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Lay Summary
The adoption of machine learning (ML) based algorithms has increased over the past few
years. The main reason for the success of these machine-learning models is the growth of
computational resources and digital data. The increasing data enables the algorithms to
learn more generalized and complex models. Initially, the primary focus was devising ML
models with improved accuracy. However, the massive adoption of highly accurate models
did not go that effortlessly. There have been rising controversies about the decisions
from these ML models being discriminatory to certain humans involved. These decisions
can result in impartial treatment of a specific individual or group of individuals (based
on attributes such as gender, income level, race or education) and have catastrophic
effects. This has motivated researchers to systematically investigate and improvise the
ML models before deploying them for real-world applications. The present thesis looks
into developing fair machine-learning algorithms in an unsupervised setting when data has
missing labels. The thesis explicitly focuses on two unsupervised algorithms: clustering
and recommender systems. Firstly, clustering is a valuable machine-learning technique
that identifies patterns in data by grouping similar objects (data points) based on similar
characteristics. It finds applications in many fields, such as automated resume processing,
employee allocation, loan approvals, etc. This thesis proposes clustering algorithms that
help maintain fairness based on sensitive attributes (or protected groups) like gender,
age, race, and income level. We devise clustering techniques that maintain a minimum
threshold of data points from each protected group value (say male and female in gender) in
every cluster. We investigate the problem in different scenarios based on the availability of
data: Offline (full access), online (data arrives over time), and Federated (distributed data
access). The thesis provides theoretical bounds on the performance of proposed methods
and experimentally validates them on different synthetic and real-world datasets. In the
other direction, the thesis explores fairness in the recommender systems by addressing
biases arising in product recommendations. Typically, the recommended items fall into
the popular and non-popular items category. Among these, the popular items are the
ones that have been rated by many users and have existed in the systems for a long time.
On the other hand, non-popular items are newer or have been rated less frequently by
users. A common limitation in many of the existing recommendation models is that these
models may favor popular items over time as their rating data is more evident in the
dataset. This effect can amplify over time and create an unfair market where new and
less-rated products face challenges for survival even though users might be interested in
them. Motivated by fairness in clustering methods where we balance data points from
different group values, the thesis looks into ensuring a fair opportunity for both popular
and non-popular items. We propose a fair recommendation algorithm that mitigates
popularity bias and empirically validates its efficacy on various real-world datasets against
existing state-of-the-art methods.
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Abstract

With the advent of technology, the adoption of Artificial Intelligence (AI) and Machine
Learning (ML) based decision systems into daily human life has significantly increased.
Recent studies have exposed the prejudiced outlook (biasness) in the ML outcomes towards
individuals and groups of individuals characterized through protected attributes such as
race and gender. These decisions have a direct and long-lasting impact on the humans
involved. Fairness has gained considerable attention from the research community when
data labels are available for prediction modelling, i.e., supervised learning. However, in
real-life scenarios, data may lack labels and providing manual labels will require proper
incentivization or expertise. Consequently, researchers have started exploring fairness
issues in unsupervised learning, which forms the focus of this thesis. In particular, the
primary focus of this thesis is to address both theoretical underpinnings and practical
implications of fair algorithms for unsupervised learning in the context of clustering and
recommender systems. The contributions of the thesis include:

1. Group Fair Notions and Algorithms in Offline Clustering: The thesis
first theoretically establishes relationships between different existing discrete group
fairness notions and then proposes a generalized notion of group fairness for
multivalued group values. We propose two simple and efficient round-robin-based
algorithms for satisfying group fairness guarantees. We next prove that the proposed
algorithm achieves a two-approximate solution to optimal clustering and show that
the bounds are tight. The efficacy of the proposed algorithms is also shown via
extensive simulations.

2. Nash Social Welfare for Facility Location: To investigate the problem of
satisfying multiple fairness levels simultaneously, the thesis extends the fair clustering
problem to the facility location problem. The thesis proposes the first-of-its-kind
application of modelling Nash Social Welfare for facility location to target multiple
fairness while focusing on minimizing the distance between individuals. The
proposed polynomial time algorithm works for any h-dimensional metric space and
allows facilities to be opened at a specified set of locations rather than solely at the
individuals’ own locations, as in most previous literature. The proposed algorithm
provides a solution that satisfies group fairness constraints and achieves a good
approximation for individual fairness. The proposed method undergoes real-world
testing on the United States (US). census dataset, with road maps providing the
actual car road distances between individuals and facilities.

3. Group Fairness in Online Clustering: To tackle the challenge of handling group
fairness requirements in an online model, the thesis proposes a randomized algorithm
that prevents the over-representation of any protected group by applying capacity
constraints on the number of data points from each group that can be assigned to a
particular cluster. The proposed method achieves a constant-cost approximation to
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optimal offline clustering and also handles the challenge of an apriori unknown total
number of data points using a doubling trick. Empirical results demonstrate the
proposed algorithms’ efficacy against baseline methods on synthetic and real-world
datasets.

4. Fairness in Federated Data Clustering: For addressing fairness in distributed
settings, the thesis analyzes federated data clustering to ensure privacy-preserving
clustering in a distributed environment. The proposed method results in cluster
centers with lower cost deviation across clients, leading to a fairer and more
personalized solution. The method is validated on different synthetic and real-world
datasets, with results demonstrating effective performance against state-of-the-art
methods.

5. Popularity Bias in Recommender System: While the first four contributions
focus more on clustering. This contribution primarily analyzes the fairness aspects
of recommender systems. The thesis proposes a novel metric that measures
popularity bias as the difference in the Mean Squared Error (MSE) on the popular
and non-popular items. Further, we propose a novel technique that solves the
optimization problem of reducing overall loss with a penalty on popularity bias.
It does not require any heavy pre-training and undergoes extensive experiments
on real-world datasets displaying outperforming performance on recommendation
accuracy, quality, and fairness.

Keywords: Fairness; Unsupervised Learning; Clustering; Group Fairness; Online
Algorithms; Federated Learning; Recommender Systems; Matrix Factorization; Popularity
Bias;
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Chapter 1

Introduction

“Whatever affects one directly, affects all indirectly” — Martin Luther King Jr.1

“The test of our progress is not whether we add more to the abundance of those who have
much; it is whether we provide enough for those who have too little.”
— Franklin D. Roosevelt (Former President of the United States)2.

“Artificial Intelligence is a tool. The choice about how it gets deployed is ours.”
— Oren Etzioni (Former CEO, Allen Institute for Artificial Intelligence)3.

1.1 Introduction

With the advent of technology, the adoption of Artificial Intelligence (AI) and Machine
Learning (ML) based decision systems into daily human life has significantly increased.
Today, we are surrounded by ML-based models in a variety of applications, including
loan and insurance approvals, college admissions, job hiring, government recidivism, etc.
Traditionally, the primary goal of ML algorithms in these systems has been to achieve the
highest possible accuracy and predictive performance. However, examining their outcomes
more closely becomes crucial when ML algorithms are applied in areas that impact society.
Recent studies have exposed the prejudiced outlook (biasness) in the ML outcomes [15, 16]
towards individuals and groups of individuals characterized through protected attributes
such as race and gender. These decisions have a direct and long-lasting impact on the
humans involved.
Figure 1.1 illustrates several anecdotes observed in recent years about the social effects
of ML applications. The most widely discussed controversy among these in ML literature
is the COMPAS controversy. COMPAS (Comprehensive Online Management Personnel
and Accounting System) is a criminal risk prediction (or scoring) system introduced in
United States (US) court trials. A report by ProPublica revealed that the system was
biased towards African Americans (Non-white) [7]. For example, a non-white American
committed a crime in her juvenile, and after bail, the person did not commit any criminal
offences. However, the system marked him/her as more risky compared to a white who
re-committed serious crimes after serving his/her punishment and being released on bail.
Similarly, credit cards powered by Apple and Goldman Sachs were biased towards the

1https://www.africa.upenn.edu/Articles Gen/Letter Birmingham.html
2https://www.loc.gov/item/today-in-history/january-20/
3https://www.techtarget.com/searchnetworking/feature/Whats-the-status-of-AI-in-networking
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presence of females in their bank account holdings. Individual female account holders
(or joint account holders with females) were assigned lower credit scores than solely
male individuals (or joint accounts within male members), even when all shared the
same features regarding savings and expenditure [3]. Also, recently, it became evident
in dynamic cab pricing platforms such as Uber and Lyft that these services charged
higher bucks if the customer’s drop-off or pick-up location was in a region dominated
by a non-white community [5]. Note that bias is not limited to racial boundaries but
includes features such as education level and age [6] etc. Additionally, studies have reported
biased decision-making in the termination of drivers registered with Uber and Lyft, with
a disproportionate number of those dismissed belonging to marginalized groups.
In all the above instances, unfair behaviour revolved around the presence of certain
sensitive (or protected) groups such as gender, race, etc. However, controversies are
observed at individual levels as well. For instance, two customers within a close regional
density were offered different pricing for the same drop-offs even when they confirmed their
booking almost simultaneously [4]. Other evidence-reporting unjust decisions include face
recognition [2] and targeted advertisement systems [1]. These were prejudiced towards
certain demographic groups or brands respectively. Thus, designing fair and accurate ML
models is central to improving the models’ trustworthiness [17].
Fairness has gained considerable attention from the research community when data labels
are available for prediction modelling, i.e., supervised learning [18, 19, 20]. However, in
real-life scenarios, data may lack labels and providing manual labels will require proper
incentivization or expertise [21]. Consequently, this thesis focuses on exploring fairness
issues in unsupervised learning. In particular, we look into clustering and recommender
systems. Among these, clustering deals with dividing the data points into groups (called
clusters). The clusters are so formed that data points within the same cluster are more
similar than the others. Alternatively, recommender systems are ML models that suggest
individuals (or users) with a set of items (or products) they might prefer based on their
history or preferences. We now present four motivating examples to help understand the
importance of fairness in unsupervised learning, particularly clustering and recommender
systems.

1.1.1 Motivating Examples: Need for Fairness in Unsupervised
Learning

Y Employee Allocation- Consider an employee-friendly company looking to open
branches at multiple locations across the country and distribute its employees in
these branches. The company has employees with diverse backgrounds based on
race, gender, etc., and does not prefer any group of employees over other groups
based on these attributes. Where should a company open branches, and how should
employees be allocated to minimize travel distance? This problem can be naturally
solved as a clustering problem (Figure 1.2). However, several more open questions
need investigation: Where should a company set up branches that maintain diversity
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Figure 1.1: Figure shows different controversies that are reported in real-world ML
deployments [1, 2, 3, 4, 5, 6, 7].
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in terms of a minimum fraction of employees from each group (say race)? What
changes will be in clustering assignments or additional distance that employees must
travel to help the organization achieve these diversity constraints? Will fairness
increase the existing hardness of the clustering problem? How will the company
handle the continuous influx of new employees without significantly impacting the
assignments of previous employees? Can organizations analyze data spread (or
distributed) across different sites (or databases) while preserving privacy yet still
resulting in highly accurate and reliable clusters? Will maintaining diversity hamper
individual expectations?

Figure 1.2: Figure shows the use of fair clustering for achieving male-to-female diversity
ratio of say 2 : 1 in every office.

Y Wholesale Distribution Network Consider the dynamic landscape of wholesale
distribution networks. In such a scenario, retailers employ salespersons who navigate
cities to promote products, offer discounts, and build relationships with individuals
(or consumers) [22]. To enhance consumer retention in wholesale distribution
networks, it becomes imperative to provide specialized salespersons for marketing.
Clustering offers a promising solution to achieve such an efficient market coverage by
forming clusters of consumers (shopkeepers and direct customers) based on various
features such as product consumption, order volume, and location [22]. The resulting
clusters group similar consumers together for personalized marketing (see Figure
1.3). However, as each cluster provides certain marketing discounts and offers,
it becomes crucial to avoid customers feeling biased. Thus, no cluster should be
over-represented by customers from a particular group value (say based on income)
while handling the continuous influx of customers. Also, one should note that this
needs to be achieved while maintaining a healthy work-life balance for salespersons
to maintain quality service.

Y Bank Loan Approvals Consider a scenario where a bank needs to analyze multiple
loan applications based on features such as income, loan purpose, credit score,
age, number of dependents, etc. [23, 24, 25]. In such cases, clustering can be a
useful method to assist bank managers in analyzing thousands of applications. By
clustering similar individuals (data points), managers can thoroughly check a few
representative applications (cluster centers) from each cluster and apply the same
decision to all cluster members (see Figure 1.4). Now, the set of questions that arise
are as follows - Can banks maintain a minimum fraction of each group in every cluster
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Figure 1.3: Fair clustering in the wholesale distribution network for personalized
marketing.

to ensure a fair approval process? How can banks adapt to handle the continuous
influx of applications? Can multiple banks come up to develop a single model to
differentiate legitimate applications from fraudulent ones [26]?

Figure 1.4: Example illustrating application of clustering for speeding up loan approval
process in banks.

Y Recommendation Systems on online platforms, such as movie streaming services,
search engine advertisements, and e-commerce websites have reported facing fairness
issues [8, 27, 28]. For example, in product recommendation, a set of few items
are frequently rated by users (aka. popular items), while a long tail distribution
of items (called non-popular items) are either new or less-rated by users. Now,
consider the recommender system model that recommends popular items to most
users, even if they are less preferred, while new or non-popular items starve for
desired visibility. Such a practice can create exclusive market positions for certain
items, posing challenges for firms and stifling innovation in product development.
For instance, recently, Google’s targeted advertisements (Google Ads) were found to
favor popular brands [1, 29].

To summarize, the primary focus of this thesis will be to provide a formal and
comprehensive answer to these questions, addressing both theoretical underpinnings and
practical implications of fair algorithms for unsupervised learning in the context of
clustering and recommender systems. We now briefly discuss both techniques to better
understand and position the thesis in upcoming sections.
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1.2 Clustering

Clustering deals with partitioning a set of data points into groups (called clusters),
with each cluster being represented by a cluster center. The goal of any centroid-based
clustering algorithm is to minimize intra-cluster similarity (or maximize inter-cluster4

dissimilarity) between data points and center5. Since labels are absent for similarity
comparison in unsupervised learning, the choice of similarity metric becomes crucial. The
most commonly used similarity metric are distance metrics such as Euclidean (2-norm),
Manhattan (1-norm) distance, etc [30]. The choice of different distance metrics results in
calling clustering methods as k-means for 2-norm, k-median for 1-norm and k-center for
infinity norm6. Also, the sum of distances between data points and corresponding cluster
centers is called clustering objective cost [31].
Note that in traditional clustering methods, a data point belongs to a single cluster
deterministically, i.e., non-fuzzy (hard assignments) and is the focus of this thesis.
Since clustering involves assigning data points to a different cluster, the number of
such possibilities increases exponentially as the number of data points and centers
increases. Thus, the clustering problem is proved to be NP-hard [32, 33, 34, 35]. Despite
NP-hardness, many heuristics and approximation algorithms exist and are widely used
in real-world applications [30]. The best-known approximation factors for k-means [32],
k-median [33] and k-center [35] are 2, (1 +

√
3 + ϵ) and 2 respectively for small constant

ϵ > 0. Next, we now categorize clustering algorithms based on accessibility to data points
and applications.

1.2.1 Categorization based on Data Accessibility and Application

1. Offline Clustering– In offline clustering, all the data points are known in advance
and are available in memory. This model provides the most flexibility in terms of
data availability. However, the scalability of these offline solutions is constrained by
the size of the main memory [30, 31].

2. Streaming Clustering– In contrast, when the number of data points exceeds the
size of the main memory, streaming environments divide the data into chunks. The
size of chunks is chosen so that they can easily fit into the main memory. A complete
iteration over all the chunks is said to be one read (or pass). Each read involves
processing the chunk and storing small information out of it for later use. The
clustering results are obtained at the end of one or more full reads. Thus, the efficacy
of these methods depends on the number of passes that need to be performed over
the complete data [36, 37].

3. Online Clustering– A more stringent variation of offline and streaming setting
is online clustering, where an endless stream of data points arrives over time.

4intra-cluster refers to within cluster and inter-cluster refers to between different clusters.
5The terms cluster centers and centers are often used interchangeably for simplicity and ease of reading.
6It is measured as the maximum absolute difference between corresponding components of two vectors.
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Due to limited memory, the algorithm must make an irrevocable decision about
incorporating an incoming data point into existing clusters or opening it as a new
center. Once a data point becomes a center, it remains so forever. Similarly, any
data point previously seen cannot be chosen as the center when a new data point
arrives. An important aspect to note in online clustering pertains to the absence of
information regarding the ordering of the arrival of points in the stream. As a result,
the algorithm ends up opening more number of centers than the desired target to
maintain good approximation guarantees on objective cost [38, 39].

4. Federated Data Clustering– In this setting, the data points are spread across
different clients. The goal is to find a set of global centers that best partition each
client’s local data points. As federated is a privacy-preserving distributed setup,
therefore it is forbidden to share the original data points between the client and
server. The algorithms can only share limited information, such as best centers on
local data or synthetic data [40, 41]. It is important to note that the primary
challenge in this setting is that clients may not contain data from all the true
unknown (say, k) clusters.

1.2.2 Fairness Levels in Clustering

The fairness in clustering is under investigation from different perspectives depending upon
the real-world application requirements. We refer to these perspectives as different levels
of fairness and now discuss some of the widely studied levels in fair clustering literature.

1. Group Fairness– The prevalence of anthropological factors such as discrimination
based on gender, race, and ethnicity in the data has resulted in a plethora of
techniques to achieve group fairness. Group fairness demands that different groups
should be treated in an unbiased manner. For instance, discrimination, such as
shortlisting fewer qualified females for high-paying jobs, is unfair to the female group.
In the clustering context, group fairness techniques focus on achieving approximately
equal (or user-desired) representation for all protected group values (say male and
female for gender) in every cluster [42, 43, 44, 45, 46]. To mathematically model
group fairness into clustering, different group fairness notions (or metrics) have come
up in the past literature. The main purpose of these notions is to capture the user’s
desired requirements of fairness level.

2. Individual Fairness– Group fairness does not ensure fair treatment for a particular
individual. The trait of human envy might still make an individual discontented.
For example, an employee might feel discriminated against or left out if similar
employees receive a favorable appraisal. There are algorithms in the literature that
guarantee individual fairness by focusing on the principle that similar individuals in
the context of a particular task should receive similar outcomes [15].

3. Social Fairness– deals with the biasness arising when outcomes from an algorithm
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Figure 1.5: Figure shows conflicting nature of group and individual fairness. Here C1, C2
are individual fair centers separated by large distance D, and C ′

1, C
′
2 are group fair centers.

can be highly unfavourable for some protected (or sensitive) values. For example,
say, employees belonging to the racial group value (say Asian-Pacific) have to travel
an average more distance compared to other racial group values. It is important to
note that group fairness ensures a minimum fraction of assignments in each cluster
from every protected group value. That is, fairness constraints are applied at the
cluster level by imposing constraints on the proportions of groups in each cluster.
On the contrary, social fairness tries to provide a more equitable overall average cost
for different protected group values irrespective of cluster assignments [47, 48].

4. Diverse-Center Selection Fairness– In many real-world applications, such as
data or news summarization, the input for downstream tasks consists of data points
chosen as cluster centers. For example, instead of displaying all matching images
in an image database, it is beneficial to show only the summary (centers) obtained
by clustering for a given query. Recent evidence shows that such summarization
can sometimes be quite unfair to certain protected group values. For instance, it is
observed that Google Image search for CEOs resulted in a higher proportion of male
than female images (cluster centers). However, in the real world, females comprise
around 30% of CEOs worldwide [49, 50]. Therefore, maintaining diversity at the
center level becomes crucial in such applications. To this, diverse center selection
ensures that the clustering output maintains a lower and upper bound on the number
of centers to be chosen from every protected group value [51, 52, 53].

5. Additional Fairness Levels – Recent efforts have proposed fairness from
alternative perspectives, but the available literature is still in its infancy. These
include proportional [54, 55, 56, 57, 57, 54] or core fairness [58], which allows a
subset of data points bearing minimum size constraint to choose a better center (if
it exists) to lower the cost. Similarly, representative fairness ensures centers are
closer to data points [59, 60, 61, 62], and pairwise fairness ensures the probability
of a pair of data points belonging to different clusters varies based on the distance
between them [63].
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1.2.3 Balancing Multiple Fairness Levels

Many real-world applications demand the need to satisfy multiple levels of fairness
simultaneously. However, it is not always necessary that different levels of fairness will go
hand in hand. They might become contradictory to each other, i.e., satisfying one level of
fairness might degrade the efficacy of the other. Recent attempts have been made in this
direction [64, 65] and observations are discussed below:

• Group and Individual Fairness– The two fairness levels arose independently
in fair clustering literature. However, in real-world applications such as direct
marketing, the corporate house’s diversity policy necessitates group fairness.
Simultaneously, customers might feel discontented if people in their similarity set
belong to a different cluster than their own (hence offering different benefits). Thus,
there is a need to study the relationship between the two levels. Recent attempts
[64, 65] explore this direction and propose instances that show the conflicting nature
of both the fairness levels, i.e., satisfying one might adversely affect the other.
To understand this, consider a dataset with data points split across two far-apart
clusters, each containing points from one protected group (as illustrated in Figure
1.5). Group fair clustering will try to place the cluster centers in between the two
clusters. On the contrary, the original cluster centers will also serve as optimal
individual fair centers when the individual fairness notions depend on density-based
similarity. Thus, showing both levels of fairness as conflicting problems. The thesis
explores this direction and provides evidence that both fairness levels are not strictly
conflicting on real-world datasets. Further, algorithms exist (proposed contribution)
that satisfy strict group fairness while still inducing a certain level of individual
fairness in the clusters.

• Group and Diverse-Center Selection Fairness– Recent attempt by Dickerson
et al. [51] theoretically shows that imposing group fairness on a solution satisfying
diverse-center selection can result in a bounded increase in clustering cost. It
is also subject to the condition that an additive violation of two is allowed in
group fairness constraints. On the other hand, the reverse may not be true, as
enforcing diverse-center selection on a solution obeying group fairness may lead to
an unbounded increase in objective cost for instances with more than two cluster
centers.

• Individual (or Social) Fairness with Group Fairness (or Diverse-Center
Selection)– Dickerson et al. [51] also shows that there exist instances under certain
conditions such that individual (or social) fairness are incompatible with group
fairness. Similarly, the authors show that each individual and social fairness are
incompatible with diverse-center selection.
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1.3 Recommender Systems

With the advent of technology, online services such as movie and music streaming platforms
or e-commerce websites have increased. These services offer individuals with an abundance
of options (or products) to choose from. Also, individuals now have the possibility to add
their feedback and ratings about the products (or services) they buy (or use). Therefore,
this creates a choice overload problem for the individuals who want to select the best
products that are suited to their needs. To address this challenge, Recommender Systems
has offered a promising solution over the past decade. Primarily, recommender systems
are machine learning models that suggest individuals (users) with a set of items (products)
based on their past history and behaviour. The performance of any recommender systems
model is evaluated on the basis of its accuracy regarding the products it recommends to
users [66, 67]. One of the most crucial aspects to improve the accuracy of recommender
systems is feedback, which is captured broadly in two forms: implicit feedback and explicit
feedback. The implicit feedback includes click-stream data, purchase history, or time spent
on an item. However, implicit feedback may not always clearly indicate user preferences.
Users may click on items for various reasons, such as curiosity or price comparison, without
being interested. On the other hand, explicit feedback is a more reliable [68] and accurate
estimate of the user’s interest [69]. It captures the absolute preferences in the form of
a rating on a defined scale, such as one to five7. The past literature in recommender
systems has investigated both feedback ratings [70, 71, 8, 27]. However, recent studies have
reported that the training data capturing user-item feedback, if not captured properly, can
become a potential source of biases in the recommender systems model. The main reason
behind this is that the training data often consists of an uneven distribution for users and
items. In other words, there exists only a small subset of users (known as popular users)
who provide feedback for most of the items (see Figure 1.6, Right Side). Similarly, there
exists a subset of items (called popular items) that receive the majority of ratings, and the
long tail distribution of items (called non-popular items) are either new or less rated by
users (see Figure 1.6 (Left Side)). The presence of such a long-tail distribution can result
in popularity bias as the recommender systems model can learn to focus on these highly
rated items and users. We will now discuss the aspects of popularity bias from both the
item and user sides.

1.3.1 Fairness in Recommender Systems

Recommender systems suffer from many biases, such as conformity bias, inductive bias,
etc. [72], but for this thesis, we will focus on popularity bias. We now look into the
different categorizations of fairness in recommender systems in the context of popularity
bias.

7The scale of one to five (or ten) is most common in many real-world use cases, but designers are free
to choose any scale. Further, it depends upon the implementation whether the scale value of one is the
lowest or highest rating. But the common notion considers one as the lower rating.
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Figure 1.6: (Left): Long tail distribution in ratings for different items arranged in
descending order of frequency on famous MovieLens and Yahoo datasets. (Right): Long
tail distribution in the number of users who rate different items on famous MovieLens and
Yahoo datasets [8]. (Best viewed in color).

1.3.2 Categorization of Fairness in Recommender Systems

In order to understand the fairness aspects in the paradigm of popularity bias, let
us consider an investigating example on the real-world MovieLens and Yahoo dataset.
MovieLens is a movie rating dataset with 1 million (100K) ratings given to 3706 movies
by 6040 users, and Yahoo is a music rating data repository with 365, 000 ratings for 1000
songs rated by 15, 400 users.

1. Item-side Fairness– Recent studies have observed an imbalance in the efficacy of
recommender systems on different items. For instance, consider the following toy
experiment – If we group items based on the number of ratings they have received
from different users and consider top 20% items as popular items and all others as
non-popular items. Then, it is evident from the results reported in Figure 1.7 on
famous recommender systems algorithms such as Matrix Factorization (MF) that
mean square training loss is more for non-popular items than popular items. The
reason is that popular items appear more frequently in training data and receive
more exposure in objective functions. Such a bias is known as popularity bias on
the item side and is the focus of the current thesis [8, 27].

2. User-side Fairness – On parallel lines, studies report an imbalance in performance
for popular and non-popular users. This can also be validated by our study of the
mean square loss of popular users versus non-popular users on the MovieLens8 and
Yahoo 9 dataset (Figure 1.7). We consider the first 20% users in the rating frequency
plot (Figure 1.6) as popular users and execute results for the MF algorithm. The
line of research mitigating popularity bias from this perspective falls into user-side
fairness literature [28, 73, 74, 75].

3. Item and User-side Fairness – A few recent works attempt to simultaneously
handle popularity bias from both item-side and user-side perspectives. One can look
into the works by Liu et al. [76], Elahi et al. [77] and references therein for details.

8https://grouplens.org/datasets/movielens
9https://webscope.sandbox.yahoo.com
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Figure 1.7: Plots show loss values in the Matrix Factorization method [9] for explicit
recommendation when trained on Movielens and Yahoo dataset for (Left): Different Item
types, namely popular and non-popular. (Right): Different types of users, namely popular
users and non-popular users. (Best viewed in color).

1.4 Research Objectives

Building on the previous discussion, we now outline the research objectives (Obj.) that
will form the focus of this thesis.

[Obj 1.] (a) Study the relationship between existing group fairness notions. Develop a
generalized group fairness notion for multi-valued protected groups (say race) and
handle the user-desired level of group fairness. (b) Devising polynomial time
algorithm for k-means, k-median, and k-center clustering. (c) Theoretically bound
the objective cost approximation factor of proposed algorithms.

[Obj 2.] Study the practical implications of handling multiple levels of fairness. Devise
an algorithm for simultaneously achieving good approximation to both group and
individual fairness.

[Obj 3.] Develop an algorithm for online clustering under group fairness constraints. Provide
the bounds on the cost approximation factor and the number of centers that need
to be opened.

[Obj 4.] Addressing fairness issues in privacy-preserving distributed fair clustering setting,
i.e., federated clustering. Developing a global clustering strategy that is fair across
all clients irrespective of distance metric (1-norm, 2-norm or infinity norm). Analyze
the effect of the division of data points across clients on the algorithm’s performance.

[Obj 5.] Investigate fairness aspects, similar to group fairness relevant in recommender
systems. Proposing a fair algorithm that outperforms existing state-of-the-art (SOTA)
performance on real-world datasets.

1.5 Positioning and Contribution of Thesis

The thesis deals with fair algorithms for unsupervised clustering and recommender
systems. Figure 1.8 and 1.9 categorize fairness on different levels as discussed in Section
1.2.2 and 1.3.2 for clustering and recommender systems, respectively. It further brings out
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the positioning of our work with respect to the existing literature. The figure indicates
that there are many open areas for future exploration as well. In particular, the following
are the contributions (Contri.) of this thesis.

[Contri 1.] (Chapter 3) The thesis establishes the theoretical relationship between different
existing group and individual fairness notions. Further, a generalized notion of
group fairness for multi-valued group values called τ -ratio fairness is proposed.
The relationship undergoes empirical validation as well as benchmarking real-world
datasets. Further, two simple and efficient round-robin-based algorithms for
satisfying τ -ratio fairness are proposed, namely FRAC and FRACOE . The
algorithms allow a user-specific level of group fairness and incur only an additional
time complexity of O(kn logn), best in current literature. Here, n is the total number
of data points that need to be partitioned into k clusters. The experimental efficacy
of both methods is validated on four real-world datasets for k-means and k-median.
Also, the thesis reports theoretical guarantees for FRACOE .

[Contri 2.] (Chapter 4) The thesis studies the problem of simultaneously satisfying multiple
levels of fairness. The thesis proposes the first-of-its-kind application of modelling
Nash social welfare instead of considering standard utilitarian or egalitarian
approaches to target multiple fairness. We propose an efficient and scalable
algorithm called FAIRLOC that minimizes the product of distances of data points to
assigned centers while obeying group fairness constraints. We theoretically provide
approximation bounds on cost with respect to optimal fair allocation and show that
FAIRLOC achieves a quadratic approximation in the product-based objective function.
The thesis conducts near real-world testing of FAIRLOC on United States census
datasets. The results showcase that FAIRLOC provides a solution with significantly
lower costs and better group and individual fairness metrics than state-of-the-art
methods.

[Contri 3.] (Chapter 5) To tackle the challenge of handling group fairness requirements in
an online model, the thesis proposes a randomized algorithm that prevents the
over-representation of any protected group. This is ensured by applying capacity
constraints on the number of data points from each group that can be assigned to
a particular cluster. The proposed methods achieve a constant-cost approximation
to optimal offline clustering and handle the challenge of an apriori unknown total
number of data points using a doubling trick. Empirical results demonstrate our
method’s efficacy against SOTA methods on various synthetic and real-world datasets.

[Contri 4.] (Chapter 6) For addressing fairness in distributed settings, this thesis analyzes
federated data clustering to ensure privacy-preserving clustering in a distributed
environment. We first propose a federated data clustering method called MFC. The
method achieves data distribution independence and has a theoretical bound on
the quality of centers obtained. We further extend it to propose p-FClusresults in
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cluster centers with lower cost deviation across clients, leading to a fairer and more
personalized solution. The method is the first attempt to provide personalization
in federated data clustering. Furthermore, p-FClus achieves a lower clustering
objective cost in a single communication round between the server and clients,
regardless of the nature of data distribution (or division) among clients. The method
is validated on different synthetic and real-world datasets, with results demonstrating
effective performance against SOTA methods.

[Contri 5.] (Chapter 7) While the first four contributions focus more on clustering. This
contribution primarily analyzes the fairness aspects of recommender systems. The
thesis proposes a novel metric, Popularity Parity, that measures popularity
bias as the difference in the Mean Squared Error (MSE) on the popular and
non-popular items. Further, EqBal-RSis proposed, a novel technique that
solves the optimization problem of reducing overall loss with a penalty on
popularity bias. It does not require any heavy pre-training and undergoes
extensive experiments on real-world datasets displaying outperforming performance
on recommendation accuracy, quality, and fairness. The method works exceptionally
well on Popularity Parity while having comparable performance on prior existing
metrics and does not compromise on the diversity of items.

1.6 Organization of Thesis

The thesis consists of eight chapters, each addressing different aspects of fairness in
unsupervised learning. Chapter 1 serves as an introduction, where we present the problem
of fairness in unsupervised clustering and recommender systems. We explore different
real-world examples that necessitate the need for fair algorithms. We then formally define
different existing formulations for handling biases and explore different setups considered
in the thesis. This helps analyze the challenges and identify the research problems that
form the core focus of this thesis. We then briefly discuss the proposed solutions to
the identified research problems, representing our contributions to the field. In Chapter
2, we first comprehensively outline the existing notions of group and individual fairness
and categorize the current algorithms. The chapter further discusses the advantages and
disadvantages of existing algorithms in terms of theoretical guarantees, time complexity,
and reproducibility. Following this broad discussion, we zoom in on the key focus of our
thesis, which is fair algorithms for clustering and recommender systems. The next five
chapters (Chapters 3, 4, 5, 6, and 7) address our research problems and present their
corresponding solutions. Chapter 8 concludes the thesis by exploring new directions and
open challenges in fair clustering and recommender systems. By identifying areas needing
further investigation and development, we aim to contribute to ongoing progress in the
domain and inspire future researchers to expand upon our work.
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Fairness in Unsupervised Learning

Clustering Recommender Systems

Item side

Chapter 7

[8, 27]

Contributions Open Problem

Existing Literature

Legend

User side Item and User side

Popularity
Bias [28, 73, 74] [77, 84]

Figure 1.9: A taxonomy of contributions in recommender systems.



Chapter 2

Background

2.1 Clustering

Let X ⊆ Rh be a finite set of data points that need to be partitioned into k clusters. Each
data point xi ∈ X is a feature vector described using h real-valued features. A k-clustering1

C = (C, ϕ) produces a partition of X into k subsets indexed by [k] = {1, 2, . . . , k}. The
clustering (C) is characterized by a set of centers C = {cj}kj=1, an assignment function
ϕ : X → C that maps each data point to the corresponding cluster center forming clusters
{C1, C2, . . . , Ck} respectively. Furthermore, let d : X ×X → R+ ∪ {0} denote a distance
function obeying triangular inequality that measures the dissimilarity between features.
Let I(·) denote the indicator function, which takes a value of one if the condition inside
the function is obeyed; otherwise, results in zero. A vanilla (an unconstrained) clustering
algorithm determines the cluster centers to minimize the following objective cost:

Definition 2.1 (Objective Cost)
Given p, the clustering objective cost with respect to the metric space (X, d) is
defined as:

Lp(X,ϕ) =

∑
xi∈X

d(xi, ϕ(xi))p

 1
p

(2.1)

Different values of p result in objective cost for different clustering methods i.e., p = 1 for
k-median, p = 2 for k-means, and p =∞ (infinity) for k-center problem. Our aim in this
thesis is to develop an algorithm that minimizes the objective cost irrespective of p value
while ensuring fairness. Note that in standard vanilla k-means and k-median, objective
cost involves a sum of distances of data points to the corresponding center with the value
of p, as one or two respectively. However, when p takes an infinite value (i.e., k-center
problem), the algorithm minimizes the maximum distance of any data point to its center.
We now mathematically formulate our optimization problem at hand for, say, k-means
objective with zi,j as binary variable 2 deciding whether xi ∈ X gets assigned to cluster

Some parts of this chapter are accepted as a book chapter in Springer’s Ethics in Artificial Intelligence:
Bias, Fairness and Beyond book [43].

1Throughout the thesis, for simplicity, we call a k-clustering as simply a clustering.
2It can also be considered as a variable with the range as real values between 0 and 1 (both inclusive).

However, it will then require rounding techniques for computing hard assignments.
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center given by assignment function ϕ and yj as a variable indicating if cj is opened up as
cluster center where j ∈ [k]. Therefore, our problem is as follows:

min
zi,j ,Yj

∑
xi∈X

(d(xi, ϕ(xi)))p · zi,j

1/p

(2.2)

such that∑
j∈[k]

zi,j = 1 ∀xi ∈ X (2.3)

zi,j ≤ yj ∀j ∈ [k], ∀xi ∈ X (2.4)∑
j∈[k]

yj = k (2.5)

In the above optimization problem, Equation 2.2 corresponds to the objective of
minimizing objective cost (Definition 2.1). The constraint in Equation 2.3 ensures
that each data point is assigned to exactly one cluster center (as Zi,j is binary). The
constraint provided in Equation 2.5 and 2.4 ensures that exactly k centers are opened.
The above optimization is proved to be NP-hard [32, 33, 35, 85]. Despite NP-hardness,
many heuristics and approximation algorithms exist and are widely used in real-world
applications [30]. Let the cost approximation factor for such vanilla clustering algorithms
be denoted by β. Then the best-known approximation factor (β) values for k-means
[86], k-median [33] and k-center [35] objectives are 2, (1 +

√
3 + ϵ) and 2 respectively

for small constant ϵ > 0. The above-discussed optimization problem (and referenced
approximation or heuristic methods) does not inherently consider any fairness constraints.
To formulate such fairness constraints mathematically, we now define different notions of
fairness proposed in the past literature.

2.1.1 Fairness in Offline Clustering

We primarily focus on group and individual fairness levels as part of this thesis. Recent
works have developed mathematical formulations (known as fairness notions) for handling
group and individual fairness in clustering, which are discussed below.

Group Fairness and Notions

The prevalence of anthropological factors such as discrimination based on gender, race,
and ethnicity in the data has resulted in a study of group level fairness. Group fairness
demands that different protected group values (say male and female for protected group
gender) should be treated in an unbiased manner. It is important to note that the protected
groups are not restricted to social aspects such as gender but extend beyond to factors such
as income levels, education levels, and languages spoken. Moreover, some groups, such
as race, can take more than two distinct values (e.g., American, African, Asian), forming
multi-valued protected groups. Throughout this thesis, let us consider that each data
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point, xi ∈ X is associated with a single protected group ρ(xi) (say ethnicity from a pool
of other available protected groups) that takes values from the set of m values denoted
by [m]. The number of distinct protected attribute values is finite and much smaller
than the size of the dataset3 (X). Note that the protected group usually corresponds
to disadvantaged groups and is known apriori to the algorithms as an additional input.
Also, let us denote Xℓ and nℓ as set and number of data points, respectively, having
protected group value ℓ ∈ [m] in X. Most current literature focuses on achieving group
fairness against a single protected group, aka non-overlapping group identities. However,
in practice, the group identities often overlap. For example, a person can belong to two
protected groups: race as black and gender as female. Overlapping identities are the focus
of a few recent developments [12, 13] (discussed in detail later in this chapter). The thesis
will focus on non-overlapping identities.
We first define the notion of group fairness called Balance was proposed for binary protected
groups by Chierichetti et al. [42] and extended to the multi-valued groups by Bera et al.
[12] and Ziko et al. [10]. The balanced fairness notion is defined as follows.

Definition 2.2 (τ-Balance)
For a binary valued protected group taking values from set {ℓ1, ℓ2}, a clustering C
is said to be τ-Balance [42] with

τ = min
Cj∈C

min

∑xi∈Cj
I(ρ(xi) = ℓ1)∑

xi∈Cj
I(ρ(xi) = ℓ2) ,

∑
xi∈Cj

I(ρ(xi) = ℓ2)∑
xi∈Cj

I(ρ(xi) = ℓ1)


 . (2.6)

Balance is computed by finding the minimum possible ratio of protected (say, male) and
non-protected group (say, female) over all clusters. Any fair clustering algorithm using
Balance as a measure of fairness would produce clusters that maximize the τ value. It is
easy to see that the maximum value of τ in τ-Balance is equal to the dataset ratio, i.e.,
the setting when each cluster receives data points in the same fraction as that present in
the dataset. This is supported by the fact that if one tries to improve the balance of a
cluster beyond this limit, then it will lead to the degradation of the balance of some other
clusters, resulting in a decrease in the overall balance of the clustering. It is important
to note that Balance notion does not allow the user to provide a trade-off between the
clustering objective and fairness. Further, the clusters maximizing the Balance are not
unique. Let us take an example to understand the notion with the binary-protected group
taking two values, red and blue. A clustering algorithm divides the data points into two
clusters with 12 red and 3 blue data points in one cluster; and 3 red and 3 blue in another
cluster. Such a clustering is said to obey 0.25-Balance i.e. min

(
min(12

3 ,
3
12),min(3

3 ,
3
3)
)
.

The dataset ratio, however, is 6
15 = 0.4, and as can be seen, red data points significantly

dominate blue data points in the first cluster. A more balanced clustering would be with
7 red, 3 blue data points in the first cluster and 8 red, 3 blue data points in the other

3Otherwise, the problem is uninteresting as the balanced clustering may not be feasible.
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cluster.
However, τ-Balance is restricted to binary protected groups. More generic fairness
notions, i.e., Restricted dominance (τ -RD) and Minority protection (τ -MP), avoid
dominance and preserve the minimal representation of a single group, respectively are
defined below:

Definition 2.3 (τ -RD)
A clustering C is said to obey restricted dominance with respect to τ (i.e. τ -RD
[12]) if for all ℓ ∈ [m], Cj ∈ C,

∑
xi∈Cj

I(ρ(xi) = ℓ) ≤ τℓ|Cj |. (2.7)

Definition 2.4 (τ -MP)
A clustering C is said to obey minority protection with respect to τ (i.e. τ -MP
[12]) if for all ℓ ∈ [m], Cj ∈ C,

∑
xi∈Cj

I(ρ(xi) = ℓ) ≥ τℓ|Cj |. (2.8)

In the same example as above, if we consider notions of τ -MP and τ -RD, then the
clustering satisfies (0.2, 0.5)-MP and (0.8, 0.5)-RD4. Note that all the existing notions
further determine fairness either using cluster sizes, which are unknown apriori to the
algorithm, or are limited to binary protected group values. Next, we define the τ-FE
notion. It also considers fairness with respect to the number of data points in each cluster
but leads to a continuous and convex optimization objective. Note that f -divergence can
also be used instead of KL-divergence [64] in τ-FE.

Definition 2.5 (τ-FE)
The fairness error (τ-FE [10]) of a clustering C with respect to a given vector τ is
defined as: ∑

j∈[k]
DKL(τ ||Pj) =

∑
j∈[k]

∑
ℓ∈[m]

−τℓ logP ℓ
j (2.9)

where, DKL is the Kullback-Leibler (KL) divergence and P ℓ
j is the fraction of data

points with protected group value ℓ in cluster j.

Individual Fairness and Notions

Group fairness does not ensure fair treatment for a particular individual. The trait of
human envy might still make an individual discontented. For example, an employee
might feel discriminated against or left out if similar employees receive a favorable
appraisal. There are algorithms in the literature that guarantee individual fairness

4τ vector is written in the form (red, blue) respectively in τ -MP, τ -RD notion.
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Figure 2.1: Individually fair notions: (a) Given a data point xi, 2-FR demands that center
for xi (denoted by ϕ(xi)) lies at most within 2r(xi) from x (dotted line). (b) 2-PP suggests
the center be within twice the minimum center distance of a data point, say x′

i in similarity
set S(xi), i.e., within 2d. 2-AG relaxes the distance to 2d′ by taking the average distance
d′. (c) 2-FB demands at least two data points of similar type in the cluster.

[80, 14]. Individual level fairness is not tied to protected groups but rather to ‘similar’
individuals. Let each data point xi identify itself with other similar data points represented
by the set S(xi). Further, let r(xi) be the minimum radius of a ball B(xi, r(xi)) centered
around xi that contains n/k points, where k is the number of clusters.

The fundamental principle behind individual fairness is that similar individuals expect
similar treatment. Any deviation would induce an unfair feeling in an individual [87, 88].
Various notions of individual fairness differ in how individuals perceive similarity and are
discussed below:

Definition 2.6 (α-FR Fairness)
A clustering C is said to be α-FR fair [80] if for α ≥ 0, C obeys

d(xi, ϕ(xi)) ≤ αr(xi) ∀xi ∈ X. (2.10)

The α-FR notion assures that any data point xi has its center within a radius containing
n/k neighbours of xi. The rationale behind n/k is that every center, on expectation,
assigned n/k data points. Note that the performance of individually fair algorithms
approximating α-FR is measured in terms of the value of α. This notion is restrictive
as the neighbours of xi are also determined using distance function d(·). We now define
more generalized notions.

Definition 2.7 (α-PP Equitable Fairness)
(Per point Fairness) [89] A clustering C is said to be α-PP fair if for α ≥ 0, C obeys

d(xi, ϕ(xi)) ≤ α
(

min
x′

i∈S(xi)
d(x′

i, ϕ(x′
i))
)
∀xi ∈ X (2.11)
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Definition 2.8 (α-Ag Equitable)
(Aggregate Fairness) [89] A clustering C is said to be α-Ag fair if for α ≥ 0, C obeys

d(xi, ϕ(xi)) ≤ α
(∑

x
′
i∈S(xi) d(x′

i, ϕ(x′
i))

|S(xi)|

)
∀xi ∈ X. (2.12)

Definition 2.9 (α-FB Fairness)
(Feature based) [14] A clustering C is said to be α-FB fair if for α ≥ 0, and similarity
set S(xi), C obeys

|x′
i ∈ S(xi) and ϕ(xi) = ϕ(x′

i)| ≥ α ∀xi ∈ X. (2.13)

In contrast to α-FR notion, the individual fairness notions, namely α-PP, α-Ag, and
α-FB allow for an explicit similarity set S(xi) (perhaps determined through distance or
number of matching features). These three notions propound the idea that similar data
points should be clustered similarly. We summarize all these individual fairness notions
in Figure 2.1. Next, we define the Avg-dist notion, which uses well-known clustering
stability ideas [87] and the game-theoretic concept of average attraction properties [90].
It induces the individual fairness notion that data point xi should be closer to its own
cluster members than data points from other clusters.

Definition 2.10 (Avg-dist Notion)
(Kleindessner et al. [91]) A clustering C is said to obey Avg-dist Notion if ∀x ∈ Cj ,

1
|Cj | − 1

∑
y∈Cj/x

d(x, y) ≤ 1
|Ci|

∑
y∈Ci

d(x, y) ∀i ̸= j ∈ [k]. (2.14)

Having described existing group and individual fairness notions, We now provide a detailed
survey of the present state-of-the-art algorithms to handle fairness in offline clustering.

Taxonomy of Algorithms

Typical fair clustering solutions aim to minimize the standard clustering objectives
while simultaneously enforcing fairness. The stage (pre-processing, in-processing, and
post-processing) at which fairness constraints are enforced is a key differentiating factor
of the existing offline algorithms. Pre-processing techniques alleviate data bias before
clustering by adding restrictions on the distribution of data points among clusters by
a clustering algorithm [42, 11]. In contrast, in-processing techniques intertwine the
clustering and fairness imposition parts of the algorithm [44, 92]. Finally, fairness is
an afterthought for post-processing interventions that typically redistribute the instances
of clusters obtained by vanilla clustering to obtain fair clusters [12, 13].
The solution framework is another distinguishing factor for fair clustering techniques.
While some approaches add a regularizer term encoding the fairness to the clustering
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Figure 2.2: Taxonomy of group and individual fairness in clustering algorithms.

objective cost [10, 93], other approaches propose linear programming (LP) formulation of
the fair clustering problem with linear fairness constraints [12, 13, 94, 92]. Other group
fair clustering solutions include tree-based structures, round-robin allocation, and decision
problems (such as min-cost flow and perfect matching algorithms) [44, 42, 11, 95, 96].
Solution approaches to individual fairness clustering include LP-based formulations
[81, 14], local search approaches [80], dynamic programming [91], and combinatorial
optimization [97]. Note that all the existing algorithms apply only to certain clustering
objectives (k-means/k-median/k-center). So, the applicability of the approach is another
differentiating factor. Figure 2.2 shows the taxonomy of existing algorithms categorized
along (i) different stages of implementation, (ii) underlying solution frameworks, and (iii)
applicability.
Many state-of-the-art (SOTA) techniques are supported by theoretical guarantees on
fairness and the quality of the clusters, along with detailed cost approximation and
computational complexity analysis. With the growing number of new fairness notions and
algorithms, we now comprehensively review the methodology, theoretical underpinnings
and computational challenges of both group and individual fair offline algorithms. We also
discuss various advantages and disadvantages of each of the approaches. This will help
identify the successes and future directions for the research community to work upon.

Algorithmic Details and Theoretical Guarantees

Group Fairness:
The foundational work of Chierichetti et al. [42] partitions the data points into small
clusters, namely fairlets. The paper shows that finding optimal fairlet decomposition
is NP-Hard. To find approximate fairlet decomposition, authors use the strategy
of solving bipartite matching [99] for maximally balanced clustering (i.e., achieving
balance equal to dataset ratio) and minimum cost flow instances otherwise [100].
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The fairlets formed are then merged into k clusters by applying standard (or
vanilla) clustering (k-center/k-median) on fairlet centers. The algorithms achieve
4-approximation guarantees on cost with satisfying τ -Balance for k-center and a
( 1

τ + 1 +
√

3 + ϵ)-approximation cost guarantee for the k-median objective; where, ϵ is
a positive constant. The following are three major shortcomings of this approach: 1)
It works only for binary-valued protected groups, 2) It can only achieve the Balance
same as the n data points in X ⊆ Rh i.e., dataset ratio, and 3) It is not scalable for
large datasets. To make the approach scalable, Backurs et al. [11] proposed a near-linear
time algorithm to compute fairlets using QuadTree data structure [101]. The algorithm
computes an embedding with k-median cost approximation of O(hlog(n)). However, this
work is limited to binary-valued protected groups with k-median clustering objective and
can only achieve dataset ratio.

Extension to multi-valued protected groups is considered in Böhm et al. [95], which
proposes a minimum cost-perfect matching (MCPM) algorithm. They provide algorithms
for k-center and k-median clustering objectives with 3-approximation and (β +
2)-approximation5 fairness guarantee on τ -Balance. However, the algorithm works only
when the number of data points from each protected group is equal in the dataset. A
similar 14-approximation approach using MCPM is proposed in Rösner and Schmidt [98]
for τ -Balance. They further propose a 4-approximation method for τ -MP fairness using
a reduction to the maximum flow problem. The work is limited to the k-center model.
Among the LP-based techniques, Bera et al. [12] formulate fair clustering as a linear
program with τ -RD and τ -MP as constraints. This paper guarantees a maximum fairness
violation of at most 3 while simultaneously satisfying (β + 2)-approximation guarantee
on the objective cost. Harb et al. [13] extend these guarantees for fair k-center for
multi-valued protected groups by formulating LP by restricting the search space for better
time complexity. The work by Ahmadian et al. [92] solves fair clustering via τ -RD along
with an additional constraint on representative fairness [61]. The authors prove that it is
NP-hard to obtain an algorithm better than 2-approximation for τ -RD ∈ (0, 0.5]. The
proposed algorithm with maximum O(n2) constraints and variables is 3-approximation
while the case (τ -RD=0.5) with O(nk) constraints and variables is 12-approximation in
the clustering objective. The work by Bercea et al. [102] also proposes an LP formulation
for τ -MP and τ -RD fairness. The approach achieves a 3, 4.675, and 62.856-approximation
for k-center, k-median, and k-means, respectively.
Several other works do not provide any theoretical guarantee on the quality of fair clusters.
The work by Davidson et al. [65] propose a post-processing technique to impose fairness
(in terms of τ -RD and τ -MP) after cluster formation by assigning points from protected
groups equally among all k clusters. The goal is to have fewer disagreements between
solutions. This approach uses integer linear program (ILP) formulation and uses total
unimodularity structure of the problem to bypass computational intractability. The

5To recall, β is the approximation factor of vanilla clustering algorithms.
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Fairness
Notions

Time Complexity Cost Approximation Factor
k-means k-median k-center k-means k-median k-center

[93] FairKM O(n2hk) × ×

[92] τ -RD ×

Max. variables,
constraints:
n2 & nk

for τℓ=0.5 ∀ ℓ ∈ [m]

×
3 &

12 for
τℓ=0.5 ∀ℓ ∈ [m]

[11]∗ τ-Balance × O(hn log(n)) × × O(hlog(n)) ×

[12]∗
τ-Balance
τ -RD &
τ -MP

Max. variables & constraints: O(n2) (ρ+ 2)

[102] τ -RD &
τ -MP

× 3 4.675 62.856

[95] τ-Balance O(n3T ) O(nh) O(nhk) (β + 2) 3
[42]∗ τ-Balance × O(T + n2) × (τ + 1 +

√
3 + ϵ) 4

[65] τ -RD &
τ -MP

nk regular variables , 2k slack
variables & 2k + n constraints

×

[94] τ -RD &
τ -MP

Variables & constraints: O(n2) ×

[44]∗ τ-Balance
τ-FE

O(kn logn) × 2(β + 2) ×

[13]∗ τ -RD &
τ -MP

Max. variables: min(2k−1k| I |, nk) &
Max.constraints: km+ min(2k| I |, nk)

×

[96]∗ τ-Balance × ×

[98] τ-Balance
τMP

× Polynomial ×
14 for τ-Balance,
4 for τ-MP

[10]∗ τ-Balance
τ-FE

O(n2k2h) × ×

Table 2.1: Categorization of group fairness clustering algorithms. The variable |I| ≤ n in
[13] and T is time taken by vanilla clustering. (∗source code is available and well tested
by us).

complementary problem of minimizing unfairness with maximum allowable clustering cost
is considered in Esmaeili et al. [94] using LP formulation. To bound the number of LP
iterations, the algorithm exhaustively searches for the feasibility of LPs and chooses the
solution with minimum fairness constraints. The integral solution is then constructed
using a network flow [102].
Among the regularized-based techniques, Ziko et al. [10] propose a variational framework
where clustering and fairness objectives are simultaneously solved as an optimization
problem. This paper uses τ -FE as the fairness notion and breaks the composite problem
into convex and concave parts, which are bounded by auxiliary functions. These functions
help compute the soft assignment update in the subsequent iteration of k-means, k-median,
and N -cut [103]. The authors show that the variational framework has monotonicity and
convergence guarantees as Expectation-Maximization (EM) algorithms [104]. The main
issue with the approach is the use of data-dependent hyper-parameters. Another important
limitation of this approach is that clustering objective cost deteriorates significantly with
an increase in the number of clusters (Chapter 3). Liu et al. [96] formulate the problem of
fair clustering as a bi-objective optimization problem with τ -Balance notion of fairness
and prove a sublinear convergence rate. The resulting objective function is non-convex;
hence, the solution obtained by stochastic gradient descent does not satisfy any theoretical
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guarantees on the quality of obtained clusters. Table 2.1 summarizes all the results.
Extension of Group Fair Algorithms to Multiple Protected Attributes: Group
fairness constraints are also studied under multiple multi-valued protected groups setting.
For example, an individual can be a female (gender) and native-American (ethnicity). In
clustering, this overlap between multiple protected groups is denoted by ∆(=2 in the above
example). Both τ -RD and τ -MP can be extended to multiple mulit-valued protected
groups. The work by Bera et al. [12] is also applicable to multiple protected groups with
maximum additive violation of 4∆ + 3 for ∆ ≥ 2 (+3 for ∆=1). The work by Harb and
Lam [13] provides a similar guarantee.
A notion similar to τ -FE is proposed by Abraham et al. [93] for multiple protected groups.
The authors propose a fair k-means algorithm (FairKM) for solving a combined objective
function of minimizing objective cost along with a deviation in this modified notion of
fairness. The algorithm, however, is sensitive to the trade-off parameter, needs extensive
tuning, and requires minimization of a non-convex function

Individual Fairness

We now discuss the algorithmic framework and theoretical guarantees of individually
fair clustering algorithms. To satisfy α-FR fairness guarantee, a set of critical balls is
determined [80, 81, 97]. Each critical ball contains a set of data points and a critical
center with the property that each data point in a critical ball has a distance less than a
pre-defined value from the critical center. In Mahabadi and Vakilian [80], the critical balls
are defined such that all the data points have distance within 6αr to the critical center;
here r is defined as the minimum radius containing n/k data points from any data point.
These critical balls are identified using the modified version of greedy approaches proposed
in [105, 106]. Next, they use a local search algorithm to improve clustering objective cost
and achieve a bicriteria approximation guarantee6 of (84, 7)-approximation for α-FR and
(O(p), 7)-approximation for general p-norm with k-median as clustering objective.
On similar lines, Vakilian and Yalçıner [97] consider critical balls of radius 2αr. For fair
k-median, authors use k-median algorithm by Swamy [107], and for k-center a reduction
to standard k-center problem is presented that achieves (8 + ϵ, 3)-approximation solution.
For general p > 1, a (16p, 3)-approximation reduction to matroid facility location problem
solved using LP relaxation is proposed. The approximation guarantee is further improved
to (8, 2(1+2/p))-approximation by Negahbani et al. [81], who proposed a fair rounding
technique to the optimal LP solution computed using critical centers with radius 2r.
A feasible solution is not guaranteed for α-PP and α-Ag with α < 2 [89]. However,
any instance with α ≥ 2 always admits a feasible solution. Even with α ≥ 2, authors
provide an instance where the price of fairness 7 without any additional constraint can be
arbitrarily bad. For finding feasible centers and fair assignments, the authors provide an
algorithm having 5-approximation on the fairness guarantee.

6(p, q)-approximation bicriteria denotes cost approximation of p and fairness approximation of q.
7Ratio of clustering objective value under fairness constraint to the unfair (standard) objective value.
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Fairness
Notion

Time
Complexity

Cost Approximation Factor
k-means k-median k-center

[89]* α-PP
α-AG

× 5-approximation w.r.t fairness

[14] α-FB Polynomial
(
(1 + δ)OPT(β + 2)

)
[91] Avg. dist

based
O(n3k) ×

[80]* α-FR O(k5n4) (O(p), 7) (84, 7) (O(p), 7)
[81]* α-FR O(kn4) (8, 21+ 2

p )
[97] α-FR Polynomial (16p, 3) (8 + ϵ, 3) (8 + ϵ, 3)

Table 2.2: Categorization of individual fair clustering algorithms. OPT is optimal for fair
assignment cost in [14].(∗source code is available and well tested by us).

Kar et al. [14] show that finding α-FB fair clustering is NP-complete even for k = 2. The
authors provide a (1 + ϵ)OPT(β + 2)-approximation randomized algorithm solved with
the help of LP-relaxation for fair assignment where OPT is optimal fair assignment cost.
Similar to α-FB, finding a clustering satisfying Avg-dist fairness notion is proved to be
NP-Hard even for dataset X ⊆ R2 ([91]). The authors in [91] further present a dynamic
programming-based solution 1-dimensional setting to find contiguous clusters of target
sizes. Table 2.2 summarizes all the results for individually fair algorithms.

2.1.2 Fairness in Online Clustering

A more stringent variation of offline and streaming environments is online clustering, where
an endless stream of data points arrives over time. LetX ⊆ Rh be an endless stream of data
points with xt being the point arriving at time t. Each data point xt ∈ X is articulated
using h dimensional real-valued features. Due to limited memory, the algorithm must
make an irrevocable decision about incorporating an incoming data point into existing
clusters or opening it as a new center. Once a data point becomes a center, it remains so
forever. Similarly, any data point previously seen cannot be chosen as the center when a
new data point arrives [38, 39]. An important aspect to note in online clustering pertains
to the absence of information regarding the ordering of the arrival of data points in the
stream. As a result, the algorithm ends up opening more number of centers (kactual)
than the desired target (ktarget), i.e., kactual ≥ ktarget to maintain good approximation
guarantees on objective cost. Note that ktarget and k are used interchangeably for ease of
reading. Further, all other notations remain intact as offline clustering.

Group Fairness and Online Algorithms

In an offline setup, imposing a minimum threshold of data points from each group value
in every cluster is feasible as the number of clusters (k) and total number of data points
(n) are fixed. However, in an online setting, n is not restricted, and the number of centers
opening up is not fixed; therefore, imposing a lower bound on the number of data points
from each group value is less practical for maintaining fairness. There are high odds that
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the data points belonging to non-protected group value may eventually start dominating
over time in a cluster due to an endless stream of data points. Thus, there is a need
to devise a notion of group fairness for online setup, and there is no present work that
handles group fairness in online clustering to the best of our knowledge. We will address
this open direction as a part of this thesis (Chapter 5).

2.1.3 Fairness in Federated Data Clustering

For federated settings, we retain all notations but redefine a few notations, making them
separate for clients and servers. Therefore, let X ⊆ Rh be a set of data points distributed
among Z clients. Let the data points on any client z ∈ [Z] be X(z). Each data point in
X(z) is again a h-dimensional real-valued feature vector. Note that the complete set of
data points X contain data points belonging to [k] different true distributions. The goal
of any clustering algorithm is to partition the data points spread across clients into a set
of disjoint sets (called clusters) represented by the set of global centers denoted by set
Cg = {cg

1, c
g
2, . . . , c

g
k}. The computation of finding these global centers involves initially

computing the best local centers that partition the local data X(z) (for any z ∈ [Z]) into
k disjoint sets represented by C(z) = {c(z)

1 , c
(z)
2 , . . . , c

(z)
k }. We denote the local assignment

function at each client over any center set (say C(z)) by ϕ(z) : X(z) → C(z). Note that
the data points on any client z may not belong to all [k] distributions, and this idea is
captured using the notion of heterogeneity in federated settings. Formally, it is defined as
follows:

Definition 2.11 (Heterogeneity)
Given k, the heterogeneity level (denoted by H) determines the maximum number
of distributions the data points X(z) on a client z ∈ [Z] belongs to, i.e., H ≤ k.

In practice, determining the exact level of heterogeneity (H) on a client is often not feasible.
Consequently, a common approach in federated data clustering literature is to compute
k (≥ H) partitions on each client [41, 108]. These partitions are not arbitrary selections
but are the one that minimizes the following objective cost using final converged global
centers:

Definition 2.12 (Objective Cost)

Given k, ∪z∈[Z]X
(z), and distance metric d : X ×X → R+ ∪ {0} with norm value

p the local objective cost L(z)
p of client z of (k, p)-clustering in a federated setting

with a set of centers C is computed as follows:

L(z)
p (C) =

 ∑
xi∈X(z)

(
d(xi, ϕ

(z)
C (xi))

)p


1/p

(2.15)

In a federated setup, comparing methods based on the mean objective cost per data
point is often more realistic than the total objective cost at a client. The primary reason
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is that dataset sizes across clients can differ significantly in federated settings. Thus,
evaluating the per-point cost incurred by clients makes more sense. Mathematically, this
can be formulated as follows:

µ(z)(Cg) = L
(z)
p (Cg)
|X(z)|

(2.16)

where µ(z)(Cg) is the mean cost per data point on any client z.

Fairness Notion for Federated Data Clustering

In a federated setting, the objective cost suffered by any client z can significantly differ
from that of other clients because data points from different (H ≤ k) distributions can be
distributed (or generated) in a highly skewed manner among (or at) clients. Therefore, if
the global centers deviate too much from the best local centers, clients might feel reluctant
to contribute to the federated environment to learn a better global center representation.
Thus, the aim is to not solely focus on minimizing global objective cost (or per point cost)
but rather to find a k-clustering in the federated setting that is fair for all clients, i.e., one
which achieves near uniform cost across all clients. We formally define such a clustering
as follows:

Definition 2.13 (Fair Federated Data Clustering)
Given that data points are sampled from k true clusters and are distributed over Z
clients. Then, for any two set of federated global centers Cg

1 and Cg
2 , we say that

Cg
1 is more fair than Cg

2 if the cost deviation per data point (σ) is lower for Cg
1

than Cg
2 . Here σ over centers Cg

i for i ∈ {1, 2} is given as follows:

σ(Cg
i ) =

√√√√∑z∈[Z]

(
µ(z)(Cg

i )− µ(Cg
i )
)2

Z
(2.17)

Note that here µ(Cg) is the mean value of µ(z)(Cg) across all clients.

The notion captures the idea analogous to individual fairness and demands that the
federated clustering model should treat all clients similarly i.e., all clients should face
similar clustering objective cost.

Algorithms for Federated Data Clustering

Dennis et al. [41] makes an initial effort to partition the data points and proposes an
algorithm which they call k-FED. The algorithm builds upon the Awasthi and Sheffet
[109] aka (Awasthi), assuming the centers are well separated and clusters follow gaussian
distribution properties. k-FED executes Awasthi locally on each device to find k local
centers, which are then communicated to the server for computing the final clustering.
The server then employs a farthest heuristic similar to the offline k-center approach8.

8https://cseweb.ucsd.edu/ dasgupta/291-unsup/
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Yang et al. [110] proposes a slightly enhanced greedy centroid-based initialization for
k-FED which surpasses centralized k-means in specific scenarios.

Some works in this direction approach the problem by framing it as a generative data
synthesis challenge and leveraging concepts from Generative Adversarial Networks (GANs)
[111, 40, 112, 113, 114]. The broader picture involves training multiple GANs locally at
clients and utilizing their parameters to construct a global GAN model. This global
GAN model is employed to generate synthetic data and further identify k distinct cluster
centers. These centers are subsequently communicated back to clients to partition
their local data points. Li et al. [115] also pursues a parallel approach to develop
privacy-preserving distributed clustering by incorporating concepts from cryptography.
The proposed method initially computes local center updates and then shares encrypted
information using Lagrange encoding back to the server. Thereafter, the server aggregates
all secret distance codes from the clients and performs subsequent communication updates.
While the algorithm harnesses the advantages of encryption-decryption to safeguard data
privacy, such techniques entail substantial computation overhead and communication
costs, thereby hindering the scalability of the approach. Similarly, Leeuw [116] employs
federated data clustering within the blockchain’s committee-based consensus protocol.
However, the additional overheads counterbalance the performance improvement.

Fair Federated Data Clustering: It is important to note that no existing work in
federated data clustering has specifically focused on addressing the challenge of cost
distribution spread across clients and fostering a more equitable clustering as a primary
goal. We will address this direction as well in the present thesis (Chapter 6).

2.2 Recommender Systems

Recommender systems are machine learning models that suggest users with items based
on their past history or preferences. These preferences are captured either using implicit
methods such as click rate or search pattern on items or using explicit methods such as
based on ratings. Consider the data with U denoting the set of users and I being the set
of items. Let R = U ×I be a rating matrix where each entry Ru,i corresponds to the true
rating of item i by the user u on a scale of 1 (lowest) to 5 (highest). All non-interacted
user-item (u, i) pairs have a value of Ru,i = 0. The prediction matrix is given by P

with each entry Pu,i as the predicted rating for user u and item i. The goal of an ideal
recommendation algorithm is to reduce the following loss function:

Lideal(R,P ) = 1
|U||I|

∑
u∈U

∑
i∈I

δ(Ru,i, Pu,i) (2.18)

where the error function δ could be the mean squared error (MSE) or mean absolute error
(MAE). Since the true rating Ru,i is not available for all possible user-item interactions,
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one tends to minimize the loss on the observed set of user-item interactions given by:

Lobs(R,P ) =
∑

u∈U ,i∈I I(Ru,i ̸= 0) δ(Ru,i, Pu,i)∑
u∈U ,i∈I I(Ru,i ̸= 0) (2.19)

Broadly, recommender system algorithms are classified into two techniques - one is content
filtering, and the second is collaborative filtering methods. Content filtering techniques
rely on creating user-tailored profiles about preferences and tastes. Such user profiles
are commonly gathered by querying users with fixed questions, for example, about
genre, actors, and audio languages in movie recommendation systems. The system then
recommends users by matching items based on user profiles. The main challenge in such
methods is capturing external information about preferences. To overcome such challenges,
literature proposes collaborative filtering methods that recommend items by analyzing the
relationship between users and items with the help of past history, such as ratings. One of
the popular collaborative filtering methods of interest for this thesis is Matrix Factorization
(MF). We will now look into the mathematical formulation behind Matrix Factorization.

2.2.1 Matrix Factorization

Matrix Factorization is a collaborative filtering method that relies on the idea of latent
factors. These factors can be considered an abstraction of different factors or dimensions
to understand user-item interactions. For instance, from an item’s perspective, such as
movies, these latent factors can capture dimensions like level of comedy or romance,
orientation to kids, or even can be less well defined, say the depth of suspense or otherwise
can be completely uninterpretable dimensions. From the user’s perspective, latent factors
can capture the scale of favouritism, such as comedy genres and preference for kid content.
Now, having a glance through the intuition behind latent factors, we look into the finer
details of matrix factorization.

Matrix Factorization mathematically captures both users and items by mapping them as
vectors into the latent space of dimensionality κ, The mapping is computed in a way that
user-item interactions are captured as the inner product of user vector ξu ∈ Rκ for user u
and item vector ψi ∈ Rκ for item i. Intuitively, these vectors capture the level of presence
of each of the κ latent factors. Therefore, the predicted rating of user u for item i is,
in turn, given by dot product: ψT

i · ξu i.e., Pu,i = ψT
i · ξu. Now, having both predicted

and true rating, one can use popular methods such as stochastic gradient descent [117], to
minimize the loss function (Equation 2.19) for each interacted user-item (u, i) pairs (that
is when Ru,i ̸= 0). The resulting gradient update are provided below in Equations 2.20
and 2.21 for both user vector (ξu) and item vector (ψi), respectively, with η as the learning
rate and δ(·) as the mean square error:

ψt+1
i ← ψt

i + 2η
(
Ru,i − Pu,i

)
ξt

u (2.20)
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ξt+1
u ← ξt

u + 2η
(
Ru,i − Pu,i

)
ψt

i (2.21)

2.2.2 Popularity Bias on Item-side

Recommender systems suffer from fairness issues, such as the presence of popularity bias
on both user and item sides, as discussed in Section 1.3.2. We focus on popularity bias
on the item side for this thesis. This occurs when popular items (i.e., items with high
rating frequency) are recommended more often to users than non-popular items, even if
the user has an interest in the latter. In other words, the algorithms that aim solely to
minimize Lobs can result in recommender systems that are highly accurate for popular
items but suffer heavy losses on non-popular items. The primary reason behind this is
that inherently popular items are rated more frequently and are available more in the
dataset. To this, let IP and IN P = I \ IP denote the set popular items and non-popular
items respectively. Inspired by Abdollahpouri et al. [118], we use a threshold mechanism
to generate IP and IN P and obeying Pareto principles [119, 120], we set the threshold
as 80 : 20. That is, we use top 20% items in terms of rating frequency as popular and
remaining as non-popular (long tail) items.

2.2.3 Algorithms for handling Popularity Bias

The adverse effects of popularity bias on users of different demographics are analyzed in
Abdollahpouri et al. [118]. A few recent works propose different metrics to evaluate
popularity bias. It includes an NDCG metric-based [121] and ARP-based [119, 122]
approach. The NDCG metric computes the relevancy of the results and measures the
goodness of the ranked ordering of items, whereas ARP computes the average popularity
of each item and aims to improve diversity. However, none of these metrics seeks to
reduce the disparity between items of different popularity and will be the focus of this
thesis (Chapter 7).
Several works mitigate popularity bias in the presence of implicit feedback [71, 70, 121,
123, 124, 125, 126, 127, 128, 129, 130, 131, 128]. Implicit feedback, such as clickstream
data, purchase history, or time spent on an item, may not always clearly indicate user
preferences. Users may click on items for various reasons, such as curiosity or price
comparison, without being interested. Furthermore, implicit feedback can lead to positive
unlabeled problems [27]. The positive unlabeled problem emphasizes that while visited
or interacted items are considered positive examples, all other items may be uninteresting
and should not be treated as negative examples but marked as unlabeled ones. On the
other hand, explicit feedback is a more reliable [68] and accurate estimate of the user’s
interest [69]. One possible explanation behind more accurate estimation accounts for
extensive research on methods such as Likert scales or questionnaires to capture feedback
[69]. In addition, explicit feedback can capture absolute positive and negative feedback,
unlike implicit feedback, which only provides positive and relative feedback. Thus, we
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in this thesis explore a recommendation model to reduce popularity bias under explicit
ratings. Some existing explicit feedback techniques handling popularity bias promote
the diversification of non-popular items [122, 132]. A naive diversification may lead to
poor accuracy of the overall recommender systems and can also result in poor accuracy
on non-popular items [133, 134, 128, 135]. Another method to tackle popularity bias is
using demographic bias [136]. In this post-processing technique, items are divided into
advantageous and disadvantageous groups to have a fair representation of items belonging
to disadvantaged groups in the overall ranking [137]. The ranking list is prepared after
obtaining ratings for all user-item pairs, which forms a major overhead. Further, their idea
revolves around having equal representation in the ranking list. In contrast, in our work
(Chapter 7), we emphasize giving fair chances to both popular and non-popular items and
not enforce strict equal representation. The amount of representation for items in our
work is decided based on balancing losses on popular and non-popular items.
The work closest for solving popularity bias in matrix factorization under explicit feedback
is to mitigate the bias by using Inverse Propensity Scores (IPS) [8]. The score helps in
generating a pseudo missing completely at random dataset by weighting all the observed
ratings. Although IPS loss is proven to be an unbiased estimator, these methods majorly
suffer from two problems. First, the IPS estimator might become biased if the propensity
estimation model is not appropriately stated. Second, IPS estimators suffer from high
variance as the inverse of the propensities might be substantial. To overcome these
challenges, Saito [27] proposed an asymmetric tri-training technique. It involves three
rating predictors, two of which create a pseudo-rating dataset, and the third trains the
model on these pseudo-ratings. The main limitation is that it becomes impossible to
estimate the ratings of all items accurately as the dataset size reduces after applying the
technique. Thus, there is a need for an effective strategy to tackle popularity bias in
matrix factorization and will be of interest for this thesis.
A different line of work for balancing popularity bias in group or session recommendation
is in [138, 139, 140]. On the other hand, we design a method to tackle popularity bias in
individual recommendation systems.
The complete set of notations discussed in this chapter is summarized in Table 2.3. We
will use these notations consistently throughout the thesis.

2.3 Conclusion

This chapter discusses the background work on clustering and recommender systems. The
first half of the chapter introduces the notations and definitions that will help understand
the contributions in the field of fair clustering. We surveyed results in offline fair clustering
literature focusing on two fundamental levels of fairness: group and individual fairness.
We also provided a categorization of fair clustering algorithms across multiple dimensions,
such as implementation stage, solution approaches, and time complexity. Further, we
discussed different fair clustering algorithms, surveyed their performance guarantees, and
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Table 2.3: The table summarizes the notations discussed throughout the chapter.

Notation Description
X ⊆ Rh Finite set of data points
k Number of clusters
xi ∈ X Data point from X in offline setting
C k-clustering
C = {cj}kj=1 Set of cluster centers
ϕ : X → C Assignment function
{C1, C2, . . . , Ck} Set of k clusters of data X
d : X ×X → R+ ∪ {0} Distance function
I(·) Indicator function
Lp(X,ϕ) Objective cost (or clustering cost)
p Norm value
β Approximation factor of vanilla (unfair) clustering
Xℓ Data points belonging to protected group value ℓ
nℓ Number of data points belonging to group value ℓ
ρ : X → [m] Protected group mapping function to one of m group values
τ A vector of dimension ℓ

r(xi) Fair radius of data point xi in individual fairness
α Approximation parameter in individual fairness (α-FR)
xt ∈ X Data point arriving at time t in online clustering
kactual Actual number of centers opened in online setup when target is k (or kactual)
Z Number of clients in federated data clustering
X(z) Data points available at client z
Cg = {cg

1, c
g
2, . . . , c

g
k} Set of global centers in federated data clustering

C(z) = {c(z)
1 , c

(z)
2 , . . . , c

(z)
k } Local (or best) set of centers on data X(z)

H ≤ k Heterogeneity level
L

(z)
p (C) Objective cost on federated client on set of centers C

ϕ
(z)
C Assignment function at client z using center set C

µ(z)(Cg) Mean objective cost per data point when using Cg as set of centers and data as X(z)

µ(Cg) Mean value of µ(z)(Cg) across all clients
σ(Cg) Cost deviation per data point
U Set of users in recommender system
I Set of items in recommender system

R = U × I Rating matrix where each entry Ru,i corresponds to the true
rating of item i by the user u on a scale of 1 (lowest) to 5 (highest).

P Prediction matrix
δ Loss function in recommender system
κ Latent factor in matrix factorization
ξu ∈ Rκ User embedding vector for user u
ψi ∈ Rκ Item embedding vector for item i

η Learning rate
IP Set of popular items
IN P Set of non-popular items
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identified their limitations. Next, we provide an overview of existing works in online and
federated setups, along with needed definitions and notations. These notations will be used
consistently throughout the thesis. In the chapter’s later part, we discussed recommender
system preliminaries. We particularly provided an overview of popular matrix factorization
algorithms and discussed the problem of popularity bias. We now provide research gaps
below that will be the focus of the contributions in the thesis:

1. Different group fairness notions arose independently in literature. However, no
existing study systematically examines the relationship between these notions.

2. There is no polynomial time algorithm for solving group fairness in offline clustering.

3. Many real-world applications demand the need to handle continuous incoming
streams of data. In such scenarios, recomputing offline solutions can become
computationally expensive and may even result in changing the data points’
assignments in each execution. Thus, there is a need to handle data points online.
Also, large-scale data may sometimes be distributed across different sites. Existing
techniques in both online and distributed setups handle clustering, but no existing
works handle fairness in online and federated settings.

4. Past literature shows that satisfying strict levels of multiple levels of fairness, say
group and individual fairness, may not go hand in hand. Satisfying one level of
fairness might result in lowering the other fairness level. A study that develops
techniques to trace the Pareto frontier or help in achieving the user’s desired level
of fairness can be an interesting direction.

5. Plethora of literature has investigated popularity bias in implicit feedback. A few
methods have come up to handle popularity bias in explicit feedback. However,
devising methods that do not naively focus on increasing the diversity of non-popular
items in the recommendation list is another interesting direction to improve current
state-of-the-art approaches.

As part of this thesis, we will try to address these gaps in the next chapters.
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Chapter 3

Group Fair Notion and Algorithms
in Offline Clustering

Abstract

We revisit the problem of fair clustering in offline setting, first introduced by Chierichetti
et al. [42], which requires each protected group to have approximately equal representation
in every cluster, i.e., a Balance property. Existing solutions to fair clustering are either
not scalable or do not achieve an optimal trade-off between clustering objectives and
fairness. In this chapter, we propose a new notion of fairness, which we call τ -ratio
fairness, that enables a fine-grained efficiency vs. fairness trade-off. We also study the
relationship between existing group fairness notions and τ -ratio fairness. We show that
τ -ratio fairness is a stricter notion, and satisfying τ -ratio implies satisfying other existing
notions. Furthermore, we show that a simple greedy round-robin-based algorithm achieves
this trade-off efficiently. Under a more general setting of multi-valued protected groups, we
rigorously analyze the theoretical properties of the proposed algorithm, Fair Round-robin
Algorithm for Clustering Over End (FRACOE). We further propose a heuristic algorithm,
Fair Round-robin Algorithm for Clustering (FRAC), that applies round-robin allocation
at each iteration of the vanilla clustering algorithm. Our experimental results suggest
that both FRAC and FRACOE outperform all the state-of-the-art algorithms and work
exceptionally well even for a large number of clusters.

3.1 Introduction

The recent advancements in Machine Learning (ML) have led to the development of
highly accurate models, leading to wide-scale adoption. ML models are being deployed
in applications ranging from self-driving cars, approving home loan applications, criminal
risk prediction, college admissions, and health risk prediction. The primary objective
of these algorithms has been accuracy improvement. But their use to allocate social
goods and opportunities such as access to healthcare, jobs, and education warrants a
closer look at the societal impacts of their outcomes [143, 144]. Recent studies have

A preliminary part of this chapter has appeared in [141] (AAMAS 2023; as Extended Abstract) and
[142] (GAIW Workshop Paper at AAMAS 2023). A detailed version of this chapter is published in DMKD
Journal [44], and some parts are accepted as a book chapter in [43]. The work got appreciation as the Best
Paper Award at the International Conference on Deployable AI 2022.
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exposed a discriminatory outlook on the outcomes of these algorithms. The outcomes
resulting from ML models are observed to have disparity in treatment towards individuals
belonging to marginalized groups based on gender and race in real-world applications
like automated resume processing [145], loan application screening, and criminal risk
prediction [7]. Thus, designing fair and accurate machine learning models is an essential
and immediate requirement for these algorithms to make a meaningful impact in the real
world.

While fairness in supervised learning is well studied [146, 18, 147, 20, 136, 148], fairness
in unsupervised learning is still in its formative stages [149, 150]. To emphasize
the importance of fairness in unsupervised learning, we consider the following: An
employee-friendly company is looking to open multiple branches across the city and
distribute its workforce in these branches. The goal is to improve work efficiency and
minimize overall travel time to work. The company has employees with varied backgrounds
(race and gender) and does not prefer any group of employees over other groups. The
company’s diversity policy dictates hiring a minimum fraction of employees from each
group in every branch. Thus, the natural question is: where should the branches be set
up to maximize work efficiency, minimize travel time, and maintain diversity? In other
words, the problem is to devise an unsupervised learning algorithm for identifying branch
locations with the fairness (diversity) constraints applied to each branch. This problem
can be naturally formulated as a clustering problem with additional fairness constraints
on allocating the data points to the cluster centers (office locations).

Typically, fairness in supervised learning is measured by the algorithm’s performance over
different groups based on protected (sensitive) groups such as gender, race, and ethnicity.
Motivated by this, the first fairness notion for clustering was proposed by Chierichetti et al.
[42], wherein each cluster is required to exhibit a Balance, defined as the minimum ratio of
protected and non-protected groups in any cluster. Their methodology, apart from having
significant computational complexity, applies only to binary-valued protected groups.
Further, it does not allow for trade-offs between the clustering objective and fairness
guarantees. The subsequent literature ([11, 78, 151, 83]) improves efficiency; however, do
not facilitate the explicit choice of the trade-off between the clustering objective cost and
the fairness guarantee.

In this chapter, we define a new notion of fairness, which we call τ -ratio fairness. It
ensures a certain fraction of data points for a given protected group in each cluster. We
show that this simple notion of fairness has several advantages. First, the definition of
τ -ratio naturally extends to multi-valued protected groups; second, τ -ratio fairness has
closed-form theoretical relations to existing group fairness notions; third, it admits an
intuitive and computationally efficient round-robin approach to fair allocation; fourth, it
is straightforward for the algorithm designer to input the requirement into the algorithm
as constraints; fifth, it is easy to interpret and evaluate it from the output. In our running
example, if a company wants to have a minimum fraction of employees from each group in
every branch (clusters), then one can simply specify it in the form of a vector τ of size equal
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to a number of protected groups. Through rigorous theoretical analysis, we show that the
proposed algorithm FRACOE provides a 2(β+2)-approximate guarantee on the objective
cost with τ -ratio fairness guarantee up to three clusters. Here, β is the approximation
factor achieved by the vanilla clustering algorithm. We further experimentally demonstrate
that our approach can achieve better clustering objective costs than any state-of-the-art
(SOTA) approach on real-world data sets, even for a large number of clusters. Overall, the
following are the contributions of our work. Overall, the following are the contributions
of our work.

3.1.1 Our Contribution

Conceptual Contribution We introduce a new notion of fairness we call a τ -ratio
fairness and show that any algorithm satisfying a τ -ratio fairness also satisfies the Balance
property (Lemma 3.1). Also, we show that every parameter setting of Balance collapses
to a degenerate value of τ -ratio fairness. The strictness of the proposed notion. We
further propose two simple and efficient round-robin-based algorithms for the τ -ratio
fair allocation problem, namely, FRACOE (see, Section 3.4) and a heuristic algorithm
called FRAC (Section 3.6). Our algorithms use the unconstrained clustering algorithm
(referred to as vanilla clustering algorithm) as a black-box implementation and modify its
output appropriately to ensure τ -ratio fairness. The fairness guarantee is deterministic
and verifiable, i.e., holds for every run of the algorithm, and can be verified from the
outcome without explicit knowledge of the underlying clustering algorithm. The guarantee
on objective cost, however, depends on the approximation guarantee of the clustering
algorithm. Our algorithms can handle multi-valued protected groups, allow user-specified
bounds on Balance, are computationally efficient, and incur only an additional time
complexity of O(kn logn), best in the current literature. Here, n is the total number
of data points (dataset size), and k is the number of clusters.

Theoretical Contributions We show theoretical guarantees for our first algorithm;
FracOE . First, we show that FRACOE achieves 2(β + 2)-approximate for clustering
instances up to three clusters (Theorem 3.11 and Lemma 3.15) with respect to optimal
fair clustering cost for maximally balanced clusters; here β is a clustering algorithm specific
constant. That is, given a fair clustering instance with k ≤ 3 clusters and n data points,
our proposed algorithm returns an allocation that has an objective cost of 2(β + 2) times
the objective cost of optimal assignment with respect to optimally balanced clusters. We
further show that this guarantee is tight (Proposition 3.16). For k > 3 clusters we show
2k−1(β + 2)-approximation guarantee on the τ -ratio. We conjecture that the exponential
dependence of the approximation guarantee on k can be reduced to a constant. The proof
for guarantees is extended to work for any general τ vector (see Section 3.5.2). We also
analyze the convergence of FRACOE (Lemma 3.18) and provide the relationship between
existing group fairness notions and τ -ratio fairness. To the best of our knowledge, we are
first to show such relationships (Theorems 3.1 to 3.5).
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Experimental Contributions Through extensive experiments on four datasets (Adult,
Bank, Diabetes, and Census II), we show that the proposed algorithms, FRAC and
FRACOE outperform all the existing algorithms on fairness and objective costs. Perhaps
the most important insight from our experiments is that the performance of our proposed
algorithms does not deteriorate with increasing k. This experimentally validates our
conjecture. Experiments also show that while we do not have convergence guarantees
for heuristic algorithm FRAC, it does converge on all the datasets and performs slightly
better than FRACOE . Thus making it suitable for practical applications. We compare our
algorithms with SOTA algorithms for their fairness guarantee, objective cost, and runtime
analysis. We also note that our algorithms do not require hyperparameter tuning, making
our method easy to train and scalable. We demonstrate the efficacy of our algorithms using
k-means and k-median. In addition to experimental validation of our proposed algorithms,
we also validate our established theoretical relationships between different existing fairness
notions. We show that satisfying τ -ratio fairness induces a certain level of existing group
fairness notions.

3.2 Related Work

There is abundant literature on fairness in supervised learning [147, 152, 153, 154, 155, 156,
157]. But research on fair clustering is still in its infancy and is rapidly gathering attention
[158, 49, 159, 160, 46, 161, 150, 162, 163]. These studies include extending the existing
fairness levels such as group, individual fairness to clustering [12, 91, 54], proposing new
problem-specific fairness levels such as social fairness [62, 48], characterizing the fairness
versus efficiency trade-off [10, 93], developing and analyzing efficient fair algorithms
[82, 78]. Among these, group fairness in clustering has been studied in various settings,
including dynamic [164], capacitated [165], bounded cost [94], budgeted [166], privacy
preserving [98], probabilistic [167], correlated [168], diversity aware [60], hierarchical, graph
spectral, hypergraph [169, 170, 45], deep [171, 172, 173], distributed environments [174].
In this chapter, we focus on handling group fairness in offline clustering. The fairness
in the offline setup has been introduced at different stages of implementation, namely –
pre-processing, in-processing and post-processing are discussed separately below:
Pre-processing: Following a disparate impact doctrine [175], Chierichetti et al. [42], in
their pioneering work, define fairness in clustering through a Balance property. Balance
is defined as the ratio of data points with different protected group values in a cluster.
A maximally balanced clustering ensures that the Balance in all the clusters is equal to
the Balance in the original dataset (see Definition 3.2). Chierichetti et al. [42] achieves
balanced clustering through the partitioning of the data into balanced sets called fairlets.
It is followed by the merging of these partitions. Subsequently, Backurs et al. [11] propose
an efficient algorithm to compute the fairlets. Both approaches have two major drawbacks:
they are limited to the datasets having only binary-valued protected groups and can only
create clusters exhibiting the exact Balance present in the original dataset (dataset ratio).
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Thereby, they are not being flexible in achieving an optimal trade-off between Balance
and accuracy. Chhabra et al. [176] recently devised the idea to use a pre-processing
technique by the addition of a small number of extra data points called antidotes. Vanilla
clustering techniques applied to this augmented dataset result in fair clusters with respect
to the original data. The pre-processing technique to add antidotes requires solving
a bi-level optimization problem. Furthermore, Schmidt et al. [78] extends the notion
of coresets to fair clustering. They provide an efficient and scalable algorithm using
composable fair coresets (see also [83, 151, 82, 177]). A coreset is a set of data points
approximating the optimal clustering objective value for any k cluster centers. Though
the coreset construction can be performed in a single pass over the data, storing them
takes exponential space in terms of the dimension of the dataset. Bandyapadhyay et al.
[82] though reduces this exponential size requirement to linear in terms of space, it still
has a running complexity that is exponential in the number of clusters. Our proposed
algorithms are efficient because we do not need any additional space. Simultaneously, the
running complexity is linear in the number of clusters and near-linear in the number of
data points.
In-processing: Böhm et al. [95] propose an (β+2)-approximate algorithm for fair
clustering using a minimum cost-perfect matching algorithm. While the approach works
with a multi-valued protected group, it has O(n3) time complexity and is not scalable.
Here, n is the number of data points in the dataset. Ziko et al. [10] propose a variational
framework for fair clustering. Apart from being applicable to datasets with multi-valued
protected group, the approach works for both prototype-based (k-mean/k-median) and
graph-based clustering problems (N -cut or Ratio-cut [103]). However, the sensitivity of
the hyper-parameter to various datasets and the number of clusters necessitates extensive
tuning. This renders the approach computationally expensive. Further, the clustering
objective also deteriorates significantly under strict fairness constraints when dealing with
many clusters (k) (refer Section 3.7.1). Along the same lines, Abraham et al. [93] devise
an optimization-based approach for fair clustering with multiple multi-valued protected
groups. It has a trade-off hyper-parameter similar to [10].
Post-processing: Bera et al. [12] converted fair clustering into a fair assignment problem
and formulated a linear programming (LP) based solution. The LP-based formulation
leads to a higher execution time (refer to Section 3.7.4). Also, the approach fails to
converge when dealing with a large number of clusters (k). The work by Bera et al.
[12] is extended by Harb and Lam [13] for the ‘k-center problem, whereas we consider
k-means and k-median based centering techniques. Similarly the works in ([53, 178, 179,
180, 89, 63]) are applicable only for k-center clustering. Our proposed approach takes a
similar route as Bera et al. [12] to convert the fair clustering problem into a fair allocation
problem. However, we give a simple polynomial-time algorithm which, in O(nk logn)
additional computations, guarantees τ -ratio fairness. Our allocation algorithms have the
following main advantages over the current state of the art:

1. they are computationally efficient,
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2. they work for multi-valued protected groups,

3. no hyperparameter tuning is required and,

4. they are simple and more interpretable (refer Section 3.3).

3.3 Preliminaries

Let X ⊆ Rh be a finite set of data points that need to be partitioned into k clusters. Each
data point xi ∈ X is a feature vector described using h real-valued features. A k-clustering1

C = (C, ϕ) produces a partition of X into k subsets indexed by [k] = {1, 2, . . . , k}. The
clustering (C) is characterized by a set of centers C = {cj}kj=1, an assignment function
ϕ : X → C that maps each data point to the corresponding cluster center forming clusters
{C1, C2, . . . , Ck} respectively. Furthermore, let d : X ×X → R+ ∪ {0} denote a distance
function obeying triangular inequality that measures the dissimilarity between features.
Let I(·) denote the indicator function, which takes a value of one if the condition inside the
function is obeyed; otherwise, results in zero. Throughout this chapter, we consider that
each point, xi ∈ X is associated with a single protected group ρ(xi) (say ethnicity from a
pool of other available protected groups) that takes values from the set of m values denoted
by [m]. The number of distinct protected group values is finite and much smaller than the
size of the dataset2. Note that the protected group usually corresponds to disadvantaged
groups and is known apriori to the algorithms as an additional input. Additionally, we are
also given a vector τ = {τℓ}mℓ=1, where each component τℓ satisfies 0 ≤ τℓ ≤ 1

k and denotes
the fraction of data points from the protected group value ℓ ∈ [m] required to be present in
each cluster. An end-user can simply specify an m-dimensional vector with values between
0 and 1/k as the fairness target. Also, let us denote Xℓ and nℓ as set and number of points,
respectively, having protected group value ℓ in X. A vanilla (an unconstrained) clustering
algorithm determines the cluster centers to minimize the following objective cost:

Definition 3.1 (Objective Cost)
Given p, the clustering objective cost with respect to the metric space (X, d) is
defined as:

Lp(X,ϕ) =

∑
xi∈X

d(xi, ϕ(xi))p

 1
p

(3.1)

Different values of p, will result in different objective cost: p = 1 for k-medians, p = 2 for
k-means, and p =∞ for k-centers. Our aim is to develop an algorithm that minimizes the
objective cost irrespective of p while ensuring fairness.
Group Fairness Notions: We begin with re-defining the most popular notion of group
fairness called Balance.

1Throughout the thesis, for simplicity, we call a k-clustering simply clustering.
2Otherwise, the problem is uninteresting as balanced clustering may not be feasible.
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Definition 3.2 (τ-Balance)
For a binary valued protected group taking values from set {ℓ1, ℓ2}, a clustering C
is said to be τ-Balance [42] with

τ = min
Cj∈C

min

∑xi∈Cj
I(ρ(xi) = ℓ1)∑

xi∈Cj
I(ρ(xi) = ℓ2) ,

∑
xi∈Cj

I(ρ(xi) = ℓ2)∑
xi∈Cj

I(ρ(xi) = ℓ1)


 . (3.2)

A generalization of Balance to multi-valued protected groups is proposed by Bera et al.
[12] in terms of cluster sizes.

Definition 3.3 (τ -MP)
A clustering C is said to obey minority protection with respect to τ (i.e. τ -MP
[12]) if for all ℓ ∈ [m], Cj ∈ C,

∑
xi∈Cj

I(ρ(xi) = ℓ) ≥ τℓ|Cj |. (3.3)

The minority protection constraints the lower bound on the number of data points from
each protected group in every cluster.

Definition 3.4 (τ -RD)
A clustering C is said to obey restricted dominance with respect to τ (i.e. τ -RD
[12]) if for all ℓ ∈ [m], Cj ∈ C,

∑
xi∈Cj

I(ρ(xi) = ℓ) ≤ τℓ|Cj |. (3.4)

Restricted dominance constraints the upper on the number of data points from each
protected group in every cluster.
For binary protected group taking values a, b ∈ [m] with τa = τb = mina,b

na
nb

, this notion
becomes exactly same as the τ-Balance notion. Hence, minority protection along with
restricted dominance generalizes Balance notion to a multi-valued protected group. We
now define our proposed τ -ratio fairness notion, which ensures that each cluster has a
predefined fraction of data points for each protected group value. τ -ratio requires only
priorly known dataset composition, which helps achieve polynomial-time algorithms.

Definition 3.5 (τ -ratio Fairness)
An assignment function ϕ satisfies τ -ratio fairness if

∑
xi∈Cj

I(ρ(xi) = ℓ) ≥ τℓ

∑
xi∈X

I(ρ(xi) = ℓ) ∀Cj ∈ C and ∀ℓ ∈ [m] (3.5)

The notion of τ-Balance, τ-MP, and τ-RD defines the fairness with respect to the data
points within a cluster (unknown a-priori) corresponding to different group values. The
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τ -Fair notion on other hand imposes restrictions on the number of data points from each
group within a cluster to the overall data points of the respective group in the dataset. our
fairness notion (τ -ratio) resembles that of balanced (in terms of number of data points in
each cluster) clustering studied by Banerjee and Ghosh [181] without fairness constraint.
However, their proposed sampling technique is not designed to guarantee τ -ratio fairness
and does not analyze loss incurred due to having these fairness constraints. We now discuss
the relationship between τ-Balance, τ-MP, and τ-RD to τ -ratio fairness.

3.3.1 Relationship between Group Fairness Notions

While the different fairness notions arose independently in the literature, we show that
they are related when dealing with a binary protected group (i.e., takes only two values
a, b ∈ [m]) as illustrated in Figure 3.1. Our first lemma shows that an algorithm satisfying
τ -ratio fairness produces a set of clusters that also achieves a certain Balance. In particular,
when τℓ = 1

k , then τ -ratio fairness achieve the Balance equal to the dataset ratio.

Lemma 3.1. If a cluster Cj ∈ C is τ -ratio fair, then it also satisfies mina,b

(
τa

1−kτb+τb

na
nb

)
−

Balance where na, nb are the total number of data points for group a, b respectively.
Further when τa=τb=1/k in τ -ratio fairness then it is mina,b(na/nb)-Balance clustering.

Proof. Given na, suppose an algorithm satisfies τ -ratio fairness then for any cluster Cj

and protected group value a, we have:

τana ≤
∑

xi∈Cj

I(ρ(xi) = a) ≤ na(1− kτa + τa) (3.6)

Here, the lower bound comes directly from the fairness definition and the upper bound is
derived from the fact that all the clusters together will be allocated at least kτana number
of data points. The extra data points that a particular cluster can take are upper bounded
by na − knaτa. Thus, the τ -Balance of the cluster with respect to the two values a and
b should follow ∑

xi∈Cj
I(ρ(xi) = a)∑

xi∈Cj
I(ρ(xi) = b) ≥

τana

nb(1− kτb + τb)
(3.7)

Lemma 3.1 shows that one can achieve the desired amount of τ ′-Balance by appropriately
setting τ = {τa, τb}. When τa = τb = 1/k, then we get mina,b(na/nb)-Balanceand give the
following corollary:

Corollary 3.2. For τa = τb = 1
k , τ -ratio fairness guarantee ensures the dataset ratio for

all the clusters.

We now show that the converse is not true. That is, a clustering satisfying Balance (equal
to dataset ratio) can result in arbitrary bad τ -ratio fairness.
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Lemma 3.3. A fair clustering instance exists which satisfies τ ′-Balance with τ ′ > 0
and has arbitrarily low τ -ratio.

Suppose in a k(=2)-clustering instance the binary protected group takes values a, b such
that na=nb=n/2. Now, let one data point from each group be allocated to cluster 1
and the remaining data points to cluster 2. Then, we have τa = τb= 2/n which can go
arbitrarily small for large n.
From Lemma 3.1, 3.3 we see that τ -ratio is more stricter than τ -Balance. Also, both
notions behave conceptually differently in how they induce fair clusters. Since the Balance
does not add any constraint on cluster size and requires only a minimum representation
ratio, which might result in skewed clusters. However, τ -ratio leads to a controlled
distribution of data points among clusters.

Fair
RD MP

Balance

Figure 3.1: Relationship between the different group fairness notions.

Lemma 3.4. The cluster satisfying both τ ′-MP and τ -RD ensures
min

(
τ ′

a
τb
,

τ ′
b

τa

)
-Balance. Furthermore, satisfying only one of them does not ensure

τ -Balance.

Proof. From the definition of τ -RD and τ ′-MP, ∀Cj ∈ C we get

τ ′
a ≤

∑
xi∈Cj

I(ρ(xi) = a)
|Cj |

≤ τa and τ ′
b ≤

∑
xi∈Cj

I(ρ(xi) = b)
|Cj |

≤ τb (3.8)

So τ ′
a

τb
≤
∑

xi∈Cj
I(ρ(xi) = a)∑

xi∈Cj
I(ρ(xi) = b) ≤

τa

τ ′
b

and τ ′
b

τa
≤
∑

xi∈Cj
I(ρ(xi) = b)∑

xi∈Cj
I(ρ(xi) = a) ≤

τb

τ ′
a

(3.9)

Thus, from the above equations we can say, τ -Balance ≥ min
(

τ ′
a

τb
,

τ ′
b

τa

)

Lemma 3.5. If a cluster satisfies τ-balance then it is also τ -MP with τ={1
2 ,

τ
1+τ } and

τ -RD with τ={ 1
1+τ ,

1
2} for {a, b} respectively.

Proof. Given τ -Balance = min
(

τa
τb
, τb

τa

)
. Without loss of generality let us assume that τ

= τa
τb

that is τa= τ (τb). Since τ is the minimum value over all clusters, for any arbitrary
cluster containing τ ′

a and τ ′
b data points, we have τa

τb
≤ τ ′

a
τ ′

b
.
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Since the upper-bound of τ can be 1 (perfectly balanced clusters), we have τ ≤ τ ′
a

τ ′
b
≤ 1.

Adding 1 on both sides,

τ + 1 ≤ τ ′
a + τ ′

b

τ ′
b

≤ 2 =⇒ 1
2 ≤

τ ′
b

τ ′
a + τ ′

b

≤ 1
1 + τ

(3.10)

So, the τ -MP and τ -RD for b is 1
2 , 1

1+τ respectively. Similarly,

1 ≤ τ ′
b

τ ′
a

≤ 1
τ

=⇒ 2 ≤ τ ′
b + τ ′

a

τ ′
a

≤ 1
τ

+ 1 =⇒ τ

1 + τ
≤ τ ′

a

τ ′
b + τ ′a

≤ 1
2 (3.11)

So, the τ -MP and τ -RD for a is τ
1+τ , 1

2 respectively.
Thus, in all we have τ -MP with τ={1

2 ,
τ

1+τ } and τ -RD with τ={ 1
1+τ ,

1
2} for {a, b}

respectively.

Lemma 3.1 and Lemma 3.5 lead us to following corollary.

Corollary 3.6. If a cluster satisfies τ -ratio then it is also τ ′-MP with
τ ′={1

2 ,
τana

(1−kτb+τb)nb+τana
} and τ ′-RD with τ ′={ (1−kτb+τb)nb

(1−kτb+τb)nb+τana
, 1

2} where Lemma 3.1 is
say minimum over group value a ∈ [m].

The example for Lemma 3.3, also satisfies τ -MP and τ -RD with τ={1} and {n/2 − 1}
respectively. However, τ -ratio can again go arbitrarily low. So we get the corollary as
follows.

Corollary 3.7. A fair clustering can exist that obeys τ -MP and τ -RD but can have
arbitrarily low τ -ratio fairness.

All the above results prove that τ -ratio is a more stricter notion. Thus, we focus
on designing an algorithm satisfying τ -ratio fairness while minimizing objective cost
irrespective of p. To this, we now define the fair clustering problem with respect to
the proposed fairness notion:

Definition 3.6 (τ -ratio Fair Clustering Problem)
The objective of a τ -ratio fair clustering problem I is to estimate C = (C, ϕ) that
minimizes the objective cost Lp(X,ϕ) subject to the τ -ratio fairness guarantee. The
optimal objective cost of a τ -ratio fair clustering problem is denoted byOPT clust(I).

A solution to this problem is to rearrange the data points (learn a new ϕ) with respect
to the cluster centers obtained after a traditional clustering algorithm (called vanilla
clustering) to guarantee τ -ratio fairness. The problem of rearrangement of data points
with respect to the fixed centers is known as the fair assignment problem, which we define
below:
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Definition 3.7 (τ -ratio Fair Assignment Problem)

Given X and C = {cj}kj=1, the solution to the fair assignment problem T produces
an assignment ϕ : X → C that ensures τ -ratio fairness and minimizes Lp(X,ϕ).
The optimal objective function value to a τ -ratio fair assignment problem is denoted
by OPT assign(T ).

However, this transformation of the fair clustering problem I into a fair assignment
problem T should ensure that OPT assign(T ) is not too far from OPT clust(I). The
connection between fair clustering and fair assignment problem is established through
the following lemma.

Lemma 3.8. Let I be an instance of a fair clustering problem and T an instance of
τ -ratio fair assignment problem after applying an β-approximate solution to the vanilla
clustering problem, then OPT assign(T ) ≤ (β + 2)OPT clust(I).

Proof. Let C be the cluster centers obtained by running a vanilla clustering algorithm
on instance I. The proof of the Lemma depends on the existence of an assignment ϕ̂
satisfying τ -ratio fairness such that Lp(X, ϕ̂) ≤ (β + 2)OPT clust(I). Then it follows as
OPT assign(T ) ≤ Lp(X, ϕ̂) ≤ (β + 2)OPT clust(I).
To this, let (C∗, ϕ∗) denote the optimal solution to I. Define ϕ̂ as follows: for every
c∗ ∈ C∗, let nrst(c∗) = argminc∈C d(c, c∗) be the nearest center to c∗. Then, for every
xi ∈ X, define ϕ̂(xi) = nrst(ϕ∗(xi)). Then we have the following two claims:

Claim 3.9. ϕ̂ satisfies τ -ratio fairness.

Proof. Let the set of data points having protected group value ℓ in cluster c∗ ∈ C∗ be
nℓ(c∗). Since (C∗, ϕ∗) satisfy τ -ratio fairness then using Definition 3.5 we have

|nℓ(c∗)| ≥ τℓnℓ ∀c∗ ∈ C∗. (3.12)

Now, for any center c ∈ C belonging to vanilla clustering, we will find the set of all centers
in optimal solution (C∗) that are nearest to c. Let us denote this set by N(c) = {c∗ ∈
C∗ : nrst(c∗) = c}.
Then the way ϕ̂ is defined, we have, ∀c:

|{xi ∈ Xℓ : ϕ̂(xi) = c}| = | ∪c∗∈N(c) nℓ(c∗)| (3.13)

Now as each center c∗ satisfies τ -ratio fairness, the union over combined assignments for
each center in N(c) and since each set of assignments satisfies τ -ratio so union will also
satisfy τ -ratio fairness i.e. | ∪c∗∈N(c) nℓ(c∗)| ≥ nℓτℓ.

Claim 3.10. Lp(X, ϕ̂) ≤ (β + 2)OPT clust(I).

Proof. The proof of this claim uses triangle inequality and is exactly the same as Claim 6 of
Bera et al. [12]. We re-write it here using our set of notations for the sake of completeness.
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Algorithm 1: τ -FRACOE

Input: set of datapoints X, number of clusters k, fairness requirement vector τ ,
range of protected group values m, clustering objective norm p

Output: cluster centers Ĉ and assignment function ϕ̂
1 Solve the vanilla (k, p)-clustering problem and let (C, ϕ) be the solution obtained.
2 if τ -ratio fairness is met then
3 return (C, ϕ)
4 else
5 (Ĉ, ϕ̂) = FairAssignment(C,X, k, τ,m, p, ϕ)
6 return (Ĉ, ϕ̂)
7 end
8 end

Fix a data point xi ∈ X. Let c = ϕ(xi), ĉ = ϕ̂(xi), and c∗ = ϕ∗(xi). Then we have,

d(xi, ĉ) = d(xi, nrst(c∗)) ≤ d(xi, c
∗) + d(c∗, nrst(c∗)) ≤ d(xi, c

∗) + d(c∗, c) ≤ 2d(xi, c
∗) + d(xi, c)
(3.14)

The first and third step follows using the triangular inequality. While the second step is
based on the definition of nrst. So, if we define assignment cost vectors corresponding to ϕ,
ϕ̂ and ϕ∗ as d⃗ = {d(xi, ϕ) : xi ∈ X}, d⃗′ = {d(xi, ϕ̂) : xi ∈ X} and d⃗∗ = {d(xi, ϕ

∗) : xi ∈ X}
respectively. Then using the above bound, we get d⃗′ ≤ 2d⃗ + d⃗∗. Now, since Lp is a
monotone norm on these vectors,

Lp(X, ϕ̂) = Lp(d⃗′) ≤ 2Lp(d⃗) + Lp(d⃗∗) = 2Lp(X,ϕ∗) + Lp(X,ϕ). (3.15)

This completes the proof by using the fact that Lp(X,ϕ∗) = OPT clust(I) and Lp(X,ϕ) ≤
βOPT clust(I).

Both these claims complete the proof of the Lemma 3.8.

A similar technique of converting fair clustering to a fair assignment problem was proposed
by Bera et al. [12]. However, Bera et al. [12] proposed a linear programming-based solution
to obtain the Balance fair assignment. Although the solution is theoretically strong, there
are two issues with the algorithm. Firstly, the time complexity is high (as can be seen
from the experiments in Section 3.7.4) and secondly, the solution obtained is not easy to
interpret due to the use of the complicated linear program. By interpretability, we try to
find the answer to the following question – Why is a data point assigned to a specific cluster
to maintain fairness? We propose a simple round-robin (easily interpretable) FRACOE

algorithm for a fair assignment problem with a time complexity of O(kn logn) in the next
section.
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Algorithm 2: FairAssignment
Input: cluster centers C, set of datapoints X, number of clusters k, fairness

requirement vector τ , range of protected group m, clustering objective norm
p, assignment function ϕ

Output: Cluster centers Ĉ and assignment function ϕ̂
1 Fix a random ordering on centers and let the centers are numbered from 1 to k with

respect to this random ordering.
2 Initialize ϕ̂(xi)← 0 ∀xi ∈ X
3 for ℓ← 1 to m do
4 nℓ ← number of data points having value of protected group ℓ.
5 Xℓ ← set of data points having value of protected group ℓ.
6 for t← 1 to τℓnℓ do
7 for j ← 1 to k do
8 xmin ← argminxi∈Xℓ:ϕ̂(xi)=0 d(xi, cj)
9 ϕ̂(xmin) = j

10 end
11 end
12 For all xi ∈ Xℓ such that ϕ̂(xi) = 0, set ϕ̂(xi) = ϕ(xi)
13 end
14 Recompute the centers Ĉ with respect to the new allocation function ϕ̂.
15 Return (Ĉ, ϕ̂)

3.4 Fair Round-robin Algorithm for Clustering Over End
(FRACOE)

Fair Round-robin Algorithm for Clustering Over End (FRACOE) first runs a vanilla
clustering algorithm to produce the initial clusters C = (C, ϕ). It then makes corrections
as follows. The algorithm first checks if τ -ratio fairness is met with the current allocation ϕ,
in which case it returns ϕ̂ = ϕ and Ĉ = C. If the assignment ϕ violates the τ -ratio fairness
constraint then the new assignment function ϕ̂ is computed according to FairAssignment
procedure in Algorithm 2.
Algorithm 2 iteratively allocates the data points with respect to each protected group
value. To recollect Xℓ and nℓ denote the set and the number of data points having ℓ as
the protected group value, respectively. The algorithm allocates ⌊τℓnℓ⌋ number of data
points 3 to each cluster in a round-robin fashion as follows. Let {c1, c2, . . . , ck} be a random
ordering of the cluster centers. At each round t, each center cj picks the data point xi of
its preferred choice from Xℓ i.e. ϕ̂(xi) = j. Once the τℓ fraction of data points are assigned
to the centers, i.e., after τℓnℓ number of rounds, the allocation of remaining data points
is set to its original assignment ϕ. Note that this algorithm will certainly satisfy τ -ratio
fairness as, in the end, the algorithm assures that at least τℓ fraction of data points are
allotted to each cluster for a protected group value ℓ. We defer to theoretical results to
assert the quality of the clusters. The runtime complexity of Algorithm 2 is O(kn logn)

3For the sake of simplicity, we assume τℓnℓ ∈ N and ignore the floor notation.
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as step 4 requires the data points to be sorted in the increasing order of their distances
with the cluster centers.

3.5 Theoretical Results

We now provide the theoretical guarantees of FRACOE with respect to τ -ratio fairness.
We begin by providing guarantees for maximally balanced clusters, i.e. τℓ = 1/k ∀ℓ ∈ [m].

3.5.1 Guarantees for FRACOE for τ={1/k}m
l=1

Theorem 3.11. Let k = 2 and τℓ = 1
k for all ℓ ∈ [m]. An allocation returned by

FRACOE guarantees τ -ratio fairness and satisfies 2-approximation guarantee with respect
to an optimal fair assignment up to an instance-dependent additive constant.

Proof. Correctness and Fairness: Clear from the construction of the algorithm.
Proof of (approximate) Optimality: We will prove 2-approximation with respect to
each value ℓ of protected group separately.
We now show that FRACOE(T ) ≤ 2 OPT assign(T ) + ϑ, where FRACOE(T ) and
OPT assign(T ) denote the objective value of the solution returned by FRACOE and
optimal assignment algorithm respectively on given instance T = (C,X). Let ϑ :=
2 supx,y∈X d(x, y) be the diameter of the feature space. We begin with the following useful
definition.

Definition 3.8 (Bad Assignments)
Let C1 and C2 represent the set of data points assigned to c1 and c2 by optimal
assignment algorithma. The ith round (i.e. assignments gi to c1 and hi to c2) of
FRACOE is called

• 1-bad if exactly one of 1) gi /∈ C1 or 2) hi /∈ C2 is true, and

• 2-bad if both 1) and 2) above are true.

Furthermore, a round is called bad if it is either 1-bad or 2-bad and called good
otherwise.

aNote that an optimal fair allocation need not be unique. Our result holds for any optimal fair
allocation.

Let all incorrectly assigned data points in a bad round be called bad assignments. We
use the following convention to distinguish between different bad assignments. If gi /∈ C1

holds, we refer to it as type 1 bad assignment, i.e. if data point gi is currently assigned
to C1 but should belong to optimal clustering C2. Similarly, if hi /∈ C2 holds, it is a type
2 bad assignment, i.e. hi should belong to optimal clustering C1 but is currently assigned
to c2. Hence a 2-bad round results in 2 bad assignments one of each type i.e. gi /∈ C1 and
hi /∈ C2. In summary, each 1-bad round can have either type 1 or type 2 bad assignment,



Chapter 3. Group Fair Notion and Algorithms in Offline Clustering 51

and each 2−bad round will have two bad assignments each of type 1 and type 2. Finally,
let B be the set of all bad rounds and A be the set of all bad assignments.

Definition 3.9 (Complementary Bad Pair)
A pair of data points w, z ∈ A such that w is a bad assignment of type t and z is a
bad assignment of type |3− t| is called a complimentary bad pair if,
1) w and z are allocated in same round (i.e. in a 2-bad round) or
2) if they are allocated in ith and jth 1-bad rounds respectively with i < j, then
z is the first bad assignment of type (3 − t) which has not been yet paired with a
complementary assignment.

Lemma 3.12. If nℓ is even, every bad assignment in the allocation returned by FRACOE

has a complementary assignment. If nℓ is odd, at most, one bad assignment will be left
without a complementary assignment.

Proof. Let B = B1∪B2, where Bt is a set of t-bad rounds. Note that the claim is trivially
true if B1 = ∅. Hence, let |B1| > 0 and write B1 = B1,1 ∪B1,2. Here B1,t is a 1-bad round
that resulted in type t bad assignment. Let H1,t be the set of good assignments of type t
(i.e. correctly assigned to the center ct) allocated in 1-bad rounds.
When nℓ is even, |C1| = |C2| we have |B1,2|+ |H1,1| = |B1,1|+ |H1,2|. This is true because
one can ignore good rounds and 2-bad rounds as every 2-bad round can be converted into a
good round by switching the assignments. Further observe that, as FRACOE assigns two
data points per round and each round results in exactly one bad assignment and exactly
one good assignment, we have |H1,t| = |B1,(3−t)|. Together, we have |B1,1| = |B1,2|+|H1,1|

2 =
|B1,2|. When nℓ is odd, we might have one additional data point left in the last 1-bad
round that is not being assigned any complementary data point. This completes the proof
of the lemma.

We will bound the optimality of 1-bad rounds and 2-bad rounds separately.

Bounding 1-bad rounds: When nℓ is even, from Lemma 3.12, there are even numbers
of 1-bad rounds; two for each complimentary bad pair. Let the 4 data points of
corresponding two 1-bad rounds be Gi : (x, hi) and G

′
i : (gi, y) as shown in Figure

3.2a. Note that x ∈ C1 and y ∈ C2 i.e. both are good assignments and gi /∈ C1,
hi /∈ C2 are bad assignments. Now, consider an instance Ti = {C, {x, hi, gi, y}}, then
OPT assign(Ti) = d(x, c1) + d(hi, c1) + d(gi, c2) + d(y, c2). We consider, without loss of
generality, that the round Gi takes place before G′

i in the execution of FRACOE . The
proof is similar to the other case. First note that since FRACOE assigns hi to cluster 2
while both gi and y were available, we have

d(hi, c2) ≤ d(gi, c2) and d(hi, c2) ≤ d(y, c2) (3.16)
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(a) Two 1-bad round pairs (b) Two 2-bad round pairs

Figure 3.2: Different cases for k = 2. (a) Shows two 1-bad rounds with four assignments
such that x, y are good assignments and allocated to the optimal center by algorithm,
whereas gi and hi are bad assignments with an arrow showing the direction to the optimal
center from the assigned center. (b) Shows four bad data points such that gi, g′

i are
assigned to c1 but should belong to c2 in optimal clustering (the arrow depicts the direction
to optimal center). Similarly, hi, h′

i should belong to c1 in optimal clustering.

So,

FRACOE(Ti) (3.17)

= d(x, c1) + d(hi, c2) + d(gi, c1) + d(y, c2) (3.18)

≤ d(x, c1) + d(hi, c2) + d(gi, c2) + d(c1, c2) + d(y, c2) (∵ triangle inequality)

≤ d(x, c1) + d(hi, c2) + d(gi, c2) + d(hi, c2) + d(hi, c1) + d(y, c2) (3.19)

≤ d(x, c1) + d(y, c2) + d(gi, c2) + d(gi, c2) + d(hi, c1) + d(y, c2) (∵ Equation. 3.16)

≤ 2 OPT assign(Ti) (3.20)

If nℓ is odd, then all the other rounds can be bounded using the above cases except one
extra 1-bad round. Let the two data points corresponding to this round Gi be (gi, y).
Thus, FRACOE(Ti) ≤ 2OPT assign(Ti) + ϑ. Here ϑ=2 supx,y∈X d(x, y) is the diameter of
the feature space.

Bounding 2-bad rounds: First, assume that there is an even number of 2-bad rounds.
In this case consider the pairs of consecutive 2-bad rounds as Gi : (gi, hi) and G′

i = (g′
i, h

′
i)

with G′
i bad round followed by Gi (Figure 3.2b). Note that gi, g

′
i ∈ C2 and hi, h

′
i ∈ C1. Now

consider instance Ti = {C, {gi, g
′
i, hi, h

′
i}}, then , OPT assign(Ti) = d(hi, c1) + d(h′

i, c1) +
d(gi, c2) + d(g′

i, c2). As a consequence of the allocation rule used by FRACOE , we have

d(gi, c1) ≤ d(hi, c1), d(g′
i, c1) ≤ d(h′

i, c1), d(hi, c2) ≤ d(g′
i, c2) and d(hi, c2) ≤ d(h′

i, c2).
(3.21)

Furthermore,

FRACOE(Ti) = d(gi, c1) + d(g′
i, c1) + d(hi, c2) + d(h′

i, c2) (3.22)

≤ d(hi, c1) + d(h′
i, c1) + d(g′

i, c2) + d(h′
i, c2) (∵ using Equation 3.21)
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≤ d(hi, c1) + d(h′
i, c1) + d(g′

i, c2) + d(h′
i, c1) + d(c1, c2)

(∵ triangle inequality)

≤ d(hi, c1) + d(h′
i, c1) + d(g′

i, c2) + d(h′
i, c1) + d(gi, c1) (3.23)

+ d(gi, c2) (∵ triangle inequality)

≤ d(hi, c1) + d(h′
i, c1) + d(g′

i, c2) + d(h′
i, c1) + d(hi, c1) (3.24)

+ d(gi, c2) (∵ using Equation 3.21)

≤ 2d(hi, c1) + 2d(h′
i, c1) + d(gi, c2) + d(g′

i, c2) (3.25)

≤ 2OPT assign(Ti) (3.26)

If there are odd number of 2-bad rounds then, let G = (gi, hi) be the last 2-bad round. It is
easy to see that FRACOE(Ti)−OPT assign(Ti) = d(gi, c1)+d(hi, c2)−d(gi, c2)−d(hi, c1) ≤
d(gi, c1) + d(hi, c2) ≤ ϑ. Thus,

FRACOE(T ) =


∑r/2

i=1 FRACOE(Ti) if even no. of 2-bad rounds∑⌊r/2⌋
i=1 FRACOE(Ti) + ϑ Otherwise

(3.27)

≤ 2
⌊r/2⌋∑
i=1
OPT assign(Ti) + ϑ = 2OPT assign(T ) + ϑ (3.28)

Here, r is the number of 2-bad rounds. and ϑ=2 supx,y∈X d(x, y) is the diameter of the
feature space.

Corollary 3.13. For k = 2 and τℓ = 1
k for all ℓ ∈ [m], we have FRACOE(I) ≤

(
2(β +

2)OPT clust(I) + ϑ

)
-approximate where β is approximation factor for vanilla clustering

problem for any given instance I.

The above corollary is a direct consequence of Lemma 3.8 and the fact that
FRACOE(Ĉ,X) ≤ FRACOE(C,X). Here, C, Ĉ are centers of vanilla clustering and
fair clustering obtained by FRACOE , respectively. The result can easily be extended
for k clusters to directly obtain 2k−1-approximate solution with respect to τ -ratio fair
assignment problem.

Theorem 3.14. When τℓ = 1
k for all ℓ ∈ [m], an allocation returned by FRACOE for

given centers and data points is τ -ratio fair and satisfies 2k−1-approximation guarantee
with respect to an optimal τ -ratio fair assignment up to an instance-dependent additive
constant.

Proof. In the previous proof, we basically considered two length cycles. Two 1-bad
allocations resulted in one type of cycles, and one 2-bad allocations resulted in another
type of cycle. When the number of clusters are greater than two, then any 2 ≤ q ≤ k

length cycles can be formed. Without loss of generality, let us denote {c1, c2, . . . , cq} as
the centers that are involved in forming such cycles. Further denote by set Xj

i to be the
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Figure 3.3: Visual representation of set Xj
i and cycle of length q for Theorem 3.14. The

arrow represents the direction from the assigned center to the center in optimal clustering.
Thus, for each set Xj

i we have ci as the currently assigned center and cj as the center in
the optimal assignment.

set of data points that are allotted to cluster i by FRACOE but should have been allotted
to cluster j in an optimal fair clustering. The q length cycle can then be visualized in
Figure 3.3 with an arrow pointing towards the optimal cluster. As the cycle is formed with
respect to these data points, we have |Xq

1 | = |X1
2 | = . . . = |Xq−1

q | The cost by FRACOE

algorithm is then given as:

q∑
i=2

∑
x∈Xi−1

i

d(x, ci) +
∑

x∈Xq
1

d(x, c1) (3.29)

≤ 2

 ∑
x∈X1

2

d(x, c1) +
∑

x∈Xq
1

d(x, c2) + ϑ

+
q∑

i=3

∑
x∈Xi−1

i

d(x, ci) (3.30)

≤ 2(
∑

x∈X1
2

d(x, c1) + ϑ) + 22

 ∑
x∈X2

3

d(x, c2) +
∑

x∈Xq
1

d(x, c3) + ϑ

+
q∑

i=4

∑
x∈Xi−1

i

d(x, ci)

(3.31)

≤ 2q−1

 q∑
i=2

∑
x∈Xi−1

i

d(x, ci−1) +
∑

x∈Xq
1

d(x, cq)

+ 2qϑ (3.32)

Here, the first inequality follows by exchanging the data points in X1
2 and Xq

1 using
Theorem 3.11. As the maximum length cycle possible is k, we straight away get the proof
of 2k−1- approximation.

Next, in contrast with Theorem 3.14 which guarantees a 4-approximation for k = 3, we
show that one can achieve a 2-approximation guarantee. The proof of this result relies
on explicit case analysis. As the number of cases solved increases exponentially with k,
one needs a better proof technique for larger values of k. We leave this analysis as an
interesting future work.

Theorem 3.15. For k=3 and τℓ = 1
k allocation returned by FRACOE with arbitrary

centers and data points is 2-approximate with respect to optimal τ -ratio fair assignment.
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Proof. We will here find the approximation for k = 3 using a number of possible cases
where one can have a cycle of length three. Let the centers involved in this 3-length
cycle be denoted by ci, cj , and ck. Note that if there is only one cycle involving these
three centers, then it will lead to only constant factor approximation. The challenge is
when multiple such cycles are involved. Unlike k = 2 proof, here we bound the cost
corresponding to each cycle with respect to the cost of another cycle. The three cases
shown in Figure 3.4 depicts multiple rounds when the two 3-length cycles can be formed.
In the figure, if ci is taking a data point from cj it is denoted using an arrow from ci to
cj . It can further be shown that it is enough to consider these three cases. Further, let
Ti = {C, {xi, xj , xk, gi, gj , gk}} and T ′

i = {C, {yi, yj , yk, g
′
i, g

′
j , g

′
k}} denote the two cycles.

Figure 3.4: Different use cases for 3-length cycle involving k=3 clusters (a) Case 1:
Two-three length cycle pair (Gi, Hi) and (G′

i, H
′
i) (b) Case 2: Second possibility of

two-three length cycle pair (Gi, Hi) and (G′
i, H

′
i) (c) Case 3: Three length cycle pair

(Gi, G
′
i).

Case 1: In this case, we bound the rounds shown in Figure 3.4(a). Let, one cycle completes
in rounds Gi, Hi (i.e. using points from Ti) and another cycle completes in rounds G′

i, H
′
i

(using points from T ′
i ). Then,

OPT assign(Ti) = d(xi, cj) + d(xj , ck) + d(gk, ck) + d(gi, ci) + d(gj , cj) + d(xk, ci) (3.33)

OPT assign(T ′
i ) = d(yi, cj) + d(yj , ck) + d(g′

k, ck) + d(g′
i, ci) + d(g′

j , cj) + d(yk, ci) (3.34)

Further,

FRACOE(Ti) = d(xi, ci) + d(xj , cj) + d(gk, ck) + d(gi, ci) + d(gj , cj) + d(xk, ck) (3.35)

≤ d(g′
i, ci) + d(g′

j , cj) + d(gk, ck) + d(gi, ci) + d(gj , cj) + d(xk, ck) (3.36)

Now,

d(xk, ck) ≤ d(xk, ci) + d(ci, ck) ≤ d(xk, ci) + d(ci, cj) + d(cj , ck) (3.37)

≤ d(xk, ci) + d(xi, ci) + d(xi, cj) + d(xj , cj) + d(xj , ck) (3.38)

≤ d(xk, ci) + d(yk, ci) + d(xi, cj) + d(yi, cj) + d(xj , ck) (3.39)
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Combining the above two, we get:

FRACOE(Ti) ≤ OPT assign(Ti) +OPT assign(T ′
i ) (3.40)

Thus, the cost of each cycle can be bounded by the sum of the optimal cost of its own
and the optimal cost of the next cycle. If we take sum over all such cycles, we will get
2-approximation result plus a constant due to the last remaining cycle.
Case 2: In this case, we bound the rounds shown in Figure 3.4(b). The optimal
assignments will be

OPT assign(Ti) = d(xi, cj) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(xj , ck) + d(xk, ci) (3.41)

OPT assign(T ′
i ) = d(yi, cj) + d(g′

j , cj) + d(g′
k, ck) + d(g′

i, ci) + d(yj , ck) + d(yk, ci) (3.42)

Also, we know that

FRACOE(Ti) = d(xi, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(xj , cj) + d(xk, ck) (3.43)

≤ d(g′
i, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(yk, cj) + d(xk, ck) (3.44)

≤ d(g′
i, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(yk, cj) + d(yj , ck) (3.45)

≤ d(g′
i, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(yk, ci) + d(ci, cj)+ (3.46)

d(yj , ck) (3.47)

≤ d(g′
i, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(yk, ci) + d(xi, ci)+ (3.48)

d(xi, cj) + d(yj , ck) (3.49)

≤ d(g′
i, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(yk, ci) + d(xk, ci)+ (3.50)

d(xi, cj) + d(yj , ck) (3.51)

≤ d(g′
i, ci) + d(gj , cj) + d(gk, ck) + d(gi, ci) + d(yk, ci) + d(xk, ci)+ (3.52)

d(xi, cj) + d(yj , ck) + d(xj , ck) + d(yi, cj) + d(g′
j , cj) + d(g′

k, ck) (3.53)

Combining the above two, we get:

FRACOE(Ti) ≤ OPT assign(Ti) +OPT assign(T ′
i ) (3.54)

Case 3: Here again, we will have two allocation rounds, namely Gi, G
′
i as shown in Figure

3.4 (c). It is easy to see that for this case,

FRACOE(Gi) ≤ OPT assign(T ′
i ) (3.55)

This completes the proof for k = 3.

The following proposition proves that 2-approximation guarantee is tight with respect to
the FRACOE algorithm.

Proposition 3.16. There is an instance with arbitrary centers and data points on which
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FRACOE achieves 2-approximation with respect to the optimal assignment.

Figure 3.5: The worst case example for fair clustering instance.

Proof. The worst case for any fair clustering instance can be the situation wherein rather
than choosing the data points from the center’s own set of optimal data points, it prefers
data points from other centers. One such example is depicted in Figure 3.5. In this
example, we consider k centers. For each of these centers, we have a set of n optimal data
points that are at a negligible distance (say zero), and these sets are denoted by Xi for
center ci except the last center ck. The set of optimal data points for center ck is located
at a distance ∆ such that ∆= (k − 1)δ where δ is the distance between all the centers.
Now, we will approximate the tightest bound on the cost. In the optimal assignment, each
cluster center will take data points from its optimal set of data points. Thus, the optimal
cost can be summed up as

OPT assign =
∑

xi∈X1

d(xi, c1) +
∑

xi∈X2

d(xi, c2) + . . .+
∑

xi∈Xk

d(xi, ck) (3.56)

= 0 + 0 + 0 + n∆ (3.57)

If one uses round-robin based FRACOE to solve an assignment problem, then at the start
of t = 0th round, each of the set Xi has n data points. Now since ∆ is quite large as
compared to δ so ck will prefer to choose data points from the set of previous center ck−1.
The remaining centers will take data points from their respective set of optimal data points
as those data points will have the least cost. This type of assignment will continue until
all the data points in set Xk−1 get exhausted. Thus, the cost after n/2 rounds will be

Cost1 =
∑

xi∈X1

d(xi, c1) + . . .+
∑

xi∈Xk−1

d(xi, ck−1) +
∑

xi∈Xk−1

d(xi, ck) (3.58)

= 0 + 0 + 0 + nδ

2 (3.59)

Now, as all the data points in set Xk−1 are exhausted, both ck−1 and ck will prefer to
choose the data points from set Xk−2. The other centers will still continue to choose
the data points from their respective optimal sets. It should be noted that now n

2 data
points are left with the center Xk−2 that are being distributed amongst 3 clusters. Such
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assignments will take place for the next n
6 rounds, and after that, the set Xk−2 will get

exhausted. The cost incurred to different centers in such an assignment will be

Cost2 =
∑

xi∈X1

d(xi, c1) + . . .+
∑

xi∈Xk−2

d(xi, ck−2) +
∑

xi∈Xk−2

d(xi, ck−1) (3.60)

+
∑

xi∈Xk−2

d(xi, ck) (3.61)

= nδ

6 + 2nδ
6 (3.62)

= 3nδ
6 = nδ

2 (3.63)

It is easy to see that the additional cost that is incurred at each phase will be nδ
2 until

the only left-out data points are from Xk. The total number of such phases will be k− 1.
Thus, exhibiting a cost of n(k−1)δ

2 . Further, at the last round all the data points from
Xk need to be equally distributed amongst X1, X2, . . . , Xk, incurring the total cost of
((k − 1)δ + ∆ + (k − 2)δ + ∆ + . . . + δ + ∆ + ∆)n

k . Thus, the total cost by FRACOE is
given as:

CostFRACOE
= n(k − 1)δ

2 + ((k − 1)δ + ∆ + (k − 2)δ + ∆ + . . .+ δ + ∆ + ∆)n
k

(3.64)

= n(k − 1)δ
2 + nk(k − 1)δ

2k + nk∆
k

(3.65)

= n(k − 1)δ + n∆ (3.66)

= 2n∆ (3.67)

Research gap: Theorem 3.14 suggests that the approximation ratio with respect to the
number of clusters k can be exponentially bad. However, our experiments show—agreeing
with our finding on small values of k(≤ 3)—that the performance of FRACOE does not
degrade with k. To assert a 2-approximation bound for general k, a novel proof technique
is needed, and we leave this analysis as an interesting future work. We conclude with the
following conjecture.

Conjecture 3.17. FRACOE is 2-approximate with respect to optimal τ -ratio fair
assignment problem for any value of k.

We note that FRACOE uses vanilla k-means/k-median algorithm followed by one round
of fair assignment procedure. It is left to show that the output of the returned by the
FRACOE algorithm indeed converges to approximately optimal τ -ratio allocation in finite
time. Convergence guarantees of vanilla clustering algorithms are well known in the
literature ([182, 183, 184]). As a fair assignment procedure, it performs corrections for all
available data points only once. Thus, FRACOE is bound to converge. This gives us the
following lemma.

Lemma 3.18. FRACOE algorithm converges.
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3.5.2 Guarantees for FRACOE for general τ

Given an instance T , centers C, and set of data points X, we start with a simple
observation that problem of solving τ -ratio fair assignment can be divided into two
subproblems:

1. Solving optimal 1/k-ratio fair assignment problem on subset of data points X1 ∈ X
such that |X1| =

∑
ℓ∈[m] kτℓnℓ.

2. Solving optimal fair assignment problem on X2 ∈ X \ X1 without any fairness
constraint.

Let us denote the first instance by T 1/k and second instance with T 0, i.e. T 1/k = {X1, C}
and T 0 = {X2, C}.

Figure 3.6: Set of data points X divided into instance T 1/k and T 0. Further the instances
T 1/k

f and T 0
f are depicted in the same set of data points X leading to formation of regions

P,Q,R.

Lemma 3.19. There exist two separate instances T 1/k with τ={1/k}mℓ=1 and T 0 with
τ={0}mℓ=1 such that solving the fair assignment problem on instance T can be divided into
solving fair assignment on these two instances, i.e., OPT assign(T ) = OPT assign(T 1/k) +
OPT assign(T 0).

Proof. The T instance requires that each cluster should have at least τℓnℓ number of data
points for each protected group value. The remaining data points can be allocated in
an optimal manner without any fairness constraint. Therefore in an optimal assignment,
there exists a set XOP T

1 such that |XOP T
1 | = ∑m

ℓ=1 τℓnℓk that satisfies the τ−ratio fairness
with τℓ = 1/k ∀ℓ ∈ [m].

Let Xf
1 be the set of data points that are allocated in line number 4 by Algorithm 2.

Further, let T 1/k
f be an instance to τ -ratio fair assignment problem with τ = {1/k}mℓ=1 and

consisting of data points Xf
1 and T 0

f be instance when τ={0}mℓ=1 by FRACOE (depicted
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in Figure 3.6). Then, our next lemma shows that the partition returned by FRACOE is
the optimal one.

Lemma 3.20. OPT assign(T 1/k
f ) +OPT assign(T 0

f ) ≤ OPT assign(T 1/k) +OPT assign(T 0)
for any partition T 1/k and T 0. Thus, OPT assign(T ) = OPT assign(T 1/k

f ) +
OPT assign(T 0

f ).

Proof. Let optimal fair assignment on the set of data points X create a partition along
the axis given by line ℓ1 in Figure 3.6. This partition gives us two set of instances T 1/k,
T 0 (as described earlier). Further, FRACOE achieves a partition along axis given by
line ℓ2 denoted by T 1/k

f , T 0
f . Now region Q contains the data points in the overlap of

T 1/k and T 1/k
f . As we are talking about the optimal assignment problem, these data

points will be assigned to the same centers and hence we can ignore these data points
for further analysis. Let the data points allocated to any center cj in T 1/k

f by FRACOE

in set R be Rj = {x1, x2, x3, . . . , xmj} and data points allocated to cj in partition P be
Pj = {y1, y2, y3, . . . , ymj}. Also, let g : Rj → Pj be a mapping function that maps any
data point xi assigned to center j with T 1/k

f to some data point yi assigned to same
center when partition under consideration is T 1/k. Then, we have OPT assign(T 1/k

f ) ≤
FRACOE(T 1/k

f ) = ∑k
j=1

∑mj

i=1 d(xi, cj) ≤ ∑k
j=1

∑mj

i=1 d(yi, cj) = OPT assign(T 1/k). This
is because for each xi ∈ Rj ,∃yj ∈ Pj such that despite point yi being available to
center cj , it chose the point xi. As other data points have no such constraint, we have,
OPT assign(T 0

f ) ≤ OPT assign(T 0).

Theorem 3.21. For k=2, 3 and any general τ vector, an allocation returned by FRACOE

guarantees τ -ratio fairness and satisfies (2(β + 2)OPT clust)-approximate guarantee with
respect to a fair clustering problem where β is approximation factor for the vanilla
clustering problem.

Proof. With the help of Lemma 3.19 the cost of FRACOE on instance Tf can be computed
as,

FRACOE(T ) = FRACOE(T 1/k
f ) + FRACOE(T 0

f ) (3.68)

Now, from previous Section 3.5.1, FRACOE(T 1/k
f ) ≤ 2OPT assign(T 1/k

f ).
Also, as T 0

f is solved for τ={0}mℓ=1 i.e. assignment is carried solely on the basis of
vanilla clustering (k-means/k-median), we have FRACOE(T 0

f ) = OPT assign(T 0
f ) ≤

2OPT assign(T 0
f ).

Equation 3.68 becomes,

FRACOE(T ) ≤ 2OPT assign(T 1/k
f ) + 2OPT assign(T 0

f ) (3.69)

≤ 2OPT assign(T ) (using Lemma 3.19)

≤ 2(β + 2)OPT clust(I) (using Lemma 3.8)
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3.6 Fair Round Robin Algorithm for Clustering (FRAC) –A
Heuristic Approach

We now propose another algorithm, a general version of FRACOE where the fairness
constraints are satisfied at each allocation round: Fair Round-Robin Algorithm for
Clustering FRAC (described in Algorithm 3). FRAC runs a fair assignment problem
at each iteration of a vanilla clustering algorithm. This may lead to the shuffling of data
points, affecting the position of next-step cluster centers. Also, modifying allocation does
not preserve the convergence guarantee of the vanilla clustering algorithm.

Algorithm 3: τ -FRAC
Input: set of data points X, number of clusters k, fairness requirement vector τ ,

range of protected group m, clustering objective norm p
Output: cluster centers C and assignment function ϕ

1 Choose the random centers as C
2 while UntilConvergence do
3 for each xi ∈ X do
4 ϕ(xi) = argminm d(xi, cm)
5 end
6 (C, ϕ) = FairAssignment(C,X, k, τ,m, p, ϕ)
7 end

Therefore, it is theoretically hard to analyze FRAC as it is an in-processing algorithm,
and each round’s allocation depends upon previous rounds, i.e., the rounds are
not independent. However, in experiments, we see that FRAC performs better
than FRACOE , and baseline methods on a wide range of real-world datasets. We
experimentally show the convergence of both FRAC and FRACOE on real-world datasets.
These empirical results suggest that either the worst-case instances for FRAC are
unrealistic or a significantly different proof technique is needed to show the convergence
guarantee. We leave this as an interesting future direction. As both FRACOE and FRAC
solve the fair assignment problem on top of the vanilla clustering problem, one can use
them to find fair clustering for center-based approaches, i.e., k-means and k-median.

3.7 Experimental Result and Discussion

We validate the performance of the proposed algorithms against state-of-the-art (SOTA)
approaches across many benchmark datasets listed below:

• Adult4 (Census)- The data set contains information of 32562 individuals from
the 1994 census, of which 21790 are males and 10771 are females. We choose five
groups as feature set: age, fnlwgt, education num, capital gain, hours per week. The
binary-valued protected group is sex, which is consistent with prior literature [42,
12, 11, 10]. The dataset ratio is 0.49.

4https://archive.ics.uci.edu/ml/datasets/Adult



62 Chapter 3. Group Fair Notion and Algorithms in Offline Clustering

• Bank5- The dataset consists of marketing campaign data of a Portuguese bank.
It has data of 41108 individuals, of which 24928 are married, 11568 are single, and
4612 are divorced. We choose six groups as the feature set: age, duration, campaign,
cons.price.idx, euribor3m, nr.employed. The ternary-valued feature ‘martial status’
is chosen as the protected group to be consistent with prior literature, resulting in a
Balance of 0.18 [42, 12, 11, 10].

• Diabetes6- The dataset contains clinical records of 130 US hospitals over ten years.
There are 54708 and 47055 hospital records of males and females, respectively.
Consistent with the prior literature, only two features: age, time in hospital are
used for the study [42]. Gender is treated as the binary-valued protected group
yielding a Balance of 0.86.

• Census II7- It is the largest dataset used in this study containing 2458285 records
from of US 1990 census, out of which 1191601 are males, and 1266684 are females.
We chose 24 groups commonly used in prior literature for this study [12, 10]. Sex is
the binary-valued protected group. The dataset ratio is 0.94.

Dataset
Name

#Cardinality #Feature
Attribute

Protected
Group

Protected
Group
Cardinality

Protected Group
Composition

Dataset
Ratio

Adult
(Census)

32562 5 gender binary 21790
males

10771
females

– 0.49

Bank 41108 6 marital
status

ternary 24928
married

11568
unmarried

4612
divorced

0.18

Diabetes 101763 2 gender binary 54708
males

47055
females

– 0.86

Census II 2458285 24 gender binary 1191601
males

1266684
females

– 0.94

Table 3.1: Characteristics for real-world datasets commonly used in the evaluation of
fair clustering algorithms. Number of feature groups excludes protected group and for
complete list of feature groups see Section 3.7.

The dataset characteristics are summarized in Table 3.1. We compare the application of
FRAC to k-means and k-median against the following baseline and SOTA approaches

• Vanilla k-means: An Euclidean distance-based k-means algorithm that does not
incorporate fairness constraints

• Vanilla k-median: An Euclidean distance-based k-median algorithm that does not
incorporate fairness constraints.

• Bera et al. [12]: The approach solves the fair clustering problem through an LP
formulation. Fairness is added as an additional constraint in the LP by bounding

5https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
6https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
7https://archive.ics.uci.edu/ml/datasets/US+Census+Data+%281990%29
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the minimum (minority protection see Definition 3.3) and maximum (restricted
dominance see Definition 3.4) fraction of data points belonging to the particular
protected group in each cluster. Due to the high computational complexity of the
k-median version of the approach, we restrict the comparison to the k-means version.
Furthermore, the algorithm fails to converge within a reasonable amount of time
when the number of clusters is greater than 10 for larger datasets.

• Ziko et al. [10]: This approach formulates a regularized optimization function
incorporating clustering objective and fairness error. It does not allow the user to
give an arbitrary fairness guarantee but computes the optimal trade-off by tuning a
hyper-parameter λ. We compare against both the k-means and k-median versions
of the algorithm. We observed that the hyper-parameter λ is extremely sensitive to
the datasets and the number of clusters. Further, tuning this hyper-parameter is
computationally expensive. We were able to tune the value of λ in a reasonable
amount of time only for adult and bank datasets for k-means clustering and a
varying number of clusters. Due to the added complexity of k-medians, we were
able to fine-tune λ only for the adult dataset. For the other cases, we have used
the hyper-parameter value reported by Ziko et al. (we refer to this as Ziko et al.
(untuned) version). We have used the same value across varying numbers of cluster
centers. The paper does not report any results for the diabetes dataset; we have
chosen the best λ value over a single run of fine-tuning. This value is used across all
experiments related to the diabetes dataset.

• Backurs et al. [11]: This approach computes the fair clusters using fairlets in an
efficient manner and is the extension of Chierichetti et al. [42]. This approach can
only be integrated with k-median clustering. Further, we could not compare against
k-median version of Chierichetti et al. [42] due to high computational (O(n2)) and
space complexities. We offset this comparison using Backurs et al. [11] that gives us
better performance than Chierichetti et al. [42].

We use the following popular metrics in the literature for measuring the performance of
the different approaches.

• Objective Cost: We use the squared Euclidean distance (p = 2) as the objective
cost to estimate the cluster’s compactness (see Definition 3.1).

• Balance: The Balance is calculated using Definition 3.2.

• Fairness Error [10]: It is the Kullback-Leibler (KL) divergence between the
required protected group proportion τ and achieved proportion within the clusters:

FE(C) =
∑

Cj∈C

∑
ℓ∈[m]

−τℓ log
(
qℓ

τℓ

)where qℓ =
(∑

xi∈Cj
I(ρ(xi) = ℓ)∑

xi∈X I(ρ(xi) = ℓ)

)
(3.70)
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The τ vector in fairness error captures the target proportion in each cluster for different
protected groups ℓ ∈ [m]. It is similar to the input vector τ for FRAC and FRACOE .
In Bera et al. [12], the target vector is denoted by δ (refer Section 3.7.3 for details on the
parameter δ). We report the average and standard deviation of the performance measures
across 10 independent trials for every approach. The code for all the experiments is
publicly available8. We begin the empirical analysis of various approaches under both
k-means and k-median settings for a fixed value of k (=10) in line with the previous
literature. The top and bottom rows in Figure 3.7 summarize the results obtained for the
k-means and k-median settings, respectively.
Observation for k−means:

• Ziko et al. [10] achieves the lowest objective cost but with poor performance on both
the fairness measures.

• FRAC and FRACOE achieves maximum Balance and zero fairness error with
significantly lower objective cost compared to Bera et al. [12].

Figure 3.7: The plot in the first row shows the variation in evaluation metrics for k=10
clusters. The objective cost is scaled against vanilla objective cost. For Ziko et al., the λ
values for k-means and k-median are taken to be the same as in their paper. The second
row comprises plots for k-median setting on the same k value. It should be noted that
Backurs et al. do not work for bank dataset which has a ternary valued protected group.
The target Balance of each dataset is evident from the axes of the plot. (Best viewed in
color).

Observations for k−median setting:

• Backurs et al. [11] results in fair clusters with high objective cost.
8https://github.com/shivi98g/Fair-k-means-Clustering-via-Algorithmic-Fairness
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Figure 3.8: The line plot shows the variation of evaluation metrics over a varying number
of cluster centers for k-means setting. The hyper-tuned variation of Ziko et al. is available
only for adult and bank datasets due to expensive computational requirements. For other
datasets, the hyper-parameter λ is taken the same as that is reported in Ziko et al.
paper, i.e. λ=9000, 6000, 6000, 500000 for Adult, Bank, Diabetes and Census II datasets
respectively. For similar reasons, Bera et al. results for Census-II are evaluated for k=5
and k=10. (Best viewed in color).

• Ziko et al. [10] achieves better objective costs trading off for fairness.

• FRAC and FRACOE obtain the least fairness error and a Balance that is equal to
the required dataset ratio (τℓ = 1

k ) while having comparable objective cost.

3.7.1 Comparison across a Varying Number of Clusters (k)

In this experiment, we measure the performance of the k-means version of the different
approaches across all the datasets as the number of clusters increases from 2 to 40. Figure
3.8 summarizes the results obtained for 2, 5, 10, 15, 20, 30, and 40 number of clusters on
all datasets. For the largest dataset, Census-II, results are obtained for only k = 5 and
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k = 10 due to the large time complexity of solving the LP problem.
Observations:

• Bera et al. [12] maintains fairness but with a much higher objective cost and fails to
return any solution for k = 2.

• Ziko et al. (tuned) objective cost is close to vanilla k-means on the Adult and Bank
datasets but at significant deterioration in fairness metrics.

• Ziko et al. (untuned) has high objective cost as well as fairness error indicating the
sensitivity to the hyper-parameter λ.

• FRAC gives the best result maintaining a relatively low objective cost without
compromising fairness.

• FRACOE has a marginal cost difference from FRAC with the same fairness
guarantees showing its efficacy.

• Theoretically FRACOE show approximation factor of 2k−1 but the experimental
performance does not degrade with increase in k. This validates our conjecture.

Figure 3.9: The line plot shows the variation of evaluation metrics over varying data set
size for k(=10)-means setting. The hyper-parameter λ=500K is taken the same as that is
reported in the Ziko et al. paper for the Census-II dataset due to expensive computational
requirements. For similar reasons, Bera et al.’s results for Census-II are evaluated at up to
500K. The target balance for Census-II is evident from plot axes, and the complete data
set size is 245.82× 104. (Best viewed in color).

3.7.2 Comparison across Varying Data Set Sizes

In this experiment, we measure the performance of k(=10)-means the version of different
approaches as the number of data points in the dataset increases. For this experiment,
we use the largest data set, Census-II. Figure 3.9 shows the plots for evaluation metrics
on varying dataset sizes increasing from 10000 to a complete size of 2458285 data points.
Due to the high computation requirements for Bera et al. [12] (refer Section 3.7.4), we
limit the results up to 500k data points. For Ziko et al., owning to high tuning time (refer
run time analysis section 3.7.4), we use the hyper-parameter value for Census-II reported
in Ziko et al. i.e. λ=500000 for complete dataset.
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Observations:

• Bera et al. maintains strict fairness at higher objective costs.

• Initially, objective cost in Ziko et al. increases with dataset size but decreases on
larger sizes (sensitive to hyper-parameter), but at significant degradation in fairness
metrics.

• FRAC and FRACOE achieve strict fairness guarantees with a slight increase in
objective cost from vanilla clustering.

3.7.3 Additional Analysis on Proposed Algorithms

In this section, we perform additional studies on FRAC and FRACOE to illustrate their
effectiveness.

FRAC vs FRACOE

FRAC uses round-robin allocation after every clustering iteration. On the contrary,
FRACOE applies the round-robin allocation only at the end of clustering. Both
approaches will result in a fair allocation but might exhibit different objective costs. We
conduct an experiment under the k(=10)-means setting to study the difference in the
objective costs for the two approaches. Like other experiments, we conduct this experiment
over ten independent runs and plot the mean objective cost (line) and standard deviation
(shaded region) at each iteration over different runs.
Observations: The plots in Figure 3.10 indicates that FRAC has a lower objective cost
at convergence than FRACOE . The plot for FRACOE follows the same cost variation
as that of vanilla k-means in the initial phase, but at the end there is a sudden jump
that overshoots the cost of FRAC (to accommodate fairness constraints). Thus, applying
fairness constraints after every iteration is better than applying it only once at the end.
The plot also helps us experimentally visualize the convergence of both FRAC and
FRACOE algorithms. It may be observed that the change in objective cost becomes
negligible after a certain number of iterations.

Impact of order in which the centers pick the data points

FRAC assumes an arbitrary order of the centers for allocating data points at every
iteration. We verify if the order in which the centers pick the data points impacts
the objective cost. We vary the order of the centers picking the data points for the
k(=10)-means clustering version. We report the objective cost variance computed across
100 permutations of the ten centers. Applying the permutations at every iteration in
FRAC is an expensive proposition. Hence, we restrict the experiment to the FRACOE

version. The variance of the 100 final converged objective costs (averaged over ten trials)
is presented in Figure 3.11 (a).
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Figure 3.10: The cost variation over the iterations for different approaches in
k(=10)-means.

(a) (b)

Figure 3.11: (a) Bar plot shows the variance in objective cost over different 100 random
permutations of converged centers returned by vanilla k-means clustering in FRACOE .
(b) k-means runtime analysis of different SOTA approaches on the Adult dataset for k=10.

Observations: It is evident from the plot that the variance is consistently extremely
small for all datasets. Thus, we conclude that FRACOE (and FRAC by extension) is
invariant to the order in which the centers pick the data points.

Comparison for τ -ratio on fixed number of clusters(k)

All the experiments till now considered the Balance to be the same as the dataset ratio
(τℓ = 1

k ). But FRAC and FRACOE can be used to obtain any desired τ -ratio fairness
constraints other than dataset ratio. The results for other τ vector values on k=10 number
of clusters are reported in Table 3.2. We compare the performance of the proposed
approach against Bera et al. It is only the SOTA approach that allows for the desired
τ -ratio fairness in a restrictive manner. Bera et al. reduces the degree of freedom using
δ parameter that controls the lower and upper bound on number of data points needed
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in each cluster belonging to a protected group. Experimentally δ can take values only
in terms of dataset proportion rℓ for protected group ℓ ∈ [m], i.e. with lower bound as
rℓ(1 − δ) and upper bound as rℓ

(1−δ) . Further, δ needs to be the same across all the
protected groups, making it infeasible to achieve different lower bounds for each protected
group. Thus Bera et al. cannot be used to have any general fairness constraints for each
protected group and can act as a baseline only for certain τℓ values. In Table 3.2, we
present results for the τ corresponding to δ=0.2, 0.8.
Observation: Our algorithms can achieve any generalized τ vectors like [0.25, 0.12].
Such vectors make more sense in real-world applications, like requiring at least 25% male
and 12% female data points in each cluster. The objective cost obtained by FRAC and
FRACOE is comparable to Bera et al., but the work by Bera et al. is extendible to multiple
multi-valued protected groups.

Dataset τ- vector
FRAC

Objective Cost

FRACOE

Objective Cost

Bera et al.

δ

Value
Objective Cost

Adult
<0.133, 0.066 > 9804.65 ± 221.05 9616.51 ± 111.49 0.8 9515.30 ± 19.94
<0.535, 0.264 > 10010.39 ± 211.27 10011.78 ± 239.73 0.2 9788.73 ± 23.32
<0.25, 0.12 > 9870.93 ± 261.24 9714.06 ± 157.45 Cannot be computed

Bank
<0.121, 0.056, 0.022 > 9210.38 ± 640.76 9043.51 ± 461.23 0.2 9588.30 ± 48.82
<0.485, 0.225, 0.089 > 10982.63 ± 1228.28 11317.61 ± 1310.32 0.8 8472.65 ± 37.30
<0.25, 0.10, 0.04 > 9548.68 ± 540.86 9465.35 ± 476.88 Cannot be computed

Table 3.2: k-means objective cost for τ -ratio for adult and bank dataset for k=10 clusters.

3.7.4 Run-time Analysis

Finally, we compare the run-time of the different approaches for the k(=10)-means
clustering versions on the Adult dataset. The average run-time over 10 different runs
is reported in Figure 3.11 (b).
Observations:

• Run-time of FRAC is significantly better than the fair SOTA approaches.

• Ziko et al. (tuned) runtime is quite high due to hyperparameter tuning.

• Ziko et al. (untuned) is comparable to vanilla clustering but at deterioration in
fairness (seen in previous sections).

• FRACOE has a marginal difference from vanilla runtime as it applies a single round
of fair assignment.

• Bera et al. being LP formulation has higher complexity and requires double the time
of FRAC.

Motivated by Kriegel et al. [185], we further study the runtime behaviour across varying
numbers of data points and varying numbers of clusters. For the scalability study, we
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perform the analysis using Census-II as it is the largest dataset. We use the same
hyper-parameter value (λ=500000) for Ziko et al. in this study.

Runtime comparison with number of cluster(k)

In this study, we conduct an experiment to find the variation in runtime as the number of
clusters k varies from 2 to 40. We observe the results for 2, 5, 10, 15, 20, 30 and 40. From
the results summarized in Figure 3.12, we can observe that Bera et al. has a significantly
high execution time. Thus, we limit the results up to k(=5, 10)-clustering. As pointed out
in the previous section Bera et al., LP fails to converge for k=2.

Figure 3.12: The line plot shows the variation of runtime over a varying number of clusters
(k) for k-means setting on the complete dataset. The hyper-parameter λ=500000 is taken
the same as that is reported in Ziko et al. paper for the Census-II dataset due to expensive
computational requirements. For similar reasons, Bera et al. results for Census-II are
evaluated for k=5 and k=10. For better visualization, the results are zoomed out for
approaches other than Bera et al. (Best viewed in color).

Observations:

• FRACOE has runtime close to vanilla clustering.

• Ziko et al., even in untuned version has runtime close to FRAC. Tuning will result
in a significant increase in overall runtime.

• Bera et al. has significantly higher runtime.

Runtime comparison across varying data set size

We study the scalability of different approaches to increase in the data set size for k=10.
For Bera et al., plots in Figure 3.13 reveal that the run time significantly increases even
with 500, 000 data points in the data set. So, we limit the study to this size.
Observations:

• Ziko et al. (untuned) runtime is close to vanilla clustering. However, the gap increases
after a certain dataset size.
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Figure 3.13: The line plot shows the variation of runtime over varying dataset size (up
to complete dataset size of 245.82 × 104) for k=10-means setting. The hyper-parameter
λ=500000 is taken the same as that is reported in Ziko et al. paper for the Census-II
dataset due to expensive computational requirements. For similar reasons, Bera et al.
results for Census-II are evaluated for dataset sizes of 10, 000, 50, 000, and 100, 000. (Best
viewed in color).

• FRACOE follows a trend slightly close to vanilla clustering and does not deteriorate
with size, showing its efficiency.

• FRAC has a run time larger than vanilla clustering but is comparable to untuned
Ziko et al..

• Tuning Ziko et al. will result in additional overhead.

3.8 Experimental Validation of Relationships between
Fairness Levels and their Notions

This section validates the established theoretical underpinnings between different group
fairness notions in Section 3.3. This is followed by the relationship between the group and
individual fairness levels.

3.8.1 Relationship between Group Fairness Notions

Now, we empirically examine the relationship between different group fairness notions on
adult and bank datasets. We fix k=10 and consider k-means clustering.
Many existing algorithms achieving group fairness are either limited to binary-protected
groups [42, 11], require extensive hyper-parameter tuning [10, 93], or have high
computational complexities [12, 13, 92, 95, 96]. So, we use our proposed polynomial-time
algorithm FRACOE [44], which supports multi-valued protected group for the study.
The FRACOE takes an input value τa for each protected group value a ∈ [m] (see
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Definition 3.5). We now ask the question - Does satisfying the τ -ratio fairness notion
helps to achieve other group fairness notions? To answer this, we vary τa from 0 to 1/k
(maximum achievable value) and study the induced levels of other group fairness notions.
For simplicity, we fix τa to be a constant for all possible group values. The results on
both datasets are averaged on five independent runs and plotted in Figure 3.14 along with
standard deviation. From the plots, it is clear that the clusters satisfying τ -ratio fairness
also satisfy high Balance guarantees, maintain lesser restricted dominance, and promote
minority protection. The highest value of τa leads to maximally balanced clusters (dataset
ratio).
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Figure 3.14: Induced group fairness values on k(=10)-means. (Best viewed in color)

We execute the linear program (LP) by Bera et al. [12] formulated to satisfy MP and
RD and observe the τ -ratio fairness level. A remarkable observation is that satisfying MP
and RD can lead to a degenerate value of τ -ratio fairness. This will happen when one
cluster has very few data points from each group (maybe 1), and other clusters contain
more data points, resulting in highly skewed clusters. Skewed clusters can be problematic
in some cases. For example, in problems like direct marketing campaign [181], group
fair clustering can be used to segment customers. Highly skewed clusters might not be
profitable to invest in for customized solutions. However, using τ -ratio fairness guarantees
a minimum number of data points (customers) from each group, i.e., a minimum cluster
size while maintaining Balance (induced). This shows that τ -ratio is a stronger notion.

3.8.2 Relationship between Individual Fair Notions

We next show the connection between individual fairness notions. The results directly
follow from definitions.

Result 3.22 (1). If xi ∈ X is α-PP then xi is also α-Ag.

Proof. Since the average value of a set is always larger than the minimum set value, we
have:

min
x′

i∈S(xi)
d(x′

i, ϕ(x′
i)) ≤

∑
x′

i∈S(x) d(x′
i, ϕ(x′

i))
|S(x)| .
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Therefore, if xi is α-PP fair, then xi is also α-Ag fair.

3.8.3 Relationship between Group and Individual Fairness Level

The two fairness levels arose independently in fair clustering literature. Nonetheless, many
real-world applications demand satisfying both group and individual fairness. In direct
marketing, the corporate house’s diversity policy necessitates group fairness. But at the
same time, customers might feel discontented if people in their similarity set belong to a
different cluster than their own (hence offering different benefits). Thus, there is a need
to study the relationship between the two levels.
Recent attempts [64, 65] explore this direction and propose instances that show the
conflicting nature of both the fairness levels, i.e., satisfying one might adversely affect the
other. To understand this, consider a dataset with data points split across two far-apart
clusters, with each cluster containing data points from one protected group (as illustrated
in Figure 3.15(a)). Group fair clustering will try to place the cluster centers in between
the two clusters. On the contrary, the original cluster centers will also serve as optimal
individual fair centers when the individual fairness notions depend on distance-based
similarity. Thus, showing both fairness as conflicting problems.
We experimentally study the induced individual fairness effect by trying to satisfy group
fairness. The reverse trend follows without loss of generality. We use k-means version of
FRACOE algorithm for k=10. We report the maximum deviation value (i.e., α in α-FR)
and the fraction of data points satisfying the α-FR (Definition 2.6) with α=1 to the total
number of data points. Figure 3.15 (b) shows the mean and standard deviation over five
runs. The plots show that both fairness levels are not strictly in conflict when evaluated on
real-world datasets. They both induce certain levels of fairness in the clusters. For both
datasets, the number of data points having strict individual fairness of having a center
within a given radius increases significantly with an increase in τ . Further, this shows
that very few data points have large violations, i.e., the maximum α value reported limits
to a small set of data points. We study the direction of approximating multiple fairness
levels in next chapter in detail.

3.9 Conclusion

The chapter proposed a novel τ -ratio fairness notion. The new notion is a stricter variation
of the existing group fairness notion and admits an efficient round-robin algorithm to the
corresponding fair assignment problem. We also showed that our proposed algorithm,
FRACOE , (i) achieves 2(β+2)-approximate solution up to three clusters, and (ii) achieves
2k−1(β + 2)-approximate guarantees to general k with τ=1/k for all protected group
values. Current proof techniques for k ≤ 3 require intricate case analysis, which becomes
intractable for larger k. However, our experiments show that FRACOE and FRAC
outperform SOTA approaches in objective cost and fairness measures even for k >3. We
also prove the cost approximation for the general τ vector and show convergence analysis
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Figure 3.15: (a) Example illustrating conflicting group and individual fair clustering. Here
C1, C2 are individual fair centers separated by large distance D, and C ′

1, C
′
2 are group fair

centers. (b) Induced α-FR individual fairness values on k(=10)-means.

for FRACOE . Other than these, the chapter also experimentally validates the relationship
between τ -ratio and existing group fairness notions. The results on real-world datasets
show that satisfying τ -ratio also ensures Balance, MP and RD properties, showing the
strictness of the proposed notion. We also show that though individual and group level
fairness seems complementary. However, our results on real-world datasets show that using
FRACOE with τ -ratio fairness induces a certain level of individual fairness. It motivates
us to carefully investigate multiple levels of fairness, particularly in real-world settings. We
will study this direction in the next chapter on facility location problems. An immediate
future direction is to analytically prove 2(β + 2)-approximation guarantee for general k.
Other interesting future directions include extending the current work to multi-valued
multiple protected groups like the one proposed by Bera et al. [12] or achieving group
fairness in strategic settings [186] or under the presence of noisy feedback for protected
group values [187].



Chapter 4

Balancing Fairness and Efficiency
via Novel Welfare Perspective

Abstract

The Facility Location Problem (FLP) identifies the most suitable facility locations and
assigns agents to different facilities. Recent studies shows evidence of biases in facility
location problem based on agents’ group memberships, such as gender or income, resulting
in adverse consequences. Group fairness ensures that each facility is assigned a minimum
fraction of agents from every group. In order to foster a more individually equitable
allocation of agents to facilities, we adopt a novel formulation motivated by Nash social
welfare instead of considering standard utilitarian or egalitarian approaches. We propose
an efficient and scalable algorithm called FAIRLOC (Fair Algorithm for Facility Location)
that minimizes the product of distances (or costs) of agents to assigned facilities while
obeying group fairness constraints. We theoretically provide approximation bounds on
cost with respect to optimal fair allocation and show that FAIRLOC achieves a quadratic
approximation in the product-based objective function. With the help of extensive
experimentation of real-world U.S. geography datasets using Open Source Routing Machine
(OSRM) roadmaps, we show that FAIRLOC achieves significantly lower costs and better
group and individual fairness metrics than state-of-the-art methods.

4.1 Introduction

Motivated by the success of achieving group fairness in clustering, we look into a real-world
application of the facility location problem in this chapter. The problem addresses the
practical challenge of determining the most suitable locations for facilities (such as shops,
offices, etc.) to serve the needs of agents (consumers/workers) [188]. Closely related
to clustering, it requires finding facility opening locations (centers) that minimize the
travel time (or cost) for agents (data points) to access the facility. Prior works have even
attempted solving facility location problems using clustering [88]. We build upon this
direction and look into the facility location problem, particularly with agents preferring a
facility closer to them. To understand the need for fairness constraints while identifying

The paper from this chapter is under review.
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optimal locations in FLP, consider the following scenario:- Suppose the federal government
wants to set up k public shelters for refugees across their states. The agents (refugees)
currently are spread around in different locations across these states, and the primary
objective of government planners is to strategically locate the shelters to reduce agents’
distance to assigned facilities. Additionally, to prevent discontent and negative feelings
among state agencies and nearby residents, government planners must ensure that no
facility becomes dominated by agents of a specific type (say, based on protected groups
such as race or ethnicity). Recent studies have revealed the existence of favouritism
toward certain groups of agents based on sensitive attributes (or protected groups) such
as gender, age, income level, race, etc. [189, 190, 191, 192]. For example, member states
in the European Union (EU) have pledged to host a minimum number of relocations
to ensure solidarity and a fair share of responsibility. It has resulted in strengthened
partnerships and efficient asylum systems. To further improve the effectiveness of such
schemes, Efthymiou [193] argue that refugees can be better protected and integrated if the
EU focuses on constraining the number of refugees from specific protection, say religion
or ethnicity, rather than just extensively maximizing quota numbers. The main argument
to support the need for balanced representation (which they call robust conception) is
as follows: First, in the case of breading agents of a single type, due to geopolitical and
socioeconomic factors, is short-sighted. Such states might shift their commitment once the
associated rewards get altered. Secondly, a more balanced representation of refugees at
each shelter reduces the chances of minorities (across the state) feeling biased and misled.
Instead, it fosters trust and long-term commitment and embarks a healthy sensation in
the minds of refugees.
A need for balanced assignments has also been observed in the supermarket chains
[194, 195, 196, 197], vaccine distribution sites, dialysis centers, and emergency rooms
[198, 199, 200]. To tackle the need for the desired level of coverage, this chapter considers
group fairness notion, which ensures a minimum representation of agents from each
protected group value (say male and female in gender) at every facility. Additionally,
most facility location problem research has emphasized objectives such as utilitarian (sum
of distances of agents to assigned facilities) or egalitarian (minimizing the maximum
distance). This work proposes a novel adaptation of the Nash social welfare to the facility
location problem. Nash social welfare is a well-studied notion in various fair resource
allocation and fair division literature [201, 202] and involves the product of the costs.
Nash social welfare provides a balance between utilitarian and egalitarian objectives and
prefers a more balanced assignment profile (in terms of distances to facilities) of all agents
than a skewed one. In particular, the key contributions of our Nash social welfare
modelling are as follows:

• Proposing a first-of-its-kind application of modeling Nash social welfare to facility
location problem to target a more equitable allocation of agents to facilities by
minimizing agents’ distance under group fairness constraints.

• Proposing an efficient algorithm, FAIRLOC that solves facility location problem in
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h-dimensional space and maximizes Nash social welfare subject to group fairness
constraints. FAIRLOC does not make any assumptions on facility locations and allows
the use of an explicit facility opening locations set.

• Theoretically, FAIRLOC achieves a bounded approximation on cost guarantees to
optimal fair allocation.

• FAIRLOC performs significantly better on individual and group fairness metrics with
lower costs as compared to state-of-the-art methods on near real-world testing on the
United States census dataset with road maps providing the actual car road distances
between agents and facilities.

4.2 Related Work

4.2.1 Facility Location Problem

Facility location problems have seen continuous development for the past decades, and for
more details, readers can refer to [203, 204]. Despite being an NP-Hard problem [205],
the solutions to facility location problem include approximation algorithms [206], integer
(or mixed) integer programming [207], greedy algorithms [208], clustering [88], and others.
The past literature has primarily tackled the facility location problem by optimizing either
the egalitarian (the maximum distance of any agent) or the utilitarian objective (the sum
of distances of all agents) [209, 210, 211].

4.2.2 Fairness in Facility Location Problem

Marsh and Schilling [212] reviews existing metrics for addressing group fairness and
concludes that there is no universal consensus on a single metric, and the choice of metric
depends on the application and problem. In this chapter, we use our proposed τ -ratio
metric for clustering, which is a stricter notion of group fairness. Also, the choice is driven
by its success in achieving a polynomial time algorithm in the clustering setup. Prior
works, such as Li et al. [213] and Zhou et al. [214], explore group fair facility location
problem in one-dimensional space and are limited to settings where only one facility needs
to be placed (i.e., 1-facility problem). Jung et al. [88] introduced the notion of fairness
based on the density of agents in the space. The authors proved that achieving this
notion of fairness while maintaining the standard utilitarian objective is NP-hard, and
they proposed a 2-approximation algorithm to satisfy this fairness objective. The concept
later became widely known as individual fairness [97, 215, 91]. One of the closest works
using Nash social welfare in facility location problem is by Lam et al. [202], which is
limited to agents in a one-dimensional space and one facility. We employ a Nash social
welfare-based formulation to achieve standard facility location problem goals while opening
multiple (k) facilities and obeying the notion of group fairness.
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4.3 Preliminaries

In this section, we mainly discuss the notations and definitions that will help better
understand the proposed algorithms and its theoretical guarantees.

4.3.1 The Model and Notation

Let X ⊆ Rh be a set of n agents located in any h-dimensional space. Each agent is
associated with a single protected group, such as gender or income level, which can take
a value from the set of m values denoted by [m]. The mapping function ρ : X → [m]
provides the protected group of each agent. Let nℓ, Xℓ be the number and set of agents
from group ℓ. Also, we denote the set of facilities to be opened as L ⊆ F of k facilities
(say, hospitals). The primary goal is to find a set L and design an assignment function
ϕ : X → L. We capture an agent’s preference for different facilities as closeness between
the agent’s location (xi ∈ X) to their assigned facility (f ∈ F ) and is measured using
distance metric d : X × F → R+ ∪ {0}.

4.3.2 Fairness in Facility Location Problem

Group Fairness To tackle group fairness, we chose τ -ratio [44], which we now redefine
for the sake of completeness and better readability.

Definition 4.0 (τ -ratio Fairness)
An assignment function ϕ obeys τ -ratio fairness if for a given vector τ =
{τ1, τ2, . . . , τℓ, . . . , τm} and ∀f ∈ L we have:

∑
xi∈Xℓ

I(ϕ(xi) = f) ≥ τℓnℓ ∀ℓ ∈ [m]

Individual Fairness Since optimizing Nash social welfare prefers more equitable
assignments, we would also like to see how FAIRLOC performs on individual fairness metrics
[88]. We use the α-FR notion and redefine it as follows:

Definition 4.1 (Individually Fair Radius (r))
Given X, ϕ with metric d, for every agent xi ∈ X, we define fair radius r(xi) as the
minimum distance around xi such that |B(xi, r(xi))| ≥ ⌈n/k⌉ where B(xi, r(xi)) =
{xj ∈ X : d(xi, xj) ≤ α · r(xi)}.
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4.3.3 Welfare Functions

Definition 4.2 (Utilitarian Objective)
This objective minimizes the total distance (or cost) of all agents, i.e.,
minL,ϕ

∑
xi∈X

(
d(xi, ϕ(xi))

)
.

Definition 4.3 (Egalitarian Objective)
This objective minimizes the maximum distance of an agent, i.e.,
minL,ϕ(maxxi∈X

(
d(xi, ϕ(xi))

)
).

Motivated by the success of Nash Social Welfare in social choice theory, we adapt the
welfare function to facility location problems to minimize the distance of each agent to
the assigned facility.

Definition 4.4 (Nash Social Welfare)
This objective minimizes the product (or geometric mean) of distances of agents,
i.e.,

min
L,ϕ

NW (X,F, ϕ) = min
L,ϕ

( ∏
xi∈X

d(xi, ϕ(xi))
)1/n

(4.1)

Nash objective results in more equitable and evenly distributed allocations i.e. it does
not favour allocations in which an increase in an agent’s cost is significantly more than
a decrease in any other agent’s cost. In contrast, utilitarianism focuses on the sum of
distances and allows a substantial reduction in an agent’s cost that can be compensated
by increased costs incurred for others. Thus, Nash’s welfare is more individually fair than
utilitarian. In the next section, we discuss in detail the proposed algorithm, which we
call FAIRLOC- Fair Algorithm for Facility Location that optimizes Nash welfare cost while
obeying group fairness (τ -ratio fairness) constraints.

4.3.4 Proposed Mathematical Model

Our optimization problem with zx,f and yf as decision variables is given as:

min
zx,f ,yf

( ∏
x∈X

(
∑
f∈F

d(x, f) · zx,f )
)

(4.2)

s.t.
∑
f∈F

zx,f = 1, ∀x ∈ X (4.3)

∑
f∈F

yf = k (4.4)

zx,f ≤ yf , ∀f ∈ F,∀x ∈ X (4.5)

τℓnℓyf ≤
∑

x∈Xℓ

zx,f , ∀ℓ ∈ [m] ∀f ∈ F (4.6)
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Equation 4.2 corresponds to the objective function. The constraints in Equations 4.3 and
4.4 ensure that each agent is assigned to exactly one facility and exactly k facilities are
opened, respectively. While the constraints in Equations 4.5 and 4.6 ensure that a facility
is opened if an agent is assigned to it and group fairness constraint respectively.

4.4 Proposed Algorithm: FAIRLOC

Facility location and clustering are hard problems, so approximation algorithms are
proposed in the literature [216, 42]. Our algorithm is motivated by FRACOE – designed to
minimize utilitarian objective subject to τ−fairness constraint. FRACOE for clustering
works by allocating agents according to their distance from each protected group in a
round-robin fashion to the centers obtained by traditional clustering algorithms.
Difference between FAIRLOC and FRACOE . FAIRLOC uses the same approach as

FRACOE but replaces the traditional clustering algorithm with the algorithm that focuses
on optimizing Nash social welfare. It must be noted that while the FAIRLOC looks similar
to that of FRACOE , the theoretical guarantees of FRACOE are no longer applicable due
to the change in the objective function. Further, while FRACOE makes an assumption
that available facility locations set F coincide with agent location set X, FAIRLOC does
not use this assumption. The complete pseudo-code for FAIRLOC method is provided in
the Algorithm 4.
FAIRLOC computes the initial facility locations L (Initial Nash Locations) by starting
with random initialization of k facilities and assigning an agent to the closest facility. Once
all the agents are allocated to the initial facilities, let Xf denote the set of data points
assigned to facility f . The new location corresponding to the location f is updated as

follows (Update Nash Locations): f
′ = argminf ′ ∈F

(∏
xi∈Xf

d
(
xi, f

′
))

resulting in

formation of set L′ . These steps are repeated until convergence or maximum iterations T .
Initial Nash Locations finally returns a converged set of facility locations denoted by
L.
Note that when F = X, minimizing the traditional utilitarian function for the update
rule is comparatively easier, as the mean of the data points minimizes the sum of the
distances [217]. However, when F ̸= X and the objective is to minimize the product of
distances, solving the derivatives of the objective does not lead to a closed-form solution.
When distance metric is d(xi, f) = || log(xi) − log(f)||2 [218], then it can be shown that
geometric mean minimizes the product of distances when F = X. One way to convert F
= X setting to F ̸= X setting is by mapping each facility obtained from the first setting
to the nearest setting in set F . However, it may not lead to optimal values of respective
objective function values. In the current work, for theoretical guarantees, we use standard
p-norm metric such as Euclidean distances, which are known to hold desirable properties
such as triangular inequalities, symmetric, and positiveness. However, FAIRLOC will work
for any distance metric. FAIRLOC update the best possible location within each set of
assignments for a particular facility by trivially checking among all possible locations as
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Algorithm 4: FAIRLOC
Input: set of agent location X, set of possible facility opening locations F , number

of facilities to open k, group fairness requirement τ , protected group function
ρ, distance function d, maximum iterations T

Output: assignment function ϕ, facility opening location set L
1 Initialize ϕ[xi]← Φ ∀xi ∈ X
2 L, ϕ̂← Initial Nash Locations(X,T, F )
3 //Reassignment to satisfy τ-fairness.
4 for ℓ ∈ [m] do
5 Xℓ ← {xi : xi ∈ X and ρ(xi) = ℓ} ; nℓ ← |Xℓ|
6 for r ← 1 to τℓnℓ do
7 for f ∈ L do
8 xi ← argminxi∈Xℓ: ϕ[xi]=Φ d(xi, f)
9 ϕ[xi] = f

10 end
11 r = r + 1
12 end
13 end
14 for xi ∈ X do
15 if ϕ[xi] = Φ then
16 ϕ[xi]← ϕ̂[xi]
17 end
18 end
19 L = Update Nash Locations(X, ϕ, F)
20 return ϕ,L

evident in line 4 of Algorithm 6. Note that such a brute search will not be computationally
expensive as in most real-world settings, the number of facilities to open k and the size of
explicit possible locations (F ) is quite less compared to the size of X.
After computing the facility locations (L) and initial assignment (ϕ̂), we convert the fair
facility location problem to a fair facility assignment problem. The goal of the assignment
problem is to redistribute the agents to facilities in L set to maintain τ -ratio fairness. We
theoretically show through the following lemma that converting the fair facility location
problem to a fair facility assignment problem leads to a quadratic approximation when
the objective is a product of distances (or two approximation of the logarithmic sum of
distances).

Lemma 4.1. Let I be an instance of a fair facility location problem and T an instance
of τ -ratio fair assignment problem after applying an β-approximate solution to the vanilla
(unfair) facility location problem, then OPT assign(T ) ≤ ((2n + 1)β)1/n(OPT F LP (I))2.
Here OPT F LP (·) denotes the Nash cost for the fair facility problem and OPT assign(·) for
the fair assignment problem on the input instance.

Proof. Let L be the facility locations obtained by running a vanilla facility algorithm on
instance I. The proof of the Lemma depends on the existence of an assignment ϕ satisfying
τ -ratio fairness such that NW (X,F, ϕ) ≤ ((2n +1) ·β)1/n ·(OPT F LP (I))2. Then it follows
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as OPT assign(T ) ≤ NW (X,F, ϕ) ≤ ((2n + 1) · β)1/n · (OPT F LP (I))2

To this, let (F ∗, ϕ∗) denote the optimal solution to I. Define ϕ as follows: for every
f∗ ∈ F ∗, let nrst(f∗) = argminf∈F d(f, f∗) be the nearest center to f∗. Then, for every
xi ∈ X, define ϕ(xi) = nrst(ϕ∗(xi)). Then we have the following two claims:

Claim 4.2. ϕ satisfies τ -ratio fairness.

Proof. The proof is same as the Claim 3.9 from previous chapter.

Claim 4.3. NW (X,F, ϕ) ≤ ((2n + 1) · β)1/n · (OPT F LP (I))2

Proof. For agent xi ∈ X, we have f̂ = ϕ̂(xi) as facility location after applying vanilla
(unfair) facility location solution, f as facility location after using FAIRLOC’s (including
fairness procedure), and f∗ be the facility location using fair optimal facility location
solution. Then we have,

d(xi, f) = d(xi, nrst(f∗)) ≤ d(xi, f
∗) + d(f∗, nrst(f∗)) ≤ 2 · d(xi, f

∗) + d(xi, f̂ ) (4.7)

The above equations use triangular inequalities and the definition of nrst(·). We now look
into the bound on the complete set of agent locations x ∈ X. Therefore, we have,

(
n∏

i=1
d(xi, f)

)1/n

≤
(

n∏
i=1

(
2 · d(xi, f

∗) + d(xi, f̂ )
))1/n

(using Equation 4.7)

Now for ease of reading consider ai = 2 · d(xi, f
∗) and bi = d(xi, f̂ ). So one needs to

expand the term of the form ∏n
i=1(2ai + bi). We bound this as follows:

n∏
i=1

(2ai + bi) =
n∏

i=1
2 · ai + 2 · a1 ·

∏
j ̸=1

bj + 2 · a2 ·
∏
j ̸=2

bj + . . .+ 22 · a1 · a2 ·
∏

j ̸=1,2
bj + · · ·+

n∏
i=1

bi

(4.8)

Now, we know that ∏n
i=1 2 · ai ≤ 2n · (OPT F LP (I))n and ∏n

i=1 bi ≤ β · (OPT F LP (I))n

where β is the approximation factor of vanilla (unfair) facility location problem. Using
these two results, we provide a quite loose upper bound on the other 2n−1 terms such as
for a1 ·

∏
j ̸=1 bj ≤ β(OPT F LP (I))2n. Similarly, applying for all inner 2n−1 terms involved

in the expansion, we get as below:

n∏
i=1

(2ai + bi) ≤ 2n · (OPT F LP (I))n + 2 · β · (OPT F LP (I))2n + . . .+ 22 · β · (OPT F LP (I))2n

+ . . .+ β · (OPT F LP (I))n (4.9)

≤ 2n · (OPT F LP (I))n + 2n−1 · 2 · β · (OPT F LP (I))2n + β · (OPT F LP (I))n

(4.10)
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Algorithm 5: Initial Nash Locations
Input: set of agent location X, set of possible facility opening locations F ,

maximum iteration T
Output: converged facility opening location set L

1 L← Choose k random agent location from F
2 while t < T or L ̸= Lprev do
3 for xi ∈ X do
4 ϕ(xi) = argminf∈L d(xi, f)
5 end
6 L

′ ← Update Nash Locations(X, ϕ, F )
7 Set Lprev = L; L = L

′ ; t = t+ 1;
8 end
9 return L

Algorithm 6: Update Nash Locations
Input: set of agent location X, assignment function ϕ, set of possible facility

opening locations F
Output: updated facility opening location set L′

1 Initialize L′ ← Φ;
2 for f ∈ L do
3 Xf = {xi : xi ∈ X and ϕ(xi) = f}
4 ℓ

′ = argminℓ′ ∈F (∏xi∈Xf
d(xi, f

′)) L′ ← L
′ ∪ {ℓ′}

5 end
6 return L

′

= 2n · (OPT F LP (I))n + 2n · β · (OPT F LP (I))2n + β · (OPT F LP (I))n

(4.11)

≤ 2n · (OPT F LP (I))2n + 2n · β · (OPT F LP (I))2n + β · (OPT F LP (I))2n

(4.12)

≤ ((2n + 1) · β) · (OPT F LP (I))2n (4.13)

=⇒
(

n∏
i=1

d(x, f)
)1/n

≤
(

(2n + 1) · β
)1/n

·
(
OPT F LP (I)

)2

(4.14)

=⇒ NW (X,F, ϕ) ≤
(

(2n + 1) · β
)1/n

·
(
OPT F LP (I)

)2

(4.15)

To efficiently solve the assignment problem, we fix a random ordering (experimentally
performance invariant, Section 4.6.6) over the facilities. Then, FAIRLOC allocates the
available agent with the lowest distance to each facility in a round-robin fashion for
τℓnℓ, ∀ℓ ∈ [m] rounds to each facility. Here nℓ is the number of agents of type ℓ in
the dataset. This ensures group fairness guarantee by distributing at least a τℓ fraction
of agents at each facility. The remaining agents are allocated by assigning the agent
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to the location that minimizes its distance (or cost), i.e., (ϕ = ϕ̂). Next, we provide
approximation bounds on the FAIRLOC’s assignment.

4.5 Theoretical Results

We now provide the theoretical guarantees of FAIRLOC with respect to τ -ratio fairness. We
first provide guarantees for maximally balanced facilities, i.e. τℓ = 1/k ∀ℓ ∈ [m] setting
and later extend these to general τ vector.

Theorem 4.4. Let k = 2 and τℓ = 1
k for all ℓ ∈ [m]. An allocation returned by FAIRLOC

guarantees τ -ratio fairness and satisfies 31/4ϑ3/4(OPT assign)2-approximation guarantee
to the product of distances with respect to an optimal fair assignment with ϑ being an
instance-dependent multiplicative constant.

Proof. Correctness and Fairness: Clear from the construction of the algorithm.
Proof of (approximate) Optimality: We will prove the approximation with respect to
each value ℓ of protected group separately. Since nℓ is the number of agents corresponding
to the value ℓ. We now show that FAIRLOC(T ) ≤ 31/4ϑ3/4 (OPT assign(T ))2, where
FAIRLOC(T ) and OPT assign(T ) denote the objective value of the solution returned by
FAIRLOC and optimal assignment algorithm respectively on given instance T = (X,F ).
Let ϑ := 2 supx,y∈X d(x, y) be the diameter of the feature space. We begin with the
following useful definition.

Definition 4.5 (Bad Assignments)
Let C1 and C2 represent the set of agents assigned to facilities f1 and f2 by optimal
assignment algorithma. The ith round (i.e. assignments gi to f1 and hi to f2) of
FAIRLOC is called

• 1-bad if exactly one of 1) gi /∈ C1 or 2) hi /∈ C2 is true, and

• 2-bad if both 1) and 2) above are true.

Furthermore, a round is called bad if it is either 1-bad or 2-bad and called good
otherwise.

aNote that an optimal fair allocation need not be unique. Our result holds for any optimal fair
allocation.

Let all incorrectly assigned agents in a bad round be called bad assignments. We use the
following convention to distinguish between different bad assignments. If gi /∈ C1 holds we
refer to it as type 1 bad assignment i.e. if agent gi is currently assigned to C1 but should
belong to optimal allocation C2. Similarly, if hi /∈ C2 holds it is a type 2 bad assignment
i.e. hi should belong to optimal allocation C1 but is currently assigned to f2. Hence a
2-bad round results in 2 bad assignments one of each type i.e. gi /∈ C1 and hi /∈ C2. In
summary, each 1-bad round can have either type 1 or type 2 bad assignment and each
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(a) Two 1-bad round pairs (b) Two 2-bad round pairs

Figure 4.1: Different cases for k = 2. (a) Shows two 1-bad rounds with four assignments
such that x, y are good assignments and allocated to the optimal facility by algorithm,
whereas gi and hi are bad assignments with an arrow showing the direction to the optimal
facility from the assigned center. (b) Shows four bad agents such that gi, g′

i are assigned
to f1 but should belong to f2 in optimal allocation (the arrow depicts the direction to
optimal center). Similarly, hi, h′

i should belong to f1 in optimal allocation.

2-bad round will have two bad assignments each of type 1 and type 2. Finally, let B be
the set of all bad rounds and A be the set of all bad assignments.

Definition 4.6 (Complementary Bad Pair)
A pair of agents w, z ∈ A such that w is a bad assignment of type t and z is a bad
assignment of type |3− t| is called a complimentary bad pair if,
1) w and z are allocated in same round (i.e. in a 2-bad round) or
2) if they are allocated in ith and jth 1-bad rounds respectively with i < j, then
z is the first bad assignment of type (3 − t) which has not been yet paired with a
complementary assignment.

Lemma 4.5. If nℓ is even, every bad assignment in the allocation returned by FAIRLOC

has a complementary assignment. If nℓ is odd, at most one bad assignment will be left
without a complementary assignment.

Proof. The proof works on the same lines as proof of Lemma 3.12.

We will bound the optimality of 1-bad rounds and 2-bad rounds separately.

Bounding 1-bad rounds: When nℓ is even, from Lemma 4.5, there are even number of
1-bad rounds; two for each complimentary bad pair. Let the 4 agents of corresponding two
1-bad rounds be Gi : (x, hi) and G

′
i : (gi, y) as shown in Figure (4.1a). Note that x ∈ C1

and y ∈ C2 i.e. both are good assignments and gi /∈ C1, hi /∈ C2 are bad assignments. Now,
consider an instance Ti = {C, {x, hi, gi, y}}, then OPT assign(Ti) =

(
d(x, f1) · d(hi, f1) ·

d(gi, f2)·d(y, f2)
)1/n

considering nash motivated cost as product of distances. This implies(
OPT assign(Ti)

)n
=
(
d(x, f1) · d(hi, f1) · d(gi, f2) · d(y, f2)

)
.We consider, without loss of

generality, that the round Gi takes place before G′
i in the execution of FAIRLOC. The proof
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is similar for the other case. First note that since FAIRLOC assigns hi to facility 2 while
both gi and y were available, we have,

d(hi, f2) ≤ d(gi, f2) and d(hi, f2) ≤ d(y, f2) (4.16)

So, (
FAIRLOC(Ti)

)n

= d(x, f1) · d(hi, f2) · d(gi, f1) · d(y, f2) (4.17)

= d(x, f1) · d(hi, f2) · d(y, f2) · d(gi, f1) (using Equation 4.16 and rearranging)

≤ d(x, f1) · d(hi, f2) · d(y, f2) ·
(
d(gi, f2) + d(f1, f2)

)
(∵ triangle inequality)

≤ d(x, f1) · d(hi, f2) · d(y, f2) ·
(
d(gi, f2) + d(hi, f2) + d(hi, f1)

)
(4.18)

≤ d(x, f1) · d(y, f2) · d(y, f2) ·
(

2 · d(gi, f2) + d(hi, f1)
)

(4.19)

≤ 2 ·
(
OPT assign(Ti)

)2n

+
(
OPT assign(Ti)

)n

≤ 3 ·
(
OPT assign(Ti)

)2n

(4.20)

If nℓ is odd, then all the other rounds can be bounded using the above cases except one
extra 1-bad round. Let the two agents corresponding to this round Gi be (gi, y). So,(

FAIRLOC(Ti)
)n

≤ 3 ·
(
OPT assign(Ti)

)2n

· ϑ. Here ϑ=2 supx,y∈X d(x, y) is the diameter

of the feature space. Thus, this leads to FAIRLOC(Ti) ≤ 31/n

(
OPT assign(Ti)

)2

ϑ1/n.

Bounding 2-bad rounds: First, assume that there are even number of 2-bad rounds.
In this case consider the pairs of consecutive 2-bad rounds as Gi : (gi, hi) and G′

i = (g′
i, h

′
i)

with G
′
i bad round followed by Gi (Figure (4.1b)). Note that gi, g

′
i ∈ C2 and hi, h

′
i ∈ C1.

Now consider instance Ti = {C, {gi, g
′
i, hi, h

′
i}}, then , OPT assign(Ti) = d(hi, f1) ·d(h′

i, f1) ·
d(gi, f2) · d(g′

i, f2). As a consequence of the allocation rule used by FAIRLOC we have

d(gi, f1) ≤ d(hi, f1), d(g′
i, f1) ≤ d(h′

i, f1), d(hi, f2) ≤ d(g′
i, f2)

and d(hi, f2) ≤ d(h′
i, f2).

(4.21)

Furthermore,

FAIRLOC(Ti) = d(gi, f1) · d(g′
i, f1) · d(hi, f2) · d(h′

i, f2) (4.22)

≤ d(hi, f1) · d(h′
i, f1) · d(g′

i, f2) · d(h′
i, f2) (using Equation 4.21)

≤ d(hi, f1) · d(h′
i, f1) · d(g′

i, f2) ·
(
d(h′

i, f1) + d(f1, f2)
)

(4.23)

(∵ triangle inequality)
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≤ d(hi, f1) · d(h′
i, f1) · d(g′

i, f2) ·
(
d(h′

i, f1) + d(gi, f1) (4.24)

+ d(gi, f2)
)

(∵ triangle inequality)

≤ d(hi, f1) · d(h′
i, f1) · d(g′

i, f2) ·
(
d(h′

i, f1) + d(hi, f1) (4.25)

+ d(gi, f2)
)

(using Equation 4.21)

≤ 2 ·
(
OPT assign(Ti)

)2n

+
(
OPT assign(Ti)

)n

≤ 3 ·
(
OPT assign(Ti)

)2n

(4.26)

If there are odd number of 2-bad rounds then, let G = (gi, hi) be the last 2-bad round.
It is easy to see that (FAIRLOC(Ti))n ≤ 3 · (OPT assign(Ti))2n · d(gi, f2) · d(hi, f1) ≤

3 · (OPT assign(Ti))2n · ϑ2. So, FAIRLOC(Ti) ≤ 31/n ·
(
OPT assign(Ti)

)2

· ϑ2/n. Here

ϑ=2 supx,y∈X d(x, y) is the diameter of the feature space.
Thus, since each Ti instance has distinct agent locations (or data points), we can get
the overall bound as follows where r1, r2 is the total number of 1-bad and 2-bad rounds
respectively :

FAIRLOC(T ) =



∏r
i=1 FAIRLOC(Ti) if both r1, r2 is even∏r1
i=1 FAIRLOC(Ti)

∏r2
j=1 FAIRLOC(Tj) · ϑ2/n if r1 is even and r2 is odd∏r1

i=1 FAIRLOC(Ti) · ϑ1/n∏r2
j=1 FAIRLOC(Tj) if r1 is odd and r2 is even∏r1

i=1 FAIRLOC(Ti) · ϑ1/n∏r2
j=1 FAIRLOC(Tj) · ϑ2/n if r1 is odd and r2 is odd

(4.27)

≤
⌊r=r1+r2⌋∏

i=1
31/n · (OPT assign(Ti))2 · ϑ3/n ≤ 31/4 ·

(
OPT assign(T )

)2

· ϑ3/4

( ∴ r ≤ n/4 as each instance consumes four agents)

It is important to note that since we are providing cost bounds on the product of distances,
achieving a quadratic bound in terms of optimal is not bad. The bounds intuitively
convey the idea that the results are two approximations for the logarithmic sum objective
formulation of Nash social welfare. Similar bounds in terms of optimal are also evident in
Nash social welfare works for resource allocation [219, 220].

Corollary 4.6. For k = 2 and τℓ = 1
k for all ℓ ∈ [m], we have FAIRLOC(I) ≤ 31/4 · ((2n +

1) · β) · ϑ3/4 · (OPT F LP (I))4-approximate where β is approximation factor for vanilla
facility location problem for any given instance I.
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The above corollary is a direct consequence of Lemma 4.1 and the fact that FAIRLOC(F,X)
≤ FAIRLOC(F̂ ,X). Here, F̂ , F are centers of vanilla allocation and fair allocation obtained
by FAIRLOC respectively. The bounds can easily be extended for k facilities along similar
lines by looking at cycles of length at most (k − 1) to directly obtain 2k−1-approximate
solution with respect to τ -ratio fair assignment problem. The final result obtained is as
follows:

Figure 4.2: Visual representation of set Xj
i and cycle of length q for Theorem 4.7. The

arrow represents the direction from the assigned facility to the facility in optimal allocation.
Thus, for each set Xj

i we have fi as the currently assigned facility and fj as the facility in
optimal assignment.

Theorem 4.7. When τℓ = 1
k for all ℓ ∈ [m], an allocation returned

by FAIRLOC for given facility and agent locations is τ -ratio fair and satisfies
(31/4ϑ3/4)2k−1(OPT assign(T ))2k−1-approximation to the product of distances objective, i.e.,
2k−1-approximation guarantee to logarithmic sum of distances with respect to an optimal
τ -ratio fair assignment up to an instance-dependent multiplicative constant.

Proof. In the previous proof, we basically considered two length cycles. Two 1-bad
allocations resulted in one type of cycle, and one 2-bad allocations resulted in another
type of cycle. When the number of facilities is greater than two, then any 2 ≤ q ≤ k

length cycles can be formed. Without loss of generality, let us denote {f1, f2, . . . , fq} as
the centers that are involved in forming such cycles. Further denote by set Xj

i to be the set
of agent locations that are allotted to facility i by FAIRLOC but should have been allotted
to facility j in an optimal fair allocation. The q length cycle can then be visualized in
Figure 4.2 with the arrow pointing towards the optimal facility. As the cycle is formed
with respect to these agents, we have |Xq

1 | = |X1
2 | = . . . = |Xq−1

q | The cost by FAIRLOC

algorithm is then given as:

(FAIRLOC(T ))n =
q∏

i=2

∏
x∈Xi−1

i

d(x, fi) ·
∏

x∈Xq
1

d(x, f1) (4.28)

≤ 3n/4

 ∏
x∈X1

2

(d(x, f1))2 ·
∏

x∈Xq
1

(d(x, f2))2 · ϑ3n/4

 · q∏
i=3

∏
x∈Xi−1

i

d(x, fi)

(using Theorem 4.4)
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≤ 3n/4

 ∏
x∈X1

2

(d(x, f1))2 · ϑ3n/4

 ·
 ∏

x∈Xq
1

(d(x, f2))


2

·
q∏

i=4

∏
x∈Xi−1

i

d(x, fi)

(4.29)

≤ 3n/4 · ϑ3n/4 ·

 ∏
x∈X1

2

(d(x, f1))


2

·

 ∏
x∈Xq

1

(d(x, f2))


2

·

 ∏
x∈X3

2

(d(x, f3))


·
( q∏

i=4

∏
x∈Xi−1

i

d(x, fi)
)

(4.30)

≤ 3n/4 · ϑ3n/4 ·

 ∏
x∈X1

2

(d(x, f1))


2

·

 ∏
x∈Xq

1

(d(x, f2))
∏

x∈X3
2

(d(x, f3))


2

·
q∏

i=4

∏
x∈Xi−1

i

d(x, fi)

(4.31)

≤ 3n/4 · ϑ3n/4 ·
( ∏

x∈X1
2

(d(x, f1))
)2

·
(

3n/4 ∏
x∈X2

3

(d(x, f2))2 ·
∏

x∈Xq
1

(d(x, f3))2 · ϑ3n/4
)2

·
( q∏

i=4

∏
x∈Xi−1

i

d(x, fi)
)

(using Theorem 4.4)

≤ 3
n
4 + 2n

4 · ϑ
3n
4 + 6n

4 ·
( ∏

x∈X1
2

(d(x, f1))
)2

·
( ∏

x∈X2
3

(d(x, f2))2 ·
∏

x∈Xq
1

(d(x, f3))2
)2

·

·
q∏

i=4

∏
x∈Xi−1

i

d(x, fi) (4.32)

≤ 3
n
4 + 2n

4 · ϑ
3n
4 + 6n

4 ·
( ∏

x∈X1
2

(d(x, f1))
)2

·
( ∏

x∈X2
3

(d(x, f2))
)4

·
( ∏

x∈Xq
1

(d(x, f3))
)4

·
( ∏

x∈X3
4

(d(x, f4))
)
·
( q∏

i=5

( ∏
x∈Xi−1

i

d(x, fi)
))

(4.33)

≤ 3
n
4 + 2n

4 · ϑ
3n
4 + 6n

4 ·
( ∏

x∈X1
2

(d(x, f1))
)2

·
( ∏

x∈X2
3

(d(x, f2))
)4

·
( ∏

x∈Xq
1

(d(x, f3))

·
∏

x∈X3
4

(d(x, f4))
)4

·
( q∏

i=5

( ∏
x∈Xi−1

i

d(x, fi)
))

(4.34)

≤ 3
n
4 + 2n

4 · ϑ
3n
4 + 6n

4 ·
( ∏

x∈X1
2

(d(x, f1))
)2

·
( ∏

x∈X2
3

(d(x, f2))
)4

·
(

3n/4 ·
∏

x∈X3
4

(d(x, f3))2

·
∏

x∈Xq
1

(d(x, f4))2 · ϑ3n/4
)4

·
( q∏

i=5

∏
x∈Xi−1

i

d(x, fi)
)

(using Theorem 4.4)

≤ 3
n
4 + 2n

4 + 4n
4 · ϑ

3n
4 + 6n

4 + 12n
4 ·

( ∏
x∈X1

2

(d(x, f1))
)2

·
( ∏

x∈X2
3

(d(x, f2))
)4

·
( ∏

x∈X3
4

(d(x, f3))

(4.35)
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·
∏

x∈Xq
1

(d(x, f4))
)8

·
( q∏

i=5

∏
x∈Xi−1

i

d(x, fi)
)

≤
(

3n/4 · ϑ3n/4
)2q−1(

OPT assign(T )
)n·2q−1

(4.36)

=⇒ (FAIRLOC(T ))n ≤
(

3n/4 · ϑ3n/4
)2q−1(

OPT assign(T )
)n·2q−1

(4.37)

=⇒ FAIRLOC(T ) ≤
(

31/4 · ϑ3/4
)2q−1(

OPT assign(T )
)2q−1

(4.38)

=⇒ FAIRLOC(T ) ≤
(

31/4 · ϑ3/4
)2k−1(

OPT assign(T )
)2k−1

(∴ q ≤ k)

(4.39)

Here, the first inequality follows by exchanging the agents in X1
2 and Xq

1 using Theorem
4.4. As the maximum length cycle possible is k, we straight away get the proof of 2k−1-
approximation to logarithmic sum of product of distances objective.

The above theorem shows that FAIRLOC achieves an exponential approximation in terms
of k, but our experimental observations on Nash objective do not degrade too much with
increasing k and follows along the lines as Theorem 4.4. We leave this as a future study
to prove tight approximation guarantees and now provide cost guarantees with respect to
the general τ vector for k=2.

4.5.1 Guarantees for FAIRLOC for general τ

Given an instance T , facility opening locations F , and set of agents X, we start with a
simple observation that problem of solving τ -ratio fair assignment can be divided into two
subproblems:

1. Solving optimal 1/k-ratio fair assignment problem on subset of agents X1 ∈ X such
that |X1| =

∑
ℓ∈[m] kτℓnℓ.

2. Solving optimal fair assignment problem on X2 ∈ X \ X1 without any fairness
constraint.

Let us denote the first instance by T 1/k and second instance with T 0, i.e. T 1/k = {X1, F}
and T 0 = {X2, F}.

Lemma 4.8. There exists two separate instances T 1/k with τ={1/k}mℓ=1 and T 0 with
τ={0}mℓ=1 such that solving the fair assignment problem on instance T can be divided into
solving fair assignment on these two instances, i.e., OPT assign(T ) = OPT assign(T 1/k) ·
OPT assign(T 0).

Proof. The T instance requires that each facility should have at least τℓ nℓ number of
agents for each protected group value. The remaining agents can be allocated in an
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Figure 4.3: Set of agents X divided into instance T 1/k and T 0. Further the instances T 1/k
f

and T 0
f are depicted in the same set of agents X leading to formation of regions P,Q,R.

optimal manner without any fairness constraint. Therefore in an optimal assignment,
there exists a set XOP T

1 such that |XOP T
1 | = ∑m

ℓ=1 τℓnℓk that satisfies the τ−ratio fairness
with τℓ = 1/k ∀ℓ ∈ [m].

Let Xf
1 be the set of agents that are allocated in lines 4-13 by Algorithm 4 (fair procedure).

Further, let T 1/k
f be an instance to τ -ratio fair assignment problem with τ = {1/k}mℓ=1

and consisting of agents Xf
1 and T 0

f be instance when τ={0}mℓ=1 by FAIRLOC (depicted in
Figure 4.3). Then, our next lemma shows that the partition returned by FAIRLOC is the
optimal one.

Lemma 4.9. OPT assign(T 1/k
f ) · OPT assign(T 0

f ) ≤ OPT assign(T 1/k) · OPT assign(T 0) for
any partition T 1/k and T 0. Thus, OPT assign(T ) = OPT assign(T 1/k

f ) · OPT assign(T 0
f ).

Proof. The proof of this lemma follows same lines as proof of Lemma 3.20.

Theorem 4.10. For k=2 and any general τ vector, an allocation returned by FAIRLOC

guarantees τ -ratio fairness and satisfies 31/4·ϑ3/4·(OPT assign(T ))2-approximate guarantee
with respect to an fair assignment problem.

Proof. With the help of Lemma 4.8 the cost of FAIRLOC on instance Tf can be computed
as,

FAIRLOC(T ) = FAIRLOC(T 1/k
f ) + FAIRLOC(T 0

f ) (4.40)

Now, from Equation 4.27, FAIRLOC(T 1/k
f ) ≤ 31/4

(
OPT assign(T 1/k

f )
)2

ϑ3/4 .

Also, as T 0
f is solved for τ={0}mℓ=1 i.e. assignment is carried solely on the basis of k-means

allocation, we have FAIRLOC(T 0
f ) = OPT assign(T 0

f ) ≤ 31/4 · (OPT assign(T 0
f ))2.
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Equation 4.40 becomes,

FAIRLOC(T ) ≤ 31/4 · (OPT assign(T 1/k
f ))2 · ϑ3/4 + (OPT assign(T 0

f ))2 (4.41)

≤ 31/4 · ϑ3/4 ·
(

(OPT assign(T ))2 · (OPT assign(T 0
f ))2

)
(using Lemma 4.8)

≤ 31/4 · ϑ3/4 · (OPT assign(T ))2 (4.42)

The proof for the case of general τ vector for any number of facilities follows the same
lines and results in same approximation as Theorem 4.7.

4.6 Experimental Results and Analysis

We now validate the efficacy of proposed FAIRLOC on real-world United States (US) census
dataset for agent population with various observable facilities captured in Homeland
Infrastructure Foundation-Level (HIF) Data by the US Dept of Homeland Security.
The population data released by US Census Planning captures information about the
demographic composition of agents residing in states of the US during 2022. The complete
dataset is publicly accessible using census-downloader API1. The data records the census
tract level distribution of different protected group values, and we mainly divide the
complete United States into four popular regions as follows and illustrated2 in Figure
4.4:
(1) US North: It primarily includes the states of New York, Massachusetts, Pennsylvania,
and nearby states, making a total of nine states. The complete preprocessing script
is provided as a GitHub repository3. The region encompasses a total of 42.6 million
agents across 18, 000 tracts, and we randomly subsample 100 census tracts to avoid high
computation and memory.
(2) US South: includes the states of Texas, Florida, Georgia, and other 13 states with
an agent population of 74 million, and we sample 100 tracts randomly spread across the
region.
(3) US West: It is made up of popular states of Washington D.C., California, Arizona
and others, making a total of 13 states with 53 million agents. For the present study, we
consider the Pacific US to be a part of the West and a total of 100 tracts.
(4) US MidWest: comprises the regions around Wisconsin, Indiana, and Illinois. It
contains a spread of 55.2 million agents across 15000 tracts, and we use 100 tracts across
a total of 12 states. The total number of agents in each tract depends on the protected
group chosen and is summarized in Table 1.
Next, the facility dataset records information about the facility’s existing real-world

1https://github.com/datadesk/census-data-downloader
2The figure is royalty-free download preview provided by dreamstime.com
3https://github.com/fairloc/code
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Figure 4.4: The figure shows census regions by United States Census Planning. We
consider the US-Pacific as part of the US-West.

Figure 4.5: United States map view of dialysis centers in Homeland Infrastructure
Foundation dataset.

locations in different United States regions. The facility under consideration in the present
study is as follows:

1. Dialysis Centers: The dataset was primarily curated with the assistance of Rx,
an organization that helps patients locate nearby kidney care centers. The publicly
available records at HIF include data from Rx and other pharmaceutical companies.
The dataset contains information on approximately 7, 772 dialysis centers across the
United States. A map view of these facilities from the GeoPlatform ArcGIS Online
portal is shown in Figure 4.5.

2. Public Schools: The data contains information (latitude and longitude) about all
public elementary and secondary education schools as facilities in the US. The data
is updated up to the 2022 session and contains about 102, 268 records.

3. Pharmacy: Consists of a total of 63, 018 pharmacy locations spread across the US.

4. National Shelter System (NSS) : includes information on the latitude and
longitude of facilities that can accommodate agents during disaster emergencies and
evacuations. It consists of 68, 934 locations approved by the Federal Emergency
Management Agency (FEMA).
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Data Preprocessing: The datasets need a certain level of pre-processing before making
them ready for use to validate the efficacy of the algorithm. Firstly, although the United
States census population dataset contains information about different protected group
values at each census tract, the latitude and longitude coordinates of tracts are not directly
available in the public dataset. One needs to map the census tract ID (called Geoid)
with the corresponding latitude-longitude information available in TIGER Shapefiles
provided by the Census Bureau. Secondly, we divide the complete datasets for both
agent population and facilities into four parts based on regions- North, South, West and
Midwest. The code for the preprocessing, FAIRLOC and datasets are available as GitHub
repository4. We next look into the protected groups that are under scrutiny in the present
paper:

• Poverty level (P): Binary group indicating agent’s above poverty line status. Used
for analyzing pharmacy facilities. The protected group takes two values: whether
the income level has been below poverty in the past 12 months or above.

• Income level (I): A quartet (four) valued protected group used in dialysis, schools
and NSS records. It can take values from buckets: 0−24999, 25000−74999, 75000−
199999 and 200000+.

• Age-Gender (AG): Categorizes age (0 to 65+) and gender pairs into ten buckets.
It is used in NSS facility datasets. The protected group buckets are Male (0-17),
Female (0-17), Male (18-34), Female (18-34), Male (35-49), Female (35-49), Male
(50-64), Female (50-64), Male (65+), Female (65 and plus).

• Race (R): A quintet (five) racial regions used in the dialysis dataset. The five
buckets are White, Black, Latino, Asian and others.

• Language (L): A quintet (five) group used in pharmacy and school facility analysis.
The group takes value - only English, Only Spanish, other Indo-European, Asian
and pacific islander languages and finally, others.

Having looked into all possible regions, facilities and protected groups we summarize in
Table 4.1 the total number of agents subsampled in 100 census tracts in all the settings.

4.6.1 Comparison against Different τ Vectors

We compare the performance of FAIRLOC on a fixed number of facilities, i.e., k=10 for all
regions and facilities from Figure 4.9 to 4.28. In this study, we evaluate different metrics
provided below for different user-desired levels of group fairness (τ vectors). We consider
τℓ = 0 ∀ℓ ∈ [m], represented by τ0, which does not consider any group fairness constraints.

4https://github.com/fairloc/code
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Region Facility Protected Group No of Agents

West

Dialysis Income 154021
Dialysis Race 355527
NSS Age-Gender 409481
Pharmacy Poverty level 406700
Schools Language 144312

Midwest

Dialysis Income 146174
Dialysis Race 358445
NSS Age-Gender 339502
Pharmacy Poverty level 326205
Schools Language 146154

South

Dialysis Income 138076
Dialysis Race 380974
NSS Age-Gender 371266
Pharmacy Poverty level 359542
Schools Language 132340

North

Dialysis Income 149643
Dialysis Race 405159
NSS Age-Gender 372233
Pharmacy Poverty level 361391
Schools Language 152002

Table 4.1: The table describes the total number of agents in each region for given facility
and protected group pairs.

4.6.2 Performance Metrics

1. Utilitarian Cost (↓): is the sum of the distances of agents to their assigned facility
(Definition 4.2).

2. Nash Value (↑) [221]: The goal of Nash social welfare is to maximize the product of
utilities (opposite to cost). To this, we measure Nash value as∏xi∈X log(∆−d(xi, f))
where ∆ = 1 + max(xi,f)∈(X,F ) d(xi, f).

We evaluate efficacy on following group fairness metrics:

1. Balance (↑) [42]: is defined as the minimum ratio of dominant to minority protected
group agents across all facilities.

2. Fairness Error (↓) [12]: measures the KL-divergence between the achieved
proportion of different group type of agent (denoted as P ℓ

f for type ℓ) at each facility
(f ∈ F ) to desired user input vector τ i.e., ∑f∈F

∑
ℓ∈[m]−τℓ log(P ℓ

f ).

Since optimizing the Nash social welfare prefers assignments that are more equitable, we
validate these findings with metrics motivated by individual fairness in facility location
problem [88, 222]. The metric captures each agent’s expectations of distance to facilities
by constructing regional density balls around them with fair radius α · r(x) (Definition
4.1).
Here, α is the approximation factor to Individual Fairness (IF). The lower value of α
indicates that the agent does not need to travel too far and finds a facility within its local
density. The prior works [88, 222] in individual fair facility location problem theoretically



96 Chapter 4. Balancing Fairness and Efficiency via Novel Welfare Perspective

provide 2 and 6-approximation guarantees, respectively, when k or fewer facilities need to
be opened. However, their algorithmic design needs hyper-parameter tuning in case exact
k facilities need to be opened and thus practically results in higher α values. We carefully
analyze the distribution of α values using the following individual fairness metrics-
(1) Mean value (↓) (2) Median value (↓) and (3) Maximum value (↓) of α across
agents. Since Jung et al. [88] provides 2-approximation results to fair radius, we record
(4) Fraction of agents having α ≤ 2 (↑) for comparison.

4.6.3 Baselines

1. Jung Jung et al. [88]: focuses on optimizing facility locations while ensuring
individual fairness. Authors further employ binary search for parameter tuning to
open exactly (or close to) k centers. Note that the method assumes that facilities
can only be opened at the agent’s location, so we execute the method by setting
F = X and then map each suggested location f

′ ∈ X to the closest f ∈ F .

2. LSPP Bateni et al. [222]: improvises the algorithm proposed by [88] by applying a
swapping-based local-search method and requires tuning a few parameters to open
exactly k centers. LSPP also assumes F = X, so we modify it as discussed earlier.

3. FRACOE Shivam Gupta et al. [44]: is a post-processing method that modifies the
unfair clustering assignments to strictly satisfy τ -ratio fairness. We overcome the
assumption of F = X as we did in Jung and LSPP.

4. Jung+RR: This method considers the baseline algorithm as Jung to satisfy
individual fairness and then applies FRACOE to obey group fairness.

4.6.4 Analysis on Varying τ Vectors

We first compare the performance of FAIRLOC on a fixed number of facilities, i.e., k=10
for all regions and facilities. In this study, we evaluate different metrics for different
user-desired levels of group fairness (τ vectors). We consider τℓ = 0 ∀ℓ ∈ [m], represented
by τ0, which does not consider any group fairness constraints. It helps us evaluate the
results for vanilla k-means variation of FRACOE , which acts as a lower bound on the
utilitarian cost. Other four τ vectors were randomly generated to cover various scenarios
and are listed as follows. The value 0.1/4 means at least 0.025% fraction of total agents
from that group value assigned to each facility.

Income Levels

τ1 = [0.1/4, 0.1/4, 0.1/4, 0.1/4]; ; τ2 = [0.1/4, 0.1/8, 0.1/8, 0.005];

τ3 = [0.005, 0.005, 0.031, 0.1/8]; ; τ4 = [0.1/4, 0.1/8, 0.04, 0.005];
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Race and Language

τ1 = [0.1/4, 0.1/4, 0.1/4, 0.1/4, 0.1/4]; τ2 = [0.1/4, 0.1/4, 0.1/8, 0.1/8, 0.005]; ;

τ3 = [0.005, 0.005, 0.031, 0.04, 0.1/8]; τ4 = [0.1/4, 0.1/8, 0.04, 0.005, 0.031];

Age-Gender

τ1 = [0.1/4, 0.1/4, 0.1/4, 0.1/4, 0.1/4, 0.1/4, 0.1/4, 0.1/4, 0.1/4, 0.1/4];

τ2 = [0.1/4, 0.1/4, 0.1/4, 0.1/8, 0.1/8, 0.1/8, 0.005, 0.005, 0.031, 0.031];

τ3 = [0.005, 0.005, 0.005, 0.005, 0.005, 0.1/8, 0.1/8, 0.1/8, 0.031, 0.031];

τ4 = [0.1/4, 0.1/4, 0.1/4, 0.1/8, 0.1/8, 0.1/8, 0.04, 0.04, 0.031, 0.031];

Poverty Levels

τ1 = [0.1/4, 0.1/4]; τ2 = [0.1/4, 0.1/8]; τ3 = [0.005, 0.031]; τ4 = [0.04, 0.031];

The results are provided from Figure 4.9 to 4.28 and summarized below:
Low Utilitarian Cost of FAIRLOC: FAIRLOC gives low utilitarian cost across all τ vectors.
We see a high utilitarian cost for algorithms like FRACOE , which specifically focuses on
optimizing utilitarian cost because FAIRLOC optimizes over facility set F . On the other
hand, output facilities of FRACOE are modified by mapping each output facility to the
closest facility in F . The amplification in cost is also due to considering the actual road
map distance to locate the closest facility, which does not satisfy triangular inequality,
and the base algorithm k-means in FRACOE heavily relies on the properties of p-norm
distance metrics.
Observations on Nash value: Nash values for FAIRLOC are slightly higher for initial τ
vectors representing relaxed group fairness constraints. It is important to note that since
the Nash value metric involves logarithmic terms, it compresses large values. The gap
becomes more clear from the results in the next varying k experiments. For stricter τ

vectors, we observe that Nash values are close enough across all benchmarks due to more
reassignments to satisfy group fairness.
Observations on Fairness: (1) FAIRLOC does significantly better on the balance and
fairness error, showing its efficacy across settings. The results degrade in Jung, LSPP
for balance, thus leading to high fairness errors. Though post-processing helps improve
balance in Jung+RR, the performance is still less effective than FAIRLOC. (2) In individual
fairness metrics, FRACOE has a considerably low fraction of individual fairness agents
and higher α statistics. Note that since Jung and LSPP need tuning for opening exactly k
facilities, the theoretical results no longer hold, resulting in higher α values and deviation.
On the contrary, FAIRLOC stands out and helps achieve individual fairness inherently by
its equitable design (Nash) while obeying group fairness.
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4.6.5 Analysis across Varying k

In this experiment, we now measure the performance of different methods on increasing
k. The results for k as 2, 5, 10, 25 and 30 are provided in Figure 4.29 to 4.48 at fixed τ2

and summarized below.
Observations: (1) FAIRLOC maintains its efficacy on cost, Nash value across k. Jung’s
performance improves after a certain threshold k as opening higher facilities assists in
better tuning. However, both Jung and LSPP suffer in group fairness metrics as they are
not designed to handle it.
(2) Note that the mean α is slightly close to Jung+RR and higher than Jung at increasing
k. But the performance on the median is good. The main reason is that mean values are
subject to outliers and can verify that the maximum α value increases at higher k owing
to dataset characteristics. But still, the efficacy of FAIRLOC is validated by the fact that %
of individually fair (IF) agents are among the highest in our algorithm and at a larger gap
than Jung and Jung+RR. Thus, FAIRLOC stands out as one achieving lower costs while
simultaneously obeying group and individual fairness.

4.6.6 Ablation Study on FAIRLOC

Analysis on facility ordering in FAIRLOC’s round-robin

We first show that the FAIRLOC performance is invariant to the random ordering or round
robin. To this, we compute the variance on Nash value across 100 random permutations
for the NSS dataset in all regions at fixed τ2, k = 10. We observe that the variance is of
orders 104 compared to Nash value having orders 106. Considering the size of the dataset
(∼ 105 order), we can say FAIRLOC is invariant to ordering (as 104 << 106).

Distribution of α values across agents

We plot the histogram bins of different α values and observe that the plots are right skewed
for FAIRLOC showcasing its efficacy in satisfying equitable allocation to all agents. Thus,
we can say that minimizing the product of distances helps achieve a facility center within
a good approximation to the fair radius for most of the agents. Notably, on comparing
the distribution of fair setting with τℓ = 0 ∀ℓ ∈ [m] (unfair) one, we can observe that the
increase in α values are mainly accounted due to reassignments in round-robin procedure
to satisfy group fairness. Notably, the distribution of FAIRLOC is better than group fair
FRACOE and Jung+RR methods. All these plots are provided in Figure 4.7 for τ0 and
4.8 for τ2.

Runtime analysis

Next, we compare run-time on the US-West for opening ten NSS facilities. The average
run-time over 10 different runs is reported in Table 4.2. While FAIRLOC uses the brute
force technique to find the optimal facility for each agent, its runtime is similar to other



Chapter 4. Balancing Fairness and Efficiency via Novel Welfare Perspective 99

FAIRLOC FRACOE Jung Jung+RR LSPP

322.19 353.35 354.12 643.29 359.41

Table 4.2: Runtime comparison on US-West, NSS with k=10 at τ2.

Figure 4.6: The plot shows runtime for different methods and FAIRLOC across varying k.

benchmarks. This is because other benchmarks either need tuning of parameters (Jung,
Jung+RR, LSPP) or use local swaps (LSPP), or need to compute mean over all agent
locations (FRACOE). The plot over varying k also shows that the runtime of FAIRLOC

does not increase significantly with k and can be found in Figure 4.6.

4.7 Conclusion

The chapter proposes FAIRLOC that uses Nash social welfare to address the problem
of satisfying group fairness in facility location problem. The method does not require
hyper-parameter tuning, works for opening any number of facilities (k) and applies to any
h-dimensional space. Further, the method allows for using an explicit set of possible facility
opening locations. The algorithm has a quadratic approximation to the product objective
(or two approximations to the logarithmic sum of distances) for k= 2 and conjecture for any
k. We leave devising a novel proofing technique for quadratic approximation in general k.
We further validate the method’s efficacy on real-world United States census datasets and
actual road maps for various settings. The findings showcase that FAIRLOC helps satisfy
group fairness while achieving equitable (individually) fair assignment of agents. Another
interesting future direction is to explore handling the strategic behaviour of agents and
incentivizing them to behave rationally.
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Figure 4.7: The plot shows distribution of α values for different methods on τ0 in US-West
for NSS at k=10.

Figure 4.8: The plot shows distribution of α values for different methods on τ2 in US-West
for NSS at k=10.
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Figure 4.9: The plot shows the variation in metrics across different τ vectors for opening
Dialysis Centers in the US-Midwest region, with income level as the protected group.
The first row displays methods for utilitarian cost, Nash value, group fairness metrics
balance and fairness error. The second row compares the α values distribution using
mean, median, max and the number of agents having α ≤ 2. The arrow on the Y-axis
indicates a favorable direction.

Figure 4.10: The plot shows the variation in metrics across different τ vectors for opening
Dialysis Centers in the US-West region, with income level as the protected group.
The first row displays methods for utilitarian cost, Nash value, group fairness metrics
balance and fairness error. The second row compares the α values distribution using
mean, median, max and the number of agents having α ≤ 2. The arrow on the Y-axis
indicates a favorable direction.
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Figure 4.11: The plot shows the variation in metrics across different τ vectors for opening
Dialysis Centers in the US-North region, with income level as the protected group.
The first row displays methods for utilitarian cost, Nash value, group fairness metrics
balance and fairness error. The second row compares the α values distribution using
mean, median, max and the number of agents having α ≤ 2. The arrow on the Y-axis
indicates a favorable direction.

Figure 4.12: The plot shows the variation in metrics across different τ vectors for opening
Dialysis Centers in the US-South region, with income level as the protected group.
The first row displays methods for utilitarian cost, Nash value, group fairness metrics
balance and fairness error. The second row compares the α values distribution using
mean, median, max and the number of agents having α ≤ 2. The arrow on the Y-axis
indicates a favorable direction.
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Figure 4.13: The plot shows the variation in metrics across different τ vectors for opening
Dialysis Centers in the US-Midwest region, with race as the protected group. The
first row displays methods for utilitarian cost, Nash value, group fairness metrics balance
and fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.14: The plot shows the variation in metrics across different τ vectors for opening
Dialysis Centers in the US-West region, with race as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.15: The plot shows the variation in metrics across different τ vectors for opening
Dialysis Centers in the US-North region, with race as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.16: The plot shows the variation in metrics across different τ vectors for opening
Dialysis Centers in the US-South region, with race as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.17: The plot shows the variation in metrics across different τ vectors for opening
National Shelter Systems (NSS) in the US-Midwest region, with age-gender as
the protected group. The first row displays methods for utilitarian cost, Nash value,
group fairness metrics balance and fairness error. The second row compares the α values
distribution using mean, median, max and the number of agents having α ≤ 2. The arrow
on the Y-axis indicates a favorable direction.

Figure 4.18: The plot shows the variation in metrics across different τ vectors for opening
National Shelter Systems (NSS) in the US-West region, with age-gender as the
protected group. The first row displays methods for utilitarian cost, Nash value, group
fairness metrics balance and fairness error. The second row compares the α values
distribution using mean, median, max and the number of agents having α ≤ 2. The
arrow on the Y-axis indicates a favorable direction.
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Figure 4.19: The plot shows the variation in metrics across different τ vectors for opening
National Shelter Systems (NSS) in the US-North region, with age-gender as
the protected group. The first row displays methods for utilitarian cost, Nash value,
group fairness metrics balance and fairness error. The second row compares the α values
distribution using mean, median, max and the number of agents having α ≤ 2. The arrow
on the Y-axis indicates a favorable direction.

Figure 4.20: The plot shows the variation in metrics across different τ vectors for opening
National Shelter Systems (NSS) in the US-South region, with age-gender as
the protected group. The first row displays methods for utilitarian cost, Nash value,
group fairness metrics balance and fairness error. The second row compares the α values
distribution using mean, median, max and the number of agents having α ≤ 2. The arrow
on the Y-axis indicates a favorable direction.
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Figure 4.21: The plot shows the variation in metrics across different τ vectors for opening
Pharmacy in the US-Midwest region, with poverty level as the protected group. The
first row displays methods for utilitarian cost, Nash value, group fairness metrics balance
and fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.22: The plot shows the variation in metrics across different τ vectors for opening
Pharmacy in the US-West region, with poverty level as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.23: The plot shows the variation in metrics across different τ vectors for opening
Pharmacy in the US-North region, with poverty level as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.24: The plot shows the variation in metrics across different τ vectors for opening
Pharmacy in the US-South region, with poverty level as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.25: The plot shows the variation in metrics across different τ vectors for opening
Schools in the US-Midwest region, with language as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.26: The plot shows the variation in metrics across different τ vectors for opening
Schools in the US-West region, with language as the protected group. The first row
displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.27: The plot shows the variation in metrics across different τ vectors for opening
Schools in the US-North region, with language as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.28: The plot shows the variation in metrics across different τ vectors for opening
Schools in the US-South region, with language as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.29: The plot shows the variation in metrics across varying k for opening Dialysis
Centers in the US-Midwest region, with income level as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.30: The plot shows the variation in metrics across varying k for opening Dialysis
Centers in the US-West region, with income level as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.31: The plot shows the variation in metrics across varying k for opening Dialysis
Centers in the US-North region, with income level as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.32: The plot shows the variation in metrics across varying k for opening Dialysis
Centers in the US-South region, with income level as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.33: The plot shows the variation in metrics across varying k for opening Dialysis
Centers in the US-Midwest region, with race as the protected group. The first row
displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.34: The plot shows the variation in metrics across varying k for opening Dialysis
Race in the US-West region, with race as the protected group. The first row displays
methods for utilitarian cost, Nash value, group fairness metrics balance and fairness error.
The second row compares the α values distribution using mean, median, max and the
number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable direction.
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Figure 4.35: The plot shows the variation in metrics across varying k for opening Dialysis
Race in the US-North region, with race as the protected group. The first row displays
methods for utilitarian cost, Nash value, group fairness metrics balance and fairness error.
The second row compares the α values distribution using mean, median, max and the
number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable direction.

Figure 4.36: The plot shows the variation in metrics across varying k for opening Dialysis
Race in the US-South region, with race as the protected group. The first row displays
methods for utilitarian cost, Nash value, group fairness metrics balance and fairness error.
The second row compares the α values distribution using mean, median, max and the
number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable direction.
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Figure 4.37: The plot shows the variation in metrics across varying k for opening National
Shelter Systems (NSS) in the US-Midwest region, with age gender as the protected
group. The first row displays methods for utilitarian cost, Nash value, group fairness
metrics balance and fairness error. The second row compares the α values distribution
using mean, median, max and the number of agents having α ≤ 2. The arrow on the
Y-axis indicates a favorable direction.

Figure 4.38: The plot shows the variation in metrics across varying k for opening National
Shelter Systems (NSS) in the US-West region, with age gender as the protected
group. The first row displays methods for utilitarian cost, Nash value, group fairness
metrics balance and fairness error. The second row compares the α values distribution
using mean, median, max and the number of agents having α ≤ 2. The arrow on the
Y-axis indicates a favorable direction.
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Figure 4.39: The plot shows the variation in metrics across varying k for opening National
Shelter Systems (NSS) in the US-North region, with age gender as the protected
group. The first row displays methods for utilitarian cost, Nash value, group fairness
metrics balance and fairness error. The second row compares the α values distribution
using mean, median, max and the number of agents having α ≤ 2. The arrow on the
Y-axis indicates a favorable direction.

Figure 4.40: The plot shows the variation in metrics across varying k for opening National
Shelter Systems (NSS) in the US-South region, with age gender as the protected
group. The first row displays methods for utilitarian cost, Nash value, group fairness
metrics balance and fairness error. The second row compares the α values distribution
using mean, median, max and the number of agents having α ≤ 2. The arrow on the
Y-axis indicates a favorable direction.
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Figure 4.41: The plot shows the variation in metrics across varying k for opening
Pharmacy in the US-Midwest region, with poverty levels as the protected group.
The first row displays methods for utilitarian cost, Nash value, group fairness metrics
balance and fairness error. The second row compares the α values distribution using
mean, median, max and the number of agents having α ≤ 2. The arrow on the Y-axis
indicates a favorable direction.

Figure 4.42: The plot shows the variation in metrics across varying k for opening
Pharmacy in the US-West region, with poverty levels as the protected group. The first
row displays methods for utilitarian cost, Nash value, group fairness metrics balance and
fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.43: The plot shows the variation in metrics across varying k for opening
Pharmacy in the US-North region, with poverty levels as the protected group. The
first row displays methods for utilitarian cost, Nash value, group fairness metrics balance
and fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.

Figure 4.44: The plot shows the variation in metrics across varying k for opening
Pharmacy in the US-South region, with poverty levels as the protected group. The
first row displays methods for utilitarian cost, Nash value, group fairness metrics balance
and fairness error. The second row compares the α values distribution using mean, median,
max and the number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable
direction.
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Figure 4.45: The plot shows the variation in metrics across varying k for opening Schools
in the US-Midwest region, with language as the protected group. The first row displays
methods for utilitarian cost, Nash value, group fairness metrics balance and fairness error.
The second row compares the α values distribution using mean, median, max and the
number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable direction.

Figure 4.46: The plot shows the variation in metrics across varying k for opening Schools
in the US-West region, with language as the protected group. The first row displays
methods for utilitarian cost, Nash value, group fairness metrics balance and fairness error.
The second row compares the α values distribution using mean, median, max and the
number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable direction.
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Figure 4.47: The plot shows the variation in metrics across varying k for opening Schools
in the US-North region, with language as the protected group. The first row displays
methods for utilitarian cost, Nash value, group fairness metrics balance and fairness error.
The second row compares the α values distribution using mean, median, max and the
number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable direction.

Figure 4.48: The plot shows the variation in metrics across varying k for opening Schools
in the US-South region, with language as the protected group. The first row displays
methods for utilitarian cost, Nash value, group fairness metrics balance and fairness error.
The second row compares the α values distribution using mean, median, max and the
number of agents having α ≤ 2. The arrow on the Y-axis indicates a favorable direction.



Chapter 5

Group Fairness as Capacity
Constraints in Online Clustering

Abstract

Clustering is a widely used unsupervised learning tool with applications in numerous
real-world problems. Deploying traditional clustering solutions needs to accommodate two
major challenges. Firstly, to handle the continuous influx of data points arriving over
time. Secondly, these traditional clustering methods can result in highly skewed clusters
where one cluster is notably larger than others, rendering them unsuitable for scenarios
such as logistics and routing. In response, capacitated clustering approaches have emerged
over the past decade. These approaches limit the number of data points each cluster can
accommodate, thus resulting in more uniform cluster formations. In an online version of
capacitated clustering, the algorithm must make an irrevocable decision for each incoming
data point, determining whether to establish it as a new center or allocate it to existing
centers. The goal is to minimize the count of opened centers while adhering to capacity
constraints and achieving a satisfactory approximation of the clustering cost compared to
the optimal solution. Although exploring online capacitated clustering remains uncharted,
we are the first to propose a probabilistic algorithm called COCA for h-dimensional euclidean
spaces. We theoretically bound the number of centers opened and provide constant cost
approximation guarantees. In order to prevent online COCA from resulting in clusters
predominantly with data points belonging to a particular protected group value, we next
extend unfair COCA to obey group fairness constraints. The extended algorithm called
COCAF undergoes similar theoretical analysis. The experimental validation on different
datasets showcases the efficacy of all proposed algorithms on the number of centers opened
and cost.

5.1 Introduction

Clustering is a widely used tool in data mining and finds practical application in many
real-world scenarios, including, but not limited to, automatic resume screening, detecting

A preliminary part of this chapter has appeared in the CODS-COMAD conference 2024 [223] (as
Extended Abstract). The work was appreciated by the Best Paper Award (Runner’s Up) in the Young
Researcher’s Symposium at the conference. A detailed version of this chapter is published in the European
Conference on Artificial Intelligence (ECAI) 2024 [224].
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fraudulent claims, and targeted advertisements [225]. The past decade has witnessed
various notable clustering methods such as k-means, k-medoid, k-median, and k-center
[226, 227]. The fundamental principle that underlies these methods is partitioning the data
points into k distinct groups (called clusters) such that data points within the same cluster
are more similar than others. In centroid based clustering each cluster is represented by
a center. Further, the similarity of data points to the center is measured with the help
of different distance metrics such as Euclidean, Manhattan distance, etc. The objective
of cluster formation varies across these methods; for example, k-means seeks to minimize
the sum of square distances (p=2 norm; Euclidean distance) between the data points and
their respective centers 1. In contrast, k-median and k-center minimize the sum of absolute
distances (p = 1 norm) and the maximum distance within a cluster, respectively [228].
However, these traditional methods do not impose restrictions on the sizes of the clusters,
leading to clusters with arbitrary sizes. This lack of constraint can result in highly skewed
clusters, where one cluster is significantly larger than the others with small sizes, thus
hampering their applicability to real-world problems. For example, in logistics distribution
(stores/garbage) or workforce team formulation, capacity constraints are defined by the
number of customers (or employees) an individual salesperson (or manager) can serve.
This poses management and productivity challenges [22, 229, 230]. To address the need
for more uniform cluster sizes, researchers have delved into clustering with size constraints
i.e., ‘capacitated clustering’ [231].
The capacitated clustering algorithms can be categorized based on data access and
applications, dividing them into offline, streaming, and online environments. In the offline
environment, all the data points are known in advance and are available in memory. This
model provides the most flexibility in terms of data availability and finds application in
fields such as group team formations, student project teams, facility location, and employee
allocation [232, 165]. However, the scalability of these offline solutions is constrained by
the size of the main memory. In contrast, streaming environments divide data into chunks
that can easily fit into the memory. The performance of such algorithms is compared
based on the number of passes performed over the complete data points [233]. Existing
state-of-the-art (SOTA) approaches in capacitated streaming are reviewed in [36, 234].
Online clustering is a more stringent variation of these environments, where an endless
stream of data points arrives over time. Due to limited memory, the algorithm must make
an irrevocable decision about incorporating an incoming data point into existing clusters
or opening it as a new center. Once a data point becomes a center, it remains so forever.
Similarly, any data point previously seen cannot be chosen as the center when a new data
point arrives [235, 236, 237, 238, 38, 39]. An important aspect to note in online clustering
pertains to the absence of information regarding the ordering of arrival of data points in
the stream. As a result, the algorithm ends up opening more number of centers (kactual)
than the desired target (ktarget), i.e., kactual ≥ ktarget to maintain good approximation
guarantees on objective cost. In online capacitated clustering, all these constraints are

1referred to as objective or clustering cost interchangeably in literature.
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imposed while adhering to a given capacity requirements. Note that ktarget and k are
used interchangeably for ease of reading.
To understand the need for online capacitated clustering, consider the dynamic landscape
of wholesale distribution networks. In this scenario, retailers employ salespersons
who navigate cities to promote products, offer discounts, and build relationships
with consumers [22]. To enhance consumer retention, it becomes imperative to
provide specialized salespersons. Efficient market coverage is achieved by clustering
consumers (shopkeepers and direct customers) based on various features such as product
consumption, order volume, and location [22]. The resulting clusters group similar
consumers together for personalized marketing. However, a crucial limitation arises in
the form of workload constraints, with each salesperson having a maximum capacity to
maintain a healthy work-life balance and also offer quality service. Furthermore, the
continuous influx of new consumers in a growing market makes handling such a vast
network challenging. Traditional offline solutions face computational hurdles in adapting
to these changes, emphasizing the need for online solutions. Our example acknowledges
that decisions made in online solutions, such as salesperson and consumer allocations,
are irrevocable. This permanence is vital as salespersons develop trust and liaisons with
consumers over time, and making changes to assignments is impractical and potentially
detrimental to established relationships.
This necessitates investigating online clustering solutions that incorporate capacity
constraints. Given that this is a comparatively challenging and hard problem [229], only
a few works are available in one [239, 240] and two-dimensional [241] space. These works
specifically address the k-center objective and exploit the geometrical structural properties
of one, two-dimensional spaces to devise deterministic algorithms. However, they are not
directly extendible to higher dimensional spaces and alternative objective functions such
as k-means or k-median, which focus on minimizing the distance between each data point
assignment and its center. To this, we propose a probabilistic approach that handles
capacity constraints and works well for any h-dimensional Euclidean spaces similar to
Liberty et al. [38], Bhaskara and Ruwanpathirana [39] available in uncapacitated online
clustering. This chapter addresses the problem of minimizing the clustering objective while
satisfying the capacity constraints in an online setting2. The challenge arises when there is
an upper limit on the number of cluster centers that can be opened; either many data points
are assigned to a single (or a few) cluster(s), resulting in skewed clustering and a violation
of capacity constraints, or an inefficient assignment, leading to high objective costs. Our
proposed algorithm (COCA) addresses this problem by randomized assignments. After a
certain initial number of centers are created, with probability (1 − pt), each incoming
tth data point is assigned to the closest available center with remaining capacity (see
Algorithm 8) and with probability pt is designated as a new center.
Since we impose capacity constraints on the overall size of the clusters, analyzing the

2With unrestricted capacity constraints, our problem reduces to the problem of uncapacitated online
clustering.
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distribution of data points from different protected group values (say, male and female in
gender) in each cluster is essential. The existing clusters may exhibit an imbalance, and
deploying such biased clusters can have substantial societal implications. For example, in
our running example, each salesperson offers discounts to their clusters. We must ensure
that customers from diverse group values have equitable and fair access to all available
offers. One way to solve this problem is by imposing group fairness constraints on each
cluster. To this, we propose an extension of COCA called COCAF that handles the continuous
flow of data points while obeying group fairness constraints. As in the online setup, no prior
information is available about ordering the data points, thus ensuring minimum thresholds
on data points from different group values such as minority protection [12] and τ -ratio
fairness [44] will not work. Instead, motivated by restricted dominance [12, 92], we control
the over-representation of data points in any cluster and impose capacity constraints on
data points from different group values in each cluster. Similar to the unfair version,
COCAF makes probabilistic decisions for each incoming data point of whether the new data
point should be opened as a center or assigned to existing centers. Thus, to summarize,
the following are our contributions to both unfair and fair online clustering:
Contributions in Unfair Online Capacitated Clustering:

1. With careful choice of pt, we establish an upper bound on the number of centers
opened by COCA, that matches with that of the uncapacitated setting.

2. We provide a constant approximation guarantee for the objective cost compared to
optimal offline capacitated clustering. These guarantee enhances existing bounds in
an uncapacitated setting [38] by a logarithmic factor.

3. We estimate the challenging, a-priori unknown total number of data points using
the doubling trick.

4. We establish an interesting connection between our framework and a well-known
coupon collector problem to determine the initial number of centers to be opened.

5. Empirical evaluations demonstrate the comparable performance of COCA with
existing SOTA in uncapacitated online clustering on variety of datasets.

Contributions in Fair Online Capacitated Clustering:

1. We are the first to model group fairness in online clustering as capacity constraints.

2. We establish an upper bound on the number of centers opened by COCAF and provide
cost approximation for cost compared to optimal fair offline clustering.

3. COCAF undergoes experimental validation on synthetic and real-world datasets.
Results showcase a small trade-off in online cost compared to offline group fair
clustering while obeying capacity and group fairness constraints.
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Organization: Section 5.2 reviews the literature. Section 5.3 outlines the preliminaries
needed for the paper. Section 5.4 and 5.5 present the proposed unfair online algorithms.
Next, we extend the proposed algorithms to obey group fairness constraints in Section
5.6. Section 5.7 then evaluates the efficacy of proposed algorithms experimentally. Finally,
Section 5.8 concludes with potential future directions.

5.2 Related Work

The existing clustering literature encompasses various methods, ranging from hierarchical
to centroid-based. This work focuses on centroid-based clustering due to its computational
efficiency, scalability3, and interpretability4. We now review various SOTA approaches to
approximate the capacitated clustering problem available in different environments based
on data access and applicability.
Offline Capacitated Clustering: The first attempt in offline capacitated clustering
problem is by Mulvey and Beck [242]. The authors proposed a heuristic that modifies
uncapacitated clustering by validating capacity constraints before assignment. Building
on this work, Mai et al. [243] extended the heuristic method. Later, Boccia et al. [244]
proposed a more effective and exact solution using cutting plane algorithms. The complete
list of offline capacitated clustering approaches is available in [245, 246, 247]. Notably, the
best approximation factor for the capacitated k-means/k-median objective in Euclidean
spaces is (1 + ϵ) [232] where ϵ > 0, and for the k-center method, it is two [248].
Streaming Capacitated Clustering: An initial attempt to achieve uniform (almost
equal-sized) clustering is by Bateni et al. [249]. The algorithm they propose requires
three passes over the data stream. Later, Esfandiari et al. [250] improves the work and
proposes a single-pass algorithm. However, their algorithm is not directly applicable to
the online environment as it involves generating coresets first and then obtaining the final
assignment. In contrast, in the current online setting, decisions must be made as soon as
the data point arrives.
Online Capacitated Clustering: Recent investigations into k-center problem have
explored the one-dimensional case [239, 240]. In these works, each cluster is a closed
interval with no restriction on the cluster’s diameter. Whenever a data point falls in
a specific interval, that interval opens as a cluster for future data points. The goal is
to minimize the sum of the diameter of clusters while accommodating all data points.
Extending this concept to two-dimensional space involves replacing intervals with squares
[241]. The algorithm initiates a new cluster whenever a data point falls within an unopened
square-grid cell, and the goal is to reduce the sum of the area of the opened clusters.
However, the study of k-means or k-median objective, especially in higher dimensions,
remains an open problem, a concern we tackle in this chapter.
Deep and Contrastive clustering: Deep clustering methods require model training
with data before responding to online queries [251, 252, 253]. In contrast, our setting is

3In terms of dataset size and dimensionality.
4In terms of visualization and interpretation.
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much stricter, and mini-batches of samples for training may not be available. Works that
employ contrastive clustering also face similar limitations [254, 255].
Fairness in Clustering: Recent studies have revealed that the clusters stemming from
the above algorithms may not exhibit a sufficient representation of different protected
groups (say gender) within each cluster. An attempt to tackle such demographic bias in
offline capacitated clustering is by Le Quy et al. [165], Tran et al. [256]. The authors impose
additional constraints using the concept of Balance which requires each protected group
value to have approximately equal representation in every cluster [42]. Similarly, works in
student topic grouping problems devise knapsack-based reduction or fair coresets to achieve
the maximum possible Balance. Although a prior work reformulates the Balance concept
by utilizing linear programming to set upper bounds on the number of data points from
each group [92], this extension does not directly apply to online settings and is limited
to k-center. A few studies also examine online facility location [257, 258]. However,
these works differ slightly from ours as they either focus on assignment problems without
addressing facility location or leverage the benefits of multiple expert advice, which differs
from online capacitated clustering.

5.3 Preliminaries

Let X ⊆ Rh be an endless stream of data points with xt being the point arriving at time t.
Each data point xt ∈ X is articulated using h dimensional real-valued features. We assume
that these points are embedded in metric space with d : X×X → R+∪{0} measuring the
dissimilarity between any two data points. Then, the goal of any centroid-based clustering
algorithm is to partition data points into clustering C = (C, ϕ). The clustering produces k
disjoint subsets ([k] = {1, . . . , k}) with centers C = {cj}kj=1 using an assignment function
ϕ : X → C that maps each data point to corresponding cluster center.
Also, let L∗

p, ϕ∗ represent the optimal (offline/online) objective cost (Definition 2.1) and
the optimal assignment function, respectively. We now define the capacity constraint
mapping γ : C → [0, 1], representing the total capacity on the fraction of data points each
cluster accommodates. We consider the following assumptions on capacity constraints:

• Capacities are same across all clusters i.e., γ(cj) = γ, ∀j ∈ [k]. This ensures equal
treatment among clusters, avoiding any favouritism. Furthermore, in the online setting,
imposing capacity constraints at the cluster level is infeasible due to the dynamic nature
of the number of opened centers.

• With n as the total data points that the algorithm eventually sees, we adopt an
assumption that γ is a multiple of n/k, i.e., γ = ϑn

k . Here ϑ indicates the permissible
degree of skewness among clusters and belongs to [1, k]. When ϑ = 1, it results in perfect
uniform cluster sizes, while ϑ = k indicates an uncapacitated clustering problem.

The first half of the chapter will focus on unfair online settings, and we begin with the
initial work, as described by Liberty et al. [38]. The fully online algorithm initiates by
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selecting the first (k + 1) data points as the initial set of centers to estimate the lower
bound on objective cost (ℓ∗p). The heuristic is based on the idea that clustering (k + 1)
data points should put at least two data points together. Subsequently, for the remaining
data points, the algorithm determines whether to assign each data point to the nearest
center (c ∈ C) or if the data point’s distance incurs a high assignment cost d(xt, c). This
assessment is quantified using a probability that depends on the ratio of the assignment
cost to the center opening cost (fr). To prevent excessive points from being opened
as centers, value of fr for round r doubles when the center count exceeds a predefined
threshold. While Bhaskara and Ruwanpathirana [39] improves this method, the algorithm
now makes delayed decisions. This implies that if the current data point needs to be opened
as a center, it is not opened immediately but deferred to a later time. Although this delayed
approach contributes to improved objective cost approximation by a logarithmic factor,
the current focus of the study is on immediate assignment or opening of data points, as
necessitated by the need in the running example in the previous Section 5.1, i.e., each new
consumer must be promptly assigned to a salesperson to ensure the seamless operation of
the business and timely product deliveries. A delayed response from the wholesaler could
result in a shift to alternate avenues. Consequently, we build upon the algorithm presented
in Liberty et al. [38] by extending it to capacitated clustering. Our approach introduces
several modifications that result in substantial enhancements over the conventional online
clustering problem (and subsequently to the online capacitated clustering problem).

• Through experimental observation, we have noted that an initial selection of (k+ 1)
data points for estimation of lower bound on optimal cost can potentially result in a
higher likelihood of opening more centers in future. It is primarily due to bad cost
estimation that the algorithm relies on. Instead, we propose a selection criterion
based on the non-uniform coupon collector problem.

• In Liberty et al. [38], algorithm estimates the total data points using the current point
count observed, achieving O(logn) cost approximation. Our approach improves this
by updating the estimation with the doubling trick, providing improved constant
cost approximation.

We now formally restate non-uniform coupon collector problem with replacement
Doumas and Papanicolaou [259]:

Claim 5.1. Given m distinct coupon types, the expected number of coupons required to
obtain at least one coupon from each type is denoted as Hm, and it is calculated as follows:
Hm=

∑m
a=1(−1)a−1∑

1≤j1,...,ja≤k
1

p(j1)+...+p(ja) where p(i) is the probability of obtaining a
coupon of type i.

We aim to determine the expected number of data points be opened as a center to ensure
representation from each center in the optimal capacitated clustering. As this will result in
a better approximation of ℓ∗p, which the fully online algorithm will require. To achieve this,
we employ a non-uniform coupon collector problem as follows: consider coupons to be the
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data points and each coupon type to be the centers in the offline optimal clustering (i.e.,
m = k in our case). However, the main challenge lies in computing the probabilities p(i),
representing the probability of a data point belonging to cluster i. When the capacities
are uniform, i.e. n/k with ϑ = 1 and data points are coming uniform at random from any
cluster, it becomes evident that we obtain p(i) = 1/k ∀i ∈ [k] thus leading to Hk = k log k.
Further, since p(i)′s are not known to us, we restrict the value of Hk to be k log k, and
therefore, the total number of centers opened by COCA remains of the same order as that
of by Liberty et al. [38]. It must be noted that, in order to satisfy Claim 5.1, however, Hk

may reach the value of n (when differences in p(i)’s are arbitrarily high), which is again
consistent with the literature as shown by Moshkovitz [260] that even with knowledge of
n, any algorithm would inevitably open Ω(n) centers in the worst case ordering of data
points. Note that our theoretical proofs hold and remain unaffected by choice of p(i)’s and
the value of Hk. It’s just that if prior information about sampling probabilities is known,
one can leverage Claim 5.1 to obtain a better estimate of initial centers (and ℓ∗p).

5.4 Capacitated Semi-Online Clustering Algorithm (CSCA)

We begin by looking into semi-online clustering called Capacitated Semi-online Clustering
Algorithm (CSCA) wherein the total number of data points (n) and lower-bound on optimal
cost (ℓ∗p) is known. Note that most restrictions in fully online clustering (i.e., when both
these n, ℓ∗p are unknown) apply to semi-online clustering. This means that for each data
point, the algorithm must make an irrevocable decision to either assign it to the existing
centers or open it as a new center. The complete pseudo-code for CSCA is described in
Algorithm 7. CSCA method begins by initializing the capacity vector (Γ) and assignment
function (ϕ) as an empty set. It also sets the round counter (r) to one and the estimate
of the number of centers opened in the current round (qr) to 0 in lines 1 to 2. Since ℓ∗p is
given CSCA can compute the center opening cost (fr) by plugging the value of the lower
bound (ℓ∗p), k, and n to get fr = ℓ∗pϑ/k logn in line number 4. This helps avoid opening
up a few initial centers to estimate ℓ∗p, and CSCA can proceed to execution just by opening
the first data point as center (line 3). Now, for all the remaining incoming data points,
the method takes a probabilistic decision about opening a data point as a center from
lines 5 to 20. The decision considers the ratio between the distance to the closest center
with remaining capacity (d(xt, c)) and the center opening cost (fr). This is because if the
distance to the closest available center will dominate over the center opening cost, the
probability value pt = d(xt, c)/fr will increase and vice versa. In case there is no closest
available empty center then the incoming data point will be opened as center. However,
to control too many centers to open up CSCA doubles the center opening cost if the current
estimate of centers opened (qr) in any round r rises above a certain threshold and resets
the estimate counters for the next round (r + 1) in lines 15 to 18. However, if the event
of opening a data point is unsuccessful (with probability (1− pt)), then CSCA assigns the
data point to the closest center. We now look into CSCA’s theoretical guarantees.
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Algorithm 7: Capacitated Semi-online Clustering Algorithm
Input: set of n data points X, optimal ℓ∗p, and capacity constraint γ
Output: cluster centers C and assignment function ϕ

1 Initialize Γ← ∅
2 Initialize ϕ← ∅, r ← 1, qr ← 0
3 Open first data point as center (c1) and set Γ(c1) = γ, qr ← 1
4 Initialize center opening cost fr = ℓ∗pϑ/k logn
5 for each remaining xt ∈ X do
6 c← argminc∈C:Γ(c)>0 d(xt, c) // Find the closest center
7 With probability pt = min

(
d(xt, c)/fr, 1

)
:

8 C ← C ∪ {xt} // Open the data point as center
9 ϕ(xt) = xt //Set the assignment function

10 Γ(xt) = γ //Initializing the capacity constraints
11 qr ← qr + 1
12 Otherwise, with probability 1− pt:
13 ϕ(xt) = c //Assign the data point to center
14 Γ(c) = Γ(c)− 1 // Update capacity
15 if qr ≥ 3k

ϑ (1 + logn) then
16 r ← r + 1
17 qr ← 0
18 fr ← 2fr−1 // Update the opening cost
19 end
20 end
21 return (C, ϕ)

5.4.1 Theoretical Results

We now first look into the expected number of centers opened by Algorithm 7, and
subsequently, cost approximation bounds. To this, let us denote optimal clustering as
C with corresponding clusters {C∗

1 , . . . , C∗
k} and assignment function ϕ∗. We omit the

p-norm factor from the distance function in the proofs for ease of reading. However,
proofs hold for all finite values of p.

Theorem 5.2. Let C be a set of cluster centers opened by Algorithm 7. Then, E(|C|) =

O

(
k
ϑ log (n) log

(
L∗

p

ℓ∗
p

)
+ k log(n)

)
.

Proof. Let L∗
p,i be the optimal capacitated clustering cost of cluster i and is given by

L∗
p,i = ∑

x∈C∗
i
d(x, ϕ∗(x)). So the total optimal cost is L∗

p= ∑k
i=1 L

∗
p,i. Further, let A∗

i

denote the average distance from data points in the ith optimal cluster to its center and
is computed as A∗

i = 1
|C∗

i |
∑

x∈C∗
i
d(x, ϕ∗(x)) = L∗

p,i/|C∗
i |.

Now, our primary goal is to bound the number of centers opened. We have k optimal
clusters, and as the arrival of data points is unknown in the online setup, we end up
opening more centers in each cluster as an estimation of the optimal center. Let us now
divide the k optimal clusters into different rings motivated from [261, 262, 263]. The
broader idea is to compute the expected number of centers that we end up opening in
each of these rings. The 0th ring is denoted by C∗

i,0={x ∈ C∗
i : d(x, ϕ∗(x)) ≤ A∗

i }. The
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subsequent rings, from 1 to τ , are given by C∗
i,τ ={x ∈ C∗

i : 2τ−1A∗
i < d(x, ϕ∗(x)) ≤ 2τA∗

i }.
Note that a cluster C∗

i will be divided into (1 + logn) rings, as all rings after logn will be
essentially empty. Let r′ be the first round when the center opening cost fr′ becomes some
fraction of L∗

p such that, fr′ ≥ 24L∗
pϑ

k log n . Now, we bound the expected number of centers in
two separate parts, i.e., before round r′ and second during and after round r′. Let us first
begin with the former,
Case 1: By the definition of r′, we have fr′−1 <

24L∗
pϑ

k log n . Further, since the center opening
cost becomes twice at every round, we have, fr′−1 = 2r′−1f1. Substituting the value of
f1 = ℓ∗

pϑ

k log(n) , we get, r′ ≤ log
(

L∗
p

ℓ∗
p

)
+ 5. Therefore, before round r′, the number of centers

opened by the algorithm is,

E(|C|before r′) = O

3k
ϑ

(1 + logn) log
(
L∗

p

ℓ∗p

) (5.1)

Case 2: Now, let’s look into computing the number of centers opened during and after
round r′ in each of these rings. To avoid getting struck due to not knowing order of arrival
of data points, we will loosely estimate the expected number of centers present in any ring
during or after round r′. To this, we divide the bounds into three subparts-
Case 2(a): First, we estimate the number of new centers that will open for the first time
in each ring. Let’s denote these centers as K1

τ . Since there are a total of (1 + logn) rings
in each cluster, therefore the total number of such centers are ∑k

∑
τ 1 = k(1 + logn).

Case 2(b): Next, suppose there is a data point x that arrives and the closest center to
x has already reached its capacity; in such a case, the data point will continue searching
for the next closest center in any of the rings in increasing order of distance. There are
two possibilities: either data point x will find a vacant center or its likelihood of becoming
a center increases as it delves further into the chain if the next closest center is too far
away (handled in next case). Let’s denote the extra number of centers that need to be
opened up in any ring τ due to the exhausting capacity of the first centers of Case 2a, be
denoted by Kc

τ . It is important to note that once a center K1
τ fills up and we need to open

a second center within the ring, then at least ϑn
k data points have already arrived and

been assigned. Therefore, the total number of such Kc
τ centers over all rings and clusters

is upper bounded by k/ϑ i.e., ∑Kc
τ ≤ k/ϑ.

Case 2(c): Now since there were two possibilities: either data point x will find a vacant
center or its likelihood of becoming a center increases as it delves further into the chain
if the next closest center is too far away. Now, the remaining task is to bound the
probabilistically opened centers in each ring apart from the centers opened in the previous
two subcases. To do this according to Algorithm 7, if a data point x is the initial center
opened within any ring, then the probability of subsequent point x′ from the same ring
opening as a center is defined and bounded using the properties of rings as follows:

d(x, x′)
fr′

≤ d(x, ϕ∗(x)) + d(x′, ϕ∗(x))
fr′

≤ 2 · 2τ A
∗
i

fr′

(∵ using triangular inequality and ring property)
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So, the expected number of centers that will open in any ring over all rounds r ≥ r′ is∑
r≥r′

2·2τ A∗
i

fr
|C∗

i,τ,r|. Summing these probabilistic centers over all rings and using fr ≥ fr′

we obtain the number of centers opened for estimating one optimal cluster center as,

Kp
τ =

∑
τ≥0

∑
r≥r′

2 · 2τA∗
i

fr
|C∗

i,τ,r|

 ≤∑
τ≥0

2 · 2τA∗
i

fr′

∑
r≥r′

|C∗
i,τ,r|

≤
∑
τ≥0

2 · 2τA∗
i

fr′
|C∗

i,τ | ≤
2A∗

i |C∗
i,0|

fr′
+ 4
fr′

∑
τ≥1

∑
x∈C∗

i,τ

2τ−1A∗
i

≤
6L∗

p,i

fr′
(Using L∗

p,i = A∗
i |C∗

i | and 2τ−1A∗
i ≤ d(x, ϕ∗(x)))

Summing this up for all k cluster centers and considering the estimate of fr′ ≥ 16L∗
pϑ

k log n we
get,

Kp
k ≤

6L∗
p

fr′
≤ 6k logn

16ϑ (5.2)

Therefore, number of total centers opened in Case 2 are as follows

E(|C|during and after r′) = O

K1
τ +

∑
τ ,k

Kc
τ +Kp

k



= O

(
k(1 + logn) + k

ϑ
+ k log(n)

ϑ

)
= O

(
k

ϑ
log(n)

)
(5.3)

Thus, combining Equation 5.1 and 5.3, completes the proof, resulting in the total expected

number of centers opened by CSCA asO
(

k
ϑ log (n) log

(
L∗

p

ℓ∗
p

))
. Note that for the unbounded

capacity case, when ϑ = k, our bounds in semi-online algorithm CSCA match with that of
Liberty et al [38].

Theorem 5.3. Let LCSCA
p represent the cost of the semi-online capacitated cost and L∗

p

denote the optimal offline capacitated cost. Then, E
(
LCSCA

p

)
= O

(
L∗

p

)
.

Proof. To approximate the cost guarantees, our primary focus is on bounding the
assignments in line 13 in CSCA. In all other assignments, data points are centers themselves,
resulting in zero cost. However, after the opening of these initial centers, the data points
have two possibilities of getting assigned. Firstly, they may be assigned to one of the
centers within the same ring as the data point’s optimal ring. Secondly, suppose the
center within the same ring is already occupied; in that case, data points may be assigned
to a center located in a different ring within the same cluster or in a ring belonging to a
different cluster. We first bound the latter as follows:
Case 1: Note that the cost of data points (say xt ∈ X) going to rings other than the
optimal one incurs a cost equal to the distance to the assigned center from set C. We will
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use the Lemma 1 of Liberty et al. [38] to bound these costs, i.e., E(d(xt, C)) and restate
the lemma below:

Lemma 5.4 (Liberty et al. [38]). Given a sequence of n independent experiments, each of
which succeeds with probability atleast min (Ai/B, 1) where B ≥ 0 and Ai ≥ 0 ∀i ∈ [n]. Let
t be the (random) number of sequential unsuccessful experiments, then, E(∑t

i=0Ai) ≤ B.

Now, before we delve into using the above lemma, let us first understand the mapping
between our problem and the technical lemma. In CSCA probability of event (center
opening) is at least min(d(xt, C)/fr′ , 1) where xt is any data point and C is set of existing
vacant centers. On using the fact that given R as the last round, fR > fr′ for any round
r′ < R, the denominator can be made constant as in the lemma. Now, each independent
unsuccessful experiment represents the assignment of one data point, and we can use the
lemma to bound the expected value of the sum of Ai’s (d(xi, C)’s in our problem) by
B(= fR). Note that once the event gets successful, i.e., the center in any ring gets opened,
we will bound the cost of assignments to the opened center in the next case, but here we
look into the scenario once this center gets filled up. In such a situation, assignments are
again upper bounded by O(fR) along similar lines.
Case 2: We will next bound the cost of all data points that are allocated within the
ring. Now, after any data point x is opened as center, then cost of subsequent point x′

is given by d(x, x′) ≤ d(x, ϕ∗(x)) + d(x′, ϕ∗(x)) ≤ 2(2τA∗
i ) (using triangular inequality

and ring property). Now, using Equation 5.2, the total cost over all such x′ is given as∑
x′ d(x, x′) ≤ 6L∗

p. It is important to note that, unlike the uncapacitated case in Liberty
et al. [38], once a center gets opened in the ring, its capacity can eventually get exhausted,
and then one returns to Case 1 and needs to wait until the next center is opened within the
ring and once a new center opens up, which is already accounted for by Case 2. Therefore,
the total expected cost by combining both cases over all rings is given as follows:

O(fRk logn+ L∗
p) (5.4)

Therefore, we must find our case’s expected value of fR. To this, let us consider some
round r′ in CSCA such that,

fr′ ≥
16L∗

pϑ

k logn ≥
16L∗

pϑ

k(1 + logn) (5.5)

Using Equation 5.2 (i.e., 6L∗
p/f

′
r), Equation 5.5 and Markov inequality, the probability

of opening more than 3k
ϑ (1 + logn) centers is 1

8 and thus, CSCA concluding at round r′ is
equal to 7

8 . Now, let b be probability that CSCA terminates before round r′, then,

E(fR) ≤ bfr′ −1 + (1− b)
∞∑

r=r′

fr

(7
8

)(1
8

)(r−r′)

≤ bfr′ + 7
8(1− b)

∞∑
i=0

fr′+i

(1
8

)i

< O(fr′ ) (using fr′+i = 2ifr′ and 1
8 < 1)
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=⇒ E(LCSCA
p ) = O(fRk logn+ L∗

p) = O(L∗
p).

5.5 Capacitated Online Clustering Algorithm (COCA)

Now, we delve into a fully online setup in which n is unknown, and the algorithm needs
to compute the lower-bound ℓ∗p without any prior knowledge of n. To approximate ℓ∗p,
the algorithm leverages the insight that once Hk (≥ k) data points are opened as center,
a more accurate estimation of ℓ∗p can be obtained by performing clustering on these Hk

data points (see Claim 5.1). Further, for monitoring the estimated value of n, the method
utilizes a doubling technique in lines 22 to 23, wherein the estimate is doubled once it
is achieved. The code is outlined in Algorithm 8. Also, for better understanding, the
complete algorithm is pictorially illustrated as an image flow diagram in Figure 5.1.

Algorithm 8: Fully online COCA
Input: set of datapoints X and capacity constraint γ
Output: cluster centers C and assignment function ϕ

1 Initialize Γ← ∅ // stores vacant capacity of center
2 Open first Hk points as centers (Claim 5.1) and ∀j ∈ [Hk] set Γ(cj) = γ
3 Initialize ϕ← ∅, r ← 1, nr ← Hk, qr ← Hk, idx ← Hk

4 ℓ∗p ← objective cost on Hk using Mulvey and Beck [242].
5 Initialize center opening cost fr = (ℓ∗pϑ)/(k lognr)
6 for each remaining xt ∈ X do
7 c← argminc∈C:Γ(c)>0 d(xt, c)
8 With probability pt = min

(
d(xt, c)/fr, 1

)
:

9 C ← C ∪ {xt}
10 ϕ(xt) = xt

11 Γ(xt) = γ
12 qr ← qr + 1
13 Otherwise, with probability 1− pt:
14 ϕ(xt) = c
15 Γ(c) = Γ(c)− 1
16 if qr ≥ 3k

ϑ (1 + lognr) then
17 r ← r + 1
18 qr ← 0
19 fr ← 2fr−1
20 end
21 idx ← idx + 1
22 if idx ≥ nr then
23 nr ← 2nr

24 end
25 end
26 return (C, ϕ)
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Figure 5.1: Image flow for proposed online method COCA.

5.5.1 Theoretical Results

Theorem 5.5. If C is set of centers opened by COCA, then, E(|C|) =
O
(
Hk + k

ϑ log (n) log(nδ)
)

where δ = maxx,x′ d(x,x′)
minx,x′:x ̸=x′ d(x,x′) .

Proof. The proof will follow similarly to Theorem 5.2 except for the fact that in each round
instead of opening 3k

ϑ (1 + log n) centers, we are opening 3k
ϑ (1 + log nr) ≤ 3k

ϑ (1 + log n)
centers for all r except the last round. Even for the last round nr ≤ 2n. Therefore, we can
simply substitute the value of ℓ∗p and L∗

p. Now, as Algorithm 8 computes ℓ∗p as capacitated
cost using Mulvey and Beck [242] on Hk points. So, ℓ∗p ≥ minx,x′∈X:x ̸=x′ d(x, x′). Similarly,
the optimal capacitated cost L∗

p ≤ nmaxx,x′∈X d(x, x′) (as the maximum distance from
any center (data point) to other points is bounded by the maximum pairwise distance).
Substituting these values and adding initial Hk centers completes the proof.
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Theorem 5.5 indicates that the number of centers can be negatively affected by the presence
of the term Hk. However, our experiments demonstrate that selecting the initial Hk data
points as center, rather than (k + 1) (as done in Liberty et al. [38]), actually contributes
to opening overall fewer centers because it results in a better estimate of ℓ∗p. Further,
when k ≥ 2 and n is unknown, Moshkovitz [260] shows that at least Θ(logn) centers for
random ordering are needed to achieve constant cost approximation. Our upper bound
in the online capacitated setting (ϑ = k) aligns with lower bounds in the uncapacitated
setting.

Theorem 5.6. Let LCOCA
p be the cost of online Algorithm 8 and L∗

p be the optimal offline
capacitated cost. Then, E(LCOCA

p ) = O
(
L∗

p

)
.

Proof. We begin with Equation 5.4 given in Theorem 5.3 i.e, E(LCOCA
p ) = O(fRk logn+L∗

p).
Thus, we need to estimate the value of fR at the last round R. Let us consider any
round r such that fr ≥

16L∗
pϑ

k log(nr) . Then, number of centers opened in round r is given as
qr ≤ k

ϑ(1 + log(nr)) + q′
r. Here, we pessimistically count one (first) centers in each ring

up to round r and q′
r is the number of centers opened in rings after opening former ⌈k/ϑ⌉

centers. In order to have more rounds than r, COCA needs q′
r ≥ 2k

ϑ (1+log(nr)). We will now
compute the probability that COCA terminates by round r. Applying Markov inequality
by using the above information along with E(q′

r) ≤ 6L∗
p/fr from Equation 5.2, we get the

probability of reaching the next round as at most 3/16. Thus, if b is the probability that
COCA terminates before round r. We have,

E(fR) = bfr−1 + (1− b)
∞∑

r′ =r

fr

(13
16

)( 3
16

)r′−r

< bfr + fr(1− b)
(13

16

) ∞∑
i=0

2i
( 3

16

)i

= O(fr) = O

(
16ϑL∗

p

k log(nr)

)
. (using fr−1 = 2fr and b ≤ 1)

On substituting this back, we get

E(LCOCA
p ) = O(fRk log(n) + L∗

p) = O

(
16L∗

pϑk logn
k lognr

+ L∗
p

)

Now since with high probability the algorithm will terminate at rth round and from
doubling trick, we can say, nr ≥ n. So, E(LCOCA

p ) = O
(
L∗

pϑ+ L∗
p

)
= O(L∗

p). This
completes the proof. The derived bounds exhibit a substantial reduction by a logarithmic
factor compared to Liberty et al. [38]. Note that, due to capacity constraints in an online
setup, there may be some miss-assignments compared to the offline method. However,
these disruptions will be minimal owing to constant cost bounds. Additionally, all results
hold for any scalar distance metric and for higher dimensions: manhattan or fractional
norms [264] are sometimes preferred over Euclidean.
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Next, we extend our proposed algorithms to accommodate group fairness constraints.
Since in online clustering, the total number of data points is not known in advance, so
ensuring minimum representation seems less practical from an implementation perspective.
Therefore, we model group fairness by limiting the over-representation of any group value
in a cluster. This automatically provides a fair chance for data points from other group
values. In order to control over-representation in each cluster, we model the problem as
online clustering with capacity constraints on each protected group value in every cluster.
In the next section, we will provide more details about the proposed fair algorithm.

5.6 Fair Capacitated Online Clustering Algorithm (COCAF)

In this section, we now extend the COCA to a fair version called COCAF . The main changes
from COCA involve having separate capacity constraints (γa ∀a ∈ [m]). Owing to similar
reasons as COCA we keep γa same across all the opened centers. Now, since the data
points belonging to different group values can arrive in any order, we have separate center
opening costs for each group value. This will prevent assigning data points arriving late
in the stream to be also open as centers if they are not close enough to existing centers
(based on the pt value). Further, we also now estimate separately the number of data
points from each group value using the doubling trick. The complete pseudo-code for the
method is provided in Algorithm 9. We now discuss the theoretical results for COCAF .

5.6.1 Theoretical Results

We now first look into the expected number of centers opened by Algorithm 9, and
subsequently, cost approximation bounds. Primarily, the main changes in proof arise
from the fact that in COCAF , we now have center opening cost for each round r different
for each group value, i.e., fa,r where a ∈ [m] instead of a common fr. Further, the proofs
will now involve bounding the number of centers and cost separately for each group value
and then computing the complete results. We first summarize the result on the number
of centers opened by COCAF using the following theorem:

Theorem 5.7. If C is set of centers opened by COCAF , then, E(|C|) =
O

(
Hk + 3mk

ϑa
(1 + logna) log (nδ) + mk

mina∈[m](ϑa) + 6mk log nb
16ϑb

)
where δ = maxx,x′ d(x,x′)

minx,x′:x ̸=x′ d(x,x′)

and a ∈ [m] is the most dominant group value in dataset and b ∈ [m] is the least dominant
group value.

Proof. On similar lines as the previous proofs, suppose that C∗
i,a denotes the clustering of

data points in clustering C∗
i belonging to group value a ∈ [m]. Further let L∗

p,i,a be the
optimal capacitated clustering cost of cluster i and group value a ∈ [m] and is given by
L∗

p,i,a = ∑
xa∈C∗

i,a
d(xa, ϕ

∗(xa)). So the total optimal cost is L∗
p= ∑

k

∑
a L

∗
p,i,a=∑k

i=1 L
∗
p,i.

Further, let A∗
i,a denote the average distance from data points belonging to group

value a ∈ [m] in the ith optimal cluster to its center and is computed as A∗
i,a =

1
|C∗

i,a|
∑

xa∈C∗
i,a
d(xa, ϕ

∗(xa)) = L∗
p,i,a/|C∗

i,a|. Now consider r′ be the first round when the
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Algorithm 9: Fully online COCAF

Input: set of datapoints X, protected group function ρ : X → [m] and capacity
constraint γ = {γa}ma=1

Output: cluster centers C and assignment function ϕ
1 Initialize Γ← ∅ // stores vacant capacity of center
2 Open first Hk data points as centers (Claim 5.1) and ∀j ∈ [Hk], ∀a ∈ [m] set

Γ(cj , a) = γa

3 Initialize ϕ← ∅, ∀a ∈ [m] set {ra ← 1, na,ra ← Hk, qa,ra ← Hk, idxa ← Hk}
4 ℓ∗p ← objective cost on Hk using Mulvey and Beck [242].
5 Initialize center opening cost fa,r = (ℓ∗pϑa)/(k logna,ra) ∀a ∈ [m]
6 for each remaining xt ∈ X do
7 a← ρ(xt)
8 c← argminc∈C:Γ(c,a)>0 d(xt, c)
9 With probability pt = min

(
1, d(xt, c)/fa,ra

)
:

10 C ← C ∪ {xt}
11 ϕ(xt) = xt

12 Γ(xt, a) = γa

13 qa,ra ← qa,ra + 1
14 Otherwise, with probability 1− pt:
15 ϕ(xt) = c
16 Γ(c, a) = Γ(c, a)− 1
17 if qa,ra ≥ 3k

ϑa
(1 + logna,ra) then

18 ra ← ra + 1
19 qa,ra ← 0
20 fa,ra ← 2fa,ra−1
21 end
22 idxa ← idxa + 1
23 if idxa ≥ na,ra then
24 na,ra ← 2na,ra

25 end
26 end
27 return (C, ϕ)

center opening cost fa,r′ becomes some fraction of L∗
p such that, fa,r′ ≥ 24L∗

pϑa

k log na
. Now,

we bound the expected number of centers in two separate parts, i.e., before round r′ and
second during and after round r′. Let us first begin with the former,

Case 1: By the definition of r′, we have fa,r′−1 <
24L∗

pϑa

k log na
. Further, since the center

opening cost becomes twice at every round, we have fa,r′−1 = 2r′−1fa,1. Substituting the
value of fa,1 = ℓ∗

pϑa

k log(na) , we get, r′ ≤ log
(

L∗
p

ℓ∗
p

)
+ 5. Therefore, before round r′, the number

of centers opened by the algorithm is for group value a ∈ [m],

E(|C|abefore r′) = O

3k
ϑa

(1 + logna) log
(
L∗

p

ℓ∗p

) (5.6)
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Thus, summing the result for all group values,

E(|C|before r′) =
∑

a∈[m]
E(|C|abefore r′)

Now, let a ∈ [m] be the most dominant group value in the dataset that is ∃a ∈ [m] : na ≥
nb ∀b ∈ [m] then as logarithmic function is a monotonically increasing function we have
logna ≥ lognb ∀b ∈ [m] and na >> va. Therefore,

E(|C|before r′) ≤ 3mk
ϑa

(1 + logna) log
(
L∗

p

ℓ∗p

)
(5.7)

Case 2: Now, let’s look into computing the number of centers opened during and after
round r′ in each of these rings. To this, we again divide the bounds into three subparts-
Case 2(a): First, we estimate the number of new centers that will open for the first time
in each ring for every group value. Let’s denote these centers as K1

τ . Since there are a
total of (1 + logna) rings in each cluster for each group value a ∈ [m], therefore the total
number of such centers are ∑k

∑
τ

∑
a 1 = mk(1 + logna).

Case 2(b): Next, suppose there is a data point x that arrives and the closest center to x
has already reached its capacity; in such a case, the data point will continue searching for
the next closest center in any of the rings in increasing order of distance. There are two
possibilities: either data point x will find a vacant center, or its likelihood of becoming
a center increases as it delves further into the chain if the next closest center is too far
away (handled in the next case). Let’s denote the extra number of centers that need to be
opened up in any ring τ due to the exhausting capacity of the first centers of Case 2a, be
denoted by Kc

τ . It is important to note that once a center K1
τ fills up and we need to open

a second center within the ring, then at least ϑana
k data points have already arrived and

been assigned. Therefore, the total number of such Kc
τ centers over all rings and clusters

is upper bounded by k/ϑa i.e., ∑Kc
τ ≤

∑
a∈[m] k/ϑa ≤ mk

mina∈[m](ϑa) .
Case 2(c): Now since there were two possibilities: either data point x will find a vacant
center, or its likelihood of becoming a center increases as it delves further into the chain
if the next closest center is too far away. Now, the remaining task is to bound the
probabilistically opened centers in each ring apart from the centers opened in the previous
two subcases. To do this according to Algorithm 9, if a data point x is the initial center
opened within any ring, then the probability of subsequent point x′ from the same ring
opening as a center is defined and bounded using the properties of rings as follows:

d(x, x′)
fa,r′

≤ d(x, ϕ∗(x)) + d(x′, ϕ∗(x))
fa,r′

≤ 2 · 2τ A∗
i

fa,r′

(∵ using triangular inequality and ring property)
So, the expected number of centers that will open in any ring for all m group values over
all rounds r ≥ r′ is ∑r≥r′

∑m
a=1

2·2τ A∗
i

fa,r
|C∗

i,τ,r|. Summing these probabilistic centers over all
rings and using fa,r ≥ fa,r′ we obtain the number of centers opened for estimating one
optimal cluster center as,
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Kp
τ =

∑
τ≥0

∑
r≥r′

m∑
a=1

2 · 2τA∗
i,a

fa,r
|C∗

i,τ,r,a|


≤
∑
τ≥0

m∑
a=1

2 · 2τA∗
i,a

fa,r′

∑
r≥r′

|C∗
i,τ,r,a|

≤
∑
τ≥0

2 · 2τ
m∑

a=1

A∗
i,a

fa,r′
|C∗

i,τ,a|

≤
m∑

a=1

2A∗
i,a|C∗

i,0|
fa,r′

+
m∑

a=1

4
fr′,a

∑
τ≥1

∑
xa∈C∗

i,τ,a

2τ−1A∗
i,a

≤
m∑

a=1

2A∗
i,a|C∗

i,0|
fa,r′

+
m∑

a=1

4
fr′,a

∑
τ≥1

∑
xa∈C∗

i,τ,a

d(xa, ϕ
∗(xa))

≤
m∑

a=1

2A∗
i,a|C∗

i,0|
fa,r′

+
m∑

a=1

4L∗
p,i,a

fr′,a

≤
6mL∗

p,i

fb,r′
(∃b ∈ [m] : fa,r′ ≥ fb,r′ ∀a ∈ [m])

≤
6mL∗

p,i

fr′,b

(using L∗
p,i,a = A∗

i,a|C∗
i,a| =

∑
xa∈C∗

i,a
d(xa, ϕ

∗(xa)) and 2τ−1A∗
i,a ≤ d(xa, ϕ

∗(xa)) ∀xa)

Summing this up for all k cluster centers and considering the estimate of fb,r′ ≥ 16L∗
pϑb

k log nb
we

get,
Kp

k ≤
6mL∗

p

fb,r′
≤ 6mk lognb

16ϑb
(5.8)

Therefore, number of total centers opened in Case 2 are as follows

E(|C|during and after r′) = O

K1
τ +

∑
τ ,k

Kc
τ +Kp

k



= O

3mk
ϑa

(1 + logna) log
(
L∗

p

ℓ∗p

)
+ mk

mina∈[m](ϑa) + 6mk lognb

16ϑb

 (5.9)

where a ∈ [m] is the most dominant group value in the data stream and b ∈ [m] is the
least dominant group value.
Now, since fully online algorithms are not aware of the values of L∗

p, ℓ
∗
p so, following the

lines as in Theorem 5.5, we consider, ℓ∗p ≥ minx,x′∈X:x ̸=x′ d(x, x′). Similarly let, L∗
p ≤

nmaxx,x′∈X d(x, x′). Substituting these values and adding initial Hk centers completes
the proof.

Theorem 5.8. Let LCOCAF
p be the cost of online fair Algorithm 9 and L∗

p be the optimal
offline capacitated cost. Then, E(LCOCAF

p ) = O
(
L∗

p

)
.

Proof. On the same lines as Theorem 5.3, 5.6, we bound the cost in two cases. In the
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first case, we bound the cost using Lemma 5.4. We now consider R as the last round
such that fa,R > fa,r′

a
for any round r′ < R. Then case 1 can be loosely upper bounded

as O(mfa,Ra) where a ∈ [m] is the group value of data points that are available in most
abundance in the stream. The result uses the reasoning that the group most abundant in
the stream will probably have the highest (or doubling) facility opening cost towards the
last rounds or termination. The second case which dealt with bounding the data points
that are allocated within the ring and getting the upper bound of L∗

p. To this, we have
the total expected cost over all rings as O(mfa,Rak logna +L∗

p) where a ∈ [m] is the most
dominant group in terms of the number of total data points in the stream. Thus, we
now need to estimate the value of fa,Ra at the last round R. Let us consider any round
r such that fa,ra ≥

16L∗
pϑa

k log(na,ra ) . Here na,ra are the number of data points that have been
processed in online fashion from the data stream belonging to group value a ∈ [m]. Then,
the number of centers opened in round r is given as qa,ra ≤ k

ϑa
(1 + log(na,ra)) + q′

a,ra
.

Here, we pessimistically count one (first) centers in each ring up to round r and q′
a,ra

is
the number of centers opened in rings after opening former ⌈k/ϑa⌉ centers. In order to
have more rounds than r, COCAF needs q′

a,ra
≥ 2k

ϑa
(1 + log(na,ra)). We will now compute

the probability that COCAF terminates by round r. Applying Markov inequality by using
the above information along with E(q′

a,ra
) ≤ 6L∗

p/fa,ra , we get the probability of reaching
the next round as at most 3/16. Thus, if b is the probability that COCAF terminates before
round r. We have,

E(fa,Ra) = bfa,ra−1 + (1− b)
∞∑

r′ =r

fa,ra

(13
16

)( 3
16

)r′−r

< bfa,ra + fa,ra(1− b)
(13

16

) ∞∑
i=0

2i
( 3

16

)i

= O(fa,ra) = O

(
16mϑaL

∗
p

k log(na,ra)

)
. (using fa,ra−1 = 2fa,ra and b ≤ 1)

On substituting this back, we get

E(LCOCAF
p ) = O(mfa,Rak log(na) + L∗

p) = O

(
16L∗

pϑak logna

k logna,ra

+ L∗
p

)

such that a ∈ [m] be the most dominant group in the stream. Now, since with high
probability, the algorithm will terminate at rth round and from doubling trick, we can say,
nr ≥ n. So, E(LCOCAF

p ) = O
(
L∗

pϑa + L∗
p

)
= O(L∗

p). This completes the proof. Additionally,
all results hold for any scalar distance metric.

5.7 Experimental Results and Discussion

We will now validate our proposed approaches against SOTA on following datasets
motivated by clustering literature [44]:



Chapter 5. Group Fairness as Capacity Constraints in Online Clustering 141

• Synthetic1d: consist of 1000 points sampled each from {Ni(µ = 1+a·i, σ = 2)}ki=1,
where a = 7 in well separable (s) and a = 5 in partially overlapping (o) clusters.

• Synthetic2d: consist of 1000 points sampled each from {Ni(µ = 1 + a · i,Σ =
I2×2)}ki=1, where variable ‘a’ as above and I is identity matrix. Synthetic2d is
shortened to Syn2d.

• Adult5: The data is collected from 32562 people comprising 21790 males and 10771
females during US Census 1994. The five feature attributes chosen for the present
study are: age, fnlwgt, education num, capital gain, hours per week; and align with
prior literature on clustering [44].

• Bank6: Marketing records of 411109 Portuguese campaigns. The dataset consists
of 11568 samples from singles, 24928 from married, and 4612 from divorced people.
The six feature attributes consistent with previous research [44] are – age, duration,
campaign, cons.price.idx, euribor3m, nr.employed.

• Diabetes7: Medical records with 100, 000 instances collected over the last ten years
from 130 US hospitals. It is collected from 54708 male and 47055 females. The
feature attributes are age, time in hospital [44].

Experimental Setup: All experiments are performed on Intel Xeon with 280GB RAM,
and Python 3.6. We report mean and standard deviation over ten independent runs and
seed from set {0, 100, . . . , 900}. Notably, the capacity parameter (ϑ) is such that ϑ ≥ 1,
with ϑ = 1 representing the most restrictive scenario, i.e., having uniform capacities. The
code8 is publicly available for use.
We divide the experimental analysis into two subsections. We first validate the efficacy
of an unfair online capacitated clustering algorithm and then later investigate the fair
variation of the method. We evaluate the performance of COCA against the following:

• Uncapacitated Online k-means We call fully online algorithm as LIB for
comparison with COCA (see Section 5.3 for working of algorithm). A heuristic
approach is also provided by the authors in which they initially open (k + 1) data
points as centers and compute ℓ∗p, by taking half sum of ten closest neighbours instead
of the pairwise minimum distance between (k + 1) data points. Further, they drop
logarithmic factors by setting qr ≥ k and increasing fr by ten times instead of
doubling it. We denote this as LIBH [38]. Note that while LIBH outperforms LIB but
it lacks theoretical results to support it.

• Capacitated Online Clustering Heuristic (COCH): Motivated from LIBH, we
also use heuristic with a selection of (k + 1) initial points as centers, setting qr ≥ k

5archive.ics.uci.edu/ml/datasets/Adult
6archive.ics.uci.edu/ml/datasets/Bank+Marketing
7archive.ics.uci.edu/dataset/116/us+census+data+1990
8https://github.com/shivi98g/Capacitated-Online-Clustering-Algorithm
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and updating fr by ten times in COCA to enable comparison of COCH with LIBH

(pseudo-code in Algorithm 10).

• Offline Capacitated Clustering (CAP): Assigns data points to closest vacant
centers and performs mean (or median) center updates as in heuristic [242]. We
compare the algorithm with both k-means and k-median variation of the method.

Additionally, for comparison of COCAF , we introduce an additional heuristic method similar
to LIBH, COCH. We call it COCHF . It uses a heuristic with a selection of (k+1) initial points
as centers, setting qr ≥ k and updating fr by ten times in COCAF . We now discuss the
metrics on which we compare these methods.

Metric: We re-introduce: ktarget, kactual. The former is the input for any online
algorithm, while the latter represents the count of final centers opened. Also, we compare
COCA’s performance on cost. It involves comparing the cost of online solutions when
executed for ktarget as input (resulting in kactual centers) v/s their offline counterparts
when executed and compared on kactual centers. An important note that since LIB and
the proposed COCA have theoretical guarantees and should thus be compared. In contrast,
LIBH and proposed COCH are heuristic approaches that warrant comparison.

5.7.1 Analysis in Unfair Online Setting

The first half of the experimental analysis focuses on the online capacitated setting with
the capacity constraint on overall cluster sizes, i.e., we compare proposed COCA, COCH with
the uncapacitated online clustering methods. We will later see in Section 5.7.2 the fair
setting where capacity constraints are provided for each protected group at every cluster.

Analysis on Number of Centers Opened

–Under uniform capacities (ϑ = 1): We compare the centers opened by COCA, COCH

with SOTA. Results for on ktarget of 2, 3, 5, 7, 10, 15, 20, 25, 30 and 40 are listed in Tables
5.1 to 5.10. As can be observed from the tables, though the number of centers opened for
the lower value of target k are slightly larger in a few datasets for COCA as compared to
LIB due to capacity constraints. But as the value of target k increases, we see that COCA

results in significantly fewer cluster centres than LIB. It is primarily due to our idea of
opening Hk number of initial centers instead of opening only (k+ 1) points. This helps in
getting a better estimate of the lower bound on optimal cost. Further, we can observe that
the proposed COCA and COCH demonstrate significantly lower deviations than LIB, LIBH.
This is attributed to the doubling trick instead of increasing the estimate of the number of
points in a linear fashion. Reduced variance helps online algorithms avoid opening more
centers than the target. For heuristics, the gap between ktarget, kactual is tolerable for
lower targets and slightly high in higher targets, considering the rising uncertainty of the
arrival order of points.
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Algorithm 10: Fully online COCH
Input: stream X and capacity parameter γ
Output: cluster centers C and assignment function ϕ̂

1 Initialize Γ← ∅ // stores vacant capacity of center
2 Open first k + 1 points as centers and ∀j ∈ [k + 1] set Γ(cj) = γ
3 Initialize ϕ← ∅, r ← 1, qr ← k + 1
4 ℓ∗p ← objective cost on k + 1 points using Mulvey and Beck [242].
5 Initialize center opening cost fr = ℓ∗pϑ/k

6 for each remaining xt ∈ X do
7 c← argminc∈C:Γ(c)>0 d(xt, c)
8 With probability pt = min

(
d(xt, c)/fr, 1

)
:

9 C ← C ∪ {xt}
10 ϕ(xt) = xt

11 Γ(xt) = γ
12 qr ← qr + 1
13 Otherwise, with probability 1− pt:
14 ϕ(xt) = c; Γ(c) = Γ(c)− 1.
15 if qr ≥ k then
16 r ← r + 1; qr ← 0; fr ← 10fr−1.
17 end
18 end
19 return (C, ϕ)

–Under relaxed capacities (ϑ > 1): We also evaluate the performance of COCA and COCH

as the capacity parameter (ϑ) is relaxed from 1 to 2.5, 5, 7, and ktarget. The results are
presented in Tables 5.11 to 5.15 for ktarget values spanning from 2 to 40. Remarkably, we
observe that the number of opened centers remains relatively consistent even as we relax
the constraint on ϑ from the most restrictive setting of one. This can be attributed to the
fact that the online algorithms, whether capacitated or uncapacitated, open a sufficient
number of centers to accommodate all points due to the unknown order of arrival of data
points in the online setting. While there are a few datasets and target values where a
slight difference (increase or decrease) in centers occurs.

Dataset LIB COCA LIBH COCH

Adult 292.9±20.79 541.7 ± 79.80 9.0±0.0 9.0±0.0
Bank 311.9±33.29 544.3 ± 82.69 9.0±0.0 9.0±0.0
Diabetes 109.5±15.18 143.5 ± 16.55 8.6±0.79 9.0±0.0
Syn2d-(s) 134.2±45.52 113.9 ± 19.32 7.0±1.54 8.5±0.67
Syn2d-(o) 142.1±72.06 137.1 ± 21.39 7.0±0.44 7.8±0.60
Syn1d-(s) 104.8±98.75 57.6 ± 8.18 6.8±1.32 6.2±0.75
Syn1d-(o) 66.6±34.67 61.9 ± 7.54 7.8±1.32 6.6±0.49

Table 5.1: Comparison against unfair COCA, COCH on kactual against various SOTA methods
when ktarget is 2 under uniform capacities (i.e., ϑ is 1).
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Dataset LIB COCA LIBH COCH

Adult 474.0±67.56 766.4 ± 107.53 12.8±0.6 13.8±0.87
Bank 522.1±71.14 737.5 ± 98.59 12.1±1.13 13.4±0.79
Diabetes 145.4±22.64 141.0 ± 13.59 12.0±1.09 12.8±0.6
Syn2d-(s) 197.5±56.34 212.9 ± 31.09 8.9±1.37 10.1±0.3
Syn2d-(o) 197.5±56.34 197.0 ± 25.82 9.3±1.01 10.3±0.45
Syn1d-(s) 137.7±108.37 82.2 ± 8.67 9.9±1.3 10.0±0
Syn1d-(o) 142.4±92.71 77.4 ± 8.94 9.8±1.24 10.1±0.3

Table 5.2: Comparison against unfair COCA, COCH on kactual against various SOTA methods
when ktarget is 3 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA LIBH COCH

Adult 806.7±93.32 1012.1 ± 133.66 20.0±1.34 21.7±1.18
Bank 886.1±115.89 1095.7 ± 133.58 19.7±1.48 21.4±1.2
Diabetes 195.8±26.97 170.5 ± 12.75 17.5±0.80 19.1±1.51
Syn2d-(s) 454.9±173.15 302.8 ± 35.08 12.9±1.3 16.0±1.48
Syn2d-(o) 454.9±173.15 339.8 ± 33.11 13.6±1.2 16.9±1.3
Syn1d-(s) 263.9±105.39 103.6 ± 18.34 13.4±1.68 17.9±3.38
Syn1d-(o) 241.9±88.46 102.7 ± 19.19 13.7±1.61 17.7±2.93

Table 5.3: Comparison against unfair COCA, COCH on kactual against various SOTA methods
when ktarget is 5 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA LIBH COCH

Adult 1153.4±159.58 1220.5 ± 126.19 26.3±1.73 29.3±0.45
Bank 1311.6±137.23 1388.1 ± 180.04 26.4±2.01 29.4±0.66
Diabetes 214.4±25.81 163.8 ± 8.07 22.3±0.64 24.9±2.11
Syn2d-(s) 826.6±166.96 362.2 ± 41.35 17.9±2.62 23.4±3.50
Syn2d-(o) 826.6±166.96 390.5 ± 60.86 19.5±2.20 23.6± 2.53
Syn1d-(s) 401.1±168.74 123.2 ± 12.79 18.1±2.94 21.9±1.57
Syn1d-(o) 431.3±190.35 127.5 ± 17.51 18.4±2.61 22.0±1.18

Table 5.4: Comparison against unfair COCA, COCH on kactual against various SOTA methods
when ktarget is 7 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA LIBH COCH

Adult 1857.4±206.12 1735.8 ± 202.95 36.5±2.57 41.0±0.44
Bank 1969.5±205.36 1751.4 ± 191.69 37.3±3.00 41.3±0.64
Diabetes 246.3±20.34 189.0 ± 16.05 31.1±0.3 33.9±2.7
Syn2d-(s) 1357.8±358.48 619.3 ± 90.66 29.7±4.10 32.5±3.90
Syn2d-(o) 1357.8±358.48 675.6 ± 99.39 31.0±3.34 33.8±4.77
Syn1d-(s) 938.4±560.99 252.1 ± 44.50 28.7±2.9 31.0±0.44
Syn1d-(o) 910.4±485.25 239.1 ± 34.03 28.7±2.45 31.1±0.3

Table 5.5: Comparison against unfair COCA, COCH on kactual against various SOTA methods
when ktarget is 10 under uniform capacities (i.e., ϑ is 1).



Chapter 5. Group Fairness as Capacity Constraints in Online Clustering 145

Dataset LIB COCA LIBH COCH

Adult 3143.1±866.86 2205.6 ± 251.65 54.5±5.46 60.9±0.3
Bank 3273.6±504.60 2325.3 ± 246.43 59.2±2.56 63.9±2.91
Diabetes 265.8±4.70 206.0 ± 7.94 50.7±5.86 47.9±2.80
Syn2d-(s) 2240.3±379.80 948.0 ± 126.29 51.6±5.14 57.4±5.00
Syn2d-(o) 2240.3±379.80 1031.8 ± 127.52 51.9±4.88 57.8±3.40
Syn1d-(s) 1536.4±904.62 292.8 ± 62.04 47.8±2.22 51.7±7.75
Syn1d-(o) 1603.2±1149.23 331.3 ± 71.18 46.9±2.54 48.3±2.83

Table 5.6: Comparison against unfair COCA, COCH on kactual against SOTA methods when
ktarget is 15 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA LIBH COCH

Adult 4657.4±1060.78 2579.4 ± 258.59 77.1±5.37 81.0±0.0
Bank 4469.8±544.19 2867.3 ± 309.31 80.3±2.09 82.4±2.11
Diabetes 268.8±1.4 211.3 ± 15.58 71.5±7.81 66.4.1±6.74
Syn2d-(s) 3713.8±750.72 964.7 ± 110.01 65.7±4.63 62.6±6.29
Syn2d-(o) 3713.8±750.72 1175.0 ± 177.38 72.3±6.45 68.5±6.21
Syn1d-(s) 2136.1±674.30 451.1 ± 44.47 66.6±6.37 69.0±5.13
Syn1d-(o) 2141.2±432.02 498.7 ± 56.46 69.3±7.03 80.3±2.23

Table 5.7: Comparison against unfair COCA, COCH on kactual against SOTA methods when
ktarget is 20 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA LIBH COCH

Adult 5946.6±1382.66 2858.7 ± 284.03 94.7±7.31 100.3±2.79
Bank 5571.2±701.10 3007.6 ± 256.45 98.6±4.94 102.1±1.04
Diabetes 270.1±1.3 224.4 ± 9.44 124.9±50.44 83.6±6.96
Syn2d-(s) 4939.5±1032.33 1117.0 ± 98.45 88.9±6.87 88.9±7.59
Syn2d-(o) 4939.5±1032.33 1365.3 ± 153.64 93.3±8.05 95.3±6.35
Syn1d-(s) 3565.6±1281.58 407.2 ± 55.26 88.9±6.87 72.9±7.32
Syn1d-(o) 3722.4±1478.66 443.2 ± 70.21 92.4±8.69 75.5±6.75

Table 5.8: Comparison against unfair COCA, COCH on kactual against SOTA methods when
ktarget is 25 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA LIBH COCH

Adult 7136.4±1617.56 3071.1 ± 251.07 114.7±8.1 118.7±4.00
Bank 6756.1±834.40 3485.0 ± 335.15 116.2±6.24 122.9 ± 1.58
Diabetes 271.5±1.74 252.7 ± 12.46 198.7±75.14 93.6±2.42
Syn2d-(s) 6728.9±1585.75 1479.2 ± 201.29 116.8±7.39 94.2±3.89
Syn2d-(o) 6728.9±1585.75 1775.5 ± 222.62 120.2±5.05 97.0±4.63
Syn1d-(s) 4489.2±1692.76 601.4 ± 50.25 116.8±7.39 91.9±0.83
Syn1d-(o) 4055.8±1609.87 567.1 ± 44.78 112.5±8.64 92.5±1.69

Table 5.9: Comparison against unfair COCA, COCH on kactual against various SOTA methods
when ktarget is 30 under uniform capacities (i.e., ϑ is 1).
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Dataset LIB COCA LIBH COCH

Adult 9865.8±1889.41 3594.8 ± 294.33 154.4±8.19 159.6±3.93
Bank 9516.1±1094.63 3744.7 ± 576.77 161.3±2.53 162.1±1.92
Diabetes 274.4 ± 2.53 323.3 ± 7.87 251.8±47.46 117.0±9.04
Syn2d-(s) 8872.2±1635.30 1756.2 ± 143.67 155.2±9.17 138.9±18.07
Syn2d-(o) 8872.2±1638.30 2134.1 ± 238.14 156.9±12.41 145.6±13.74
Syn1d-(s) 5744.6±1227.76 786.5 ± 74.76 155.2±9.17 117.1±16.94
Syn1d-(o) 5955.8±1470.21 801.0 ± 70.28 155.4±10.73 118.4±20.34

Table 5.10: Comparison against unfair COCA, COCH on kactual against SOTA methods when
ktarget is 40 under uniform capacities (i.e., ϑ is 1).

Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 541.7 ± 79.80 498.0 ± 73.71 515.5 ± 79.13 533.1 ± 82.67 578.9 ± 93.62

Bank 544.3 ± 82.69 504.2 ± 76.26 545.3 ± 84.54 533.1 ± 82.67 509.4 ± 78.28

Diabetes 143.5 ± 16.55 152.6 ± 18.67 127.0 ± 15.47 137.7 ± 17.06 131.7 ± 17.92

Table 5.11: kactual on COCA methods when ktarget is 2 under varying capacity parameter
(i.e., ϑ values).

Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 766.4 ± 107.53 766.4 ± 107.53 766.4 ± 107.53 766.4 ± 107.53 763.2 ± 103.11

Bank 737.5 ± 98.59 737.5 ± 98.59 737.5 ± 98.59 736.5 ± 98.98 736.2 ± 98.98

Diabetes 141.0 ± 13.59 141.0 ± 13.59 141.0 ± 13.59 141.0 ± 13.59 142.3 ± 13.50

Table 5.12: kactual on COCA methods when ktarget is 3 under varying capacity parameter
(i.e., ϑ values).

Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 1735.80 ± 202.95 1735.80 ± 202.95 1735.80 ± 202.95 1735.80 ± 202.95 1746.1 ± 201.22

Bank 1751.4 ± 191.69 1751.4 ± 191.69 1751.4 ± 191.69 1751.4 ± 191.69 1748.7 ± 187.29

Diabetes 189.0 ± 16.05 189.0 ± 16.05 189.0 ± 16.05 189.0 ± 16.05 187.4 ± 15.04

Table 5.13: kactual on COCA methods when ktarget is 10 under varying capacity parameter
(i.e., ϑ values).

Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 2858.7 ± 284.03 2858.7 ± 284.03 2858.7 ± 284.03 2858.7 ± 284.03 2857.4 ± 275.42

Bank 3007.6 ± 256.45 3007.6 ± 256.45 3007.6 ± 256.45 3007.6 ± 256.45 3002.1 ± 247.06

Diabetes 224.4 ± 9.44 224.4 ± 9.44 224.4 ± 9.44 224.4 ± 9.44 226.1 ± 8.45

Table 5.14: kactual on COCA methods when ktarget is 25 under varying capacity parameter
(i.e., ϑ values).

Analysis on Clustering Cost

–Comparison to k-means clustering: We further validate our theoretical findings
on the constant approximation of different online methods to their offline counterparts.
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Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 3594.80 ± 294.33 3594.80 ± 294.33 3594.80 ± 294.33 3594.80 ± 294.33 3592.0 ± 298.70

Bank 3744.7 ± 576.77 3744.7 ± 576.77 3744.7 ± 576.77 3744.7 ± 576.77 3907.9 ± 6347.39

Diabetes 323.3 ± 7.87 323.3 ± 7.87 323.3 ± 7.87 323.3 ± 7.87 324.2 ± 6.76

Table 5.15: kactual on COCA methods when ktarget is 40 under varying capacity parameter
(i.e., ϑ values).

To this, we compare our fully online algorithm (COCA) to its offline capacitated k-means
(CAPkms) (Figure 5.2). We further reproduce the result from uncapacitated online LIB to
offline setting (k-means) (Figure 5.2). The Figure shows that our approximation factor
ratio is near one for Adult and Bank datasets. For the Diabetes dataset, due to the
existence of local minima [44] and the fact that sometimes the offline algorithm gets stuck
in local optima, we observe that the ratio is slightly below one. We further see that for the
most number of the values of ktarget, the ratio in the capacitated setting is lower than that
of the uncapacitated setting. Further, we experimentally analyze the cost approximation
factors of heuristic approaches in both capacitated and uncapacitated settings in Figure
5.3. Additionally, as an extended study, we even check how far is our cost approximation
from online capacitated clustering COCA to offline uncapacitated k-means (standard vanilla
algorithm) in Figure 5.4 and obtain similar constant cost approximation observations.
–Comparison to k-median clustering: We also replicate all cost comparison
experiments using the k-median update objective. In this context, we substitute (CAPkms)
with the offline capacitated k-median version (CAPkmd) introduced by Mulvey and Beck
[242], and we replace offline uncapacitated k-means with offline uncapacitated k-median.
The cost comparisons for COCA and LIB are presented against their capacitated and
uncapacitated counterparts in Figures 5.5 and 5.6. Similarly, for COCH and, we present
the results in Figures 5.7 and 5.8. In summary, we note constant cost approximations,
mirroring k-means setting.
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Figure 5.2: Cost approximation of COCA to offline capacitated k-means clustering (CAPkms).
Additionally, provide cost approximation of uncapacitated online clustering heuristic LIB
to uncapacitated offline k-means.
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Figure 5.3: Cost approximation of COCH to offline capacitated clustering CAPkms.
Additionally, provide cost approximation of uncapacitated online clustering LIBH to
uncapacitated offline k-means.
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Figure 5.4: Cost approximation of COCA to offline capacitated clustering k-means.
Additionally, provide cost approximation of uncapacitated online clustering LIB to
uncapacitated offline k-means.
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Figure 5.5: Cost approximation of COCA to offline capacitated k-median (CAPkmd).
Additionally, provide the level of comparison of cost approximation of uncapacitated online
clustering heuristic LIB to uncapacitated offline k-median.
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Figure 5.6: Cost approximation of COCA to offline capacitated clustering k-median.
Additionally, provide cost approximation of uncapacitated online clustering LIB to
uncapacitated offline clustering k-median.

Figure 5.7: Cost approximation of COCH to offline capacitated k-median CAPkmd.
Additionally, provide cost approximation of uncapacitated online clustering LIBH to
uncapacitated offline k-median.
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Figure 5.8: Comparison of cost approximation of COCH to offline capacitated clustering
k-median. Additionally, the cost approximation of uncapacitated online clustering LIBH
to uncapacitated offline clustering k-median is provided.

Ablation Study on Cluster Sizes

We now conduct an ablation study on cluster sizes for proposed COCA and LIB for uniform
capacity and uncapacitated setting. The mean value of variance in cluster sizes across
ten independent runs are reported in Table 5.16 to 5.20 for uniform and uncapacitated
settings, respectively. The lower mean value indicates that across different runs, the
variation in cluster sizes across all opened centers is not much and favourable in many
instances, as discussed in the motivational example in the main paper. Note that in a
uniform setting, we report results only for COCA as LIB is an online uncapacitated method
and does not inherently accommodate capacity constraints. In an uncapacitated setting, it
can be observed that the mean value is low especially on more challenging smaller ktarget

and perform comparably to LIB as ktarget increases. Note that the COCA offers flexibility by
allowing users to choose capacity constraints as per the necessity of real-world application.

ϑ = 1 (Uniform Capacity) ϑ = ktarget (Uncapacitated)
Dataset LIB COCA LIB COCA

Adult - 49.72 80.61 50.73
Bank - 62.71 111.29 59.64
Diabetes - 616.45 730.16 644.57

Table 5.16: The table reports the mean value of deviation in cluster sizes across ten
independent runs on opening kactual clusters when ktarget is 2 for COCA, LIB. Since LIB is
uncapacitated approach we report its result under ϑ = ktarget setting.
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ϑ = 1 (Uniform Capacity) ϑ = ktarget (Uncapacitated)
Dataset LIB COCA LIB COCA

Adult - 34.92 55.76 34.58
Bank - 46.18 65.47 46.23
Diabetes - 631.50 626.80 622.09

Table 5.17: The table reports the mean value of deviation in cluster sizes across ten
independent runs on opening kactual clusters when ktarget is 3 for COCA, LIB. Since LIB is
uncapacitated approach we report its result under ϑ = ktarget setting.

ϑ = 1 (Uniform Capacity) ϑ = ktarget (Uncapacitated)
Dataset LIB COCA LIB COCA

Adult - 17.09 15.25 17.07
Bank - 20.86 17.07 20.50
Diabetes - 586.35 542.34 582.80

Table 5.18: The table reports the mean value of deviation in cluster sizes across ten
independent runs on opening kactual clusters when ktarget is 10 for COCA, LIB. Since LIB
is uncapacitated approach we report its result under ϑ = ktarget setting.

ϑ = 1 (Uniform Capacity) ϑ = ktarget (Uncapacitated)
Dataset LIB COCA LIB COCA

Adult - 11.24 4.87 11.14
Bank - 12.50 5.94 12.51
Diabetes - 565.06 528.23 564.54

Table 5.19: The table reports the mean value of deviation in cluster sizes across ten
independent runs on opening kactual clusters when ktarget is 25 for COCA, LIB. Since LIB
is uncapacitated approach we report its result under ϑ = ktarget setting.

ϑ = 1 (Uniform Capacity) ϑ = ktarget (Uncapacitated)
Dataset LIB COCA LIB COCA

Adult - 9.13 2.76 9.13
Bank - 9.96 4.9006 9.97
Diabetes - 508.84 526.12 508.78

Table 5.20: The table reports the mean value of deviation in cluster sizes across ten
independent runs on opening kactual clusters when ktarget is 40 for COCA, LIB. Since LIB
is uncapacitated approach we report its result under ϑ = ktarget setting.
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Reduction to Uncapacitated Problem (Unrestricted Setting)

We set ϑ = k (unrestricted) in our algorithms and assess their performance on kactual and
cost. The findings are summarized below:
–Observation on Number of Centers Opened: We report the comparison between
uncapacitated COCA and LIB on the number of centers for different ktarget values in Table
5.21 to 5.30. The results on the number of centers resemble the uniform capacities but
significantly better than LIB. Our observations indicate that, while for smaller target
values LIB exhibits a slightly lower count of opened centers, the performance of LIB

deteriorates as the target increases. This supports our choice to choose Hk as the initial
set of centers compared to k + 1 points in LIB.
–Observation on cost: Here, we set ϑ = k in our algorithms and assess their performance
on cost. Particularly notable are the results in the cost comparison between COCA, and LIB,
plotted in Figure 5.9 and 5.10 which confirms a logarithmic reduction using the doubling
trick. Note that here, we re-visualize the results for real-world datasets separately for
enhanced clarity and additionally provide results on synthetic datasets.

Dataset LIB COCA LIBH COCH

Adult 292.9 ± 20.79 578.9 ± 93.62 9.0 ± 0.0 9.0 ± 0.0
Bank 311.9 ± 33.29 509.4 ± 78.28 9.0 ± 0.0 9.2 ± 0.4
Diabetes 109.5 ± 15.18 131.7 ± 17.92 8.6 ± 0.79 9.1 ± 0.3

Table 5.21: Comparison of kactual when ktarget is 2 and ϑ is ktarget (uncapacitated setting)
for COCA, COCH against uncapacitated SOTA.
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Figure 5.9: Cost comparison of COCA (unrestricted setting, i.e., when ϑ is ktarget) to
LIB. The plots validate the theoretical cost reduction of a logarithmic factor on different
datasets: (a) Adult, (b) Bank.

5.7.2 Analysis of Online COCAF with Fairness as Capacity Constraints:

We now validate the efficacy of the online capacitated algorithm when capacity constraints
are provided at a finer level rather than just adding constraints on overall cluster sizes. We
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Dataset LIB COCA LIBH COCH

Adult 474.0 ± 67.56 763.2 ± 103.11 12.8 ± 0.6 13.8 ± 0.87
Bank 522.1 ± 71.14 736.5 ± 98.98 12.1 ± 1.13 13.4 ± 0.79
Diabetes 145.4 ± 22.64 142.3 ± 13.50 12.0 ± 1.09 12.8 ± 0.6

Table 5.22: Comparison of kactual when ktarget is 3 and ϑ is ktarget (uncapacitated setting)
for COCA, COCH against uncapacitated SOTA.

Dataset LIB COCA LIBH COCH

Adult 806.7 ± 93.32 1010.4 ± 133.40 20.0 ± 1.34 21.7 ± 1.18
Bank 886.1 ± 115.89 1091.1 ± 133.72 19.7 ± 1.48 21.4 ± 1.2
Diabetes 195.8 ± 26.97 171.1 ± 7.96 17.5 ± 0.80 19.1 ± 1.51

Table 5.23: Comparison of kactual when ktarget is 5 and ϑ is ktarget (uncapacitated setting)
for COCA, COCH against uncapacitated SOTA.

Dataset LIB COCA LIBH COCH

Adult 1153.4 ± 159.58 1213.3 ± 131.88 29.3 ± 0.45 29.3 ± 0.45
Bank 1311.6 ± 137.23 1392.5 ± 178.84 26.4 ± 2.01 29.4 ± 0.66
Diabetes 214.4 ± 25.81 164.0 ± 10.23 22.3 ± 0.64 24.9 ± 2.11

Table 5.24: Comparison of kactual when ktarget is 7 and ϑ is ktarget (uncapacitated setting)
for COCA, COCH against uncapacitated SOTA.

Dataset LIB COCA LIBH COCH

Adult 1857.4 ± 206.12 1746.1 ± 201.22 36.5 ± 2.57 41.0 ± 0.44
Bank 1969.5 ± 205.36 1748.7 ± 187.29 37.3 ± 3.0 41.3 ± 0.64
Diabetes 246.3 ± 20.34 187.4 ± 15.04 31.1 ± 0.3 33.9 ± 2.70

Table 5.25: Comparison of kactual when ktarget is 10 and ϑ is ktarget (uncapacitated
setting) for COCA, COCH against uncapacitated SOTA.

Dataset LIB COCA LIBH COCH

Adult 3143.1 ± 866.86 2208.3 ± 254.00 54.5 ± 5.46 60.9 ± 0.30
Bank 3273.6 ± 504.60 2324.0 ± 249.02 59.2 ± 2.56 63.9 ± 2.91
Diabetes 265.8 ± 4.70 204.3 ± 8.96 50.7 ± 5.86 47.9 ± 2.80

Table 5.26: Comparison of kactual when ktarget is 15 and ϑ is ktarget (uncapacitated
setting) for COCA, COCH against uncapacitated SOTA.

Dataset LIB COCA LIBH COCH

Adult 4657.4 ± 1060.78 2566.2 ± 256.22 77.1 ± 5.37 81.0 ± 0.0
Bank 4469.8 ± 544.19 2863.4 ± 312.30 80.3 ± 2.09 82.4 ± 2.10
Diabetes 268.8 ± 1.4 211.1 ± 13.07 71.5 ± 7.81 66.0 ± 6.55

Table 5.27: Comparison of kactual when ktarget is 20 and ϑ is ktarget (uncapacitated
setting) for COCA, COCH against uncapacitated SOTA.
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Dataset LIB COCA LIBH COCH

Adult 5946.6 ± 1382.66 2857.4 ± 275.42 94.7 ± 7.31 100.3 ± 2.79
Bank 5571.2 ± 701.10 3002.1 ± 247.06 98.6 ± 4.94 102.1 ± 1.04
Diabetes 270.1 ± 1.3 226.1 ± 8.45 124.9 ± 50.44 83.6 ± 7.07

Table 5.28: Comparison of kactual when ktarget is 25 and ϑ is ktarget (uncapacitated
setting) for COCA, COCH against uncapacitated SOTA.

Dataset LIB COCA LIBH COCH

Adult 7136.4 ± 1617.56 3075.7 ± 268.01 114.7 ± 8.1 118.7 ± 4.00
Bank 6756.1 ± 834.40 3490.7 ± 320.93 116.2 ± 6.24 122.5 ± 1.5
Diabetes 271.5 ± 1.74 254.3 ± 12.89 198.7 ± 75.14 93.4 ± 2.24

Table 5.29: Comparison of kactual when ktarget is 30 and ϑ is ktarget (uncapacitated
setting) for COCA, COCH against uncapacitated SOTA.

Dataset LIB COCA LIBH COCH

Adult 9865.8 ± 1889.41 3592.0 ± 298.70 154.4 ± 8.19 159.6 ± 3.92
Bank 9516.1 ± 1094.63 3907.9 ± 347.39 161.3 ± 2.53 162.0 ± 1.84
Diabetes 274.4 ± 2.53 324.2 ± 6.76 251.8 ± 47.46 116.2 ± 9.38

Table 5.30: Comparison of kactual when ktarget is 40 and ϑ is ktarget (uncapacitated
setting) for COCA, COCH against uncapacitated SOTA.
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Figure 5.10: Cost comparison of COCA (unrestricted setting, i.e., when ϑ is ktarget) to
LIB. The plots validate the theoretical cost reduction of a logarithmic factor on different
datasets: (a) Diabetes, (b) Synthetic.

report the results for COCAF on the number of centers opened in uniform and uncapacitated
settings. We also provide results on other capacity parameter values and report the cost
approximation factors as well. The results are summarized below:

Analysis on Number of Centers Opened

–Under uniform capacities (ϑ = 1): We compare the centers opened by COCAF ,
COCHF with SOTA. Results for on ktarget of 2, 3, 5, 7, 10, 15, 20, 25, 30 and 40 are listed
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in Tables 5.31 to 5.40. As can be observed from the tables, the number of centers opened
is comparatively lower than COCA and LIB. One possible reason is that, besides having
capacity limits for each group value at centers, we also estimate the number of data points
and center opening costs separately for each group. These factors together help to have
better control over the number of centers while not losing too much on cost. Having
separate capacity constraints may appear to restrict the number of data points from a
particular group (say ℓ). However, it helps ensure lower costs for data points belonging
to other group values. The data point from a group ℓ ends up opening a new center and
accommodates future data points. This decision in COCA would have happened once the
complete cluster capacity had reached its threshold but would have happened eventually.
However, having this decision sooner helps in data points from other group values less
probable in the data stream to have a fair chance of getting assigned to their closest
centers, which otherwise might have ended up as new centers. Thus, these factors help in
controlling the number of centers opened.
For the heuristic method COCHF , the number of centers opened is slightly more than COCH

and LIBH. Further, the gap between ktarget, kactual increases as the target increases,
considering the rising uncertainty of the arrival order of points. We must note that the
rise is still tolerable and results in fewer centers than fully online methods COCAF , COCA.
–Under relaxed capacities (ϑ > 1): We also evaluate the performance of COCAF as
the capacity parameter (ϑ) is relaxed from 1 to 2.5, 5, 7, and ktarget. The results are
presented in Tables 5.41 to 5.45 for ktarget values spanning from 2 to 40. Remarkably, we
observe that the number of opened centers remains relatively consistent even as we relax
the constraint on ϑ from the most restrictive setting of one. This can be attributed to the
fact that the online algorithms, whether capacitated or uncapacitated, open a sufficient
number of centers to accommodate all points due to the unknown order of arrival of data
points in the online setting. While only at a lower target value of two, there is a slight
difference (increase or decrease) in centers opened.

Analysis on Clustering Cost

We further validate our theoretical findings on the cost approximation of fair online
capacitated COCAF and COCHF to their offline capacitated clustering (Figure 5.11). We
observe that theoretically, we achieve constant cost approximation, but experimentally,
due to the stochastic nature of the ordering of data points, there is a slight increase in the
approximation factor as the target value increases. The main reason behind this is that
as the target number of centers increases, the randomness increases, resulting in a higher
cost of fairness. We further analyze the cost factor increase when we shift the capacity
constraints from the cluster level to applying constraints at each group level. To this, we
compare the cost of COCAF to the cost of COCA in Figure 5.12. The results show that we
do not lose much in terms of cost by shifting the focus to applying a more granular level
of capacity constraints. Rather, we can see that it helps in opening a lower number of
centers while achieving a low cost approximation ratio. For the Diabetes dataset, due to
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the existence of local minima [44] and the fact that sometimes the offline algorithm gets
stuck in local optima, we observe that the ratio is slightly below one.

Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 292.9±20.79 541.7 ± 79.80 182.0 ± 4.63 9.0±0.0 9.0±0.0 15.75 ± 0.43
Bank 311.9±33.29 544.3 ± 82.69 224.0 ± 7.0 9.0±0.0 9.0±0.0 22.0 ± 0.70
Diabetes 109.5 ± 15.18 143.5 ± 16.55 67.25 ± 1.47 8.6±0.79 9.0±0.0 14.0 ± 1.00

Table 5.31: Comparison against fair COCAF , COCHF on kactual against various SOTA methods
when ktarget is 2 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 474.0±67.56 766.4 ± 107.53 340.75 ± 6.83 12.8±0.6 13.8±0.87 24.75 ± 0.83
Bank 522.1±71.14 737.5 ± 98.59 427.0 ± 7.90 12.1±1.13 13.4±0.79 35.75 ± 0.43
Diabetes 145.4±22.64 141.0 ± 13.59 97.25 ± 3.96 12.0±1.09 12.8±0.6 20.75 ± 0.82

Table 5.32: Comparison against fair COCAF , COCHF on kactual against various SOTA methods
when ktarget is 3 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 806.7±93.32 1012.1 ± 133.66 528.25 ± 12.19 20.0±1.34 21.7±1.18 40.25 ± 0.43
Bank 886.1±115.89 1095.7 ± 133.58 768.5 ± 27.59 19.7±1.48 21.4±1.2 57.5 ± 1.50
Diabetes 195.8±26.97 170.5 ± 12.75 125.50 ± 7.63 17.5±0.80 19.1±1.51 31.0 ± 0.70

Table 5.33: Comparison against fair COCAF , COCHF on kactual against various SOTA methods
when ktarget is 5 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 1153.4±159.58 1220.5 ± 126.19 748.75 ± 10.96 26.3±1.73 29.3±0.45 56.25 ± 0.43
Bank 1311.6±137.23 1388.1 ± 180.04 1010.25 ± 48.43 26.4±2.01 29.4±0.66 87.75 ± 4.60
Diabetes 214.4±25.81 163.8 ± 8.07 135.0 ± 4.84 22.3±0.64 24.9±2.11 42.25 ± 0.43

Table 5.34: Comparison against fair COCAF , COCHF on kactual against various SOTA methods
when ktarget is 7 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 1857.4±206.12 1735.8 ± 202.95 1120.0 ± 28.23 36.5±2.57 41.0±0.44 78.25 ± 3.03
Bank 1969.5±205.36 1751.4 ± 191.69 1356.75 ± 39.78 37.3±3.00 41.3±0.64 119.50 ± 4.71
Diabetes 246.3±20.34 189.0 ± 16.05 163.75 ± 15.20 31.1±0.3 33.9±2.7 234.0 ± 174.01

Table 5.35: Comparison against fair COCAF , COCHF on kactual against various SOTA methods
when ktarget is 10 under uniform capacities (i.e., ϑ is 1).
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Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 3143.1±866.86 2205.6 ± 251.65 1599.0 ± 56.10 54.5±5.46 60.9±0.3 121.75 ± 3.63
Bank 3273.6±504.60 2325.3 ± 246.43 2085.75 ± 27.38 59.2±2.56 63.9±2.91 187 ± 14.61
Diabetes 265.8±4.70 206.0 ± 7.94 188.0 ± 11.33 50.7±5.86 47.9±2.80 792.50 ± 177.32

Table 5.36: Comparison against fair COCAF , COCHF on kactual against SOTA methods when
ktarget is 15 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 4657.4±1060.78 2579.4 ± 258.59 1907.75 ± 40.28 77.1±5.37 81.0±0.0 163.0 ± 2.54
Bank 4469.8±544.19 2867.3 ± 309.31 2509.25 ± 72.76 80.3±2.09 82.4±2.11 244.75 ± 17.10
Diabetes 268.8±1.4 211.3 ± 15.58 193.0 ± 13.49 71.5±7.81 66.4.1±6.74 648.0 ± 388.38

Table 5.37: Comparison against fair COCAF , COCHF on kactual against SOTA methods when
ktarget is 20 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 5946.6±1382.66 2858.7 ± 284.03 2230.25 ± 57.97 94.7±7.31 100.3±2.79 203.50 ± 3.20
Bank 5571.2±701.10 3007.6 ± 256.45 2739.75 ± 27.34 98.6±4.94 102.1±1.04 302.25 ± 4.26
Diabetes 270.1±1.3 224.4 ± 9.44 950.25 ± 335.21 124.9±50.44 83.6±6.96 1354.75 ± 350.09

Table 5.38: Comparison against fair COCAF , COCHF on kactual against SOTA methods when
ktarget is 25 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 7136.4±1617.56 3071.1 ± 251.07 2459.0 ± 22.98 114.7±8.1 118.7±4.00 240.0 ± 6.48
Bank 6756.1±834.40 3485.0 ± 335.15 3101.50 ± 69.64 116.2±6.24 122.9 ± 1.58 351.75 ± 14.95
Diabetes 271.50±1.74 252.7 ± 12.46 360.20 ± 92.88 198.7±75.14 93.6±2.42 3910.25 ± 125.59

Table 5.39: Comparison against fair COCAF , COCHF on kactual against various SOTA methods
when ktarget is 30 under uniform capacities (i.e., ϑ is 1).

Dataset LIB COCA COCAF LIBH COCH COCHF

Adult 9865.8±1889.41 3594.8 ± 294.33 2913.75 ± 47.09 154.4±8.19 159.6±3.93 388.0 ± 8.15
Bank 9516.1±1094.63 3744.7 ± 576.77 3578.0 ± 141.30 161.3±2.53 162.1±1.92 463.75 ± 9.09
Diabetes 274.4 ± 2.53 323.3 ± 7.87 320.0 ± 84.91 251.8±47.46 117.0±9.04 116.0 ± 14.93

Table 5.40: Comparison against fair COCAF , COCHF on kactual against SOTA methods when
ktarget is 40 under uniform capacities (i.e., ϑ is 1).

Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 182.0 ± 4.63 194.25 ± 13.75 160.50 ± 12.77 221.25 ± 14.51 184.25 ± 13.31

Bank 224.0 ± 7.0 249.0 ± 16.65 251.75 ± 7.36 260.25 ± 12.23 239.25 ± 12.77

Diabetes 67.25 ± 1.47 71.50 ± 2.69 73.25 ± 3.69 72.25 ± 2.86 84.75 ± 3.89

Table 5.41: kactual on COCAF methods when ktarget is 2 under varying capacity parameter.
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Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 340.75 ± 6.83 340.75 ± 6.83 340.75 ± 6.83 340.75 ± 6.83 24.75 ± 0.83

Bank 427.0 ± 7.90 427.0 ± 7.90 427.0 ± 7.90 427.0 ± 7.90 427.0 ± 7.90

Diabetes 97.25 ± 3.96 97.25 ± 3.96 97.25 ± 3.96 97.25 ± 3.96 97.25 ± 3.96

Table 5.42: kactual on COCAF methods when ktarget is 3 under varying capacity parameter.

Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 1120.0 ± 28.23 1120.0 ± 28.23 1120.0 ± 28.23 1120.0 ± 28.23 1120.0 ± 28.23

Bank 1356.75 ± 39.78 1356.75 ± 39.78 1356.75 ± 39.78 1356.75 ± 39.78 1356.75 ± 39.78

Diabetes 163.75 ± 15.20 163.75 ± 15.20 163.75 ± 15.20 163.75 ± 15.20 163.75 ± 15.20

Table 5.43: kactual on COCAF methods when ktarget is 10 under varying capacity parameter.

Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 2230.25 ± 57.94 2230.25 ± 57.94 2230.25 ± 57.94 2230.25 ± 57.94 2230.25 ± 57.94

Bank 2739.75 ± 27.34 2739.75 ± 27.34 2739.75 ± 27.34 2739.75 ± 27.34 2739.75 ± 27.34

Diabetes 201.75 ± 3.26 201.75 ± 3.26 201.75 ± 3.26 201.75 ± 3.26 201.75 ± 3.26

Table 5.44: kactual on COCAF methods when ktarget is 25 under varying capacity parameter.

Dataset ϑ = 1 ϑ = 2.5 ϑ = 5 ϑ = 7 ϑ = ktarget

Adult 2913.75 ± 47.09 2913.75 ± 47.09 2913.75 ± 47.09 2913.75 ± 47.09 2913.75 ± 47.09

Bank 3578.0 ± 141.30 3578.0 ± 141.30 3578.0 ± 141.30 3578.0 ± 141.30 3578.0 ± 141.30

Diabetes 313.0 ± 8.51 313.0 ± 8.51 313.0 ± 8.51 313.0 ± 8.51 313.0 ± 8.51

Table 5.45: kactual on COCAF methods when ktarget is 40 under varying capacity parameter.

5.8 Conclusion

This work extends the probabilistic algorithm available in uncapacitated to capacitated
online clustering. Our algorithm (COCA) is the first online algorithm to tackle capacity
constraints in h-dimensional space for k-means or k-median. We introduce two novel
changes to existing online uncapacitated clustering: First, we determine the initial number
of centers to be opened by the algorithm to get a better representation, and second, we
employ a doubling trick to estimate the total number of data points. These changes
result in fewer centers opening while achieving constant cost approximation to the optimal
clustering problem. We further extend COCA to accommodate for group fairness constraints
and propose COCAF . The algorithm undergoes experimental analysis on the number of
centers opened and cost. The results provide experimental validation of COCAF ’s cost
approximation guarantees. An immediate future direction involves extending the work
in the presence of noisy data. Another interesting problem is the extension to group
fair assignments [44] or centers [49]. Also, since capacity constraints and group fairness
in online streaming can result in different assignments compared to offline counterparts,
focusing on minimizing such reassignments is interesting.
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Figure 5.11: Cost approximation of COCAF to offline capacitated k-means clustering
(CAPkms). Additionally, provide cost approximation of fair online clustering heuristic COCHF
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Chapter 6

Algorithms for Efficient and Fair
Federated Data Clustering

Abstract

The rapid growth of data has catalyzed the performance of machine learning (ML)
algorithms. However, with the rising concerns about data privacy, traditional ML faces
two major challenges - the centralization of the data for training and the non-availability of
labels in the data. To overcome these issues, initial attempts have been to solve distributed
privacy-preserving unsupervised ‘federated data clustering’. The goal is to partition the
data available on clients into k partitions (called clusters) without the actual exchange of
the data points. Most of the existing algorithms are highly dependent on data distribution
patterns across clients or are computationally expensive. To this, we are first to propose
a multi-shot approach called MFC. The MFC’s performance is independent of the underlying
client data distribution. We also theoretically show that cluster centers obtained using MFC

are not too far from the optimal centers. Additionally, if the number of clients is at least
O(k2 log k), then MFC can achieve stricter privacy on the shared local information while
having similar performance guarantees. Furthermore, due to skewness in data distribution,
clients may suffer high clustering costs and may leave the system. In order to prevent this,
we are first to introduce the idea of personalization in federated clustering and propose
an improvisation of MFC called p-FClus. It ensures a uniform cost distribution across
clients in a single round of communication between server and clients. Both p-FClus and
MFC undergo extensive experimentation on various synthetic and real-world datasets. The
results showcase their efficacy on cost, data-independent nature and applicability to any
finite norm value while p-FClus additionally achieves lower cost variance across clients.

6.1 Introduction

In the age of rapid technological advancement, the proliferation of devices (such as
smartphones, tablets, Internet of Things sensors, and edge devices) has become an
inherent aspect of our daily lives [265]. This surge in technological devices has resulted in
an exponential growth of data [266], which has significantly impacted many domains,

A preliminary part of this chapter has appeared in the European Conference on Artificial Intelligence
(ECAI) 2023 [108]. A detailed version of this chapter is under review.
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especially machine learning (ML). The primary reason is that many ML algorithms
perform better with more data [267]. Furthermore, the abundance of data facilitates
training more complex, robust and generalized models, thus underscoring the notion that
‘data is the new oil’. However, traditional machine learning methods necessitate centralized
data collection for model training, typically on a server. But as, most of the existing
generated data resides outside the servers and data centers (i.e., on edge devices) and is
private. Thus, concerns about data privacy and protection during collection at centralized
repositories are rising among alliances, governments, and researchers about data privacy
and protection during collection at server [268].
In response to this challenge, Federated Learning (FL) is emerging as a promising solution
for collaborative ML model training without centralized data collection. Pioneered by
Google Inc. in 2016, FL revolutionizes the traditional model training process into a novel
distributed paradigm [269]. In this approach, the server shares with each participating
client (or edge device) an initial model usually trained on publicly available data points.
As with the passage of time, more private data points are generated at each client;
they are then tasked with training their respective models (referred to as local models)
on newly generated private data. Subsequently, clients share model parameter updates
instead of sharing the complete updated models or local data with the server. After
gathering updates from all clients1, the server aggregates these and computes a global
model update. This global parameter update is then shared back with clients for future
use. While the existing literature encompasses various aggregation policies, the simplest
involves computing the weighted average of model parameters (called FedAvg [269]) based
on the local dataset size of each client. As communication involves solely sharing model
updates rather than actual data points, the risk of recovering the original data points
from these updates is minimized. Although a few works suggest that FedAvg is still prone
to data recovery attacks, the literature offers numerous more robust, privacy-enhanced
methods [270, 271, 272, 273, 274]. Consequently, one can assert that FL is emerging as
a burgeoning paradigm for harnessing the hidden potentials inherent within the growing
data landscape.
Within the field of FL, two prominent frameworks, namely Horizontal Federated Learning
(HFL) and Vertical Federated Learning (VFL), have gathered significant attention over
the past few years [275]. These frameworks differ in how data points are split among
participating clients. In the HFL framework, data instances on client devices share the
same set of attributes and labels [275]. On the contrary, in VFL, clients exhibit a larger
overlap in data instances but a less similar set of attributes (feature set and labels) [275].
Although the literature extensively studies supervised federated learning, where the feature
set and labels are available in data instances [276, 277, 267]. However, in practical, real-life
scenarios, one often faces challenges, as data available on the clients may lack labels [21].
A few possible reasons for this include a lack of motivation, incentives, or expertise to
label their data points. For instance, in scenarios like the clustering of social media posts

1A few literature work opts for a subset of clients to improve throughput and efficiency
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for sentiment analysis, clients might be reluctant to invest efforts to label their posts as
happy or sad [278, 279]. Furthermore, even if clients are willing to label their data points,
they might not fully label all the local data points, potentially due to a lack of expertise
in labelling. This challenge is also evident in emerging smart healthcare, such as wearable
fitness bands, where clients may lack accurate knowledge to label themselves as medically
fit or unhealthy based on readings from different sensors (such as heart rate, blood oxygen
level, and sugar level) [280]. This raises the key question: How can one find a global model
in a federated environment when confronted with unlabelled data?
To answer this, a few initial attempts have been made to handle unlabelled data in various
domains such as Speech Enhancement [281], Intrusion Detection [282], Healthcare [283],
Driving Style Recognition [284], Synthetic Data Generation [114], Recommender Systems
[285, 286] and Autonomous Driving [287]. The solution approaches used in these directions
can be categorized into two types:

1. The methods that assume the availability of a limited amount of labelled data at
clients, i.e., Federated Semi-Supervised Learning (FedSSL). These methods involve
using (a) pre-trained models to annotate clients’ local data [288, 289], (b) providing
pseudo-labels [290, 291], and (c) fine-tuning with labelled data [292, 287, 293].

2. The more challenging and intriguing problem of tackling situations where no labelled
data is available i.e., Federated Unsupervised Learning (FedUL).

The focus of this chapter will be to better understand the later setting. Primarily, we will
investigate clustering in the FedUL setting. Federated clustering mainly involves dividing
the data points available to clients into k partitions (called clusters). Federated clustering
finds applications in numerous domains [294, 43, 223, 295, 296], one of which is as follows
- Consider a situation where multiple banks want to cluster their users’ transaction data
to differentiate legitimate transactions from fraudulent ones. In such a situation, certain
banks may even have limited samples of fraudulent transactions, and due to security and
privacy concerns, banks are prohibited from sharing their data with each other. Therefore,
having a federated data clustering model can enable banks to reap the benefits of collective
learning [26, 297, 298]. Note that the existing solutions in supervised FL cannot be directly
mapped to FedUL clustering as it primarily involves the following challenges:

(a) Each client may not contain data points from all k partitions.

(b) As in supervised FL, there does not exist a chronological ordering2 (or
synchronization) on cluster centers, so mapping centers for an averaging function
is non-trivial and can lead to bad initialization [110].

Researchers have undertaken various studies in existing literature to overcome the above
challenges. An initial attempt is in Dennis et al. [41] (k-FED), which extends the
centralized method from Awasthi and Sheffet [109] to the federated setting in two steps:

2Unlike supervised learning, where fixed ordering or numbering of weights exists across clients, no such
numbering exists for cluster centers in unsupervised clustering.
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(1) Apply the centralized method locally on clients. (2) Share the local information
about centers to the server before reapplying the clustering therein. While k-FED

demonstrates single-round communication efficiency, it faces difficulties in certain scenarios
as the method is highly dependent on the nature of data distribution across clients (as
evident from our experimental study, Section 6.7 as well). Some other directions explore
synthetic data generation or utilize encryption techniques, albeit at the cost of increased
computational expenses [115]. To this, we propose (called MFC) an enhanced k-FED that
reduces the one-shot communication load on clients and leverages the advantage of multiple
communication rounds with minimal information exchange. The approach also addresses
the challenge of data distribution dependence, as seen in k-FED.
It is also important to note that a more common limitation across all existing methods
is that the best local centers may be distant from the global centers, leading to
high-cost deviations across clients. The main reason for this high cost is that the global
centers may not generalize well, potentially due to non-identically and independently
(non-iid) distributed data points across clients, sometimes even resulting in highly skewed
distributions. This phenomenon can lead to an inductive effect and the potential reluctance
of clients to contribute to the federated system. Thus, there is a pressing need to extend
MFC further to ensure that the centers provided to clients are not too far from local ones.
This, in turn, ensures lower cost deviation across clients and long-term commitment to the
system. For example, in a banking scenario, banks may need to adjust a global clustering
model to suit local factors such as user intelligence, fraudulent behavior, income levels,
and fraud amounts. This problem can be formulated as developing personalized clustering
(close to local) models.
We are the first to address this open direction in federated data clustering and propose
another method, which we call p-FClus (personalized-Federated Clustering). The
algorithm handles all the prior challenges as those handled by MFC. Broadly, the algorithm
primarily involves three steps: firstly, finding the initial local cluster models, which
are then used to build a collaborative global model. The last step involves specialized
unsupervised fine-tuning using center mapping and point-wise gradient updates on clients’
local data. This helps in achieving individual personalized models. To sum up, overall,
our contributions in this chapter are as follows-

• We propose MFC that unlike k-FED does not rely on the data distribution across clients
and under well separability assumptions (similar to [109, 41]), we have theoretical
bounds on the gap between local and global centers obtained using MFC.

• Motivated by the performance of MFC, we propose another method p-FClus that
exhibits lower or comparable cost deviation across clients, leading to a fairer
and more personalized solution. The method is the first attempt to provide
personalization in federated data clustering.

• We experimentally validate the efficacy of both approaches on a variety of datasets.
Results show that p-FClus achieves a lower clustering objective cost in a single round
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of communication and, secondly, is independent of the nature of data distribution (or
division) among clients. Thus, p-FClus captures the benefits of both state-of-the-art
(SOTA) k-FED (single shot) and MFC (data distribution independence), resulting in an
efficient algorithm.

Organization: The rest of the chapter is organized as follows: Section 6.2 revisits the
current literature on FedUL with a primary focus on federated data clustering. Section
6.3 provides an account of the different notations and definitions that will help readers
better understand the chapter. These notations and definitions will be used throughout
the chapter to familiarize readers with the proposed algorithms, MFC and p-FClus in
Section 6.4 and 6.6, respectively. Section 6.5 discusses the theoretical guarantees of MFC.
Next, Section 6.7 discusses the experimental setup and the datasets used for validating the
efficacy of p-FClus, MFC against state-of-the-art (SOTA) algorithms on different metrics.
Finally, Section 6.8 concludes the work with possible directions to work upon.

6.2 Related Work

ML encompasses a wide range of learning paradigms such as supervised, semi-supervised,
and unsupervised learning [299, 300, 301]. While abundant literature is available in
supervised FL [277, 276, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311], the works
in FedUL are in its nascent stages. With the increasing rise of unlabelled data points
[312], FedUL approaches have broadened to include federated clustering. Dennis et al.
[41] makes an initial effort to solve federated clustering and proposes an algorithm
called k-FED. The algorithm builds upon the centralized Awasthi and Sheffet [109] aka
(Awasthi). The method assumes that the centers are well separated and clusters follow
Gaussian distribution properties. Despite k-FED’s single-round communication efficiency,
our experiments show that the cost of clustering with k-FED can be considerably high for
some sets of clients. This can potentially lead to a lack of motivation for continued
participation. Yang et al. [110] propose a slightly enhanced greedy centroid-based
initialization for k-FED which surpasses centralized k-means in specific scenarios.
Some works in this direction approach the problem by framing it as a generative data
synthesis problem [111, 40, 112, 113, 114]. The broader picture involves training multiple
Generative Adversarial Networks (GANs) locally at clients and utilizing their parameters
to construct a global GAN model. This global GAN model is then employed to generate
synthetic data and further identify k distinct cluster centers at the server. These centers
are subsequently communicated back to clients to partition their local data points. Note
that these approaches differ from ours, as we work directly with original data points
and aim to identify the best possible centers. Li et al. [115] also pursues a parallel
approach to develop privacy-preserving distributed clustering by incorporating concepts
from cryptography. The proposed method initially computes local center updates and
then shares the encrypted information of centers using Lagrange encoding back to the
server. Subsequently, the server then aggregates all secret distance codes from the clients.
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The too and fro communication happens till the model converges or a user-defined
upper threshold on rounds is achieved. While the algorithm harnesses the advantages
of encryption-decryption to safeguard data privacy, such techniques entail substantial
computation overhead and communication costs, thereby hindering the scalability of the
approach. Similarly, Leeuw [116] employs federated data clustering within the blockchain’s
committee-based consensus protocol. However, the additional overheads counterbalance
the performance improvements.
Note that no existing work in federated data clustering has specifically focused on
addressing the challenge of cost distribution spread across clients and fostering a more
equitable clustering as a primary goal by leveraging the principles of personalization from
a supervised setting [271]. Furthermore, extending these principles to an unsupervised
setting is non-trivial due to the lack of chronological ordering3 on centers and the varying
data division across clients. We will address this direction of achieving fairness in the
present chapter as well.
Additional Research Works: Recent studies have investigated federated data clustering
in the soft (or better called fuzzy) clustering paradigm, wherein a data point can have
membership to more than a single cluster [313, 314, 315, 316]. These algorithms are highly
dependent on rounding methods used for deployment in real-world applications. Therefore,
these works differ slightly from ours as we focus on hard assignments. Furthermore,
a few works [317, 318, 319] extend a variant of DBSCAN for the federated setting,
where clustering relies on characteristics such as the density of data points in the space.
Typically, these methods struggle with high-dimensional data and lack control over the
number of clusters. In contrast, the primary focus of the current work is to extend
k-centroid clustering to the federated setting. A specific enhancement involves clustering
image datasets in a federated environment by leveraging the additional advantages of
incorporating the latent representation of these images using encoders. These approaches
increase a major portion of the computational load onto the client devices, which are
now tasked with training encoders (utilizing backbone networks like ResNet18 [320]).
Furthermore, heavy communication bandwidth is required between clients and servers as it
involves sharing information about centres and encoder parameters [321, 322]. Similarly,
works in [323, 324] investigate federated data clustering for Gaussian Mixture Models
(GMM) and Expectation Maximation (EM) algorithms, respectively. It is important
to note that the need for having personalized models for all clients in probabilistic and
peer-to-peer networks is studied in a few works [324, 325]. Further, Zhang and Xu [325]
proposes a cloud-based decentralized, personalized federated averaging framework. These
works also motivate the need of personalized methods in distributed federated clustering.
It is essential to note that our focus lies in clustering data in a federated setting, which
differs from federated client clustering. The latter entails smartly selecting a subset of
clients for model updates [326, 327, 328, 329, 330, 331, 332].

3Unlike supervised learning, where fixed ordering or numbering of weights exists across clients, no such
numbering exists for centers in unsupervised clustering for direct averaging.
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6.3 Preliminaries

Let X ⊆ Rh be a set of data points that are distributed among Z clients in a federated
setting and X(z) be the data points on any client z ∈ [Z]. Each data point in X(z) is a
h-dimensional real-valued feature vector. We assume that these data points are embedded
in a metric space having distance metric d : X×X → R+∪{0} that measures dissimilarity
between data points using any p-norm represented as || · ||p. Note that the data points
in X belong to [k] different true distributions, and the goal of any clustering algorithm
is to partition the data points spread across clients into a set of disjoint sets (called
clusters) represented by the set of global centers denoted by set Cg = {cg

1, c
g
2, . . . , c

g
k}.

The computation of finding these global centers involves initially computing the best local
centers that partition the local data X(z) (for any z ∈ [Z]) into k disjoint sets represented
by C(z) = {c(z)

1 , c
(z)
2 , . . . , c

(z)
k }. We denote the local assignment function at each client over

any center set, say C(z) by ϕ
(z)
C(z) : X(z) → C(z). Note that the data points on any client

z may not be sampled from all [k] true distributions, and this idea is captured using the
notion of heterogeneity in federated settings. Formally, it is defined as follows:

Definition 6.0 (Heterogeneity)
Given k, the heterogeneity level (H) determines the maximum number of
distributions the data points X(z) on a client z ∈ [Z] belongs to, i.e., H ≤ k.

In practice, determining the exact level of heterogeneity (H) on a client is often not feasible.
Consequently, a common approach in federated data clustering literature is to compute
k (≥ H) partitions on each client [41, 108]. These partitions are not arbitrary selections
but are the one that minimizes the following objective cost using final converged global
centers:

Definition 6.1 (Objective Cost)

Given k, ∪z∈[Z]X
(z), and distance metric d : X ×X → R+ ∪ {0} with norm value

p the local objective cost L(z)
p of client z of (k, p)-clustering in a federated setting

with a set of centers C is computed as follows:

L(z)
p (C) =

 ∑
xi∈X(z)

(
d(xi, ϕ

(z)
C (xi))

)p


1/p

(6.1)

In a federated setup, comparing methods based on the mean objective cost per data
point is often more realistic than the total objective cost at a client. The primary reason
is that dataset sizes across clients can differ significantly in federated settings. Thus,
evaluating the per-point cost incurred by clients makes more sense. Mathematically, this
can be formulated as follows:

µ(z)(Cg) = L
(z)
p (Cg)
|X(z)|

(6.2)
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where µ(z)(Cg) is the mean cost per data point on any client z Also, further note that in
a federated setting, the objective cost suffered by any client z can significantly differ from
that of other clients, owing to the fact that data points from H ≤ k distributions can be
distributed (or generated) in a highly skewed manner among (or at) clients. Therefore, if
the global centers deviate too much from the best local centers, clients might feel reluctant
to contribute to the federated environment. Thus, the aim is to not solely focus on
minimizing objective cost (or per point cost) but rather to find a (k, p)-clustering in the
federated setting that is fair for all clients, i.e., one which achieves near uniform cost across
all clients. We formally define such a clustering as follows:

Definition 6.2 (Fair Federated Clustering)
Given that data points are sampled from k true clusters and are distributed over Z
clients. Then, for any two set of federated global centers Cg

1 and Cg
2 , we say that

Cg
1 is more fair than Cg

2 if the cost deviation per data point (σ) is lower for Cg
1

than Cg
2 . Here σ over centers Cg

i for i ∈ {1, 2} is given as follows:

σ(Cg
i ) =

√√√√∑z∈[Z]

(
µ(z)(Cg

i )− µ(Cg
i )
)2

Z
(6.3)

Note that here µ(Cg) is the mean value of µ(z)(Cg) across all clients.

The notion captures the idea analogous to individual fairness and demands that the
federated clustering model should treat all clients similarly. We now present our proposed
algorithms after covering the preliminary notations and definitions. We first discuss our
MFC algorithm that leverages the benefits of multiple rounds of communication between
server and clients to find a better clustering independent of data distribution across clients.
We later extend the MFC method to achieve a fairer algorithm called p-FClus.

6.4 Multishot Federated Clustering (MFC)

MFC first runs Algorithm 11 on local data of each client z ∈ [Z] to obtain a set of k initial
local centers denoted by C(z). Each client then transmits its respective set to the server,
and the server applies the Lloyd k-means algorithm [333] on collected set S. The obtained
global centers Cg are sent back to clients for further update.
After the initial handshake between the client and server, they engage in multiple rounds of
communication as follows- Clients use the global centers to update their local assignment
functions ϕ(z) by re-assigning each data point xi ∈ X(z) to the nearest center. The local
cluster centers are updated by taking the mean of data points assigned to each center. The
client sends the local cluster center C(z)

max back with the maximum clustering cost on local
data. Conversely, when the server receives the maximum cost centers, it recalculates the
global centers Cg by using Lloyd’s k-means on the previous global centers and C(z)

max from
all clients. After finding the updated global centers, they are returned to the clients. This
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iterative process is repeated for a few rounds until convergence is reached. The complete
algorithm for MFC is described in Algorithm 12. We now provide theoretical bounds on
obtained global cluster centers.

Algorithm 11: Awasthi and Sheffet [109] (centralized)
Input: set of data points X, number of clusters k, maximum iterations T
Output: cluster centers C = {c1, c2, . . . , ck} and assignment function ϕ

1 Project X onto the subspace spanned by the top k singular vectors. Run any
standard approximation algorithm [333] for the k-means problem on the projected
matrix X̂, and obtain k centers {c1, c2, . . . , ck}.

2 for i← 1 to k do
3 Set Si ←

{
x̂ : ∥x̂− ci∥2 ≤ 1

3∥x̂− cj∥2, ∀j ∈ [k]
}

4 Update ci ← 1
|Si|

∑
x̂∈Si

x̂

5 Set ϕ(x̂)← ci, ∀x̂ ∈ Si

6 end
7 itr = 0
8 while until convergence and itr ≤ T do
9 for i← 1 to k do

10 Set Ui ←
{
x̂i : ∥x̂i − ci∥2 ≤ ∥x̂i − cj∥2,∀j ∈ [k]

}
11 Update ci ← 1

|Ui|
∑

x̂∈Ui
x̂

12 Set ϕ(x̂)← ci,∀x̂ ∈ Ui

13 itr ← itr + 1
14 end
15 end
16 return ϕ, C = {c1, c2, . . . , ck}

6.5 Theoretical Results for MFC

We prove the correctness of our algorithm by showing that the centers obtained from MFC

are close to the oracle clustering. We do so by providing a series of lemmas to prove our
main Theorem 6.6 that bounds the distance between these centers.

6.5.1 Assumptions

Before presenting the theoretical proofs, we carefully outline the assumptions on which our
analysis is based. Let C∗ = {C∗

1 , C∗
2 , . . . , C∗

k} denote the optimal clustering of datapoints X
with centers {c∗

1, c
∗
2, . . . , c

∗
k}. Let ni denote the cardinality of C∗

i . Let C∗
(z),i ⊆ C

∗
i denote the

set of data points of cluster C∗
i that are available on client z i.e., C∗

(z) = ∪ C∗
(z),i . Suppose

n
(z)
i be the number of points in C∗

(z),i. Also, say X(z) denotes the set of data points at client
z. Further, we say that the complete set of data points X can be visualized as matrix
X ∈ Rn×h with the ith row representing the data point xi ∈ X. Let [k] denote the set
{1, 2, . . . , k}. Further, suppose that G∗ ∈ Rn×h denotes a matrix such that each ith row
corresponds to the optimal center of data point xi ∈ X. Similarly, let G∗

(z) matrix be the
corresponding G matrix but defined only for data points in C∗

(z) with centers defined on
local datasets i.e., {c∗

(z),1, c
∗
(z),2, . . . , c

∗
(z),k}.



170 Chapter 6. Algorithms for Efficient and Fair Federated Data Clustering

Algorithm 12: Multishot Federated Clustering (MFC)
Client initially executes:

1 On each client z ∈ [Z], run Algorithm 11 with local data X(z) and k to find local
cluster centers C(z).

2 All clients z ∈ [Z] shares center set C(z) with server.
Server initially executes:

1 Receives set of centers C(z) from all devices z ∈ [Z], to construct S =
C(1) ∪ C(2) . . . ∪ C(z).

2 Apply Llyod k-means clustering [333] on set S, to find k global centers Cg =
{cg

1, c
g
2, . . . , c

g
k}.

3 Sends back global centers Cg to all clients z ∈ [Z] for further local training.
Client updates:

1 All clients z ∈ [Z] receive global centers Cg from the server.
2 Each client z updates their local assignments function ϕ

(z)
Cg according to Cg, i.e.,

∀xi ∈ X̂(z), ϕ(z)
Cg (xi)← argmincg

j ∈Cg ||xi − cg
j ||2

3 Updating local cluster sets C(z) by computing the mean of cluster assignments ϕ(z)
Cg .

4 Sends back local cluster center suffering maximum clustering cost (Definition 6.1) to
server (i.e., Server updates). Let us denote it using c(z)

max.

c(z)
max = argmax

c
(z)
j ∈C(z)

∑
xi∈X(z)

||xi − c(z)
j ||

2
2

Server updates:
1 Receives maximum cost centers c(z)

max from all z ∈ [Z].
2 Update S = S ∪ {c(1)

max, . . . , c
(k)
max }

3 Apply Llyod k-means clustering on the S, to find k global centers Cg =
{cg

1, c
g
2, . . . , c

g
k}.

4 Sends back global centers Cg to all clients z ∈ [Z] for further local training (i.e.,
Client updates).

Assumption 1. The non-empty subset of the data points on device z belonging to the
global cluster C∗

i , denoted by C∗
(z),i is sufficiently large. That is, there exists a sufficiently

small constant 0 < ϵ < 1 such that n(z)
i ≥ 8σ2

i
ϵ2

(
ln(1

δ ) + 1
4

)
∀ i ∈ [k] for a given 0 < δ < 1.

Next, we define the notion of the well-separability of clusters, and such assumption is a
standard in the clustering literature [109, 41].

Definition 6.3 (Well-separability)
A pair of target clusters C∗

i and C∗
j are said to be well separated if they satisfy

||c∗
i − c∗

j ||2 ≥ ρ
√
k||X −G∗||2

(
1
√
ni

+ 1
√
nj

)

where ρ is a large constant and ni is number of data points in cluster C∗
i .

Assumption 2. The centers of the oracle clustering C∗
i are well separated.
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Having stated the assumptions that are well-adopted in centralized and federated
clustering literature [41, 109]. We now look into some initial results that will eventually
help bound the center separation in Lemma 6.3. In this section, we consider the distance
metric as p = 2 norm (i.e., Euclidean distance), a popular metric in clustering literature
[149]. The main reason is its symmetric nature and adherence to triangular inequality
properties that help provide theoretical guarantees.

6.5.2 Theoretical Results

We first show that the centers obtained on local data points at each device (if optimal
clustering would have been known) is close to that of global centers. For this, we use
vector Bernstein inequality provided in Kohler and Lucchi [334]. We restate the lemma
here for the sake of the completeness.

Lemma 6.1. (Vector Bernstein Inequality [334]) Let x1, x2, . . . , xn be h-dimensional
independent vector-valued random variables such that E(xa) = 0, ||xa||2 ≤ µ and
E
(
||xa||2

)
≤ σ2, then ∀ϵ : 0 < ϵ < σ2

µ , we have

P

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
a=1

xa

∣∣∣∣∣
∣∣∣∣∣
2
≥ ϵ

 ≤ exp(−n ϵ2

8σ2 + 1
4

)

Using the above lemma on a vector valued random variable (xj − c∗
i ) where xj is a data

point present in local clustering C∗
(z),i where i ∈ [k], we get:

Lemma 6.2. Let σ2
i to be an upper bound on the variance of ith global cluster i.e., E(||xj−

c∗
i ||22) ≤ σ2

i . Now if n(z)
i ≥ 8σ2

i
ϵ2

(
ln(1

δ ) + 1
4

)
, then ||c∗

(z),i − c∗
i ||2 ≤ ϵ with probability at least

1− δ.

Proof. For completing the proof substitute n(z)
i in Lemma 6.1, we get, exp

(
−n ϵ2

8σ2 + 1
4

)
≤

δ. This implies

P

(∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
j=1

(xj − c∗
i )
∣∣∣∣∣
∣∣∣∣∣ ≥ ϵ

)
≤ δ =⇒ P

(∣∣∣∣∣
∣∣∣∣∣
 1
n

n∑
j=1

xj

− c∗
i

∣∣∣∣∣
∣∣∣∣∣ ≥ ϵ

)
≤ δ

As in k-means, the local center is obtained by taking mean update of all the data points
(here xj ∈ C∗

(z),i), so this implies, =⇒ P (||c∗
(z),i − c∗

i || ≥ ϵ) ≤ δ. Hence proved.

Now, further let n(z)
max = maxi∈[k]

(
n

(z)
i

)
be the maximum number of data points in any

cluster at client z. In order to have sufficiently small requirement of ϵ in Lemma 6.2

consider ω such that ϵ ≤ ω
√

k||X−G∗||2√
n

(z)
max

≤ ω
2
√
k||X−G∗||2

 1√
n

(z)
i

+ 1√
n

(z)
j

. Here i, j ∈ [k]

denotes any two clusters on client z.
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We now next show that if the original (optimal) true distribution centers are well separated,
then the optimal centers computed using local data points available at clients will also
be well separated. This lemma uses the Lemma 6.2 and will help us use the next lemma
proved by Awasthi and Sheffet [109].

Lemma 6.3. Given γ = 8σ2
i

niϵ2

(
ln
(

1
δ

)
+ 1

4

)
and well-separability for each pair of centers

in true optimal clustering (or say optimal global cluster centers) we say that for some ρ′

chosen such that ρ′ ≥ (ρ√γ−ω) we will have well-separability for optimal centers on local
data for all clients hold true with probability at least 1−δ. That is for any cluster i, j ∈ [k]
on client z we have,

P

(
||c∗

(z),i − c∗
(z),j||2 ≥ ρ′√k||X −G∗||2

(
1
√
ni

+ 1
√
nj

))
≥ (1− δ)

Proof. Starting with left-hand side and using triangular inequality along with Lemma 6.2
we get,

||c∗
i − c∗

j ||2 ≤ ||c∗
(z),i − c∗

i ||2 + ||c∗
(z),j − c∗

j ||2
+||c∗

(z),i − c∗
(z),j||2

≤ 2ϵ+ ||c∗
(z),i − c∗

(z),j)||2

(6.4)

Now since for any two cluster number i, j ∈ [k] on client z we have ϵ ≤ ω
2
√
k||X −

G∗||2

 1√
n

(z)
i

+ 1√
n

(z)
j

, and as each pair of global clusters are well separated, we have

||c∗
(z),i − c∗

(z),j||2 ≥ ρ
√
k||X −G∗||2

(
1
√
ni

+ 1
√
nj

)
− 2ϵ (6.5)

||c∗
(z),i − c∗

(z),j||2 ≥ ρ
√
k||X −G∗||2

√
γ

 1√
n

(z)
i

+ 1√
n

(z)
j

− 2ϵ (6.6)

||c∗
(z),i − c∗

(z),j||2 ≥ (ρ√γ − ω)
√
k||X −G∗||2

 1√
n

(z)
i

+ 1√
n

(z)
j

 (6.7)

||c∗
(z),i − c∗

(z),j||2 ≥ ρ′√k||X −G∗||2

 1√
n

(z)
i

+ 1√
n

(z)
j

 (6.8)

We now restate the result of Awasthi and Sheffet [109] about guarantees on the quality of
centers obtained by applying their procedure described in Algorithm 11.

Lemma 6.4 (Awasthi and Sheffet [109]). If each pair of centers obtained on local data
are well separated, then after performing Algorithm 11 for obtained centers {c(z)

i }ki=1 for
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any client z ∈ Z, we have,

||c(z)
i − c

∗
(z),i)||2 ≤

25
ρ′
||X(z) −G∗

(z)||2√
n

(z)
i

It should be noted that the above holds only when well-separability is held. Specifically, in
Algorithm 11, we create k clusters, while in reality, the data points on a device may come
from only kz(≤ k) clusters. But, we can observe that if the well-separability is violated
for any pair of centers then it will only occur if these centers belong to the same true
distributions (or optimal clusters). In fact, such centers, if obtained, will be close to the
center that would have been obtained if k = kz. This can be proved with the help of
the central limit theorem by considering the violating pair of centers to be two different
sample means of the same population (i.e. target global cluster). To account for this, we
introduce a mapping Γ(z) : [k]→ [k] which essentially maps the index of the local cluster
center obtained by Algorithm 11 to the index of the closest global center. Thus, we have
Γ(z)(j) = argmini∈[k] ||c

(z)
j − c∗

(z),i||2. Thus, as a direct consequence of Lemma 6.4, we get

||c(z)
j − c

∗
(z),Γ(z)(j)||2 ≤

25
ρ′

||X(z) −G∗
(z)||√

n
(z)
Γ(z)(j)

(6.9)

We now restate the result provided in Dennis et al. [41], which provides an upper bound
on the cost when using global centers on local data in terms of the total optimal cost on
global centers. These lemmas will help us prove the main Theorem 6.6.

Lemma 6.5 (Dennis et al. [41]). Given k as number of clusters and X(z) as local data
with G∗

(z) as optimal centers. Then we have, ||X(z) −G∗
(z)||2 ≤ 2

√
k||X −G∗

(z)||2

Theorem 6.6 (Main Theorem). Given X as set of data points sampled from k true
distributions with G∗ as set of optimal centers. We say that if well separability holds with
high probability, then for every local center (i.e., c(z)

j ∀j ∈ [k]) computed using MFC at any
client z ∈ Z is close to the corresponding optimal centers. That is

||c(z)
j − c

∗
Γ(z)(j)||2 ≤ c

√
k
||X −G∗||2√

n
(z)
Γ(z)(j)

,

Here c is a positive constant and Γ is the mapping of the local cluster center to the closest
optimal (or global) center.

Proof. We prove this theorem in two steps. Firstly, using Equation 6.9 and Lemma 6.5,
we have

||c(z)
j − c

∗
Γ(z)(j)||2 ≤

50
√
k

ρ′
||X −G∗||2√

n
(z)
Γ(z)(j)

(6.10)
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Now, ||c(z)
j − c∗

Γ(z)(j)||2 ≤ ||c
(z)
j − c∗

(z),Γ(z)(j)
||2 + ||c∗

(z),Γ(z)(j)
− c∗

Γ(z)(j)
||2 (using triangular

inequality)

≤ 50
√
k

ρ′
||X −G∗||2√

n
(z)
Γ(z)(j)

+ ϵ (using Equation 6.10 and value of ϵ)

≤ 50
√
k

ρ′
||X −G∗||2√

n
(z)
Γ(z)(j)

+ ω
√
k

1
||X −G∗||2√

n
(z)
Γ(z)(j)

+ ϵ (∵ n
(z)
max ≥ n(z)

Γ(z)(j))

So if c = 50
ρ′ + ω, we get the required result.

Beyond this, the multi-shot iterations only perform a Lloyd’s heuristic; thus, centers
only improve and help further lower this bound on distance. Therefore, from the above
theorem, the MFC converges after a few shots. Determining the exact number of shots
(or communication rounds) is challenging as it depends on the nature of the dataset and
the distribution of data points across clients. We leave this analysis as future work and
conjecture the following:

Lemma 6.7. MFC algorithm determines centers close to optimal clustering and converges
after a few shots.

Note that in MFC, all the clients share all the k centers with the server. We will now describe
a more privacy-preserving modification of MFC that shares only one center. Though this
modification offers communication efficiency and privacy, it demands that a sufficient
number of clients should be available. We now provide bounds on a minimum number of
clients required to achieve similar performance guarantees as when clients in MFC shared
all k centers with the server in the initialization round. More specifically, we show that
if enough clients are available, the server will have at least one representation from each
Gaussian distribution, even when clients share back only one center. With this, one can
simply follow the previous results (Theorem 6.6) to bound the closeness of global and the
obtained local centers.

Lemma 6.8. Given that there are at least O(k2 log(k)) clients available in the federated
system, then after the first round of communication, the server will receive at least one
data point (or representation) from each of the true k Gaussian distributions.

Proof. Our goal is to determine the minimum expected number of clients that needs to be
included in the network to ensure the representation of data points from all k Gaussian’s.
We can map this problem to the classical probabilistic problem called the coupon collector
problem [335]. In the coupon collector problem, there are a total of k different types of
coupons, and if each coupon type is arriving uniformly at random, we need to find the
expected number of purchases that are needed to collect at least one coupon of type. More
formally, it is defined as:
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Claim 6.9 (Non Uniform Coupon Collector Problem [259]). Given m distinct
coupon types, the expected number of coupons required to obtain at least one
coupon from each type is denoted as Hm, and it is calculated as follows:
Hm=

∑m
a=1(−1)a−1∑

1≤j1,...,ja≤k
1

p(j1)+...+p(ja) where p(i) is the probability of obtaining a
coupon of type i.

We will now apply the principles of the coupon collector problem to solve our problem.
However, the challenge lies in computing the probabilities of each coupon type. We first
discuss the case when data points are uniformly distributed across clients (i.e., Hm =
m log(m)) and treat the k Gaussian distributions as k coupon type (m = k). Now, since
clients may have data points from fewer than k distributions, specifically kz ≤ k. To handle
this, we first determine the minimum number of devices needed to represent data points
from a particular distribution, say (ith distribution) on the server. Let us say that we
need m clients that have data points from ith distribution on them. Applying the coupon
collector problem, we can say that if we have at least m = kz log kz ≤ k log k clients, then
there will be at least one data point (or representation) from ith distribution at the server.
To extend the bound to all k distributions, we can, along similar lines, say that if we have∑k

i=1 k log k = k2 log k devices, then all the distributions will be represented by modified
MFC. With this bound, all the lemmas hold valid as previously. If prior information about
distribution probability is known, one can use Claim 6.9 on same lines to find the minimum
number of clients required.

Though MFC helps overcome the challenge of data distribution dependence and, under
well-separability assumptions, has theoretical bounds on the gap between obtained and
optimal centers. Still, in both k-FED and MFC from our experimentation (Section 6.7),
we observe that these methods can have high-cost deviations across clients. Though MFC

performs much better than k-FED in this regard, there is still room for improvement. Thus,
we extend MFC to incorporate the idea of personalization for each client. The proposed
method called p-FClus ensures lower cost deviation across clients. It helps clients tune
their centers according to their local needs, as desired in our banking example in Section
6.1. Personalization has been adopted quite well in supervised FL literature [271, 336],
but we are the first to incorporate these ideas into FedUL. In the next section, we provide
the primary working mechanism behind the algorithm that helps solve the non-trivial
extension of achieving personalization (see Section 6.1) from supervised literature to
unsupervised federated data clustering.

6.6 p-FClus: personalized Federated Clustering Algorithm

We propose a novel algorithm called p-FClus (personalized-Federated Clustering). The
algorithm mainly comprise of three phases, which are explained in subsequent subsections
below. The complete pseudo-code for p-FClus is described in Algorithm 13, and its
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implementation is available on the public repository4.

Algorithm 13: p-FClus(X(z)}Zz=1, k, p, η, λ)
1: ∀ z ∈ [Z] in parallel:
2: C(z) ← clientInitialization(X(z), k, p)
3: call procedure Server

({
C(z)

}Z

z=1

)
4: /* Each client receives set of global cluster centers Cg */
5: ∀ z ∈ [Z] in parallel:
6: /* Each client personalizes the Cg using stochastic gradient descent with learning

rate η and fine-tuning level λ */
7: C(z), ϕ(z) ←call procedure clientPersonalization

(
C(z), Cg, η, λ,X(z)

)
8: /* Global cluster centers received at all clients Cg from server has been personalized

(fine-tuned) for use.*/
9: return

{
ϕ(z), C(z) : Cg ( personalized )

}Z

z=1

Algorithm 14: p-FClus’s Client-side Initialization Procedure(X(z), k, p)
1: /* Apply (k, p)- clustering using Lloyd [333] for p = 2 (k-means) and Charikar et al.

[337] for p = 1 (k-mediod). */
2: C(z) ← (k, p)-clustering(X(z))
3: return C(z)

Algorithm 15: p-FClus’s Server-side Procedure(k, p,
{
C(z)

}Z

z=1
)

1: /*Post client initialization*/
2: S ← ∪z∈[Z]C

(z)

/*Apply (k, p)-clustering Lloyd [333], Charikar et al. [337] for p value of 2, 1
respectively) on S to get k global centers*/

3: Cg ← (k, p)-clustering(S)
4: In parallel ∀z ∈ [Z]: return Cg to all clients

6.6.1 Client Initialization

Initially, all the clients in parallel run an initialization procedure as described in Algorithm
14. Primarily, each client z ∈ [Z] executes a p-norm clustering algorithm to find a set of
k local cluster centers (C(z)). These centers can be computed using known heuristics or
approximation algorithms, such as those described in Lloyd [333] for p-norm value of two
(k-means) and in Charikar et al. [337] for the k-medoid objective (p = 1). These methods
ensure that the centers obtained minimize the objective cost on the local datasets. After
computing their respective local cluster centers, each client shares its set of local cluster
centers C(z) with the server. The task then shifts to sever, which then executes the
server-side procedure discussed in the following subsection.

4https://github.com/P-FClus/p-FClus
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6.6.2 Server Execution

Algorithm 15 summarises the complete server-side procedure. In line number 1 to 2 of
procedure, after receiving the set of centers C(z) from all devices z ∈ [Z], the server
constructs a set S by aggregating them, i.e., S = C(1) ∪ C(2) ∪ . . . ∪ C(z). Subsequently,
the server applies (k, p)-clustering algorithm [333, 337] to this set S to determine set of k
global centers Cg in line 3. These global centers are expected to minimize the objective
cost across clients. However, in some cases, these centers can still be far from the current
local data due to heterogeneity. So these global centers are distributed back to all clients
and thereafter undergo personalization to find centers with lower costs and, therefore,
lower cost deviation across clients..

6.6.3 Client Side Personalization

After receiving the set of global centers, all clients use their set of local centers to fine-tune
the global centers to form personalized centers using procedure available in Algorithm 16.
The fine-tuning level λ can be kept consistent across clients, or clients can vary it according
to their preferences. For each h-dimensional data point in xi ∈ X(z), the client identifies
the closest local (c(z) ∈ C(z), line number 5) and global center vector (cg ∈ Cg, line number
6) and fine-tunes the global ones by minimizing the following function for finite p-norm:

P (x) = 1
2
∣∣∣∣∣∣cg − x

∣∣∣∣∣∣
p︸ ︷︷ ︸

clustering cost

+ λ
(
cg − c(z)

)2

︸ ︷︷ ︸
regularization penalty

(Personalization Objective) (6.11)

The above personalization objective (Equation 6.11) emphasizes updating global centers
to minimize the local cost (L(z)

p (Cg), Definition 6.1) while ensuring that Cg does not
collapse to C(z) by addition of a regularization factor. In other words, the role of the
regularization factor is to ensure that the global centers are not too much deviated by
incorporating penalty terms in the form of L2-regularization.

Algorithm 16: p-FClus’s Client Personalization procedure
(
C(z), Cg, η, λ,X(z)

)
1: Initialize assignment function ϕ(z) ← Φ (empty)
2: while tuning steps t or convergence do
3: t← t− 1
4: for x ∈ X(z) do
5: c(z) ← argminc(z)∈C(z)

(
d(x, c(z))

)
6: cg ← argmincg∈Cg

(
d(x, cg)

)
7: η ← 1

/∣∣∣I (argmincg∈Cg d(x, cg) = cg
)∣∣∣

8: cg ← cg − η∆c(g)
(
P (x)

)
(Using Equation 6.12 or 6.13 and λ) /*Cg are

personalized centers for client z*/
9: ϕ(z)[x]← cg

10: return Cg, ϕ(z)

Now, for k-means, the norm (p) takes the value of two and since minimizing euclidean
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distance (2-norm) is the same as minimizing squared euclidean, therefore the derivative
with respect to global center results in the following:

∆cg (P (x))
]

p=2
= (cg − x) + 2λ(cg − c(z)) (6.12)

In the case of k-medoids, the norm takes the value of one i.e., minimizes 1-norm distance.
Therefore, we get the derivative value as follows:

∆cg (P (x))
]

p=1
= 1/2 + 2λ(cg − c(z)) (6.13)

Now, we can update the global center using the Stochastic Gradient Descent (SGD) based
personalization objective and find the updated global center that is not too far from local
ones in line number 8 of the procedure.

cg ← cg − η∆cg (P (x)) (6.14)

where we set η =
∣∣∣∣ 1
I(argmincg∈Cg d(x,cg)=cg)

∣∣∣∣ i.e, multiplicative inverse of the number of data
points currently assigned to cg act as learning rate (line number 7).
Note that in the special case of the 1-norm, i.e., k-medoids, there is a constraint that
the center should be a data point. However, during the personalization process, it can
happen that the final obtained center may not be a data point. In such cases for k-mediod
objective, the nearest data point to the final center within the client’s local data is chosen
as the center.
Convergence of p-FClus: Note that as p-FClus initially uses local clustering methods
[333, 337] already proven to converge and then applies Lloyd [333] that converges in most
real-world scenarios. After these steps, the personalization procedure considers each data
point only once. Thus, we can say that p-FClus converges.
Novelty: Therefore, to summarize, it is important to note that the non-trivial nature of
extending the literature in supervised personalization [271, 336] to unsupervised learning
is handled by the intrinsic design of the p-FClus procedure. Rather than demanding the
need for having a synchronization (or chronological) ordering on centers across clients for
direct averaging, unlike prior works, we use the data point-wise gradient update and use
nearest local, global center mappings. We now validate the efficacy of the p-FClus, MFC

against state-of-the-art (SOTA) methods.

6.7 Experimental Result and Analysis

We will now validate the performance of the proposed p-FClus5 and MFC against SOTA

approaches on different synthetic and benchmarking real-world datasets used in clustering
literature [42, 12, 338, 10]. These are as follows:

5https://github.com/P-FClus/p-FClus
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• Synthetic Datasets (Syn) - The synthetic datasets generated can mainly be
categorized into the following:

– No Overlap (Syn-NO): It contains data points from ten bi-variate gaussian
distributions {Ni(10i, 1)}10

i=1, ensuring that the dataset has well-separated
clusters.

– Little Overlap (Syn-LO): It consists of data points from ten bi-variate gaussian
distributions arranged in a way that the consecutive pairs of distributions
overlap only after two standard deviations. The standard deviation is set to
two for all gaussian’s.

– Overlapping (Syn-O): It consists of data points from ten bi-variate gaussian
distributions arranged such that in each consecutive pair of distributions, the
mean of one distribution and three standard deviations of the other distribution
in the pair touch each other. The standard deviation is set to three for all
gaussian’s. The data generation code is available in the code repository6.

• Real-world Datasets - The real-world datasets used in the study can be
further divided into two types. The first type comprises of datasets that require
pre-processing to make them ready for use in a federated environment i.e, they are
extrinsic in nature. The second type includes datasets that are inherently captured
in a federated manner, where the data points are naturally divided among clients.

– Non-Federated Datasets (Extrinsic)

∗ Adult: The census record collection of 1994 US citizens. It comprises
32562 records with feature attributes under present study as age, fnlwgt,
education num, capital gain, and hours per week. These attributes are
consistent with prior works on clustering [10]. The dataset is openly
available6.

∗ Bank: A direct phone call marketing campaign data of banks in the
Portugal region. It comprises 41108 records containing information
about consumers’ age, duration, campaign, cons.price.idx, euribor3m,
nr.employed as attributes. The features selected for experimentation align
with previous literature, and the dataset is publicly available7.

∗ Diabetes: US clinical records collected over ten years. The features chosen
are age and time in hospital, and is publicly available8.

∗ FMNIST: Contains 60, 000 training images covering ten classes of fashion
items, each at a resolution of 28× 28 pixels and is publicly accessible9.

– Federated Datasets (Intrinsic)
6https://archive.ics.uci.edu/ml/datasets/Adult
7https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
8https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
9https://github.com/zalandoresearch/fashion-mnist/
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∗ FEMNIST: It is a handwritten character recognition dataset where each client
corresponds to a writer from the EMNIST dataset10. The dataset’s intrinsic
heterogeneity is H = 62, i.e., data points from 62 true distributions are
distributed among 500 clients during data collection.

∗ WISDM: It is a publicly available wireless sensor data mining dataset
consisting of 1, 098, 207 samples for activity recognition using mobile phone
accelerometers11 for recognizing six (H = 6) activities: walking, jogging,
going upstairs, going downstairs, sitting, and standing across 36 clients.

We compare p-FClus, MFC on both k-means (p-norm of 2) and k-mediod (p-norm of 1)
objectives against the following baselines:

• Centralized Clustering (CentClus) [228]: An euclidean-based centralized version
of k-centroid clustering. The aim is to minimize the objective cost using a norm value
of two (ℓ = 2), resulting in the well-known Lloyd’s heuristic (or simply k-means)
[333]. When the norm value is one (ℓ = 1), a centralized variation of k-mediod
clustering is achieved, where the set of centers is restricted to the data points in the
dataset [337].

• Oneshot Federated Clustering (k-FED) [41]: The method is a federated data
clustering approach that leverages the data heterogeneity among clients. The
method executes Awasthi’s k-means [109] locally on clients, and then clients share
information about local centers with the server. The server then applies a variant
of the farthest heuristic to select the best k global centers. These global centers are
then shared back with clients for local clustering. Note that the method works well
only when the network has high heterogeneity.

An important point to note is that the k-FED and MFC methods are intrinsically designed
to work only for the k-means objective. Thus, this limits comparing these methods to
k-means version of our p-FClus. To validate the performance of the k-median objective
of p-FClus, we compare it to the centralized setting. The metrics involved in comparing
the efficacy include the following:

• Mean Cost per data point (µ ↓): It is the mean (or average) objective cost
experienced by each of the data points across clients and is lower the better. It is
computed as described in Equation 6.2.

• Cost Deviation per data point (σ ↓): It is a fairness metric that measures the
standard deviation in per-point cost experienced by clients. The empirical value is
estimated using Equation 6.3.

• Maximum Cost per data point (max ↓): It helps in estimating the worst per
point cost that any client has to suffer and is computed as max = maxz∈[Z] µ

(z)(C).
A lower value indicates a more fairer clustering for clients.

10https://github.com/TalwalkarLab/leaf/tree/master/data/femnist
11https://www.cis.fordham.edu/wisdm/dataset.php
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Figure 6.1: The plot shows the variation in evaluation metrics for proposed p-FClus, MFC
and SOTA on k-means for varying heterogeneity levels on a Balanced data split across 100
clients. Each column represents a dataset as specified at the top, and each row represents
one metric under evaluation. Note that the FMNIST dataset is on 500 clients. (Best viewed
in color).

Note that we consider C in all these metrics as personalized global centers for p-FClus,
and for k-FED, MFC, we consider C as the set of global centers computed by the method.

6.7.1 Experimental Setup

All experiments are conducted on an Intel Xeon 6246R processor with 280GB of
RAM, running Ubuntu 18 and Python 3.8. We report the results as the mean
and standard deviation of five independent runs, with the seed chosen from the set
{0, 300, 600, 900, 1200}. The complete reproducible code is available online6. Next, we
investigate the distribution of data among clients, focusing mainly on two different settings
described below:

1. Balanced or (Equal) distribution: In this setting, random data points from each
true distribution (Dk) are equally divided among clients. Note that in scenarios
where the total number of data points from Dk is not divisible by the number of
clients, each client will have nearly equal data points or may have one less data point
compared to other clients.

2. Unequal distribution: In this setting, clients can have a different number of data
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Figure 6.2: The plot shows the variation in evaluation metrics for proposed p-FClus, MFC
and SOTA on k-means objective for varying heterogeneity levels on a Balanced data split
across 1000 clients. Each column represents a specific dataset as specified at the top, and
each row represents one metric under evaluation. (Best viewed in color).

points from each of the Dk distributions. Instead of arbitrarily dividing the data
points among clients, we intelligently distribute the data points to capture scenarios
where some clients may have significantly fewer data points from certain Dk,
resulting in an overall skewed division among clients. The code repository contains
scripts for generating the same6.

Within each of the above settings, we further consider the level of heterogeneity (H) as
2, 5, 7 and 10 (Here, 10 is the maximum number of distributions in non-federated datasets
under consideration [44]). This implies that if, for instance, the H = 5, then every client
will contain data points only from any of the 5 (≤ k) distributions.
We now begin by validating our p-FClus,MFC against SOTA on a Balanced distribution
setting and non-federated datasets. Later, we will explore the scenario where clients can
have an Unequal data distribution and then on intrinsic or fixed heterogeneity federated
datasets (FEMNIST and WISDM).

6.7.2 Analysis on Balanced Data Distribution among Clients on k-means
Objective

This subsection delves into the results of the balanced (or equal) data distribution setting in
the k-means objective (p-norm = 2). The results are illustrated in Figure 6.1 (Real-world
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Figure 6.3: The plot shows the variation in evaluation metrics for proposed p-FClus, MFC
and SOTA on k-means objective for varying heterogeneity levels on a Balanced data split
across 1000 clients. Each column represents a specific Synthetic dataset (Syn) in sequence:
Syn-NO, Syn-LO, Syn-O respectively, and each row represents one metric under evaluation.
(Best viewed in color).

dataset, 100 clients), Figure 6.2 (Real-world dataset, 1000 clients) and Figure 6.3 (Syn

dataset). We first provide a brief overview of the observations for each dataset in the
subsections below and then conclude the overall results in this setting.

Observations for Adult

It can be observed from Figure 6.1 and Figure 6.2 that for both 100 and 1000 clients
we have the mean per-point cost (µ) for p-FClus significantly lower than that of SOTA,
especially in more challenging settings of lower heterogeneity. Furthermore, the variance of
µ is lower compared to both k-FED and MFC, showing the efficacy of p-FClus in achieving
a lower objective cost for all number of clients settings. Additionally, the fairness metric
σ for k-FED and MFC is higher at lower levels. In contrast, p-FClus helps achieve a lower
µ for all clients and stays within a fixed confidence region by fine-tuning using local data
to bring the global centers close to local ones without deviating significantly from the
global model. This shows that p-FClus is not sensitive to changes in heterogeneity levels.
Approaches such as k-FED and MFC can achieve better µ and σ at higher heterogeneity, as in
such scenarios, they can capture good estimates of global centers mainly due to sufficient
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Figure 6.4: The plot shows the variation in evaluation metrics for proposed p-FClus, MFC
and SOTA on k-means objective for varying heterogeneity levels on a Unequal data split
across 100 clients. Each column represents a specific dataset as specified at the top, and
each row represents one metric under evaluation. (Best viewed in color).

data availability from all distributions across clients. Notably, the maximum per-point
cost (max) remains consistently high for SOTA methods compared to p-FClus, showcasing
the presence of clients that might be willing to not contribute and leave the federated
system. Though there is an increasing trend for p-FClus, it remains at a significant gap
from SOTA. Therefore, in the Adult dataset, p-FClus performs considerably well.

Observations for Bank

The observations are quite aligned with the Adult dataset. µ, max is considerably lower
than SOTA even on varying heterogeneity (H) and number of clients. Also, the fairness
metric, σ for p-FClus remains below SOTA for most heterogeneity (H) levels.

Observations for Diabetes

The additional comments to observe is that though in Diabetes dataset k-FED and MFC

have lower σ with MFC having the least value. But both these methods suffer high variance
compared to p-FClus. This is primarily due to local optima in the dataset [44]. Also,
the max for p-FClus is either lower or comparable to SOTA methods, showcasing the
robustness of p-FClus to local optima’s.
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Figure 6.5: The plot shows the variation in evaluation metrics for proposed p-FClus, MFC
and SOTA on k-means Objective for varying heterogeneity levels on a Unequal data split
across 500 clients. Each column represents a specific dataset as specified at the top, and
each row represents one metric under evaluation. (Best viewed in color).

Observations for FMNIST

The σ of all approaches are quite close enough, but p-FClus has considerably better
performance on other metrics, namely µ and max.

Observations for Synthetic (Syn)

We can observe from the Figure 6.3 that when the dataset is bearing no overlaps between
different clusters, both MFC and p-FClus have comparable costs, but as the overlap
increases in Syn-LO and Syn-O, the MFC method slightly deviates and achieves higher
mean per point cost (µ) and higher fairness metrics i.e., deviation (σ) and maximum cost
(max). On the other hand, across all different settings, k-FED always exhibits significantly
poorer performance in terms of mean cost and fairness metrics.

Overall Insight: In a Balanced data distribution, p-FClus achieves a lower per-point
cost (µ, owing to personalization) and a more fair solution (σ) across clients, making
it a reliable choice when information about the level of heterogeneity in the network is
unknown or unstable.
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Figure 6.6: The plot shows the variation in evaluation metrics for proposed p-FClus, MFC
and SOTA on k-means Objective for varying heterogeneity levels on a Unequal data split
across 50 clients. Each column represents a specific Synthetic dataset (Syn) in sequence:
Syn-NO, Syn-LO, Syn-O respectively, and each row represents one metric under evaluation.
(Best viewed in color).

6.7.3 Analysis on Unequal Data Distribution among Clients on k-means
Objective

This subsection now delves into the results of the unequal data distribution setting in the
k-means objective (p = 2). The results are illustrated in Figure 6.4 to 6.5 for real-world
datasets and Figure 6.6 for Synthetic datasets. We first provide a brief overview of the
observations per dataset and then summarize the overall results in this setting.

Observations for Adult

The µ is considerably lower for p-FClus compared to other methods. However, the
performance of p-FClus becomes slightly questionable when it comes to the σ metric since
σ is higher for k-FED and MFC at smaller H values but MFC’s value drops below p-FClus as
H increases. However, there is high variability in σ for MFC and SOTA methods, whereas the
proposed p-FClus maintains a reasonable confidence interval. Further, it is least affected
by the number of total clients and the heterogeneity level that are unknown in most
scenarios. Thus showcasing the adaptability of p-FClus seamlessly to many real-world



Chapter 6. Algorithms for Efficient and Fair Federated Data Clustering 187

Dataset Method µ (↓) σ (↓) max (↓)

WISDM
k-FED 5.71× 1012 ± 8.02× 1010 1.32× 1013 ± 1.88× 109 7.21× 1013 ± 1.32× 1010

MFC 3.35× 1012 ± 8.32× 106 0.25× 1013 ± 8.68× 106 1.10× 1013 ± 8.17× 107

p-FClus 0.56 ×1012 ± 5.28× 105 0.02 ×1013 ± 8.05× 105 0.12×1013 ± 8.33× 106

FEMNIST
k-FED 2.806 ± 0.0022 0.3518± 0.0008 4.4780± 0.0130
MFC 3.158± 0.0341 0.3110 ± 0.0186 4.3710± 0.0427
p-FClus 3.103± 0.0048 0.3640± 0.0035 4.1700 ± 0.0513

Table 6.1: The table summarizes mean and deviation of evaluation metrics for proposed
p-FClus, MFC and SOTA on k-means for the Intrinsic datasets. The results are not evaluated
for CentClus owing to large main memory requirements (e.g. 8 TB in FEMNIST) and can
only be processed using streaming or federated setups.

applications without worrying about the system’s heterogeneity level. Also, it should be
noted that the slightly higher σ is for a significantly reduced mean cost. Thus, when µ

and σ are considered together, it demonstrates the efficacy of p-FClus.

Observations for Bank

The trend for σ is arbitrary in Figure 6.4 to 6.5; there is no perfect demarcation indicating
after how much heterogeneity level the SOTA methods will start performing considerably
well on fairness metrics such as σ and max. In contrast, p-FClus is least affected by
heterogeneity level perturbations and the system’s number of clients.

Observations for Diabetes

p-FClus has wide gap in µ and max metrics. Further, it has a lower variance in σ

compared to SOTA, exhibiting the efficacy of the approach.

Observations for Synthetic (Syn)

In unequal data distribution for Syn dataset, it appears like both MFC and p-FClus are
quite similar and fairer approaches and only when there is a lot of overlap, i.e., Syn-O,
one can see a slight increase in mean cost for MFC, but as seen throughout the section, the
results do not follow the similar trend on other datasets, especially real-world datasets.
Thus, this helps us lead to the following overall analysis:
Overall Insight: Similar to a balanced (or equal) data split, p-FClus is more likely to
be chosen for real-world deployments due to its consistent reliability in terms of the range
of cost deviations that different clients may experience. This is because if some clients
face high costs, they may lose incentives to stay in the system and could opt to leave.
Nonetheless, the performance of p-FClus is also not subject to heterogeneity levels and
number of clients. The key factor driving the performance of the proposed method is its
personalized approach through fine-tuning steps. Next follows the performance of MFC on
cost and deviation compared to k-FED.
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Dataset Method Metric
Heterogeneity (H)

2 5 7 10
100 Clients

Adult

p-FClus
µ(↓)

1.21± 0.00 1.31± 0.00 1.31± 0.00 1.31± 0.00
CentClus 1.64± 0.00
p-FClus

σ(↓)
0.12± 0.00 0.06± 0.00 0.07± 0.00 0.03± 0.00

CentClus 0.03± 0.00
p-FClus

max(↓)
1.39± 0.00 1.45± 0.00 1.50± 0.00 1.36± 0.00

CentClus 0.60± 0.00

Bank

p-FClus
µ(↓)

1.09± 0.00 1.54± 0.00 1.61± 0.00 1.58± 0.00
CentClus 0.61± 0.00
p-FClus

σ(↓)
0.21± 0.00 0.12± 0.00 0.13± 0.00 0.036± 0.00

CentClus 0.14± 0.00
p-FClus

max(↓)
1.53± 0.00 1.82± 0.00 2.42± 0.00 1.64± 0.00

CentClus 0.94± 0.00
500 Clients

Adult

p-FClus
µ(↓)

1.08± 0.00 1.28± 0.00 1.27± 0.00 1.29± 0.00
CentClus 1.64± 0.00
p-FClus

σ(↓)
0.17± 0.00 0.10± 0.00 0.11± 0.00 0.05± 0.00

CentClus 0.03± 0.00
p-FClus

max(↓)
1.49± 0.00 1.51± 0.00 1.45± 0.00 1.43± 0.00

CentClus 0.60± 0.00

Bank

p-FClus
µ(↓)

1.16± 0.00 1.55± 0.00 1.60± 0.00 1.58± 0.00
CentClus 0.61± 0.00
p-FClus

σ(↓)
0.23± 0.00 0.10± 0.00 0.07± 0.00 0.04± 0.00

CentClus 0.14± 0.00
p-FClus

max(↓)
1.79± 0.00 1.87± 0.00 1.76± 0.00 1.69± 0.00

CentClus 0.94± 0.00

Table 6.2: The table summarizes mean and deviation of evaluation metrics for proposed
p-FClus, MFC and CentClus on k-medoids for varying heterogeneity levels on Balanced
data split across 100 and 1000 clients.

6.7.4 Analysis on Intrinsic Federated Datasets on k-means Objective

This subsection delves into datasets with a pre-captured level of heterogeneity (H). This
experiment directly compares the SOTA with p-FClus on performance metrics.

WISDM

The results for the WISDM dataset are summarized in Table. 6.1. It can be observed that
MFC and p-FClus against k-FED have a wide gap in σ and max, owing to achieving a fair
solution as a byproduct or through fine-tuning steps, respectively. The performance of µ
is also significantly reduced by an order of 105 times, indicating that our p-FClus is the
best available fair federated solution.
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FEMNIST

The results for the FEMNIST dataset are summarized in Table. 6.1. k-FED is slightly better
on cost. On the other hand, p-FClus and MFC have comparable performance on cost.
The performance of all methods is quite similar, possibly due to the nature of the dataset.
However, p-FClus is considerably close in µ,σ, but it has a lower max cost a client has to
suffer, thus overtaking SOTA methods. The performance of MFC follows next after p-FClus

on maximum cost.

Dataset Method Metric
Heterogeneity (H)

2 5 7 10
100 Clients

Adult

p-FClus
µ(↓)

1.17± 0.00 1.31± 0.00 1.32± 0.00 1.29± 0.00
CentClus 1.64± 0.00
p-FClus

σ(↓)
0.11± 0.00 0.11± 0.00 0.07± 0.00 0.16± 0.00

CentClus 0.03± 0.00
p-FClus

max(↓)
1.46± 0.00 1.48± 0.00 1.47± 0.00 1.65± 0.00

CentClus 0.60± 0.00

Bank

p-FClus
µ(↓)

1.21± 0.00 1.50± 0.00 1.63± 0.00 1.71± 0.00
CentClus 0.61± 0.00
p-FClus

σ(↓)
0.14± 0.00 0.11± 0.00 0.06± 0.00 0.10± 0.00

CentClus 0.14± 0.00
p-FClus

max(↓)
1.55± 0.00 1.80± 0.00 1.75± 0.00 2.04± 0.00

CentClus 0.94± 0.00
500 Clients

Adult

p-FClus
µ(↓)

1.17± 0.00 1.30± 0.00 1.29± 0.00 1.27± 0.00
CentClus 1.64± 0.00
p-FClus

σ(↓)
0.11± 0.00 0.09± 0.00 0.07± 0.00 0.14± 0.00

CentClus 0.03± 0.00
p-FClus

max(↓)
1.38± 0.00 1.50± 0.00 1.48± 0.00 1.65± 0.00

CentClus 0.60± 0.00

Bank

p-FClus
µ (↓)

1.17± 0.00 1.53± 0.00 1.63± 0.00 1.54± 0.00
CentClus 0.61± 0.00
p-FClus

σ (↓)
0.18± 0.00 0.12± 0.00 0.08± 0.00 0.19± 0.00

CentClus 0.14± 0.00
p-FClus

max(↓)
1.75± 0.00 1.90± 0.00 1.79± 0.00 2.11± 0.00

CentClus 0.94± 0.00

Table 6.3: The table summarizes mean and deviation of evaluation metrics for proposed
p-FClus, MFC and CentClus on k-medoids for varying heterogeneity levels on Unequal
data split across 100 and 500 clients.
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6.7.5 Analysis on different Dataset for k-mediod Objective

In k-mediod, we limit the comparison only to CentClus because other baselines are not
intrinsically designed to handle objectives except k-means. The results for Balanced

data split for real-world non-federated datasets are reported in Table 6.2 for 100, 1000
clients. We can clearly observe that the mean per point cost (µ), and correspondingly max
cost (max) for p-FClus is quite close to centralized clustering, showcasing that p-FClus

efficiently captures the centers in a federated setting. Furthermore, it not only showcases
its efficacy in cost but also in the fairness metric, i.e., σ, which is also considerably low
across clients, thus resulting in a fair aka personalized clustering.

Dataset Method Metric Value Dataset Value

WISDM

p-FClus
µ(↓)

1.08× 1013 ± 0.00

FEMNIST

6.87± 0.00
CentClus (refer caption) 2.91± 0.00
p-FClus

σ(↓)
2.64× 1013 ± 0.00 0.96± 0.00

CentClus (refer caption) 0.65± 0.00
p-FClus

max(↓)
1.30× 1014 ± 0.00 9.69± 0.00

CentClus (refer caption) 4.32± 0.00

Table 6.4: The table summarizes mean and deviation of evaluation metrics for proposed
p-FClus, MFC and CentClus on k-medoids for Intrinsic datasets. The WISDM dataset is not
evaluated on CentClus due to 8 terabytes of main memory requirements.

The results for Unequal data split are reported in Table 6.3 for 100 and 500 clients. In this
setting also, the observations are similar to the previous setting, showcasing the benefit of
p-FClus in both scenarios. The results for intrinsic federated datasets, namely WISDM and
FEMNIST, are reported in Table 6.4. We do not report the CentClus results for the WISDM

dataset as the main memory requirement for such a large dataset is nearly 8TB and thus
can only be processed in streaming or federated (distributed) settings.

6.8 Conclusion and Future Directions

In this chapter, we focus on solving the problem of handling unlabelled data in a federated
setting. We propose MFC that, unlike prior methods does not rely on the data distribution
across clients and under well separability assumptions (similar to [109, 41]), we have
theoretical bounds on the gap between local and global centers obtained using MFC. We
further propose a first-of-its-kind personalized data clustering algorithm, p-FClus which
operates in three sub-phases within a single round of to-and-fro communication between
the server and clients. Furthermore, through rigorous experimental analysis, we observe
that p-FClus’s performance does not suffer across varying levels of heterogeneity and
clients (dataset sizes), showcasing its data distribution independence. Additionally, it
achieves a lower mean per-point objective cost in most scenarios compared to SOTA methods
while ensuring small deviations in cost across clients (fairness). Even the maximum cost
any client incurs using p-FClus is significantly lower than SOTA methods in almost all
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settings, enabling clients to have personalized models and incentivizing them to continue
contributing to the federated setup. Moreover, the method is reliable and applicable to any
finite p-norm objectives, including k-means and k-medoids. An immediate future direction
involves studying a robust data clustering method in the presence of malicious clients [339]
and noisy data [319]. Other interesting directions include investigating scenarios where
clients might strategically report their features, thus hampering the quality of generated
local centers [340]. Since in federated learning, clients can join and leave the system,
therefore looking into the direction of unlearning information from the global model in
clustering can be another promising direction [341].
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Chapter 7

Mitigating Popularity Bias in
Recommender Systems

Abstract

Recommender systems are unsupervised machine learning methods that are deployed
heavily by many online platforms for better user engagement and providing
recommendations. Despite being so popular, several works have shown the existence of
popularity bias due to the non-random nature of missing data. Popularity bias leads to
the recommendation of only a few popular items (majority), causing starvation of many
non-popular items (minority). This chapter considers an easy-to-understand metric to
evaluate the popularity bias as the difference between mean squared error on popular
and non-popular items. Then, we propose EqBal-RS, a novel re-weighting technique
that updates the weights of popular and non-popular items. Re-weighting ensures that
both item sets are equally balanced during training using a trade-off function between
overall loss and popularity bias. This is analogous to balancing the trade-off between cost
and group fairness in clustering literature. Our experiments on real-world datasets show
that EqBal-RS outperforms the existing state-of-the-art algorithms in terms of accuracy,
quality, and fairness. EqBal-RS works well on the proposed and existing popularity
bias metrics and has significantly reduced runtime. The code is publicly available at
https://github.com/eqbalrs/EqBalRS

7.1 Introduction

Online platforms, including books [342], movies, and music streaming platforms (Netflix,
Spotify) [343, 344, 345, 346, 347], e-commerce websites (Amazon), Third party libraries
[348] and even social media platforms (Instagram), face the choice overload problem [349,
345]. Recommender Systems are useful unsupervised learning tools that efficiently solve
this problem by refining the information according to the users’ choices. The central goal
of recommender systems is to recommend items that the user might like by predicting
the pertinence of items with which the user has never interacted based on the user’s
past behavior. Past studies have shown that decision support systems based on previous

This chapter has been published as a full paper in the Journal of Intelligent Information Systems
(JIIS)[285].

https://github.com/eqbalrs/EqBalRS
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user behavior can unconsciously inherit existing human biases and introduce new ones
[350, 351, 352, 353, 354, 355]. This raises several fairness issues in recommender systems,
primarily on the user [356, 357, 77, 75, 358, 73, 359] and item sides [360, 361, 71]. This
chapter aims to mitigate the popularity bias [362, 363] in recommender systems at the
item side.

Popularity bias occurs when popular items (i.e., items with high rating frequency) are
recommended more often to the users than other items, even if the user has a reasonable
interest in the latter. The primary reason behind this is that popular items have better
representation in the training data used by optimization procedures. While aiming to
reduce average loss, these procedures might lead to a biased model [362]. Thus, this
provokes the recommendation of similar items to most users, even if they are apathetic,
and new (non-popular) items might starve for desired visibility [134, 364]. Over-reliance
on recommending popular items could also negatively affect businesses. In fact, several
U.S. states recently filed a lawsuit against Google U.S. for advertising popular items and
giving lesser visibility to newer items [29]. This practice can create an exclusive market
position for certain items, posing challenges for firms and stifling innovation in product
development. Note that handling popularity bias is quite analogous to group fairness in
clustering. The analogy can be apparent by considering the majority group as popular
items and the minority group as non-popular items. The goal is to balance each group’s
representation in the recommendation list. Note that in recommender systems, one can
not arbitrarily enforce the representation of minorities; one must consider user preferences
and history.

Many past works [123, 121] have explored and ameliorated popularity bias by improving
the model’s overall accuracy or the diversity among non-popular items. Accuracy is
innately biased for popular items as these items are rated more frequently. A highly
accurate model might suffer a heavy loss on non-popular items. On the contrary, a method
that naively improves diversity might generate an overall poorly accurate recommendation
model. Rather, an unbiased recommender system should perform well on popular and
non-popular items, thus resulting in a fair and accurate recommender system. To this,
we first propose a novel metric Popularity Parity that enables a scalable algorithm.
Next, we propose EqBal-RS, a Matrix Factorization (MF) based algorithm that balances
the losses on popular and non-popular items. Existing re-weighting techniques [27, 8] use
propensity scores that require careful investigation among different available score criteria
as exposure mechanism is rarely known, making them dataset-dependent. Further, these
approaches require heavy pre-training to compute the weights (scores) accurately, and the
approach exhibits high variance. Our EqBal-RS does not require such pre-training as
it inherently learns the weights while training the overall model. To summarize, we list
down our contributions below:

• Our novel metric, Popularity Parity, measures popularity bias as the difference
in the Mean Squared Error (MSE) on the popular and non-popular items.
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• We propose EqBal-RS, a novel technique that solves the optimization problem of
reducing overall loss with a penalty on popularity bias. It does not require any heavy
pre-training.

• Through extensive experiments on real-world datasets (MovieLens, Yahoo, and
Amazon GiftCards), we show that EqBal-RS outperforms existing approaches
on recommendation accuracy, quality, and fairness. It works exceptionally well on
Popularity Parity while having comparable performance on existing metrics like
Average Rating Popularity (ARP) and Normalized Discounted Cumulative Gain
(NDCG). Further, it does not compromise on the diversity of items.

Roadmap: The remainder of the chapter is organized as follows: Section 7.2 reviews
the existing literature. Section 7.3 provides an overview of the different notations and
definitions used throughout the chapter. These will be helpful for understanding the
proposed methodology in Section 7.4. We validate the efficacy of EqBal-RS on the
proposed metric Popularity Parity and existing metrics against state-of-the-art (SOTA)
methods in Section 7.5. Finally, Section 7.6 concludes the work.

7.2 Related Work

The work closest to our approach is to mitigate the popularity bias by using Inverse
Propensity Scores (IPS) [8, 360]. The score helps in generating a pseudo missing
completely at random dataset by weighting all the observed ratings. Although IPS loss
is proven to be an unbiased estimator, these methods majorly suffer from two problems.
First, the IPS estimator might become biased if the propensity estimation model is not
appropriately stated. Second, IPS estimators suffer from high variance as the inverse of
the propensities might be substantial. To overcome these challenges, [27] proposed an
asymmetric tri-training technique. It involves three rating predictors, two of which create
a pseudo-rating dataset, and the third trains the model on these pseudo-ratings. The main
limitation is that it becomes impossible to estimate the ratings of all items accurately as
the dataset size reduces after applying the technique. Thus, there is a need for an effective
strategy to tackle popularity bias in recommender systems.

7.3 Preliminaries

Consider the data with U denoting the set of users and I be the set of items. Let R =
U × I be a rating matrix where each entry Ru,i corresponds to the true rating of item i

by the user on a scale of 1 (lowest) to 5 (highest). All non-interacted user-item (i, j) pairs
have a value of Ru,i = 0. Let IP and IN P = I \ IP denote the set popular items and
non-popular items respectively. Inspired by Abdollahpouri et al. [118], we use a threshold
mechanism to generate IP and IN P . Motivated by Pareto principle [119, 120], we set
the threshold as top 20% items in terms of rating frequency as popular and remaining as
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non-popular (long tail) items. The prediction matrix is given by P with each entry Pu,i as
the predicted rating for user u and item i. The goal of an ideal recommendation algorithm
is to reduce the following loss function:

Lideal(R,P ) = 1
|U||I|

∑
u∈U

∑
i∈I

δ(Ru,i, Pu,i) (7.1)

where the error function δ could be the mean squared error (MSE) or mean absolute error
(MAE). Since the true rating Ru,i is not available for all possible user-item interactions,
one tends to minimize the loss on the observed set of user-item interactions given by:

Lobs(R,P ) =
∑

u∈U ,i∈I I(Ru,i ̸= 0) δ(Ru,i, Pu,i)∑
u∈U ,i∈I I(Ru,i ̸= 0) (7.2)

The algorithms that aim solely to minimize Lobs can pick popularity bias from the dataset.
It is because inherently popular items are rated more frequently and are available more in
the dataset. We now formalize a novel popularity metric Popularity Parity (PP),
which quantifies popularity bias as the difference between losses on non-popular and
popular items. The intuition is that by minimizing both these losses while ensuring overall
loss minimization, one can expect fair visibility of all items in the final recommendation
list. Let,

LN P(R,P ) =
∑

(u,i) : i∈IN P
I(Ru,i ̸= 0) δ(Ru,i, Pu,i)∑

(u,i) : i∈IN P
I(Ru,i ̸= 0) (7.3)

and,

LP(R,P ) =
∑

(u,i) : i∈IP
I(Ru,i ̸= 0) δ(Ru,i, Pu,i)∑

(u,i) : i∈IP
I(Ru,i ̸= 0) (7.4)

define the loss on non-popular items and popular items, respectively. Then the
Popularity Parity is given as:

PP (R,P ) = LN P(R,P )− LP(R,P ) (7.5)

We now propose a fair MF-based approach–EqBal-RS with significantly reduced runtime
while having comparable performance on loss (accuracy).

7.4 Proposed Algorithm: EqBal-RS

Equally Balancing Recommender System (EqBal-RS) presented in Algorithm 17 is a
collaborative filtering-based technique. It assigns a weight to every item during learning
of user and item embeddings and trains the model towards equalizing the balance between
loss on popular and non-popular items. Past work on weighting techniques uses inverse
propensity scores. However, methods can suffer heavily from popularity bias and losses
if the scores are not tuned properly. EqBal-RS automatically updates the weights
computed using an objective function that minimizes the overall weighted loss and
Popularity Parity. For a given weight vector w = {wi}i∈I , the combined loss function
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is given by:
Z(w) =

∑
u∈U

∑
i∈I

wi(Ri,u − Pi,u)2 + Υ
(
PPw(R,P )

)2 (7.6)

Here, PPw(R,P ) represents the weighted Popularity Parity with the loss for each
item i being weighted by wi. For the sake of simplicity, we omit the indicator function,
which observes the presence of a true rating Ru,i > 0. To avoid the model getting biased
towards popular items, we take a square of weighted popularity bias. Further, let

li(w) =
∑
u∈U

wi(Ri,u − Pi,u)2

represent the weighted loss on item i. Let CN P = ∑
u∈U ,i∈IN P

I(Ru,i ̸= 0) and CP =∑
u∈U ,i∈IP

I(Ru,i ̸= 0) denote the number of ratings obtained for non-popular and popular
items respectively. Then weighted Popularity Parity is given as:

PPw(R,P ) =
∑

i∈IN P
li(w)

CN P
−
∑

i∈IP
li(w)

CP
(7.7)

On substitution,

Z(w) =
∑
i∈I

li(w) + Υ
(∑

i∈IN P
li(w)

CN P
−
∑

i∈IP
li(w)

CP

)2

(7.8)

The parameter Υ is the trade-off between Popularity Parity and overall squared loss.
The intuition behind optimizing the weighted loss function is: If the weights of non-popular
items are lower than the popular item, i.e., the non-popular items are under-represented.
In such cases, though the model will give a good overall accuracy, it will suffer badly on
the weighted Popularity Parity. Similarly, if popular items are under-represented,
the model will still suffer badly from the weighted popularity metric. Thus, the given
loss function will try to push for equal representation of both popular and non-popular
items by updating weights to point towards the direction of minima for loss function Z(w).

The well-known gradient descent technique can compute the weight update equations.
The idea is to break the first term in Z separately for popular and non-popular items.
Then in the case of non-popular item i, we get,

(
∂Z
∂wi

)
i∈IN P

=
∑
u∈U

(Ru,i − Pu,i)2
(

1 + 2 Υ PPw(R,P )
CN P

)
(7.9)

For popular item i, one can easily find,

(
∂Z
∂wi

)
i∈IP

=
∑
u∈U

(Ru,i − Pu,i)2
(

1− 2 Υ PPw(R,P )
CP

)
(7.10)

Let ∆i=
(

∂Z
∂wi

)
i∈IN P

,∀i ∈ IN P and ∆i=
(

∂Z
∂wi

)
i∈IP

,∀i ∈ IP denote the derivative of item

i. We will use these to update the weights of items.
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Algorithm 17: EqBal-RS
Input: given items (popular and non-popular) I=IP ∪ IN P , users U , rating matrix

R, time-steps T , trade-off Υ, learning rate η, epochs E, wt-decay Λ, latent
factors κ

Output: learned user and item embedding ξt, ψt respectively
1 Initialize item weights array w with wi = 1

|I|∀i ∈ I

2 Randomly initialize ξ0 ∈ R|U|×κ and ψ0 ∈ Rκ×|I|.
3 mu0 , vu0 ,mi0 , vi0 ← 0 (Initialize 1st, 2nd moment vectors for user and items.)
4 for t ← 1 to T do
5 ξt, ψt, mut , vut , mit , vit = MFAdam(ξt−1, ψt−1, mut−1 , vut−1 , mit−1 , vit−1 ,η, w,

E, R)
6 P t = ξt × ψt

7 Calculate weighted Popularity Parity PP t
w(R,P t)

8 Calculate gradient ∆i ∀i ∈ I using Equations 7.9, 7.10 and PP t
w

9 Update item weights array w using wi = wi − Λ×∆i, ∀i ∈ I
10 end
11 return ξt, ψt

We now describe EqBal-RS given in Algorithm 17. Inputs given to the algorithm involve
a set of popular (IP) and non-popular (IN P) items, learning rate η, and weight decay
parameter Λ. We use κ to denote the number of latent factors. Line 1 initialize item
weights (equal), user embedding (ξ) of size |U| × κ (random), item embedding (ψ) of
size κ × |I| (random), and adam optimization-related moment vectors (set to 0). The
dot product of user and item embedding gives rise to the prediction matrix P . The
moment vectors, user, and item embedding will be learned in-processing continually over
timesteps. The model training starts from line 2 for T timesteps. The embeddings learned
up to the current timestep are passed to procedure MFAdam (presented in Algorithm
18 and described later). After the procedure completes (say E epochs), it returns the
learned embeddings and moment vectors. These embeddings compute prediction matrix
P t at timestep t, which helps evaluate weighted popularity bias and weight updates using
Equations 7.9, 7.10. At the end of T time-steps, the algorithm returns the user and
item embedding independent of weights. Thus, we only need the two embeddings for
post-training prediction and do not require any weights or propensity scores.
MFAdam described in Algorithm 18 clubs the ideas from traditional MF and Adam
optimization [365]. It essentially uses adam optimization to learn embedding while
minimizing weighted squared error ∑i∈I li(w). The algorithm also takes item weights
and moment vectors passed via EqBal-RS. These improvise the embeddings learned
till previous timesteps. Once all computations are over, the procedure returns updated
embeddings and moment vectors.
We use adam optimizer as it can handle sparse data well, and default parameter
configurations are adaptable to many problems [365]. Thus, it widens the usability of
EqBal-RS to different applications and datasets. Further, the base chapter shows that
Adam works much faster than stochastic gradient descent. It will help reach minima
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Figure 7.1: Flowchart for working of proposed EqBal-RS. (Best viewed in color)

quickly in each timestep before the next weight update. Figure 7.1 visually represents the
entire algorithmic workflow.

7.5 Experimental Result and Discussion

We will now evaluate the performance of EqBal-RS against different state-of-the-art
(SOTA) techniques for recommendation systems on three bench-marking datasets of various
sizes, (i) MovieLens1 is a movie rating dataset with 1 Million ratings given to 3706 movies
by 6040 users, (ii) Yahoo2 provides 365, 000 ratings to 1000 music items by 15, 400 users,
(iii) Amazon GiftCards3 is an amazon dataset with 147, 000 ratings given to 1548 gift

1https://grouplens.org/datasets/movielens
2https://webscope.sandbox.yahoo.com
3https://nijianmo.github.io/amazon
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Algorithm 18: MFAdam: Matrix Factorization with Adam Optimization
Input: embeddings ξt−1, ψt−1 & moments mut−1 ,vut−1 ,mit−1 , vit−1 , R, learning rate

η, epochs E, weights w = {wi}i∈I , and Adam’s hyper-parameters β1, β2 and
ϵ (default settings: η = 0.001, β1=0.9, β2=0.999, ϵ=10−8).

Output: learned embeddings ξt, ψt, & moments mut ,vut ,mit , vit

1 ep← 0 (Current epoch number)
2 while ep ≤ E do
3 Now let overall weighted loss function be L
4 L = ∑

i∈I li(w) ∀i ∈ I.
5 Use Adam optimizer on L (refer [365])
6 ξt, ψt, mut ,vut ,mit , vit=Adam(ξt−1, ψt−1, mut−1 ,vut−1 ,mit−1 , vit−1 , η)
7 ep ← ep +1
8 end
9 return ξt, ψt, mut , vut , mit , vit

cards by 128, 874 users. We split the dataset into train & test sets (80 : 20) [121, 366].
We compare EqBal-RS against the following baselines and SOTA that are MF-based
approaches and work with explicit feedback:

• Matrix Factorization (MF): Basic collaborative filtering technique [367].

• MF with Regularisation (MFR): Regularized MF to avoid over-fitting by
penalizing the magnitude of user and item vectors [9].

• MFIPS: Matrix factorization (MF) with inverse propensity score. We use Naive
Bayes as a propensity score estimator in our experiments. The choice is based on
findings in the original work that it performs better on given datasets [8].

• MFIPS-AT: Improvised MFIPS with naive bayes where MFIPS is used thrice as
rating predictor [27]. Note that MFIPS-AT requires pre-training steps due to the
involvement of pseudo-labeling.

Figure 7.2: Rating frequency and popularity threshold in datasets. (Best viewed in color)

Experimental Setup: All the experiments are executed on an Intel i7 CPU and
32GB RAM. We use the optuna framework4 for hyper-tuning the parameters in all

4https://optuna.org
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Algorithm Hyper-parameter Range Explored Final Tuned Value

MovieLens Yahoo Music Amazon

EqBal-RS
learning Rate (η) [10−5, 4] 4.750 3.785 3.950
weight-decay (Λ) [0, 1) 1.0× 10−8 1.1× 10−8 1.01× 10−8

trade-off parameter (Υ) – 0.010 0.010 0.010

Baselines

MF learning Rate (η) [10−5, 4] 0.002300 0.000823 0.008570

MF + Reg learning Rate (η) [10−5, 4] 0.000128 0.000925 0.007200
regularisation parameter [0, 2) 0.040000 0.007240 0.004300

MFIPS regularisation parameter (λ) [10−6, 1] 2.28× 10−6 5.2× 10−5 0.000009167
learning rate (η) [10−8, 1] 0.041800 0.31110 0.1.19742

MFIPS-AT
regularisation parameter (λ) [10−6, 1] 5.2099× 10−5 5.2× 10−5 5.1× 10−5

training parameter (ϵ) [10−8, 1] 0.0047924 0.004792 0.004792
learning rate (η) [10−8, 1] 0.037870 0.010499 0.030741

Table 7.1: Hyper-parameters for EqBal-RS and baselines tuned using optuna.

the algorithms (see Table 7.1 for details). The code is publicly available as a GitHub
repository5. We report the mean and standard deviation over ten independent runs.
Following the pareto principle in [119, 122, 368], we generate the top 20% of the items
with the highest rating count as the popular items and the rest 80% as the non-popular
items (see Figure 7.2). The vertical cut represents the popularity threshold.

Evaluation Metrics: The metrics used for comparison include mean square error (MSE)
(consistent with literature [8, 27]) on the complete, popular, and non-popular set of
items. Along with these three metrics, we also report the results for the absolute value of
Popularity Parity, NDCG, and ARP [122]. ARP is quite common in literature but is
best suited for learning-to-rank recommender systems in a dynamic setting. However, we
intend to tackle algorithmic bias in a static setting. Mathematically:

ARP = 1
|U|

∑
u∈U

∑
i∈Lu

ωi

|Lu|

where Lu is the recommendation list of user u and ωi is ratio of number of ratings for
item i to total number of items. We use the top 10 recommendation item list for our
experimental comparison of ARP. We show that EqBal-RS succeeds on ARP, which
helps us claim that reducing Popularity Parity is in line with previous literature [357].
Similarly, NDCG is a widely used standard measure in search ranking evaluations [369]
and implicit settings [121, 370]. It is normalized to have a maximum value of 1.0. We find
the cumulative NDCG score for each user’s top 10 items. A good recommender system
should have low losses, popularity bias, ARP, and high NDCG scores.

5https://github.com/eqbalrs/EqBalRS
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Table 7.2: Training results for different MF approach on real-world datasets. (Note that
PP denotes Popularity Parity.)
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Table 7.3: Testing results for different algorithms on datasets averaged and standard
deviation over ten independent runs. (Note that PP denotes Popularity Parity.)
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7.5.1 Evaluation of EqBal-RS against Baseline Methods

We begin by comparing EqBal-RS on loss and Popularity Parity. We fix the number
of latent factors (k) as 20 across all experiments (consistent with prior literature [371])
and the number of training steps to 100 for MF, MFR, EqBal-RS, and MFIPS. The
MFIPS-AT approach requires pre-training steps because of the pseudo-labeling. So, we
fine-tune and select to pre-train MFIPS-AT for 250, 650, and 1000 steps for movielens,
yahoo, and amazon datasets, respectively. We limit the post-training steps to 50, owning
to significant runtime (see runtime analysis). We report the results on the train set in
Table 7.2. We can see that improvement in the fairness metric (popularity parity) comes at
a slight trade-off in overall mean square error (MSE) loss; thus, exploring a Pareto frontier
between fairness and accuracy is an interesting future direction. Overall, we summarize
the observations below:

MovieLens

1. The MF and MFR approaches reduce overall loss by emphasizing more on decreasing
loss on popular items, resulting in higher Popularity Parity.

2. MFIPS achieves the lowest MSE losses but suffers high variance, resulting in higher
Popularity Parity and lower NDCG than MF, and EqBal-RS.

3. MFIPS-AT reduces variance compared to MFIPS but incurs significantly higher
losses and performs poorly on fairness metrics such as Popularity Parity, ARP,
and has better NDCG than existing debiasing methods such as MFIPS, MFIPS-AT.

4. EqBal-RS achieves the least fairness parity (bias) while having comparable losses
with standard MF and MFR approaches. It also performs well on existing fairness
metrics, i.e., ARP and NDCG.

Yahoo Music

1. MFIPS results in the lowest mean value for losses but at high variance and increased
parity showing the sensitivity of the approach.

2. EqBal-RS achieves losses comparable to MF and MFR, indicating that it is robust
to changes in the dataset. Moreover, it performs well on parity metrics, ensuring
that losses are not imbalanced over time.

3. MF, MFR, and MFIPS-AT follow a trend similar to movielens.

4. While EqBal-RS and MF exhibit similar performance on Popularity Parity in
datasets with few items (yahoo), MF and MFR struggle with parity in datasets that
contain a larger number of items.
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Amazon GiftCards

1. MF, MFR maintain ARP close to EqBal-RS but achieve poor NDCG scores. This
is because the approaches might be recommending an extremely unpopular item.

2. Amazon GiftCard has relatively few items rated by a comparably large number of
users; both MFIPS and MFIPS-AT exhibit high losses and parity.

3. EqBal-RS achieves the least loss with significantly lower parity and ARP. Further,
it maintains good recommendation quality (NDCG scores) when compared to
methods that have low parity, ARP.

Test Results: The results on test data are reported in Table 7.3 and summarized below:

• In the movielens and yahoo datasets, MF, MFR, and MFIPS-AT experience high test
losses, while MFIPS achieves the lowest loss values. Although EqBal-RS achieves
slightly higher losses than MFIPS, it has the lowest parity, which is desirable since
parity can magnify in models over time.

• MF and MFR exhibit comparable loss values than EqBal-RS in the amazon dataset,
but both approaches demonstrate high test variance, making EqBal-RS a more
efficient option.

7.5.2 Comparison of Non Popular Items in Top-k List

We now conduct an in-depth analysis of the distribution of non-popular items in top-k
recommendations. To compare different SOTA methods, we report the mean and deviation
of the number of non-popular items in the top-10 recommendation list. While the
top-10 setting is widely used in the literature [8, 360], we include results for the top-100
recommendation list to facilitate a more comprehensive comparative analysis. The findings
are summarized below and reported in Tables 7.2 and 7.3.
Yahoo: As it is the dataset with few non-popular items, it is evident from the results that
traditional methods such as MF, MFR, and existing debiasing methods struggle to have
an adequate number of non-popular items. On the contrary, our EqBal-RS maintains
better representation (around 4 to 6 in top-10) in both train and test results.
MovieLens and Amazon: These datasets enjoy a healthier representation in MF, MFR,
and EqBal-RS for top-10 setting. However, in the top-100 setting, it can be observed
that these algorithms excessively prioritize non-popular items, potentially introducing a
bias towards popular items. On the contrary, EqBal-RS balances both popular and
non-popular items count in recommendation lists while maintaining losses and fairness
metrics.
We also explore the distribution of non-popular items among users. To this, we plot
the sum of items’ popularity (rating frequency see Figure 7.2) in each user’s top-k
recommendation in Figure 7.3 and 7.4 for k value of 10 and 100 respectively. The
visualization in top-10 is limited to yahoo and amazon datasets as comparison is easily
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Figure 7.3: Popularity sum of items in top-10 recommendation list across users for different
SOTA. (Best viewed in color)

visible considering the total number of ratings, users, and items available. A higher sum
indicates that the algorithm primarily recommends popular items, whereas a balanced
representation is desirable, so excessively high values are not preferred.

Observations for top-10: MFIPS-AT and MFIPS suffer high popularity sum. In
contrast, EqBal-RS maintains a more distributed distribution according to the users’
preferences while ensuring a representation of non-popular items. Conversely, MF, MFR
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Figure 7.4: Popularity sum of items in top-100 recommendation list across users for
different SOTA. (Best viewed in color)

is restricted to a small region and has a lower mean value (evident from Table 7.2, 7.3).
Observations for top-100: The results are particularly evident in this setting. MFIPS
and MFIPS-AT exhibit a high sum, indicating that most of the recommended items
come from the popular item segment. MF and MFR, on the other hand, show dataset
dependency. In contrast, EqBal-RS maintains a balanced sum value, neither excessively
high nor low, regardless of the dataset, thus highlighting the approach’s efficacy.

7.5.3 Statistical Significance Testing : t-test

We also compare the difference between the mean error on popular and non-popular items
using a t-test that can be computed using Equation 7.11. This analysis helps us understand
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the statistical difference between the two groups. A higher t-test value indicates a more
significant loss difference between popular and non-popular items. Conversely, smaller
values indicate that the losses on both sets of items are more similarly balanced. Our study
has large sample sizes, so we have an infinite degree of freedom for the t-test. The train
and test set t-test scores are reported in Table 7.2 and 7.3. Evidently, debiasing methods
have lower t-test scores than traditional methods such as MF and MFR. Our EqBal-RS
has the least t-test on the movielens and amazon datasets, showing the efficacy of our
approach compared to SOTA.

t− test = LN P − LP√
L2

obs

(
1

CN P
+ 1

CP

) (7.11)

7.5.4 Runtime Analysis

We report the average runtime of all approaches in Figure 7.5. While MFIPS achieves a
lower loss than EqBal-RS, it comes at a considerably high runtime. We further emphasize
that MFIPS-AT, even on 50 pre-steps and 50 post-steps, requires double the time than
EqBal-RS. Additional pre-training will result in increased overall execution time. Thus,
EqBal-RS is a scalable approach for achieving fair and quality recommendations.

Figure 7.5: Runtime comparison of proposed EqBal-RS against different matrix
factorization methods. (Best viewed in color)

7.5.5 Analysis of Training Plots

We now find the answers to the following questions– How well is our model learning?
How does the current state of an algorithm change over time? We plot training curves
for losses and popularity parity over timesteps to answer these. We train EqBal-RS
for ten timesteps, comprising ten epochs of AdamMF making of 100 epochs of learning.
Similarly, MF, MFR, and MFIPS undergo training for 100 epochs. For comparison with
EqBal-RS, we divide these epochs into intervals and plot the results after every ten
epochs. Furthermore, as MFIPS-AT requires significant pre-training epochs, we ignore
such epochs and plot only the post-training 50 epochs.
The training plots are available in Figure 7.6, with the line depicting the mean value
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Figure 7.6: Training plots for overall MSE loss (i.e., on I), Popularity Parity, MSE
on IP , MSE on IN P on different approaches. (Best viewed in color)

and the shaded region being the standard deviation. To better visualize, we also provide
a zoomed view of Popularity Parity. The results for each dataset are summarized
below:
–Amazon: (1) MFIPS, MFIPS-AT begins with relatively high loss and parity. There
is a gradual decrease in values, but it remains much higher than other approaches. (2)
EqBal-RS achieves loss quite close to MF, MFR approaches over a few timesteps while
maintaining lower parity, showing its efficacy.
–Movielens: (1) MFIPS acquires the lowest overall loss but at deteriorated Popularity
Parity. (2) EqBal-RS attains the least Popularity Parity while having similar
trends and comparable performance on loss values.
–Yahoo: (1) All approaches have considerably high loss and parity values over the initial
timesteps. (2) EqBal-RS achieves pretty stable and smooth behavior while achieving the
best Popularity Parity and comparative loss values.
The plots for MSE on popular and non-popular items follow a similar trend to overall
MSE and are illustrated in Figure 7.6.
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Ranking based Training Results

Dataset Algorithms NDCG (↑) Dataset Algorithms NDCG (↑)

MovieLens
MF + FA*IR 0.9661 ± 0.0435

Yahoo
MF + FA*IR 1.0000 ± 0.0000

MF-Reg + FA*IR 0.8011 ± 0.1985 MF-Reg + FA*IR 0.9972 ± 0.0061

EqBal-RS 0.0204 ± 0.0013 EqBal-RS 0.0355 ± 0.0042

Implicit Debiasing Results

Dataset Algorithms
Train Test

NDCG (↑) ARP (↓) NDCG (↑) ARP (↓)

MovieLens
CPR 0.0706 ± 0.000 179.8070 ± 0.000 0.0919 ± 0.0000 185.21 ± 0.0000

EqBal-RS 0.0262 ± 0.0179 0.0185 ± 0.0006 0.0205 ± 0.0014 0.0047 ± 0.0002

Yahoo
CPR 0.0833 ± 0.0000 25.6599 ± 0.0000 0.0869 ± 0.0000 28.325 ± 0.0000

EqBal-RS 0.0363 ± 0.0064 0.2161 ± 0.0285 0.0367 ± 0.0066 0.0559 ± 0.0111

Amazon
CPR 0.0681 ± 0.0000 17.2408 ± 0.0000 0.0635 ± 0.0000 18.4460 ± 0.0000

EqBal-RS 0.000001 ± 0.00 0.00001 ± 0.000 0.00017 ± 0.000 0.0007 ± 0.0000

Table 7.4: Results for different algorithms on datasets averaged and standard deviation
over ten independent runs.

7.5.6 Comparison with Ranking and Implicit Debiasing Methods

A few recent studies have focused on handling popularity bias in implicit settings. One of
the notable current methods is work by Wan et al. [70], which they call CPR. The CPR
algorithm enables unbiased recommendations without the need for IPS-based propensity
scores. However, it is designed specifically for the implicit and ranking setting. The work
sets off the comparison with Borges and Stefanidis [121]. To analyze EqBal-RS in the
implicit setting, we convert ratings of 1 to 4 as 0 and explicit ratings of 5 to 1 in line with
experimentation in baseline work [70]. The results are reported in Table 7.4.

As CPR is an implicit ranking-based methodology, we limit comparison to well-known
ranking metrics, i.e., ARP and NDCG metrics. In EqBal-RS our emphasis is primarily
on reducing ARP, which leads to slightly lower performance in NDCG. On the other
hand, CPR prioritizes ranking quality (NDCG). Although the performance of EqBal-RS
on ARP is reasonably good in the implicit setting, there is still potential for improving
ranking quality metrics such as NDCG.

To compare existing post-processing debiasing methods in an implicit setting, we
evaluate our algorithm against FA*IR [137] using the NDCG metric. Since FA*IR is
a ranking-based methodology, we employ MF and MFR as the underlying models to
generate all pairwise user-item ratings (which incurs additional overhead). Our algorithm
does not primarily aim at ranking quality in the implicit setting, so observations align with
CPR, and we achieve slightly lower efficiency on NDCG. This highlights that EqBal-RS
is more suitable for explicit settings. We leave improving performance in the implicit and
ranking setting as a potential future direction.



Chapter 7. Mitigating Popularity Bias in Recommender Systems 211

7.5.7 Study on Item Diversity

The percentage of items recommended at least once across all users represents item
diversity. Recommending popular items creates a feedback loop, causing diversity to drop
over time [370]. EqBal-RS attains a mean value of 0.00012, 4.99×10−5, and 8.49×10−6

for yahoo, movielens, and amazon respectively. The negligible deviation (near zero) across
runs ensures balanced item visibility.

7.6 Conclusion and Future Work

An appropriate representation of non-popular items is essential for business organizations
to give proper visibility to new items. Yet, recommendation engines are well-known
to be biased toward popular items. To this, we propose a computationally efficient
algorithm – EqBal-RS, that uses a novel metric (Popularity Parity) to measure
the popularity bias as differences in losses acquired by non-popular and popular items.
EqBal-RS can be particularly useful in real-world scenarios where capturing precise user
preferences is crucial. For instance, it can be applied to movie recommendations, where
explicit feedback is employed to capture preferences such as genre, plot, and more. Our
experiments show EqBal-RS outperforms SOTA approaches by reducing popularity bias
without affecting the system’s overall accuracy and diversity of recommendations. It is
worth noting that reducing the Popularity Parity ensures satisfactory performance on
existing metrics like ARP and NDCG. However, it is important to note that EqBal-RS
is currently restricted to the explicit setting. Although its performance on ARP is
reasonably good in the implicit setting, there is room for improvement in ranking
quality metrics such as NDCG, which remains a potential direction for future work.
Other immediate future direction is tackling popularity bias in multistakeholder systems
[372, 373] where the model requires recommendations from various providers and older
organizations to generate better customer satisfaction. Apart from this, an extension to
deep modeling methods by plugging a DeepMF [374, 375, 376, 377, 378, 379, 380, 381],
Nearest Neighbors-based MF [382], and Dynamic MF [383] in place of AdamMF are
interesting. One could even investigate the possibility of utilizing distributed [384] or
federated MF [385, 386, 387, 388, 389] to deal with massive datasets.
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Chapter 8

Conclusion

8.1 Discussion and Open Problems

In this doctoral thesis, we provided different fair algorithms for unsupervised learning.
Particularly, we focused on clustering and recommender systems. Figure 8.1, 8.2 provides
a brief summary of contributions. Chapters 3 to 6 discussed clustering algorithms in
different settings: offline, online and federated. We began by proposing a group fair
clustering algorithm for offline setup. We proposed an efficient group fair notion that
helped in the development of a polynomial time algorithm for fair clustering. Though
both group and individual fairness rose independently in literature, theoretical instances
exist in which satisfying both levels of fairness is non-trivial and complementary [64, 65].
However, our study observed that it is possible to satisfy both fairness levels to a
reasonable extent on real-world datasets. Motivated by this success in offline clustering,
we look into the closely related applications of clustering in facility location problems. We
presented an algorithm that achieves good approximation on both group and individual
fairness. Next, we extended the idea of satisfying group fairness in clustering to an online
setup where the algorithm needs to make irrevocable decisions for each incoming data
point. Inspired by individual fairness, we next provided a federated data clustering
method that is fair to all participating clients. In Chapter 7, we undertook a slightly
different path from clustering and looked into another unsupervised learning technique-
recommender systems. Specifically, we looked into matrix factorization and presented
an algorithm that outperformed state-of-the-art baselines in achieving lower popularity
bias while maintaining overall efficiency and diversity. We now present a summary of the
contributions of each major chapter and the direction of future work.

8.1.1 Chapter 3: Group Fair Notion and Algorithms in Offline
Clustering

The focus of the chapter was primarily to look into the existing group fairness notions
and investigate the prior methods in group fair clustering. We observed that the existing
group fairness notions were either limited to binary protected group values or required
cluster sizes that are unknown apriori. This led to existing algorithms suffering from large
computational or memory requirements or hyper-parameter tuning. We proposed a novel
fairness notion that captured the fairness requirements from users for a particular group
in terms of the total number of data points from that group value (known apriori). We
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further showed that the new notion is a stricter variation of the existing group fairness
notion and admits an efficient round-robin algorithm. To this, we proposed two algorithms,
namely FRACOE and FRAC. The FRACOE algorithm underwent theoretical analysis
on cost approximation with respect to optimal clustering and convergence guarantees.
The experiments showed that both FRACOE and FRAC outperformed SOTA approaches
in objective cost and fairness measures. We also experimentally validated the strictness
property of the proposed notion on real-world datasets. A few set of interesting directions
for future work are as follows:

1. Extension to multiple protected groups: Both proposed methods FRAC
and FRACOE consider non-overlapping protected group identities. That is, the
problem considers only one protected group, say race, into account. The work
by Bera et al. [12] considered overlapping group identities. For example, in the
case of overlapping between gender and race, the protected group can take values
such as White-males, White-females, Non-White-males, Non-White-females, etc.
The direction of handling multiple multi-valued protected groups has been less
explored. In this direction, an initial attempt is undertaken by Bera et al. [12] by
incorporating lower (MP) and upper-bound (RD) constraints on the number of data
points from each overlapping protected group. For instance, authors incorporate
fairness constraints for protected group race and gender separately into the linear
program solver. Using a small experimental study, the authors show that in most
cases, the fairest solution is when two protected (or sensitive) groups are considered
together. Furthermore, their results suggest that the clustering objective cost of
including multiple protected groups simultaneously is not too expensive (or far)
from a solution cost considering only one protected group. This is an intriguing
direction as fairness achieved using one protected group might automatically satisfy
fairness requirements for other protected groups or even sometimes degrade the
fairness metrics on the other protected group [12].

Since the work by Bera et al. [12] used linear programming, constraints could be
easily incorporated separately for each possible protected group. But in our proposed
offline algorithms, we perform a fair assignment procedure (i.e., round-robin
rounds in FRAC, FRACOE). Therefore, one possible method to extend current
variations for handling different protected groups is to consider each combination
of overlapped group values (such as White-males, White-females, Non-White-males,
Non-White-females etc.) as a single group value and provide fairness requirements
for these as input to the methods. It is important to note that unless the number
of protected groups is not too large (holds in real-world scenarios), the technique
will not be computationally challenging, but one needs to develop a more efficient
strategy with theoretical cost approximation for datasets with a large number of
protected groups can be a good direction.

2. Missing information about protected groups: There have been recent
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developments in supervised machine learning when the information about the
protected groups is unknown to the algorithm [187]. The algorithm must identify
the sensitive (or protected feature) that can lead to biasness. As of now, no work in
group fair clustering considers this challenging problem and can be interesting for
future research.

3. Theoretical guarantees for general k: We provided theoretical results of
two approximation cost guarantees for k =2, 3 and, based on our experimental
observation, conjecture the result for any finite k. Current proof techniques for
k ≤ 3 needed intricate case-by-case analysis, which becomes intractable for larger k.
Devising better proofing strategies can be a possible direction.

4. Theoretical guarantees for FRAC: Our present theoretical analysis is restricted
to post-processing FRACOE method. The analysis for FRAC needs to work on
handling the dependency between data points assigned in each cycle round-robin
allocation. We leave this as an intriguing research trajectory.

8.1.2 Chapter 4: Balancing Fairness and Efficiency via Novel Welfare
Perspective

This chapter primarily focused on handling multiple fairness levels in unsupervised
learning. We considered the problem of satisfying group and individual fairness in facility
location. Most of the existing works in facility location problems focused on handling
utilitarian or egalitarian objectives. However, we modelled the problem using Nash social
welfare and proposed FAIRLOC. The method helped in satisfying group fairness while
simultaneously achieving a good approximation of individual fairness. We also provided
cost approximation guarantees and validated FAIRLOC’s efficacy on the US census dataset
with road map distances. We now provide some interesting future directions below:

1. Rational behaviour of clients: FAIRLOC assumed that the agents would behave
rationally and follow the planner’s designated assignments. However, in the real
world, agents might become strategic and greedily concentrate on reducing their
costs. In such scenarios, it becomes imperative to make the method robust to
manipulative behaviour. There are works that provide strategyproofness property
but are limited to settings when facilities can be opened at the agent’s own location
[390, 391, 213, 392]. Designing the strategy-proof method that provides agents with
sufficient incentives to not divert from rational behavior under the presence of an
explicit facility opening location set is interesting.

2. Extension of theoretical guarantees: Since our proving methodology followed
similar lines as proofs for FRACOE . Providing proofs for k centers can be a possible
direction.

3. Connection between Nash welfare and individual fairness: In order to
handle the problem of achieving good approximation for group and individual
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fairness, we formulated facility location as a Nash social welfare problem. We
experimentally showed that the bound on individual fairness approximation is not
too high. However, establishing a relationship between Nash formulation and the
induced level of individual fairness approximation factor can be promising.

4. Efficient updation strategy: In the proposed FAIRLOC, we updated the next
suitable facility opening location using a brute force approach as derivatives of
objective function did not lead to any closed form relation. Though the number
of facilities k and possible facility opening locations are finite, making brute force
tractable and studying more efficient ideas can be interesting.

8.1.3 Chapter 5: Group Fairness as Capacity Constraints in Online
Clustering

In this chapter, we looked into handling an endless stream of data points, i.e., an online
environment. The algorithm had to make an irrevocable decision for each incoming data
point about whether to assign it to the existing set of already opened centers or open it
as a new center. Prior works in this direction handled online clustering of data points but
can result in the formation of highly skewed clusters. In order to handle this challenge,
we additionally added capacity constraints for each cluster center. We provided an online
algorithm to tackle capacity constraints in h-dimensional space for k-means or k-median.
We employed the doubling trick to estimate the number of total incoming data points and
used the coupon collector problem to better estimate the initial number of data points that
need to be opened as centers. We further extended the method to provide separate capacity
constraints for each protected group value in every cluster center. The experimental results
validated the performance of both proposed algorithms on the number of centers opened
and cost approximation factors. We now summarize the directions that can be undertaken
as part of future study:

1. Robustness to noisy data points: Online clustering has been under investigation
in the presence of noisy data containing outliers [39]. Devising robust methods that
help prevent the opening of outlier data points as centers under the presence of
capacity constraints is a potential future work. Also, investigating the changes in the
cost approximation factors and bounds on the number of centers open is interesting.

2. Extension to other clustering methods: Extending the ideas of online clustering
beyond k-means and k-median is another good direction. Looking into density-based
clustering and k-center problems is yet another direction.

3. Minimizing the misassignments: Since capacity constraints and group fairness in
online streaming can result in different assignments compared to offline counterparts,
focusing on minimizing such reassignments is interesting.

4. Clustering in the presence of buffer: In many applications, buffer memory can
store a few data points. The decision for these data points can be delayed and can be
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taken together in batches. Investigating the problem of satisfying anytime Balance
guarantees can be a good study.

8.1.4 Chapter 6: Algorithms for Efficient and Fair Federated Data
Clustering

This chapter focused on solving the data clustering problem when data points are scattered
across different sites (or servers). We proposed a multi-shot approach that computes
clustering without depending on the data distribution across clients. Also, we provided
bounds on the quality of centers obtained and showed that if a sufficient number of
clients are available, then one can limit the amount of information to be shared between
clients and servers. Next, we extended the algorithm to propose a personalized federated
algorithm that takes a single round of communication, is independent of data distribution
and achieves lower mean per-point objective cost across all clients, thus ensuring that
no clients suffer poorly on the centers computed. The method allowed fine-tuning of
the global centers on the local dataset to provide a personalized experience. We list the
possible directions to further improvise the work as follows:

1. Presence of malicious clients: Federated clustering involves taking into
consideration the local center representations from all clients. So, it demands an
urgent need to analyze the performance of existing methods in the presence of
malicious clients [339]. Developing a robust mechanism that does not consider
corrupted information from clients is a need of an hour. Another important research
question is investigating the theoretical bounds on the quality of resulting cluster
centers.

2. Unlearning of client’s data: With the rising concerns about the privacy of data,
another line of research has started investigating techniques to unlearn a collection of
data points from the machine learning model [341]. Devising a federated clustering
strategy that provides assurance to clients about the deletion of their information
from clustering needs exploration.

3. Noisy data: Clients can contain data points prone to high noise in data capture
pipeline [319]. Since federated setup involves not sharing the original data points
with the server, testing the use of robust clustering methods at the client level can
be an interesting experimental exercise.

4. Continual learning setup: The data points that are getting generated at any
client might experience a shift in local optimal cluster centers. An intelligent
federated clustering system should keep on incrementally acquiring, revising and
deleting centers to maintain the best set of current k center [393].
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8.1.5 Correlation of Theoretical bounds with the Practical Applications

We provide the following correlation of theoretical bounds with practical application or
scalability for each chapter below:

• (Chapter 3): In this chapter, we provide the cost approximation factor for the
offline fair clustering algorithm - FRACOE . The proofs hold under any distance
metric as long as they obey triangular inequality, symmetry and positiveness
(including zero). We do not make any distributional assumptions about the clusters.
Therefore, the proofs for FRACOE hold practically for all small and large datasets.
We also validate the theoretical findings experimentally on large datasets such
as Diabetes and Census-II, showing that the cost approximation factor of two is
well maintained even at large values of k and n. Therefore, we do not see much
degradation in objective cost value while having fairness constraints to objective
cost without fairness. On the contrary, while our theoretical bounds are loose on k

(exponential in nature), we do not observe any significant degradation with varying
k values. Therefore, one can think of tightening the upper bound with respect to k.
The study also conducts a runtime analysis on varying numbers of clusters (k) and
dataset sizes (n).

• (Chapter 4): In this chapter, we provide objective cost guarantees on FAIRLOC
where the distance metric satisfies the assumption of triangular inequality. The
experimental validation, however, is conducted by considering real roadmap
distances between facilities and agent locations (latitude and longitude). Such
roadmap distances hold positiveness but may not obey triangular inequality and
symmetry (one-way roads). However, our experimental results validate theoretical
approximation factors that FAIRLOC is still able to maintain a better (or lower)
objective cost than baselines and does not degrade with an increasing number of
facilities (or centers) (k).

• (Chapter 5): In this work, we provide bounds on the number of centers opened
and objective cost. In particular, we make a common assumption in the online
clustering literature that the data points from different clusters and protected groups
are arriving in random ordering. This is a standard assumption in most of the
online clustering algorithms for practical use since if ordering is adversarial, then
Moshkovitz [260] show that even with knowledge of n, one needs to open up Ω(n)
centers to maintain constant cost approximation to optimal clustering. Here, n is the
total number of data points in the stream. It should be noted that our theoretical
hold even accommodates adversarial ordering. In such cases, the number of initial
centers Hk will increase to Ω(n), given that the probabilities of data ordering are
known for coupon collector mapping.

• (Chapter 6): In this work, we particularly assume that the clusters have Gaussian
distribution to prove that global centers obtained in a federated setup will not be
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far from optimal ones. The Gaussian assumption is a reasonable assumption and
is found in many real-world datasets. We also conducted a validation study on
synthetic and real-world small and large datasets, showcasing the efficacy of the
proposed method on objective cost and fairness metrics.

8.1.6 General Directions for Future Work in Clustering

We summarize the directions for future researchers to investigate as follows:

• Pareto frontier Analysis – The Pareto-optimal frontier provides a complete
characterization of the trade-off between multiple objectives in an optimization
problem. Many current studies in fair clustering consider fairness requirements as
hard constraints or provide guarantees based on data-dependent constraints. A
study of the Pareto frontier between fairness and clustering objective cost would
help theoreticians and practitioners understand situations in which the trade-off is
of most practical significance. The extent to which such a characterization is possible
and the study of algorithmic frameworks to achieve this trade-off is an interesting
open problem.

• Generalizations to multiple protected groups – We briefly reviewed
generalization of τ -RD and τ -MP fairness notions to multiple overlapping protected
groups setting in Section 2.1.1. A similar strategy can be used for extending
the online algorithm by providing capacity bounds for each possible group value.
Extending other fairness notions to multiple protected groups and understanding the
relationship between these notions is an important and practically relevant research
direction.

• Gaming and incentives design – In this thesis and most of the fair clustering
literature, the data generation process is assumed to be noise-free and non-strategic.
Seen as a natural extension of strategic classification [394] in a clustering framework,
strategic clustering (See, [395]) has many practical applications. For instance, in a
consumer segmentation application where agents have preferences over segments
(i.e., clusters) in which they are assigned, may game the algorithm by misreporting
their data to obtain the desired assignment. This misreporting may result in a
significant loss in the objective function, and consequently, the fairness guarantees
may fail to hold. Studying incentives to elicit truthful reports and designing robust
gaming fair clustering algorithms is an interesting future work.

• Integrating Interpretability with Fairness: Developing methods that ensure
fair clustering while ensuring that decisions made are more transparent and
understandable [396]. That is, designing techniques that provide insights into
the influence of fairness in clustering assignments and associated costs. A few
preliminary works in interpretable clustering involve using self-interpretable models
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such as decision trees [397, 398, 399, 400, 401]. Extending these works to
accommodate fairness aspects is interesting future direction.

• Evolving definition of fairness: The thesis studies group and individual fairness
paradigms with predefined criteria or definitions in the literature. Within group
fairness, the thesis proposes a stricter notion and algorithm of group fairness that
is primarily motivated by envy-freeness literature in algorithmic game theory and
fair division. The developed offline method is inspired by the greedy round-robin
procedure in the fair division of indivisible goods among agents with additive
valuations [402]. The procedure ensures the allocation returned after round-robin
assignments is envy-free up to any good. We use this methodology to distribute
data points (goods) among centers (agents) with distance as valuations. Similarly,
the online method uses randomized algorithms while ensuring capacity constraints
(fairness properties), and the federated clustering uses fine-tuning to develop a more
personalized solution that ensures lower cost deviation (individual fairness). Since all
areas require substantially new definitions of fairness, we are unsure if the proposed
methodology in the thesis can be applied. However, taking ideas from our work and
extending them to the above areas will form interesting future work.

• Unsupervised Feature Selection: Clustering has been used as one of the
potential feature selection techniques in a few past literature [403, 404]. The
primary intuition behind such methods is that a good subset of features is highly
correlated to class labels (known or unknown) compared to other non-relevant
features. These methods usually, instead of clustering data points, involve clustering
features into different clusters in terms based on different predefined similarity
criteria. Specifically, the criterion helps identify a subset of features that maintain a
considerably good level of similarity criteria close to when executed on whole dataset
features. An interesting and less explored direction can be finding answers to the
following: Can one use fair clustering methods and select a subset of features with
balanced similarity criteria for different protected group values? Will such a feature
set help achieve fairer solutions than the feature subset selected by unfair clustering?
Can one control the amplification of biasness by selecting fair features [403]?

• Anomaly Detection: Clustering is also a potential tool in anomaly detection to
detect normal examples (or data points) from anomaly examples. Furthermore,
in a parallel direction, it is evident from literature in supervised learning that
many existing methods mark normal data points from protected/minority groups
as anomalies, specifically when the dataset is highly imbalanced in the proportion
of majority and minority groups [405, 406]. An interesting direction can be
investigating if a similar problem arises when one applies clustering for anomaly
detection. To the best of our knowledge, this direction has not been explored in the
existing literature, and using fair clustering can help answer many open questions:
What is fair? What is risky (anomaly)? How do we handle the trade-off between the
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fairness and efficiency of anomaly detectors? Will the movement of some anomalies
to a normal cluster or vice versa help?

• Committee Selection & Job Hiring: Another potential direction for research
can be investigating the application of group fair clustering in committee selection
and job hiring. Can one ensure fair representation of committee members or job
candidates from different protected group values?

• Dynamic or Time-varying Data: In many real-world applications, the underlying
data patterns may not be stationary and evolve over time [407, 408]. The thesis
primarily focuses on stationary data distribution without concept drifts. However,
in many real-world situations, for example, in loan or job hiring over time, it is
possible that females might get balanced compared to males, but law amendments
might demand strict minimum representation of people from other gender groups.
Also, the need can be seen in applications concerning language or disability as
sensitive (or protected group) as, over time, it is possible that some new diseases or
language immigrants might force the government (or planners) to ensure minimum
representation from their protected group type. Therefore, extending ideas from
supervised learning [407, 408] to unsupervised clustering (particularly in online and
federated where new data keeps on generating) can help prevent models from getting
negatively impacted by concept drifts. One will need to look into how to handle
obsolete clusters, define possible time windows for merging or deleting old clusters,
investigate the need for a dynamic number of target clusters (k), and handle noise
(or outliers) by ensuring buffers before updating the original model.

8.1.7 Chapter 7: Mitigating Popularity Bias in Recommender Systems

The chapter focused on another unsupervised learning technique – recommender systems.
We primarily focused on the well-known Matrix Factorization (MF) method in explicit
feedback settings. Past literature has reported fairness concerns rising in MF methods
about favouritism to popular items over non-popular items. To this, we proposed a
novel popularity bias metric that measures bias as the difference between losses on
non-popular and popular items. We further proposed an efficient algorithm – EqBal-RS
that outperforms baseline methods on proposed and existing popularity bias metrics while
maintaining the system’s overall accuracy. Some good future works include but are not
limited to the following:

1. Extension to multi-stakeholder systems: Recommender systems usually involve
a number of stakeholders, including but not limited to producers and consumers. A
study focusing on handling popularity bias and discussing the intricacies of such
systems is worth exploring [372, 373].

2. Deep matrix factorization: With the success of the performance of deep learning
methods in vision and language processing tasks. Recent efforts have been made by
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researchers to study deep matrix factorization [374, 375, 376, 377, 378, 379, 380, 381].
Analyzing deep matrix factorization in our proposed algorithm can be promising.

3. Extension to federated or distributed setup: In order to handle a large volume
of data, distributed or federated learning plays a vital role. Probing distributed
MF[384] or federated MF [385, 386, 387, 388, 389] in our methodology can be yet
another promising direction.

4. Pareto Frontier & Bicriteria Approximate Methods: Recommendation
system literature has numerous evident works that study/show this tradeoff and
explore the Pareto frontier [409, 410, 411, 412]. Even in our study, improvement
in the fairness metric (popularity parity) came at a slight trade-off (increase) in
overall mean square error (MSE) loss. Exploring a Pareto frontier between fairness
and accuracy is an interesting future direction. Also, recent efforts have been to
study approximation factors for the efficiency of binary matrix factorization in past
literature ([413] and see references therein). Authors propose (1 + ϵ) approximation
to binary matrix factorization problem where ϵ is the accuracy parameter. However,
these works do not deal with fairness aspects and are limited to just approximation
studies on accuracy [414]. Another potential direction for investigation is exploring
challenges and bounding the bicriteria approximations on accuracy and fairness
metrics. This direction has not been yet explored and can be undertaken by
researchers.
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[95] Matteo Böhm, Adriano Fazzone, Stefano Leonardi, and Chris Schwiegelshohn. Fair
clustering with multiple colors. arXiv:2002.07892, 2020.

[96] Suyun Liu and Luis Nunes Vicente. A stochastic alternating balance k-means
algorithm for fair clustering. arXiv:2105.14172, 2021.

[97] Ali Vakilian and Mustafa Yalçıner. Improved approximation algorithms for
individually fair clustering. arXiv:2106.14043, 2021.

[98] Clemens Rösner and Melanie Schmidt. Privacy preserving clustering with
constraints. arXiv:1802.02497, 2018.

[99] Zvi Galil. Efficient algorithms for finding maximum matching in graphs. ACM
Computing Surveys (CSUR), 18(1):23–38, 1986.

[100] Takao Asano and Yasuhito Asano. Recent developments in maximum flow
algorithms. Journal of the Operations Research Society of Japan, 43(1):2–31, 2000.

[101] Hanan Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys (CSUR), 16(2):187–260, 1984.

[102] Ioana O Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner,
Daniel R Schmidt, and Melanie Schmidt. On the cost of essentially fair clusterings.
arXiv:1811.10319, 2018.

[103] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[104] Kenneth Lange and Hua Zhou. A legacy of em algorithms. International Statistical
Review, 90:S52–S66, 2022.

[105] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Local global
tradeoffs in metric embeddings. SIAM Journal on Computing, 39(6):2487–2512,
2010.

[106] T-H Hubert Chan, Michael Dinitz, and Anupam Gupta. Spanners with slack. In
European Symposium on Algorithms, pages 196–207. Springer, 2006.

[107] Chaitanya Swamy. Improved approximation algorithms for matroid and knapsack
median problems and applications. ACM Trans. Algorithms, 12(4), aug 2016. ISSN
1549-6325. doi: 10.1145/2963170. URL https://doi.org/10.1145/2963170.

[108] Jaglike Makkar, Bhumika, Shweta Jain, and Shivam Gupta. MFC: A multishot
approach to federated data clustering. European Conference on Artificial Intelligence
(ECAI), pages 1672 – 1679, 2023.

[109] Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering.
In International Workshop on Approximation Algorithms for Combinatorial
Optimization, pages 37–49. Springer, 2012.

https://doi.org/10.1145/2963170


234 References

[110] Kun Yang, Mohammad Mohammadi Amiri, and Sanjeev R Kulkarni. Greedy
centroid initialization for federated k-means. Knowledge and Information Systems,
pages 1–33, 2024.

[111] Claire Little, Mark Elliot, and Richard Allmendinger. Federated learning for
generating synthetic data: a scoping review. International Journal of Population
Data Science, 8(1), 2023.

[112] Jichan Chung, Kangwook Lee, and Kannan Ramchandran. Federated unsupervised
clustering with generative models. In AAAI 2022 International Workshop on
Trustable, Verifiable and Auditable Federated Learning, volume 4, 2022.

[113] Achintha Wijesinghe, Songyang Zhang, Siyu Qi, and Zhi Ding. Ufed-gan: A secure
federated learning framework with constrained computation and unlabeled data.
arXiv preprint arXiv:2308.05870, 2023.

[114] Jie Yan, Jing Liu, Ji Qi, and Zhong-Yuan Zhang. Privacy-preserving federated deep
clustering based on gan. arXiv preprint arXiv:2211.16965, 2022.

[115] Songze Li, Sizai Hou, Baturalp Buyukates, and Salman Avestimehr. Secure federated
clustering. arXiv preprint arXiv:2205.15564, 2022.

[116] WV Leeuw. Bc-fl k-means: A consortium blockchain for federated clustering.
Open Access Theses and Dissertations, 2022. doi: https://research.tue.nl/nl/
studentTheses/0ad42707-ed58-4e59-ae4b-7f2251f8ac24.

[117] Nikhil Ketkar and Nikhil Ketkar. Stochastic gradient descent. Deep learning with
Python: A hands-on introduction, pages 113–132, 2017.

[118] Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher.
The unfairness of popularity bias in recommendation. arXiv preprint
arXiv:1907.13286, 2019. doi: 10.48550/arXiv.1907.13286.

[119] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. Challenging the long
tail recommendation. Proceedings of the VLDB Endowment, 5(9), 2012. doi: 10.
14778/2311906.2311916.

[120] Michael A Hitt. The long tail: Why the future of business is selling less of more,
2007.

[121] Rodrigo Borges and Kostas Stefanidis. on mitigating popularity bias in
recommendations via variational autoencoders. In Proceedings of the 36th Annual
ACM Symposium on Applied Computing, pages 1383–1389, 2021. doi: 10.1145/
3412841.3442123.

[122] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Managing popularity
bias in recommender systems with personalized re-ranking. arXiv preprint
arXiv:1901.07555, 2019. doi: 10.48550/arXiv.1901.07555.



References 235

[123] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan
He. Model-agnostic counterfactual reasoning for eliminating popularity bias in
recommender system. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 1791–1800, 2021. doi: 10.1145/3447548.
3467289.

[124] Emre Yalcin. Blockbuster: A new perspective on popularity-bias in recommender
systems. In 2021 6th International Conference on Computer Science and Engineering
(UBMK), pages 107–112. IEEE, 2021. doi: 10.1109/UBMK52708.2021.9558877.

[125] Sami Khenissi and Olfa Nasraoui. Modeling and counteracting exposure bias in
recommender systems. arXiv preprint arXiv:2001.04832, 2020. doi: 10.48550/arXiv.
2001.04832.

[126] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui
Ling, and Yongdong Zhang. Causal intervention for leveraging popularity bias in
recommendation. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 11–20, 2021. doi:
10.1145/3404835.3462875.

[127] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.
Unbiased recommender learning from missing-not-at-random implicit feedback. In
Proceedings of the 13th International Conference on Web Search and Data Mining,
pages 501–509, 2020. doi: 10.1145/3336191.3371783.

[128] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin.
Disentangling user interest and conformity for recommendation with causal
embedding. In Proceedings of the Web Conference 2021, pages 2980–2991, 2021.
doi: 10.1145/3442381.3449788.

[129] Zhihong Chen, Jiawei Wu, Chenliang Li, Jingxu Chen, Rong Xiao, and Binqiang
Zhao. Co-training disentangled domain adaptation network for leveraging popularity
bias in recommenders. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 60–69,
2022. doi: 10.1145/3477495.3531952.

[130] Ming He, Changshu Li, Xinlei Hu, Xin Chen, and Jiwen Wang. Mitigating popularity
bias in recommendation via counterfactual inference. In International Conference
on Database Systems for Advanced Applications, pages 377–388. Springer, 2022. doi:
10.1007/978-3-031-00129-1 32.

[131] Weijieying Ren, Lei Wang, Kunpeng Liu, Ruocheng Guo, Lim Ee Peng, and Yanjie
Fu. Mitigating popularity bias in recommendation with unbalanced interactions:
A gradient perspective. In 2022 IEEE International Conference on Data Mining
(ICDM), pages 438–447. IEEE, 2022. doi: https://doi.ieeecomputersociety.org/10.
1109/ICDM54844.2022.00054.



236 References

[132] Himan Abdollahpouri and Robin Burke. Reducing popularity bias in
recommendation over time. arXiv preprint arXiv:1906.11711, 2019. doi: 10.48550/
arXiv.1906.11711.

[133] Anastasiia Klimashevskaia, Mehdi Elahi, Dietmar Jannach, Christoph Trattner, and
Lars Skjærven. Mitigating popularity bias in recommendation: Potential and limits
of calibration approaches. In International Workshop on Algorithmic Bias in Search
and Recommendation, pages 82–90. Springer, 2022. doi: 10.1007/978-3-031-09316-6
8.

[134] Cataldo Musto, Pasquale Lops, Giovanni Semeraro, et al. Fairness and popularity
bias in recommender systems: an empirical evaluation. In CEUR Workshop
PROCEEDINGS, volume 3078, pages 77–91, 2021.

[135] Arda Antikacioglu and R Ravi. Post processing recommender systems for diversity.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 707–716, 2017. doi: 10.1145/3097983.3098173.

[136] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. A survey on bias and fairness in machine learning. ACM Comput. Surv.,
54(6), jul 2021. ISSN 0360-0300. doi: 10.1145/3457607. URL https://doi.org/

10.1145/3457607.

[137] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed,
and Ricardo Baeza-Yates. Fa* ir: A fair top-k ranking algorithm. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, pages
1569–1578, 2017. doi: 10.1145/3132847.3132938.

[138] Emre Yalcin and Alper Bilge. Investigating and counteracting popularity bias in
group recommendations. Information Processing & Management, 58(5):102608,
2021. doi: 10.1016/j.ipm.2021.102608.

[139] Qidong Liu, Feng Tian, Qinghua Zheng, and Qianying Wang. Disentangling interest
and conformity for eliminating popularity bias in session-based recommendation.
Knowledge and Information Systems, 65(6):2645–2664, 2023. doi: 10.1007/
s10115-023-01839-0.

[140] Sriharsha Dara, C Ravindranath Chowdary, and Chintoo Kumar. A survey on group
recommender systems. Journal of Intelligent Information Systems, 54(2):271–295,
2020. doi: https://doi.org/10.1007/s10844-018-0542-3.

[141] Shivam Gupta, Ganesh Ghalme, Narayanan C Krishnan, and Shweta Jain. Group
fair clustering revisited – notions and efficient algorithm. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 2854–2856, 2023.

https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607


References 237

[142] Shivam Gupta, Ganesh Ghalme, Narayanan C Krishnan, and Shweta Jain. Group
fair clustering revisited – notions and efficient algorithm. Workshop on Games,
Agents and Incentives (GAIW), AAMAS, 2023.

[143] Alycia N Carey and Xintao Wu. The fairness field guide: Perspectives from social
and formal sciences. arXiv:2201.05216, 2022.

[144] Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosifidis, Wolfgang Nejdl,
Maria-Esther Vidal, Salvatore Ruggieri, Franco Turini, Symeon Papadopoulos,
Emmanouil Krasanakis, et al. Bias in data-driven artificial intelligence systems—an
introductory survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 10(3):e1356, 2020.

[145] Jeffrey Dastin. Amazon scraps secret ai recruiting tool that
showed bias against women. https://www.reuters.com/article/

us-amazon-com-jobs-automation-insight-idUSKCN1MK08G, 2018. [Online;
accessed 15-August-2021].

[146] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel.
Fairness through awareness. In Proceedings of the 3rd innovations in theoretical
computer science Conference, pages 214–226, 2012. doi: 10.1145/2090236.2090255.

[147] Yoichi Chikahara, Shinsaku Sakaue, Akinori Fujino, and Hisashi Kashima. Learning
individually fair classifier with path-specific causal-effect constraint. In International
and Statistics, pages 145–153, 2021.

[148] Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi. A
survey on datasets for fairness-aware machine learning. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, page e1452, 2022.

[149] Deepak, Joemon M. Jose, and Sanil V. Fairness in unsupervised learning. In
Proceedings of the 29th ACM International Conference on Information &amp;
Knowledge Management, CIKM ’20, page 3511–3512, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450368599. doi: 10.1145/3340531.
3412175. URL https://doi.org/10.1145/3340531.3412175.

[150] Anshuman Chhabra, Karina Masalkovaitė, and Prasant Mohapatra. An overview of
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[369] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir
techniques. ACM Transactions on Information Systems (TOIS), 20(4):422–446,
2002. doi: doi/10.1145/582415.582418.

[370] Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee.
Popularity-opportunity bias in collaborative filtering. In Proceedings of the 14th
ACM International Conference on Web Search and Data Mining, pages 85–93, 2021.
doi: 10.1145/3437963.3441820.

[371] Huy Nguyen and Tien Dinh. A modified regularized non-negative matrix
factorization for movielens. In 2012 IEEE RIVF International Conference on
Computing & Communication Technologies, Research, Innovation, and Vision for
the Future, pages 1–5. IEEE, 2012. doi: 10.1109/rivf.2012.6169831.

[372] Himan Abdollahpouri, Gediminas Adomavicius, Robin Burke, Ido Guy, Dietmar
Jannach, Toshihiro Kamishima, Jan Krasnodebski, and Luiz Pizzato. Beyond
personalization: Research directions in multistakeholder recommendation. arXiv
preprint arXiv:1905.01986, 2019. doi: 10.1007/s11257-019-09256-1.

[373] Hossein A Rahmani, Yashar Deldjoo, Ali Tourani, and Mohammadmehdi
Naghiaei. The unfairness of active users and popularity bias in point-of-interest
recommendation. In Advances in Bias and Fairness in Information Retrieval: Third
International Workshop, BIAS 2022, Stavanger, Norway, April 10, 2022, Revised
Selected Papers, pages 56–68. Springer, 2022. doi: 10.1007/978-3-031-09316-6 6.

[374] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.
Deep matrix factorization models for recommender systems. In Proceedings of
the 26th International Joint Conference on Artificial Intelligence, volume 17, pages
3203–3209. Melbourne, Australia, 2017. doi: doi/10.5555/3172077.3172336.
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[413] Ameya Velingker, Maximilian Vötsch, David Woodruff, and Samson Zhou. Fast
(1 + ε)-approximation algorithms for binary matrix factorization. In International
Conference on Machine Learning, pages 34952–34977. PMLR, 2023.

[414] Cho-Jui Hsieh, Nagarajan Natarajan, and Inderjit Dhillon. Pu learning for matrix
completion. In International conference on machine learning, pages 2445–2453.
PMLR, 2015.


	Declaration
	Acknowledgement
	Certificate
	Lay Summary
	Abstract
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Introduction
	Motivating Examples: Need for Fairness in Unsupervised Learning

	Clustering
	Categorization based on Data Accessibility and Application
	Fairness Levels in Clustering
	Balancing Multiple Fairness Levels

	Recommender Systems
	Fairness in Recommender Systems 
	Categorization of Fairness in Recommender Systems

	Research Objectives
	Positioning and Contribution of Thesis
	Organization of Thesis

	Background
	Clustering
	Fairness in Offline Clustering
	Fairness in Online Clustering
	Fairness in Federated Data Clustering

	Recommender Systems
	Matrix Factorization
	Popularity Bias on Item-side
	Algorithms for handling Popularity Bias

	Conclusion

	Group Fair Notion and Algorithms in Offline Clustering
	Introduction
	Our Contribution 

	Related Work
	Preliminaries
	Relationship between Group Fairness Notions

	Fair Round-robin Algorithm for Clustering Over End (FRACOE)
	Theoretical Results
	Guarantees for FRACOE for ={1/k}l=1m 
	Guarantees for FRACOE for general  

	Fair Round Robin Algorithm for Clustering (FRAC) –A Heuristic Approach
	Experimental Result and Discussion
	Comparison across a Varying Number of Clusters (k)
	Comparison across Varying Data Set Sizes
	 Additional Analysis on Proposed Algorithms 
	Run-time Analysis

	Experimental Validation of Relationships between Fairness Levels and their Notions
	Relationship between Group Fairness Notions
	Relationship between Individual Fair Notions
	Relationship between Group and Individual Fairness Level

	Conclusion

	Balancing Fairness and Efficiency via Novel Welfare Perspective
	Introduction
	Related Work
	Facility Location Problem
	Fairness in Facility Location Problem 

	Preliminaries
	The Model and Notation
	Fairness in Facility Location Problem 
	Welfare Functions
	Proposed Mathematical Model

	Proposed Algorithm: FAIRLOC
	Theoretical Results
	Guarantees for FAIRLOC for general  

	Experimental Results and Analysis
	Comparison against Different  Vectors
	Performance Metrics
	Baselines
	Analysis on Varying  Vectors
	Analysis across Varying k
	Ablation Study on FAIRLOC

	Conclusion

	Group Fairness as Capacity Constraints in Online Clustering
	Introduction
	Related Work
	Preliminaries
	Capacitated Semi-Online Clustering Algorithm (CSCA) 
	Theoretical Results

	Capacitated Online Clustering Algorithm (COCA)
	Theoretical Results

	Fair Capacitated Online Clustering Algorithm (COCAF)
	Theoretical Results

	Experimental Results and Discussion
	Analysis in Unfair Online Setting
	Analysis of Online COCAF with Fairness as Capacity Constraints: 

	Conclusion 

	Algorithms for Efficient and Fair Federated Data Clustering
	Introduction
	Related Work
	Preliminaries
	Multishot Federated Clustering (MFC)
	Theoretical Results for MFC 
	Assumptions
	Theoretical Results

	p-FClus: personalized Federated Clustering Algorithm
	Client Initialization
	Server Execution
	Client Side Personalization

	Experimental Result and Analysis
	Experimental Setup
	Analysis on Balanced Data Distribution among Clients on k-means Objective
	Analysis on Unequal Data Distribution among Clients on k-means Objective
	Analysis on Intrinsic Federated Datasets on k-means Objective
	Analysis on different Dataset for k-mediod Objective

	Conclusion and Future Directions

	Mitigating Popularity Bias in Recommender Systems
	Introduction
	Related Work
	Preliminaries
	Proposed Algorithm: EqBal-RS
	Experimental Result and Discussion
	Evaluation of EqBal-RS against Baseline Methods
	Comparison of Non Popular Items in Top-k List
	Statistical Significance Testing : t-test
	Runtime Analysis
	Analysis of Training Plots
	Comparison with Ranking and Implicit Debiasing Methods
	Study on Item Diversity

	Conclusion and Future Work

	Conclusion
	Discussion and Open Problems
	Chapter 3: Group Fair Notion and Algorithms in Offline Clustering
	Chapter 4: Balancing Fairness and Efficiency via Novel Welfare Perspective
	Chapter 5: Group Fairness as Capacity Constraints in Online Clustering
	Chapter 6: Algorithms for Efficient and Fair Federated Data Clustering
	Correlation of Theoretical bounds with the Practical Applications
	General Directions for Future Work in Clustering
	Chapter 7: Mitigating Popularity Bias in Recommender Systems


	References

