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Lay Summary

Harmonic (weak) Maass forms are a special kind of complex-valued function that exhibit

periodicity and symmetry in the upper half-plane of complex numbers. This is akin to,

in some extent, the way sine and cosine functions repeat their values on real numbers.

Harmonic Maass forms are smooth functions which vanishes under a certain Laplace

operator and exhibit well-behaved properties. Due to their periodic nature, harmonic

Maass forms can be expressed as a sum of exponentials, known as Fourier series, along

with their corresponding ‘Fourier coefficients’. Each harmonic Maass form is linked to a

distinct number known as its ‘weight’, which defines how the function behaves or scales

under transformations. Harmonic Maass forms extend the concept of modular forms,

which are well-recognized functions within number theory. Interesting number-theoretic

functions are often linked with the Fourier coefficients of harmonic Maass forms. Take,

for instance, the divisor function σl(n), which quantifies the sum of l-th power of positive

divisors of a number n, or p(n), which indicates the count of distinct ways to express n as a

sum of positive integers, allowing repetitions and not counting the order, encodes Fourier

coefficients of modular forms (harmonic Maass forms). If a(n) is a number-theoretic

function that appears as a Fourier coefficient of a harmonic Maass form, the properties of

these forms aid in identifying growth conditions, providing alternative representations, and

offering simpler descriptions of a(n). For a harmonic Maass form (or its generalization)

f , there is a particular sum of integrals of f along specific smooth, finite-length curves

in the complex upper half-plane. These sums or ‘traces of cycle integrals’ often relate

to Fourier coefficients of harmonic Maass forms and establish connections between real

quadratic fields and harmonic Maass forms. Such traces of cycle integrals may not exists

over certain smooth curves of infinite length having endpoints on the real axis, owing to

the growth properties of harmonic Maass forms at the boundary of the complex upper

half-plane. This thesis investigates the traces of cycle integrals of harmonic Maass forms,

or their generalizations, specifically over certain smooth curves with infinite lengths. We

examine the interactions between these traces of cycle integrals and their relationship

with the Fourier coefficients of harmonic Maass forms. These traces offer insights into

the Fourier coefficients of specific harmonic Maass forms with half-integral weights, and

they relate to special functions linked to the Fourier coefficients of harmonic Maass forms,

which have significant ties to number theory.

Moreover, we study the ‘regularized Petersson inner product’ on the space of harmonic

Maass forms and meromorphic modular forms, i.e. modular forms which may have

singularities (poles). This is a specific way of defining the inner product on the spaces of

harmonic Maass forms and meromorphic modular forms. In essence, it involves taking two

functions, multiplying them together, and then integrating the result over a certain region

in complex upper half-plane. This is a very useful way to study harmonic Maass forms

and meromorphic modular forms, their Fourier coefficients, and their bases that have nice

properties. We connected the regularized Petersson inner products with both real and

imaginary quadratic fields, explored their relationship to integer properties, and examined
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the algebraic characteristics of these inner products. We also studied the connection of

regularized inner products with zeros or poles of meromorphic modular forms and their

infinite series resulting meromorphic modular forms.
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Abstract

In this thesis, we investigate the arithmetic properties of regularized Petersson inner

products and Fourier coefficients of harmonic Maass forms. We study traces of cycle

integrals of modular objects over infinite geodesics, their interactions, and interplay with

Fourier coefficients of harmonic Maass forms and L-functions. Moreover, we examine the

regularized Petersson inner products of weakly holomorphic and meromorphic modular

forms, linking them to invariants of both real and imaginary quadratic fields, their

arithmetic and algebraic characteristics, their generating series, and their associations

with the divisors of modular forms.

Keywords: Harmonic weak Maass forms; Harmonic Maass forms; Sesqui-harmonic Maass

forms; Weakly holomorphic modular forms; Regularized inner products; Traces of cycle

integrals; Traces of singular moduli; Divisors of modular forms; Modular invariants; Zagier

lifts; Rohrlich-Jensen type divisor sums
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5.1.2 Poincaré Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.3 Binary quadratic forms and Genus characters . . . . . . . . . . . . . 61

5.1.4 Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.5 The Shintani and Zagier Lifts . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Regularized inner products and modular invariants for real quadratic

fields 73

6.1 Notations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Sesqui-harmonic Maass form: . . . . . . . . . . . . . . . . . . . . . . 73

6.1.2 The kernel function and its properties: . . . . . . . . . . . . . . . . . 75

6.1.3 Binary quadratic forms, class numbers and the Genus characters: . . 78

6.1.4 Geometric invariant and regularized surface integral: . . . . . . . . . 79

6.2 Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Arithmetic of regularized inner products and Rohrlich-Jensen type

divisor sums for j-invariant 87

7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Meromorphic modular forms . . . . . . . . . . . . . . . . . . . . . . 88

7.1.2 Real-analytic Eisenstein series . . . . . . . . . . . . . . . . . . . . . . 88
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Chapter 1

Introduction

The origins of harmonic Maass forms and mock modular forms trace back to the

“enigmatic” deathbed letter that Srinivasa Ramanujan wrote to G.H. Hardy in 1920.

In this letter, Ramanujan gave 17 examples which he called them as mock theta functions.

Around eight decades, the broader theoretical framework of mock theta functions was

unclear. In his remarkable work [Zwe01, Zwe02], Zwegers identified that Ramanujan’s

mock theta functions fit in the theory of non-holomorphic modular forms. In essence, he

“completed” Ramanujan’s mock theta function by adding real analytic functions, called

period integrals, that satisfy desired modular transformation laws. Thus, Ramanujan’s

mock theta functions were discovered to be mock modular forms i.e. holomorphic parts of

these real analytic functions.

At almost the same time, Bruinier and Funke [BF04] introduced the systematic theory

of harmonic Maass forms. Harmonic (weak) Maass forms are real analytic functions

on the complex upper half-plane H that generalize elliptic modular forms. Like elliptic

modular forms, they enjoy modular transformation with respect to a certain weight k,

over subgroups of the modular group SL2(Z). Additionally, they are annihilated by

the weight k hyperbolic Laplacian, and, in contrast to elliptic modular forms, they are

allowed to have at most linear exponential growth at cusps. Due to their periodic nature,

harmonic Maass forms possess Fourier expansion. The Fourier expansion of harmonic

Maass forms canonically decomposes into a holomorphic part and a non-holomorphic

part. Mock modular forms turns out to be the holomorphic parts of harmonic Maass

forms. The non-holomorphic forms constructed by Zwegers were identified as weight

1/2 harmonic Maass forms. Consequently, this led to new findings about mock theta

functions and sparked interest in other types of harmonic Maass forms and their

arithmetic properties. In the past quarter century, the theory of harmonic Maass forms

has significantly emerged in number theory and other mathematical fields. It has vast

contributions to numerous areas, such as partitions, singular moduli and their real

quadratic analogues, Borcherds products, and the arithmetic of elliptic curves, Eichler

cohomology, and Galois representation, among others. The harmonic Maass forms that

are holomorphic in H are called weakly holomorphic modular forms. Generally, for

the mock modular form f of weight k and f̂ the associated harmonic Maass form with

holomorphic part f , the function ξk(f̂)(z) := 2iyk d
dz̄ f̂(z) is known as the shadow of f .

For a comprehensive study of mock modular forms and harmonic Maass forms, we refer

to [BFOR17, Duk14, Fol17, Ono10, Zag09] and references therein.
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A natural problem is to determine the arithmetic information hidden in the Fourier

coefficients of harmonic Maass forms (mock modular forms), which is inspired by the

overarching idea that interesting sequences in number theory are frequently linked with

the Fourier coefficients of elliptic modular forms. In addition to this, another significant

problem is to study inner products on (sub)spaces of harmonic Maass forms and their

generalizations. The Petersson inner product on the space of classical cusp forms, viewed

as a subspace of Harmonic Maass forms, induces a Hilbert space structure that forms

the foundation for many key techniques in the arithmetic and geometric applications of

cusp forms. In case of harmonic Maass forms and their variants, the naive definition

usually diverges due to their exponential growth at cusps or singularities in H. One

must “regularize” the integral in the definition of inner product to obtain interesting

arithmetic.

In this thesis, we study the arithmetic properties of Fourier coefficients of harmonic

Maass forms and regularized inner products. First, we discuss traces of cycle integrals

of modular objects over infinite geodesics, their interactions, and interplay with Fourier

coefficients of harmonic Maass forms and L-functions, building upon the findings of

Andersen[And15, And22], Bringmann-Guerzhoy-Kane [BGK14], Duke-Imamoḡlu-Tóth

[DIT11a, DIT16a] and Jeon-Kang-Kim [JKK13, JKK14, JKK16b]. We then examine the

regularized Petersson inner products of weakly holomorphic and meromorphic modular

forms, linking them to invariants of both real and imaginary quadratic fields, their

arithmetic and algebraic nature, and their connections with the divisors of modular forms.

This is motivated by the works of Andersen-Duke [AD20], Bringmann-Kane [BK20],

Duke-Imamoḡlu-Tóth [DIT11b], and Jeon-Kang-Kim [JKK14], among others. We now

present our results below, organized into two subsections: one focusing on the arithmetic of

Fourier coefficients of harmonic Maass forms and the other on the arithmetic of regularized

inner products.

1.0.1 Arithmetic of Fourier coefficients of harmonic Maass forms

We throughout use the symbol “ := ” to mean that the symbol on the left is being defined

by the symbol on the right. Let j be the Klein’s modular invariant with the q-expansion

(q := e2πiz, z ∈ H) given by

j(z) = q−1 + 744 + 196 884q + · · · , (1.1)

which is a weight 0 weakly holomorphic modular form for SL2(Z). The values of Klein’s

j-invariant at imaginary quadratic irrationalities are algebraic integers and known as

singular moduli. By generating the class field of imaginary quadratic fields, singular moduli

play an instrumental role in solving Hilbert’s 12-th problem for imaginary quadratic fields,

showcasing the most elegant link between imaginary quadratic fields and modular forms.

Hilbert’s 12-th problem essentially seeks to generate abelian extensions for any number

field. Although the connection between general number fields and their class fields remains
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largely elusive, recent significant advances, such as those by Dasgupta-Kakde[DK24],

Darmon-Vonk[DV21] and Darmon-Vonk-Pozzi [DPV24, DPV21], have brought striking

progress in this direction.

Real quadratic fields and modular forms share many interesting links. One notable

example is the remarkable work of Duke, Imamoğlu, and Tóth [DIT11a], which connects

the invariants of real and imaginary quadratic fields to the coefficients of harmonic Maass

forms. We start by recalling a seminal paper [Zag02] of Zagier which provided a new proof

of Borcherds’s renowned theorem concerning the infinite product expansions of integer

weight modular forms on SL2(Z) with Heegner divisors. This proof, along with all the

findings in [Zag02], is linked to his elegant insight that the generating functions for traces

of singular moduli are, in essence, weight 3/2 weakly holomorphic modular forms.

We now introduce the notations that underpin our discussion. We call d a discriminant,

if d ̸= 0 and d ≡ 0, 1 (mod 4). We say that a discriminant d is fundamental, if d is the

discriminant of a quadratic field. Let Qd be the set of integral binary quadratic forms

Q(x, y) = [a, b, c] = ax2 + bxy + cy2 of the discriminant d = b2 − 4ac. When d < 0,

we assume that a > 0. We call a binary quadratic form Q = [a, b, c] ∈ Qd primitive, if

gcd(a, b, c) = 1. The modular group Γ̄ := PSL2(Z) = SL2(Z)/{±1} acts on the set Qd by

linear change of variables (see Section 2.0.2 for details). More precisely, for γ =
(

α β
γ δ

)
∈ Γ̄

and Q = [A,B,C] ∈ Qd, this action is defined by

γQ = Qγ−1 = Q(δx− βy,−γx+ αy). (1.2)

If zQ ∈ H is a root of Q(z, 1) = 0, then γzQ ∈ H is a root of (γQ)(z, 1) = 0, establishing

that the action defined above is compatible with the action of Γ̄ on H by linear fractional

transformations. The set of equivalence classes Γ̄\Qd is finite, and those classes consisting

of primitive forms make up an abelian group (under the Gaussian composition) of order

hd.

Let {gd}0<d≡0,1(mod 4) be a basis forM !
3/2, the space of weakly holomorphic modular forms

of weight 3/2 satisfying Kohnen’s plus space condition (see Section 2.0.1 for the definition

and Remark 3). This basis was studied by Zagier [Zag02] in which each form gd is uniquely

determined by having a Fourier expansion of the form

gd(z) = q−d −
∑
n≤0

a(d, n)q|n|, (1.3)

and a(d, n) = 0 unless n ≡ 0, 1(mod 4). For d > 0 fundamental, Zagier [Zag02] proved

that gd is the generating series of twisted traces of singular moduli of j1 := j − 744.

Specifically,

a(d, n) = − 1√
d

∑
Q∈Γ̄\Qdn

χd(Q)

|Γ̄Q|
j1(zQ), (1.4)

where zQ ∈ H is the associated CM point which is the unique root of Q(z, 1) = 0 , |Γ̄Q|
denotes the size of the stabilizer of Q (see Section 2.0.2) under the action defined above
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and χd : Qdn → {±1} is the generalized genus character defined in (2.12).

For 0 ≥ d ≡ 0, 1(mod 4), consider the “dual” form (with d and n interchanged)

fd(z) = qd +
∑
n>0

a(n, d)qn. (1.5)

Then it is shown by Zagier [Zag02] that the set {fd}d≤0 coincides with the basis for M !
1/2

given by Borcherds [Bor95].

It is natural to ask if there are counterparts to Zagier’s results for positive discriminants

dn. To do so, one need an appropriate analogue of twisted traces of singular moduli defined

in (1.4), along with a modular family whose Fourier coefficients encode these “traces”. Let

d be a positive discriminant and Q = [a, b, c] ∈ Qd. If d is not a perfect square, there is an

associated hyperbolic geodesic (Heegner geodesic) SQ := {z ∈ H : a|z|2 + bRe(z) + c = 0}
that joins two irrational roots of Q(z, 1) = 0, which form a Galois conjugate pair. We

assume orientation1 on SQ to be counter-clockwise if a > 0 and clockwise if a < 0. Let

Γ̄Q be the stabilizer group of Q in Γ̄ which is infinite cyclic (see Section 2.0.2). Let

CQ := ΓQ \ SQ, which defines a closed geodesic on modular curve Γ̄ \H (refer to Section

2.0.4 for more discussion). Duke, Imamoğlu, and Tóth [DIT11a] proved that there exists

a family of mock modular forms {fd}0<d≡0,1(mod 4) of weight 1/2, having their shadows

{gd}0>d≡0,1(mod 4), and the Fourier expansion of the form

fd(z) =
∑
n>0

a(n, d)qn.

For dD not being a square, with D > 0 as a fundamental discriminant, they proved that

a(D, d) =
1

2π

∑
Q∈Γ̄\QdD

χD(Q)

∫
CQ

j1(z)
dz

Q(z, 1)
. (1.6)

We refer to [DIT11a, Theorem 2 and Theorem 3] for more general statements. Noting

that weakly holomorphic modular forms are trivial examples of mock modular forms,

Duke, Imamoğlu, and Tóth extended the basis {fd}0≥d≡0,1(mod 4) to a basis {fd}d≡0,1(mod 4)

of mock modular forms of weight 1/2 satisfying Kohnen’s plus space condition. The

above ‘cycle’ integrals of j1 serves as a real quadratic analogue of singular moduli and is

independently investigated by Kaneko [Kan09].

It is a natural question to study Zagier’s basis {gd}0<d≡0,1(mod 4) á la Duke, Imamoğlu, and

Tóth. In this direction, Jeon, Kang and Kim [JKK13] extended the basis {gd}0<d≡0,1(mod 4)

to a basis {gd}d≡0,1(mod 4) for mock modular forms of weight 3/2. They proved that for

each d ≤ 0, there exists a unique mock modular form gd with shadow fd, having a Fourier

expansion of the form

gd(z) =
∑
n≤0

b(d, n)q|n|. (1.7)

1Throughout this thesis, we assume an orientation on SQ that suits our convenience, which can vary
between chapters. Nevertheless, the orientation will be fixed within each chapter.
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Moreover they proved [JKK14, Theorem 1.2] for dD not a square andD < 0 a fundamental

discriminant, that

b(d,D) = −8
√
dD Tr∗d,D(Ĵ1(z)) + 192πH(|D|)H(|d|), (1.8)

where Tr∗d,D(Ĵ1(z)) is a modified trace of cycle integrals of sesqui-harmonic Maass form

Ĵ1(z) defined by Jeon-Kang-Kim and H(d) denotes the Hurwitz-Kronecker class number,

which enumerates the classes of binary quadratic forms of discriminant d. However, classes

with a representative that is a multiple of x2+y2 are counted with a normalization of 1/2,

while those with a representative that is a multiple of x2 + xy + y2 are counted with a

normalization of 1/3 (see Eq. (2.10)). Sesqui-harmonic Maass forms are generalizations of

harmonic Maass forms, which might not be annihilated by the hyperbolic Laplacian, but

the operator may map them to weakly holomorphic modular forms (see Section 2.0.1 for

the definition). The sesqui-harmonic Maass form Ĵ1(z) of weight 0 for Γ̄ was constructed

in [JKK14] and satisfies ∆0(Ĵ1) = −j1 − 24 [JKK14, Theorem 1.1]. Let □ denote that

there exists a non-zero integer b such that □ = b2. The case dD = □ of (1.6) and (1.8) is

not covered in [DIT11a, JKK14].

When the discriminant of a binary quadratic form Q is a square, then Γ̄Q is trivial and

CQ = Γ̄Q \ SQ turns out to be a geodesic SQ, connecting two roots of Q(z, 1) = 0

in P1(Q). However, due to the exponential growth of j1 and Ĵ1 at i∞ (which is Γ̄

equivalent to every element in P1(Q)), the corresponding cycle integrals fail to converge,

obstructing the arithmetic and geometric understanding of the coefficients a(D, d) and

b(d,D). Andersen [And15] and Bruinier-Funke-Imamoğlu [BFI15] independently address

the issue of geometric or arithmetic interpretation of coefficients a(D, d) in (1.6) when

dD = □. The approach of Andersen and Bruinier-Funke-Imamoğlu is quite different.

Bruinier et al. [BFI15] utilized (regularized) theta lifting and defined regularized cycle

integrals of modular functions at square discriminants. Their result also applies to higher

level harmonic Maass forms of weight 0. On the other hand, Andersen [And15] defined

the regularization of modular functions by removing the terms from the integrand, which

causes the divergence of the cycle integral. Recently, using the ideas in [BFI15], [ANS21]

understood mock modular forms gd in (1.7) as a theta lift of a harmonic Maass form of

weight 2, which represents its Fourier coefficients through twisted cycle integrals associated

with a harmonic Maass form of weight 2.

Here, using the ideas in [And15], we define the modified trace of the sesqui-harmonic Maass

forms in the case dD = □ and expressed the coefficients b(d,D) in terms of modified traces

of cycle integral of Ĵ1 and Hurwitz-Kronecker class numbers.

Consider for m ∈ Z, Gm(z, s) be the Niebur Poincaré series2 [Nie73] defined in (2.16).

Let d,D be discriminants with D fundamental and dD = □. Then we regularize the

cycle integrals of Gm(z, s) using the approach of Andersen [And15] and denote the twisted

2In this thesis we use various normalizations of Poincaré series considered by Niebur [Nie73] up to
constant.
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traces of cycle integrals of Gm(z, s) by

Trd,D(Gm(z, s)) :=
1

2π

∑
Q∈Γ̄\QdD

χD(Q)

∫
CQ

Gm,Q(z, s)
dz

Q(z, 1)
, (1.9)

where Gm,Q(z, s) is the modified Niebur Poincaré series defined in (4.8). Andersen [And15]

introduced Gm,Q(z, s) to give an alternative trace definition for the basis {jm}m≥0 of the

space C[j], under the condition d > 0, D > 0 with dD = □. We recall that for each integer

m ≥ 0, jm is the unique modular function in C[j] that has a Fourier expansion of the form

q−m +O(q). For instance,

j0 = 1, j1 = j − 744, j2 = j2 − 1488j + 159768, . . . . (1.10)

Using the Fourier expansion of Gm(z, s) one can show that the above cycle integral

converges. Moreover, by (4.9), the cycle integrals are class invariants corresponding to

Q ∈ Γ̄\QdD. Hence (1.9) is well defined. For d,D < 0 with D fundamental and dD = □,

it follows from Proposition 4 that for 0 ̸= m ∈ Z, we have

Trd,D(Gm(z, s)) = 0.

Hence, we define a modified trace of Poincaré series. For d, D discriminants with D

fundamental and dD = □, we define a modified trace of Gm(z, s), for each 0 ̸= m ∈ Z by

T̃rd,D(Gm(z, s)) :=
1

π

∑
Q∈Γ∞\Q+

dD

χD(Q)

∫
CQ

e(m Re(z))ϕm,s(Im(z))
dz

Q(z, 1)
, (1.11)

where Q+
dD is the set of binary quadratic forms Q = [a, b, c] of discriminant dD with a > 0,

Γ∞ is the subgroup of translations in Γ̄ and ϕm,s(·) is defined by (2.15). Recall that when

dD = □, the stabilizer Γ̄Q of Q under the action of Γ̄ is trivial and CQ := Γ̄Q\SQ = SQ.

We note that the analogous definition of modified trace was considered by Jeon, Kang,

and Kim [JKK14, eq. (3.1)] in the case dD ̸= □.

Let Γ be as in (2.1). Jeon, Kang and Kim [JKK14] defined for each positive integer m

and Re(s) > 1,

Ĵm(z, s) :=
∂

∂s
G−m(z, s) = G−m

(
z,
∂

∂s
ϕ−m,s

)
, (1.12)

where G−m(z, s) is defined by (2.16). It follows from the proof of [JKK14, Theorem 1.1]

that the functions Ĵm(z, s) has an analytic continuation to Re(s) > 1/2 and it turns out

that

Ĵm(z) := Ĵm(z, 1) =
∂

∂s
G−m(z, s)|s=1 (1.13)

is a sesqui-harmonic Maass form of weight 0 for Γ. Moreover, we have

∆0(Ĵm) = −jm − 24σ(m),
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where ∆0 is the weight 0 hyperbolic Laplacian (see Eq. (2.3)) and σ(m) is the sum of

the positive divisors of m. For d, D discriminants with D fundamental and dD = □, we

define for m ≥ 1

T̃rd,D(Ĵm(z, s)) :=
∂

∂s
T̃rd,D(G−m(z, s)).

We set

T̃rd,D(Ĵm(z)) = T̃rd,D(Ĵm(z, s)) |s=1 . (1.14)

Now we are in a position to state our results3.

Theorem 1. Let d,D be negative discriminants with D fundamental and dD = □. Let

b(d,D) be the Fourier coefficients of the mock modular form gd as in (1.7). Then we have

b(d,D) = −8
√
dD T̃rd,D(Ĵ1(z)) + 192πH(|D|)H(|d|).

We proceed to discuss an application of Theorem 1. Initially, we will overview traces

of cycle integrals within the context of modular forms. The traces of cycle integrals

of modular functions are highly significant in the theory of modular forms and various

mathematical fields. For example, Shintani lifts [Shi75] represent a family of linear

mappings indexed by fundamental discriminants, transforming a holomorphic Hecke

eigenform f of integral weight into a holomorphic Hecke eigenform of half-integral weight.

The Fourier coefficients of the Shintani lift of f can be expressed through the traces of the

cycle integrals of f . These lifts were instrumental in the development of the celebrated

Waldspurger’s formula [Wal81, KZ81]. Essentially, the Waldspurger’s formula establishes

a connection between the central value of the L-function of an integral weight Hecke

eigenform f and the square of a Fourier coefficient of its Shintani lift. Thus, traces of

cycle integrals of f with square discriminants can be considered as a proxy of the central

value of the L-function associated with f . Recently, Shintani lifts were vastly generalized

by Alfes-Neumann and Schwagenscheidt [ANS21] to encompass harmonic Maass forms

of any positive even weights for congruence subgroups. Let ∆ < 0 be a fundamental

discriminant. Then the ∆-th Shintani lift ISh∆ [ANS21, Theorem 1.1] maps the space H !
2

into H !
3/2, where H

!
k is the space of harmonic weak Maass forms defined in Section 2.0.1.

Additionally, for G ∈ H !
2, the Fourier expansion [ANS21, Theorem 1.6] of the holomorphic

part of ISh∆ (G) is explicitly expressed in terms of twisted traces of the cycle integral of G.

We note that the |∆|-th Fourier coefficient of ISh∆ (G) is the twisted trace of the regularized

cycle integral of G at square discriminant. Inspired by the analogous formula for the

twisted central L-value of a holomorphic cusp form, Alfes-Neumann and Schwagenscheidt

[ANS21, p. 2302] viewed this trace as a replacement for the central critical value of the

(non-existent) L-series of G. As an application of our result together with the beautiful

results of Alfes-Neumann and Schwagenscheidt [ANS21], we express modified traces of the

cycle integral of Ĵ1 in terms of central critical value of the (non-existent) L-series of its

dual weight form. In order to explain it, we must introduce a few notation.

3The results in Theorem 1 and Corollary 1 below are from Chapter 4 of this thesis. They appear in the
paper [KK24] and are in a joint work with Balesh Kumar.



8 Chapter 1. Introduction

We start by recalling the function Ĵ1, which is a sesqui-harmonic Maass form of weight 0

for Γ [JKK14, Theorem 1.1] satisfying ∆0(Ĵ1) = −j1 − 24. Decomposing ∆0 in terms of

ξ-operator from (2.5) imply that ξ2 ◦ ξ0(Ĵ1) = j1 + 24. It turns out that [JKK14, p. 99]

the function ξ0(Ĵ1) is a harmonic weak Maass form lying in the space H !
2. More precisely,

ξ0(Ĵ1) = h∗1, where h
∗
1 = 4πh1 with h1 being the first member in the family {hm}m∈Z ⊆ H !

2

obtained explicitly by Duke, Imamoğlu, and Tóth [DIT16b]. The family {hm}m∈Z forms

a basis [DIT16b, Theorem 2] for H !
2. We take J̃ = h∗1 − 8πE∗

2 , where

E∗
2(z) = 1− 24

∑
n≥1

σ(n)qn − 3

πy
(1.15)

is a harmonic Eisenstein series of weight 2 for Γ. Since ξ2(E
∗
2) = 3/π, it follows from the

above that ξ2(J̃) = j1. We note that j1 is the first member of basis {jm}m≥0 for the space

C[j] defined above in (1.10). For each integer m ≥ 0, we set

f̃m := jm + 24σ(m)

and in this notation, we have ∆0(Ĵm) = −f̃m. For f ∈ C[j], we denote by cf (n) the n-th

Fourier coefficient of f . Furthermore, for f, g ∈ C[j], let ⟨f, g⟩reg be the regularized inner

product as defined in (4.6) and
( .
·

)
denote the Kronecker symbol. Finally, we recall, for

any real number y, the exponential integral Ei(y) = −
∫∞
−y e

−t dt
t which is defined by using

the Cauchy principal value for y > 0. With these notations, we have the following.

Corollary 1. Let D be a negative fundamental discriminant. Then we have

T̃rD,D(Ĵ1(z)) = − 1

4π
√
|D|

∑
n>0

(
D

n

)
⟨f̃n, f̃1⟩reg

n
e−2πn/|D|

− 1√
|D|

∑
n̸=0

(
D

n

)
cf̃1(−n)

[
e−2πn/|D| Ei

(
4πn

|D|

)
− 1

2
Ei

(
2πn

|D|

)]
.

The proof of the preceding corollary reveals that the expression on the right side can be

understood as the (non-existent) central critical L-value [ANS21, p. 2302] associated with

h∗1. Given that ξ0(Ĵ1) = h∗1, it is interesting to see that the modified traces of cycle integral

of weight 0 form Ĵ1 at square discriminant, is expressed in terms of central critical L-value

of its ‘dual’ weight form h∗1.

By slightly altering the viewpoint and taking into account ∆0(Ĵ1) = −f̃1, one can see

that the traces of the cycle integral of Ĵ1 are related to the arithmetic properties of

the modular function f̃1. The first sum on the right encompasses the regularized inner

product ⟨f̃n, f̃1⟩reg, while the second sum involves the Fourier coefficients of f̃1. Both

elements fit well within the Petersson-Rademacher type formula framework. For n < 0,

the Fourier coefficients cf̃1(−n) for f̃1 follow the Petersson-Rademacher formula [DIT16b,

(1.2)], [Rad38], which elegantly generalizes Ramanujan’s formula [Ram00] for expressing

σ(m) as an infinite sum of Ramanujan sums. Furthermore, the regularized inner product

⟨f̃n, f̃1⟩reg for n ̸= 1 is interpreted [DIT16b, Theorem 1] using the Petersson-Rademacher
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type formula, which has been extended [BDE17, Theorem 1.2] to ⟨f̃n, f̃n⟩reg for all n ≥ 1,

particularly for ⟨f̃1, f̃1⟩reg.

It is natural to delve into the arithmetic nature of Fourier coefficients of half-integral

weight harmonic weak Maass forms (mock modular forms) other than weight 3/2. We

investigate the Fourier coefficients of harmonic weak Maass forms of the half-integral

weight which are defined as Zagier lifts of harmonic weak Maass forms of integral weight.

Inspired by [Zag02], Zagier lifts of harmonic weak Maass forms have the property that

(CM or cycle integral) traces of harmonic weak Maass forms of integral weights appear as

Fourier coefficients of harmonic weak Maass forms of half-integral weights. By utilizing

theta correspondence, Bruinier and Funke [BF06] undertook the generalization of Zagier’s

lift to weakly holomorphic modular functions of arbitrary level. Bringmann and Ono

[BO07] extended Zagier’s findings by using the Maass-Poincaré series to lift weight zero

non-holomorphic Poincaré series to those of Poincaré series of half integral weight. We refer

to [BOR05, CJKK07, DIT11a, JKK14, KK23, BGK15, ANS20b, ANS18, BFI15, CC11]

for studies related to Zagier lifts. In addition to lifting modular forms of weight zero,

Zagier proposed lifts for modular forms of nonzero weight. In this direction, we will now

discuss the study by Duke and Jenkins [DJ08].

We fix κ > 1 an integer throughout the Introduction. For f ∈M !
2−2κ with rational Fourier

coefficients, Duke and Jenkins [DJ08, p. 575] showed a remarkable fact that the function

∂κ−1
2−2κf is a weak Maass form of weight 0 with rational Fourier coefficients and the singular

moduli for ∂κ−1
2−2κf is an algebraic number. Here ∂κ := − 1

4πRκ and we write

∂κ−1
2−2κ = (−1)κ−1∂−2 ◦ ∂−4 ◦ · · · ◦ ∂4−2κ ◦ ∂2−2κ,

Rκ−1
2−2κ = R−2 ◦R−4 ◦ · · · ◦R4−2κ ◦R2−2κ,

with R2−2κ is the Maass raising operator defined in (2.7). Motivated by this, Duke and

Jenkins introduced the traces of singular moduli for ∂κ−1
2−2κf and generalized the Zagier lifts

for the space M !
2−2κ. After a while Bringmann, Guerzhoy, and Kane [BGK14] extended

the classical Shintani lift to weakly holomorphic modular forms using the extension of

Zagier lifts in [DJ08] to a subspace of harmonic weak Maass forms (see also [BGK15]).

Let k ∈ 1
2Z and H+

k ⊂ Hk, consisting of the forms that correspond to S2−k under the

antilinear differential operator ξk defined in Section 3.1.1. For a fundamental discriminant

d, suppose that H+
k,d (resp. M !

k,d) is the subspace of H+
k (resp. M !

k) consisting of those

forms whose principal parts are supported in the square class −|d|n2 (n ∈ N). Bringmann

et al. [BGK14] constructed the Zagier lifts

Zd : H+
2−2κ → H+

3
2
−κ,d

, if (−1)κd > 0 and Zd : H+
2−2κ →M !

1
2
+κ,d

, if (−1)κd < 0,

(1.16)

which plays a role as an intermediate lift in the process of constructing the Shintani lift

for weakly holomorphic modular forms. The Zagier lift Zd for (−1)κd > 0, interacts
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with the (classical) Shintani lift [Shi75] (see [BGK14, Theorem 5.2]). Using theta lifting,

Alfes-Neumann and Schwagenscheidt [ANS18] studied generalizations of the above lifts.

A comparison of two different ways of interpreting Zagier lifts allowed Bringmann et

al. [BGK14] to prove a striking identity between traces of cycle integral attached to

M ∈ H+
2−2κ. Bringmann et al. [BGK14] introduced traces of cycle integrals for weight

2−2κ harmonic Maass forms of negative weights using the Maass (weight) raising operator

R2−2κ. They proved [BGK14, Theorem 1.1] that for a given M ∈ H+
2−2κ and for every

pair of positive discriminants d, δ for which dδ ̸= □, the corresponding trace of the cycle

integral of ξ2−2κ(M) is equal to constant times the trace of the cycle integral of Rκ−1
2−2κ(M).

For a pair of positive discriminants d, δ with d fundamental, the traces of the cycle integral

of ξ2−2κ(M) play a key role in [BGK14] to generalize the d-th Zagier lift to harmonic Maass

forms, while the traces of cycle integral of Rκ−1
2−2κ(M) encode the δ-th Fourier coefficients

of the non-holomorphic part of the alternate definition of d-th Zagier lift in [BGK14]. The

obstruction to the equality of the corresponding traces in the setting when dδ = □ occurs,

as traces of harmonic Maass forms of negative weights may not be defined due to the

divergence of the cycle integrals. Therefore, one needs a modified definition of trace in

this case.

We define modified trace (see (5.35)) for discriminants d, δ with dδ = □ and in fact, we

prove the following4.

Theorem 2. Let κ > 1 be an integer and M be a harmonic weak Maass form in H+
2−2κ.

Then for each pair of discriminants d, δ satisfying (−1)κd > 0, (−1)κδ > 0 with d

fundamental and dδ = □, we have

T̃r
□,⋆

δ,d (M) = Tr⋆δ,d(M),

where T̃r□,⋆
δ,d (M) and Tr⋆δ,d(M) are defined in (5.35) and (5.24) respectively.

Our defined modified traces of harmonic Maass forms of negative weights are connected

with the modified Poincaré series studied in [And15, And22]. We note that a completely

different regularization of the cycle integral was considered in [ANS18, Arxiv version, p.

39-40]. One can deduce the above theorem by following the (different) regularization

of cycle integral in [ANS18, Arxiv version, p. 39-40]. However, the notion of the

corresponding modified traces was not discussed in [ANS18, Arxiv version] which is the

context of the present theorem. It turns out that the modified twisted traces of the

cycle integrals of M ∈ H+
2−2κ in square discriminants are particularly interesting due

to their connection with the twisted central L-value of the corresponding holomorphic

cusp forms (the shadow of M). As a consequence of Theorem 2, we will now give a

relationship between modified twisted traces of cycle integrals of M and the central value

of the L-function of ξ2−2κ(M).

Let f be a cusp form in S2κ with the Fourier expansion given by f(τ) =
∑

n≥1 af (n)q
n.

4The results in Theorem 2, 3 and Corollary 2, 3 below are from Chapter 5 of this thesis. They appear
in the paper [KK23] and are in a joint work with Balesh Kumar.
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Let d be a fundamental discriminant and ψd :=
(
d
·
)
be the associated primitive quadratic

character of conductor |d|. The twisted L-function of f by the character ψd

L(s, f ⊗ ψd) =
∑
n≥1

af (n)ψd(n)n
−s

has an analytic continuation to the whole complex plane [Iwa97, Theorem 7.6].

Then, we have the following.

Corollary 2. Let κ > 1 be an integer and M be a harmonic weak Maass form in H+
2−2κ.

Let f be a cusp form in S2κ such that ξ2−2κ(M) = f . Then for a fundamental discriminant

d with (−1)κd > 0, we have

T̃r
□,⋆

d,d (M) = C(κ, d)L(κ, f ⊗ ψd),

where

C(κ, d) = (−1)⌊1−
κ
2
⌋(−1)

3κ+2
2

4κ−1

3
√
π
Γ(κ)Γ

(
κ− 1

2

)
ψd(−1)1/2|d|2κ.

As an application of our result, we can determine the weakly holomorphic modular form

lying in H+
2−2κ in terms of the vanishing of modified traces. An important ingredient in

our proof is the recent result of Gun, Kohnen, and Soundararajan [GKS24]. We prove the

following.

Corollary 3. Let κ > 1 be an integer and M be a harmonic weak Maass form in H+
2−2κ.

Then M is weakly holomorphic if and only if T̃r
□,⋆

d,d (M) = 0, for all but finitely many

fundamental discriminants d with (−1)κd > 0.

To keep the exposition uniform, we define the traces in the case of negative discriminants

d, δ with 0 < dδ ̸= □ using ideas in [DIT16a] and prove below the corresponding equality

of the traces which were not considered in [BGK14].

Theorem 3. Let κ > 1 be an odd integer and M be a harmonic weak Maass form in

H+
2−2κ. Then for each pair of negative discriminants d, δ such that d is fundamental and

0 < dδ ̸= □, we have

T̃r
⋆

δ,d(M) = Tr⋆δ,d(M),

where T̃r⋆δ,d(M) and Tr⋆δ,d(M) are defined as in (5.34) and (5.24) respectively.

Remark 1. The authors came to know from Professor Claudia Alfes-Neumann that

Theorem 3 also follows from the more general result related to the identities of cycle

integrals proved in [ANS18, Arxiv version], [ANS20a]. However, the corresponding notion

of traces were not considered in [ANS18, Arxiv version], [ANS20a], which is the content

of the above Theorem. Moreover, our method of the proof is completely different from

[ANS18, Arxiv version], [ANS20a].

In our next exploration, we studied the Fourier coefficients of Zagier lifts considered by

Jeon, Kang, and Kim [JKK16b] for the whole spaceH !
2−2κ. For a fundamental discriminant
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d, they defined lifts

Z+
d : H !

2−2κ → H !
1
2
+κ
, if (−1)κd > 0, and Z+

d : H !
2−2κ → H !

3
2
−κ
, if (−1)κd < 0.

These lifts are different from Zd in (1.16) and Millson theta lift considered in [ANS18] if we

restrict to the subspace H+
2−2κ, as they map H+

2−2κ to the space of harmonic weak Maass

forms that have weight κ + 1
2 (resp. 3

2 − κ) when (−1)κd > 0 (resp. (−1)κd < 0). These

lifts were defined using Maass-Poincaré series and they are related to lifts Zd through

ξ-operator (see [JKK16b, p. 230]).

Let f ∈ H !
2−2κ with (−1)κd > 0 (resp. (−1)κd < 0) and δ is a fundamental discriminant

such that (−1)κδ > 0 (resp. (−1)κδ < 0), Jeon et al. [JKK16b] gave the interpretation

of |δ|-th Fourier coefficient of the holomorphic part of Z+
d (f) in terms of traces of cycle

integrals related to f . We note that the |δ|-th Fourier coefficients of the holomorphic part

of Z+
d (f) for which dδ is not a perfect square were studied in [JKK16b]. The coefficients

with the condition dδ being a perfect square are particularly intractable due to divergence

of cycle integrals in the corresponding trace. Using Fourier analysis and evaluating the

Fourier expansion of these lifts, these coefficients are naturally in the form of infinite series

that involve exponential sums and the J-Bessel function.

We have defined modified traces of cycle integrals of harmonic Maass forms of negative

weights (using weight raising operator) at square discriminants, which was originally

defined for positive non-square discriminants in [BGK14]. These modified traces are

linked to the studies given in [And15, And22, DIT11a, DIT16a]. This helps us to interpret

the |δ|-th Fourier coefficients of the holomorphic part of Z+
d (f) in terms of modified traces.

In order to state our results5, we will define Zagier lifts Z+
d (see [JKK16b, eq.

3.12, 3.13]). Suppose m ∈ Z. Let Pm,2−2κ(κ; z) be the Maass-Poincaré series of weight

2− 2κ and R2−2κ be the Maass raising operator as defined in (3.3) and (2.7) respectively.

It follows from (3.6) and [BGK14, eq. 4, Lemma 4.1 ] that 6

Rκ−1
2−2κ(Pm,2−2κ(κ; z)) = Gm(z, κ), (1.17)

whereGm(z, κ) is the Niebur Poincaré series defined in (2.16). As Pm,2−2κ(κ; z) withm ∈ Z
spansH !

2−2κ [JKK16b, Remark 3.5], it is enough to define Zagier lifts on Pm,2−2κ(κ; z). Let

d be a fundamental discriminant. For (−1)κd > 0, the d-th Zagier lift of P−m,2−2κ(κ; z) ∈

5The results in Theorem 4, 5 are from Chapter 3 of this thesis. They appear in the paper [Kal24].
6Go to Chapter 3
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H !
2−2κ is defined by

Z+
d (P−m,2−2κ(κ; z)) :=



∑
n|m

(
d
n

)
(m/n)κ Pm2

n2 |d|,κ+ 1
2

(κ2 + 1
4 ; z) if m ̸= 0, κ ̸= 2, 3, 4, 5, 7,∑

n|m

(
d
n

)
(m/n)κ ∂

∂sPm2

n2 |d|,κ+ 1
2

(s; z) |s=κ
2
+ 1

4
if m ̸= 0, κ = 2, 3, 4, 5, 7,

P0,κ+ 1
2
(κ2 + 1

4 ; z) if m = 0.

(1.18)

The following Theorem gives the interpretation of the |d|-th Fourier coefficients of the

holomorphic part of Z+
d (P−m,2−2κ(κ; z)) in terms of traces of Rκ−1

2−2κ(Pm,2−2κ(κ; z)) under

the condition (−1)κd > 0.

Theorem 4. Let κ be an integer greater than 1 and d be a fundamental discriminant

satisfying (−1)κd > 0. Then for m ̸= 0, the Fourier coefficient of q|d| in the holomorphic

part of Z+
d (P−m,2−2κ(κ; z)) is±|d|

κ−1
2 Γ(κ+ 1

2)T̃r
□
d,d(R

κ−1
2−2κP−m,2−2κ(κ; z)) if κ ̸= 2, 3, 4, 5, 7,

±|d|
κ−1
2 Γ(κ+ 1

2)
∂
∂s T̃r

□
d,d(R

κ−1
2−2κP−m,2−2κ(s; z)) |s=κ if κ = 2, 3, 4, 5, 7,

and the Fourier coefficient of q|d| in the holomorphic part of Z+
d (P0,2−2κ(κ; z)) is

±2πκ+1/2|d|−1/2Γ(κ+ 1
2)

−1Ld(κ)
−1T̃r□d,d(R

κ−1
2−2κP0,2−2κ(κ; z)),

where T̃r□d,d(.) is defined in (3.12) and Ld(κ) is L-series associated to the Dirichlet

character
(
d
·
)
defined in (3.1).

Let D be a fundamental discriminant satisfying (−1)κD < 0, then the D-th Zagier lift of

P−m,2−2κ(κ; z) ∈ H !
2−2κ is defined by

Z+
D(P−m,2−2κ(κ; z)) :=


∑
n|m

(
D
n

)
(m/n)1−κ Pm2

n2 |d|, 3
2
−κ

(κ2 + 1
4 ; z) if m ̸= 0,

P0, 3
2
−κ(

κ
2 + 1

4 ; z) if m = 0.

(1.19)

The following Theorem interprets the |D|-th Fourier coefficient of Z+
D(P−m,2−2κ(κ; z))

under the condition (−1)κD < 0.

Theorem 5. Let κ be an integer greater than 1 and D be a fundamental discriminant

satisfying (−1)κD < 0. Then for m ̸= 0, the Fourier coefficients of q|D| in the holomorphic

part of the Z+
D(P−m,2−2κ(κ; z)) is

±|D|−
1
2 T̃r□D,D(R

κ−1
2−2κP−m,2−2κ(κ; z)),

and the Fourier coefficient of q|D| in the holomorphic part of Z+
D(P0,2−2κ(κ; z)) is

±22−2κπ|D|−κLD(κ)
−1T̃r□D,D(R

κ−1
2−2κP0,2−2κ(κ; z))

where T̃r□D,D(.) is defined in (3.12) and LD(κ) is L-series associated to the Dirichlet

character
(
D
·
)
defined in (3.1).
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1.0.2 Arithmetic of regularized inner products

The Petersson inner product is a fundamental tool in the theory of modular forms, which

offers deep insights into their arithmetical and analytical properties. It was introduced

by the German mathematician Hans Petersson [Pet32] in the early twentieth century and

has connections with Fourier coefficients of modular forms, L-functions, representation

theory, among others. The Petersson inner product on the space of classical cusp forms

induces a Hilbert space structure, which underpins many key techniques in the arithmetic

and geometric applications of cusp forms. The Petersson inner product is well defined

for classical cusp forms. There are many regularizations to extend the domain of the

Petersson inner product beyond the cusp forms, and its extensions were first observed

by Petersson itself [Pet50]. Later, Harvey and Moore [HM96], Borcherds [Bor98] and

Bruinier [Bru02] have employed adaptations and extensions to his approach to regularize

theta lifts of weakly holomorphic modular forms and their generalizations. Recall that

weakly holomorphic modular forms are holomorphic on the upper-half plane, but which

may grow exponentially towards cusps. The regularized inner product of Petersson may

not exist for all weakly holomorphic modular forms. However, when it converges, its values

tend to be intriguing. For example, in the case of weakly holomorphic modular forms, it

is connected to real quadratic analogs of singular moduli [DIT11b].

To proceed further, we will consider the regularized Petersson inner product [Bor98] of

two modular forms f and g of weight k ∈ 1
2 + Z for Γ0(4) with singularities only at the

cusps. It is defined by

⟨f, g⟩ := lim
Y→∞

∫
F4(Y )

f(z)g(z)yk
dxdy

y2
, (1.20)

where F4(Y ) is the standard truncated fundamental domain for Γ0(4) obtained by

removing Y -neighborhoods of the cusps. Recall {gd}0<d≡0,1(mod 4) (see Eq. (1.3)) forms the

Zagier basis for weight 3/2 weakly holomorphic modular forms associated with generating

series of traces of singular moduli. Duke, Imamoğlu, and Tóth established [DIT11b,

Theorem 2.2] that the regularized inner product of gd1 and gd2 can be expressed in terms

of the real quadratic analog of the traces of singular moduli. Recall for discriminants d1, d2

with d1 fundamental, χd1 be the generalized genus character defined on Γ̄\Qd1d2 (see Eq.

(2.12) in Section 2.0.3). More precisely, they proved the following.

Theorem 6 (Duke-Imamoğlu-Tóth). Let d1 and d2 be distinct positive fundamental

discriminants with d1d2 ̸= □. Then

⟨gd1 , gd2⟩ = − 3

8π

∑
Q∈Γ̄\Qd1d2

χd1(Q)

∫
CQ

j1(z)
dz

Q(z, 1)
,

where CQ is the closed geodesic defined in Subsection 6.1.4.

The minus sign in the above occurs due to the orientation opposite to [DIT11b]

considered in Subsection 6.1.4. The cycle integral of j-function in the above theorem
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is actually the real quadratic analog of singular moduli considered independently by

Duke-Imamoğlu-Tóth [DIT11a] and Kaneko [Kan09].

It is natural to investigate the regularized inner product of the “dual” form fd. Here, we

prove7

Theorem 7. Let d,D be negative co-prime fundamental discriminants with dD ̸= □.

Then we have

⟨fD, fd⟩ = 3
∑

Q∈Γ̄\QdD

χD(Q)

∫
FQ

j1(z)
dxdy

y2
+ 24π

∑
Q∈Γ̄\QdD

χD(Q)mQ,

where the modular surface FQ, class invariant mQ, regularized surface integral are defined

in Subsection 6.1.4 and H(·) is the Hurwitz-Kronecker class number defined in Subsection

2.10.

The surface FQ is a recently introduced geometric invariant by Duke, Imamoğlu, and Tóth

[DIT16a], analogous to (CM) points and (closed geodesics) curves linked to the ideal class

of Q. Recently, integrals of jm on FQ have been defined by Andersen and Duke [AD20].

For surface integrals, nontrivial extensions involve genus characters related to two negative

discriminants, whereas cycle integrals in Theorem 6 (closed geodesic case) involve two

positive discriminants. The CM points emerge when discriminants have opposite signs.

Within this context, the modular surface naturally complements the theme comparable

to points and curves tied to ideal classes in Γ̄\QdD.

Here, we prove a more general result from which in particular Theorem 7 follows.

Let IMD be the twisted D-th Millson theta lift defined in [ANS18, (1.1)] and {T (n)}n∈N be

the family of Hecke operators acting on the space M !
0. For n ≥ 1, recall that jn ∈ M !

0 is

the family given in (1.10) which is defined by jn := j1|Tn, and has a Fourier expansion of

the form q−n +O(q). Then it follows from [ANS18, Theorem 1.1] that IMD (jn) is a weakly

holomorphic modular form of weight 1/2 for Γ0(4). Recall that σ(n) is the sum of positive

divisors of n. We prove the following.

Theorem 8. Let d,D be negative co-prime fundamental discriminants with dD ̸= □.

Then we have

⟨IMD (jn/2), fd⟩ = 3
∑

Q∈Γ̄\QdD

χD(Q)

∫
FQ

jn(z)
dxdy

y2
+ 24πσ(n)

∑
Q∈Γ̄\QdD

χD(Q)mQ

+ 288πH(d)

−σ(n)H(D) +
∑
m|n

(
D

m

)
H

(
n2

m2
D

) ,
where the modular surface FQ, class invariant mQ, regularized surface integral are defined

in Subsection 6.1.4 and H(·) is the Hurwitz-Kronecker class number defined in Subsection

2.10.

7The results in Theorem 7, 8, 9 and Corollary 4 below are from Chapter 6 of this thesis. They appear
in the paper [KKb] and are in a joint work with Balesh Kumar.
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The proof of Theorem 8 is crucially based on Theorem 9. To state Theorem 9, we first set

the notation and describe the related functions.

Let d,D be discriminants with D fundamental and dD ̸= □. Then for a form f in H2,2,

the space of sesqui-harmonic Maass forms of weight 2 for SL2(Z) (see Section 2.0.1), we

define

Trd,D(f) :=
∑

Q∈Γ̄\QdD

χD(Q)

∫
CQ

f(z) dz. (1.21)

Let J̃ be a form in H !
2 such that ξ2(J̃) = j1 = j − 744, where ξ2 := 2iy2 ∂̄

∂z̄ . For each

positive integer m, recall that Ĵm [JKK14, Theorem 1.1] be the sesqui-harmonic Maass

forms of weight zero for SL2(Z) defined in (1.13), which satisfies

∆0(Ĵm) = −jm − 24σ(m),

where ∆0 (see (2.3)) is the weight 0 hyperbolic Laplacian. One can see that the form
∂
∂z Ĵm(z) is a sesqui-harmonic Maass form in H2,2. With the notations as above, we prove

the following.

Theorem 9. Let d,D be negative fundamental discriminants with dD ̸= □. Then we have

∑
n|m

(
D

n

)
Trm2

n2 D,d
(J̃) = Trd,D

(
2i
∂

∂z
Ĵm
)
− 96πH(d)

∑
n|m

(
D

n

)
H

(
m2

n2
D

)
,

where H(·) is the Hurwitz-Kronecker class number defined in Subsection 2.10.

As an application, we get the following.

Corollary 4. Let d,D be negative fundamental discriminants with dD ̸= □. Then we

have

⟨fD, fd⟩ = −3Trd,D

(
2i
∂

∂z
Ĵ1
)
+ 288πH(D)H(d).

The interpretation of ⟨fD, fd⟩ in terms of traces has received significant interest recently.

Alfes-Neumann and Schwagenscheidt [ANS21, Proposition 1.9] proved that ⟨fD, fd⟩ is a

constant multiple of the twisted traces of cycle integrals of J̃ ∈ H !
2. This was their main

motivation and starting point for [ANS21] (see [ANS21, p. 2306]). Corollary 4 expressed

⟨fD, fd⟩ in terms of Hurwitz-Kronecker class numbers and twisted traces of ∂
∂z Ĵ1 ∈ H2,2.

Given that the space H !
2 is a subset (see Subsection 2.6) of the space H2,2, it should

be noted that the form ∂
∂z Ĵ1 does not lie in the space H !

2. On the other hand, Jeon,

Kang, and Kim [JKK14, Theorem 1.3] expressed ⟨fD, fd⟩, when dD ̸= □, in terms of

Hurwitz-Kronecker class numbers and certain modified traces of Ĵ1 ∈ H0,2, the space of

sesqui-harmonic Maass forms of weight zero for SL2(Z) (see Section 2.0.1).

It is reasonable to examine the inner products of forms that may exhibit singularities in H
apart from the cusps, i.e., meromorphic modular forms (see Section 7.1.1 for the definition).

The inner product of such forms was regularized by Petersson [Pet54] through the Cauchy

principal integrals. This approach was independently rediscovered and further developed
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by Harvey-Moore [HM96] and Borcherds [Bor98]. For meromorphic modular forms, the

Petersson inner product gives nice arithmetic. For instance, Rohrlich [Roh84] studied

divisor sums of Kronecker limit functions log(y6|∆(τ)|) , where ∆(τ) := q
∏∞

n=1(1− qn)24,
to draw parallels with Jensen’s formula from the complex analysis within the context of

modular forms. We will now delve into the discussion of the Jensen formula, then discuss

its modular version by Rohrlich, followed by its extension by Bringmann-Kane, and finally

present our results.8

Jensen’s formula [Lan99, p. 341] is a renowned theorem in complex analysis. It relates

the integral of log |f | around a disc for a meromorphic function f to the sum of the

divisors of f within the disc. This formula is integral to classical function theory and has

significantly influenced the development of Nevanlinna theory. Nevanlinna theory shows

parallels with Roth’s theorem in the Diophantine approximation. Vojta extended these

concepts by creating a type of ‘dictionary’ [Voj87, p. 34], outlining the analogy between

number theory and Nevanlinna theory, where Jensen’s formula serves as a counterpart

to the Artin-Whaples product formula in class field theory. Furthermore, Nevanlinna

theory has been instrumental in inspiring Vojta’s conjecture concerning rational points on

varieties, offering deep insights into arithmetic and algebraic geometry.

Rohrlich [Roh84] explored a modular adaptation of Jensen’s formula. Rohrlich’s

theorem can be rephrased using the Petersson inner product. Initially, define J0(z) :=
1
6 log(y

6|∆(z)|) + 1, where z = x+ iy. Let f denote a meromorphic modular function for

Γ := SL2(Z), which does not possess a pole at i∞ and has a constant term of 1 in its

Fourier series. Let F be the standard fundamental domain of the quotient SL2(Z)\H. We

note that by our assumption, F does not contain the cusp at i∞. Let ordw(f) represent

the order of the zero or pole of f at w, and let ord(w) denote the order of the isotropy group

of w ∈ H (refer to Subsection 7.1.1). Thus, according to the valence formula, Rohrlich’s

theorem can be reformulated as follows:

⟨1, log |f |⟩ = −2π
∑
w∈F

ordw(f)

ord(w)
J0(w). (1.22)

It turns out that the function J0 is a sesqui-harmonic Maass form of weight 0 such that

∆0(J0) = 1.

Several versions and extensions of Rohrlich’s theorem have been explored by numerous

mathematicians [HIvPT19, BK20, CJS23, JKKM24] and have found various applications

in number theory [Fun07, Kud03]. Additionally, an extension of Rohrlich’s theorem is

applicable to the calculation of arithmetic intersection numbers in Arakelov theory [K0̈1].

Recently, Bringmann and Kane [BK20] extended the Rohrlich’s theorem to the j-function

in the framework of (1.22), where they required a regularized version (see Eq. (7.10)) of

the inner product, which is again denoted by ⟨·, ·⟩.
8The results in Theorem 11 and Corollary 5, 6, 7, 8, 9, 10, 11, 12 are from Chapter 7 of this thesis.

They appear in the paper [KKa] and are in a joint work with Balesh Kumar.
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In order to state the result of Bringmann and Kane, we must first establish some notation.

Recall j be the Klein’s modular invariant with the q-expansion given as in (1.1) and

j1 := j − 744. For n ≥ 1, recall jn be the family given in (1.10) which is defined by

jn := j1|Tn, where Tn is the nth Hecke operator defined on modular function f of weight

k for SL2(Z) by

f |Tn(z) :=
∑
ad=n
d>0

∑
b (mod d)

d−kf

(
az + b

d

)
.

Let Jn be the sesqui-harmonic Maass forms of weight 0 defined in [BK20, (3.10)] that

satisfy ∆0(Jn) = jn. Then Bringmann and Kane proved the following.

Theorem 10 (Bringmann-Kane). Let f be a meromorphic modular form of weight k

for SL2(Z) that does not have a pole at i∞ and has a constant term one in its Fourier

expansion. Then there exists a constant cn such that〈
jn, log

(
y

k
2 |f |

)〉
= −2π

∑
w∈F

ordw(f)

ord(w)
Jn(w) +

k

12
cn.

Motivated by the aforementioned theorem, it is natural to investigate the sums of the

values of j-invariant over the divisors of meromorphic modular forms as a regularized

inner product. To state the result, let ν0 := 1
2πi

∂
∂z be the Ramanujan-Serre derivative of

weight 0 and j′n := ν0(jn). Denote by σ1(n) the sum of positive divisors of n. Then we

prove the following.

Theorem 11. Let f be a non-zero meromorphic modular form of weight k for Γ. Then

for every integer n ≥ 1, we have

〈
j′n,−4πν0

[
log
(
y

k
2 |f |

)]〉
=

1

2

(∑
w∈F

ordw(f)

ord(w)
jn(w) + 2kσ1(n)

)
.

Theorem 11 establishes a useful connection between the regularized inner product and the

sum of the values of jn over the divisors of meromorphic modular forms. The values of

jn at divisors of meromorphic modular forms frequently link to arithmetic and algebraic

data. For example, they yield numerous implications when combined with the interesting

findings of Bruinier, Kohnen, and Ono. [BKO04]. We start by exploring an implication

pertaining to the relationship between the regularized inner product and the exponents in

the infinite product expansion of meromorphic modular forms.

Corollary 5. Suppose that f(z) =
∑∞

n=h af (n)q
n is a weight k meromorphic modular

form on Γ for which af (h) = 1 and denote by c(n) the complex numbers for which

f(z) = qh
∞∏
n=1

(
1− qn

)c(n)
.
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If n ≥ 1 is an integer, then〈
j′n,−4πν0

[
log
(
y

k
2 |f |

)]〉
=

1

2

∑
d|n

c(d)d.

It is interesting to observe that the preceding corollary provides an inner product

(geometric) interpretation for the exponents in the infinite product expansion of

meromorphic modular forms.

To describe the next consequence, we start by recalling the kernel function K(z, τ) defined

by

K(z, τ) :=
j′(τ)

j(z)− j(τ)
, where j′(τ) =

1

2πi

∂

∂τ
j(τ). (1.23)

This function transforms on Γ with weight 0 in z and weight 2 in τ . In fact, it is a weight

2 meromorphic modular form for Γ in the variable τ with a simple pole at τ = z. The

function K(z, τ) turns out to be the generating function for the basis {jm}m≥0 of C[j]
that goes back to Faber [Fab03] (see [AKN97]). One has

K(z, τ) =
∑
m≥0

jm(z)e2πimτ . (1.24)

The above identity was used to prove that

j(τ)− j(z) = e−2πiτ exp

(
−

∞∑
n=1

jn(z)

n
e2πinτ

)
.

This identity is equivalent to the famous denominator formula

j(τ)− j(z) = e−2πiτ
∏

m∈N,n∈Z
(1− e2πimτe2πinz)c(mn),

for the monster Lie algebra, where the exponents c(n) denote the nth coefficient of j1.

The function K(z, τ) plays many important roles in the theory of modular forms [AKN97,

DIT11a] and is intimately related to the logarithmic derivative of meromorphic modular

forms. More precisely, let f be a meromorphic modular form of weight 2k for Γ that does

not vanish at i∞. Then Bruinier, Kohnen, and Ono [BKO04, Theorem 1] proved that

f ′(τ)

f(τ)
=
kE2

6
−
∑
w∈F

ordw(f)

ord(w)
K(w, τ), (1.25)

where f ′(τ) = 1
2πi

∂
∂τ f(τ) and E2 is the weight 2 quasimodular Eisenstein series

E2(τ) := 1− 24
∑
m≥1

σ1(m)e2πimτ .
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On the other hand, a simple computation shows that

−4πν0

[
log
(
vk|f |

)]
=
k

v
− 2π

f ′(τ)

f(τ)
,

where τ = u+ iv ∈ H. Using (1.25) in the above, we get

−4πν0

[
log
(
vk|f |

)]
= −kπ

3
E∗

2(τ) + 2π
∑
w∈F

ordw(f)

ord(w)
K(w, τ),

where E∗
2 is the harmonic Eisenstein series of weight 2 defined in (1.15). Using above in

Theorem 11 along with Proposition 7, one can deduce that

2π
∑
w∈F

ordw(f)

ord(w)
⟨j′n,K(w, τ)⟩ =

∑
w∈F

ordw(f)

ord(w)

jn(w)

2
.

It is natural to expect that the corresponding summand on both sides of the above should

match. Here we derive.

Corollary 6. Let the notations be as above. Then for every integer n ≥ 1, we have

⟨j′n,K(z, ·)⟩ = 1

4π
jn(z).

As an immediate consequence of Corollary 6 and (1.24), we deduce.

Corollary 7. The generating series of regularized inner products

1 + 4π
∞∑
n=1

⟨j′n,K(z, ·)⟩e2πinτ

equals K(z, τ) and hence it is a weight 2 meromorphic modular form for Γ with a simple

pole at z = τ in H.

Next we derive a result towards the algebraicity of the regularized inner product. We

have.

Corollary 8. Let f(z) =
∑∞

n=h af (n)q
n be a meromorphic modular form of weight k for

Γ for which af (h) = 1 and the Fourier coefficients of f are in a number field K. Then for

every integer n ≥ 1, the inner product〈
j′n,−4πν0

[
log
(
y

k
2 |f |

)]〉
is an algebraic number.

For certain meromorphic modular forms, it is plausible that the inner product described

in Corollary 8 could be an algebraic integer. Moreover, for these types of meromorphic

modular forms, the regularized inner products equate to the traces of singular moduli. We

start by establishing the necessary notation to demonstrate this.
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For discriminant d, recall that the modular group Γ̄ = PSL2(Z) acts on the setQd of binary

quadratic forms of discriminant d via (1.2), and results in finitely many classes. Let the

set of equivalence be denoted by Γ̄ \ Qd, and Γ̄Q be the stabilizer of Q under the action

of Γ̄ with |Γ̄Q| be its size. Let d,D be discriminants with D > 0 fundamental, recall that

χD : QdD → {±1} is the generalized genus character defined in (2.12). Moreover, recall

that {fd}0≥d≡ 0,1(mod 4) is the Borcherds basis [Bor98] of M !
1/2 having a Fourier expansion

of the form (1.5).

For d < 0, let ΨD(z, fd) be the twisted Borcherds product defined in [Bor98, Theorem

6.1]. In fact, it follows from [BO10, p. 2172] that

ΨD(z, fd) =
∏

Q∈Γ̄\QdD

(
j(z)− j(zQ)

)χD(Q)

ωQ ,

where zQ is the unique root of Q(z, 1) contained in H, in other words, zQ is the complex

multiplication (CM) point associated with Q, ωQ = |Γ̄Q| is the size of the stabilizer of Q

in PSL2(Z). This is a meromorphic modular form of weight 0 for Γ̄, having zeros or poles

of order χD(Q) at CM points zQ ∈ H, for Q ∈ QdD. We have the following.

Corollary 9. Let the notations be as above. Then for every integer n ≥ 1, we have

⟨j′n,−4πν0[log |ΨD(z, fd)|]⟩ =
1

2

∑
Q∈Γ̄\QdD

χD(Q)

|ΓQ|
jn(zQ).

In particular, for every integer n ≥ 1, we have

2 ⟨j′n,−4πν0[log |ΨD(z, fd)|]⟩ ∈
√
D Z.

We deduce the following.

Corollary 10. Let D > 1 be a fundamental discriminant. Then the generating series of

regularized inner products

−
∑
n|m

(
D

m/n

)
nq−n2D +

2√
D

∑
d<0

d≡0,1 (mod 4)

⟨j′m,−4πν0[log |ΨD(z, fd)|]⟩q|d|

is a weakly holomorphic modular form of weight 3/2 for Γ0(4).

In particular, for m = 1, the generating series of regularized inner products

q−D − 2√
D

∑
d<0

d≡0,1 (mod 4)

⟨j′1,−4πν0[log |ΨD(z, fd)|]⟩q|d|

coincides with the form considered by Zagier in (1.3) ([Zag02, (15)]).

Continuing with the exploration of arithmetic results, we note instances of modular forms

whose inner products are actually integers. Specifically, we investigate the divisibility (or
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congruence) properties of the inner products associated with these modular forms. To

start with, for even integers k ≥ 4, we define the standard Eisenstein series

Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n,

where Bk is the usual kth Bernoulli number and σk−1(n) :=
∑

d|n d
k−1. The Eisenstein

series Ek is a modular form of weight k on Γ. Now, we have the following.

Corollary 11. If k ≥ 4 is even, then for every integer n ≥ 1, we have

〈
j′n,−4πν0

[
log
(
y

k
2 |Ek|

)]〉
≡ 0

(
mod 2

∏
p−1|k

5≤p prime

p

)
.

Next, we provide universal recursion formulas for regularized inner products in terms of

the arithmetic of Fourier coefficients of modular forms. To state the result, define the

polynomial Gn(x1, . . . , xn−1) ∈ Q[x1, . . . , xn−1] by

Gn(x1, . . . , xn−1) =
∑

m1,...,mn−1≥0
m1+2m2+···+(n−1)mn−1=n

(−1)m1+···+mn−1
(m1 + · · ·+mn−1 − 1)!

m1! · · ·mn−1!
xm1
1 · · ·xmn−1

n−1 .

The first few polynomials Gn are

G1(·) = 0,

G2(x1) =
x21
2
,

G3(x1, x2) = −x
3
1

3
+ x1x2

G4(x1, x2, x3) = −x21x2 + x1x3 +
x41
4

+
x22
2

G5(x1, x2, x3, x4) = −x
5
1

5
+ x31x2 − x1x

2
2 − x21x3 + x1x4 + x2x3

We have the following.

Corollary 12. If f(z) = qh +
∑∞

n=1 af (h + n)qh+n is a meromorphic modular form of

weight k for Γ, then for every integer n ≥ 1, we have〈
j′n,−4πν0

[
log
(
y

k
2 |f |

)]〉
=
n

2

[
Gn

(
af (h+ 1), . . . , af (h+ n− 1)

)
− af (h+ n)

]
.

Example. If f(z) = q+
∑∞

n=2 af (n)q
n is a meromorphic modular form of weight k for Γ,

then the case n = 1 of Corollary 12 implies that

〈
j′1,−4πν0

[
log
(
y

k
2 |f |

)]〉
= −

af (2)

2
.
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In particular, if we take f to be the Ramanujan’s Delta function

∆(z) =
∞∑
n=1

τ(n)qn = q − 24q2 + 252q3 − · · ·

in the above, then we get

〈
j′1,−4πν0

[
log
(
y6|∆|

)]〉
= 12. (1.26)

The above identity (1.26) can also be directly verified from Theorem 11 because ∆ is a

weight 12 holomorphic cusp form for Γ which does not vanish at any point in H.

We now turn our attention to further examining the regularized inner product of the forms

fd’s from the Borcherds basis in (1.5), particularly in the case where it is not defined

by the usual definition (1.20). For example, fd’s may not be directly integrable among

themselves. To study such inner products, Bringmann, Diamantis, and Ehlen [BDE17]

developed a regularization for Petersson inner products of arbitrary weakly holomorphic

modular forms, which generalizes several known regularizations. Their approach involved

multiplying the integrands by a function that ensures convergence, after which they

carried out analytic continuation. Jeon, Kang, and Kim [JKK14] were the first to give

an arithmetic interpretation of the regularized Petersson inner product of fd’s. More

precisely, they proved the theorem below.

Theorem 12 (Jeon-Kang-Kim). Let d and D be both negative discriminants with D

fundamental and dD ̸= □. Then we have

⟨fd, fD⟩ = −12
√
dD Tr∗d,D(Ĵ1(z)) + 288πH(D)H(d),

where ⟨., .⟩ is the regularized inner product defined by (1.20), Tr∗d,D(Ĵ1(z)) is a modified

trace of cycle integrals of sesqui-harmonic Maass form Ĵ1(z) defined by Jeon-Kang-Kim

and H(d) denotes the Hurwitz-Kronecker class number defined in (2.10).

We have extended the above Theorem using the regularized Petersson inner product of

Bringmann, Diamantis, and Ehlen [BDE17], denoted by ⟨., .⟩reg, and our definition of

modified trace of Ĵ1 in the case when dD = □ (see Eq. 1.14). We prove the following.

Theorem 13. 9 Let d,D be both negative discriminants with D fundamental and dD = □.

Then we have

⟨fd, fD⟩reg = −4
√
dD T̃rd,D(Ĵ1(z)) + 96πH(D)H(d),

where ⟨., .⟩reg is the regularized inner product defined by (4.6), T̃rd,D(Ĵ1(z)) is defined in

(1.14), and H(d) denotes the Hurwitz-Kronecker class number defined in (2.10).

9The result in Theorem 13 is from Chapter 4 of this thesis. It appear in the paper [KK24] and a joint
work with Balesh Kumar.
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Remark 2. We note that a computation in [BDE17, section 4.3] shows that the regularized

inner product considered in [JKK14, Theorem 1.3] for dD ̸= □ is 3 times the regularized

inner product used in Theorem 13 above.

This research focused on the arithmetic properties of regularized inner products and

Fourier coefficients related to harmonic Maass forms (mock modular forms). We will now

discuss the Fourier coefficients of harmonic Maass forms. An important facet of examining

the arithmetic of Fourier coefficients is the investigation of traces of cycle integrals of

modular objects, since these traces may relate to the Fourier coefficients of harmonic

Maass forms. Essentially, the traces of cycle integrals of modular objects can be viewed

as the sum of integrals of modular objects along hyperbolic geodesics corresponding to

binary quadratic forms of fixed discriminant. For binary quadratic forms with square

discriminants, the related geodesics are of infinite length and connect the cusps in SL2(Z).
Consequently, these traces might be undefined if the modular objects exhibit exponential

growth at the cusps. Using the regularization of Andersen [And15, And22], we study traces

of cycle integrals at square discriminants. The objectives are twofold: first, to give new

interpretation of Fourier coefficients of certain harmonic Maass forms through these traces,

which naturally appear as infinite series involving exponential sums and Bessel functions.

Second, to establish connection of these traces to geometry and arithmetic via (regularized)

inner products and L-functions, respectively, thereby highlighting the connections of these

traces. This method of regularization was used in [And15, And17, AAS18] to study

the Fourier coefficients of harmonic Maass form and their variants. We utilized this

regularization technique to define traces for sesqui-harmonic Maass forms of weight zero

and harmonic Maass forms of negative weights.

We now proceed to discuss the contributions of this thesis in the direction of arithmetic

of Fourier coefficients of harmonic Maass forms and mock modular forms.

(i) Fourier coefficients of mock modular forms of weight 3/2: We

interpret Fourier coefficients of specific mock modular forms {gd =∑
n≤0 b(d, n)q

|n|}0≥d≡0,1(mod 4) of weight 3/2 in terms of modified traces of

sesqui-harmonic Maass form of weight zero, which we have defined. These

sesqui-harmonic Maass forms are constructed [JKK14] via taking the derivative

with respect to the auxiliary variable s of the Niebur Poincaré series (see (1.13)).

Therefore, to define traces of sesqui-harmonic Maass forms, it seems natural to

first define traces of Niebur Poincaré series and then differentiate with respect to s.

However, to study b(d,D) (d,D < 0) with dD = □, the notion of traces of Poincaré

series at square discriminants is needed. This necessity arises because the usual

cycle integrals of Niebur Poincaré series, corresponding to binary quadratic forms of

square discriminants, are divergent due to growth at the cusps. The regularization

considered by Andersen [And15] can be used to define such traces. However,

due to the genus character involved in the definition of traces and d,D < 0, these

regularized traces turn out to be zero. In this case, following [JKK14], we introduced
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the modified traces of Niebur Poincaré series by limiting the summation to binary

quadratic forms Q = [a, b, c] ∈ QdD with a > 0 in Andersen’s regularization.

Furthermore, we define the modified traces of cycle integrals of sesqui-harmonic

Maass forms by differentiating the modified traces of Niebur Poincaré series with

respect to s. This enables us to give a new interpretation of b(d,D) with dD = □,

in terms of modified traces of the sesqui-harmonic Maass form of weight zero (see

Theorem 1).

The mock modular forms gd (in fact, their completions) are understood in terms

of the Shintani theta lift developed in [ANS21]. Therefore, we are able to connect

(see Corollary (1)) modified traces of cycle integrals of sesqui-harmonic Maass form

with the (non-existent) central critical L-value [ANS21, p. 2302] associated with

certain harmonic Maass form of weight 2. This gives an interaction between two

different regularizations and reveals the arithmetic nature of modified traces through

the expression of hypothetical L-value.

(ii) Fourier coefficients of harmonic Maass forms of half-integral weight and

L-values: We defined modified traces of cycle integrals, at square discriminants, for

harmonic Maass forms of negative weights. These modified traces are used to provide

new interpretation of the Fourier coefficients of harmonic Maass forms of half-integral

weights and their connection to L-values. Following [BGK14], we define these traces

in terms of traces of modified Niebur Poincaré series (see (3.10)), using the Maass

raising operator. For binary quadratic forms with square discriminants, the cycle

integrals of Niebur Poincaré series diverge because of growth at cusps. To regularize

cycle integrals at square discriminants, we adopt the regularization by Andersen

[And15, And22]. The definition of modified traces linked to binary quadratic forms

with discriminant dδ = □, involves two cases: either both discriminants are positive,

or both are negative. We dealt with both the cases differently since the trace of

modified Niebur Poincaré series turns out to be zero when both discriminants are

negative. This is due to the genus character involved in the definition. Specifically,

when both discriminants are negative, the definition incorporates cycle integrals of

the derivative of the modified Niebur Poincaré series. This approach follows from

the ideas in recent works [And22] and [DIT16a]. We established that the modified

traces of harmonic Maass forms provide new interpretation of the Fourier coefficients

of Zagier lifts defined by [BGK14] (refer to the proof of theorems 2 and 3) and

[JKK16b] (see theorems 4 and 5).

Due to the connection of Zagier lifts defined in [BGK14] with classical Shintani lift,

we proved a relationship (equality up to constants and conjugation) between modified

trace of harmonic Maass form M and trace of cycle integrals of cusp forms ξ2−2k(M)

(see Theorem 2). Traces of cycle integrals of cusp form at square discriminants gives

the L-value of the corresponding cusp form (see [Koh80, p.243]). We have established

a new connection (refer to Corollary 2) between modified traces of harmonic Maass
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form M and the central value of the L-function of ξ2−2κ(M). This highlights the

understanding of modified traces of harmonic Maass forms that we define, in terms

of L-values. In addition, we established a characterization result (refer to Corollary

3) that employs the analytic techniques in [GKS24]. This result characterize weakly

holomorphic modular forms in the space of negative weight harmonic Maass cusp

forms, by vanishing of the modified trace of harmonic Maass forms. The necessity

for analytic methods in [GKS24] emerges because of the assumption that ξ2−2k(M) is

considered to be a cusp form, though not necessarily a Hecke eigenform. Therefore,

we believe, the statement of Corolloay 3 is more general in that sense.

We now delve into the contributions of this thesis towards the arithmetic related

to regularized inner products. We specifically studied regularized inner product of

weakly holomorphic and meromorphic modular forms.

(i) Regularized inner product of weakly holomorphic modular forms:

We studied the regularized inner product of weight 1/2 weakly holomorphic

modular forms in Borcherds basis [Bor95]. We proved that the regularized

inner product of these forms can be expressed in terms of certain surface

integrals of jn’s over hyperbolic orbifolds and arithmetic data attached to these

surfaces (see theorems 7 and 8). These hyperbolic orbifolds are new geometric

invariants constructed in [DIT16a], having usual modular closed geodesic as

its boundary. The proof of theorems 7 and 8 relies on the computation of

traces of cycle integrals of sesqui-harmonic Maass forms by using the method

of Maass-Poincaré series. Additionally, a key ingredient of the proof is the

relationship between traces of cycle integrals of harmonic and sesqui-harmonic

Maass forms of different weights (see Theorem 9). Following [AD20], we

examine the two distinct regularization approaches for the surface integrals of

jm, and we determine the interconnections between these regularizations (see

Lemma 11). Furthermore, we also interpret the regularized inner product of

Borcherds basis elements in terms of traces of cycle integrals of sesqui-harmonic

Maass form of weight two and Hurwitz-Kronecker class number (see Corollary

4). It is natural to ask for the extension of Corollary 4 when the product

of discriminants is a perfect square. In this case, the regularized inner

product may not exist, so we applied the regularization developed in [BDE17].

Moreover, Corollary 4 indicates the necessity of computing cycle integrals for

sesqui-harmonic Maass form associated with binary quadratic forms having

square discriminants. In this direction, using the modified trace for the case

dD = □ (see Eq. 1.14), we obtained the regularized inner product of the

Borcherds basis elements in terms of modified traces of cycle integrals of

sesqui-harmonic Maass forms of weight zero and the Hurwitz-Kronecker class

number (see Theorem 13). The study in [ANS21, JKK14] investigates the

regularized inner product of Borcherds basis elements from different viewpoints.

By extending the perspectives established in [ANS21, JKK14], these results
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contribute to a new and broader understanding of the inner product of these

forms.

(ii) Regularized inner product of weakly holomorphic modular forms:

We investigated the regularized inner product involving meromorphic modular

forms. The authors in [DIT11a], expressed regularized inner product of weakly

holomorphic modular forms in terms of traces of cycle integral of j − 744. It

may seem natural to ask about the interpretation of traces of singular moduli

in terms of regularized inner products. We provide an explanation utilizing

the regularized inner products of meromorphic modular forms. More generally,

using methods in [BK20], we prove that the values of jn at the divisors of a

meromorphic modular form of weight k, denoted as f , essentially correspond

to the regularized inner product between j
′
n and 2i ∂

∂z

[
log
(
y

k
2 |f |

)]
(refer to

Theorem 11). This fits well within the framework of the Rohrlich-Jensen

formula [Roh84] and its extension in [BK20], which served as a key motivation

for Theorem 11. Stoke’s theorem, along with Fourier and the elliptic expansion

of relevant forms, plays a crucial role in the method used for the proof.

Moreover, we computed an explicit description of Fourier coefficients of certain

sesqui-harmonic Maass forms related to the automorphic Green’s function

(see Proposition 8) and completed weight two Eisenstein series (see Lemma

(14)). Using Theorem 11 and the results of [BKO04], we establish a variety of

arithmetic results concerning the regularized inner product, providing further

insights into their structure.

• Exponents of infinite product expansion of meromorphic modular

forms. Any meromorphic modular form can be expressed through a

product expansion characterized by specific exponents (see Corollary 5).

We prove a relationship between these exponents and regularized inner

products. While the relationship between regularized inner products and

Fourier coefficients of modular forms is well known, their link to exponent

of modular forms does not appear to have been widely explored.

• Algebraic nature of regularized inner products and traces of

singular moduli. We proved that the regularized inner product between

j
′
n and 2i ∂

∂z

[
log
(
y

k
2 |f |

)]
is an algebraic number (see Corollary 8).

Moreover, for a specific choice of meromorphic modular form f , we found

a direct connection between the regularized inner product and the traces

of singular moduli (see Corollary 9).

• Divisibility properties and arithmetic recurrence relations of

inner products. For regularized inner products between j
′
n and

2i ∂
∂z

[
log
(
y

k
2 |f |

)]
, we established divisibility properties (see Corollary 11)

when we specify f as an Eisenstein series of weight k. Moreover, we

prove a certain recurrence relation of these regularized inner products in

terms of Fourier coefficients of modular form f (see Corollary 12). This
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provides insight into the connection between regularized inner products of

meromorphic modular forms and the arithmetic of Fourier coefficients, as

well as their integer-related properties.

• Generating series of regularized inner products. We also studied

generating series of regularized inner products of meromorphic modular

forms. We show that these generating series are modular. More precisely,

we established them as a meromorphic and weakly holomorphic modular

form (see corollaries 7 and 10).



Chapter 2

Preliminaries

We denote throughout the set of complex numbers by C, the set of integers by Z and the

set of positive integers by N. Moreover, we denote the set of complex upper half-plane

by H and it’s elements by z = x + iy with x, y ∈ R and y > 0. Given z ∈ H, we define

q := e2πiτ = e(z). We denote □ to signify the presence of a non-zero integer b such that

□ = b2. We set κ ∈ 1
2Z and

Γ :=

SL2(Z) if κ ∈ Z,

Γ0(4) if κ ∈ 1
2Z \ Z .

(2.1)

The full modular group SL2(Z) acts on the H via linear fractional transformations i.e.

(A =

(
α β

γ δ

)
, z) 7→ αz+β

γz+δ , for A ∈ SL2(Z), is a group action. For any z ∈ C, we

choose
√
z to be the principal branch of holomorphic square root. Let f be a complex

valued function on H. Then, define the action (or the stroke operator |κ) of an element

A =

(
α β

γ δ

)
∈ Γ on f by

(f |κA)(z) =

(γz + δ)−κf
(αz+β
γz+δ

)
if κ ∈ Z,(γ

δ

)
ϵ2κδ (γz + δ)−κf

(αz+β
γz+δ

)
if κ ∈ 1

2 + Z,
(2.2)

where the usual extended Legendre symbol is denoted by
(
c
d

)
and ϵd is the root of unity that

takes the value 1 or i depending on whether d ≡ 1 (mod 4) or d ≡ 3 (mod 4) respectively.

Functions that are invariant under |κ for κ ∈ 1
2 +Z, satisfy the transformation law studied

in Shimura’s theory of half-integral weight modular forms [Shi73].

2.0.1 Weak Maass forms and variants

Here we discuss the essential facts and definitions in the theory of Maass forms which we

require for later use. For κ ∈ 1
2Z, define the weight κ hyperbolic Laplacian by

∆κ = −y2
(
∂2

∂x2
+

∂2

∂y2

)
+ iκy

(
∂

∂x
+

∂

∂y

)
. (2.3)

A smooth function F : H → C is called a weak Maass form of weight κ and eigenvalue

λ ∈ C if the following holds,

(i) F |κ M = F , for all M ∈ Γ,
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(ii) ∆κF = λF ,

(iii) F has at most linear exponential growth at every cusp of Γ.

We say that F is a harmonic weak Maass form if λ = 0 in the above definition. We refer

to a beautiful paper by Bruinier and Funke [BF04] for fundamental results in the theory

of harmonic weak Maass forms. Since the holomorphic functions on H are harmonic,

we classify weakly holomorphic modular forms as those harmonic Maass forms that are

holomorphic on H. We denote W !
κ, H

!
κ, M

!
κ,Mκ, Sκ be the spaces of weak Maass forms,

harmonic weak Maass forms, weakly holomorphic modular forms, holomorphic modular

forms and holomorphic cusp forms of weight κ for Γ respectively. The operator ξk :=

2iyk ∂
∂z̄ plays an important role in the theory of harmonic weak Maass forms. It defines

an antilinear surjective map

ξκ : H !
κ

surjection−−−−−−→M !
2−κ (2.4)

with kernal M !
κ [BF04, Proposition 3.2 and Theorem 3.7]. The operator ∆k can also be

expressed as

∆k = −ξ2−k ◦ ξk, (2.5)

There are two interesting spaces of Maass forms defined through ξκ. The first being the

space of sesqui-harmonic Maass forms of weight κ. This space consists of complex-valued

smooth functions on H vanishing under ∆κ,2 := ξκ ◦∆κ = −ξκ ◦ (ξ2−κ ◦ ξκ) and satisfying

properties (i) and (iii) of weak Maass forms of weight κ. The notion of sesqui-harmonic

Maass form is introduced by Bringmann, Diamantis and Raum [BDR13] and these objects

were first appeared in a different context in [DIT11a, DI96] and further explored in [LR16,

ALR18, Mat18] among others. The other one is harmonic Maass cusp forms of weight κ,

which precisely consists of those F ∈ H !
κ such that ξκ(F ) ∈ S2−κ. We denote Hκ,2 and H

+
κ

be the spaces of sesqui-harmonic Maass forms and harmonic Maass cusp forms of weight

κ for Γ respectively. We note that

Sκ ⊂Mκ ⊂M !
κ ⊂ H+

κ ⊂ H !
κ ⊂ Hκ,2 (2.6)

Remark 3. For κ ∈ 1
2 + Z, we fix throughout that forms in Hκ,2 satisfy Kohnen’s plus

space condition. This means that if f ∈ Hκ,2 has Fourier expansion

f(z) =
∑
n∈Z

c(n, y)e2πinx,

then c(n, y) = 0 unless (−1)κ−
1
2n ≡ 0, 1 (mod 4). Therefore, when κ ∈ 1

2 + Z,
Sκ,Mκ,M

!
κ, H

+
κ and H !

κ assumed to satisfy Kohnen’s plus space condition.
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We consider the Maass Raising operator by

Rκ := 2i
∂

∂τ
+
κ

v
. (2.7)

If F is an eigenfunction under ∆κ with eigenvalue λ and satisfies weight κ modularity,

then it follows from [BFOR17, Lemma 5.2] that Rκ(F ) is an eigenfunction under ∆κ+2

with eigenvalue λ+ κ, and satisfies weight κ+ 2 modularity.

2.0.2 Integral binary quadratic forms, quadratic fields and class

numbers

Here we discuss the integral binary quadratic forms, their connections to quadratic fields

and class numbers. Let K be a real quadratic field. Then K = Q(
√
D), where D > 1 is

the discriminant of K. Let σ : K → K be the non-trivial Galois automorphism β 7→ βσ,

and for β ∈ K, let N(β) = ββσ be the norm of β. Denote IK as the group of fractional

ideals of K and PK (resp. P+
K ) be the subgroup of principal fractional ideals (resp. totally

positive principal fractional ideals) of K. Let ClD := IK/PK and Cl+D := IK/P
+
K be the

class group and the narrow class group of K respectively. Two ideals a and b are in the

same narrow class if there is a β ∈ K with N(β) > 0 so that a = (β)b. Let ϵd > 1 be the

smallest unit with N(β) > 0 in the ring of integers OK of K.

We call d a discriminant if d ̸= 0 and d ≡ 0, 1 (mod 4). We say that a discriminant d

is fundamental if d is the discriminant of a quadratic field. We fix the notation d as a

discriminant throughout this thesis. Let Qd be the set of integral binary quadratic forms

Q(x, y) = [a, b, c] = ax2 + bxy + cy2 of the discriminant d = b2 − 4ac. When d < 0,

we assume that a > 0. We call a binary quadratic form Q = [a, b, c] ∈ Qd primitive, if

gcd(a, b, c) = 1. The modular group Γ̄ := PSL2(Z) = SL2(Z)/{±1} acts on the set Qd by

linear change of variables. More precisely, for γ =
(

α β
γ δ

)
∈ Γ̄ and Q = [A,B,C] ∈ Qd,

this action is defined by

γQ = Qγ−1 = Q(δx− βy,−γx+ αy). (2.8)

This action is compatible with the action of Γ̄ on H by linear fractional transformations

in the sense that,

(γQ)(z, 1) = (−cz + a)2Q(γ−1z, 1).

The above implies that if zQ ∈ H is a root of Q(z, 1) = 0, then γzQ ∈ H is a root of

(γQ)(z, 1) = 0. The set of equivalence classes Γ̄\Qd is finite and those classes consisting of

primitive forms make up an abelian group (under the Gaussian composition) of order hd

(class number). In fact, for d to be a fundamental discriminant, there is a correspondence

between Γ̄\Qd and Cld which is given by

[a, b, c] 7→ wZ+ Z, w =
−b+

√
d

2a
. (2.9)
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Furthermore, if [a, b, c] is chosen in its class so that a > 0 and d to be a fundamental

discriminant, then the above gives a bijection between Γ̄\Qd and Cl+d . Let Γ̄Q := {γ ∈
Γ̄ : γQ = Q} be the group of automorphs of Q ∈ Qd. If d < 0, then |Γ̄Q| = 1 unless Q is

Γ̄-equivalent to [a, 0, a] or [a, a, a], in which case |Γ̄Q| = 2 or 3, respectively. Next define

the Hurwitz-Kronecker class numbers H(d), for a discriminant d < 0 by

H(d) :=
∑

Q∈Γ̄\Qd

1

|Γ̄Q|
. (2.10)

If d < 0 is a fundamental discriminant, then it follows that H(d) = hd
ωd
, where 2ωd is the

number of roots of unity in Q(
√
d).

The case d > 0 constitutes whether d is a perfect square or non-square. If d > 0 is a

perfect square, then Γ̄Q is trivial. In contrast, if d > 0 is non-square, then Γ̄Q is infinite

cyclic group with a distinguished generator denoted by gQ. For primitive Q = [a, b, c], it

is given by

gQ = ±

(
t−bu
2 −cu
au t+bu

2

)
, (2.11)

where (t, u) is an integral solution with t, u ≥ 1 to the Pell’s equation t2 − du2 = 4 (see

[Sar82, Section 1]). If µ = gcd(a, b, c), then gQ = gQ/µ.

2.0.3 Genus characters

We adhere to the exposition given by Gross, Kohnen, and Zagier in [GKZ87, p. 508]. Let

Q = [a, b, c] ∈ QdD andD be a fundamental discriminant. Note that every discriminant is a

unique square multiple of a fundamental discriminant. We call an integer n is represented

by Q, if there exists a, b ∈ Z, such that Q(a, b) = n, and recall
(
D
·
)
be the Kronecker

symbol. Define the function (extended genus character) χD : QdD → {±1} by

χD(Q) =


(
D
n

)
if gcd(a, b, c,D) = 1, [a, b, c] represents n, gcd(D,n) = 1,

0 otherwise.
(2.12)

Such an integer n in the above definition always exists, and that the definition is

independent from its choice. Since equivalent quadratic forms under the action defined in

(2.8) represent the same integers, χD descends to Γ̄\Qd. Furthermore, χD restricts to a

real character (genus character) on the group of primitive classes, and that all characters

arise in this way. We have

χD(−Q) = (sign D)χD(Q). (2.13)

Moreover, if d is fundamental then it turns out that χD = χd on Γ̄\QdD and χ1 is trivial.
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2.0.4 Heegner geodesics

Let Q = [a, b, c] ∈ Qd with d > 0. Define Heegner geodesic

SQ := {z ∈ H : a|z|2 + bRe(z) + c = 0}. (2.14)

If d is non-square, SQ is an arc in H perpendicular to R, that joins two irrational

roots of Q(z, 1) = 0, which are Galois conjugates. We can fix orientation on SQ to

be counter-clockwise if a > 0 and clock-wise if a < 0 (respectively, clockwise if a > 0 and

counterclockwise if a < 0). Let CQ := Γ̄Q\SQ, which is a closed geodesic on modular curve

Γ̄ \H. Recall that gQ is the distinguished generator of Γ̄Q from (2.11). One can view CQ

in H as the geodesic from any point z on SQ to g−1
Q z (respectively, from z ∈ SQ to gQz, if

we assume that the orientation on SQ is clockwise if a > 0 and counterclockwise if a < 0).

It was established in [DIT11a, Lemma 6] that integral over CQ of an SL2(Z)-invariant and
continuous function is class invariant and independent of z ∈ SQ.

If d is a perfect square, then Γ̄Q is trivial and CQ = Γ̄Q \ SQ = SQ joining two roots of

Q(z, 1) = 0 in P1(Q). Assume the orientation on SQ as defined above. In this case when

a = 0, SQ turns out to be the vertical line Re(z) = − c
b . We orient this line downward

(respectively, upward if we assume the orientation on SQ to be clockwise if a > 0, and

counterclockwise if a < 0)

2.0.5 Niebur Poincaré series

For m ∈ Z and s ∈ C, we put

ϕm,s(y) =

2π|m|1/2y1/2Is− 1
2
(2π|m|y), if m ̸= 0,

ys if m = 0,
(2.15)

where Iν is the Bessel function of the first kind [MOS66, Chapter 3]. The Niebur Poincaré

series [Nie73] is defined for Re(s) > 1

Gm(z, s) := Gm(z, ϕm,s) =
∑

A∈Γ∞\Γ̄

e(m Re(Az))ϕm,s(Im(Az)), (2.16)

where Γ∞ is the group of translations of Γ̄. Gm(z, s) converges uniformly on compacta

and defines a smooth Γ̄ invariant function on H. Here G0(z, s) is the usual Eisenstein

series. For m ̸= 0, each Gm(z, s) has an analytic continuation to Re(s) > 1/2 ([JKK14, p.

98] ) and they satisfy

∆0Gm(z, s) = (s− s2)Gm(z, s).

Thus we obtain an infinite class of members Gm(z, 1) ∈ H !
0.
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Chapter 3

On interpretation of Fourier

coefficients of Zagier type lifts

In this chapter, we prove Theorem 4 and Theorem 5 from the Section 1.0.1 of the

Introduction. The material in this chapter along with Theorem 4 and Theorem 5 appear

in the paper [Kal24].

3.0.1 Outline of the Chapter

The Chapter is organized as follows. We define the notation utilized in this Chapter in

the Section 3.1. In Subsection 3.1.1, we discuss the notion of weak Maass forms and

their Fourier expansion along with differential operators related to weak Maass forms.

The construction of Maass Poincaré series and their Fourier expansion is explained in

Subsection 3.1.2. Moreover, Subsection 3.1.3 discusses the setup of binary quadratic forms

and their genus characters. Moving on to the Subsection 3.1.4, we discuss modified traces

of Niebur Poincaré series and compute their relation with the Kloosterman sums. Lastly

in Section 3.2 and 3.3 we prove Theorems 4, 5.

3.0.2 Brief outline of the proofs

Here we discuss the main ideas used in the proof of theorems 4 and 5. In this chapter,

following [BGK14], we define themodified trace at square discriminants for Maass-Poincaré

series of negative weights by applying the Maass raising operator R2−2κ (refer to (2.7) for

the definition). From (1.17), it follows that defining the modified trace of Niebur Poincaré

series at square discriminants suffices. Let d, δ be fundamental discriminants satisfying

dδ > 0. When dδ is not a perfect square, the twisted trace (depending on d, δ) of Niebur

Poincaré series is essentially the sum of cycle integrals of Niebur Poincaré series over

certain (finite length) geodesics associated with binary quadratic forms of the discriminant

dδ. However, when dδ is a perfect square, the same definition doesn’t work due to the

computation of cycle integrals of Niebur Poincaré series along infinite geodesics and the

corresponding cycle integrals diverge. Therefore, one needs a regularization to define traces

in the case dδ is a perfect square. Andersen [And15] and Bruinier-Funke-Imamoğlu [BFI15]

independently address this issue using certain regularizations. We follow the approach of

Andersen [And15] to modify the Poincaré series, which we call modified Niebur Poincaré

series (see (3.10) for the definition), so the corresponding cycle integrals converge. We

note that dδ > 0 being a square constitutes two cases of both discriminants being positive

35
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or both discriminants being negative. We dealt both cases differently, since the twisted

traces of modified Niebur Poincaré series turn out to be zero when both discriminants

are negative, due to the genus character involved in the definition (see (3.12) for the

definition). More precisely, when both discriminants are negative, the definition involves

cycle integrals of derivative of modified Niebur Poincaré series, which we follow from the

ideas given in a recent article of Andersen [And22] and Duke-Imamoḡlu-Tóth [DIT16a].

Traces of derivative of Poincaré series were first considered in [DIT16a] to prove extension

and refinement of the Katok-Sarnak formula. Interestingly, thesemodified Niebur Poincaré

series are no longer modular objects but make cycle integrals in both the cases class

invariant (see subsection 3.1.4). Hence, the definition of trace is well defined.

The main step in the proof of theorems 4 and 5 is Proposition 2, which computes these

modified traces of Niebur Poincaré series into a sum of Kloosterman sums. The Proposition

2 is an analogue of [DIT16a, Proposition 5] in the case when the product of discriminants

is a perfect square. Using various identities of Kloosterman sums, these traces can be given

in terms of a linear combination of Fourier coefficients of the holomorphic part of certain

harmonic weak Maass forms of half-integral weights (see Lemmas 1, 2). This helps us to

prove Theorem 4 and 5 by utilizing techniques and ideas from [And15, And22, DIT16a,

JKK16b].

3.1 Notations and Preliminaries

For a fundamental discriminant d, we denote L-series associated to the Dirichlet character(
d
·
)
by 1

Ld(s) :=

∞∑
n=1

(
d

n

)
n−s, (3.1)

which converges absolutely for Re(s) > 1 and has meromorphic continuation to C.

3.1.1 Weak Maass forms

In this section, we recall the definitions and properties of weak Maass forms (see Section

2.0.1). Let Γ be as in (2.1) and Γ̃ = PSL2(Z). Recall that, a weak Maass form of weight κ

and eigenvalue λ ∈ C, is a smooth function f : H → C that satisfies ∆κf = λf , f |κ A = f

for all A ∈ Γ, and exhibits at most linear exponential growth at every cusp of Γ. f is

categorized as a harmonic weak Maass form if λ = 0 and if f is holomorphic in H with

poles possibly located at cusps, it is classified as a weakly holomorphic modular form. We

denote H !
κ and M !

κ as the spaces of harmonic weak Maass forms and weakly holomorphic

modular forms for Γ respectively. Recall the differential operator defined in Section 2.0.1

ξκ = 2iyκ
∂

∂z
.

1Back to Theorem 4 and Theorem 5.
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Bruinier and Funke investigated this operator in [BF04] and established that ξκ forms a

surjective mapping from H !
κ onto M !

2−κ with the kernel M !
κ [BF04, Proposition 3.2 and

Theorem 3.7]. We define H+
κ be the subspace of H !

κ consisting of those harmonic weak

Maass forms which mapped under ξκ to S2−κ, the space of cusp forms of weight 2− κ for

Γ. Each f ∈ H !
κ with κ ̸= 1 has a Fourier expansion [BFOR17, Lemma 4.3] at infinity of

the shape

f(z) =
∑

n≫−∞
c+f (n)q

n + c−f (0)y
1−κ +

∑
n≪∞
n̸=0

c−f (n)Γ(1− κ,−4πny)qn,

where Γ(s, t):=
∫∞
t xs−1e−x dx is the incomplete Gamma function. We call f+(z) :=∑

n≫−∞ c+f (n)q
n, the holomorphic part of f , and f− := f − f+, the non-holomorphic

part of f . Recall the Maass Raising operator of weight κ as defined in (2.7) by

Rκ := 2i
∂

∂z
+
κ

y
.

If f is a weak Maass form with eigenvalue λ, then Rκ(f) is a weight κ + 2 weak Maass

form with eigenvalue λ + κ under ∆κ+2 [BFOR17, Lemma 5.2]. We define for positive

integer n, Rn
κ := Rκ+2(n−1) ◦ . . . ◦Rκ+2 ◦Rκ and set R0

κ be the identity operator.

3.1.2 Poincaré series

Within this subsection, we will discuss a family of Poincaré series using M−Whittaker

functions and describe their Fourier expansion. IfMν,µ is the usualM−Whittaker function

(see [BO07, p. 595]), let for fixed s ∈ C and m ∈ Z,

Mm,κ(y, s) :=

Γ(2s)−1(4π|m|y)−
κ
2Mκ

2
sgn(m),s− 1

2
(4π|m|y) if m ̸= 0,

ys−
κ
2 if m = 0.

(3.2)

Let us denote ϕm,κ(z; s) := Mm,κ(y, s)e(mx), and let Γ∞ :=

{
±

(
1 n

0 1

)
: n ∈ Z

}
denotes the translations in SL2(Z). If prκ represents Kohnen’s orthogonal projection

weight κ operator [Koh80] (see also [BFOR17, Eq. 6.12, p. 92]), the family of

Maass-Poincaré series defined by

Pm,κ(s; z) :=


∑

A∈Γ∞\Γ
ϕm,κ(z; s) |κ A(z) if κ ∈ Z,

prκ

( ∑
A∈Γ∞\Γ

ϕm,κ(z; s) |κ A(z)

)
if κ ∈ 1

2Z \ Z,
(3.3)

converges absolutely and uniformly on compacta for Re(s) > 1, and satisfies [JKK16b,

eq. 2.11] ∆κPm,κ(s; z) =
(
s− κ

2

) (
1− κ

2 − s
)
Pm,κ(s; z). Hence Pm,κ(s; z) is a harmonic

function for s = κ/2 or 1 − κ/2. Furthermore, when κ ≤ 1/2, Pm,κ(s; z) is holomorphic

near s = 1 − κ/2, and when κ ≥ 3/2, it is holomorphic near s = κ/2 [JKK16b, Remark
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2.1 (1),(2)]. Therefore, for harmonicity, Pm,κ(1 − κ/2; z) or Pm,κ(κ/2; z) is chosen based

on the value of κ.

Recall that (see equation 2.16) Niebur Poincaré series [Nie73] defined for m ∈ Z and

Re(s) > 1 by (see Section 2.16)

Gm(z, s) :=
∑

A∈Γ∞\Γ̃

ϕm,s(Im(Az))e(mRe(Az)), (3.4)

where

ϕm,s(y) :=

2π|m| 12 y 1
2 Is− 1

2
(2π|m|y), if m ̸= 0,

ys if m = 0,
(3.5)

and I is the I-Bessel function [MOS66, Chapter 3]. For m ̸= 0, using the relation (see

13.18.8 of [ODL+22]) between M−Whittaker function and I−Bessel function along with

Legendre’s Duplication formula, we obtain ϕm,0(z; s) = Γ(s)−1ϕm,s(y)e(mx). Thus the

above family of Maass-Poincaré series and Niebur Poincaré series satisfies the equation

Pm,0(s; z) = Γ(s)−1Gm(z, s) (3.6)

We now discuss the half-integral weight Kloosterman sum which is an essential component

in the Fourier expansion of Poincaré series Pm,κ(s; z). For integers m,n and c with c > 0,

the Kloosterman sum is defined by

Kκ(m,n; c) :=


∑

l(mod c )⋆
e2πi(

ml+ml̄
c

) if κ ∈ Z,∑
l(mod c )⋆

( cl )ϵ
2κ
l e

2πi(ml+ml̄
c

) if κ ∈ 1
2Z \ Z (and 4 | c),

(3.7)

where l(mod c )⋆ means that the sum varies over the primitive residue classes modulo

c and l̄ is such that ll̄ ≡ 1(mod c). We set the notation K+(m,n; c) for the modified

Kloosterman sum and it is defined by

K+(m,n; 4c) = (1− i)

(
1 +

(
4

c

))
K1/2(m,n; 4c). (3.8)

The Fourier expansion of Pm,κ(s; z) is given in terms of modified Whittaker functions

Mm,κ(y, s) (see eq. 3.2) and Wm,κ(y, s) which is defined by

Wm,κ(y, s) :=

Γ(s+ κ
2 sgn(m))−1|m|

κ
2
−1(4π|m|y)−

κ
2Wκ

2
sgn(m),s− 1

2
(4π|m|y) if m ̸= 0,

(4π)1−κy1−s−κ/2

(2s−1)Γ(s−κ/2)Γ(s+κ/2) if m = 0,

where Wν,µ is the usual W -Whittaker function. We are now going to state the Fourier

expansion of Pm,κ(s; z).

Proposition 1. [JKK16b, Proposition 2.2] Suppose κ ∈ 1
2Z \ Z and m ∈ Z satisfy
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(−1)κ−
1
2m ≡ 0, 1(mod 4). For Re(s) > 1, Pm,κ(s; z) has the Fourier expansion

Pm,κ(s; z) = Mm,κ(y, s)e
2πimx +

∑
(−1)κ−

1
2 n≡0,1 (mod 4)

bm,κ(n, s)Wn,κ(y, s)e
2πinx,

where bm,κ(n, s) =

2πi−κ
∑
c>0

(
1 +

(
4

c

))
Kκ(m,n; 4c)

4c
×


|mn| 1−κ

2 .I2s−1(
π
√

|mn|
c ) if mn < 0,

(mn)
1−κ
2 .J2s−1(

π
√

|mn|
c ) if mn > 0,

2κ−1πs+κ
2 −1|m+ n|s−κ

2 (4c)1−2s if mn = 0,m+ n ̸= 0,

and J is the J-Bessel function [MOS66, Chapter 3].

3.1.3 Genus characters, Binary quadratic forms and associated

geodesics

Within this subsection, we provide an overview of genus characters, binary quadratic forms

and geodesics associated with them in the upper half-plane H, discussed in Section 2.0.2,

2.0.3 and 2.0.4 respectively. Let d be a non-zero discriminant and Qd denotes the set of

integral binary quadratic forms Q(X,Y ) = aX2+ bXY + cY 2 = [a, b, c] with discriminant

d = b2 − 4ac, which are positive definite if a > 0. Further, denote Q+
d be the subset

of Qd consisting of quadratic forms Q = [a, b, c] with a positive. The modular group

Γ̃ = PSL2(Z) acts on Q(x, y) ∈ Qd by the usual action

gQ = Qg−1 = Q(δx− βy,−γx+ αy) for g =

(
α β

γ δ

)
∈ PSL2(Z),

and results in finitely many classes Γ̃ \ Qd.

For Q = [a, b, c] ∈ QD with D > 0, we have an associated geodesic in H defined by

SQ := {τ = u+iv ∈ H : a|τ |2+bu+c = 0}. If a = 0 then SQ is a straight line Re(τ) = −c/b
equipped with upward orientation. However, in the case, a ̸= 0, SQ is a semi-circle

orthogonal to the real axis which is oriented clockwise if a > 0 and counter-clockwise if

a < 0. The stabilizer Γ̃Q of Q ∈ QD in Γ̃, is infinite cyclic and trivial, corresponding to

D > 0 is non-square and perfect square, respectively. Furthermore, it can also be checked

that SQ is the geodesic in H that connects two roots of Q(X, 1). We define CQ := Γ̃Q \SQ
as the associated geodesic in the modular curve Γ̃ \ H. The cycle CQ is an arc on the

geodesic SQ of finite length if D is non-square. In the case where D is a perfect square,

the stabilizer Γ̃Q of Q ∈ QD is trivial and hence CQ turns out to be SQ, which is a geodesic

of infinite length joining two roots of Q(X, 1) in P1(Q).

Suppose that D is a fundamental discriminant and d is a discriminant. For Q(X,Y ) =
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aX2 + bXY + cY 2 ∈ QdD we recall (refer to (2.12)) the generalized genus character by

χD(Q) :=


(
D

n

)
if (a, b, c,D) = 1 and Q represents n with (n,D) = 1,

0 if (a, b, c,D) = 1.

It satisfies the identity

χD(−Q) = sgn(D)χD(Q) (3.9)

3.1.4 Traces of cycle integrals

This subsection delves into twisted traces of Niebur Poincaré series Gm(z, s) defined in

(3.4). Assume d, δ be discriminants such that d is fundamental and dδ > 0. We will

discuss the twisted traces in the cases dδ is a perfect square. In this case, CQ turns out

to be the geodesic SQ with endpoints being cusps of SL2(Z). Moreover, for every cusp

α = p/q ∈ P1(Q), there exists Aα := ± ( ⋆ ⋆
−q p ) ∈ Γ̃ which sends α to the cusp ∞. Due

to the exponential growth of I-Bessel function towards ∞, it can be established using

SL2(Z)-invariance of Gm(z, s) that cycle integrals
∫
CQ

Gm(z, s)y−1|dz| doesn’t converge.

We address this issue by defining the modified Niebur Poincaré series. Assume Q ∈ Qdδ,

and b1, b2 be the rational projective roots of Q(X, 1). The modified Niebur Poincaré series

is defined by

Gm,Q(z, s) :=
∑

A∈Γ∞\Γ̃,A ̸=Ab1
,Ab2

ϕm,s(Im(Az))e(mRe(Az)) (3.10)

Additionally, for any A ∈ SL2(Z) we have

Gm,AQ(Az, s) = Gm,Q(z, s). (3.11)

The modified version of Niebur Poincaré series Gm,Q(z, s) and its cycle integrals were

considered by Andersen in [And15, And22]. Now, if we define the traces of Niebur Poincaré

series by sum of χd(Q)
∫
CQ

Gm,Q(z, s)y
−1|dz| running over classes in Q ∈ Γ̃ \ Qδd, then it

follows from [KK24, Proposition 3.2] that, for d < 0 and δ < 0, the above defined trace

turns out to be zero. Consequently, in order to provide a suitable definition of traces in

the case d < 0 and δ < 0, we define it as the sum of the cycle integrals of ∂
∂zGm,Q(z, s).

For both discriminants less than zero, this idea was used in [And22, DIT16a] to prove the

extension of the Katok-Sarnak formula. The Fourier expansion of Gm(z, s) and (3.11) can

be used to show that the cycle integrals
∫
CQ

Gm,Q(z, s)y
−1|dz| and

∫
CQ

i ∂
∂zGm,Q(z, s)dz

are convergent and class invariant. Hence we define the modified twisted traces of Niebur



Chapter 3. On interpretation of Fourier coefficients 41

Poincaré series by2

T̃r□δ,d(Gm(z, s)) :=
Γ(s)

2sΓ( s2 + 1
4 − sgn d1

4 )Γ( s2 + 1
4 − sgn d2

4 )

∑
Q∈Γ̃\Qδd

χd(Q)C□(Gm(z, s) ;Q),

(3.12)

where C□(Gm(z, s) : Q) :=
∫
CQ

Gm,Q(z, s)y
−1|dz| if d, δ > 0 and C□(Gm(z, s) : Q) :=∫

CQ
i ∂
∂zGm,Q(z, s)dz if d, δ < 0. We state the following proposition, which establishes that

the traces of Poincaré series defined above in the case dδ = □, can be interpreted in terms

of the sum of Kloosterman sums and the J-Bessel function.

Proposition 2. Let δ be a discriminant and d be a fundamental discriminant such that

dδ = □. Then for m ∈ Z and Re(s) > 1, we have T̃r□δ,d(Gm(z, s)) equals


π

2
√
2
|m| 12 (dδ) 1

4

∑
n|m

χd(n)n
− 1

2

∑
c>0

c−1K+
(
δ,
(
m
n

)2
d; 4c

)
Js− 1

2

(
π
c

∣∣m
n

∣∣√dδ) if m ̸= 0,

2−s−2(dδ)s/2Ld(s)
∑
c≥1

K+(δ,0;4c)

cs+
1
2

if m = 0.

Proof. We will address the cases in which d, δ both greater than 0 or both less than 0

separately.

Case: d, δ > 0. We can write following the steps in the proof of [And15, Proposition 6]

that

T̃r□δ,d(Gm(z, s)) :=
∑

Q∈Γ̃\Qδd

χd(Q)

∫
CQ

Gm,Q(z, s)
|dz|
y

=
∑

Q∈Γ∞\Qdδ

Q̸=[0,±b,⋆]

χd(Q)

∫
CQ

e(mRe(z))ϕm,s(Im(z))
|dz|
y

·

We now carry out the method given in [DIT11a, Lemma 7 and 8]. The the sum in r.h.s

above indicates that we have eliminated those classes with a = 0. Now, we parametrize

each cycle CQ with Q = [a, b, c] by θ ∈ (0, π) via z = RezQ − e−iθImzQ if a > 0 and

z = RezQ + eiθImzQ if a < 0. Here zQ := − b
2a + i

√
dδ

2|a| is the apex of the semicircle SQ.

We determine using this parametrization that y−1|dz| = dθ
sinθ and further utilizing (3.9) to

deduce

T̃r□δ,d(Gm(z, s)) = 2
∑

Q∈Γ∞\Q+
dδ

χd(Q)

∫ π

0

e

(
−mb
2a

)
cos

(
cos θ

πm
√
dδ

a

)
ϕm,s

(
sin θ

√
dδ

2|a|

)
dθ

sin θ
.

We will proceed by using m ̸= 0. The identity for m = 0 can be proved analogously by

using [ODL+22, 5.12.6]. By the definition of ϕm,s(y) and [DIT11a, Lemma 9] we get

T̃r□δ,d(Gm(z, s)) =
√
2π(dδ)

1
4 |m| 12

∑
Q∈Γ∞\Q+

dδ

χd(Q)√
a
e

(
−mb
2a

)
Js− 1

2

(
π|m|

√
dδ

a

)
· (3.13)

Since we have a bijection between the sets Γ∞ \ Q+
dδ and {(a, b) : a ∈ N and 0 ≤ b < 2a}

2Back to Theorem 4 and Theorem 5
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(see [And15, p.452]), above becomes

T̃r□δ,d(Gm(z, s)) =
√
2π(dδ)

1
4 |m| 12

∞∑
a=1

a−
1
2 Js− 1

2

(
πm

√
dδ

a

) ∑
b (mod 2a),

(b2−dδ)
4a ∈Z

χd

(
[a, b,

b2 − dδ

4a
]

)
e

(
−mb
2a

)
.

Denote S := {b(mod 4a) | b2−dδ
4a ∈ Z} and Sm(δ, d, 4a) :=

∑
b∈S

χd

([
a, b, b

2−dδ
4a

])
e
(
mb
2a

)
,

then we have 1
2Sm(δ, d, 4a) = 1

2S−m(δ, d, 4a) =
∑

b (mod2a),
(b2−dδ)

4a
∈Z

χd

(
[a, b, b

2−dδ
4a ]

)
e
(
mb
2a

)
.

Thus, it results from above

T̃r□δ,d(Gm(z, s)) =
π√
2
(dδ)

1
4 |m| 12

∞∑
c=1

Sm(δ, d, 4c)

c
1
2

Js− 1
2

(
π|m|

√
dD

a

)
.

Now, using [DIT11a, Proposition 3] we deduce the required identity.

Case: d, δ < 0. For m ∈ Z, similar steps from the proof of [And22, Proposition 3.2] may

be used to write∑
Q∈Γ̃\Qδd

χd(Q)

∫
CQ

i
∂

∂z
Gm,Q(z, s)dz =

1

2

∑
Q∈Γ∞\Qdδ

Q=[a,b,c],a ̸=0

χd(Q)

∫
CQ

e(mx)ψ2,m(y, s)dz ,

where ψ2,m(y, s) = sy−1 Γ(s)
Γ(2s)Msgn(m),s− 1

2
(4π|m|v). Using (3.9), we can write the above

equation as

∑
Q∈Γ̃\Qδd

χd(Q)

∫
CQ

i
∂

∂z
Gm,Q(z, s)dz =

∑
Q∈Γ∞\Qdδ

Q=[a,b,c],a>0

χd(Q)

∫
CQ

e(mx)ψ2,m(y, s)dz ·

Now, we use the parametrization z = RezQ − e−iθImzQ of the cycle CQ with Q = [a, b, c]

and a > 0, to get

∑
Q∈Γ̃\Qδd

χd(Q)

∫
CQ

i
∂

∂z
Gm,Q(z, s)dz =

∑
Q∈Γ∞\Q+

dδ

Q=[a,b,c]

χd(Q)e

(
−mb

2a

)
Υm

(√
dδ

2a

)
,

where for any t > 0, Υm(t) := it
π∫
0

e(−mt cos θ)ψ2,m(t sin θ, s)eiθdθ. For m ̸= 0,

calculating Υm(t) using [DIT16a, Lemma 7], we obtain

T̃r□δ,d(Gm(z, s)) =
√
2π(dδ)

1
4 |m| 12

∑
Q∈Γ∞\Q+

dδ

χd(Q)√
a
e

(
−mb

2a

)
Js− 1

2

(
π|m|

√
dδ

a

)
,

whereas for m = 0, Υ0(t) = 2
√
π(
√
dδ/2a)s(Γ( s+1

2 )/Γ( s2)) by [MOS66, p.8]. Following the

similar steps after the equation (3.13) of the above proof for the case d, δ > 0 (analogously

for m=0), we get the desired equality.
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3.2 Proof of Theorem 4

The following lemma states that if (−1)κd > 0, the traces of cycle integrals of modified

Niebur Poincaré series can be derived from the appropriate linear combination of

coefficients of the holomorphic part of Pm2

n2 |d|,κ+ 1
2

.

Lemma 1. Let κ > 1 be an integer and d be a fundamental discriminant that satisfies

(−1)κd > 0. For Re(s) > 1 and m ̸= 0, we have

T̃r□d,d(G−m(z, s)) = iκ
′

|d|κ2
∑
n|m

(
d

n

)
(m/n)κbm2

n2 |d|,κ+ 1
2

(
|d|, s

2
+

1

4

)

and

T̃r□d,d(G0(z, s)) = iκ
′

2s−κ−1π− s+κ+1
2 |d|

s+κ
2 Ld(s)b0,κ+ 1

2

(
|d|, s

2
+

1

4

)
,

where κ
′
= κ if d > 0 and κ

′
= κ− 3 otherwise.

Proof. The proof follows from Proposition 2 and similar steps as in [JKK16b, Theorem

4.1]

Recall the definition of Z+
d from (1.18) and define for convenience Zd,m :=

Z+
d (P−m,2−2κ(κ; z)). Let c+Zd,m

(|d|) be the |d|-th Fourier coefficient of the holomorphic

part of Zd,m. Using [JKK13, eq. 2.20] and Proposition 1,

c+Zd,m
(|d|) =


|d|κ−1/2Γ(κ+ 1

2 )
−1
∑
n|m

(
d
n

)
(m/n)κ bm2

n2 |d|,κ+ 1
2

(
|d|, κ2 + 1

4

)
if m ̸= 0, κ ̸= 2, 3, 4, 5, 7,

|d|κ−1/2Γ(κ+ 1
2 )

−1
∑
n|m

(
d
n

)
(m/n)κ ∂

∂sbm2

n2 |d|,κ+ 1
2

(|d|, s) |s=κ
2 +

1
4

if m ̸= 0, κ = 2, 3, 4, 5, 7,

|d|κ−1/2Γ(κ+ 1
2 )

−1b0,κ+ 1
2

(
|d|, κ2 + 1

4

)
if m = 0.

Now the proof of Theorem 4 is a consequence of the above and Lemma 1, along with

using (1.17).

3.3 Proof of Theorem 5

As in the proof of Theorem 4, we prove the following lemma which establishes the

equality between traces of modified Niebur Poincaré series and certain linear combination

of coefficients of the holomorphic part of Pm2

n2 |d|, 3
2
−κ

under the condition (−1)κD < 0.

Lemma 2. Let κ > 1 be an integer and D be a fundamental discriminant that satisfies

(−1)κD < 0. For Re(s) > 1 and m ̸= 0 we have

T̃r□D,D(G−m(z, s)) = i−2−κ
′

|D|1−κ
∑
n|m

(
D

n

)
(m/n)1−κbm2

n2 |D|, 32−κ

(
|D|, s

2
+

1

4

)

and

T̃r□D,D(G0(z, s)) = i−2−κ
′

2s+κ−2π− s−κ+2
2 |D|

s−κ+1
2 LD(s)b0, 32−κ

(
|D|, s

2
+

1

4

)
,

where κ
′
= κ if D > 0 and κ

′
= κ− 3 otherwise.
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Proof. The proof follows from Proposition 2 and similar steps as in [JKK16b, Theorem

4.2]

Recall the definition of Z+
D from (1.19) and denote ZD,m := Z+

D(P−m,2−2κ(κ; z)). Let

c+ZD,m
(|D|) be the |D|-th Fourier coefficient of the holomorphic part of ZD,m. Using[JKK13,

eq. 2.19] and Proposition 1 we have,

c+ZD,m
(|D|) =


|D| 12−κ

∑
n|m

(
D
n

)
(m/n)1−κ bm2

n2 |D|, 32−κ

(
|D|, κ2 + 1

4

)
if m ̸= 0

|D| 12−κb0, 32−κ

(
|D|, κ2 + 1

4

)
if m = 0.

Now the proof of Theorem 5 follows from above and Lemma 2 along with using (1.17)



Chapter 4

Traces of Poincaré series at

square discriminants and Fourier

coefficients of mock modular forms

This chapter contains proofs for Theorem 1, Corollary 1 and Theorem 13 as introduced in

Sections 1.0.1 and 1.0.2, respectively. The material in this chapter along with Theorem 1,

Corollary 1 and Theorem 13 are joint work with Balesh Kumar and appear in the paper

[KK24].

Outline of the chapter

The structure of the Chapter is arranged as follows. In the next section, we define the

notations, discuss the definition and properties related to harmonic Maass forms with

examples such as Niebur Poincaré series. We also discuss the regularized inner product,

results on Maass-Poincaré series, binary quadratic forms and the genus characters in this

section. In Section 4.2, the notion of modified Poincaré series along with the related results

are presented which pave the way to define modified trace. We also prove a lemma in this

section which is used in the proof of Theorem 1. Then in subsequent sections, we prove

Theorem 1, Theorem 13 and Corollary 1.

4.1 Notations and Preliminaries

Let Γ be as in (2.1), Γ̄ := PSL2(Z). Recall weight k hyperbolic Laplacian operator on H
defined in (2.3). Moreover recall that the operator ∆k can also be expressed as

∆k = −ξ2−k ◦ ξk, (4.1)

where ξk := 2iyk ∂̄
∂z̄ is the differential operator.

4.1.1 Harmonic weak Maass form

We recall the definition of harmonic weak Maass form from Section 2.0.1. Let f be a

smooth function on H. Then f is called a harmonic weak Maass form of weight k for Γ if

the following holds.

1. f |kA = f , for all A ∈ Γ, where |k defined in 2.2.

45



46 Chapter 4. Traces of Poincaré series at square discriminants

2. ∆k(f) = 0,

3. f has at most linear exponential growth at all cusps.

The space of harmonic weak Maass form of weight k for Γ is denoted by H !
k. The Fourier

expansion of f ∈ H !
k with k ̸= 1 (see [BDE17, p. 7427]) is given by

f(z) =
∑
n∈Z

n≫−∞

c+f (n)q
n + c−f (0)y

1−k +
∑

n∈Z\{0}
n≪∞

c−f (n)Wk(2πny)q
n. (4.2)

Here the notation
∑

n≫−∞ is used to mean
∑∞

n=αf
for some αf ∈ Z. The notation

∑
n≪∞

is defined analogously. From [BDE17, Lemma 2.4 and Remark], we have

Wk(2πny) =

Γ(1− k,−4πny) + (−1)1−kπi
Γ(k) if n > 0,

Γ(1− k,−4πny) if n < 0,

where Γ(s, z) is the incomplete gamma function.

We call f+(z) :=
∑

n≫−∞ c+f (n)q
n, the holomorphic part and f− = f − f+, the

non-holomorphic part of f . The functions f+ and f− play an important role in

understanding the structure of the modular completion. Zagier [Zag09] introduced the

notion of mock modular form. A mock modular form of weight k for Γ is the holomorphic

part f+ of f ∈ H !
k. It turns out that ξk(f) is a weakly holomorphic modular form of weight

2− k for Γ and we call ξk(f) the shadow of the mock modular form f+. Furthermore, for

any f ∈ H !
k with k ̸= 1, it follows from [BDE17, Lemma 2.2] that

ξk(f) = c−f (0)(1− k)−
∑

n∈Z\{0}
n≫−∞

c−f (−n)(4πn)
1−kqn. (4.3)

We consider an infinite family of harmonic weak Maass form of weight 0 for Γ̄ := PSL2(Z).
For m ∈ Z and s ∈ C, we put

ϕm,s(y) =

2π|m|1/2y1/2Is− 1
2
(2π|m|y), if m ̸= 0,

ys if m = 0,
(4.4)

where Iν is the Bessel function of the first kind [MOS66, Chapter 3]. Recall that (refer to

eq. 2.16) Niebur Poincaré series [Nie73] is defined for Re(s) > 1

Gm(z, s) := Gm(z, ϕm,s) =
∑

A∈Γ∞\Γ̄

e(m Re(Az))ϕm,s(Im(Az)), (4.5)

where Γ∞ is the group of translations of Γ̄. Here G0(z, s) is the usual Eisentein series.

For m ̸= 0, each Gm(z, s) has an analytic continuation to Re(s) > 1/2 [JKK14, p.98] and

they satisfy

∆0Gm(z, s) = (s− s2)Gm(z, s).
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4.1.2 Regularized inner product

Bringmann et. al. [BDE17, Section 3] developed a general regularization for Petersson

inner products of weakly holomorphic modular forms. Here we restrict ourselves to k ∈
{0, 1/2} because in our case, either both the forms f, g lies in M !

1/2 or both lies in M !
0.

For f, g ∈M !
1/2 (resp.M

!
0), there exists G ∈ H !

3/2(resp. H
!
2) such that ξ2−k(G) = g. Such a

G exists due to the surjectivity of ξ-operator [BF04, Theorem 3.7]. Then the regularized

inner product of f and g can be defined in terms of Fourier coefficients of f and G using

[BDE17, Example 1 and 3] and [BDE17, Theorem 4.1]. More precisely, we have 1

⟨f, g⟩reg = ρk
∑
n∈Z

cf (n) · c+G(−n), (4.6)

where ρk = 1/2 if k = 1/2 and ρk = 1 if k = 0.

4.1.3 Maass-Poincaré series

Denote e(z) := e2πiz, for z ∈ C. For integers m,n and c with c ≡ 0(mod 4) and k ∈ 1
2 +Z,

define Kloosterman sum

Kk(m,n; c) :=
∑

l (mod c)⋆

(c
l

)2k
ϵ2kl e

(
ml̄ + nl

c

)

Here l (mod c)⋆ means that the sum varies over the primitive residue classes modulo c

and ll̄ ≡ 1(mod c). Let m be an integer with (−1)k−
1
2m ≡ 0, 1(mod 4). Then for

Re(s) > 1, Jeon et. al. [JKK13, Theorem 4.4] studied Fourier expansion of Maass-Poincaré

series F+
m,k,N (z, s) of weight k, level N satisfying the Kohnen’s plus space condition. In

particular, the family of Maass-Poincaré series of weight 3
2 on Γ0(4) satisfying the Kohnen’s

plus space condition has the Fourier expansion

F+
m,3/2,4(z, s) = F+

m,3/2(z, s) = Mm(y, s)e(mx) +
∑

n≡0,3( 4 )

bm(n, s)Wn(y, s)e(nx),

where Mm(y, s) and Wn(y, s) are spherical Whittaker functions defined in terms of

Whittaker functions Mµ,ν(y) and Wµ,ν(y) (see [JKK13, Section 2]). For positive integers

m and n, in view of [JKK14, p. 102], we have

bm(n, s) = −
√
2π

∑
0<c≡0 (mod 4)

K+(−m,−n; c)
c

|mn|−
1
4J2s−1

(
4π
√

|mn|
c

)
(4.7)

Here J2s−1 is the J-Bessel function and K+(−m,−n; c) is the modified Kloosterman sum

defined by

K+(m,n; c) := (1− i)

(
1 +

(
4

c/4

))
K 1

2
(m,n; c).

1Back to Theorem 13.
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We need the following proposition to prove Theorem 1 and 13. Denote F+
0 (z, 3/4) =

−12H(z), where H(z) is Zagier’s Eisenstein series of weight 3/2 defined in [Zag75b].

Proposition 3. Let d be a negative discriminant. Then the mock modular form gd(z) of

weight 3/2 for Γ0(4) in (1.7), is the holomorphic part of a harmonic weak Maass form

H|d|,3/2(z) := 2
√
π|d|

[
∂

∂s
F+
|d|,3/2(z, s)|s=3/4 − 8

√
π

|d|
H(|d|)F+

0 (z, 3/4)

]
.

More precisely, we have

H+
|d|,3/2(z) = −16πH(|d|)

+
∑
n>0

n≡0,3 (mod 4)

(
4
√

|d|n ∂
∂s
b|d| (n, s) |s= 3

4
+ 192πH(|d|)H(n)

)
qn.

Moreover we have

ξ 3
2
(H|d|,3/2(z)) = fd(z).

Proof. The proof follows from [JKK13, Proposition 5.2, Theorem 5.3] and [JKK16a].

4.1.4 Binary quadratic forms and the Genus characters

Here we recall the theory of binary quadratic forms, genus characters, and Heegner

geodesics discussed in Section 2.0.2, 2.0.3 and 2.0.4. Let Qd be the set of integral binary

quadratic forms Q(x, y) = [a, b, c](x, y) = ax2 + bxy + cy2 of discriminant d = b2 − 4ac.

We denote by Q+
d the subset of Qd consisting of quadratic forms Q = [a, b, c] with a > 0.

The modular group Γ̄ acts on the set Qd. For A = ±
(

α β
γ δ

)
∈ Γ̄ and Q ∈ Qd, we have

A ◦Q = Q ◦A−1 = Q(δx− βy,−γx+ αy).

If zQ is a root of Q then AzQ is a root of A ◦Q and hence this action is compatible with

the action of linear fractional transformation Az = αz+β
γz+δ .

Let D be a fundamental discriminant and Q = [a, b, c] ∈ QdD. Then we recall generalized

genus character χD(Q) from Subsection 2.0.3.

We now recall Heegner geodesics corresponding to binary quadratic forms and fix

orientation for this chapter. Let d > 0 and Q = [a, b, c] ∈ Qd. Then the cycle SQ is

the curve in H defined by

a|z|2 + b Re z + c = 0.

If a = 0, then SQ is the vertical line Re z = −c/b oriented in the upward direction. If

a > 0, then SQ is a semicircle oriented in the counter clockwise direction, and clockwise

direction if a < 0. We put CQ := Γ̄Q\SQ, where Γ̄Q is the stabilizer of Q under the action

of Γ̄. If A ∈ Γ, then ASQ = SAQ. Define

dzQ :=

√
d dz

Q(z, 1)
,
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so that dzQ is invariant under the action of Γ, that is, if z′ = Az, for some A ∈ Γ, then

we have dz′AQ = dzQ.

4.2 Modified Poincaré series and Traces

For discriminants D < 0, d < 0 with dD ̸= □, Jeon, Kang, and Kim [JKK14, eq. (3.1)]

defined the modified trace of Poincaré series Gm(z, s), for m ∈ Z. Their definition of trace

does not cover the case dD = □. In this section, we address this case by considering

modified Poincaré series Gm,Q(z, s) considered in previous Chapter 3.

For dD = □, [And15, Lemma 5] gives a complete set of representatives for Γ̄\QdD given

by {Qa = [a, b, 0] : 0 ≤ a < b} where b ∈ N such that b =
√
dD. Now the roots of

Qa(x, y) = ax2 + bxy in P1(Q) correspond to the cusps 0 and β = − b′

a′ , where a
′
= a

(a,b)

and b
′
= b

(a,b) . Let

A0 =

(
0 −1

1 0

)
and Aβ =

(
∗ ∗
a′ b′

)
be the matrices that sends 0 and β to i∞. Recall the modified Niebur Poincaré series

defined in (3.10) of Chapter 3 by

Gm,Q(z, s) =
∑

A∈Γ∞\Γ̄
A ̸=A0,Aβ

e(m Re(Az))ϕm,s(Im(Az)), (4.8)

which satisfies

Gm,AQ(Az, s) = Gm,Q(z, s), (4.9)

for any A ∈ SL2(Z). We have the following proposition, which was used in the Section

1.0.1 of Introduction to establish that Trd,D(Gm(z, s)) defined in (1.9) is zero and we

require an alternate definition in the case d,D < 0.

Proposition 4. Let d,D be discriminants with D fundamental and dD = □ and let

Trd,D(Gm(z, s)) be as defined in (1.9). Then for m ∈ Z with m ̸= 0, we have

Trd,D(Gm(z, s))

=


1

π
√
dD

∑
Q∈Γ∞\Q+

dD

χD(Q)
∫
CQ

e(m Re(z))ϕm,s(Im(z))dzQ, if d,D > 0

0, if d,D < 0.

Proof. Following the steps in the proof of [And15, Proposition 6], we deduce that

Trd,D(Gm(z, s)) =
1

2π
√
dD

∑
Q∈Γ∞\QdD

Q ̸=[0,±b,∗]

χD(Q)

∫
CQ

e(m Re(z))ϕm,s(Im(z))dzQ.
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The above can be written as

2π
√
dDTrd,D(Gm(z, s)) =

∑
Q∈Γ∞\Q+

dD

χD(Q)

∫
CQ

e(m Re(z))ϕm,s(Im(z))dzQ

+
∑

Q∈Γ∞\Q+
dD

χD(−Q)

∫
C−Q

e(m Re(z))ϕm,s(Im(z))dz−Q .

Since the character χD satisfies χD(−Q) = sign(D)χD(Q), we see from above that the

proposition follows.

Next, we define the integral transform and prove a lemma that is needed while proving

Theorem 1. For m ∈ Z, define the integral transform [DIT11a, p. 967] for t > 0 by

Φm(t) :=

∫ π

0
cos(2πmt cos θ)ϕm,s(t sin θ)

dθ

sin θ
. (4.10)

It can be seen that the above integral converges absolutely and Φm(t) = Oϵ(t
1+ϵ). We

also define for t > 0

Ψm(t) :=

∫ π

0
sin(2πmt cos θ)ϕm,s(t sin θ)

dθ

sin θ
.

It follows that the above integral converges absolutely, and for m ̸= 0, it follows from the

following lemma that Ψm(t) = 0.

Lemma 3. For t > 0 and Re(s) > 0, we have∫ π

0
sin(t cos θ)Is− 1

2
(t sin θ)

dθ

(sin θ)
1
2

= 0

where Iν is the I-Bessel function.

Proof. We put µ = 0 in [DIT16a, Lemma 7] to get∫ π

0
eit cos θM0,s− 1

2
(2t sin θ)

dθ

(sin θ)
= G(s, 0)t

1
2Js− 1

2
(t), (4.11)

where Mµ,ν is the Whittaker function, Jν is the J-Bessel function and

G(s, 0) = (2π)
3
2
2−sΓ(2s)

Γ
(
s+1
2

)2 .
For y > 0, we have (see [DIT11a, p. 977, Appendix A])

Is− 1
2
(y) = 2−2s+ 1

2Γ

(
s+

1

2

)−1

y−1/2M0,s− 1
2
(2y).

Using the Legendre’s duplication formula

22s−1Γ(s)Γ(s+ 1/2) =
√
π Γ(2s) (4.12)
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for Re(s) > 0 in the above, we get

M0,s− 1
2
(2y) =

√
2π

Γ(2s)

Γ(s)
y1/2Is− 1

2
(y).

Thus using above in (4.11) and after simplifying, we get∫ π

0
cos(t cos θ)Is− 1

2
(t sin θ)

dθ

(sin θ)
1
2

+ i

∫ π

0
sin(t cos θ)Is− 1

2
(t sin θ)

dθ

(sin θ)
1
2

=
(2π)2−sΓ(s)

Γ
(
s+1
2

)2 Js− 1
2
(t).

We use [DIT11a, Lemma 9] in the above to deduce

i

∫ π

0
sin(t cos θ)Is− 1

2
(t sin θ)

dθ

(sin θ)
1
2

= Js− 1
2
(t)

[
(2π)2−sΓ(s)2 − 2s−1Γ

(
s
2

)2
Γ
(
s+1
2

)2
Γ
(
s+1
2

)2
Γ(s)

]
.

Now using the duplication formula (4.12), one can see that the r.h.s. of above equals 0.

Hence the lemma follows.

4.3 Proof of Theorem 1

Recall the definition of T̃rd,D(Gm(z, s)) from (1.11). Let m be a positive integer. Then

following the steps as in the proof of [DIT11a, Lemma 7] and using Lemma 3, we have

T̃rd,D(G−m(z, s)) =
1

π
√
dD

∑
Q∈Γ∞\Q+

dD

χD(Q)e(−m Re(zQ))Φ−m(Im(zQ)),

where Φm(·) is defined by (4.10) and for Q = [a, b, c] ∈ Q+
dD, zQ = −b

2a + i
√
dD
2a ∈ H is the

apex of the circle SQ. Now using [DIT11a, Lemma 9] we get

T̃rd,D(G−m(z, s)) =

1√
2
(dD)−

1
4
√
mB(s)

∑
Q∈Γ∞\Q+

dD
Q=[a,b,c]

χD(Q)√
a

e

(
mb

2a

)
Js− 1

2

(
πm

√
dD

a

)
,
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where B(s) := 2sΓ(s/2)2/Γ(s). Since the sets Γ∞\Q+
dD and {(a, b) : a ∈ N and 0 ≤ b <

2a} are in bijection (see [And15, p. 415]), the above becomes

T̃rd,D(G−m(z, s)) =

√
mB(s)√
2dD

×
∞∑
a=1

a−
1
2Js− 1

2

(
πm

√
dD

a

) ∑
b (mod 2a)
(b2−dD)

4a
∈Z

χD

([
a, b,

b2 − dD

4a

])
e

(
mb

2a

)
.

If we write

Sm(d,D, 4a) =
∑

b (mod 4a)
(b2−dD)

4a
∈Z

χD

([
a, b,

b2 − dD

4a

])
e

(
mb

2a

)
,

then we have 1
2Sm(d,D, 4a) =

∑
b(mod 2a)
(b2−dD)

4a
∈Z

χD

([
a, b,

b2 − dD

4a

])
e
(
mb
2a

)
. Thus we get from

above

T̃rd,D(G−m(z, s))B(s)−1 =
1

2
√
2
(dD)−

1
2
√
m

∞∑
c=1

Sm(d,D, 4c)

c
1
2

Js− 1
2

(
πm

√
dD

c

)
.

We use [DIT11a, Proposition 3] in the above to deduce

2π
√
dD

B(s)
T̃rd,D(G−m(z, s)) =

π
√
m

2
√
2
(dD)

1
4

∑
n|m

(
D

n

)
n−

1
2

×
∞∑
c=1

c−1K+

(
d,
m2

n2
D; 4c

)
Js− 1

2

(
πm

√
dD

nc

)
.

Now using (4.7) in the above, we get

2π
Γ(s)

2sΓ
(
s
2

)2 T̃rd,D(G−m(z, s)) = −
∑
n|m

∣∣∣m
n

∣∣∣ (D
n

)
b|d|

(
m2

n2
|D|, s

2
+

1

4

)
. (4.13)

It follows from [JKK13, Proposition 5.1] that F+
|d|,3/2(z,

3
4) = 0 and this implies

T̃rd,D(G−m(z, s))|s=1 = 0.

Now differentiating each side of (4.13) with respect to s and evaluating at s = 1, we get

using (1.14),

T̃rd,D(Ĵm(z, s)) |s=1= −1

2

∑
n|m

∣∣∣m
n

∣∣∣ (D
n

)
∂

∂s

[
b|d|

(
m2

n2
|D|, s

)]
s= 3

4

. (4.14)
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Thus we get from (4.14) that

T̃rd,D(Ĵ(z)) = T̃rd,D(Ĵ1(z)) = −1

2

∂

∂s

[
b|d| (|D|, s)

]
s= 3

4

. (4.15)

From Proposition 3, we see that the mock modular form gd(z) is the holomorphic part

H+
|d|,3/2(z) of the harmonic weak Maass form H|d|,3/2(z). Thus, we have

gd(z) = −16πH(|d|) +∑
n>0

n≡0,3 (mod 4)

(
4
√
|d|n ∂

∂s
b|d| (n, s) |s= 3

4
+ 192πH(|d|)H(n)

)
qn. (4.16)

For D < 0 a fundamental discriminant, we get from (4.16) that the Fourier coefficient

b(d,D) of gd(z) is given by

b(d,D) = 4
√
|dD| ∂

∂s
b|d| (|D|, s) |s= 3

4
+ 192πH(|d|)H(|D|).

Finally, using above in (4.15) we obtain

b(d,D) = −8
√
|dD| T̃rd,D(Ĵ(z)) + 192πH(|d|)H(|D|).

This completes the proof of Theorem 1 .

4.4 Proof of Theorem 13

For negative discriminants d,D and D fundamental, let fd, fD be the basis members of

M !
1/2 defined in (1.5). It follows from Proposition 3 that

ξ 3
2
(H|D|,3/2(z)) = fD(z).

Therefore from (4.6) and Proposition 3, we get

⟨fd, fD⟩reg =
1

2

∑
n∈Z

cfd(n)c
+
H|D|,3/2

(−n)

= 2
√

|Dd| ∂
∂s
b|D| (|d|, s) |s= 3

4
+ 96πH(|D|)H(|d|).

Now using (4.15), we obtain

⟨fd, fD⟩reg = −4
√
|dD| T̃rd,D(Ĵ(z)) + 96πH(|d|)H(|D|).

This proves Theorem 13.
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4.5 Proof of Corollary 1

Let J̃ = h∗1 − 8πE∗
2 ∈ H !

2 be as discussed above (1.15) which satisfies ξ2(J̃) = j1. Then it

follows from [ANS21, Remark 1.10 - (1),(2)] that

⟨fD, fD⟩reg =

√
|D|
π

∑
n̸=0

(
D

n

)
c+
J̃
(n)

n
e−2πn/|D|

+

√
|D|
π

∑
n̸=0

(
D

n

)
c−
J̃
(n)

n

[
e−2πn/|D| Ei

(
4πn

|D|

)
− 1

2
Ei

(
2πn

|D|

)]
,

where c+
J̃
(n) and c−

J̃
(n) are the Fourier coefficients of holomorphic and non-holomorphic

parts of J̃ respectively. Using the Fourier expansion of E∗
2 from (1.15) in the above, we

get

⟨fD, fD⟩reg =

√
|D|
π

∑
n>0

(
D

n

) c+h∗
1
(n) + 192πσ(n)

n
e−2πn/|D| (4.17)

+

√
|D|
π

∑
n̸=0

(
D

n

) c−h∗
1
(n)

n

[
e−2πn/|D| Ei

(
4πn

|D|

)
− 1

2
Ei

(
2πn

|D|

)]
.

In view of [ANS21, Remark 1.13 - (2)], the above becomes

⟨fD, fD⟩reg =

√
|D|
π

∑
n>0

(
D

n

) c+h∗
1
(n)

n
e−2πn/|D| + 96πH(|D|)2 (4.18)

+

√
|D|
π

∑
n ̸=0

(
D

n

) c−h∗
1
(n)

n

[
e−2πn/|D| Ei

(
4πn

|D|

)
− 1

2
Ei

(
2πn

|D|

)]
.

Since ξ2(h
∗
1) = f̃1, we get from (4.3) that

c−h∗
1
(n) = 4πn cf̃1(−n). (4.19)

Further, for n ≥ 1, it follows from (4.6) that

c+h∗
1
(n) = ⟨f̃n, f̃1⟩reg. (4.20)

Substituting (4.19) and (4.20) in (4.18), we see that the corollary now follows from

Theorem 13.



Chapter 5

On traces of cycle integral attached

to harmonic weak Maass forms

This chapter contains proofs for Theorem 2, Theorem 3, Corollary 2 and Corollary 3 as

introduced in Section 1.0.1. The material in this chapter along with Theorem 2, Theorem

3 , Corollary 2 and Corollary 3 are joint work with Balesh Kumar and appear in the paper

[KK23] which is communicated for publication.

Structure of the chapter:

The chapter is organized as follows. In the next section, we define the notations used

in the chapter, discuss the definition and properties related to harmonic Maass forms.

We also discuss the Niebur and Maass Poincaré series, study its Fourier series expansion

and its relation under the Maass raising operator. We next discuss the notion of binary

quadratic forms and the associated genus characters in this section. Further, the traces

of cycle integrals of weak Maass forms and holomorphic cusp forms are introduced in this

section. Finally we recall the classical Shintani lift and Zagier lift along with their relation

in this section. Further, in the subsequent section, we first prove Theorem 3 to keep the

exposition clean. Then in the final section, we prove Theorem Theorem 2, Corollary 2 and

Corollary 3 respectively.

Brief outline of the work:

Here we briefly sketch the main key ingredients used in the Chapter. We start by recalling

the notion of traces of cycle integrals of weak Maass form of weight 0. Let d,D be positive

discriminants with dD ̸= □. Then Duke, Imamoḡlu and Tóth [DIT11a] introduced the

twisted traces of cycle integrals of weak Maass forms of weight 0. Later, Bringmann,

Guerzhoy and Kane [BGK14] defined the twisted traces of cycle integrals of harmonic

weak Maass forms M ∈ H+
2−2κ. This is obtained by defining the twisted traces of cycle

integrals of the associated weak Maass form Rκ−1
2−2κ(M) of weight 0. It is natural to look

for the similar definition of twisted traces of cycle integrals of harmonic weak Maass forms

for a pair of negative discriminants d,D with dD ̸= □. However, the usual definition

(as in the case of positive discriminants) of twisted traces of cycle integrals of harmonic

weak Maass forms in H+
2−2κ becomes 0, because the genus character in this case is an odd

character. So one need an appropriate definition of twisted trace in this case. This have

been addressed by Duke, Imamoḡlu and Tóth [DIT16a] in order to study the uniform
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56 Chapter 5. On traces of cycle integral

distribution properties of a geometric invariant (certain finite area hyperbolic orbifold)

associated to a (narrow) ideal class of a real quadratic field. To address the distribution

problem of this invariant, Duke, Imamoḡlu and Tóth defined the twisted traces of cycle

integrals of weak Maass form of weight 0 for a pair of negative discriminants d,D with

dD ̸= □. This led them to prove the non-trivial extension (and refinement) of formulas of

Hecke [Sie80, Chapter 2] and Katok-Sarnak [KS93]. In this paper, for a pair of negative

discriminants d,D with dD ̸= □, we follow the idea of Duke, Imamoḡlu and Tóth [DIT16a]

and Bringmann, Guerzhoy and Kane [BGK14] to define the twisted traces of cycle integrals

of harmonic weak Maass forms inH+
2−2κ. We prove that the twisted trace of forms inH+

2−2κ

in this case is equal to the twisted trace of its shadow which is the content of Theorem

3. To prove Theorem 3, we use the techniques and results developed in [DIT16a] and

[BGK14].

The analogous definition of twisted traces of cycle integrals for square discriminants is

more subtle because the corresponding cycle integral in this case does not converge. Since

the square discriminants can be factored in two ways; one in terms of a pair of positive

discriminants and the other in terms of a pair of negative discriminants. Therefore, one

need to tackle the corresponding definition of twisted traces of cycle integrals of forms in

H+
2−2κ in both cases. To deal with the twisted traces of cycle integrals of forms in H+

2−2κ

for a pair of positive discriminants d,D with dD = □, there are two elegant approaches

in [And15] and [BFI15]. We follow the approach in [And15]. It turns out that a similar

definition (as in [And15]) of twisted traces of cycle integrals of forms in H+
2−2κ for a

pair of negative discriminants d,D with dD = □ also becomes 0 here. So, to tackle

the case of negative discriminants d,D with dD = □, we follow another recent article

[And22] of Andersen to define the twisted traces of cycle integrals. We note that in both

cases, the main technique is to dampen the integrand of the cycle integrals. This is done

by removing exactly those terms from the integrand which causes the cycle integral to

diverge. By doing so, the resulting integrand is no longer a modular object, however, the

corresponding modified cycle integrals in both cases now converges and interestingly, they

are class invariant. We prove that the modified twisted trace of forms in H+
2−2κ in this

case is equal to the twisted trace of its shadow which is the content of Theorem 2. To

prove Theorem 2, we use the ideas and results developed in [And15], [And22], [BGK14],

[DIT11a] and [DIT16a].

As an application of our results, we prove in Corollary 3 that a harmonic weak Maass

form M in H+
2−2κ is weakly holomorphic if and only if the modified twisted traces of cycle

integrals of M at square discriminants vanishes, for almost all fundamental discriminants.

To prove it, in view of Corollary 2, one need to determine the form M in terms of vanishing

of twisted central L-value of the shadow of M. Since the shadow of M is a cusp form in S2κ

which may not be a Hecke eigenform, so the result of Luo and Ramakrishnan [LR97] is not

applicable in our situation. However, a recent result of Gun, Kohnen and Soundararajan

[GKS24] in this direction play a crucial role to prove Corollary 3.
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5.1 Preliminaries and notations

5.1.1 Harmonic weak Maass forms

Let Γ be as in (2.1), Γ̄ := PSL2(Z) and τ = u+ iv ∈ H. Recall the notion of weak Maass

forms and harmonic weak Maass forms from Subsection 2.0.1 in Chapter 2.

We denote by H !
κ, the space of harmonic weak Maass forms of weight κ for Γ and by

H+
κ , the subspace of those forms F ∈ Hκ for which there exists a polynomial PF =∑
m≤0 c

+
F (m)qm ∈ C[q−1] such that F (τ)−PF (τ) = O(e−ϵy), for some ϵ > 0 and analogous

conditions hold at all cusps. We denote by M !
κ the space of weakly holomorphic modular

forms weight κ for Γ and by S!
κ ⊂ M !

κ the subspace consisting of those forms whose

constant term in its Fourier expansion vanishes at all the cusps. The subspace H+
κ can

also be realised [BFOR17, Theorem 5.10] as the space of F ∈ H !
κ such that ξκ(F ) is a

cusp form. The form ξκ(F ) is known as the shadow of F . Bruinier and Funke [BF04,

Proposition 3.2 and Theorem 3.7] proved that the map ξκ from H+
κ to S2−κ is surjective

with the kernel M !
κ. Further, we let Mκ and Sκ be the spaces of modular forms and cusp

forms of weight κ for Γ respectively.

For κ < 1/2, each F ∈ H+
κ has the Fourier expansion [BGK14, p. 649] at the cusp ∞ of

the form

F (τ) =
1

Γ(1− κ)

∑
m<0

a−F (m)Γ(1− κ, 4π|m|v)qm +
∑

m≫−∞
a+F (m)qm, (5.1)

where Γ(s, t):=
∫∞
t xs−1e−x dx is the incomplete Gamma function. We call

F+(τ) :=
∑

m≫−∞
a+F (m)qm

the holomorphic part and F−(τ) := F (τ) − F+(τ) the non-holomorphic part of F .

Furthermore, the finite sum
∑

m<0 a
+
F (m)qm is said to be the principal part of F . A

simple calculation using the Fourier expansion in (5.1) yields

ξκ(F (τ)) =
1

Γ(1− κ)

∑
m>0

(4πm)κ−1a−F (−m)qm. (5.2)

For ν ∈ Z, we denote by H+
κ,ν ⊂ H+

κ the subspace of those forms whose principal parts

are supported in the square class −|ν|n2 with n ∈ N.

We recall (see eq. 2.7) the Maass Raising operator by

Rκ := 2i
∂

∂τ
+
κ

v
. (5.3)

If F is an eigenfunction under ∆κ with eigenvalue λ and satisfies the modularity of weight

κ, then from [BFOR17, Lemma 5.2] it follows that Rκ(F ) is an eigenfunction under ∆κ+2

with eigenvalue λ+ κ and satisfies the modularity of weight κ+ 2.
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5.1.2 Poincaré Series

In this subsection, we will consider the generic family of Poincaré series and describe their

Fourier expansion. Let ϕ : R+ → C be a smooth function such that ϕ(v) = O(va) as

v → 0, for some a ∈ R. We define for 0 ̸= m ∈ Z,

ϕ⋆(τ) := ϕ(v)e2πimu.

Let Γ∞ :=

{
±

(
1 n

0 1

)
: n ∈ Z

}
be the subgroup of Γ. Then we define the generic

Poincaré series by

P (m,κ,ϕ; τ) :=
∑

M∈Γ∞\Γ

ϕ⋆ |κ M(τ), (5.4)

which is absolutely and uniformly convergent for κ > 2− 2a.

In order to construct the family of Maass-Poincaré series, one chooses a particular class

of functions ϕ. More precisely, let Mν,µ be the usual M -Whittaker function(see [BO07, p.

595]). For s ∈ C and v ∈ R\{0}, we define

Mκ,s(v) := |v|−
κ
2Mκ

2
sgn(v),s− 1

2
(|v|),

and for an integer m ̸= 0, set

ϕm,κ(s; v) := (4π|m|)
κ
2Γ(2s)−1Mκ,s(4πmv). (5.5)

The function ϕ⋆m,κ(s; τ) is an eigenfunction of ∆κ with eigenvalue s(1− s) + (κ2 − 2κ)/4.

Now we define the Maass-Poincaré series,

Pm,κ(s; τ) :=

P (m,κ, ϕm,κ(s; v); τ) if κ ∈ Z,
3
2P (m,κ, ϕm,κ(s; v); τ) | pr if κ ∈ 1

2Z\Z,
(5.6)

where pr denotes the usual extension of Kohnen’s orthogonal projection operator [Koh80]

(see also [BFOR17, Eq. 6.12, p. 92]) to H+
κ . Using the bound [ODL+22, 13.14.14]

ϕm,κ(s; v) = O(vRe(s)−κ/2) as v → 0,

one can see that the series Pm,κ(s; τ) converges absolutely and uniformly for Re(s) > 1.

For integers m ≥ 1, the Poincaré series

Fm,2−κ(τ) := (4π|m|)
κ
2
−1P−m,2−κ

(κ
2
; τ
)

(5.7)

are harmonic weak Maass forms [BGK14, Lemma 4.1] in H+
2−κ with the principal part q−m

according as κ ∈ Z or κ ∈ 1
2Z\Z. Let m ≥ 1, κ > 1 be integers and d be a fundamental

discriminant satisfying (−1)κd > 0. Recall that ψd(·) = (d· ) be the primitive quadratic

character of conductor |d|. Then we define a linear map Z̃d [BGK14, Lemma 4.1] from
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H+
2−2κ to H+

3
2
−κ,d

such that

Z̃d(Fm,2−2κ) :=
∑
n|m

ψd(n)n
κ−1F(m

n
)2|d|, 3

2
−κ. (5.8)

We prove the following lemma.

Lemma 4. Let κ > 1 be an integer and d be a fundamental discriminant satisfying

(−1)κd > 0. Let M be a form in H+
2−2κ with the principal part

∑
m<0 c

+
M(m)qm. Then the

form Z̃d(M) is uniquely determined by

Z̃d(M)(τ) =
∑
m>0

c+M(−m)
∑
n|m

ψd(n)n
κ−1q−(m

n
)2|d| +O(1).

Proof. Since the family of Poincaré series {Fm,2−2κ}m≥1 forms a basis for H+
2−2κ, therefore

it suffices to prove the lemma for Fm,2−2κ. Since the Poincaré series F(m
n
)2|d|, 3

2
−κ

has the principal part q−(m
n
)2|d|, we see that Z̃d(Fm,2−2κ) has the principal part∑

n|m ψd(n)n
κ−1q−(m

n
)2|d|. Now let G be a form in H+

3
2
−κ,d

with the same principal part

as Z̃d(Fm,2−2κ). Then Z̃d(Fm,2−2κ) − G ∈ H+
3
2
−κ,d

have non-negative powers of q in the

holomorphic part of its Fourier expansion. Now consider g = ξ 3
2
−κ(Z̃d(Fm,2−2κ) − G),

f = Z̃d(Fm,2−2κ) − G in the Bruinier-Funke pairing [BF04, eq. (3.9)]. Then using

[BF04, Proposition 3.5], one can see that the Petersson norm of g is identically zero.

Since the kernel of ξ 3
2
−κ is M !

3
2
−κ

, therefore, we deduce that the non-holomorphic part of

Z̃d(Fm,2−2κ) − G is identically zero. Thus, Z̃d(Fm,2−2κ) − G ∈ M 3
2
−k = {0}. Hence, the

proof is complete.

Consider the normalization of Niebur Poincaré series Gm(τ, s) defined in (2.16) by the

notation

Gm(s; τ) := |m|s−1Gm(τ, s). (5.9)

Thus, each Gm(s; τ) satisfies [Nie73, p.134]

∆0Gm(s; τ) = s(1− s)Gm(s; τ).

Using the relation (see 13.18.8 of [ODL+22])

M0,s− 1
2
(2v) = 22s−

1
2Γ(s+

1

2
)v

1
2 Is− 1

2
(v),

along with (5.5) and Legendre’s Duplication formula, we obtain the relation

Pm,0(s; τ) = Γ(s)−1|m|1−sGm(s; τ). (5.10)

Next, we need the following lemma.

Lemma 5. Let m ≥ 1 and κ > 1 be integers. Then we have

Rκ−1
2−2κ(Fm,2−2κ(τ)) = (4π)κ−1G−m(κ; τ).
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Proof. Using (5.7), we have

Rκ−1
2−2κ(Fm,2−2κ(τ)) = (4πm)κ−1Rκ−1

2−2κ (P−m,2−2κ (κ; τ)) . (5.11)

Now by using [BGK14, Eq. (4.9)], we get

Rκ−1
2−2κ (P−m,2−2κ (κ; τ)) = R−2 ◦ R−4 ◦ . . . ◦ R2−2κ (P−m,2−2κ (κ; τ))

= (κ− 1)!P−m,0 (κ; τ) .

Now, the lemma follows from (5.11) and (5.10).

We also need the modified W -Whittaker function to describe the Fourier expansion of

half-integral weight Maass-Poincaré series. Let Wµ,ν be the usual W -Whittaker function.

Then we define

Wn,κ(s; v) :=

Γ(s+ sgn(n)κ2 )
−1v−

κ
2Wκ

2
sgn(n),s− 1

2
(4π|n|v) if n ̸= 0,

v1−
κ
2 −s

(2s−1)Γ(s−κ
2
)Γ(s+κ

2
) if n = 0.

The special value at s = 1− κ
2 of Mκ,s(v) and Wn,κ(s, v) [BGK14, p. 655-656] for n ̸= 0

is given by

Mκ,1−κ
2
(−v) = (κ− 1)e

v
2Γ(1− κ; v) + (1− κ)Γ(1− κ)e

v
2 (5.12)

Wn,κ

(
1− κ

2
; v
)
=

(4πn)
κ
2 e−2πnv if n > 0,

(4π|n|)
κ
2

Γ(1−κ) e
2π|n|vΓ(1− κ; 4π|n|v) if n < 0.

(5.13)

Recall ( ··) be the Kronecker symbol and ϵl be the root of unity defined in Chapter 2. For

κ ∈ 1
2Z \ Z, we define the Kloosterman sum [BGK14, p. 656]

Kκ(m,n; c) := 2−
1
2

(
1 +

(
4

c

))
(1− (−1)κ−

1
2 i)

∑
l(mod 4c)⋆

(
4c

l

)
ϵ2κl e

2πi(ml̄+nl
4c

), (5.14)

where the sum varies over l (mod 4c) coprime to 4c and l̄ denotes the inverse of l (mod 4c).

We need the following lemma.

Lemma 6 (Lemma 4.2 in [BGK14]). Let κ ∈ 1
2Z\Z and m ∈ Z be such that (−1)κ−

1
2m ≡

0, 1 (mod 4) with sgn(m) = sgn(κ − 1). Then for Re(s) > 1, Pm,κ(s; τ) has the Fourier

expansion

Pm,κ(s; τ) = ϕm,κ(s; v)e
2πimu +

∑
(−1)κ−

1
2 n≡0,1 (mod 4)

bm,κ(s;n)Wn,κ(s; v)e
2πinu, (5.15)
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where

bm,κ(s;n) := 2π(−1)⌊
2κ+1

4
⌋
∑
c>0

Kκ(m,n; c)


|mn |

1/2. 14cI2s−1(
π
√

|mn|
c ) if mn < 0,

(mn )
1/2. 14cJ2s−1(

π
√

|mn|
c ) if mn > 0,

2πs|m|s
(4c)2s

if n = 0,

(5.16)

and J is the J−Bessel function [MOS66, Chapter 3].

Next, we also need the following.

Lemma 7. Let κ ∈ 1
2Z \ Z and m be a discriminant satisfying sgn(m) = sgn(κ− 1). Let

Kκ(m,n; c) be as defined in (5.14). Then we have

Kκ(m,n; c) = Kκ(n,m; c), (5.17)

Kκ+2(m,n; c) = Kκ(m,n; c), (5.18)

K2−κ(−n,−m; c) = Kκ(m,n; c), (5.19)

K 1
2
+a(m,n; c) = K 1

2
(m,n; c), (5.20)

where a ∈ 2Z.

Proof. The identities (5.17), (5.18) and (5.20) follows from direct computations. The

identity (5.19) follows from [BO07, Proposition 3.1].

5.1.3 Binary quadratic forms and Genus characters

Here we recall the theory of binary quadratic forms, genus characters and Heegner

geodesics from Section (2.0.2), Section (2.0.3) and Section 2.0.4 respectively. Let QD

be the set of integral binary quadratic forms Q(X,Y ) = aX2 + bXY + cY 2 = [a, b, c] with

discriminant D = b2 − 4ac. We denote by Q+
D ⊂ QD be the set of binary quadratic forms

with a > 0. The modular group Γ̄ = PSL2(Z) acts on QD. For M = ±
(

α β
γ δ

)
∈ PSL2(Z)

and Q ∈ QD, we have

MQ = QM−1 = Q(δx− βy,−γx+ αy),

and it turns out that the number of classes in Γ̄\QD is finite.

Let D < 0 be a discriminant and Q = [a, b, c] ∈ QD. Then we have an associated CM

point τQ ∈ H, which is a root of aτ2+bτ +c = 0. In addition, the stabilizer Γ̄Q of Q ∈ QD

in Γ̄ is finite.

For Q = [a, b, c] ∈ QD with D > 0 we have an associated geodesic in H defined by

SQ := {τ = u + iv ∈ H : a|τ |2 + bu + c = 0}. If a = 0 then SQ is a straight line

Re(τ) = −c/b equipped with downward orientation. If a ̸= 0, then SQ is a semi-circle

orthogonal to real axis which is oriented clockwise if a > 0, and counter-clockwise if a < 0.

The stabilizer Γ̄Q of Q ∈ QD in Γ̄ is an infinite cyclic group or trivial group according as

D ̸= □ or D = □. In addition, it follows that SQ is the geodesic in H connecting two
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roots of Q(X, 1). We define CQ := Γ̄Q\SQ to be the associated geodesic in the modular

curve Γ̄\H.

Let D, d be discriminants with D fundamental. For Q = [a, b, c] ∈ QdD, we recall χD(Q)

be the generalized genus character defined in Section 2.0.3.

5.1.4 Traces

In this subsection, we define the twisted traces of harmonic weak Maass forms. Throughout

this subsection, we assume that κ > 1 is an integer.

First, we will define twisted CM trace for modular functions. Let f : H → C be a function

that is invariant under the action of SL2(Z) and let δ, d be discriminants with fundamental

d. If δd < 0, then the (δ, d)-th twisted trace of f is defined by

Trδ,d(f) :=
∑

Q∈Γ̄\Qδd

ω−1
Q χd(Q)f(τQ), (5.21)

where ωQ = 1 unless Q is Γ̄-equivalent to [a, 0, a] and [a, a, a], in which case ωQ = 2

or 3, respectively. Now, we define the twisted CM trace for functions in H+
2−2κ. Let

f ∈ H+
2−2κ. Then the function Rκ−1

2−2κ(f) is invariant under the action of SL2(Z). For a

pair of discriminants d, δ satisfying (−1)κδ > 0 and (−1)κd < 0 with d fundamental, the

twisted trace of f is defined by [BGK14]

Tr⋆δ,d(f) := (−1)⌊
κ+1
2

⌋(4π)1−κ|δ|
κ−1
2 |d|−

κ
2Trδ,d(R

κ−1
2−2κ(f)). (5.22)

Next, we define the twisted traces of holomorphic cusp forms following Shintani [Shi75].

For a pair of discriminants d, δ satisfying (−1)κδ > 0 and (−1)κd > 0 with d fundamental

and f ∈ S2κ, the (δ, d)-th twisted trace of f is given by

Trδ,d(f) := B(κ, d, δ)
∑

Q∈Γ̄\Qδd

χd(Q)

∫
CQ

f(τ)
dτ

Q(τ, 1)1−κ
, (5.23)

where

B(κ, d, δ) := −
(−1)κ2κ−1Γ(κ− 1

2)|d|
1−κ

2 |δ|
3κ
2

3(4π)
3
2
−2κ

.

Now1 the twisted trace Tr⋆δ,d of f ∈ H+
2−2κ is defined as in [BGK14]

Tr⋆δ,d(f) := (−1)⌊1−
κ
2
⌋(4π)1−κ|d|

κ−1
2 |δ|−

κ
2Trδ,d(ξ2−2κ(f)). (5.24)

The above trace will play an important role in the definition of Zagier lift defined in

Subsection 5.1.5.

1Back to Theorem 2 and Theorem 3.
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Traces of Niebur Poincaré series

Here, we will consider the twisted traces of Niebur Poincaré series Gm(s; τ) considered

in (5.9) for non-square and square discriminants. Let κ > 1 be an integer and d, δ be

discriminants satisfying (−1)κδ > 0 and (−1)κd > 0, with d fundamental. Then we have

0 < dδ ̸= □ or dδ = □.

Case : 0 < dδ ̸= □.

In this case, following [DIT16a], we define the twisted traces of Niebur Poincaré series by

T̃rδ,d(Gm(s; τ)) :=A(s, d, δ)
∑

Q∈Γ̄\Qδd

χd(Q)C(Gm(s; τ) ;Q), (5.25)

where

A(s, d, δ) :=
Γ(s)

2sΓ( s2 + 1
4 − sgn d

4 )Γ( s2 + 1
4 − sgn δ

4 )
,

and

C(Gm(s; τ);Q) :=


∫
CQ

Gm(s; τ)v−1|dτ | if d, δ > 0,∫
CQ

i ∂
∂τGm(s; τ)dτ if d, δ < 0.

(5.26)

Case : dδ = □.

Recall the modified Niebur Poincaré series Gm,Q(z, s) considered in Eq. (3.10) of Chapter

3. In the notation (5.9) of Niebur Poincaré series in this chapter, we define

Gm,Q(s; τ) := |m|s−1Gm,Q(z, s)

This dampened version Gm,Q(s; τ) of Niebur Poincaré series and its cycle integrals were

considered by Andersen [And15, And22]. Following Eq. (3.12), define the modified twisted

traces of Niebur Poincaré series by

T̃r□δ,d(Gm(s; τ)) :=A(s, d, δ)
∑

Q∈Γ̄\Qδd

χd(Q)C□(Gm(s; τ) ;Q), (5.27)

where

C□(Gm(s; τ);Q) := |m|s−1C□(Gm(z, s) : Q), (5.28)

C□(Gm(z, s) : Q) was defined in Eq. (3.12) of Chapter 3. The Fourier expansion of

Gm(z, s) and (3.11) can be used to demonstrate that cycle integrals
∫
CQ

Gm,Q(z, s)y
−1|dz|

and
∫
CQ

i ∂
∂zGm,Q(z, s)dz are convergent and class invariant.

For a finite C−linear combination
∑

1≤i≤N wiGmi(s; τ) of Niebur Poincaré series, we set

T̃r□δ,d

 ∑
1≤i≤N

wiGmi(s; τ)

 :=A(s, d, δ)
∑

Q∈SL2(Z)\Qδd

χd(Q)C□

 ∑
1≤i≤N

wiGmi(s; τ) ;Q

 ,

(5.29)



64 Chapter 5. On traces of cycle integral

where

C□

 ∑
1≤i≤N

wiGmi(s; τ);Q

 :=
∑

1≤i≤N

wiC
□(Gmi(s; τ);Q) · (5.30)

Now, we will define the traces of cycle integrals of functions in H+
2−2κ with κ > 1, using

the differential operator R2−2κ. Since the family of Poincaré series {Fm,2−2κ}m∈N forms a

basis for H+
2−2κ, for any f ∈ H+

2−2κ, there exists w1, . . . , wN in C such that

f(τ) =
N∑
i=1

wiFmi,2−2κ(τ).

Applying the operator Rκ−1
2−2κ on both sides of the above and using Lemma 5, we get

Rκ−1
2−2κ(f)(τ) =

N∑
i=1

wi(4π)
κ−1G−mi(κ; τ). (5.31)

Consequently, for dδ ̸= □, we obtain from (5.25)

T̃rδ,d(R
κ−1
2−2κ(f)) =

N∑
i=1

wi(4π)
κ−1T̃rδ,d(G−mi(κ; τ)), (5.32)

and for dδ = □, we get from (5.29)

T̃r□δ,d(R
κ−1
2−2κ(f)) =

N∑
i=1

wi(4π)
κ−1T̃r□δ,d(G−mi(κ; τ)). (5.33)

Now, if 0 < dδ ̸= □, then we define the (δ, d)-th twisted trace of f ∈ H+
2−2κ by2

T̃r⋆δ,d(f) := (−1)⌊1−
κ
2
⌋(4π)1−κ|d|

κ−1
2 |δ|−

κ
2 T̃rδ,d(R

κ−1
2−2κ(f)). (5.34)

We note that Bringmann, Guerzhoy and Kane [BGK14, p. 653] defined the above trace

in the case d, δ > 0.

Next, if dδ = □ then we define the (δ, d)-th twisted trace of f ∈ H+
2−2κ by3

T̃r
□,⋆

δ,d (f) := (−1)⌊1−
κ
2
⌋(4π)1−κ|d|

κ−1
2 |δ|−

κ
2 T̃r□δ,d(R

κ−1
2−2κ(f)). (5.35)

5.1.5 The Shintani and Zagier Lifts

Throughout this subsection, we assume κ > 1 be an integer and d is a fundamental

discriminant satisfying (−1)κd > 0. Then, Shintani [Shi75] defined a lift S⋆
d from S2κ to

Sκ+ 1
2
. More precisely, for f ∈ S2κ, we have

S⋆
d(f)(τ) :=

∑
δ:dδ>0

(dδ)1/2

B(κ, d, δ)
Trδ,d(f) q

|δ|, (5.36)

2Back to Theorem 3.
3Back to Theorem 2.
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where Trδ,d(f) and B(κ, d, δ) are defined as in (5.23).

Next, we discuss the Zagier lift [BGK14, Proposition 6.2] Zd from H+
2−2κ to H+

3
2
−κ,d

. Let

M be a form in H+
2−2κ with the principal part

∑
m<0 c

+
M(m)qm and constant term c+M(0).

Then we have

Zd(M)(τ) :=
∑
m>0

c+M(−m)
∑
n|m

ψd(n)n
κ−1q−(m

n
)2|d| +

1

2
Ld(1− κ)c+M(0) (5.37)

+
∑

δ:dδ<0

Tr⋆δ,d(M)q|δ| +
∑

δ:dδ>0

Tr⋆δ,d(M)Γ

(
κ− 1

2
: 4π|δ|v

)
q−|δ|,

where Tr⋆δ,d are as defined in (5.22), (5.24) and Ld(1 − κ) is a special value of Dirichlet

L-function defined by

Ld(s) :=
∑
n≥1

ψd(n)n
−s.

Moreover, it follows from [BGK14, Proposition 6.2] that Zd = Z̃d on H+
2−2κ, where Z̃d is

defined as in Lemma 4. We state the following theorem which we use in the proof of our

theorems.

Theorem 14 (Theorem 5.2 in [BGK14]). Let κ > 1 be an integer and d be a fundamental

discriminant satisfying (−1)κd > 0. Then for each M ∈ H+
2−2κ, we have

ξ 3
2
−κ(Z̃d(M)) =

1

3
(−1)⌊

κ
2
⌋2κ−1S⋆

d(ξ2−2κ(M)), (5.38)

where Z̃d is defined as in Lemma 4.

We also need the following lemma.

Lemma 8. Let κ > 1 be an integer and d be a fundamental discriminant satisfying

(−1)κd > 0. Let Fm,2−2κ ∈ H+
2−2κ be the Poincaré series as defined in (5.7), and set

Fd,m := Z̃d(Fm,2−2κ). Then we have

a−Fd,m
(−|δ|) = Tr⋆δ,d(Fm,2−2κ), (5.39)

where a−Fd,m
(·) are defined as in (5.2), and Tr⋆δ,d(Fm,2−2κ) are defined as in (5.24).

Proof. The proof follows from Theorem 14 for M = Fm,2−2κ, and using (5.2) and (5.36).

5.2 Proof of Theorem 3

Proof. Let the assumptions be as in Theorem 3. Since the family of Poincaré series

{Fm,2−2κ}m≥1 forms a basis for H+
2−2κ, therefore, it suffices to prove Theorem 3 only for

Poincaré series. In view of Lemma 8, it suffices to relate the Fourier coefficients of the

non-holomorphic part of Fd,m to the traces of cycle integrals of Rκ−1
2−2κ(Fm,2−2κ). For a
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divisor n of m, if we set Fd,m,n := F(m
n
)2|d|, 3

2
−κ, then it follows from (5.8) that

Fd,m =
∑
n|m

ψd(n)n
κ−1Fd,m,n .

By comparing the δ-th Fourier coefficients of the non-holomorphic part in the above, we

get

a−Fd,m
(δ) =

∑
n|m

ψd(n)n
κ−1a−Fd,m,n

(δ). (5.40)

Now, our aim is to relate a−Fd,m
(δ) to the sum of cycle integrals of Rκ−1

2−2κ(Fm,2−2κ). For

this, we write from (5.7)

Fd,m,n(τ) =

(
4π
(m
n

)2
|d|
)κ

2
− 3

4

P−(m
n
)2|d|, 3

2
−κ

(
κ

2
+

1

4
; τ

)
.

The Fourier expansion of P−(m
n
)2|d|, 3

2
−κ from (5.15) along with (5.12) and (5.13) gives

a−Fd,m,n
(δ) =

(∣∣∣∣dδ
∣∣∣∣ m2

n2

)κ
2
− 3

4

b−(m
n )

2|d|, 3
2
−κ

(
κ

2
+

1

4
,−|δ|

)
·

Using (5.16), we rewrite the above

a−Fd,m,n
(δ) = 2π(−1)⌊1−

κ
2
⌋
∣∣∣m
n

∣∣∣κ− 1
2

∣∣∣∣dδ
∣∣∣∣κ2− 1

4 ∑
c>0

K 3
2
−κ

(
−
(
m
n

)2 |d|,−|δ|; c
)

4c
Jκ− 1

2

(π
c

∣∣∣m
n

∣∣∣√dδ) .
Now using the identities for Kloosterman sums from (5.17),(5.18) and (5.20), we get

a−Fd,m,n
(δ) = 2π(−1)⌊1−

κ
2
⌋
∣∣∣m
n

∣∣∣κ− 1
2

∣∣∣∣dδ
∣∣∣∣κ2− 1

4 ∑
c>0

K 1
2

(
δ,
(
m
n

)2
d; c
)

4c
Jκ− 1

2

(π
c

∣∣∣m
n

∣∣∣√dδ) .
Substituting the above in (5.40), we get

a−Fd,m
(δ) = 2π(−1)⌊1−

κ
2
⌋|m|κ−

1
2

∣∣∣∣dδ
∣∣∣∣κ2− 1

4 ∑
n|m

ψd(n)n
− 1

2

∑
c>0

K 1
2

(
δ,
(
m
n

)2
d; c
)

4c
Jκ− 1

2

(π
c

∣∣∣m
n

∣∣∣√dδ) .
(5.41)

Next, we write the traces of Niebur Poincaré series (5.25) in terms of half-integral weight

Kloosterman sum and the J-Bessel function. For Re(s) > 1, we use [DIT16a, Proposition

5] to write

T̃rδ,d(G−m(s; τ)) = 2π|m|s−
1
2 (dδ)

1
4

∑
n|m

ψd(n)n
− 1

2

∑
c>0

K 1
2

(
δ,
(
m
n

)2
d; c
)

4c
Js− 1

2

(π
c

∣∣∣m
n

∣∣∣√dδ) ·
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Choosing s = κ in the above and comparing with (5.41), we get

T̃rδ,d(G−m(κ; τ)) = (−1)⌊1−
κ
2
⌋|d|

1−κ
2 |δ|

κ
2 a−Fd,m

(δ) ·

Now using Lemma 5 and (5.34), we get

a−Fd,m
(δ) = T̃r⋆δ,d(Fm,2−2κ) · (5.42)

Thus the theorem follows from above and Lemma 8.

5.3 Proof of Theorem 2

Proof. Let the assumptions be as in Theorem 2. Since the family of Poincaré series

{Fm,2−2κ}m∈N forms a basis for H+
2−2κ, therefore, it suffices to prove Theorem 2 only for

Poincaré series. For a divisor n of m, if we set Fd,m,n := F(m
n
)2|d|, 3

2
−κ then it follows from

(5.8) that

Fd,m =
∑
n|m

ψd(n)n
κ−1Fd,m,n . (5.43)

Case : d, δ > 0

Since (−1)κd > 0, in this case, κ > 1 is an even integer. By comparing the −δ-th Fourier

coefficients of the non-holomorphic part in the above, we get

a−Fd,m
(−δ) =

∑
n|m

ψd(n)n
κ−1a−Fd,m,n

(−δ). (5.44)

Using the steps as in the proof of Theorem 3 and using identities (5.19) and (5.20), one

can deduce

a−Fd,m
(−δ) = 2π(−1)⌊1−

κ
2
⌋|m|κ−

1
2

∣∣∣∣dδ
∣∣∣∣κ2− 1

4 ∑
n|m

ψd(n)n
− 1

2

∑
c>0

K 1
2

(
δ,
(
m
n

)2
d; c
)

4c
Jκ− 1

2

(π
c

∣∣∣m
n

∣∣∣√dδ) .
(5.45)

Let e(z) = e2πiz. Following the steps as in the proof of [And15, Proposition 6], we deduce

∑
Q∈Γ̄\Qδd

χd(Q)C□(G−m(s; τ);Q) =
∑

Q∈Γ∞\Qdδ

Q ̸=[0,±b,⋆]

χd(Q)

∫
CQ

e(−mRe(τ))ψm,s(Im(τ))v−1|dτ |,

where C□(G−m(s; τ);Q) is defined in (5.28). Now we parametrize the cycle SQ as given

in the proof of [DIT11a, Lemma 7]. We parametrize each cycle SQ with Q = [a, b, c] by

θ ∈ (0, π) via

τ :=

Re τQ − e−iθ Im τQ if a > 0,

Re τQ + eiθ Im τQ if a < 0,

where τQ := − b
2a + i

√
dδ

2|a| is the apex of the semicircle SQ. With this parametrization, we
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have v−1|dτ | = dθ
sinθ and using (2.13), we get

∑
Q∈Γ̄\Qδd

χd(Q)C□(G−m(s; τ);Q) = 2
∑

Q∈Γ∞\Q+
dδ

χd(Q)

π∫
0

e

(
mb

2a

)
cos

(
cos θ

πm
√
dδ

a

)

× ψm,s

(
sin θ

√
dδ

2|a|

)
dθ

sin θ
.

Using the definition (2.15) of ψm,s and [DIT11a, Lemma 9] in the above, we get

T̃r□δ,d(G−m(s; τ)) =
√
2π(dδ)

1
4 |m|s−

1
2

∑
Q∈Γ∞\Q+

dδ

χd(Q)√
a
e

(
mb

2a

)
Js− 1

2

(
πm

√
dδ

a

)
· (5.46)

Next, we use a bijection between the sets Γ∞ \ Q+
dδ and {(a, b) : a ∈ N and 0 ≤ b < 2a}

(see [And15, p. 452]) to rewrite the above as

T̃r□δ,d(G−m(s; τ)) =
√
2π(dδ)

1
4 |m|s−

1
2

∞∑
a=1

a−
1
2Js− 1

2

(
πm

√
dδ

a

)

×
∑

b (mod 2a)
(b2−dδ)

4a
∈Z

χd

([
a, b,

b2 − dδ

4a

])
e

(
mb

2a

)
.

If we write

Sm(δ, d, 4a) =
∑

b (mod 4a)
(b2−dδ)

4a
∈Z

χd

([
a, b,

b2 − dδ

4a

])
e

(
mb

2a

)
,

then we have 1
2Sm(δ, d, 4a) =

∑
b(mod 2a)
(b2−dδ)

4a
∈Z

χd

([
a, b,

b2 − dδ

4a

])
e
(
mb
2a

)
. Thus, we get from

above

T̃r□δ,d(G−m(s; τ)) =
π√
2
(dδ)

1
4 |m|s−

1
2

∞∑
c=1

Sm(δ, d, 4c)

c
1
2

Js− 1
2

(
πm

√
dδ

a

)
.

Now using [DIT11a, Proposition 3] in the above, we deduce

T̃r□δ,d(G−m(s; τ)) = 2π|m|s−
1
2 (dδ)

1
4

∑
n|m

ψd(n)n
− 1

2

∑
c>0

K 1
2

(
δ,
(
m
n

)2
d; c
)

4c
Js− 1

2

(π
c

∣∣∣m
n

∣∣∣√dδ) ·
Put s = κ in the above and using (5.45), we have

T̃r□δ,d(G−m(κ; τ)) = (−1)⌊1−
κ
2
⌋|d|

1−κ
2 |δ|

κ
2 a−Fd,m

(−δ) ·
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Using Lemma 5 and definition (5.35) in the above, we get

a−Fd,m
(−δ) = T̃r

□,⋆

δ,d (Fm,2−2κ).

The proof of Theorem 2 in this case now follows from Lemma 8.

Case : d, δ < 0

Since (−1)κd > 0, in this case, κ > 1 is an odd integer. Using the steps as in the proof of

Theorem 3, we get

a−Fd,m
(δ) = 2π(−1)⌊1−

κ
2
⌋|m|κ−

1
2

∣∣∣∣dδ
∣∣∣∣κ2− 1

4 ∑
n|m

ψd(n)n
− 1

2

∑
c>0

K 1
2

(
δ,
(
m
n

)2
d; c
)

4c
Jκ− 1

2

(π
c

∣∣∣m
n

∣∣∣√dδ) .
(5.47)

For m ∈ N, following the similar steps as in the proof of [And22, Proposition 3.2], we

deduce∑
Q∈Γ̄\Qδd

χd(Q)C□(G−m(s; τ);Q) =
1

2

∑
Q∈Γ∞\Qdδ

Q=[a,b,c],a ̸=0

χd(Q)

∫
CQ

e(−mu)ψ2,−m(v, s)dτ,

where C□(G−m(s; τ);Q) is defined in (5.28) and

ψ2,−m(v, s) = s|m|s−1v−1 Γ(s)

Γ(2s)
M−1,s− 1

2
(4π|m|v). (5.48)

Using (3.9), we deduce from the above as

∑
Q∈Γ̄\Qδd

χd(Q)C□(G−m(s; τ);Q) =
∑

Q∈Γ∞\Qdδ

Q=[a,b,c],a>0

χd(Q)

∫
CQ

e(−mu)ψ2,−m(v, s)dτ ·

Now we use the parametrization τ = ReτQ − e−iθImτQ of the cycle CQ with Q = [a, b, c],

a > 0 to get

∑
Q∈Γ̄\Qδd

χd(Q)C□(G−m(s; τ);Q) =
∑

Q∈Γ∞\Q+
dδ

Q=[a,b,c]

χd(Q)e

(
mb

2a

)
Υm

(√
dδ

2a

)
,

where for any t > 0, Υm(t) := it
π∫
0

e(−mt cos θ)ψ2,−m(t sin θ, s)eiθdθ. We rewrite Υm(t)

from (5.48) and use [DIT16a, Lemma 7] in the above to obtain

T̃r□δ,d(G−m(s; τ)) =
√
2π(dδ)

1
4 |m|s−

1
2

∑
Q∈Γ∞\Q+

dδ

χd(Q)√
a
e

(
mb

2a

)
Js− 1

2

(
πm

√
dδ

a

)
·

Now we follow the similar steps of the proof after (5.46) in the case d, δ > 0 to deduce
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from above

T̃r□δ,d(G−m(s; τ)) = 2π|m|s−
1
2 (dδ)

1
4

∑
n|m

ψd(n)n
− 1

2

∑
c>0

K 1
2

(
δ,
(
m
n

)2
d; c
)

4c
Js− 1

2

(π
c

∣∣∣m
n

∣∣∣√dδ) ·
Put s = κ in the above and using (5.47), we have

T̃r□δ,d(G−m(κ; τ)) = (−1)⌊1−
κ
2
⌋|d|

1−κ
2 |δ|

κ
2 a−Fd,m

(δ) ·

Using Lemma 5 and definition (5.35), we get from above

a−Fd,m
(δ) = T̃r

□,⋆

δ,d (Fm,2−2κ).

Now the proof of Theorem 2 in this case follows from Lemma 8.

Proof of Corollary 2: The proof follows from the steps [Koh80, p. 243] and using

Theorem 2.

Proof of Corollary 3: Let M be a harmonic weak Maass form in H+
2−2κ with f :=

ξ2−2κ(M).

First we assume that M is a weakly holomorphic form. It follows from [BF04, Proposition

3.2 and Theorem 3.7] that the map ξ2−2κ from H+
2−2κ to S2κ is surjective with kernel

M !
2−2κ. Therefore, we have f = 0 and hence L(κ, f ⊗ ψd) = 0, for all fundamental

discriminants d with (−1)κd > 0. Now, Corollary 2 implies that T̃r
□,⋆

d,d (M) = 0, for all

fundamental discriminants d.

Conversely, we assume that T̃r
□,⋆

d,d (M) = 0, for all but finitely many fundamental

discriminants d with (−1)κd > 0. Then it follows from Corollary 2 that L(κ, f ⊗ ψd) = 0,

for all but finitely many fundamental discriminants d. Our aim is to show that M is

weakly holomorphic. Suppose, on the contrary, that M is not weakly holomorphic. Since

the kernel of ξ2−2κ is M !
2−2κ, we see that f is a non-zero cusp form in S2κ. Let {fi}1≤i≤ν

be a basis of S2κ consisting of normalized (afi(1) = 1, for all 1 ≤ i ≤ ν) Hecke eigenforms.

Then, we write f =
∑ν

i=1 αifi, where α
′
is are complex numbers. Without loss of generality,

we assume that α1 = 1 and |αi| ≤ 1, for all 2 ≤ i ≤ ν. Writing L(κ, f ⊗ ψd) into linear

sum of L(κ, fi ⊗ ψd) and using triangle inequality, we have

|L(κ, f ⊗ ψd)| ≥ |L(κ, f1 ⊗ ψd)| −
ν∑

i=2

|L(κ, fi ⊗ ψd)|.

The non-negativity of L(κ, fi ⊗ ψd) [Koh80, Corollary 2] will imply that

|L(κ, f ⊗ ψd)| ≥ L(κ, f1 ⊗ ψd)−
ν∑

i=2

L(κ, fi ⊗ ψd).

Now let ϵ > 0 and X be large. Then it follows from [GKS24, Theorem 4.1] that there are



Chapter 5. On traces of cycle integral 71

≫ X1−ϵ fundamental discriminants d with X < (−1)κd ≤ 2X such that

L(κ, f1 ⊗ ψd)−
ν∑

i=2

L(κ, fi ⊗ ψd) > 0.

Thus, we see from above that there are infinitely many fundamental discriminants d with

(−1)κd > 0 such that L(κ, f ⊗ ψd) ̸= 0. But this is a contradiction. Hence M is a weakly

holomorphic form.



72 Chapter 5. On traces of cycle integral



Chapter 6

Regularized inner products and

modular invariants for real

quadratic fields

In this chapter, we prove Theorem 7, Theorem 8, Theorem 9 and Corollary 4 contained

in Section 1.0.2 of the Introduction. The material in this chapter along with Theorem 7,

Theorem 8 , Theorem 9 and Corollary 4 are joint work with Balesh Kumar and appear in

the paper [KKb] which is communicated for publication.

Outline of the Chapter

The chapter is structured as follows. We first recall notations, definitions and properties

related to sesqui-harmonic Maass forms with examples such as Niebur Poincaré series and

its connection to other types of Poincaré series. We also describe the Fourier expansion

of such Poincaré series. Next, we discuss a suitable kernel function K(z, τ) that is a

generating function for the basis {jm}m≥0 of M !
0 and its properties. We also study an

integral of K(z, τ) in the variable z against the Niebur Poincaré series which turns out to

be a sesqui-harmonic Maass form of weight 2. In the next subsection, the notion of modular

surfaces is presented, which plays a key role in defining the regularized surface integral. In

the next subsection, we discuss the notion of binary quadratic forms, Hurwitz-Kronecker

class numbers, and the genus characters. Then in the subsequent sections, we prove

Theorem 8 , Theorem 7, Theorem 9 and Corollary 4.

6.1 Notations and Preliminaries

6.1.1 Sesqui-harmonic Maass form:

We recall that Γ be as in (2.1) and set z, τ ∈ H. Recall that ∆k and ξk are defined in

(2.3) and Section 2.0.1 respectively. Let f be a real-analytic function from H to C. Then
f is called a sesqui-harmonic Maass form (refer to Section 2.0.1) of weight k for Γ if the

following holds.

1. f |kA = f , for all A ∈ Γ, where |k is defined in (2.2).

2. ∆k,2(f) = 0, where ∆k,2 = ξk ◦∆k,

73
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3. f has at most linear exponential growth at all cusps.

The space of sesqui-harmonic Maass form of weight k for Γ is denoted by Hk,2. The

subspace of Hk,2 consisting of f that satisfies ∆k(f) = 0, is known as harmonic weak

Maass forms and is denoted by H !
k. Now we consider an infinite family of forms in H !

0.

Recall that Gm(z, s) be the Niebur Poincaré series defined in (2.16) of the Chapter 2. For

m ̸= 0, each Gm(z, s) has an analytic continuation to Re(s) > 1/2 (see p.98 [JKK14]) and

they satisfies

∆0Gm(z, s) = (s− s2)Gm(z, s).

Thus we obtain an infinite class of members Gm(z, 1) ∈ H !
0. We set

Fm(z, s) := (2π|m|1/2)−1Gm(z, s) (6.1)

The analytic and spectral theory of Fm(z, s) were studied in [DIT16a] (see, also [And22]).

Next for 0 ̸= m ∈ Z, define

ϕm(z, s) = (4πy)−1Msgn(m),s− 1
2
(4π|m|y)e(mx),

where Mr,s is the M -Whittaker function [MOS66, p. 311,313]. The function ϕm(z, s) is

an eigenfunction of ∆2, namely,

∆2ϕm(z, s) = s(1− s)ϕm(z, s).

Now define the Poincaré series

Pm(z, s) :=
∑

γ∈Γ∞\Γ̄

ϕm(z, s)|2γ.

The series Pm(z, s) converges [DIT16b, p.22] for Re(s) > 1 and is a Γ-invariant weight 2

function. We have the following.

Lemma 9. With the notations as above, we have

∂

∂z
F−m(z, s) =

|m|−1/2

i

Γ(s+ 1)

Γ(2s)
P−m(z, s).

Proof. The proof follows from the computations in the proof of [DIT16a, Lemma 5].

Recall Wr,s be the W -Whittaker function [MOS66, p. 311,313] and Jν be the J-Bessel

function [MOS66, Chapter 3]. The following lemma describe the explicit Fourier expansion

of P−m(z, s) from [DIT16b, Proposition 2] (see also [Mat18, Proposition 3]).
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Lemma 10. With the notations as above, we have

P−m(z, s) = (4πy)−1M−1,s− 1
2
(4π|m|y)e(−mx) + g−m,0(s)L−m,0(s)(−4π)−1y−s

+
∑
n ̸=0

g−m,n(s)L−m,n(s)(−4πy)−1Wsgn(n),s− 1
2
(4π|n|y)e(nx).

Here

gm,n(s) = Γ(2s)


2π
√

|m/n|
Γ(s+sgn(n)) if n ̸= 0,

4π1+s|m|s
(2s−1)Γ(s+1)Γ(s−1) if n = 0,

and

Lm,n(s) =


∑

c
K(m,n,c)

c J2s−1(
4π
√

|mn|
c ) if sgn(nm) > 0,∑

c
K(m,0,c)

c2s
if n = 0,∑

c
K(m,n,c)

c I2s−1(
4π
√

|mn|
c ) if sgn(nm) < 0.

Moreover, K(m,n, c) is the Kloosterman sum defined by

K(m,n, c) =
∑

a (mod c)

e

(
mā+ na

c

)
.

6.1.2 The kernel function and its properties:

Let j be the Klein’s j-invariant and K(z, τ) be the kernel function defined by

K(z, τ) :=
j′(τ)

j(z)− j(τ)
, (6.2)

where j′(z) = 1
2πi

d
dz j(z). This function transforms on Γ with weight 0 in z and weight 2

in τ . It plays many important roles in the theory of modular forms [AKN97, DIT11a].

Next, define g
(0)
1 (z) = E14(z)

∆(z) , where for an even integer k > 2, Ek(z) is the holomorphic

Eisenstein series of weight k for Γ and ∆(z) is the discriminant function of weight 12 for

Γ defined by

∆(z) =
E4(z)

3 − E6(z)
2

1728
.

Now for general n ≥ 1, define g
(0)
n (z) = n−1g

(0)
1 (z)|2T (n), where T (n) is the n-th Hecke

operator. Then we have the following.

Proposition 5. With the notations as above, we have

K(z, τ) = −
∑
n≥1

g(0)n (τ)e2πinz.

Moreover, we have g01(τ) = −j′1(τ).

Proof. We put k = 0 in [AKN97, Theorem 3] and use [DIT18, eq.(71)] to get

E14(τ)∆(τ)−1

j1(z)− j1(τ)
=
∑
n≥1

g(0)n (τ)e2πinz = −
∑
n≥0

jn(z)e
2πinτ = −K(z, τ).
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Moreover, from (6.2) and above, we have

K(z, τ) =
j′(τ)

j1(z)− j1(τ)
= − g01(τ)

j1(z)− j1(τ)
.

The proof now follows by comparing both sides of the above.

We now prove Proposition 6 which was considered by Andersen and Duke [AD20, p.1547].

It is mentioned in [AD20, p.1547] that the proof is based on an earlier result of Duke,

Imamoğlu and Tóth [DIT18, Lemma 1] which deals with the case of Eisenstein series. We

note that the proof of [DIT18, Lemma 1] is based on Stoke’s theorem and the exponential

decay of K(z, τ) in the variable z. However, the exponential decay of K(z, τ) is not

applicable in the proof of Proposition 6 because F−m(z, s) has exponential growth at the

cusp ∞. It appears that the proof of Proposition 6 is a bit delicate and makes use of

explicit Fourier expansions of K(z, τ) and F−m(z, s). Here we prove it for self contained

exposition.

Proposition 6. Let the notations be as above. Then we have

s(1− s)

2

∫
F
F−m(z, s)K(z, τ)

dxdy

y2
= −i ∂

∂τ
F−m(τ, s)− j′m(τ)

|m|1/2
, (6.3)

where F is the standard fundamental domain for Γ̄.

Proof. Since F−m(z, s) is an eigenfunction of ∆0 = −4y2 ∂
∂z̄

∂
∂z and −2idxdy = dzdz̄.

Therefore, to prove (6.3), it suffices to prove

−
∫
F

∂

∂z̄

∂

∂z
F−m(z, s)K(z, τ)dzdz̄ = − lim

Y→∞
δ→0

∫
FY \Bτ (δ)

∂

∂z̄

∂

∂z
F−m(z, s)K(z, τ)dzdz̄

= − ∂

∂τ
F−m(τ, s) + i

j′m
|m|1/2

,

where FY = {x + iy ∈ F : y ≤ Y } and Bτ (δ) = {z ∈ C : |z − τ | < δ}. Since K(z, τ) is

holomorphic in FY \Bτ (δ). Therefore, we have∫
FY \Bτ (δ)

∂

∂z̄

(
∂

∂z
F−m(z, s)

)
K(z, τ)dzdz̄ =

∫
FY \Bτ (δ)

∂

∂z̄

(
∂

∂z
F−m(z, s)K(z, τ)

)
dzdz̄.

Let τ be an interior point of F . Then for Y sufficiently large and δ small enough, Stoke’s

theorem will imply that the above equals

−
∫
∂FY

∂

∂z
F−m(z, s)K(z, τ) dz −

∫
∂Bτ (δ)

∂

∂z
F−m(z, s)K(z, τ) dz,

where ∂FY is oriented counter-clockwise and ∂Bτ (δ) is oriented clockwise. Now to
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complete the proof, we only need to show that

lim
Y→∞

∫
∂FY

∂

∂z
F−m(z, s)K(z, τ) dz = i|m|−1/2j′m(τ), (6.4)

lim
δ→0

∫
∂Bτ (δ)

∂

∂z
F−m(z, s)K(z, τ) dz = − ∂

∂τ
F−m(τ, s). (6.5)

We first prove (6.4):

Since ∂
∂zF−m(z, s)K(z, τ) is a modular function of weight 2 (in the variable z), so

integrating it over the boundary ∂FY will be equivalent to integrating only on the

horizontal line 1
2 + iY to −1

2 + iY , as integration along the vertical straight lines and

on the arc will cancel each other. Therefore, we have

∫
∂FY

∂

∂z
F−m(z, s)K(z, τ) dz =

∫ − 1
2
+iY

1
2
+iY

∂

∂z
F−m(z, s)K(z, τ) dz.

Now we use Lemma 9, Lemma 10 and Proposition 5, so that r.h.s. of the above equals

−|m|−1/2

i

Γ(s+ 1)

Γ(2s)

∫ − 1
2
+iY

1
2
+iY

∑
l≥1

g
(0)
l (τ)e2πilz

[(4πY )−1M−1,s− 1
2
(4π|m|Y )e(−mx)

+g−m,0(s)L−m,0(s)(−4π)−1Y −s +
∑
n̸=0

g−m,n(s)L−m,n(s) (6.6)

× (−4πY )−1Wsgn(n),s− 1
2
(4π|n|Y )e(nx)

]
dz.

Now we evaluate the term by term integral. One can see that the only diagonal terms in

the above integral survive, however, the off-diagonal terms vanish due to the orthogonality

of exponentials. After simplifying, the above equals

−|m|−1/2

i

Γ(s+ 1)

Γ(2s)

[
−g(0)m (τ)(4πY )−1M−1,s− 1

2
(4π|m|Y )e−2πmY −

∑
l>0

g
(0)
l (τ)g−m,−l(s)

× L−m,−l(s)(−4πY )−1W−1,s− 1
2
(4π| − l|Y )e−2πlY

]
.

Since, we have from [DIT16b, eq. (2.8)]

W−1,s− 1
2
(4πly) ∼ (4πly)−1e−2πly as y → ∞.

Therefore, we see that for l > 0

lim
y→∞

(−4πy)−1W−1,s− 1
2
(4π| − l|y)e−2πly = 0,

and hence

lim
y→∞

∑
l>0

g
(0)
l (τ)g−m,−l(s)L−m,−l(s)(−4πy)−1W−1,s− 1

2
(4π| − l|y)e−2πly = 0. (6.7)



78 Chapter 6. Regularized inner products and modular invariants

Further, we have from [Bru02, eq. (1.25)]

M−1,s− 1
2
(4π|m|y) = Γ(2s)

Γ(s+ 1)
e2πmy(4πmy)

(
1 +O(y−1)

)
as y → ∞.

Thus from the above we deduce, as Y → ∞

|m|−1/2

i

Γ(s+ 1)

Γ(2s)
g(0)m (τ)(4πY )−1M−1,s− 1

2
(4π|m|Y )e−2πmY =

|m|−1/2

i
mg(0)m (τ)

(
1 +O(Y −1)

)
.

Hence from the above, we get

lim
Y→∞

|m|−1/2

i

Γ(s+ 1)

Γ(2s)
g(0)m (τ)(4πY )−1M−1,s− 1

2
(4π|m|Y )e−2πmY =

|m|−1/2

i
mg(0)m (τ).

Using Proposition 5 and j′1(z)|2T (n) = j′n(z), we see that

g(0)n (z) = n−1g
(0)
1 (z)|2T (n) = −n−1j′1(z)|2T (n) = −n−1j′n(z).

Thus using above, we get

lim
Y→∞

|m|−1/2

i

Γ(s+ 1)

Γ(2s)
g(0)m (τ)(4πY )−1M−1,s− 1

2
(4π|m|Y )e−2πmY = i|m|−1/2j′m(τ). (6.8)

Using (6.7) and (6.8) in (6.6), we see that (6.4) follows.

Now we prove (6.5):

Using Cauchy’s residue theorem, we have∫
∂Bτ (δ)

∂

∂z
F−m(z, s)K(z, τ) dz = −2πi Resz=τ

∂

∂z
F−m(z, s)K(z, τ),

where Resz=τ denotes the residue at z = τ . Since K(z, τ) has a simple pole at z = τ with

residue (2πi)−1 [DIT11a, below eq. (6.3)], Therefore, we get from above that∫
∂Bτ (δ)

∂

∂z
F−m(z, s)K(z, τ) dz = − ∂

∂τ
F−m(τ, s).

Now we see that (6.5) follows and hence the proof of proposition follows.

6.1.3 Binary quadratic forms, class numbers and the Genus characters:

Here we briefly recall binary quadratic forms, their connection to the narrow class group of

a quadratic field and the associated genus character discussed in Sections 2.0.2 and 2.0.3.

A discriminant is any non-zero integer d ≡ 0, 1 (mod 4). We say that a discriminant d

is fundamental if d is the discriminant of a quadratic field. Let Qd be the set of integral

binary quadratic forms Q(x, y) = [a, b, c] = ax2 + bxy + cy2 of discriminant d = b2 − 4ac.

When d < 0, we assume that a > 0. The modular group Γ̄ acts on the set Qd as in (2.8).

The set of equivalence classes Γ̄\Qd forms a finite and those classes consisting of primitive

forms make up an abelian group of order hd (class number). Let Cld and Cl+d be the class
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group and narrow class group of Q(
√
d) defined in Section 2.0.2. For d > 0 fundamental,

there is a correspondence between Γ̄\Qd and Cld, which is given by

[a, b, c] 7→ wZ+ Z, w =
−b+

√
d

2a
. (6.9)

Further, if [a, b, c] is chosen in its class so that a > 0 and d to be a fundamental

discriminant, then the above gives a bijection between Γ̄\Qd and Cl+d . The isotropy

group Γ̄w = {γ ∈ Γ̄ : γw = w} consists of all

γ = ±

(
t+bu
2 cu

−au t−bu
2

)
, (6.10)

where (t, u) is an integral solution to the Pell’s equation t2− du2 = 4. If d < 0, then Γ̄w is

trivial, unless d = −3,−4, in which case Γ̄w has order 3 or 2, respectively. If d > 0, then

Γ̄w is the infinite cyclic group with generator γ = γw in (6.10) coming from t, u > 0 with

t minimal.

Recall that Hurwitz-Kronecker class numbers H(d) defined in Section 2.0.2, for a

discriminant d < 0, by

H(d) :=
∑

Q∈Γ̄\Qd

1

|Γ̄Q|
,

where Γ̄Q denotes the stabilizer of Q in Γ̄. If d < 0 is fundamental, then it follows that

H(d) = hd
ωd
, where 2ωd is the number of roots of unity in Q(

√
d).

Let d, D be discriminants with D fundamental such that dD > 1 is also a discriminant.

Recall for discriminants d,D with D fundamental and dD > 1, χD be the generalized

genus character defined on Γ̄\QdD ( see eq. (2.12) in Section 6.1.3).

6.1.4 Geometric invariant and regularized surface integral:

Corresponding to a discriminant dD where d and D are negative fundamental

discriminants, it turns out that the traces of cycle integrals of jm over closed geodesic

vanishes. In order to provide a better geometric interpretation in this case, Andersen

and Duke introduced the (regularized) surface integral of jm. These surfaces integrals

considered over the hyperbolic surface FA associated with each ideal class A, in the narrow

class group associated to dD. To define the regularized surface integral over FA, we must

briefly describe the construction of FA from [DIT16a].

Let K be a real quadratic field. Then K = Q(
√
d), where d > 1 is the discriminant of K.

Let σ : K → K be the non-trivial Galois automorphism defined in Section 2.0.2. Recall

from Section 2.0.2 that Cl+d denotes the narrow class group of K of order h+d .

Let A ∈ Cl+d be an ideal class. Then A contains fractional ideals of the form wZ+Z ∈ A,

where w ∈ K is such that w > wσ. The minus (or backward) continued fraction of w is

given by

w = [a0, a1, a2, · · · ] = a0 −
1

a1 − 1
a2− 1

a3−···

,
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where aj ∈ Z with aj ≥ 2 for j ≥ 1. This continued fraction is eventually periodic and has

a unique primitive cycle ((n1, . . . , nℓ)) of length ℓ, only defined up to cyclic permutations.

The continued fraction is purely periodic precisely when

0 < wσ < 1 < w.

Such a w is called reduced [Zag75a]. Each ideal class A ∈ Cl+d contains wZ+Z ∈ A with w

reduced. Let Sw be the oriented hyperbolic geodesic in H from wσ to w. Then we denote

by CA, the closed geodesic obtained by projecting Sw to Γ̄\H. The geodesic CA does not

depend on the choice of reduced w. One can realize CA in H as the geodesic from some

point z on Sw to γw(z), where γw is the hyperbolic element which is a generator of the

stabilizer of w in Γ̄ defined in (6.10).

The cycle ((n1, . . . , nℓ)) characterizes A and it is a complete class invariant. The length

ℓ = ℓA and the sum m = mA = n1 + . . . + nℓ are also other invariants. The cycle of A−1

is ((nℓ, . . . , n1)), which is just the reverse cycle of A.

Let wZ+Z be the fractional ideal in A with w reduced. Then with the notations as above,

define

Sk := T (n1+···+nk)ST−(n1+···+nk),

where T = ±

(
1 1

0 1

)
and S = ±

(
0 −1

1 0

)
are generators of Γ̄. Now define

ΓA := ⟨S1, . . . , Sℓ, T (n1+···+nℓ)⟩.

This group is an infinite-index (i.e. thin) subgroup of Γ̄. Let NA be the Nielsen region

of Γ̄A: the smallest nonempty Γ̄A-invariant open convex subset of H. Then, the surface

FA is defined as Γ̄A\NA. It is proved in [DIT16a, Theorem 1] that the surface FA has

genus 0, contains ℓ points of order 2, has one cusp and one boundary component. The

boundary ∂FA of FA is a simple closed geodesic whose image in F is CA. The length of

∂FA is 2 log ϵd and the area of FA is πℓA. We note that a different choice of wZ+ Z ∈ A

with reduced w yields a conjugate (by a translation) subgroup Γ̄A in Γ̄.

When dD is fundamental and if Q in Γ̄\QdD corresponds to A ∈ Cl+dD via (6.9), then

define CQ := CA, FQ := FA and mQ := mA. It extends to arbitrary discriminants via

CδQ = CQ and FδQ = FQ.

Now 1 define [AD20, p. 1540] the regularized surface integral of jm as follows. For each

Y ≥ 1, let FA,Y = FA ∩ {z : Im(z) ≤ Y }. Define∫
FA

jm(z)
dxdy

y2
:= lim

Y→∞

∫
FA,Y

jm(z)
dxdy

y2
. (6.11)

On the other hand, Andersen and Duke [AD20, p. 1544] introduced another equivalent

regularization that does not depend on the limiting process. We now describe it here. For

1Back to Theorem 7 and Theorem 8.
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each quadratic form Q ∈ QdD, define

νQ(z) :=

∫
CQ

K(z, τ)dτ. (6.12)

It is explained in [DIT18, p. 16] that for z not on CQ, the value of νQ(z) is an integer that

counts with signs the number of crossings that a path from i∞ to z in F makes with CQ.

This function is Γ-invariant and is identically zero [AD20, p. 1544] for Im(z) sufficiently

large.

We note that the functions jm has exponential growth towards the cusp, so the integral of

jm over the fundamental domain F does not converge. However, it can be seen that the

integral ∫
F
jm(z)νQ(z)

dxdy

y2
(6.13)

converges. We prove in Lemma 11 that (6.11) and (6.13) essentially agree.

Lemma 11. Let the notations be as above. Then we have∫
F
jn(z)νQ(z)

dxdy

y2
= −

∫
FQ

jn(z)
dxdy

y2
− 8πmQσ(n).

Proof. From [DIT18, p. 17], we know that the hyperbolic surface FQ associated with Q

is a partial cover of F (standard fundamental domain of Γ) with mQ− νQ(z) points of FQ

over z ∈ F . Thus we have∫
FQ,Y

jn(z)
dxdy

y2
=

∫
FY

jn(z)(mQ − νQ(z))
dxdy

y2

= mQ

∫
FY

jn(z)
dxdy

y2
−
∫
FY

jn(z)νQ(z)
dxdy

y2
. (6.14)

First we compute
∫
FY

jn(z)
dxdy
y2

. To do so, we note that ξ2(E
∗
2) =

3
π , where

E∗
2(z) = 1− 24

∑
n≥1

σ(n)qn − 3

πy

is the non-holomorphic Eisenstein series of weight 2 for Γ. Now∫
FY

jn(z)
dxdy

y2
=

π

3

∫
FY

jn(z)ξ2(E∗
2)
dxdy

y2

=
π

3

∫ 1
2
+iY

− 1
2
+iY

jn(z)E
∗
2(z)dz,

where in the last equality, we have used [DIT16b, Lemma 1] and z = x + iY with −1
2 ≤

x ≤ 1
2 . Now inserting the Fourier expansion of jn and E∗

2 in the above, one can see that

the above integral survives only corresponding to the constant term (the term free from
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qm, m ̸= 0). After evaluating the integral, we get∫
FY

jn(z)
dxdy

y2
=
π

3
(−24σ(n)) = −8πσ(n). (6.15)

Since νQ(z) is identically zero [AD20, p. 1544] for Im(z) sufficiently large. So for

sufficiently large Y , we get∫
FY

jn(z)νQ(z)
dxdy

y2
=

∫
F
jn(z)νQ(z)

dxdy

y2
. (6.16)

Using (6.15) and (6.16) in (6.14), we get∫
FQ,Y

jn(z)
dxdy

y2
= −8πmQσ(n)−

∫
F
jn(z)νQ(z)

dxdy

y2
.

Taking the limit as Y → ∞ in the above, we see that the lemma now follows from

(6.11).

Let IMd be the twisted d-th Millson theta lift considered on p.15 in Section 1.0.1, Trd,D(.) be

the trace and ⟨., .⟩ be the regularized inner product defined in (1.21) and (1.20) respectively.

6.2 Proof of Theorem 8

Recall the traces of cycle integrals Trd,D(.) defined in (1.21) in the Section 1.0.2 of the

Introduction. We have from [ANS18, p. 862],

IMD (jn/2) =
∑
m|n

(
D

m

)
f n2

m2D
. (6.17)

Using [ANS21, Proposition 1.9]1, we have

−1

3

∑
m|n

(
D

m

)
⟨f n2

m2D
, fd⟩ =

∑
m|n

(
D

m

)
Tr n2

m2D,d
(J̃)

In view of Theorem 9, the above becomes

−1

3

∑
m|n

(
D

m

)
⟨f n2

m2D
, fd⟩ = Trd,D

(
2i
∂

∂z
Ĵn
)
− 96πH(d)

∑
m|n

(
D

m

)
H

(
n2

m2
D

)
. (6.18)

Now a comparison of seed function in [JKK14, eq. (2.4)] and [DIT16a, eq. (8.1)], and

then using [JKK14, eq. (2.10)], we get

∂

∂z

(
2π

√
n
∂

∂s
F−n(z, s)

∣∣∣∣
s=1

)
=

∂

∂z
Ĵn(z).

1Since we are using the regularized inner product defined in (1.20), therefore, the constant −1/3 reflects
in place of −1/2.
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This implies that

−Trd,D

(
2i
∂

∂z
Ĵn
)

= −Trd,D

[
2i
∂

∂z

(
2π

√
n
∂

∂s
F−n(z, s)

∣∣∣∣
s=1

)]
= −Trd,D

[
2i
∂

∂s

(
2π

√
n
∂

∂z
F−n(z, s)

∣∣∣∣
s=1

)]
. (6.19)

Now we follow [AD20, proof of (2-3)] to interpret r.h.s. of the above. Define FY :=

{x + iy ∈ F : y ≤ Y }. For Q ∈ QdD, let Y be sufficiently large so that νQ(z) = 0 for

Im(z) > Y and thus the image of CQ in F is contained in FY . Then for Re(s) > 1, we

have ∫
F
F−n(z, s)νQ(z)

dxdy

y2
=

∫
CQ

∫
FY

F−n(z, s)K(z, τ)
dxdy

y2
dτ.

The function F−n(z, s) satisfies

∆0F−n(z, s) = s(1− s)F−n(z, s).

So by Proposition 6, we have

s(1− s)

2

∫
FY

F−n(z, s)K(z, τ)
dxdy

y2
= −i ∂

∂τ
F−n(τ, s)−

j′n(τ)

|n|1/2
.

It follows from above that

s(1− s)

2

∫
F
F−n(z, s)νQ(z)

dxdy

y2
=

∫
CQ

(
−i ∂
∂τ
F−n(τ, s)−

j′n(τ)

|n|1/2

)
dτ.

Now differentiating above with respect to s and setting s = 1, we deduce that∫
F
F−n(z, 1)νQ(z)

dxdy

y2
= 2

∂

∂s

∫
CQ

i
∂

∂z
F−n(z, s)dz

∣∣∣∣
s=1

.

In view of (6.19), the above implies that

Trd,D

(
2i
∂

∂z
Ĵn
)

= 2π
√
n

∑
Q∈Γ̄\QdD

χD(Q)

∫
F
F−n(z, 1)νQ(z)

dxdy

y2
.

We use [AD20, p. 1545] to write

2π
√
nF−n(z, 1) = jn(z) + 24 σ(n).

It follows that

Trd,D

(
2i
∂

∂z
Ĵn
)

=
∑

Q∈Γ̄\QdD

χD(Q)

∫
F
(jn(z) + 24 σ(n))νQ(z)

dxdy

y2
.
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The above can also be written as

Trd,D

(
2i
∂

∂z
Ĵn
)

=
∑

Q∈Γ̄\QdD

χD(Q)

∫
F
jn(z)νQ(z)

dxdy

y2

+ 24 σ(n)
∑

Q∈Γ̄\QdD

χD(Q)

∫
F
νQ(z)

dxdy

y2
.

Now we use [DIT18, Corollary 4] (see also [AD20, p. 1545]) in the above to get

Trd,D

(
2i
∂

∂z
Ĵn
)

=
∑

Q∈Γ̄\QdD

χD(Q)

∫
F
jn(z)νQ(z)

dxdy

y2
+ 96πσ(n)

hDhd
ωDωd

.

Using above in (6.18), we get

1

12π

∑
m|n

(
D

m

)
⟨f n2

m2D
, fd⟩−24H(d)

∑
m|n

(
D

m

)
H

(
n2

m2
D

)

=− 1

4π

∑
Q∈Γ̄\QdD

χD(Q)

∫
F
jn(z)νQ(z)

dxdy

y2
− 24σ(n)

hDhd
ωDωd

.

(6.20)

The proof now follows by using Lemma 11 in (6.20) and for a fundamental discriminant

d, H(d) = hd
ωd
.

Proof of Theorem 7:

From (6.17), we have IMD (j1/2) = fD. Now, the theorem follows from Theorem 8.

6.3 Proof of Theorem 9

Recall the traces of cycle integrals Trd,D(.) defined in (1.21) in the Section 1.0.2 of the

Introduction. From [DIT16a, Proposition 5], we have

6
√
π|dD|3/4|m|

∑
n|m
n>0

n−3/2

(
D

n

)
Φ+

(
d,
m2

n2
D,

s

2
+

1

4

)
= Trd,D

(
i
∂

∂z
Fm(z, s)

)
, (6.21)

where

Φ+

(
d,
m2

n2
D,

s

2
+

1

4

)
=

(
m2

n2
dD

)− 1
2 2s−

3
2Γ2( s+1

2 )

3
√
πΓ(s)

∑
4|c,c>0

K+(d, m
2

n2 D; c)

c

× Js− 1
2

(
4π

∣∣∣∣mn
∣∣∣∣
√
dD

c

)
,
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and

K+(d,
m2

n2
D; c) = (1− i)βc

∑
a (mod c)

( c
a

)
ϵae

(
ma+ nā

c

)
is the constant times weight 1/2 Kloosterman sum with βc := 1 if c/4 is even and βc := 1

otherwise. Here ā satisfies aā ≡ 1 (mod c).

We get from the above

Trd,D

(
i
∂

∂z
Fm(z, s)

)
=

(dD)
1
4Γ2( s+1

2 )

2−s+ 1
2Γ(s)

∑
n|m
n>0

n−
1
2

(
D

n

) ∑
4|c,c>0

K+(d, m
2

n2 D; c)

c
(6.22)

× Js− 1
2

(
4π

∣∣∣∣mn
∣∣∣∣
√
dD

c

)
.

We use [DIT16a, eq. (8.1)] and [JKK14, eq. (2.4)]

Gm(z, s) = 2π|m|
1
2Fm(z, s)

to write

Trd,D

(
i
∂

∂z
Gm(z, s)

)
=

π|m|
1
2 (dD)

1
4Γ2( s+1

2 )

2−s− 1
2Γ(s)

∑
n|m
n>0

n−
1
2

(
D

n

) ∑
4|c,c>0

K+(d, m
2

n2 D; c)

c

× Js− 1
2

(
4π

∣∣∣∣mn
∣∣∣∣
√
dD

c

)
. (6.23)

It follows from [KK24, eq. 16]

−(dD)
1
4

√
2π

∣∣∣∣mn
∣∣∣∣1/2b|d|(m2

n2
|D|, s

2
+

1

4

)
=
∑

4|c,c>0

K+(d, m
2

n2 D; c)

c
Js− 1

2

(
4π

∣∣∣∣mn
∣∣∣∣
√
dD

c

)
.

Using above in (6.23), we get for m > 0

Trd,D

(
i
∂

∂z
G−m(z, s)

)
=

−(dD)
1
2Γ2( s+1

2 )

2−sΓ(s)

∑
n|m
n>0

∣∣∣∣mn
∣∣∣∣ (Dn

)
b|d|

(
m2

n2
|D|, s

2
+

1

4

)
, (6.24)

where bm(n, s) are Fourier coefficients of Maass Poincaré series F+
m,3/2(z, s) constructed

in [JKK13]. It follows from [JKK13, Proposition 5.1] that F+
|d|,3/2(z, 3/4) = 0. Hence, it

implies that

Trd,D

(
i
∂

∂z
G−m(z, s)

) ∣∣∣∣
s=1

= 0.
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Now, we take the derivative of (6.24) with respect to s and evaluate at s = 1. This along

with the above will imply that

−1

2

∑
n|m
n>0

∣∣∣∣mn
∣∣∣∣ (Dn

)
∂

∂s
b|d|

(
m2

n2
|D|, s

) ∣∣∣∣
s=3/4

=
(dD)−

1
2

2
Trd,D

(
i
∂

∂z

∂

∂s
G−m(z, s)

∣∣∣∣
s=1

)
.

(6.25)

It follows from [JKK13, Theorem 5.3] (see, also [KK24, Proposition 2.1]) that

4
√
dD

∣∣∣∣mn
∣∣∣∣ ∂∂sb|d|

(
m2

n2
|D|, s

) ∣∣∣∣
s=3/4

+ 192πH(d)H

(
m2

n2
D

)

is the m2

n2 |D|-th Fourier coefficients of the mock modular form H+
|d|,3/2(τ) whose shadow is

fd. And by Serre duality, there exists a unique mock modular form

gd(τ) = −16πH(d) +
∑

n>0,n≡0,3 (mod 4)

(4
√

|d|n ∂
∂s
b|d| (n, s) |s=3/4 + 192πH(d)H(n)) qn

= −16πH(d) +
∑

n<0,n≡0,1 (mod 4)

b(d, n)q|n| (6.26)

of weight 3/2 for Γ0(4) with shadow fd. Therefore, from [ANS21, p. 2305], we have

−2Trm2

n2 D,d
(J̃) = 4

√
dD

∣∣∣∣mn
∣∣∣∣ ∂∂sb|d|

(
m2

n2
|D|, s

) ∣∣∣∣
s=3/4

+ 192πH(d)H

(
m2

n2
D

)
,

where ξ2(J̃) = j1 = j − 744 and Trm2

n2 D,d
(J̃) is as defined in (1.21). One can deduce from

above that∑
n|m

(
D

n

)
Trm2

n2 D,d
(J̃) = −2

√
dD
∑
n|m

(
D

n

) ∣∣∣∣mn
∣∣∣∣ ∂∂sb|d|

(
m2

n2
|D|, s

) ∣∣∣∣
s=3/4

−96πH(d)
∑
n|m

(
D

n

)
H

(
m2

n2
D

)
.

Now the theorem follows using the above expression and (1.12) in (6.25).

Proof of Corollary 4:

Putting m = 1 in Theorem 9 along with [ANS21, Proposition 1.9]2, proves the corollary.

2We consider the regularized inner product defined in (1.20), therefore, the constant −3 reflects in place
of −2.



Chapter 7

Arithmetic of regularized inner

products and Rohrlich-Jensen type

divisor sums for j-invariant

In this chapter, we prove Theorem 11, Corollary 5, Corollary 6, Corollary 8, Corollary

9, Corollary 10, Corollary 11 and Corollary 12 from Section 1.0.2 of the Introduction.

The material in this chapter along with Theorem 11, Corollary 5, Corollary 6, Corollary

8, Corollary 9, Corollary 10, Corollary 11 and Corollary 12 are joint work with Balesh

Kumar and appear in the paper [KKa] which is communicated for publication.

Outline of the chapter

The layout of the chapter is as follows. In the next section, we define notations, recall

definition and valence formula for meromorphic modular forms. We also recall the real

analytic Eisenstein series and the Kronecker limit formula in this section, which is used

to study the properties of the weight 0 sesqui-harmonic Maass form E(z). The function

E(z) is a preimage of weight 2 completed Eisenstein series E∗
2 under ξ0. Further, the

Fourier expansion of E(z) is studied which is used to compute the regularized inner

product of j′n with E∗
2 . Next, we recall the Niebur Poincaré series and automorphic Green’s

function which is used to study the weight 0 sesqui-harmonic Maass form gz and its Fourier

expansion. In addition, we discuss the elliptic expansions of j′n and gz. Finally, in this

section, we discuss the definition of regularized inner product and related results using

Stoke’s theorem. Then in Section 7.2, we provide proof of Theorem 11 and Corollaries

5-12.

7.1 Preliminaries

The set of all complex numbers is denoted by C and H denotes the complex upper

half-plane. The elements in H are denoted by z = x + iy with y > 0. For any z ∈ H,

we write q := e(z) = e2πiz. Recall ξk := 2iyk ∂
∂z̄ be the differential operator defined by

Bruinier and Funke [BF04].

The modular group Γ := SL2(Z) acts on H via the fractional linear transformation γz =

az+b
cz+d , for γ =

(
a b

c d

)
∈ Γ.

87
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7.1.1 Meromorphic modular forms

Let k be an integer. Then a function f defined from H to C is called a meromorphic

modular form of weight k for Γ if

1. f is meromorphic on H,

2. f(γz) = (cz + d)kf(z), for all γ ∈ Γ,

3. f is meromorphic at the cusp i∞.

If w ∈ H, we denote by ordw(f) the order of the zero or pole of f at w. The poles

are considered as zeros of negative order; in other words, it is the unique integer v such

that f(z)/(z − w)v is holomorphic and non-zero at w. If f(z) = g(e2πiz), we will set

ordi∞(f) = ord0(g).

One can see that if f is modular and γ ∈ Γ, then ordγw(f) = ordw(f), so that ordw(f)

depends only on the class of w in Γ\
(
H ∪ P1(Q)

)
.

We denote by ord(w), the order of the isotropy group of w ∈ H in PSL2(Z). It turns

out [CS17, Theorem 4.3.2] that ord(w) = 1 except if w is Γ-equivalent to i, in which case

ord(w) = 2, or to ρ = e2πi/3, in which case ord(w) = 3. We have the following fundamental

formula [CS17, Theorem 5.6.1].

Theorem 15 (Valence formula). Let f be a non-zero meromorphic modular form of weight

k for Γ. Then we have

ordi∞(f) +
∑

w∈Γ\H

ordw(f)

ord(w)
=

k

12
.

7.1.2 Real-analytic Eisenstein series

For Re(s) > 1 and z ∈ H, define the real-analytic Eisenstein series by

E(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)s,

where Γ∞ :=

{
±

(
1 n

0 1

)
: n ∈ Z

}
is the stabilizer of the cusp i∞. It turns out that the

function s 7→ E(z, s) has a meromorphic continuation to the whole complex plane C with

a simple pole at s = 1 of residue 3
π . In fact, we have the following result from [Sie80,

Theorem 1, p. 14] (see also [JST16, Theorem 12]).

Lemma 12 (Kronecker’s limit formula). As s→ 1, we have

E(z, s) =
3

π(s− 1)
− 1

2π
log(|∆(z)|Im(z)6) + C +O(s− 1),

where C = 6(1−12ζ ′(−1)−log(4π))/π with ζ ′(·) is the derivative of Riemann zeta function

ζ(·) and ∆(z) := q
∏∞

n=1(1− qn)24 is the discriminant function.
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The Kronecker’s limit formula has many classical and recent applications, see for instance,

Ramachandra [Ram64], a beautiful paper by Duke, Imamoğlu and Tóth [DIT18] and

references therein.

In view of the above lemma, define [BK20, (2.4)]

E(z) := lim
s→1

(
4πE(z, s)− 12

s− 1

)
+ C,

where

C = −24γ + 24 log(2) + 144
ζ ′(2)

π2
,

with γ the Euler’s constant. The following expression of E is useful in our context.

Lemma 13. Let the notations be as above. Then

E(z) = −2 log |Im(z)6∆(z)|.

Proof. It follows from Lemma 12 that

lim
s→1

(
4πE(z, s)− 12

s− 1

)
= −2 log |Im(z)6∆(z)|+ 4

(
6− 72ζ ′(−1)− 6 log(4π)

)
.

Thus from above, we get

E(z) = −2 log |Im(z)6∆(z)|+4
(
6−72ζ ′(−1)−6 log(4π)

)
+
(
−24γ+24 log(2)+144

ζ ′(2)

π2
)
.

By comparing the two expressions of Glaisher-Kinkelin constant from [Mor13, p. 2466],

we get

ζ ′(2) =
π2

6

(
γ + log(2π)− 1 + 12ζ ′(−1)

)
.

Using the above expression of ζ ′(2) in E(z), one can see after simplifying that the lemma

follows.

The function E(z) has a Fourier expansion [BK20, Lemma 4.3 (3)] of the shape

E(z) =
∑
m≥1

c++
E (m)qm + 4πy +

∑
m≤−1

c+−
E (m)W0(2πmy)q

m − 12 log y, (7.1)

where the coefficients c++
E (m), c+−

E (m) ∈ C and W0(2πmy) = e4πmy (see [BK20, p. 7]).

Recall σ1(m) is the sum of positive divisors ofm. We need the following explicit description

of these coefficients.

Lemma 14. Let the notations be as above. Then for m ≥ 1,

c++
E (m) = 24

σ1(m)

m

and for m ≤ −1, we have

c+−
E (m) = −24

σ1(−m)

m
.
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Proof. From Lemma 13, we have, for z = x+ iy

E(z) = −2 log |y6∆(z)|

= −12 log(y)− 2 log |∆(z)|

= −12 log(y)− 48 log |η(z)|,

where ∆(z) = η(z)24 with η the Dedekind eta function. We use [DIT18, p. 6] to rewrite

the above

E(z) = −12 log(y) + 48

Re
∑

l≥1

l−1σ1(l)q
l

+
πy

12


= −12 log(y) + 4πy + 24

∑
l≥1

l−1σ1(l)q
l +
∑
l≥1

l−1σ1(l)ql


= −12 log(y) + 4πy + 24

∑
l≥1

l−1σ1(l)q
l − 24

∑
l≤−1

l−1σ1(−l)q−l.

Rewrite q−l = e2πilxe2πly = qle4πly = ql W0(2πly), where W0(2πly) = e4πly follows from

[BK20, p. 7]. Thus we get

E(z) = −12 log(y) + 4πy − 24
∑
l≤−1

l−1σ1(−l)W0(2πly)q
l + 24

∑
l≥1

l−1σ1(l)q
l.

Now the lemma follows from comparing the above expansion of E(z) from (7.1).

Next recall the completed Eisenstein series E∗
2(z) (see (1.15)) by

E∗
2(z) := 1− 24

∑
m≥1

σ1(m)qm − 3

πy
. (7.2)

The function E∗
2 is a harmonic Maass form of weight 2. The function E(z, s) is closely

related to E∗
2 via the constant term in the Laurent expansion of the analytic continuation

of ξ0(E(z, s)) around s = 1. We refer to [BK20, Lemma 2.4] for these properties of E(z, s)

and E∗
2 . Moreover, from [BK20, (3.18)], we have

ξ0(E) = 4πE∗
2 . (7.3)

Recall j be the Klein’s modular invariant with the q-expansion given as in (1.1) and

j1 := j − 744. For n ≥ 1, recall jn be the family given in (1.10) which is defined by

jn := j1|Tn, where Tn is the nth Hecke operator. Define j
′
n(z) =

1
2πi

d
dz jn(z). We also need

the following.

Proposition 7. Let the notations be as above. Then

⟨j′n, E∗
2⟩ = − 6

π
σ1(n).
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Proof. To prove it, we start to compute

⟨j′n, E∗
2⟩T =

1

4π
⟨j′n, ξ0(E)⟩T

=
1

4π
⟨ξ0(E), j′n⟩T

=
1

4π

∫
FT

ξ0(E)(z)j′n(z)y2
dxdy

y2

Since ξ2(j
′
n) = 0, therefore, by applying Lemma 17, we get

⟨j′n, E∗
2⟩T = − 1

4π

∫
∂FT

E(z)j′n(z)dz,

where the boundary ∂FT is oriented counter-clockwise. Since the integral along the

straight lines and semi-circle are identified by matrices in SL2(Z) with opposite orientation

and they get canceled. Thus one needs to compute the contribution of the above integral

along the boundary near i∞ {
x+ iT : −1

2
≤ x ≤ 1

2

}
. (7.4)

Thus, we get

⟨j′n, E∗
2⟩T =

1

4π

∫ 1
2
+iT

− 1
2
+iT

E(z)j′n(z) dz.

Now we use the Fourier expansion of j′n and E from (7.14) and Lemma 14 in the above,

we see that only constant term survives. Thus, we get

⟨j′n, E∗
2⟩T =

1

4π

−24σ1(n) + 24
∑
l≥1

ajn(l)σ1(l)W0(−2πlT )

 .
Since it follows from [BK20, Lemma 2.3] that

lim
T→∞

W0(−2πlT ) = 0,

Thus we get from above

⟨j′n, E∗
2⟩ = lim

T→∞
⟨j′n, E∗

2⟩T = − 6

π
σ1(n).
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7.1.3 Niebur Poincaré series

We next recall the Niebur Poincaré series and its properties. For 0 ̸= l ∈ Z and Re(s) > 1,

define

Fl(z, s) :=
∑

γ∈Γ∞\Γ

φl,s(γz),

where

φl,s(z) := y
1
2 Is− 1

2
(2π|l|y)e2πilx.

Here Is is the I-Bessel function [MOS66, Chapter 3] of order s. We note that above

defined Niebur Poincaré series is 2π|l|1/2 times Gm(z, s) defined in (2.16). It follows from

[Nie73, Theorem 5] that the function s 7→ Fl(z, s) have a meromorphic continuation to

C and do not have a pole at s = 1. Further, for any s with Re(s) sufficiently large, the

function z 7→ Fl(z, s) converges absolutely and locally uniformly. Since the functions φl,s

are eigenfunctions under ∆0 with eigenvalue s(1− s), one can see that Fl(z, s) is also an

eigenfunction under ∆0 with eigenvalue s(1−s). Via meromorphic continuation of Fl(z, s),

one can obtain

∆0(Fl(z, s)) = s(1− s)Fl(z, s)

for any s at which Fl(z, s) does not have a pole. Taking s = 1, one can in particular

construct harmonic Maass forms. In fact, it follows from the proof of [Nie73, Theorem 6]

that for l ≥ 1, we have

2π
√
lF−l(z, 1) = jl(z) + 24σ1(l), (7.5)

where σ1(l) is the sum of positive divisors of l.

7.1.4 Automorphic Green’s function

Here we briefly recall the automorphic Green’s function. A reference for this is [Hej83],

however, we follow the exposition from [GZ85, p. 207].

For s a complex number with Re(s) > 0, let Qs−1 be the Legendre function of the second

kind, defined for t > 1 by

Qs−1(t) :=

∫ ∞

0
(t+

√
t2 − 1 cosh v)−sdv.

For z = x+ iy and z = x+ iy to be points in H, define

gs(z, z) := −2Qs−1(cosh d(z, z)) = −2Qs−1

(
1 +

|z − z|2

2yy

)
,

where d(·, ⋆) is the hyperbolic distance. Since gs has a singularity log |z − z|2 along the

diagonal, therefore, the above is not defined for z = z. Now define

Gs(z, z) :=
∑
γ∈Γ

gs(z, γz). (7.6)
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The above series converges absolutely for Re(s) > 1 and is an eigenfunction under

hyperbolic Laplacian ∆0 with eigenvalue s(1 − s). It has a meromorphic continuation

to the whole s-plane [Hej83, Chapter 7, Theorem 3.5]. Since d(z, z) = d(γz, γz), for any

γ ∈ SL2(R), one can see that Gs(z, z) is Γ-invariant in z and z. The function Gs is known

as the automorphic Green’s function or resolvent kernel.

For fixed z and y = Im(z) large (y > maxγ∈Γ Im(γz)), Gs has a Fourier expansion [GZ85,

p. 207] of the form

Gs(z, z) =
4π

1− 2s
E(z, s)y1−s − 4π

∑
l ̸=0

F−l(z, s)y
1/2Ks− 1

2
(2π|l|y)e2πilx, (7.7)

where E(z, s) and Fl(z, s) are real analytic Eisenstein series and Niebur Poincaré series

respectively. Here Ks−1/2 is a K-Bessel function [MOS66, Chapter 3].

7.1.5 The Fourier and elliptic expansion of the automorphic functions

gz and j′n

For z ∈ H, define

gz(z) := log
(
y6|∆(z)(j(z)− j(z))|

)
.

It turns out [BK20, Lemma 3.1] that the function gz is a sesqui-harmonic Maass form of

weight 0 and it has a singularity precisely at the point z. We have the following relation

[BK20, (3.3)] between gz and the automorphic Green’s function.

Lemma 15. We have

gz(z) =
1

2
lim
s→1

(Gs(z, z) + 4πE(z, s))− 12.

The function gz has the Fourier expansion [BK20, Lemma 4.3 (2)] of the shape

gz(z) =
∑
l≥1

c++
gz (l)ql +

∑
l≤−1

c+−
gz (l)W0(2πly)q

l + 6 log(y), (7.8)

where c++
gz (l) and c+−

gz (l) are coefficients in C. For our purpose, we need an explicit

description of c++
gz (l) and c+−

gz (l). Here we prove.

Proposition 8. For l ≥ 1, we have

c++
gz (l) = − π

|l|1/2
F−l(z, 1)

and for l ≤ −1, we have

c+−
gz (l) = − π

|l|1/2
F−l(z, 1).

Proof. From Lemma 15, we have

gz(z) =
1

2
lim
s→1

(Gs(z, z) + 4πE(z, s))− 12.
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We write the Fourier expansion of Gs from (7.7) in the above to get

gz(z) =
1

2
lim
s→1

[
−4π

2s− 1
E(z, s)y1−s−4π

∑
l ̸=0

F−l(z, s)y
1/2Ks− 1

2
(2π|l|y)e2πilx+4πE(z, s)

]
−12.

An application of Lemma 12 in the above gives

gz(z) =
1

2
lim
s→1

[
− 4π

(
1− (s− 1) log(y) +O(1− s)2

)(
1− 2(s− 1) +O(s− 1)2

)
×

(
3

π(s− 1)
− 1

2π
log(|∆(z)|Im(z)6) + C +O(s− 1)

)
− 4π

∑
l ̸=0

F−l(z, s)y
1/2

Ks− 1
2
(2π|l|y)e2πilx + 4π

(
3

π(s− 1)
− 1

2π
log(|∆(z)|Im(z)6) + C +O(s− 1)

)]
− 12.

A simple calculation yields from above

gz(z) = 6 log(y)− 2π
∑
l ̸=0

F−l(z, 1)y
1/2K 1

2
(2π|l|y)e2πilx.

We use the formula [GZ85, p. 208]

K 1
2
(2π|l|y) =

√
π

4π|l|y
e−2π|l|y

in above to get

gz(z) = 6 log(y)−
∑
l ̸=0

π

|l|1/2
F−l(z, 1)e

−2π|l|ye2πilx.

The above can be rewritten in view [BK20, p. 7] of W0(2πly) = e4πly for l < 0, as

gz(z) = 6 log(y) +
∑
l>0

(
−π
|l|1/2

F−l(z, 1)

)
ql +

∑
l<0

(
−π
|l|1/2

F−l(z, 1)

)
W0(2πly)q

l.

Now the proposition follows by comparing above with (7.8).

We also need the elliptic expansion of j′n and gz which follows from [BK20, Lemma 5.8].

To state it, we define, for t0 > 0, r < 1,

βt0(r; a, b) = −
∫ 1−t0

r
ta−1(1−t)b−1dt−

∑
n≥0
n̸=−b

(−1)n

n+ b

(
a− 1

b

)
tn+b
0 −(−1)bδa∈Nδ0≤−b<a log(t0).

It turns out that βt0 is independent [BK20, Lemma 5.4] of the choice of t0. Here the

dependence in the notation is kept to distinguish it from the incomplete beta function.

We have the following.

Lemma 16. (1). For w ∈ H, there exists cj′n,w(l) ∈ C, such that for rw(z) sufficiently
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small, we have

j′n(z) =

(
z − w̄

2
√

Im(w)

)−2∑
l≥0

cj′n,w(l)X
l
w(z),

where rw(z) and Xw(z) are as defined in (7.9).

(2) ([BK20, Lemma 5.8 (2)]). There exists c++
gw,w(l), c

+−
gw,w(l) ∈ C such that for rw(z)

sufficiently small, we have

gw(z) =
∑
l≥0

c++
gw,w(l)X

l
w(z) +

∑
l≤0

c+−
gw,w(l)βt0

(
1− r2w(z); 1,−l

)
X l

w(z) + 6 log
(
1− r2w(z)

)
.

7.1.6 Regularized Petersson inner product

We follow [BK20, p. 26] to define the regularized inner product. To do so, we start by

setting notations. For z ∈ H, define the real-valued function rz on H by

rz(z) := |Xz(z)| with Xz(z) :=
z − z

z − z̄
. (7.9)

Let FT be the standard fundamental domain truncated at a height T > 0 and for ϵj > 0

Bϵj (zj) := {z ∈ H : rzj (z) < ϵj}.

Set

FT,z1,...,zℓ,ϵ1,...,ϵℓ := FT

∖ ℓ⋃
j=1

(Bϵj (zj) ∩ FT ).

Let f and g be functions that satisfy weight k modularity and whose singularity in the

fundamental domain lie in {z1, . . . , zℓ, i∞}. The regularized inner product [BK20, p. 27]

is defined by 1

⟨f, g⟩ := lim
T→∞

lim
ϵℓ→0+

· · · lim
ϵ1→0+

⟨f, g⟩T,ϵ1,...,ϵℓ (7.10)

whenever it exists and where

⟨f, g⟩T,ϵ1,...,ϵℓ :=
∫
FT,z1,...,zℓ,ϵ1,...,ϵℓ

f(z)g(z)yk
dxdy

y2
.

The following result is useful in evaluating the inner product, which follows from Stoke’s

theorem.

Lemma 17. Let F,G : H → C be two real analytic functions which have singularities in

the fundamental domain at {z1, . . . , zℓ, i∞} that satisfy F |2−kγ = F and G|kγ = G, for all

1Back to the Introduction.
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γ ∈ SL2(Z). Then we have∫
FT,z1,...,zℓ,ϵ1,...,ϵℓ

ξ2−k(F (z))G(z)y
k−2dxdy +

∫
FT,z1,...,zℓ,ϵ1,...,ϵℓ

ξk(G(z))F (z)y
−kdxdy

= −
∫
∂FT,z1,...,zℓ,ϵ1,...,ϵℓ

F (z)G(z)dz̄.

Here the integral along the boundary ∂FT is oriented counterclockwise and the integral

along the boundary ∂Bϵj (zj) is oriented clockwise.

Proof. The proof follows from [BKV13, Lemma 2.1] by suitable modifications.

7.2 Proof of Theorem 11

From [BK20, p. 27, Proof of Theorem 1.3], we write the meromorphic modular form f in

the form

f(z) = c∆(z)ordi∞(f)
∏

w∈Γ\H

(∆(z)(j(z)− j(w))
ordw(f)
ord(w)

with c ∈ C. By Theorem 15 (Valence formula), we get from above

log
(
y

k
2 |f(z)|

)
= log(|c|) + ordi∞(f) log |y6∆(z)|+

∑
w∈Γ\H

ordw(f)

ord(w)
gw(z).

Using Lemma 13, the above can be rewritten as

log
(
y

k
2 |f(z)|

)
= log(|c|)− 1

2
ordi∞(f) E(z) +

∑
w∈Γ\H

ordw(f)

ord(w)
gw(z).

Applying ξ0 = 2i ∂
∂z̄ on both sides of above and using (7.3), we get

2i
∂

∂z̄
log
(
y

k
2 |f(z)|

)
= −2π ordi∞(f) E∗

2(z) +
∑

w∈Γ\H

ordw(f)

ord(w)
Gw(z),

where ξ0(gw) = Gw is the function defined in [BK20, (3.9)]. Since for a smooth function

g, ∂
∂z̄g = ∂

∂z ḡ, therefore, we get from above

2i
∂

∂z
log
(
y

k
2 |f(z)|

)
= −2π ordi∞(f) E∗

2(z) +
∑

w∈Γ\H

ordw(f)

ord(w)
Gw(z). (7.11)

Thus, to prove the theorem, it suffices to compute ⟨j′n,Gw⟩. Hence, we compute

⟨j′n,Gw⟩T,ϵ = ⟨j′n, ξ0(gw)⟩T,ϵ
= ⟨ξ0(gw), j′n⟩T,ϵ

=

∫
FT,w,ϵ

ξ0(gw)(z)j′n(z) y
2
dxdy

y2
.
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Since j′n is holomorphic, thus ξ2(j
′
n) = 0 and hence Lemma 17 will imply that

⟨j′n,Gw⟩T,ϵ = −
∫
∂FT,w,ϵ

gw(z)j
′
n(z)dz. (7.12)

Since the integral along the straight lines and semi-circles are identified by matrices in

SL2(Z) with opposite orientation and they get canceled. Thus, one needs to compute the

contribution of above integral along the boundary near i∞:{
x+ iT : −1

2
≤ x ≤ 1

2

}
. (7.13)

The integral in r.h.s. of (7.12) at the boundary (7.13) becomes

IT :=

∫ 1
2
+iT

− 1
2
+iT

gw(z)j
′
n(z)dz.

Now we insert the Fourier expansion of

j′n(z) = −nq−n +
∑
l>0

lajn(l)q
l (7.14)

and the Fourier expansion of gw from (7.8) in IT to conclude that the only constant term

survives. Thus, we get

IT = −nc++
gw (n) +

∑
l≥1

lajn(l)c
+−
gw (−l)W0(−2πlT ).

From [BK20, Lemma 2.3], we have

lim
T→∞

W0(−2πlT ) = 0

and hence we get contribution of integral (7.12) along the boundary (7.13) is

−nc++
gw (n). (7.15)

Next, we compute the contribution from the integral (7.12) along ∂
(
Bϵ(w) ∩ F

)
. Since

gwj
′
n is a function satisfying weight 2 modularity, we have from [BK20, p. 29]∫

∂
(
Bϵ(w)∩F

) j′n(z)gw(z) dz = 1

ord(w)

∫
∂Bϵ(w)

j′n(z)gw(z) dz.

Moreover, we have [BK20, (6.11)]

1

2πi

∫
∂Bϵ(w)

(z − w̄)−2Xℓ
w(z) dz =

−(w − w̄)−1 if ℓ = −1,

0 otherwise,
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where the integral is taken clockwise. In view of the above, one needs to determine the

coefficient of X−1
w (z) of the corresponding elliptic expansion of j′ngw. Using the elliptic

expansions of j′n and gw from Lemma 16 implies that the contribution along ∂
(
Bϵ(w)∩F

)
of the integral (7.12) is

4π

ord(w)

∑
l≥0

cj′n,w(l)c
+−
gw,w(−1− l)βt0

(
1− ϵ2; 1, 1 + l

)
.

By [BK20, Lemma 5.4], we deduce that the above term vanishes as ϵ→ 0+. Thus we get

from above and (7.15)

⟨j′n,Gw⟩ = lim
T→∞

lim
ϵ→0+

⟨j′n,Gw⟩T,ϵ

= −nc++
gw (n).

Using Proposition 8 and (7.5), we get

⟨j′n,Gw⟩ = π
√
nF−n(w, 1)

=
1

2
jn(w) + 12σ1(n). (7.16)

From (7.11), we get

〈
j′n,−4πν0

[
log
(
y

k
2 |f |

)]〉
= −2π ordi∞(f) ⟨j′n, E∗

2⟩+
∑

w∈Γ\H

ordw(f)

ord(w)
⟨j′n,Gw⟩.

Now the theorem follows by using Proposition 7, (7.16) and Theorem 15 (Valence formula)

in the above expression.

Proof of Corollary 5

The proof follows from [BKO04, Theorem 5] and Theorem 11.

Proof of Corollary 6

For fixed z ∈ H, we take f(τ) = j(z) − j(τ) which is a meromorphic modular from of

weight 0 for Γ in the variable τ . Then

−4πν0
[
log
(
|j(z)− j(τ)|

)]
= 2i

∂

∂τ

[
1

2
log
(
j(z)− j(τ)

)]
+ 2i

∂

∂τ

[
1

2
log
(
j(z)− j(τ)

)]
.

Since for a smooth function g, ∂
∂τ̄ g = ∂

∂τ ḡ, therefore using the holomorphicity of j′(τ), we

deduce
∂

∂τ

[
log
(
j(z)− j(τ)

)]
=

∂

∂τ̄
log
(
j(z)− j(τ)

)
= 0.

Thus, the above becomes

−4πν0
[
log
(
|j(z)− j(τ)|

)]
= i

∂

∂τ

[
log
(
j(z)− j(τ)

)]
= 2πK(z, τ),
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where in the last equality, we have used j′(τ) = 1
2πi

∂
∂τ j(τ) and K(z, τ) is defined in (1.23).

Now using above in Theorem 11, we see that the corollary follows.

Proof of Corollary 8

The proof follows from Theorem 11, [BKO04, Corollary 2] and the fact that jn is a monic

polynomial of degree n in j1 with integer coefficients.

Proof of Corollary 9

Using Theorem 11, we get

⟨j′n,−4πν0[log |ΨD(z, fd)|]⟩ =
1

2

∑
w∈F

ordw
(
ΨD(z, fd)

)
ord(w)

jn(w).

Let zQ1 and zQ2 be two CM points corresponding to Q1, Q2 ∈ QdD with Q1 = γQ2. Then

zQ1 = zγQ2 = γzQ2 .

Thus, in the fundamental domain F , the CM points zQ corresponding to Q ∈ Γ\QdD are

the zeros or poles of ΨD(z, fd) of order χD(Q). Since ωQ = |ΓQ|, we deduce from above

⟨j′n,−4πν0[log |ΨD(z, fd)|]⟩ =
1

2

∑
Q∈Γ\QdD

χD(Q)

|ΓQ|
jn(zQ).

Further, it follows from [Zag02, (25)] that

∑
Q∈Γ\QdD

χD(Q)

|ΓQ|
jn(zQ) ∈

√
D Z

and hence the corollary follows.

Proof of Corollary 10

Using Corollary 9 and [DIT11a, Theorem 3], we have

−
∑
n|m

(
D

m/n

)
nq−n2D +

2√
D

∑
d≤0

d≡0,1 (mod 4)

⟨j′m,−4πν0[log |ΨD(z, fd)|]⟩q|d|

= −
∑
n|m

(
D

m/n

)
nq−n2D +

∑
d≤0

d≡0,1 (mod 4)

[∑
n|m

(
D

m/n

)
na(n2D, d)

]
q|d|

=
∑
n|m

(
D

m/n

)
ngn2D,

where a(·, d) is defined by (1.5) and gn2D’s are weakly holomorphic modular forms of

weight 3/2 for Γ0(4) defined in [DIT11a, (1.10)]. Now the corollary follows.
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Proof of Corollary 11

We have from [BKO04, Theorem 7] that

∑
w∈F

ordw(Ek)

ord(w)
jn(w) + 2kσ1(n) ≡ 0

(
mod 4

∏
p−1|k

5≤p prime

p

)
.

Now using Theorem 11 in the above, we get

2
〈
j′n,−4πν0

[
log
(
y

k
2 |Ek|

)]〉
≡ 0

(
mod 4

∏
p−1|k

5≤p prime

p

)
,

and hence the corollary follows.

Proof of Corollary 12

We have from [Ono03, Theorem 4.24]

af (h+ n) = −2kσ1(n)

n
+Gn

(
af (h+ 1), . . . , af (h+ n− 1)

)
− 1

n

∑
w∈F

ordw(f)

ord(w)
jn(w).

Now the corollary follows by using Theorem 11 in the above.



Chapter 8

Conclusion

In this section, we provide a summary of the work presented in this thesis and explore

potential future directions.

In Chapter 31, we investigated the Fourier coefficients of the holomorphic component of

harmonic weak Maass forms with half-integral weight, which are defined as Zagier lifts by

Jeon-Kang-Kim[JKK16b]. For a harmonic Maass form M of weight 2 − 2k, 1 < k ∈ Z
and d be a fundamental discriminant, the Zagier lift Z+

d (M) is a harmonic Maass form

of weight 1
2 + k if (−1)κd > 0 , and Z+

d (M) is a harmonic Maass form of weight 3
2 − k if

(−1)κd < 0. The |d|-th Fourier coefficient in the holomorphic part of Z+
d (M), which results

from their construction, is an infinite series whose terms involve the Kloosterman sum and

the J-Bessel function. We have definedmodified traces of cycle integrals of harmonic Maass

forms of negative weights (using Maass raising operator) at square discriminants, which

was originally defined for non-square positive discriminants in [BGK14]. These modified

traces are linked to the studies given in [And15, And22, DIT11a, DIT16a]. We interpret

the |d|-th Fourier coefficient in the holomorphic of Z+
d (M) in terms of these modified

traces. It would be interesting to study the arithmetic nature of Fourier coefficients of

other types of lifts between integral and half-integral weight harmonic Maass forms and

their generalizations.

In Chapter 42, we studied the Fourier coefficients of interesting weight 3/2 mock modular

forms {gd(τ) =
∑

D≤0 b(d,D)e2πi|D|τ : d < 0} with their shadow fd’s from the Borcherds

basis [Bor95] of weight 1/2 weakly holomorphic modular forms. These mock modular forms

were investigated by Jeon-Kang-Kim [JKK13, JKK14]. We explored Fourier coefficients

b(d,D) in the context of traces of cycle integrals of sesqui-harmonic Maass forms over

infinite geodesics and connected them to regularized inner products, hypothetical L-value

of harmonic Maass forms, and Rademacher-Petersson type formulas. More precisely, when

dD is a perfect square, we defined modified traces of sesqui-harmonic Maass form Ĵ1
and expressed b(d,D) in terms of these traces and Hurwitz-Kronecker class numbers.

These modified traces are linked to modified Poincaré series considered by Andersen

[And17]. We found that these traces are associated with regularized inner products from

two perspectives: one with regularized inner product of weakly holomorphic modular

forms fd’s of weight 1/2 and other with regularized inner product of modular functions

f̃m = jm + 24σ(m). Here {jm}m≥1 is the Hecke basis defined in (1.10). The regularized

inner product of f̃m’s is understood in terms of Rademacher-Petersson type formulas

1This chapter and its content appear in paper [Kal24]
2This chapter and its content is a joint work with Balesh Kumar in [KK24]
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[DIT16b, BDE17]. It is a natural problem to investigate the relationship between

regularized inner product of f ′ds with traces of other modular objects. In fact, we proved

in Corollary 4 that it is related to traces of cycle integrals of sesqui-harmonic Maass forms

of weight 2. It would also be interesting to study the connection of inner product of fd’s

with L-values of generalizations of harmonic Maass forms.

Chapter 53 is devoted to the study of Fourier coefficients of Zagier lifts, which interacts

with (classical) Shintani lifts [Shi75]. These lifts and their connections were studied by

Bringmann-Guerzhoy-Kane [BGK14], and they are harmonic Maass forms of half-integral

weights which encode traces of harmonic Maass forms of integral weight in their Fourier

coefficients. Specifically, we defined traces of cycle integrals of harmonic Maass forms

of negative weights at square discriminants (following the approach of [And15, And22,

BGK14, DIT11a, DIT16a]), and linked it to the coefficients of the non-holomorphic part

of these Zagier lifts. Corresponding to a harmonic Maass cusp form M with negative

weight 2− 2k, two modular objects can be linked to it: one being the classical cusp form

ξ2−2k(M) of weight 2k and other the weak Maass form Rk−1
2−2k(M) of weight zero. Here

Rk := 2i d
dτ + k

Im(τ) is a Maass (weight) raising operator and ξk := 2iyk ∂
∂z̄ defined by

Bruinier-Funke [BF04]. Inspired by [BGK14] and using our traces, we proved an equality

(up to constants and conjugation) of traces, at square discriminants, of these two seemingly

unrelated modular objects. Furthermore, we proved that traces of cycle integrals at square

discriminants of harmonic Maass cusp formM of negative weight 2−2k, can be thought of

as a central L-value of associated cusp form ξ2−2k(M). We also proved a characterization

result using analytic techniques in [GKS24]. This result identifies weakly holomorphic

modular forms in the space of harmonic Maass cusp forms of negative weight 2 − 2k,

by vanishing of traces of cycle integrals of harmonic Maass forms of negative weights at

square discriminants. For negative discriminants where their product is non-square, we

established definitions for traces of cycle integrals of a negative weight harmonic Maass

form M , utilizing R2−2k and ideas from [DIT16a]. We also proved that these traces are

equal, up to constant factors and conjugation, to the traces of cycle integrals of ξ2−2k(M).

It would be interesting to study such type of lifts for spaces, which generalize the space

of harmonic Maass forms. Moreover, finding their interaction with classical lifts between

spaces of modular forms and study of their Fourier coefficients seems to be interesting.

The content of Chapter 64 delves into the investigation of regularized Petersson inner

products of weight 1/2 weakly holomorphic modular forms fd’s from Borcherds-Zagier

basis. We proved a general result, which specifically infers that the regularized inner

products of these forms can be expressed in terms of traces of surface integrals of

j-invariant over real quadratic geometric invariants. These surface integrals were studied

by Andersen-Duke [AD20] in the context of asymptotic distribution. Moreover, using

methods in [DIT11a] and [JKK13], we proved the equality of traces of cycle integrals of

the harmonic Maass form J̃ and sesqui-harmonic Maass forms d
dz Ĵm of weight two, which

3This chapter and its content is a joint work with Balesh Kumar in [KK23]
4This chapter and its content is a joint work with Balesh Kumar in [KKb]
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satisfies

ξ2(J̃) = j − 744,

∆2

(
2i
d

dz
Ĵm
)

= 4πj
′
m.

Here ∆2 is defined in (2.3) and j
′
m(z) = 1

2πi
d
dz jm(z). We interpret the regularized inner

products of fd’s in terms of traces of cycle integrals of d
dz Ĵ1 and Hurwitz-Kronecker class

numbers. It would be interesting to study regularized inner products of other family of

weakly holomorphic modular forms, and their connections to modular objects related to

j-function, and invariants of real quadratic fields, if any.

In Chapter 75, we investigated the Rohrlich-Jensen type divisors sums for the sequence

{jn}n≥1, motivated by Rohrlich [Roh84]. We proved using methods in [BK20] that they

are essentially equal (up to the divisor sums) to the regularized inner product between the

Ramanujan-Serre derivative ν0 of the Hecke basis {jn}n≥1 and ν0
[
log
(
y

k
2 |f |

)]
, for any

non-zero meromorphic modular forms of weight k. We also proved a variety of arithmetic

properties related to these regularized inner products. Our result link them to exponents

in the infinite product expansions of meromorphic modular forms and investigates the

algebraic properties of inner products, alongside recursion formulas related to Fourier

coefficients. Furthermore, we established their connections with traces of singular moduli

and examined the divisibility aspects of inner products, among other properties. We

further studied the generating series for regularized inner products and established that

these series constitute meromorphic modular forms of weights 2 and 3/2. An interesting

study would be to explore Rohrlich-Jensen type divisor sums for other types of modular

forms and their arithmetic aspects.

5This chapter and its content is a joint work with Balesh Kumar in [KKa]
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Zwegers and Ono-Bringmann). In Séminaire Bourbaki, vol. 2007/2008, exp.
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