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Lay Summary

Harmonic (weak) Maass forms are a special kind of complex-valued function that exhibit
periodicity and symmetry in the upper half-plane of complex numbers. This is akin to,
in some extent, the way sine and cosine functions repeat their values on real numbers.
Harmonic Maass forms are smooth functions which vanishes under a certain Laplace
operator and exhibit well-behaved properties. Due to their periodic nature, harmonic
Maass forms can be expressed as a sum of exponentials, known as Fourier series, along
with their corresponding ‘Fourier coefficients’. Each harmonic Maass form is linked to a
distinct number known as its ‘weight’, which defines how the function behaves or scales
under transformations. Harmonic Maass forms extend the concept of modular forms,
which are well-recognized functions within number theory. Interesting number-theoretic
functions are often linked with the Fourier coefficients of harmonic Maass forms. Take,
for instance, the divisor function o;(n), which quantifies the sum of I[-th power of positive
divisors of a number n, or p(n), which indicates the count of distinct ways to express n as a
sum of positive integers, allowing repetitions and not counting the order, encodes Fourier
coefficients of modular forms (harmonic Maass forms). If a(n) is a number-theoretic
function that appears as a Fourier coefficient of a harmonic Maass form, the properties of
these forms aid in identifying growth conditions, providing alternative representations, and
offering simpler descriptions of a(n). For a harmonic Maass form (or its generalization)
f, there is a particular sum of integrals of f along specific smooth, finite-length curves
in the complex upper half-plane. These sums or ‘traces of cycle integrals’ often relate
to Fourier coefficients of harmonic Maass forms and establish connections between real
quadratic fields and harmonic Maass forms. Such traces of cycle integrals may not exists
over certain smooth curves of infinite length having endpoints on the real axis, owing to
the growth properties of harmonic Maass forms at the boundary of the complex upper
half-plane. This thesis investigates the traces of cycle integrals of harmonic Maass forms,
or their generalizations, specifically over certain smooth curves with infinite lengths. We
examine the interactions between these traces of cycle integrals and their relationship
with the Fourier coefficients of harmonic Maass forms. These traces offer insights into
the Fourier coefficients of specific harmonic Maass forms with half-integral weights, and
they relate to special functions linked to the Fourier coefficients of harmonic Maass forms,
which have significant ties to number theory.

Moreover, we study the ‘regularized Petersson inner product’ on the space of harmonic
Maass forms and meromorphic modular forms, i.e. modular forms which may have
singularities (poles). This is a specific way of defining the inner product on the spaces of
harmonic Maass forms and meromorphic modular forms. In essence, it involves taking two
functions, multiplying them together, and then integrating the result over a certain region
in complex upper half-plane. This is a very useful way to study harmonic Maass forms
and meromorphic modular forms, their Fourier coefficients, and their bases that have nice
properties. We connected the regularized Petersson inner products with both real and

imaginary quadratic fields, explored their relationship to integer properties, and examined
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the algebraic characteristics of these inner products. We also studied the connection of
regularized inner products with zeros or poles of meromorphic modular forms and their

infinite series resulting meromorphic modular forms.
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Abstract

In this thesis, we investigate the arithmetic properties of regularized Petersson inner
products and Fourier coefficients of harmonic Maass forms. We study traces of cycle
integrals of modular objects over infinite geodesics, their interactions, and interplay with
Fourier coefficients of harmonic Maass forms and L-functions. Moreover, we examine the
regularized Petersson inner products of weakly holomorphic and meromorphic modular
forms, linking them to invariants of both real and imaginary quadratic fields, their
arithmetic and algebraic characteristics, their generating series, and their associations
with the divisors of modular forms.

Keywords: Harmonic weak Maass forms; Harmonic Maass forms; Sesqui-harmonic Maass
forms; Weakly holomorphic modular forms; Regularized inner products; Traces of cycle
integrals; Traces of singular moduli; Divisors of modular forms; Modular invariants; Zagier

lifts; Rohrlich-Jensen type divisor sums
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Chapter 1

Introduction

The origins of harmonic Maass forms and mock modular forms trace back to the
“enigmatic” deathbed letter that Srinivasa Ramanujan wrote to G.H. Hardy in 1920.
In this letter, Ramanujan gave 17 examples which he called them as mock theta functions.
Around eight decades, the broader theoretical framework of mock theta functions was
unclear. In his remarkable work [ZweOl, Zwe02], Zwegers identified that Ramanujan’s
mock theta functions fit in the theory of non-holomorphic modular forms. In essence, he
“completed” Ramanujan’s mock theta function by adding real analytic functions, called
period integrals, that satisfy desired modular transformation laws. Thus, Ramanujan’s
mock theta functions were discovered to be mock modular forms i.e. holomorphic parts of
these real analytic functions.

At almost the same time, Bruinier and Funke [BF04] introduced the systematic theory
of harmonic Maass forms. Harmonic (weak) Maass forms are real analytic functions
on the complex upper half-plane H that generalize elliptic modular forms. Like elliptic
modular forms, they enjoy modular transformation with respect to a certain weight k,
over subgroups of the modular group SLy(Z). Additionally, they are annihilated by
the weight k£ hyperbolic Laplacian, and, in contrast to elliptic modular forms, they are
allowed to have at most linear exponential growth at cusps. Due to their periodic nature,
harmonic Maass forms possess Fourier expansion. The Fourier expansion of harmonic
Maass forms canonically decomposes into a holomorphic part and a mon-holomorphic
part. Mock modular forms turns out to be the holomorphic parts of harmonic Maass
forms. The non-holomorphic forms constructed by Zwegers were identified as weight
1/2 harmonic Maass forms. Consequently, this led to new findings about mock theta
functions and sparked interest in other types of harmonic Maass forms and their
arithmetic properties. In the past quarter century, the theory of harmonic Maass forms
has significantly emerged in number theory and other mathematical fields. It has vast
contributions to numerous areas, such as partitions, singular moduli and their real
quadratic analogues, Borcherds products, and the arithmetic of elliptic curves, Eichler
cohomology, and Galois representation, among others. The harmonic Maass forms that
are holomorphic in H are called weakly holomorphic modular forms. Generally, for
the mock modular form f of weight k£ and f the associated harmonic Maass form with
holomorphic part f, the function fk(f)(z) = Qiyk%f(z) is known as the shadow of f.
For a comprehensive study of mock modular forms and harmonic Maass forms, we refer
to [BFOR17, Duk14, Fol17, Onol0, Zag09] and references therein.
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A natural problem is to determine the arithmetic information hidden in the Fourier
coefficients of harmonic Maass forms (mock modular forms), which is inspired by the
overarching idea that interesting sequences in number theory are frequently linked with
the Fourier coefficients of elliptic modular forms. In addition to this, another significant
problem is to study inner products on (sub)spaces of harmonic Maass forms and their
generalizations. The Petersson inner product on the space of classical cusp forms, viewed
as a subspace of Harmonic Maass forms, induces a Hilbert space structure that forms
the foundation for many key techniques in the arithmetic and geometric applications of
cusp forms. In case of harmonic Maass forms and their variants, the naive definition
usually diverges due to their exponential growth at cusps or singularities in H. One
must “regularize” the integral in the definition of inner product to obtain interesting
arithmetic.

In this thesis, we study the arithmetic properties of Fourier coeflicients of harmonic
Maass forms and regularized inner products. First, we discuss traces of cycle integrals
of modular objects over infinite geodesics, their interactions, and interplay with Fourier
coefficients of harmonic Maass forms and L-functions, building upon the findings of
Andersen[And15, And22], Bringmann-Guerzhoy-Kane [BGK14], Duke-Imamoglu-Téth
[DIT11a, DIT16a] and Jeon-Kang-Kim [JKK13, JKK14, JKK16b]. We then examine the
regularized Petersson inner products of weakly holomorphic and meromorphic modular
forms, linking them to invariants of both real and imaginary quadratic fields, their
arithmetic and algebraic nature, and their connections with the divisors of modular forms.
This is motivated by the works of Andersen-Duke [AD20], Bringmann-Kane [BK20],
Duke-Imamoglu-Téth [DIT11b], and Jeon-Kang-Kim [JKK14], among others. We now
present our results below, organized into two subsections: one focusing on the arithmetic of
Fourier coeflicients of harmonic Maass forms and the other on the arithmetic of regularized

inner products.

1.0.1 Arithmetic of Fourier coefficients of harmonic Maass forms

We throughout use the symbol “ := " to mean that the symbol on the left is being defined
by the symbol on the right. Let j be the Klein’s modular invariant with the g-expansion
(q := €2™% » € H) given by

§(z) = q ' + 7444196 884q + - - - , (1.1)

which is a weight 0 weakly holomorphic modular form for SLy(Z). The values of Klein’s
j-invariant at imaginary quadratic irrationalities are algebraic integers and known as
singular moduli. By generating the class field of imaginary quadratic fields, singular moduli
play an instrumental role in solving Hilbert’s 12-th problem for imaginary quadratic fields,
showcasing the most elegant link between imaginary quadratic fields and modular forms.
Hilbert’s 12-th problem essentially seeks to generate abelian extensions for any number

field. Although the connection between general number fields and their class fields remains
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largely elusive, recent significant advances, such as those by Dasgupta-Kakde[DK24],
Darmon-Vonk[DV21] and Darmon-Vonk-Pozzi [DPV24, DPV21], have brought striking

progress in this direction.

Real quadratic fields and modular forms share many interesting links. One notable
example is the remarkable work of Duke, Imamoglu, and Téth [DIT11a], which connects
the invariants of real and imaginary quadratic fields to the coefficients of harmonic Maass
forms. We start by recalling a seminal paper [Zag02] of Zagier which provided a new proof
of Borcherds’s renowned theorem concerning the infinite product expansions of integer
weight modular forms on SLg(Z) with Heegner divisors. This proof, along with all the
findings in [Zag02], is linked to his elegant insight that the generating functions for traces

of singular moduli are, in essence, weight 3/2 weakly holomorphic modular forms.

We now introduce the notations that underpin our discussion. We call d a discriminant,
ifd# 0 and d = 0,1 (mod 4). We say that a discriminant d is fundamental, if d is the
discriminant of a quadratic field. Let Qg4 be the set of integral binary quadratic forms
Q(z,y) = [a,b,¢] = ax? + bry + cy? of the discriminant d = > — 4ac. When d < 0,
we assume that a > 0. We call a binary quadratic form Q = [a,b,c] € Qg primitive, if
ged(a,b,¢) = 1. The modular group I' := PSLy(Z) = SL2(Z)/{+£1} acts on the set Qg by
linear change of variables (see Section 2.0.2 for details). More precisely, for v = (';‘ § ) el
and Q = [A, B,C] € Qy, this action is defined by

7Q = Qv = Q(6z — By, —yz + o). (1.2)

If z9g € H is a root of Q(z,1) =0, then vz € H is a root of (yQ)(z,1) = 0, establishing
that the action defined above is compatible with the action of I' on H by linear fractional
transformations. The set of equivalence classes I'\ Qy is finite, and those classes consisting

of primitive forms make up an abelian group (under the Gaussian composition) of order
hq.

Let {gq}o<d=0,1(mod4) be a basis for M;’ /o> the space of weakly holomorphic modular forms
of weight 3/2 satisfying Kohnen’s plus space condition (see Section 2.0.1 for the definition
and Remark 3). This basis was studied by Zagier [Zag02] in which each form g, is uniquely

determined by having a Fourier expansion of the form

ga(z) =q =Y a(d,n)g", (1.3)

n<0
and a(d,n) = 0 unless n = 0,1(mod 4). For d > 0 fundamental, Zagier [Zag02] proved
that gq is the generating series of twisted traces of singular moduli of j; := j — 744.

Specifically,

1 xd(Q) .
adn) == 3 Mz, (1.4
QEf‘\an Q
where zg € H is the associated CM point which is the unique root of Q(z,1) = 0, |g

denotes the size of the stabilizer of @) (see Section 2.0.2) under the action defined above
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and xq: Qgn — {1} is the generalized genus character defined in (2.12).
For 0 > d =0,1(mod4), consider the “dual” form (with d and n interchanged)

fa(z) =q¢*+ > a(n,d)q". (1.5)
n>0

Then it is shown by Zagier [Zag02] that the set {f4}4<o coincides with the basis for M} /o
given by Borcherds [Bor95].
It is natural to ask if there are counterparts to Zagier’s results for positive discriminants
dn. To do so, one need an appropriate analogue of twisted traces of singular moduli defined
in (1.4), along with a modular family whose Fourier coefficients encode these “traces”. Let
d be a positive discriminant and @ = [a, b, ¢] € Q4. If d is not a perfect square, there is an
associated hyperbolic geodesic (Heegner geodesic) Sg := {z € H : a|z|? + bRe(z) + ¢ = 0}
that joins two irrational roots of Q(z,1) = 0, which form a Galois conjugate pair. We
assume orientation! on Sg to be counter-clockwise if @ > 0 and clockwise if a < 0. Let
[ be the stabilizer group of @ in I' which is infinite cyclic (see Section 2.0.2). Let
Cg =T \ Sg, which defines a closed geodesic on modular curve I' \ H (refer to Section
2.0.4 for more discussion). Duke, Imamoglu, and Téth [DIT11a] proved that there exists
a family of mock modular forms {f4}o<4=0,1(mod4) of Weight 1/2, having their shadows

{94}0>d=0,1(mod 4), and the Fourier expansion of the form

fa(z) = Z a(n,d)q".

n>0

For dD not being a square, with D > 0 as a fundamental discriminant, they proved that

D=5 Y w@ [ae) (1.6

T <
QelM\Qup Co

Q(z,1)

We refer to [DIT11a, Theorem 2 and Theorem 3] for more general statements. Noting
that weakly holomorphic modular forms are trivial examples of mock modular forms,
Duke, Imamoglu, and Téth extended the basis { fi}0>d=0,1(mod4) 0 & basis { fa}d=0,1(mod 4)
of mock modular forms of weight 1/2 satisfying Kohnen’s plus space condition. The
above ‘cycle’ integrals of j; serves as a real quadratic analogue of singular moduli and is
independently investigated by Kaneko [Kan09].

It is a natural question to study Zagier’s basis { gd}0<d50,1(mod 4) & la Duke, Imamoglu, and
Té6th. In this direction, Jeon, Kang and Kim [JKK13] extended the basis {ga}o<d=0,1(mod 4)
to a basis {ga}d=0,1(mod4) for mock modular forms of weight 3/2. They proved that for
each d < 0, there exists a unique mock modular form g; with shadow f;, having a Fourier

expansion of the form

ga(2) = >_b(d,n)g". (1.7)

n<0

!Throughout this thesis, we assume an orientation on S¢q that suits our convenience, which can vary
between chapters. Nevertheless, the orientation will be fixed within each chapter.
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Moreover they proved [JKK14, Theorem 1.2] for dD not a square and D < 0 a fundamental

discriminant, that
b(d, D) = —8VdD T} ,(J1(2)) + 192 H(|D|)H(|d]), (1.8)

where Try »(J1(2)) is a modified trace of cycle integrals of sesqui-harmonic Maass form
J1(2) defined by Jeon-Kang-Kim and H(d) denotes the Hurwitz-Kronecker class number,
which enumerates the classes of binary quadratic forms of discriminant d. However, classes
with a representative that is a multiple of 2% +y? are counted with a normalization of 1/2,
while those with a representative that is a multiple of 22 + zy + y? are counted with a
normalization of 1/3 (see Eq. (2.10)). Sesqui-harmonic Maass forms are generalizations of
harmonic Maass forms, which might not be annihilated by the hyperbolic Laplacian, but
the operator may map them to weakly holomorphic modular forms (see Section 2.0.1 for
the definition). The sesqui-harmonic Maass form J;(z) of weight 0 for T' was constructed
in [JKK14] and satisfies Ag(J1) = —j1 — 24 [JKK14, Theorem 1.1]. Let O denote that
there exists a non-zero integer b such that [J = b%. The case dD = 0 of (1.6) and (1.8) is
not covered in [DIT11a, JKK14].

When the discriminant of a binary quadratic form @ is a square, then T is trivial and
Co = T'g \ Sg turns out to be a geodesic Sg, connecting two roots of Q(z,1) = 0
in P!(Q). However, due to the exponential growth of j; and Ji at ico (which is T
equivalent to every element in P!(Q)), the corresponding cycle integrals fail to converge,
obstructing the arithmetic and geometric understanding of the coefficients a(D,d) and
b(d, D). Andersen [And15] and Bruinier-Funke-Imamoglu [BFI15] independently address
the issue of geometric or arithmetic interpretation of coefficients a(D,d) in (1.6) when
dD = [0. The approach of Andersen and Bruinier-Funke-Imamoglu is quite different.
Bruinier et al. [BFI15] utilized (regularized) theta lifting and defined regularized cycle
integrals of modular functions at square discriminants. Their result also applies to higher
level harmonic Maass forms of weight 0. On the other hand, Andersen [And15] defined
the regularization of modular functions by removing the terms from the integrand, which
causes the divergence of the cycle integral. Recently, using the ideas in [BFI15], [ANS21]
understood mock modular forms g4 in (1.7) as a theta lift of a harmonic Maass form of
weight 2, which represents its Fourier coefficients through twisted cycle integrals associated

with a harmonic Maass form of weight 2.

Here, using the ideas in [And15], we define the modified trace of the sesqui-harmonic Maass
forms in the case dD = [ and expressed the coefficients b(d, D) in terms of modified traces

of cycle integral of J1 and Hurwitz-Kronecker class numbers.

Consider for m € Z, G (2,5) be the Niebur Poincaré series? [Nie73] defined in (2.16).
Let d, D be discriminants with D fundamental and dD = [0. Then we regularize the
cycle integrals of G,,,(z, s) using the approach of Andersen [And15] and denote the twisted

In this thesis we use various normalizations of Poincaré series considered by Niebur [Nie73] up to
constant.
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traces of cycle integrals of Gy, (z,s) by

Tup(Gn(s9) = 5= 3 w(@ [ Gualas) (1.9)
Q

1 )
QelMQqp Q1)

where Gy, (2, s) is the modified Niebur Poincaré series defined in (4.8). Andersen [And15]
introduced Gy, ¢(z, s) to give an alternative trace definition for the basis {jm, }m>0 of the
space Cl[j], under the condition d > 0, D > 0 with dD = 0. We recall that for each integer
m > 0, jn, is the unique modular function in C[j] that has a Fourier expansion of the form

¢~ ™+ O(q). For instance,
Jo=1, j1=7j— 744, jo=j%— 1488j + 159768,... . (1.10)

Using the Fourier expansion of G,,(z,s) one can show that the above cycle integral
converges. Moreover, by (4.9), the cycle integrals are class invariants corresponding to
Q € T\Q4p. Hence (1.9) is well defined. For d, D < 0 with D fundamental and dD = [J,
it follows from Proposition 4 that for 0 # m € Z, we have

Trg p(Gm(z,5)) = 0.

Hence, we define a modified trace of Poincaré series. For d, D discriminants with D
fundamental and dD = [, we define a modified trace of G,,(z, s), for each 0 # m € Z by

Trap(Gm(z,5)) =

1
= >, w@ /CQ e(m Re(z))dm,s(Im(z)) (1.11)

QEr\ QY

Q(z,1)’

where Q;;D is the set of binary quadratic forms @ = [a, b, ¢] of discriminant dD with a > 0,
I's is the subgroup of translations in I and ¢y, s(+) is defined by (2.15). Recall that when
dD = [, the stabilizer f‘Q of @ under the action of I is trivial and Cq = fQ\SQ = S5q.
We note that the analogous definition of modified trace was considered by Jeon, Kang,
and Kim [JKK14, eq. (3.1)] in the case dD # .

Let " be as in (2.1). Jeon, Kang and Kim [JKK14] defined for each positive integer m

and Re(s) > 1,
N 0

Im(z,s) == aG_m(z, s)=G_nm <z7 §S¢_m’s)’ (1.12)

where G_,(z, s) is defined by (2.16). It follows from the proof of [JKK14, Theorem 1.1]
that the functions J,,(z,s) has an analytic continuation to Re(s) > 1/2 and it turns out
that

Im(2) = jm(z, 1) = ;SG_m(z, $)|s=1 (1.13)

is a sesqui-harmonic Maass form of weight 0 for I'. Moreover, we have

Ao(Jm) = —jim — 240 (m),
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where A is the weight 0 hyperbolic Laplacian (see Eq. (2.3)) and o(m) is the sum of
the positive divisors of m. For d, D discriminants with D fundamental and dD = O, we
define for m > 1

Trd@(jm(z, s)) = aasrfrdp(G_m(z,s)).
We set
Tra.p@m(2)) = TrapJm(z,5)) |s=1 - (1.14)

Now we are in a position to state our results?.

Theorem 1. Let d, D be negative discriminants with D fundamental and dD = 0. Let
b(d, D) be the Fourier coefficients of the mock modular form gq as in (1.7). Then we have

b(d, D) = —8VdD Tryp(Ji(2)) + 192x H(|D|)H(|d)).

We proceed to discuss an application of Theorem 1. Initially, we will overview traces
of cycle integrals within the context of modular forms. The traces of cycle integrals
of modular functions are highly significant in the theory of modular forms and various
mathematical fields. For example, Shintani lifts [Shi75] represent a family of linear
mappings indexed by fundamental discriminants, transforming a holomorphic Hecke
eigenform f of integral weight into a holomorphic Hecke eigenform of half-integral weight.
The Fourier coefficients of the Shintani lift of f can be expressed through the traces of the
cycle integrals of f. These lifts were instrumental in the development of the celebrated
Waldspurger’s formula [Wal81, KZ81]. Essentially, the Waldspurger’s formula establishes
a connection between the central value of the L-function of an integral weight Hecke
eigenform f and the square of a Fourier coefficient of its Shintani lift. Thus, traces of
cycle integrals of f with square discriminants can be considered as a proxy of the central
value of the L-function associated with f. Recently, Shintani lifts were vastly generalized
by Alfes-Neumann and Schwagenscheidt [ANS21] to encompass harmonic Maass forms
of any positive even weights for congruence subgroups. Let A < 0 be a fundamental
discriminant. Then the A-th Shintani lift 73" [ANS21, Theorem 1.1] maps the space HJ
into H:')) /20 where H ,L is the space of harmonic weak Maass forms defined in Section 2.0.1.
Additionally, for G € Hj, the Fourier expansion [ANS21, Theorem 1.6] of the holomorphic
part of I ih(G) is explicitly expressed in terms of twisted traces of the cycle integral of G.
We note that the |A|-th Fourier coefficient of I3*(G) is the twisted trace of the regularized
cycle integral of G at square discriminant. Inspired by the analogous formula for the
twisted central L-value of a holomorphic cusp form, Alfes-Neumann and Schwagenscheidt
[ANS21, p. 2302] viewed this trace as a replacement for the central critical value of the
(non-existent) L-series of G. As an application of our result together with the beautiful
results of Alfes-Neumann and Schwagenscheidt [ANS21], we express modified traces of the
cycle integral of J; in terms of central critical value of the (non-existent) L-series of its

dual weight form. In order to explain it, we must introduce a few notation.

3The results in Theorem 1 and Corollary 1 below are from Chapter 4 of this thesis. They appear in the
paper [KK24] and are in a joint work with Balesh Kumar.
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We start by recalling the function I 1, which is a sesqui-harmonic Maass form of weight 0
for I' [JKK14, Theorem 1.1] satisfying Ag(J1) = —j1 — 24. Decomposing A in terms of
€-operator from (2.5) imply that & o &(J1) = j1 4 24. It turns out that [JKK14, p. 99]
the function &g (j] 1) is a harmonic weak Maass form lying in the space Hé More precisely,
&o (jh) = h%, where h% = 4mh; with h; being the first member in the family {h,, }mez € Hy
obtained explicitly by Duke, Imamoglu, and Téth [DIT16b]. The family {h, }mez forms
a basis [DIT16b, Theorem 2] for Hj. We take J = h} — 87 E}, where

E3(z)=1-24) o(n q—— (1.15)

n>1

is a harmonic Eisenstein series of weight 2 for I'. Since {3(E3) = 3/, it follows from the
above that &(.J) = j1. We note that j; is the first member of basis {Jm }m>0 for the space
C[j] defined above in (1.10). For each integer m > 0, we set

fin = jm + 240 (m)

and in this notation, we have Ag(J,,) = —fm. For f € C[j], we denote by c¢f(n) the n-th
Fourier coefficient of f. Furthermore, for f, g € C[j], let (f, g)™® be the regularized inner
product as defined in (4.6) and (—) denote the Kronecker symbol. Finally, we recall, for
— [t dt
= — Ly

the Cauchy principal value for y > 0. With these notations, we have the following.

any real number y, the exponential integral Ei(y) which is defined by using

Corollary 1. Let D be a negative fundamental discriminant. Then we have
7 5 fmfl o—2n/|D|
Tr Ji(2)) = T
poth) =~ S () P
S Baten () ()]
D] & of) 27 \ID

The proof of the preceding corollary reveals that the expression on the right side can be
understood as the (non-existent) central critical L-value [ANS21, p. 2302] associated with
h%. Given that &(J1) = h?, it is interesting to see that the modified traces of cycle integral
of weight 0 form J; at square discriminant, is expressed in terms of central critical L-value
of its ‘dual’ weight form hj.

By slightly altering the viewpoint and taking into account Ao(jh) = —f1, one can see
that the traces of the cycle integral of I, are related to the arithmetic properties of
the modular function f;. The first sum on the right encompasses the regularized inner
product fos f1>reg, while the second sum involves the Fourier coefficients of fi. Both
elements fit well within the Petersson-Rademacher type formula framework. For n < 0,
the Fourier coefficients ¢z (—n) for f1 follow the Petersson-Rademacher formula [DIT16b,
(1.2)], [Rad38], which elegantly generalizes Ramanujan’s formula [Ram00] for expressing
o(m) as an infinite sum of Ramanujan sums. Furthermore, the regularized inner product
( frs fl)reg for n # 1 is interpreted [DIT16b, Theorem 1] using the Petersson-Rademacher
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type formula, which has been extended [BDE17, Theorem 1.2] to (fy, fn)™8 for all n > 1,

reg

particularly for (fy, f1)

It is natural to delve into the arithmetic nature of Fourier coefficients of half-integral
weight harmonic weak Maass forms (mock modular forms) other than weight 3/2. We
investigate the Fourier coefficients of harmonic weak Maass forms of the half-integral
weight which are defined as Zagier lifts of harmonic weak Maass forms of integral weight.
Inspired by [Zag02], Zagier lifts of harmonic weak Maass forms have the property that
(CM or cycle integral) traces of harmonic weak Maass forms of integral weights appear as
Fourier coefficients of harmonic weak Maass forms of half-integral weights. By utilizing
theta correspondence, Bruinier and Funke [BF06] undertook the generalization of Zagier’s
lift to weakly holomorphic modular functions of arbitrary level. Bringmann and Ono
[BO07] extended Zagier’s findings by using the Maass-Poincaré series to lift weight zero
non-holomorphic Poincaré series to those of Poincaré series of half integral weight. We refer
to [BORO05, CJKKO07, DIT11a, JKK14, KK23, BGK15, ANS20b, ANS18, BFI15, CC11]
for studies related to Zagier lifts. In addition to lifting modular forms of weight zero,
Zagier proposed lifts for modular forms of nonzero weight. In this direction, we will now
discuss the study by Duke and Jenkins [DJO0S].

We fix £ > 1 an integer throughout the Introduction. For f € M, _,_with rational Fourier
coefficients, Duke and Jenkins [DJO8, p. 575] showed a remarkable fact that the function
85__215 f is a weak Maass form of weight 0 with rational Fourier coefficients and the singular

moduli for 8’2’“__21,€ f is an algebraic number. Here 0, := —ﬁRH and we write

85:2114 = (_1)"{_1872 00_40---004_950 827257

rk—1
Ry 5., = R 20R 40---0Ry 9450 Roy o,

with Ro_g, is the Maass raising operator defined in (2.7). Motivated by this, Duke and
Jenkins introduced the traces of singular moduli for 85_721“ f and generalized the Zagier lifts
for the space Mj . After a while Bringmann, Guerzhoy, and Kane [BGK14] extended
the classical Shintani lift to weakly holomorphic modular forms using the extension of
Zagier lifts in [DJO08] to a subspace of harmonic weak Maass forms (see also [BGK15]).
Let k € %Z and H ,j C Hy, consisting of the forms that correspond to S;_j under the
antilinear differential operator & defined in Section 3.1.1. For a fundamental discriminant
d, suppose that H;d (resp. M,L,d) is the subspace of H,j(resp. M,'c) consisting of those
forms whose principal parts are supported in the square class —|d|n? (n € N). Bringmann
et al. [BGK14] constructed the Zagier lifts

3q: Hy o, — HY if (—1)"d >0 and 34:Hy , — M\

%_”Wl ’ 3 tr.d’

if (—1)"d < 0,
(1.16)

which plays a role as an intermediate lift in the process of constructing the Shintani lift

for weakly holomorphic modular forms. The Zagier lift 34 for (—1)"d > 0, interacts
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with the (classical) Shintani lift [Shi75] (see [BGK14, Theorem 5.2]). Using theta lifting,
Alfes-Neumann and Schwagenscheidt [ANS18] studied generalizations of the above lifts.
A comparison of two different ways of interpreting Zagier lifts allowed Bringmann et
al. [BGK14] to prove a striking identity between traces of cycle integral attached to
Mm e H;_%. Bringmann et al. [BGK14] introduced traces of cycle integrals for weight
2—2xk harmonic Maass forms of negative weights using the Maass (weight) raising operator
Ry_9,. They proved [BGK14, Theorem 1.1] that for a given 9 € H2+—2n and for every
pair of positive discriminants d, d for which dd # [, the corresponding trace of the cycle
integral of £5_o, (M) is equal to constant times the trace of the cycle integral of R~ _(90).
For a pair of positive discriminants d, § with d fundamental, the traces of the cycle integral
of £5_9,(9M) play a key role in [BGK14] to generalize the d-th Zagier lift to harmonic Maass
forms, while the traces of cycle integral of RS:%H(DJI) encode the §-th Fourier coefficients
of the non-holomorphic part of the alternate definition of d-th Zagier lift in [BGK14]. The
obstruction to the equality of the corresponding traces in the setting when dé = [J occurs,
as traces of harmonic Maass forms of negative weights may not be defined due to the
divergence of the cycle integrals. Therefore, one needs a modified definition of trace in
this case.

We define modified trace (see (5.35)) for discriminants d,é with d6 = O and in fact, we

prove the following?.

Theorem 2. Let kK > 1 be an integer and M be a harmonic weak Maass form in H2+—2n'
Then for each pair of discriminants d,d satisfying (—1)"d > 0, (=1)"5 > 0 with d

fundamental and dé = O, we have
~ % “
Trs g (M) = Trj 4(M),

where Tr?j(im) and Trj ,(MM) are defined in (5.35) and (5.24) respectively.

Our defined modified traces of harmonic Maass forms of negative weights are connected
with the modified Poincaré series studied in [And15, And22]. We note that a completely
different regularization of the cycle integral was considered in [ANS18, Arxiv version, p.
39-40]. Ome can deduce the above theorem by following the (different) regularization
of cycle integral in [ANS18, Arxiv version, p. 39-40]. However, the notion of the
corresponding modified traces was not discussed in [ANS18, Arxiv version| which is the
context of the present theorem. It turns out that the modified twisted traces of the
cycle integrals of 9 € HQJQ% in square discriminants are particularly interesting due
to their connection with the twisted central L-value of the corresponding holomorphic
cusp forms (the shadow of 9t). As a consequence of Theorem 2, we will now give a
relationship between modified twisted traces of cycle integrals of 9T and the central value
of the L-function of £5_o,(9M).

Let f be a cusp form in Sy, with the Fourier expansion given by f(7) = >_ -, ar(n)q".

4The results in Theorem 2, 3 and Corollary 2, 3 below are from Chapter 5 of this thesis. They appear
in the paper [KK23] and are in a joint work with Balesh Kumar.



Chapter 1. Introduction 11

Let d be a fundamental discriminant and vy := (4) be the associated primitive quadratic

character of conductor |d|. The twisted L-function of f by the character v,

L(s, f @ ¢q) = Zaf(n)wd(n)n_s

n>1

has an analytic continuation to the whole complex plane [Iwa97, Theorem 7.6].

Then, we have the following.

Corollary 2. Let k > 1 be an integer and M be a harmonic weak Maass form in H2+—2n-
Let f be a cusp form in Say, such that a2, (M) = f. Then for a fundamental discriminant
d with (—1)*d > 0, we have

Te 7 () = o, d)L (s, f @ tha),

where )
342 477

Clod) = (=)0 81 T r(T (s 3 ) a1l
As an application of our result, we can determine the weakly holomorphic modular form
lying in H2+_2H in terms of the vanishing of modified traces. An important ingredient in
our proof is the recent result of Gun, Kohnen, and Soundararajan [GKS24]. We prove the

following.

Corollary 3. Let k > 1 be an integer and M be a harmonic weak Maass form in H;_%.
Then M is weakly holomorphic if and only if Trdm”d*(ﬂﬁ) = 0, for all but finitely many

fundamental discriminants d with (—1)"d > 0.

To keep the exposition uniform, we define the traces in the case of negative discriminants
d,d with 0 < d§ # O using ideas in [DIT16a] and prove below the corresponding equality

of the traces which were not considered in [BGK14].

Theorem 3. Let k > 1 be an odd integer and M be a harmonic weak Maass form in
Hy .. Then for each pair of negative discriminants d,§ such that d is fundamental and
0 < dd # 0, we have

T (M) = Ty 4(M),

where 'Trg’d(im) and Tr ,(9M) are defined as in (5.34) and (5.24) respectively.

Remark 1. The authors came to know from Professor Claudia Alfes-Neumann that
Theorem 3 also follows from the more general result related to the identities of cycle
integrals proved in [ANS18, Arxiv version|, [ANS20a]. However, the corresponding notion
of traces were not considered in [ANS18, Arxiv version|, [ANS20a], which is the content
of the above Theorem. Moreover, our method of the proof is completely different from

[ANS18, Arxiv version|, [ANS20a].

In our next exploration, we studied the Fourier coefficients of Zagier lifts considered by

Jeon, Kang, and Kim [JKK16b] for the whole space Hj_,, . For a fundamental discriminant
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d, they defined lifts
34 Hy oo — Hy  if(=1)"d >0, and 37 :Hj o, — Hy , if (—=1)*d <0.
2 2

These lifts are different from 3,4 in (1.16) and Millson theta lift considered in [ANS18] if we
restrict to the subspace H;an, as they map HQJQQK to the space of harmonic weak Maass
forms that have weight x + & (resp. 3 — x) when (—1)"d > 0 (resp. (—1)*d < 0). These
lifts were defined using Maass-Poincaré series and they are related to lifts 34 through

&-operator (see [JKK16b, p. 230]).

Let f € Hy o, with (—1)®d > 0 (resp. (—1)*d < 0) and § is a fundamental discriminant
such that (—1)%6 > 0 (resp. (—1)%6 < 0), Jeon et al. [JKK16b] gave the interpretation
of |6]-th Fourier coefficient of the holomorphic part of 31 (f) in terms of traces of cycle
integrals related to f. We note that the |§|-th Fourier coefficients of the holomorphic part
of 37 (f) for which dé is not a perfect square were studied in [JKK16b]. The coefficients
with the condition dé being a perfect square are particularly intractable due to divergence
of cycle integrals in the corresponding trace. Using Fourier analysis and evaluating the
Fourier expansion of these lifts, these coefficients are naturally in the form of infinite series

that involve exponential sums and the J-Bessel function.

We have defined modified traces of cycle integrals of harmonic Maass forms of negative
weights (using weight raising operator) at square discriminants, which was originally
defined for positive non-square discriminants in [BGK14]. These modified traces are
linked to the studies given in [And15, And22, DIT11a, DIT16a]. This helps us to interpret
the |§|-th Fourier coefficients of the holomorphic part of 37 (f) in terms of modified traces.

In order to state our results’, we will define Zagier lifts 33 (see [JKKI16b, eq.
3.12, 3.13]). Suppose m € Z. Let Py, 2_9,(k;2) be the Maass-Poincaré series of weight
2 — 2k and Ry_9, be the Maass raising operator as defined in (3.3) and (2.7) respectively.
It follows from (3.6) and [BGK14, eq. 4, Lemma 4.1 | that ¢

Ry 3, (Pina2x(K; 2) = Gin(2, K), (1.17)

where G, (2, k) is the Niebur Poincaré series defined in (2.16). As Py, 2—2.(k;2) withm € Z
spans Hy o, [JKK16b, Remark 3.5, it is enough to define Zagier lifts on P,, oo, (k; 2). Let
d be a fundamental discriminant. For (—1)%d > 0, the d-th Zagier lift of P_,, 22k (k; 2) €

5The results in Theorem 4, 5 are from Chapter 3 of this thesis. They appear in the paper [Kal24].
5Go to Chapter 3
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H . is defined by

2 () /)y gy (54 452) if m # 0,5 #2,3,4,5,7,
3y (Poma-ar(k;2)) = nz”:n (%) (m/n)" 5 P 21 g d (s;2) |3:§+i if m+#0,k=2,3,4,5,7,
Poﬁ_ir%(%—l—%;z) it m=0.

(1.18)
The following Theorem gives the interpretation of the |d|-th Fourier coefficients of the
holomorphic part of 3} (P_p,2-2.(k; 2)) in terms of traces of Ry, (P 2-24(k; 2)) under
the condition (—1)*d > 0.

Theorem 4. Let k be an integer greater than 1 and d be a fundamental discriminant
satisfying (—1)%d > 0. Then for m # 0, the Fourier coefficient of ¢4 in the holomorphic
part of SI(P,m,g,gﬁ(/@; z)) is

+d T T+

%)T SRS P o 04(k; 2)) if K +#2,3,4,5,7,
£|d|"7 T(k+ 3

>§T Fa(RS 5 P ma 2a(s:2)) |s=x if £ =2,3,4,5,7,
and the Fourier coefficient of /%! in the holomorphic part of 3;(]?0,2,2”(/{; z)) is
2w Y2|d| 72D (5 + 3) T La() TV T (RS, Po 22k (5 2)),

where Trgd() is defined in (3.12) and Lg(k) is L-series associated to the Dirichlet
character (%) defined in (3.1).

Let D be a fundamental discriminant satisfying (—1)"D < 0, then the D-th Zagier lift of
P_2-2x(k;2) € Hé_% is defined by

> (7)) (m/m) T Pz s (54 332) i m A0,
BB(P—M,Q—%;(K/; Z)) = { njm 2 |d| K
Pos_.(5+1:2) om0

(1.19)

The following Theorem interprets the |D|-th Fourier coefficient of 37 (P_.,2-2x(K;2))
under the condition (—1)*D < 0.

Theorem 5. Let x be an integer greater than 1 and D be a fundamental discriminant
satisfying (—1)"D < 0. Then for m # 0, the Fourier coefficients of ¢'P! in the holomorphic
part of the BE(P_m,Q_QH(H; z)) is

1~ _
=+ D|72Tr'D p (RS 5, Pom2-2x(: 2)),
and the Fourier coefficient of ¢'P! in the holomorphic part of 35 (Po 2ok (ks 2)) is
£227 27| DI~ L () o] (RS, Po.2-24 (53 2))

where Tr%D() is defined in (3.12) and Lp(k) is L-series associated to the Dirichlet
character (2) defined in (3.1).
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1.0.2 Arithmetic of regularized inner products

The Petersson inner product is a fundamental tool in the theory of modular forms, which
offers deep insights into their arithmetical and analytical properties. It was introduced
by the German mathematician Hans Petersson [Pet32] in the early twentieth century and
has connections with Fourier coefficients of modular forms, L-functions, representation
theory, among others. The Petersson inner product on the space of classical cusp forms
induces a Hilbert space structure, which underpins many key techniques in the arithmetic
and geometric applications of cusp forms. The Petersson inner product is well defined
for classical cusp forms. There are many regularizations to extend the domain of the
Petersson inner product beyond the cusp forms, and its extensions were first observed
by Petersson itself [Pet50]. Later, Harvey and Moore [HM96], Borcherds [Bor98] and
Bruinier [Bru02] have employed adaptations and extensions to his approach to regularize
theta lifts of weakly holomorphic modular forms and their generalizations. Recall that
weakly holomorphic modular forms are holomorphic on the upper-half plane, but which
may grow exponentially towards cusps. The regularized inner product of Petersson may
not exist for all weakly holomorphic modular forms. However, when it converges, its values
tend to be intriguing. For example, in the case of weakly holomorphic modular forms, it
is connected to real quadratic analogs of singular moduli [DIT11b].
To proceed further, we will consider the regularized Petersson inner product [Bor98] of
two modular forms f and g of weight &k € % + Z for T'y(4) with singularities only at the
cusps. It is defined by

()= Jim [ g,

V=00 JFa(v) Yy

(1.20)

where Fy(Y) is the standard truncated fundamental domain for I'¢(4) obtained by
removing Y -neighborhoods of the cusps. Recall {ga}o<d=0,1(mod4) (see Eq. (1.3)) forms the
Zagier basis for weight 3/2 weakly holomorphic modular forms associated with generating
series of traces of singular moduli. Duke, Imamoglu, and Téth established [DIT11b,
Theorem 2.2] that the regularized inner product of g4, and g4, can be expressed in terms
of the real quadratic analog of the traces of singular moduli. Recall for discriminants dy, do
with d; fundamental, y4, be the generalized genus character defined on I'\Qg, 4, (see Eq.
(2.12) in Section 2.0.3). More precisely, they proved the following.

Theorem 6 (Duke-Imamoglu-Téth). Let di and do be distinct positive fundamental
discriminants with dids # 0. Then

3 ) dz
(Gds s Gay) = _&TQg%Q:d d Xd: (Q) /CQ ‘h(’z)Q(z, 0y’

where Cq s the closed geodesic defined in Subsection 6.1.4.

The minus sign in the above occurs due to the orientation opposite to [DIT11b]

considered in Subsection 6.1.4. The cycle integral of j-function in the above theorem
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is actually the real quadratic analog of singular moduli considered independently by
Duke-Imamoglu-Téth [DIT11a] and Kaneko [Kan09].
It is natural to investigate the regularized inner product of the “dual” form f;. Here, we

prove’

Theorem 7. Let d,D be negative co-prime fundamental discriminants with dD # [.

Then we have

ot =3 Y 0@ [ 0G5 42 3 xw(Qmo,

QeM Qap Fa QeM\Qup

where the modular surface Fq, class invariant mq, regularized surface integral are defined
in Subsection 6.1.4 and H(-) is the Hurwitz-Kronecker class number defined in Subsection
2.10.

The surface Fg is a recently introduced geometric invariant by Duke, Imamoglu, and Téth
[DIT16a], analogous to (CM) points and (closed geodesics) curves linked to the ideal class
of Q. Recently, integrals of j,, on Fg have been defined by Andersen and Duke [AD20].
For surface integrals, nontrivial extensions involve genus characters related to two negative
discriminants, whereas cycle integrals in Theorem 6 (closed geodesic case) involve two
positive discriminants. The CM points emerge when discriminants have opposite signs.
Within this context, the modular surface naturally complements the theme comparable

to points and curves tied to ideal classes in T'\Qup.

Here, we prove a more general result from which in particular Theorem 7 follows.

Let I be the twisted D-th Millson theta lift defined in [ANS18, (1.1)] and {T'(n) }nen be
the family of Hecke operators acting on the space Mé. For n > 1, recall that j, € Mé is
the family given in (1.10) which is defined by j, := 71|}, and has a Fourier expansion of
the form ¢~™ + O(q). Then it follows from [ANS18, Theorem 1.1] that I3 (j,) is a weakly
holomorphic modular form of weight 1/2 for I'g(4). Recall that o(n) is the sum of positive

divisors of n. We prove the following.

Theorem 8. Let d, D be negative co-prime fundamental discriminants with dD # [.

Then we have

WD g = 3 Y 0@ [ ) S 4 2mm0t) Y xo(@mo

QelMQqp Fa QelMQqp

+ 288nH(d) |—o(n)H(D)+ (Z) H <:;D) ,

where the modular surface Fq, class invariant mq, regularized surface integral are defined
in Subsection 6.1.4 and H(-) is the Hurwitz-Kronecker class number defined in Subsection
2.10.

"The results in Theorem 7, 8, 9 and Corollary 4 below are from Chapter 6 of this thesis. They appear
in the paper [KKb] and are in a joint work with Balesh Kumar.
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The proof of Theorem 8 is crucially based on Theorem 9. To state Theorem 9, we first set
the notation and describe the related functions.

Let d, D be discriminants with D fundamental and dD # . Then for a form f in Ha g,
the space of sesqui-harmonic Maass forms of weight 2 for SLa(Z) (see Section 2.0.1), we
define

Trap(f):== Y, x0(Q)
Qel\Qap

f(2) d=. (1.21)
Cq
Let J be a form in H} such that &(J) = j; = j — 744, where & = Qiyza% . For each
positive integer m, recall that J,, [JKK14, Theorem 1.1] be the sesqui-harmonic Maass
forms of weight zero for SLo(Z) defined in (1.13), which satisfies

Ao(Jm) = _jm - 24a(m),

where Ag (see (2.3)) is the weight 0 hyperbolic Laplacian. One can see that the form
%ﬁm (2) is a sesqui-harmonic Maass form in Hs 2. With the notations as above, we prove

the following.

Theorem 9. Let d, D be negative fundamental discriminants with dD # . Then we have

5 (2 g (30 e () (22)

nlm nlm
where H(-) is the Hurwitz-Kronecker class number defined in Subsection 2.10.
As an application, we get the following.

Corollary 4. Let d, D be negative fundamental discriminants with dD # [O. Then we

have 5
(fp, fa) = =3Trgqp (21'(9231) + 2887H(D)H (d).

The interpretation of (fp, f4) in terms of traces has received significant interest recently.
Alfes-Neumann and Schwagenscheidt [ANS21, Proposition 1.9] proved that (fp, fq) is a
constant multiple of the twisted traces of cycle integrals of J € Hé This was their main
motivation and starting point for [ANS21] (see [ANS21, p. 2306]). Corollary 4 expressed
(fp, fa) in terms of Hurwitz-Kronecker class numbers and twisted traces of %j 1 € Hop.
Given that the space Hé is a subset (see Subsection 2.6) of the space Hg g, it should
be noted that the form %.,]Ah does not lie in the space Hé On the other hand, Jeon,
Kang, and Kim [JKK14, Theorem 1.3] expressed (fp, f4), when dD # O, in terms of
Hurwitz-Kronecker class numbers and certain modified traces of J; € Hy 2, the space of

sesqui-harmonic Maass forms of weight zero for SLa(Z) (see Section 2.0.1).

It is reasonable to examine the inner products of forms that may exhibit singularities in H
apart from the cusps, i.e., meromorphic modular forms (see Section 7.1.1 for the definition).
The inner product of such forms was regularized by Petersson [Pet54] through the Cauchy

principal integrals. This approach was independently rediscovered and further developed
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by Harvey-Moore [HM96] and Borcherds [Bor98]. For meromorphic modular forms, the
Petersson inner product gives nice arithmetic. For instance, Rohrlich [Roh84] studied
divisor sums of Kronecker limit functions log(y%|A(7)]) , where A(7) == ¢ [[°%, (1 —¢™)*4,
to draw parallels with Jensen’s formula from the complex analysis within the context of
modular forms. We will now delve into the discussion of the Jensen formula, then discuss
its modular version by Rohrlich, followed by its extension by Bringmann-Kane, and finally
present our results.®

Jensen’s formula [Lan99, p. 341] is a renowned theorem in complex analysis. It relates
the integral of log|f| around a disc for a meromorphic function f to the sum of the
divisors of f within the disc. This formula is integral to classical function theory and has
significantly influenced the development of Nevanlinna theory. Nevanlinna theory shows
parallels with Roth’s theorem in the Diophantine approximation. Vojta extended these
concepts by creating a type of ‘dictionary’ [Voj87, p. 34|, outlining the analogy between
number theory and Nevanlinna theory, where Jensen’s formula serves as a counterpart
to the Artin-Whaples product formula in class field theory. Furthermore, Nevanlinna
theory has been instrumental in inspiring Vojta’s conjecture concerning rational points on
varieties, offering deep insights into arithmetic and algebraic geometry.

Rohrlich [Roh84] explored a modular adaptation of Jensen’s formula. Rohrlich’s
theorem can be rephrased using the Petersson inner product. Initially, define Jo(z) :=
tlog(y®|A(2)]) + 1, where z = z + iy. Let f denote a meromorphic modular function for
I’ := SLy(Z), which does not possess a pole at ico and has a constant term of 1 in its
Fourier series. Let F be the standard fundamental domain of the quotient SLo(Z)\H. We
note that by our assumption, F does not contain the cusp at ico. Let ord,,(f) represent
the order of the zero or pole of f at w, and let ord(w) denote the order of the isotropy group
of w € H (refer to Subsection 7.1.1). Thus, according to the valence formula, Rohrlich’s

theorem can be reformulated as follows:

(1,log |f]) = —2m ) mﬂo(w). (1.22)
weF

It turns out that the function Jj is a sesqui-harmonic Maass form of weight 0 such that
Ao(Jo) = 1.

Several versions and extensions of Rohrlich’s theorem have been explored by numerous
mathematicians [HIvPT19, BK20, CJS23, JKKM24] and have found various applications
in number theory [Fun07, Kud03]. Additionally, an extension of Rohrlich’s theorem is
applicable to the calculation of arithmetic intersection numbers in Arakelov theory [K01].
Recently, Bringmann and Kane [BK20] extended the Rohrlich’s theorem to the j-function
in the framework of (1.22), where they required a regularized version (see Eq. (7.10)) of
the inner product, which is again denoted by (-, ).

8The results in Theorem 11 and Corollary 5, 6, 7, 8, 9, 10, 11, 12 are from Chapter 7 of this thesis.
They appear in the paper [KKa| and are in a joint work with Balesh Kumar.
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In order to state the result of Bringmann and Kane, we must first establish some notation.
Recall j be the Klein’s modular invariant with the g-expansion given as in (1.1) and
Jj1 = j — 744. For n > 1, recall j, be the family given in (1.10) which is defined by

Jn = J1|Tn, where T), is the nth Hecke operator defined on modular function f of weight

k for SLa(Z) by
f’Tn(Z) — Z Z dfk:f <CLZ;r b) .

ad=n b (mod d)
da>0

Let J,, be the sesqui-harmonic Maass forms of weight 0 defined in [BK20, (3.10)] that
satisfy Ao(J,) = jn. Then Bringmann and Kane proved the following.

Theorem 10 (Bringmann-Kane). Let f be a meromorphic modular form of weight k
for SLa(Z) that does not have a pole at ico and has a constant term one in its Fourier

expansion. Then there exists a constant c, such that
, k B ordy (f) k
(s 1)) =2 3 20030 e,

Motivated by the aforementioned theorem, it is natural to investigate the sums of the
values of j-invariant over the divisors of meromorphic modular forms as a regularized
inner product. To state the result, let vy := %% be the Ramanujan-Serre derivative of
weight 0 and j;, := vo(jn). Denote by o1(n) the sum of positive divisors of n. Then we

prove the following.

Theorem 11. Let f be a non-zero meromorphic modular form of weight k for I'. Then

for every integer n > 1, we have
. k 1 ordy (f) .
Gmsm s 1)) = 1 (55 200 20
weF

Theorem 11 establishes a useful connection between the regularized inner product and the
sum of the values of j,, over the divisors of meromorphic modular forms. The values of
Jn at divisors of meromorphic modular forms frequently link to arithmetic and algebraic
data. For example, they yield numerous implications when combined with the interesting
findings of Bruinier, Kohnen, and Ono. [BKOO04]. We start by exploring an implication
pertaining to the relationship between the regularized inner product and the exponents in

the infinite product expansion of meromorphic modular forms.

Corollary 5. Suppose that f(z) = > >7, ar(n)q™ is a weight k meromorphic modular

form on I' for which ag(h) =1 and denote by c(n) the complex numbers for which

F) =" T (1= gqn) ™.
n=1
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If n > 1 is an integer, then

(i1~ [10g (v2171)] ) = 5 3 el

dn

It is interesting to observe that the preceding corollary provides an inner product
(geometric) interpretation for the exponents in the infinite product expansion of

meromorphic modular forms.

To describe the next consequence, we start by recalling the kernel function K(z,7) defined
by
1 0 .

J'(7) _ 19
27 77

i(z) = j(r)’

This function transforms on I' with weight 0 in z and weight 2 in 7. In fact, it is a weight

K(z,71):= (7). (1.23)

where j'(7)

2 meromorphic modular form for I'" in the variable 7 with a simple pole at 7 = z. The
function K (z,7) turns out to be the generating function for the basis {jm }m>0 of C[j]
that goes back to Faber [Fab03] (see [AKN97]). One has

K(z,7)= Z Jm(z)€2™mT (1.24)

m>0

The above identity was used to prove that

o .
. s _ —2miT o jn(Z) 2minT
jir)y—jz)=e exp( Zin e )
n=1
This identity is equivalent to the famous denominator formula

j(T) _ ](Z) — o 2miT H (1 o 627rim7'627rinZ)c(mn)7
meN,neZ

for the monster Lie algebra, where the exponents c¢(n) denote the nth coefficient of j.
The function K (z,7) plays many important roles in the theory of modular forms [AKN97,
DIT11a] and is intimately related to the logarithmic derivative of meromorphic modular
forms. More precisely, let f be a meromorphic modular form of weight 2k for I'" that does

not vanish at ico. Then Bruinier, Kohnen, and Ono [BKO04, Theorem 1] proved that

/
E w
1) _kEr 5~ orduld) g, o (1.25)
f(7) 6 = ord(w)
where f'(7) = ﬁa% f(1) and Es is the weight 2 quasimodular Eisenstein series

By(r) :=1-24>  o1(m)e*™".

m2>1
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On the other hand, a simple computation shows that

—4m1y [log (”k|f|>} - % e ?lé:;’

where 7 = u + iv € H. Using (1.25) in the above, we get

~am [log (v111)] =~ 5T B3(0) 4 2 3 2D g ),
weF

where F3 is the harmonic Eisenstein series of weight 2 defined in (1.15). Using above in

Theorem 11 along with Proposition 7, one can deduce that

27 Z %<jé7K(w’T)> = Z M]”(w)

ord(w) = ord(w) 2

It is natural to expect that the corresponding summand on both sides of the above should

match. Here we derive.

Corollary 6. Let the notations be as above. Then for every integer n > 1, we have

As an immediate consequence of Corollary 6 and (1.24), we deduce.

Corollary 7. The generating series of reqularized inner products
0 .
1+ 47 ZU}Q?K(Z’ ))e2minT
n=1

equals K(z,7) and hence it is a weight 2 meromorphic modular form for T' with a simple

pole at z = 7 in H.

Next we derive a result towards the algebraicity of the regularized inner product. We

have.

Corollary 8. Let f(z) = o2, ap(n)g" be a meromorphic modular form of weight k for
I' for which ag(h) = 1 and the Fourier coefficients of f are in a number field K. Then for

every integer n > 1, the inner product

(s —amwn [tog (y5101)])

s an algebraic number.

For certain meromorphic modular forms, it is plausible that the inner product described
in Corollary 8 could be an algebraic integer. Moreover, for these types of meromorphic
modular forms, the regularized inner products equate to the traces of singular moduli. We

start by establishing the necessary notation to demonstrate this.
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For discriminant d, recall that the modular group I' = PSLy(Z) acts on the set Q of binary
quadratic forms of discriminant d via (1.2), and results in finitely many classes. Let the
set of equivalence be denoted by '\ Qg4, and fQ be the stabilizer of ) under the action
of I with || be its size. Let d, D be discriminants with D > 0 fundamental, recall that
XD : Qip — {£1} is the generalized genus character defined in (2.12). Moreover, recall
that {fa}o>d=0,1(mod4) is the Borcherds basis [Bor98] of M 1 /2 having a Fourier expansion
of the form (1.5).

For d < 0, let Up(z, f4) be the twisted Borcherds product defined in [Bor98, Theorem
6.1]. In fact, it follows from [BO10, p. 2172] that

xp(@)
U f) = [] GG i) 2,

QeMQap

where zg is the unique root of Q(z,1) contained in H, in other words, 2z is the complex
multiplication (CM) point associated with @, wg = |Tg| is the size of the stabilizer of Q
in PSL2(Z). This is a meromorphic modular form of weight 0 for I', having zeros or poles
of order xp(Q) at CM points zg € H, for Q € Qgp. We have the following.

Corollary 9. Let the notations be as above. Then for every integer n > 1, we have

G —amnflog Un(e falh =5 3 220
Qel\Qap @

In particular, for every integer n > 1, we have
2 (j, —4rw[log | p (2, fa)[]) € VD Z.

We deduce the following.

Corollary 10. Let D > 1 be a fundamental discriminant. Then the generating series of

reqularized inner products

- <’ml;n>nq_”2D + \/% dz<0 (i, —Amvglog ¥ p (2, fa)[])q'"

nlm
d=0,1 (mod 4)

is a weakly holomorphic modular form of weight 3/2 for T'g(4).
In particular, for m = 1, the generating series of regularized inner products

- ST, —dmoflog ¥ (z £)l])g
d<0
d=0,1 (mod 4)

Sl

coincides with the form considered by Zagier in (1.3) ([Zag02, (15)]).

Continuing with the exploration of arithmetic results, we note instances of modular forms

whose inner products are actually integers. Specifically, we investigate the divisibility (or
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congruence) properties of the inner products associated with these modular forms. To

start with, for even integers k > 4, we define the standard Eisenstein series

where Bj, is the usual kth Bernoulli number and o;_1(n) = de d*~1. The Eisenstein

series Fj is a modular form of weight k£ on I'. Now, we have the following.

Corollary 11. If k > 4 is even, then for every integer n > 1, we have

<j;L, —4myy [log (y%\Ek|>]> =0 <mod 2 H p).
5 e

Next, we provide universal recursion formulas for regularized inner products in terms of
the arithmetic of Fourier coefficients of modular forms. To state the result, define the

polynomial G,,(z1,...,2p—1) € Q[z1,...,2y_1] by

(ml—i-'-‘—l—mn_l—l)!xm N

_ mi+-+mp—1 1 Mn—1
Gn(z1,...,Tp-1) = g (—1) n — ' SRR
S mql--mpy—1!
mi1+2mo+-+(n—1)mp_1=n
The first few polynomials G,, are
Gi(-) = 0,
2
T
1
Gz(xl) = ?7
3
T
1
G3($1>5L’2) = _g + 129
4 2
T T
G4($1,$2,1‘3) = —.'L'%-'L'Q + Tr1x3 + Zl + ?2
xi’ 3 2 2
Gs(z1,22,23,24) = - + x{xe — X125 — X]T3 + T1T4 + T2T3

We have the following.

Corollary 12. If f(z) = ¢" + 352 ay(h + n)¢"™ is a meromorphic modular form of
weight k for I', then for every integer n > 1, we have

<J}’w —4mg [log <y%\f\)]> = g[Gn(af(h +1),...,ap(h+n—1)) —ap(h+mn)].

Example. If f(z) = ¢+ .2, ar(n)¢" is a meromorphic modular form of weight k for I,
then the case n = 1 of Corollary 12 implies that

<]1, —47yg []og <y§ ‘f|>] > _ _be2(2)'
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In particular, if we take f to be the Ramanujan’s Delta function

A(z) = 7(n)q" = q— 24¢> + 252¢° — - -

n=1

in the above, then we get
(41, —4mvg [log (y°|A])]) = 12. (1.26)

The above identity (1.26) can also be directly verified from Theorem 11 because A is a

weight 12 holomorphic cusp form for I' which does not vanish at any point in H.

We now turn our attention to further examining the regularized inner product of the forms
fa's from the Borcherds basis in (1.5), particularly in the case where it is not defined
by the usual definition (1.20). For example, f;’s may not be directly integrable among
themselves. To study such inner products, Bringmann, Diamantis, and Ehlen [BDE17]
developed a regularization for Petersson inner products of arbitrary weakly holomorphic
modular forms, which generalizes several known regularizations. Their approach involved
multiplying the integrands by a function that ensures convergence, after which they
carried out analytic continuation. Jeon, Kang, and Kim [JKK14] were the first to give
an arithmetic interpretation of the regularized Petersson inner product of f;’s. More

precisely, they proved the theorem below.

Theorem 12 (Jeon-Kang-Kim). Let d and D be both negative discriminants with D
fundamental and dD # O. Then we have

(fa, fp) = —12vdD Tr} p(J1(2)) + 2887 H(D)H(d),

where (.,.) is the regularized inner product defined by (1.20), TYZ‘l’D(Q]A]l(z)) is a modified
trace of cycle integrals of sesqui-harmonic Maass form jl(z) defined by Jeon-Kang-Kim

and H(d) denotes the Hurwitz-Kronecker class number defined in (2.10).

We have extended the above Theorem using the regularized Petersson inner product of
Bringmann, Diamantis, and Ehlen [BDE17], denoted by (.,.)™8, and our definition of
modified trace of J; in the case when dD = O (see Eq. 1.14). We prove the following.

Theorem 13. ? Let d, D be both negative discriminants with D fundamental and dD = 0.

Then we have
(fa, f)™°8 = —4VdD Tryp(J1(2)) + 967 H (D) H (d),

where (.,.)*8 is the regularized inner product defined by (4.6), Trd,p(jh(z)) is defined in
(1.14), and H(d) denotes the Hurwitz-Kronecker class number defined in (2.10).

9The result in Theorem 13 is from Chapter 4 of this thesis. It appear in the paper [KK24] and a joint
work with Balesh Kumar.
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Remark 2. We note that a computation in [BDE17, section 4.3] shows that the regularized
inner product considered in [JKK14, Theorem 1.3] for dD # [ is 3 times the regularized

inner product used in Theorem 13 above.

This research focused on the arithmetic properties of regularized inner products and
Fourier coefficients related to harmonic Maass forms (mock modular forms). We will now
discuss the Fourier coefficients of harmonic Maass forms. An important facet of examining
the arithmetic of Fourier coefficients is the investigation of traces of cycle integrals of
modular objects, since these traces may relate to the Fourier coefficients of harmonic
Maass forms. Essentially, the traces of cycle integrals of modular objects can be viewed
as the sum of integrals of modular objects along hyperbolic geodesics corresponding to
binary quadratic forms of fixed discriminant. For binary quadratic forms with square
discriminants, the related geodesics are of infinite length and connect the cusps in SLa(Z).
Consequently, these traces might be undefined if the modular objects exhibit exponential
growth at the cusps. Using the regularization of Andersen [And15, And22], we study traces
of cycle integrals at square discriminants. The objectives are twofold: first, to give new
interpretation of Fourier coefficients of certain harmonic Maass forms through these traces,
which naturally appear as infinite series involving exponential sums and Bessel functions.
Second, to establish connection of these traces to geometry and arithmetic via (regularized)
inner products and L-functions, respectively, thereby highlighting the connections of these
traces. This method of regularization was used in [And15, And17, AAS18] to study
the Fourier coefficients of harmonic Maass form and their variants. We utilized this
regularization technique to define traces for sesqui-harmonic Maass forms of weight zero
and harmonic Maass forms of negative weights.

We now proceed to discuss the contributions of this thesis in the direction of arithmetic

of Fourier coeflicients of harmonic Maass forms and mock modular forms.

(i) Fourier coefficients of mock modular forms of weight 3/2: We
interpret Fourier coefficients of specific mock modular forms {gg =
> n<o b(d, n)q‘”'}ozdzm(mod@ of weight 3/2 in terms of modified traces of
sesq_ui—harmonic Maass form of weight zero, which we have defined. These
sesqui-harmonic Maass forms are constructed [JKK14] via taking the derivative
with respect to the auxiliary variable s of the Niebur Poincaré series (see (1.13)).
Therefore, to define traces of sesqui-harmonic Maass forms, it seems natural to
first define traces of Niebur Poincaré series and then differentiate with respect to s.
However, to study b(d, D) (d, D < 0) with dD = [J, the notion of traces of Poincaré
series at square discriminants is needed. This necessity arises because the usual
cycle integrals of Niebur Poincaré series, corresponding to binary quadratic forms of
square discriminants, are divergent due to growth at the cusps. The regularization
considered by Andersen [Andl5] can be used to define such traces. However,
due to the genus character involved in the definition of traces and d, D < 0, these

regularized traces turn out to be zero. In this case, following [JKK14], we introduced
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the modified traces of Niebur Poincaré series by limiting the summation to binary
quadratic forms Q = [a,b,¢] € Qup with a > 0 in Andersen’s regularization.
Furthermore, we define the modified traces of cycle integrals of sesqui-harmonic
Maass forms by differentiating the modified traces of Niebur Poincaré series with
respect to s. This enables us to give a new interpretation of b(d, D) with dD = [OJ,
in terms of modified traces of the sesqui-harmonic Maass form of weight zero (see
Theorem 1).

The mock modular forms g4 (in fact, their completions) are understood in terms
of the Shintani theta lift developed in [ANS21]. Therefore, we are able to connect
(see Corollary (1)) modified traces of cycle integrals of sesqui-harmonic Maass form
with the (non-existent) central critical L-value [ANS21, p. 2302] associated with
certain harmonic Maass form of weight 2. This gives an interaction between two
different regularizations and reveals the arithmetic nature of modified traces through

the expression of hypothetical L-value.

Fourier coefficients of harmonic Maass forms of half-integral weight and
L-values: We defined modified traces of cycle integrals, at square discriminants, for
harmonic Maass forms of negative weights. These modified traces are used to provide
new interpretation of the Fourier coefficients of harmonic Maass forms of half-integral
weights and their connection to L-values. Following [BGK14], we define these traces
in terms of traces of modified Niebur Poincaré series (see (3.10)), using the Maass
raising operator. For binary quadratic forms with square discriminants, the cycle
integrals of Niebur Poincaré series diverge because of growth at cusps. To regularize
cycle integrals at square discriminants, we adopt the regularization by Andersen
[And15, And22]. The definition of modified traces linked to binary quadratic forms
with discriminant dd = [, involves two cases: either both discriminants are positive,
or both are negative. We dealt with both the cases differently since the trace of
modified Niebur Poincaré series turns out to be zero when both discriminants are
negative. This is due to the genus character involved in the definition. Specifically,
when both discriminants are negative, the definition incorporates cycle integrals of
the derivative of the modified Niebur Poincaré series. This approach follows from
the ideas in recent works [And22] and [DIT16a]. We established that the modified
traces of harmonic Maass forms provide new interpretation of the Fourier coefficients
of Zagier lifts defined by [BGK14] (refer to the proof of theorems 2 and 3) and
[JKK16b] (see theorems 4 and 5).

Due to the connection of Zagier lifts defined in [BGK14] with classical Shintani lift,
we proved a relationship (equality up to constants and conjugation) between modified
trace of harmonic Maass form 90t and trace of cycle integrals of cusp forms &o_ox (901)
(see Theorem 2). Traces of cycle integrals of cusp form at square discriminants gives
the L-value of the corresponding cusp form (see [Koh80, p.243]). We have established

a new connection (refer to Corollary 2) between modified traces of harmonic Maass
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form 9t and the central value of the L-function of &_9,(9%). This highlights the
understanding of modified traces of harmonic Maass forms that we define, in terms
of L-values. In addition, we established a characterization result (refer to Corollary
3) that employs the analytic techniques in [GKS24]. This result characterize weakly
holomorphic modular forms in the space of negative weight harmonic Maass cusp
forms, by vanishing of the modified trace of harmonic Maass forms. The necessity
for analytic methods in [GKS24] emerges because of the assumption that {3_ox (M) is
considered to be a cusp form, though not necessarily a Hecke eigenform. Therefore,

we believe, the statement of Corolloay 3 is more general in that sense.

We now delve into the contributions of this thesis towards the arithmetic related
to regularized inner products. We specifically studied regularized inner product of

weakly holomorphic and meromorphic modular forms.

(i) Regularized inner product of weakly holomorphic modular forms:
We studied the regularized inner product of weight 1/2 weakly holomorphic
modular forms in Borcherds basis [Bor95]. We proved that the regularized
inner product of these forms can be expressed in terms of certain surface
integrals of j,,’s over hyperbolic orbifolds and arithmetic data attached to these
surfaces (see theorems 7 and 8). These hyperbolic orbifolds are new geometric
invariants constructed in [DIT16a], having usual modular closed geodesic as
its boundary. The proof of theorems 7 and 8 relies on the computation of
traces of cycle integrals of sesqui-harmonic Maass forms by using the method
of Maass-Poincaré series. Additionally, a key ingredient of the proof is the
relationship between traces of cycle integrals of harmonic and sesqui-harmonic
Maass forms of different weights (see Theorem 9). Following [AD20], we
examine the two distinct regularization approaches for the surface integrals of
Jm, and we determine the interconnections between these regularizations (see
Lemma 11). Furthermore, we also interpret the regularized inner product of
Borcherds basis elements in terms of traces of cycle integrals of sesqui-harmonic
Maass form of weight two and Hurwitz-Kronecker class number (see Corollary
4). It is natural to ask for the extension of Corollary 4 when the product
of discriminants is a perfect square. In this case, the regularized inner
product may not exist, so we applied the regularization developed in [BDE17].
Moreover, Corollary 4 indicates the necessity of computing cycle integrals for
sesqui-harmonic Maass form associated with binary quadratic forms having
square discriminants. In this direction, using the modified trace for the case
dD = 0O (see Eq. 1.14), we obtained the regularized inner product of the
Borcherds basis elements in terms of modified traces of cycle integrals of
sesqui-harmonic Maass forms of weight zero and the Hurwitz-Kronecker class
number (see Theorem 13). The study in [ANS21, JKK14] investigates the
regularized inner product of Borcherds basis elements from different viewpoints.
By extending the perspectives established in [ANS21, JKK14], these results
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contribute to a new and broader understanding of the inner product of these

forms.

(ii) Regularized inner product of weakly holomorphic modular forms:
We investigated the regularized inner product involving meromorphic modular
forms. The authors in [DIT11al, expressed regularized inner product of weakly
holomorphic modular forms in terms of traces of cycle integral of j — 744. It
may seem natural to ask about the interpretation of traces of singular moduli
in terms of regularized inner products. We provide an explanation utilizing
the regularized inner products of meromorphic modular forms. More generally,
using methods in [BK20], we prove that the values of j, at the divisors of a
meromorphic modular form of weight k, denoted as f, essentially correspond
to the regularized inner product between j,/l and 22'% [log (ygl f ])} (refer to
Theorem 11). This fits well within the framework of the Rohrlich-Jensen
formula [Roh84] and its extension in [BK20], which served as a key motivation
for Theorem 11. Stoke’s theorem, along with Fourier and the elliptic expansion
of relevant forms, plays a crucial role in the method used for the proof.
Moreover, we computed an explicit description of Fourier coefficients of certain
sesqui-harmonic Maass forms related to the automorphic Green’s function
(see Proposition 8) and completed weight two Eisenstein series (see Lemma
(14)). Using Theorem 11 and the results of [BKO04], we establish a variety of
arithmetic results concerning the regularized inner product, providing further

insights into their structure.

¢ Exponents of infinite product expansion of meromorphic modular
forms. Any meromorphic modular form can be expressed through a
product expansion characterized by specific exponents (see Corollary 5).
We prove a relationship between these exponents and regularized inner
products. While the relationship between regularized inner products and
Fourier coefficients of modular forms is well known, their link to exponent
of modular forms does not appear to have been widely explored.

e Algebraic nature of regularized inner products and traces of
singular moduli. We proved that the regularized inner product between
j;b and 2@'% [log (yg\f\)} is an algebraic number (see Corollary 8).
Moreover, for a specific choice of meromorphic modular form f, we found
a direct connection between the regularized inner product and the traces
of singular moduli (see Corollary 9).

e Divisibility properties and arithmetic recurrence relations of
inner products. For regularized inner products between j;b and
22’% [log (yg |f |)} , we established divisibility properties (see Corollary 11)
when we specify f as an Eisenstein series of weight k. Moreover, we
prove a certain recurrence relation of these regularized inner products in

terms of Fourier coefficients of modular form f (see Corollary 12). This
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provides insight into the connection between regularized inner products of
meromorphic modular forms and the arithmetic of Fourier coefficients, as
well as their integer-related properties.

Generating series of regularized inner products. We also studied
generating series of regularized inner products of meromorphic modular
forms. We show that these generating series are modular. More precisely,
we established them as a meromorphic and weakly holomorphic modular

form (see corollaries 7 and 10).



Chapter 2

Preliminaries

We denote throughout the set of complex numbers by C, the set of integers by Z and the
set of positive integers by N. Moreover, we denote the set of complex upper half-plane
by H and it’s elements by z = x + iy with z,y € R and y > 0. Given z € H, we define
q := ¥ = ¢(z). We denote [J to signify the presence of a non-zero integer b such that
O =52 Weset k € %Z and

SLy(Z) if k € Z,
p.o ) Se@ s (2.1)
Io(4) ifrelZ\Z.

The full modular group SLg(Z) acts on the H via linear fractional transformations i.e.

(A = (a ?)  2) ‘f;‘zig, for A € SLy(Z), is a group action. For any z € C, we
v

choose /z to be the principal branch of holomorphic square root. Let f be a complex

valued function on H. Then, define the action (or the stroke operator |.) of an element

A:<a B)EFonfby
v 4

ke paztB .
(flA)(2) = vz + 07 (5555) el (2.2)
(2) eg’“‘(vz+5)_"‘f(‘f;’z—i’g) if kel+2,

where the usual extended Legendre symbol is denoted by (5) and €4 is the root of unity that
takes the value 1 or ¢ depending on whether d = 1 (mod 4) or d = 3 (mod 4) respectively.
Functions that are invariant under |, for x € 3 +Z, satisfy the transformation law studied

in Shimura’s theory of half-integral weight modular forms [Shi73].

2.0.1 Weak Maass forms and variants

Here we discuss the essential facts and definitions in the theory of Maass forms which we

require for later use. For x € %Z, define the weight x hyperbolic Laplacian by

0? 0? 0 0
A=+ ) +iny [ —+—). 2.3
Y (8:{:2 * 8y2> ey (8:0 * c?y) (2:3)
A smooth function F' : H — C is called a weak Maass form of weight x and eigenvalue
A € C if the following holds,

(i) Flx M =F, forall M €T,
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(i) A F = AF,

(iii) F has at most linear exponential growth at every cusp of I'.

We say that F' is a harmonic weak Maass form if A = 0 in the above definition. We refer
to a beautiful paper by Bruinier and Funke [BF04] for fundamental results in the theory
of harmonic weak Maass forms. Since the holomorphic functions on H are harmonic,
we classify weakly holomorphic modular forms as those harmonic Maass forms that are
holomorphic on H. We denote W,i, H ,!{, M,i, M., S, be the spaces of weak Maass forms,
harmonic weak Maass forms, weakly holomorphic modular forms, holomorphic modular
forms and holomorphic cusp forms of weight x for I' respectively. The operator & :=
Ziyk% plays an important role in the theory of harmonic weak Maass forms. It defines
an antilinear surjective map

| surjection
&t Hy,

M), (2.4)

with kernal M, [BF04, Proposition 3.2 and Theorem 3.7]. The operator Ay can also be
expressed as
Ay = —&p o, (2.5)

There are two interesting spaces of Maass forms defined through &. The first being the
space of sesqui-harmonic Maass forms of weight . This space consists of complex-valued
smooth functions on H vanishing under A, :=§, 0 A, = =&, 0 (§2—x 0 &) and satisfying
properties (i) and (iii) of weak Maass forms of weight x. The notion of sesqui-harmonic
Maass form is introduced by Bringmann, Diamantis and Raum [BDR13] and these objects
were first appeared in a different context in [DIT11a, DI96] and further explored in [LR16,
ALR18, Mat18] among others. The other one is harmonic Maass cusp forms of weight k,
which precisely consists of those F' € H. such that &, (F) € Sy_... We denote H,oand HY
be the spaces of sesqui-harmonic Maass forms and harmonic Maass cusp forms of weight

k for I respectively. We note that

S. C M,C M. CHfCH.CH,gs (2.6)

Remark 3. For sk € % + Z, we fiz throughout that forms in H, o satisfy Kohnen’s plus

space condition. This means that if f € H, o has Fourier expansion

f(2) = 3 cln ),

ne”Z

then c(n,y) = 0 wunless (—1)“_%71 = 0,1(mod4). Therefore, when r € 3 + Z,
Sy My, M,L, HY and H,L assumed to satisfy Kohnen’s plus space condition.
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We consider the Maass Raising operator by

d kK
R, :=2i— + —. 2.7
“or + v (2.7)
If ' is an eigenfunction under A, with eigenvalue A and satisfies weight x modularity,
then it follows from [BFOR17, Lemma 5.2] that R, (F') is an eigenfunction under A,

with eigenvalue A\ 4 k, and satisfies weight x + 2 modularity.

2.0.2 Integral binary quadratic forms, quadratic fields and class

numbers

Here we discuss the integral binary quadratic forms, their connections to quadratic fields
and class numbers. Let K be a real quadratic field. Then K = Q(v/D), where D > 1 is
the discriminant of K. Let ¢ : K — K be the non-trivial Galois automorphism 5 +— (57,
and for 8 € K, let N(3) = 837 be the norm of 8. Denote Ix as the group of fractional
ideals of K and Pk (resp. Pg) be the subgroup of principal fractional ideals (resp. totally
positive principal fractional ideals) of K. Let Clp := Ix/Px and Clf; := Ix/Pg be the
class group and the narrow class group of K respectively. Two ideals a and b are in the
same narrow class if there is a § € K with N(8) > 0 so that a = (58)b. Let ¢4 > 1 be the
smallest unit with N(8) > 0 in the ring of integers Ok of K.

We call d a discriminant if d # 0 and d = 0,1 (mod 4). We say that a discriminant d
is fundamental if d is the discriminant of a quadratic field. We fix the notation d as a
discriminant throughout this thesis. Let Q4 be the set of integral binary quadratic forms
Q(z,y) = [a,b,¢] = ax? + bry + cy? of the discriminant d = v?> — 4ac. When d < 0,
we assume that a > 0. We call a binary quadratic form @ = [a,b,c] € Qg primitive, if
ged(a, b,¢) = 1. The modular group I' := PSLy(Z) = SL2(Z)/{+£1} acts on the set Qg by
linear change of variables. More precisely, for v = (3 g ) cTand Q = [A4,B,C] € Qq,
this action is defined by

7Q = Qv = Q(6z — By, —yz + o). (2.8)

This action is compatible with the action of I' on H by linear fractional transformations

in the sense that,

(1Q)(2,1) = (—ez +a)*Q(v "2, 1).
The above implies that if z9 € H is a root of Q(z,1) = 0, then yzg € H is a root of
(vQ)(z,1) = 0. The set of equivalence classes ['\ @y is finite and those classes consisting of
primitive forms make up an abelian group (under the Gaussian composition) of order hy
(class number). In fact, for d to be a fundamental discriminant, there is a correspondence
between '\ Qg and Cly which is given by

[a,b,c] — wZ+7Z, w= 5

_ —btb\/a (2.9)
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Furthermore, if [a,b,c] is chosen in its class so that @ > 0 and d to be a fundamental
discriminant, then the above gives a bijection between I'\ Qg4 and Clj. Let fQ ={y €
[': vQ = Q} be the group of automorphs of Q € Q4. If d < 0, then |Tg| = 1 unless Q is
[-equivalent to [a,0,a] or [a,a,a], in which case [['g| = 2 or 3, respectively. Next define
the Hurwitz-Kronecker class numbers H(d), for a discriminant d < 0 by

Hd) = Y |r1| (2.10)

QelM\Qq

If d < 0 is a fundamental discriminant, then it follows that H(d) = Z—‘;, where 2w, is the
number of roots of unity in Q(v/d).

The case d > 0 constitutes whether d is a perfect square or non-square. If d > 0 is a
perfect square, then f‘Q is trivial. In contrast, if d > 0 is non-square, then f‘Q is infinite

cyclic group with a distinguished generator denoted by gg. For primitive @ = [a, b, ], it

t—bu
2 T
2

where (t,u) is an integral solution with ¢,u > 1 to the Pell’s equation t?> — du? = 4 (see

is given by

[Sar82, Section 1]). If u = ged(a, b, ¢), then gg = g9/,

2.0.3 Genus characters

We adhere to the exposition given by Gross, Kohnen, and Zagier in [GKZ87, p. 508]. Let
Q = [a,b,c] € Qgp and D be a fundamental discriminant. Note that every discriminant is a
unique square multiple of a fundamental discriminant. We call an integer n is represented
by @, if there exists a,b € Z, such that Q(a,b) = n, and recall (Q) be the Kronecker
symbol. Define the function (extended genus character) xp : Qqp — {£1} by

D .
= if ged(a, b, ¢, D) = 1, [a, b, | represents n, ged(D, n) = 1,
xp(Q) = &) (2.12)

0 otherwise.

Such an integer m in the above definition always exists, and that the definition is
independent from its choice. Since equivalent quadratic forms under the action defined in
(2.8) represent the same integers, xp descends to ['\Qg. Furthermore, xp restricts to a
real character (genus character) on the group of primitive classes, and that all characters

arise in this way. We have
xp(—=Q) = (sign D)xp(Q). (2.13)

Moreover, if d is fundamental then it turns out that xp = x4 on f\ Qgp and x1 is trivial.
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2.0.4 Heegner geodesics

Let Q = [a,b,c] € Q4 with d > 0. Define Heegner geodesic
Sg :={z € H:a|z|* + bRe(z) + c = 0}. (2.14)

If d is non-square, Sp is an arc in H perpendicular to R, that joins two irrational
roots of Q(z,1) = 0, which are Galois conjugates. We can fix orientation on Sg to
be counter-clockwise if a > 0 and clock-wise if a < 0 (respectively, clockwise if a > 0 and
counterclockwise if a < 0). Let Cg := '\ Sg, which is a closed geodesic on modular curve
['\ H. Recall that gq is the distinguished generator of I'g from (2.11). One can view Cg
in H as the geodesic from any point z on Sg to gélz (respectively, from z € Sg to ggz, if
we assume that the orientation on Sg is clockwise if @ > 0 and counterclockwise if a < 0).
It was established in [DIT11a, Lemma 6] that integral over C¢g of an SLy(Z)-invariant and
continuous function is class invariant and independent of z € Sg.

If d is a perfect square, then f‘Q is trivial and Cg = f@ \ Sg = Sg joining two roots of
Q(z,1) = 0 in P}(Q). Assume the orientation on S¢ as defined above. In this case when
a = 0, Sq turns out to be the vertical line Re(z) = —¢. We orient this line downward
(respectively, upward if we assume the orientation on Sg to be clockwise if a > 0, and

counterclockwise if a < 0)

2.0.5 Niebur Poincaré series

For m € Z and s € C, we put

2|2y 2Ty (2 |mly), if m#0,
bm,s(y) = e (2.15)
y® if m=0,
where I, is the Bessel function of the first kind [MOS66, Chapter 3]. The Niebur Poincaré
series [Nie73] is defined for Re(s) > 1

Gm(z,8) := Gm(z, oms) = Z e(m Re(Az))pm s(Im(Az)), (2.16)
A€T o\

where 'y, is the group of translations of I'. G,,(z,s) converges uniformly on compacta
and defines a smooth I' invariant function on H. Here Gg(z,s) is the usual Eisenstein
series. For m # 0, each Gy, (z, s) has an analytic continuation to Re(s) > 1/2 ([JKK14, p.
98] ) and they satisfy

AgG(z,5) = (5 — 82)Gm(z, 5).

Thus we obtain an infinite class of members G, (z,1) € Hp.
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Chapter 3

On interpretation of Fourier

coefficients of Zagier type lifts

In this chapter, we prove Theorem 4 and Theorem 5 from the Section 1.0.1 of the
Introduction. The material in this chapter along with Theorem 4 and Theorem 5 appear
in the paper [Kal24].

3.0.1 Outline of the Chapter

The Chapter is organized as follows. We define the notation utilized in this Chapter in
the Section 3.1. In Subsection 3.1.1, we discuss the notion of weak Maass forms and
their Fourier expansion along with differential operators related to weak Maass forms.
The construction of Maass Poincaré series and their Fourier expansion is explained in
Subsection 3.1.2. Moreover, Subsection 3.1.3 discusses the setup of binary quadratic forms
and their genus characters. Moving on to the Subsection 3.1.4, we discuss modified traces
of Niebur Poincaré series and compute their relation with the Kloosterman sums. Lastly

in Section 3.2 and 3.3 we prove Theorems 4, 5.

3.0.2 Brief outline of the proofs

Here we discuss the main ideas used in the proof of theorems 4 and 5. In this chapter,
following [BGK14], we define the modified trace at square discriminants for Maass-Poincaré
series of negative weights by applying the Maass raising operator Ry_o, (refer to (2.7) for
the definition). From (1.17), it follows that defining the modified trace of Niebur Poincaré
series at square discriminants suffices. Let d,§ be fundamental discriminants satisfying
dé > 0. When dJ is not a perfect square, the twisted trace (depending on d,d) of Niebur
Poincaré series is essentially the sum of cycle integrals of Niebur Poincaré series over
certain (finite length) geodesics associated with binary quadratic forms of the discriminant
dd. However, when dé is a perfect square, the same definition doesn’t work due to the
computation of cycle integrals of Niebur Poincaré series along infinite geodesics and the
corresponding cycle integrals diverge. Therefore, one needs a regularization to define traces
in the case df is a perfect square. Andersen [And15] and Bruinier-Funke-Imamoglu [BFI15]
independently address this issue using certain regularizations. We follow the approach of
Andersen [And15] to modify the Poincaré series, which we call modified Niebur Poincaré
series (see (3.10) for the definition), so the corresponding cycle integrals converge. We

note that dd > 0 being a square constitutes two cases of both discriminants being positive

35
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or both discriminants being negative. We dealt both cases differently, since the twisted
traces of modified Niebur Poincaré series turn out to be zero when both discriminants
are negative, due to the genus character involved in the definition (see (3.12) for the
definition). More precisely, when both discriminants are negative, the definition involves
cycle integrals of derivative of modified Niebur Poincaré series, which we follow from the
ideas given in a recent article of Andersen [And22] and Duke-Imamoglu-Téth [DIT16a].
Traces of derivative of Poincaré series were first considered in [DIT16a] to prove extension
and refinement of the Katok-Sarnak formula. Interestingly, these modified Niebur Poincaré
series are no longer modular objects but make cycle integrals in both the cases class
invariant (see subsection 3.1.4). Hence, the definition of trace is well defined.

The main step in the proof of theorems 4 and 5 is Proposition 2, which computes these
modified traces of Niebur Poincaré series into a sum of Kloosterman sums. The Proposition
2 is an analogue of [DIT16a, Proposition 5] in the case when the product of discriminants
is a perfect square. Using various identities of Kloosterman sums, these traces can be given
in terms of a linear combination of Fourier coefficients of the holomorphic part of certain
harmonic weak Maass forms of half-integral weights (see Lemmas 1, 2). This helps us to
prove Theorem 4 and 5 by utilizing techniques and ideas from [And15, And22, DIT16a,
JKK16b].

3.1 Notations and Preliminaries

For a fundamental discriminant d, we denote L-series associated to the Dirichlet character
(2) by
. Yy

La(s) = i (j) n, (3.1)

which converges absolutely for Re(s) > 1 and has meromorphic continuation to C.

3.1.1 Weak Maass forms

In this section, we recall the definitions and properties of weak Maass forms (see Section
2.0.1). Let T be as in (2.1) and ' = PSLy(Z). Recall that, a weak Maass form of weight
and eigenvalue A € C, is a smooth function f : H — C that satisfies A, f = A\f, f | A= f
for all A € T, and exhibits at most linear exponential growth at every cusp of I'. f is
categorized as a harmonic weak Maass form if A = 0 and if f is holomorphic in H with
poles possibly located at cusps, it is classified as a weakly holomorphic modular form. We
denote H, ,L and M ,L as the spaces of harmonic weak Maass forms and weakly holomorphic

modular forms for I' respectively. Recall the differential operator defined in Section 2.0.1

D
e =21y 7

!'Back to Theorem 4 and Theorem 5.
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Bruinier and Funke investigated this operator in [BF04] and established that &, forms a
surjective mapping from H ,'{ onto MQLH with the kernel M,; [BF04, Proposition 3.2 and
Theorem 3.7]. We define H; be the subspace of H,. consisting of those harmonic weak
Maass forms which mapped under &, to So—, the space of cusp forms of weight 2 — k for
I. Each f € H. with k # 1 has a Fourier expansion [BFOR17, Lemma 4.3] at infinity of
the shape

f2)= Y "+ (0)y' "+ Y ¢; (nT(1 — k, —4mny)q",
n>>>—oo n<oo
n#0
where T'(s,t):=[" 2" 'e""dx is the incomplete Gamma function. We call f*(z) :=
) D c}r(n)q”, the holomorphic part of f, and f~ := f — f*, the non-holomorphic
part of f. Recall the Maass Raising operator of weight k as defined in (2.7) by

d Kk

Ry :=2i— + —.

" Zaz + Yy
If fis a weak Maass form with eigenvalue A, then R,(f) is a weight xk 4+ 2 weak Maass
form with eigenvalue A 4+ k under A, ;o [BFOR17, Lemma 5.2]. We define for positive

integer n, R} := R; 9(,-1)©...0 Riut20 R, and set RY be the identity operator.

3.1.2 Poincaré series

Within this subsection, we will discuss a family of Poincaré series using M —Whittaker
functions and describe their Fourier expansion. If M, , is the usual M —Whittaker function
(see [BOO7, p. 595]), let for fixed s € C and m € Z,

T(2s)~ L (4r|m|y) "2 M. d7t|lm if m#£0,
./\/lmﬁ(y, S) — ( ) ( ’ |y) Esgn(m),sfé( ’ |y) ?é (32)

S—

y° 2 if m=0.

1
Let us denote ¢, x(2;8) = My k(y,s)e(mz), and let ', = {i (0 T) 'n EZ}

denotes the translations in SLg(Z). If pr, represents Kohnen’s orthogonal projection
weight ~ operator [Koh80] (see also [BFOR17, Eq. 6.12, p. 92]), the family of

Maass-Poincaré series defined by

> Omuw(z8) [« A(2) if kK €Z,
A€l \T
P i(s52) == (3.3)
pro | X dma(zis) s A2) | if k€ 2\ Z,
AeT o \I!

converges absolutely and uniformly on compacta for Re(s) > 1, and satisfies [JKK16b,
eq. 2.11] AyPpk(s;2) = (s — %) (1 — 4§ — s) Prk(s;2). Hence Py, .(s;2) is a harmonic
function for s = k/2 or 1 — k/2. Furthermore, when x < 1/2, P, ..(s;2) is holomorphic
near s = 1 — x/2, and when k > 3/2, it is holomorphic near s = /2 [JKK16b, Remark
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2.1 (1),(2)]. Therefore, for harmonicity, Py, (1 — £/2; 2) or Pp, »(k/2; 2) is chosen based

on the value of .

Recall that (see equation 2.16) Niebur Poincaré series [Nie73] defined for m € Z and
Re(s) > 1 by (see Section 2.16)

Gm(z,8) = Z Gm,s(Im(Az))e(mRe(Az)), (3.4)
Aer  \I

where
1

2r|m|2y= 1,y (2n[mly), if m #0,
(bm,s(y) = { s 2
Yy

(3.5)
if m=0,

and [ is the I-Bessel function [MOS66, Chapter 3]. For m # 0, using the relation (see
13.18.8 of [ODL*22]) between M —Whittaker function and I—Bessel function along with
Legendre’s Duplication formula, we obtain ¢m o(2;5) = I'(8) " *ém.s(y)e(mz). Thus the

above family of Maass-Poincaré series and Niebur Poincaré series satisfies the equation
Pro(s;2) = T(s) " Gm(z, 8) (3.6)

We now discuss the half-integral weight Kloosterman sum which is an essential component
in the Fourier expansion of Poincaré series P, .(s; z). For integers m,n and ¢ with ¢ > 0,

the Kloosterman sum is defined by

> e2mi(=nt) if k € Z,
N . ) i(modc)*
K.(m,n;c) := o on gmi(miml) , (3.7)
Y. ($ete c if k€ 3Z\Z (and 4 | ¢),
I(modc)*

where [(modc)* means that the sum varies over the primitive residue classes modulo
c and [ is such that Il = 1(modc). We set the notation K*(m,n;c) for the modified

Kloosterman sum and it is defined by

4

KT (m,n;4c) = (1 —1i) (1 + <c>> K jo(m, n;4c). (3.8)

The Fourier expansion of Py, .(s;z) is given in terms of modified Whittaker functions
M (Y, s) (see eq. 3.2) and Wi, «(y, s) which is defined by

T(s + §sgn(m))~"|m|2~! (4nlmly) =2 W
(47r)17riy1757n/2
(2s—1)(s—k/2)T'(s+k/2)

Adr|lmly) if m #0,

sgn(m),s—%(

Wm,n(ya 5) =

if m=20,

where W, , is the usual W-Whittaker function. We are now going to state the Fourier

expansion of P, . (s; 2).

Proposition 1. [JKK16b, Proposition 2.2] Suppose k € %Z \Z and m € Z satisfy
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(—l)ﬂfém =0, 1(mod 4). For Re(s) > 1, Py, .(s; z) has the Fourier expansion

Pm,n(s; Z) - Mm,/i(y, 3>€2mmx + Z bmﬂ(n, S)Wnﬁ(y, 3)8271'1'711:7
(—1)'{7%7150,1 (mod 4)

where by, x(n,s) =

Imn| 7 Tps_1 (= Lmnl) it mn <0,

ke 4 K.(m,n;4c e /T
I LT =

28t 3 m 4 572 (40) =% if mn=0,m +n #0,

f

and J is the J-Bessel function [MOS66, Chapter 3].

3.1.3 Genus characters, Binary quadratic forms and associated

geodesics

Within this subsection, we provide an overview of genus characters, binary quadratic forms
and geodesics associated with them in the upper half-plane H, discussed in Section 2.0.2,
2.0.3 and 2.0.4 respectively. Let d be a non-zero discriminant and Qg4 denotes the set of
integral binary quadratic forms Q(X,Y) = aX2+bXY +cY? = [a, b, ¢| with discriminant
d = b> — 4ac, which are positive definite if @ > 0. Further, denote Q;; be the subset
of Qg consisting of quadratic forms @ = [a,b,c| with a positive. The modular group
I = PSLy(Z) acts on Q(z,y) € Qg by the usual action

9Q = Qg ' = Q(6z — By, —yx + ay) for g = (j ?) € PSLy(Z),

and results in finitely many classes T \ Qq.

For Q = [a,b,c] € Qp with D > 0, we have an associated geodesic in H defined by
Sg == {1 =u+iv € H: a|r|*+butc = 0}. If a = 0 then Sg is a straight line Re(r) = —c/b
equipped with upward orientation. However, in the case, a # 0, Sg is a semi-circle
orthogonal to the real axis which is oriented clockwise if a > 0 and counter-clockwise if
a < 0. The stabilizer T gof @ € Qpin f‘, is infinite cyclic and trivial, corresponding to
D > 0 is non-square and perfect square, respectively. Furthermore, it can also be checked
that Sg is the geodesic in H that connects two roots of Q(X,1). We define Cg :=T'g\ Sg
as the associated geodesic in the modular curve I'\ H. The cycle Cq is an arc on the
geodesic Sg of finite length if D is non-square. In the case where D is a perfect square,
the stabilizer fQ of () € Qp is trivial and hence Cg turns out to be Sg, which is a geodesic
of infinite length joining two roots of Q(X, 1) in P}(Q).

Suppose that D is a fundamental discriminant and d is a discriminant. For Q(X,Y) =
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aX? +bXY +cY? € Qp we recall (refer to (2.12)) the generalized genus character by

D
> if (a,b,c, D) =1 and @ represents n with (n, D) =1,

xp(Q) = <”
0 if (a,b,¢,D) = 1.

It satisfies the identity
xp(—Q) =sgn(D)xp(Q) (3.9)

3.1.4 Traces of cycle integrals

This subsection delves into twisted traces of Niebur Poincaré series G,,(z, s) defined in
(3.4). Assume d,0 be discriminants such that d is fundamental and d§ > 0. We will
discuss the twisted traces in the cases dd is a perfect square. In this case, Cg turns out
to be the geodesic Sg with endpoints being cusps of SLy(Z). Moreover, for every cusp
a = p/q € P(Q), there exists A, := + (%, ) € T which sends a to the cusp co. Due
to the exponential growth of I-Bessel function towards oo, it can be established using
SLo(Z)-invariance of Gp,(z,s) that cycle integrals fCQ Gm(z,8)y~tdz| doesn’t converge.
We address this issue by defining the modified Niebur Poincaré series. Assume @ € Qgs,
and by, by be the rational projective roots of Q(X,1). The modified Niebur Poincaré series
is defined by

Gm.o(z,8) = > dm.s(Im(Az))e(mRe(Az)) (3.10)
A€T oo\ A# Ay, , Ap,

Additionally, for any A € SLy(Z) we have
Gm,AQ(Az,s) = Gno(z,s). (3.11)

The modified version of Niebur Poincaré series Gy, g(z,s) and its cycle integrals were
considered by Andersen in [And15, And22]. Now, if we define the traces of Niebur Poincaré
series by sum of x4(Q) fCQ Gm.(2,8)y~!|dz| running over classes in Q € T'\ Qs4, then it
follows from [KK24, Proposition 3.2] that, for d < 0 and J < 0, the above defined trace
turns out to be zero. Consequently, in order to provide a suitable definition of traces in
the case d < 0 and § < 0, we define it as the sum of the cycle integrals of %Gm,Q(z, s).
For both discriminants less than zero, this idea was used in [And22, DIT16a] to prove the
extension of the Katok-Sarnak formula. The Fourier expansion of G,,(z, s) and (3.11) can
be used to show that the cycle integrals fCQ Gm.o(z,8)y~|dz| and fCQ i%Gm,Q(z, s)dz

are convergent and class invariant. Hence we define the modified twisted traces of Niebur
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Poincaré series by?

~ I'(s
TG (208) o 3 @ (Gn(2:9):Q),
G+1- TG +1-757) o Fos
(3.12)
where CY(Gn(z, ) : = fCQ m.o(z,8)y~tdz| if d,§ > 0 and CZ(Gpu(z,5) : Q) =

fCQ i%Gm,Q(z, s)dz 1f d, 0 < 0. We state the following proposition, which establishes that
the traces of Poincaré series defined above in the case dd = [, can be interpreted in terms

of the sum of Kloosterman sums and the J-Bessel function.

Proposition 2. Let § be a discriminant and d be a fundamental discriminant such that
ds = 0. Then for m € Z and Re(s) > 1, we have Tr5,(Gm(z,s)) equals

2”%|m|%(d5)% S xa(n)n=2 Y e K ((5, (%) d; 40) ( || \/>) if m # 0,

n|lm c>0

2_3_2(d5)s/2Ld(8) 3 K*(6,034¢) if m=0.

1
>1 ot

Proof. We will address the cases in which d,d both greater than 0 or both less than 0
separately.

Case: d,d > 0. We can write following the steps in the proof of [And15, Proposition 6]
that

Tr5a(Gm(z9) = ) Xd(Q)/C Gm,Q(Z,s)iJZ'

QEN\ Qs
|dz|
= xa(Q) [ e(mRe(2))¢m,s(Im(z)) —
QEF;\QdS /CQ Y
Q#[0,2b,%]

We now carry out the method given in [DIT11a, Lemma 7 and 8]. The the sum in r.h.s
above indicates that we have eliminated those classes with a = 0. Now, we parametrize
each cycle Cg with Q = [a,b,c] by 6 € (0,7T) via z = Rezg — e ¥Imzg if a > 0 and

% + gﬁ is the apex of the semicircle Sg.

z = Rezg + ewlsz if a < 0. Here zg :=

We determine using this parametrization that y~*|dz| = 2%, and further utilizing (3.9) to
deduce
~ T (—mb mmv/do Vds\ df
TrF =2 mn inf——- 1 /| —.
ré.,d(Gm(Zas)) Z Xd(Q)/O € ( %2, )COS (COSO a > Pm.s <Sm62|a ) sin 6
QET o\ Q5

We will proceed by using m # 0. The identity for m = 0 can be proved analogously by
using [ODL 22, 5.12.6]. By the definition of ¢y, s(y) and [DIT11la, Lemma 9] we get

Tu(Cnleos) = Vatas) il Y X (S0 g, (W) (3.13)

a 2a 2
QET\ Qs va

Since we have a bijection between the sets I'og \ Qs and {(a,b) : a € N and 0 < b < 2a}

2Back to Theorem 4 and Theorem 5
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(see [Andl5, p.452]), above becomes

a

G =t Sk, () 5 e Et) ().
a=1 b(

2
mod 20,),%62

Denote S := {b(mod 4a) \btld‘s € Z} and S,,(0,d,4a) := > x4 ([a, b, bz@d‘SD e (),
besS
then we have %Sm(d, d,4a) = %S_m(é, d,4a) = > Xd ([a, b, b24_ad‘s]> e (g’—f)

b (mod2a), L2=90) ¢z,

Thus, it results from above

T il 1 i - Sm 5,d,46 w|lm|vdD
TFu(Gonz,) = (@) mit Y ¥J () .

Nl

c=1

Now, using [DIT11a, Proposition 3] we deduce the required identity.
Case: d,d < 0. For m € Z, similar steps from the proof of [And22, Proposition 3.2] may
be used to write

> @ [ iGnoad =g S (@ [ cmayian sz,

QET\Qs4q Q€El\Qus
Q=[a,b,c],a#0

where 19, (y, s) = sy~ ! L) (m)’s_%(47r|m|v). Using (3.9), we can write the above
equation as

> @ [ igGalzsdz= 3 @ [ elmain )i

QEM\ Qs4 Q€T \Qus Ca
Q=[a,b,c],a>0

Now, we use the parametrization z = Rezg — e‘ielsz of the cycle Cg with @ = [a, b, ¢]
and a > 0, to get

5 v o5 (2 ()

Qel\ Q54 QET 0\ Q5
Q=la,b,c]

where for any t > 0, Tp,(t) := it [ e(—mtcosf)om(tsing, s)e?dd. For m # 0,
0

calculating Y, (t) using [DIT16a, Lemma 7], we obtain

1§ _ |} xa(Q) , (_mb mim| Vdd
Tu(Cnleos)) = Vartas) il 30 X (L0, (TR,
QET\ Q1
whereas for m = 0, Yo(t) = 2y/7(Vdé/2a)*(D(232)/T(5)) by [MOS66, p.8]. Following the
similar steps after the equation (3.13) of the above proof for the case d,J > 0 (analogously
for m=0), we get the desired equality. O
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3.2 Proof of Theorem 4

The following lemma states that if (—1)"d > 0, the traces of cycle integrals of modified
Niebur Poincaré series can be derived from the appropriate linear combination of

coefficients of the holomorphic part of P2 1.
n72|d|7’{+§

Lemma 1. Let k > 1 be an integer and d be a fundamental discriminant that satisfies
(—1)"d > 0. For Re(s) > 1 and m # 0, we have

T P d s 1
TulGntero) =107 3 () (it o (4 545)
n|lm
and 1
Tufa(Go(z,5)) = i 27 1n ™ S5 5 La(5)bo e (ld|, S+ 4) ,

where k' =k if d > 0 and k' = k — 3 otherwise.

Proof. The proof follows from Proposition 2 and similar steps as in [JKK16b, Theorem
4.1] O

Recall the definition of 37 from (1.18) and define for convenience Z,, :=
3T (P_jn2-2k(k;2)). Let c}dm(ldD be the |d|-th Fourier coefficient of the holomorphic
part of Zg,,. Using [JKK13, eq. 2.20] and Proposition 1,

n
n|m

1" 2D (ks + 1)1 S (2) (m/n)" b2 gy gt (ld, 5+ %) if m#0,k#2,3,4,5,7,

g, (d) = 41120 (6 + 371 S (L) (m/n)" %b%\dl,fﬁ% (Idl, s) ls=5 4

n|lm

AP0 0+ ) ey (1§ + ) it m =0,

if m£0,k=234,5,7,

1
1

Now the proof of Theorem 4 is a consequence of the above and Lemma 1, along with
using (1.17). O

3.3 Proof of Theorem 5

As in the proof of Theorem 4, we prove the following lemma which establishes the
equality between traces of modified Niebur Poincaré series and certain linear combination

of coefficients of the holomorphic part of P2 under the condition (—1)*D < 0.

ﬁ|d|7%_ﬁ
Lemma 2. Let k > 1 be an integer and D be a fundamental discriminant that satisfies
(—1)*D < 0. For Re(s) > 1 and m # 0 we have

~ L 7,{/ k D ke s 1
T3 0G5 = DI S (2 /) g, (101547

and

s

o3 (Go(z, 5)) = =2 22

— k42 s—rtl S 1
DI oo (105 +7)

where k' = Kk if D >0 and K =k — 3 otherwise.
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Proof. The proof follows from Proposition 2 and similar steps as in [JKK16b, Theorem
4.2) O

Recall the definition of 32“) from (1.19) and denote Zp,, = SE(P,m,Q,g,{(H; z)). Let
C;D _(ID]) be the [D|-th Fourier coefficient of the holomorphic part of Zp ,,. Using[JKK13,
eq. 2.19] and Proposition 1 we have,

1, —K Dl & i
IDIz=% 3 () (m/n)! bmg‘D‘,%,H (1D, 5+ 1) ifm#0
C;D’m(|D|) = . njm h
DIt 3 (D15 +3) itm =0

Now the proof of Theorem 5 follows from above and Lemma 2 along with using (1.17) O



Chapter 4

Traces of Poincaré series at
square discriminants and Fourier

coeflicients of mock modular forms

This chapter contains proofs for Theorem 1, Corollary 1 and Theorem 13 as introduced in
Sections 1.0.1 and 1.0.2, respectively. The material in this chapter along with Theorem 1,
Corollary 1 and Theorem 13 are joint work with Balesh Kumar and appear in the paper
[KK24].

Outline of the chapter

The structure of the Chapter is arranged as follows. In the next section, we define the
notations, discuss the definition and properties related to harmonic Maass forms with
examples such as Niebur Poincaré series. We also discuss the regularized inner product,
results on Maass-Poincaré series, binary quadratic forms and the genus characters in this
section. In Section 4.2, the notion of modified Poincaré series along with the related results
are presented which pave the way to define modified trace. We also prove a lemma in this
section which is used in the proof of Theorem 1. Then in subsequent sections, we prove

Theorem 1, Theorem 13 and Corollary 1.

4.1 Notations and Preliminaries

Let I' be as in (2.1), T' := PSLy(Z). Recall weight k hyperbolic Laplacian operator on H
defined in (2.3). Moreover recall that the operator A can also be expressed as
Ap =& o0&, (4.1)

where &, := 2iyk6% is the differential operator.

4.1.1 Harmonic weak Maass form

We recall the definition of harmonic weak Maass form from Section 2.0.1. Let f be a
smooth function on H. Then f is called a harmonic weak Maass form of weight k for I if
the following holds.

1. flgA = f, for all A € T", where |;, defined in 2.2.

45
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2. Ap(f) =0,
3. f has at most linear exponential growth at all cusps.

The space of harmonic weak Maass form of weight k for I" is denoted by H ,L The Fourier
expansion of f € H} with k # 1 (see [BDE17, p. 7427]) is given by

FE) =Y )"+, 0y F+ D cf (n)Wi(2mny)g™. (4.2)
nez neZ\{0}
n>>—0o0o noo

o0

Here the notation ) o is used to mean ) >~ |

is defined analogously. From [BDE17, Lemma 2.4 and Remark], we have

; for some ay € Z. The notation )

T(1 — k, —4mny) + CEL 0 56 5 0,
We(2mny) = | V* T
I'(1—k,—4mny) if n <0,

where I'(s, z) is the incomplete gamma function.

We call ff(z) = >, o o c}r(n)q”, the holomorphic part and f~ = f — fT, the
non-holomorphic part of f. The functions f™ and f~ play an important role in
understanding the structure of the modular completion. Zagier [Zag09] introduced the
notion of mock modular form. A mock modular form of weight k for I' is the holomorphic
part f* of f € Hj. It turns out that & (f) is a weakly holomorphic modular form of weight
2 — k for ' and we call &, (f) the shadow of the mock modular form f*. Furthermore, for
any f € H} with k # 1, it follows from [BDE17, Lemma 2.2] that

() =c; ()1 —k) = > cf(—n)dmn) g (4.3)

neZ\{0}
n>>—oo
We consider an infinite family of harmonic weak Maass form of weight 0 for I' := PSLy(Z).

For m € Z and s € C, we put

2|2y 2T 1 (2 |mly), if m #0,
Pm.s(y) = i (44)
y® if m =0,
where I, is the Bessel function of the first kind [MOS66, Chapter 3]. Recall that (refer to
eq. 2.16) Niebur Poincaré series [Nie73] is defined for Re(s) > 1

Gm(2,8) = Gm(2,¢ms) = > e(m Re(Az))¢m,(Im(Az)), (4.5)
A€T o\

where T's, is the group of translations of I'. Here Go(z, s) is the usual Eisentein series.
For m # 0, each G,,(z, s) has an analytic continuation to Re(s) > 1/2 [JKK14, p.98] and
they satisfy

AoGrn(2,8) = (5 — 83)G(2, 5).
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4.1.2 Regularized inner product

Bringmann et. al. [BDE17, Section 3] developed a general regularization for Petersson
inner products of weakly holomorphic modular forms. Here we restrict ourselves to k €
{0,1/2} because in our case, either both the forms f, g lies in Mi/Q or both lies in M.
For f,g € Mi/Q (resp. M}), there exists G € Hé/Q(resp. H}) such that &_1(G) = g. Such a
G exists due to the surjectivity of £-operator [BF04, Theorem 3.7]. Then the regularized
inner product of f and g can be defined in terms of Fourier coefficients of f and G using

[BDE17, Example 1 and 3] and [BDE17, Theorem 4.1]. More precisely, we have !

(f:9)"® = pr. Y _ ef(n) - (=), (4.6)

nel

where pp, =1/2if k=1/2 and pp, =1if k= 0.

4.1.3 Maass-Poincaré series

Denote e(z) := €2™, for z € C. For integers m,n and ¢ with ¢ = 0(mod 4) and k € 1 +Z,

define Kloosterman sum

Ki(m,n;c) := Z (%)%E?ke (ml+nl>

c
I (mod c)*

Here [(mod ¢)* means that the sum varies over the primitive residue classes modulo ¢
and Il = 1(mod ¢). Let m be an integer with (—1)k*%m = 0,1(mod 4). Then for
Re(s) > 1, Jeon et. al. [JKK13, Theorem 4.4] studied Fourier expansion of Maass-Poincaré
series F;k ~(2,8) of weight k, level N satisfying the Kohnen’s plus space condition. In
particular, the family of Maass-Poincaré series of weight % on I'g(4) satisfying the Kohnen’s

plus space condition has the Fourier expansion

F;,3/274(27 S) = FT:,3/2(Z7 3) = Mm(y7 S)e(mx) + Z bm(na S)Wn(yv 8)6(?136),
n=0,3(4)

where M, (y,s) and W,(y,s) are spherical Whittaker functions defined in terms of
Whittaker functions M, ,(y) and W, (y) (see [JKK13, Section 2]). For positive integers
m and n, in view of [JKK14, p. 102], we have

bu(ns) = Var Y K*(-=m,—n;c) |5 Jag_1 (477|m”|> (4.7)

C C
0<c=0 (mod 4)

Here Jos_1 is the J-Bessel function and K (—m, —n;c) is the modified Kloosterman sum
defined by

Kt (m,n;c) == (1 —1) <1 + <c;14>> Ky (m,n;c).

'Back to Theorem 13.
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We need the following proposition to prove Theorem 1 and 13. Denote F,(z,3/4) =
—12H(2), where H(z) is Zagier’s Eisenstein series of weight 3/2 defined in [Zag75b].

Proposition 3. Let d be a negative discriminant. Then the mock modular form gq(z) of

weight 3/2 for To(4) in (1.7), is the holomorphic part of a harmonic weak Maass form

0 T
Hiaoa(e) = 2T | a8l — 8y [ TP 3/9)

More precisely, we have

H+

|d|73/2(z) = —167H(d]|)

+ 7%30 <4 |d\n§9b|d| (n,s) |8:% + 19277H(|d\)H(n)> q".
n=0,3 (mod 4)

Moreover we have
€3 (Ha)3/2(2)) = falz).
Proof. The proof follows from [JKK13, Proposition 5.2, Theorem 5.3] and [JKK16a]. [

4.1.4 Binary quadratic forms and the Genus characters

Here we recall the theory of binary quadratic forms, genus characters, and Heegner
geodesics discussed in Section 2.0.2, 2.0.3 and 2.0.4. Let Q4 be the set of integral binary
quadratic forms Q(z,y) = [a,b,c](x,y) = az? + bry + cy* of discriminant d = b* — 4ac.
We denote by Q:{ the subset of Qg consisting of quadratic forms @ = [a, b, ¢] with a > 0.
The modular group I' acts on the set Qg. For A = + (: '?) €T and Q € Qg , we have

AoQ=Qo A =Q(bx — By, —yz + ay).

If zg is a root of @ then Azg is a root of A o ) and hence this action is compatible with

az+p
yz+9 *

Let D be a fundamental discriminant and @ = [a, b, c] € Q4p. Then we recall generalized

the action of linear fractional transformation Az =

genus character xp(Q) from Subsection 2.0.3.

We now recall Heegner geodesics corresponding to binary quadratic forms and fix
orientation for this chapter. Let d > 0 and @ = [a,b,c] € Q4. Then the cycle Sg is
the curve in H defined by

alz|> +b Re z+ ¢ =0.

If a = 0, then Sq is the vertical line Re z = —c¢/b oriented in the upward direction. If
a > 0, then Sg is a semicircle oriented in the counter clockwise direction, and clockwise
direction if a < 0. We put Cg := fQ\SQ, where f‘Q is the stabilizer of ) under the action
of I'. If A €T, then ASg = Saqg. Define

dzg =
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so that dzg is invariant under the action of I', that is, if 2’ = Az, for some A € I, then

we have dz’AQ = dzq.

4.2 Modified Poincaré series and Traces

For discriminants D < 0, d < 0 with dD # O, Jeon, Kang, and Kim [JKK14, eq. (3.1)]
defined the modified trace of Poincaré series Gy, (2, s), for m € Z. Their definition of trace
does not cover the case dD = [. In this section, we address this case by considering

modified Poincaré series Gy, (2, s) considered in previous Chapter 3.

For dD = [J, [And15, Lemma 5] gives a complete set of representatives for I'\Qyp given
by {Qs = [a,b,0] : 0 < a < b} where b € N such that b = vdD. Now the roots of

a

Qu(r,y) = ax?® + bry in P1(Q) correspond to the cusps 0 and 8 = —2—/,, where @' = )

and b = 2. Let
0 -1 * ok
Ag = and Ag =

(a,b)
be the matrices that sends 0 and 3 to ico. Recall the modified Niebur Poincaré series
defined in (3.10) of Chapter 3 by

Gmq(z,8) = > e(m Re(Az2))¢m,s(Im(Az2)), (4.8)
A€eT o \I'
A#Ag,Ag
which satisfies
Gm,AQ(Az,s) = G o(z, s), (4.9)

for any A € SLy(Z). We have the following proposition, which was used in the Section
1.0.1 of Introduction to establish that Try p(Gm(z,s)) defined in (1.9) is zero and we

require an alternate definition in the case d, D < 0.

Proposition 4. Let d,D be discriminants with D fundamental and dD = O and let
Trg p(Gm(z,s)) be as defined in (1.9). Then for m € Z with m # 0, we have

Trg p(Gm(z,s))

e Y x0(Q) Jo, e(m Re(2))m s (Im(2))dzq, i d, D >0
= QEr\Qjp

0, if d,D < 0.
Proof. Following the steps in the proof of [And15, Proposition 6], we deduce that

1
T p(Gon(219)) = 5 QEF“Z\% o(@Q) /C el Re(z))om(m(:))dg.

Q#[0,£b,%]
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The above can be written as

2mVdDTrgp(Gm(z,8) = > xp(Q) /C e(m Re(2))m,s(Im(2))dzg
Q

Qels\QF,

+ Y wl@) [ elm Re(:))o(1m(:))dzo.
-Q

QEla\QF,

Since the character xp satisfies xp(—@Q) = sign(D)xp(Q), we see from above that the

proposition follows. O

Next, we define the integral transform and prove a lemma that is needed while proving
Theorem 1. For m € Z, define the integral transform [DIT11a, p. 967] for ¢t > 0 by

D, (t) := /07r cos(2mmt cos ), s (t sin 0) d0 (4.10)

sinf’

It can be seen that the above integral converges absolutely and ®,,(t) = O(t'7¢). We
also define for ¢t > 0

U,,(t) ::/0 sin(2wmt cos 0) ¢y, s(t sin 6) .(149

S1n

It follows that the above integral converges absolutely, and for m # 0, it follows from the

following lemma that ¥,,(¢) = 0.
Lemma 3. Fort > 0 and Re(s) > 0, we have

do

=0
(sin 9)%

/ sin(t cos 9)[57% (tsinf)
0

where I, is the I-Bessel function.
Proof. We put p =0 in [DIT16a, Lemma 7] to get

do

(sin6)

/ eitCOSGMosf (2t sin 0)

1
0 2

= G(s,0)t2J,_1 (1), (4.11)

1
2

where M, , is the Whittaker function, J, is the J-Bessel function and

G(s,0) = (2m)3 2 L(29)

(5"

For y > 0, we have (see [DIT11a, p. 977, Appendix A])

1 —1
I_i(y)=272+T <s + 2) y PM, 1 (2y).

1
2 2
Using the Legendre’s duplication formula

2271 (s)T (s + 1/2) = /7 T'(25) (4.12)
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for Re(s) > 0 in the above, we get

My, 1(2y) = \/ﬂl;((zjymfs_;(y)-

Thus using above in (4.11) and after simplifying, we get

do
(sin0)2

do
(sin 0)2

M
M

/ cos(tcos@)I, 1(tsin) + z/ sin(tcos 0)I,_1(tsinf)
0 0

(2m)27°T(s)
= WJY% (t).

We use [DIT11a, Lemma 9] in the above to deduce

db
(sin 0)%

i / sin(t cos 9)[5_% (tsin )
0

Now using the duplication formula (4.12), one can see that the r.h.s. of above equals 0.

Hence the lemma follows. O

4.3 Proof of Theorem 1

Recall the definition of 'Trd,D(Gm(z, s)) from (1.11). Let m be a positive integer. Then

following the steps as in the proof of [DIT11a, Lemma 7] and using Lemma 3, we have

- 1
Trd,D(Gfm(Zy s)) = Z xp(Q)e(—m Re(ZQ))(I)fm(Im(ZQ))’
v dD N
Qelr\Q,
where ®,,,() is defined by (4.10) and for Q = [a,b, ]| € Q:{D, 2Q = 5—5 + & Q‘éD € H is the
apex of the circle Sg. Now using [DIT11a, Lemma 9] we get

Trap(G_m(z,s)) =

Sl

@py s Y () (M) ,

QErs\QY,
Q:[a7b7c}
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where B(s) := 2°T(s/2)?/I'(s). Since the sets I'so\Qp and {(a,b) : @ € Nand 0 < b <
2a} are in bijection (see [And15, p. 415]), the above becomes

Trap(G_m(z,s)) = VmB(s)

2dD
" mm\dD V> —dD mb
S () 5 o) (2)
a=1 b (mod 2a)
o)
If we write 24D ;
— m
Sm(d7D74a) - Z XD <|:CL, b7 4@ :|> € <2a> 9
b (mod 4a)
i) g

b2 —dD
then we have %S’m(d,D,éla) = > Xxb <[a, b, P ]) e (g‘—f) Thus we get from
b(mod 2a)

2
0 2am) g

above
~ (d, D, 4c) mmy\dD
T G_m(z,8))B dD)" 2 7,] 1| —.
t4,0(Gn(2:9)B(5) ™ = S=(dD) \FZ A ( . )
We use [DIT11a, Proposition 3] in the above to deduce

27V dD ~ = m/m i Q )
WTI‘(LD(G—m(’Z? s)) = ﬁ(dD) Z (n) "

[N

nlm
o) 2
m TmNdD
X Zc*1K+ <d, 2D;élc) Jo_1 () .
g n 2 ne

Now using (4.7) in the above, we get

~ m 2 .
ﬂ((g)Trd,D(G—m(Z, s)) = — < ‘ ‘ < ) bl (n2|D], 3 + i) . (4.13)

27
It follows from [JKK13, Proposition 5.1] that F| i3 /2( 3) = 0 and this implies
Tra.p(G_m(z,5))]s=1 = 0.

Now differentiating each side of (4.13) with respect to s and evaluating at s = 1, we get
using (1.14),

Trapn(e.o) la=—3 S [2] (2) 2 [ (Ziots)] - o

nlm 4
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Thus we get from (4.14) that

Tra,p(3(2)) = Trap(n() = 3 o- [ (D] 5)],_s - (115)

From Proposition 3, we see that the mock modular form g4(z) is the holomorphic part

”H‘J;‘ 3/2(z) of the harmonic weak Maass form # 4| 3/2(2). Thus, we have

9d(z) = —16mH(|d|) +

d
> <4\/|d\nasb|d| (n,8) |y_s + 19277H(|d|)H(n)> q". (4.16)
n50,3n(>1$10d 4)

For D < 0 a fundamental discriminant, we get from (4.16) that the Fourier coefficient
b(d, D) of g4(z) is given by

0
b(d, D) = 4v/1dD| 5 -bja (D], 8) ;=g + 192w H (|d]) H (| DI).
Finally, using above in (4.15) we obtain

D) = —8/[dD| Tra p(J(2)) + 1927 H(|d|)H(|D|).

This completes the proof of Theorem 1 . O

4.4 Proof of Theorem 13

For negative discriminants d, D and D fundamental, let fy;, fp be the basis members of
M} /o defined in (1.5). It follows from Proposition 3 that

€3(Hip|3/2(2)) = fp(2).

Therefore from (4.6) and Proposition 3, we get

1
(fa, fp)™® = 3 Z Cfd(n)c;\D\,fi/Q(_n)

nez
= 2\/|Dd b|D| (|dl, s) | =3 + 967 H(|D|)H(|d]).
Now using (4.15), we obtain
(fa, fp)™& = —43/|dD| Trq,p(J(2)) + 967 H (|d|) H(| D|).

This proves Theorem 13. O
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4.5 Proof of Corollary 1

Let J = h — 8w E} € Hj be as discussed above (1.15) which satisfies £5(.J) = j;. Then it
follows from [ANS21, Remark 1.10 - (1),(2)] that

C—t n
(f, fo) = @Z(f) 7" a1

n#0 "
/| D D\ G [ oipi s (40 1. (20
vy I = ™ Eil =2 ) — ZEi [ 222
T ;} n) 0 |6 \7or) 27 \Upr )|

where c}f(n) and ¢ (n) are the Fourier coefficients of holomorphic and non-holomorphic

parts of J respectively. Using the Fourier expansion of E3 from (1.15) in the above, we

get

C+* n To(n
(fp, fp)"® = \/?Z <§) g () + 19270 )e*Q’T"/'Dl (4.17)

n
n>0

LB (B) S () -3 3]

In view of [ANS21, Remark 1.13 - (2)], the above becomes

C+* n
(fp, fp)™® =\/? > <§> A )6*2“"”0‘ + 96w H(|D|)? (4.18)

n
n>0
VD] D\ (W [ _yipioe (40 1 (2mn
VIZINT () 20 | em2mn/IDl g (Z10) 2 (2T |
) e | ‘\or) 27 \p|
n#0
Since & (h}) = fi, we get from (4.3) that
Chr (n) =4mn cz (—n). (4.19)
Further, for n > 1, it follows from (4.6) that
cp:(n) = (fa, J1)™8. (4.20)

Substituting (4.19) and (4.20) in (4.18), we see that the corollary now follows from
Theorem 13. O



Chapter 5

On traces of cycle integral attached

to harmonic weak Maass forms

This chapter contains proofs for Theorem 2, Theorem 3, Corollary 2 and Corollary 3 as
introduced in Section 1.0.1. The material in this chapter along with Theorem 2, Theorem
3, Corollary 2 and Corollary 3 are joint work with Balesh Kumar and appear in the paper

[KK23] which is communicated for publication.

Structure of the chapter:

The chapter is organized as follows. In the next section, we define the notations used
in the chapter, discuss the definition and properties related to harmonic Maass forms.
We also discuss the Niebur and Maass Poincaré series, study its Fourier series expansion
and its relation under the Maass raising operator. We next discuss the notion of binary
quadratic forms and the associated genus characters in this section. Further, the traces
of cycle integrals of weak Maass forms and holomorphic cusp forms are introduced in this
section. Finally we recall the classical Shintani lift and Zagier lift along with their relation
in this section. Further, in the subsequent section, we first prove Theorem 3 to keep the
exposition clean. Then in the final section, we prove Theorem Theorem 2, Corollary 2 and

Corollary 3 respectively.

Brief outline of the work:

Here we briefly sketch the main key ingredients used in the Chapter. We start by recalling
the notion of traces of cycle integrals of weak Maass form of weight 0. Let d, D be positive
discriminants with dD # 0. Then Duke, Imamoglu and Téth [DIT11a] introduced the
twisted traces of cycle integrals of weak Maass forms of weight 0. Later, Bringmann,
Guerzhoy and Kane [BGK14] defined the twisted traces of cycle integrals of harmonic
weak Maass forms 9 € HQJZQH. This is obtained by defining the twisted traces of cycle
integrals of the associated weak Maass form R5 5 (9) of weight 0. Tt is natural to look
for the similar definition of twisted traces of cycle integrals of harmonic weak Maass forms
for a pair of negative discriminants d, D with dD # [J. However, the usual definition
(as in the case of positive discriminants) of twisted traces of cycle integrals of harmonic
weak Maass forms in H;——2H becomes 0, because the genus character in this case is an odd
character. So one need an appropriate definition of twisted trace in this case. This have

been addressed by Duke, Imamoglu and Téth [DIT16a] in order to study the uniform

95
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distribution properties of a geometric invariant (certain finite area hyperbolic orbifold)
associated to a (narrow) ideal class of a real quadratic field. To address the distribution
problem of this invariant, Duke, Imamoglu and Téth defined the twisted traces of cycle
integrals of weak Maass form of weight 0 for a pair of negative discriminants d, D with
dD # . This led them to prove the non-trivial extension (and refinement) of formulas of
Hecke [Sie80, Chapter 2] and Katok-Sarnak [KS93]. In this paper, for a pair of negative
discriminants d, D with dD # O, we follow the idea of Duke, Imamoglu and Téth [DIT16a]
and Bringmann, Guerzhoy and Kane [BGK14] to define the twisted traces of cycle integrals
of harmonic weak Maass forms in H. 2+_2H. We prove that the twisted trace of forms in H. 2+_2H
in this case is equal to the twisted trace of its shadow which is the content of Theorem
3. To prove Theorem 3, we use the techniques and results developed in [DIT16a] and
[BGK14].

The analogous definition of twisted traces of cycle integrals for square discriminants is
more subtle because the corresponding cycle integral in this case does not converge. Since
the square discriminants can be factored in two ways; one in terms of a pair of positive
discriminants and the other in terms of a pair of negative discriminants. Therefore, one
need to tackle the corresponding definition of twisted traces of cycle integrals of forms in
Hy ,, in both cases. To deal with the twisted traces of cycle integrals of forms in Hy
for a pair of positive discriminants d, D with dD = [, there are two elegant approaches
in [And15] and [BFI15]. We follow the approach in [And15]. It turns out that a similar
definition (as in [And15]) of twisted traces of cycle integrals of forms in H, ,_ for a
pair of negative discriminants d, D with dD = [ also becomes 0 here. So, to tackle
the case of negative discriminants d, D with dD = [J, we follow another recent article
[And22] of Andersen to define the twisted traces of cycle integrals. We note that in both
cases, the main technique is to dampen the integrand of the cycle integrals. This is done
by removing exactly those terms from the integrand which causes the cycle integral to
diverge. By doing so, the resulting integrand is no longer a modular object, however, the
corresponding modified cycle integrals in both cases now converges and interestingly, they
are class invariant. We prove that the modified twisted trace of forms in H;_—Qn in this
case is equal to the twisted trace of its shadow which is the content of Theorem 2. To
prove Theorem 2, we use the ideas and results developed in [And15], [And22], [BGK14],
[DIT11a] and [DIT16a].

As an application of our results, we prove in Corollary 3 that a harmonic weak Maass
form 91 in H;'_% is weakly holomorphic if and only if the modified twisted traces of cycle
integrals of 91 at square discriminants vanishes, for almost all fundamental discriminants.
To prove it, in view of Corollary 2, one need to determine the form 9 in terms of vanishing
of twisted central L-value of the shadow of 9. Since the shadow of 91 is a cusp form in Sy,
which may not be a Hecke eigenform, so the result of Luo and Ramakrishnan [LR97] is not
applicable in our situation. However, a recent result of Gun, Kohnen and Soundararajan

[GKS24] in this direction play a crucial role to prove Corollary 3.
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5.1 Preliminaries and notations

5.1.1 Harmonic weak Maass forms

Let T be as in (2.1), T' := PSLy(Z) and 7 = u + iv € H. Recall the notion of weak Maass

forms and harmonic weak Maass forms from Subsection 2.0.1 in Chapter 2.

We denote by H., the space of harmonic weak Maass forms of weight x for T' and by
H}, the subspace of those forms F' € H, for which there exists a polynomial Pr =
> <o ¢p(m)g™ € Clg~1] such that F(7)— Pr(1) = O(e~), for some € > 0 and analogous
cond_itions hold at all cusps. We denote by M, ,'i the space of weakly holomorphic modular
forms weight « for I' and by S,L C M,; the subspace consisting of those forms whose
constant term in its Fourier expansion vanishes at all the cusps. The subspace H,I can
also be realised [BFOR17, Theorem 5.10] as the space of F' € H such that & (F) is a
cusp form. The form &, (F) is known as the shadow of F. Bruinier and Funke [BF04,
Proposition 3.2 and Theorem 3.7] proved that the map &, from H, to Sa_, is surjective
with the kernel M ,'{ Further, we let M, and S, be the spaces of modular forms and cusp

forms of weight x for I' respectively.

For k < 1/2, each F € H;I has the Fourier expansion [BGK14, p. 649] at the cusp oo of

the form

1

0=

Z ap(m)I'(1 — K, 47|mlv)g™ + Z ar(m)q™, (5.1)

m<0 m>>—oo

where I'(s, t):= ftoo 25~ le™® dx is the incomplete Gamma function. We call

Fr(r)= Y ap(m)q"

m>>—00

the holomorphic part and F~ (1) := F(r) — F*(7) the non-holomorphic part of F.

m

Furthermore, the finite sum )  _, ar(m)g™ is said to be the principal part of F. A

simple calculation using the Fourier expansion in (5.1) yields

1

i m > (dmm) ™ ag(—m)q™. (5.2)

m>0

& (F(1)) =

For v € Z, we denote by H, ,j , C H the subspace of those forms whose principal parts

are supported in the square class —|v|n? with n € N.

We recall (see eq. 2.7) the Maass Raising operator by

0 kK
R :=2i— + —. 5.3
" “or + v (5:3)
If F is an eigenfunction under A, with eigenvalue A and satisfies the modularity of weight
Kk, then from [BFOR17, Lemma 5.2] it follows that R (F') is an eigenfunction under Ao

with eigenvalue A 4+ x and satisfies the modularity of weight « + 2.
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5.1.2 Poincaré Series

In this subsection, we will consider the generic family of Poincaré series and describe their
Fourier expansion. Let ¢ : RT — C be a smooth function such that ¢(v) = O(v?) as
v — 0, for some a € R. We define for 0 # m € Z,

(1) = Pu)Pmm

1
Let ' := {i (0 T) 'n € Z} be the subgroup of I'. Then we define the generic

Poincaré series by

P(m, s, d;7) = Y & |« M(7), (5.4)

MeT s\
which is absolutely and uniformly convergent for k > 2 — 2a.

In order to construct the family of Maass-Poincaré series, one chooses a particular class
of functions ¢. More precisely, let M,,,, be the usual M-Whittaker function(see [BOO7, p.
595]). For s € C and v € R\{0}, we define

M, s(v) = \v|*§M%Sgn(v)757%(]v|),
and for an integer m # 0, set
Gm.r(5;0) == (47|m|) 2T (25) "L M, s (4mmw). (5.5)

The function ¢}, .(s;7) is an eigenfunction of A, with eigenvalue s(1 — s) 4 (k? — 2x)/4.

Now we define the Maass-Poincaré series,

P(m, K, pm k(5;0); ) if k€ Z,
P w(s57) = (5.6)
SP(m, 5, dmu(s;v);7) | pr o if & € 3Z\Z,

where pr denotes the usual extension of Kohnen’s orthogonal projection operator [Koh80)]
(see also [BFOR17, Eq. 6.12, p. 92]) to H,". Using the bound [ODL*22, 13.14.14]

¢m,n(5§ U) = O(URE(S)_K/Q) as v — 0,

one can see that the series Py, (s;7) converges absolutely and uniformly for Re(s) > 1.

For integers m > 1, the Poincaré series

Fnoon(r) = (An|m]) 3P o (g;f) (5.7)

are harmonic weak Maass forms [BGK14, Lemma 4.1] in H; , with the principal part ¢g—™

according as k € Z or k € %Z\Z. Let m > 1, k > 1 be integers and d be a fundamental
discriminant satisfying (—1)"d > 0. Recall that 14(-) = (%) be the primitive quadratic

character of conductor |d|. Then we define a linear map 34 [BGK14, Lemma 4.1] from
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H2+ 9y, TO H J such that

g m2 2/@ . de

27 H
nlm

. (5.8)

3\3

We prove the following lemma.

Lemma 4. Let k > 1 be an integer and d be a fundamental discriminant satisfying
(=1)"d > 0. Let M be a form in HY_,, with the principal part >, o cap(m)q™. Then the
form gd(i)ﬁ) is uniquely determined by

= Y a(=m) D da(mn™ g G o).

m>0 nlm

Proof. Since the family of Poincaré series { Fy, 2—2x }m>1 forms a basis for H. ;’_%, therefore

it suffices to prove the lemma for F,2_2,. Since the Poincaré series ]:(m)2|d| 3_,
n 12

*ldl

has the principal part ¢ (%) we see that Sd( m,2—2x) has the principal part

Z m Ya(n )n"‘*lq_(%md' Now let G be a form in er_ y with the same principal part

as Bd( m.2—2k). Then 3d( m2—2r) — G € H;_Kd have non-negative powers of ¢ in the
2

)

holomorphic part of its Fourier expansion. Now consider g = §3 (3d( m2—2x) — G),
f = 3a(Fma_2x) — G in the Bruinier-Funke pairing [BF04, eq. (3.9)]. Then using

[BF04, Proposition 3.5], one can see that the Petersson norm of g is identically zero.

Since the kernel of § s, is M ! therefore we deduce that the non-holomorphic part of

3d( m2—2k) — G is 1dent1cally zero. Thus, Sd( ma2—2x) — G € Ms_, = {0}. Hence, the
2

proof is complete. O

Consider the normalization of Niebur Poincaré series Gp,(7,s) defined in (2.16) by the

notation

Gm(s;7) = m|* G (1, 5). (5.9)
Thus, each Gy, (s;7) satisfies [Nie73, p.134]
AoGp(s;7) = (1 — 8)Gu(s; 7).

Using the relation (see 13.18.8 of [ODL22])

My, 1(20) =227 2T (s + =

1
7s_§

along with (5.5) and Legendre’s Duplication formula, we obtain the relation
Po(s;7) = T(s) 7 m| 5 Gon(s; 7). (5.10)

Next, we need the following lemma.

Lemma 5. Let m > 1 and k > 1 be integers. Then we have

Ry, (Fin2—2x(7)) = (47) 7 G (k3 7).
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Proof. Using (5.7), we have
Ry (Fin2—2e(7)) = (47m)* REZ,, (P p—an (7). (5.11)
Now by using [BGK14, Eq. (4.9)], we get

Ry 5 (P_ymo—2s (7)) =R_g 0 Rogo...0 Ro_ o (P_po—as (k7))
= (k= 1)IP_p0(k;7).

Now, the lemma follows from (5.11) and (5.10). O

We also need the modified W-Whittaker function to describe the Fourier expansion of
half-integral weight Maass-Poincaré series. Let W, , be the usual W-Whittaker function.
Then we define

Adr|n|v) if n #0,
it n=0.

I'(s +sgn(n)5 _1U7%W§S n(n).s— L
Wi o (5:0) = ( 15(5)2) ssan(n),s—4
(2s—1)I(s—5)I'(s+75)

The special value at s = 1 — & of M, ,(v) and W, «(s,v) [BGK14, p. 655-656] for n # 0

is given by

Mn,l—g(—v) =(k— 1)e%I’(1 —kyv)+ (1 —r)I(1 - /ﬁ)e% (5.12)
K (47n)z €27 if n>0,

Wain (1 Pl v) (arlnD)3 oninfv . . (5.13)
T(-r) € I'(1 — wy4ninjv) if n < 0.

Recall (%) be the Kronecker symbol and ¢; be the root of unity defined in Chapter 2. For
Kk € 37\ Z, we define the Kloosterman sum [BGK14, p. 656]

_1 4 F»'—l . 4C P mi+nl
Ky(m,n;c) =272 <1+ (c)) (1—(=1)""2q) Z * <l> e2re? (5T (5.14)

I(mod 4c)

where the sum varies over [ (mod 4c) coprime to 4c and [ denotes the inverse of | (mod 4c).

We need the following lemma.

Lemma 6 (Lemma 4.2 in [BGK14]). Let k € 1Z\Z and m € Z be such that (—1)’“‘_%m =
0,1 (mod 4) with sgn(m) = sgn(k — 1). Then for Re(s) > 1, Py, .(s;7) has the Fourier

expansion

Pric(8;7) = dmr(s;0)e2™ M 4 Z binre(8;0) Wi (850)€2™™ (5.15)

1
(=1)"72n=0,1 (mod 4)
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where
m U2 L, (T < 0,
M iy mn
b k(s5m) := 27r(—1)L i JZ:K,.i(m,n;c) (%)1/2-iu72s—1( V|C ‘) if mn >0, (5.16)
C>0 s s
ﬁ%% if n =0,

and J is the J—Bessel function [MOS66, Chapter 3.
Next, we also need the following.

Lemma 7. Let k € $Z\ Z and m be a discriminant satisfying sgn(m) = sgn(x — 1). Let
K,(m,n;c) be as defined in (5.14). Then we have

Ki(m,n;c) = Kq(n,m;c), (5.17)
Kyia(m,n;c) = Kg(m,n;c), (5.18)
Ko p(—n,—m;c) = Ki(m,n;c), (5.19)
K%Hl(m, n;c) = K% (m,n;c), (5.20)

where a € 27.

Proof. The identities (5.17), (5.18) and (5.20) follows from direct computations. The
identity (5.19) follows from [BOO07, Proposition 3.1]. O

5.1.3 Binary quadratic forms and Genus characters

Here we recall the theory of binary quadratic forms, genus characters and Heegner
geodesics from Section (2.0.2), Section (2.0.3) and Section 2.0.4 respectively. Let Qp
be the set of integral binary quadratic forms Q(X,Y) = aX? 4+ bXY +¢cY? = [a, b, c] with
discriminant D = b?> — 4ac. We denote by QB C Op be the set of binary quadratic forms
with @ > 0. The modular group I' = PSLy(Z) acts on Qp. For M = + (f; g) € PSLy(Z)
and Q € Op, we have

MQ = QM_I = Q((S.’L‘ - Bya —T + ay),

and it turns out that the number of classes in f\Q p is finite.

Let D < 0 be a discriminant and @ = [a,b,c] € Qp. Then we have an associated CM
point 7 € H, which is a root of at?+br +c = 0. In addition, the stabilizer f‘Q of @ € Op
in I is finite.

For Q = [a,b,c] € Qp with D > 0 we have an associated geodesic in H defined by
Sog ={r=u+iv e H:a|rP+bu+c =0} If a =0 then Sy is a straight line
Re(r) = —c/b equipped with downward orientation. If a # 0, then Sg is a semi-circle
orthogonal to real axis which is oriented clockwise if a > 0, and counter-clockwise if a < 0.
The stabilizer T’ gof @€ Qpin I is an infinite cyclic group or trivial group according as
D # O or D = 0. In addition, it follows that Sg is the geodesic in H connecting two
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roots of Q(X,1). We define Cg := T'g\Sg to be the associated geodesic in the modular
curve I'\H.

Let D, d be discriminants with D fundamental. For Q = [a,b, c] € Qup, we recall xp(Q)

be the generalized genus character defined in Section 2.0.3.

5.1.4 Traces

In this subsection, we define the twisted traces of harmonic weak Maass forms. Throughout

this subsection, we assume that x > 1 is an integer.

First, we will define twisted CM trace for modular functions. Let f : HH — C be a function
that is invariant under the action of SLy(Z) and let §, d be discriminants with fundamental
d. If 6d < 0, then the (d, d)-th twisted trace of f is defined by

Trsa(f) = Y. wo' xa(@)f(7q), (5.21)
Qel\Qsq

where wg = 1 unless @ is -equivalent to [a,0,a] and [a,a,a], in which case wg = 2
or 3, respectively. Now, we define the twisted CM trace for functions in H;'_%. Let
f € Hy .. Then the function R~ (f) is invariant under the action of SLy(Z). For a
pair of discriminants d, § satisfying (—1)"9 > 0 and (—1)"d < 0 with d fundamental, the
twisted trace of f is defined by [BGK14]

Te} o(f) i= (1)U (4m) 71612 |d) 5 Trs a (RS () (5.22)

Next, we define the twisted traces of holomorphic cusp forms following Shintani [Shi75].
For a pair of discriminants d, § satisfying (—1)*§ > 0 and (—1)*d > 0 with d fundamental
and f € S, the (9, d)-th twisted trace of f is given by

Tisalf) = Blesdd) 3 @ [ S0 e (5.23)
QEF\Qad
where
—1)r2r1r d|' =8|
Bl o - U2 Tl =
3(47r)
Now! the twisted trace Try,of f € Hy ,,_ is defined as in [BGK14]
TS (f) = (D)1 8) ()= Jd) 7 18] 5 T (G20 (£)). (5.24)

The above trace will play an important role in the definition of Zagier lift defined in
Subsection 5.1.5.

!'Back to Theorem 2 and Theorem 3.
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Traces of Niebur Poincaré series

Here, we will consider the twisted traces of Niebur Poincaré series Gy, (s;T) considered
in (5.9) for non-square and square discriminants. Let x > 1 be an integer and d, ¢ be
discriminants satisfying (—1)"d > 0 and (—1)"d > 0, with d fundamental. Then we have
0<dd#0ordd="L

Case : 0 <dd # 0.

In this case, following [DIT16a], we define the twisted traces of Niebur Poincaré series by

Trsa(Gm(si7)) =A(s,d.0) Y xa(Q)C(Gm(s:7):Q), (5.25)
Qel\Qsq
where r
A(87d75) - s 1 SgndS) s 1 Sgn(S 9
T3+ -5 )G +1-)
and
G (s:T)v tdr| if d,6 >0,
(Gl 7 Q) = S 57l (5.26)
fCQ ia%Gm(s;T)dT if d,6 <0.
Case : dé = [

Recall the modified Niebur Poincaré series G, (%, s) considered in Eq. (3.10) of Chapter

3. In the notation (5.9) of Niebur Poincaré series in this chapter, we define
Gm.q(s;7) = [m|* 'Gm.o(z, )

This dampened version Gy, g(s;7) of Niebur Poincaré series and its cycle integrals were
considered by Andersen [And15, And22]. Following Eq. (3.12), define the modified twisted

traces of Niebur Poincaré series by

Tr5y(Gm(si7)) =A(s,d,0) Y xa(Q)C™(Gm(s:7);Q), (5.27)
Qel\Qsq
where
CD(Gm(S;T);Q) = ]m|sflCD(Gm(z,s) :Q), (5.28)

CH(Gm(z,8) : Q) was defined in Eq. (3.12) of Chapter 3. The Fourier expansion of
Gm(z,s) and (3.11) can be used to demonstrate that cycle integrals fCQ Gm.o(z,s)y~1|dz|

and fCQ i%Gm,Q(z, s)dz are convergent and class invariant.

For a finite C—linear combination ), .,y wiGm,(s; T) of Niebur Poincaré series, we set

Trgjd Z szml (5;7—) ::A(Sada 6) Z Xd(Q)CD Z szml (S;T) 7@ )
1<i<N QeSL2(Z)\Qsa 1<i<N
(5.29)
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where

Co D wiGm (5i7):Q | = D wiC™ (G, (5:7): Q) - (5.30)

1<i<N 1<i<N

Now, we will define the traces of cycle integrals of functions in H;_ZH with k > 1, using

the differential operator Ry_,. Since the family of Poincaré series {F, 22 }men forms a

basis for H;_zﬁ, for any f € H2+—2m there exists wi,...,wy in C such that
N
(1) = 32 wiFm, 2-24(7).
i=1

Applying the operator R2 2, on both sides of the above and using Lemma 5, we get
N
REZ3,()(r) = D wildm)" ™ Gy (55 7). (5.31)
i=1

Consequently, for dd # [, we obtain from (5.25)

Tr(gd (R5 =, ( Zwl (4m)" ITr57d(G,mi(ﬂ; 7)), (5.32)

and for do = [, we get from (5.29)

N
Tr5g(R5 5, (f)) = D wi(dm)™ " Tr (G, (5; 7)) (5.33)
i=1
Now, if 0 < d§ # O, then we define the (9, d)-th twisted trace of f € HQJF_QK by?

e o(f) 1= (=)= 8) (4m) =]d| "2 6]~ Trg a( RE=3,(F))- (5.34)

We note that Bringmann, Guerzhoy and Kane [BGK14, p. 653] defined the above trace
in the case d,d > 0.
Next, if d§ = O then we define the (6, d)-th twisted trace of f € H, ,_by?

Trsg (f) == (- DU (4m) =8 d] 5 o]~ Tr5u(RE 4 (£). (5.35)

5.1.5 The Shintani and Zagier Lifts

Throughout this subsection, we assume x« > 1 be an integer and d is a fundamental
discriminant satisfying (—1)"d > 0. Then, Shintani [Shi75] defined a lift S} from Sb, to
St 1. More precisely, for f € Sy, we have

K

/
- ¥ 5w e Tesa(s) (5.36)

6:d6>0

2Back to Theorem 3.
3Back to Theorem 2.
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where Trs4(f) and B(k,d, ) are defined as in (5.23).

Next, we discuss the Zagier lift [BGK14, Proposition 6.2] 3, from Hy o, to Hf rd Let

M be a form in Hy ,, with the principal part Y, con(m)¢™ and constant term i (0).

Then we have

1
3a@0)(7) = 7 ap(=m) Y wa(m)n™ g I 4 DLl - R)ep(0)  (5.37)
m>0 n‘m
£ Y T+ 3 T (- s anldle)
6:d6<0 6:d6>0

where Trj ; are as defined in (5.22), (5.24) and Lg(1 — &) is a special value of Dirichlet
L-function defined by
)= a(n)n*

n>1

Moreover, it follows from [BGK14, Proposition 6.2] that 34 = Ed on HQJF_Q,i7 where Ed is
defined as in Lemma 4. We state the following theorem which we use in the proof of our

theorems.

Theorem 14 (Theorem 5.2 in [BGK14]). Let k > 1 be an integer and d be a fundamental
discriminant satisfying (—1)%d > 0. Then for each M € Hy ., we have

= 1 K
§3-x(3a(MM) = S(=DHI27Sj(E-20(0)), (5.38)
where Ed is defined as in Lemma 4.

We also need the following lemma.

Lemma 8. Let k > 1 be an integer and d be a fundamental discriminant satisfying
(=1)"d > 0. Let Fo-2s € Hy . be the Poincaré series as defined in (5.7), and set
Fdm = Bd( m.2—2k). Then we have

ag, (=16]) = Tr§a(Fm2-2x), (5.39)
where az () are defined as in (5.2), and Tvj 4(Fm2-2¢) are defined as in (5.24).

Proof. The proof follows from Theorem 14 for MM = F,;, 2—2x, and using (5.2) and (5.36).
O

5.2 Proof of Theorem 3

Proof. Let the assumptions be as in Theorem 3. Since the family of Poincaré series
{Fm.2—2t}m>1 forms a basis for H2+_2m therefore, it suffices to prove Theorem 3 only for
Poincaré series. In view of Lemma 8, it suffices to relate the Fourier coefficients of the

non-holomorphic part of %, ,, to the traces of cycle integrals of Rj” 2N(]—"m,g_g,{). For a
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divisor n of m, if we set F g = f(m)gld‘ 3_,., then it follows from (5.8) that
n ’2

ﬁd,m = Z¢d(n)nn_l<?d,m,n .

nlm

By comparing the é-th Fourier coefficients of the non-holomorphic part in the above, we

get
az, ()= vamn"laz, (5. (5.40)

nlm

Now, our aim is to relate a () to the sum of cycle integrals of Ry 5, (Fm2-2x). For

g;d,m

this, we write from (5.7)

Z — m) 2 z k1
Faann(r) = (47T (X) d’) P—(%Pldl,%—a (2 + 17

The Fourier expansion of P_ my2 4 s_, from (5.15) along with (5.12) and (5.13) gives
n ’2
d

_ m? 2 |
ae?d7m7n(6) - (‘(5 TL2> b_(%)QIdI,%—H <2 + Z) _’5‘> .

Using (5.16), we rewrite the above

N

K
R— 2

d

4]

1
2

Ks (= (2)*|d],—0;
5 Ko G oy

c>0

_ _s| |
ag, (0)= 2m(—1)l-2l 1=

n

Now using the identities for Kloosterman sums from (5.17),(5.18) and (5.20), we get

- _E k=3 |d n ;
@%@ = 2O |TTRE Y S (T[] V).
c>0
Substituting the above in (5.40), we get
5-3 K1 (0, (% 2d;c
a7, (6)=2n(~)l-5m|*3 g BT OIDS ( (40) )Jﬂ_; (%‘% \/%).

nlm c>0

Next, we write the traces of Niebur Poincaré series (5.25) in terms of half-integral weight
Kloosterman sum and the J-Bessel function. For Re(s) > 1, we use [DIT16a, Proposition

5] to write

Trsa(Gom(si 7)) = 2nlml* (d0)5 Y valmn 3

nlm c>0

4c 573

K, (o (TS)Qd;C)J L (2 vas).
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Choosing s = « in the above and comparing with (5.41), we get
Tr5.a(Gom(r; 7)) = (~D)I 810 2" 0|5 a7, (6)-

Now using Lemma 5 and (5.34), we get

a:@‘dym (6) = Trg,d(]:m,QfZK) . (5.42)
Thus the theorem follows from above and Lemma 8. O

5.3 Proof of Theorem 2

Proof. Let the assumptions be as in Theorem 2. Since the family of Poincaré series
{Fm.2—2x }men forms a basis for H2+—2m therefore, it suffices to prove Theorem 2 only for
Poincaré series. For a divisor n of m, if we set F g, 1= f(%)zl d,3—x then it follows from
(5.8) that

Fam = a(n)n" " Fgmn . (5.43)

nlm

Case: d,0 >0
Since (—1)"d > 0, in this case, £ > 1 is an even integer. By comparing the —d-th Fourier

coefficients of the non-holomorphic part in the above, we get

az, (=0)= > wd(n)n”_la}dvm’n(fé). (5.44)

nlm

Using the steps as in the proof of Theorem 3 and using identities (5.19) and (5.20), one

can deduce
. 54 Ky (6.(5) die
03, (~8) = 2n(~ 1)l 3 |47 4Z¢d<n>n—%§ :{ = >JH; (E|5| vas) .

(5.45)
Let e(z) = e*™*. Following the steps as in the proof of [And15, Proposition 6], we deduce

Y xa@C(GonlsiThQ) = Y Xd(Q)/ e(—mRe(7))m,s(Tm())v~dr],
QeT\ Qs Qel 0\ Qus Ce

Q#[0,£b,4]
where CP(G_p,(s;7); Q) is defined in (5.28). Now we parametrize the cycle Sg as given
in the proof of [DIT11a, Lemma 7|. We parametrize each cycle Sg with @ = [a,b, c] by
6 € (0,7) via
Re 7 — e~ Tm 7o if a >0,
Re g +e? Im g  if a <0,

where 7¢g = -4 "ﬁ

T is the apex of the semicircle Sg. With this parametrization, we
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have v~ !dr| = % and using (2.13), we get

Z Xd(Q)CD(G—m(S;T)§Q) - 9 Z Xd(Q)/e <ZZ)> cos (cosgmna d5>
0

QeM\Qsa QET s\ Q5

Using the definition (2.15) of v, s and [DIT11a, Lemma 9] in the above, we get

TG om(si 7)) = V2r(@)fmP— Y Xd(Q)e<mb> Ty (”m;@) (5.46)

a 2a
QET o\ Q15 va

Next, we use a bijection between the sets I's, \ Qs and {(a,b) : a € Nand 0 < b < 2a}
(see [And15, p. 452]) to rewrite the above as

T5u(Gon(sim) = Vom(dd)djm|*" Za* Sl(mm>

2 a
b —dé mb
(b))
b (rnod 2a)
(b2 —dé) ez

If we write

b2 —df mb
Sm(67 dv 4&) = Z Xd <|:CL, ba 4a:|> € <2a> )
b (mod 4a)

(b2 dé)eZ
then we have 35,(6,d,4a) = > xal|a.b,————| )e(%2). Thus, we get from
b(mod 2a) da
(btlda) ez
above
~ 1 1= S (6,d,4c) amdo
T (G (s; — T (d8)|m|*3 e g )
5,d( ( T)) \/5( ) ’ ‘ C_Zl C% 5—% a

Now using [DIT11a, Proposition 3] in the above, we deduce

~ 1 1 1 Kl 5’ (%)2d;c s
TiF (G m(57)) = 2nlm |3 (d0)* 3 a3 3 2 ( )y (Z

4c 573

nlm c>0

Put s = k in the above and using (5.45), we have

Ti5 (G (7)) = ()8 |d| F5 0 5 a7, (—0)-
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Using Lemma 5 and definition (5.35) in the above, we get

- ~ %
a«%,m(_‘s) = Trs 4 (Fin,2-2x)-

The proof of Theorem 2 in this case now follows from Lemma 8.

Case: d,6 <0

Since (—1)"d > 0, in this case, k > 1 is an odd integer. Using the steps as in the proof of

Theorem 3, we get

51 Ky (6, (%)% dic)

- — o) S s |47 -1 s\ A/ ™ |m

@, (8) = 2m(~1)1 8| |2 §|:¢d(n)n : % = Jo s (c . \/%).
(5.47)

For m € N, following the similar steps as in the proof of [And22, Proposition 3.2], we

deduce

1
> QG iQ =g Y Q) [ elemuis o5
Qel\ Q54 Q€l\Qus Co
QR=[a,b,c],a#0

where C(G_,,,(5;7); Q) is defined in (5.28) and

I'(s) 1
'(2s) b2

Yo _m(v,8) = s|m|*"to! (4mim|v). (5.48)

Using (3.9), we deduce from the above as

> wl@CNC Q= @ [ elcmuin (o s)ir
Q

QeT\Qs4 QEl\Qas
Q:[a,b,C] ,a>0

Now we use the parametrization 7 = Rerg — e*wImTQ of the cycle Cg with Q = [a, b, c],

a > 0 to get

0 . . . mb \/%
Z Xd(Q)C (G_m(S,T), Q) - Z Xd(Q)e <2a> T, <2(JL )
Q=[a,b,]
where for any t > 0, Y., (t) := it [ e(—mtcos 0)io _m(tsind, s)e?dd. We rewrite Y, (2)
0
from (5.48) and use [DIT16a, Lemma 7| in the above to obtain

TG ) V)t 3 M (0 (),

QEl\ Qs

Now we follow the similar steps of the proof after (5.46) in the case d,d > 0 to deduce
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from above

m\2 4. .
R 57 = 2ol Hah a3 o >Js; (Z 5] va@)-

nlm c>0

Put s = k in the above and using (5.47), we have
Te5 (G (7)) = (~1) 8| 2" |65 a5, (6)-
Using Lemma 5 and definition (5.35), we get from above
a7, () = Tros (Fmzox).

Now the proof of Theorem 2 in this case follows from Lemma 8. O

Proof of Corollary 2: The proof follows from the steps [Koh80, p. 243] and using
Theorem 2. O
Proof of Corollary 3: Let 9t be a harmonic weak Maass form in H2+—2n with f :=
§2-2x(IM).

First we assume that 91 is a weakly holomorphic form. It follows from [BF04, Proposition
3.2 and Theorem 3.7] that the map &2_9, from H;_% to So, is surjective with kernel
Mj ... Therefore, we have f = 0 and hence L(x,f ® 1q) = 0, for all fundamental
discriminants d with (—1)"d > 0. Now, Corollary 2 implies that Trig(ﬁﬁ) = 0, for all
fundamental discriminants d.

Conversely, we assume that Trij(mt) = 0, for all but finitely many fundamental
discriminants d with (—1)"d > 0. Then it follows from Corollary 2 that L(k, f ® 14) = 0,
for all but finitely many fundamental discriminants d. Our aim is to show that 97 is
weakly holomorphic. Suppose, on the contrary, that 9t is not weakly holomorphic. Since
the kernel of &9 is MQ!_%, we see that f is a non-zero cusp form in So.. Let {f;}i<i<y
be a basis of Sy consisting of normalized (af, (1) = 1, for all 1 <7 < v) Hecke eigenforms.
Then, we write f =Y. | o f;, where o/s are complex numbers. Without loss of generality,
we assume that oy = 1 and |oy| < 1, for all 2 < i < v. Writing L(k, f ® 14) into linear

sum of L(k, f; ® 14) and using triangle inequality, we have
|L(k, [ ® ¥a)| = |L(K, f1 ® ¥a)| — ZV: |L(&, fi ® ¥a)l-
=2
The non-negativity of L(k, f; ® 14) [Koh80, Corollary 2] will imply that
|L(k, f ®a)| = L(k, f1r @ ¢a) — ZI/:L(F&, fi ® ¢q).
=2

Now let € > 0 and X be large. Then it follows from [GKS24, Theorem 4.1] that there are



Chapter 5. On traces of cycle integral 71

> X1~¢ fundamental discriminants d with X < (—1)"d < 2X such that

Lk, 1 ® ) = > L(K, fi ® tha) > 0.

1=2

Thus, we see from above that there are infinitely many fundamental discriminants d with
(—1)"d > 0 such that L(x, f ® 14) # 0. But this is a contradiction. Hence 9 is a weakly

holomorphic form. ]
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Chapter 6

Regularized inner products and
modular  invariants for real

quadratic fields

In this chapter, we prove Theorem 7, Theorem 8, Theorem 9 and Corollary 4 contained
in Section 1.0.2 of the Introduction. The material in this chapter along with Theorem 7,
Theorem 8 , Theorem 9 and Corollary 4 are joint work with Balesh Kumar and appear in

the paper [KKb] which is communicated for publication.

Outline of the Chapter

The chapter is structured as follows. We first recall notations, definitions and properties
related to sesqui-harmonic Maass forms with examples such as Niebur Poincaré series and
its connection to other types of Poincaré series. We also describe the Fourier expansion
of such Poincaré series. Next, we discuss a suitable kernel function K(z,7) that is a
generating function for the basis {jm}m>0 of M} and its properties. We also study an
integral of K (z,7) in the variable z against the Niebur Poincaré series which turns out to
be a sesqui-harmonic Maass form of weight 2. In the next subsection, the notion of modular
surfaces is presented, which plays a key role in defining the regularized surface integral. In
the next subsection, we discuss the notion of binary quadratic forms, Hurwitz-Kronecker
class numbers, and the genus characters. Then in the subsequent sections, we prove

Theorem 8 , Theorem 7, Theorem 9 and Corollary 4.

6.1 Notations and Preliminaries

6.1.1 Sesqui-harmonic Maass form:

We recall that T" be as in (2.1) and set z,7 € H. Recall that Ay and ¢ are defined in
(2.3) and Section 2.0.1 respectively. Let f be a real-analytic function from H to C. Then
f is called a sesqui-harmonic Maass form (refer to Section 2.0.1) of weight k for I' if the

following holds.
1. flgA = f, for all A € T", where | is defined in (2.2).
2. Ak’g(f) = 07 where Akﬂ = fk o Ak,

73
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3. f has at most linear exponential growth at all cusps.

The space of sesqui-harmonic Maass form of weight £ for I' is denoted by Hj 2. The
subspace of Hj o consisting of f that satisfies Ag(f) = 0, is known as harmonic weak
Maass forms and is denoted by H ,'C Now we consider an infinite family of forms in H(!).
Recall that Gy, (z, s) be the Niebur Poincaré series defined in (2.16) of the Chapter 2. For
m # 0, each G, (z, s) has an analytic continuation to Re(s) > 1/2 (see p.98 [JKK14]) and
they satisfies

AoGrn(2,8) = (5 — 83)G(2, 5).

Thus we obtain an infinite class of members G, (z,1) € H). We set
Fp(z,8) := (2nim[Y?)71G,n(z, 5) (6.1)

The analytic and spectral theory of F,(z, s) were studied in [DIT16a] (see, also [And22]).

Next for 0 # m € Z, define

bm(z2.5) = (4m9) Mgy o s (4lmly)e(ma),

where M, s is the M-Whittaker function [MOS66, p. 311,313]. The function ¢,,(z,s) is

an eigenfunction of As, namely,

Nodm(z,8) = s(1 — s)pm(z, s).

Now define the Poincaré series

P (z,s) := Z dm(z, 8)|27.

vET o\

The series Py, (z,s) converges [DIT16b, p.22] for Re(s) > 1 and is a I'-invariant weight 2

function. We have the following.

Lemma 9. With the notations as above, we have

0 Im|~/2 (s +1)
7F*m ) = .
0z (2,5) i I'(2s)

P_(z,8).

Proof. The proof follows from the computations in the proof of [DIT16a, Lemma 5]. [

Recall W, s be the W-Whittaker function [MOS66, p. 311,313] and J, be the .J-Bessel
function [MOS66, Chapter 3]. The following lemma describe the explicit Fourier expansion
of P_p,(z,s) from [DIT16b, Proposition 2| (see also [Mat18, Proposition 3]).
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Lemma 10. With the notations as above, we have

P_n(z,5) = (dmy)"'M_y ;1 (4r|mly)e(—ma) + g—mo(s) Lm,o(s)(—4m) "'y~
+ ngmm‘ S L*m,n(s)(_llﬂ-y) 1I/Vgn(n)s (47T|n|y)e(n:n)
n#0
Here

2w/ |m/n| .
2my/Im/n| fn£0,
gm,n(s) _ 1—1(25) T'(s+sgn(n)) i n 7é

47r1+s‘m‘s
(2s—1)I(s+1)I'(s—1)

if n =0,

and

¥, K g (VIR g sgn(nm) > 0,

Linn(s) =49, Z;SO < if n=0,
>, L(WZ”’C)I 571(47T clmnl) if sgn(nm) < 0.

Moreover, K(m,n,c) is the Kloosterman sum defined by

Kmno= Y e <mac+”“>

a (mod ¢)

6.1.2 The kernel function and its properties:

Let j be the Klein’s j-invariant and K(z,7) be the kernel function defined by
J'(7)
K(z,1):=
) —d(r)’

e (6.2)

where j'(z) = ﬁd% j(z). This function transforms on I' with weight 0 in z and weight 2

in 7. It plays many important roles in the theory of modular forms [AKN97, DIT11a].

Next, define ggo)(z) = EAl‘Eg), where for an even integer k > 2, Ej(z) is the holomorphic
Eisenstein series of weight k for I" and A(z) is the discriminant function of weight 12 for

I' defined by

1728
Now for general n > 1, define gSLO)( ) = n_lgg )( )|2T'(n), where T'(n) is the n-th Hecke

operator. Then we have the following.

Proposition 5. With the notations as above, we have

o Z gs)) (7_)627rinz_

n>1

Moreover, we have g?(T) = —ji (7).

Proof. We put k =0 in [AKN97, Theorem 3] and use [DIT18, eq.(71)] to get

E .
.1 (T Zgn 27r'mz _ Z]n 27rzn7' — K(Z,T).

n>1 n>0
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Moreover, from (6.2) and above, we have

./ 0
K(Z,T) S J (T) S gl T? .
J1(z) = ja(7) J1(z) = ji(7)
The proof now follows by comparing both sides of the above. O

We now prove Proposition 6 which was considered by Andersen and Duke [AD20, p.1547].
It is mentioned in [AD20, p.1547] that the proof is based on an earlier result of Duke,
Imamoglu and Téth [DIT18, Lemma 1] which deals with the case of Eisenstein series. We
note that the proof of [DIT18, Lemma 1] is based on Stoke’s theorem and the exponential
decay of K(z,7) in the variable z. However, the exponential decay of K(z,7) is not
applicable in the proof of Proposition 6 because F_,,(z, s) has exponential growth at the
cusp oco. It appears that the proof of Proposition 6 is a bit delicate and makes use of
explicit Fourier expansions of K (z,7) and F_,,(z,s). Here we prove it for self contained

exposition.

Proposition 6. Let the notations be as above. Then we have

s(1—s) dxdy _ 0 Jm(T)

/}_F—m(za S)K(Z,T) yg _iEF—m(Ta 8) - |m’1/27 (63)

where F is the standard fundamental domain for T.

Proof. Since F_,,(z,s) is an eigenfunction of Ay = —4y2%% and —2idrdy = dzdz.
Therefore, to prove (6.3), it suffices to prove
0 0 0 0
— | —=—F_n(2,8)K(z,7)dzdz = — lim ——F . (2,9)K(z,7)dzdz
F 0z 0z 3%3(60 Fy\B:(8) 0z 0z
0 - Jm
= —EF_m(T,S)+z|m|l/2,

where Fy = {z+iy € F:y <Y} and B;(§) = {2 € C: |z — 7| < §}. Since K(z,7) is
holomorphic in Fy\B-(d). Therefore, we have

[ () Kemtsas= [ (LR ek ) das
Fy\B-(6) 0z \ 0z Fy\B-(6) 0z \ 0z

Let 7 be an interior point of F. Then for Y sufficiently large and ¢ small enough, Stoke’s

theorem will imply that the above equals

0 / 0
— —F . (z,9)K(z,7) dz — —F _,(z,9)K(z,7T) dz,
S L O R W S SHCETICE

where 0Fy is oriented counter-clockwise and 0B,(d) is oriented clockwise. Now to
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complete the proof, we only need to show that

im [ LR de = im~V2] (7). (6.4)
Y —oo OFy 0z

lim O p e K (r) de = —2 B (rs) (6.5)
6—0 B, (6) 0z T ’ - or T '

We first prove (6.4):

Since %F_m(z,s)K(z,T) is a modular function of weight 2 (in the variable z), so
integrating it over the boundary 0Fy will be equivalent to integrating only on the
horizontal line % + Y to —% + 4Y, as integration along the vertical straight lines and

on the arc will cancel each other. Therefore, we have

o —3+iY g
—F . (2,8)K(z,7) dz :/ ~Fom(2,8)K(z,7) dz.
oFy 02 iy 0%

Now we use Lemma 9, Lemma 10 and Proposition 5, so that r.h.s. of the above equals

Z gl(o) ()e?milz {(47rY)_1M,1,3,% (4m|m|Y)e(—mx)

Im|~Y2T(s + 1) /_;‘HY
Lty =1

i I'(2s)

+9-m0(8) Lomo(8)(—4m) Y T 4> g () Lomn(s)  (6.6)
n#0

% (—4nY)"IW (n)’s_%(47r|n|Y)e(n$)] dz.

sgn

Now we evaluate the term by term integral. One can see that the only diagonal terms in
the above integral survive, however, the off-diagonal terms vanish due to the orthogonality

of exponentials. After simplifying, the above equals

Cm|TMPT(s + 1)
i I'(2s)

—g) () (AmY) My (rmlY)e ™Y =7 gl (T)g i (5)
>0

X Lo () (—4TY ) TIW L (4] — l\Y)e’%lY} .
Since, we have from [DIT16b, eq. (2.8)]

W_, ,_1(4nly) ~ (4nly) e ™ asy — oo,

1
7S_§

Therefore, we see that for [ > 0

lim (—4my) ' W_, ;1 (47| = ly)e *™ =0,

Yy—r0o0

and hence

Jim lz;gl(o) (T)g-rm.~1(8) L~ (5)(—4my) " W_y 1 (dm| = lly)e ™ = 0. (6.7)
>



78 Chapter 6. Regularized inner products and modular invariants

Further, we have from [Bru02, eq. (1.25)]

I'(2s)

me%my(zlwmy) (1+0(y™) asy— oo

M—l,s—% (47r\m]y) =

Thus from the above we deduce, as Y — oo

m|~Y2T(s +1)

J m|~2 )
i r(2s) °™

(T)(4xY) 1M %(47r]m|Y)e_27rmY i

—1,5—

(r) (1+ O(Y‘l)) .

Hence from the above, we get

~1/2
i 1T + 1)9(0)

m|—1/2
Y —o0 ) F(QS) m )

(4m|m|Y)e 2mmY = mI™
i

(r)(4rY) "' M_y,

s_1
2

Using Proposition 5 and ji(2)|2T(n) = j/,(2), we see that
g (2) = 19" (2)[2T(n) = —n~L{ ()27 (n) = ™" (2).

Thus using above, we get

PR g N CR R TS

voee i T(2s) w (T)(TY)TIM_y

-1
)

(4 |m|Y)e ™Y = i|m|~V25! (7). (6.8)

Using (6.7) and (6.8) in (6.6), we see that (6.4) follows.
Now we prove (6.5):

Using Cauchy’s residue theorem, we have

/83T(5) (iF_m(Z, $)K(z,7) dz = —2mi ReSz:TaiF_m(z, $)K (2, 7),

where Res,— denotes the residue at z = 7. Since K(z,7) has a simple pole at z = 7 with
residue (27i)~! [DIT11a, below eq. (6.3)], Therefore, we get from above that

0 0
—F . (2,9)K(2,7) dz = ——F_,,(T, 5).
Ly 55 Fom ) e = =P, )

Now we see that (6.5) follows and hence the proof of proposition follows. O

6.1.3 Binary quadratic forms, class numbers and the Genus characters:

Here we briefly recall binary quadratic forms, their connection to the narrow class group of
a quadratic field and the associated genus character discussed in Sections 2.0.2 and 2.0.3.
A discriminant is any non-zero integer d = 0,1 (mod 4). We say that a discriminant d
is fundamental if d is the discriminant of a quadratic field. Let Qg4 be the set of integral
binary quadratic forms Q(z,y) = [a,b,c] = az? + bry + cy? of discriminant d = b? — 4ac.
When d < 0, we assume that a > 0. The modular group I' acts on the set Q4 as in (2.8).
The set of equivalence classes I'\ Qg forms a finite and those classes consisting of primitive

forms make up an abelian group of order hy (class number). Let Cly and Cl;r be the class
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group and narrow class group of Q(\/&) defined in Section 2.0.2. For d > 0 fundamental,

there is a correspondence between I'\Q, and Cly, which is given by

—b+Vd

[a,b,c] — wZ+7Z, w=
2a

(6.9)

Further, if [a,b,c| is chosen in its class so that @ > 0 and d to be a fundamental
discriminant, then the above gives a bijection between I'\Qg and Clz{. The isotropy
group I'y, = {y € T': yw = w} consists of all

t+bu
B 2 Ccu
== < tbu) , (6.10)
2

—au

where (t,u) is an integral solution to the Pell’s equation t? — du? = 4. If d < 0, then T, is
trivial, unless d = —3, —4, in which case I';, has order 3 or 2, respectively. If d > 0, then
[, is the infinite cyclic group with generator v = 7, in (6.10) coming from t,u > 0 with
t minimal.

Recall that Hurwitz-Kronecker class numbers H(d) defined in Section 2.0.2, for a
discriminant d < 0, by .
H(d) = Z ﬁa

Qel\ 9y

where fQ denotes the stabilizer of @ in I'. If d < 0 is fundamental, then it follows that
H(d) = Z—Z, where 2wqg is the number of roots of unity in Q(v/d).

Let d, D be discriminants with D fundamental such that dD > 1 is also a discriminant.
Recall for discriminants d, D with D fundamental and dD > 1, xp be the generalized
genus character defined on T'\Qgp ( see eq. (2.12) in Section 6.1.3).

6.1.4 Geometric invariant and regularized surface integral:

Corresponding to a discriminant dD where d and D are negative fundamental
discriminants, it turns out that the traces of cycle integrals of j,, over closed geodesic
vanishes. In order to provide a better geometric interpretation in this case, Andersen
and Duke introduced the (regularized) surface integral of j,,. These surfaces integrals
considered over the hyperbolic surface F4 associated with each ideal class A, in the narrow
class group associated to dD. To define the regularized surface integral over F4, we must
briefly describe the construction of F4 from [DIT16a].
Let K be a real quadratic field. Then K = Q(v/d), where d > 1 is the discriminant of K.
Let 0 : K — K be the non-trivial Galois automorphism defined in Section 2.0.2. Recall
from Section 2.0.2 that Clj{ denotes the narrow class group of K of order h:{.
Let A € Cl;r be an ideal class. Then A contains fractional ideals of the form wZ +7Z € A,
where w € K is such that w > w?. The minus (or backward) continued fraction of w is
given by

w = [ag,a1,a2, -] = ag — ;1

a] — —=
1 ag— —1

ag—--
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where a; € Z with a; > 2 for j > 1. This continued fraction is eventually periodic and has
a unique primitive cycle ((nq,...,ny)) of length ¢, only defined up to cyclic permutations.

The continued fraction is purely periodic precisely when
0<w’ <1<w.

Such a w is called reduced [Zag75a]. Each ideal class A € CL} contains wZ+7Z € A with w
reduced. Let S, be the oriented hyperbolic geodesic in H from w? to w. Then we denote
by Ca, the closed geodesic obtained by projecting S,, to I\H. The geodesic C4 does not
depend on the choice of reduced w. One can realize Cy in H as the geodesic from some
point z on Sy, to Y, (z), where 7, is the hyperbolic element which is a generator of the
stabilizer of w in T defined in (6.10).

The cycle ((n1,...,n¢)) characterizes A and it is a complete class invariant. The length
¢ =1/, and the sum m = my = n; + ... + ng are also other invariants. The cycle of A™!
is ((ng,...,n1)), which is just the reverse cycle of A.

Let wZ+7Z be the fractional ideal in A with w reduced. Then with the notations as above,

define
Sy = T(nl+"'+”k)ST—(”1+-"+nk) ,

11 0 -1 _
where T'= + <0 1) and § =+ (1 0 > are generators of I'. Now define

Ly = (S1,...,S, Tmttnoy,

This group is an infinite-index (i.e. thin) subgroup of I'. Let A4 be the Nielsen region
of T'4: the smallest nonempty I 4-invariant open convex subset of H. Then, the surface
Fa is defined as T4\W4. It is proved in [DIT16a, Theorem 1] that the surface Fa has
genus 0, contains ¢ points of order 2, has one cusp and one boundary component. The
boundary dF4 of F4 is a simple closed geodesic whose image in F is C'4. The length of
O0F 4 is 2log €4 and the area of F4 is €. We note that a different choice of wZ +7Z € A
with reduced w yields a conjugate (by a translation) subgroup I'4 in T.

When dD is fundamental and if @ in I'\Qgp corresponds to A € CLf,, via (6.9), then
define Cq = Cy, Fg := Fa and mg := my. It extends to arbitrary discriminants via
Csg = Cg and Fsq = Fq.

Now ! define [AD20, p. 1540] the regularized surface integral of j,, as follows. For each
Y >1,let Fay = Fan{z:Im(z) <Y}. Define

/ jm(z)dxgy = lim/ jm(z)dx;ly. (6.11)
Fa Yy Y—o0 Fay Y

On the other hand, Andersen and Duke [AD20, p. 1544] introduced another equivalent

regularization that does not depend on the limiting process. We now describe it here. For

!'Back to Theorem 7 and Theorem 8.
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each quadratic form Q) € Qgp, define

vg(z) == K(z,7)dr. (6.12)

Cq
It is explained in [DIT18, p. 16] that for z not on Cg, the value of vg(z) is an integer that
counts with signs the number of crossings that a path from ico to z in F makes with Co.
This function is I'-invariant and is identically zero [AD20, p. 1544] for Im(z) sufficiently

large.

We note that the functions j,, has exponential growth towards the cusp, so the integral of
Jm over the fundamental domain F does not converge. However, it can be seen that the

integral
dxdy

y2

/ Jm(2)vg(2) (6.13)
r

converges. We prove in Lemma 11 that (6.11) and (6.13) essentially agree.

Lemma 11. Let the notations be as above. Then we have

. dxdy . dxdy
/ ]n(z)VQ(Z) 2 = _/ ]n(z)T — SWmQJ(n).
F Yy Fo Y

Proof. From [DIT18, p. 17|, we know that the hyperbolic surface Fg associated with @
is a partial cover of F (standard fundamental domain of I') with mg — vg(z) points of Fg

over z € F. Thus we have

dxdy
32

] drdy = ] mo — Vol(z
/fwjnu) B - /fygncz)( o - 1))

Y
. dxdy / . dxdy
= m In(z)—— — In(2)vo(z . 6.14
Q/H()y2 fy()@()yg (6.14)

First we compute | 7, In(2) djj;‘y. To do so, we note that &(E3) = 2, where

E3(z)=1-24% o(n)g" - ;’y

n>1

is the non-holomorphic Eisenstein series of weight 2 for I'. Now

. dxdy 7T/ ., ——=dzdy
In\Z)—=— = 3 Jn(2)82(E3)—5—
[Tt = 5[ neaE S,

T [3FY » .

- 5[ aeEeE:
—14iy

where in the last equality, we have used [DIT16b, Lemma 1] and z = z + ¢Y with —% <

x < % Now inserting the Fourier expansion of j, and E3 in the above, one can see that

the above integral survives only corresponding to the constant term (the term free from
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q"™, m #0). After evaluating the integral, we get
dzd
/1jM@:2y:7%%am»:8mﬂm. (6.15)
Fy Y 3

Since vg(z) is identically zero [AD20, p. 1544] for Im(z) sufficiently large. So for
sufficiently large Y, we get

. dxdy / ) dxdy
n(2)vo(z = n(2)vo(2z . 6.16
/fyng()yz e = (6.16)
Using (6.15) and (6.16) in (6.14), we get
) dxdy / ) dxdy
n(2 = —8mmgo(n) — n(2)vo(2z .
/]EQ’YJ()QQ aotn) = [ (o)

Taking the limit as ¥ — oo in the above, we see that the lemma now follows from
(6.11). O

Let I be the twisted d-th Millson theta lift considered on p.15 in Section 1.0.1, Trg p(.) be
the trace and (., .) be the regularized inner product defined in (1.21) and (1.20) respectively.

6.2 Proof of Theorem 8

Recall the traces of cycle integrals Try p(.) defined in (1.21) in the Section 1.0.2 of the
Introduction. We have from [ANS18, p. 862],

. D

B2 =X () F (6.17)
mln

Using [ANS21, Proposition 1.9]!, we have
1 D D -
X (D) g di = X () Tz )
mln " mln

In view of Theorem 9, the above becomes
1 D L0 - D n?
mln " mln

Now a comparison of seed function in [JKK14, eq. (2.4)] and [DIT16a, eq. (8.1)], and
then using [JKK14, eq. (2.10)], we get

0 0
92 <2W\/ﬁaSF—n(Za s)

ﬁ>=&%m.

!Since we are using the regularized inner product defined in (1.20), therefore, the constant —1/3 reflects
in place of —1/2.
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This implies that

.0 - .0 0
—Trap (218,2“1]”) = —Trgp [21&2 (QWﬁ&an(zaS)

.0 0
= —Trgp {2185 (27r\/ﬁazF_n(z,5)

)
DR

Now we follow [AD20, proof of (2-3)] to interpret r.h.s. of the above. Define Fy :=
{r+iye F:y <Y} For Q € Qgp, let Y be sufficiently large so that vg(z) = 0 for
Im(z) > Y and thus the image of Cg in F is contained in Fy. Then for Re(s) > 1, we

dxd dxd
/F_n(z,s)z/@(z) :1:23/ :/ / Flp(z,8)K(2,7) $2ydT'
r Co JFy Yy

have

Yy
The function F_,,(z, s) satisfies

AoF_p(z,8) = s(1 — s)F_p(z, ).

So by Proposition 6, we have

s(1 —s) / . ]
Fon(z,8)K(2,7)—5— = —i—F_p(7,5) — .
5 - (z,8)K(z,71) ) i5- (1,8) in]172

It follows from above that

5(12— s) /F F_R(Z’S)VQ(z)dﬂ;gy _ /C ) <—iaa7_F_n(T, s) — jﬁf@) dr.

Now differentiating above with respect to s and setting s = 1, we deduce that

dxdy 0 .0
Fo(z1 —9% [ Y F (29
/}_ (z, )vg(z) " 95 Je, 5, (z,8)dz

s=1
In view of (6.19), the above implies that

dxdy
y:

T (2i0,) =20V 3 x0l@ [ Foal gl

QeMQup

We use [AD20, p. 1545] to write
2mvnF_(2,1) = jn(2) + 24 o(n).

It follows that

dxdy
y:

Trqp (2152.3”) = Z xp(Q) /f(jn(z)—i-24 o(n))vg(z)

QeMQap



84 Chapter 6. Regularized inner products and modular invariants

The above can also be written as

dxdy
Y2

dxdy
Y2

Trap (253) = Y @ [l

QeMQap

+ 240(m) Y XD(Q)/}_VQ<Z)

QEMQap
Now we use [DIT18, Corollary 4] (see also [AD20, p. 1545]) in the above to get

hphq
WDWd'

Tra,p <2Zijn> = Z XD(Q)/an(Z)VQ(z)dzgy+967m(n)

QeMQap

Using above in (6.18), we get

o (f) (f oz pr fa) =24H(d) D (ﬁ) " <mD>

1 dxdy hphg
= > x0(@) [ in(2)vg(2) ) —24 )wad
QeT\Qup g
(6.20)
The proof now follows by using Lemma 11 in (6.20) and for a fundamental discriminant
d, H(d) = 2. O

Proof of Theorem 7:

From (6.17), we have I¥(j1/2) = fp. Now, the theorem follows from Theorem 8.

6.3 Proof of Theorem 9

Recall the traces of cycle integrals Try p(.) defined in (1.21) in the Section 1.0.2 of the

Introduction. From [DIT16a, Proposition 5|, we have

D m?2 s 1 0
3/4 —3/2 + _ :
6y/7|dD[**|m| > " n=?/ <n> d (d, D5+ 4> = Tryp <zasz(z, s)) . (6.21)

‘ 2
n>0
where
1 3 2
m? s 1 m? T2 287aT2(sEl) K*(d,™ D;c)
Pt (d =p. 24+ = — = dD - - 27 N A
( " n? ’2+4> <n2 > 3/l (s Z

X
Tk‘
I
7N
&
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and

2 _
n m N . c ma + na
K™ (d, ) D;c)=(1-1)B. ( g ‘) (a) €al <c >

is the constant times weight 1/2 Kloosterman sum with §. := 1 if ¢/4 is even and f. := 1
otherwise. Here a satisfies aa =1 (mod c).

We get from the above

Trap <i§sz(z,s)> = Wzn—% (g) > @?)(6.22)

27°20(s)

n>0
Jo_1 (477

@)
We use [DIT16a, eq. (8.1)] and [JKK14, eq. (2.4)]

X

l\.’)

n C

Gu(z,8) = 20|m|2 Fpn(2, 5)

to write
1
W]m\ (dD)ar?(sth) 1 (d, 5 D;c)
Trq p (sz(z,s)> = — Zn 2 | — Z
g 2 2F S nlm 4lc,e>0 ¢
n>0
< J_1 (47r n ”dD> . (6.23)
2 n| ¢

It follows from [KK24, eq. 16]

1/2 m? s 1 (d, sz c)
bl (712|D],2+4> > fjs_% ir

4|c,e>0

—(dD)1 |m
Vor |n

n

Using above in (6.23), we get for m > 0

) _ —(dD)3T*(*5Y) ~|m| (D m? s 1
TI'd,D <ZazG—m(Z, 8)) = 27511(5) z|: g <n> bldl <7’L2|D‘7 5 + 4) y (624)
n>0

where by, (n, s) are Fourier coefficients of Maass Poincaré series F'+ A /2( s) constructed
n [JKK13]. It follows from [JKK13, Proposition 5.1] that F|er| 3/2(2,3/4) = 0. Hence, it
implies that

=0.

s=1

Trd7D (ZaazG_m(Z, S))
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Now, we take the derivative of (6.24) with respect to s and evaluate at s = 1. This along

with the above will imply that
1 D\ 0 m?
32 <n) 750 <nz'D‘vS>
nlm

n>0
It follows from [JKK13, Theorem 5.3] (see, also [KK24, Proposition 2.1]) that

m
n

s=3/4 2 7

2 2
4\/dD’m’ab|d| <m2]D|, 3) + 1927 H(d)H <mD>
n|0s n n

s=3/4

+
|d],3/2

fa. And by Serre duality, there exists a unique mock modular form

is the ’T’Z—;]D|—th Fourier coefficients of the mock modular form H (1) whose shadow is

d
ga(T) = —167H(d)+ > (4 ldln g biay (1, ) ls=3/a + 1927 H(d) H (n)) "
n>0,n=0,3 (mod 4)
= —167H(d) + > b(d, n)q™ (6.26)

n<0,n=0,1 (mod 4)

of weight 3/2 for I'g(4) with shadow fy. Therefore, from [ANS21, p. 2305], we have

Wz n?

~ m| 0 m2 m?
—2Tr .2 D,d(J) = 4\/dD‘n‘aSb|d| <n2|D,s> + 1927 H(d)H <D) ,

s=3/4

where &(J) = j1 = j — 744 and Tr,.2 d(j) is as defined in (1.21). One can deduce from
n72 )
above that
D ~ D\ |m| 0 m?
2 (5)Pazoad = - L) (%) 7 ]5sna (Ga1ore) o/

—96wH(d) ) <§> H <7::22D> .

nlm

Now the theorem follows using the above expression and (1.12) in (6.25).

Proof of Corollary 4:

Putting m = 1 in Theorem 9 along with [ANS21, Proposition 1.9]2, proves the corollary.
O

2We consider the regularized inner product defined in (1.20), therefore, the constant —3 reflects in place
of —2.



Chapter 7

Arithmetic of regularized inner
products and Rohrlich-Jensen type

divisor sums for j-invariant

In this chapter, we prove Theorem 11, Corollary 5, Corollary 6, Corollary 8, Corollary
9, Corollary 10, Corollary 11 and Corollary 12 from Section 1.0.2 of the Introduction.
The material in this chapter along with Theorem 11, Corollary 5, Corollary 6, Corollary
8, Corollary 9, Corollary 10, Corollary 11 and Corollary 12 are joint work with Balesh

Kumar and appear in the paper [KKa] which is communicated for publication.

Outline of the chapter

The layout of the chapter is as follows. In the next section, we define notations, recall
definition and valence formula for meromorphic modular forms. We also recall the real
analytic Eisenstein series and the Kronecker limit formula in this section, which is used
to study the properties of the weight 0 sesqui-harmonic Maass form £(z). The function
E(z) is a preimage of weight 2 completed Eisenstein series Ej under &. Further, the
Fourier expansion of £(z) is studied which is used to compute the regularized inner
product of j/, with Ej. Next, we recall the Niebur Poincaré series and automorphic Green’s
function which is used to study the weight 0 sesqui-harmonic Maass form g; and its Fourier
expansion. In addition, we discuss the elliptic expansions of j;, and g;. Finally, in this
section, we discuss the definition of regularized inner product and related results using
Stoke’s theorem. Then in Section 7.2, we provide proof of Theorem 11 and Corollaries
5-12.

7.1 Preliminaries

The set of all complex numbers is denoted by C and H denotes the complex upper
half-plane. The elements in H are denoted by z = x + iy with y > 0. For any z € H|,
we write ¢ := e(z) = €>™*. Recall & = Qiyk% be the differential operator defined by
Bruinier and Funke [BF04].

The modular group I' := SLg(Z) acts on H via the fractional linear transformation vz =

a b
gjis, for v = <c d) erl.

87
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7.1.1 Meromorphic modular forms

Let k£ be an integer. Then a function f defined from H to C is called a meromorphic

modular form of weight k for I if
1. f is meromorphic on Hi,
2. f(y2) = (cz + d)¥f(2), for all y € T,
3. f is meromorphic at the cusp ioco.

If w € H, we denote by ord,(f) the order of the zero or pole of f at w. The poles
are considered as zeros of negative order; in other words, it is the unique integer v such
that f(z)/(z — w)? is holomorphic and non-zero at w. If f(z) = g(e?>™*), we will set
ord;se(f) = ordp(g).

One can see that if f is modular and v € I', then ord,,(f) = ord(f), so that ord,(f)
depends only on the class of w in T'\ (HUP1(Q)).

We denote by ord(w), the order of the isotropy group of w € H in PSLy(Z). It turns
out [CS17, Theorem 4.3.2] that ord(w) = 1 except if w is I-equivalent to ¢, in which case

2mi/3

ord(w) =2,ortop=ce , in which case ord(w) = 3. We have the following fundamental

formula [CS17, Theorem 5.6.1].

Theorem 15 (Valence formula). Let f be a non-zero meromorphic modular form of weight

k for I'. Then we have

ord,, (f k
Ordioo(f) + Z ord(q(u)) = E

wel\H

7.1.2 Real-analytic Eisenstein series
For Re(s) > 1 and z € H, define the real-analytic Eisenstein series by
E(z,s):= Z Im(vz)?,
YEL s \I'

1 n
where ', := {:l: <0 1) in € Z} is the stabilizer of the cusp ioco. It turns out that the

function s — E(z, s) has a meromorphic continuation to the whole complex plane C with

%. In fact, we have the following result from [Sie80,

Theorem 1, p. 14] (see also [JST16, Theorem 12]).

a simple pole at s = 1 of residue

Lemma 12 (Kronecker’s limit formula). As s — 1, we have

3 1
E(z,8) = —>— — — log(|A(2)|Im(z) 1
(2:8) = = ~ 5 OR(IAGINE) + €+ 0 - 1),
where C = 6(1—12¢'(—1) —log(4r))/m with {'(-) is the derivative of Riemann zeta function
C(-) and A(2) == q T[22, (1 — ¢™)** is the discriminant function.
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The Kronecker’s limit formula has many classical and recent applications, see for instance,
Ramachandra [Ram64], a beautiful paper by Duke, Imamoglu and Téth [DIT18] and
references therein.

In view of the above lemma, define [BK20, (2.4)]

£(2) = lim (477E(z,s) _ 12) +e,

s—1 s—1

where
¢'(2)

w2’

C = —24y+24log(2) + 144
with v the Euler’s constant. The following expression of £ is useful in our context.

Lemma 13. Let the notations be as above. Then
£(z) = —2log |Im(2)°A(z)|.
Proof. 1t follows from Lemma 12 that

lim <47TE(Z, s) — 12) = —2log [Im(2)°A(2)| + 4(6 — 72¢'(—1) — 6log(4r)).

s—1 s—1
Thus from above, we get

c@))

T2

E(z) = —2log [Im(2)°A(2)| +4(6 — 72¢'(—1) — 6log(4r)) + ( — 24~ + 24 1og(2) + 144

By comparing the two expressions of Glaisher-Kinkelin constant from [Morl3, p. 2466],
we get
2
¢(2) = %(’y +log(2m) — 1+ 12¢(—1)).

Using the above expression of (/(2) in £(z), one can see after simplifying that the lemma
follows. u

The function £(z) has a Fourier expansion [BK20, Lemma 4.3 (3)] of the shape

E(z) = Z cEH(m)g™ + Amy + Z cE (m)Wo(2mmy)q™ — 121ogy, (7.1)

m>1 m<—1

where the coefficients ¢t (m), ¢t~ (m) € C and Wy(2rmy) = '™ (see [BK20, p. 7)).
Recall 1(m) is the sum of positive divisors of m. We need the following explicit description

of these coefficients.
Lemma 14. Let the notations be as above. Then for m > 1,

it (m) = 24M

and for m < —1, we have
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Proof. From Lemma 13, we have, for z = x + iy

E(z) = —2logly’A(z)]
= —12log(y) — 2log |A(2)|
= —12log(y) — 48log|n(2)|,

where A(z2) = n(z)?* with 1 the Dedekind eta function. We use [DIT18, p. 6] to rewrite

the above

E(z) = —12log(y) + 48 |Re Zl_lal(l)ql +%
I>1

= —12log(y) +4my +24 | Y _17'or()g' + > 17 o1 (D)

1>1 1>1
= —12log(y) +4my + 24> 17'or(l)g' =24 ) 17 ou(=D)g .
1>1 1<—1
Rewrite ¢—1 = e2™we2™y — gledmly — ¢l Wy (2nly), where Wy(2nly) = e*™ follows from

[BK20, p. 7]. Thus we get

E(z) = —12log(y) + 4y — 24 Z 1Yoy () Wo(2rly)q' + 24Zl_101(l)ql.
1<—1 >1

Now the lemma follows from comparing the above expansion of £(z) from (7.1). O

Next recall the completed Eisenstein series Ej(z) (see (1.15)) by

Ej(z):=1-24) o1(m)q" - 3 (7.2)

.
m>1 Yy

The function E3 is a harmonic Maass form of weight 2. The function E(z,s) is closely
related to E5 via the constant term in the Laurent expansion of the analytic continuation
of &(E(z,s)) around s = 1. We refer to [BK20, Lemma 2.4] for these properties of E(z, s)
and E3. Moreover, from [BK20, (3.18)], we have

& (€) = AnEs. (7.3)

Recall j be the Klein’s modular invariant with the g-expansion given as in (1.1) and
J1 := j — 744. For n > 1, recall j, be the family given in (1.10) which is defined by
jn = j1|Tn, where T}, is the nth Hecke operator. Define j, (z) = %d%jn(z). We also need
the following.

Proposition 7. Let the notations be as above. Then

6
BN = —— .
o B3 = =1 (n)



Chapter 7. Arithmetic of reqularized inner products 91

Proof. To prove it, we start to compute

1
<-7’l/’L7E;>T = E<J’:’L?€O((€)>T
17
= E<§0(5)J§L>T
1 — _dxd
= 5/, @EOEREPS

Since &2(j5)) = 0, therefore, by applying Lemma 17, we get

. 1 .
(s E3)r = — E(2)jn(2)dz,
A Jor,
where the boundary OFr is oriented counter-clockwise. Since the integral along the
straight lines and semi-circle are identified by matrices in SLy(Z) with opposite orientation
and they get canceled. Thus one needs to compute the contribution of the above integral

along the boundary near ioco
1 1
T ——<z< =5, 4
{x +1 5 = T < 2} (7.4)

Thus, we get
) 1 [+l
(s E2)1 = 5~
" am J_1iir
Now we use the Fourier expansion of j/, and £ from (7.14) and Lemma 14 in the above,

we see that only constant term survives. Thus, we get

R 1
<j;w E2>T = -

o | ~24ei(n) + 24 > a;, (o (1) Wo(—27IT)

I>1
Since it follows from [BK20, Lemma 2.3] that
lim Wy(—2#IT) =0,
T—o0
Thus we get from above
R, 6
<]n’E2>T = _;O’l(n)'

(Jn> E3)

= lim
T—00
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7.1.3 Niebur Poincaré series

We next recall the Niebur Poincaré series and its properties. For 0 # [ € Z and Re(s) > 1,
define

Ei(z,s) := Z e1,5(72),

YET o \I

where
1 .
o1s(2) = y2 1,1 (2m|l]y)e?™e,

1
2
Here I is the I-Bessel function [MOS66, Chapter 3] of order s. We note that above
defined Niebur Poincaré series is 27I|'/2 times G, (z, s) defined in (2.16). It follows from
[Nie73, Theorem 5] that the function s — Fj(z,s) have a meromorphic continuation to
C and do not have a pole at s = 1. Further, for any s with Re(s) sufficiently large, the
function z — Fj(z, s) converges absolutely and locally uniformly. Since the functions ¢;
are eigenfunctions under A with eigenvalue s(1 — s), one can see that Fj(z, s) is also an
eigenfunction under Ay with eigenvalue s(1—s). Via meromorphic continuation of Fj(z, s),

one can obtain

Ao(Fi(z,5)) = s(1 - 8)Fi(z, 5)

for any s at which Fj(z,s) does not have a pole. Taking s = 1, one can in particular
construct harmonic Maass forms. In fact, it follows from the proof of [Nie73, Theorem 6]
that for [ > 1, we have

2mVIF_(2,1) = ji1(2) + 2401 (1), (7.5)

where o1 (1) is the sum of positive divisors of .

7.1.4 Automorphic Green’s function

Here we briefly recall the automorphic Green’s function. A reference for this is [Hej83],

however, we follow the exposition from [GZ85, p. 207].

For s a complex number with Re(s) > 0, let Qs_1 be the Legendre function of the second
kind, defined for ¢ > 1 by

Qs—1(t) :== /Ooo(t + V/t?2 — 1coshv)*dv.

For z = x + iy and 3 = x 4 ¢y to be points in H, define

_ .2
95(2,3) 1= —2Qq 1 (cosh d(z,3)) = —2Qs 1 (1 N lzzyjl) |

where d(-, ) is the hyperbolic distance. Since g, has a singularity log |z — 3|? along the

diagonal, therefore, the above is not defined for z = 3. Now define

Gs(2,3) ==Y 9s(2,7). (7.6)

yerl
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The above series converges absolutely for Re(s) > 1 and is an eigenfunction under
hyperbolic Laplacian Ay with eigenvalue s(1 — s). It has a meromorphic continuation
to the whole s-plane [Hej83, Chapter 7, Theorem 3.5]. Since d(z,3) = d(vz,73), for any
v € SLy(R), one can see that G4(z,3) is [-invariant in z and 3. The function G5 is known
as the automorphic Green’s function or resolvent kernel.

For fixed 3 and y = Im(z) large (y > max,er Im(73)), G5 has a Fourier expansion [GZ85,
p. 207] of the form

a7 _s Uy’ :1:
Ga(2:3) = 75 B s)y' ™ —4n Y Foi(s, sy K,y (2nlly)e’™ (7.7)
140

where E(3,s) and Fj(3,s) are real analytic Eisenstein series and Niebur Poincaré series
respectively. Here K 1/, is a K-Bessel function [MOS66, Chapter 3.

7.1.5 The Fourier and elliptic expansion of the automorphic functions

g; and j;,

For 3 € H, define
g5(2) = log (4°|A(2) (5 (2) — J (3))])-

It turns out [BK20, Lemma 3.1] that the function g; is a sesqui-harmonic Maass form of
weight 0 and it has a singularity precisely at the point 3. We have the following relation
[BK20, (3.3)] between g; and the automorphic Green’s function.

Lemma 15. We have

g(2) = ! lim(G(z,3) + 4 E(3, 5)) — 12.

2 s—1

The function g; has the Fourier expansion [BK20, Lemma 4.3 (2)] of the shape

g(2) =Y Tt (g + D et ()Wo(2nly)d' + 6log(y), (7.8)

>1 1<-1

where cg;r(l) and cér;(l) are coefficients in C. For our purpose, we need an explicit

description of ¢ * (1) and ¢~ (1). Here we prove.
Proposition 8. Forl > 1, we have

c++(l) —

5] |l|1/2 (z 1)

and for I < —1, we have
(1) —
cg, (1) =— ‘”1/2 (2, 1).

Proof. From Lemma 15, we have

g(2) = ! lim (G(z,3) + 47 E(3, 5)) — 12.

2 s—1
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We write the Fourier expansion of G from (7.7) in the above to get

L —4m 1—s 1/2 2milz
g (2) = 5 lim [28_1E(5,8)y —477;171(3,3);/ K,_1(2mlly)e*™ +47E (5, 5) | —12.

An application of Lemma 12 in the above gives

g,(2) = %Lni [ Ar(1— (s — 1)log(y) + O(L — s)*) (1 —2(s — 1) + O(s — 1)?)
L _ i o Im(z 5 — —Ax 1/2
X <7r(3—1) 5 10g(|A(2)[Im(2)°) + C + O( 1) 4 gF /(3.5
K ylertyer +an( - - L ogAE () + 0+ 06 - 1)) 12

A simple calculation yields from above

gz(Z) = 6log(y) — 27 Z F_(3, l)yl/QK% (27r|l|y)e2ml”“.
10

We use the formula [GZ85, p. 208]

[T —2rlly

g;(z) = 6log(y Z |l|1/2 Je~ 2mlily g2mile.
10

in above to get

The above can be rewritten in view [BK20, p. 7] of Wy(2xly) = ¢*™ for [ < 0, as
-7
8;(2) = 6log(y Z (|l|1/2 ) q + Z (’”1/2 1)) Wo(2rly)q'
>0 <0

Now the proposition follows by comparing above with (7.8). O

We also need the elliptic expansion of j;, and g; which follows from [BK20, Lemma 5.8].
To state it, we define, for tg > 0, r < 1,

L b—1 (D" fa—=1Y . b
Bro(r;a,b) = —/ (1=t =y ) o —(—1)"0aendo<—b<a log(to)-

= n+b
n#—>b

It turns out that (3, is independent [BK20, Lemma 5.4] of the choice of ¢;. Here the
dependence in the notation is kept to distinguish it from the incomplete beta function.

We have the following.

Lemma 16. (1). For w € H, there exists cj; (1) € C, such that for ry(z) sufficiently
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small, we have

—2
i/ z) = 72 —w Cil w l ¢ zZ),
]n( ) (2\/m> g In> ()Xw( )

where 1 (2) and X (2) are as defined in (7.9).
(2) ([BK20, Lemma 5.8 (2)]). There exists ¢+, (1),ct (1) € C such that for ry,(z)

Zw,W ) 8w, W

sufficiently small, we have

gu(2) =D bt (DXL (2) + D b (DB (1 =72 (2); 1, 1) X}, (2) + 6log (1 — 15, (2)).
1>0 1<0

7.1.6 Regularized Petersson inner product

We follow [BK20, p. 26] to define the regularized inner product. To do so, we start by
setting notations. For 3 € H, define the real-valued function r; on H by

Z—3

r;(2) == |X;(2)| with X;(2) := p—

(7.9)
Let Fr be the standard fundamental domain truncated at a height 7" > 0 and for ¢; > 0
Be;(35) :={z € H:r;,(2) < ¢}

Set ,
FT 31 st ees *= fT\U(Bq (35) N Fr).
j=1
Let f and g be functions that satisfy weight k& modularity and whose singularity in the
fundamental domain lie in {31,...,3¢,i00}. The regularized inner product [BK20, p. 27]
is defined by !
(fog) = lim Tim - lim (f,g)re...q (7.10)

T—00 ¢,—0F €1 —07t

whenever it exists and where

(fs 9>T,el,...,eg = /]: f(Z)@yk dzgy‘

The following result is useful in evaluating the inner product, which follows from Stoke’s

theorem.

Lemma 17. Let F,G : H — C be two real analytic functions which have singularities in

the fundamental domain at {31, ..., 30,100} that satisfy Flo_py = F and G|y = G, for all

!Back to the Introduction.
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v € SLa(Z). Then we have

/ & o(F(2))C () 2dedy + / (G () F(2)y*dudy
Fr . Fr

13150 3301€1 50 r€Q

- / F(2)G(2)dz.
aFTﬁlqn.,ag,El,“.,el
Here the integral along the boundary OFr is oriented counterclockwise and the integral

along the boundary 0B, (3;) is oriented clockwise.

Proof. The proof follows from [BKV13, Lemma 2.1] by suitable modifications. O

7.2 Proof of Theorem 11

From [BK20, p. 27, Proof of Theorem 1.3], we write the meromorphic modular form f in

the form
ordy (f)

£(2) = ez T (AEG() - j(w) =4

wel'\H

with ¢ € C. By Theorem 15 (Valence formula), we get from above

ordy,

E
tog (y#17(2)]) = log(lel) + ordine () log [y AG)| + - = d (2).
wel\H
Using Lemma 13, the above can be rewritten as
ordy, (f)

tog (517(2)1) = los(lel) — sordie(f) £(z) + 3

wel'\H

ord(w) guw ().

Applying & = 22’% on both sides of above and using (7.3), we get

ordy (f)
ord(w) w(z),

212 10g (417(2)]) = —2m ondie (1) F3(5) + Y

wel\H

where &y(gw) = Guw is the function defined in [BK20, (3.9)]. Since for a smooth function

9, %g = % g, therefore, we get from above

ordy (f)
ord(w) G (2).

2i-10g (4E17(2)]) = —2m ordi(1) F3(5) + Y

wel'\H

(7.11)

Thus, to prove the theorem, it suffices to compute (j/,,G,,). Hence, we compute

<j;mgw>T,e = <j1/w£0(gw)>T,e
= <§0(gw)vj;z>T,e

dxd

- /f &olen) (50) 15
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Since j;, is holomorphic, thus &2(j/,) = 0 and hence Lemma 17 will imply that

o Gu)re = — / g (2)71(2)dz. (7.12)
OF T w.e

Since the integral along the straight lines and semi-circles are identified by matrices in
SLo(Z) with opposite orientation and they get canceled. Thus, one needs to compute the

contribution of above integral along the boundary near ico:
. 1 1
x—i—zT:—§§x<f : (7.13)

The integral in r.h.s. of (7.12) at the boundary (7.13) becomes

ST
= [0 i)z

1, .
§+ZT

Now we insert the Fourier expansion of

gn(z) = ") lay, (1) (7.14)

>0

and the Fourier expansion of g,, from (7.8) in I to conclude that the only constant term

survives. Thus, we get

Ip = )+ lay, (et (—1)Wo(—2mIT).
>1

From [BK20, Lemma 2.3], we have
lim Wy (—2#IT) =0
T—o00
and hence we get contribution of integral (7.12) along the boundary (7.13) is

—ncgt(n). (7.15)

Next, we compute the contribution from the integral (7.12) along (Bc(w) N F). Since
gwjn is a function satisfying weight 2 modularity, we have from [BK20, p. 29]

./ o 1 ’ ; B B
/8(35(11))0]-') In(2)gw(2) dz = ord () /BBE(w)]n( )gw(2) dz.

Moreover, we have [BK20, (6.11)]

—(w—w)"t if £= 1,

21 J 9. (w) 0 otherwise,
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where the integral is taken clockwise. In view of the above, one needs to determine the
coefficient of X, !(z) of the corresponding elliptic expansion of j/,g,. Using the elliptic
expansions of j, and g, from Lemma 16 implies that the contribution along 0 (Bc(w) N F)
of the integral (7.12) is

Ord Zc]m (1= D)By (1 — 41,1 +1).

l>0

By [BK20, Lemma 5.4], we deduce that the above term vanishes as € — 0. Thus we get
from above and (7.15)

(jr,Gw) = lim lim (gn,gw>

T—00 e—0+
= —ncg (n).

Using Proposition 8 and (7.5), we get

<.7;w gw) = W\/ﬁF—n(wa 1)
= —jn(w) + 1201(n). (7.16)
From (7.11), we get

ordy, (f)
ord(w)

(s —4mrn [log (y3111) | ) = =27 ordioe(f) G B3) + Y (s Gu).

wel\H

Now the theorem follows by using Proposition 7, (7.16) and Theorem 15 (Valence formula)

in the above expression. ]

Proof of Corollary 5

The proof follows from [BKO04, Theorem 5] and Theorem 11. O

Proof of Corollary 6

For fixed z € H, we take f(7) = j(2) — j(7) which is a meromorphic modular from of

weight 0 for I' in the variable 7. Then
—tmon 10g (i(2) ~ i(r))] = 20| 3108 (1) ~ ()| + 20| 10w (T = 7).

Since for a smooth function g, % = a% g, therefore using the holomorphicity of j'(7), we

deduce

2 Log (5T —5)] = o-Toa (i(2) — (7)) = 0.

Thus, the above becomes

—am 1o (1i(2) — 5(7)))] = io- 08 ((z) — §(r))] = 27K (2, 7),
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where in the last equality, we have used j'(7) = 5% -2j(7) and K (z,7) is defined in (1.23).

= 2mior
Now using above in Theorem 11, we see that the corollary follows. O
Proof of Corollary 8

The proof follows from Theorem 11, [BKOO04, Corollary 2] and the fact that j,, is a monic

polynomial of degree n in j; with integer coefficients. O

Proof of Corollary 9

Using Theorem 11, we get

Uit~ tmnllog (e, o)) = § 3 S0 fo)

Jn(w).

weF

Let zg, and zg, be two CM points corresponding to Q1, Q2 € Q4p with @1 = yQ2. Then

Q1 = Q2 = VZQ2-

Thus, in the fundamental domain F, the CM points zg corresponding to @) € I'\Qgp are
the zeros or poles of ¥p(z, f4) of order xp(Q). Since wg = |I'g|, we deduce from above

G —mllog oz, £l =5 > X0 zq)

Qel\Qup

Further, it follows from [Zag02, (25)] that

3 Xég)jn(@) evDz

QeT\Qup

and hence the corollary follows. O

Proof of Corollary 10

Using Corollary 9 and [DIT11a, Theorem 3|, we have

_Z <ml;n)nq"2D + \/QT) Z (> —4m1[log [U (2, fa)[])q*

nlm d<0
d=0,1 (mod 4)
D -n?D D 2 d
- _ i n i D Id]
(o) T[S raetnal
d=0,1 (mod 4)

= > (mD/n)ngnzD,

nlm

where a(-,d) is defined by (1.5) and g,2p’s are weakly holomorphic modular forms of
weight 3/2 for I'g(4) defined in [DIT11a, (1.10)]. Now the corollary follows. O
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Proof of Corollary 11
We have from [BKOO04, Theorem 7] that

Zan(w)+2kal(n)EO <mod4 H p).

weF p—1|k
5<p prime

Now using Theorem 11 in the above, we get
2 <j;za —4my [log (?/§|Ek|)}> =0 <mod 4 H p)7

p—1lk
5<p prime

and hence the corollary follows. O

Proof of Corollary 12

We have from [Ono03, Theorem 4.24]

21«2(71) +G(ag(h+1),.. . ap(h+n—1)) % 3 fiﬁﬁffh(w)-
weF

ar(h+n)=—

Now the corollary follows by using Theorem 11 in the above. O
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Conclusion

In this section, we provide a summary of the work presented in this thesis and explore

potential future directions.

In Chapter 3!, we investigated the Fourier coefficients of the holomorphic component of
harmonic weak Maass forms with half-integral weight, which are defined as Zagier lifts by
Jeon-Kang-Kim[JKK16b]. For a harmonic Maass form M of weight 2 — 2k, 1 < k € Z
and d be a fundamental discriminant, the Zagier lift 3I(M ) is a harmonic Maass form
of weight § + k if (—1)"d > 0, and 3 (M) is a harmonic Maass form of weight 3 — k if
(=1)"d < 0. The |d|-th Fourier coefficient in the holomorphic part of 3} (M), which results
from their construction, is an infinite series whose terms involve the Kloosterman sum and
the J-Bessel function. We have defined modified traces of cycle integrals of harmonic Maass
forms of negative weights (using Maass raising operator) at square discriminants, which
was originally defined for non-square positive discriminants in [BGK14]. These modified
traces are linked to the studies given in [And15, And22, DIT11a, DIT16a]. We interpret
the |d|-th Fourier coefficient in the holomorphic of 37 (M) in terms of these modified
traces. It would be interesting to study the arithmetic nature of Fourier coefficients of
other types of lifts between integral and half-integral weight harmonic Maass forms and
their generalizations.

In Chapter 42, we studied the Fourier coefficients of interesting weight 3/2 mock modular
forms {ga(1) = 3" peo b(d, D)e2™IPI" . @ < 0} with their shadow f,’s from the Borcherds
basis [Bor95] of weigﬂt 1/2 weakly holomorphic modular forms. These mock modular forms
were investigated by Jeon-Kang-Kim [JKK13, JKK14]. We explored Fourier coefficients
b(d, D) in the context of traces of cycle integrals of sesqui-harmonic Maass forms over
infinite geodesics and connected them to regularized inner products, hypothetical L-value
of harmonic Maass forms, and Rademacher-Petersson type formulas. More precisely, when
dD is a perfect square, we defined modified traces of sesqui-harmonic Maass form I
and expressed b(d, D) in terms of these traces and Hurwitz-Kronecker class numbers.
These modified traces are linked to modified Poincaré series considered by Andersen
[And17]. We found that these traces are associated with regularized inner products from
two perspectives: one with regularized inner product of weakly holomorphic modular
forms fy’s of weight 1/2 and other with regularized inner product of modular functions
fmn = Jm + 240(m). Here {jm}m>1 is the Hecke basis defined in (1.10). The regularized

inner product of fm’s is understood in terms of Rademacher-Petersson type formulas

LThis chapter and its content appear in paper [Kal24]
2This chapter and its content is a joint work with Balesh Kumar in [KK24]
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[DIT16b, BDE17]. It is a natural problem to investigate the relationship between
regularized inner product of f}s with traces of other modular objects. In fact, we proved
in Corollary 4 that it is related to traces of cycle integrals of sesqui-harmonic Maass forms
of weight 2. It would also be interesting to study the connection of inner product of f;’s

with L-values of generalizations of harmonic Maass forms.

Chapter 5% is devoted to the study of Fourier coefficients of Zagier lifts, which interacts
with (classical) Shintani lifts [Shi75]. These lifts and their connections were studied by
Bringmann-Guerzhoy-Kane [BGK14], and they are harmonic Maass forms of half-integral
weights which encode traces of harmonic Maass forms of integral weight in their Fourier
coefficients. Specifically, we defined traces of cycle integrals of harmonic Maass forms
of negative weights at square discriminants (following the approach of [And15, And22,
BGK14, DIT11a, DIT16a]), and linked it to the coefficients of the non-holomorphic part
of these Zagier lifts. Corresponding to a harmonic Maass cusp form M with negative
weight 2 — 2k, two modular objects can be linked to it: one being the classical cusp form
&o_op (M) of weight 2k and other the weak Maass form Rg:%k(M) of weight zero. Here
Ry = 22’% + ﬁ is a Maass (weight) raising operator and & := 2iyk% defined by
Bruinier-Funke [BF04]. Inspired by [BGK14] and using our traces, we proved an equality
(up to constants and conjugation) of traces, at square discriminants, of these two seemingly
unrelated modular objects. Furthermore, we proved that traces of cycle integrals at square
discriminants of harmonic Maass cusp form M of negative weight 2 — 2k, can be thought of
as a central L-value of associated cusp form &;_ox(M). We also proved a characterization
result using analytic techniques in [GKS24]. This result identifies weakly holomorphic
modular forms in the space of harmonic Maass cusp forms of negative weight 2 — 2k,
by vanishing of traces of cycle integrals of harmonic Maass forms of negative weights at
square discriminants. For negative discriminants where their product is non-square, we
established definitions for traces of cycle integrals of a negative weight harmonic Maass
form M, utilizing Ry_of and ideas from [DIT16a]. We also proved that these traces are
equal, up to constant factors and conjugation, to the traces of cycle integrals of ook (M).
It would be interesting to study such type of lifts for spaces, which generalize the space
of harmonic Maass forms. Moreover, finding their interaction with classical lifts between

spaces of modular forms and study of their Fourier coefficients seems to be interesting.

The content of Chapter 6% delves into the investigation of regularized Petersson inner
products of weight 1/2 weakly holomorphic modular forms f;’s from Borcherds-Zagier
basis. We proved a general result, which specifically infers that the regularized inner
products of these forms can be expressed in terms of traces of surface integrals of
j-invariant over real quadratic geometric invariants. These surface integrals were studied
by Andersen-Duke [AD20] in the context of asymptotic distribution. Moreover, using
methods in [DIT11a] and [JKK13], we proved the equality of traces of cycle integrals of

the harmonic Maass form J and sesqui-harmonic Maass forms d%j]m of weight two, which

3This chapter and its content is a joint work with Balesh Kumar in [KK23]
4This chapter and its content is a joint work with Balesh Kumar in [KKb]
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satisfies

Here A, is defined in (2.3) and j,,(2) = %m‘d% Jm(2). We interpret the regularized inner
products of f;’s in terms of traces of cycle integrals of d%j] 1 and Hurwitz-Kronecker class
numbers. It would be interesting to study regularized inner products of other family of
weakly holomorphic modular forms, and their connections to modular objects related to
j-function, and invariants of real quadratic fields, if any.

In Chapter 7°, we investigated the Rohrlich-Jensen type divisors sums for the sequence
{Jn}n>1, motivated by Rohrlich [Roh84]. We proved using methods in [BK20] that they
are essentially equal (up to the divisor sums) to the regularized inner product between the
Ramanujan-Serre derivative 1 of the Hecke basis {jn}n>1 and 1g[log (yg\ f1)], for any
non-zero meromorphic modular forms of weight k. We also proved a variety of arithmetic
properties related to these regularized inner products. Our result link them to exponents
in the infinite product expansions of meromorphic modular forms and investigates the
algebraic properties of inner products, alongside recursion formulas related to Fourier
coefficients. Furthermore, we established their connections with traces of singular moduli
and examined the divisibility aspects of inner products, among other properties. We
further studied the generating series for regularized inner products and established that
these series constitute meromorphic modular forms of weights 2 and 3/2. An interesting
study would be to explore Rohrlich-Jensen type divisor sums for other types of modular

forms and their arithmetic aspects.

®This chapter and its content is a joint work with Balesh Kumar in [KKa]
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