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Lay Summary 

Metals and alloys get damaged over a time period due to a natural process called corrosion. 

This occurs when a material reacts with its surrounding environment, such as water and air, 

causing it to weaken and damage the structure; corroded structures can compromise public 

safety. Stainless steel 304 (SS304) is mostly used in extreme/aggressive places like underwater 

pipelines, water treatment plants and storage containers for nuclear waste. SS304 contains a 

thin passive layer on the surface, which helps to prevent rusting. However, in seawater 

environments (chlorine-containing environments), this passive layer breaks down, and the 

underlying steel starts to corrode. Therefore, to enhance the corrosion resistance of metals in 

such environments, methods such as adding alloying elements to the base material and applying 

simple paint-like coatings are utilized. 

In conventional routes, ceramic coatings are produced using Thermal Spray, Chemical Vapour 

Deposition, and Physical Vapour Deposition processes. However, these coatings have 

drawbacks; they consume more energy to coat ceramic and have higher equipment costs. Due 

to these drawbacks, Polymer-Derived Ceramic (PDCs) coatings have been studied to improve 

the corrosion resistance of SS304 in this work, due to lower synthesis temperatures and stability 

of PDCs under harsh chemical environments as well as high temperatures.  

To coat the samples, a simple dip-coating method is used. After dipping SS304 in polymeric 

solution, the dipped samples are heat-treated to 800 °C under inert atmosphere to obtain silicon 

oxycarbide (SiOC) and silicon carbonitride (SiCN) ceramic coatings. Later, coated samples are 

studied using different structural characterization techniques and electrochemical testing. After 

two-fold coating, thickness of SiOC layer on SS304 is found to be ~1 μm, and after three-fold 

coating, thickness of SiCN layer is ~3 μm. Electrochemical testing was conducted on both 

coated and uncoated samples in a 0.6 M NaCl solution to determine the corrosion protection 

efficiency of the coatings. The results indicate that SiOC and SiCN coatings on SS304 

significantly improved corrosion resistance. The corrosion mechanisms of both the uncoated 

and coated samples were analyzed using potentiodynamic polarization and electrochemical 

impedance spectroscopy (EIS). Among the two coatings, SiCN-coated SS304 exhibited 

superior corrosion resistance compared to SiOC-coated SS304 in 0.6 M NaCl solution. 
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Abstract 

Corrosion is common in industrial sectors where structures and machinery are made of metals 

and alloys. SS304 is a widely used stainless steel grade in the world and is generally used in 

applications that require strength and good corrosion resistance such as, in subsea pipelines, 

desalination plants, and in steel canisters, etc. SS304 mainly suffers from localized corrosion 

(pitting and crevice corrosion) in chloride-containing environments. The corrosion resistance 

of SS304 is facilitated by the presence of a thin passive film of chromium oxide on its surface. 

It is a well-known fact that pitting occurs when localized breakdown of the passive film occurs 

and it further leads to failure of components. All these causes massive economic loss in the 

form of replacing the structure or repairing the damaged section which leads to a decrease in 

production efficiency or plant shutdown for a few days. 

 The main objective of this thesis is enhancement of corrosion resistance of SS304 by 

depositing ceramic layers using polymer-derived route. Polymer-derived ceramics (PDCs) 

have gained good attention in the last two decades as they possess high thermochemical 

stability. In the present work, two types of ceramics (SiOC and SiCN) from polymer pyrolysis 

route were synthesized and coated on SS304. Corrosion protection performances of coated 

substrates were evaluated in 0.6 M NaCl solution. 

Firstly, ceramic coating parameters were optimized for the deposition of SiOC and 

SiCN ceramic layers on SS304 using different precursor concentrations and by optimizing 

multi-fold coated layers followed by examining surface morphology. Subsequently, an 

amorphous SiOC layer with a thickness of about ~1 μm was deposited after two-fold coatings 

on SS304 by dip-coating with polysiloxane solution followed by pyrolysis at 800 °C under 

argon environment. Corrosion resistance of SiOC-coated SS304 was performed using open 

circuit potential (OCP), potentiodynamic polarization, and electrochemical impedance 

spectroscopy (EIS) methods. Electrochemical results confirmed improved corrosion protection 

behavior of SiOC-coated SS304 over uncoated SS304.  

Afterwards, SiCN was synthesized by pyrolysis of a commercial polysilazane at 800 

°C and a crack-free SiCN layer of ~3.2 μm on SS304 was coated using a multi-step dip-

coating/pyrolysis process. Electrochemical characterization revealed that SiCN-coated SS304 

had a significantly lower corrosion current density (and thus a lower corrosion rate) compared 



viii 

 

to that of uncoated SS304 samples. Enhanced corrosion protection behavior of SiCN-coated 

SS304 was also confirmed by EIS measurements.  

These findings signify the potential of SiOC and SiCN ceramic coatings for the 

protection of stainless steel in a seawater environment. 

 

Keywords: Polymer-derived ceramics, Coating, Corrosion, Potentiodynamic polarization, 

Electrochemical impedance spectroscopy (EIS). 
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Introduction and motivation 

Metallic materials deteriorates over a time due to corrosion caused by electrochemical and 

chemical interactions with the exposed surroundings. Stainless steel (SS304) is widely used in 

applications under extreme environments such as in subsea pipelines, desalination plants, and 

canisters for spent nuclear fuels (SNFs), etc. Thin passive film of chromium oxide on the steel 

surface imparts corrosion resistance, however, it suffers from corrosion in chloride-containing 

environments. Formation of pits in SS304 occurs at a potential above ~0.22 V vs. Ag/AgCl. 

This causes significant economic losses worldwide. Global cost of corrosion is estimated to be 

US $2.5 trillion which amounts to ~4% of global GDP. Therefore, to enhance corrosion 

resistance of stainless steel, methods like adding alloying elements to the base material and 

applying coatings on the surfaces of base substrates are employed.  

Coatings are an efficient method to prevent metals from the corrosion. In recent years 

different types of coatings ─ metals, polymers, composites, and ceramics ─ have been widely 

used for corrosion protection. Metallic coatings create adverse environmental effects and cause 

galvanic corrosion due to electrically coupling of dissimilar metals. Organic coatings such as 

epoxy coatings, poly-urethane coatings, phenolic resin coatings, etc., are proven to provide 

long-term protection for metals in marine environments. However, these coatings generally 

suffer from issues such as easy aging, and environmental pollution when exposed to high-

temperature marine environments (such as heat exchangers and gas turbines, etc.). Ceramic 

coatings are known for their hardness and durability, they can show better erosion, and wear 

resistance than organic coatings in harsh environments. Conventional ceramic coatings are 

prepared by deposition methods like CVD, PVD, thermal spraying techniques. Major 

drawbacks of these processes are high sintering temperatures (1700-2000 °C) to sinter powders 

and high equipment costs. 

 Therefore, to overcome the aforementioned demerits, this work uses polymer-derived 

ceramics (PDCs) coatings due to their superior properties: (i) a relatively low synthesis 

temperature (~700-1000 °C) to obtain thermochemically stable ceramics, (ii)  PDCs can be 

coated on complex structures, (iii) microstructure can be tuned by changing precursor 

composition, and (iv) simple deposition methods can be used for coatings. Synthesis of PDCs 

is done using silicon-based polymeric precursors, such as polysiloxanes, polysilazanes and 

polycarbosilanes; pyrolysis of these precursors in the inert environment leads to the formation 

of silicon oxycarbide (SiOC), silicon carbonitride (SiCN) and silicon-carbide (SiC), 
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respectively. This thesis investigates the corrosion protection performance of two different 

coatings (SiOC and SiCN) on SS304 in 0.6 M NaCl solution. 

The research work of this thesis is focused on: 

(i) Synthesis and characterization of ceramics using polymer-pyrolysis route, 

(ii) Optimization of coating parameters, 

(iii) Enhancing corrosion protection behavior of amorphous SiOC- and SiCN-coated SS304 

 

The content of this thesis is as follows: 

Chapter 1. Literature Review: This chapter presents an overview about corrosion, corrosion 

mechanism of stainless steel, methods to improve corrosion resistance, introduces different 

types of coatings, a comprehensive literature survey related to polymer-derived ceramics and 

objectives of this thesis work.  

Chapter 2.  Experimental methods: This chapter discusses experimental procedures used for 

the synthesis of polymer-derived ceramics, ceramic coating depositing method on steels, 

various structural characterizations and electrochemical techniques used in this work. 

Chapter 3. Synthesis and characterization of polymer-derived ceramics and optimization 

of coating layers on SS304 substrates: This chapter investigates precursors used for the 

synthesis of SiOC and SiCN. Structural characterization of as synthesized ceramic powders are 

discussed.  

Chapter 4. Corrosion protection performance of polymer-derived SiOC-coated SS304: A 

polymer-derived silicon oxycarbide (SiOC) coating was deposited on SS304 and 

electrochemical corrosion behavior of the ceramic coated samples were studied in 0.6 M NaCl 

solution and compared with uncoated SS304.  

Chapter 5: Corrosion protection performance of polymer-derived SiCN-coated SS304: 

This chapter discusses about enhanced corrosion protection of silicon carbonitride (SiCN) 

coated SS304. SS304 is dip-coated with a polysilazane solution followed by pyrolysis under 

argon environment at 800 °C to develop SiCN ceramic layer. Electrochemical characterization 

revealed that SiCN-coated SS304 had a significantly lower corrosion current density compared 

to that of uncoated SS304 samples. 
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Chapter 6. Conclusions and outlook: This chapter summarizes the present thesis work and 

underlines its prospective future by evaluating the obtained results. A brief discussion about 

the prospective future extension is also presented. 

 

 

 
























































































































































































