7, 109.9, 61.7, 52.8, 50.2, 33.7, 14.1; HRMS: m/z calculated for C₂₄H₂₈NO₄S [M+H]⁺ 426.1738, found 426.1739;IR (neat) (\tilde{v}): 2935, 1720, 1455, 1368, 1233, 1015,750, 629 cm⁻¹.

Diethyl 2-(2-((1*H***-indol-2-yl)thio)-2-phenylethyl)malonate (4'):** In a schlenk tube, 1-methylindoline-2-thione **1a** (3 mmol, 67 mg, 1 eq.), donor-acceptor cyclopropane **2c** (3 mmol, 54 mg, 1 eq.), and $Sc(OTf)_3$ (0.3 mmol, 10 mg, 0.1 eq) were dissolved in anhydrous DCE (6 ml) under N_2 atmosphere. The reaction mixture was stirred for 6 h at 60 ^{0}C (oil bath). After completion (by TLC analysis) of reaction, the crude mixture was filtered off and filtrate was concentrated under reduced pressure. The collected crude was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents. Isolated by chromatography on silica gel (*n*-hexane/EA = 10/1) 187 mg, 75 % yield, Viscous Yellow liquid; ^{1}H NMR (400)

MHz, CDCl₃): δ 8.09 (s, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.28 – 7.24 (m, 4H), 7.19 – 7.17 (m, 1H), 7.15 – 7.12 (m, 2H), 7.10 – 7.06 (m, 1H), 6.54 (s, 1H), 4.22 – 4.11 (m, 4H), 4.06 (t, J = 7.8 Hz, 1H), 3.58 (t, J = 7.2 Hz, 1H), 2.66 – 2.58 (m, 1H), 2.56 – 2.49 (m, 1H), 1.24 – 1.22 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 169.4, 169.2, 141.0, 137.4, 128.7, 128.3, 127.8, 127.7, 125.8, 122.9, 120.6, 120.0, 111.5, 110.9, 61.8, 53.6, 52.7, 50.4, 34.1, 14.1; HRMS: m/z calculated for C_{23} H₂₆NO₄S [M+H]⁺ 412.1581, found 412.1583; IR (neat) (\tilde{v}): 3373, 2981,1724,1492,1370, 1340, 859, 749, 698, 649 cm⁻¹.

Synthesis of (2-Phenyl-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole-4,4-diyl)dimethanol (5): In a schlenk tube, diethyl 9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-b]indole-4,4(9H)dicarboxylate (0.15 mmol, 81 mg, 1 eq.), was dissolved in dry THF (2 ml) under N₂ atmosphere and added lithium aluminium hydride (0.30 mmol, 12 mg, 2 eq.) at 0 °C. After addition, the reaction was warmed to room temperature and stirred for 2 h. Upon completion (by TLC analysis), the reaction was quenched with ice cold-water and extracted with ethyl acetate thrice. The collected organic layers were dried over Na₂SO₄, concentrated under reduced pressure and further purified by silica gel column chromatography using hexane and ethyl acetate as eluents. Isolated by chromatography on silica gel (n-hexane/EA = 10/1) 44 mg, 89% yield, colorless viscous liquid. ¹H NMR (400 MHz, DMSO- d_6): δ 7.68 – 7.66 (m, 1H), 7.53 – 7.51 (m, 2H), 7.45 -7.41 (m, 2H), 7.39 - 7.31 (m, 3H), 7.04 - 6.96 (m, 2H), 6.27 (s, 1H), 5.20 (t, J = 5.4 Hz, 1H), 4.95 (t, J = 5.6 Hz, 1H), 4.88 (dd, J = 12.4, 1.8 Hz, 1H), 4.52 - 4.47 (m, 1H), 3.98 (d, J = 5.5 Hz, 2H), 3.76 (dd, J = 11.9, 5.5 Hz, 1H), 2.92 (dd, J = 14.1, 12.5 Hz, 1H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, DMSO-*d*₆) δ 140.2, 136.4, 131.7, 128.9, 128.8, 128.1, 127.6, 119.6, 119.4, 118.8, 113.1, 98.8, 64.7, 62.8, 38.6. HRMS: m/z calculated for [M+H]⁺ 326.1204, found 326.1215; IR (neat) (\tilde{v}): 3257 (br.), 2920, 2850, 1600, 1440, 1311, 1276, 997, 773, 445, cm-1.

Diethyl 9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-*b***]indole-4,4(9***H***)-dicarboxylate (3aa): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 256 mg, 80% yield, Brown solid; mp = 143-145 °C. ^{1}H NMR (400 MHz, CDCl₃): \delta 7.49 – 7.46 (m, 2H), 7.43 – 7.34 (m, 3H), 7.33 – 7.31 (m, 1H), 7.19 – 7.15 (m, 1H), 7.13 – 7.09 (m, 1H), 7.08 – 7.06 (m, 1H), 4.53 (dd,** *J* **= 12.0, 1.8 Hz, 1H), 4.42 – 4.15 (m, 4H), 3.36 (dd,** *J* **= 13.8, 1.9 Hz, 1H), 2.91 (dd,** *J* **= 13.8, 12.0**

Hz, 1H), 1.24 (t, J = 5.3 Hz, 3H), 1.21 (t, J = 5.3 Hz, 3H); $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃): δ 168.1, 167.3, 138.3, 138.2, 132.2, 130.7, 129.3, 128.9, 127.8, 121.8, 121.5, 119.6, 111.7, 70.3, 63.5, 63.1, 58.3, 41.3, 41.1, 14.09, 14.05; HRMS: m/z calculated for $C_{23}H_{22}NO_{4}SI$ [M+H]⁺ 536.0391, found 536.0392; IR (neat) (\tilde{v}): 2926, 2852, 1743, 1448, 1254, 1227, 1082, 739 cm⁻¹.

Dimethyl 9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-b]indole-4,4(9H)-dicarboxylate (3ab):

Isolated by chromatography on silica gel (n-hexane/EA = 10/1) 237 mg, 78% yield, Brown solid; mp = 134 - 136 °C. 1 H NMR (400 MHz, CDCl₃): δ 7.48 - 7.45 (m, 2H), 7.43 - 7.36 (m, 3H), 7.35 - 7.32 (m, 1H), 7.21 - 7.17 (m, 1H), 7.16 - 7.11 (m, 1H), 7.02 (d, J = 8.0 Hz, 1H), 4.51 (dd, J = 12.0, 1.8 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.37 (dd, J = 13.8, 1.9 Hz, 1H), 2.95 (dd, J = 13.8, 12.1 Hz, 1H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 168.6, 167.9, 138.11, 138.07, 132.2, 130.7, 129.3, 129.0, 127.8, 122.2, 121.6, 119.7, 111.1, 70.2, 58.3, 54.1, 53.8, 41.2, 41.0; HRMS: m/z calculated for C₂₁H₁₉NO₄SI [M+H]⁺ 508.0079, found 508.0079; IR (neat) (δ): 2924, 2851, 1743, 1448, 1260, 1227, 1174, 1082, 738 cm-1.

Diethyl 9-iodo-2-(*p*-tolyl)-2,3-dihydrothiopyrano[2,3-*b*]indole-4,4(9*H*)-dicarboxylate (3ac): Isolated by chromatography on silica gel (*n*-hexane/EA = 10/1) 165 mg, 50% yield, Brown solid; mp = 124 - 126 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.37 – 7.34 (m, 2H), 7.31 (d, J = 7.8 Hz, 1H), 7.21 (d, J = 7.9 Hz, 2H), 7.18 – 7.14 (m, 1H), 7.13 – 7.09 (m, 1H), 7.06 (d, J = 8.0 Hz, 1H), 4.49 (dd, J = 12.0, 1.9 Hz, 1H), 4.41 – 4.21 (m, 4H), 3.33 (dd, J = 13.9, 2.0 Hz, 1H), 2.89 (dd, J = 13.8, 12.1 Hz, 1H), 2.37 (s, 3H), 1.22 – 1.17 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 168.1, 167.3, 138.8, 138.2, 135.3, 130.7, 129.9, 128.9, 127.6, 121.8, 121.5, 119.6, 111.7, 70.4, 63.5, 63.1, 58.2, 41.2, 41.0, 29.8, 14.09, 14.05; HRMS: m/z calculated for C₂₄H₂₅NO₄SI [M+H]⁺ 550.0549, found 550.0549; IR (neat) (\tilde{v}): 2924, 2852, 1739, 1513, 1260, 1227, 1022, 800, 738 cm⁻¹.

Diethyl 2-(4-bromophenyl)-9-iodo-2,3-dihydrothiopyrano[2,3-*b***]indole-4,4(9***H***)-dicarboxylate (3ad): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 305 mg, 83% yield, Green solid; mp = 139 - 141 °C. ¹H NMR (400 MHz, CDCl₃): \delta 7.55 – 7.52 (m, 2H), 7.37 – 7.34 (m, 2H), 7.33 – 7.31 (m, 1H), 7.19 – 7.15 (m, 1H), 7.14 – 7.10 (m, 1H), 7.08 – 7.06**

(m, 1H), 4.51 (dd, J = 12.0, 1.8 Hz, 1H), 4.39 – 4.15 (m, 4H), 3.31 (dd, J = 13.8, 1.9 Hz, 1H), 2.85 (dd, J = 13.7, 12.0 Hz, 1H), 1.22 – 1.18 (m, 6H); $^{13}C\{^{1}H\}$ NMR (101 MHz, CDCl₃): δ 167.9, 167.2, 138.1, 137.4, 132.4, 131.6, 130.7, 129.5, 122.9, 121.9, 121.6, 119.7, 111.8, 70.2, 63.6, 63.1, 58.5, 41.0, 40.8, 14.1, 14.0; HRMS: m/z calculated for $C_{23}H_{22}NO_{4}SBrI$ [M+H]⁺ 613.9498, found 613.9498; IR (neat) (δ): 2925, 2853, 1739, 1487, 1260, 1225, 1088, 1011, 737 cm⁻¹.

Diethyl 2-(4-fluorophenyl)-9-iodo-2,3-dihydrothiopyrano[2,3-*b***]indole-4,4(9***H***)-dicarboxylate (3ae): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 226 mg, 68% yield, Brown solid; mp = 149 - 151 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47 – 7.43 (m, 2H), 7.33 – 7.31 (m, 1H), 7.19 – 7.06 (m, 5H), 4.53 (dd, J = 12.0, 1.8 Hz, 1H), 4.42 – 4.14 (m, 4H), 3.32 (dd, J = 13.8, 1.9 Hz, 1H), 2.87 (dd, J = 13.7, 12.1 Hz, 1H), 1.23 – 1.19 (m, 6H); ^{13}C{^{1}H} NMR (101 MHz, CDCl₃): δ 168.0, 167.3, 162.9 (d, ^{1}^{1}^{1}C-F = 249.44 Hz), 138.1, 134.1 (d, ^{4}^{1}C-F = 3.05 Hz), 131.9, 130.7, 129.5 (d, ^{3}^{1}C-F = 8.26 Hz), 121.9, 121.5, 119.6, 116.2 (d, ^{2}^{1}C-F = 21.66 Hz), 111.8, 70.2, 63.6, 63.1, 58.4, 41.2, 40.6, 14.06, 14.05; ^{19}F NMR (377 MHz, CDCl₃): δ - 112.56; HRMS: m/^{2} calculated for C₂₃H₂₂NO₄SIF [M+H]⁺ 554.0298, found 554.0298; IR (neat) (ΰ): 2925, 2852, 1740, 1603, 1509, 1257, 1226, 1022, 739 cm⁻¹.**

Diethyl 9-iodo-2-(4-(trifluoromethyl) phenyl)-2,3-dihydrothiopyrano[2,3-b]indole-4,4(9H)-dicarboxylate (3af): Isolated by chromatography on silica gel (n-hexane/EA = 10/1) 264 mg, 73% yield, Yellow solid; mp = 179 - 181 °C. ¹H NMR (400 MHz, CDCl₃) : δ 7.67 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.1 Hz, 1H), 7.20 – 7.16 (m, 1H), 7.15 – 7.11 (m, 1H), 7.08 (d, J = 7.9 Hz, 1H), 4.61 (dd, J = 11.9, 1.7 Hz, 1H), 4.40 – 4.16 (m, 4H), 3.34 (dd, J = 13.7, 1.9 Hz, 1H), 2.89 (dd, J = 13.7, 12.0 Hz, 1H), 1.24 – 1.19 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 167.9, 167.2, 142.4 (q, 4 $_{C-F}$ = 1.24 Hz), 138.2, 131.3, 131.2 (q, 2 $_{C-F}$ = 32.93 Hz), 130.6, 128.3, 126.3 (q, 3 $_{C-F}$ = 3.80 Hz), 123.9 (q, 1 $_{C-F}$ = 278.06 Hz), 122.0, 121.6, 119.7, 111.8, 70.1, 63.7, 63.2, 58.7, 40.89, 40.91, 14.1, 14.0; 19 F NMR (377 MHz, CDCl₃): δ -62.69; HRMS: m/ $_{Z}$ calculated for C₂₄H₂₂NO₄SIF₃ [M+H]⁺ 604.0266, found 604.0266; IR (neat) (\tilde{v}): 2990, 2856, 1740, 1445, 1323, 1227, 1169, 1017, 738 cm⁻¹.

Diethyl 9-iodo-2-(o-tolyl)-2,3-dihydrothiopyrano[2,3-b]indole-4,4(9H)-dicarboxylate (3ag): Isolated by chromatography on silica gel (n-hexane/EA = 10/1) 247 mg, 75% yield, Light green

solid; mp = 134 - 136 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.60 - 7.58 (m, 1H), 7.33 - 7.21 (m, 4H), 7.19 - 7.07 (m, 3H), 4.79 (dd, J = 11.9, 1.8 Hz, 1H), 4.38 - 4.18 (m, 4H), 3.28 (dd, J = 13.9, 1.9 Hz, 1H), 2.92 (dd, J = 13.8, 11.9 Hz, 1H), 2.45 (s, 3H), 1.24 - 1.18 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 168.1, 167.4, 138.2, 136.4, 132.4, 131.1, 130.7, 128.6, 127.0, 121.8, 121.5, 119.5, 111.8, 70.4, 63.5, 63.1, 58.4, 40.6, 37.0, 19.4, 14.06; HRMS: m/z calculated for C₂₄H₂₅NO₄SI [M+H]⁺ 550.0549, found 550.0549; IR (neat) (\tilde{v}): 2928, 2851, 1738, 1445, 1226, 1065, 1021, 737 cm⁻¹.

Diethyl 2-(2-chlorophenyl)-9-iodo-2,3-dihydrothiopyrano[2,3-*b***]indole-4,4(9***H***)-dicarboxylate (3ah): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 246 mg, 72% yield, Light green solid; mp =114 - 116 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.67 – 7.64 (m, 1H), 7.45 – 7.42 (m, 1H), 7.35 – 7.28 (m, 3H), 7.20 – 7.16 (m, 1H), 7.14 – 7.10 (m, 1H), 7.07 – 7.05 (m, 1H)., 5.11 (dd, J = 11.3, 2.1 Hz, 1H), 4.35 – 4.15 (m, 4H), 3.30 (dd, J = 13.9, 2.2 Hz, 1H), 2.99 (dd, J = 13.9, 11.3 Hz, 1H), 1.25 – 1.17 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 167.7, 167.1, 138.2, 135.9, 133.9, 131.5, 130.6, 130.1, 129.9, 129.1, 127.8, 122.0, 121.5, 119.6, 111.5, 70.0, 63.5, 63.3, 58.7, 40.0, 37.3, 14.1, 14.0; HRMS: m/z calculated for C₂₃H₂₂NO₄SCII [M+H]⁺ 570.0003, found 550.0003; IR (neat) (\tilde{v}): 2923, 2850, 1739, 1445, 1225, 1021, 738 cm⁻¹**

Diethyl 9-iodo-2-(3-methoxyphenyl)-2,3-dihydrothiopyrano[2,3-*b***]indole-4,4(9***H***)-dicarboxylate (3ai): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 288 mg, 85% yield, Yellow solid; mp = 114 - 116 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.30 (m, 2H), 7.19 – 7.15 (m, 1H), 7.13 – 7.09 (m, 1H), 7.08 – 7.04 (m, 2H), 7.01 – 7.00 (m, 1H), 6.94 – 6.86 (m, 1H), 4.51 (dd, J = 12.0, 1.8 Hz, 1H), 4.40 – 4.17 (m, 4H), 3.84 (s, 3H), 3.35 (dd, J = 13.8, 1.9 Hz, 1H), 2.89 (dd, J = 13.8, 12.0 Hz, 1H), 1.23 – 1.18 (m, 6H); ^{13}C{^{1}H} NMR (101 MHz, CDCl₃): δ 168.1, 167.3, 160.2, 139.8, 138.2, 132.1, 130.7, 130.3, 121.8, 121.5, 120.0, 119.6, 114.4, 113.4, 111.7, 70.3, 63.6, 63.1, 58.3, 55.5, 41.3, 41.1, 14.1, 14.05; HRMS: m/z calculated for C₂₄H₂₅NO₅SI [M+H]⁺ 566.0497, found 566.0498; IR (neat) (\tilde{v}): 2925, 2851, 1739, 1600, 1259, 1227, 1022, 796, 739 cm⁻¹.**

Diethyl 2-(4-cyanophenyl)-9-iodo-2,3-dihydrothiopyrano[2,3-b]indole-4,4(9H)-dicarboxylate(3aj): Isolated by chromatography on silica gel (*n*-hexane/EA = 10/1) 272 mg,

81% yield, Green solid; mp = 184 - 186 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 – 7.69 (m, 2H), 7.61 – 7.59 (m, 2H), 7.34 – 7.32 (m, 1H), 7.21 – 7.17 (m, 1H), 7.16 – 7.11 (m, 1H), 7.10 – 7.07 (m, 1H), 4.61 (dd, J = 11.9, 1.9 Hz, 1H), 4.42 – 4.13 (m, 4H), 3.32 (dd, J = 13.7, 2.0 Hz, 1H), 2.87 (dd, J = 13.7, 12.0 Hz, 1H), 1.23 – 1.19 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 167.8, 167.2, 143.7, 138.1, 133.0, 130.8, 130.6, 128.7, 122.1, 121.7, 119.8, 118.4, 112.9, 111.9, 70.0, 63.7, 63.3, 58.9, 41.0, 40.7, 14.0; HRMS: m/z calculated for C₂₄H₂₂N₂O₄SI [M+H]⁺ 561.0345, found 561.0345; IR (neat) ($\tilde{\nu}$): 2981, 2852, 2228, 1737, 1607, 1225, 1113, 1020, 738 cm⁻¹.

Diethyl 9-iodo-6-methyl-2-phenyl-2,3-dihydrothiopyrano[**2,3-***b***]indole-4,4(9***H***)-dicarboxylate (3ba): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 218 mg, 66 % yield, Green solid; mp = 184 - 186 °C. ^{1}H NMR (400 MHz, CDCl₃): δ 7.48 - 7.46 (m, 2H), 7.43 - 7.36 (m, 3H), 7.10 - 7.09 (m, 1H), 6.97 - 6.91 (m, 2H), 4.52 (dd,** *J* **= 12.0, 1.9 Hz, 1H), 4.39 - 4.16 (m, 4H), 3.33 (dd,** *J* **= 13.9, 2.0 Hz, 1H), 2.90 (dd,** *J* **= 13.7, 12.1 Hz, 1H), 2.44 (s, 3H), 1.23 - 1.19 (m, 6H); ^{13}C{^{1}H} NMR (101 MHz, CDCl₃): δ 168.2, 167.4, 138.4, 136.5, 132.0, 131.0, 130.8, 129.3, 128.9, 127.8, 123.4, 119.4, 111.4, 70.3, 63.5, 63.0, 57.9, 41.3, 41.1, 21.4, 14.1, 14.07; HRMS:** *m/z* **calculated for C₂₄H₂₅NO₄SI [M+H]⁺ 550.0549, found 550.0549; IR (neat) (\tilde{v}): 2960, 2860, 1740, 1455, 1254, 1226, 1084, 800, 738 cm⁻¹.**

Diethyl 9-iodo-6-methoxy-2-phenyl-2,3-dihydrothiopyrano[**2,3-***b***]indole-4,4(9***H***)-dicarboxylate (3ca**): Isolated by chromatography on silica gel (*n*-hexane/EA = 10/1) 283 mg, 71 % yield, Brown solid; mp =182 - 184 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.45 (m, 2H), 7.43 – 7.36 (m, 3H), 6.99 – 6.96 (m, 1H), 6.77 – 6.72 (m, 2H), 4.53 (dd, J = 12.0, 1.8 Hz, 1H), 4.38 – 4.18 (m, 4H), 3.88 (s, 3H), 3.33 (dd, J = 13.8, 1.9 Hz, 1H), 2.89 (dd, J = 13.8, 12.0 Hz, 1H), 1.23 – 1.19 (m, 6H); ¹³C{ ¹H} NMR (101 MHz, CDCl₃): δ 168.1, 167.4, 164.4, 155.4, 138.3, 133.0, 131.4, 129.3, 128.9, 127.8, 112.7, 111.6, 101.5, 70.3, 63.6, 63.1, 55.9, 41.3, 41.0, 14.1, 14.00; HRMS: m/z calculated for C₂₄H₂₅NO₅SI [M+H]⁺ 566.0498, found 566.0498; IR (neat) (\tilde{v}): 2930, 2854, 1739, 1455, 1257, 1083, 739 cm⁻¹.

Diethyl 6-bromo-9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-*b***]indole-4,4(9***H***)-dicarboxylate (3da): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 291 mg, 79 % yield, Brown solid; mp = 158 - 160 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.35 (m, 6H),**

7.20 – 7.18 (m, 1H), 6.96 (d, J = 8.8 Hz, 1H), 4.52 (dd, J = 12.0, 1.8 Hz, 1H), 4.40 – 4.17 (m, 4H), 3.35 (dd, J = 13.8, 1.9 Hz, 1H), 2.89 (dd, J = 13.8, 12.0 Hz, 1H), 1.24 (t, J = 6.1 Hz, 3H), 1.21 (t, J = 6.2 Hz, 3H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 167.8, 167.0, 138.0, 137.0, 134.1, 132.5, 129.3, 129.0, 127.7, 124.5, 122.1, 115.0, 113.2, 70.3, 63.7, 63.3, 56.8, 41.3, 40.8, 14.1, 14.07; HRMS: m/z calculated for C₂₃H₂₂NO₄SBrI [M+H]⁺ 613.9497, found 613.9498; IR (neat) ($\tilde{\nu}$): 2926, 2852, 1740, 1443, 1257, 1228, 1063, 1021,791, 758 cm⁻¹.

Diethyl 6-chloro-9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-*b*]indole-4,4(9*H*)-dicarboxylate (3ea): Isolated by chromatography on silica gel (*n*-hexane/EA = 10/1) 256 mg, 75 % yield, Green solid; mp =164 - 166 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 - 7.45 (m, 2H), 7.43 - 7.35 (m, 3H), 7.30 (d, J = 2.1 Hz, 1H), 7.07 - 7.05 (m, 1H), 6.99 (d, J = 8.8 Hz, 1H), 4.53 (dd, J = 12.0, 1.8 Hz, 1H), 4.40 - 4.18 (m, 4H), 3.35 (dd, J = 13.9, 1.9 Hz, 1H), 2.89 (dd, J = 13.8, 12.0 Hz, 1H), 1.24 (t, J = 6.2 Hz, 3H), 1.21 (t, J = 6.2 Hz, 3H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 167.8, 167.0, 138.0, 136.6, 134.2, 132.0, 129.3, 129.0, 127.7, 127.4, 121.9, 119.1, 112.8, 70.3, 63.7, 63.3, 57.0, 41.3, 40.8, 14.1, 14.07; HRMS: m/z calculated for C₂₃H₂₂NO₄SCII [M+H]⁺ 570.0002, found 570.0003; IR (neat) (\tilde{v}): 2931, 2855, 1742, 1601, 1440, 1257, 1230, 1021, 756 cm⁻¹.

Diethyl 6-fluoro-9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-*b*]indole-4,4(9*H*)-dicarboxylate (3fa): Isolated by chromatography on silica gel (*n*-hexane/EA = 10/1) 272 mg, 82 % yield, Brown solid; mp = 134 - 136 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.35 (m, 5H), 7.03 – 6.98 (m, 2H), 6.87 – 6.82 (m, 1H), 4.53 (dd, J = 12.0, 1.7 Hz, 1H), 4.42 – 4.17 (m, 4H), 3.35 (dd, J = 13.9, 1.8 Hz, 1H), 2.89 (dd, J = 13.7, 12.0 Hz, 1H), 1.26 – 1.19 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 168.0, 167.1, 159.0 (d, $^{1}J_{\text{C-F}} = 238.81$ Hz), 138.1, 134.5 (d, $^{2}J_{\text{C-F}} = 26.07$ Hz), 131.7 (d, $^{3}J_{\text{C-F}} = 10.60$ Hz), 129.3, 129.0, 127.7, 112.6 (d, $^{3}J_{\text{C-F}} = 9.49$ Hz), 109.8 (d, $^{2}J_{\text{C-F}} = 26.16$ Hz), 105.1, 104.9, 70.3, 63.7, 63.2, 57.4, 41.2, 40.9, 14.09, 14.06; ¹⁹F NMR (377 MHz, CDCl₃): δ -112.59; HRMS: m/z calculated for C₂₃H₂₂NO₄SFI [M+H]⁺ 554.0298, found 554.0298; IR (neat) (\tilde{v}): 2990, 2860, 1740, 1615, 1450, 1253, 1227, 1021, 792 cm⁻¹.

Diethyl 7-bromo-9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-b]indole-4,4(9H)-dicarboxylate (3ga): Isolated by chromatography on silica gel (n-hexane/EA = 10/1) 294 mg, 80 % yield, Green solid; mp = 142 - 144 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.34 (m, 5H),

7.28 – 7.26 (m, 2H), 7.18 – 7.16 (m, 1H), 4.53 (dd, J = 11.9, 1.9 Hz, 1H), 4.45 – 4.39 (m, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.24 – 4.16 (m, 1H), 3.35 (dd, J = 13.8, 1.9 Hz, 1H), 2.88 (dd, J = 13.8, 11.9 Hz, 1H), 1.28 – 1.24 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 167.7, 167.0, 138.6, 138.1, 133.4, 129.7, 129.3, 129.0, 127.7, 124.7, 120.7, 115.4, 115.0, 70.3, 63.9, 63.3, 57.9, 41.2, 40.9, 14.07; HRMS: m/z calculated for C₂₃H₂₂NO₄SBrI [M+H]⁺ 613.9498, found 613.9498; IR (neat) ($\tilde{\upsilon}$): 2990, 2854, 1738, 1458, 1253, 1225, 1021,801, 698 cm⁻¹.

Dimethyl 9-iodo-6-methyl-2-phenyl-2,3-dihydrothiopyrano[**2,3-***b***]indole-4,4(9***H***)-dicarboxylate (3bb): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 200 mg, 64 % yield, Brown solid; mp = 153 - 155 °C. ^{1}H NMR (400 MHz, CDCl₃): δ 7.48 – 7.45 (m, 2H), 7.42 – 7.36 (m, 3H), 7.11 (s, 1H), 6.96 – 6.88 (m, 2H), 4.50 (dd, J = 11.9, 2.0 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 3.35 (dd, J = 13.7, 1.8 Hz, 1H), 2.94 (dd, J = 13.9, 12.1 Hz, 1H), 2.45 (s, 3H); ^{13}C{^{1}H} NMR (101 MHz, CDCl₃): δ 168.7, 168.0, 138.2, 136.4, 132.0, 131.1, 130.8, 129.2, 128.9, 127.8, 123.7, 119.6, 110.8, 70.2, 57.9, 54.0, 53.8, 41.3, 41.0, 21.4; HRMS: m/z calculated for C₂₂H₂₁NO₄SI [M+H]⁺ 522.0236, found 522.0236; IR (neat) (\tilde{v}): 2934, 2856, 1743, 1453, 1261, 1228, 1020,792, 737 cm⁻¹.**

Dimethyl 6-bromo-9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-*b***]indole-4,4(9***H***)-dicarboxylate (3db): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 270 mg, 77 % yield, Green solid; mp = 199 - 201 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 – 7.35 (m, 6H), 7.23 – 7.20 (m, 1H), 6.90 (d, J = 8.8 Hz, 1H), 4.51 (dd, J = 12.0, 1.8 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.37 (dd, J = 13.8, 1.9 Hz, 1H), 2.93 (dd, J = 13.8, 12.0 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 168.2, 167.5, 137.8, 136.9, 134.0, 132.5, 129.3, 129.1, 127.7, 124.9, 122.3, 115.1, 112.5, 70.2, 56.9, 54.2, 53.9, 41.2, 40.7; HRMS: m/z calculated for C₂₁H₁₈NO₄SBrI [M+H]⁺ 585.9185, found 585.9185; IR (neat) (\tilde{v}): 2952, 2854, 1743, 1443, 1253, 1225, 1021, 739 cm⁻¹.**

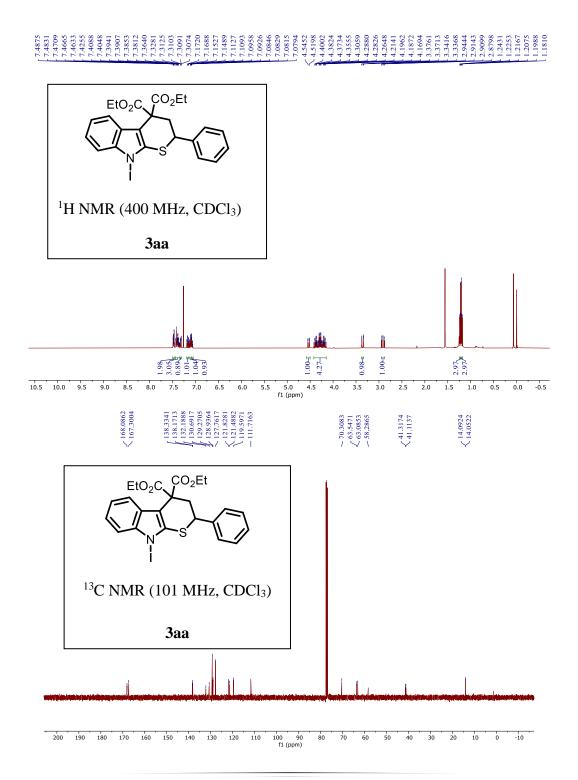
Dimethyl 6-chloro-9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-*b***]indole-4,4(9***H***)-dicarboxylate (3eb): Isolated by chromatography on silica gel (***n***-hexane/EA = 10/1) 237 mg, 73 % yield, Brown solid; mp = 174 - 176 °C. ¹H NMR (400 MHz, CDCl₃): \delta 7.47 - 7.35 (m, 5H), 7.31 (d, J = 1.9 Hz, 1H), 7.09 - 7.06 (m, 1H), 6.92 (d, J = 8.8 Hz, 1H), 4.50 (dd, J = 12.0, 1.9 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.36 (dd, J = 13.8, 1.9 Hz, 1H), 2.93 (dd, J = 13.9, 12.1 Hz,**

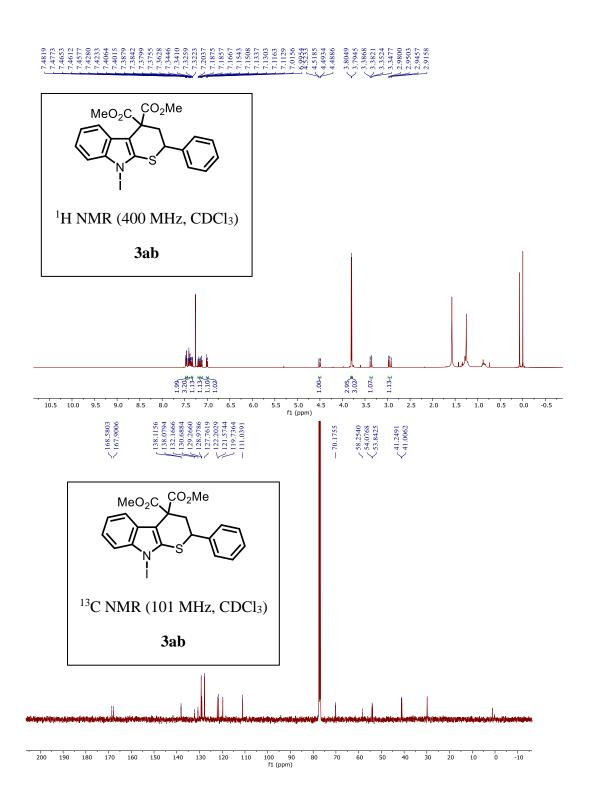
1H); ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃): δ 168.3, 167.6, 137.8, 136.6, 134.1, 132.0, 129.3, 129.1, 127.7, 127.5, 122.3, 119.3, 112.1, 70.2, 57.0, 54.2, 53.9, 41.2, 40.7; HRMS: m/z calculated for $C_{21}H_{18}NO_4SCII$ [M+H]⁺ 541.9691, found 541.9691; IR (neat) (\tilde{v}): 2952, 2853, 1743, 1601, 1257, 1227, 1020, 737 cm⁻¹.

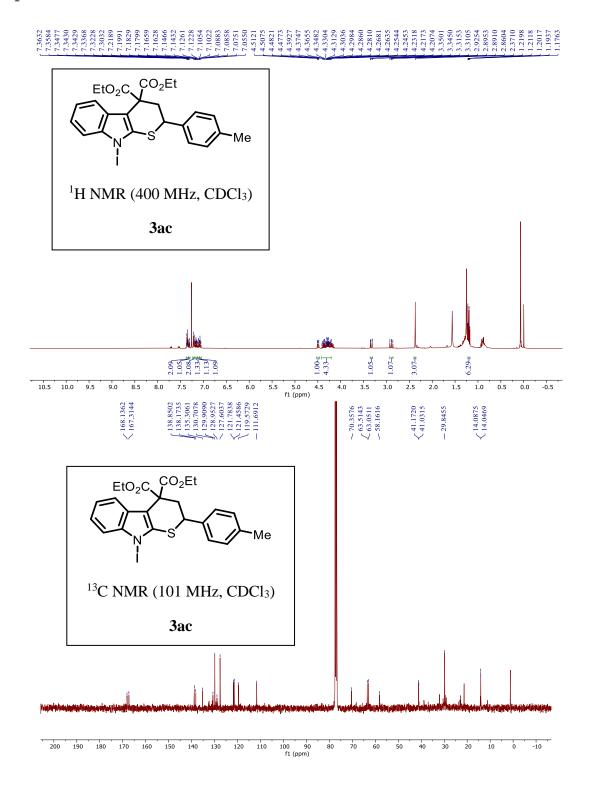
2A.5 References

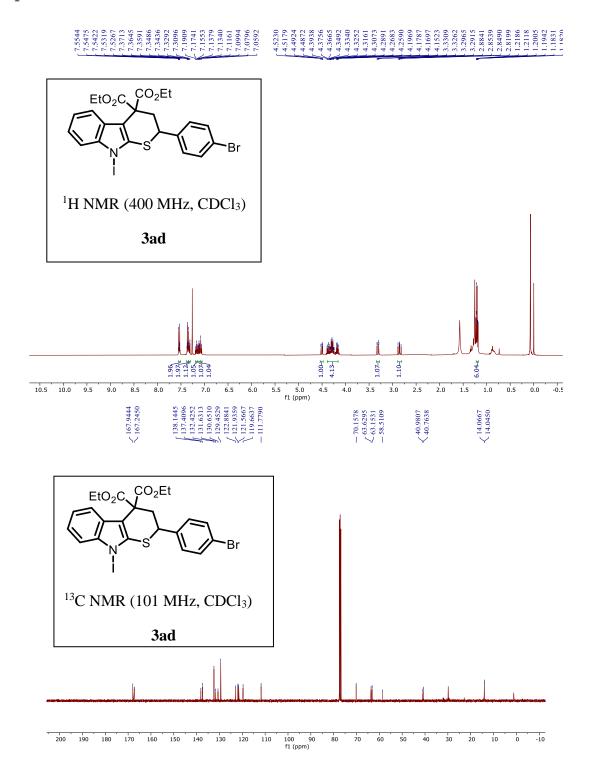
- (1) (a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216. (b) Vazquez-Prieto, M. A.; Vazquez-Prieto, R. M. Organosulfur compounds and cardiovascular disease. Molecular Aspects of Medicine. 2010, 31, 540-545. (c) Miekus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C., and Świergiel, A. H. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules. 2020, 25, 3804. (d) Lamberth. C.; Walter. H.; Murphy. F. K.; Quaranta. L.; Beaudegnies. R.; Trah. S.; Jeanguenata. A.; Cederbaum. F. The Significance of Organosulfur Compounds in Crop Protection: Current Examples from Fungicide Research. Phosphorus, Sulfur, and Silicon and the Related Elements. 2015, 190, 1225–1235. (E) Bresser, D.; Passerini, S.; Scrosati, B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review. *chem.* Commun. 2013, 49, 10545-10562. (f) Naoi. K.; Kawase. K.; Inoue. Y. A New Energy Storage Material: Organosultur Compounds Based on Multiple Sulfur-Sulfur Bonds. J. Electrochem. Soc. **1997**, 144, L170–L172. (g) Parker, D. J.; Jones, H. A.; Petcher, S.; Cervini, L.; Griffin, J. M.; Akhtar R.; Hasell, T.; Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture. J. Mater. Chem. A. 2017, 5, 11682–11692. (h) Lee, C.; Liu, Y.; Badsara, S. Transition-Metal-Catalyzed CS Bond Coupling Reaction. Chem. Asian J. 2014, 9, 706–722.
- (2) Laxmikeshav, K.; Kumari, P.; Shankaraiah, N. Expedition of sulfur-containing heterocyclicderivatives as cytotoxic agents in medicinalchemistry: A decade update. *Med. Res. Rev.* **2021**, *42*, 513–575.

- (3) (a) Budovska, M.; Pilatova, M.; Varinska, L.; Mojzis, J. The synthesis and anticancer activity of analogs of the indole phytoalexins brassinin, 1-methoysp robrassinol methyl ether and cyclobrassinin. *Biorg. Med. Chem.* **2013**, *21*, 6623–6633. (b) Soledade, M.; Pedras, C.; Suchy, M. Design, synthesis, and antifungal activity of inhibitors of brassilexin detoxification in the plant patho-genic fungus Leptosphaeria maculans. *Bioorg. Med. Chem.* **2006**, *14*, 714–723. (c) Pedras, M.; Jha, M. Concise Syntheses of the Cruciferous Phytoalexins Brassilexin, Sinalexin, Wasalexins, and Analogues: Expanding the Scope of the Vilsmeier Formylation. *J. Org. Chem.* **2005**, *70*, 1828–1834. (d) Ishizuka, N.; Sato, T.; Makisumi, Y. Indole Grignard Reaction. III.1' Synthesis, Crystal Structure, and Analgesic Activity of (A)- and (S)-3- Amino-2,3,4,9-tetrahydrothiopyrano[2,3-*b*]indoles. *Chem. Pharm. Bull.* **1990**, *38*, 1396–1399. (e) Kim, J.-S.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. Structure of Mescengricin, A Novel Neuronal Cell Protecting Substance Produced by Streptorayces griseoflavus. *Tetrahedron Lett.* **1997**, *38*, 3431–3434.
- (4) Li, J.-L.; Zhao, Q.; Gou, C.; Li, Q.-Z.; Leng, H.-J.; Huang, Q.-W.; Liu, Y. Construction of Indole-Fused Heterocycles Starting from 2-Thioxoindolines, Iminoindolines, and Their Derivatives. *Adv. Synth. Catal.* **2021**, *363*, 4497–4515.
- (5) (a) Reissig, H. U.; Zimmer, R. Donor–Acceptor-Substituted Cyclopropane Derivatives and Their Application in Organic Synthesis. *Chem. Rev.* **2003**, *103*, 1151–1196. (b) Schneider, T. F.; Kaschel, J.; Werz, D. B. A New Golden Age for Donor–Acceptor Cyclopropanes. *Angew. Chem., Int. Ed.* **2014**, *53*, 5504–5523. (c) Ivanova, O. A.; Trushkov, I. V. Donor-Acceptor Cyclopropanes in the Synthesis of Carbocycles. *Chem. Rec.* **2019**, *19*, 2189–2208.
- (6) (a) Lu, B.-L.; Dai, L.; Shi, M. Strained small rings in gold-catalyzed rapid chemical transformations. *Chem. Soc. Rev.* **2012**, *41*, 3318–3339. (b) Ghosh, K.; Das, S. Recent advances in ring-opening of donor acceptor cyclopropanes using C-nucleophiles. *Org. Biomol. Chem.* **2021**, *19*, 965–982. (c) Caille, J.; Robiette, R. Cycloaddition of cyclopropanes for the elaboration of medium-sized carbocycles. *Org. Biomol. Chem.* **2021**, *19*, 5702–5724. (d) Carson, C. A.; Kerr, M. A. Heterocycles from cyclopropanes: applications in natural product synthesis. *Chem. Soc. Rev.* **2009**, *38*, 3051–3060. (e) Grover, H. K.; Emmett, M. R. Kerr, M. A. Carbocycles from donor–acceptor cyclopropanes. *Org. Biomol. Chem.* **2015**, *13*, 655–671. (f) Yu, M.; Pagenkopf,

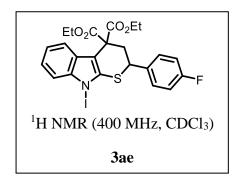

B. L. Formal [3 + 2] Cycloadditions of Donor-Acceptor Cyclopropanes and Nitriles. J. Am. Chem. Soc. 2003, 125, 8122-8123. (g) Singh, P. R.; Kalaramna, P.; Ali, S.; Goswami, A. Synthesis of Thio-/Selenopyrrolines via SnCl₄ - Catalyzed (3+2)-Cycloadditions of Donor-Acceptor Cyclopropanes with Thio-/Selenocyanates. Eur. J. Org. Chem. 2021, 4683–4689. (h) Singh, P. R.; Gopal, B.; Kumar, M.; Goswami, A. A metal-free BF₃·OEt₂ mediated chemoselective protocol for the synthesis of propargylic cyclic imines. Org. Biomol. Chem. 2022, 20, 4933-4941. (i) Nanteui, F. D.; Serrano, E.; Perrotta, D.; Waser, J. Dynamic Kinetic Asymmetric [3 + 2] Annulation Reactions of Aminocyclopropanes. J. Am. Chem. Soc. 2014, 136, 17, 6239-6242. (j) Mikhaylov, A. A.; Novikov, R. A.; Khomutova, Y. A.; Arkhipov, D.; Korlyukov, A. A.; Tabolin, A. A.; Tomilov, Y. V.; Ioffe, S. L. Cluster Novel Formal [3+3] Cycloaddition of Silyl Nitronates with Activated Cyclopropanes and Its Application in the Synthesis of Pyrroline-N-oxides. Synlett. 2014, 25, 2275–2280. (k) Zhang, H.-H.; Luo, Y-C.; Wang, H-P.; Xu, P-F. TiCl₄ Promoted Formal [3 + 3] Cycloaddition of Cyclopropane 1,1-Diesters with Azides: Synthesis of Highly Functionalized Triazinines and Azetidines. Org. Lett. 2014, 16, 4896–4899. (1) Ivanova, O. A.; Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Donor–Acceptor Cyclopropanes as Three-Carbon Components in a[4+3] Cycloaddition Reaction with 1,3-Diphenylisobenzofuran. Angew. Chem., Int. Ed. 2008, 47, 1107–1110. (m) Ivanova, O. A.; Budynina, E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Lewis Acid Catalyzed Reactions of Donor–Acceptor Cyclopropanes with Anthracenes. Eur. J. Org. Chem. 2008, 5329-5335.

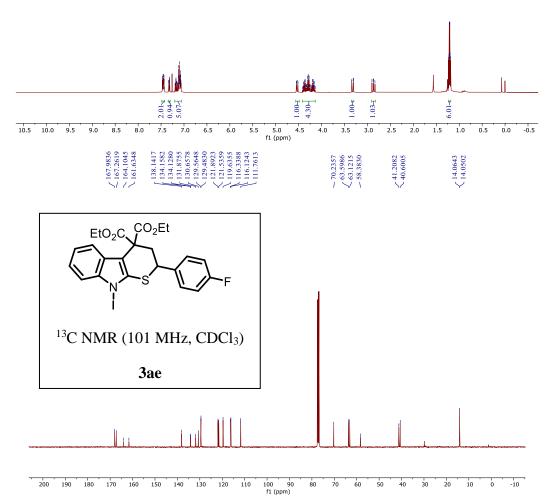

(7) (a) Hao, Y.; Gong, Y.; Cao, Z.; Zhou, Y.; Zhou, J. A highly efficient In(OTf)₃-catalyzed [3 + 3] annulation of spirocyclopropyl oxindoles with 1,4-di-thiane-2,5-diol. *Chinese Chemical Letters*. **2020**, *31*, 681–684. (b) Augustin, A. U.; Werz, D. B. Exploiting Heavier Organochalcogen Compounds in Donor– Acceptor Cyclopropane Chemistry. *Acc. Chem. Res*. **2021**, *54*, 1528–1541. (c) Fuchibe, K.; Fushihara, T.; Ichikawa, J. Synthesis of Ring-Fluorinated Thiophene Derivatives Based on Single C–F Bond Activation of CF₃-Cyclopropanes: Sulfanylation and 5-endo-trig Cyclization. *Org. Lett.* **2020**, *22*, 2201–2205. (d) Augustin, A. U.; Busse, M.; Jones, P. G.; Werz, D. B. Formal Insertion of Thioketenes into Donor–Acceptor Cyclopropanes by Lewis Acid Catalysis. *Org. Lett.* **2018**, *20*, 820–823. (e) Augustin, A. U.;

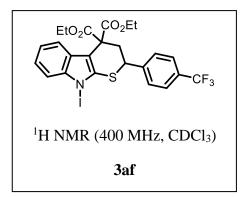

- Merz, J. L.; Jones, P. G.; Mloston, G.; Werz, D. B. (4 + 3)-Cycloaddition of Donor-Acceptor Cyclopropanes with Thiochalcones: A Diastereoselective Access to Tetrahydrothiepines. Org. Lett. 2019, 21, 9405-9409. (f) Augustin, A. U.; Sensse, M.; Jones, P. G.; Werz, D. B. Stereospecific Reactions of Donor-Acceptor Cyclopropanes with Thioketones: Accessto Highly Substituted Tetrahydrothiophenes. *Angew. Chem. Int. Ed.* 2017, *56*, 14293–14296. Sathishkannan, G.; Srinivasan, K. [3+3] Annulation of donor-acceptor cyclopropanes with mercapto acetaldehyde: application to the synthesis of tetrasubstituted thiophenes. Chem. Commun. 2014, 50, 4062–4064. (h) Wang, S.-W.; Guo, W.-S.; Wen, L.-R.; Li, M. Yb(OTf)₃ catalyzed [3 + 2] annulations of D-A cyclopropanes with b-oxodithioesters: a regioselective synthesis of tetrahydrothiophenes. RSC Adv. 2015, 5, 47418–47421. (i) Xie, M.-S.; Zhao, G.-F.; Qin, T.; Suo, Y.-B.; Qu, G.-R.; Guo, H.-M. Thiourea participation in [3+2] cycloaddition with donor-acceptor cyclopropanes: a domino process to 2-amino-dihydrothiophenes. Chem. Commun. 2019, 55, 1580–1583. (j) Matsumoto, Y.; Nakatake, D.; Yazaki, R.; Ohshima, T. An Expeditious Route totrans-Configured Tetrahydrothiophenes Enabled by Fe(OTf)₃-Catalyzed [3+2] Cyclo addition of Donor-Acceptor Cyclopropanes with Thionoesters. Chem. Eur. J. 2018, 24, 6062–6066. (k) Wang, H-P.; Zhang, H.-H.; Hu, X.-Q.; Xu, P.-F.; Luo, Y.-C. Sc(OTf)₃-Catalysed [3+3] Annulation of Cyclopropane 1,1-Diesters with Mercapto acetaldehyde: A Facile Strategy for the Synthesis of Tetrahydrothiopyranols. Eur. J. Org. Chem. 2015, 3486–3494.
- (8) Chen, X.; Zhang, J.-Q.; Yin, S-J.; Li, H.-Y.; Zhou, W.-Q.; Wang, X.-W. Asymmetric Construction of Spiro [thiopyranoindolebenzoisothiazole] Scaffold *via* a Formal [3 + 3] Spiro annulation. *Org. Lett.* **2015**, *17*, 4188–4191.
- (9) Sun, X.; Fei, J.; Zou, C.; Lu, M.; Ye, J. Remote stereocontrolled asymmetric 1,6-addition/1,4-addition cascade reactions between cyclic dienones and 2-indolinethiones. *RSC Adv.* **2016**, *6*, 106676–106679.
- (10) Yi, L.; Chen, K-Q.; Liang, Z.-Q.; Sun, D.-Q.; Ye, S. *N*-Heterocyclic Carbene-Catalyzed [3+3] Annulation of Indoline-2-thioneswithBromoenals: Synthesis of Indolo[2,3-*b*]dihydrothiopyranones. *Adv. Synth. Catal.* **2017**, *359*, 44–48.

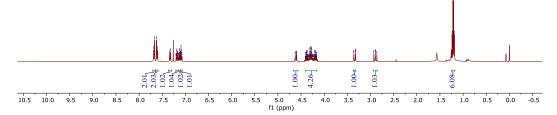

- (11) Basu, P.; Hazra, C.; Baiju, T.V.; Namboothiri, N. N. Synthesis of tetrahydrothiopyrano [2,3-*b*]indoles *via* [3+3] annulation of nitroallylic acetates with indoline-2-thiones. *New J. Chem.* **2020**, *44*, 1389–1399.
- (12) Tang, P.; Wei, Y.-Y.; Ma, H.-J.; Yang, Y.; Jiang, Y. MgI₂-Catalyzed Nucleophilic Ring-Opening Reactions of Donor–Acceptor Cyclopropanes with Indoline-2-thiones. *J. Org. Chem*, **2020**, 10890–10901.
- (13) Pedras, M. S. C.; Jha, M. Concise Syntheses of the Cruciferous Phytoalexins Brassilexin, Sinalexin, Wasalexins, and Analogues: Expanding the Scope of the Vilsmeier Formylation. *J. Org. Chem.* **2005**, *70*, 1828–1834.
- (14) (a) Corey, E. J.; Chaykovsky, M. Dimethyloxosulfonium and Dimethylsulfonium Methylides Formation and Application to Organic Synthesis. J. Am. Chem. Soc. 1965, 87, 1353– 1364. (b) Goldberg, A. F. G.; O'Connor, N. R.; Craig II, R. A.; Stoltz, B. M. Lewis Acid Mediated (3+2) Cycloaddtions of DonorAcceptor. Cyclopropanes with Heterocumulenes. Org. Lett. 2012, 14, 5314-5317. (c) Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. Scope and Mechanism for Lewis Acid-Catalyzed Cycloaditions of Aldehydes and Donor-AcceptorCyclopropanes: Evidence for a Stereospecific Intimate Ion Pair Pathway. J. Am. Chem. Soc. 2008, 130, 8642–8650. (d) Kundu, P. K.; Singh, k.; Ghosh, S. K. Silicon assisted diversified reaction of a β -silylmethylene malonate with dimethylsulfoxonium methylide. J. Organomet. Chem. 2009, 694, 382-388. (e) He, X.; Qiu, G.; Yang, J.; Xiao, Y.; Wu, Z.; Qiu, G.; Hu, X. Synthesis and anticonvulsant activity of 1-(8-(benzyloxy)quinolin-2-yl)-6-substituted-4,6diazaspiro[2,4]heptane-5,7-diones. Eur. J. Med. Chem. 2010, 45, 3818–3830. (f) Dey, R.; Kumar, P.; Banerjee, P. Lewis Acid Catalyzed Annulation of Cyclopropane Carbaldehydes and Aryl Hydrazines: Construction of Tetrahydropyridazines and Application Toward a One-Pot Synthesis of Hexahydropyrrolo [1,2-b] pyridazines. J. Org. Chem. 2018, 83, 5438–5449. (g) Garve, L. K. B.; Barkawitz, P.; Jones, P. G.; Werz, D. B. Ring-Opening 1,3-Dichlorination of Donor-Acceptor Cyclopropanes by Iodobenzene Dichloride. Org. Lett. 2014, 16, 5804-5807. (h) Tang, P.; Wei, Y.-Y.; Ma, H.-J.; Yang, Y.; Jiang, Y. MgI₂-Catalyzed Nucleophilic Ring-Opening Reactions of Donor-Acceptor Cyclopropanes with Indoline-2-thiones. J. Org. Chem. 2020, 10890-10901.

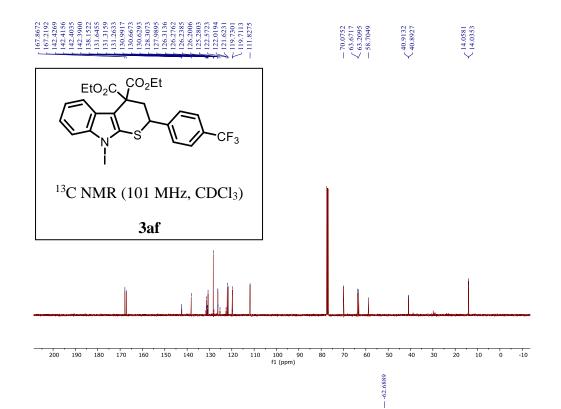
2A.6 NMR spectra of compounds

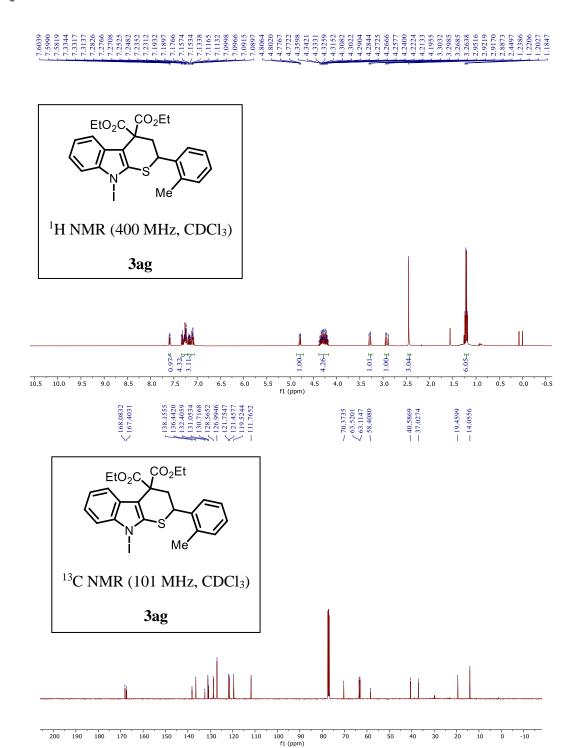


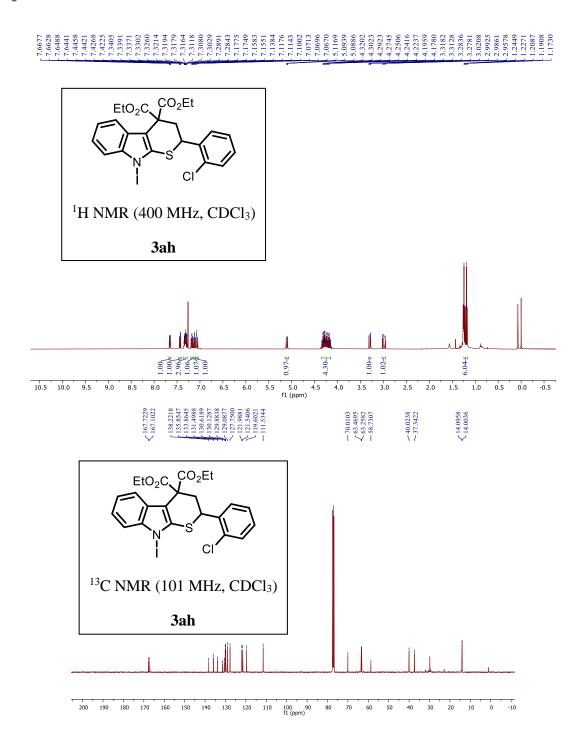


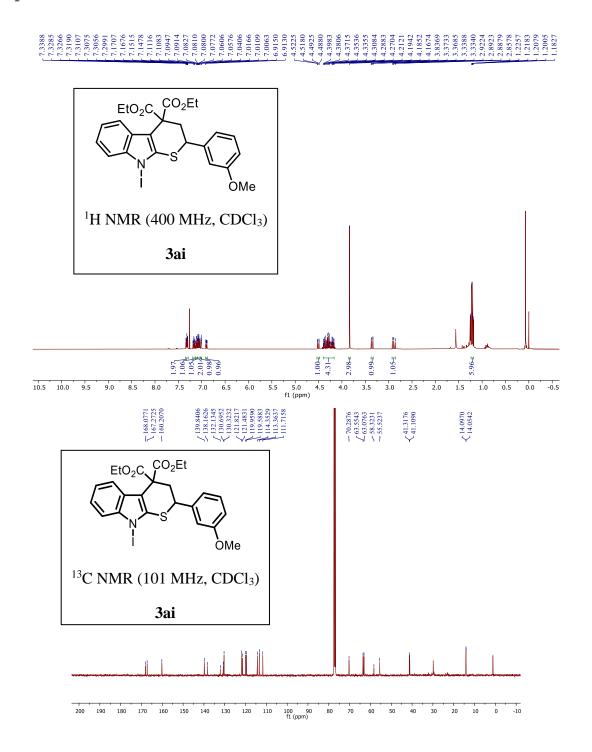


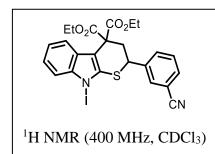


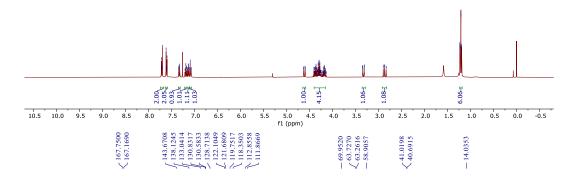

7.4704 7.4836 7.3318 7.3318 7.3318 7.3318 7.3319 7.

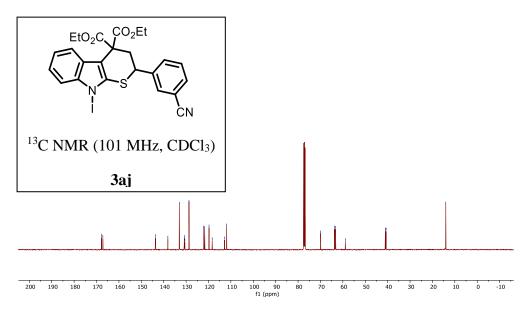


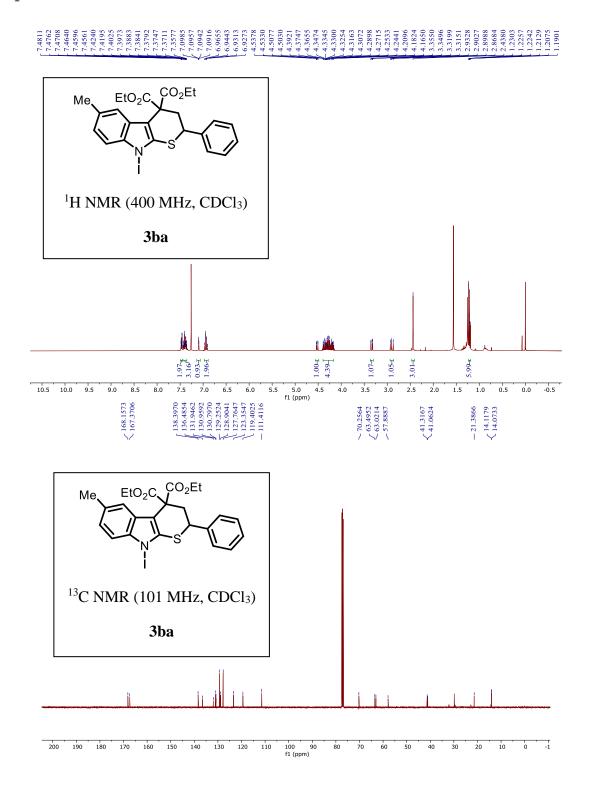


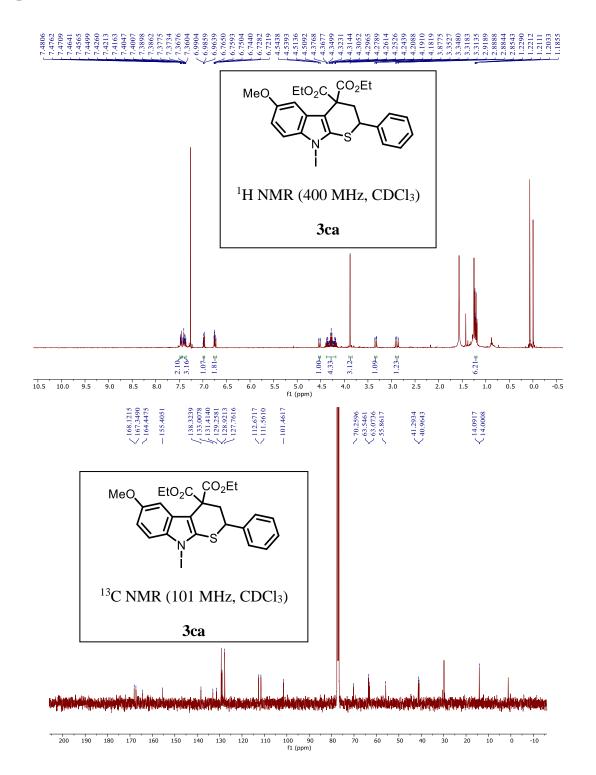




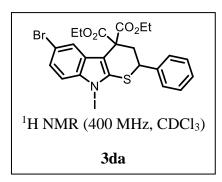


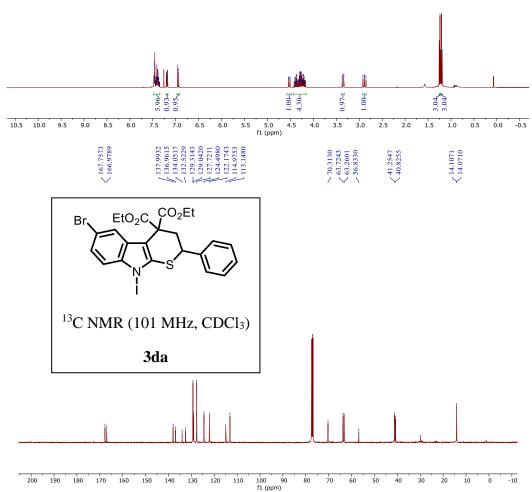


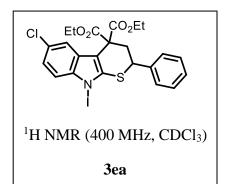


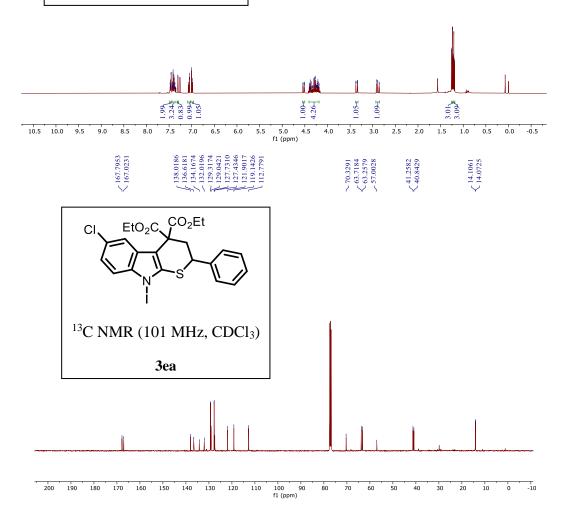


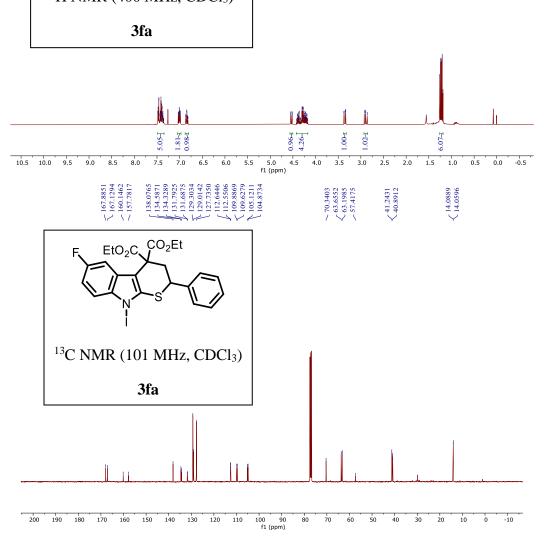
3aj

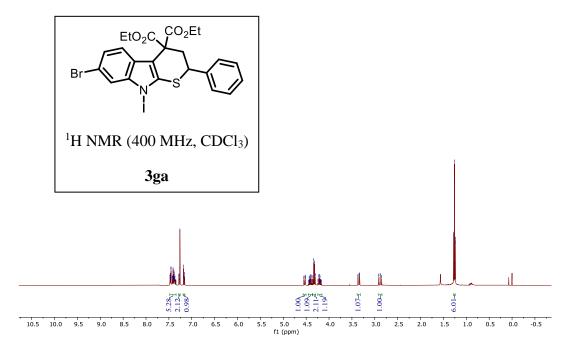


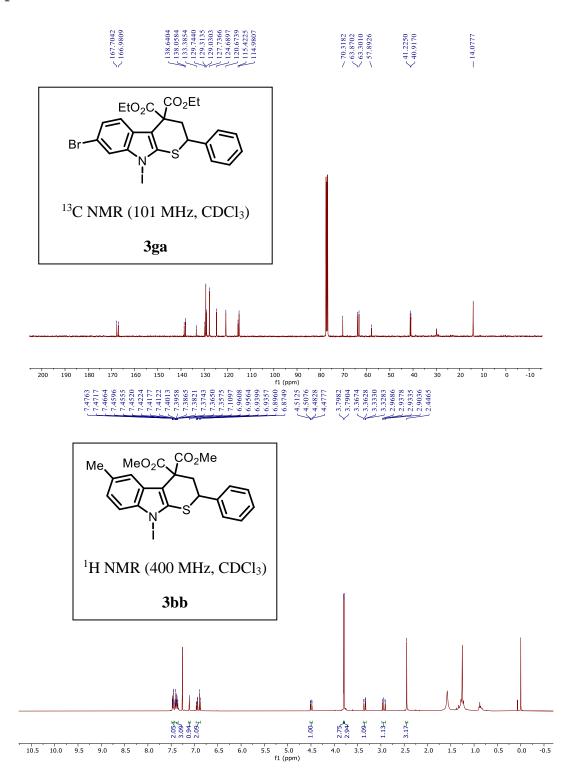


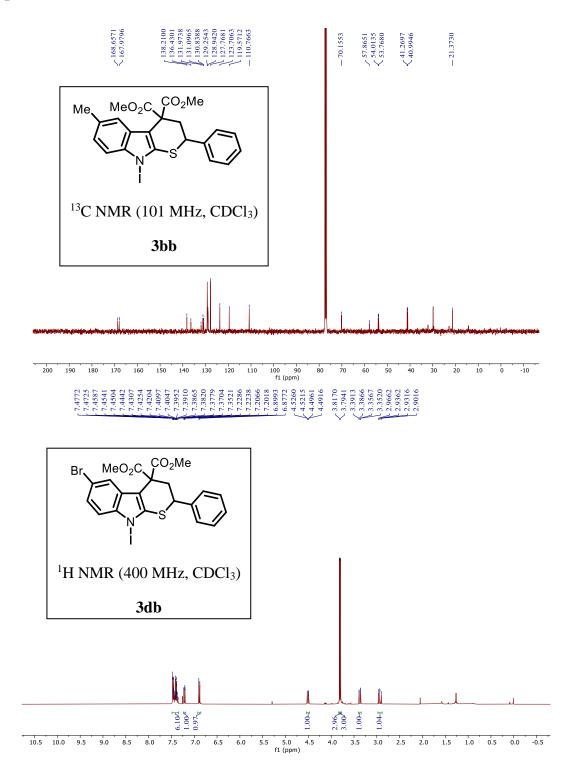


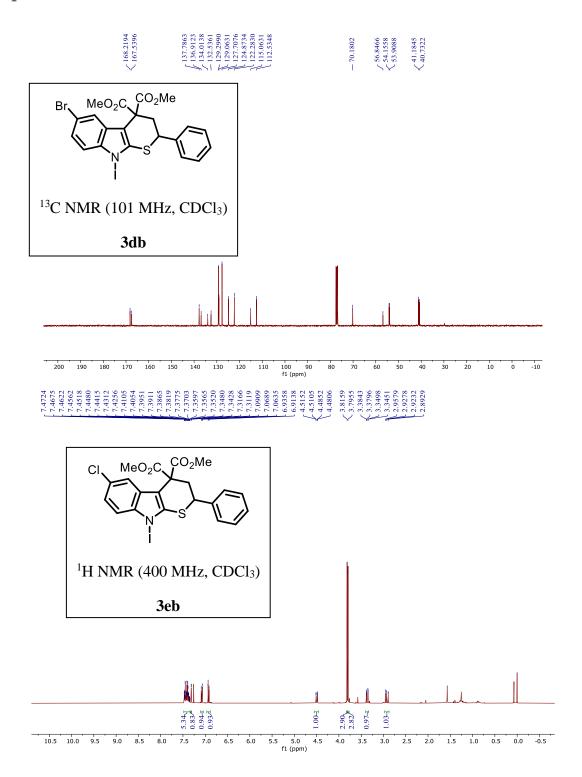

7,4768 7,4772 7,4410 7,4256 7,4256 7,4256 7,4256 7,4256 7,4256 7,4256 7,4256 7,4256 7,4256 7,4256 7,42

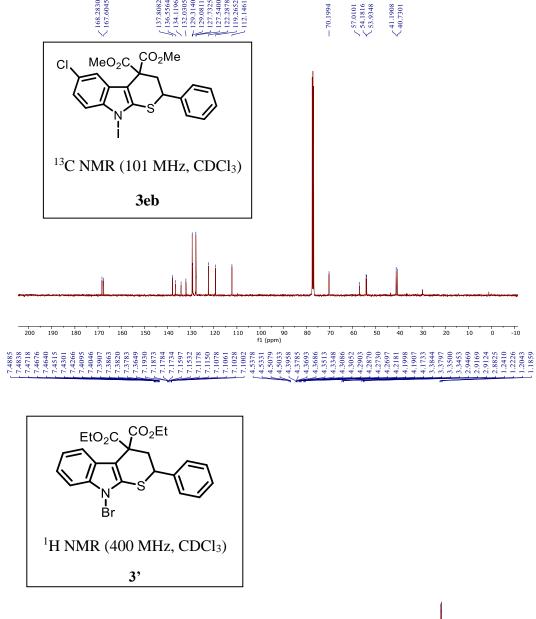

7.4776 7.4776 7.4570 7.4570 7.4421 7.4412 7.4412 7.3922 7.

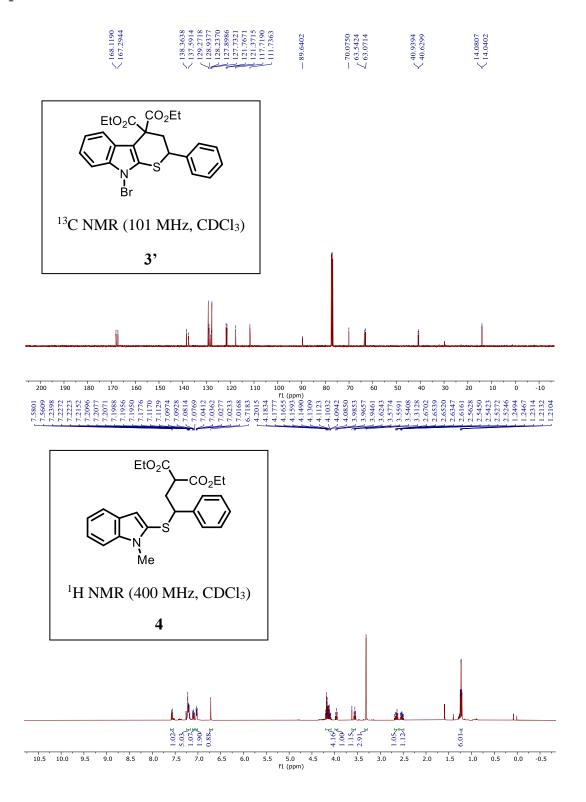


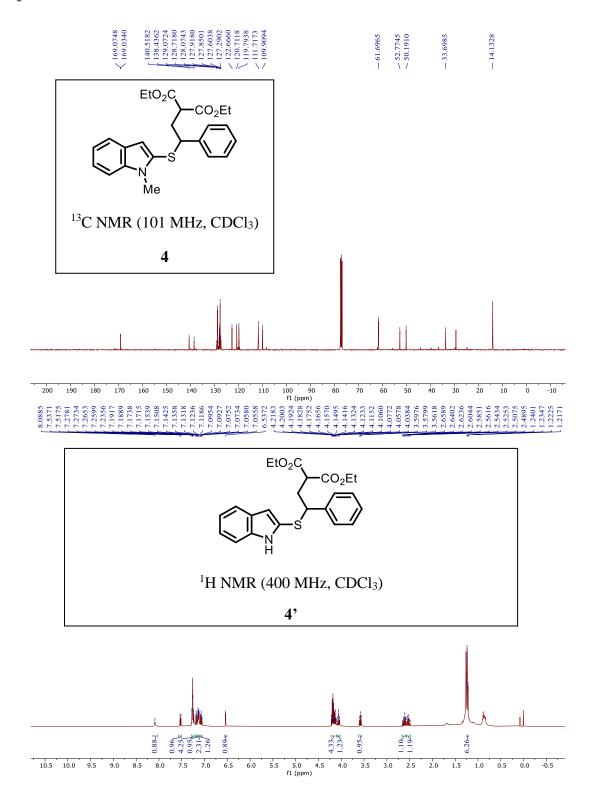


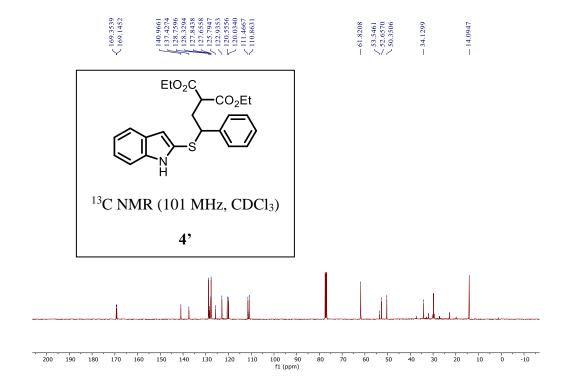


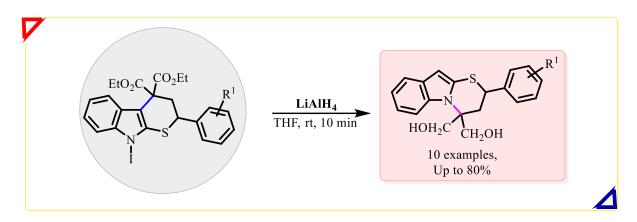

¹H NMR (400 MHz, CDCl₃)











Chapter 2B

Ring-Opening and -Closing Reactions of N-Iodo Indole Fused Dihydro Thiopyrans

✓ Mild reaction conditions ✓ Broader substrate scope ✓ Gram scale synthesis

2B.1 Introduction

The objective of this chapter is to investigate the reactivity of dihydrothio pyrans using lithium alumium hydride, Sulfur-nitrogen-containing cyclic molecules are widely present in various fields, including pharmaceuticals, natural products, agrochemicals, materials science, polymer chemistry, and synthetic organic chemistry¹. Among all known sulfur-nitrogen heterocycles, thiazino motifs represent a highly significant class of molecules, frequently found in various pharmaceutical and bioactive compounds². Over the past few decades, fused-indole thiopyranos have served as valuable synthons for the synthesis of thiazino motifs³. Figure 2B.1 illustrates several fused indole derivatives, including thiazoloindoles, [1,3]thiazino[3,2-a]indol-4-ones, and [1,3]thiazino[3,2-a]indoles. These compounds, encompassing natural products and drugs, exhibit notable antiproliferative activity and function as 5-HT4 receptor antagonists, 4. To the best of our knowledge, the synthesis of 1,2-fused indoles containing a sulfur atom has been relatively underexplored compared to 2,3-fused indole tricycles. However, a literature survey reveals several reported methods for synthesizing thiazino indoles⁵. Additionally, in 2016, Jha and their co-workers published an article detailing the construction of thiazoloindoles through a coppercatalyzed Ullmann C-N coupling reaction (Scheme 2B.1)⁶. However, no reports have been documented on the use of reducing agents for the one-step preparation of thiazoloindoles. Recently, we reported the synthesis of indole-fused dihydrothiopyrano scaffolds via (3 + 3) annulations of donor-acceptor cyclopropanes with indoline-2-thiones (Scheme 2B.2).⁷ In this approach, we aim to extend our methodology to synthesize (2-phenyl-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole-4,4-diyl)dimethanol using reducing agents.

3-hydroxy-3-methyl-2,3-dihydrothiazolo[3,2a]indole-9-carbaldehyde (Anticancer activity)

thiazino[3,2-a]indol-4-one (antiproliferative activity)

thiazolo[3,2-a]indole-9-carboxylic acid (5HT4 receptor antagonists)

$$\begin{array}{c}
R^2 \\
N \\
N \\
R
\end{array}$$

thiazino[3,2-a]indol-3-amine (CRTH2 and 5HT4 receptor antagonists)

Figure 2B.1 Thiazino indoles as bio-active candidates.

Synthesis of thiazino indoles

Scheme 2B.1 Synthesis of thiazino indoles *via* Ullman Coupling.

Scheme 2B.2 Synthesis of *N*-iodo indole fused dihydrothio pyrans.

Scheme 2B.3 Proposed hypothesis for construction of thiazino indoles.

2B.2 Results and Discussions

Our study mainly commenced exploration of the efficacy of reducing agents. We begin our optimization studies by taking diethyl 9-iodo-2-phenyl-2,3-dihydrothiopyrano[2,3-*b*]indole-4,4(9H)-dicarboxylate **1** as a modal substrates scope under different reducing agents and different reactions conditions to obtain **2** and the results are discussed in (Table 2B.1). A series of reducing agents are used like LiBH₄, NaBH₄, *n*-BuLi and DIBAL-H in the presence of THF as a solvent at room temperature. In all the cases targeted product was not observed **2** (Table 2B.1, entries 1-4). Further, LiAlH₄ was used, the reaction was complete within 10 min. To our delight, we observed 80 % of **2** (Table 2B.1, entry 5). Other solvents like Et₂O and MeOH were not found to give a suitable yield of **2** (Table 2B.1, entries 7-8).

Table 2B.1 Optimization of the reaction conditions^a:

EtO ₂ C, CO ₂ Et reaction conditions HOH ₂ C CH ₂ OH								
Entry	Reducing agent	Solvent	Temp. (0	Time	2aa (%) ^b			
no.	LiBH ₄	THF	°c) rt	24 h	n. r.			
2	NaBH4	THF- MeOH	rt	24 h	n. r.			
3	n-BuLi	THF	-78 - rt	24 h	n. r.			
4	DiBAL-H	THF	-78 - rt	24 h	n. r.			
5°	LiAlH4	THF	0 °C - rt	10 min	80			
6 ^c	LiAlH ₄	THF	0 °C - rt	5 min	78			
7°	LiAlH ₄	Et ₂ O	0 °C - rt	10 min	72			
8 ^c	LiAlH ₄	MeOH	0 °C - rt	10 min	75			

^aoptimized reaction conditions were performed with **1a** (0.6 mmol), Reducing Agent (0.30 mmol), room temperature, N_2 atmosphere. ^bIsolated yields. ^creaction performed. n.r. = No reaction;

Scope of Thiazino Indole

Scheme 2B.4 Scope of compounds **2**^{*a, b, c*}. ^{*a*}Reaction Conditions: **1** (0.6 mmol, 1 eq.), THF (2 ml), room temperature, N₂ atmosphere; ^{*b*}Isolated yield; ^{*c*}single crystal structure of **2d** thermal ellipsoids with 30% probability level.

At first, we started investigating the diversity of arene groups that were linked to the indole-fused dihydrothiopyrano under the optimized reaction conditions (Scheme 2B.4). Our analysis revealed that all types of arenes, including EDGs, and EWGs, and electronically hindered groups, were compatible with the above-said reaction conditions and delivered the expected compounds 2 in good to excellent yields. For example, substrates with *ortho*-substituted electron-rich functional groups viz., -Me and -Br were well tolerated under optimal reaction conditions and yielded 2b and 2c in 55% and 58% yields. *para*-substituted (-Me and OMe) aryl moieties on indole-fused

Chapter-2B

dihydrothiopyrano were found suitable candidates for the transformation and furnished the respective products **2d** and **2e** in good yields. Moreover, at the same time, halogen (i.e., F, Cl and Br) substituted indole-fused dihydrothiopyrano were also provided thiazino indole **2f-3h** in good to satisfactory yields. electron-withdrawing group substituted (-CF₃) aryl moieties on indole-fused dihydrothiopyrano were found suitable candidates for the transformation and furnished the respective product **2i** in good yield.

Scheme 2B.5 Gram scale synthesis of thiazino indoles.

Further, to investigate the practicality and viability of our methodology, a gram-scale synthesis of the targeted product **2** was performed as depicted in Scheme 2B.5. In this context, the reaction of **1a** was carried out at a 5 mmol scale and the product **2a** was obtained in 78% yield (1.20 g).

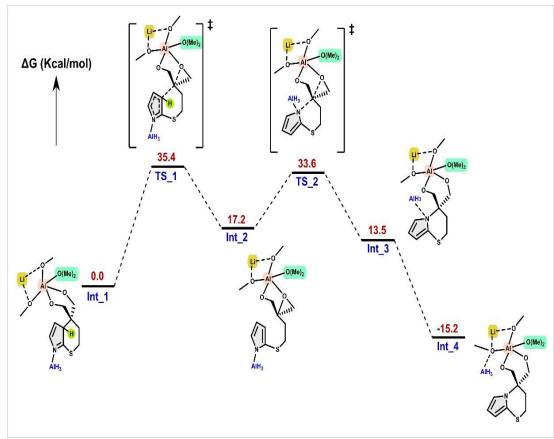


Figure 2B.2. Free energy profile showing the reaction mechanism of 2a reaction.

To further investigate the mechanism of this reaction, (figure 2B.2). we carried out DFT calculations at M06- 2X/def2-TZVPP (SMD, solvent=THF)//M06-2X/def2-SVP level of theory. Reduction of esters in the presence of LiAlH4 is very well known in the literature, hence we focused on later part of the mechanism involving ring opening and closing via epoxide intermediate. Our investigation revealed that there an involvement of solvent coordination to the aluminium during the mechanism. Hence a dimethyl ether (computationally less expensive alternative for THF) is used during all the calculations. The first step after the formation of Int_1 is the attack of oxygen atom on the carbon to form the epoxide Int_2 via TS_1. This step is accompanied with a Gibbs free energy barrier of 35.4 kcal/mol. The epoxide Int_2 is unstable by 17.2 kcal/mol compared to Int_1 due to the presence of high 3-membered ring strain. This leads to the quick attack of pyrrole's nitrogen on epoxide ring to form the Int_3 via a smaller energy

barrier of TS_2. Int_3 in turn leads to the formation of a more stable Int_4. This Int_4 on hydrolysis forms the final product.

2B.3 Conclusions

In summary, a straightforward and efficient LiAlH₄-mediated protocol has been developed for the construction of thiazino indoles. This procedure provides efficient thiazino indoles derivatives in good to satisfactory yields. DFT calculation has been done to shed light into reaction mechanism.

2B.4 Experimental Section

All the reactions were carried out under an inert atmosphere using the Schlenk technique. All solvents were dried and stored over molecular sieves under an argon atmosphere. All chemicals and reagents were purchased from commercial suppliers and used without further purification. Thin-layer chromatography (TLC) was performed using pre-coated plates purchased from E. Merck (silica gel 60 PF254, 0.25 mm). Column chromatography was performed using E. Merck silica gel 60 (100–200 mesh). 1 H, 13 C NMR spectra were recorded in CDCl₃, on JEOL JNM-ECS spectrometer at operating frequencies of 400 MHz (1 H) or 101 MHz (13 C) as indicated in the individual spectrum. Chemical shifts (δ) are given in parts per million (ppm) relative to residual solvent (chloroform, δ = 7.26 for 1 H and 77.16 for proton decoupled 13 C NMR) and coupling constants (J) in Hz. Multiplicity is tabulated as s for singlet, d for doublet, dd for doublet of doublet, t for triplet, q for quartet, and m for multiplet. High-resolution mass spectra (HRMS) were recorded using electron spray ionization (ESI) methods on waters mass spectrometer (XEVO G2-XS QTOF). Melting points were taken on the Staurt digital melting point apparatus and X-ray data were recorded on a Bruker D8 venture instrument.

2B.4.1 Synthesis of starting materials

General procedure for the synthesis of N-iodo indole fused dihydrothio pyrans derivatives (GP1): In a Schlenk tube, indoline-2-thione 1 (0.6 mmol, 1.0 eq.), donor-acceptor cyclopropanes 2 (0.6 mmol, 1.0 eq.), and Sc(OTf)₃ (0.06 mmol, 30 mg, 0.1 eq.) were dissolved in anhydrous

Chapter~2B

1,2-DCE (1 mL) under a nitrogen atmosphere. Next, NIS (N-iodosuccinimide, 1.2 mmol, 2.0 eq.) and DBU (1.5 mmol, 0.22 mL, 2.5 eq.) were added sequentially. The reaction mixture was stirred for 6–8 hours at 60 °C (oil bath). Once the reaction was complete (monitored by TLC), the crude mixture was filtered, and the filtrate was concentrated under reduced pressure. The resulting crude was then purified by silica gel column chromatography using a hexane and ethyl acetate mixture as eluents.¹

Figure 2B.4.1 Used *N*-iodo indole fused dihydrothio pyrans 1

2B.4.2 General Procedures

2B.4.2.1 Synthesis of thiazino indoles 2:

In a round-bottom flask, N-halo indole-fused dihydrothiopyrano 1 (1 mmol, 1 eq.) was dissolved in anhydrous THF under a nitrogen atmosphere at room temperature. After 2 minutes of stirring, LiAlH₄ (2 mmol, 2 eq.) was added, and the reaction mixture was allowed to stir for 10 minutes. Upon completion of the reaction, as monitored by TLC, the crude solution was extracted with ethyl acetate (EtOAc). The combined organic layers were washed once with brine and NaHCO₃, then dried over sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure. The resulting crude was purified by silica gel column chromatography using a hexane and ethyl acetate mixture as eluents.

2B.4.2.2 Gram scale synthesis of (2-phenyl-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole-4,4-diyl)dimethanol 2a:

In a round bottom flask, *N*-halo indole fused dihydrothiapyrano **1** (5 mmol, 5 eq.), dissolved in anhydrous THF solvent under N₂ atmosphere at rt. After 2 min of stirring add LiAlH₄ (10 mmol, 2 eq.) and allowed reaction mixture to stir for 10 min. Upon completion of the reaction, as monitored by TLC, the crude solution was extracted with EtOAc. The combined organic layers were washed once with brine and NaHCO₃ dried over sodium sulfate (Na₂SO₄), filtered and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents. Yield of product **2a**: 1.2 g, 78%

2B.4.3 Characterization of compounds

(2-phenyl-3,4-dihydro-2*H*-[1,3]thiazino[3,2-*a*]indole-4,4-diyl)dimethanol (2aa):

White Solid, 172 mg (85%), ¹H NMR (400 MHz, DMSO-d₆): δ 7.68–7.66 (m, 1H), 7.53–7.51 (m, 2H), 7.45–7.41(m, 2H), 7.39–7.31 (m, 3H), 7.04–6.96 (m, 2H), 6.27 (s, 1H), 5.20(t, J = 5.4 Hz, 1H), 4.95 (t, J = 5.6 Hz, 1H), 4.88 (dd, J = 12.4, 1.8Hz, 1H), 4.52–4.47 (m, 1H), 3.98 (d, J = 5.5 Hz, 2H), 3.76 (dd, J = 11.9, 5.5 Hz, 1H), 2.92 (dd, J = 14.1, 12.5 Hz, 1H). ¹³C{¹H} NMR(101 MHz, DMSO-d₆) δ 140.2, 136.4, 131.7, 128.9, 128.8, 128.1,127.6, 119.6, 119.4, 118.8, 113.1,

Chapter-2B

98.8, 64.7, 62.8, 38.6. HRMS:m/z calculated for $C_{19}H_{19}NO_2S$ [M+H]⁺ 326.1168, found 326. 1170.

(2-(o-toly1)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole-4,4-diyl)dimethanol(2ab):

Brown Solid. mg (55%). ¹H NMR (400 MHz, DMSO- D_6) δ 7.78 – 7.70 (m, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.49 – 7.41 (m, 1H), 7.39 – 7.27 (m, 3H), 7.10 – 7.02 (m, 2H), 6.36 (s, 1H), 5.14 (dd, J = 12.3, 1.7 Hz, 1H), 4.53 (d, J = 11.8 Hz, 1H), 4.17 (d, J = 11.4 Hz, 2H), 4.15 – 3.99 (m, 1H), 3.84 (d, J = 11.8 Hz, 1H), 3.10 – 2.97 (m, 1H), 2.67 (dd, J = 14.1, 1.8 Hz, 1H), 2.55 (t, J = 1.9 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, DMSO- D_6) δ 138.2, 136.3, 136.2, 131.9, 130.7, 128.9, 127.8, 126.7, 126.2, 119.6, 119.4, 118.8, 113.1, 99.2, 64.8, 63.1, 62.83, 59.9, 35.6, 20.8, 18.9, 14.2. HRMS:m/z calculated for $C_{20}H_{21}NO_{2}S[M+H]^{+}$ 340.1326, found 340.1328.

(2-(2-bromophenyl)-3,4-dihydro-2*H*-[1,3]thiazino[3,2-*a*]indole-4,4-diyl)dimethanol (2ac)

Brown Solid. Yield: 176 mg (58%). H NMR (400 MHz, DMSO- D_6) δ 7.76 – 7.63 (m, 2H), 7.62 – 7.48 (m, 2H), 7.48 – 7.33 (m, 2H), 7.04 – 6.94 (m, 2H), 6.28 (s, 1H), 5.21 (t, J = 5.6 Hz, 1H), 5.01 – 4.83 (m, 2H), 4.49 (dd, J = 11.8, 6.2 Hz, 1H), 4.03 (q, J = 7.0 Hz, 1H), 3.97 (d, J = 5.6 Hz, 1H), 3.75 (dd, J = 12.0, 5.5 Hz, 1H), 2.88 (dd, J = 14.1, 12.4 Hz, 1H), 2.63 (dd, J = 14.1, 2.1 Hz, 1H). NMR (101 MHz, DMSO- D_6) δ 142.9, 140.2, 136.4, 131.7, 131.2, 131.1, 131.0, 130.5, 128.9, 128.1, 127.7, 126.8, 122.0, 119.7, 119.6, 119.5, 119.4, 118.9, 118.8, 113.2, 113.1, 98.9, 64.7, 64.7, 62.8, 62.7, 59.9, 20.8, 14.2. HRMS:m/z calculated for C₁₉H₁₈NO₂Br[M+H]⁺ 405.0220, found 405.0222.

(2-(p-tolyl)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole-4,4-diyl)dimethanol(2ad):

White solid. 151 mg (64%). ¹H NMR (400 MHz, DMSO- D_6) δ 7.69 – 7.62 (m, 1H), 7.43 – 7.32 (m, 3H), 7.23 (d, J = 7.9 Hz, 2H), 7.02 – 6.92 (m, 2H), 6.25 (s, 1H), 5.19 (t, J = 5.6 Hz, 1H), 4.99 – 4.90 (m, 1H), 4.83 (d, J = 11.1 Hz, 1H), 4.49 (dd, J = 11.7, 5.7 Hz, 1H), 3.97 (d, J = 5.5 Hz, 2H), 3.74 (dd, J = 11.9, 5.4 Hz, 1H), 2.89 (t, J = 13.3 Hz, 1H), 2.60 (dd, J = 14.2, 2.1 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, DMSO- D_6) δ 137.4, 137.2, 136.4, 131.9, 129.4, 128.9, 127.5,

119.5, 119.4, 118.8, 113.1, 98.7, 64.7, 62.8, 20.8. HRMS:m/z calculated for $C_{20}H_{21}NO_2S$ [M+H]⁺ 340.1328, found 340.1331.

(2-(4-methoxyphenyl)-3,4-dihydro-2*H*-[1,3]thiazino[3,2-*a*]indole-4,4-diyl)dimethanol (3ea): White Solid. mg (65%). ¹H NMR (400 MHz, DMSO- D_6) δ 7.71 – 7.61 (m, 1H), 7.39 – 7.32 (m, 2H), 7.09 (d, J = 8.0 Hz, 1H), 7.06 (t, J = 2.1 Hz, 1H), 7.02 – 6.94 (m, 2H), 6.93 (dd, J = 8.2, 2.7 Hz, 1H), 4.84 (dd, J = 12.4, 1.9 Hz, 2H), 4.49 (d, J = 11.8 Hz, 1H), 3.97 (s, 3H), 3.79 (s, 4H), 2.89 (dd, J = 14.1, 12.4 Hz, 1H), 2.62 (dd, J = 14.2, 2.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO- D_6) δ 159.6, 141.8, 136.4, 131.6, 130.0, 128.9, 119.7, 119.6, 119.4, 118.8, 113.5, 113.3, 113.1, 98.8, 64.7, 62.8, 55.2, 23.7, 22.2, 14.1. HRMS:m/z calculated for C₂₀H₂₁NO₃S [M+H]⁺ 356.1246, found 356.1248.

(2-(4-fluorophenyl)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole-4,4-diyl)dimethanol(2af):

White Solid. 137 mg (62%). ¹H NMR (400 MHz, DMSO- D_6) δ 7.71 – 7.62 (m, 1H), 7.61 – 7.52 (m, 2H), 7.42 – 7.33 (m, 1H), 7.32 – 7.21 (m, 2H), 7.04 – 6.93 (m, 2H), 6.27 (s, 1H), 5.21 (t, J = 5.6 Hz, 1H), 4.96 (t, J = 5.6 Hz, 1H), 4.90 (dd, J = 12.4, 2.0 Hz, 1H), 4.49 (dd, J = 11.8, 5.7 Hz, 1H), 3.97 (d, J = 5.7 Hz, 1H), 3.75 (dd, J = 11.9, 5.5 Hz, 2H), 2.89 (dd, J = 14.2, 12.4 Hz, 1H), 2.62 (dd, J = 14.0, 2.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO- D_6) δ 162.9, 160.6, 136.5, 136.4, 131.5, 129.8, 129.7, 128.6, 119.7, 119.5, 118.9, 115.9, 115.7, 113.2, 98.9, 64.7, 62.8.HRMS:m/z calculated for C₁₉H₁₈NO₂F[M+H]⁺ 344.1076, found 344.1078.

(2-(4-chlorophenyl)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole-4,4-diyl)dimethanol(2ag):

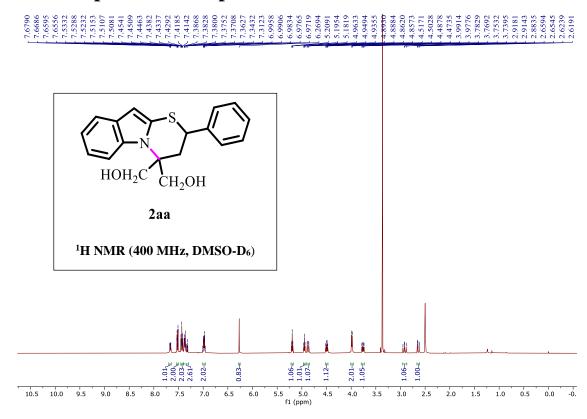
White Solid. 187 mg (63%). ¹H NMR (400 MHz, DMSO- D_6) δ 7.76 – 7.63 (m, 2H), 7.62 – 7.48 (m, 2H), 7.48 – 7.33 (m, 2H), 7.04 – 6.94 (m, 2H), 6.28 (s, 1H), 5.21 (t, J = 5.6 Hz, 1H), 5.01 – 4.83 (m, 2H), 4.49 (dd, J = 11.8, 6.2 Hz, 1H), 4.03 (q, J = 7.0 Hz, 1H), 3.97 (d, J = 5.6 Hz, 1H), 3.75 (dd, J = 12.0, 5.5 Hz, 1H), 2.88 (dd, J = 14.1, 12.4 Hz, 1H), 2.63 (dd, J = 14.1, 2.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO- D_6) δ 142.9, 140.2, 136.4, 131.7, 131.2, 131.1, 131.0, 130.5, 128.9, 128.1, 127.7, 126.8, 122.0, 119.7, 119.6, 119.5, 119.4, 118.9, 118.8, 113.2, 113.1, 98.9, 64.7, 64.7, 62.8, 62.7, 59.9, 20.8, 14.2.HRMS:m/z calculated for C₁₉H₁₈NO₂SCl[M+H]⁺ 361.0740, found 361.0742.

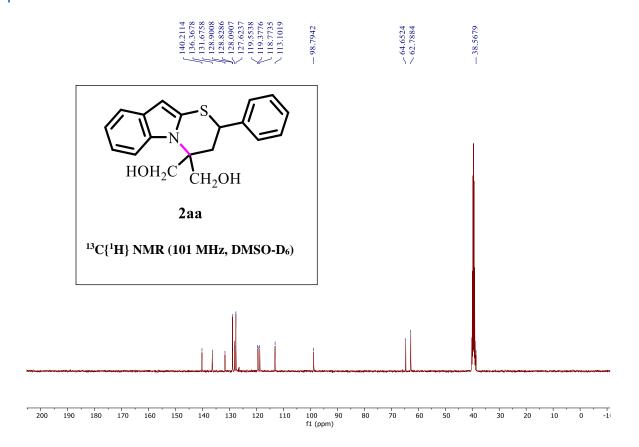
(2-(4-bromophenyl)-3,4-dihydro-2H-[1,3]thiazino[3,2-a]indole-4,4-diyl)dimethanol(2ah):

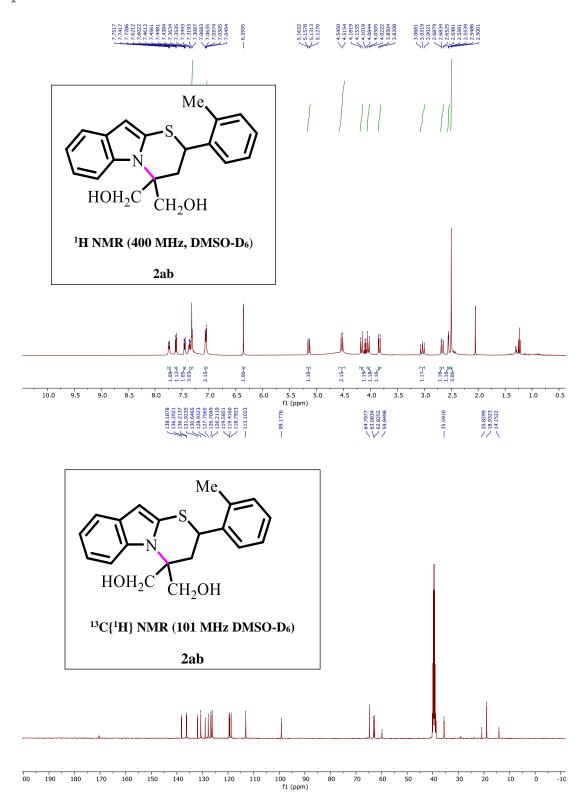
white Solid. 158 mg (66%). ¹H NMR (400 MHz, DMSO- D_6) δ 7.69 – 7.64 (m, 1H), 7.57 – 7.50 (m, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.39 – 7.34 (m, 2H), 7.02 – 6.96 (m, 2H), 6.27 (s, 1H), 5.20 (t, J = 5.5 Hz, 1H), 4.95 (t, J = 5.5 Hz, 1H), 4.87 (dd, J = 12.3, 1.8 Hz, 1H), 4.50 (dd, J = 11.8, 5.6 Hz, 1H), 3.98 (d, J = 5.5 Hz, 2H), 3.75 (dd, J = 11.9, 5.5 Hz, 1H), 2.92 (dd, J = 14.1, 12.4 Hz, 1H), 2.63 (dd, J = 14.2, 2.1 Hz, 1H). ¹³C NMR (101 MHz, DMSO- D_6) δ 140.2, 136.4, 131.7, 128.9, 128.8, 128.1, 127.7, 119.6, 119.4, 118.8, 113.1, 98.8, 64.7, 62.8. HRMS:m/z calculated for C₁₉H₁₈NO₂SBr[M+H]⁺ 405.0224, found 405.0226.

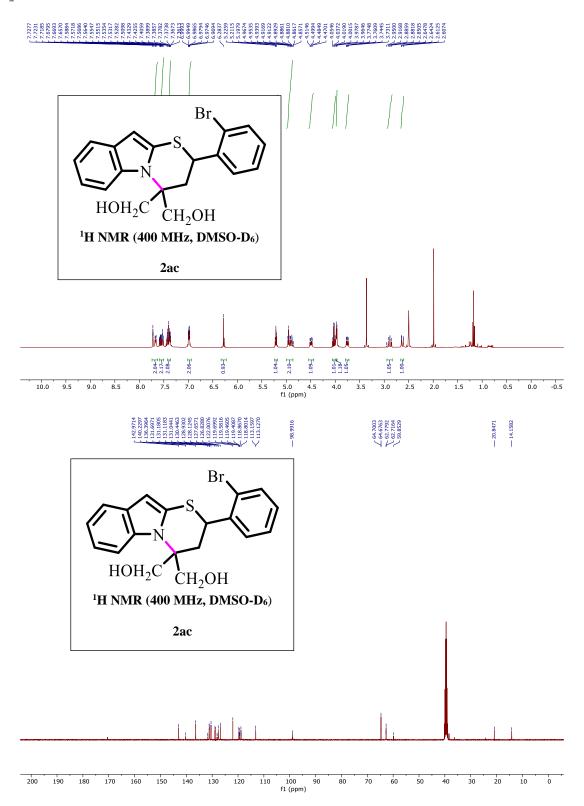
(2-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2*H*-[1,3]thiazino[3,2-*a*]indole-4,4-diyl)dimethanol(2ai):

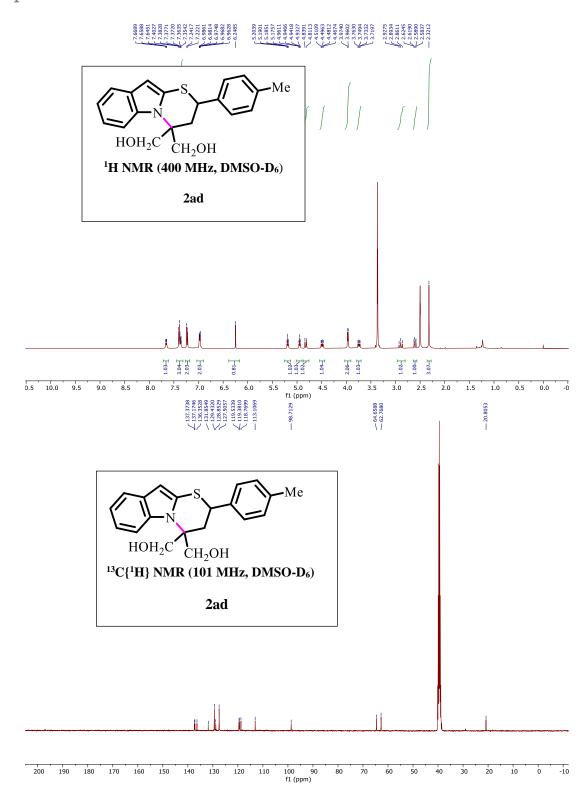
White Solid. 149 mg (68%). ¹H NMR (400 MHz, DMSO- D_6) δ 7.82 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.3 Hz, 2H), 7.72 – 7.64 (m, 1H), 7.43 – 7.34 (m, 1H), 7.04 – 6.95 (m, 2H), 6.30 (s, 1H), 5.23 (t, J = 5.6 Hz, 1H), 5.06 – 4.94 (m, 2H), 4.50 (dd, J = 11.8, 5.6 Hz, 1H), 4.06 – 3.92 (m, 2H), 3.75 (dd, J = 11.8, 5.4 Hz, 1H), 2.93 (dd, J = 14.1, 12.4 Hz, 1H), 2.66 (dd, J = 14.1, 2.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO- D_6) δ 144.9, 136.4, 130.9, 128.8, 128.7, 128.5, 125.9, 125.9, 125.6, 122.9, 119.7, 119.5, 118.9, 113.2, 99.1, 64.7, 62.8, 62.7. ¹⁹F NMR (376 MHz, DMSO- D_6) δ - 60.9. HRMS:m/z calculated for C₂₀H₁₈F₃ NO₂S[M+H]⁺ 394.1042, found 394.1044.

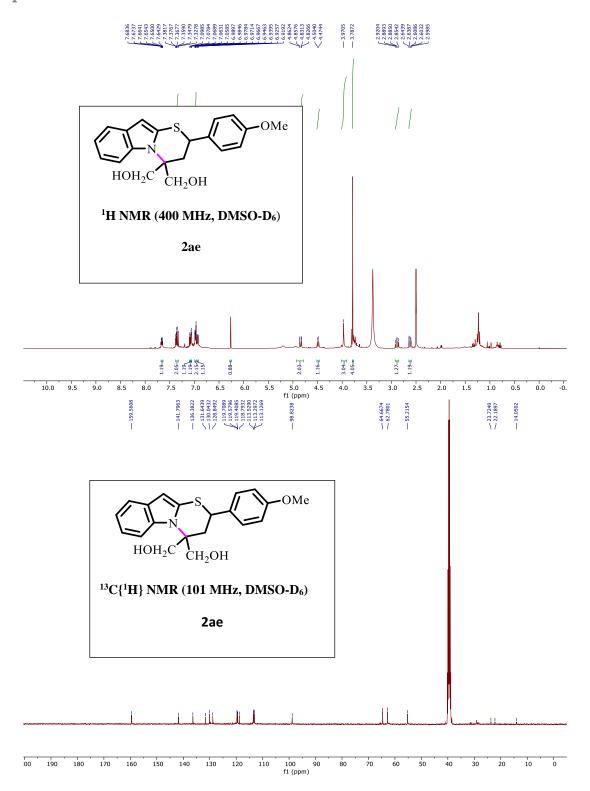

2B.5 References

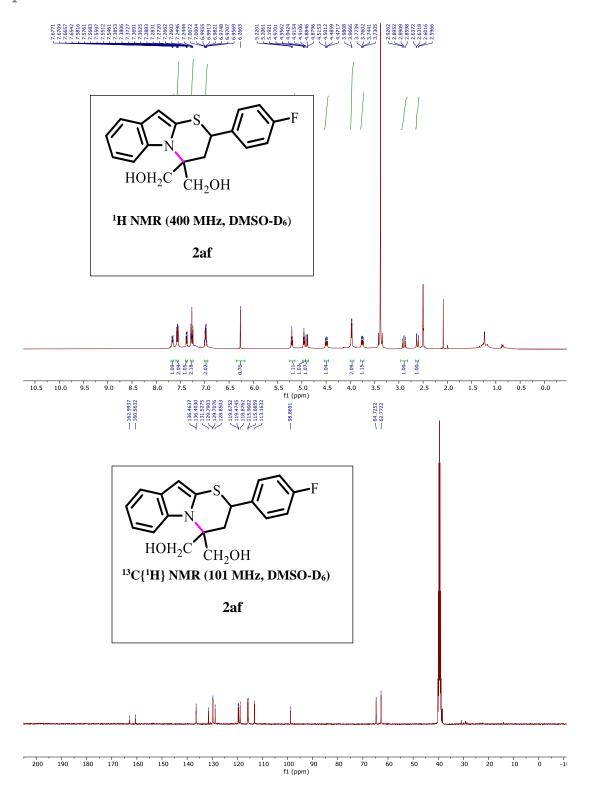

- 1 a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216. (b) Vazquez-Prieto, M. A.; Vazquez-Prieto, R. M. Organosulfur compounds and cardiovascular disease. Molecular Aspects of Medicine. 2010, 31, 540-545. (c) Miękus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C., and Świergiel, A. H. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules. 2020, 25, 3804. (d) Lamberth. C.; Walter. H.; Murphy. F. K.; Quaranta. L.; Beaudegnies. R.; Trah. S.; Jeanguenata. A.; Cederbaum. F. The Significance of Organosulfur Compounds in Crop Protection: Current Examples from Fungicide Research. Phosphorus, Sulfur, and Silicon and the Related Elements. 2015, 190, 1225–1235. (e) Bresser, D.; Passerini, S.; Scrosati, B. Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review. chem. Commun. 2013, 49, 10545–10562. (f) Naoi. K.; Kawase. K.; Inoue. Y. J. Electrochem. Soc. 1997, 144, L170–L172. (g) Parker, D. J.; Jones, H. A.; Petcher, S.; Cervini, L.; Griffin, J. M.; Akhtar R.; Hasell, T.; Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture. J. Mater. Chem. A. 2017, 5, 11682-11692. (h) Lee, C.; Liu, Y.; Badsara, S. Transition-Metal-Catalyzed C-S Bond Coupling Reaction. Chem. Asian J. 2014, 9, 706–722.
- 2 (a) Laxmikeshav, K.; Kumari, P.; Shankaraiah, N. Expedition of sulfur-containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update. *Med. Res. Rev.* **2021**, 42, 513–575.
- 3 (a) Ishizuka, N. 2,3,4,9-Tetrahydrothiopyrano[2,3-b]indoles: synthesis via an intramolecular indole Grignard reaction and conformational study by ¹H and ¹³C NMR spectroscopy *J. Chem. Soc., Perkin Trans. 1*, **1990**, 813-826 (b) shelke, G. M.; Jha, M.; Kumar, A. Synthesis of indole-annulated sulfur heterocycles using copper-catalysed C–N coupling and palladium-catalysed direct arylation. *Org. Biomol. Chem.* **2016**, *14*,3450–3458. (d)

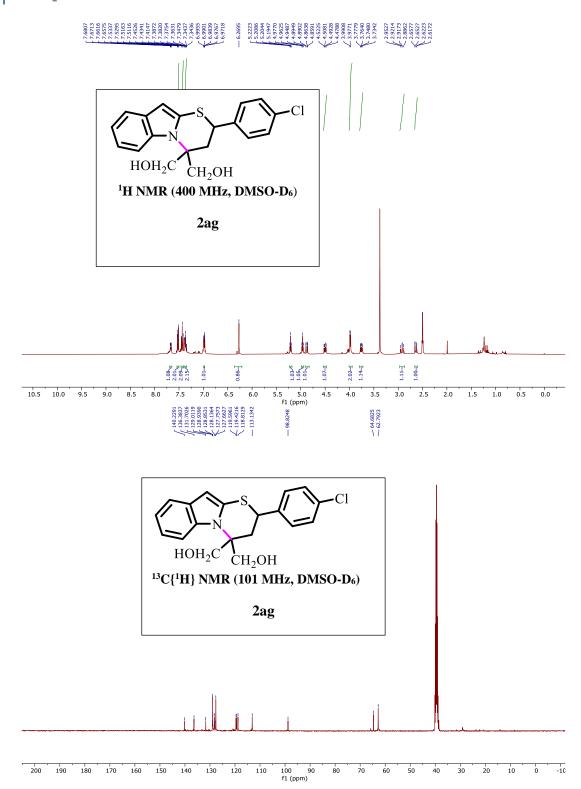

Chapter-2B

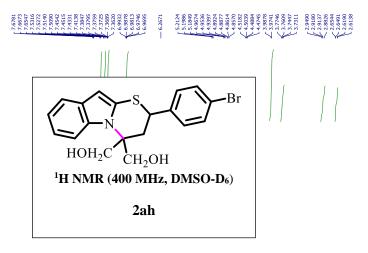

- 4 (a) Gaster, L. M.; Wyman, P. A.. U.S. Patent 5,852,014, 1998. (b) Rhodes, S.; Short, S.; Sharma, S.; Kaur, R.; Jha, M. One-potmild and efficient synthesis of [1,3]thiazino[3,2-*a*]indol-4-ones andtheir anti-proliferative activity. *Org. Biomol. Chem.* **2019**, *17*, 3914–3920.
- 5 (a) Bates, D. K.; Habib, Q. A. Intramolecular sulfoxide electrophilic sulfenylation in 1- and 3-acylindoles. *J. Heterocycl. Chem.* **1995**, *32*,1477. (b) Hamel, P.; Girard, M. Cyclization of 2- and 3-indolythioalkanoic acids to novel indole-containing tricyclic ring systems. *J. Heterocycl. Chem.* **1996**, *33*, 1695 (c)
- 6 shelke, G. M.; Jha, M.; Kumar, A. Synthesis of indole-annulated sulfur heterocycles using copper-catalysed C–N coupling and palladium-catalysed direct arylation. *Org. Biomol. Chem.* **2016**, *14*,3450–3458.
- 7 Gopal, B.; Singh, P. R.; Kumar, M.; Goswami, A. Synthesis of Indole-Fused Dihydrothiopyrano Scaffoldsvia (3 + 3)-Annulations of Donor–Acceptor Cyclopropanes with Indoline-2-Thiones. *J. Org. Chem.* **2023**, *88*, 132.

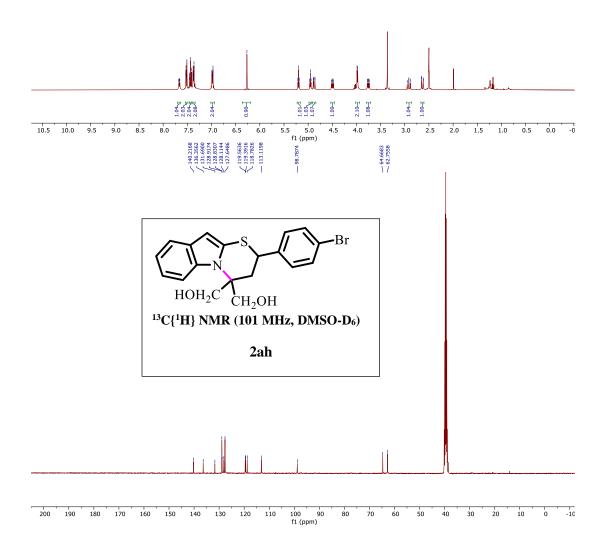

2B.6 NMR spectra of compounds

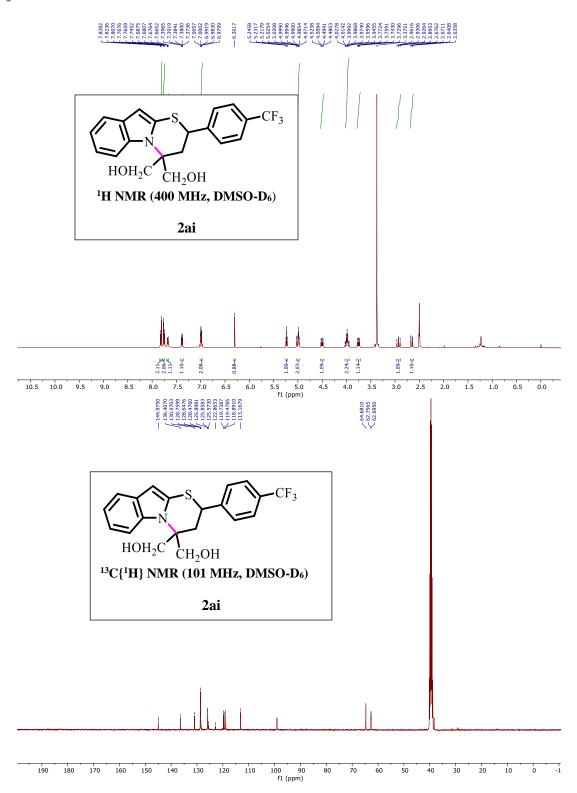


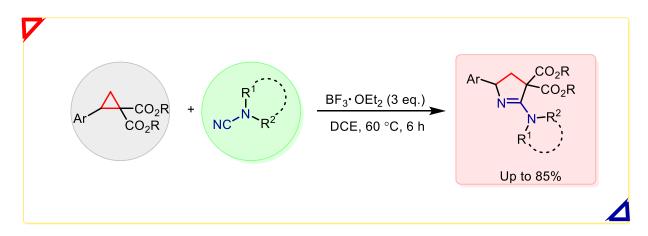












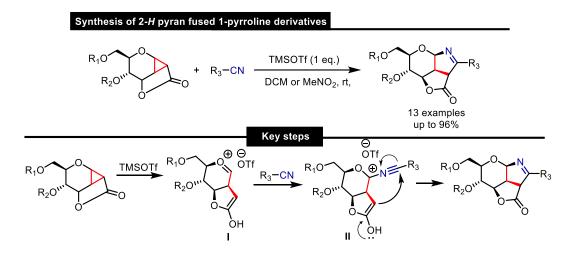
S
$$CF_3$$
 HOH_2C CH_2OH ^{19}F NMR (376 MHz, DMSO- D_6)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm)

Chapter-3

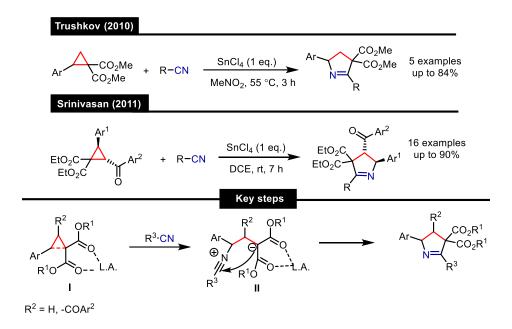
BF₃•OEt₂ Mediated (3+2) Cycloaddition Reactions of DACs with Cyanamides: Access to Cyclic Amidines

✓ Metal/Additive-Free Protocol ✓ Mild reaction conditions ✓ Broader substrate scope ✓ Gram-Scale Synthesis

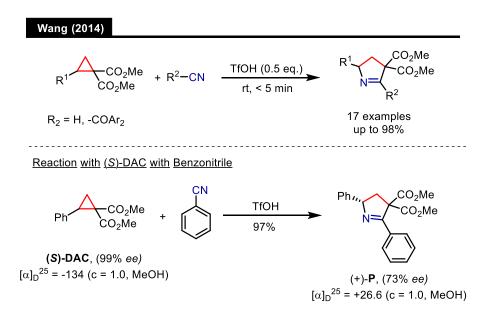

3.1 Introduction

In recent years, nitrogen-containing molecules have become a significant category of heterocyclic compounds with many medicinal chemistry applications.¹ Among the known nitrogen-containing heterocycles, pyrrolines are considered as one of the most privileged class of azaheterocycles found in a variety of natural products and bioactive molecules like, hemes, chlorophyll, and alkaloids.² Depending on the position of double bond, there are three types of pyrrolines entities present in nature; 1-pyrrolines, 2-pyrrolines and 3-pyrrolines. These 1-pyrrolines molecules are important due to their presence in antiviral,³ anti-inflammatory,⁴ immunomodulatory,⁵ cardiovascular,⁶ anti-diabetic⁷ and antibiotic drug agents⁸ (Figure 2a.1). In addition to this, 1-pyrroline is found as a crucial intermediate for the synthesis of pyrrolidine and pyrrole containing alkaloids.⁹ Several methods are reported in the literature for the development of new synthetic roots for the construction of 1-pyrrolines.¹⁰

Figure 3.1 Some examples of biologically active 1-Pyrroline embedded molecules.


Over the course of the last two decades, the (3+2)-cycloaddition approach has emerged as a widely adopted and highly efficient process for the fabrication of 1-pyrroline derivatives through the combination of donor-acceptor cyclopropanes (DACs) with nitriles. The pioneering work of Pagenkopf and his team in 2003 resulted in the serendipitous discovery of this method, as they endeavored to execute a ring expansion reaction of glycolated D-A cyclopropanes with allylsilane. Their efforts led them to note that when acetonitrile was employed as a solvent under TMSOTf catalysis, the acetonitrile molecule interacted with D-A cyclopropane in a (3+2) cycloaddition fashion, even in the presence of strong nucleophiles such as allyltrimethylsilane or allyltributylstannane. They proposed that the reaction followed a *Ritter-type* intermediate, in which the nitrile attacked the oxocarbenium ion instead of the allylsilane. Building on these findings, they were able to successfully leverage a variety of aromatic and aliphatic nitriles with

carbohydrate-derived D-A cyclopropanes to yield fused 1-pyrroline derivatives with high efficiency (Scheme 3.1).


Scheme 3.1 Pagenkopf's work on the (3+2) cycloaddition of DACs with nitriles

In 2010, Trushkov and team further extended this protocol for the SnCl₄ mediated (3+2) cycloaddition of germinal 1, 1-diester donor-acceptor cyclopropanes with acetonitrile and propionitriles for the synthesis of 1-pyrrolines. After some time Srinivasan *et al.* explored same protocol with highly activated ketone tethered D-A cyclopropanes. Various D-A cyclopropanes undergo (3+2) cycloaddition with aryl and alkyl nitriles for selective synthesis of highly substituted 1-pyrroline derivatives in the presence of SnCl₄ (Scheme 3.2). For these protocols, initially Lewis acid interact with the acceptor moiety of D-A cyclopropanes and lead to the formation of activated intermediate **I**. Next, lone-pairs of nitrile nitrogen effectively attack to the D-A cyclopropane carbon attached to the donor part and form intermediate **II**. Further, the emerging nucleophile at malonate center attack to the nitrilium carbon and lead to the formation of desired product (Scheme 3.2).

Scheme 3.2 Construction of 1-pyrrolines.

In 2014, Wang and coworkers utilized Brønsted acid (TfOH) as a promoter for (3+2) annulation of alkyl, vinyl and aryl D-A cyclopropanes with various nitriles for the synthesis of 1-pyrrolines.¹⁴ Surprisingly, when they employed enantiopure D-A cyclopropane for the above

Scheme 3.3 TfOH mediated (3+2) cyccloaddition of DACs with nitriles

Chapter-3

mentioned protocol, desired product was obtained with 73% *ee* (**P**). This phenomenon clearly suggests that the reaction pathway went through tight-ion-pair transition state rather than formal 1,3-zwitterioninc pathway (Scheme 3.3).

In the same line, recently, Srinivasan's group again exploited γ -butyrolactone-fused D-A cyclopropanes for the construction of γ -butyrolactone-fused 1-pyrrolines with aryl and alkyl nitriles in the presence of Lewis acid SnCl₄. This methodology provides wide scope of highly diastereoselctive γ -butyrolactone-fused 1- pyrroline derivatives in moderate to good yield (Scheme 3.4).

Srinivasan (2019)

$$Ar^{1} \longrightarrow O + R - CN$$

$$EtO_{2}C \longrightarrow O + R - CN$$

$$DCE, 40 °C,$$

$$Ar^{1} \longrightarrow R$$

$$18 \text{ examples}$$

$$\text{up to } 75\%$$

Scheme 3.4 Synthesis of γ -butyrolactone-fused 1-pyrrolines.

Previous literature reports have demonstrated that the synthesis of 1-pyrroline derivatives has largely relied on the (3+2) cycloaddition of D-A cyclopropanes with nitrile synthons in the presence of Lewis or Brønsted acid. Recently, our laboratory has also contributed to synthesized thio/-selenopyrrolines and propargylic cyclic imine derivatives via (3+2) cycloaddition of DACs with nitrile counter partners (Scheme 3.5). ^{16a, 16b}

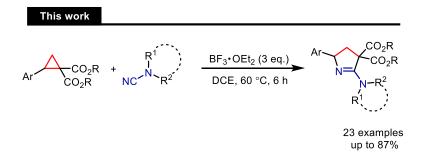
Our prior work

$$\begin{array}{c}
Goswami, 2021 \\
Ar & CO_2Et \\
R = aryl, alkyl, benzyl
\end{array}$$

$$\begin{array}{c}
SnCl_4 (30 \text{ mol}\%.) \\
DCE, 50 °C, 3 \text{ h}
\end{array}$$

$$\begin{array}{c}
X = Se, 12 \text{ examples} \\
X = S, 10 \text{ examples}
\end{array}$$

$$X = Se, 12 \text{ examples}$$


$$X = Se, 12 \text{ examples}$$

$$X = Se, 10 \text{ examples}$$

$$X = Se, 12 \text{ examples}$$

Scheme 3.5 Synthesis of thio/-seleno pyrroline derivatives and propargylic cyclic imine derivatives.

As a part of our continuing research for the construction of functionalized 1-pyrroline derivatives, we are documenting a metal-free (3+2) cycloaddition protocol for synthesizing cyclic amidine derivatives from DACs and cyanamides in the presence of BF₃·OEt₂ under mild reaction conditions (Scheme 3.6).

Scheme 3.6 Synthesis of cyclic amidine derivatives.

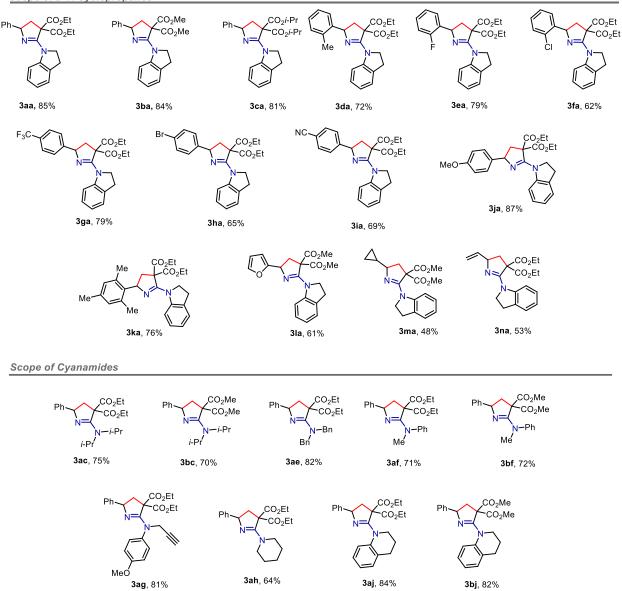
3.2 Results and Discussions

We commenced our optimization studies by taking 1,1-diester cyclopropane **1a** and indoline-1-carbonitrile **2a** as model substrates at various reaction parameters for the constructions of 3aa and the outcomes are summarized in Table 3.1. A series of reactions were carried out using

Chapter-3

several initiators like TiCl₄, SnCl₄, AlCl₃, TMSOTf, and FeCl₃ in the presence of DCE as a solvent at 60 °C temperature however, in all the cases, we did not get our targeted product **3aa** (Table 3.1, entries 1-5). Furthermore, when we utilized promoters like TfOH, InCl₃ and Sc(OTf)₃, the reaction delivered the desired product despite unsatisfactory yields (Table 3.1, entries 6-8). In order to achieve the product with a higher yield, cycloaddition reaction was further explored in the presence of BF₃·OEt₂ (1 eq.); to our delight, we observed 65% of **3aa** (Table 3.1, entry 9). Next, we increased the loading of BF₃·OEt₂ up to 3 eq. and significant enhancement in the formation of **3aa** was observed in the presence of DCE at 60 °C (Table 3.1, entry 11). Then, we performed the aforementioned reaction at room temperature; however, the product yield was comparatively low (Table 3.1, entry 12). Other organic solvents like DCM, chloroform, THF and toluene were found unsuitable in providing a reasonable yield of **3aa** (Table 3.1, entries 13-16).

Table 3.1 Optimization of the reaction conditions^a:


Entry no.	Promoters (x.eq.)	Solvent	Temperature	Time (h)	3aa (%) ^b
			(°C)		
1	TiCl ₄ (1)	DCE	60	24	n.r
2	SnCl ₄ (1)	DCE	60	24	n.r.
3	AlCl ₃ (1)	DCE	60	24	n.r.
4	TMSOTf (1)	DCE	60	24	n.r.
5	FeCl ₃ (1)	DCE	60	24	n.r.
6	TfOH(1)	DCE	60	24	30
7	InCl ₃ (1)	DCE	60	24	53
8	Sc(OTf) ₃ (1)	DCE	60	24	43
9	$BF_3 \cdot OEt_2(1)$	DCE	60	24	65
10	BF ₃ ·OEt ₂ (2)	DCE	60	6	68
11	BF ₃ ·OEt ₂ (3)	DCE	60	6	85
12	BF ₃ ·OEt ₂ (3)	DCE	rt	6	67
13	BF ₃ ·OEt ₂ (3)	DCM	rt	6	60

14	$BF_3 \cdot OEt_2(3)$	CHCl ₃	rt	6	55
15	$BF_3 \cdot OEt_2(3)$	THF	60	6	62
16	$BF_3 \cdot OEt_2(3)$	Toulene	60	6	58

^aOptimized reaction conditions for **3aa**: **1a** (131 mg, 0.5 mmol, 1 eq.), **2a** (86.5 mg, 0.36 mmol, 1.2 eq.), BF₃.OEt₂ (0.18 mL, 3 eq.), 1,2-DCE (2.0 mL), 60°C, inert atmosphere, 6 h. ^bIsolated yields.

After establishing the optimal conditions, a library of five-membered cyclic amidines 3 were prepared (Scheme 3.7). First, the tolerance of electronically and structurally diverse D-A cyclopropanes 1 with indoline-1-carbonitrile 2a was examined. D-A cyclopropanes with different ester functionality worked well under the standard conditions and deliver high yielded products 3aa, 3ba, and 3ca. DACs with o-substituted arenes also smoothly undervent the reaction conditions and furnished desired products (3da, 3ea, and 3fa) in good yields. Furthermore, p-substituted arenes attached to the D-A cyclopropanes were well tolerated to give access 3ga, 3ha, 3ia and 3ja in the moderate to good yields. Highly hindered mesityl ring decorated D-A cyclopropane also provide the desired product 3ja in 76% yield. Next, we have utilized heteroaryl furan substituted cyclopropane 11 in the reaction and afforded the desired product **3la** in 61% yield. In addition to this, cyclopropyl and vinyl donor-acceptor cyclopropnes were also found compatible with the reaction protocol and furnished amidine derivatives 3ma and 3na respectively, in the moderate yields. Next, the reaction scope of several symmetrical and unsymmetrical cyanamides was evaluated under optimal conditions with D-A cyclopropanes. Acyclic symmetrical cyanamides having alkyl substituted (iso – propyl, benzyl and propargylic substitutents) found suitable candidates and provided good to excellent yields of cyclic amidines 3ac, 3bc and 3ae, (Scheme 3.7). Furthermore, the employment of unsymmetrical cyanamides like 2f and 2g were also found worthy in the reported methodology and furnished targeted products (3af, 3bf and 3ag). The reaction using cyclic cyanamides also afforded 3ah, 3aj, and **3bj** in good to excellent yields.

Scope of D-A Cyclopropanes

Scheme 3.7 Substrate scope of cyclic amidine derivatives.^a ^aReaction Conditions: **1** (0.5 mmol, 1 eq.), **2a** (0.36 mmol, 1.2 eq.), BF₃.OEt₂ (0.18 mL, 3 eq.), 1,2-DCE (2.0 mL), 60°C, inert atmosphere, 6 h.

In order to explore the potential of a newly developed reaction methodology, we have extended our reaction protocol. Specifically, we have reacted bisnitrile substrate piperazine-1,4-dicarbonitrile **2k** with **2** eq. of D-A cyclopropane **1a** to consecutively achieve double (3+2) cyclizations. This process has given rise to the formation of compound **3aka** in a diastereomeric mixture (1:1) (Scheme 3.8a). Additionally, we have conducted a gram-scale synthesis of **3aa** by exploiting the optimal reaction conditions, resulting in the production of 1.30 g of the product, as illustrated in (Scheme 3.8b).

(a) Extended reaction protocol:

(b) Large-scale synthesis:

Ph
$$CO_2Et$$
 $+$ NC $BF_3 \cdot OEt_2 (3 eq.)$ NC CO_2Et CO_2Et NC CO_2Et NC CO_2Et NC CO_2Et NC CO_2Et OCE , OCE

Scheme 3.8a Preparation of dimer of pyrazine 3aka.

Scheme 3.8b Gram scale synthesis of **3aa.**^a Reaction conditions: **1a** (1.05 g, 4 mmol), **2a** (0.69 g, 4 mmol) BF₃·OEt₂ (0.2 mL, 3 eq.), 1,2-DCE (4 mL).

In Scheme 3A.9, we would like to propose the plausible reaction pathway for the formation of amidine derivatives 3 via (3+2) cycloaddition of D-A cyclopropanes with cyanamides. At first instance, the initiator BF₃·OEt₂ interacts with the acceptor moieties of D-A cyclopropane and

form the activated intermediate **A**, followed by the nucleophilic attack from the cyanamide's nitrile center to the cyclopropane's C-center attached to the donor group and forms intermediate **B**. Next, the emerging nucleophile at the malonate center attacks the nitrile's carbon, leading to the transformation of desired cyclic amidine derivative **3**.

$$\begin{array}{c} \text{OR} \\ \text{OR} \\ \text{OO} \\ \text{OO} \\ \text{OO} \\ \text{OO} \\ \text{OO} \\ \text{PO} \\ \text{OO} \\ \text{OO} \\ \text{PO} \\ \text{OO} \\ \text{OO} \\ \text{PO} \\ \text{OO} \\$$

Scheme 3.9: Plausible Mechanism for cyclic amidine (3).

3.3 Conclusions

In summary, we have developed a straightforward metal-free BF₃·OEt₂ mediate protocol for the construction of cyclic amidines via (3+2) cycloadditions of DACs with cyanamides under mild conditions. This procedure provides an efficient and atom-economical way to construct cyclic amidine derivatives in good to excellent yields.

3.4 Experimental Section

All the reactions were carried out under an inert atmosphere using the schlenk technique. All solvents were dried and stored over molecular sieves under argon atmosphere. All chemicals and reagents were purchased from commercial suppliers and used without further purification. Thin-

layer chromatography (TLC) was performed using pre-coated plates purchased from E. Merck (silica gel 60 PF254, 0.25 mm). Column chromatography was performed using E. Merck silica gel 60 (100–200 mesh). 1 H, 13 C, and DPT-135 NMR spectra were recorded in CDCl₃, on JEOL JNM-ECS spectrometer at operating frequencies of 400 MHz (1 H) or 100 MHz (13 C) as indicated in the individual spectrum. Chemical shifts (δ) are given in parts per million (ppm) relative to residual solvent (chloroform, δ = 7.26 for 1 H and 77.16 for proton decoupled 13 C NMR) and coupling constants (J) in Hz. Multiplicity is tabulated as s for singlet, d for doublet, dd for doublet of doublet, t for triplet, td for triplet of doublet, q for quartet, and m for multiplet. High-resolution mass spectra (HRMS) were recorded using electron spray ionization (ESI) methods on waters mass spectrometer (XEVO G2-XS QTOF).

3.4.1 Preparation of starting materials

General procedure for the preparation of cyclopropane-1,1-diester derivatives¹⁷:

Using N₂ atmosphere, a solution of dry dimethyl sulfoxide (DMSO) and sodium hydride (NaH) (60% suspension in mineral oil, 7.5 mmol, 1.5 eq.) was made. Drop by drop, trimethylsulfoxonium iodide (TMSOI) (7.5 mmol, 1.5 eq.) was added to the mixture. *Be careful!* When sodium hydride and trimethylsulfoxonium iodide react exothermically, heat and H₂ are produced. For this reason, the suspension was maintained at 0 °C before adding trimethylsulfoxonium iodide. After vigorously stirring for 15 to 20 minutes, the mixture was allowed to come to room temperature. In the meantime, a benzylidene-malonate solution (5 mmol, 1.0 eq.) in DMSO was added. After the reaction was completed, as determined by TLC, the crude solution was combined with crushed ice and extracted using diethyl ether. The combined organic layers were washed with brine, dried over sodium sulfate (Na₂SO₄), filtered and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl acetate as an eluent. Dimethyl [1,1'-bi(cyclopropane)]-2,2-dicarboxylate (1m)^{17f} and Diethyl 2-vinylcyclopropane-1,1-dicarboxylate (1n)^{17e}. The spectral data obtained are in accordance with those described in the literature.

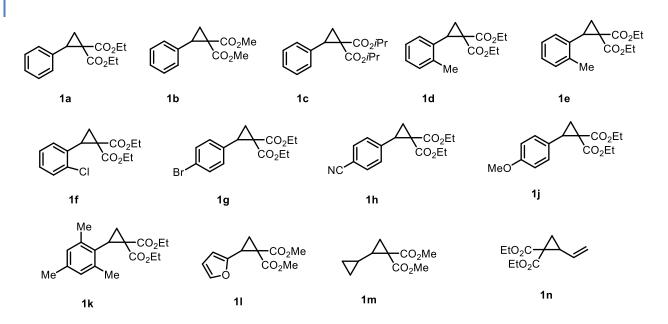


Figure 3.4.1 Used Donor-Acceptor Cyclopropanes in this study.

General procedure for the Synthesis of known cyanamides¹⁸: Secondary amine (2mmol, 2eq.) dissolved in THF add Cyanogen bromide (1mmol, 1eq.) at 0° C. After the reaction mixture is stirred for 6 h at room temperature. Upon completion of the reaction mixture, as monitored by TLC, the crude solution was extracted with ethyl acetate. The combined organic layers were washed once with brine, dried over sodium sulfate (Na₂SO₄), filtered and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents.

$$\bigcap_{\substack{N \\ CN}} \bigcap_{\substack{N \\ CN}} \bigcap_{\substack{CN}} \bigcap_{\substack{N \\ CN}} \bigcap_{\substack$$

Figure 3.4.2 Used Cyanamides in this study.

3.4.2 General procedures

General procedure for the synthesis of cyclic amidine derivatives (3): In a schlenk tube, cyanamide 2 (0.6 mmol, 1.2 eq.), and donor-acceptor cyclopropanes 1 (0.5 mmol, 1 eq.) were dissolved in anhydrous DCE under inert atmosphere at 60 °C. After 2 min of stirring BF₃·OEt₂ (1.5 mmol, 3 eq.) was added and reaction mixture was allowed to stir for 6 h. Upon completion of the reaction, as monitored by TLC, the crude reaction mixture was extracted with DCM. The combined organic layers were washed once with brine and NaHCO₃ dried over sodium sulfate (Na₂SO₄), filtered and concentrated under reduced pressure. The crude was purified by column chromatography using hexane and ethyl acetate as eluents.

Synthesis of compound 3aka: In a schlenk tube, piperazine-1,4-dicarbonitrile **2k** (0.6 mmol, 1.2 eq.), and donor-acceptor cyclopropanes **1a** (1 mmol, 2 eq.) were dissolved in anhydrous DCE under inert atmosphere at 60 °C. After 2 min of stirring BF₃·OEt₂ (5 mmol, 5 eq.) was added and reaction mixture was allowed to stir for 6 h. Upon completion of the reaction, as monitored by TLC, the crude reaction mixture was extracted with DCM. The combined organic layers were washed once with brine and NaHCO₃ dried over sodium sulfate (Na₂SO₄), filtered and concentrated under reduced pressure. The crude was purified by column chromatography using hexane and ethyl acetate as eluents.

Gram scale synthesis of (3aa): In a schlenk tube, indoline-1-carbonitrile 2a (691 mg, 4.8 mmol, 1.2 eq.), and DAC 1a (1048 mg, 4 mmol, 4 eq.) were dissolved in anhydrous DCE under inert atmosphere at 60 °C. After 2 min of stirring BF₃·OEt₂ (12 mmol, 12 eq.) was added and reaction mixture was allowed to stir for 6 h. Upon completion of the reaction, as monitored by TLC, the crude reaction mixture was extracted with DCM. The combined organic layers were washed once with brine and NaHCO₃ dried over sodium sulfate (Na₂SO₄), filtered and concentrated under reduced pressure. The crude was purified by column chromatography using hexane and ethyl acetate as eluents. Yield of product 3aa: 1.3 g, 81%

3.4.3 Characterization of compounds

Diethyl 2-(indolin-1-yl)-5-phenyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (3aa)

Yield: 172 mg (85%); Brown viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.6 Hz, 1H), 7.44 (d, J = 7.1 Hz, 2H), 7.39 – 7.35 (m, 2H), 7.30 – 7.26 (m, 1H), 7.22 – 7.18 (m, 2H), 6.98 – 6.95 (m, 1H), 5.21 (t, J = 7.2 Hz, 1H), 4.38 – 4.17 (m, 5H), 4.00 (q, J = 9.2 Hz, 1H), 3.34 (dd, J = 12.6, 6.7 Hz, 1H), 3.23 – 3.07 (m, 2H), 2.49 (dd, J = 12.5, 7.9 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 169.3, 168.0, 157.7, 145.4, 144.5, 131.4, 128.4, 127.4, 127.0, 126.4, 124.2, 122.3, 116.6, 69.6, 69.3, 62.5, 62.4, 49.5, 46.9, 28.7 14.1, 13.9, HRMS: m/z calculated for C₂₄H₂₇N₂O₄[M+H]⁺ 407.1980, found 407.1971.

Dimethyl 2-(indolin-1-yl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ba)

Yield: 159 mg (84%); Brown viscous liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J= 7.9 Hz, 1H), 7.43 – 7.41 (m, 2H), 7.38 – 7.34 (m, 2H), 7.28 (d, J= 7.3 Hz, 1H), 7.21 – 7.17 (m, 2H), 6.98 – 6.94 (m, 1H), 5.20 (t, 1H), 4.28 – 4.21 (m, 1H), 3.96– 3.91 (m, 1H), 3.86 (s, 3H), 3.73 (s, 3H), 3.32 (dd, J = 12.5, 6.5 Hz, 1H), 3.24 – 3.12 (m, 2H), 2.47 (dd, J = 12.6, 8.0 Hz, 1H), ¹³C { ¹H} NMR (101 MHz, CDCl₃) δ 169.8, 168.5, 157.5, 145.4, 144.4, 131.4, 128.5, 127.5, 127.1, 126.4, 124.3, 122.4, 116.6, 69.8, 69.2, 53.5, 53.3, 49.5, 47.0, 28.7, HRMS: m/z calculated for C₂₂H₂₃N₂O₄ [M+H]⁺ 379.1670, found 379.1658.

Diisopropyl 2-(indolin-1-yl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ca)

Yield: 176 mg (81%); Brown viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 8.9 Hz, 1H), 7.43 – 7.40 (m, 2H), 7.37 – 7.33 (m, 2H), 7.28 – 7.23 (m, 1H), 7.21 – 7.16 (m, 2H), 6.97 – 6.93 (m, 1H), 5.21 – 5.13 (m, 2H), 5.05 – 4.99 (m, 1H), 4.31 – 4.25 (m, 1H), 4.05 (q, J = 9.2 Hz, 1H), 3.30 (dd, J = 12.5, 6.7 Hz, 1H), 3.21 – 3.10 (m, 2H), 2.48 (dd, J = 12.4, 7.5 Hz, 1H), 1.31 (dd, J = 11.6, 6.2 Hz, 6H), 1.23 (d, J = 6.2 Hz, 3H), 1.14 (d, J = 6.3 Hz, 3H), 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 168.8, 167.6, 158.0, 145.5, 144.7, 131.4, 128.4, 127.4, 126.9, 126.5, 124.2,

122.2, 116.6, 70.3, 70.2, 69.5, 49.8, 46.8, 28.7, 21.7, 21.5, HRMS:m/z calculated for $C_{26}H_{31}N_2O_4[M+H]^+$ 435.2292, found 435.2284.

Diethyl 2-(indolin-1-yl)-5-(o-tolyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3da)

Yield: 151 mg (72%); Brown viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.0 Hz, 1H), 7.46 – 7.44 (m, 1H), 7.21 – 7.16 (m, 5H), 6.98 – 6.94 (m, 1H), 5.39 (t, J = 7.0 Hz, 1H), 4.37 – 4.14 (m, 6H), 3.32 (dd, J = 12.5, 6.7 Hz, 1H), 3.18 – 3.12 (m, 2H), 2.40 (s, 3H), 2.39 – 2.33 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H), 13 C{ 1 H} NMR(101 MHz, CDCl₃) δ 169.2, 168.2, 157.7, 145.5, 142.5, 134.7, 131.5, 130.1, 127.5, 126.9, 126.2, 125.9, 124.3, 122.3, 116.6, 69.3, 67.0, 62.6, 62.4, 49.6, 45.5, 28.7, 19.4, 14.1, 13.9, HRMS: m/z calculated for C₂₅H₂₉N₂O₄ [M+H]⁺ 421.2131, found 421.2127.

Diethyl 5-(2-fluorophenyl)-2-(indolin-1-yl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ea)

Yield: 168 mg (79%); Brown viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 7.7 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.24 – 7.19 (m, 3H), 7.13 – 7.09 (m, 1H), 7.06 – 7.01 (m, 1H), 6.99 – 6.95 (m, 1H), 5.48 (t, J = 6.9 Hz, 1H), 4.35 – 4.29 (m, 2H), 4.22 – 4.04 (m, 4H), 3.36 (dd, J = 12.7, 7.0 Hz, 1H), 3.20 – 3.11 (m, 2H), 2.53 (dd, J = 12.6, 6.7 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H), 13 C { 1 H} NMR(101 MHz, CDCl₃) δ 169.0, 168.3, 160.2 (d, ${}^{1}J_{C-F}$ = 246.61 Hz), 158.2, 145.4 131.6, 131.5, 131.4, 128.4 (d, ${}^{3}J_{C-F}$ = 8.12 Hz), 128.0 (d, ${}^{4}J_{C-F}$ = 4.46 Hz), 127.5, 124.3, 124.2, 124.1, 122.4, 116.6, 114.95 (d, ${}^{2}J_{C-F}$ = 21.49 Hz), 69.2, 63.8, 62.6, 62.4, 49.6, 45.4, 28.7, 14.1, 13.9, 19 F NMR (376 MHz, CDCl₃) δ -118.83, HRMS: m/z calculated for C₂₄H₂₆N₂O₄F [M+H]⁺ 425.1878, found 425.1877.

Diethyl 5-(2-chlorophenyl)-2-(indolin-1-yl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3fa)

Yield: 137 mg (62%); Brown viscous liquid, ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 8.2 Hz, 1H), 7.51 – 7.49 (m, 1H), 7.36 – 7.34 (m, 1H), 7.23 – 7.16 (m, 4H), 7.01 – 6.92 (m, 1H), 5.54 (t, J = 6.8 Hz, 1H), 4.34 – 4.07 (m, 6H), 3.43 (dd, J = 12.8, 7.3 Hz, 1H), 3.17 – 3.12 (m, 2H), 2.44 (dd, J = 12.8, 6.4 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H), 1.13 (t, J = 7.1 Hz, 3H), ${}^{13}C$ { ${}^{1}H$ } NMR (101 MHz, CDCl₃) δ 168.9, 168.4, 158.4, 145.4, 142.0, 132.5, 131.6, 129.2, 128.2, 127.8, 127.5, 127.0, 124.4, 122.5, 116.7, 69.1, 67.2, 62.6, 62.4, 49.6, 45.0, 28.7, 14.1, 13.9, HRMS: m/z calculated for $C_{24}H_{26}N_{2}O_{4}Cl$ [M+H] ${}^{+}$ 441.1577, found 441.1581.

Diethyl 2-(indolin-1-yl)-5-(4-(trifluoromethyl)phenyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ga)

Yield: 187 mg (79%); Brown viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.22 – 7.19 (m, 2H), 6.99 – 6.95 (m, 1H), 5.23 (t, J = 7.3 Hz, 1H), 4.34 – 4.15 (m, 4H), 3.99 (q, J = 9.1 Hz, 1H), 3.35 (dd, J = 12.4, 6.8 Hz, 1H), 3.20 – 3.09 (m, 2H), 2.44 (dd, J = 12.4, 7.8 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H), 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 169.1, 167.8, 158.2, 148.7, 145.3, 131.6, 129.3 (q, 2 J_{C-F} = 32.34 Hz), 127.5, 126.8, 125.4 (q, 3 J_{C-F} = 3.83 Hz), 124.4 (q, 1 J_{C-F} = 273.19 Hz), 124.4, 122.6, 116.7, 69.4, 69.2, 62.7, 62.6, 49.6, 46.6, 32.1, 28.7, 14.1, 13.9, 19 F NMR (376 MHz, CDCl₃) δ -61.95, HRMS:m/z calculated for C₂₅H₂₆N₂O₄F₃[M+H]⁺ 475.1848, found 475.1845.

Diethyl 5-(4-bromophenyl)-2-(indolin-1-yl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ha)

Yield: 158 mg (65%); Brown viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.8 Hz, 1H), 7.47 – 7.45 (m, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.20 – 7.17 (m, 2H), 6.99 – 6.94 (m, 1H), 5.13 (t, J = 7.2 Hz, 1H), 4.34 – 4.16 (m, 5H), 3.96 (q, J = 9.2 Hz, 1H), 3.30 (dd, J = 12.5, 6.6 Hz, 1H), 3.19 – 3.09 (m, 2H), 2.40 (dd, J = 12.4, 7.8 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H), 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 169.2, 167.8, 158.0, 145.3, 143.6, 131.5, 128.3, 127.5, 124.4, 122.5, 120.8, 116.6, 69.4, 69.1, 62.7, 62.6, 49.6, 46.7, 28.7, 14.1, 14.0, HRMS: m/z calculated for C₂₄H₂₆N₂O₄Br [M+H]⁺ 485.1062, found 485.1076.

Diethyl 5-(4-cyanophenyl)-2-(indolin-1-yl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ia)

Yield: 149 mg (69%); Brown viscous liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.3 Hz, 1H), 7.64 (d, J = 8.2 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H), 7.22 – 7.18 (m, 2H), 6.99 – 6.96 (m, 1H), 5.21 (t, J = 7.3 Hz, 1H), 4.34 – 4.15 (m, 5H), 3.96 (q, J = 9.2 Hz, 1H), 3.36 – 3.31 (m, 1H), 3.19 – 3.08 (m, 2H), 2.39 (dd, J = 12.8, 7.8 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.3 Hz, 3H), 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ 169.0, 167.7, 158.4, 150.2, 145.2, 132.4, 131.6, 127.5, 127.3, 124.46, 122.8, 119.2, 116.7, 110.8, 69.4, 69.2, 62.8, 62.7, 49.7, 46.4, 28.7, 14.1, 14.0, HRMS: m/z calculated for C₂₅H₂₆N₃O₄[M+H]⁺ 432.1923, found 432.1923.

Diethyl 2-(indolin-1-yl)-5-(4-methoxyphenyl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ja)

Yield: 189 mg (87%); colorless viscous liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 8.0 Hz, 1H), 7.37 - 7.28 (m, 2H), 7.22 - 7.12 (m, 2H), 6.97 - 6.87 (m, 3H), 5.19 - 5.08 (m, 1H), 4.38 - 4.11 (m, 5H), 3.96 (q, J = 9.2 Hz, 1H), 3.81 (s, 3H), 3.28 (dd, J = 12.4, 6.4 Hz, 1H), 3.22 - 3.01 (m, 2H), 2.43 (dd, J = 12.4, 7.8 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.32 (1.38 - 3.18 NMR (101 MHz, CDCl₃) δ 169.4, 168.0, 158.7, 157.6, 145.5, 136.8, 131.4, 127.6, 127.5, 124.3, 122.3, 116.6, 113.8, 69.4, 69.2, 62.6, 62.5, 55.4, 49.6, 47.1, 28.7, 14.1, 14.0, HRMS: m/z calculated for C₂₅H₂₈N₂O₅ [M+H]⁺ 437.2832, found 437.2838.

Diethyl 2-(indolin-1-yl)-5-mesityl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ka)

Yield: 170 mg (76%); Brown viscous liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 8.2 Hz, 1H), 7.20 – 7.12 (m, 2H), 6.95 – 6.92 (m, 1H), 6.88 (s, 2H), 5.52 (dd, J = 10.1, 6.2 Hz, 1H), 4.47 – 4.23 (m, 5H), 3.92 (q, J = 9.4 Hz, 1H), 3.26 (dd, J = 12.7, 6.2 Hz, 1H), 3.22 – 3.03 (m, 2H), 2.59 (dd, J = 12.8, 10.1 Hz, 1H), 2.41 (s, 6H), 2.30 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H), ¹³C{¹H}NMR(101 MHz, CDCl₃) δ 169.9, 167.4, 155.7, 145.6, 136.9, 136.4, 135.2, 131.4, 130.3, 127.5, 124.2, 122.1, 116.4, 69.3, 67.0, 62.5, 49.6, 44.0, 28.7, 21.1, 20.9, 14.1, 14.0, HRMS: m/z calculated for C₂₇H₃₃N₂O₄[M+H]⁺ 449.2459, found 449.2440.

Dimethyl 5-(furan-2-yl)-2-(indolin-1-yl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3la)

Yield: 112 (61%); Brown viscous liquid, ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 9.1 Hz, 1H), 7.36 (d, J = 1.5 Hz, 1H), 7.19 – 7.13 (m, 2H), 6.99 – 6.89 (m, 1H), 6.30 (dd, J = 3.2, 1.8 Hz, 1H), 6.23 – 6.16 (m, 1H), 5.22 (t, J = 6.6 Hz, 1H), 4.14 – 3.95 (m, 2H), 3.83 (s, 3H), 3.74 (s, 3H), 3.18 – 3.07 (m, 3H), 2.83 (dd, J = 12.6, 6.2 Hz, 1H), ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.3, 169.0, 158.1, 156.2, 145.2, 142.0, 131.4, 127.5, 124.9, 124.3, 122.5, 116.7, 110.2, 105.9, 68.6, 64.1, 53.6, 53.4, 49.4, 43.1, 28.7, HRMS: m/z calculated for C₂₀H₂₀N₂O₅ [M+H]⁺ 369.1405 found 369.1501.

Dimethyl 5-cyclopropyl-2-(indolin-1-yl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ma)

Yield: 82 mg (48%); colorless viscous liquid, ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.1 Hz, 1H), 7.22 – 7.10 (m, 2H), 6.96 – 6.86 (m, 1H), 4.18 – 4.06 (m, 1H), 3.91 – 3.80 (m, 1H), 3.81 (s, 3H), 3.78 (s, 3H), 3.70 (q, J = 6.6 Hz, 1H), 3.17 – 3.01 (m, 2H), 2.99 (dd, J = 12.7, 6.3 Hz, 1H), 2.40 (dd, J = 12.6, 7.6 Hz, 1H), 1.01 – 0.81 (m, 2H), 0.52 – 0.47 (m, 2H), 0.46 – 0.41 (m, 1H),

Chapter-3

 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 170.1, 168.8, 156.6, 145.4, 131.3, 127.4, 124.2, 122.1, 116.2, 69.8, 68.8, 53.35, 49.2, 44.2, 28.7, 16.7, 2.5, 2.4, HRMS: m/z calculated for C₁₉H₂₂N₂O₄ [M+H]⁺ 343.2201, found 343.2203.

Diethyl 2-(indolin-1-yl)-5-vinyl-4,5-dihydro-3H-pyrrole-3,3-dicarboxylate (3na)

Yield: 94 mg (53%); Yellow viscous liquid, ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.2 Hz, 1H), 7.23 – 7.11 (m, 2H), 6.97 – 6.88 (m, 1H), 6.04 – 5.89 (m, 1H), 5.30 (dd, J = 17.1, 1.6 Hz, 1H), 5.14 – 5.06 (m, 1H), 4.63 – 4.53 (m, 1H), 4.33 – 4.17 (m, 4H), 4.13 (dd, J = 9.3, 6.2 Hz, 1H), 4.04 – 3.91 (m, 1H), 3.20 – 3.03 (m, 2H), 3.01 (dd, J = 12.5, 6.7 Hz, 2H), 2.42 (dd, J = 12.4, 6.8 Hz, 1H), 1.31 – 1.29 (m, 3H), 1.28 – 1.26 (m, 3H), ${}^{13}C$ { ${}^{1}H$ } NMR (101 MHz, CDCl₃) 169.2, 168.3, 157.4, 145.3, 140.4, 131.3, 127.4, 124.2, 122.2, 116.4, 114.8, 68.8, 68.5, 62.5, 62.4, 49.5, 43.8, 28.6, 14.0, HRMS: m/z calculated for $C_{20}H_{24}N_2O_4$ [M+H]⁺ 357.2742, found 357.2748.

Diethyl 2-(diisopropylamino)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ac)

Yield: 145 mg (75%); Yellow viscous liquid, ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 4H), 7.22 – 7.18 (m, 1H), 5.03 (t, J = 7.0 Hz, 1H), 4.32 – 4.05 (m, 4H), 3.63 (s, 2H), 3.15 (dd, J = 12.6, 6.7 Hz, 1H), 2.32 (dd, J = 12.4, 7.3 Hz, 1H), 1.34 – 1.26 (m, 9H), 1.18 (t, J = 7.1 Hz, 3H), ${}^{13}C$ { ${}^{1}H$ } NMR (101 MHz, CDCl₃) δ 169.9, 169.0, 159.2, 146.1, 128.2, 126.5, 126.5, 69.4, 69.4, 68.4, 62.1, 61.9, 47.8, 14.2, 13.9, HRMS: m/z calculated for C₂₂H₃₃N₂O₄ [M+H]⁺ 389.2441, found 389.2440.

Dimethyl 2-(diisopropylamino)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3bc)

Yield: 126 mg (70%); Yellow viscous liquid, ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 7.33 – 7.28 (m, 4H), 7.22 – 7.18 (m, 1H), 5.03 (t, J = 7.2 Hz, 1H), 3.83 (s, 3H), 3.67 (s, 3H), 3.16 (dd, J = 12.6, 6.7 Hz, 1H), 2.30 (dd, J = 12.6, 7.6 Hz, 1H), 1.33 – 1.30 (m, 6H), 1.26 – 1.20 (m, 2H), ${}^{13}C$ { ${}^{1}H$ } NMR (101 MHz, CDCl₃) δ 170.4, 169.4, 159.0, 145.9, 128.3, 126.6, 126.5, 69.3, 68.3, 53.1, 52.9, 47.7, 20.5, 20.1, HRMS: m/z calculated for $C_{20}H_{29}N_2O_4$ [M+H] $^+$ 361.2128, found 361.2127.

Diethyl 2-(dibenzylamino)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ae)

Yield: 199 mg (82%); Yellow viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 4H), 7.27 – 7.23 (m, 10H), 7.22 – 7.19 (m, 1H), 5.11 (t, J = 7.1 Hz, 1H), 4.73 (d, J = 16.3 Hz, 2H), 4.54 (d, J = 16.0 Hz, 2H), 4.14 – 3.92 (m, 4H), 3.37 (dd, J = 12.8, 6.8 Hz, 1H), 2.58 (dd, J = 12.8, 7.6 Hz, 1H), 1.17 (t, J = 7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H), 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 169.4, 168.5, 162.6, 144.8, 137.4, 128.4, 128.3, 127.6, 127.1, 126.8, 126.4, 68.3, 67.6, 62.5, 62.3, 51.6, 48.5, 13.9, 13.8, HRMS: m/z calculated for C₃₀H₃₃N₂O₄ [M+H]⁺ 485.2449, found 485.2440.

Diethyl 2-(methyl(phenyl)amino)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3af)

Yield: 140 mg (71%); Yellow viscous liquid, ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 3H),7.34 – 7.29 (m, 5H), 7.26 – 7.20 (m, 2H), 4.97 (t, J = 7.1 Hz, 1H), 4.20 – 4.13 (m, 2H), 3.83 – 3.77 (m, 1H), 3.71 – 3.64 (m, 1H), 3.41 (s, 3H), 3.15 (dd, J = 12.6, 6.6 Hz, 1H), 2.62 (dd, J = 12.8, 7.8 Hz, 1H), 1.29 – 1.25 (m, 3H), 1.04 – 1.00 (m, 3H), ${}^{13}C$ { ${}^{1}H$ } NMR (101 MHz, CDCl₃) δ 168.8, 168.7, 162.3, 145.2, 144.3, 129.0, 128.7, 128.4, 127.1, 127.0, 126.7, 68.1, 67.8, 62.2, 62.0, 48.8, 42.2, 14.1, 13.7, HRMS: m/z calculated for $C_{23}H_{27}N_{2}O_{4}$ [M+H] ${}^{+}$ 395.1985, found 395.1971.

Dimethyl 2-(methyl(phenyl)amino)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3bf)

Yield: 132 mg (72%); Brown viscous liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 3H), 7.31 (d, J = 7.8 Hz, 1H), 7.26 – 7.20 (m, 1H), 4.98 (dd, J = 7.8, 6.4 Hz, 1H), 3.71 (s, 3H), 3.42 (s, 3H), 3.30 (s, 3H), 3.13 (dd, J = 12.8, 6.4 Hz, 1H), 2.62 (dd, J = 12.7, 7.8 Hz, 1H), ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.0, 167.0, 161.6, 144.8, 143.9, 129.0, 128.7, 128.4, 127.4, 127.0, 126.6, 67.9, 67.5, 53.1, 52.8, 49.0, 42.3, 32.0, 22.8, 14.2, HRMS: m/z calculated for C₂₁H₂₃N₂O₄ [M+H]⁺ 367.1660, found 367.1658.

Diethyl 5-phenyl-2-(piperidin-1-yl)-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ah)

Yield: 116 mg (64%); Yellow viscous liquid, ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.33 – 7.29 (m, 1H), 7.27 (d, J = 1.8 Hz, 1H), 7.25 (s, 1H), 5.21 (t, J = 7.0 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 4.27 – 4.12 (m, 2H), 3.71 – 3.68 (m, 7H), 3.63 (s, 3H), 3.35 (dd, J = 13.1, 7.1 Hz, 1H), 2.71 (dd, J = 13.2, 6.9 Hz, 1H), 1.37 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H), ${}^{13}C$ { ${}^{1}H$ }

NMR (101 MHz, CDCl₃) δ 166.0, 165.2, 164.9, 161.5, 137.7, 129.2, 128.9, 126.1, 64.6, 64.5, 64.01, 61.4, 51.3, 44.2, 43.5, 25.9, 25.2, 25.1, 22.8, 14.0, 13.8, HRMS: m/z calculated for $C_{21}H_{29}N_2O_4[M+H]^+$ 373.2128, found 373.2127.

Diethyl 2-((4-methoxyphenyl)(prop-2-yn-1-yl)amino)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3ag)

Yield: 206 mg (92%); Brown viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 7.37 – 7.35 (m, 4H), 7.30 (t, J = 7.4 Hz, 1H), 7.21 (t, J = 7.3 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 5.00 (t, J = 7.1 Hz, 1H), 4.63 – 4.50 (m, 2H), 4.16 – 4.04 (m, 2H), 3.77 (s, 3H), 3.74 (dd, J = 8.5, 7.1 Hz, 1H), 3.65 – 3.57 (m, 1H), 3.16 – 3.11 (m, 1H), 2.65 – 2.59 (m, 1H), 2.25 (q, J = 2.2 Hz, 1H), 1.23 (t, J = 6.8 Hz, 3H), 0.98 (t, J = 7.3 Hz, 3H), 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 168.4, 168.3, 161.5, 159.1, 144.0, 134.8, 131.8, 128.2, 126.8, 126.5, 113.7, 80.0, 72.1, 67.9, 67.6, 62.0, 61.8, 55.4, 48.8, 43.6, 13.9, 13.4, HRMS: m/z calculated for C₂₆H₂₉N₂O₅ [M+H]⁺ 449.2070, found 449.2076

Diethyl 2-(3,4-dihydroquinolin-1(2H)-yl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3aj)

Yield: 177 mg (84%); Yellow viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 1H), 7.40 – 7.24 (m, 5H), 7.16 – 7.10 (m, 2H), 6.99 (t, J = 7.3 Hz, 1H), 5.06 (dd, J = 8.4, 6.3 Hz, 1H), 4.36 – 4.31 (m, 2H), 4.06 – 3.93 (m, 3H), 3.47 – 3.41 (m, 1H), 3.24 (dd, J = 12.6, 6.2 Hz, 1H), 2.84 (t, J = 6.9 Hz, 2H), 2.70 (dd, J = 12.7, 8.5 Hz, 1H), 2.18 – 2.08 (m, 1H), 2.04 – 1.94 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H), 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 168.7, 161.7, 144.0, 141.2, 130.2, 128.8, 128.3, 126.8, 126.4, 125.7, 124.0, 123.5, 68.5, 68.3, 62.3, 62.1, 48.4, 47.2, 26.7, 23.2, 14.0, 13.8, HRMS: m/z calculated for C₂₅H₂ N₂O₄ [M+H]⁺ 421.2118, found 421.2127.

Dimethyl 2-(3,4-dihydroquinolin-1(2*H*)-yl)-5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate (3bj)

Yield: 181 mg (82%); Yellow viscous liquid, 1 H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 9.4 Hz, 1H), 7.41 – 7.31 (m, 5H), 7.15 – 7.09 (m, 2H), 7.02 – 6.98 (m, 1H), 5.04 (dd, J = 8.5, 6.2 Hz, 1H), 4.00 – 3.94 (m, 1H), 3.86 (s, 3H), 3.54 (s, 3H), 3.46 – 3.40 (m, 1H), 3.21 (dd, J = 12.6, 6.2 Hz, 1H), 2.82 (t, J = 7.0 Hz, 2H), 2.65 (dd, J = 12.8, 8.7 Hz, 1H), 2.16 – 2.09 (m, 1H), 2.00 –

Chapter-3

1.93 (m, 1H), 13 C { 1 H} NMR (101 MHz, CDCl₃) δ 169.2, 161.6, 143.9, 141.1, 130.9, 128.9, 128.4, 127.0, 126.5, 125.9, 124.1, 123.9, 68.6, 68.1, 53.3, 53.0, 48.7, 47.4, 26.7, 23.3, HRMS: m/z calculated for C₂₃H₂₄N₂O₄ [M+H]⁺ 393.1835, found 393.1830.

Tetraethyl 2,2'-(piperazine-1,4-diyl)bis(5-phenyl-4,5-dihydro-3*H*-pyrrole-3,3-dicarboxylate) (3aka)

Yield: 267 mg (81%); Yellow viscous liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 4.5 Hz, 8H), 7.24 – 7.20 (m, 2H), 4.99 (t, J = 7.2 Hz, 2H), 4.35 – 4.25 (m, 4H), 4.22 – 4.12 (m, 4H), 3.60 – 3.54 (m, 8H), 3.30 – 3.25 (m, 2H), 2.50 – 2.43 (m, 2H), 1.35 – 1.30 (m, 6H), 1.24 – 1.19 (m, 6H), ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.2, 168.0, 161.6, 144.3, 128.3, 127.2, 126.9, 126.8, 126.4, 68.2, 67.1, 62.4, 62.3, 47.2, 46.6, 14.0, 13.9, HRMS: m/z calculated for C₃₆H₄₅N₄O₈ [M+H]⁺ 661.3237, found 661.3237.

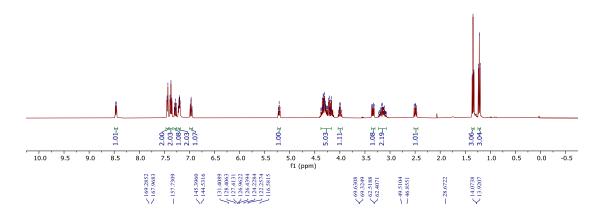
3.5 References

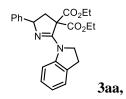
- 1. (a) Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K. K.; Jonnalagadda, S. B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. *Molecules* **2020**, *25*, 1909.
- 2. Kalaria, P. N.; Karad, S. C.; Raval, D. K. A Review on Diverse Heterocyclic Compounds as the Privileged Scaffolds in Antimalarial Drug Discovery. *Eur. J. Med. Chem.* **2018**, *158*, 917–936.
- 3. (a) Kadish, K. M.; Smith, K. M.; Guilard, R. (2000) The porphyrin handbook, Vol. 4, Academic Press, San Diego. (b) Tyroller, S.; Zwickenpflug, W.; Richter, E. J. Agric. Food Chem. 2002, 50, 4909- 4915. (c) Venom alkaloid: Bacos, D.; Basselier, J. J.; Celerler, J. P.; Lange, C.; Marx, E.; Lhommet, G.; Escoubas, P.; Lemaire, M.; Clement, J. L. *Tetrahedron Lett.* 1988, 29, 3061- 3064. (d) Kumar, A.K.; Lokeshwari, D.M.; Chandramouly, M.; Kumar V.G. Synthetic Strategies and Significance of Pyrroline Analogs. *Res J Pharm Technol.*, 2013, 6, 137- 142.
- 4. Rinehart, K. L.; Kobayashi, J.; Harbour, G. C.; Gilmore, J.; Mascal, M.; Holt, T. G.; Shield, L. S.; Lafargue, F. Eudistomins A-Q, beta-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. *J. Am. Chem. Soc.* **1987**, *109*, 3378–3387.
- 5. (a) Aicher, D.; Wiehe, A.; Stark, C. B. W.; Albrechr V. US Pat., Appl. US20130041307A1, **2013**. (b) Aicher, D.; Wiehe, A.; Stark, C. B. W.; Albrechr V.; Grafe, S. US Pat., Appl. WO2012012809A2, **2012**.
- 6. Behr, J.-B.; Pearson, M. S. M.; Bello, C.; Vogel, P.; Plantier-Royon, R. Synthesis and l-fucosidase inhibitory potency of a cyclic sugar imine and its pyrrolidine analogue *Tetrahedron: Asymmetry*, **2008**, *19*, 1829–1832.
- 7. Zhao, M. X.; Zhu, H. K.; Dai, T. L.; Shi, M. Cinchona Alkaloid Squaramide-Catalyzed Asymmetric Michael Addition of α-Aryl Isocyanoacetates to β-Trifluoromethylated Enones

and Its Applications in the Synthesis of Chiral β -Trifluoromethylated Pyrrolines. *J. Org. Chem.* **2015**, *80*, 11330-11338.

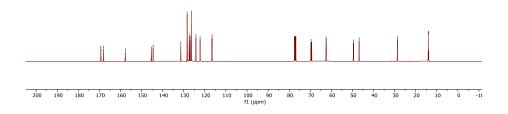
- 8. Rosser, R. M.; Faulkner, D. J. Two Steroidal Alkaloids from a Marine Sponge, Plakina sp. *J. Org. Chem.* **1984**, *49*, 5157–5160.
- 9. Newcomb, E. T.; Knutson, P. C.; Pedersen, B. A.; Ferreira, E. M. Total Synthesis of Gelsenicine *via* a Catalyzed Cycloisomerization Strategy. *J. Am. Chem. Soc.* **2016**, *138*, 108–111.
- 10. (a) Chandan, N.; Thompson, A. L.; Moloney, M. G. Rapid Synthesis of Substituted Pyrrolines and Pyrrolidines by Nucleophilic Ring Closure at Activated Oximes. Org. Biomol. Chem. 2012, 10, 7863–7868. (b) Yoshida, M.; Uchiyama, K.; Narasaka, K. Synthesis of Dihydropyrroles and Tetrahydropyridines by the Cyclization of O-Methylsulfonyloximes Having an Active Methine Group. Heterocycles 2000, 52, 681–691. (c) Melhado, A. D.; Amarante, G. W.; Wang, Z. J.; Luparia, M.; Toste, F. D. Gold(I)-Catalyzed Diastereoand Enantioselective 1,3-Dipolar Cycloaddition and Mannich Reactions of Azlactones. J. Am. Chem. Soc. 2011, 133, 3517–3527. (d) Peddibhotla, S.; Tepe, J. J. Stereoselective Synthesis of Highly Substituted Δ^1 -Pyrrolines: exo-Selective 1,3-Dipolar Cycloaddition Reactions with Azlactones. J. Am. Chem. Soc. 2004, 126, 12776–12777. (e) Clerici, F.; Gelmi, M. L.; Pocar, D.; Rondena, R. 5(4H)-Oxazolones. Part VIII. An Efficient Synthesis of Δ^1 -Pyrroline-2-carboxylic Acid Derivatives through Michael and Wittig Condensation. Tetrahedron 1995, 51, 9985–9994. (f) Zhang, G.; Alshreimi, A. S.; Alonso, L.; Antar, A.; Yu, H.-C.; Islam, S. M.; Anderson, L. L. Nitrone and Alkyne Cascade Reactions for Regio- and Diastereoselective 1-Pyrroline Synthesis. Angew. Chem., Int. Ed. 2021, 60, 13089–13097. (g) Alshreimi, A. S.; Zhang, G.; Reidl, T. W.; Peña, R. L.; Koto, N.-G.; Islam, S. M.; Wink, D. J.; Anderson, L. L. Synthesis of Spirocyclic 1-Pyrrolines from Nitrones and Arynes through a Dearomative [3,3']-Sigmatropic Rearrangement. Angew. Chem., Int. Ed. 2020, 59, 15244–15248. (h) Tang, S.; Ding, S.; Li, D.; Li, L.; Zhao, H.; Chai, M.; Wang, J. Palladium-catalysed imidoylative spirocyclization of

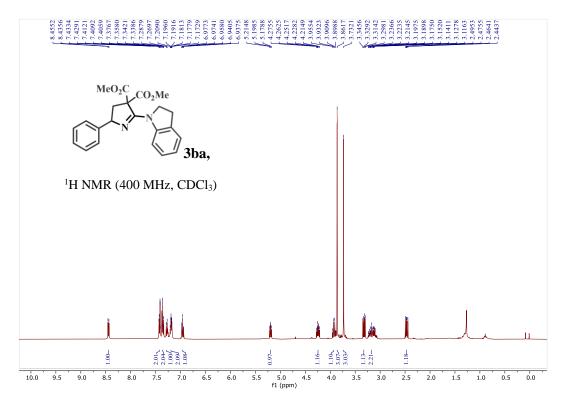
- 3-(2-isocyanoethyl)indoles. *Chem. Commun.* **2021**, *57*, 10576–10579. (i) Kanchupalli, V.; Katukojvala, S. [1+1+3] Annulation of Diazoenals and Vinyl Azides: Direct Synthesis of Functionalized 1-Pyrrolines through Olefination. *Angew. Chem., Int. Ed.* **2018**, *57*, 5433–5437. (j) Filippov, I. P.; Novikov, M. S.; Khlebnikov, A. F.; Rostovskii N. V. J. Org. Chem. 2022, 87, 13, 8835–8840. (k) Medran, N. S.; La-Venia, A.; Testero, S. A. Metal-Mediated Synthesis of Pyrrolines. *RSC Adv.* **2019**, *9*, 6804–6844.
- 11. Yu, M.; Pagenkopf, B. L. Formal [3 + 2] Cycloadditions of Donor-Acceptor Cyclopropanes and Nitriles. *J. Am. Chem. Soc.* **2003**, *125*, 8122–8123.
- 12. Chagarovskiy, A. O.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. First synthesis of 2-alkyl-5-aryl-3,3-bis(methoxycarbonyl)-4,5-dihydropyrroles. *Chem. Heterocycl. Compd.* **2010**, *46*, 120–122.
- 13. Sathishkannan, G.; Srinivasan, K. Highly Diastereoselective Synthesis of 1-Pyrrolines *via* SnCl₄-Promoted [3 + 2] Cycloaddition between Activated Donor–Acceptor Cyclopropanes and Nitriles *Org. Lett.* **2011**, *13*, 6002–6005.
- 14. Cui, B.; Ren, J.; Wang, Z. TfOH-Catalyzed Formal [3 + 2] Cycloaddition of Cyclopropane 1,1-Diesters with Nitriles *J. Org. Chem.* **2014**, *79*, 790–796.
- 15. Tamilarasan, V. J.; Srinivasan, K. SnCl₄-Promoted [3+2] Annulation of γ-Butyrolactone-Fused Donor–Acceptor Cyclopropanes with Nitriles: Access to γ-Butyrolactone-Fused 1-Pyrrolines. *J. Org. Chem.* **2019**, *84*, 8782–8787.
- 16 (a) Singh, P. R.; Kalaramna, P.; Ali, S.; Goswami, A. Synthesis of Thio-/Selenopyrrolines *via* SnCl₄-Catalyzed (3+2)-Cycloadditions of Donor-Acceptor Cyclopropanes with Thio-/Selenocyanates
- Eur. J. Org. Chem. 2021, 2021, 4683. (b) Singh, P. R.; Gopal, B.; Kumar, M.; Goswami, A. A metal-free BF₃·OEt₂ mediated chemoselective protocol for the synthesis of propargylic cyclic imines. Org. Biomol. Chem. **2022**, 20, 4933.

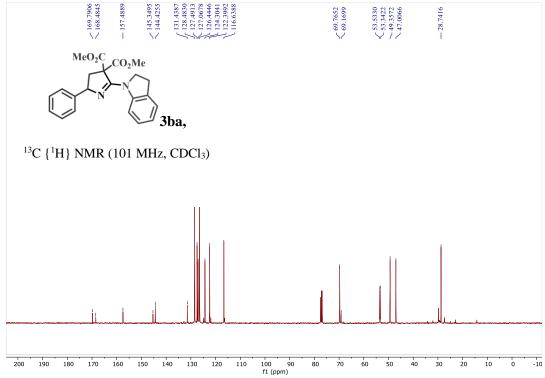

17 (a) Corey, E. J.; Chaykovsky, M. Dimethyloxosulfonium Methylide ((CH₃)₂SOCH₂) and Dimethylsulfonium Methylide ((CH₃)₂SCH₂). Formation and Application to Organic Synthesis. J. Am. Chem. Soc. 1965, 87, 1353–1364. (b) Goldberg, A. F. G.; O'Connor, N. R.; Craig, R. A., II; Stoltz, B. Lewis Acid Mediated (3 + 2) Cycloadditions of Donor-Acceptor Cyclopropanes with Heterocumulenes. M. Org. Lett. 2012, 14, 5314–5317. (c) Talukdar, R.; Tiwari, D. P.; Saha, A.; Ghorai, M. K. Diastereoselective Synthesis of Functionalized Tetrahydrocarbazoles via a Domino-Ring Opening-Cyclization of Donor-Acceptor Cyclopropanes with Substituted 2-Vinylindoles. Org. Lett. 2014, 16, 3954–3957. (d) Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. Scope and Mechanism for Lewis Acid-Catalyzed Cycloadditions of Aldehydes and Donor-Acceptor Cyclopropanes: Evidence for a Stereospecific Intimate Ion Pair Pathway. **2008**, 130, 8642–8650. (e) Andreey, I. A.; Ratmanova, N. K.; Augustin, A. U.; Ivanova, O. A.; Levina, I. I.; Khrustalev, V. N.; Werz, D. B.; Trushkov, I. V. Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1-Methylimidazolium Thiocyanate. Angew. Chem., Int. Ed. **2021**, 60, 7927 –7934. For Diethyl 2-vinylcyclopropane-1,1- dicarboxylate (e) Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Diastereoselective Synthesis of Tetrahydrofurans via Palladium(0)-Catalyzed [3 + 2] Cycloaddition of Vinylcyclopropanes and Aldehyde. Org. Lett. 2008, 10, 2541–2544. For Diethyl [1,1'-bi(cyclopropane)]-2,2- dicarboxylate (f) Kreft, A.; Jones, P. G.; Werz, D. B. The Cyclopropyl Group as a Neglected Donor in Donor-Acceptor Cyclopropane Chemistry. Org. Lett. 2018, 20, 2059–2062.

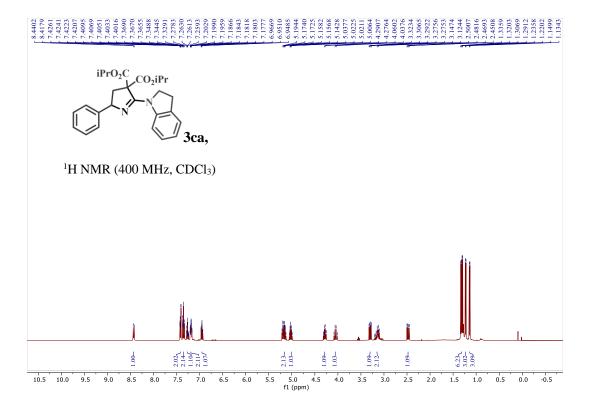

18 (a) González-Fernández, R.; Álvarez, D.; Crochet, P.; Cadierno, V.; Menéndez, M. I.; López, R. Catalytic hydration of cyanamides with phosphinous acid-based ruthenium(II) and osmium(II) complexes: scope and mechanistic insights. *Catal. Sci. Technol.* **2020**, *10*, 4084. (b) Ried, W.; Kümbel, B.; Tauer, M.- L. Liebigs Ann. Synthese neuer Carboximidoylchloride und ihre Umsetzung mit nucleophilen Reagenzien. *Chem.* **1984**, 564.

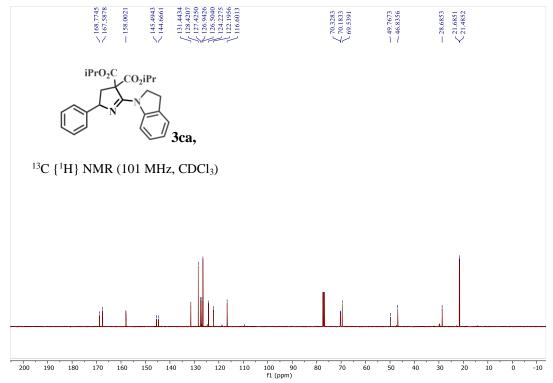
3.6 NMR spectra of compounds

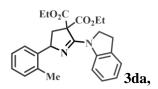


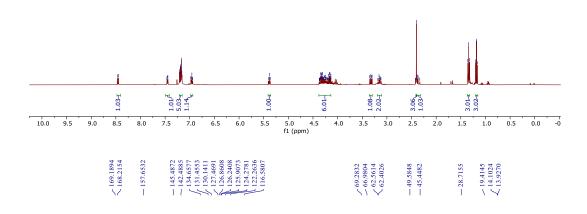

¹H NMR (400 MHz, CDCl₃)

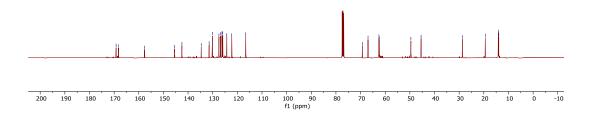


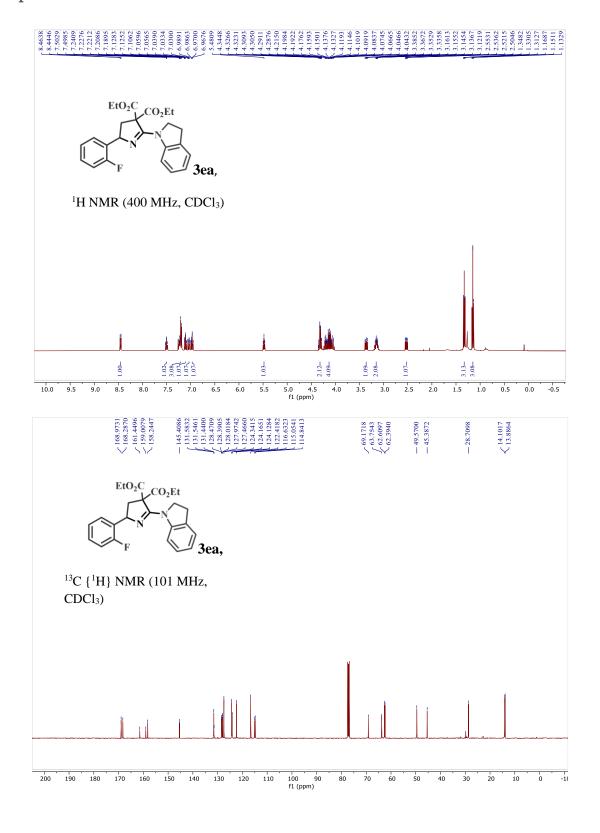


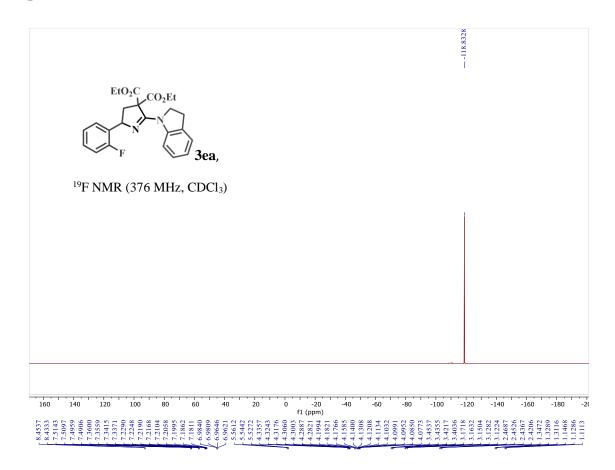

¹³C{¹H} NMR (101 MHz, CDCl₃)

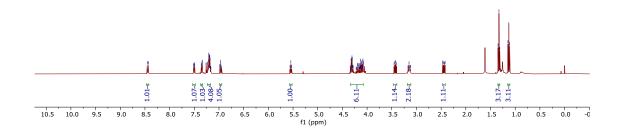


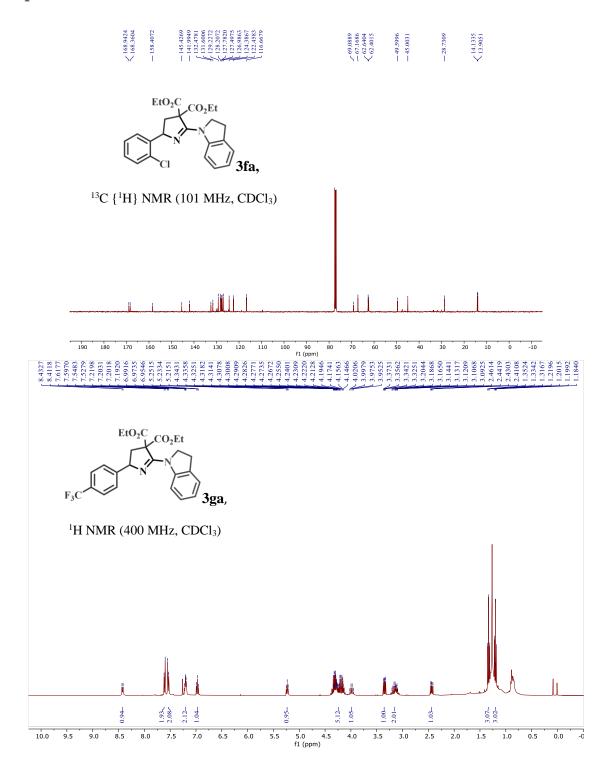


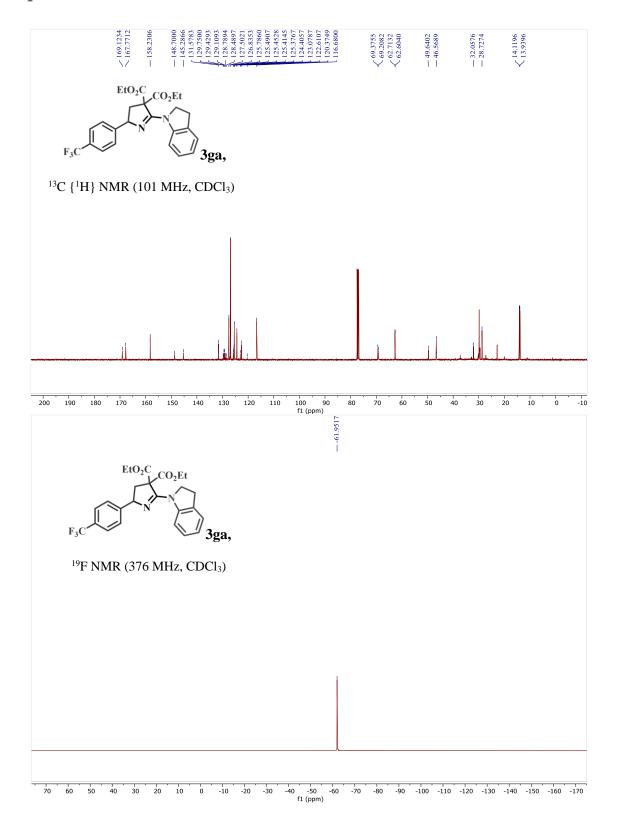

8.4681 7.4439 7.1808 7.11808 7.11808 7.11808 6.9490

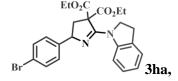


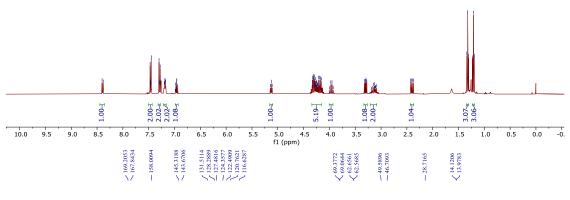

¹H NMR (400 MHz, CDCl₃)

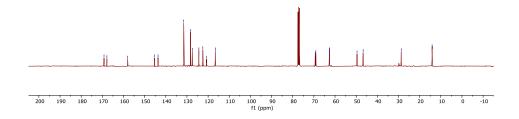

 13 C $\{^{1}$ H $\}$ NMR (101 MHz, CDCl₃)



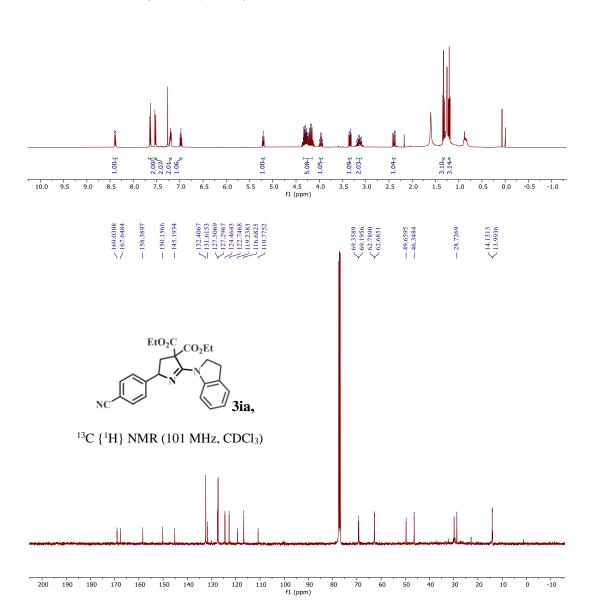


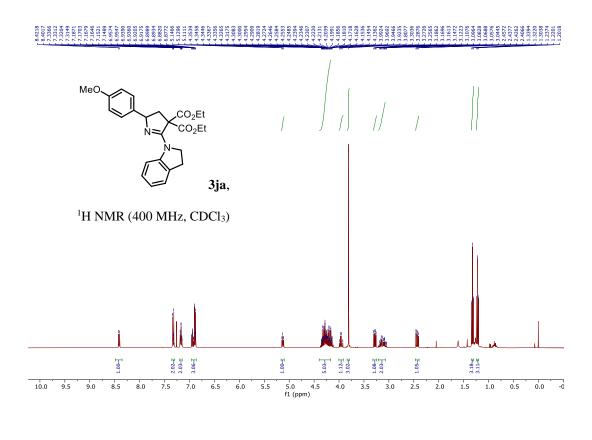

¹H NMR (400 MHz, CDCl₃)

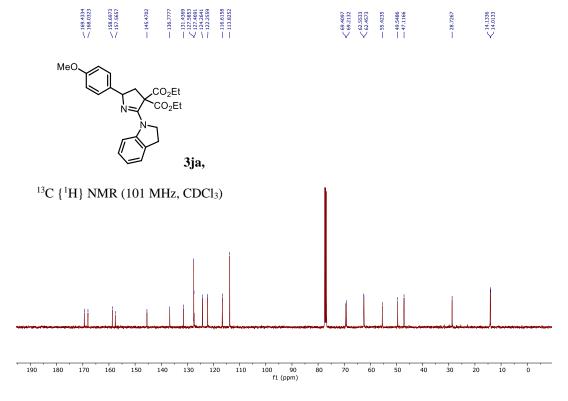


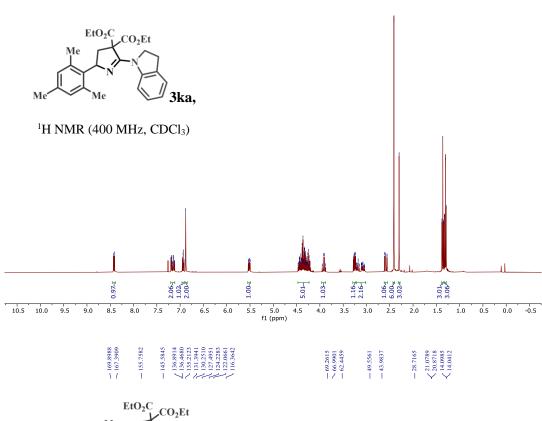

8.4028 7.42808 7.4280 7.1299 7.1299 7.1180 6.0588 6.0588 6.0588 7.1786 6.0588 6.0588 7.1786 7.1786 6.0588 6.0588 7.1788 7

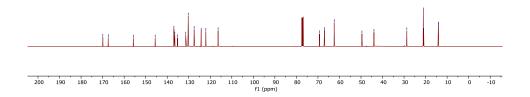
¹H NMR (400 MHz, CDCl₃)

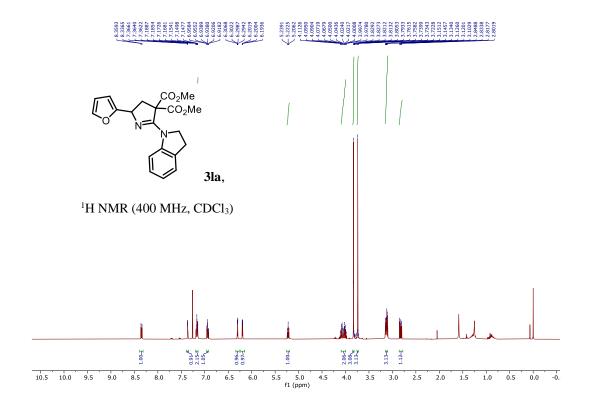


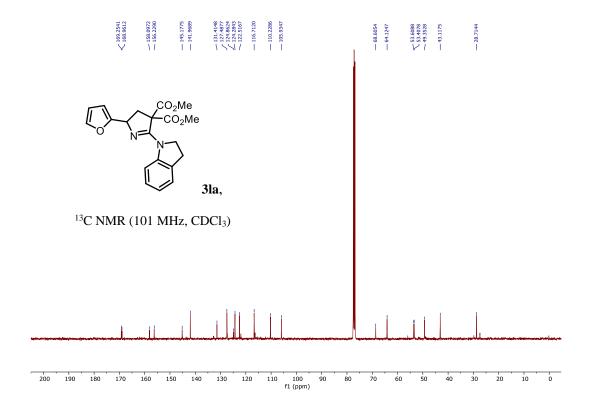

¹³C {¹H} NMR (101 MHz, CDCl₃)

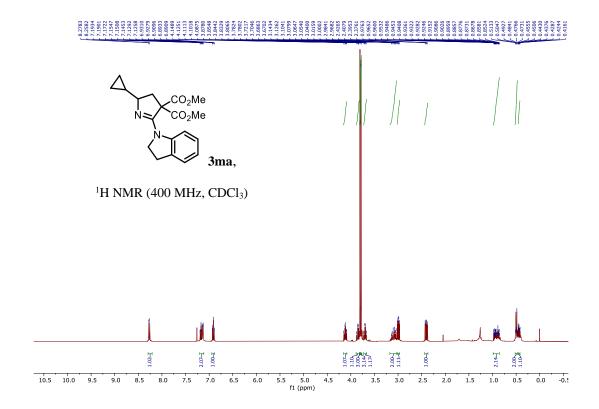



¹H NMR (400 MHz, CDCl₃)

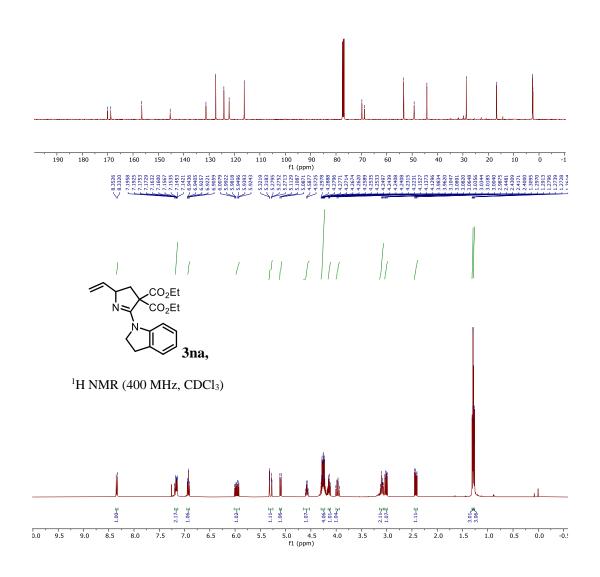


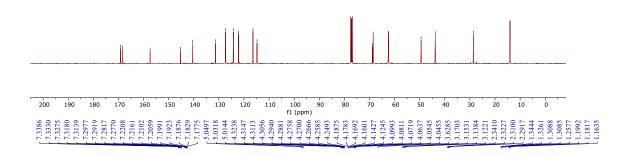


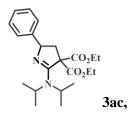


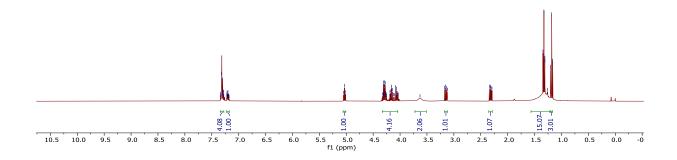


 $^{13}\text{C}\{^1\text{H}\}$ NMR (101 MHz, CDCl₃)

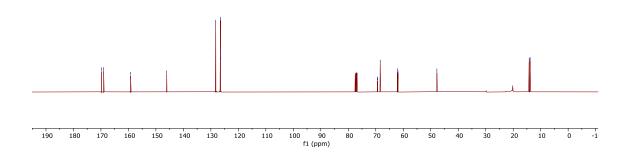


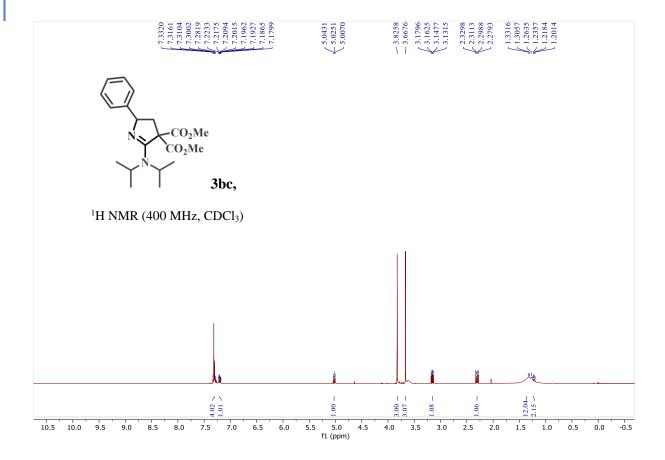


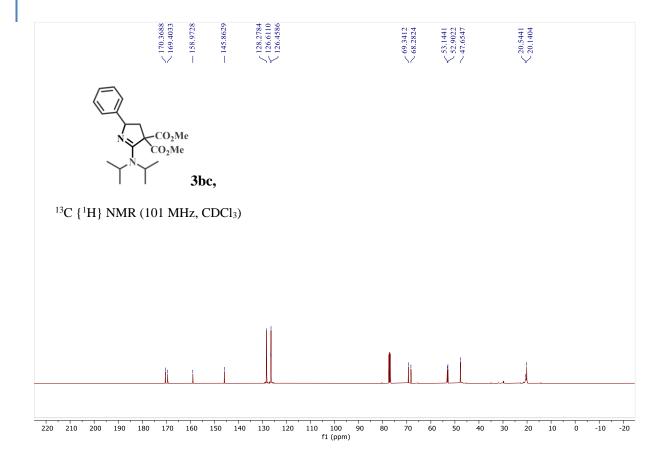

¹³C NMR (101 MHz, CDCl₃)


| 169.2168 | 169.2168 | 169.2168 | 169.2168 | 169.2168 | 169.2169 | 169.2268

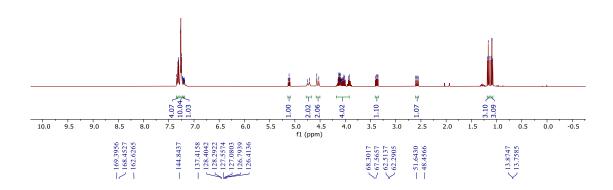
¹³C NMR (101 MHz, CDCl₃)

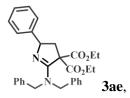


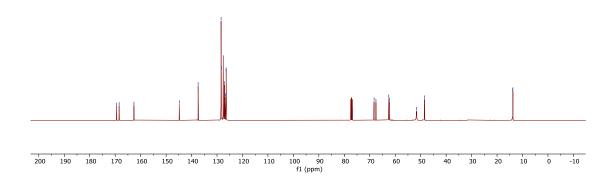



¹H NMR (400 MHz,CDCl₃)

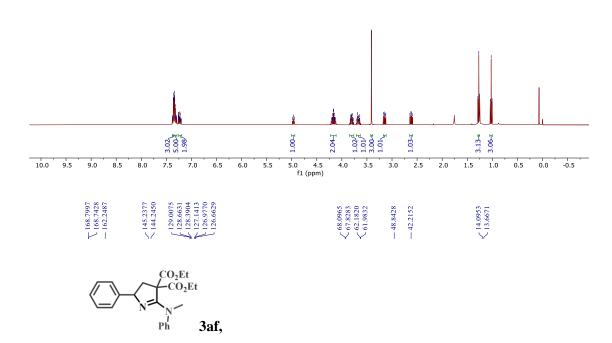
 $^{13}\text{C}~\{^1\text{H}\}~\text{NMR}~(101~\text{MHz},\text{CDCl}_3)$



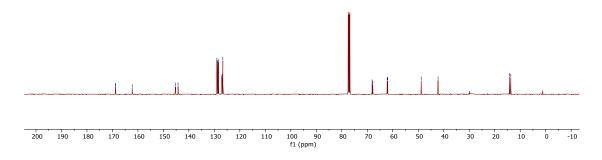


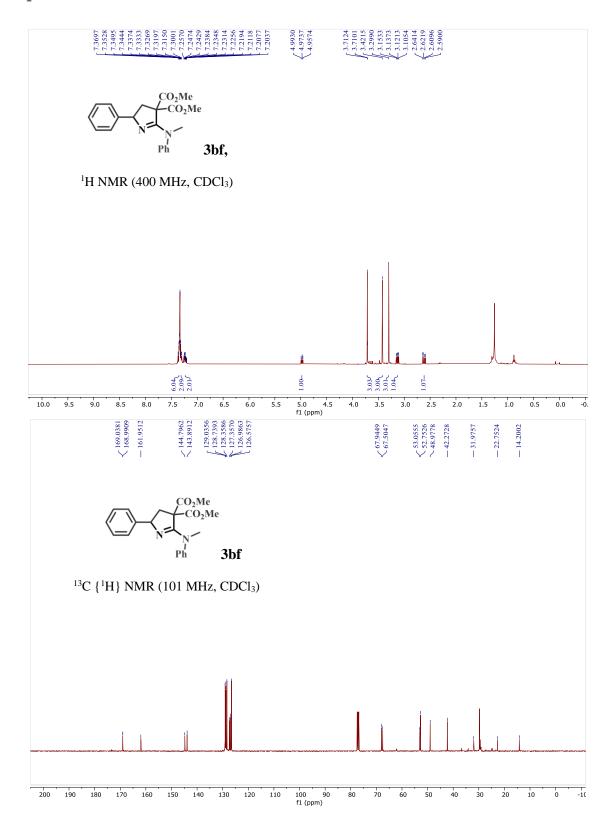


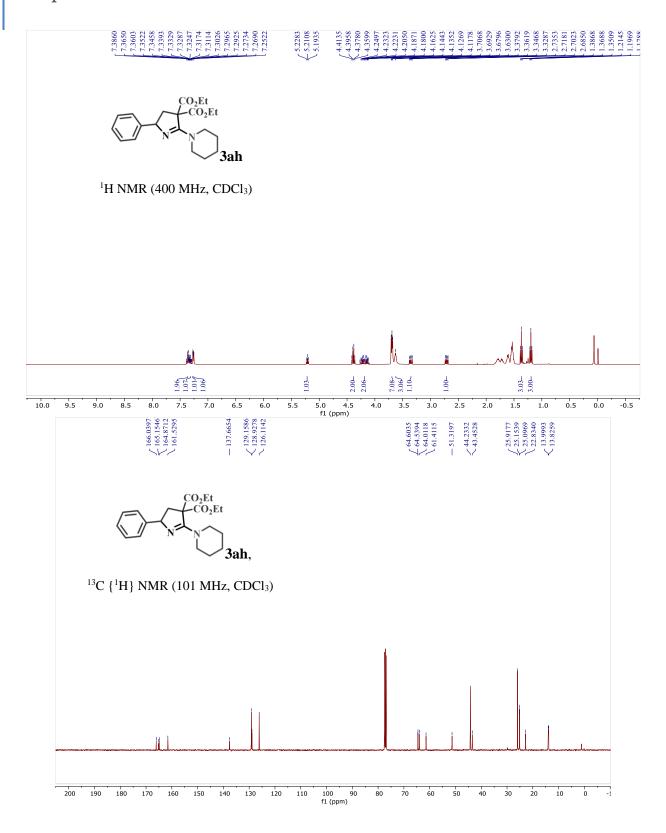
¹H NMR (400 MHz, CDCl₃)

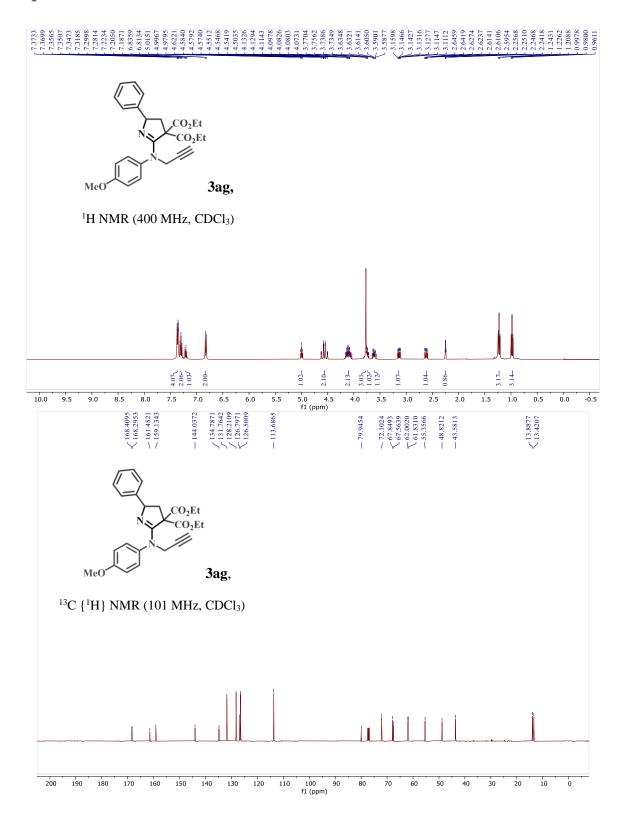


¹³C { ¹H } NMR (101 MHz, CDCl₃)

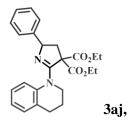


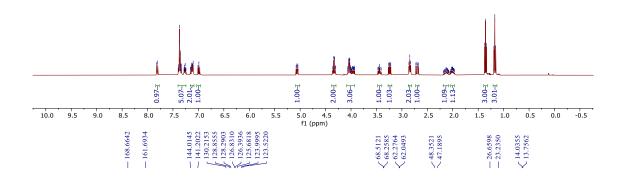


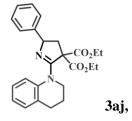

¹H NMR (400 MHz, CDCl₃)



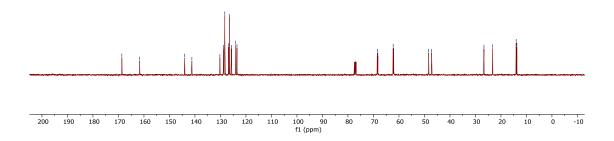
¹³C { ¹H } NMR (101 MHz, CDCl₃)

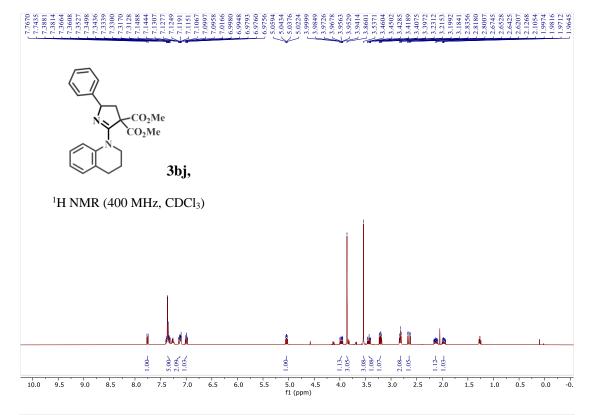


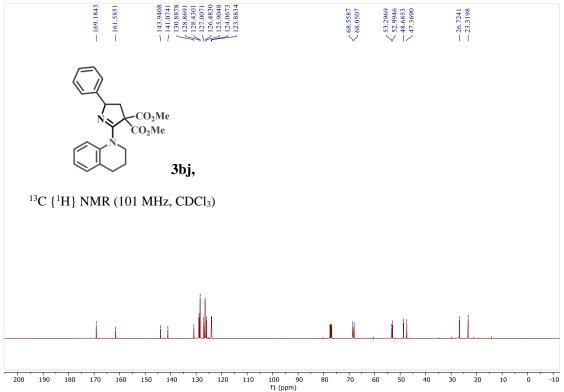


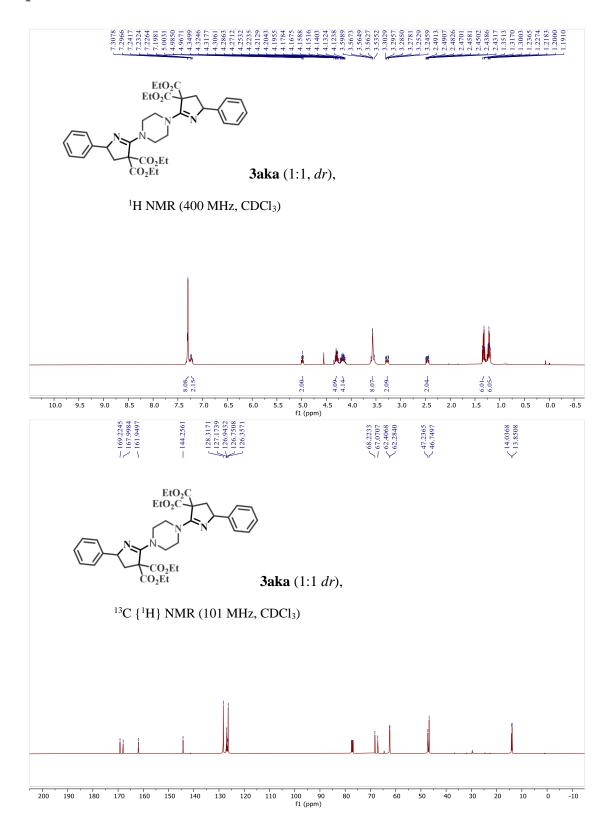


7.8191 7.7392 7.7392 7.7358 7.7358 7.7358 7.7358 7.7358 7.7358 7.7270 7.



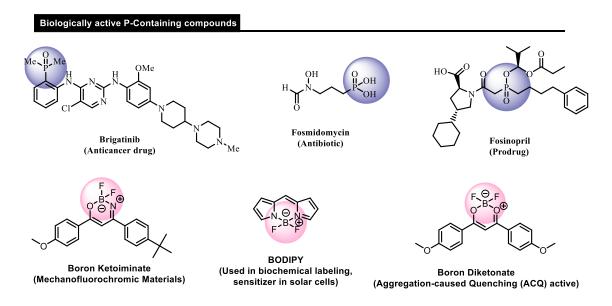

¹H NMR (400 MHz,CDCl₃)





 13 C $\{^{1}$ H $\}$ NMR (101 MHz, CDCl₃)

Nucleophilic Ring Opening of DACs through Umpolung Reactivity of Organochlorophosphines: Phosphine Oxide Functionalized Boron Pendanted Compounds


Ar
$$CO_2R^1$$
 + R^2 R^3 R

✓ New C-P Bond Formation ✓ Metal-, Base Additive Free Approach ✓ Multi Component Reaction ✓ Detailed Mechanistic Study ✓ Mild Reaction Conditions ✓ Broad Functional Group Tolerance

4.1 Introduction

Modern chemistry demands breaking the dogma of using transition metals and promotes the usage of readily available, cheaper, and non-toxic earth-abundant elements. The p-block elements are naturally abundant and support the greener approach as they are environmentally benign and show diverse applications. In particular, organic compounds possessing phosphorous functionality tend to impart various biological, pharmacological, and toxicological activities as shown in Figure $(4.1)^2$ Similarly, many organoboron compounds possess low-lying LUMO and exhibit a bathochromic shift in absorption and emission spectra. As a result, such organoboron compounds have very high demand in material science e.g., O, O-chelated boron diketonates are extensively used as organic luminophores in dye-sensitized solar cells (DSSCs), molecular sensing, and organic light-emitting diodes (OLEDs) (Figure 4.1)³ Donor-acceptor cyclopropanes (DACs) are widely used as versatile strain building blocks and have gained high interest due to their easy accessibility and high reactivities. Due to high ring strain and synergically cooperative vicinally substituted donor and acceptor functionality, they react towards nucleophiles and dipolar ophiles in the presence of Lewis or Brønsted acid catalysts. DACs' ability to undergo nucleophilic ring-opening reactions can be considered as homo Michael-addition type reactivity resulting in one of the powerful blueprints for implanting molecular complexity and allowing these protocols to be used in the synthesis of natural products.⁵ In this regard, C-, N-, O- and S- nucleophiles have been well explored, ⁶ however, there exists a notable dearth of approaches that demonstrate the construction of the C-P bond through the cyclopropane ring-opening process in the presence of P-nucleophile. Frustrated Lewis Pairs (FLPs) can be a reliable alternative to transition metal catalysts as they exhibit impressive chemical behaviour that allows them to activate small molecules effectively. It is important to mention that there is only one report available where FLP is used for the ring opening of cyclopropanes. in 2010, Douglas et al. illustrated the reactions of cyclopropanes with phosphine/borane-based FLP which resulted in the formation of phosphonium borate zwitterionic derivatives. However, the strategy offered a limited substrate scope (Scheme 4.1). Later, a novel chemical reaction was developed that used an inorganic base to assist a domino reaction involving acyl cyclopropanes and organophosphites. This reaction has been proven to be a reliable method for producing functionalized enol phosphates (Scheme 4.2).8 Recently, Wu and coworkers demonstrated 2-

fluoroallylation of secondary phosphine oxides with high Z selectivity by utilizing gemdifluorocyclopropanes and palladium-based catalysis (Scheme 4.3). Over time, several have methodologies developed that illustrate the electrophilic been nature chlorodiarylphosphine (Ar₂PCl), ¹⁰ its nucleophilic reactivity is unknown. As a part of our ongoing studies on the reactivities of donor-acceptor ring opening of DACs in the presence of BF₃·OEt₂ to afford modular cyclopropanes, 11 we have unveiled a new set of FLP systems where the acids and bases are not strictly frustrated and exhibit the capability to facilitate the ring opening of DACs. The umpolung behavior of chlorophosphines and cyanophosphines can be elucidated by analyzing their Electron Density Surface Potential (ESP) plots and Mulliken charges. These analyses clearly indicate that phosphorous exhibits electrophilic behavior, while the chlorine and nitrogen centers display nucleophilic character (Figure 4.2). Furthermore, it is observed that the compounds are obtained in their tautomeric forms (keto and enol forms). The majority of the derivatives are found in keto form, as determined by NMR analysis, while enolic form is characterized through single crystal X-ray analysis. These findings are consistent with the results obtained by Prof. Schmidt in 2011, for barbituric acid. 12

Figure 4.1 Selected examples of Biologically active *P* & B-containing drugs.

Borane based FLP Reaction

$$t\text{-Bu}_{3}\text{P} + \text{B}(\text{C}_{6}\text{F}_{5})_{3}$$

$$t\text{-Bu}_{3}\text{P} + \text{B}(\text{C}_{6}\text{F}_{5})_{3}$$

$$t\text{-Bu}_{3}\text{P} + \text{B}(\text{C}_{6}\text{F}_{5})_{3}$$

$$t\text{-Bu}_{3}\text{P} + \text{B}(\text{C}_{6}\text{F}_{5})_{3}$$

$$t\text{-Bu}_{3}\text{P} + \text{Bu}_{3}\text{Ph}$$

$$t\text{-Bu}_{3}\text{Ph}$$

Scheme 4.1 Doulgas protocol for the reaction by using FLP.

Nucleophilic Ring-Opening Acyl Cyclo Propane

Scheme 4.2 Wu's work on the Nucleophilic ring opening reactions.

Nucleophilic Ring-Opening Acyl Cyclo Propane

Scheme 4.3 Yuefa Gon's protocol for the construction of enol phosphates derivatives.

This Work

Ar
$$CO_2R^1$$
 + R^2 R^3 R^3 = alkyl, aryl R^3 R^3

Scheme 4.4 Our Hypothesis for the construction of Phosphine Oxide Functionalized Boron-Pendanted Compounds derivatives.

4.2 Results and Discussions

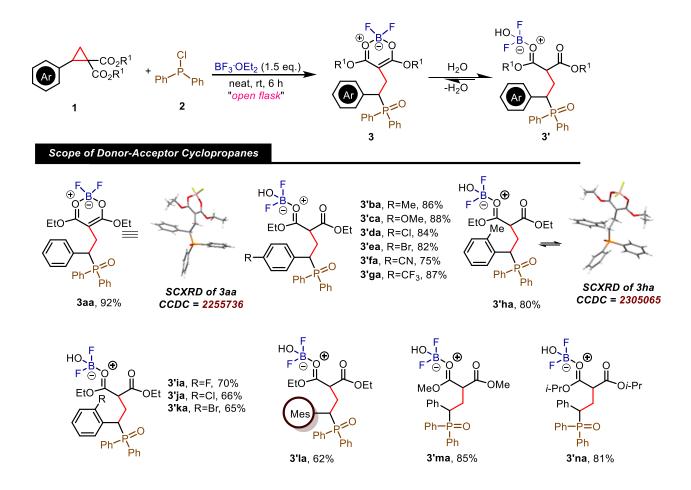
At the outset of our primary investigations to optimize the reaction, we chose phenyl 1,1-diethyl cyclopropane 1a and diphenylphosphine chloride 2a as the model substrates (Table 4.1). Initially, reactions were carried out using post-transition metal chlorides like SnCl₄ and InCl₃ as Lewis acid catalysts in DCE at 60 °C. The former didn't produce any product and the starting materials were recovered while the latter resulted in the formation of **4aa** in 60% yield (Table 4.1, entries 1-2). Motivated by the initial scrutiny, strong Lewis acids like TiCl₄, MgI₂, and Cu(OTf)₃ were examined for the reaction conversion, however, no promising results could be achieved (Table 4.1, entries 3-5). On the other hand, utilization of Sc(OTf)₃ proved beneficial for the transformation and increased the yield of 4aa to 72% (Table 4.1, entry 6). In the course of finding better reaction conditions to obtain the desired product in good yield and taking the lead from our previous work, we performed the above-mentioned reaction in the presence of BF₃·OEt₂, (0.2 eq.) and interestingly we afforded a highly polar product 3aa (Table 4.1, entry 7). The resulting compound was characterized by virtue of its spectral data and it was noticed that BF₃·OEt₂ participated as a reactant in the reaction and resulted in the formation of O, O-chelated boron diester compound. However, the product was obtained with very low yield. Increasing the promoter loading did not lead to the complete consumption of all the starting materials (Table 4.1, entry 8). Screening the reaction in other organic solvents like toluene, THF, CHCl₃, DCM, DCE provided a certain increment in the product yield (Table 4.1, entries 9-13). Further tuning the reaction conditions in terms of promoter loading and solvent-free conditions substantially increased the yield of product 3aa (Table 4.1, entry 14). Next, we attempted the reaction in the presence of the catalytic as well as stoichiometric amount of Tris(pentafluorophenyl)borane (BCF), unfortunately, both attempts failed to provide the desired product (Table 4.1, entries 15-16).

Table 4.1 Optimization of Reaction Conditions^a

Ar
$$CO_2R^1$$
 $+$ R^2 R^3 reaction conditions R^1O OR^1 H_2O Ar R^2 R^3 R^2 R^3 R^2 R^3 R^3 R^3 R^2 R^3 R^3 R^3 R^3 R^3 R^3

Entry	Promoter (eq.)	Solvent	Temp. (°C)	Time (h)	3aa Yield ^[b]	4aa Yield ^[b]
1	SnCl ₄ (0.1 eq.)	DCE	60	24 h	-	-
2	InCl ₃ (0.1 eq.)	DCE	60	20 h	-	60%
3	TiCl ₄ (0.1 eq.)	DCE	60	24 h	-	-
4	MgI ₂ (0.1 eq.)	DCE	60	24 h	-	-
5	Cu(OTf) ₂ (0.1eq.)	DCE	60	24 h	-	-
6	Sc(OTf) ₃ (0.1eq.)	DCE	60	20 h	-	72%
7	BF ₃ ·OEt ₂ (0.2 eq.)	DCE	60	16 h	20%	-
8	BF ₃ ·OEt ₂ (1 eq.)	DCE	60	24 h	51%	-
9	BF ₃ ·OEt ₂ (2 eq.)	Toluene	60	24 h	55%	-
10	BF ₃ ·OEt ₂ (2 eq.)	THF	60	20 h	67%	-
11	BF ₃ ·OEt ₂ (2 eq.)	CHCl ₃	60	15 h	72%	-
12	BF ₃ ·OEt ₂ (2 eq.)	DCM	30	15 h	72%	-
13	BF ₃ ·OEt ₂ (2 eq.)	DCE	25	6 h	78%	-
14 ^[c]	BF ₃ ·OEt ₂ (1.5 eq.)	-	25	6 h	92%	-

15	BCF (0.2 eq.)	DCE	60	24 h	-	1
16	BCF (2 eq.)	DCE	60	24 h	-	-

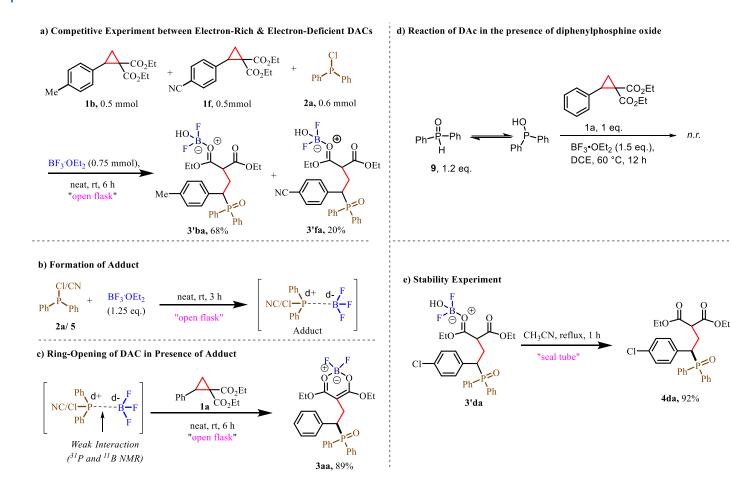

Scheme 4.5 "Reaction conditions: **1a** (0.11 mmol, 1 eq.), **2a** (0.132 mmol, 1.2 eq.), solvent (2 mL), N₂ atmosphere. ^bIsolated yield. ^cReaction performed in an open flask without solvent.

After the optimized conditions were obtained for the formation of **3aa**, the scope for this transition metal-free three-component reaction was tested (Scheme 4.5). Besides, 3aa, all other derivatives were isolated in a more stable tautomeric form, i.e. keto form as shown through the DFT calculations. At first, we started investigating the diversity of arene groups that were linked to the D-A cyclopropanes under the optimized reaction conditions. Our analysis revealed that all types of arenes, including EDGs, EWGs, and electronically hindered groups, were compatible with the above-said reaction conditions and delivered the expected compounds 3' in good to excellent yields. For example, substrates with *para*-substituted electron-rich functional groups *viz.*, -Me, -OMe were well tolerated under optimal reaction conditions and yielded 3'ba and 3'ca in 86% and 88% yield, respectively. Moreover, the halogen-substituted (-Cl, -Br) and electron-withdrawing group substituted (-CN, -CF₃) aryl moieties on DACs were found suitable candidates for the transformation and furnished the respective products 3'da and 3'ga in good yields. Further, cyclopropanes with ortho-decorated arenes also participated in this conversion, providing the desired products 3'ha-3'ka in good to moderate yields. The cyclopropane-bearing mesitylene group delivered the targeted product 3'la in 62% yield. Gratifyingly, changing the ester moieties in DACs also worked well in the reactions and furnished 3'ma and 3'na in 85% and 81% yield, respectively.

After surveying the variation in the DACs 1, we turned our attention to examining the scope of various chlorophosphines 2 for the said reaction. To our pleasure, both symmetrical and unsymmetrical chlorophosphines were found suitable under the optimized reaction conditions. Initially, functionalized diarylchlorophosphines were evaluated and afforded the products 3'ab, and 3'ac in good yields. Mono-alkyl-substituted chlorophosphines also participated in the synthetic

transformation, providing the desired product **3'ad** in 66% yield. Moreover, substrates like chlorodiisopropyl phosphine and chlorodicyclohexyl phosphine were smoothly converted to the expected products **3'ae** and **3'af** under the optimized reaction conditions. Mixed variant *viz*. **3'bb** was also successfully obtained in 68% yield. Unfortunately, **3'oa** and **3'ag** were not obtained under the optimized reaction conditions.

The structure of **3aa** and **3ha** was unambiguously determined using a single crystal X-ray analysis CCDC No. 2255736 and 2305065.


Scope in Phosphine chloride

Scheme 4.5 ^aReaction conditions for Substrate Scope: **1a** (0.11 mmol, 1 eq.), **2a** (0.132 mmol, 1.2 eq.), solvent (2 mL), N₂ atmosphere. ^bIsolated yield. ^cReaction performed in an open flask without solvent.

To check the broader reaction scope, donor-acceptor cyclopropane **1a** was treated with diphenylphosphanecarbonitrile **5** (Scheme 4.6). To our surprise, it was found that the cyanide group acted as a leaving group and a nucleophilic attack occurred from the P-centre of compound **5**. This is contrary to the results obtained by our group from the reaction of aryl thio/selenocyanates with DACs in the presence of SnCl4.¹⁴ Next, we went to explore the reaction of **1a** with diethyl(cyanomethyl)phosphonate **6**, diethyl phosphorocyanidate **7**, and triphenyl phosphine **8**, however, they were found inactive in the transformation and cyclopropane dimerization was observed.

Scheme 4.6 the reaction scope, donor-acceptor cyclopropane with phosphine-based carbonitrile.

To gain insight into the phosphorylation reaction on DACs, several mechanistic studies were carried out as illustrated in (Scheme 4.7). Firstly, substitution effects on arenes were checked by conducting a competitive experiment between **1b** and **1f** under the standard reaction conditions (Scheme 4.7a) and it was observed that electron-rich aryl substituted DAC **1b** got preference over electron-poor DAC **1f** and furnished **3'ba** as major product. Next, an attempt was initiated to react **2a** with BF₃·OEt₂ (1.25 eq.), and the formation of an adduct was observed (Scheme 4.7b), which was characterized through ³¹P and ¹¹B NMR spectroscopy as depicted in the SI file. The phosphine/boron-based Lewis acid-base pair was allowed to react with DAC 1a resulting in the formation of the O-,O-chelated boron complex, **3aa** (Scheme 4.7c). From here it can be inferred that the reaction could undergo in the presence of in situ generated as well as separately formed adduct. Next, we examined the reaction of diphenylphosphine oxide, **9** with DAC, **1a** and interestingly, no product formation was observed in the reaction mixture (Scheme 4.7d). An experiment was conducted to illustrate the stability of the newly developed compounds and it was found that -BF2 moiety was eliminated on heating at a relatively high temperature and formed **4da** (Scheme 4.7e).

Scheme 4.7a competitive experiment between electron-rich and electron-deficient DACs.

Scheme 4.7b Formation of adduct.

Scheme 4.7c Ring-Opening of DACs in presence of adduct.

Scheme 4.7d Reactions of DACs in the presence of Diphenylphosphine oxide.

Scheme 4.7e Stability experiment.

Further, to investigate the practicality and viability of our methodology, a gram-scale synthesis of the targeted product **3aa** was performed as depicted in (Scheme 4.8). In this context, the reaction of **1a** and **2a** was carried out at a 5 mmol scale and the product **3aa** was obtained in 86% yield (2.20 g).

Scheme 4.8 Gram scale synthesis of **3aa.**^a Reaction conditions: **1a** (5 mmol, 1 eq.), **2a** (6 mmol, 1.2 eq.) BF₃·OEt₂ (7 mmol, 1.5 eq.).

For the post-functionalization of **3'ea**, we planned a Sonagashira coupling reaction of **3'ea** with ethynyltriisopropylsilane, and compound **10** was furnished in 82% yield (Scheme 4.9).

Scheme 4.9. Synthetic transformations for compound 3'ea.

Next, we endeavored to reduce the ester of 3aa by employing LAH. Regrettably, this procedure only resulted in the removal of BF₂, leaving the ester groups intact, even in the presence of an excess amount of LAH. (Scheme 4.10).

Scheme 4.10. Synthetic transformations for 3aa.

To gain deeper mechanistic insight, density functional theory (DFT) calculation for PR₂Cl-based nucleophilic ring-opening reaction of DACs was conducted at B3LYP/6-31G(d)^{14,15} level of theory in Gaussian 16 software. 16,17 The Gibbs free energy profile for the nucleophilic reaction is shown in (figure 4.2). A zwitterionic complex (Int-A) is produced by coordinating DAC with BF₃.PMe₂Cl. This step has a Gibbs free energy uphill of 7.36 kcal/mol. In the resulting intermediate (Int-A), PMe₂Cl performs an SN₂ nucleophilic attack on the cyclopropane moiety, resulting in the formation of intermediate, Int-B. The activation barrier for this step is 14.03 kcal/mol. After that, a water molecule forms a hydrogen bond with the fluorine of BF₃ (Int-C). The water molecule then steadily moves towards the positively charged P-center via C TS, which leads to the removal of an HCl molecule and the formation of Int-D. This step is -19.81 kcal/mol downhill of C_TS. In structure Int-D, one of the -F atoms of the BF₃ moiety forms a hydrogen bond with the OH group attached to the P-center. Finally, the bond distance between fluorine and hydrogen decreases, and HF is eliminated via D_TS forming product 3. The final step is -14.24 kcal/mol downhill from D_TS. Its keto form (3') is found to be more stable, lying -3.28 kcal/mol below product 3. The overall reaction has the activation barrier of 18.60 kcal/mol (w.r.t. reference 1 and 2) and is found to be exothermic with products 3 and 3' lying 13.05 kcal/mol and 16.34 kcal/mol below reference. According to the Gibbs free energy profile, the SN₂ ring-opening C-C bond cleavage step is found to be the ratedetermining step (RDS). DFT-computed Gibbs free energy reaction profiles (in kcal/mol at 298 K and 1 atm pressure) for BF₃·OEt₂ promoted synthesis of phosphine oxide functionalized boron pendant diester compounds using dimethyl 2-phenylcyclopropane-1,1-dicarboxylate (1) and BF₃·PMe₂Cl (2).

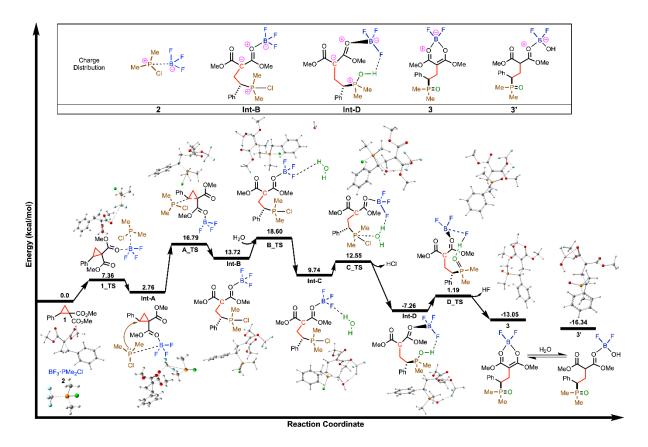


Figure 4.2 DFT Calculations.

4.3 Conclusions

In conclusion, we have disclosed a metal- and additive-free BF₃·OEt₂ promoted one-pot three-component reaction involving the reactions of phosphine chlorides/cyanide with DACs. This user-friendly phosphine chloride-triggered nucleophilic ring-opening of DACs offers the formation of boron pendant diester complexes in the two tautomeric forms. Selective product formation, mild reaction conditions, and broad substrate scope are the key features of the developed protocol. The practicality of the protocol was demonstrated through the gram scale synthesis and the combined experimental and theoretical studies portray a clear mechanistic pathway.

4.4 Experimental Section

Unless otherwise noted, all reactions were performed on a Schlenk vacuum line or in a glovebox using oven-dried glassware and were stirred with teflon-coated magnetic stirring bars. All the chemicals and reagents were purchased from commercial suppliers Sigma Aldrich, GLR Innovations, BLD Pharma, Spectrochem and used without further purification. Solvents were dried and stored over molecular sieves under argon atmosphere prior to use. All work-up and purification procedures were done with reagent grade solvents in air atmosphere. Reaction temperatures above 25 °C refer to temperatures of an aluminum heating block or a silicon oil bath, which were controlled by an electronic temperature modulator from Hedolph. Thin-layer chromatography (TLC) was performed using pre-coated plates purchased from E. Merck (silica gel 60 PF254, 0.25 mm). Column chromatography was performed using E. Merck silica gel 60 (100–200 mesh).). ¹H, 13 C, 19 F NMR spectra were recorded in CDCl₃ and d_6 -DMSO, on JEOL JNM-ECS spectrometer at operating frequencies of 400 MHz {¹H} or 101 MHz {¹³C} as indicated in the individual spectrum. Chemical shifts (δ) are given in parts per million (ppm) relative to residual solvent (CDCl₃, δ = 7.26 for ¹H NMR and 77.16 for ¹³C NMR, d_6 -DMSO: $\delta = 2.50$ for ¹H NMR and $\delta = 39.52$ for ¹³C NMR) and coupling constants (J) in Hz. Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogens). Multiplicity is tabulated as s for singlet, d for doublet, dd for doublet of doublet, t for triplet, q for quartet, dt for doublet of triplet and m for multiplet. High-resolution mass spectra (HRMS) were recorded using electron spray ionization (ESI) methods on waters mass spectrometer (XEVO G2-XS QTOF). The data collection for single crystal X-ray was performed at a 298 K on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with INCOATEC micro-focus source with graphite monochromated Mo Kα radiation ($\lambda = 0.71073 \text{ Å}$) operating at 50 kV and 30 mA.

4.4.1 Preparation of Starting Materials

Synthesis of cyclopropane-1,1-diester derivatives, 11:

Trimethyl sulfoxonium iodide (TMSOI) (7.5 mmol, 1.5 eq.) was added drop-wise into the suspension of sodium hydride (NaH) (60% suspension in mineral oil, 7.5 mmol, 1.5 eq.) and dry dimethyl sulfoxide (DMSO) under nitrogen atmosphere. Caution! Reaction trimethylsulfoxonium iodide with sodium hydride is exothermic (evolution of H₂ and heat). So, the suspension was maintained at 0 °C before adding trimethyl sulfoxonium iodide. After 15-20 minutes of vigorous stirring, a solution of alkylidene-malonate or arylidene-malonate, i (5 mmol, 1.0 eq.) in DMSO was added, and the mixture was allowed to warm up to room temperature. Upon completion of the reaction, as monitored by TLC, crushed ice was added to the crude solution and extracted with diethyl ether. The combined organic layer was washed once with brine, dried over sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents to afford product 1

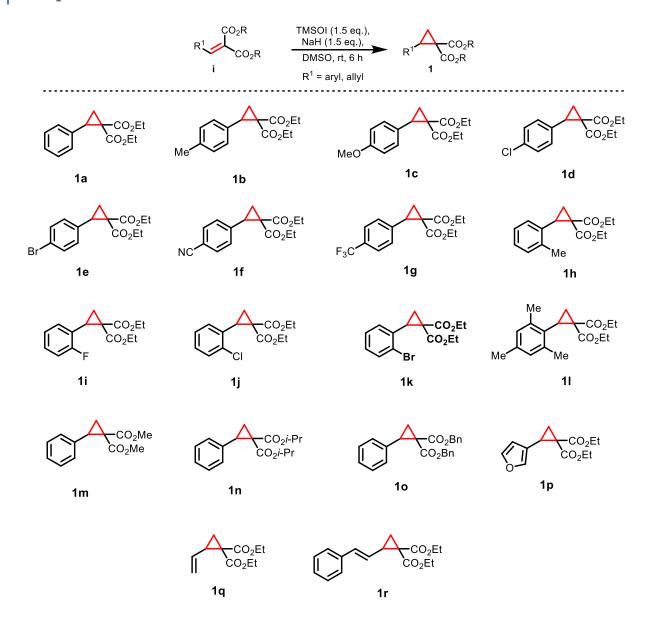


Figure 4.3 used Donor-Acceptor Cyclopropane.

Synthesis of PPh₂CN, 5²: Chlorodiphenylphosphine **2a** (1 mmol, 1.1eq.) was dissolved in DCM and Silver Cyanide (1 mmol, 1eq.) was added at room temperature. After that, the reaction mixture was stirred for 6 h at room temperature. Upon completion of the reaction, as monitored by TLC, the crude solution was extracted with DCM. The combined organic layer was washed once with brine, dried over sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents to deliver the product **5**.

Figure 4.4 Used diphenylphosphanecarbonitrile.

Organochlorophosphines used in the transformation (commercial purchased)

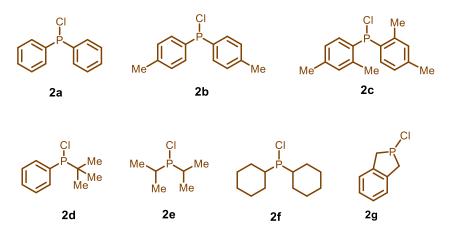


Figure 4.5 Used Organochlorophosphines.

4.4.2 General Procedures

General procedure for the synthesis of difluoro-dioxaborinin-diphenylphosphine oxide derivatives, 3 or 3' (GP-1)

An oven-dried Schlenk tube was charged with magnetic bar, organochlorophsophine **2** (0.132 mmol, 1.2 eq.), and D-A cyclopropane **1** (0.11 mmol, 1 eq.). Then, BF₃·OEt₂ (0.16 mmol, 1.5 eq.) was added to the reaction mixture at room temperature and stirred the reaction for 6 h under open aerobic conditions. Upon completion of the reaction, as monitored by TLC, the reaction mixture was quenched with NaHCO₃ and extracted with DCM. The combined organics were dried over sodium sulfate and concentrated under reduced pressure. The crude product was further purified through silica gel chromatography using hexane and ethyl acetate as the eluent to afford the product **3** or **3**°.

Synthesis of diethyl 2-(2-(diphenylphosphoryl)-2-phenylethyl)malonate derivative, 4aa:

A schlenk tube was equipped with a magnetic bar and N_2 gas was purged. Afterward, diphenylphosphine chloride 2a (0.132 mmol, 1.2 eq.) and 2mL anhydrous DCE solvent were added, followed by 1a (0.11 mmol, 1 eq.). After 2 minutes of stirring, $Sc(OTf)_3$ (5 mg, 0.011 mmol, 0.1 eq.) was added and allowed to stir at 60 °C for 20 hours. Upon completion, the reaction mixture was extracted with DCM and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents to afford product 4aa in 72% yield.

Synthesis of Diethyl 2-(2-(4-chlorophenyl)-2-(diphenylphosphoryl)ethyl)malonate, 4da

In a sealed tube, $(1-(4-\text{chlorophenyl})-2-(4,6-\text{diethoxy-}2,2-\text{difluoro-}2H-1\lambda^3,3,2\lambda^4-\text{dioxaborinin-}5-yl)$ ethyl) diphenylphosphine oxide **3'da** (1 mmol, 1.0 eq.) in ACN (1 mL) was added and allowed to stir at 120 °C for 1 hour. Upon completion of the reaction, as monitored by TLC, the crude solution was extracted with DCM. The combined organic layers were washed once with brine and dried over sodium sulfate (Na₂SO₄), filtered and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents to afford the product **4da** in 92% yield.

Gram scale synthesis of 3aa

In a round bottomed flask, cyclopropane diester **1a** (5 mmol, 1 eq.) and chlorodiphenylphosphine **2a** (6 mmol, 1.2 eq.) were dissolved in DCE solvent under an open atmosphere at room temperature. After 2 minutes of stirring, BF₃·OEt₂ (7.5 mmol, 1.5 eq.) was added and allowed to stir for 6 h. Upon completion of the reaction, the crude solution was extracted with DCM. The combined organic layers were washed once with brine and NaHCO₃ dried over sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents

Synthesis of diethyl 2-(2-(diphenylphosphoryl)-2-(4-((triisopropylsilyl) ethynyl)phenyl)ethyl) malonate, 10

To a schlenk tube, compound **3'ea** (0.11 mmol, 1 eq.), Bis(triphenylphosphine)palladium(II) dichloride (0.055 mmol, 0.5 eq.), copper iodide (0.055 mmol, 0.5 eq.) and triisopropylsilyl)acetylene (0.22 mmol, 2 eq.) were added together in diisopropylamine (1 mL) under N₂ atmosphere. Then the mixture was stirred at 100 °C for 12 h. Upon completion of the reaction, the crude solution was extracted with EtOAc. The combined organic layers were washed once with brine, dried over sodium sulfate (Na₂SO₄), filtered, and concentrated under reduced pressure, which was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents to afford the final product **10** in 82% yield.

4.4.3 Mechanistic Studies

Ph₂(Cl/CN)PBF₃ adduct studies

An attempt was made to react **2a** and **5** with BF₃·OEt₂ at room temperature. Firstly, chlorodiphenylphosphine **2a** (0. 01 mL, 0.1 mmol, 1 eq.) was stirred with BF₃·OEt₂ (0.002 mL, 0.0125 mmol, 1.25 eq.) in an open-to-air flask for 3 hours at room temperature. After three hours of stirring, progress of the reaction was analyzed through ¹¹B and ³¹P NMR and it was compared with the ¹¹B NMR of BF₃·OEt₂ and ³¹P NMR of PPh₂Cl and the formation of an adduct was observed as shown below. The same experiment was repeated with diphenylphosphanecarbonitrile **5** (0.021 mL, 0.1 mmol, 1 eq.) and the formation of adduct was observed. Then this adduct was allowed to react with cyclopropane diester **1a** (0.002 mL, 0.083 mmol, 0.83 eq.) and after 6 hours of stirring at room temperature, reaction was complete as monitored by the TLC. Afterward, the reaction mixture was treated with NaHCO₃ solution, extracted with DCM, and dried over sodium sulfate. The crude product was further purified by silica gel column chromatography using hexane and ethyl acetate as eluents to afford the final product **3aa** in 89% yield.

4.4.5 Characterization data

$(2-(4,6-diethoxy-2,2-difluoro-2H-1\lambda^3,3,2\lambda^4-dioxaborinin-5-yl)-1-phenylethyl)$ diphenyl phosphine oxide (3aa)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 53 mg, 92% white solid (m.p. = 108 - 110°C), 1 H NMR (400 MHz, CDCl₃): δ 7.98 - 7.92 (m, 2H), 7.60 - 7.51 (m, 3H), 7.45 - 7.38 (m, 2H), 7.34 - 7.27 (m, 3H), 7.24 - 7.17 (m, 3H), 7.15 - 7.11 (m, 2H), 4.27 - 4.09 (m, 4H), 3.56 - 3.49 (m, 1H), 3.17 - 3.07 (m, 1H), 2.71 - 2.63 (m, 1H), 1.26 - 1.21 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 172.9, 135.3 (d, J = 5.0 Hz), 132.6 (d, J = 12.5 Hz), 131.9 (d, J = 10.7 Hz), 131.6 (d, J = 7.1 Hz), 131.3 (t, J = 8.6 Hz), 130.9 (d, J = 8.7 Hz), 130.2 (d, J = 6.2 Hz), 128.8 (d, J = 11.3 Hz), 128.4 (d, J = 13.1 Hz), 128.3, 128.1 (d, J = 3.8 Hz), 127.3, 65.3, 45.7 (d, J = 66.8 Hz), 22.6, 14.3; 11 B NMR (128 MHz, CDCl₃): δ -0.48; 19 F NMR (376 MHz, CDCl₃): δ -143.29; 31 P NMR (162 MHz, CDCl₃): δ 33.82; HRMS: m/z: [M+H]+ -BF₂ calculated for C₂₇H₂₉O₅P 465.1831; found 465.1840; IR Data: 3272, 3058, 1645,1438, 1370, 1031, 834, 799, 753, 503, 439.

$(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\lambda^3,3,2\lambda^4-oxaborinin-5-yl)-1-(p-tolyl)$ ethyl) diphenylphosphine oxide (3'ba)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 59 mg, 86% white solid (m.p. = 116 - 118 ° C); 1 H NMR (400 MHz, CDCl₃): δ 8.01 – 7.93 (m, 2H), 7.55 – 7.54 (m, 3H), 7.38 – 7.33 (m, 2H), 7.30 – 7.26 (m, 1H), 7.21 – 7.16 (m, 2H), 7.07 (d, J = 6.6 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 4.02 (q, J = 7.2 Hz, 2H), 3.68 – 3.62 (m, 1H), 3.09 (dd, J = 11.5, 3.5 Hz, 1H), 2.66 – 2.55 (m, 1H), 2.50 – 2.42 (m, 1H), 2.23 (s, 3H), 1.20 (t, J = 7.3 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 169.2, 169.1, 137.2, 132.8, 132.0, 131.8, 131.5 (d, J = 8.7 Hz), 131.3, 130.9 (d, J = 8.7 Hz), 130.8, 130.7 (d, J = 5.9 Hz), 129.8 (d, J = 5.6 Hz), 129.4, 128.9 (d, J = 11.4 Hz), 128.1 (d, J = 11.6 Hz), 61.5 (d, J = 19.8 Hz), 49.4(d, J = 13.3 Hz), 43.5 (d, J = 67.6 Hz), 28.3, 21.2, 14.2, 14.0; 11 B NMR (128 MHz, CDCl₃): δ -1.75; 19 F NMR (376 MHz,CDCl₃): δ -143.22; 31 P NMR (162 MHz, CDCl₃): δ 33.32; HRMS: m/z: [M+H]+-BF₂OH calculated for C₂₈H₃₂O₅P 479.1987; found 479.1994; IR Data: 3273, 3061, 2981, 2937, 2378,1688,1545,1495,1025, 544, 506, 424.

$(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\chi^3,3,2\chi^4-oxaborinin-5-yl)-1-(4-methoxyphenyl)$ ethyl)diphenylphosphine oxide (3'ca

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 55 mg, 88% of viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.00 – 7.94 (m, 2H), 7.59 – 7.52 (m, 3H), 7.39 – 7.34 (m, 2H), 7.32 – 7.27 (m, 1H), 7.22 – 7.17 (m, 2H), 7.08 (t, J = 7.9 Hz, 1H), 6.75 – 6.69 (m, 3H), 4.15 (q, J = 7.4 Hz, 2H), 4.04 (q, J = 7.1 Hz, 2H), 3.67 (s, 4H), 3.13 (dd, J = 11.6, 3.4 Hz, 1H), 2.68 – 2.59 (m, 1H), 2.51 – 2.40 (m, 1H), 1.24 – 1.12 (m, 6H); ¹³C{ ¹H} NMR (101 MHz, CDCl₃): δ 169.1, 169.0, 159.6, 135.3 (d, J = 5.8 Hz), 132.2, 132.1, 131.5 (d, J = 7.8 Hz), 131.2, 130.9 (d, J = 9.3 Hz), 130.3, 129.6, 129.0 (d, J = 11.4 Hz), 128.1 (d, J = 11.9 Hz), 122.4 (d, J = 5.8 Hz), 114.3 (d, J = 100.7 Hz), 61.5 (d, J = 18.5 Hz), 55.2, 49.3 (d, J = 13.3 Hz), 43.9 (d, J = 67.3 Hz), 28.1, 14.1, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ -1.77; ¹⁹F NMR (376 MHz, CDCl₃): δ -143.86; ³¹P NMR (162 MHz, CDCl₃): δ 34.08; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₈H₃₂O₆P 495.1937; found 495.1950; IR Data: 3272, 3060, 2982, 2934, 2328, 1724, 1688, 1022, 543, 506.

$(1-(4-\text{chlorophenyl})-2-(4,6-\text{diethoxy-}2,2-\text{difluoro-}2-\text{hydroxy-}2H-1\lambda^3,3,2\lambda^4-\text{oxaborinin-}5-$ yl)ethyl)diphe nyl phosphine oxide (3'da)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 53 mg, 84% white solid (m.p. = 111 - 113 ° C); H NMR (400 MHz, CDCl₃): δ 8.00 – 7.94 (m, 2H), 7.57 – 7.54 (m, 3H), 7.38 – 7.28 (m, 3H), 7.21 – 7.18 (m, 2H), 7.14 (s, 4H), 4.17 – 4.11 (m, 2H), 4.06 – 4.00 (m, 2H), 3.72 – 3.66 (m, 1H), 3.04 (dd, J = 11.6, 3.7 Hz, 1H), 2.64 – 2.55 (m, 1H), 2.51 – 2.42 (m, 1H), 1.23 – 1.12 (m, 6H); NMR (101 MHz, CDCl₃): δ 168.8, 133.5 (d, J = 3.5 Hz), 132.4, 132.4, 132.3, 131.8, 131.7, 131.4 (d, J = 8.9 Hz), 131.2 (d, J = 5.5 Hz), 130.7 (d, J = 9.1 Hz), 129.8, 129. (d, J = 11.5 Hz), 128.8, 128.3 (d, J = 12.0 Hz), 61.6 (d, J = 17.1 Hz), 49.2 (d, J = 13.0 Hz), 43.2 (d, J = 67.1 Hz), 28.1, 14.1, 13.9; NMR (376 MHz, CDCl₃): δ -143.08; NMR (128 MHz, CDCl₃): δ -0.40; NMR (162 MHz, CDCl₃): δ 33.62; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₇H₂₉O₅PCl 499.1441; found 499.1447; IR Data: 3287, 3060, 2981, 2937, 2335, 1729, 1474, 1029, 860, 509, 456.

$(1-(4-bromophenyl)-2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1<math>\lambda^3$,3,2 λ^4 -oxaborinin-5-yl) ethyl)diphenylphosphine oxide (3'ea)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 55 mg, 82% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.98 – 7.89 (m, 2H), 7.57 – 7.48 (m, 3H), 7.45 – 7.43 (m, 1H), 7.41 – 7.36 (m, 1H), 7.34 – 7.28 (m, 2H), 7.25 – 7.147 (m, 4H), 7.06 (d, J = 8.7 Hz, 1H), 4.24 – 4.00 (m, 5H), 3.72 – 3.46 (m, 1H), 3.08 – 2.99 (m, 1H), 2.70 – 2.55 (m, 1H), 1.23 – 1.13 (m, 6H); ¹³C{ ¹H} NMR (101 MHz, CDCl₃): δ 168.9, 168.8, 134.1 (d, J = 4.9 Hz), 132.7, 132.4, 132.0, 131.7, 131.6, 131.0 (d, J = 9.6 Hz), 130.8, 130.7 (d, J = 4.0 Hz), 129.8, 129.1 (d, J = 12.1 Hz), 128.3, 127.9 (d, J = 11.8 Hz), 126.7 (d, J = 7.7 Hz), 61.8 (d, J = 3.8 Hz), 49.3 (d, J = 13.4 Hz), 41.7 (d, J = 66.9 Hz), 28.9, 14.1, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ -0.41; ¹⁹F NMR (376 MHz, CDCl₃): δ -143.29; ³¹P NMR (162 MHz, CDCl₃): δ 33.99; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₇H₂₉O₅PBr 543.0936; found 543.0940; IR Data: 3284, 3056, 2983, 2936, 2330, 1730, 1470, 1028, 504, 450.

4-(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1 χ^3 ,3,2 χ^4 -oxaborinin-5-yl)-1-(diphenyl phosphoryl)ethyl)benzonitrile (3'fa)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 46 mg, 75% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.01 – 7.96 (m, 2H), 7.61 – 7.56 (m, 3H), 7.48 (d, J = 8.1 Hz, 2H), 7.37 – 7.30 (m, 5H), 7.25 – 7.21 (m, 2H), 4.19 – 4.11 (m, 2H), 4.08 – 4.03 (m, 2H), 3.84 – 3.79 (m, 1H), 2.99 (dd, J = 11.5, 3.6 Hz, 1H), 2.70 – 2.60 (m, 1H), 2.54 – 2.47 (m, 1H), 1.22 – 1.15 (m, 6H); ¹³C{ ¹H} NMR (101 MHz, CDCl₃): δ 168.8, 168.7, 140.2 (d, J = 5.4 Hz), 132.6, 132.3, 131.9, 131.5, 131.4, 130.8, 130.7, 129.3, 129.2, 128.5, 128.4, 118.7, 111.5, 61.8 (d, J = 17.1 Hz), 49.3 (d, J = 12.8 Hz), 44.4 (d, J = 65.0 Hz), 28.1, 14.2, 14.1; ¹¹B NMR (128 MHz, CDCl₃): δ -0.43; ¹⁹F NMR (376 MHz, CDCl₃): δ -143.42; ³¹P NMR (162 MHz, CDCl₃): δ 33.31; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₈H₂₉NO₅P 490.1783; found 490.1786; IR Data: 3272, 3062, 2980, 2326, 2001, 1724, 1688, 1545, 1025, 507, 424.

(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2*H*-1^{χ3},3,2^{χ4}-oxaborinin-5-yl)-1-(4-(trifluoromethyl) phenyl) ethyl)diphenylphosphine oxide (3'ga)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 58 mg, 87% white solid (m.p. = 116 - 118 ° C); ¹H NMR (400 MHz, CDCl₃): δ 8.02 – 7.97 (m, 2H), 7.60 – 7.54 (m, 3H), 7.44 (d, J = 8.1 Hz, 2H), 7.37 – 7.30 (m, 5H), 7.23 – 7.18 (m, 2H), 4.19 – 4.11 (m, 2H), 4.07 – 4.01 (m, 2H), 3.82 – 3.76 (m, 1H), 3.02 (dd, J = 11.4, 3.6 Hz, 1H), 2.71 – 2.62 (m, 1H), 2.56 – 2.47 (m, 1H), 1.20 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 168.9, 168.8, 138.5 (d, J = 5.9 Hz), 132.4, 132.0, 131.8, 131.5 (d, J = 8.6 Hz), 131.0, 130.9, 130.8 (d, J = 8.8 Hz), 130.3 (d, J = 5.3 Hz), 129.9, 129.6, 129.1 (d, J = 11.5 Hz), 128.3 (d, J = 12.1 Hz), 125.5, 61.8 (d, J = 17.8 Hz), 49.3 (d, J = 13.2 Hz), 44.0 (d, J = 65.6 Hz), 28.2, 14.1, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ -0.46; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.61, -143.55; ³¹P NMR (162 MHz, CDCl₃): δ 32.61; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₈H₂₉O₅PF₃ 533.1705; found 533.1709; IR Data: 3247, 2985, 2905, 1726, 1617, 1591, 1045, 1018, 239, 432.

$(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\lambda^3,3,2\lambda^4-oxaborinin-5-yl)-1-(o-tolyl)$ ethyl) diphenylphosphine oxide (3'ha)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 48 mg, 80% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.00 – 7.94 (m, 2H), 7.56 – 7.51 (m, 3H), 7.38 – 7.33 (m, 2H), 7.31 – 7.26 (m, 1H), 7.21 – 7.16 (m, 2H), 7.07 – 7.05 (m, 2H), 6.97 (d, J = 7.8 Hz, 2H), 4.15 (q, J = 7.2 Hz, 2H), 4.03 (q, J = 7.2 Hz, 2H), 3.68 – 3.62 (m, 1H), 3.09 (dd, J = 11.7, 3.4 Hz, 1H), 2.66 – 2.57 (m, 1H), 2.50 – 2.41 (m, 1H), 2.23 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H); ¹³C{ ¹H} NMR (101 MHz, CDCl₃): δ 169.13, 169.04, 137.2, 132.6, 132.0, 131.5 (d, J = 8.7 Hz), 131.4, 130.98, 130.89, 130.6 (t, J = 6.5 Hz), 129.8 (d, J = 5.5 Hz), 129.4, 128.98, 128.87, 128.1, 128.0, 61.5 (d, J = 19.3 Hz), 49.4 (d, J = 13.2 Hz), 43.4 (d, J = 68.0 Hz), 28.3, 21.1, 14.1, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ -1.75 (d, J = 40.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -143.22; ³¹P NMR (162 MHz, CDCl₃): δ 33.63; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₈H₃₂O₅P 479.1988; found 479.1993; IR Data: 3273, 3062, 2980, 2937, 2378, 1698, 1545, 1495, 1025, 546, 506, 425.

$(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\lambda^3,3,2\lambda^4-oxaborinin-5-yl)-1-(2-fluorophenyl)$ ethyl)diphenylphosphine oxide (3'ia)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 43 mg, 70% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.04 – 7.94 (m, 2H), 7.79 – 7.70 (m, 1H), 7.56 – 7.48 (m, 4H), 7.43 –

7.36 (m, 1H), 7.25 – 6.98 (m, 5H), 6.80 – 6.72 (m, 1H), 4.29 – 4.23 (m, 1H), 4.17 – 3.99 (m, 4H), 3.07 (dd, J = 11.4, 3.7 Hz, 1H), 2.66 – 2.59 (m, 1H), 2.57 – 2.45 (m, 1H), 1.24 – 1.11 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 168.9, 168.8, 162.2 (d, J = 6.2 Hz), 159.7 (d, J = 6.7 Hz), 132.4, 132.3, 131.6, 131.4 (d, J = 8.9 Hz), 130.6 (d, J = 9.0 Hz), 130.4, 129.2 (dd, J = 16.3, 9.6 Hz), 128.1 (d, J = 11.6 Hz), 124.9, 121.6 (dd, J = 14.6, 5.3 Hz), 115.0 (d, J = 23.2 Hz), 61.7 (d, J = 14.4 Hz), 49.6 (d, J = 13.4 Hz), 34.3 (d, J = 68.1 Hz), 27.9, 14.11,14.06; 11 B NMR (128 MHz, CDCl₃): δ -0.43; 19 F NMR (376 MHz, CDCl₃): δ -118.8 (d, J = 621.7 Hz), -143.3; 31 P NMR (162 MHz, CDCl₃): δ 33.3 (d, J = 104.2 Hz); HRMS: m/z: [M+H] + -BF₂OH calculated for C₂₇H₂₉O₅PF 483.1737; found 483.1741; IR Data: 3282, 2940, 2362, 2341, 1731, 1647, 1603, 1016, 539, 419. (1-(2-chlorophenyl)-2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1 λ 3,3,2 λ 4-oxaborinin-5-yl) ethyl)diphenylphosphine oxide (3'ja)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 66% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.11 – 8.02 (m, 2H), 7.92 – 7.89 (m, 1H), 7.61 – 7.58 (m, 3H), 7.36 – 7.26 (m, 4H), 7.17 – 7.14 (m, 2H), 7.10 – 7.09 (m, 2H), 4.52 – 4.44 (m, 1H), 4.23 – 4.13 (m, 2H), 4.07 – 3.99 (m, 2H), 3.05 (dd, J = 11.0, 4.1 Hz, 1H), 2.68 – 2.53 (m, 2H), 1.24 – 1.20 (m, 3H), 1.17 – 1.13 (m, 3H); ¹³C{ ¹H} NMR (101 MHz, CDCl₃): δ 168.9, 168.8, 135.2 (d, J = 7.3 Hz), 132.4, 132.3 (d, J = 5.1 Hz), 131.9, 131.6, 131.5, 130.8 (d, J = 9.5 Hz), 130.6 (d, J = 4.2 Hz), 129.9, 129.3, 129.1 (d, J = 11.5 Hz), 128.9, 128.0 (d, J = 11.7 Hz), 127.7, 61.7 (d, J = 9.3 Hz), 49.3 (d, J = 13.3 Hz), 38.7 (d, J = 67.3 Hz), 28.7, 14.1, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ -0.46; ¹⁹F NMR (376 MHz, CDCl₃): δ -142.99; ³¹P NMR (162 MHz, CDCl₃): δ 33.95; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₇H₂₉O₅PCl 499.1441; found 499.1446; IR Data: 3284, 3062, 2981, 2936, 2335, 1725, 1474, 1025, 860, 509, 456.

$(1-(2-bromophenyl)-2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\lambda^3,3,2\lambda^4-oxaborinin-5-yl)$ ethyl)diphenylphosphine oxide (3'ka)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 44 mg, 65% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.09 – 8.05 (m, 1H), 8.03 – 7.97 (m, 1H), 7.96 – 7.88 (m, 1H), 7.58 – 7.45 (m, 4H), 7.33 – 7.28 (m, 3H), 7.23 – 7.09 (m, 3H), 7.02 – 6.90 (m, 1H), 4.50 – 4.43 (m, 1H), 4.20 – 3.98 (m, 4H), 3.15 – 3.02 (m, 1H), 2.68 – 2.55 (m, 2H), 1.22 – 1.10 (m, 6H); ¹³C { ¹H } NMR

(101 MHz, CDCl₃): δ 168.9, 168.8, 134.1 (d, J = 4.9 Hz), 132.7, 132.4, 132.0, 131.6 (d, J = 8.6 Hz), 131.0 (d, J = 9.6 Hz), 130.7 (d, J = 4.0 Hz), 129.8, 129.1 (d, J = 12.1 Hz), 128.3, 127.9 (d, J = 11.8 Hz), 126.7 (d, J = 7.7 Hz), 61.8 (d, J = 3.8 Hz), 49.3 (d, J = 13.4 Hz), 41.7 (d, J = 66.9 Hz), 28.9, 14.1, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ -0.42; ¹⁹F NMR (376 MHz, CDCl₃): δ -142.72; ³¹P NMR (162 MHz, CDCl₃): δ 34.04; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₇H₂₉O₅PBr 543.0936; found 543.0941; IR Data: 3284, 3058, 2983, 2936, 2330, 1731, 1470, 1026, 504, 433.

$(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\centex^3,3,2\centex^4-oxaborinin-5-yl)-1-mesitylethyl)$ diphenylphosphine oxide (3'la)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 41 mg, 62% viscous liquid; 1 H NMR (400 MHz, CDCl₃): δ 8.08 – 8.03 (m, 2H), 7.64 – 7.63 (m, 3H), 7.28 – 7.26 (m, 1H), 7.15 – 7.08 (m, 4H), 6.87 (s, 1H), 6.51 (s, 1H), 4.25 – 4.02 (m, 5H), 3.11 (dd, J = 11.5, 3.2 Hz, 1H), 3.06 – 2.99 (m, 1H), 2.82 (s, 3H), 2.53 – 2.43 (m, 1H), 2.19 (s, 3H), 1.67 (s, 3H), 1.19 – 1.14 (m, 6H); 13 C{ 1 H} NMR (101 MHz, CDCl₃): δ 169.5, 169.3, 139.3, 138.5 (d, J = 5.8 Hz), 136.8, 132.1 (d, J = 8.1 Hz), 131.8, 131.4, 131.1 (d, J = 9.3 Hz), 129.3, 129.1 (d, J = 11.3 Hz), 127.7 (d, J = 11.6 Hz), 61.6 (d, J = 22.5 Hz), 49.5 (d, J = 12.8 Hz), 40.1 (d, J = 67.5 Hz)., 26.2, 22.2, 21.1, 20.8, 14.1; 11 B NMR (128 MHz, CDCl₃): δ -0.45; 19 F NMR (376 MHz, CDCl₃): δ -143.44; 31 P NMR (162 MHz, CDCl₃): δ 35.62; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₃₀H₃₆O₅P 507.2300; found 507.2302; IR Data: 3288, 2986, 2343, 1730, 1647, 1153, 1098, 543, 505, 420.

$(2-(2,2-\text{difluoro}-2-\text{hydroxy}-4,6-\text{dimethoxy}-2H-1\lambda^3,3,2\lambda^4-\text{oxaborinin-5-yl})-1-\text{phenylethyl})$ diphenyl phosphine oxide (3'ma)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 47 mg, 85% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.03 – 7.98 (m, 2H), 7.59 – 7.56 (m, 3H), 7.36 – 7.28 (m, 3H), 7.21 – 7.17 (m, 7H), 3.69 (s, 4H), 3.59 (s, 3H), 3.15 (dd, J = 11.5, 3.6 Hz, 1H), 2.72 – 2.62 (m, 1H), 2.55 – 2.46 (m, 1H); ¹³C{ ¹H} NMR (101 MHz, CDCl₃): δ 169.5, 169.5, 133.8 (d, J = 6.1 Hz), 132.2, 131.6, 131.5, 131.4, 130.9 (d, J = 8.8 Hz), 130.5, 129.9 (d, J = 5.6 Hz), 129.0 (d, J = 11.4 Hz),

128.7, 128.1 (d, J = 11.6 Hz), 127.7, 52.7 (d, J = 11.9 Hz), 49.1 (d, J = 12.8 Hz), 44.0 (d, J = 67.4 Hz), 28.4;¹¹B NMR (128 MHz, CDCl₃): δ -0.47;¹⁹F NMR (376 MHz, CDCl₃): δ -143.28;³¹P NMR (162 MHz, CDCl₃): δ 33.81;HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₅H₂₆O₅P 437.1518; found 437.1530;IR Data: 3272, 3054, 1647,1438, 1370, 1031, 834, 790, 750, 503, 439.

$(2-(2,2-difluoro-2-hydroxy-4,6-diisopropoxy-2H-1\lambda^3,3,2\lambda^4-oxaborinin-5-yl)-1-phenylethyl)$ diphenyl phosphine oxide (3'na)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 81% of 3'na as viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.02 – 7.97 (m, 2H), 7.57 – 7.54 (m, 3H), 7.35 – 7.26 (m, 3H), 7.20 – 7.15 (m, 7H), 5.08 – 5.02 (m, 1H), 4.91 – 4.85 (m, 1H), 3.72 – 3.66 (m, 1H), 3.01 (dd, J = 11.6, 3.4 Hz, 1H), 2.69 – 2.60 (m, 1H), 2.51 – 2.42 (m, 1H), 1.19 – 1.16 (m, 6H), 1.13 – 1.10 (m, 6H); ¹³C{ ¹H} NMR (101 MHz, CDCl₃): δ 168.6, 168.6, 168.6, 133.7 (d, J = 6.0 Hz), 132.2, 131.6, 131.5, 131.1 (d, J = 8.7 Hz), 130.9 (d, J = 9.3 Hz), 130.2, 129.9 (d, J = 5.7 Hz), 129.0 (d, J = 11.5 Hz), 128.7, 128.1 (d, J = 12.2 Hz), 127.6, 69.1 (d, J = 27.9 Hz), 49.7 (d, J = 13.0 Hz), 43.9 (d, J = 67.7 Hz), 27.9, 21.7, 21.6; ¹¹B NMR (128 MHz, CDCl₃): δ -0.98 (d, J = 143.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -143.88; ³¹P NMR (162 MHz, CDCl₃): δ 33.85; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₉H₃₄O₅P 493.2144; found 493.2161; IR Data: 3272, 3061, 2981, 2937, 2328, 1723, 1688, 1545, 1025, 543, 506, 423.

$(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\lambda^3,3,2\lambda^4-oxaborinin-5-yl)-1-phenylethyl)$ di-p-tolylphosphine oxide (3'ab)

Isolated by chromatography on silica gel, (*n*-hexane/EA = 10/3) 68% of 3'ab as white solid (m.p. = 120 - 122 ° C); ¹H NMR (400 MHz, CDCl₃): δ 7.86 – 7.81 (m, 2H), 7.36 – 7.33 (m, 2H), 7.22 – 7.14 (m, 7H), 6.98 (dd, J = 8.2, 2.7 Hz, 2H), 4.15 (q, J = 7.2 Hz, 2H), 4.03 (q, J = 7.2 Hz, 2H), 3.66 – 3.60 (m, 1H), 3.08 (dd, J = 11.6, 3.6 Hz, 1H), 2.68 – 2.58 (m, 1H), 2.52 – 2.41 (m, 1H), 2.41 (s, 3H), 2.22 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 169.1, 169.0, 142.5, 141.7, 134.2 (d, J = 5.7 Hz), 131.5 (d, J = 8.7 Hz), 130.9 (d, J = 9.4 Hz), 129.9 (d, J = 5.3 Hz), 129.7 (d, J = 12.0 Hz), 128.8 (d, J = 12.4 Hz), 128.6, 128.2 (d, J = 10.0 Hz), 127.5, 127.2, 61.5 (d, J = 19.3 Hz), 49.5 (d, J = 13.3 Hz), 44.1 (d, J = 67.3 Hz), 28.3, 21.7, 21.5, 14.1, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ -0.49; ¹⁹F NMR (376 MHz, CDCl₃): δ -144.06; ³¹P

NMR (162 MHz, CDCl₃): $_{\delta}$ 34.54;HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₉H₃₄O₅P 493.2144; found 493.2154;IR Data: 3286, 2981, 2932, 1727, 1541, 1340, 1261, 1093, 845, 512, 432.

$(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\lambda^3,3,2\lambda^4-oxaborinin-5-yl)-1-phenylethyl)$ bis(3,5-dimethyl phenyl)phosphine oxide (3'ac)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 36 mg, 55% white solid (m.p. = 121 - 123 ° C); ¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.54 (m, 2H), 7.19 – 7.17 (m, 6H), 6.89 (d, J = 11.2 Hz, 3H), 4.14 (q, J = 7.2 Hz, 2H), 4.02 (q, J = 7.2 Hz, 2H), 3.65 – 3.59 (m, 1H), 3.09 (dd, J = 11.3, 3.5 Hz, 1H), 2.67 – 2.58 (m, 1H), 2.51 – 2.44 (m, 1H), 2.38 (s, 6H), 2.11 (s, 6H), 1.18 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.1 Hz, 3H); ¹³C { ¹H} NMR (101 MHz, CDCl₃): δ 169.1, 168.9, 138.5 (d, J = 11.7 Hz), 137.5 (d, J = 12.4 Hz), 134.3 (d, J = 5.8 Hz), 133.7, 132.9, 132.2, 131.2 (d, J = 5.9 Hz), 130.2, 130.0, 129.9, 129.0 (d, J = 8.6 Hz), 128.6, 128.5, 127.4, 61.4 (d, J = 23.1 Hz), 49.4 (d, J = 13.1 Hz), 43.9 (d, J = 66.9 Hz)., 28.2, 21.4, 21.1, 14.1, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ -0.52; ¹⁹F NMR (376 MHz, CDCl₃): δ -143.35; ³¹P NMR (162 MHz, CDCl₃): δ 34.54; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₃₁H₃₈O₅P 521.2457; found 521.2462; IR Data: 3282, 2940, 2362, 2341, 1732, 1647, 1603, 1016, 539, 419.

tert-butyl(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1 λ^3 ,3,2 λ^4 -oxaborinin-5-yl)-1-phenyl ethyl)(phenyl)phosphine oxide (3'ad)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 37 mg, 66% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.85 – 7.81 (m, 2H), 7.51 – 7.49 (m, 2H), 7.41 – 7.36 (m, 2H), 7.20 – 7.11 (m, 2H), 7.02 – 6.94 (m, 2H), 4.20 – 3.90 (m, 4H), 3.61 – 3.57 (m, 1H), 2.98 – 2.87 (m, 1H), 2.66 – 2.37 (m, 1H), 2.15 – 2.04 (m, 1H), 1.23 – 1.13 (m, 7H), 1.05 (t, J = 7.1 Hz, 2H), 0.74 (d, J = 14.6 Hz, 6H); ¹³C { ¹H } NMR (101 MHz, CDCl₃): δ 169.1, 168.9 (d, J = 8.9 Hz), 136.1 (d, J = 5.7 Hz), 135.7 (d, J = 4.7 Hz), 131.8, 130.57 (d, J = 18.2 Hz), 128.4 (d, J = 10.4 Hz), 127.9, 127.4 (d, J = 10.7 Hz), 127.0, 61.4 (t, J = 14.8 Hz), 49.6 (d, J = 11.4 Hz), 48.6 (d, J = 12.0 Hz), 41.0 (d, J = 58.3 Hz), 39.7 (d, J = 59.3 Hz), 34.6 (d, J = 37.5 Hz), 33.9 (d, J = 40.7 Hz), 30.1 (d, J = 17.1 Hz), 25.8, 24.8, 14.1 (d, J = 5.3 Hz), 13.9 (d, J = 8.8 Hz); ¹¹B NMR (128 MHz, CDCl₃): δ -1.02; ¹⁹F

NMR (376 MHz, CDCl₃): δ -146.00;³¹P NMR (162 MHz, CDCl₃): δ 51.87;HRMS: m/z: [M+H]⁺ - BF₂OH calculated for C₂₅H₃₄O₅P 445.2144; found 445.2164;IR Data: 3273, 2968, 2838, 1732, 1647, 1542, 1339, 1028, 537, 435.

$(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\lambda^3,3,2\lambda^4-oxaborinin-5-yl)-1-phenylethyl)$ diisopropylphosphine oxide (3'ae)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 39 mg, 76% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.27 – 7.20 (m, 5H), 4.12 (q, J = 7.2 Hz, 2H), 4.01 (q, J = 6.9 Hz, 2H), 3.18 – 3.14 (m, 1H), 2.94 (dd, J = 8.6, 6.1 Hz, 1H), 2.54 – 2.48 (m, 2H), 2.32 – 2.24 (m, 1H), 1.76 – 1.69 (m, 1H), 1.31 – 1.25 (m, 6H), 1.16 – 1.10 (m, 6H), 0.97 (dd, J = 14.6, 7.2 Hz, 3H), 0.79 (dd, J = 15.3, 7.3 Hz, 3H); ¹³C { ¹H} NMR (101 MHz, CDCl₃): δ 168.9, 168.8, 135.1, 129.5, 128.9, 127.7, 61.5 (d, J = 15.0 Hz), 49.1 (d, J = 10.2 Hz), 39.4 (d, J = 56.1 Hz), 26.5, 25.9, 17.1, 16.6, 16.3, 15.8, 14.0, 13.9; ¹¹B NMR (128 MHz, CDCl₃): δ -2.03; ¹⁹F NMR (376 MHz, CDCl₃): δ -150.27; ³¹P NMR (162 MHz, CDCl₃): δ 53.35; HRMS: m/z: [M+H]⁺ -BF₂OH calculated for C₂₁H₃₄O₅P 397.2144; found 397.2163; IR Data: 3272, 3061, 2981, 2328, 1723, 1686, 1025, 543, 506, 423.

Dicyclohexyl(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H- $1\lambda^3$,3, $2\lambda^4$ -oxaborinin-5-yl)-1-phenyl ethyl)phosphine oxide (3'af)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 43 mg, viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 7.30 (s, 5H), 4.16 (q, J = 7.0 Hz, 2H), 4.09 – 4.04 (m, 2H), 3.15 – 3.09 (m, 1H), 3.00 (dd, J = 10.6, 4.1 Hz, 1H), 2.62 – 2.50 (m, 2H), 2.11 – 2.00 (m, 3H), 1.85 – 1.81 (m, 4H), 1.66 – 1.52 (m, 5H), 1.45 – 1.39 (m, 3H), 1.24 – 1.16 (m, 6H), 1.00 – 0.94 (m, 3H), 0.87 – 0.80 (m, 2H); ¹³C { ¹H } NMR (101 MHz, CDCl₃): δ 169.3, 169.1, 135.6 (d, J = 5.6 Hz), 129.7 (d, J = 5.0 Hz), 129.0, 128.5, 127.7, 127.0, 61.6 (d, J = 23.0 Hz), 49.5 (d, J = 11.0 Hz), 39.6 (d, J = 55.6 Hz), 38.0, 37.7, 37.3, 37.1, 28.7, 27.4, 27.2, 27.1, 26.9, 26.9, 26.7, 26.6, 26.2, 26.1, 25.7, 14.2, 14.1; ¹¹B NMR (128 MHz, CDCl₃): δ -0.88; ¹⁹F NMR (376 MHz, CDCl₃): δ -145.28; ³¹P NMR (162 MHz,

CDCl₃): δ 52.30;HRMS: m/z: [M+H]⁺-BF₂OH calculated for C₂₇H₄₂O₅P 477.2770; found 477.2772;IR Data: 3273, 2968, 2878, 1731, 1648, 1370,1267, 1026, 537, 435.

$(2-(4,6-diethoxy-2,2-difluoro-2-hydroxy-2H-1\lambda^3,3,2\lambda^4-dioxaborinin-5-yl)-1-(p-tolyl)ethyl)dip-tolylphosphine oxide (3'bb)$

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 44 mg, 68% white solid (m.p. = 123 - 125 ° C); H NMR (400 MHz, CDCl₃): δ 7.85 - 7.80 (m, 2H), 7.34 - 7.33 (m, 2H), 7.24 - 7.21 (m, 2H), 7.09 - 7.07 (m, 2H), 7.00 - 6.99 (m, 4H), 4.16 (q, J = 7.1 Hz, 2H), 4.03 (q, J = 7.2 Hz, 2H), 3.62 - 3.56 (m, 1H), 3.09 (dd, J = 11.6, 3.5 Hz, 1H), 2.63 - 2.54 (m, 1H), 2.49 - 2.41 (m, 1H), 2.41 (s, 3H), 2.26 (s, 3H), 2.25 (s, 3H), 1.23 - 1.20 (m, 3H), 1.17 - 1.14 (m, 3H); 13 C { 1 H} NMR (101 MHz, CDCl₃): δ 169.3, 169.1, 142.4, 141.7, 137.1, 131.5 (d, J = 8.7 Hz), 131.0 (d, J = 9.7 Hz), 129.9 (d, J = 5.4 Hz), 129.7, 129.6, 129.4, 128.9, 128.8, 128.4, 61.5 (d, J = 20.2 Hz), 49.5 (d, J = 13.2 Hz), 43.6 (d, J = 68.0 Hz)., 28.4, 21.7, 21.6, 21.2, 14.2, 14.0; 11 B NMR (128 MHz, CDCl₃): δ -0.45; 19 F NMR (376 MHz, CDCl₃): δ -144.54; 31 P NMR (162 MHz, CDCl₃): δ 34.62; HRMS: m/z: [M+H] $^{+}$ -BF₂OH calculated for C₃₀H₃₆O₅P 507.2300; found 507.2327; IR Data: 3276, 3054, 2981, 2341, 1726, 1688, 1495, 1025, 543, 506, 423;

Diethyl 2-(2-(diphenylphosphoryl)-2-phenylethyl) malonate (4aa)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 45 mg, 87% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.03 – 7.97 (m, 2H), 7.61 – 7.53 (m, 3H), 7.38 – 7.27 (m, 3H), 7.23 – 7.14 (m, 7H), 4.16 (q, J = 7.1 Hz, 2H), 4.05 (q, J = 7.1 Hz, 2H), 3.72 – 3.66 (m, 1H), 3.11 (dd, J = 11.6, 3.4 Hz, 1H), 2.71 – 2.62 (m, 1H), 2.54 – 2.46 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C { ¹H } NMR (101 MHz, CDCl₃): δ 169.1, 133.9 (d, J = 6.0 Hz), 132.4, 132.1 (d, J = 2.6 Hz), 131.5 (d, J = 8.6 Hz), 131.4 (d, J = 2.8 Hz), 130.9 (d, J = 8.9 Hz), 130.4, 130.0 (d, J = 5.4 Hz), 129.0 (d, J = 11.3 Hz), 128.7 (d, J = 2.1 Hz), 128.1 (d, J = 11.9 Hz), 127.6 (d, J = 2.4 Hz), 61.6 (d, J = 19.2 Hz), 49.4 (d, J = 13.3 Hz), 43.9 (d, J = 67.4 Hz), 28.2, 14.1, 14.0; ³¹P NMR (162 MHz, CDCl₃): δ 34.11; HRMS: m/z: [M+H]⁺ calculated for C₂₇H₃₀O₅P 465.1831; found 465.1834; IR Data: 2986, 2937, 2342, 1730, 1647, 1153, 1098, 543, 505, 420.

Diethyl 2-(2-(4-chlorophenyl)-2-(diphenylphosphoryl)ethyl)malonate (4da)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 51 mg, 92% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.00 – 7.94 (m, 2H), 7.72 – 7.66 (m, 1H), 7.57 – 7.54 (m, 3H), 7.51 – 7.48 (m, 1H), 7.38 – 7.30 (m, 3H), 7.24 – 7.19 (m, 2H), 7.15 (d, J = 4.5 Hz, 2H), 4.15 (q, J = 7.0 Hz, 2H), 4.09 – 4.00 (m, 2H), 3.76 – 3.65 (m, 1H), 3.05 (dd, J = 11.5, 3.6 Hz, 1H), 2.64 – 2.54 (m, 1H), 2.52 – 2.43 (m, 1H), 1.20 (t, J = 7.1 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H); ¹³C { ¹H } NMR (101 MHz, CDCl₃): δ 168.9, 133.5, 132.8, 132.6 (d, J = 6.1 Hz), 132.3, 131.6, 131.5, 131.4, 131.2 (d, J = 5.9 Hz), 130.8, 130.2, 129.1 (d, J = 10.5 Hz), 128.9, 128.3, 128.2, 61.7 (d, J = 18.8 Hz), 49.3 (d, J = 12.9 Hz), 43.4 (d, J = 66.8 Hz), 28.2, 14.1, 14.0; ³¹P NMR (162 MHz, CDCl₃): δ 33.63; HRMS: m/z: [M+H]⁺ calculated for C₂₇H₂₉O₅PCl 499.1442; found 499.1446; IR Data: 2981, 2937, 2335, 1729, 1474, 1029, 861, 509, 456, 403.

Diethyl 2-(2-(diphenylphosphoryl)-2-(4-((triisopropylsilyl)ethynyl)phenyl)ethyl)malonate (10)

Isolated by chromatography on silica gel, (n-hexane/EA = 10/3) 59 mg, 82% viscous liquid; ¹H NMR (400 MHz, CDCl₃): δ 8.02 – 7.95 (m, 2 H), 7.60 – 7.54 (m, 3 H), 7.44 – 7.37 (m, 2 H), 7.35 – 7.29 (m, 3 H), 7.25 – 7.21 (m, 2 H), 7.16 (d, J = 7.7 Hz, 2 H), 4.16 (q, J = 7.2 Hz, 2 H), 4.08 – 4.01 (m, 2H), 3.75 – 3.67 (m, 1H), 3.03 (dd, J = 11.7, 3.3 Hz, 1H), 2.67 – 2.56 (m, 1H), 2.53 – 2.42 (m, 1H), 2.17 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H), 1.16 (t, J = 7.1 Hz, 3H), 1.11 (s, 18H); ¹³C { ¹H } NMR (101 MHz, CDCl₃): δ 169.1, 169.0, 134.6, 134.5, 132.4, 132.2, 131.6, 131.5, 131.4, 131.0, 130.9, 130.5, 129.9, 129.8, 129.1, 129.0, 128.4, 128.3, 122.8, 106.8, 91.3, 61.69 (d, J = 20.2 Hz), 49.29 (d, J = 12.8 Hz), 43.9 (d, J = 66.7 Hz), 31.1, 28.4, 18.8, 14.2, 14.1, 11.4; ³¹P NMR (162 MHz, CDCl₃): δ 33.31; HRMS: m/z: [M+H]+calculated for C₃₈H₅₀O₅PSi 645.3164; found 645.3165; IR Data: 3054, 2982, 2341, 2160, 1728, 1695, 1496, 1025, 544, 508, 423.

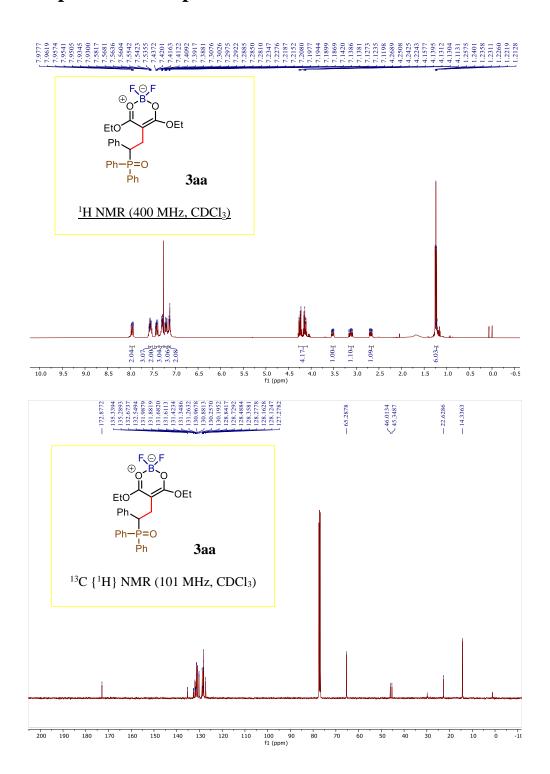
4.5 References

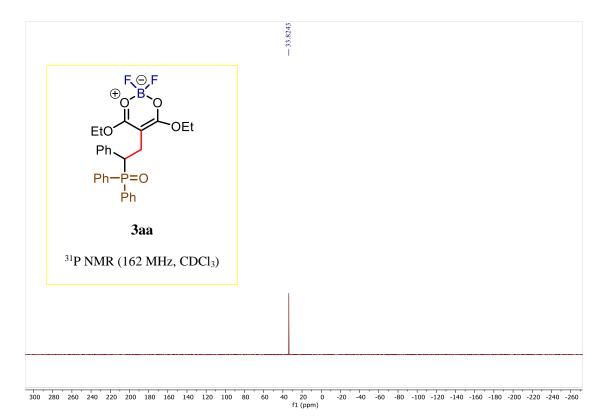
- (1) (a) Spielmann, J.; Jansen, G.; Bandmann, H.; Harder, S. Calcium amidoborane hydrogen storage materials: crystal structures of decomposition products. *Angew. Chem., Int. Ed.* **2008**, *47*, 6290–6295. (b) Spielmann, J.; Harder, S. Hydrogen elimination in bulky calcium amidoborane complexes: isolation of a calcium borylamide complex. *J. Am. Chem. Soc.* **2009**, *131*, 5064–5065. (c) Sun, C. L.; Shi, Z. J. Transition metal-free coupling reactions. *Chem. Rev.* **2014**, *114*, 9219–9280. (d) Wilkins, L. C.; Melen, R. L. Enantioselective main group catalysis: modern catalysts for organic transformations. *Coord. Chem. Rev.* **2016**, *324*, 123–139.
- (2) (a) Kostoudi, S.; Pampalakis, G. Improvements, Variations and Biomedical Applications of the Michaelis–Arbuzov Reaction. *Int. J. Mol. Sci.* **2022**, *23*, 3395. (b) Smith, B. R.; Eastman, C. M.; Njardarson, J. T. Beyond C, H, O, and N! Analysis of the elemental composition of US FDA approved drug architectures: Miniperspective. *J. Med. Chem.* **2014**, *57*, 9764-9773.
- (3) (a) Tanaka, K.; Chujo, Y. Recent progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate. *NPG Asia Mater.* **2015**, *7*, 223. (b) Chen, P. Z.; Niu, L. Y.; Chen, Y. Z.; Yang, Q. Z. Difluoroboron β-diketonate dyes: Spectroscopic properties and applications. *Coord. Chem. Rev.* **2017**, *350*, 196-216. (c) Li, X.; Liao, L. F.; Ding, L.Y.; Chen, C. H.; Liang, C.; Mo, D. L. Iron (III) and BF₃· OEt₂-Promoted O-Transfer Reaction of N-Aryl-α, β-Unsaturated Nitrones to Prepare Difluoroboron β-Ketoiminates. *Org. Lett.* **2024**, *26*, 3060-3064.
- (4) Lewis and Bronsted acid-catalyzed cyclopropane ring opening: (a) Lifchits, O.; Alberico, D.; Zakharian, I.; Charette, A. B. Nucleophilic Addition of Phenol Derivatives to Methyl 1-Nitrocyclopropanecarboxylates. *J. Org. Chem.* **2008**, *73*, 6838–6840. (b) Emmett, M. R.; Grover, H. K.; Kerr, M. A. Tandem Ring-Opening Decarboxylation of Cyclopropane Hemimalonates with Sodium Azide: A Short Route to γ-Aminobutyric Acid Esters. *J. Org. Chem.* **2012**, *77*, 6634–6637.
- (c) Zhou, Y.-Y.; Wang, L.-J.; Li, J.; Sun, X.-L.; Tang, Y. Side-Arm-Promoted Highly

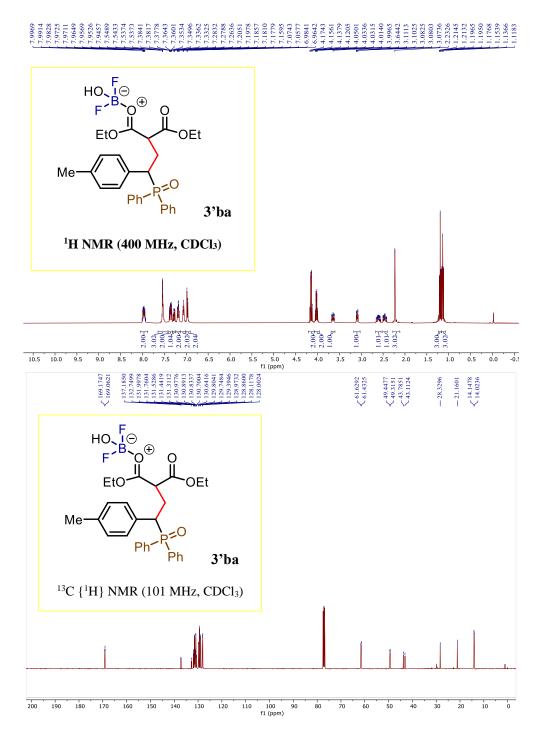
Enantioselective Ring-Opening Reactions and Kinetic Resolution of Donor-Acceptor Cyclopropanes with Amines. J. Am. Chem. Soc. 2012, 134, 9066-9069. (d) Xia, Y.; Liu, X.; Zheng, H.; Lin, L.; Feng, X. Asymmetric Synthesis of 2,3-Dihydropyrroles by Ring-Opening/Cyclization of Cyclopropyl Ketones Using Primary Amines. Angew. Chem., Int. Ed. 2015, 54, 227–230. (e) Xia, Y.; Lin, L.; Chang, F.; Fu, X.; Liu, X.; Feng, X. Asymmetric Ring-Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed Chiral N,N'-Dioxide—Scandium(III) Complex. Angew. by Chem., Int. Ed. 2015, 54, 13748–13752. (f) Kaicharla, T.; Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T. Lewis Acid Catalyzed Selective Reactions of Donor-Acceptor Cyclopropanes with 2-Naphthols. Angew. Chem., Int. Ed. 2016, 55, 10061–10064. (g) Nguyen, T. N.; May, J. A. Tertiary and Quaternary Carbon Formation via Gallium-Catalyzed Nucleophilic Addition of Organoboronates to Cyclopropanes. Org. Lett. 2018, 20, 112–115. (h) Tang, P.; Wei, Y.-Y.; Ma, H.-J.; Yang, Y.; Jiang, Y. MgI2-Catalyzed Nucleophilic Ring-Opening Reactions of Donor-Acceptor Cyclopropanes with Indoline-2-thiones. J. Org. Chem. 2020, 87, 10890–10901.

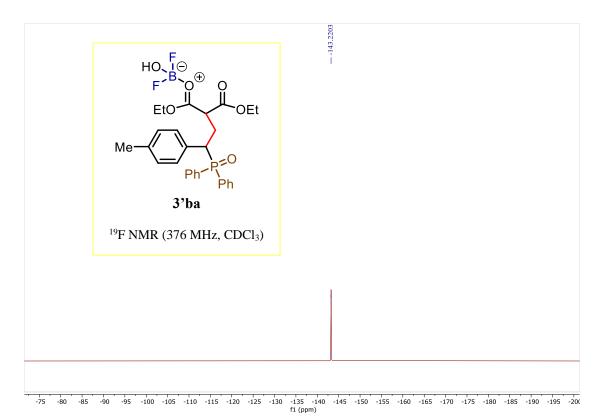
(5) Unsaturated and dipolar compounds to exhibit cycloaddition reactions: (a) Wang, L. F.; Shi, Z. F.; Cao, X. P.; Li, B. S.; An, P. Construction of fused-and spiro-oxa-[n. 2.1] skeletons by a tandem epoxide rearrangement/intramolecular [3+2] cycloaddition of cyclopropanes with carbonyls. *Chem. Commun.* 2014, 50, 8061–8064. (b) De Nanteuil, F.; Serrano, E.; Perrotta, D.; Waser, J. Dynamic kinetic asymmetric [3+2] annulation reactions of aminocyclopropanes. *J. Am. Chem. Soc.* 2014, 136, 6239–6242. (c) Chakrabarty, S.; Chatterjee, I.; Wibbeling, B.; Daniliuc, C.G.; Studer, A. Stereospecific formal [3+2] dipolar cycloaddition of cyclopropanes with nitrosoarenes: an approach to isoxazolidines. *Angew. Chem., Int. Ed.* 2014, 53, 5964 – 5968. (d) Garve, L. K.; Pawliczek, M.; Wallbaum, J.; Jones, P. G.; Werz, D. B. [4+3] Cycloaddition of Donor–Acceptor Cyclopropanes with Amphiphilic Benzodithioloimine as Surrogate for *ortho*-Bisthioquinone. *Chem. Eur. J.* 2016, 22, 521 – 525. (e) Dey, R.; Banerjee, P. Lewis Acid Catalyzed Diastereoselective Cycloaddition Reactions of Donor–Acceptor Cyclopropanes and Vinyl Azides: Synthesis of Functionalized Azidocyclopentane and Tetrahydropyridine Derivatives. *Org. Lett.* 2017, 19, 304–307. (f) Zotova, M. A.; Novikov, R. A.; Shulishov, E. V.; Tomilov, Y. V. GaCl₃-

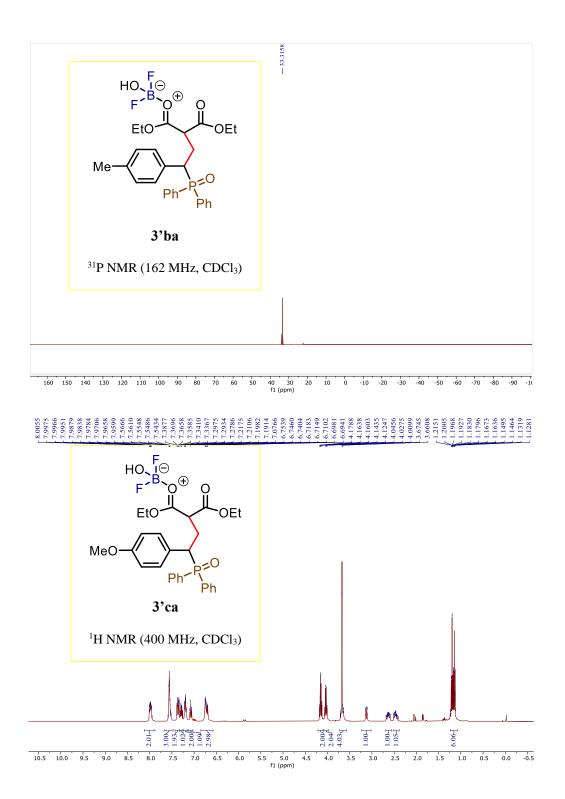
Mediated "Inverted" Formal [3+2]-Cycloaddition of Donor-Acceptor Cyclopropanes to Allylic Systems. J. Org. Chem. 2018, 83, 8193–8207. Different rearrangement and cascade processes: (g) Zhang, J.; Xing, S.; Ren, J.; Jiang, S.; Wang, Z. Lewis acid catalyzed intramolecular [3+2] cross cycloadditions of cobalt-alkynylcyclopropane 1, 1-diesters with carbonyls for construction of medium-sized and polycyclic skeletons. Org. Lett. 2015, 17, 218 – 221. (h) Rakhmankulov, E. R.; Ivanov, K. L.; Budynina, E. M.; Ivanova, O. A.; Chagarovskiy, A. O.; Skvortsov, D. A.; Latyshev, G. V.; Trushkov, I. V.; Melnikov, M. Y. Lewis and Brønsted Acid Induced (3+2)-Annulation of Donor-Acceptor Cyclopropanes to Alkynes: Indene Assembly. Org. Lett. 2015, 17, 770. (i) Ivanova, O. A.; Budynina, E. M.; Khrustalev, V. N.; Skvortsov, D. A.; Trushkov, I. V.; Melnikov, M. Y. A Straightforward Approach to Tetrahydroindolo [3,2-b] carbazoles and 1-Indolyltetrahydrocarbazoles through [3+3] Cyclodimerization of Indole-Derived Cyclopropanes. Chem. Eur. J. 2016, 22, 1223–1227. (j) Ivanova, O. A.; Chagarovskiy, A. O.; Shumsky, A. N.; Krasnobrov, V. D.; Levina, I. I.; Trushkov, I. V. Lewis Acid Triggered Vinylcyclopropane-Cyclopentene Rearrangement. J. Org. Chem. 2018, 83, 543-560. (k) Singh, K.; Pramanik, S.; Hamlin, T. A.; Mondal, B.; Das, D.; Saha, J. Lewis acid catalyzed annulation of spirocyclic donoracceptor cyclopropanes with exo-heterocyclic olefins: access to highly functionalized bisspirocyclopentane oxindole frameworks. Chem. commun. 2019, 55, 7069-7072. (1) Su, P.; Li, H.; Chen, W.; Luo, G.; Yang, G.; Chai, Z. Lewis Acid Catalyzed [3+2] Annulations of γ-Butyrolactam Fused Donor-Acceptor Cyclopropanes with Aromatic Aldehydes and Aldimines. Eur. J. Org. Chem. 2020, 2020, 5380-5387. (m) Kreuzer, A.; Kerres, S.; Ertl, T.; Rücker, H.; Amslinger, S.; Reiser, O. Asymmetric synthesis of both enantiomers of arteludovicinolide A. Org. Lett. 2013, 15, 3420-3423. (n) Racine, S.; De Nanteuil, F.; Serrano, E.; Waser, J. Synthesis of (carbo) nucleoside analogues by [3+2] annulation of aminocyclopropanes. Angew Chem., Int. Ed. 2014, 53, 8484-8487. (o) Gharpure, S. J.; Nanda, L. N.; Shukla, M. K. Donor-acceptor substituted cyclopropane to butanolide and butenolide natural products: Enantiospecific first total synthesis of (+)hydroxyancepsenolide. Org. Lett. 2014, 16, 6424-6427.

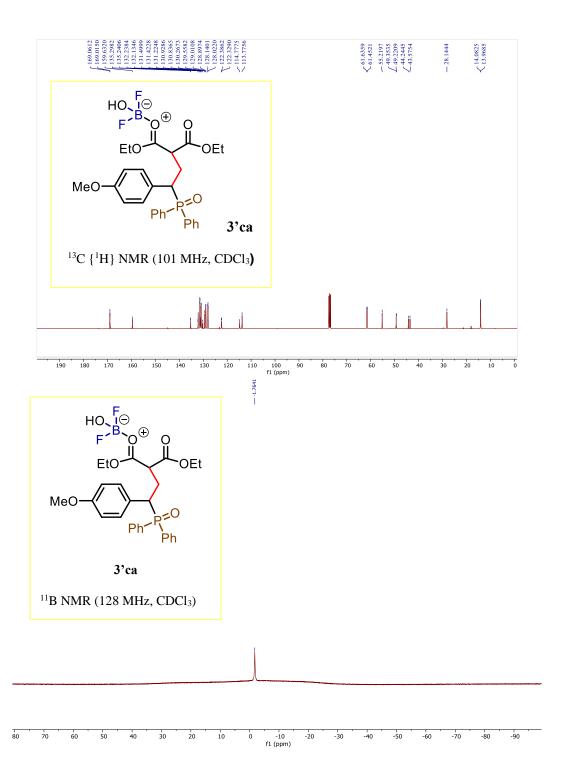

(6) Ring-opening of DACs by C-nucleophiles: (a) Garve, L. K.; Werz, D. B. Pd-catalyzed three-component coupling of terminal alkynes, arynes, and vinyl cyclopropane dicarboxylate. *Org. Lett.*

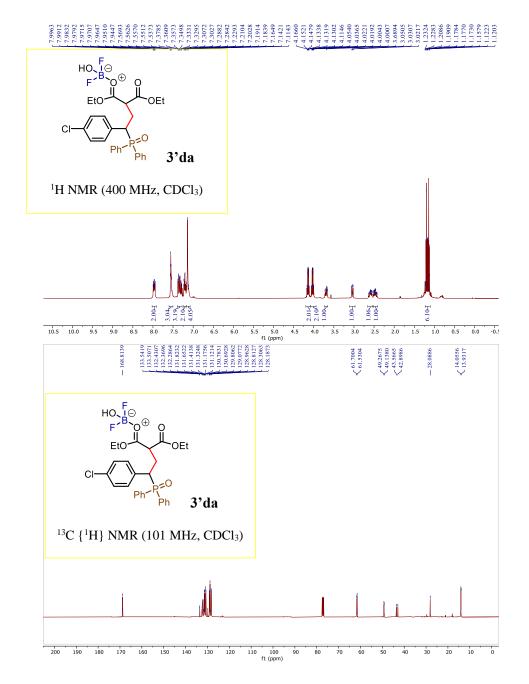

2015, 17, 596-599. (b) Budynina, E. M.; Ivanov, K. L.; Chagarovskiy, A. O.; Rybakov, V. B.; Trushkov, I. V.; Melnikov, M. Y. From Umpolung to Alternation: Modified Reactivity of Donor-Acceptor Cyclopropanes Towards Nucleophiles in Reaction with Nitroalkanes. Chem. Eur. J. 2016, 22, 3692–3696. (c) Ortega, V.; G. Csákÿ, A. Ring-Opening of Donor-Acceptor Cyclopropanes by Boronic Acids and Potassium Organotrifluoroborates under Transition-Metal-Free Conditions. J. Org. Chem. 2016, 81, 3917–3923. (d) Ghosh, K.; Das, S. Recent advances in ring-opening of donor-acceptor cyclopropanes using C-nucleophiles. Org. Biomol. Chem. 2021,19, 965–982. (e) Ahlburg, N. L.; Freese, T.; Kolb, S.; Mummel, S.; Schmidt, A.; Werz, D. B. Functionalization of Sydnones with Donor-Acceptor Cyclopropanes, Cyclobutanes, and Michael Acceptors. Eur. J. Org. Chem. 2021, 10, 1603-1606. (f) Lifchits, O.; Charette, A. B. A mild procedure for the Lewis acid-catalyzed ring-opening of activated cyclopropanes with amine nucleophiles. Org. Lett. 2008, 10, 2809–2812. (g) Ivanov, K. L.; Villemson, E. V.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V.; Melnikov, M. Y. Ring Opening of Donor-Acceptor Cyclopropanes with the Azide Ion: A Tool for Construction of N-Heterocycles. Chem. Eur. J. **2015**, 21, 4975–4987. (h) Budynina, E. M.; Sorokin, I. D.; Melnikov, M. Y. Ring opening of donor– acceptor cyclopropanes with N-nucleophiles. Synthesis. 2017, 49, 3035–3068. (i) Garve, L. K.; Jones, P. G.; Werz, D. B. Ring-Opening 1-Amino-3-aminomethylation of Donor-Acceptor Cyclopropanes via 1, 3-Diazepanes. Angew. Chem., Int. Ed. 2017, 56, 9226-9230. Selected examples for ring-opening of DACs by O-nucleophiles: (j) Kang, Q. K.; Wang, L.; Liu, Q. J.; Li, J. F.; Tang, Y. Asymmetric H₂O-nucleophilic ring opening of D-A cyclopropanes: catalyst serves as a source of water. J. Am. Chem. Soc. 2015, 137, 14594–14597. (k) Ikonnikova, V. A.; Zhigileva, E. A.; Kuleshov, A. V.; Shirokova, V. V.; Baranov, M. S.; Mikhaylov, A. A. Nucleophilic ring opening of imidazolone activated donor-acceptor cyclopropanes with alcohols. Mendeleev Commun. 2021, 31, 657–658. Selected examples for ring-opening of DACs by S nucleophiles: (1) Augustin, A. U.; Werz, D. B. Exploiting heavier organochalcogen compounds in donor-acceptor cyclopropane chemistry. Acc. Chem. Res. 2021, 54, 1528–1541. (m) Mishra, M.; Verma, K.; Banerjee, S.; Punniyamurthy, T. Iron-catalyzed cascade C–C/C–O bond formation of 2,4-dienals with donor-acceptor cyclopropanes: access to functionalized hexahydrocyclopentapyrans. Chem. Commun. 2024, 60, 2788. (n) Karjee, P.; Debnath, B.; Mandal, S.; Saha, S.; Punniyamurthy, T.

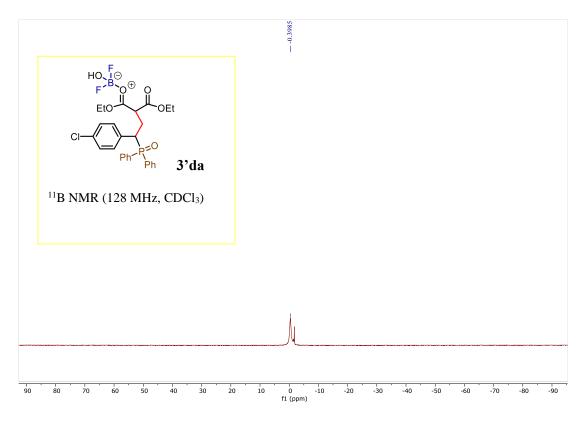

- One-pot C-N/C-C bond formation and oxidation of donor-acceptor cyclopropanes with tetrahydroisoquinolines: access to benzo-fused indolizines. *Chem. Commun.* **2024**, *60*, 4068-4071.
- (7) Morton, J. G.; Dureen, M. A.; Stephan, D.W. Ring-opening of cyclopropanes by "frustrated Lewis pairs". *Chem. Commun.* **2010**, *46*, 8947–8949.
- (8) Li, H.; Zhu, Y.; Lu, D.; Gong, Y. Regioselective addition of phosphites to acyl cyclopropanes and following rearrangements: facile access to enol phosphates. *Org. Biomol. Chem.* **2018**, *16*, 5907.
- (9) Jie, S.; Hao, Y.; Fei S.; Yi-Yun P.; Xi-Wei Z.; Xin-Xing W. Palladium-Catalyzed Allylation of P(O) H Compounds: Access to 2-Fluoroallylic Phosphorus Compounds. *Org. Lett.* **2023**, *25*, 5220-5225.
- (10) (a) Alnasleh, B. K.; Sherrill, W. M.; Rubin, M. Palladium-catalyzed hydrophosphorylation and hydrophosphinylation of cyclopropenes. *Org. Lett.* **2008**, *10*, 3231-3234. (b) Aranda, B.; Moya, S. A.; Vega, A.; Valdebenito, G.; Ramirez-Lopez, S.; Aguirre, P. New palladium (II) complexes containing phosphine-nitrogen ligands and their use as catalysts in aminocarbonylation reaction. *Apl. Organometal. Chem.* **2019**, *33*, e4709. (c) Radhakrishna, L.; Kote, B. S.; Kunchur, H. S.; Pandey, M. K.; Mondal, D.; Balakrishna, M. S. 1, 2, 3-Triazole based ligands with phosphine and pyridine functionalities: synthesis, Pd II and Pt II chemistry and catalytic studies. *Dalton Trans.* **2022**, *51*, 5480-5493. (d) Sun, H.; Wang, J.; Du, Z.; Zhang, K.; Hu, J.; Jing, S. Direct Synthesis of Tertiary Phosphines via Alkoxide-Mediated Deborylative Phosphination of Organoboronates. *Org. Lett.* **2024**, *26*, 1618-1622. (e) Yang, L.; Wu, J.; Li, Y.; Tang, Y.; Li, J.; Xu, S. Construction of C-P Bonds from Free Cyclobutanone Oximes and Chlorophosphines *via* Radical-Radical Coupling. *Org. Lett.* **2024**, *26*, 3208-3212.
- (11) (a) Singh, P. R.; Gopal, B.; Kumar, M.; Goswami, A. A metal-free BF₃·OEt₂ mediated chemoselective protocol for the synthesis of propargylic cyclic imines. *Org. Biomol. Chem.* **2022**, 20, 4933-4941. (b) Gopal, B.; Singh, P. R.; Kumar, M.; Goswami, A. Synthesis of Indole-Fused Dihydrothiopyrano Scaffolds via (3+3)-Annulations of Donor–Acceptor Cyclopropanes with Indoline-2-Thiones. *J. Org. Chem.* **2023**, 88, 132–142. (c) Singh, P. R.; Lamba, M.; Singh, D.;

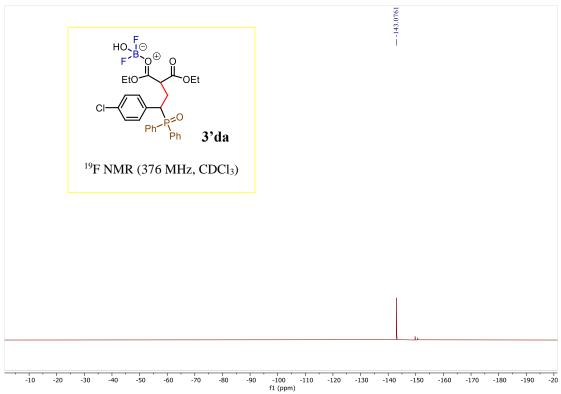

- Goswami, A. HFIP & Brønsted Acid Promoted Direct Distal C-Alkylation of 2-Oxindoles and Anilines with Donor-Acceptor Cyclopropanes. *Adv. Synth. Catal.* **2023**, *365*, 1685–1692.
- (12) Schmidt, M. U.; Brüning, J.; Glinnemann, J.; Hützler, M. W.; Mörschel, P.; Ivashevskaya, S. N.; van de Streek, J.; Braga, D.; Maini, L.; Chierotti, M. R.; Gobetto, R. The thermodynamically stable form of solid barbituric acid: the enol tautomer. *Angew. Chem. Int. Ed.* **2011**, *50*, 7924-7926. (13) Singh, P. R.; Kalaramna, P.; Ali, S.; Gos-wami, A. Synthesis of Thio-/Selenopyrrolines via
- (13) Singh, P. R.; Kalaramna, P.; Ali, S.; Gos-wami, A. Synthesis of Thio-/Selenopyrrolines via SnCl4-Catalyzed (3+2) Cycloadditions of Donor-Acceptor Cyclopropanes with Thio-/Selenocyanates. Eur. J. Org. Chem. **2021**, *33*, 4683–4689.
- (14) (a) Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. *J. Chem. Phys.* **1993**, *98*, 5648–5652; (b) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B Condens. Matter* **1988**, *37*, 785–789.
- (15) (a) Hehre, W. J.; Ditchfield; R.; Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *J. Chem. Phys.* **1972**, *56*, 2257–2261.
- (16) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb; M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Jr. Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- (17) Dennington, R.; Keith, T. A. Millam, J. M. Semichem Inc., Shawnee Mission, KS, 2016.

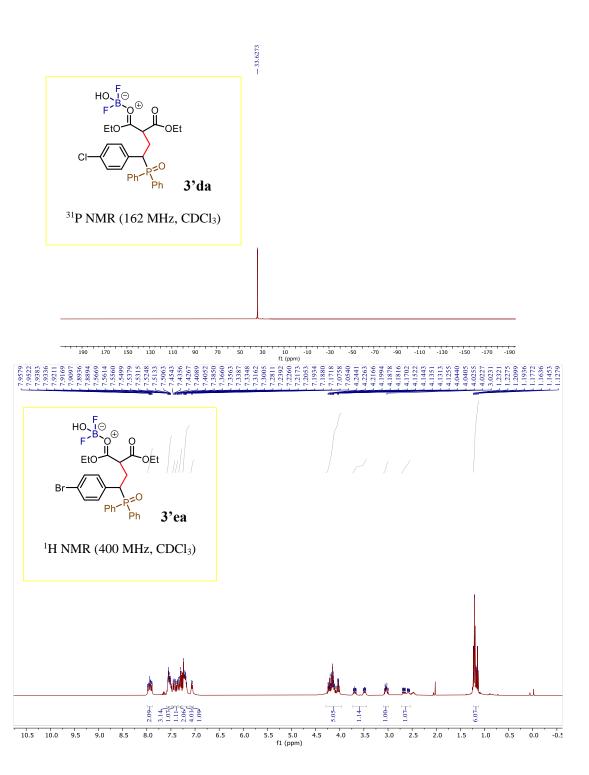

4.6 NMR spectra of compound

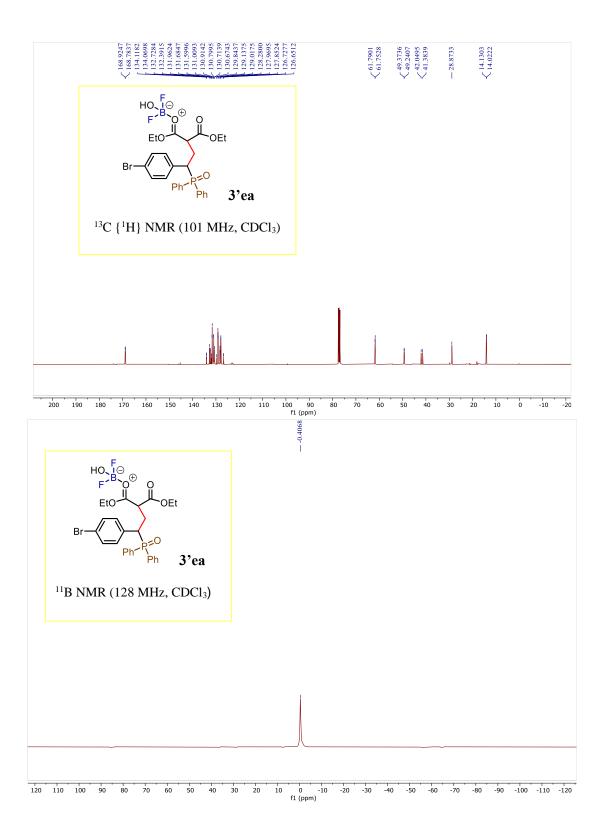


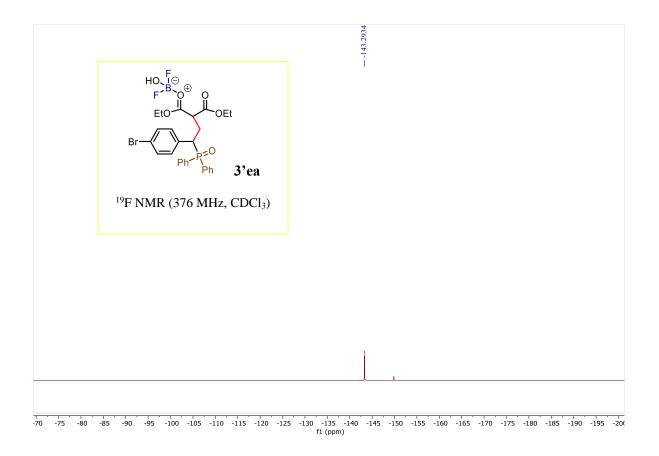


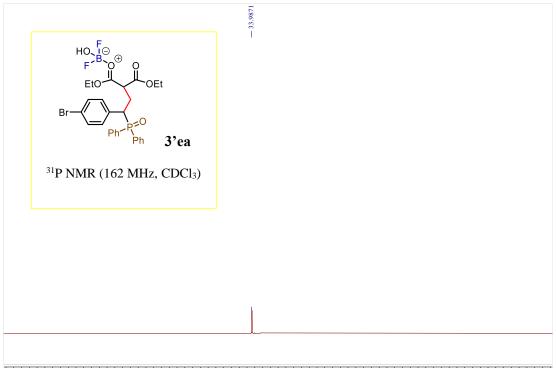


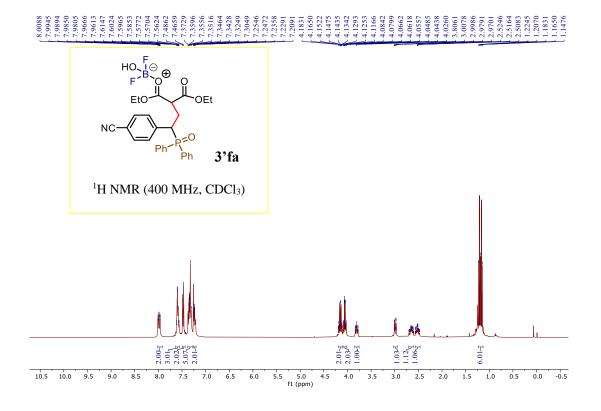


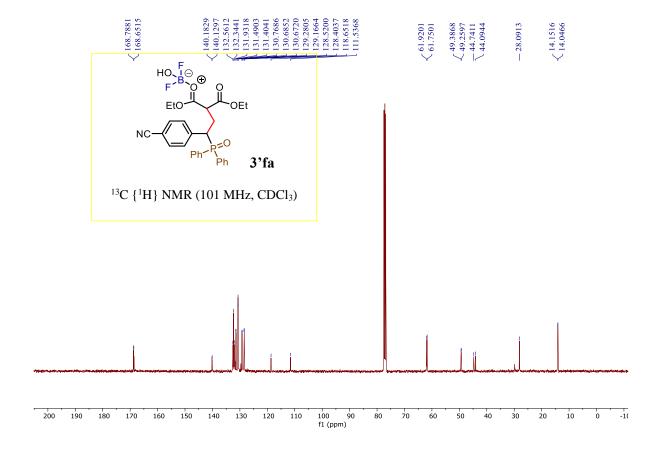


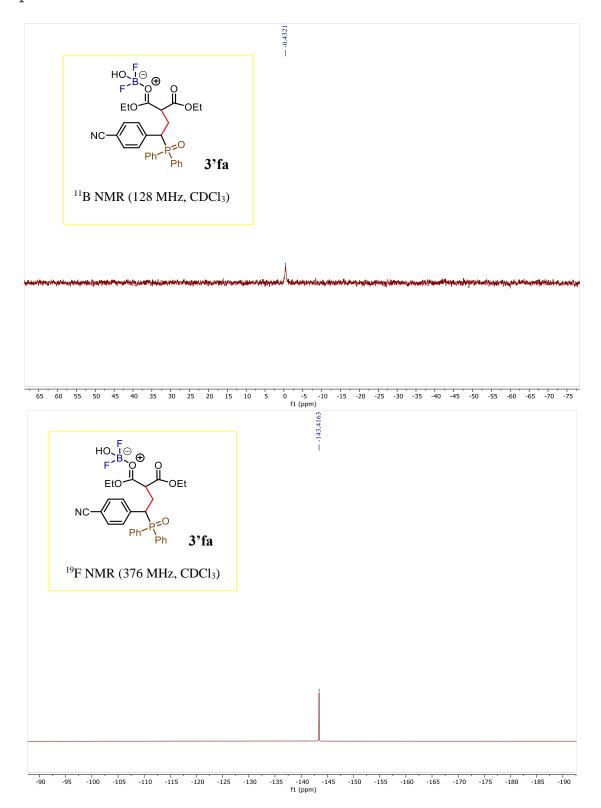

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -2

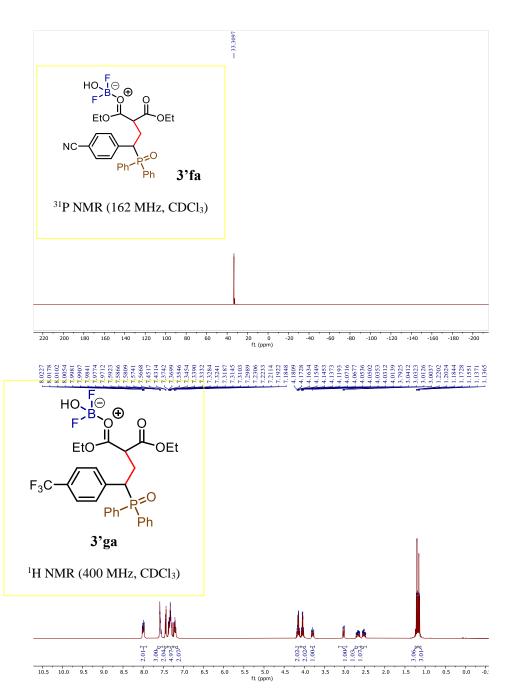




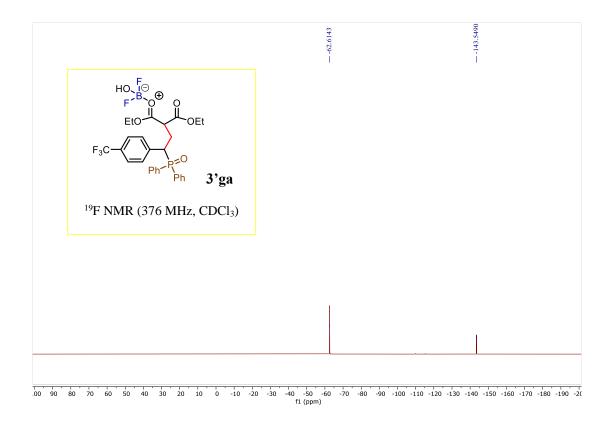


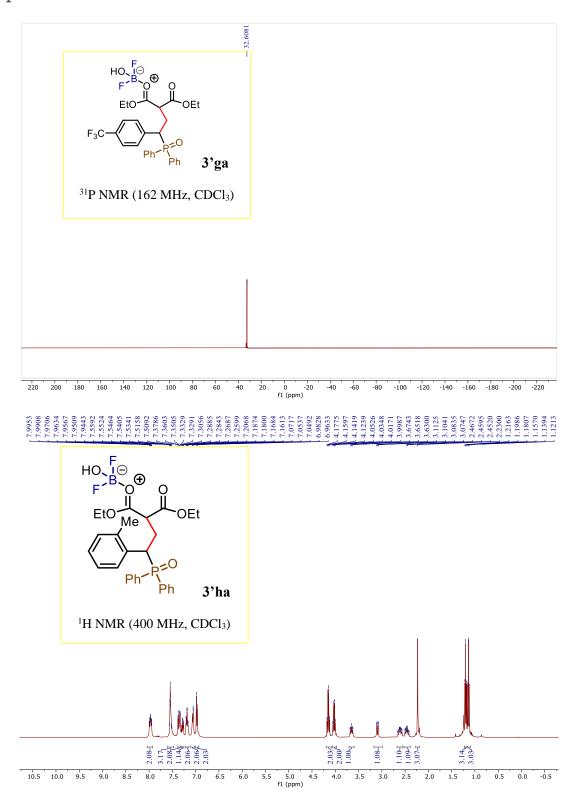


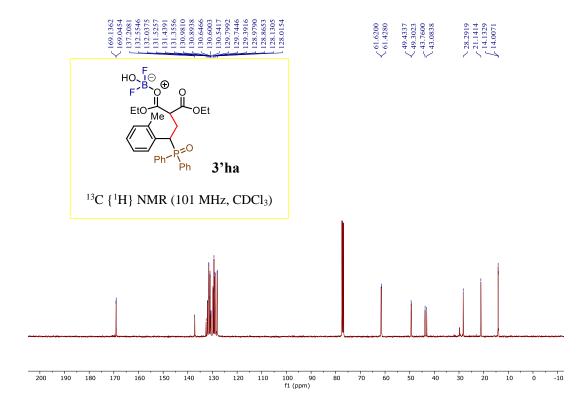


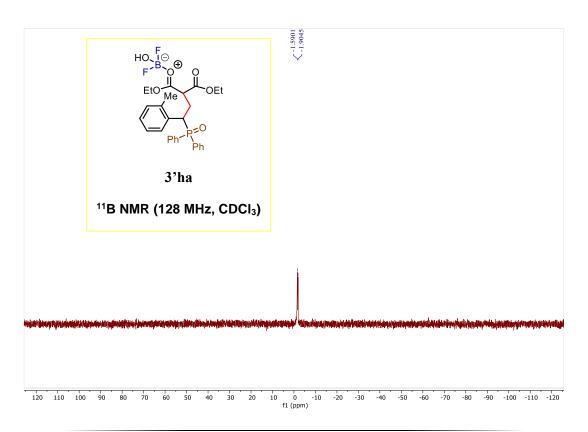


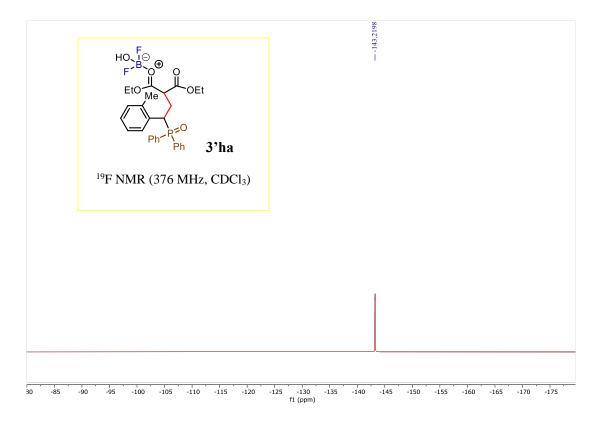
340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 f1 (ppm)

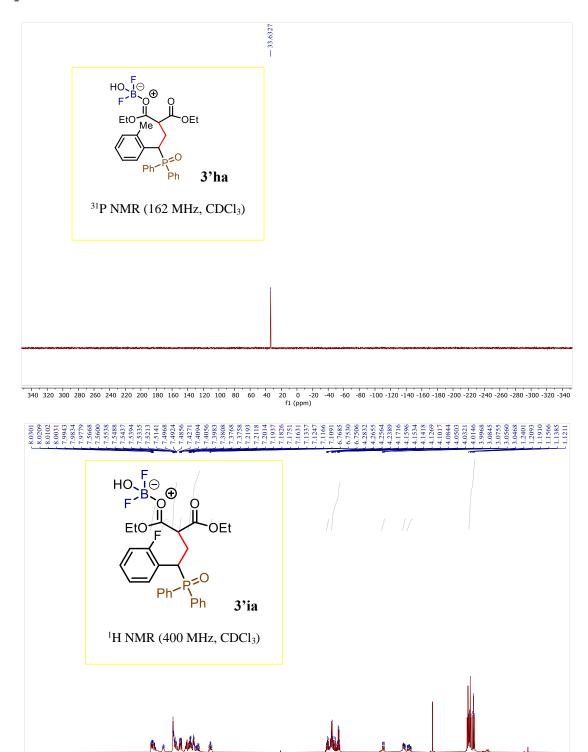


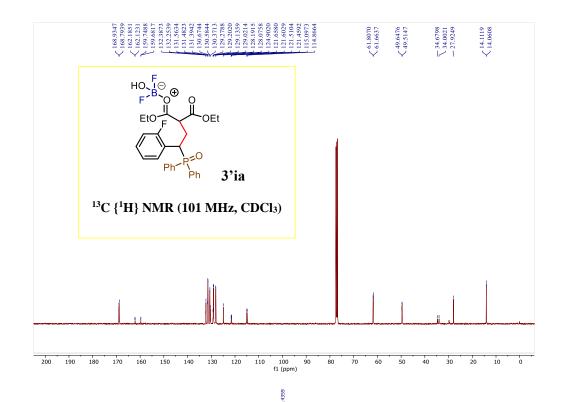


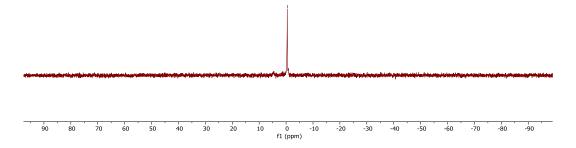


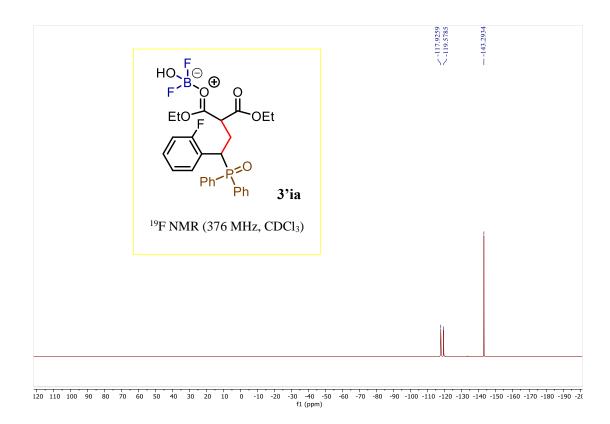


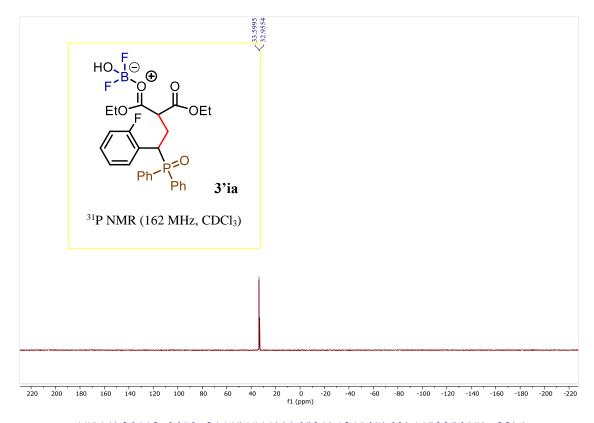


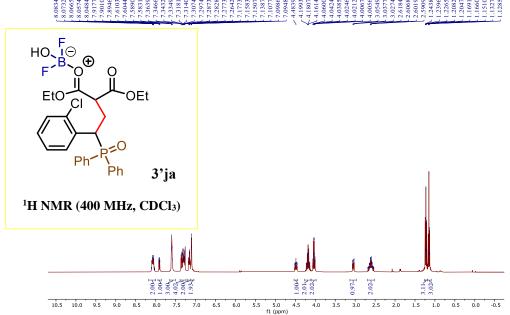


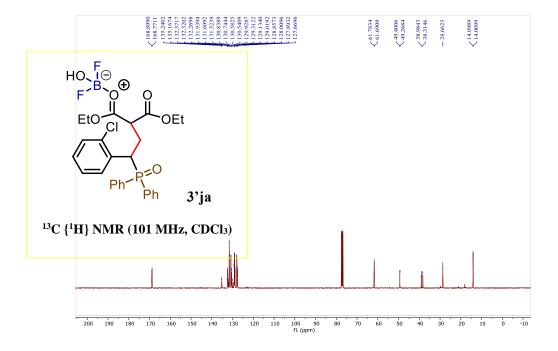


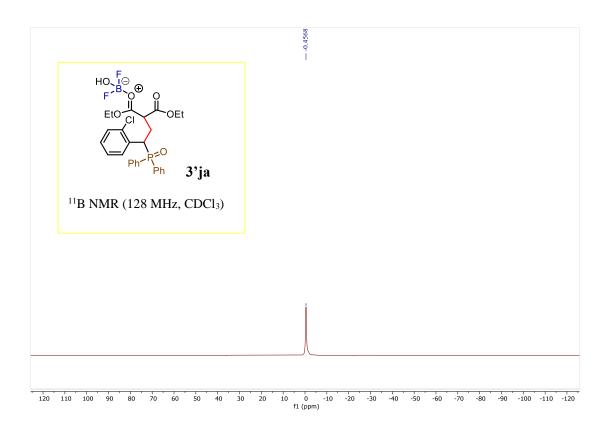


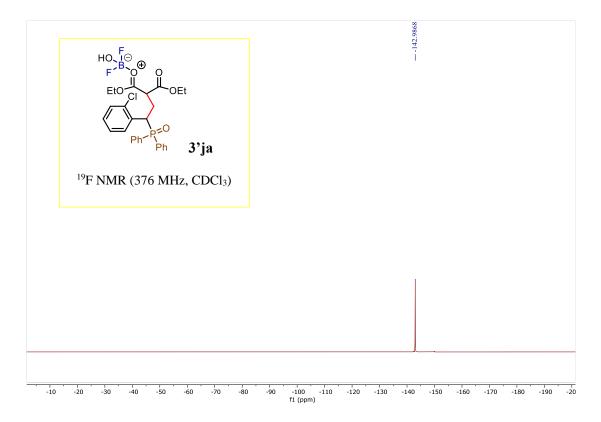


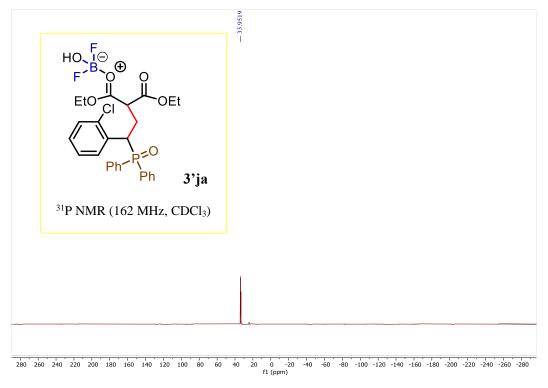


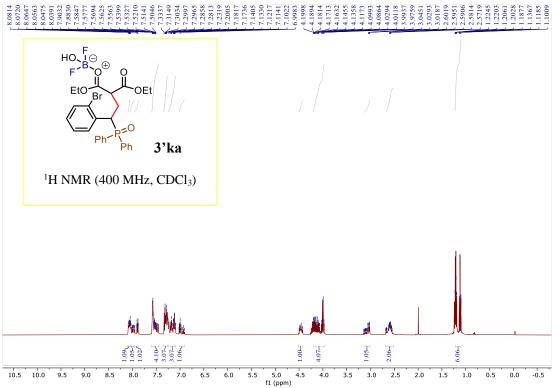

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

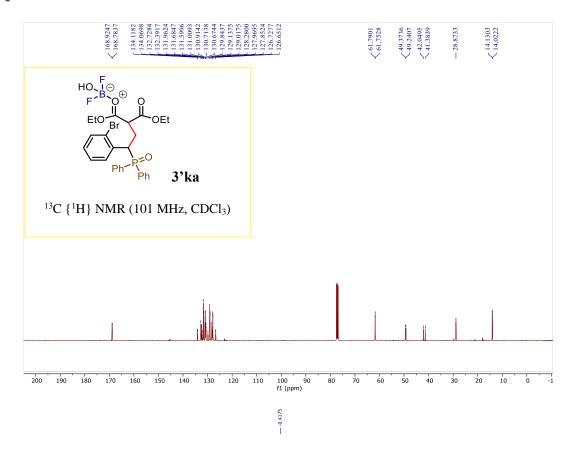


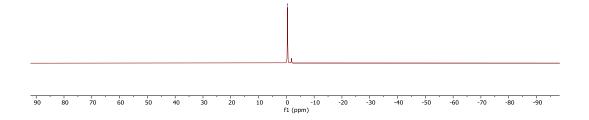


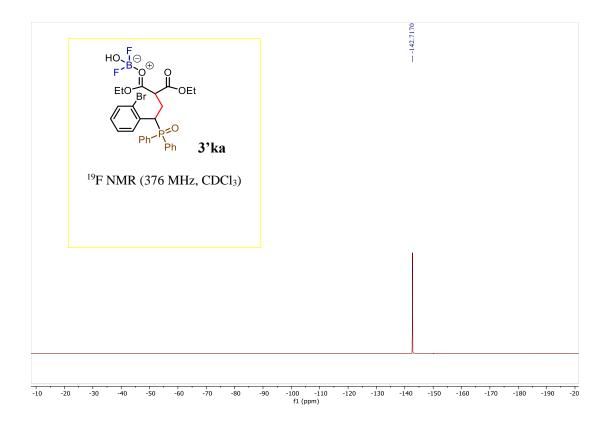


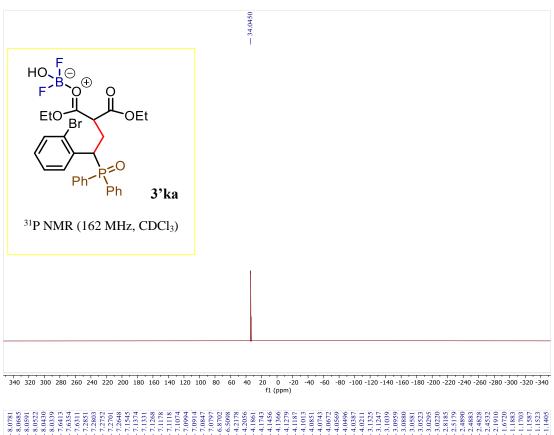


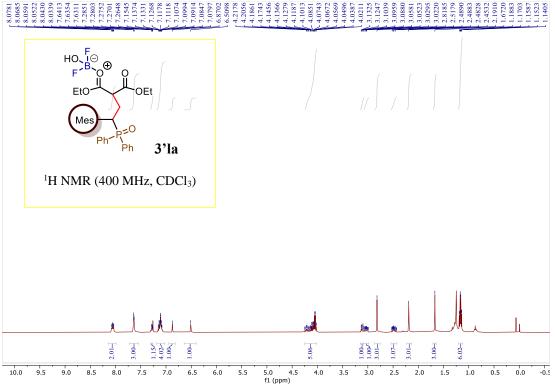


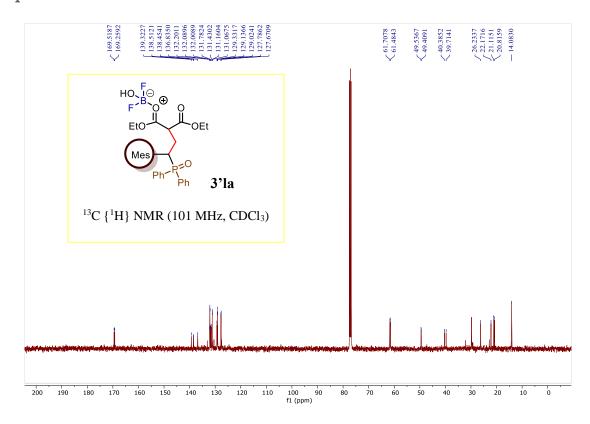


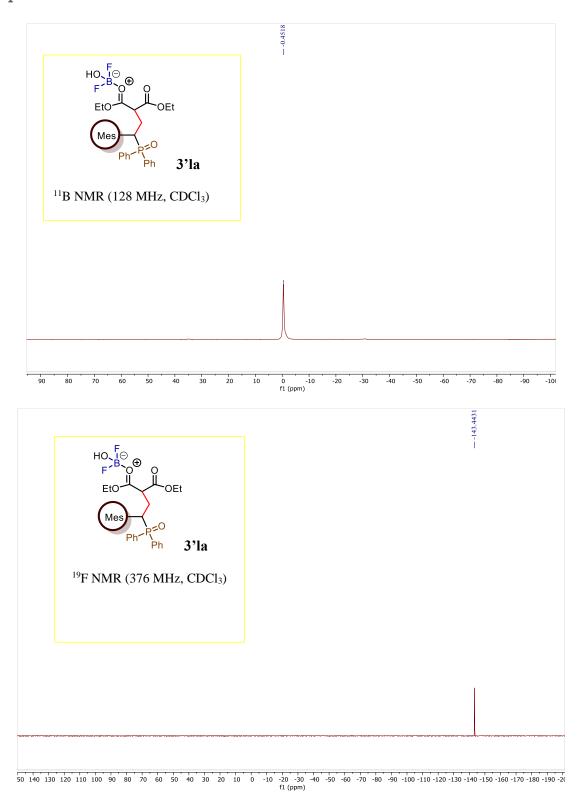


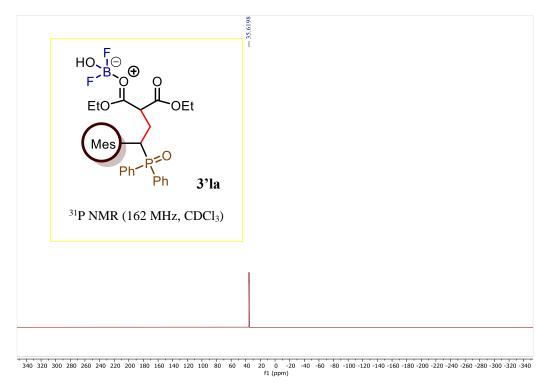


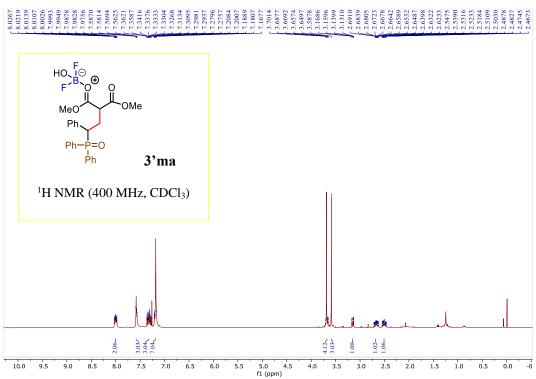


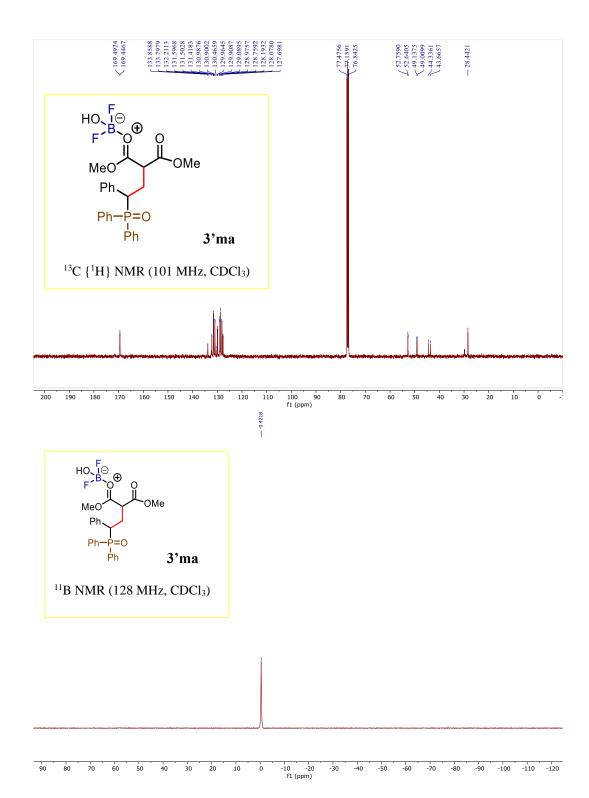


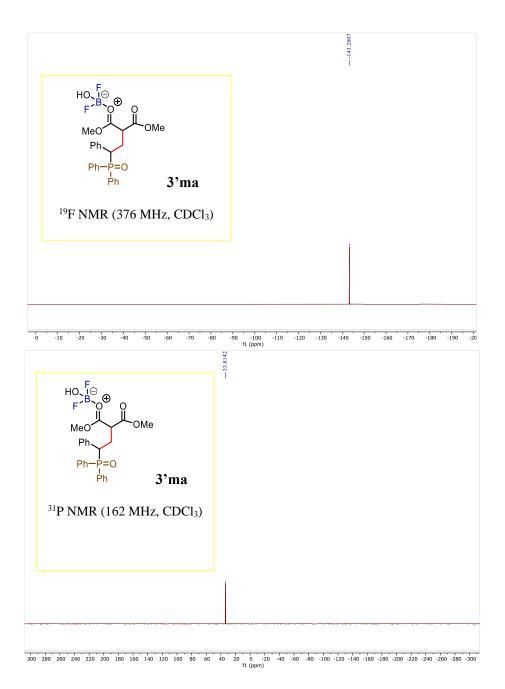


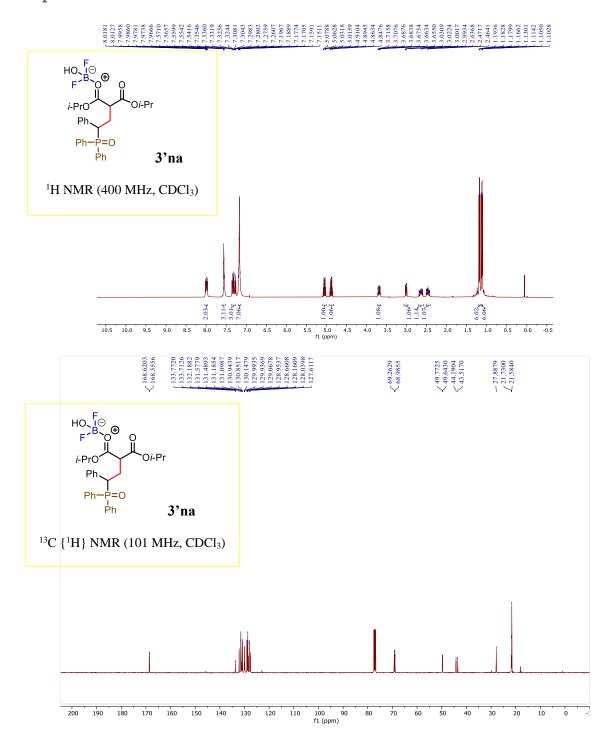


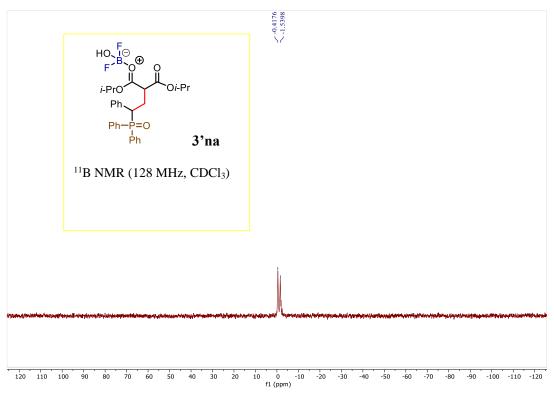


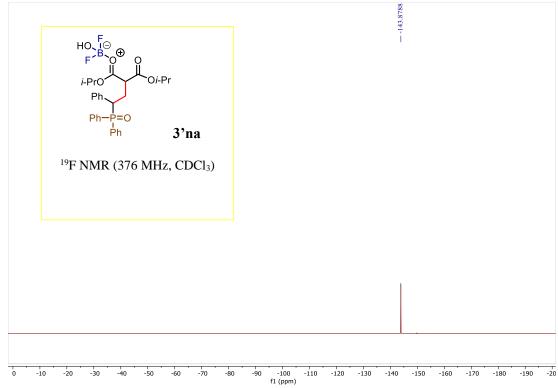


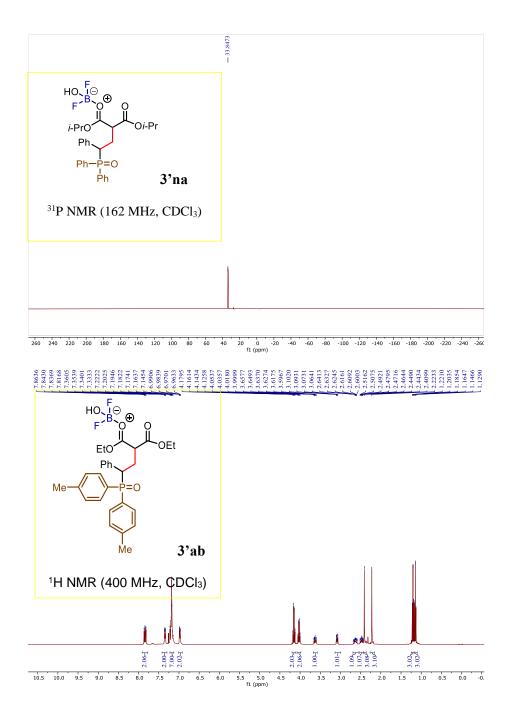


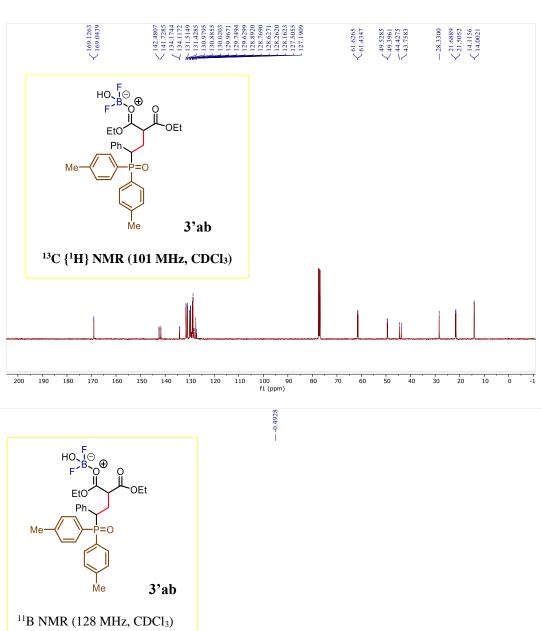


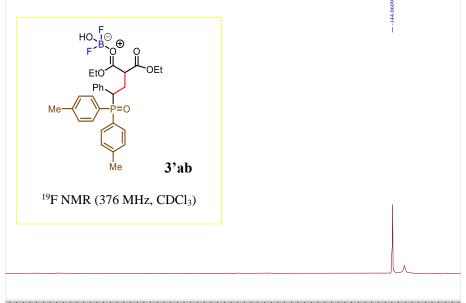


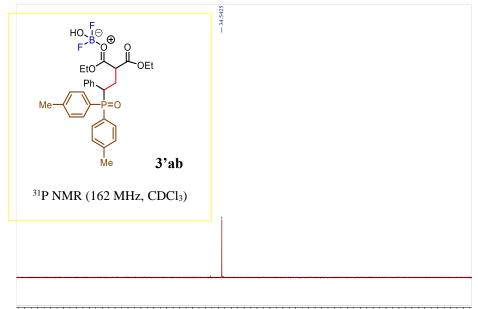


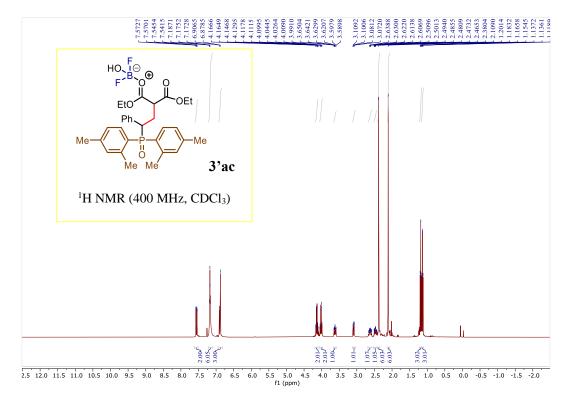


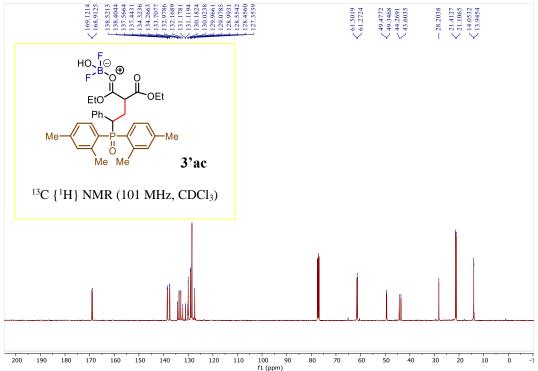


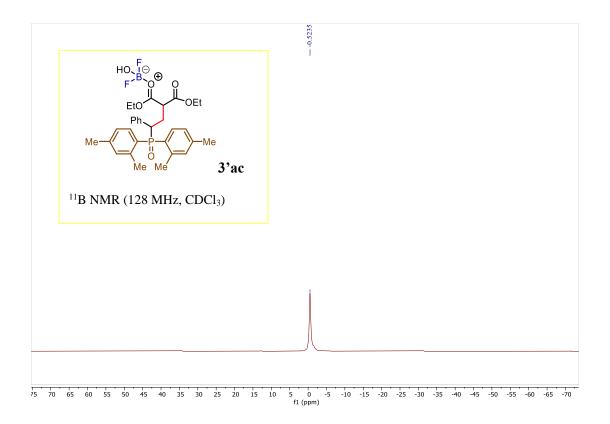


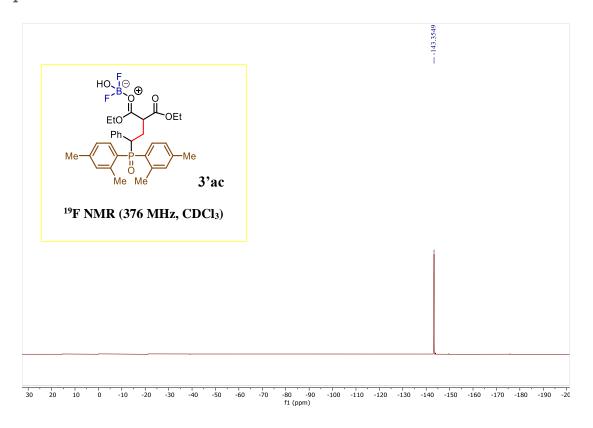


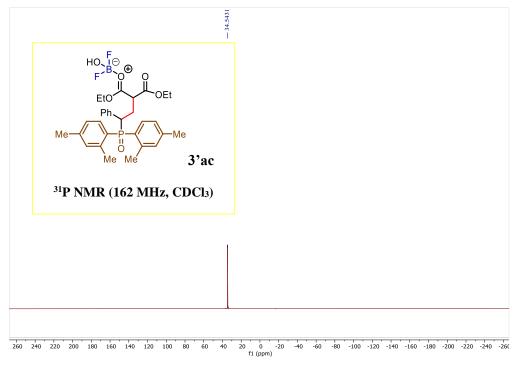


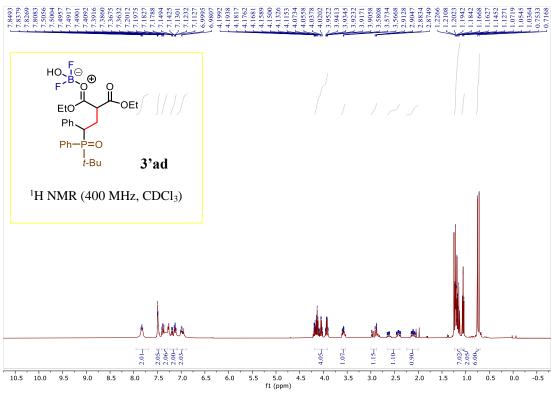


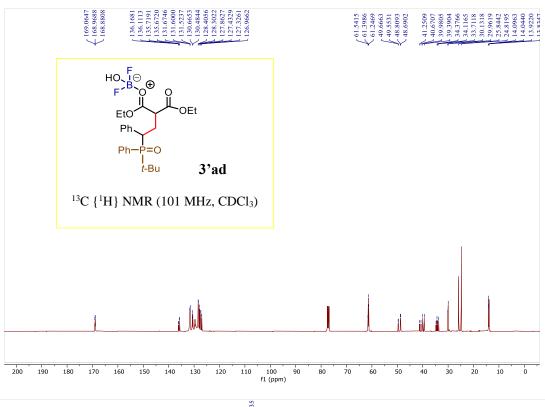

75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 f1 (ppm)

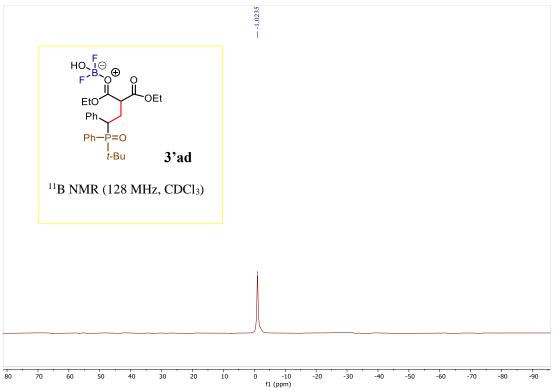


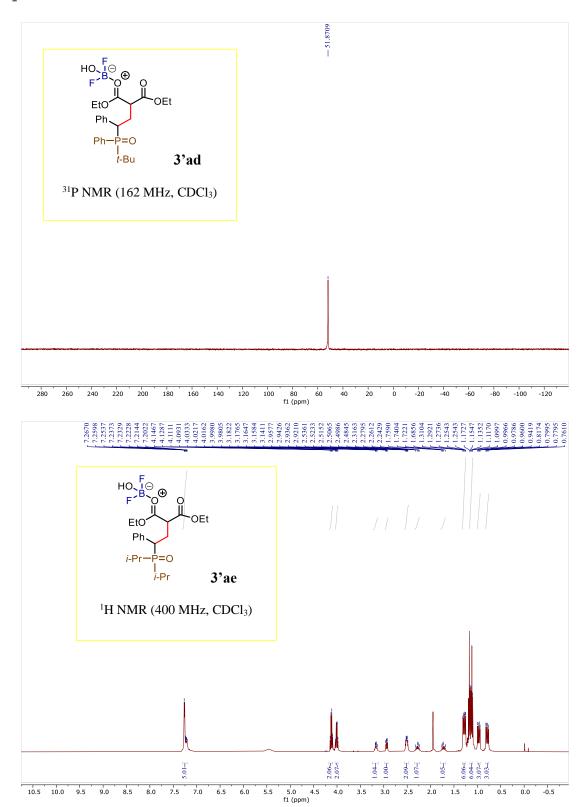

-116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -144 -145 -146 -147 -148 -14 ft (ppm)

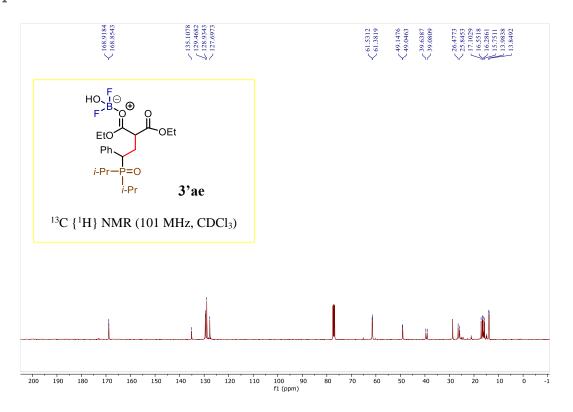


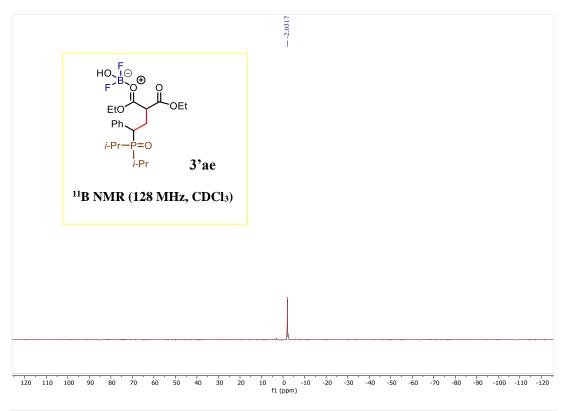


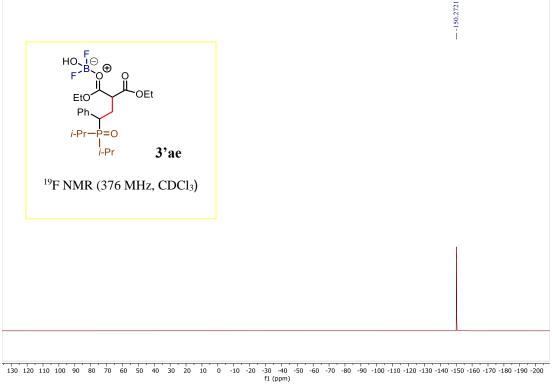


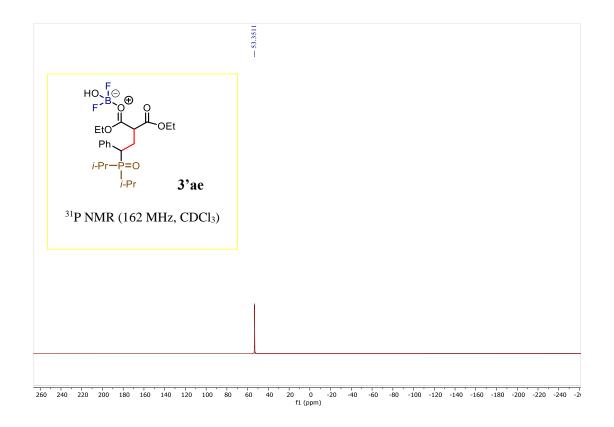


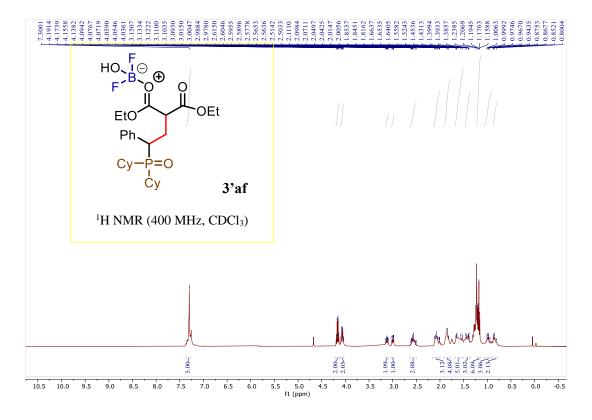


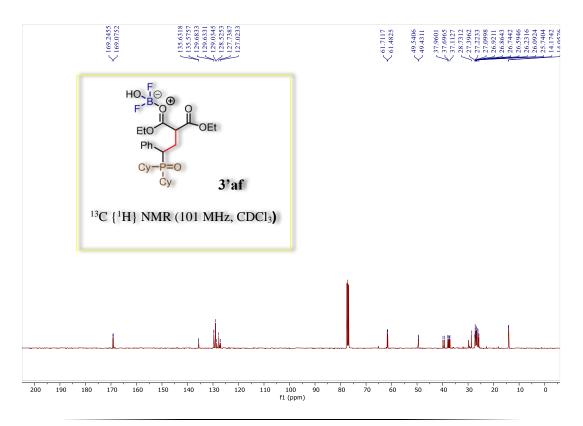


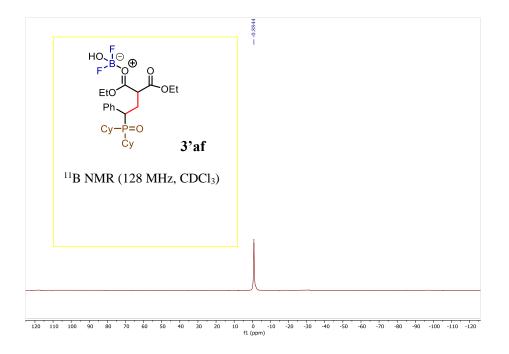


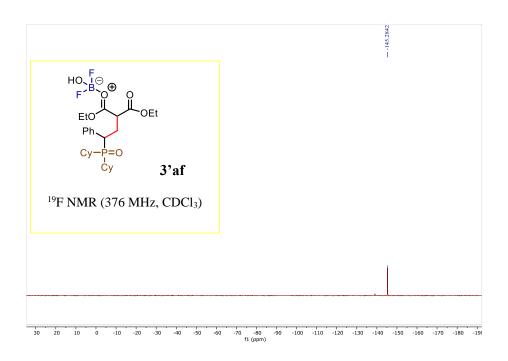


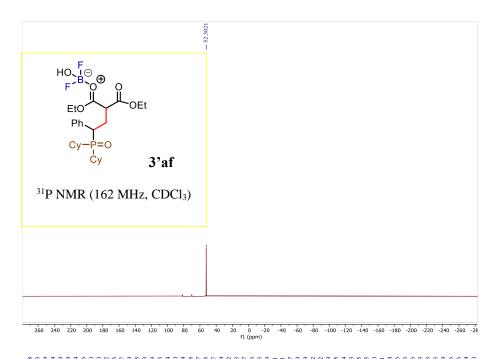


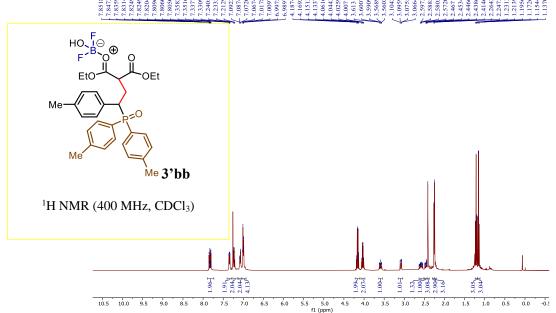


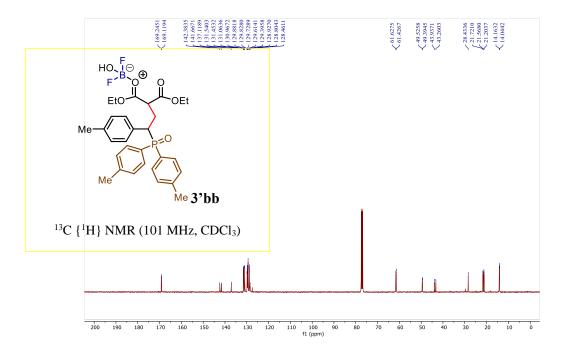


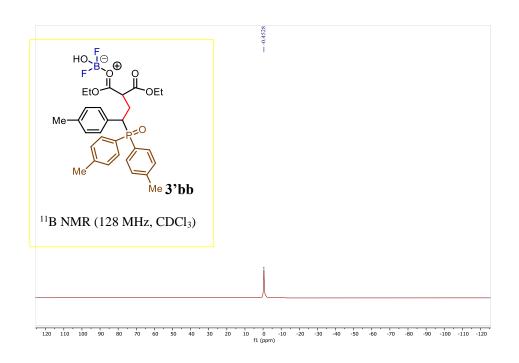


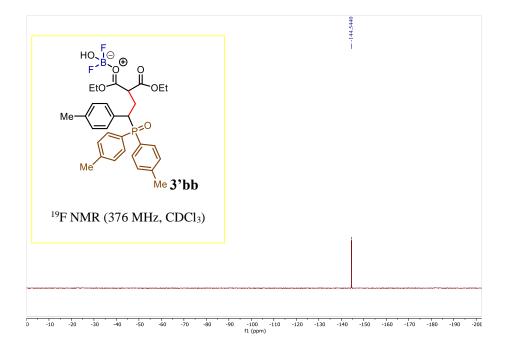


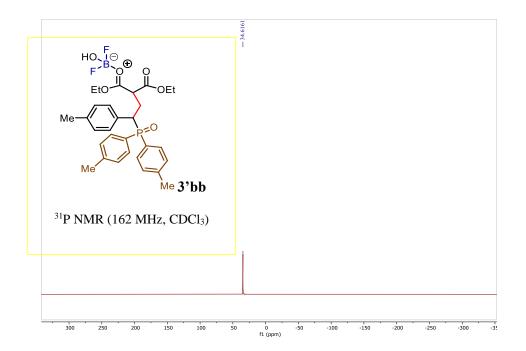


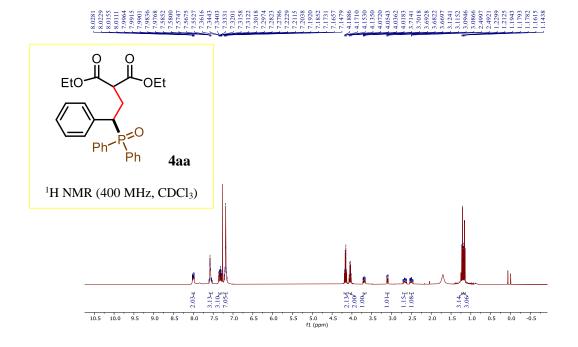


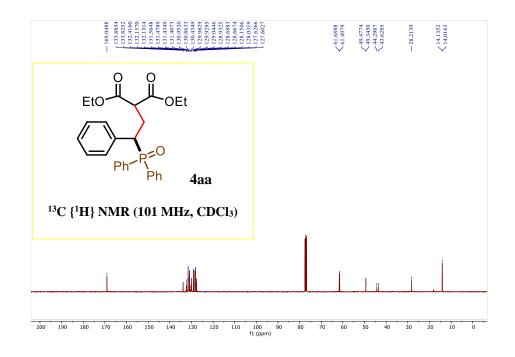


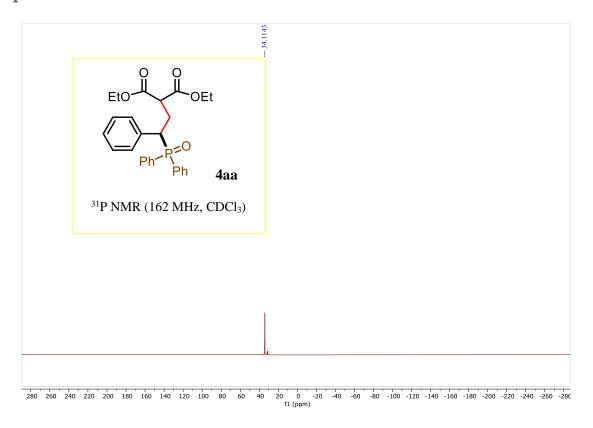


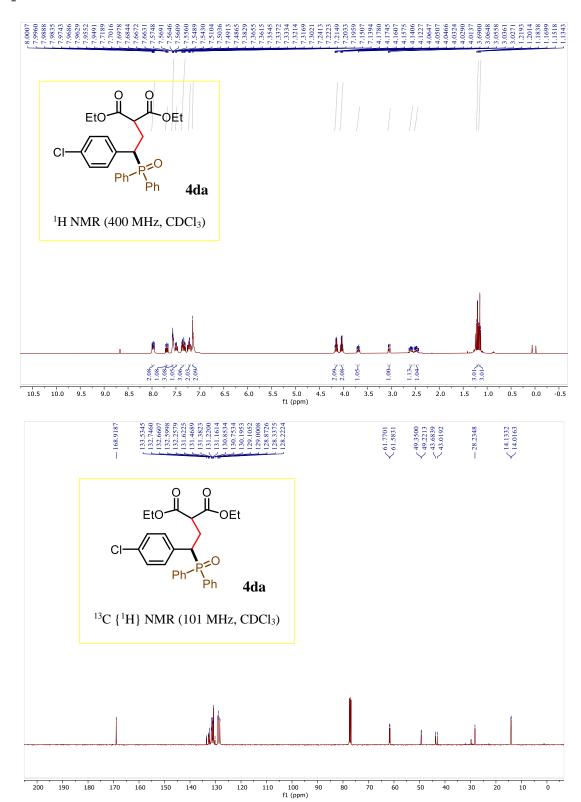


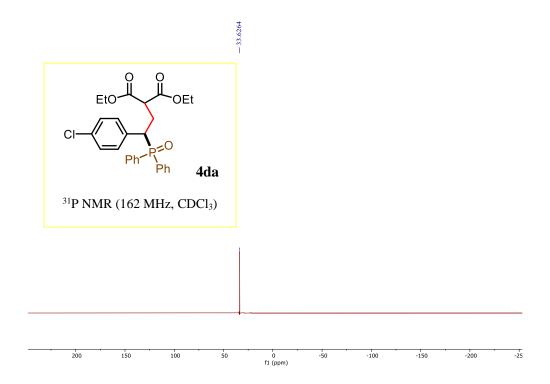


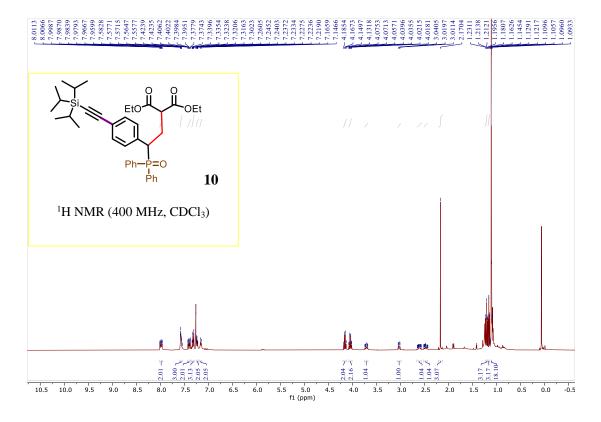


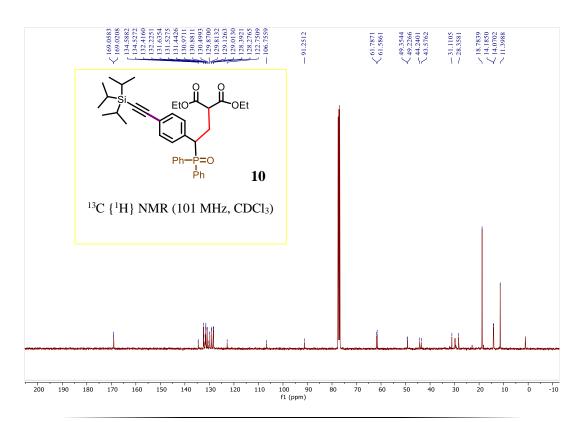


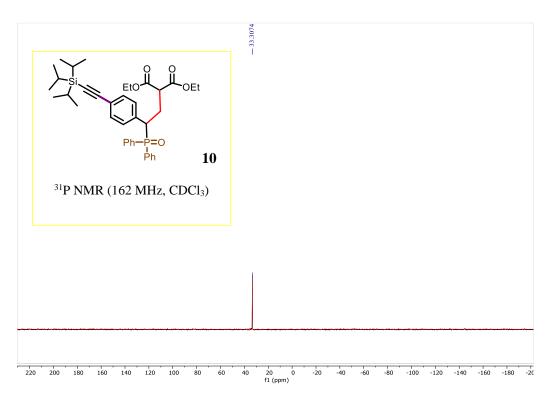












5.1 Conclusions

The title of the thesis is "Exploring the Reactivities of Donor-Acceptor Cyclopropanes". In this thesis, a comprehensive analysis is presented on the reactivity of donor-acceptor cyclopropanes. Through systematic experimentation and analysis, this study examines the various reactivities associated with these compounds, providing valuable insights that contribute to the broader scientific understanding of these important chemical species. By synthesizing and characterizing a range of new derivatives, this work sheds light on the underlying mechanisms that govern the reactivity of donor-acceptor cyclopropanes, highlighting the potential applications of these compounds in future research and development efforts. On the basis of these understandings, this thesis has been divided into four chapters and discussed in depth.

In Chapter 2A. I developed A straightforward and efficient Sc(OTf)₃-catalyzed (3+3)-annulation of donor-acceptor cyclopropanes (DACs) with indole-2-thiones has been developed, yielding *N*-halo indole-fused dihydrothiopyrano derivatives under mild conditions with excellent efficiency. This protocol is being extended toward the synthesis of biologically significant molecules.

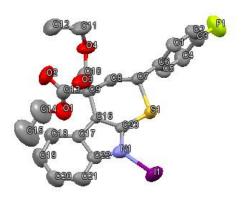
In Chapter 2B. I developed a straightforward and efficient LiAlH₄-mediated protocol has been developed for the construction of thiazino indoles. This procedure provides efficient thiazino indoles derivatives in good to satisfactory yields. DFT calculation has been done to shed light into reaction mechanism.

Significant demands of the substituted amidine compounds in the pharma as well as in agrochemical or aroma sector promoted us to develop the novel amidines derivatives in chapter-3. Donor-acceptor cyclopropanes (DACs) in the presence of promoting or catalytic system react with various cyanamides systems through (3+2) cycloadditions to deliver amidines moieties. On this behalf of nitrile sources. In Chapter 3 I synthesized novel amidine derivatives *via* (3+2) cycloaddition of DACs with corresponding cyanamides under BF₃·OEt₂ catalysis in good to excellent yields.

In the fourth chapter, I developed a metal- and additive-free BF₃·OEt₂-promoted one-pot three-component reaction of phosphine chlorides/cyanides with DACs, enabling the nucleophilic ring-opening of DACs to form boron-pendant diester complexes in two tautomeric forms. The protocol features mild conditions, broad substrate scope, selective product formation, and gram-

Chapter~5

scale practicality. Combined experimental and theoretical studies elucidate a clear mechanistic pathway.


Throughout the preceding chapters, I have explored the distinct reactivities of DACs in chapter 2 and chapter 3, and Chapter 4.

Appendix A: Chapter 2A

Single Crystal X-Ray

For the determination of X-ray crystal structure of **3ae** single crystals were selected and mounted with paratone oil on a glass fiber using gum. The data were collected at 293K on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with a INCOATEC micro-focus source with graphite monochromatic Mo K α radiation (λ = 0.71073 Å) operating at 50 kV and 30 mA. For the integration of diffraction profiles SAINT program¹ was used. Adsorption correction was done applying SADABS program.² The crystal structure was solved by SIR 92³ and refined by full matrix least square method using SHELXL-97⁴ WinGX system, Ver 1.70.01.⁵ All the non-hydrogen atoms in the structure were located from the Fourier map and refined anisotropically. The hydrogen atoms were fixed by HFIX in their ideal positions and refined using riding model with isotropic thermal parameters. The crystal structure has been deposited to Cambridge Crystallographic Data Centre and allotted deposition number is **2132801**.

Crystal structure of 3ae:

Figure S1. X-ray crystal structure of compound **3ae** with 30% probability level.

Table 1: Crystal data and structure refinement for 3ae.

CCDC No.	2132801
Empirical formula	C ₂₃ H ₂₁ FINO ₄ S
Formula weight	553.37
Temperature(K)	293.15
Crystal system	Monoclinic
Space group	P 21/n
a, b, c (Å)	9.6642 (10), 9.6880 (12), 24.773 (3)
α, β, γ (°)	90, 91.356 (4), 90
Volume (Å ³)	2318.7 (5)
Z	4
Calculated density (g/cm ³)	1.585
Absorption coefficient (mm ⁻¹)	1.508
F(000)	1104.0
Crystal size (mm ³)	$0.489 \times 0.346 \times 0.236$
Radiation	$MoK\alpha (\lambda = 0.71073)$
Theta range for data collection	4.488 to 54.384
Index ranges	$-12 \le h \le 12, -12 \le k \le 12, -31 \le 1 \le 31$
Reflections collected	56218
Independent reflections	5149 [R(int) = 0.0710, R(sigma) = 0.0331]
Data/restraints/parameters	5149/0/281
Goodness-of-fit on F ²	1.092
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0649, wR_2 = 0.1526$
Final R indexes [all data]	$R_1 = 0.0838$, $wR_2 = 0.1642$
Largest diff. peak/hole (e Å ⁻³)	1.22/-1.05

Table 2 Bond Lengths for 3ae.

Atoms	Length [Å]	Atoms	Length [Å]
I1-N1	2.075(6)	C6-C5	1.384(8)
S1-C23	1.727(6)	C23-N1	1.366(7)
S1-C7	1.826(5)	C17-C18	1.386(9)
O4-C10	1.335(7)	O2-C13	1.207(8)
O4-C11	1.479(8)	C9-C8	1.533(8)
C16-C23	1.398(7)	C9-C10	1.545(8)
C16-C17	1.390(7)	C9-C13	1.541(8)
C16-C9	1.461(6)	C7-C8	1.507(8)

Atoms	Length [Å]	Atoms	Length [Å]
O3-C10	1.184(7)	C1-C2	1.378(9)
F1-C3	1.349(8)	C5-C4	1.383(9)
O1-C13	1.300(9)	C21-C20	1.353(10)
O1-C14	1.471(10)	C18-C19	1.392(10)
C22-N1	1.419(8)	C2-C3	1.373(10)
C22-C17	1.404(8)	C3-C4	1.359(10)
C22-C21	1.394(8)	C11-C12	1.456(11)
C6-C7	1.503(8)	C20-C19	1.377(11)
C6-C1	1.378(8)	C14-C15	1.299(16)

Table 3 Bond Angles for 3ae.

Atoms	Angle [°]	Atoms	Angle [°]
C23-S1-C7	100.4(3)	C8-C9-C13	105.6(5)
C10-O4-C11	117.2(5)	C13-C9-C10	108.6(5)
C23-C16-C9	124.0(5)	C6-C7-S1	106.6(4)
C17-C16-C23	108.3(4)	C6-C7-C8	115.2(5)
C17-C16-C9	126.3(5)	C8-C7-S1	109.6(4)
C13-O1-C14	116.6(8)	C6-C1-C2	120.9(6)
C17-C22-N1	106.2(5)	C7-C8-C9	113.6(5)
C21-C22-N1	133.8(6)	O4-C10-C9	110.4(5)
C21-C22-C17	120.1(6)	O3-C10-O4	125.1(6)
C1-C6-C7	119.6(5)	O3-C10-C9	124.4(6)
C1-C6-C5	118.4(5)	C4-C5-C6	121.7(6)
C5-C6-C7	122.0(5)	C20-C21-C22	118.8(6)
C16-C23-S1	125.9(4)	O1-C13-C9	112.0(5)
N1-C23-S1	126.0(4)	O2-C13-O1	126.4(6)
N1-C23-C16	108.0(5)	O2-C13-C9	121.6(7)
C22-N1-I1	126.3(4)	C17-C18-C19	117.3(7)
C23-N1-I1	124.5(5)	C3-C2-C1	118.6(6)
C23-N1-C22	109.2(5)	F1-C3-C2	118.7(7)
C16-C17-C22	108.2(5)	F1-C3-C4	118.5(7)
C18-C17-C16	131.0(5)	C4-C3-C2	122.7(6)
C18-C17-C22	120.8(6)	C12-C11-O4	109.6(7)
C16-C9-C8	111.2(4)	C3-C4-C5	117.7(6)
C16-C9-C10	108.5(4)	C21-C20-C19	121.5(7)

Atoms	Angle [°]	Atoms	Angle [°]
C16-C9-C13	111.0(5)	C20-C19-C18	121.5(7)
C8-C9-C10	111.9(5)	C15-C14-O1	114.8(11)

Appendix B: Chapter 2B

Crystal structure of 2d:

Single Crystal X-Ray data of 2d

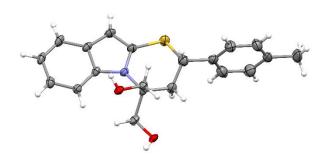


Figure S1. X-ray crystal structure of compound 2d with 30% probability level.

The crystal structure has been deposited to Cambridge Crystallographic Data Centre and allotted deposition number is **2245963**. Suitable single – crystals of **2d** for X-ray analysis were grown up from slow crystallization in DCM at room temperature.

Table 4 Crystal data and str	ructure refinement for 2d.
Ccdc No.	2245963
Empirical formula	$C_{20}H_{21}NO_2S$
Formula weight	339.44
Temperature/K	298
Crystal system	monoclinic
Space group	Сс
a/Å	7.6698(17)
b/Å	37.241(10)
c/Å	6.1308(17)
α/°	90
β/°	92.114(5)
γ/°	90
Volume/Å ³	1750.0(8)
Z	4
$\rho_{\text{calc}} g/\text{cm}^3$	1.288
μ/mm^{-1}	0.197
F(000)	720.0
Crystal size/mm ³	$0.423 \times 0.029 \times 0.023$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2Θ range for data collection/°	4.374 to 51.522
Index ranges	$-9 \le h \le 9, -45 \le k \le 45, -7 \le l \le 7$
Reflections collected	9343
Independent reflections	$3276 [R_{int} = 0.0457, R_{sigma} = 0.0559]$
Data/restraints/parameters	3276/2/220
Goodness-of-fit on F ²	1.081
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0595$, $wR_2 = 0.1302$
Final R indexes [all data]	$R_1 = 0.0699$, $wR_2 = 0.1352$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.20
Flack parameter	0.09(5)

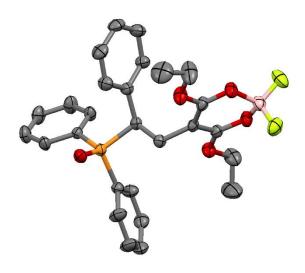
Table 5 Bond Lengths for 2d.

Atom	Length/Å	Atom	Length/Å
S1-C8	1.746(6)	C18-C19	1.532(7)
S1-C9	1.801(7)	C18-C20	1.535(7)

Atom	Length/Å	Atom	Length/Å
O2-C20	1.430(6)	C18-C17	1.533(7)
O1-C19	1.394(6)	C4-C5	1.352(9)
N1-C8	1.387(7)	C16-C10	1.358(10)
N1-C1	1.423(6)	C16-C15	1.412(10)
N1-C18	1.494(6)	C17-C9	1.476(9)
C8-C7	1.355(7)	C10-C9	1.539(8)
C1-C6	1.420(7)	C10-C11	1.335(10)
C1-C2	1.383(7)	C13-C12	1.374(11)
C6-C7	1.405(8)	C13-C15	1.368(11)
C6-C5	1.420(7)	C13-C14	1.509(9)
C3-C4	1.394(9)	C12-C11	1.368(10)
C3-C2	1.382(7)		

Table 6 Bond Angles for 2d.

Atom	Angle/°	Atom	Angle/°
C8-S1-C9	99.5(3)	O1-C19-C18	114.6(4)
C8-N1-C1	106.7(4)	O2-C20-C18	109.6(4)
C8-N1-C18	124.7(4)	C5-C4-C3	120.0(5)
C1-N1-C18	127.0(4)	C8-C7-C6	107.5(5)
N1-C8-S1	124.9(4)	C4-C5-C6	120.2(5)
C7-C8-S1	123.5(4)	C3-C2-C1	118.8(5)
C7-C8-N1	111.2(5)	C10-C16-C15	120.6(7)
C6-C1-N1	106.6(4)	C9-C17-C18	118.0(5)
C2-C1-N1	133.2(5)	C16-C10-C9	121.8(6)
C2-C1-C6	120.2(5)	C11-C10-C16	118.7(6)
C7-C6-C1	108.1(4)	C11-C10-C9	119.5(6)
C7-C6-C5	133.1(5)	C12-C13-C14	120.7(8)
C5-C6-C1	118.9(5)	C15-C13-C12	116.4(6)
C2-C3-C4	122.0(6)	C15-C13-C14	122.9(9)
N1-C18-C19	110.3(4)	C11-C12-C13	122.5(7)
N1-C18-C20	108.7(4)	C13-C15-C16	120.5(7)


Atom	Angle/°	Atom	Angle/°
N1-C18-C17	110.6(4)	C17-C9-S1	110.4(5)
C19-C18-C20	111.0(4)	C17-C9-C10	115.0(5)
C19-C18-C17	109.6(4)	C10-C9-S1	108.0(4)
C17-C18-C20	106.5(4)	C10-C11-C12	121.2(7)

Appendix C: Chapter 4

Single Crystal X-Ray of 3aa, 3ha

The crystal structure has been deposited to Cambridge Crystallographic Data Centre and allotted deposition number are 2255736 and 2305065 for 3aa and 3ha respectively. Suitable single – crystals of 3aa for X-ray analysis were grown up from slow crystallization in methanol at room temperature.

Crystal structure of 3aa:

Figure S5. X-ray crystal structure of compound **3aa** with 30% probability level.

Table 7: Crystal data and structure refinement of 3aa

Table 7 Crystal data and structure refinement for 3aa.		
CCDC NO.	2255736	
Empirical formula	$C_{27}H_{28}BF_2O_5P$	
Formula weight	512.27	
Temperature/K	298	
Crystal system	monoclinic	
Space group	P2 ₁ /c	
a/Å	11.3298(15)	
b/Å	12.2609(13)	
c/Å	18.885(2)	
α/°	90	
β/°	92.364(5)	
γ/°	90	
Volume/Å ³	2621.2(5)	
Z	4	
$\rho_{calc}g/cm^3$	1.298	
μ/mm^{-1}	0.154	
F(000)	1072.0	

Crystal size/mm ³	$0.214 \times 0.205 \times 0.123$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	4.318 to 52.84
Index ranges	$-14 \le h \le 11, -13 \le k \le 15, -22 \le 1 \le 23$
Reflections collected	14750
Independent reflections	5287 [$R_{int} = 0.0445$, $R_{sigma} = 0.0517$]
Data/restraints/parameters	5287/0/327
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0754, wR_2 = 0.1808$
Final R indexes [all data]	$R_1 = 0.1059, wR_2 = 0.2018$
Largest diff. peak/hole / e Å-3	1.41/-0.44

Table 8 Bond Lengths for 3aa

Atom	Length/Å	Atom	Length/Å
P1-O5	1.490(2)	C9-C8	1.564(4)
P1-C21	1.791(3)	C15-C10	1.369(5)
P1-C9	1.817(3)	C15-C14	1.382(5)
P1-C22	1.821(4)	C22-C23	1.384(5)
O2-C4	1.295(4)	C22-C27	1.365(5)
O2-B1	1.490(5)	C10-C11	1.376(5)
O3-C4	1.303(4)	C16-C17	1.385(5)
O3-C5	1.463(5)	C23-C24	1.374(5)
F2-B1	1.338(5)	C20-C19	1.380(5)
O1-C3	1.301(4)	C14-C13	1.387(6)
O1-B1	1.486(5)	C25-C24	1.359(6)
F1-B1	1.362(5)	C25-C26	1.350(7)
O4-C3	1.312(4)	C11-C12	1.364(6)
O4-C2	1.474(5)	C12-C13	1.370(6)
C21-C16	1.381(5)	C27-C26	1.377(6)
C21-C20	1.390(4)	C17-C18	1.368(6)
C7-C4	1.382(5)	C18-C19	1.369(6)
C7-C8	1.500(4)	C5-C6	1.387(7)
C7-C3	1.378(5)	C2-C1	1.449(8)

Atom	Length/Å	Atom	Length/Å
C9-C15	1.521(5)		

Table 9 Bond Angles for 3aa

Atom	Angle/°	Atom	Angle/°
O5-P1-C21	113.61(14)	C7-C8-C9	112.8(3)
O5-P1-C9	113.75(15)	C15-C10-C11	121.0(4)
O5-P1-C22	111.42(15)	C21-C16-C17	119.9(3)
C21-P1-C9	108.31(15)	O1-C3-O4	117.2(3)
C21-P1-C22	104.20(15)	O1-C3-C7	124.0(3)
C9-P1-C22	104.74(15)	O4-C3-C7	118.8(3)
C4-O2-B1	119.8(3)	C24-C23-C22	120.5(4)
C4-O3-C5	120.9(3)	C19-C20-C21	120.7(3)
C3-O1-B1	120.0(3)	C15-C14-C13	120.8(4)
C3-O4-C2	120.3(3)	C26-C25-C24	119.9(4)
C16-C21-P1	125.0(2)	C25-C24-C23	120.0(4)
C16-C21-C20	118.7(3)	C12-C11-C10	121.1(4)
C20-C21-P1	116.0(3)	C11-C12-C13	118.8(4)
C4-C7-C8	121.5(3)	C22-C27-C26	120.2(4)
C3-C7-C4	115.6(3)	C12-C13-C14	120.3(4)
C3-C7-C8	122.9(3)	C18-C17-C16	120.8(4)
O2-C4-03	117.7(3)	C17-C18-C19	119.9(4)
O2-C4-C7	124.4(3)	C18-C19-C20	120.0(4)
O3-C4-C7	117.9(3)	C25-C26-C27	120.8(4)
C15-C9-P1	113.6(2)	C6-C5-03	111.0(4)
C15-C9-C8	111.5(3)	F2-B1-O2	109.2(4)
C8-C9-P1	108.3(2)	F2-B1-O1	110.1(4)
C10-C15-C9	119.3(3)	F2-B1-F1	110.8(3)
C10-C15-C14	118.0(3)	O1-B1-O2	109.4(3)
C14-C15-C9	122.5(3)	F1-B1-O2	109.1(3)
C23-C22-P1	123.4(3)	F1-B1-O1	108.3(4)
C27-C22-P1	118.0(3)	C1-C2-O4	107.8(5)
C27-C22-C23	118.6(4)		

Crystal structure of 3ha:

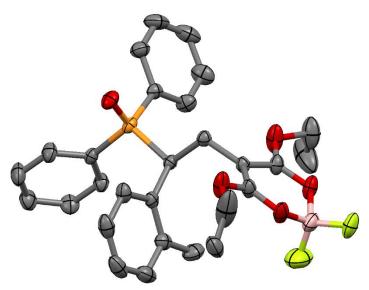


Figure S6. X-ray crystal structure of compound 3ha with 30% probability level.

Table 10 Crystal data and structure refinement for 3ha		
Ccdc no.	2305065	
Empirical formula	$C_{28}H_{30}BF_2O_5P$	
Formula weight	526.30	
Temperature/K	298.00	
Crystal system	monoclinic	
Space group	P2 ₁ /c	
a/Å	15.5666(13)	
b/Å	14.5930(11)	
c/Å	12.9789(9)	
α/°	90	
β/°	113.828(2)	
γ/°	90	

Volume/Å ³	2697.0(4)	
Z	4	
ρ _{calc} g/cm ³	1.296	
μ/mm^{-1}	0.152	
F(000)	1104.0	
Crystal size/mm ³	$0.321 \times 0.23 \times 0.105$	
Radiation	$MoK\alpha (\lambda = 0.71073)$	
2Θ range for data collection/°	3.996 to 52.998	
Index ranges	$-19 \le h \le 19$, $-18 \le k \le 18$, $-16 \le l \le 16$	
Reflections collected	34738	
Independent reflections	5559 [$R_{int} = 0.0627$, $R_{sigma} = 0.0384$]	
Data/restraints/parameters	5559/18/347	
Goodness-of-fit on F ²	1.069	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0713, wR_2 = 0.1657$	
Final R indexes [all data]	$R_1 = 0.0866, wR_2 = 0.1755$	
Largest diff. peak/hole / e Å-3	0.53/-0.42	

Table 11 Bond Lengths for 3ha

Atom	Length/Å	Atom	Length/Å
P1-O5	1.488(2)	C17-C18	1.390(4)
P1-C23	1.811(3)	C17-C22	1.382(4)
P1-C9	1.826(2)	C26-C25	1.369(5)
P1-C17	1.803(3)	C26-C27	1.360(6)
O3-C4	1.290(3)	C25-C24	1.384(4)
O3-B1	1.486(5)	C7-C4	1.384(4)
F1-B1	1.370(4)	C7-C3	1.380(4)
F2-B1	1.348(5)	C5-C6	1.364(7)
O2-B1	1.484(5)	C20-C19	1.377(5)
O2-C3	1.293(3)	C20-C21	1.367(5)
O1-C3	1.311(4)	C19-C18	1.382(4)
O1-C2	1.464(5)	C22-C21	1.378(5)
C1-C2	1.256(11)	C27-C28	1.376(5)
C1A-C2	1.190(12)	C10-C11	1.395(4)

Atom	Length/Å	Atom	Length/Å
C23-C24	1.384(4)	C10-C15	1.399(4)
C23-C28	1.396(4)	C11-C12	1.388(5)
C9-C8	1.549(3)	C12-C13	1.363(6)
C9-C10	1.523(4)	C13-C14	1.367(6)
C8-C7	1.504(4)	C14-C15	1.404(5)
O4-C4	1.321(4)	C15-C16	1.511(5)
O4-C5	1.472(4)		

Table 12 Bond Angles for 3ha

Atom	Angle/°	Atom	Angle/°
O5-P1-C23	110.94(13)	C6-C5-O4	111.0(4)
O5-P1-C9	114.77(12)	C21-C20-C19	119.6(3)
O5-P1-C17	111.98(12)	C20-C19-C18	120.5(3)
C23-P1-C9	105.99(12)	C19-C18-C17	120.2(3)
C17-P1-C23	106.33(12)	C21-C22-C17	121.0(3)
C17-P1-C9	106.29(12)	C20-C21-C22	120.3(3)
C4-O3-B1	119.4(3)	C26-C27-C28	120.8(3)
C3-O2-B1	120.2(3)	C27-C28-C23	120.5(4)
C3-O1-C2	120.5(3)	C11-C10-C9	119.2(3)
C24-C23-P1	125.7(2)	C11-C10-C15	119.2(3)
C24-C23-C28	118.0(3)	C15-C10-C9	121.6(2)
C28-C23-P1	116.3(2)	C12-C11-C10	121.0(3)
C8-C9-P1	109.63(17)	C13-C12-C11	119.9(4)
C10-C9-P1	112.43(17)	C12-C13-C14	120.0(3)
C10-C9-C8	112.6(2)	C13-C14-C15	122.0(4)
C7-C8-C9	112.6(2)	C10-C15-C14	117.9(3)
C4-O4-C5	121.3(3)	C10-C15-C16	122.8(3)
C18-C17-P1	123.7(2)	C14-C15-C16	119.3(3)
C22-C17-P1	117.9(2)	F1-B1-O3	108.7(3)
C22-C17-C18	118.4(3)	F1-B1-O2	107.8(3)
C27-C26-C25	119.8(3)	F2-B1-O3	108.1(4)
C26-C25-C24	120.3(4)	F2-B1-F1	112.3(3)

Appendix

Atom	Angle/°	Atom	Angle/°
C23-C24-C25	120.6(3)	F2-B1-O2	110.1(4)
C4-C7-C8	121.8(2)	O2-B1-O3	109.7(3)
C3-C7-C8	123.0(2)	O2-C3-O1	117.3(3)
C3-C7-C4	115.1(3)	O2-C3-C7	124.1(3)
O3-C4-O4	117.8(3)	O1-C3-C7	118.6(3)
O3-C4-C7	124.7(3)	C1-C2-O1	115.9(9)
O4-C4-C7	117.4(3)	C1A-C2-O1	120.8(8)

References

- 1. Bruker, SAINT V7.68A, Bruker AXS Inc., Madison (WI, USA), 2005.
- 2. Sheldrick, G. M. SADABS 2008/2, Göttingen, 2008.
- 3. Altomare, A.; Cascarano, G.; Giacovazzo C.; Guagliardi, A.; *J. Appl. Cryst.* **1993**, *26*, 343-350.
- 4. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Solution and Refinement; University of Göttingen, Göttingen, Germany, 1997.
- 5. Farrugia, L. J. WINGX: A Windows Program for Crystal Structure Analysis; University of Glasgow: Glasgow, U.K., 1988.

Conferences Attended

- > CRIKC-2023: Institute of Nano Science and Technology (INST), Mohali
- Activity: Attended.
- ➤ ChemFest-2023: Department of Chemistry, IIT Ropar, India
- Activity: Attended.
- > CRIKC-2024: Punjab University, Chandigarh Punjab
- Activity: Poster Presentation: Ring-opening & Closing of Dihydrothiopyrane using Lithium aluminium hydride.
- ➤ ChemFest-2024: Department of Chemistry, Indian Institute of Technology (IIT)
- Ropar Activity: Poster Presentation: Ring-opening & Closing of dihydrothiopyrane using Lithium aluminium hydride
- ➤ 24th Tetrahedron Symposium-2024: 18-21 June Le Corum Congress Center, Esplanade Charles de Gaulle BP, 2200, 34072 Montpellier Cedex 1, France.
- Activity: Poster Presentation entitled as "Synthesis of Indole-Fused Dihydrothiopyrano Scaffolds via (3+3)-Annulations of Donor–Acceptor Cyclopropanes with Indoline-2-Thiones"

List of Publications

Thesis Chapters

- (1) **Gopal, B.**; Singh, P. R.; Kumar, M. Goswami, A. Synthesis of Indole-Fused Dihydrothiopyrano Scaffolds *via* (3 + 3)-Annulations of Donor–Acceptor Cyclopropanes with Indoline-2-Thiones. *J. Org. Chem.* **2023**, *88*, 132.
- (2) **Gopal, B.**; Lamba, M.; Kushwah, A.; Singh, P. R.; Dhilip. T.J.; Goswami, A. Nucleophilic Ring Opening of DACs through Umpolung Reactivity of Organochlorophosphines: Phosphine Oxide Functionalized Boron Pendanted Compounds (*Manuscript under revision*)
- (3) **Gopal, B.**; Singh, P. R.; Bhatt, S.; Goswami, A. BF₃·OEt₂-Mediated (3+2) Cycloaddition Reactions of Donor-Acceptor Cyclopropanes (DACs) with Cyanamides: Access to Cyclic Amidines. Synthesis **2024**, *56*, 2521–2528.
- (4) **Gopal, B.**; Das. R.; Goswami, A. Ring-opening & Closing of dihydrothiopyrane using Lithium aluminium hydride (*Manuscript under preparation*)

As Co-Author

(5) Singh, P. R.; Gopal, B.; Kumar, M. Goswami, A. A metal-free BF₃·OEt₂ mediated chemoselective protocol for the synthesis of propargylic cyclic imines. *Org. Biomol. Chem.*, 2022, 20, 4933.

Unpublished /Submitted Manuscripts

(6) Lamba, M.; Gopal, B.; Das, R.; Goswami, A. Chemoselective reactions of thio-oxindoles with selectfluor under metal-free conditions: Access to dithianes "Manuscript under Preparation".