
The Write Problem: Challenges in

Implementation of STT-RAM based

LLCs

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

by

Prabuddha Sinha

(2019CSZ0008)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROPAR

APRIL, 2025

ii

Prabuddha Sinha: The Write Problem: Challenges in Implementation of STT-RAM based

LLCs

Copyright ©2025, Indian Institute of Technology Ropar

All Rights Reserved

iii

Dedicated to my mother Dr. Niharika Sinha, my father Sanjib Sinha, and my sister Dr.

Prayukta Sinha.

iv

Declaration of Originality

I hereby declare that the work that is being presented in the thesis entitled The Write

Problem: Challenges in Implementation of STT-RAM based LLCs has been

solely authored by me. It presents the result of my own independent investigation/research

conducted during the time period from July 2019 to December 2024 under the supervision

of Dr. Shirshendu Das, Assistant Professor, Indian Institute of Technology Hyderabad and

Dr. Venkata Kalyan Tavva, Assistant Professor, Indian Institute of Technology Ropar.

To the best of my knowledge, it is an original work, both in terms of research content and

narrative, and has not been submitted or accepted elsewhere, in part or in full, for the

award of any degree, diploma, fellowship, associateship, or similar title of any university

or institution. Further, due credit has been attributed to the relevant state-of-the-art

and collaborations (if any) with appropriate citations and acknowledgments, in line with

established ethical norms and practices. I also declare that any idea/data/fact/source

stated in my thesis has not been fabricated/ falsified/ misrepresented. All the principles

of academic honesty and integrity have been followed. I fully understand that if the

thesis is found to be unoriginal, fabricated, or plagiarized, the Institute reserves the

right to withdraw the thesis from its archive and revoke the associated Degree conferred.

Additionally, the Institute also reserves the right to appraise all concerned sections of

society of the matter for their information and necessary action (if any). If accepted,

I hereby consent for my thesis to be available online in the Institute’s Open Access

repository, inter-library loan, and the title & abstract to be made available to outside

organizations.

Signature

Name: Prabuddha Sinha

Entry Number: 2019CSZ0008

Program: PhD

Department: Computer Science and Engineering

Indian Institute of Technology Ropar

Rupnagar, Punjab 140001

Date: April 17, 2025

v

Acknowledgement

First and foremost, I would like to express my deepest sense of gratitude to my doctoral

advisors, Dr. Shirshendu Das, and Dr. Venkata Kalyan Tavva for their invaluable

guidance, unwavering support, and constant encouragement throughout the development

of this thesis. Their expertise, insights, and thoughtful feedback have been instrumental

in shaping my work. I am very lucky to have them as my guides on this beautiful journey.

Dr. Shirshendu’s limitless patience and fatherly advice during tough times has been a

beacon of hope during this journey.

I also thank my collaborators/interns Krishna Pratik BV and Mangena Likhit Sai for their

constant strive for excellence. I would also like to extend my sincere thanks to the members

of my doctoral committee, Dr. Neeraj Goel and Dr. Nitin Auluck, Dr. Sudeepta Mishra,

and Dr. Mahendra Sakare, for their insightful comments, suggestions, and for taking the

time to review my work. Your input has greatly enriched the quality of this thesis.

I am deeply thankful to my family specially my late father, mother and sister for

their unconditional love and support during this challenging journey. Your patience,

understanding, and encouragement have provided me with the strength to persevere.

Special thanks to my lab members and colleagues of the CA-SIG Lab at CSE Department,

IIT Ropar. I would particularly thank Prathamesh Nitin Tanksale, Waqar Hassan Mir,

Jaspinder Kaur, Satya Jaswant Badri, Saurabh Jaiswal, Atul Kumar, Lalit Sharma and

Pravesh Jamgade for the countless discussions, moral support, and the laughter that

helped me navigate through stressful times. I am also thankful to my closest friends,

Napendra Solanki and Gagan Sahoo who have been a constant through all my ups and

downs during this course. The time spent together helped me recharge and continue to

strive for excellence.

I express my gratitude to Prof. Rajeev Ahuja, the Honourable Director, Indian Institute

of Technology Ropar, and the administration for providing all necessary administrative

support and technical facilities required for carrying out the present research work. I

also express my deep gratitude to the Head and entire faculty and staff members of the

Department of Computer Science and Engineering, Indian Institute of Technology Ropar,

for their continuous support and encouragement. Lastly, I would like to acknowledge the

financial support provided by Qualcomm Incorporated through Qualcomm Faculty Award

2022 to my supervisor, Dr. Venkata Kalyan Tavva, without which this thesis would not

have been possible.

This thesis is a culmination of not just my efforts, but also the collective efforts of everyone

who has been part of my academic journey. I am deeply grateful for all your contributions.

Thank you.

vi

Certificate

This is to certify that the thesis entitled The Write Problem: Challenges in

Implementation of STT-RAM based LLCs, submitted by Prabuddha Sinha

(2019CSZ0008) for the award of the degree of Doctor of Philosophy of Indian

Institute of Technology Ropar, is a record of bonafide research work carried out under

my guidance and supervision. To the best of my knowledge and belief, the work presented

in this thesis is original and has not been submitted, either in part or fully, for the award

of any other degree, diploma, fellowship, associate, or similar title from any university or

institution.

In my opinion, the thesis has reached the standard of meeting the requirements of the

regulations related to the degree.

Signature of the Supervisors:

Dr. Shirshendu Das Dr. Venkata Kalyan Tavva

Department of CSE Department of CSE

Indian Institute of Technology Hyderabad Indian Institute of Technology Ropar

Hyderabad, Telengana, 502284 Rupnagar, Punjab, 140001

Date: April 17, 2025

vii

Lay Summary

Non-volatile memory (NVM) based Last Level Caches (LLCs) are a viable alternative

to the traditional Static Random Access Memory (SRAM) based LLCs. Implementing

NVM based LLCs come with its own set of problems that mainly arises due to the writes.

This thesis as the name suggests addresses and highlights the major issues that occur due

to writes which prevent the implementation of an Spin Transfer Torque Random Access

Memory (STT-RAM) based LLCs.

This thesis addresses the specific problems that arise due to the excessive uneven writes

specifically lifetime degradation and performance degradation. The first work introduces

two different techniques which aimed at wear leveling at the set level and way level

granularity through write blocking and dynamic write bypassing. The second work

proposes a decoupled cache architecture which is responsible for wear leveling at the block

level granularity. The decoupled cache architecture also provides a platform for designing

secured caches.

Another key part of the thesis is targeted endurance attacks that will be a security risk as

any malicious attacker from a single core can target the shared LLC by focusing its writes

to specific locations and drastically increasing the write count and thereby effecting the

lifetime of the STT-RAM based LLC. The techniques are also effective against static and

dynamic counter based wear leveling techniques.

viii

Abstract

The design of Last Level Caches (LLCs) using Static Random Access Memory (SRAM)

is increasingly being challenged by emerging memory technologies like Non-Volatile

Memories (NVM). Among these, Spin-Transfer Torque RAM (STT-RAM) stands out for

its higher density and lower static power consumption. However, its drawbacks—higher

write latency, increased write power, and limited write endurance—pose significant

challenges. The primary issue preventing widespread adoption of STT-RAM in LLCs is the

low write endurance, largely caused by the uneven distribution of write operations across

the cache. Existing techniques to address this focus on minimizing either inter-set (InterV)

or intra-set (IntraV) write variation to prolong the lifetime of STT-RAM-based LLCs.

Additionally, STT-RAM’s high write latency can lead to congestion in the read-write

queue of the LLC.

To address these challenges, two techniques have been proposed to enhance endurance

while maintaining performance. The first, PROLONG, is a dynamic write bypassing

approach that redirects write-backs from the L2 cache to an SRAM buffer or main memory.

This decision is guided by two parameters: the write hotness of the cache set and the

liveness score of the incoming block. The second, LiveWay, dynamically bypasses writes

based on their placement in write-hot ways and their liveness scores. Both methods

significantly improve wear leveling, reducing InterV and IntraV by approximately 84% and

53%, respectively, while achieving a Relative Lifetime Improvement (RLI) of up to 22×.

Additionally, by alleviating write congestion in the read-write queue, these techniques

minimize system impact, ensuring smoother performance.

Generic wear-leveling techniques primarily focus on extending LLC lifetime by reducing

InterV and IntraV write variation, but block-level wear leveling remains rare. To

address this gap, a decoupled cache architecture has been proposed. In this design, the

Set-Associative SRAM tag array is separated from the Fully-Associative Data array, with

the two linked via forward and backward pointers that maintain a 1:1 mapping. Two

techniques are introduced within this architecture. The Primal Approach swaps writes

between write-hot and write-cold blocks based on their write counts, with each block

maintaining an individual write counter. The Hardware-Efficient Approach categorizes

blocks into buckets using simple hashing. Writes from write-hot buckets are then redirected

to write-cold buckets. These methods can achieve a RLI of up to 13.07×.

Malicious attacks in a multi-core setup require access to just one core to repeatedly

target specific memory locations, leading to accelerated lifetime degradation. To

expose this vulnerability in STT-RAM-based LLCs, we propose four distinct attacks:

Recurring Location Attack (RLA), Recurring Toggle Attack (RTA), Random Location

Attack (RnLA), and Random Toggle Attack (RnTA). These Targeted Endurance Attacks

illustrate the impact of malicious benchmarks on modern counter-based wear-leveling

techniques and reveal how wear leveling influences the effectiveness of such attacks.

Keywords: STT-RAM; Last Level Cache (LLC); InterV; IntraV; Wear leveling; Lifetime

Improvement; Cache decoupling; Targeted Endurance Attack.

ix

List of Publications

Journals

1. Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das and Venkata Kalyan

Tavva, “SmartDeCoup: Decoupling the STT-RAM LLC for even Write Distribution

and Lifetime Improvement”, in Elsevier Journal of System Architecture, February

2025. [DOI: https://doi.org/10.1016/j.sysarc.2025.103367]

2. Prabuddha Sinha, Mangena Likhit Sai, Shirshendu Das and

Venkata Tavva Kalyan, “TENDRA: Targeted Endurance Attack in

STT-RAM based LLCs”, in IEEE Embedded Systems Letters. [DOI:

https://doi.org/10.1109/LES.2024.3502297]

3. Sudershan Kumar, Prabuddha Sinha, and Shirshendu Das, “WinDRAM: Weak

rows as in-DRAM cache”, Concurrency and Computation: Practice and Experience

34, p.e.7350, 2022. [DOI: https://doi.org/10.1002/cpe.7350]

Conference Proceedings

1. Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das and Venkata

Kalyan Tavva, “PROLONG: Priority based Write Bypassing Technique for

Longer Lifetime in STT-RAM based LLC”, in 10th International Symposium

on Memory Systems (MEMSYS), Washington DC, USA, 2024. [DOI:

https://doi.org/10.1145/3695794.3695803]

2. Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das and Venkata Kalyan

Tavva, “Hide-N-Seek: Hiding Writes in Buffer for Lifetime Improvement in

STT-RAM based LLC”, at HiPC 2023 Student Research Symposium, in Proceedings

of the 2023 IEEE 30th International Conference on High Performance Computing,

Data and Analytics Workshop (HiPCW), Goa, India, 2023, pp-84. [DOI:

https://doi.org/10.1109/HiPCW61695.2023.00021]

3. Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das and Venkata Kalyan

Tavva, “LiveWay: Dynamic Write Bypassing for Lifetime Enhancement in

STT-RAM LLC”, at HiPC 2024 Student Research Symposium, in Proceedings of

the 2024 IEEE 31st International Conference on High Performance Computing,

Data and Analytics Workshop (HiPCW), Bangalore, India, 2024. [DOI:

https://doi.ieeecomputersociety.org/10.1109/HiPCW63042.2024.00035]

Book Chapter

1. Sudarshan Kumar, Prabuddha Sinha and Sujata Pal, “Crowd-Sourced Centralized

Thermal Imaging for Isolation and Quarantine” in Computational Modeling

and Data Analysis in COVID-19 Research, 2021, C. R. Panigrahi, B. Pati,

M. Rath, and R. Buyya, Eds. CRC Press, ch. 8, p. 20. [DOI:

https://doi.org/10.1201/9781003137481]

x

List of Abbreviations and Notations

Abbreviations

AES Advanced Encryption Standard

APM Adaptive Placement and Migration

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

DASCA Dead Write Prediction Assisted STT-RAM Cache

Architecture

DWAWR Dynamic Way Aware Write Restriction

DWWR Dynamic Window Write Restriction

DWM Domain Wall Memory

E+R Evict and Reload

E+T Evict and Reload

ECDSA Elliptic Curve Digital Signature Algorithm

ETB Embedded Trace Buffer

EViSC Enhanced Virtual Split Cache

F+F Flush and Flush

F+R Flush and Reload

FSDRP Fellow Set with Dynamic Reserve Part

FSSRP Fellow Set with Static Reserve Part

FT Flush Threshold

GB Giga Bytes

GOAS Grouped On-access inter-set Swapping

HALLS Highly Adaptable Last-Level STT-RAM Cache

HC Hybrid Cache

HCA Hybrid Cache Architecture

IBTC Inclusive Bypass Tag Cache

IPC Instructions executed Per Cycle

KB Kilo Bytes

L1 Level 1

L2 Level 2

L3 Level 3

LHCA Inter-cache Level Hybrid Cache Architecture

LLC Last Level Cache

LRU Least Recently Used

LRU-CB Least Recently Used Cold Block

LSC Liveness Score Counter

MB Mega Bytes

MDB Multiple Dirty Bits

xi

MM Main Memory

MPKI Misses per Kilo Instructions

MTJ Magnetic Tunnel Junction

NIPC Normalized Instructions per Cycle

NP Normal Part of Cache

NVM Non-Volatile Memory

NUCA Non-Uniform Cache Architecture

OAP An obstruction-aware cache management policy for

STT-RAM last-level caches

OAS On-Access Inter-Set Swapping

OS Operating System

PID Process Identifier

PoLF Probabilistic Set Line Flush

PTHCM Prediction Table-Based Cache Line Replacement and

Management Policy

P-ViSC Protean Virtual Split Cache

P+P Prime and Probe

PRO PROLONG

RAM Random Access Memory

RA Recently Accessed

RCR Recency-Aware Replacement

RFR Refresh-Aware Replacement

RLA Recurring Location Attack

RnLA Random Location Attack

RnTA Random Toggle Attack

RTA Recurring Toggle Attack

RQ Read Queue

RSA Rivest–Shamir–Adleman

SRepl Swap-on-Replacement

SBAC Statistic-Based Write Bypassing Technique

SGX Software Guard Extensions

SLAM A hybrid last-level cache architecture

SRAM Static Random Access Memory

SRW Swap-on-Write

STT-RAM Spin-Transfer Torque RAM

SW Swap-on-Write

SWS Swap Shift

TANC Trace Buffer Assisted Non-Volatile Memory Cache

TSX Hardware Transactional Memory

ViSC Virtual Split Cache

VM Virtual Machine

xii

WAD Writeback Aware Displacement

WALL-NVC Write Aware Last Level Non-Volatile Cache

WCAB Write Congestion Aware Bypass

WH Write Hot

WIPE Wearout Informed Pattern Elimination

WL Write Latency

WQ Write Queue

Notations

AEpro Additional Energy consumed by PROLONG

BPTR Backward Pointer

Ebuff Energy consumed by SRAM buffer

Ewrite Energy saved by reducing the number of writes

FPTR Forward Pointer

Hn nth Write Hot Bucket

InterV Inter-set Write Variation

IntraV Intra-set Write Variation

LSC Liveness Score Counter

LSn LSC value is ‘n’

M Total number of cache ways

N Total number of cache sets

RL Relative Lifetime

RLI Relative Lifetime Improvement

WCBkt Write Cold Bucket

WCTR Write Counter

WHBkt Write Hot Bucket

WSC Writes Set Counter

Wavg Average Writes in a cache block

wi,j Writes to a specific block of ith set and jth block

Wmax Maximum Writes in a cache block

Contents

Declaration iv

Acknowledgement v

Certificate vi

Lay Summary vii

Abstract viii

List of Publications ix

List of Abbreviations and Notations x

List of Figures xvii

List of Tables xxiii

1 Introduction 1

1.1 Introduction . 1

1.1.1 STT-RAM LLCs . 2

1.1.2 Challenges and Solutions for implementing STT-RAM LLCs 3

1.1.3 Write Variations . 3

1.1.4 Wear Leveling Techniques . 4

1.2 Motivation . 4

1.3 Summary and Organization of the Thesis 5

2 Background and Literature Review 7

2.1 Background . 7

2.1.1 Cache Memories . 7

2.1.2 STT-RAM Cell . 8

2.1.3 STT-RAM based LLC . 9

2.2 Write Variation and Lifetime . 10

2.3 Techniques to Improve Lifetime in STT-RAM based LLCs 11

2.3.1 Wear Leveling Techniques . 12

2.3.2 Write Bypassing Techniques . 15

2.3.3 Hybrid Caches . 16

2.3.4 Miscellaneous Techniques . 18

2.3.5 Summary of this Section . 20

2.4 Attacks on STT-RAM LLCs . 21

xiii

xiv Contents

2.4.1 Cache Timing Channel Attacks . 21

2.4.1.1 Cache Side Channel Attacks (SCA) 21

2.4.1.2 Cache Covert Channel Attacks (CCA) 21

2.4.2 Cache Contention Attacks . 22

2.4.3 Cache Occupancy Attacks . 22

2.4.4 Cache Rowhammer based Attacks 22

2.4.5 Cache Miscellaneous Attacks . 22

2.4.6 Summary of this Section . 23

2.5 Summary of this Chapter . 24

3 Dynamic Write Bypassing for Lifetime Improvement in STT-RAM

LLCs 25

3.1 Introduction . 25

3.2 Motivation . 26

3.3 PartA (To reduce InterV): PROLONG: Priority based Write Bypassing

Technique for Longer Lifetime in STT-RAM based LLC 27

3.3.1 Proposed Architecture . 27

3.3.1.1 Writes set counter (WSC) 28

3.3.1.2 SRAM Buffer . 29

3.3.1.3 Liveness Score Counter (LSC) 29

3.3.2 Working of PROLONG . 30

3.3.3 PROLONG Algorithm . 33

3.4 PartB (To reduce IntraV): LiveWay: Dynamic Write Bypassing for Lifetime

Enhancement in STT-RAM LLC . 33

3.4.1 Proposed Architecture . 33

3.4.2 Working of LiveWay . 34

3.5 Experimental Setup . 35

3.5.1 Simulator Setup . 35

3.5.2 Workloads . 36

3.6 PartA: Results and Analysis . 37

3.6.1 Single-core Analysis . 37

3.6.2 Multi-core Analysis . 41

3.6.3 Sensitivity Analysis . 42

3.6.3.1 Importance of SRAM buffer 44

3.6.3.2 Comparison with other write bypassing techniques 44

3.6.3.3 Lifetime Comparison Analysis 46

3.6.3.4 SPEC2017 vs SPEC2006 vs GAP 47

3.6.4 Hardware Overhead and Energy Consumption 47

3.7 PartB: Results and Analysis . 49

3.7.1 Single-core Analysis . 49

3.7.2 Multi-core Analysis . 50

3.7.3 SPEC2017 vs SPEC2006 vs GAP . 51

Contents xv

3.7.4 Hardware Overhead and Energy Consumption 52

3.8 Conclusion . 54

4 Decoupling the tag and data array for Lifetime Improvement 55

4.1 Introduction . 55

4.2 Motivation . 55

4.3 SmartDeCoup . 57

4.3.1 LLC Organization . 57

4.3.1.1 Maintaining Coherence: . 58

4.3.2 Primal Approach . 59

4.3.2.1 Working Example . 60

4.3.2.2 Drawbacks of Primal Approach 61

4.3.3 Hardware Efficient Approach . 61

4.3.3.1 Bucket formation . 62

4.3.3.2 Working Example . 62

4.3.4 Primal Approach vs Hardware Efficient Approach 64

4.3.5 Importance of SmartDeCoup in Modern LLC 64

4.3.5.1 Challenges in Implementing SmartDeCoup on Mirage and

Maya-Cache: . 65

4.3.5.2 SmartDeCoup with non-decoupled secured LLC designs . . 65

4.4 Experiments . 66

4.4.1 Simulator Setup . 66

4.4.2 Workloads . 68

4.5 Results and Analysis . 68

4.5.1 Primal Approach . 69

4.5.1.1 Single-core Analysis . 70

4.5.1.2 Multi-core Analysis . 72

4.5.2 Hardware Efficient Approach . 74

4.5.2.1 Single-core Analysis . 74

4.5.2.2 Multi-core Analysis . 76

4.5.3 Sensitivity Analysis . 78

4.5.3.1 Primal Approach vs Hardware Efficient Approach 78

4.5.3.2 SPEC2017 vs SPEC2006 vs GAP 80

4.5.3.3 Analysis of AI Workloads 82

4.5.4 Overhead Analysis . 83

4.6 Conclusion . 85

5 Endurance Attacks on STTRAM LLCs 87

5.1 Introduction . 87

5.2 Motivation . 88

5.3 TENDRA: Targeted Endurance Attack . 89

5.3.1 Threat Model . 89

xvi Contents

5.3.2 The Attack Idea . 90

5.3.2.1 Recurring Location Attack (RLA) 90

5.3.2.2 Recurring Toggle Attack (RTA) 91

5.3.2.3 Random Location Attack (RnLA) 92

5.3.2.4 Random Toggle Attack (RnTA) 93

5.3.3 Comparison between Attacks . 94

5.4 Experimental Evaluation . 96

5.4.1 Simulator Setup . 96

5.4.2 Workloads . 96

5.5 Results and Analysis . 97

5.5.1 Effects of RLA, RTA, RnLA and RnTA on different State-of-the-art

Wear Leveling Techniques . 97

5.5.1.1 Write Count . 107

5.5.2 Effects on Lifetime and Performance 108

5.6 Conclusion and Future Work . 109

6 Conclusion and Future Scope 111

6.1 Major Research Contributions . 111

6.2 Future Scope . 112

6.2.1 Practical Lifetime Improvement for Industry-wide Adaptation 113

References 115

List of Figures

1.1 Memory Organization and Hierarchy. 1

2.1 A generic Set-Associative LLC. 8

2.2 Layout of an STT-RAM cell. 9

3.1 Reduction in InterV and IntraV for various state-of-the-art wear leveling

techniques. 26

3.2 IPC Degradation for various state-of-the-art wear leveling techniques. . . . 26

3.3 Non-uniform write distribution across cache sets 28

3.4 Non-uniform write distribution across cache ways 28

3.5 Average Write Distribution in STT-RAM based LLC with LRU among the

Write Hot (WH) buckets (15%) with Liveness Score (LS). 32

3.6 Architecture and Steps in PROLONG Algorithm. 33

3.7 Proposed Architecture of LiveWay. 34

3.8 Flowchart of the Proposed Algorithm for LiveWay. 34

3.9 Percentage Reduction in InterV in Single-core System (higher the better). . 37

3.10 Percentage Reduction in IntraV in Single-core System (higher the better). . 38

3.11 Comparison of Normalized Total Write Count in single-core Systems (lower

is better). 39

3.12 Comparison of Relative Lifetime Improvement in single-core Systems

(higher the better). 39

3.13 Comparison of Normalized IPC in single-core Systems (higher the better). . 40

3.14 Average Comparison of PROLONG in Single-core Systems with

state-of-the-art. 40

3.15 Percentage Reduction in InterV for Multicore Systems (higher the better). . 41

3.16 Percentage Reduction in IntraV for Multi-core Systems (higher the better). 41

3.17 Relative Lifetime Improvement (RLI) for Multi-core Systems (higher the

better). 41

3.18 Normalized Total Writes w.r.t. baseline (LRU) for Multi-core Systems

(lower is better). 42

3.19 Normalized IPC w.r.t. baseline (LRU) for Multi-core Systems (higher the

better). 42

3.20 Comparison of different PROLONG configurations with baseline in a

single-core environment. PRO(x%) means the bypass aggressiveness of

PROLONG is x%. Each bypass aggressiveness value is experimented with

32KB, 64KB, 128KB, 256KB, and 512KB of buffer size. 43

xvii

xviii List of Figures

3.21 Buffer hit per write bypass in different configurations of PROLONG (higher

the better). 44

3.22 Buffer hit per write bypass in different configurations of PROLONG for AI

workloads (higher the better). 45

3.23 Comparison of Normalized Lifetime of PROLONG with Density (higher the

better). 45

3.24 Comparison of Normalized IPC of PROLONG with Density (higher the

better). 45

3.25 Normalized IPC of various different benchmarks run on various configurations. 48

3.26 Reduction in InterV of various different benchmarks run on various

configurations. 48

3.27 Reduction in IntraV of various different benchmarks run on various

configurations. 48

3.28 RLI of various different benchmarks run on various configurations. 49

3.29 % Reduction in IntraV for Single-core Systems (Higher the better). 49

3.30 Relative Lifetime Improvement (RLI) (in times) for Single-core Systems

(Higher the better). 50

3.31 Geomean Normalized IPC for Single-core Systems (Higher the better). . . . 50

3.32 % Reduction in IntraV for Multi-core Systems. 51

3.33 Relative LI (in times) for Multi-core Systems. 51

3.34 Normalized IPC for Multi-core Systems. 52

3.35 Normalized IPC of various different benchmarks run on various configurations. 53

3.36 Reduction in IntraV of various different benchmarks run on various

configurations. 53

3.37 RLI of various different benchmarks run on various configurations. 53

4.1 Heatmap representing the non-uniform write distribution at LLC for a

single-core milc run. 56

4.2 The proposed decoupled cache. 59

4.3 Working Example of the Primal Approach. 61

4.4 Working Example of the Hardware Efficient Approach. 63

4.5 Write Distribution for Epoch 1 for Primal Approach on SWAP 10%. 69

4.6 Write Distribution for Epoch 2 for Primal Approach on SWAP 10%. 69

4.7 Write Distribution for Epoch 3 for Primal Approach on SWAP 10%. 69

4.8 Relative Lifetime Improvement in single-core systems for Primal Approach. 70

4.9 Percentage reduction of IntraV in single-core systems for Primal Approach. 71

4.10 Percentage reduction of InterV in single-core systems for Primal Approach. 71

4.11 Normalized IPC in single-core systems for Primal Approach. 71

4.12 Relative Lifetime Improvement in multi-core systems for Primal Approach. 72

4.13 Percentage reduction of IntraV in multi-core systems for Primal Approach. 72

4.14 Percentage reduction of InterV in multi-core systems for Primal Approach. . 73

4.15 Normalized IPC in multi-core systems for Primal Approach. 73

List of Figures xix

4.16 Relative Lifetime Improvement in single-core systems for Hardware Efficient

Approach. 74

4.17 Percentage Reduction of IntraV in single-core systems for Hardware

Efficient Approach. 75

4.18 Percentage Reduction of InterV in single-core systems for Hardware

Efficient Approach. 75

4.19 Normalized IPC in single-core systems for Hardware Efficient Approach. . . 75

4.20 Relative Lifetime Improvement in multi-core systems for Hardware Efficient

Approach. 77

4.21 Percentage Reduction of IntraV in multi-core systems for Hardware Efficient

Approach. 77

4.22 Percentage Reduction of InterV in multi-core systems for Hardware Efficient

Approach. 77

4.23 Normalized IPC in multi-core systems for Hardware Efficient Approach. . . 77

4.24 Comparison of Reduction in IntraV and InterV in a Single-core System. . . 79

4.25 Comparison of Redirection/SWAP Count in a Single-core System. 79

4.26 Comparison of Relative Lifetime Improvement in a Single-core System. . . . 79

4.27 Comparison of Normalized IPC in a Single-core System. 79

4.28 Normalized IPC of various different benchmarks run on various

configurations of our proposed approaches. 81

4.29 Reduction in IntraV of various different benchmarks run on various

configurations of our proposed approaches. 82

4.30 Reduction in InterV of various different benchmarks run on various

configurations of our proposed approaches. 82

4.31 RLI of various different benchmarks run on various configurations of our

proposed approaches. 82

4.32 RLI of AI workloads on various configurations. 83

4.33 % Reduction of InterV and IntraV of AI workloads on various configurations. 83

5.1 Visualization of the Different Types of Targeted Endurance Attacks. 95

5.2 LRU-Mix0. 98

5.3 i2WAP-Mix0. 98

5.4 SWWR-Mix0. 98

5.5 DWAWR-Mix0. 98

5.6 PROLONG-Mix0. 98

5.7 LiveWay-Mix0. 98

5.8 SDC:Primal-Mix0. 98

5.9 SDC:HE-Mix0 . 98

5.10 LRU-Mix1. 99

5.11 i2WAP-Mix1. 99

5.12 SWWR-Mix1. 99

5.13 DWAWR-Mix1. 99

xx List of Figures

5.14 PROLONG-Mix1. 99

5.15 LiveWay-Mix1. 99

5.16 SDC:Primal-Mix1. 99

5.17 SDC:HE-Mix1. 99

5.18 LRU-Mix2. 100

5.19 i2WAP-Mix2. 100

5.20 SWWR-Mix2. 100

5.21 DWAWR-Mix2. 100

5.22 PROLONG-Mix2. 100

5.23 LiveWay-Mix2. 100

5.24 SDC:Primal-Mix2. 100

5.25 SDC:HE-Mix2. 100

5.26 LRU-Mix3. 101

5.27 i2WAP-Mix3. 101

5.28 SWWR-Mix3. 101

5.29 DWAWR-Mix3. 101

5.30 PROLONG-Mix3. 101

5.31 LiveWay-Mix3. 101

5.32 SDC:Primal-Mix3. 101

5.33 SDC:HE-Mix3. 101

5.34 LRU-Mix4. 102

5.35 i2WAP-Mix4. 102

5.36 SWWR-Mix4. 102

5.37 DWAWR-Mix4. 102

5.38 PROLONG-Mix4. 102

5.39 LiveWay-Mix4. 102

5.40 SDC:Primal-Mix4. 102

5.41 SDC:HE-Mix4. 102

5.42 LRU-Mix5. 103

5.43 i2WAP-Mix5. 103

5.44 SWWR-Mix5. 103

5.45 DWAWR-Mix5. 103

5.46 PROLONG-Mix5. 103

5.47 LiveWay-Mix5. 103

5.48 SDC:Primal-Mix5. 103

5.49 SDC:HE-Mix5. 103

5.50 LRU-Mix6. 104

5.51 i2WAP-Mix6. 104

5.52 SWWR-Mix6. 104

5.53 DWAWR-Mix6. 104

5.54 PROLONG-Mix6. 104

List of Figures xxi

5.55 LiveWay-Mix6. 104

5.56 SDC:Primal-Mix6. 104

5.57 SDC:HE-Mix6. 104

5.58 LRU-Mix7. 105

5.59 i2WAP-Mix7. 105

5.60 SWWR-Mix7. 105

5.61 DWAWR-Mix7. 105

5.62 PROLONG-Mix7. 105

5.63 LiveWay-Mix7. 105

5.64 SDC:Primal-Mix7. 105

5.65 SDC:HE-Mix7. 105

5.66 Degradation in Lifetime. 108

5.67 Degradation in IPC. 109

6.1 Graphical Overview of Thesis . 111

xxii List of Figures

List of Tables

2.1 Comparison of SRAM cell and STT-RAM cell (R/W=Read/Write). 10

2.2 Classification and Brief Overview of Lifetime Enhancement Techniques

for NVM based LLC (LI=Lifetime Improvement, RedInterV=Reduction

in InterV, RedIntraV=Reduction in IntraV and PI=Performance

Improvement and Energy Reduction=ER). 20

2.3 Classification of LLC Attacks. 23

3.1 Bucket Distribution among sets based on Liveness Score (LS). 30

3.2 Bucket Distribution among sets based on Write Counter. 31

3.3 Write Bypassing based on Write Hot Sets (WH) and LSC Buckets. 32

3.4 Simulation parameters of the baseline single-core system. 35

3.5 Different PROLONG configurations used. 36

3.6 Workloads for single-core system. 36

3.7 Workloads for Quad-Core System. 37

3.8 The important hardware parameters of the SRAM buffer used in

PROLONG. The parameters are extracted from CACTI [1]. 43

3.9 Normalized Lifetime of Write Intensive Workloads. 46

3.10 Storage Overhead of Prolong. 49

3.11 Storage Overhead of LiveWay. 54

4.1 Simulation parameters of the baseline single-core system. 66

4.2 Configurations of Primal and Hardware Efficient Approaches. 67

4.3 Thresholds for Switching in different bucket count for Hardware Efficient

Approaches. 67

4.4 Write Intensive Workloads for single-core system. 68

4.5 Workloads for Quad-Core System. 68

4.6 Geomean Comparisons for Single-core Systems with Primal Approach. . . . 72

4.7 Geomean Comparisons for Multi-core Systems with Primal Approach. . . . 74

4.8 Geomean Comparisons for Single-core Systems with Hardware Efficient

Approach. 76

4.9 Geomean Comparisons for Multi-core Systems with Hardware Efficient

Approach. 78

4.10 Comparisons of various configurations of the proposed technique with

varying cache sizes. 80

4.11 Storage Overhead of Proposed Techniques. 84

5.1 Different TENDRA Comparisons. 94

5.2 Simulation parameters of the baseline multi-core system. 96

xxiii

xxiv List of Tables

5.3 Workloads for Quad-Core System. 97

5.4 The maximum write count of a LLC block. 107

Chapter 1

Introduction

This chapter presents a broad overview of the problems plaguing Spin Transfer Torque

Random Access Memory based Last Level Caches. This chapter delves into the significance

of the proposed works, offering a brief yet insightful summary of the principal ideas and

contributions.

1.1 Introduction

The advent of Machine Learning and Artificial Intelligence introduces data-intensive

workloads that demand fast training and testing time. These workloads are distributed

across multiple cores within the processor, all of which are integrated onto a single chip

[2]. Multi-core architectures usually comprise a hierarchy of cache memories. The overall

system’s speed is highly dependent on the performance and capabilities of the caches as

it provides a bridge to fill the gap in the performance difference between the slow Maim

Memory and the fast processor. Cache memories are fast memories that can be placed

on-chip. These memory systems operate on the principle of locality, storing data that is

likely to be accessed in the near future. Modern commercial processors typically feature

multiple levels of cache. The higher-level caches: L1 and L2 are exclusive to individual

cores, while the Last Level Cache (LLC) is shared across all processing cores. The Level

1 (L1) cache is divided into two parts: the data cache (L1-D) and the instruction cache

(L1-I). Figure 1.1 gives us an overview of the memory organization and hierarchy.

CORE
1

CORE
2

CORE
3

CORE
4

L1-I L1-D L1-I L1-D L1-I L1-D L1-I L1-D

L2 Cache L2 Cache L2 Cache L2 Cache

Last Level Cache (LLC/L3)

Main Memory

Figure 1.1: Memory Organization and Hierarchy.

2 Chapter 1. Introduction

Memory system design is increasingly scrutinized as architects tackle rising power

demands. The growing costs of acquiring and operating large-scale supercomputers and

data centers have highlighted the significant power consumption of memory subsystems,

making them a central focus for efficiency improvements [3]. Supporting such workloads

requires larger on-chip caches to minimize the off-chip data movement that incurs extra

latency. CPU architectures have been revolutionized over the years, but the traditional

cache architectures are not able to scale up as such, creating a performance bottleneck.

Therefore, data-intensive workloads require larger memory systems and cost-effective

alternative memory technologies that can help scale these memory systems. Traditionally,

Static Random Access Memory (SRAM) has been used to design the on-chip caches. Major

drawbacks of SRAM include a larger on-chip area and high leakage power. Previous studies

[4] have indicated that leakage accounts for nearly 80% of the LLCs power consumption.

Therefore, increasing the size of the SRAM based LLCs is not feasible with regard to

power, area, and cost. Emerging memory technologies, such as embedded dynamic random

access memory (eDRAM) [5], spin transfer torque random access memory (STT-RAM)

[6], resistive random access memory (RRAM) [7], phase change memory (PCM) [8], and

domain wall memory (DWM) [9], offer promising solutions to address these challenges

due to their desirable features. When employed in the design of on-chip caches, these

technologies offer significantly higher density and lower leakage compared to SRAM. This

allows for reduced area and power consumption at equivalent capacities, or increased cache

capacity within the same physical footprint [10].

1.1.1 STT-RAM LLCs

STT-RAM based LLC can be considered as the most expected possible alternative to

SRAM based LLC because of its compatibility with the processor’s fabrication technology

as it is made of similar materials. More details are given in Section 2. Although there

are a lot of advantages that support the use of STT-RAM LLCs the major concern about

it being accepted industry-wide is the limited write endurance of an STT-RAM cell [11].

This major concern is further heightened by non-uniform write patterns across the whole

LLC in multi-core architectures. These non-uniform write patterns give rise to the write

variations (WVs) in the LLC [12]. Due to the fluctuations in write patterns, applications

create write hot spots within the cache. This causes some locations in the STT-RAM

LLC to be written into more than normal. Therefore, those locations will wear out faster,

resulting in a reduction in the lifetime of the STT-RAM LLCs. Uneven write variation

can also be exploited in non-secure LLCs by attackers to target the LLC through an

endurance attack to reduce its lifetime. Furthermore, write operations are problematic

as they take a long time to be completed as compared to a read operation, therefore it

creates a congestion in the read/write queue of the LLC because when the write operation

is being serviced the read operations have to wait. Therefore, it results in a drop in the

performance of the system [13].

Chapter 1. Introduction 3

1.1.2 Challenges and Solutions for implementing STT-RAM LLCs

The major challenge in implementing the STT-RAM as LLC is the write operation and

the problems associated with it [14]. These include:

1. High Write Latency.

2. High Write Energy Consumption.

3. Low Write Endurance of an STT-RAM cell.

In order to deal with the problems caused by writes to the STT-RAM LLC, researchers

have identified four principal types of solutions:

• Write Variation leveling (wear leveling) - Enhances Endurance: These techniques

aim to redistribute the writes evenly across the whole cache thereby reducing the

maximum write count in a cache line [12, 15, 16, 14, 17, 18].

• Write Bypassing (write reduction) - Reduces Write Latency: These techniques try

to bypass writes that are not useful directly to the main memory such that it leads

to decongestion in the read/write queue of the LLC [19, 20, 21, 13, 22].

• Hybrid Caches (write redirection) - Enhances Endurance: It consists of two parts: a

volatile section and a non-volatile section, and the majority of the techniques try to

redirect the writes in the non-volatile section to the volatile section [23, 24, 25, 26, 27].

• Multi-retention time STT-RAM - Reduce Write Energy Consumption: Here different

types of STT-RAM cells are used with multiple retention times and thereby varying

endurance. Lower retention time cells have higher endurance and low write energy

consumption [28, 29, 30].

More details about these solutions and the different state-of-the-art approaches proposed

are discussed in Chapter 2.

1.1.3 Write Variations

Write Variation in an STT-RAM based set-associative LLC is generally categorized as

[12]:

• Inter-set Write Variation (InterV): InterV occurs exclusively within a cache

set, arising from disproportionate write frequencies among the individual blocks

contained within the specific cache set. Notably, certain blocks within the set

undergo a higher volume of writes than others, resulting in accelerated wear for

these heavily utilized blocks as compared to their counterparts.

• Intra-set Write Variation (IntraV): Conversely, IntraV denotes disparate write

counts observed among cache sets, highlighting a lack of uniformity in data writing

patterns across the cache sets. Consequently, this imbalance accelerates the

degradation of heavily utilized sets, leading to their premature breakdown relative

to their less active counterparts.

4 Chapter 1. Introduction

1.1.4 Wear Leveling Techniques

Over the years, a multitude of wear-leveling techniques have been proposed to reduce both

InterV and IntraV, with the latter comprising the majority of research. Wang et al. [12]

introduced Probabilistic Set Line Flush (PoLF), which implements write blocking to a

designated block within the set. It designates a block as invalid following a predefined

number of writes, known as the Flush Threshold (FT). Should the number of writes

to the block exceed the FT, it is blocked for further write operations. Jokar et al. [15]

introduce Write-back aware intra-set displacement (WAD), an approach for identifying and

managing blocks within a set that experiences limited write traffic from the main memory,

utilizing a sophisticated counter mechanism. The write-intensive blocks are subsequently

exchanged with a victim block within the identical set, including a process to mitigate any

substantial increase in the LLC miss ratio. EqualChance, outlined by Mittal et al. [16],

adopts a method that involves the strategic swapping of write-intensive blocks within the

cache set with those that are either invalid or clean. Agarwal et al. [14] propose three

distinct methodologies: Static Window Write Restriction (SWWR), Dynamic Window

Write Restriction (DWWR), and Dynamic Way Aware Write Restriction (DWAWR). The

majority of these techniques are counter based techniques and are vulnerable to intelligent

endurance attacks to some extent.

The main goal of this thesis is to propose efficient wear leveling techniques that will

enhance the endurance of the STT-RAM LLC while reducing the write variations

and not compromising too much on the performance. We also try to exploit

the vulnerability of the wear leveling techniques with the help of unique targeted

endurance attacks.

1.2 Motivation

All the wear leveling techniques have always been implemented to reduce the InterV and

IntraV. They help in improving the lifetime of the system, but they always have a drawback

of extra performance overhead that arises due to write redirection from the write hot cache

lines to another cache line. The degradation in performance is a quite significant issue and

hinders the efficiency of the system. Furthermore, there are write-bypassing techniques

that focus on bypassing write from the read/write queue of the LLC. This will help in

improving the congestion of the read/write queue which ultimately helps in improving the

performance of the system. Therefore, in order to incorporate the benefits of enhanced

endurance with performance improvement we have implemented techniques that do both

write bypassing and wear leveling. As per our knowledge, this is the first work to pinpoint

how the drawbacks of wear leveling can be effectively resolved by efficient priority-based

intelligent write bypassing. Furthermore, the majority of the wear leveling techniques

mainly focus on the set-level granularity wear leveling, i.e. reduction in InterV or way-level

Chapter 1. Introduction 5

granularity wear leveling, i.e. reduction in IntraV, but none of the works have targeted

the block-level granularity wear leveling. Our work helps in implementing block-level wear

leveling in an Optimal and Hardware Efficient manner. Furthermore, these counter based

wear leveling techniques may be able to wear level writes in generic workloads, but they

may not be effective against targeted endurance attacks that are intelligent with write

patterns that can counteract the wear leveling techniques.

1.3 Summary and Organization of the Thesis

As previously stated above the main motivation of this thesis is to identify potential

problems in implementing STT-RAM as LLCs and providing mitigation techniques in

order to overcome these problems. Various state-of-the-art wear leveling techniques have

been proposed over the years that mainly wear level the writes and improve the lifetime by

reducing the InterV and IntraV of the LLC. The redirection caused due to wear leveling

brings about some lifetime degradation. However, in this work we propose a technique that

aims to dynamically reduce the write count and perform wear leveling. Furthermore, we

also propose a wear leveling technique for block-level granularity that tries to perfectly even

out the writes. A few vulnerabilities of implementing STT-RAM with and without wear

leveling techniques have been exposed by proposing some innovative endurance attacks at

the STT-RAM based LLC. The work in this thesis can be divided into three major parts:

A) Literature Survey - In this section, we present a comprehensive survey of various

cache endurance challenges, which we categorize into four key areas: write variation

leveling techniques (wear leveling), write bypassing techniques (write reduction),

hybrid cache architectures, and LLC attacks.

B) Lifetime Improvement in STT-RAM LLCs - In this section, we have analyzed

the effects of uneven write distribution on lifetime of STT-RAM based LLCs.

Therefore, we have explored the possibility of wear leveling without redirection and

just bypassing from write hot cache locations. The writes are bypassed either to a

small SRAM buffer or to the Main Memory. The small SRAM buffer is used to store

those writes that have high liveness score, this will help in reducing the miss penalty

that will occur if we have to fetch a block from the Main Memory. This was done

at the set level and way level granularity.

Furthermore, we also analyze the need for wear leveling at the block level granularity

which is an improvement over set level wear leveling or way level wear leveling. It

also looks into ways how to wear level the cache while preventing any timing channel

attacks at LLC level. We propose two different techniques, one which employs a block

wise write counter and wear levels the writes evenly, the other is a hardware efficient

approach which clubs blocks into buckets and the writes are distributed among these

buckets based on their write count.

6 Chapter 1. Introduction

C) Endurance Attacks on STT-RAM LLCs - This section shows the vulnerability

of the STT-RAM LLCs against targeted endurance attacks even when implemented

with wear leveling techniques.

Overall, the ideas proposed in this thesis provide efficient wear leveling techniques for

lifetime improvement and also exploit the vulnerability of the STT-RAM LLC to introduce

targeted endurance attacks. In order to keep this chapter short and simple, we have

omitted a detailed discussion of these ideas. The organization of the thesis is outlined as

follows:

• Chapter 1: Introduction - This chapter provides a concise introduction to

multi-core caches and explores the potential implementation of STT-RAM in LLCs.

It also outlines the motivation behind this thesis and its overall workflow.

• Chapter 2: Background and Literature Review - This chapter covers essential

background information and includes a comprehensive literature survey (Part A).

• Chapter 3: Dynamic Write Bypassing for Lifetime Improvement in

STT-RAM LLCs - This chapters discusses the ideas proposed as Part B above.

• Chapter 4: Decoupling the tag and data array for Lifetime Improvement

- This chapter explains the ideas of Part B as mentioned above.

• Chapter 5: Endurance Attacks on STTRAM LLCs - This chapter discusses

the idea of above mentioned Part C.

• Chapter 6: Conclusion and Future Work - This thesis is concluded in this

chapter.

Chapter 2

Background and Literature Review

In this chapter, we have explored essential background information relevant to this thesis.

It is also accompanied by a comprehensive literature review on non-volatile memory-based

cache endurance. The chapter concludes with a summary of the limitations in current

techniques and highlights the significance of the contributions made in this thesis.

2.1 Background

This section highlights the characteristics of STT-RAM, the NVM that we have used to

design the LLC. It further discusses the challenges in implementing STT-RAM LLCs and

the architectural changes required to build the same. Some generic studies in NVM like

[31, 32, 33] have pointed out the challenging areas that need to be addressed.

2.1.1 Cache Memories

Modern processors are designed with multiple levels of cache to enhance memory access

speed and minimize latency. In most contemporary processors, each core is equipped with

private upper-level caches, while the LLC is shared among all cores. The caches considered

in this work are set-associative, meaning each cache contains a fixed number of sets. A

block is mapped to a specific set based on the set-index bits derived from the block’s

address, and the number of blocks that can reside in a set is determined by the cache’s

associativity. In an N -way set-associative cache, each set can hold N blocks. Throughout

this thesis, N represents the cache’s associativity, and M denotes the number of sets in

the LLC. Figure 2.1 depicts the structure of the set-associative cache that is used as the

LLC.

To access data in the cache, a memory address is divided into three components: the tag,

block offset, and set index. The set index indicates the set where the block is located,

the tag uniquely identifies the block within that set, and the offset specifies the location

of the data within the block. It’s important to note that while the L1 cache is typically

virtually indexed—using the virtual address to determine the set index—the LLC is usually

physically indexed, meaning the set index is derived from the physical address.

A cache replacement policy is employed to manage the selection of cache entries for eviction

when a new block needs to be inserted into a non-empty set. Such a policy consists of three

key components: insertion, promotion, and eviction. The insertion component determines

where a newly arrived block will be placed in the cache. The promotion component

activates upon a cache hit, boosting the priority or position of the accessed block. The

8 Chapter 2. Background and Literature Review

Tag

Tag

Tag

Tag

Tag

Tag

Tag

Tag

Way 0 Way 1 Way 2 Way N

Tag Set Number Block Offset

Set 0

Set 1

Set M

Memory Address

Figure 2.1: A generic Set-Associative LLC.

eviction component is responsible for selecting a block, known as the victim block, for

replacement when necessary. In standard replacement policies, any process can evict

another process’s block if it is chosen as the victim. However, when processes are not

permitted to evict each other’s blocks, they are considered to be isolated within the cache.

A LLC can be designed as inclusive, exclusive, or non-inclusive. In an inclusive LLC, the

cache contains all the blocks stored in the upper-level private caches, meaning any block

evicted from the LLC must also be removed from the private caches to maintain this

inclusivity. In contrast, an exclusive LLC does not duplicate blocks held in the private

caches, with directories used within the LLC to ensure cache coherence and track which

blocks are present in the private caches. A non-inclusive cache configuration does not

strictly enforce inclusion, allowing for more flexibility—blocks may reside in both the LLC

and private caches, but this is not guaranteed.

Understanding these cache architectures is essential for analyzing the problem of endurance

of an STT-RAM LLC and the mitigation strategies and attack directions that have been

proposed.

2.1.2 STT-RAM Cell

Figure 2.2 (a) shows the conceptual layout of an STT-RAM cell. This cell comprises of

an access transistor alongside a Magnetic Tunnel Junction (MTJ). The MTJ structure

consists of a tunnel barrier, composed of MgO, sandwiched between two ferromagnetic

layers. The reference layer, possesses a fixed magnetization direction. Conversely, the

magnetization direction of the other layer, termed the free layer, is variable and can be

altered by a spin-polarized current. The tunnel barrier serves as a thin insulating layer

separating the two ferromagnetic layers. These layers magnetization directions encode

the stored data bit within the cell. Specifically, when the magnetization directions are

Chapter 2. Background and Literature Review 9

BIT LINE

Free Layer
Barrier Layer
Fixed Layer

DRAINSOURCE

SOURCE LINE

GATE

WORD LINE

NMOS

(a)

MTJ Reference Layer

MgO

Free Layer

Bit Line (BL)

Source Line (SL)

Word Line (WL)

(b)

Reference Layer

MgO

Free Layer

Bit Line (BL)

Source Line (SL)

Word Line (WL)

(c)

Figure 2.2: Layout of an STT-RAM cell.

anti-parallel, the resulting high resistance represents a logical ‘1’ as shown in Figure 2.2

(c), whereas parallel magnetization denotes a logical ‘0’ with low resistance as shown in

Figure 2.2 (b).

Both read and write operations in an STT (Spin-Transfer Torque) memory cell are

executed by manipulating the voltage differential between the source and a bit-line.

Writing a ‘0’ in the STT cell requires applying a significant positive voltage across the

source and the bit-line, which induces a current that alters the magnetic orientation of

the cell, setting it to the desired state. To write a ‘1’, a substantial negative voltage is

applied, reversing the magnetic polarity to reflect the ‘1’ state.

In contrast, the read operation involves applying a smaller voltage across the source and

the bit-line, generating a current that flows through the cell. This current is then compared

against a reference current, allowing the system to determine whether the cell holds a ‘0’

or ‘1’. By carefully measuring this current relative to the reference, the memory state is

accurately identified without disrupting the stored data.

2.1.3 STT-RAM based LLC

STT-RAM provides numerous advantages compared to traditional SRAM-based

LLCs [10]. Table 2.1 highlights the key characteristics of an STT-RAM cell in comparison

to an SRAM cell. The parameter F in the table denotes the smallest feature size achievable

within a specific technology node, offering a direct comparison of the cells’ properties

under equivalent conditions. This comparison provides insight into the differences in

performance, scalability, and efficiency between STT-RAM and SRAM technologies.

Although STT-RAM boasts numerous advantages over SRAM, including smaller cell size,

reduced leakage power, and extended retention time, as illustrated in Table 2.1, it has a

few drawbacks. These benefits must be weighed against certain inherent disadvantages

accompanying STT-RAM technology, which may impact its overall suitability. The

primary challenge for on-chip memory systems that rely on STT-RAM based LLCs is the

10 Chapter 2. Background and Literature Review

Table 2.1: Comparison of SRAM cell and STT-RAM cell (R/W=Read/Write).

Parameters SRAM STT-RAM
Cell Size(F 2) 120-200 6-50

Write Endurance 1016 4× 1012

Speed(Read/Write) Very Fast Very Fast/Slow
Leakage Power High Low

Dynamic Energy(R/W) Low Low/High
Retention Period Very Low High

significantly higher write latency and energy consumption associated with write operations

compared to the traditional SRAM. While STT-RAM offers several advantages, these

elevated write metrics can hinder its overall performance and efficiency, making it a critical

factor to consider in the design of memory architectures. This trade-off between the

benefits of STT-RAM and its inherent write-related drawbacks is a key consideration in

determining its viability for widespread implementation.

2.2 Write Variation and Lifetime

Write variation (WV) presents a substantial challenge in the design of cache and

non-volatile memory technologies. When write operations are unevenly distributed across

the memory cells, certain areas experience a much higher frequency of writes than others.

This imbalance accelerates wear and tear on those heavily written areas, leading to

premature degradation of the memory cells. As a result, the overall lifespan of the cache

is significantly diminished, compromising the reliability and effectiveness of the memory

system. Addressing WV is crucial for ensuring that these technologies can maintain their

performance and longevity in real-world applications. Even a small fraction of heavily

written memory cells can render an entire cache or memory system inoperative, despite

the majority of cells being far from wear-out. Our work focuses on minimizing the WV in

the STT-RAM LLC. WV in an NVM-based set-associative LLC is generally categorized

as:

a) Inter-set Write Variation (InterV)

b) Intra-set Write Variation (IntraV)

IntraV occurs exclusively within a cache set, arising from disproportionate write

frequencies among the individual blocks contained within the specific cache set. Notably,

certain blocks within the set undergo a higher volume of writes than others, resulting

in accelerated wear for these heavily utilized blocks as compared to their counterparts.

Conversely, InterV denotes disparate write counts observed among cache sets, highlighting

a lack of uniformity in data writing patterns across the cache sets. Consequently, this

imbalance accelerates the degradation of heavily utilized sets, leading to their premature

breakdown relative to their less active counterparts. To quantify WV, we use coefficients

to measure how write operations are unevenly distributed across the STT-RAM LLC.

Chapter 2. Background and Literature Review 11

These metrics help assess their impact on performance and lifespan. InterV and IntraV

are represented by Equation 2.1 and Equation 2.2, respectively, as defined in [12].

InterV =
1

Wavg

√∑N
i=1(

∑M
j=1wi,j/M −Wavg)2

N − 1
(2.1)

IntraV =
1

Wavg.N

N∑
i=1

√∑M
j=1(wi,j −

∑M
j=1wi,j/M)2

M − 1
(2.2)

Here, Wi,j is the block write count of ith set and jth way. Average write count Wavg is

defined as:

Wavg =

∑N
i=1

∑M
j=1wi,j

NM
(2.3)

M is the total number of cache ways in a set and N is the total number of cache sets.

Relative lifetime (RL) is used to quantify the lifespan of the cache. It is defined as the

inverse of the maximum write count (Wmax) on a cache line in the LLC [14] as depicted

by Equation 2.4. It is a derivative of raw error tolerant lifetime which is the time taken

by the cache for the first error to occur in a cache line after specific number of writes to

that cache line. The term “raw” implies that no error recovery mechanism is considered.

RL =
1

Wmax
(2.4)

Cache wear-leveling seeks to address both InterV and IntraV by distributing write

operations more evenly across all the cache lines. Its goal is to minimize the maximum

write count on any single cache line, thereby extending the overall lifespan. Therefore,

Relative Lifetime Improvement (RLI) can be defined as:

RLI =
RLImprovement

RLBaseline
(2.5)

RLI is the improved technique’s lifetime with respect to the baseline LRU. The values of

RLI are calculated to be in times.

2.3 Techniques to Improve Lifetime in STT-RAM based

LLCs

The RLI of the cache can be increased with reduction in the maximum write count in any

specific block in the cache. In order to significantly extend the lifetime of STT-RAM LLC,

researchers have identified three principal types of solutions:

1. Write Variation Leveling (Wear Leveling)

2. Write Bypassing (Write Reduction)

3. Hybrid Caches

12 Chapter 2. Background and Literature Review

2.3.1 Wear Leveling Techniques

The main idea of any wear leveling technique is to spread the writes across the STT-RAM

LLC as STT-RAM cells have limited endurance, as repeated writes to a specific STT-RAM

cell can cause the cell to wear out and loose its lifespan. In the case of NVMs, limited write

endurance is a significant concern. The lifetime of the NVM based LLC can be extended

by decreasing the WVs both within and across the sets. Majority of these techniques aims

to reduce the write variation across the LLC in the form of InterV or IntraV. Therefore,

Wear leveling techniques have been applied at various levels of granularity. These include

techniques at:

a) set-level granularity : Reduce InterV

b) way-level granularity : Reduce IntraV

c) block-level granularity : Reduce both InterV and IntraV

Majority of the state-of-the-art techniques that have been proposed are at the set-level

granularity or way-level granularity of wear leveling. Wang et al. introduced i2WAP

[12] that is an amalgamation of two different techniques: PoLF and SWS. It aims to

reduce both InterV and IntraV. PoLF (Probabilistic Set Line Flush) was introduced to

reduce the IntraV in a specific cache in order to improve the lifetime. It implements

write blocking to a designated block within the cache set. It designates a block as invalid

following a predefined number of writes, known as the Flush Threshold (FT). Should the

number of writes to the block exceed the FT, it is blocked for further write operations

and that specific block is deemed as invalid. SWS (Swap Shift), also a part of i2WAP is

aimed at reducing the InterV. It employs data invalidation during remapping of cache set

address. The objective of the SwS scheme is to modify the mapping of cache physical sets

by rotating the stored data across them. However, simultaneously shifting all cache sets

results in substantial performance overhead. To mitigate this issue, SWS only exchanges

the mapping of two sets at a time, ensuring that over several swaps, all cache sets are

gradually shifted. It employs a global write counter for the whole cache and after a

certain threshold is reached two of the sets are shifted and the counter is reset. Once

again when the global write counter is saturated then the shift takes place. On swapping

the data and set ids of the sets are interchanged.

Sequoia [15] proposed an amalgamation of two different techniques, namely, Writeback

Aware Displacement (WAD) and On-access inter-set Swapping (OAS). It is effective

in reducing both the IntraV and InterV. WAD proposes an approach for identifying

and managing blocks within a set that experiences significant write traffic, utilizing a

sophisticated counter mechanism. There is no use of extra counters as the lower bits of

global counters are considered as set wise write counter. If any write hit is incoming

to a set saturated with a saturated counter it is considered as a hot line and that hot

line is invalidated and no writes that cache line are allowed. In case we apply the clean

LRU process, the write-intensive blocks are subsequently exchanged with a victim block

Chapter 2. Background and Literature Review 13

within the identical set, including a process to mitigate any substantial increase in the

LLC miss ratio. OAS proposes a set remapping technique where the mapping of write hot

sets are swapped with those sets that are not write hot. The operation of OAS relies on

a selection algorithm that identifies hot and cold sets, along with a swapping algorithm

that determines the appropriate line within the selected set for swapping. This process

facilitates data movement between the two sets. The mapping can either be changed

individually or in a grouped manner.

Agarwal et al. [14] propose three distinct methodologies: Static Window Write Restriction

(SWWR), Dynamic Window Write Restriction (DWWR), and Dynamic Way Aware Write

Restriction (DWAWR). In SWWR, the cache is logically partitioned into T equal-sized

windows, each containing an identical number of ways. During execution, one window

is designated as a write-restricted window for a predetermined epoch, during that epoch

any incoming write to any specific way in that window will not be allowed and that write

will be redirected to the other ways. The window to be placed under the restriction is

determined in a round robin manner. In DWWR also, the cache is logically partitioned into

T equal-sized windows, each containing an identical number of ways. The write-restricted

window is not predetermined but changed after every epoch based on the write intensity

in the specific window. If during a specific epoch a window has the highest write intensity,

then that window is placed under write restriction for the next epoch. In order to determine

the write intensity in a specific epoch each window is equipped with a write counter that

is responsible for keeping count of the number of writes in that specific window per epoch,

after every epoch the write counter is reset again to 0. In contrast, for DWAWR a specific

number of write hot ways are selected and are write-restricted for a predetermined interval

or epoch. These specific write hot ways are selected dynamically and they change every

epoch. Each way has a write counter that is responsible for counting the writes into that

specific way and is reset after every epoch.

Mittal et al. proposed WriteSmoothing [17] that aims to extend the cache lifetime by

reducing both the IntraV and InterV. Each LLC is divided into multiple modules and the

main aim of the technique is to reduce the WV across the modules of the cache. After

every epoch a write hot module is determined and future writes to that write hot module

is restricted and redirected to the modules that are not write hot.

EqualChance [16] was proposed to mitigate IntraV in order to increase the lifetime of

the system. EqualChance tracks the number of writes to each set and periodically shifts

a write-intensive data item to a block in a lower position within the LRU stack. This

block is presumed to have experienced fewer writes during the recent execution interval.

By redirecting future writes from a hot (frequently written) block to a cold block, this

approach aids in achieving wear leveling.

Mittal et al. proposed LastingNVCache [18], which operates on the key principle that

by periodically flushing a frequently written data item without updating its LRU age

information, it will be reloaded into a cold block within the set. This mechanism allows

future writes to the data item to be redirected from a hot block to a cold one, promoting

14 Chapter 2. Background and Literature Review

IntraV reduction. By evenly distributing write pressure across blocks, the worst-case write

load on any single block is reduced, ultimately extending the cache’s lifetime.

Mittal et al. introduced a technique that employs color mapping [34]. This report presents

a wear-leveling technique for LLCs designed with non-volatile memory devices. The

technique utilizes a cache coloring scheme to introduce a software-controlled mapping

layer between groups of physical pages, known as memory regions, and cache sets.

Periodic computation of write counts to various cache colors informs adjustments in the

mapping of selected colors, directing write traffic to the least utilized cache colors. This

approach promotes wear leveling. While both InterV and IntraV may arise in the cache,

the technique primarily mitigates InterV and can complement other methods aimed at

addressing IntraV.

Mittal et al. [35] introduces EqualWrites, a technique aimed at extending cache lifetime

by reducing IntraV. The core idea behind EqualWrites is that when the difference in

the number of writes between two blocks within a cache set exceeds a defined threshold

(denoted as Ω), it signals significant IntraV. To mitigate this, the data and addresses in

these blocks are swapped, redirecting future writes from the hot block to the cold block,

thereby promoting wear leveling.

Agarwal et al. [36] proposes a technique that utilizes Dynamic Associativity Management

(DAM) to facilitate wear leveling. The cache is divided into groups of sets, known as fellow

groups. Each cache set is partitioned into a Normal (NP) and Reserve (RP) section. The

NP section operates like a traditional cache, while the RP section is shared across all sets

within a fellow group. When a set experiences high write traffic, it can utilize the RP

space of other sets within the group, enabling dynamic associativity management. This

approach does not aim to increase associativity but instead uses the RP and fellow sets to

achieve wear leveling. Write redirection is determined by set-level write counters, directing

excess writes from heavily used sets to the RP sections of lightly written ones. Agarwal et

al. [37] proposed two different techniques: Fellow Set with Static Reserve Part (FSSRP)

and Fellow Set with Dynamic Reserve Part (FSDRP). FSSRP works similar to [36] where

cache sets are divided into groups, referred to as fellow groups, with each set belonging to

either of the two sections: Normal and Reserve. Within a fellow group, sets can access the

Reserve sections of other sets, enabling uniform distribution of writes across the group.

FSDRP on the other hands works similar to DWWR [14]. In addition to FSSRP, the

cache is vertically divided into multiple windows. During execution, a different window is

designated as the reserve section over a specific interval, allowing for uniform distribution

of writes.

Soltani et al. [38], proposed a cluster based set mapping technique where the cache is

organized into clusters, each comprising multiple sets. The proposed method leverages

dynamic cluster virtual address mapping, which adjusts cluster virtual addresses in real

time to evenly distribute write traffic across all cache sets.

Sivakumar et al. [39] proposed logical cache partitioning at the LLC level where the NVM

based cache is divided into Instruction and Data parts in each set, with specific blocks being

Chapter 2. Background and Literature Review 15

assigned either of the two. They have proposed a Virtual Split Cache (ViSC) where the

cache is split into two. This will allow simultaneous read write access in the the LLC and

the logical mapping of LLC ways between instruction and data is periodically alternated to

ensure uniform distribution of writes. Shivakumar et al. [40] proposed dynamic techniques

over ViSC like Enhanced-ViSC (E-ViSC) which dynamically adjusts its reorganization

interval based on observed writing patterns, allowing it to adapt to changing workloads

and optimize performance over time. It also proposed Protean-ViSC (P-ViSC) where the

partitioning is fixed to some extent. This technique [41], proposed Write Aware Last

Level Non-Volatile Cache (WALL-NVC) with a replacement policy called Least Recently

Used Cold Block (LRU-CB). This dual-stage wear leveling technique consists of two key

components. The first stage introduces a novel LRU-CB replacement policy, designed

to select more optimal victim blocks for cache replacement in NVMs. The second stage

applies a conventional write distribution strategy, which operates in conjunction with

LRU-CB to enhance the cache’s lifespan.

2.3.2 Write Bypassing Techniques

Sparsh Mittal [42] presented a detailed survey of different cache bypassing techniques

(CBT) for write or read operations. This gives us a thorough understanding of the various

uses of cache bypassing and the contexts for which cache bypassing can be implemented.

Zhang et al. [19] introduced a statistic based write bypassing technique (SBAC) for

asymmetric-access caches. SBAC addresses the varying costs of read and write operations

to enable effective bypassing decisions. Instead of targeting individual data blocks, the

method relies on the statistical behavior of data across the entire cache. This approach

significantly reduces design and run-time overhead while improving decision accuracy, as

the statistical behavior of data remains stable and predictable across many applications.

Ahn et al. [20] introduces the Dead Write Prediction Assisted STT-RAM Cache

Architecture (DASCA) that bypasses write operations to the cache only when it predicts

that doing so will not result in additional cache misses. As predicting such outcomes

requires insight into future cache access patterns, DASCA incorporates a dead write

predictor to determine whether a given write operation will be a dead write or not.

Kim et al. [21] proposes a novel bypass scheme for NVM-based inclusive LLC, incorporating

a small tag cache called Inclusive Bypass Tag Cache (IBTC). IBTC preserves the inclusion

property by storing tag information to handle cache coherence requests while considering

the write endurance limitations of NVMs. To mitigate accelerated memory wear-out

caused by frequent write operations, a monitoring mechanism tracks the write intensity of

IBTC, preventing excessive updates. The monitor increases the intensity when IBTC is

written due to bypass operations and decreases it when blocks are written into the LLC.

Bypass decisions are made based on these values: If the intensity value is below zero, the

block is bypassed; otherwise, it is stored in the LLC.

Dybdahl et al. [43] initially proposed a write bypassing technique for LLC performance

improvement. They identify the potential misses early and tend to bypass only those

16 Chapter 2. Background and Literature Review

blocks. This was one of the first techniques that took a decision by taking into account

the reuse distance of the block present in the cache. It led a increase in the performance

of the system.

Density proposed by Korgaonkar et al. [13] highlighted a reuse based cache bypassing

technique that assigns a priority to any incoming block. This helps in determining their

liveness score which is important in identifying weather a write-back to a LLC from the

L2 cache is having the chance to be reused again in the near future. If there is a chance

to be reused then it should be placed in the LLC or else it can be bypassed directly to the

main memory or stored in a small temporary buffer to be reused again in the near future.

The degree of bypassing is dependent on the Write Congestion Aware Bypass (WCAB)

algorithm.

Bagchi et al. [22] recently proposed, Performance Optimization and Endurance

Management for Non-volatile Caches (POEM) which aimed at aggressively bypassing

both write backs from the upper level cache and writes from the main memory while

redistributing the remaining writes evenly among the cache lines. The bypassing is mainly

done based on the write hotness of that location and the reuse distance of the incoming

block. This not only helped them in gaining a significant improvement in performance

but also helped with wear leveling and thereby enhancing the lifetime of the NVM based

LLC.

An obstruction-aware cache management policy for STT-RAM last-level caches (OAP)

is proposed by Wang et al. [44], where on any obstruction in the read/write queue of

the LLC any (request either read or write) can be bypassed or managed accordingly.

This approach significantly enhances performance and reduces energy consumption across

various workloads, all while introducing minimal hardware overhead.

2.3.3 Hybrid Caches

In order to integrate the best of SRAM and STT-RAM technologies for LLC’s a lot of

hybrid cache architectures were proposed that aimed at providing the speed and latency

of the SRAM’s with the density and nonvolatile nature of STT-RAM’s.

Jog et al. proposed Cache Revive [24] a STT-RAM LLC with varied retention timed cells.

Here, different portions of the cache have different retention time STT-RAM cells. The

trade-off for lower retention time is higher endurance in case of STT-RAM cells. Therefore,

the areas having lower retention time cells are considered as the write intensive areas and

writes are migrated to those portions.

Mittal et al. proposed Ayush [26] which is a combination of both SRAM and STT-RAM

in the LLC. It relies on migration of write intensive blocks to the SRAM part of the

cache while keeping the read intensive blocks in the STT-RAM part. Here, few eays are

designated as SRAM based ways and a few ways are designated as STT-RAM based. The

writes can therefore be migrated from the STT-RAM ways to the SRAM ways within a

single set. Therefore, it can enhance the lifetime of the STT-RAM LLC in this manner.

Lin et al. [45] proposed two access-aware policies: STT-RAM Write Management Policy

Chapter 2. Background and Literature Review 17

and SRAM Read Management Policy, that were used to address unbalanced STT-RAM

wear-out and help in reducing the WV. They also proposed a dynamic partitioning

scheme that adapts based on wear-out levels of the STT-RAM blocks. A novel hybrid

cache architecture is proposed, incorporating SRAM banks, STT-RAM banks, and

STT-RAM/SRAM hybrid banks for chip multiprocessors. This design aims to optimize

performance and energy efficiency by leveraging the unique advantages of both SRAM and

STT-RAM technologies within a single multiprocessor cache system. Writes are shifted

from STT-RAM portion to SRAM portion and reads from SRAM portion to STT-RAM

portion.

Bao et al. [27] introduces MacroTrend: A Write-Efficient Cache Algorithm for NVM-Based

Read Cache. In this technique a macroscopic trend prediction method is introduced

to identify long-term hot blocks by analyzing their macro trends, represented through

access count histograms. Based on this MacroTrend prediction, a new cache replacement

algorithm is developed to significantly reduce the number of writes while improving the

cache hit ratio.

Wang et al. [46] presents a cost-effective adaptive block placement policy for hybrid LLCs

(SRAM + STT-RAM), called APM (Adaptive Placement and Migration). The technique

optimally places cache blocks based on their access patterns. LLC write accesses are

categorized into three types: core-write, prefetch-write, and demand-write. A core-write

occurs when data is written directly from the core, either as a write-through or as dirty data

evicted from a write-back core cache. A prefetch-write results from an LLC replacement

triggered by a prefetch miss, while a demand-write is triggered by an LLC replacement

due to a demand miss. The technique leverages the insight that block placement is often

initiated by a write access, and each write type’s characteristics can be adapted to different

block placement strategies. A low-overhead, low-complexity pattern predictor is employed

to forecast access patterns for each write class, guiding the block placement process.

Bhosale et al. [47] proposed a hybrid last-level cache (LLC) architecture, called SLAM,

which combines, combining SRAM and Spin-Transfer Torque Random Access Memory

(STTRAM) to achieve a superior power-performance balance compared to conventional

SRAM-only, STTRAM-only, and previously proposed hybrid STTRAM-SRAM LLC

architectures. The SLAM framework is designed to reduce write operations to the

STTRAM region of the hybrid LLC, thereby minimizing STTRAM’s write energy

consumption.

Wu et al. [23] proposed different memory technologies at different cache levels and also

different memory technologies at the same level in order to improve the endurance. There

are two types of hybrid cache architectures (HCA): inter-cache level HCA (LHCA), where

different levels in the cache hierarchy are composed of distinct memory technologies, and

intra-cache level or region-based HCA (RHCA), where a single cache level is partitioned

into multiple regions, each utilizing a different memory technology. In the RHCA design

with fast and slow regions, a hierarchical NUCA cache is proposed, featuring a centralized

swap buffer, parallel address search, and LRU replacement across the cache regions. This

18 Chapter 2. Background and Literature Review

design enhances cache efficiency by optimizing data movement and access between the fast

and slow regions.

Kuan et al. [29] proposed HALLS, a highly adaptable last-level STT-RAM cache, as

a viable solution for reducing the write energy in STT-RAM-based LLCs. HALLS

leverages cache configuration and retention time adaptability to optimize performance.

The design features a multi-banked cache that supports dynamic configuration through

bank shutdown (to adjust cache size), bank concatenation (to modify associativity), and

multi-line fetch (to alter line size). Each cache bank is provisioned with different retention

times to meet the diverse needs of various applications. Runtime profiling allows data

blocks to be strategically placed in banks with appropriately provisioned retention times,

minimizing energy consumption without significantly impacting latency.

Quan et al. [25] proposed a technique, where a prediction table-based cache line

replacement and management policy (PTHCM) is introduced for a hybrid L2 cache

consisting of STT-RAM and SRAM. PTHCM is based on the observation that most cache

lines in L2 are accessed only a few times, and the number of writes tends to equal the

number of accesses during consecutive stays in the L2 cache. Many cache lines become

dead after a few accesses, reducing SRAM utilization, and are replaced when they become

LRU lines, either swapped with STT-RAM or sent to memory. To optimize this process,

a prediction table is added to track access information for each cache line, predicting dead

lines, frequently-written lines, and less-written lines based on historical data. Using this

information, PTHCM replaces dead lines in SRAM early and allocates frequently-written

lines to SRAM, thereby reducing write operations to STT-RAM and improving overall

hybrid cache efficiency.

Mittal et al. proposed ENLIVE [48], a technique designed to enhance the lifetime of

non-volatile caches by reducing write operations. It introduces a small SRAM storage,

called HotStore (e.g., 128 entries), to temporarily store frequently accessed blocks.

By migrating frequently used blocks to HotStore, future accesses are served from this

fast SRAM buffer, improving both performance and energy efficiency. This approach

significantly reduces the number of writes to the NVM cache, thereby extending its

lifespan.

2.3.4 Miscellaneous Techniques

There has been various other techniques also that aim at improving lifetime and

performance. Initially, Joo et al. [49] proposed a technique that incorporated bit-level

wear leveling and read before write technique for PCM based LLC in order to enhance

their performance and lifetime.

Saraf et al. [30] proposed a few different refresh-aware cache replacement policies designed

to prioritize the replacement of cache blocks that are nearing their expiration. The

Recency-Aware Replacement (RCR) policy introduces a “Recently Accessed” (RA) bit for

each cache block, enabling better replacement decisions by prioritizing recently accessed

blocks, thus enhancing cache efficiency. In cases where certain blocks in a set are repeatedly

Chapter 2. Background and Literature Review 19

written, the Refresh-Aware Replacement (RFR) policy avoids selecting them as victim

blocks, leading to increased write counts and potentially reducing endurance. RFR

is proposed to prioritize endurance over performance. To combine the advantages of

both strategies, a new policy called the Refresh and Recency-Aware Replacement (FCR)

policy is proposed. This approach balances recency awareness with periodic refreshing,

optimizing both performance and endurance in cache management.

Asadi et al. [50] brought to the limelight how to identify bit-level write patterns and

reduce their activity through data manipulation. Some data patterns in workloads are

observed more frequently during application execution. By analyzing these patterns,

certain studies aim to reduce data variations between frequently observed patterns through

coding techniques, minimizing redundant writes in consecutive operations on the same

NVM cells. Building on this, an online pattern recognition technique called Wearout

Informed Pattern Elimination (WIPE) is proposed to improve last-level cache endurance.

WIPE avoids writing frequent data patterns by encoding incoming data blocks, or their

frequent patterns, into an index referencing a table that stores these patterns. The encoded

data is typically smaller than the original block, leading to a reduction in the total number

of write operations in cache cells.

Sivakumar et al. [51] proposed Trace Buffer Assisted Non-volatile Memory Cache (TANC),

along with its variants, to minimize the impact of repeated writes on memory cells by

utilizing the Embedded Trace Buffer (ETB). TANC incorporates an ETB, a wear-leveling

module, and a skip module. It leverages the unused SRAM-based ETB to handle write

requests to MLC NVMs, taking advantage of SRAM’s faster write speeds and lower energy

consumption. This approach reduces latency and write energy while extending the lifetime

of MLC NVM caches. Unlike hybrid caches, which require more area and incur higher

leakage power, TANC harnesses the strengths of NVMs and utilizes unused resources like

ETB for performance gains.

Priya et al. [52] introduces a compression-based wear leveling technique to address write

limitations and enhance cache longevity. The proposed approach reduces the number of

bit writes and ensures an even distribution across cache sets. It utilizes frequent pattern

compression to minimize each word write using predefined patterns and disperses writes

within words for uniform distribution. Furthermore, bit transitions are minimized by

selecting cache lines with the fewest transitions. The wear leveling mechanism is employed

to improve cache endurance by evenly distributing write operations.

Wang et al. [53] proposed a technique to balance write variations between the upper and

lower halves of narrow-width data, by introducing two swapping schemes, Swap-on-Write

(SW) and Swap-on-Replacement (SRepl). Additionally, two optimization techniques are

integrated: multiple dirty bits (MDB) and read-before-write (RBW) with the word-level

swapping design. To further mitigate write variation at the partition level, cache

partitioning is employed to enhance cache lifetime. Noting that different applications

exhibit varying cache access and write behaviors, the last-level cache is partitioned, and

write variations are balanced through partition swapping.

20 Chapter 2. Background and Literature Review

2.3.5 Summary of this Section

Table 2.2 provides the summarized description of the various lifetime enhancement

techniques discussed in this section. The first column of the table shows the different

types of techniques used, the second column shows which papers have been published

in correspondence with the respective techniques, and the third column indicates the

advantages of these papers.

Table 2.2: Classification and Brief Overview of Lifetime Enhancement Techniques
for NVM based LLC (LI=Lifetime Improvement, RedInterV=Reduction in InterV,
RedIntraV=Reduction in IntraV and PI=Performance Improvement and Energy
Reduction=ER).

Technique (Type) Paper Advantages

Wear Leveling

Wang et al. [12], 2013 RedInterV, RedIntraV and LI
Mittal et al. [34], 2013 RedInterV and LI

Mittal et al. [16, 17, 18], 2014 RedInterV, RedIntraV and LI
Jokar et al. [15], 2016 RedInterV, RedIntraV and LI
Mittal et al. [35], 2016 RedIntraV and LI
Soltani et al. [38], 2016 RedInterV and LI
Agarwal et al. [36], 2017 RedInterV and LI

Agarwal et al. [14, 37], 2019 RedIntraV and LI
Sivakumar et al. [39], 2021 RedInterV and LI
Sivakumar et al. [41], 2023 RedInterV, LI and PI
Sivakumar et al. [40], 2024 RedInterV, RedIntraV, LI and PI

Write Bypassing

Dybdahl et al. [43], 2006 LI and PI
Wang et al. [44], 2013 LI and PI
Zhang et al. [19], 2014 LI
Ahn et al. [20], 2014 LI and PI
Kim et al. [21], 2015 LI and PI

Korgaonkar et al. [13], 2018 LI and PI
Bagchi et al. [22], 2024 RedInterV, RedIntraV, LI and PI

Hybrid Cache

Wu et al. [23], 2009 LI
Jog et al. [24], 2012 LI, PI and ER
Quan et al. [25], 2012 LI, PI and ER
Wang et al. [46], 2014 LI, PI and ER
Mittal et al. [26], 2015 LI and ER
Lin et al. [45], 2015 LI, PI and ER

Mittal et al. [48], 2016 LI, PI and ER
Kuan et al. [29], 2019 LI, PI and ER
Bhosale et al. [47], 2019 LI and ER
Bao et al. [27], 2022 LI and ER

Miscellaneous

Joo et al. [49], 2010 LI and ER
Asadi et al. [50], 2017 LI
Wang et al. [53], 2017 LI
Saraf et al. [30], 2019 LI
Priya et al. [52], 2023 LI

Sivakumar et al. [51], 2024 LI and PI

Through thorough analysis on the various types of techniques that have been implemented

to deal with the issues caused by the write operations in these areas, we have identified

that most of the works tend to solve only one of the three major issues caused by writes

in an STT-RAM. There are hardly any works that have been able to solve two or all three

problems concerning these writes. Therefore, this provides us a window of opportunity to

propose different state-of-the-art techniques that tend to solve various problems concerning

the writes together.

Chapter 2. Background and Literature Review 21

2.4 Attacks on STT-RAM LLCs

This section deals with various types of attacks that plague the implementation of

STT-RAM as LLCs. It delves into details of the research conducted on attacking the

caches.

2.4.1 Cache Timing Channel Attacks

Cache timing channel attacks can be categorized based on their underlying techniques.

There are 2 different types of cache timing channel attacks namely: Cache Side Channel

Attacks (SCA) and Cache Covert Channel Attacks (CCA).

2.4.1.1 Cache Side Channel Attacks (SCA)

A cache SCA an attacker takes advantage of the shared nature of the LLC between different

processes or users. By monitoring changes in cache access times or analyzing cache eviction

patterns, the attacker can deduce what data or instructions the victim is accessing, which

may lead to leakage of sensitive information (such as encrypted keys).

Irazoqui et al. [54] introduced a shared cache attack designed to operate across multiple

cores, specifically targeting the shared L3 cache in a (P+P) attack variant.

Moghimi et al. [55] introduced Cache Zoom that is capable of virtually tracking all memory

accesses of SGX enclaves with high spatial and temporal precision from the LLC by

exploiting access patterns. Till now all these attacks have been proposed on SRAM

based LLCs to track the SGX enclaves that are responsible for providing a secure DRAM

functionality, mainly because STT-RAM based LLCs were not a viable alternative, but

with modern solutions provided to make it a possible LLC alternative these attacks will

have its effectiveness on STT-RAM based LLCs as well.

Zhang et al. [56] introduced this paper that presents an access-driven side-channel attack

that allows a malicious virtual machine (VM) to extract fine-grained information from a

victim VM on the same physical host.

2.4.1.2 Cache Covert Channel Attacks (CCA)

A cache CCA is a method where malicious processes, like a spy and a Trojan, secretly

exchange information by exploiting the shared cache memory of a computer system. This

type of attack utilizes cache timing channels to enable covert communication between

processes without direct contact, thereby evading the security measures designed to

prevent such interactions.

Kaur et al. [57] proposed a modified cache-collision attack based on P+P that can create

a covert channel utilizing the dynamic cache partitioning applied to the LLC. These types

of attacks require careful mitigation in modern processors.

Maurice et al. [58] proposed C5, where a covert channel is demonstrated across virtual

machines on modern hardware, effectively addressing the addressing uncertainty that has

22 Chapter 2. Background and Literature Review

hindered previous covert channels.

Yao et al. [59] proposed a technique which uncovers a vulnerability in cache coherence

protocols, allowing adversaries to manipulate cache block states to alter access timing and

covertly communicate secrets.

2.4.2 Cache Contention Attacks

Irazoqui et al. [54] introduces a fine-grained cross-core cache attack that leverages access

time variations in the LLC.

Disselkoen et al. [60] introduces an alternative cache attack mechanism, PRIME+ABORT,

which does not rely on timing differences or timed operations. Instead, it exploits Intel’s

Hardware Transactional Memory (TSX).

Oren et al. [61] present a micro-architectural side channel attack that operates entirely

within a web browser, without requiring the attacker to install any software on the victim’s

machine.

2.4.3 Cache Occupancy Attacks

Chakraborty et al. [62] indicates that most existing research focuses primarily on protecting

the LLC from contention-based cache attacks. This work explores alternative cache attack

variants and assesses how secure cache design principles influence these attacks [63, 60].

Shusterman et al. [64, 65] explored cache side-channel attacks using a novel model in which

an adversary sends malicious JavaScript to the target user’s computer, exploiting cache

contention effects to identify other visited websites.

2.4.4 Cache Rowhammer based Attacks

Khan et al. [66] explores the effects of Row Hammering on STT-RAM by exploiting

its write vulnerabilities. STT-RAM’s high write current and long latency can induce

ground bounce, whose magnitude depends on the data being written and can be spread

to adjoining cells in a highly dense environment.

Staudigl et al. [67] highlighted that the advantages of NVM’s in LLCs and introduce new

security vulnerabilities, such as the NeuroHammer [68] attack, which allows adversaries

to intentionally flip bits in ReRAM.

2.4.5 Cache Miscellaneous Attacks

Quereshi [69] introduced two new attacks that significantly advance the state-of-the-art in

forming eviction sets. This attack requires increasing CEASER’s [70] remap rate to 35%.

The second attack leverages different cache replacement policies (such as LRU, RRIP,

and Random) to quickly form eviction sets, which requires an impractical increase in

remap rate to over 100%. To counter these attacks, the paper proposes Skewed-CEASER

(CEASER-S), which enhances robustness by partitioning cache ways and mapping cache

lines to different sets in each partition.

Chapter 2. Background and Literature Review 23

Gruss et al. [71] introduce cache template attacks, a generic technique that automatically

profiles and exploits cache-based information leakage from any program, without requiring

prior knowledge of software versions or system details.

2.4.6 Summary of this Section

Table 2.3 provides the summarized description of the various kinds of attacks discussed in

this section their targets and different environments in which they are usually run on.

Table 2.3: Classification of LLC Attacks.

Attack Type Paper Target Environment

SCA

Brasser et al. [72], 2017 RSA Genomic Processing Native
Schwarz et al. [73], 2017 RSA Cloud
Sinan et al. [74], 2016 RSA Cloud

Götzfried et al. [75], 2017 AES Cloud
Disselkoen et al. [60], 2017 AES Cloud
Moghimi et al. [55], 2017 AES Cloud
Irazoqui et al. [54], 2015 AES Cloud
Gullasch et al. [76], 2011 AES Native

Liu et al. [77], 2015 ElGamal Native
Oren et al. [61], 2015 user‘s privacy Native+Cloud

Aciiçmez et al. [78], 2010 DSA Native
Wang et al. [79], 2019 NA Native
Gruss et al. [80], 2016 AES, keystoke timing Native

Irazoqui et al. [81], 2014 AES Virtual
Gangwar et al. [82], 2024 AES Native

Gülmezoğlu et al. [83], 2015 AES Cloud
Allan et al. [84], 2016 ECDSA Native
Hornby et al. [85], 2016 users privacy Native
Yan et al. [86], 2019 RSA Native
Jiang et al. [87], 2017 AES Native

CCA

Liu et al.[77], 2015 75KBps Virtual
Maurice et al. [58], 2015 1291bps(Native), 751bps(Virtual) Native+Virtual
Watson et al. [88], 2009 0.025bps Cloud
Yan et al. [89], 2019 0.2Mbit/s Native

Maurice et al. [90], 2017 75KBps(Native), 36KBps(Virtual) Native+Virtual
Percival et al. [91], 2005 400KBps Native

Xu et al. [92], 2011 262.47bps(Native), 223.71(Virtual) Native+Virtual
Wu et al. [93], 2012 23.8KBps Native
Yao et al. [59], 2019 800KBps Native
Gruss et al. [80], 2016 NA Native

Irazoqui et al. [94], 2016 AES, El gamal Native

Cache Contention Attacks
Irazoqui et al. [54], 2015 AES Cloud
Disselkoen et al. [60], 2017 AES Cloud

Oren et al. [61], 2015 user‘s privacy Native+Cloud

Cache Occupancy Attacks
Chakraborty et al. [62], 2023 Cache Overfill Native
Shusterman et al. [64], 2019 Website Browser
Shusterman et al. [65], 2021 Website Browser

Row Hammer Attacks
Khan et al. [66], 2018 Cache Location Native

Staudigl et al. [67], 2024 Cache Location Native

Miscellaneous Attacks
Quereshi [69], 2019 Cache Location Encrypted Cache

Gruss et al. [71], 2015 User‘s information Native

Despite a lot of research carried out in this area. STT-RAM based LLCs can still be

vulnerable if a single or multiple locations are targeted and written into continuously over

a period of time. These repeated writes will cause rapid degradation of the cache line and

reduce the lifetime of the STT-RAM LLC. Therefore, there is an opportunity to mold

an attack that can target specific cache locations to write into continuously in order to

degrade its lifetime.

24 Chapter 2. Background and Literature Review

2.5 Summary of this Chapter

The initial section of this chapter provided the essential background information required

to comprehend the configuration of the STT-RAM LLC. Thereafter, we dived deeper

into how writes effect the the STT-RAM LLC and its dependencies on write variation.

We investigated various techniques that tried to reduce the adverse effects caused by

the writes. The second section of the chapter offers a detailed review of the existing

literature on methods to mitigate the adverse effects of writes like enhancing the lifetime

of STT-RAM LLC, reducing the write latency and reducing the write energy. The third

part offers a detailed review of existing attacks on LLCs and shows how the targeted writes

can cause vulnerability in the lifetime of STT-RAM based LLCs.

Chapter 3

Dynamic Write Bypassing

for Lifetime Improvement in

STT-RAM LLCs

In this chapter, we have proposed a novel write bypassing technique, that bypasses writes

based on the probability of reuse of an incoming block from L2 to LLC and the set/way

write intensity in the STT-RAM LLC. In this technique, a set-wise/way-wise write counter

is implemented in order to count the number of writes per set/way. Writes are bypassed

from those sets/ways having a high write counter value. The bypass can be made into the

MM or a small additional SRAM cache placed between the LLC and the MM.

Publications from this Chapter

• Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das and Venkata Kalyan Tavva,

“PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM

based LLC”, in 10th International Symposium on Memory Systems (MEMSYS), Washington

DC, USA, 2024. [DOI: https://dl.acm.org/doi/10.1145/3695794.3695803]

• Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das and Venkata Kalyan Tavva,

“Hide-N-Seek: Hiding Writes in Buffer for Lifetime Improvement in STT-RAM

based LLC”, at HiPC 2023 Student Research Symposium, in Proceedings of

the 2023 IEEE 30th International Conference on High Performance Computing,

Data and Analytics Workshop (HiPCW), Goa, India, 2023, pp-84. [DOI:

https://doi.org/10.1109/HiPCW61695.2023.00021]

• Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das and Venkata Kalyan

Tavva, “LiveWay: Dynamic Write Bypassing for Lifetime Enhancement in

STT-RAM LLC”, at HiPC 2024 Student Research Symposium, in Proceedings of

the 2024 IEEE 31st International Conference on High Performance Computing,

Data and Analytics Workshop (HiPCW), Bangalore, India, 2024. [DOI:

https://doi.ieeecomputersociety.org/10.1109/HiPCW63042.2024.00035]

3.1 Introduction

As discussed in Chapter 2, uneven write distribution is a major issue that is responsible for

diminishing the lifetime of a STT-RAM LLC. When applications are run on various cores

of a multiprocessor simultaneously, because of their inherent behavior, they then create

WV throughout the LLC that results in drastic drop in the lifetime of the STT-RAM based

26 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

LLC. These fluctuations in write behavior not only shorten the lifespan of the STT-RAM

LLC but also contribute to a reduction in LLC capacity over time. The lifetime of the

STT-RAM LLC is extended with a decrease in WV both InterV and IntraV. The quantity

of writes is undoubtedly another significant factor that has a direct impact on the lifetime

of STT-RAM LLC. Implementing any wear leveling technique that aims to reduce InterV

and and IntraV comes with its own sets of challenges.

3.2 Motivation

Figure 3.1 and Figure 3.2 illustrate the reduction in WV and the normalized IPC reduction,

respectively, for various state-of-the-art wear leveling techniques as compared to the

baseline. Here, the baseline is considered as STT-RAM LLC with an LRU replacement

policy and no wear leveling technique. The details of the experimental setup are discussed

in Section 3.5.

Figure 3.1: Reduction in InterV and IntraV for various state-of-the-art wear leveling
techniques.

Figure 3.2: IPC Degradation for various state-of-the-art wear leveling techniques.

From the Figure 3.1, it is evident that techniques such as SWWR [14], DWAWR [14],

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 27

PoLF [12], WAD [15], and ENLIVE [48] are unable to decrease the InterV to the same

extent as IntraV, while techniques such as SwS and G-OAS is able to decrease only

the InterV WV. Furthermore, most of these existing techniques experience a drop in

performance compared to the baseline. Figure 3.2 illustrates that there is a decline in

their performance ranging from 7% to 23%. We combine the best of both the best

techniques: SwS + DWAWR and have discovered that it did not perform as expected.

The execution of SwS and DWAWR are not conductive as they interfere with each other‘s

smooth functioning. The reduction in both InterV and IntraV was significantly lesser

compared to when the techniques were applied individually. The IPC was also reduced

significantly. SwS always leads to additional remapping. The blocking of writes into ways

due to DWAWR can cause a further increase in the remapping and migration, which

thereby increases the write count of the LLC. The existing wear-leveling techniques are

insufficient in effectively minimizing the InterV and IntraV of STT-RAM LLC. These

techniques can enhance the lifetime of a STT-RAM LLC by a maximum of up to 9 times.

Through analysis of the effect of write variation, we performed experiments utilizing a

simulator for a quad-core system equipped with a 16 MB 16-way set-associative STT-RAM

LLC lacking wear leveling support with standard LRU replacement policy. We have used

Mix 2 shown in Table 3.6. The configuration is executed for 250 Million instructions.

Figure 3.3 shows us the non-uniform write distribution across cache sets that are prevalent.

It depicts the write count after every 100 sets. Non-uniform writes to an STT-RAM LLC

is the major reason for decreasing endurance as well as the lifetime of the LLC, thereby

inducing errors. The lifetime of the LLC depends directly on the maximum write count.

The maximum write count among all the sets is 3516 while the write average is only 564.

This clearly shows the huge disparity in write counts that is present among the sets. If the

InterV is removed, then the overall lifetime will be enhanced by 6.23 times in this case.

The problem of low write endurance is also enhanced by non-uniform write distribution

across cache ways as depicted in Figure 3.4. It depicts the write count for all the ways

in the cache. It can be clearly seen that a few ways have a lot of writes while some ways

have very few writes. The maximum write count in one way is 16131, while the minimum

write count is 1016. To this end, this technique is segregated into 2 different parts that

having different objectives: A) To reduce InterV. B) To reduce IntraV.

3.3 PartA (To reduce InterV): PROLONG: Priority based

Write Bypassing Technique for Longer Lifetime in

STT-RAM based LLC

3.3.1 Proposed Architecture

In order to support PROLONG we propose a few architectural changes as compared to the

traditional memory hierarchy. We introduce three new components, namely, the writes

set counter (WSC), a small SRAM buffer located between the STT-RAM LLC and the

28 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

Figure 3.3: Non-uniform write distribution across cache sets

Figure 3.4: Non-uniform write distribution across cache ways

Main Memory, and a Liveness Score Counter (LSC). Figure 3.6 depicts the newly proposed

architecture. RQ represents the Read queue and WQ represents the Write queue of the

LLC. The SRAM Buffer is placed in between the LLC and MM in the memory hierarchy

and before checking for any block in the MM we check for it in the SRAM Buffer. Each

block present in the LLC is also equipped with the “Liveness Score” counter (LSC) while

each set is equipped with a WSC.

3.3.1.1 Writes set counter (WSC)

Each set of the STT-RAM LLC is equipped with a dedicated 8-bit write counter. These

write counters are updated whenever there is a write into that specific set of the STT-RAM

LLC. Whenever the write counter is saturated in a specific epoch, for the next epoch the

write count for that specific write counter is halved. This way any new incoming writes

can again be counted in that counter. This way the significance of the write intensity in

that counter is not explicitly dismissed for the upcoming epochs.

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 29

3.3.1.2 SRAM Buffer

A small SRAM buffer is placed in between the STT-RAM LLC and the Main Memory.

This buffer is used to store selective high priority writes from write hot ways, that have

been bypassed from the STT-RAM LLC by PROLONG to reduce the InterV. The writes

that are stored in the SRAM buffer are those writes that have high “liveness score”, i.e.

these writes have a high probability to be recalled and may be used again in the near

future by the LLC. We conduct studies with buffer size varying from 32KB to 512KB.

The buffer is divided into multiple parts of 32 entries and a block can be mapped into a

fixed part like set-associative cache. The FIFO replacement policy is used for each part

separately. Prior to sending any LLC miss request to the main memory, the block is first

searched in the buffer. In case of a hit in the buffer, the block is moved back into the LLC.

The main purpose of this buffer is to reduce the side effects of bypassing in PROLONG

and maintain the performance of the system as time taken to service a block from memory

will be drastically greater than the time taken to service it from the small SRAM buffer

in case of a hit.

3.3.1.3 Liveness Score Counter (LSC)

Every block in the STT-RAM LLC is equipped with a 2-bit “liveness score” counter (LSC)

whose value is updated upon every access to the blocks from L2. It is used to store the

liveness score of the block.

A liveness score represents the probability that a cache line associated with a write

request will be accessed again. The cache controller may buffer a liveness score with each

write request stored in the write queue. Upon detecting write congestion, such as when

the write queue is full and the read queue exceeds a threshold number of read requests,

the cache controller may drop the write requests with the lowest liveness scores from

the write queue, thereby bypassing those write requests. The threshold number depends

on NVM-LLC write latency, the turn-around time for fetching a cache line from main

memory, and potentially other system configurations or parameters. This threshold may

be further refined through experimental adjustments to enhance performance. The liveness

score differs from known dead block predictors that bypass dead cache lines, which are

used solely to improve hit rates in the LLC. A dead line is a cache line that will not

be used again anytime soon. A dead block predictor may determine a liveness score or

reuse distance based on usage history or the behavior of cache lines originating from the

same program counter (PC). However, the present architecture focuses on decreasing the

NVM-LLC write congestion while minimizing the impact on LLC hit rates. By adopting a

more aggressive approach to bypassing write requests, even at the expense of some hit rate

loss, write congestion can be significantly reduced, leading to a corresponding improvement

in the performance of NVM-LLC devices.

Liveness Score of a block is defined as the reuse probability of the LLC block in the L2

cache. 32 observer sets present in both the L2 and the LLC are used in order for learning

30 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

the reuse probability of the block similar to [95], [13], [96]. It uses program counters

(PC’s) to sample the blocks. At the L2 cache, hashed PC’s (Instruction addresses that

last accessed the cache line in the L2) is maintained as a reference table. This table consists

of four 10-bit counters each mapping to a liveness buckets ranging from 0 to 20%, 21 to

50%, 51 to 70%, and 71 to 100%. The proportion of writes in an access PC being recalled

from the LLC is defined as liveness. 20% liveness implies there were 20 reads among 100

writes to the LLC in a single PC based access. Liveness counters are decremented during

eviction of a block from an L2 observer set. The sampler technique described in [95],

[13] provides us a reference for usage of partial-PC tags for blocks in the observer sets.

Initially whenever a block is written into L2 cache the liveness counters are set as 0. Upon

a LLC hit, the liveness counters of the access PC are incremented. Eviction and hits have

different changes in the liveness counters for observer sets. Eviction of a block having

21-50% liveness counter leads to counter decrement of 2 and on a hit it is incremented by

10 for both 21-50% counter and 0-20% counter. A positive value of this counter indicates

that it has at least 20% liveness. A 2-bit liveness score value is also assigned to every new

incoming block in the L2 if it is not in the observer set, based on its previous PC based

observer set value. The highest liveness bucket has the highest priority. For example, if

both 71 to 100% and 51 to 70% liveness counters are both positive, the line is assigned

the 71 to 100% live score. Only four buckets are being tracked for each block, hence 2 bits

are required for the liveness score in L2. The liveness score is part of the L2 evicted block.

An LSC is assigned to store this liveness score value in LLC. Initially, any new write will

have a default liveness score of 0 corresponding to the 0-20% liveness bucket.

3.3.2 Working of PROLONG

The main idea is to selectively enable bypass for only the heavily written sets. This helps

in making the writes uniform throughout the cache sets. The write bypass depends on

two parameters: the liveness score counter (LSC) and the write set counter (WSC).

The LSC of any block in the LLC can range from 0 to 3. Table 3.1 represents how the write

liveness score buckets and their status bits are assigned based on their liveness percentage.

Table 3.1: Bucket Distribution among sets based on Liveness Score (LS).

LSC Bucket LSC Bit Value Liveness Percentage

LS0 00 0-20%
LS1 01 21-50%
LS2 10 51-70%
LS3 11 71-100%

Write Hot (WH) bucket selection among sets: Whenever there is an incoming

write, that can either be a L2 write-back or a Last Level Cache miss, the write set counter

is incremented. The WSC indicates the write hotness of the set. A cache-set is set to

be write hot if it has garnered repeated writes to it within an epoch. After every epoch,

which is a certain number of instructions, we identify the write hot sets and then we

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 31

target priority based write bypassing from these write hot sets. These write hot sets

are further classified into three categories equally and different degrees of bypassing are

applied to each category. The number of sets selected to be bypassed is based on the

bypass aggressiveness percentage. We consider bypass aggressiveness from 2% heavily

written sets to 15% heavily written sets. The chosen hot sets are subsequently distributed

evenly among three buckets, determined by their respective write counters. Sets with

the highest write count are allocated to bucket H3, those with a medium write count are

assigned to bucket H2, and sets with the lowest write hotness among the hot sets are

placed in bucket H1. Remaining sets that show less write activity, are allocated to H0

bucket. To store the bucket status bit for each block, 2 bits per cache-set are required.

Table 3.2 shows how the write hot buckets and their status bits are assigned.

Table 3.2: Bucket Distribution among sets based on Write Counter.

WH Bucket Bit Value Set Status

H0 00 Sets that are not write hot
H1 01 Write hot sets with low writes
H2 10 Write hot sets with medium writes
H3 11 Write hot sets with high writes

Bypassing decision and aggressiveness: At the beginning of each epoch, adjustments

to the write counters and write hot buckets for every set are necessary. Write hot sets

among all sets in an LLC are identified based on the level of bypassing aggressiveness. The

more aggressive the bypassing, the greater the number of write hot sets selected. These

write hot sets are divided into write hot buckets and the bucket values for each set are

assigned accordingly. The distribution of write hot sets is allocated uniformly among the

three write hot buckets: H1, H2 and H3 as depicted in Table 3.2.

Bypass Aggressiveness is defined as percentage of sets considered as hot sets. Suppose

if the write bypassing aggressiveness is 15%, we consider 15% of all sets in the cache as

write hot. The top 5% write hot sets are assigned to H3 then the medium 5% is assigned

to H2 and the lowest 5% among the hot sets is assigned to H1. The LSC of the blocks

is automatically re-calibrated after every cache access. When a write-back request is

generated from L2, the block needs to be either written in LLC or bypassed. The decision

is taken based on the liveness score of the block and the WH bucket it maps to. It first

inspects the WH bucket of the set to which the write block needs to be written. If it

is in H0, there will be no write bypassing. Conversely, if the writes are identified to be

directed to the write hot sets (H3, H2 or H1), we need to assess whether the incoming

writes should be bypassed or not. Write Bypassing logic for incoming write-backs to the

STT-RAM LLC sets are depicted through Table 3.3. The major rationale behind this

logic was the nature of the write-backs from L2 cache, as depicted in Figure 3.5.

From Figure 3.5 it can be clearly seen that H3 has the highest write intensity making it

write hot. H0 even makes up of about 85% of all the sets in the STT-RAM based LLC

but consists of those sets that are ot write hot and are not effected therefore there is no

need to bypass anything from H0. The write hot sets are equally divided among H1, H2,

32 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

Figure 3.5: Average Write Distribution in STT-RAM based LLC with LRU among the
Write Hot (WH) buckets (15%) with Liveness Score (LS).

and H3 with increasing order of write intensity. This has been calculated as an average

for all write intensive traces with 1 billion instructions for the baseline LRU replacement

policy. Table 3.3 shows us that the write bypassing is done in certain cases of sets being

write hot based on low liveness score, indicating that these blocks might not be used again

in the near future.

Table 3.3: Write Bypassing based on Write Hot Sets (WH) and LSC Buckets.

WH Bucket LS Bucket Bypassing

1 H0 LS0, LS1, LS2, LS3 No Bypassing
2 H1 LS3, LS2, LS1 No Bypassing
3 H1 LS0 Bypass to Main Memory
4 H2 LS3, LS2 No Bypassing
5 H2 LS1 Bypass to Buffer
6 H2 LS0 Bypass to Main Memory
7 H3 LS3 No Bypassing
8 H3 LS2, LS1 Bypass to Buffer
9 H3 LS0 Bypass to Main Memory

Table 3.3 indicates that selection 1, 2, 4 and 7 will always lead to no write bypassing from

the designated set, i.e. the write will occur in its original state. This shows that blocks

with higher liveness score, specifically LS3 will not be bypassed in any situation. Selection

3, 6 and 9 indicate that low priority blocks with LS0 are not needed to be stored in write

hot sets and are directly bypassed to the main memory. The remaining selection 5 and 8

depict the conditions necessary in order to bypass writes from the write hot sets to the

SRAM buffer.

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 33

WQ

STT-RAM
LLC

 W
rit

es
 S

et
C

ou
nt

er

LS

Check both the LS
Bucket and WH

Bucket and Bypass
based on Table 4.

SRAM BUFFER

L2 Cache
1

2

2

3

Main Memory
4

Figure 3.6: Architecture and Steps in PROLONG Algorithm.

3.3.3 PROLONG Algorithm

The work flow of the proposed PROLONG is depicted through the Figure 3.6. It comprises

of the following steps:

Step-1: Upon receiving a write-back request from L2, it is inserted into the write queue

(WQ) of the LLC, and its LSC value is evaluated from the incoming LS value.

Step-2: The LSC bucket value of the write request and the WH bucket value of the set

are both compared and the decision of bypassing is taken based on the logic depicted in

Table 3.3.

Step-3: If both conditions are met simultaneously, i.e., the LS bucket and the WH bucket

are favourable, then the write may be bypassed to the SRAM buffer if they have a high

LS value.

Step-4: Writes with low LS that have been selected for bypass are directly sent to the

main memory.

These processes are calculated simultaneously with the working of the cache and are not

under the critical path. However, the SRAM buffer access time during a LLC miss comes

under the critical path. We have considered this buffer access time in our experimental

analysis (Section 3.6.3).

3.4 PartB (To reduce IntraV): LiveWay: Dynamic Write

Bypassing for Lifetime Enhancement in STT-RAM LLC

3.4.1 Proposed Architecture

Figure 3.7 shows our new memory hierarchy setup. In order to handle the uneven

distribution of writes we introduceWay Wise Write Counters (WWC). Each counter

keeps track of the writes in its respective ways. These write counters will help us keep

track of write hot ways over time. Each block also has a 2-bit Liveness Score Counter

(LSC). We also introduce a small SRAM buffer that is located in between the STT-RAM

34 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

LLC and the main memory. This SRAM buffer is used to store those bypassed writes that

have high future reuse probability, i.e. those blocks that have a high LSC.

L1

Cache

L2

Cache

Read Write Queue

SRAM Buffer

Main Memory

Way Wise Write Counter

STT-RAM LLC

Figure 3.7: Proposed Architecture of LiveWay.

3.4.2 Working of LiveWay

The main idea is to more aggressively bypass selective writes from the heavily written ways.

The LSC represents the reuse probability of a block in LLC, determined by observer sets

in both caches and a table in L2; it increments when L2 frequently accesses the block

within a time threshold, with a higher LSC indicating greater reuse potential, while a

block starts with an LSC of 0.

Bypassing of writes are mainly dependent on two parameters: LSC and WWC. Figure 3.8

depicts how writes are bypassed based on the LSC and the WWC. At any moment if a

way is having maximum write count, the way is treated as write-hot. Bypassing is done

mainly from the top W write-hot ways. The value of W effectively determines the window

size (WS). If a way is in the window and there are any incoming write backs to that way

with LSC as 2 or 3, the write to that specific location is carried out. Any other incoming

writes with LSC<2 are bypassed from the LLC. Out of these bypassed writes, the blocks

having LSC as 1 are stored in the SRAM buffer and rest are written directly to the main

memory.

Incoming Writes to

LLC

Yes Bypass

No BypassIf LSC <2 &

max(WWC)
Write on to the

specified Location

No Yes
If LSC <1 &

max(WWC)
Bypass to SRAM

Buffer

Bypass to Main

Memory

Figure 3.8: Flowchart of the Proposed Algorithm for LiveWay.

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 35

3.5 Experimental Setup

3.5.1 Simulator Setup

For all the experimental implementation of this work we use the ChampSim Simulator [97].

ChampSim replicates a diverse multi-core system featuring various cores and a custom

memory hierarchy, allowing each out-of-order core to be individually configured according

to specific requirements. Our experiments are conducted on a single and multi-core

(mainly 4 core) system with three levels of cache hierarchy. L1 and L2 are SRAM based

caches. The L3 (LLC) is designed with STT-RAM. For the multi-core setup L3 is a shared

cache. The ChampSim is modified to support the STT-RAM LLC. Table 3.4 shows us

the detailed parameters of the system used. WL denotes Write Latency while RL denotes

Read Latency. All our timing parameters have been calculated with the help of CACTI

[1].

Table 3.4: Simulation parameters of the baseline single-core system.

System Components Parameters

Core Out-of-order, bimodal branch predictor, 4 GHz
with 6-issue width, 4-retire width, 352-entry ROB

L1I 32 KB, 8-way, 4 cycles

L1D 48 KB, 12-way, 5 cycles

L2 1MB, 8-way, 10 cycles, LRU

LLC 4MB, STT-RAM, 16-way, WL: 100 cycles, RL: 20
cycles, LRU

MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC

DRAM controller 64-entry RQ and WQ, reads prioritized over writes,
Burst write: 6/8th of queue size

DRAM chip 4KB row-buffer per bank, open page, burst length
16, tRP: 12.5ns, tRCD: 12.5ns, tCAS: 12.5ns

We compare our work with existing approaches namely, PoLF [12], WAD [15],SwS [12],

G-OAS [15], SWWR [14] and DWAWR [14] and the baseline STT-RAM LLC. The baseline

LLC uses LRU replacement policy and has no wear-leveling policy implemented. In PoLF

the flush threshold (FT) value has been assigned as 16 for the simulations. WAD uses

the clean-LRU block displacement algorithm along with a 3-bit saturating counters (SC).

SwS only helps in swapping the mapping of two sets at once and all other sets are shifted

gradually. Swapping only occurs if the total write count of the cache crosses a certain swap

threshold (ST). G-OAS groups the cache sets into small groups (4,8,16,etc.) and swaps

the write hot sets with the cold sets within the different groups. G-OAS(4) indicates that

4 groups of sets are considered based on their write hotness similar to our configuration.

SWWR uses a window size of 4 ways with a 12-bit write counter per window. DWAWR

uses a 11-bit write counter per way to count the writes. Different configurations of our

work are shown in Table 3.5.

We implement PROLONG with varying configurations based on bypass aggressiveness

36 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

and SRAM buffer size. PRO(x%) indicates that the bypass aggressiveness of PROLONG

is x%. Our work uses only an 8-bit counter per set for WSC because it is enough to

calculate the writes over our chosen epoch size. An extra 2-bit counter is used for every

set along with the WSC which is used to store the WH bucket value.

Similarly, varying buffer sizes are experimented with 3 different window sizes (no. of

write-hot-ways): 1, 2 and 4 in case of LiveWay. Different LiveWay configurations are

represented as xWSy; here x is the buffer size (in KBs) and y is the window size. The

access latency of the SRAM buffer used in LiveWay is also considered in experiments.

For our experiments, we consider epoch size to be 105 instructions. In a single-core setup

for each workload, the simulation commences with a 100 million instruction warm-up

phase, followed by an additional 1 billion instruction run to reach completion. In case

of multi-core setup a 50 million instruction warm-up and a 250M instruction run was

deployed for our quad core systems.

Table 3.5: Different PROLONG configurations used.

Bypassing Aggressiveness % Buffer Sizes

PRO(2%) 32KB, 64KB, 128KB, 256KB and 512KB
PRO(5%) 32KB, 64KB, 128KB, 256KB and 512KB
PRO(10%) 32KB, 64KB, 128KB, 256KB and 512KB
PRO(15%) 32KB, 64KB, 128KB, 256KB and 512KB

3.5.2 Workloads

We have used write intensive benchmarks from SPEC2006 benchmark suites [98]. We first

simulated the SPEC2006 workloads and identified those workloads that are write intensive

in LLC. A few write intensive graph benchmarks from the GAP benchmark suite[99] were

also used for our simulations. Table 3.6 identifies all the write intensive workloads on

which our single-core simulations have been run. We have also run our simulations on AI

workloads like deepsjeng, leela, and exchange2 in order to capture ow they behave with

our proposed techniques.

Table 3.6: Workloads for single-core system.

Benchmark Suite Write Intensive Workloads

SPEC2006 cactusADM 734B, gcc 13B, GemsFDTD 109B, lbm 94B,
leslie3d 94B, libquantum 964B, mcf 46B, milc 360B,
soplex 66B, sphinx3 883B, wrf 1212B, xalancbmk 99B,
zeusmp 100B

GAP bc-12, bfs-10, cc-13, pr-5, sssp-5

AI Workloads deepsjeng, leela, exchange2

For the quad-core setup, we use 4 different workload mixes. Each mix has different

characteristics. The workload mixes are depicted in Table 3.7. ‘L’ denotes low write

intensive workloads and ‘H’ denotes high write intensive workloads. ‘G’ denotes Graph

workloads.

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 37

Table 3.7: Workloads for Quad-Core System.

Mix Type Workloads

Mix1 -LLHH gobmk, gromacs, mcf, libquantum

Mix2 -HHHH mcf, libquantum, lbm, xalancbmk

Mix3 -LLLL gobmk, gromacs, gamess, namd

Mix4 -GGGG pr (page rank), bc (betweenness centrality), bfs
(breadth first search), sssp (single source shortest
path)

3.6 PartA: Results and Analysis

3.6.1 Single-core Analysis

In this section we compare different wear-leveling techniques with the baseline STT-RAM

LLC considering various metrics. Among the different configurations of PROLONG, we

consider the configurations only with 512KB buffer in this analysis with varying degrees

of aggressiveness. A detailed sensitivity analysis with other PROLONG configurations is

given in Section 3.6.3. Figure 3.9 shows the reduction in InterV of different wear-leveling

techniques, normalised to baseline. It can be observed from the figure that, on an average

the InterV reduces by around 82% in the case of PROLONG (15%) configuration. Among

the existing techniques, SWS and G-OAS(4) achieve InterV reduction of 89% and 78%,

respectively. Remaining techniques perform poorly. The main reason for the reduction in

InterV in the case of PROLONG (10% & 15%) is aggressive bypassing of writes from the

heavily written sets. However, it has been observed that excessive aggressive bypassing

is not required as even the 2% aggressiveness achieves 74% reduction in InterV over the

baseline. The higher the aggressiveness of bypass the greater the IPC of the system. More

detailed analysis about aggressiveness is discussed in Section 3.6.3.

Figure 3.9: Percentage Reduction in InterV in Single-core System (higher the better).

The reduction in IntraV of PROLONG is comparable with the existing wear-leveling

techniques. As shown in Figure 3.10, the reduction in IntraV for PROLONG is just

above 20% normalized to baseline. This is comparable with previous state-of-the-art

16% for PoLF and 28% WAD which are specialized IntraV reduction techniques. The

reason behind such reduction in the existing techniques is that all these techniques try to

distribute the writes among the different ways of the set. There are two main reasons for

38 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

reducing the IntraV by PROLONG. First, it has been observed that the IntraV is high

on the sets having more writes. Hence, bypassing writes from heavily written sets also

helps in reducing write variation within the set. Second reason is based on an insight

from PoLF [12]. The idea discussed in PoLF achieves significant improvement in IntraV

by just invalidating random cache blocks. Bypassing writes also means invalidating the

existing block that belongs to an heavily written set of the LLC. Hence, combining these

two important reasons, PROLONG also shows competitive reduction (around 20%) in

IntraV.

Figure 3.10: Percentage Reduction in IntraV in Single-core System (higher the better).

The lifetime of a STT-RAM based LLC is dependent on the maximum write count of a

single cache line. Bypassing writes from heavily written sets not only reduces the total

number writes performed in the STT-RAM LLC but also reducing the maximum write

count. Hence, PROLONG performs less number of writes in the LLC as compared to the

other techniques. The existing techniques sometimes even increase the number of writes

because of invalidating important blocks from the LLC while remapping. These important

blocks, the blocks that are likely to be reused in the future, need to be fetched from the

main memory again, leading to more writes at the LLC. Missed important blocks can

potentially lead to performance degradation. However, in PROLONG, the write bypassing

takes place on the basis of a liveness score of the block. The liveness score indicates the

possibility that the block can be reused again in the near future. Therefore, the possibility

of bypassing an important block is less as compared to the other state-of-the-art.

Figure 3.11 shows the comparison in the number of writes by different techniques as

compared to the baseline, i.e. Normalized Total Writes. It can be observed from the

figure that the reduction in writes is more in PROLONG whereas in other techniques

that do not employ write bypassing and the writes are either more or equal to that of the

baseline (LRU). Figure 3.11 depicts the various configurations of PROLONG with varying

degrees of aggressiveness (2-15%).

Figure 3.12 shows the improvements in lifetime over the baseline by the various

wear-leveling techniques considered. As mentioned in Chapter 2, the lifetime depends

on write variations and the maximum number of writes in a cache line. PROLONG

improves all the three parameters as shown in Figure 3.9, 3.10, and 3.11. Therefore, Figure

3.12 shows significantly better lifetime than the other techniques. All the other existing

techniques can enhance the lifetime at maximum by 9× wheres PROLONG enhances it

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 39

Figure 3.11: Comparison of Normalized Total Write Count in single-core Systems (lower
is better).

by nearly 23×, for the single-core configuration. Here, the lifetime is calculated as the

normalized lifetime over baseline.

Figure 3.12: Comparison of Relative Lifetime Improvement in single-core Systems (higher
the better).

Impact on performance: While achieving significant improvement in lifetime,

PROLONG does not degrade (on an average) the performance of the system. Normalized

IPC is used as the metric to show the various performance improvements as compared to

the other state-of-the-art. Figure 3.13 shows that PROLONG matches the performance of

baseline and in some cases namely, bc, cc, pr, sssp, gcc and sphinx, PROLONG achieves

more than 10% performance improvement over the baseline. The average improvement

ranges from 0-2%. The reason behind the improvement is because of bypassing the less

important blocks from the cache. As discussed in Density [13], bypassing less important

blocks reduces the congestion in the read/write queue at the LLC and hence improves the

efficiency of the LLC. Because of lesser aggressive bypassing than discussed in Density

[13], PROLONG does not attain performance improvements similar to Density. The other

existing wear-leveling techniques, PoLF, WAD, SWS and G-OAS(4) show a significant

drop in performance. Similar to PROLONG, SWWR and DWAWR almost achieve

baseline performance. This is the main benefit of PROLONG as it improves the lifetime

significantly as compared to the existing techniques without degrading the performance.

Improvement analysis: Figure 3.14(a) shows the geomean reduction in terms of write

variations both InterV and IntraV as compared to the baseline and other state-of-the-art

configurations. Figure 3.14(b) shows us the reduction in the total write count of

40 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

Figure 3.13: Comparison of Normalized IPC in single-core Systems (higher the better).

PROLONG that occurs due to write bypassing. It is depicted as the percentage reduction

in write count as compared to baseline. Other wear leveling techniques show an increase

in the total write count as compared to baseline, i.e. a negative percentage. The number

of writes in these state-of-the-art wear leveling techniques may increase but we see that

the maximum write count in a cache block does not increase due to effective wear leveling.

Figure 3.14(c) shows us how the lifetime is effected effected by the various existing

techniques considered along with PROLONG. Figure 3.14(d) deals with the effect of the

state-of-the-art on the performance calculated as Normalized IPC, over baseline. The

improvement shown in these figures are the geometric mean values of all the workloads

considered for study. It can be observed that PROLONG reduces both InterV and IntraV

by almost 84% and 19% respectively. The write count in existing techniques is more than

the baseline wheres in PROLONG it reduces because of its efficient bypassing. As the

bypass aggressiveness of PROLONG increases, the reduction in write count increases due

to the bypassing of unimportant blocks. The significant improvement in write variations

reduction and write count reduction makes PROLONG improve the lifetime as shown

in Figure 3.14(d). An important point to observe here is that the higher the bypass

aggressiveness, the higher the lifetime.

Figure 3.14: Average Comparison of PROLONG in Single-core Systems with
state-of-the-art.

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 41

3.6.2 Multi-core Analysis

Multi-core experiments show the behavior similar to single-core experiments but in an

amplified scale. Figure 3.15 and 3.16 show the comparison of different wear-leveling

techniques for reduction in InterV and IntraV. The reduction of IntraV by PROLONG is

slightly less than single-core i.e. a maximum of 12%, while the InterV reduction is greater

than the single-core system nearly by 89%. We have also conducted experiments with

various workloads, including mcf, libquantum, and xalancbmk, in multi-core environments

where a single workload is distributed across all system cores. Our observations indicate

that the results closely align with those seen in scenarios where multiple write-intensive

benchmarks are executed on separate cores.

Figure 3.15: Percentage Reduction in InterV for Multicore Systems (higher the better).

Figure 3.16: Percentage Reduction in IntraV for Multi-core Systems (higher the better).

Figure 3.17: Relative Lifetime Improvement (RLI) for Multi-core Systems (higher the
better).

For multi-core setup, Figure 3.17 shows that PROLONG enhances the lifetime up to 35×,

a close observation shows that the enhancement is gradual and similar to single-core for

Mix2. However, for Mix1, Mix3 and Mix4 PROLONG shows a much higher enhancement.

42 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

Figure 3.18: Normalized Total Writes w.r.t. baseline (LRU) for Multi-core Systems (lower
is better).

Figure 3.19: Normalized IPC w.r.t. baseline (LRU) for Multi-core Systems (higher the
better).

This occurs because of extensive bypassing of writes that will not be accessed again

in the near future as these workloads have a major mix of read intensive instructions

and graph workloads. The write count in the LLC decreases drastically with increasing

aggressiveness of bypassing as depicted in Figure 3.18. Figure 3.19 shows the performance

(Normalized IPC) improvements over the baseline. It can be observed from the figure that

the performance of PROLONG is almost similar as baseline. However, the performance

of the existing wear leveling techniques goes below the baseline.

3.6.3 Sensitivity Analysis

In this section we discuss about the various possible configurations of PROLONG and

reason the optimum configuration. For the analysis of this section, PROLONG is

considered with five different sizes of SRAM buffer: 32KB, 64KB, 128KB, 256KB, and

512KB. For all the earlier experiments we considered buffer size of 512KB. Each buffer

is divided into multiple parts of 32 entries just like a set-associative cache such that the

access time of the buffer can be reduced. Considering the latencies in Table 3.8, we perform

experiments in this section. For each buffer size, PROLONG considered four categories of

bypass aggressiveness: 2%, 5%, 10%, and 15%.

Figure 3.20 shows the improvement in PROLONG over baseline in a single-core system.

The improvements are shown for write variation, write count, lifetime and performance. It

can be observed from Figure 3.20(a) that the improvements in IntraVs are almost similar

with slight increments in reduction with increment in buffer size. The InterVs slightly

varies over different PROLONG configurations. However, the variations are within 6%.

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 43

Table 3.8: The important hardware parameters of the SRAM buffer used in PROLONG.
The parameters are extracted from CACTI [1].

Buffer
Size

Access
Latency

Static
Power

Dynamic Energy
per Access

Area
Consumption

32KB 4.3ns 1.78nJ 19.44mW 6.1mm2

64KB 4.4ns 1.81nJ 33.16mW 6.55mm2

128KB 4.5ns 1.83nJ 60.74mW 7.4mm2

256KB 4.8ns 1.86nJ 110.21mW 8.9mm2

512KB 5.3ns 1.91nJ 168.65mW 10.45mm2

Figure 3.20: Comparison of different PROLONG configurations with baseline in a
single-core environment. PRO(x%) means the bypass aggressiveness of PROLONG is
x%. Each bypass aggressiveness value is experimented with 32KB, 64KB, 128KB, 256KB,
and 512KB of buffer size.

Figure 3.20(b) shows that the number of writes in LLC reduces with increase in bypass

aggressiveness. A 512KB buffer with 15% bypass aggressiveness depicts a 14% decrease

in the overall write count. The change in normalized lifetime (as shown in Figure 3.20(c))

over the different PROLONG configurations varies up to 1.5×. The minimal lifetime

improvement is only 17× while the maximum is nearly 25×. Figure 3.20(d) shows that

there is no significant improvement in the performance with an increase in the SRAM

buffer size. The main reason behind this behaviour is the high write latency of the larger

SRAM buffers. The write latency of the SRAM buffer increase slightly with its increasing

size as depicted in Table 3.8.

Hence, from the above discussion it can be concluded that a PROLONG configuration

with large SRAM buffer is not improving noticeably. Furthermore, they have a larger

hardware overhead that make it an unattractive prospect. Buffer sizes that are small are

also not optimal as it lags behind in the lifetime improvement. Therefore, buffer sizes

that are in the middle like 128KB can provide the best of both worlds with minimal

hardware overhead and high normalized lifetime for highly aggressive write bypassing is

44 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

more advisable. The results from multicore setup also reflects the similar insights but in

a more heightened sense.

Figure 3.21: Buffer hit per write bypass in different configurations of PROLONG (higher
the better).

3.6.3.1 Importance of SRAM buffer

In this section we discuss the importance of using an SRAM buffer in PROLONG. Since

the bypass aggressiveness that we used for PROLONG is more than the aggressiveness

used in Density [13], there is a likelihood that PROLONG bypasses important blocks. The

buffer is used to store such blocks. Figure 3.21 shows the buffer hit per LLC bypass. It

can be observed from the figure that the hit rate in buffer increases with increasing buffer

size. This implies that the larger the buffer it stores more important blocks with high

probability of being reused again. As the bypass aggressiveness increases, more loads are

coming to the SRAM buffer and hence the hit rate is also increasing. However, from the

figure, it can be observed that without the SRAM buffer there will be multiple request

which need to be served from main memory. Hence, the SRAM buffer plays an important

role from the performance perspective.

Effect of AI workloads on the SRAM BUffer: With the higher reuse rate of memory

blocks in the AI workloads (deepsjeng, leela, and exchange2), there is a higher buffer hit

rate per bypass. Figure 3.22 shows the buffer hit per write bypass for AI workloads with

increasing bypass rate and increasing buffer size. Therefore, it is evident that there is a

need for an SRAM specifically for AI workloads.

3.6.3.2 Comparison with other write bypassing techniques

Write bypassing was initially employed to reduce the number of writes and improve the

performance of STT-RAM LLCs, as described in [13]. In contrast, PROLONG leverages

this technique to extend the lifetime of the LLC by minimizing both write variations and

the overall number of writes. Figure 3.23 illustrates the relationship between PROLONG

and the Density technique [13]. From the figure, it is evident that in single-core systems,

PROLONG achieves a significant lifetime improvement of 22×, whereas Density offers

only a negligible enhancement compared to the baseline. This disparity arises because

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 45

Figure 3.22: Buffer hit per write bypass in different configurations of PROLONG for AI
workloads (higher the better).

Density primarily focuses on bypassing writes to alleviate congestion in the read/write

queue, bypassing less critical blocks across the entire LLC. PROLONG, on the other

hand, performs more aggressive bypassing, but only for selected sets. Despite this, Density

delivers greater performance gains over the baseline than PROLONG, as shown in Figure

3.24, highlighting its focus on performance rather than longevity.

Figure 3.23: Comparison of Normalized Lifetime of PROLONG with Density (higher the
better).

Figure 3.24: Comparison of Normalized IPC of PROLONG with Density (higher the
better).

46 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

3.6.3.3 Lifetime Comparison Analysis

Table 3.9 presents a comparison of the normalized lifetimes achieved by various

state-of-the-art techniques, juxtaposed with different configurations of the PROLONG

method, tested across a range of write-intensive workloads. These workloads include

benchmarks from the SPEC2006 suite and highly write-intensive graph workloads from the

GAP benchmark suite. The lifetime values are normalized against a baseline configuration,

where the STT-RAM based LLC employs an LRU replacement policy without any

wear-leveling strategies. For all PROLONG configurations, a 512KB SRAM buffer is

used. The results indicate that the graph benchmarks generally exhibit a more significant

improvement in normalized lifetime, reaching up to nearly 49× for the PRO(15%)

configuration. In comparison, the highest normalized lifetime for the SPEC2006 workloads

reaches 40× for the same PRO(15%) configuration. Table 3.9 also shows that the geometric

mean normalized lifetime for state-of-the-art techniques reaches a maximum of 9× in

the case of DWAWR. However, the PRO(15%) configuration demonstrates the highest

geometric mean normalized lifetime, reaching 22.32×.

A clear trend emerges from Table 3.9, showing a steady increase in normalized lifetime

as the degree of bypass aggressiveness in the PROLONG configurations increases,

highlighting the efficiency of PROLONG in enhancing the endurance of STT-RAM-based

LLCs under heavy write workloads.

Table 3.9: Normalized Lifetime of Write Intensive Workloads.

Workloads PoLF WAD SWS G-OAS(4) SWWR DWAWR ENLIVE Pro(2%) Pro(5%) Pro(10%) Pro(15%)

GAP

bc 2.7548 4.0446 5.5163 5.2186 7.6479 9.0643 5.2014 26.2267 26.8707 29.2894 31.1072

bfs 1.2195 11.0368 12.5424 12.1622 5.3968 11.4094 3.3082 8.1433 9.2105 11.4094 12.9252

cc 1.3889 4.8851 6.4140 6.1047 6.1047 9.2814 3.7468 26.7361 28.0702 30.8244 32.7273

pr 0.2299 3.2564 4.6191 4.3062 4.4311 7.1253 2.3305 43.6573 44.2514 47.0489 48.9325

sssp 2.0408 5.1051 6.7073 6.3830 6.3830 5.7402 4.2119 30.5970 32.0755 34.6154 36.7188

SPEC2006

cactus 6.4516 6.4516 7.8431 7.8431 3.7736 13.7931 5.1126 10.0000 12.2449 14.5833 16.1972

gcc 2.8090 3.3898 5.1724 4.5714 3.3898 6.3953 3.0994 10.2409 12.2699 15.0943 16.5605

Gems 2.6066 1.4052 2.8504 2.6066 3.5885 13.3508 3.0976 5.6098 6.3882 8.5213 9.8985

lbm 1.5209 5.9524 7.4447 7.0140 4.2969 14.1026 2.9089 6.5868 7.2289 9.4262 11.0187

leslie3d 0.8715 2.2075 3.5794 3.3482 6.6820 8.4309 3.7767 16.0401 16.9192 19.3299 20.8877

libquantum 3.6232 8.1285 9.5785 9.3690 3.2491 12.8205 3.4361 7.1161 7.9245 10.0000 11.5010

mcf 1.8569 5.4843 6.9314 6.5468 8.8170 10.1115 5.3370 29.9123 30.4846 33.0638 34.7589

milc 4.8128 3.4301 4.8128 4.5333 6.5217 8.4871 5.6673 34.7079 35.3280 38.0282 39.8335

soplex 1.9608 1.5625 2.9703 2.7668 0.7752 5.6911 1.3680 22.0657 22.9314 25.3012 27.1394

sphinx 2.2364 0.9464 2.5641 2.2364 5.9603 8.1081 4.0983 16.7883 18.0812 20.7547 22.6054

wrf 4.9020 5.9406 8.0808 7.0000 4.9020 15.0538 4.9020 15.0538 18.8889 21.5909 24.4186

xalancbmk 1.2500 3.0534 4.5161 4.1131 4.1131 13.7640 2.6816 30.4348 31.2804 33.8843 35.6784

zeusmp 2.2727 4.6512 7.1429 5.8824 5.8824 3.4483 4.0775 7.1429 11.1111 13.9241 15.3846

deepsjeng 3.1946 6.4516 6.7073 4.5333 6.6820 10.1115 4.9383 16.7883 18.0812 21.5909 24.4186

leela 5.1128 3.3898 4.8431 2.7668 3.2491 8.4871 4.1809 15.0538 29.2894 33.8843 35.6784

exchange2 4.1897 5.9524 5.1724 2.2364 8.8170 15.0538 6.5034 26.7361 33.8843 39.8335 41.8335

Geomean All 2.2187 3.9639 5.5650 4.7869 4.7784 9.3745 3.7918 16.2848 18.6485 21.6644 23.6191

We can clearly observe that there are some anomalies in the case of DWAWR vs.

PROLONG where some workloads like bfs, cactus, Gems, lbm, and zeusmp show some

amount of higher normalized lifetime improvement in the case of DWAWR over some

configurations of PROLONG, specifically with 2% bypass aggressiveness. This is mainly

because only a small percentage of bypass will not actively wear level writes from the high

write intensive regions in the LLC, an increase in the bypass aggressiveness shows that

the lifetime improves gradually and is eventually equivalent or better than the lifetime of

DWAWR.

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 47

3.6.3.4 SPEC2017 vs SPEC2006 vs GAP

This section provides a detailed comparison of the results from various benchmarks,

including SPEC2017, SPEC2006, and GAP. All the data presented here are derived from

single-core systems running write-intensive workloads, with the geometric mean (geomean)

values used for representation in the accompanying graphs. For this analysis, the SRAM

buffer size has been primarily set to 512KB.

Figure 3.25 illustrates the subtle variations in normalized IPC across different workloads.

The graph reveals that the trends between SPEC2017 and SPEC2006 benchmarks are

quite similar. However, the GAP benchmarks, which involve a more intensive write

workload, show improved normalized IPC values in comparison to their counterparts.

The maximum geomean normalized IPC recorded was 1.025 for both SPEC2017 and

SPEC2006 benchmarks, while GAP benchmarks achieved a slightly higher value of 1.12,

demonstrating the benefit of our proposed techniques in write-heavy scenarios.

Figure 3.26 offers a comprehensive comparison of the percentage reduction in InterV across

different workloads implemented on the proposed architectures. Both SPEC2006 and

SPEC2017 exhibit similar trends, but the differences between the various configurations in

the SPEC2017 benchmarks are more pronounced. The results for GAP benchmarks show

a more significant reduction in InterV, driven by the higher intensity of write operations

associated with these benchmarks.

Figure 3.27 highlights the percentage reduction in IntraV across the three benchmark

sets. The data reveal that SPEC2017, SPEC2006, and GAP benchmarks all follow

similar trends in terms of the reduction in IntraV. However, the GAP benchmarks

show a more pronounced reduction compared to the other benchmarks. Furthermore,

SPEC2006 demonstrates a greater reduction in IntraV than SPEC2017, which underscores

the efficiency of the proposed techniques in managing intra-cache variations.

Finally, Figure 3.28 displays the Relative Lifetime Improvement (RLI) of various

configurations compared to the baseline LRU configuration. Both SPEC2006 and

SPEC2017 show similar trends and values, while the RLI for GAP benchmarks is notably

higher. This confirms that our techniques offer significant benefits in terms of memory

lifetime, particularly when handling highly write-intensive workloads.

In conclusion, we can assert that the proposed techniques perform more effectively

on write-intensive GAP benchmarks compared to the SPEC benchmarks, especially in

reducing cache-related inefficiencies and improving system longevity under heavy write

loads.

3.6.4 Hardware Overhead and Energy Consumption

Table 3.10 presents the total area overhead of PROLONG for a given buffer size. Overhead

comprises of write counters, WH bucket counters, LSC apart from the buffer. Since

the other hardware components in PROLONG are almost the same as in the baseline,

the additional energy consumed by PROLONG (AEpro) can be calculated as AEpro =

48 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

Figure 3.25: Normalized IPC of various different benchmarks run on various
configurations.

Figure 3.26: Reduction in InterV of various different benchmarks run on various
configurations.

Figure 3.27: Reduction in IntraV of various different benchmarks run on various
configurations.

Ebuff − Ewrite. Where Ebuff is the energy consumed by the SRAM buffer and Ewrite is

the energy saved by reducing the number of writes. We have used CACTI [1] to model

the SRAM buffer. Experimental analysis with all sizes of SRAM buffer found that the

value of AEpro is always negative, implying that PROLONG does not have any additional

energy overhead with any buffer size, which is enough to get the benefit we are expecting.

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 49

Figure 3.28: RLI of various different benchmarks run on various configurations.

Table 3.10: Storage Overhead of Prolong.

Buffer Size Total Overhead Overhead over Baseline

32KB 53KB 1.29%

64KB 85KB 2.08%

128KB 149KB 3.63%

256KB 277KB 6.76%

512KB 533KB 13.01%

3.7 PartB: Results and Analysis

3.7.1 Single-core Analysis

Figure 3.29 shows the percentage reduction in IntaV for different state-of-the-art

wear-leveling techniques that aim to reduce the IntraV like PoLF[12], WAD[15],

SWWR[14], DWAWR[14], and ENLIVE[48] as well as for the best configurations of

LiveWay, i.e. LiveWay (128WS2) and LiveWay (64WS2). LiveWay (128WS2) shows a 53%

reduction in IntraV while the maximum reduction shown by any other existing technique

is 43% in case of DWAWR [14]. Figure 3.30 indicates that LiveWay (128WS2) has on

geomean 21.23× improvement while the next best state-of-the art technique DWAWR

shows only 9.37× improvement in RLI.

Figure 3.29: % Reduction in IntraV for Single-core Systems (Higher the better).

50 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

Figure 3.30: Relative Lifetime Improvement (RLI) (in times) for Single-core Systems
(Higher the better).

Figure 3.31: Geomean Normalized IPC for Single-core Systems (Higher the better).

Figure 3.31 depicts that LiveWay shows very little performance degradation as compared

to other techniques. This is due to the benefits brought about by the decongestion in the

read/write queue of LLC through write bypassing. The benefits in terms of IPC are not

as much as Density [13] which has a higher bypass aggressiveness, because even if there

is decongestion, bypassing writes will result in cache miss, and then the data needs to be

fetched from the SRAM buffer or the MM, this will incur some extra latency.

3.7.2 Multi-core Analysis

The results for multi-core systems reiterate our findings from the single-core analysis

but in a muffled manner. The resultant values are significantly lower than single-core

values due to the extensive distribution of writes in a multi-core system having larger

shared memory. Mix1 is a combination of both read and write-intensive workloads while

Mix2 is a combination of write-intensive workloads and Mix3 is a combination of graph

workloads only. Figure 3.32 depicts the impact of multi-core systems on the IntraV. Our

proposed architecture brings about a maximum of 67% IntraV reduction for Mix2. Mix2

is write-intensive which is why the reduction in IntraV is the highest.

The lifetime of a STT-RAM based LLC is dependent on the maximum write count of a

single cache line. Bypassing writes from heavily written sets not only reduces the total

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 51

Figure 3.32: % Reduction in IntraV for Multi-core Systems.

number of writes performed in the STT-RAM LLC but also reduces the maximum write

count. Figure 3.33 shows that in multi-core systems, LiveWay can bring about drastic

lifetime improvement through average write reduction with the help of write bypassing.

The average write count per block reduces drastically for LiveWay and therefore can

directly affect the relative lifetime of the LLC. The RLI of LiveWay(64WS2) specially in

case of Mix3 goes upto 38×, while in the case of LiveWay(128WS2) goes upto 45×.

Figure 3.33: Relative LI (in times) for Multi-core Systems.

Also, the performance degradation in LiveWay is lower than that of the other techniques,

as shown in Figure 3.34. The SRAM buffer used to store the selectively bypassed blocks

causes 25% hits and, therefore, helps to increase performance as compared to the other

state-of-the-art techniques.

3.7.3 SPEC2017 vs SPEC2006 vs GAP

This section provides a comparative analysis of benchmark outputs from SPEC2017,

SPEC2006, and GAP, highlighting the variations in system performance across different

workloads. All results presented are based on single-core systems executing write-intensive

workloads, with the geometric mean (geomean) of the results used for graphical

representation.

Figure 3.35 illustrates the subtle variations in normalized IPC across different workloads.

52 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

Figure 3.34: Normalized IPC for Multi-core Systems.

The observed trends indicate a strong similarity between SPEC2017 and SPEC2006

benchmarks. However, the GAP benchmarks, which are inherently more write-intensive,

exhibit higher normalized IPC values compared to their SPEC counterparts. The

maximum geomean normalized IPC values were found to be 1.15 for SPEC2017, 1.189

for SPEC2006, and 1.35 for GAP benchmarks, showing a consistent increase with larger

window sizes. In this analysis, the SRAM buffer size was primarily set at 128KB.

Figure 3.36 provides an in-depth comparison of the percentage reduction in IntraV across

different workloads when executed on the proposed architectures. While SPEC2006

and SPEC2017 follow similar trends, the variations in SPEC2017 benchmarks are

more pronounced across different configurations. The GAP benchmarks, due to their

high-intensity write operations, show significantly greater reductions in IntraV than SPEC

benchmarks, reinforcing their distinct behavior under write-heavy conditions.

Figure 3.37 presents the Relative Lifetime Improvement (RLI) across various

configurations in relation to the baseline LRU configuration. Once again, SPEC2006

and SPEC2017 display closely matching trends and values, whereas the GAP benchmarks

show a markedly higher RLI, emphasizing the impact of intensive write operations on

memory endurance.

From these observations, we conclude that our proposed techniques perform more

effectively on the highly write-intensive GAP benchmarks compared to SPEC benchmarks.

The heightened impact of our optimizations on GAP workloads suggests that our approach

is particularly well-suited for environments with intensive memory write operations,

further validating its efficacy in improving system performance and longevity.

3.7.4 Hardware Overhead and Energy Consumption

Table 3.11 presents the total area overhead of LiveWay for a given buffer size. Overhead

comprises of way wise write counters, switch indicator, and LSC apart from the buffer.

Since the other hardware components in LiveWay are almost the same as in the baseline,

the additional energy consumed by LiveWay (AELW) can be calculated as AELW =

Ebuff − Ewrite. Where Ebuff is the energy consumed by the SRAM buffer and Ewrite is

Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs 53

Figure 3.35: Normalized IPC of various different benchmarks run on various
configurations.

Figure 3.36: Reduction in IntraV of various different benchmarks run on various
configurations.

Figure 3.37: RLI of various different benchmarks run on various configurations.

the energy saved by reducing the number of writes. We have used CACTI [1] to model the

SRAM buffer. Experimental analysis with all sizes of SRAM buffer found that the value

of AELW is always negative, implying that LiveWay does not have any additional energy

overhead with any buffer size, which is enough to get the benefit we are expecting.

Table 3.11 presents the total area overhead associated with LiveWay for a given buffer

size. This overhead primarily consists of way-wise write counters, a switch indicator,

54 Chapter 3. Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs

and an LSC, in addition to the buffer itself. Since most hardware components in LiveWay

remain nearly identical to those in the baseline system, the additional energy consumption

introduced by LiveWay (AELW) can be determined using the following equation:

AELW = Ebuff − Ewrite

where: - Ebuff represents the energy consumed by the SRAM buffer - Ewrite accounts for

the energy saved due to a reduced number of write operations

To model the SRAM buffer, we utilized CACTI [1], a widely used tool for estimating cache

and memory energy consumption. Our experimental analysis, conducted across various

SRAM buffer sizes, consistently found that the computed value of AELW was always

negative. This result indicates that LiveWay does not introduce any additional energy

overhead across different buffer configurations.

These findings are significant, as they confirm that LiveWay achieves the intended benefits

without incurring extra energy costs, making it an efficient and practical solution for

improving system performance while reducing write-related energy consumption.

Table 3.11: Storage Overhead of LiveWay.

Buffer Size Total Overhead Overhead over Baseline

32KB 48.06KB 1.173%

64KB 80.06KB 1.954%

128KB 144.06KB 3.517%

256KB 272.06KB 6.64%

512KB 528.06KB 12.89%

3.8 Conclusion

Through our work, we have highlighted the need for STT-RAM LLCs over SRAM based

LLCs, but implementing purely STT-RAM LLCs comes with its own set of issues like

performance degradation and lifetime. Therefore, we propose PROLONG which is an

innovative, power-efficient and cost-effective architecture that aims at reducing the InterV

and improving the lifetime of the STT-RAM LLC drastically without compromising on

the performance of the system. Overall we have achieved a 89% reduction in InterV and

35 times lifetime improvement with a 0-2% improvement in performance for multi-core

systems. Therefore, PROLONG becomes a practical alternative to the traditional SRAM

based LLC architectures as it can provide both the performance needed and also the

required lifetime to implement an STT-RAM based LLC. LiveWay proposed a unique,

energy efficient and low cost architecture even when compared to PROLONG. Future

research includes proposing wear leveling techniques at block level and bit level granularity.

Chapter 4

Decoupling the tag and data array

for Lifetime Improvement

In this chapter, we have proposed a novel wear-leveling technique that distributes the writes

across all the blocks in the STT-RAM based LLC. In this technique, a block-wise write

counter is implemented in order to count the number of writes per block. Write hot blocks

are identified, and then the redirection takes place by exchanging the tag and data array

blocks. A hardware efficient approach is also proposed that limits the number of counters

by assigning a single counter to a bucket and each bucket consists of a group of blocks.

Publications from this Chapter

• Prabuddha Sinha, Krishna Pratik BV, Shirshendu Das and Venkata Kalyan Tavva,

“SmartDeCoup: Decoupling the STT-RAM LLC for even Write Distribution and Lifetime

Improvement”, in Elsevier Journal of System Architecture, February 2025. [DOI:

https://doi.org/10.1016/j.sysarc.2025.103367]

4.1 Introduction

Despite the introduction of various techniques and hybrid technologies aimed at improving

the lifetime and reducing the write latency of STT-RAM LLCs, as explored in Chapter 2,

none have managed to enhance the lifetime of STT-RAM based LLCs very effectively by

wear leveling the writes. Majority of the wear leveling techniques were proposed in a set

level or way level granularity and none of these techniques aimed at wear leveling in the

block level granularity. This prompted us to think of a solution to distribute the writes

evenly across all the cache blocks in order to improve the lifetime of the LLC.

4.2 Motivation

In order to analyze the impact of WV, we conduct experiments using a simulator configured

for a single-core system with an 8 MB, 16-way set-associative STT-RAM LLC that

lacks wear-leveling support and employs a standard LRU replacement policy, for one

billion instructions. The experiment utilized milc workload, a write-intensive workload.

Figure 4.1 clearly depicts the non-uniform write distribution of the write-intensive

workload across the whole cache. It shows the write count of each and every cache block

present in the cache through the heat map in Figure 4.1. Write patterns are clearly visible

for specific sets and blocks. This uneven distribution of writes results in certain regions

56 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

Figure 4.1: Heatmap representing the non-uniform write distribution at LLC for a
single-core milc run.

of the memory being subjected to a higher frequency of write operations, accelerating the

wear and tear in those areas.

As a consequence, the durability of the LLC is compromised, and its effective operational

lifespan is shortened. Therefore, write distribution is a critical factor in maintaining the

reliability and performance of the memory system. In the case of Figure 4.1 the maximum

write count among all blocks in the cache is 703 while the minimum write count is 73

showcasing the huge disparity in the distribution of writes and the urgent need for an

efficient block level wear leveling technique, that will help distributes the writes evenly

across the blocks. The number of blocks experiencing writes less than 100 is 89234, 30747

blocks experienced writes greater than 500, 10146 blocks experienced writes greater than

600 and only 945 blocks experienced writes greater than 700.

As the core count rises in a cache multiprocessor, so does the number of ways in the

cache, consequently increasing its associativity. With increasing associativity in the

cache, there’s a broader spectrum of options available for implementing block replacement

policies. Moreover, heightened associativity results in a more non-uniformly distributed

write pattern within the cache.

Furthermore, recent secure cache techniques like Ceaser [70], Ceaser-S [69] and

Scatter-Cache [100] proposed redirection techniques in order to improve the LLC security,

but it brought along with it extra writes that are non-uniform and will lead to significant

reduction in endurance. Ceaser, Ceaser-S and Scatter-Cache bring about a 20%, 5% and

2% increment in remap writes for SPEC CPU 2006 and SPEC CPU 2017 benchmarks.

A more detailed discussion about these techniques is given in Section 4.3.5. Although

the endurance of an STT-RAM has been enhanced a lot through recent technological

advancements [11, 101, 102]. There is still a need for ensuring that the endurance of a

STT-RAM based LLC when combined with the above mentioned secure cache techniques.

The existing endurance enhancement techniques cannot be directly implemented on top of

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 57

these security countermeasures. The existing endurance enhancement techniques cannot

be directly implemented on top of these security countermeasures. Recent techniques like

POEM [22], ARMOR [103], and logical cache partitioning [39] show that the problem of

endurance enhancement in the use of STT-RAM LLCs is still being researched to this day.

Hence, we have been motivated to propose SmartDeCoup, which can handle endurance

issues of both secure and non-secure STT-RAM LLCs.

4.3 SmartDeCoup

The main goal of this work is to enhance the lifetime of the STT-RAM LLC by reducing

WVs. For this, a small trade-off of performance is considered acceptable. To achieve the

goal SmartDeCoup introduces a decoupled tag and data array in such a way that each

location from the tag array maps to a unique location in the data array, i.e., a 1:1 mapping

throughout. The mapping between the tag and data array locations can be interchanged,

while consistently maintaining a 1:1 mapping between tag and data array. As mentioned

in Section 4.1, the concept of decoupled tag/data array is inspired by V-way [104] and

Z-cache [105]. Recently the technique has been reintroduced in Maya cache [106] for

enhancing the security of the system. SmartDeCoup has two fundamental differences with

these techniques. First, in all the existing decoupled tag/data structures, the number of

data array entries is less than the tag array entries. In SmartDeCoup, the number of tag

and data entries are equal, and always a 1:1 mapping is maintained. Second, none of the

existing techniques use the concept of decoupled tag/data array for enhancing the lifetime

of an STT-RAM LLC.

In this chapter we have proposed 2 different techniques that use the concept of decoupling

the tag and the data array: Primal Approach and Hardware Efficient Approach. The

major difference between them lies in how writes are redirected from write hot spots to

cold spots with the help of swapping or redirection. Primal Approach employs the SWAP

operation from write hot blocks to cold blocks while the Hardware Efficient Approach uses

redirection from write hot buckets to cold. One more major difference is the number of

write counters, while the Primal Approach uses one write counter per block the hardware

Efficient Approach uses one write counter per bucket. The Primal Approach and the

Hardware Efficient Approach are both mutually exclusive and cannot work together with

each other.

4.3.1 LLC Organization

Figure 4.2 presents the organization of the proposed LLC. It consists of two different

structures that have been decoupled: tag array and data array. The tag array is

designed with SRAM and the data array is designed with STT-RAM. The tag array

has a set-associative structure but the data array can be considered as fully associative

because a block can be placed in any where in it. The tag entry and data entry are the

two parts of a block B placed in the tag and data array of the LLC respectively. We use

58 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

the term “entry” to represent a cache block and not the location in tag/data array. The

location in both tag and data array is represented by (x, y); where x is the set number and

y is the way number. A location in tag array always maintains a forward pointer (FPTR)

that points to a data location in data array. Similarly, a location in data array always

maintains a backward pointer (BPTR) to point to the corresponding tag array location.

Each tag entry contains status bits and tag bits. The status bits consist of a valid bit, a

dirty bit, and coherency bits. Each data entry consists of the data and a valid bit. The tag

array uses a traditional replacement strategy like LRU. Data array does not require any

replacement decision. The reason we consider an SRAM based tag array is because of the

faster look up time. Furthermore, tag array generally has more updates because of status

bits, replacement policy bits and coherence bits, therefore it is reasonable to implement a

volatile memory that does not have lifetime constraints as the tag array [107].

Invalidation: Invalidating a tag entry means the corresponding data entry also needs

to be invalidated and vice versa. However, invalidation doesn’t destroy the FPTR and

BPTR values that are associated with the location and not with the block. Hence, the

mapping between the tag and data location remains even after the invalidation. This is

a fundamental difference between our decoupled tag/data array structure as compared to

the other existing such designs [104] and [105].

Block insertion: To insert a new block (say, B) into the LLC, the tag part of B (tag

entry) is placed in the tag array. Since the tag array is set associative, B maps to a

particular set (say, S) in tag array. To insert B in S, an existing tag entry may need to

be evicted (say, tag entry of block C is the victim) based on the replacement policy. The

entry for C is invalidated from both the tag and the data arrays, and the corresponding

locations are allocated to B.

Block search: To search a block B in LLC, only the tag array is searched. In case of a

tag hit, the corresponding data entry is accessed trough FPTR. On a tag miss, the request

is forwarded to the main memory and before receiving the block from the main memory

an entry for the block is allocated in LLC (both tag and data entry) as discussed above.

4.3.1.1 Maintaining Coherence:

The concept of separate tag and data storage is already used in literature [86, 57]. In the

decoupled cache architecture, the tag store serves as the central repository for all metadata

associated with cache blocks. This includes critical information such as the replacement

policy and the sharers directory, both of which are also managed within the tag storage.

The operations of installing new cache blocks and invalidating existing ones within the data

storage are guided by the forward pointer maintained at the corresponding tag location.

Notably, all key actions—such as invalidations and modifications to the sharer bits—are

confined exclusively to the tag storage. If an invalidation is required at the tag level, the

associated data entry is invalidated in a seamless manner by following the forward pointer.

This strategic separation of tag and data storage ensures that cache coherence is preserved

without introducing any inconsistencies, thereby enhancing both efficiency and scalability.

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 59

COMPARE
TAG

Select
FPTR

TAG INDEX OFFSET

STATUS TAG FPTR

CACHE HIT

TAG ARRAY
SA SRAM

DATA ARRAY
FA STT-RAM

DATA

V
DATA ARRAY

BPTR WCTR

SMART
REPLACEMENT

SCHEME

Figure 4.2: The proposed decoupled cache.

4.3.2 Primal Approach

Our proposed Primal Approach is based on the underlying decoupled architecture

discussed in Section 4.3.1. The main goal of this work is to decouple the tag and data

part of the LLC such that efficient wear-leveling is carried out and the writes are evenly

distributed among all the locations of the data array. An 8-bit write counter (WCTR)

is maintained for each data location, which is responsible for keeping track of the write

count in each data location. The counters are an extra SRAM array structure that is

co-located with the STT-RAM data array. It is incremented on every write to that

specific data location. After every epoch, the data entries located in top Q% heavily

written data locations are swapped with the data entries located in bottom Q% data

locations. Sorting such a large number of counters before enabling the SWAP brings about

a significant computational overhead in the MSHR. The WCTR values are not reset after

every epoch. If at any time a WCTR value saturates then after that epoch the value of

that WCTR is immediately decreased by half of its maximum value. Swapping a heavily

written block (only data entry) with a lightly written block in the data array distributes

the writes across the data array. The most heavily written block is swapped with the

block that is least written and the second most heavily written block is swapped with the

block that is second least written into. This continues on and gradually until all the top

Q% heavily written blocks are swapped with the bottom Q% . The cache pauses during

SWAP operation and all services are suspended till the operation is completed. The value

of Q , i.e. the intensity of write hot blocks to be SWAP after every epoch has been varied

from 5% to 30% in our experiments.

Swapping operation: When two data entries in the data array swap, the corresponding

BTPR values are also swapped. In the tag array, only the FPTR values are swapped to

keep the 1:1 mapping intact. An important point to observe here is that each swapping

60 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

needs two writes in the data array and one write in a temporary SRAM buffer. The

SRAM buffer is a small buffer that is only used during the SWAP operation. Since, all the

SWAP operations are performed in parallel, the size of the buffer varies with the intensity

of the SWAP operation, i.e. the value of ‘Q’. The periodic swapping may temporarily block

the LLC for normal read/write operations. The additional writes caused by SWAP and the

access latency are considered while implementing SmartDeCoup.

Why the Primal Approach reduces InterV and IntraV? Since the data array

logically works as a fully associative cache, any data entry can be swapped with any

other data entry. Hence, it can reduce both InterV and IntraV, improving the LLC’s

lifetime better than the existing techniques. Swapping data entries does not violate the

1:1 mapping between tag and data array as the corresponding FPTR and BPTR values

are also carefully swapped. The main aim of the Primal Approach is to perfectly wear

level the cache without worrying about any other overhead.

Why is it called the Primal Approach? This technique is called the Primal Approach

because at the specific size of the epoch, this is the best scheme based on which heavily

written blocks can be prevented from being written into and writes are evenly distributed

to those blocks that are not heavily written. This approach can be considered a platform

and be optimized by introducing various other modifications which can be taken up by

future research.

4.3.2.1 Working Example

Figure 4.3 highlights the working methodology of the Primal Approach. In this study, we

consider a compact yet representative Last-Level Cache (LLC) comprising only a limited

number of blocks. Initially, there exists a clear and direct 1:1 correspondence between

the SRAM-based tag array and the STT-RAM-based data array. This mapping ensures

efficient organization and retrieval of cache blocks, establishing a fundamental structure for

managing metadata and data storage in tandem. Each tag location has an FPTR pointing

to a data location and each data location has a BPTR pointing to its tag array counterpart.

Initially in Step 1, whenever there is an incoming write into a data location, along with

the write, the corresponding WCTR is incremented. In Step 2, after a predetermined

interval has passed the top Q% and bottom Q% of the data entries are identified as

per their WCTR and the blocks that are supposed to be swapped are indicated. In this

example, we have considered 2 top and 2 bottom data entries as indicated by red WCTR

and blue WCTR respectively. In Step 3, the SWAP operation is initiated and only one SWAP

operation is shown in Figure 4.3. In Step 3, the SWAP operation is completed through a

temporary buffer that transfers the FPTR and BPTR after invalidating the data array

location that has High WCTR. Step 4 indicates the final location of the FPTR and BPTR

after the whole SWAP operation has been performed.

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 61

SA SRAM
Tag Array

FA STT-RAM
Data Array

WCTR

FPTR

BPTR

FPTR

BPTR
Incoming Writes

High WCTR Low WCTR

FPTR

BPTR
FPTR

BPTR

Invalid Data Block

Data BPTR

FPTR

1

SWAP

SWAP

SWAP

FPTR

Data BPTR

2

3 4

SA SRAM
Tag Array

SA SRAM
Tag Array

SA SRAM
Tag Array

FA STT-RAM
Data Array

FA STT-RAM
Data Array

FA STT-RAM
Data Array

Figure 4.3: Working Example of the Primal Approach.

4.3.2.2 Drawbacks of Primal Approach

The major drawback in the Primal Approach is the lack of consideration for the growing

hardware and latency overhead with the increase in the intensity of swapping. The Primal

Approach mainly has three different drawbacks:

• The number of WCTRs are a lot, equal to the number of blocks, and therefore the

hardware overhead is very high.

• The periodic SWAP operations required at the end of every epoch cause the normal

operation of the cache to be paused, leading to congestion in the read/write queue

of the LLC that may cause significant performance degradation [13].

• The extra energy overhead that is required for the extensive SWAP operations. With

an increase in the number of SWAP operations the energy expenditure goes up.

• The extra area overhead that is incurred due to the SRAM Buffer when the SWAP

operation is taing place.

4.3.3 Hardware Efficient Approach

In order to counter the drawbacks of the Primal Approach, we propose a Hardware Efficient

Approach that is aimed at reducing the number of counters by grouping together the data

62 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

locations into various buckets. The bucket sizes can vary based on the implementation

and there is only a single WCTR per bucket. A write in any data block belonging to that

bucket causes an increment in its WCTR. After every epoch, the bucket with maximum

WCTR value is made as read-only. The read-only status of a bucket is only for a single

epoch. At the end of every epoch, a new read-only bucket is decided and the FPTR and

BPTR for all data and tag arrays for the read-only bucket are reset. It is important to

note that the buckets are created based on the data locations and not data entries.

How are writes to blocks in read-only buckets handled? If any write request comes

for a block B resides in a data location (say L′) within the read-only bucket, the write

is forwarded to another bucket. A bucket with the least number of writes is selected and

from that bucket a location (say L′′) is randomly chosen for writing B. If the location L′′

currently holds a valid entry then it must be invalidated first. As mentioned previously

invalidating a valid data entry needs to invalidate the corresponding tag entry. The BPTR

values of L′ and L′′ are swapped and also the corresponding FPTR values in the tag array

needs to be swapped. Now, the data entry of B is written in the data location L′′. The

location L′ still connects to an invalid tag location. No read-only restrictions are applied

to the tag part.

How is a cache miss handled? When there is a miss in LLC and the newly fetched

block is about to be written in the read-only bucket, it is allowed to write it in this case.

Hence, the read-only restriction is only for write-back from the L2 cache. The reason for

this is that if the newly fetched block is read-only then there will be no further write to

it. In case, the block is a write-intensive block, then the block will be migrated to another

bucket during its next write-back to LLC from upper level of cache.

4.3.3.1 Bucket formation

Each location of the data array must be mapped to a particular bucket. In order to make

sure that the mapping is distributed across the whole cache, we apply a hash function which

is responsible for assigning the blocks into the buckets. We try to assign the blocks such

that buckets are not overly clustered and the mapping to a bucket is relatively distributed

across the whole cache. We consider the location of a block in the data array as (x, y),

where the set number is x and the column number is y. We prepare a hash function by

using these parameters. In our design, we have used the modulus hash function to divide

the LLC data blocks into buckets. The main purpose of the hash function is: (i) The data

array locations are distributed across the buckets. (ii) Just knowing the location of the

data array we can calculate which bucket it belongs to in O(1) time. Now after the blocks

have been distributed into the buckets the system runs as usual with the WCTR for every

bucket incrementing its value in case of a write to any of its corresponding blocks.

4.3.3.2 Working Example

Figure 4.4 explains the step-by-step process involved in the Hardware Efficient Approach.

In Step 1, we have specified four buckets B1, B2, B3, and B4. Each bucket has an

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 63

SA SRAM
Tag Array

SA SRAM
Tag Array

FA STT-RAM
Data Array

FA STT-RAM
Data Array

B1 WCTR

FPTR

BPTR
Incoming Writes

B2 WCTR B3 WCTR

SA SRAM
Tag Array

FA STT-RAM
Data Array

Invalid Data Block

1

B4 WCTR

B
Incoming Writebacks

A

Incoming Writeback
A

WHBkt(Read-only)

WCBkt

WHBkt(Read-
only)

WCBkt

2

B

3
SA SRAM
Tag Array

FA STT-RAM
Data Array

4

BPTR

FPTR

FPTR
BPTR

BPTR

BPTR

FPTR
FPTR

Redirected
write-back

Redirected
write-back

Figure 4.4: Working Example of the Hardware Efficient Approach.

individual WCTR as depicted in the figure. The tag and data array entries are connected

with a FPTR and a BPTR respectively. At the start of Step 1 there are no buckets

designated as WHBkt (Write Hot Bucket) or WCBkt (Write Cold Bucket). In Step 2,

after the first epoch has passed we identify the bucket having the highest WCTR and

assign it as WHBkt or read-only bucket. The bucket having the lowest WCTR is assigned

as WCBkt. Step 2 shows that if we encounter any incoming write-backs A and B in

the present epoch to the WHBkt then the write-back to that bucket is not possible as

it is read-only. Any normal writes that are generated due to read miss is written to the

WHBkt as usual. Step 3 shows the data array blocks to which the write-backs of the

WHBkt are redirected-to in the WCBkt and the location to where the redirection will

happen is selected at random from among the blocks present in WCBkt. This randomly

selected data block is then invalidated and the redirected write-backs A and B are placed

in their respective random locations. The write-back replaces the data block in a random

location belonging to WCBkt, especially if the data stored is invalidated. Step 4 shows how

the different FPTRs and BPTRs are migrated, pointing to different locations in the tag

array in the affected locations of the WCBkt and the effect of write redirection on the data

value and the BPTR. It highlights how for that epoch for any incoming write-back to the

WHBkt that location in the WHBkt loses its FPTR and any new incoming writes-backs

are automatically redirected to the corresponding WCBkt location that is directed by

the FPTR. We have introduced a threshold where the difference between the highest and

64 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

lowest WCTR will have to be a minimum 100 writes in the case of the Hardware Efficient

Approach, the threshold is dynamically controlled, i.e. if the bucket size is larger the

threshold increases with increasing bucket size and decreasing number of buckets. Only if

the threshold is met, then there is redirection from the write hot bucket to the write cold

bucket. The swapping threshold is clearly indicated in Table 4.3.

4.3.4 Primal Approach vs Hardware Efficient Approach

The Primal Approach reduces the IntraV and InterV better than the Hardware Efficient

Approach as it can uniformly distribute writes across the data array. The major difference

between Primal and Hardware Efficient Approach is that the former needs periodic SWAP

operations which incurs extra writes while the latter has no additional writes incurred due

to the SWAP operation. Each SWAP operation needs two additional writes in the data array.

In Hardware Efficient Approach forwarding a write request from a read-only bucket to

another bucket doesn’t require any additional write except the compulsory write required

for the write-back. However, the Hardware Efficient Approach requires invalidation of a

block from the LLC to handle a write-back to a read-only bucket. Such invalidation slightly

reduces the hit rate of LLC but this reduction is compensated by the zero additional

writes (due to swap), potentially eliminating the congestion on the read/write queue of

the STT-RAM LLC. The Primal Approach outperforms the Hardware Efficient Approach

to some extent and the difference is not so drastic. Section 4.5.3 presents a detailed

sensitivity analysis and a thorough comparison between Primal and Hardware Efficient

Approach. Furthermore, it is evident that in Primal Approach we employ the use of upto

8K counters that is responsible for keeping track of the write counts per block. Sorting

these counters will obviously bring in an overhead, we consider a scenario where the sorting

is done in parallel in the MHSR, but this will incur a lot of extra hardware. Therefore,

there is a need for a more polished solution like the Hardware Efficient Approach that is

feasible.

4.3.5 Importance of SmartDeCoup in Modern LLC

SmartDeCoup has three important benefits over modern LLCs:

• It makes STT-RAM more realistic to use as an LLC by enhancing its lifetime.

• By making the data array as fully associative, it gives a platform to do further

optimizations in future.

• It can be used with secure LLCs without any major modifications.

The importance mentioned in the first two points have already been discussed earlier in this

chapter. This section focuses on the significance of SmartDeCoup in secure LLC design.

LLCs are vulnerable to various timing channel attacks [42], such as side-channel [108] and

covert-channel attacks [109, 82]. To prevent these attacks, multiple strategies have been

proposed, including cache partitioning [110], randomization [69], and attack detection

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 65

[111], etc. Among these countermeasures, the two most recent and secure techniques are

Mirage [63] and Maya-Cache [106]. Both techniques are based on a decoupled tag and

data array structure, similar to SmartDeCoup. However, the tag arrays in Mirage and

Maya-Cache contain more tag locations than data locations. This increased number of tag

locations helps to eliminate conflict misses in the cache, which is a key factor in timing

channel attacks.

In addition to improving the lifetime, a future STT-RAM LLC must also be secure. So far,

little attention has been given to how recent security countermeasures can be integrated

with STT-RAM LLCs. The decoupled tag/data array-based countermeasures mentioned

above were mainly designed for SRAM-based LLCs. Existing lifetime enhancement

techniques like PoLF, WAD, DWAWR, and i2WAP cannot be implemented on top of

such designs due to structural mismatches and security concerns. However, SmartDeCoup

is built on the same decoupled tag/data array structure used by Mirage and Maya-Cache

for securing the cache. Therefore, it can be implemented on top of these secure LLC

designs, making SmartDeCoup a better option for LLC design.

4.3.5.1 Challenges in Implementing SmartDeCoup on Mirage and

Maya-Cache:

A detailed discussion of Mirage [63] and Maya-Cache [106] is beyond the scope of this

paper. The core concept of these techniques is to avoid any evictions caused by conflict

misses in the tag array. The Hardware Efficient Approach of SmartDeCoup cannot be

directly applied to these techniques, as it may cause some invalidation. However, a

modified version of this approach that only involves swapping, or the Primal Approach, can

be used without compromising security. Other wear leveling techniques still consider the

cache as a whole set associative cache, while to the best of our knowledge, SmartDeCoup

is the first architecture that proposed wear leveling in a decoupled setting with a 1:1

mapping. The Primal Approach is compatible with Mirage and Maya-cache as they also

implement a decoupled fully associative data array with a set associative tag array. Mirage

and Maya-cache provide security but do not keep in mind the endurance, as in the data

array they follow a global random replacement policy with some slight modifications. The

randomization of block replacement can create unwanted data patterns detrimental to

endurance. Hence, SmartDeCoup can enhance the endurance of secure STT-RAM LLCs,

a capability that existing endurance techniques cannot achieve.

4.3.5.2 SmartDeCoup with non-decoupled secured LLC designs

The secure LLC design with a decoupled tag and data array is one of the most efficient

secure designs. The proposed SmartDeCoup can be integrated with these designs.

Non-decoupled secure NVM LLCs can be categorized into two types:

• Randomized NVM LLC – This design faces issues due to additional remapping

writes. Using a decoupled tag and data array can significantly reduce these costs by

66 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

performing the remapping only at the tag array. However, this concept was already

introduced by another researcher of our lab.

• Partitioned NVM LLC – This design struggles with endurance issues because

existing endurance techniques (e.g., SWWR, DWAWR) cannot be directly applied.

To address this, SmartDeCoup’s decoupled tag and data array design can be used

to maintain partitions only in the tag array, while keeping the data array free for

the endurance techniques introduced in SmartDeCoup.

4.4 Experiments

4.4.1 Simulator Setup

For our evaluation of SmartDeCoup we use a custom-modified version of the ChampSim

simulator [97]. Our experiments are done on both single-core and multi-core systems

(primarily quad-core), featuring a three-level cache hierarchy. The L1 and L2 are

SRAM-based private caches. In the L3 (LLC) cache, the data array is designed using

STT-RAM while the tag array is designed using SRAM. The baseline ChampSim simulator

is extensively modified to support the decoupling of tag and data array as depicted in

Figure 4.2. Table 4.1 provides the detailed parameters of the system on based on which

the simulator is configured. We conduct experiments with three different sizes of LLC:

4MB, 8MB and 16MB. There has been no influence on the L2 cache because of the LLC

modifications. The L2 works as it is, all the changes are at the LLC level from the cache

decoupling to the redirection and swaps. In our work we have considered only the LLC

as an STT-RAM all other memory structures are unchanged. We have used the read

and write latencies for implementing STT-RAM based LLC as the same as proposed by

Korgaonkar et al. [13], this is because using a hybrid SRAM and STT-RAM will have the

same latency as a normal STT-RAM based cache as shown by Coi et al. [107].

Table 4.1: Simulation parameters of the baseline single-core system.

System Components Parameters

Core Out-of-order, bimodal branch predictor, 4 GHz
with 6-issue width, 4-retire width, 352-entry ROB

L1I 32 KB, 8-way, 4 cycles

L1D 48 KB, 12-way, 5 cycles

L2 1MB 8-way associative, 10 cycles, LRU

LLC 4MB STT-RAM, 16-way, RL: 20 cycles, WL: 100
cycles, LRU

MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC

DRAM controller 64-entry RQ and WQ, reads prioritized over writes,
Burst write: 6/8th of queue size

DRAM chip 4KB row-buffer per bank, open page, burst length
16, tRP: 12.5ns, tRCD: 12.5ns, tCAS: 12.5ns,
tRAS:12.5ns, Scheduling Policy:FRFCS

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 67

We conduct a comprehensive comparison of our approach with several state of the art

techniques including PoLF [12], WAD [15], SwS [12], G-OAS [15], i2WAP [12], Sequoia [15],

SWWR [14], DWAWR [14], along with the baseline STT-RAM LLC. The baseline employs

an LRU replacement policy and does not incorporate any wear-leveling mechanism. In

PoLF, the flush threshold (FT) is configured to 16 for our simulations. WAD employs

the clean-LRU block replacement algorithm for cache management. It utilizes a 3-bit

saturating counter (SC) to track writes. SwS focuses on swapping the mappings of two

sets at a time and shifting the remaining sets based on the swap threshold (ST). G-OAS

organizes the cache sets into small groups (such as 4, 8, or 16) and facilitates the swapping

of write-hot sets with cold sets within these groups. SWWR employs a window size of

four ways and utilizes a 12-bit write counter for each window to track write operations.

In contrast, DWAWR uses a 11-bit write counter per way to count the writes.

We experiment with LLC size: 4MB, 8MB, and 16MB with four different configurations of

Primal Approach and Hardware Efficient Approach respectively as depicted in Table 4.2.

For our experiments, we define the epoch size as 105 instructions. In a single-core setup for

each workload, the warm-up phase consists of 100 million instructions followed by 1 billion

instructions for execution. In the case of a multi-core setup, specifically for our quad-core

systems, the simulation initiates with a warm-up phase of 50 million instructions followed

by a run of 250 million instructions per core to complete the workload.

We have implemented a threshold where the difference between the highest and lowest

WCTR will have to be a minimum of 20 writes in the case of the Primal Approach, while

in the case of the Hardware Efficient Approach the threshold is dynamically controlled,

i.e. if the bucket size is larger the threshold increases with increasing bucket size and

decreasing number of buckets. Therefore, the lower the number of buckets, the higher the

switching threshold. Table 4.3 shows us the different switching thresholds for the different

bucket count.

Table 4.2: Configurations of Primal and Hardware Efficient Approaches.

No. Primal Approach Hardware Efficient Approach

1 Top 5%SWAP 2 buckets

2 Top 10%SWAP 10 buckets

3 Top 20%SWAP 26 buckets

4 Top 30%SWAP 100 buckets

Table 4.3: Thresholds for Switching in different bucket count for Hardware Efficient
Approaches.

Hardware Efficient Approach Redirection Threshold

2 buckets 2500

10 buckets 1000

26 buckets 500

100 buckets 100

68 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

4.4.2 Workloads

We use write-intensive benchmarks from the SPEC2006 and SPEC2017 benchmark suite

[98] for our experiments. To identify these benchmarks, we simulated the full range of

SPEC2006 workloads to pinpoint those that demonstrated write-intensive characteristics

within the LLC. We also incorporate several write-intensive graph applications from the

GAP benchmark suite [99] into our simulations. Table 4.4 presents a comprehensive

list of all the write-intensive workloads utilized in our single-core simulations. We have

also employed the use of AI workloads and analyzed them in Section 4.5.3.3. For the

quad-core setup, we employ three distinct workload mixes, each chosen with varying

characteristics to capture a broad spectrum of write patterns. The specific composition

and attributes of these workload mixes are detailed in Table 4.5. Here, L, H and G denotes

the characteristics of those workloads, denoting low write intensive, high write intensive

and graph workloads respectively. We have also conducted a detailed comparison between

the SPEC2017 [112], SPEC2006 [98] and the GAP benchmark suite [99] in Section 4.5.3.2.

We have also run our simulations on AI workloads like deepsjeng, leela, and exchange2 in

order to capture how they behave with our proposed techniques.

Table 4.4: Write Intensive Workloads for single-core system.

Benchmark Write Intensive Workloads

SPEC2006 cactusADM 734B, gcc 13B, GemsFDTD 109B, lbm 94B,
leslie3d 94B, libquantum 964B, mcf 46B, milc 360B,
soplex 66B, sphinx3 883B, wrf 1212B, xalancbmk 99B,
zeusmp 100B

SPEC2017 cactusADM 1804B, gcc 16B, GemsFDTD 765B,
lbm 1274B, leslie3d 134B, libquantum 714B, mcf 22B,
milc 127B, soplex 92B, sphinx3 234B, wrf 575B,
xalancbmk 10B, zeusmp 10B

GAP bc-12, bfs-10, cc-13, pr-5, sssp-5

AI Workloads deepsjeng, leela, and exchange2

Table 4.5: Workloads for Quad-Core System.

Mix Type Workloads

Mix1 -LLHH gobmk, gromacs, mcf, libquantum

Mix2 -HHHH mcf, libquantum, lbm, xalancbmk

Mix3 -GGGG pr (page rank), bc (betweenness centrality), bfs
(breadth first search), sssp (single source shortest
path)

4.5 Results and Analysis

In this section, we present a comparative analysis of various wear-leveling techniques

against the baseline STT-RAM LLC, evaluating them across a range of metrics. We also

present a detailed comparison of our proposed techniques against these state-of-the-art

techniques. All the results here are shown for a 4MB LLC, the 8MB and 16MB LLC

follow similar trends.

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 69

4.5.1 Primal Approach

In order to show the effectiveness of our Primal Approach we have shown how the write

distribution is spread across a 4MB, 16-way set associative LLC. Here, the number of writes

per epoch of 100,000 instructions is depicted for the SWAP10% configuration. Figure 4.5

for Epoch 1 shows the write concentration on one side of the cache which is then remapped

to another side where Epoch 2 in Figure 4.6 shows concentration, Epoch 3 in Figure 4.7

shows the concentration in the central areas. Therefore, from these heat-maps it is clearly

evident how writes are distributed across the LLC epoch wise and the wear leveling is

done effectively.

Figure 4.5: Write Distribution for Epoch 1 for Primal Approach on SWAP 10%.

Figure 4.6: Write Distribution for Epoch 2 for Primal Approach on SWAP 10%.

Figure 4.7: Write Distribution for Epoch 3 for Primal Approach on SWAP 10%.

70 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

4.5.1.1 Single-core Analysis

All the configurations of the Primal Approach are compared with the state-of-the-art

wear leveling techniques. Figure 4.8 shows us the RLI in times as compared to the other

state-of-art in a single-core system with write-intensive benchmarks. It can be observed

that the 30% SWAP brings about a 14.45 times improvement in lifetime, the highest

relative lifetime improvement as compared to the other techniques for STT-RAM LLC.

The trend of reduction in RLI with decreasing %SWAP is also clearly evident. 14.45×,

13.68×, 10.80×, and 6.42× depicts the geomean values for RLI of 30%SWAP, 20%SWAP,

10%SWAP and 5%SWAP respectively.

Figure 4.8: Relative Lifetime Improvement in single-core systems for Primal Approach.

Figure 4.9 illustrates the reduction in IntraV achieved by various wear-leveling techniques,

normalized against the baseline. It can be observed that the 30% SWAP with Primal

Approach provides the highest reduction in InterV of 80%. This represents a significant

advancement over the previous state-of-the-art methods, specifically, a 15% reduction

with PoLF and a 29% reduction with WAD, both of which are specialized techniques

focused on reducing IntraV. Our Primal Approach demonstrates superior effectiveness in

mitigating IntraV, further enhancing the reliability and longevity of the system. Figure

4.10 brings to the limelight that the specific techniques like SWS and G-OAS(4) aimed

at reducing only InterV achieve a reduction of 89% and 78% respectively. Meanwhile

the 30% SWAP of the Primal Approach could also garner a respectable 83% reduction in

InterV. i2WAP(PoLF+SWS) and Sequoia(WAD+G-OAS) are a combination of 2 different

techniques aimed at reducing both the IntraV and InterV simultaneously. Figures 4.9 and

4.10 depict a significant reduction in InterV and IntraV for these techniques. However,

our proposed Primal Approach provides a block level wear leveling technique that is the

best of both worlds and reduces both the InterV and the IntraV quite significantly. It is

also clearly evident that the reduction in WVs increases with an increase in the SWAP

percentage, further analysis and details of this trend are done in Section 4.5.3.

Figure 4.11 demonstrates that despite the substantial overhead associated with

wear-leveling at the block level, the impact on system performance remains minimal. This

is reflected in the normalized IPC values for the Primal Approach that show only a slight

performance degradation. The normalized IPC of 5%SWAP, 10%SWAP, 20%SWAP and

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 71

Figure 4.9: Percentage reduction of IntraV in single-core systems for Primal Approach.

Figure 4.10: Percentage reduction of InterV in single-core systems for Primal Approach.

Figure 4.11: Normalized IPC in single-core systems for Primal Approach.

30%SWAP are 0.997, 0.986, 0.994, and 0.990 respectively. This indicates that the Primal

Approach effectively balances wear leveling with performance, maintaining efficiency even

under high-overhead conditions that occur due to extensive SWAP operations in larger

configurations like 30% SWAP.

Table 4.6 summarizes all the values that have been obtained for different configurations

of the Primal Approach compared to the state-of-the-art techniques. It shows that how

much more effective our Primal Approach is in improving the Lifetime of the STT-RAM

based LLC with minimal impact on the performance.

72 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

Table 4.6: Geomean Comparisons for Single-core Systems with Primal Approach.

Technique RLI % red IntraV % red InterV NIPC

PoLF 11.93 14.98 2.04 0.89

WAD 11.23 29.34 0.42 0.92

SWS 12.18 1.82 86.57 0.88

G-OAS(GS-4) 11.94 0.39 78.07 0.91

i2WAP 17.14 14.98 86.57 0.87

Sequoia 17.76 29.34 78.07 0.91

SWWR 5.67 33.22 2.01 0.98

DWAWR 13.55 40.85 2.49 0.99

5%SWAP 32.96 76.54 77.39 0.99

10%SWAP 34.98 78.87 79.76 0.98

20%SWAP 40.97 79.71 81.26 0.99

30%SWAP 44.55 80.13 83.44 0.99

4.5.1.2 Multi-core Analysis

The multi-core experiments exhibit behavior similar to that observed in the single-core

experiments, but with effects that are amplified in scale. This amplification highlights

the increased complexity and challenges of managing wear leveling and performance in

a multi-core environment, while still reflecting the underlying trends identified in the

single-core analysis. Figure 4.12 shows that RLI for 5%SWAP, 10%SWAP, 20%SWAP

and 30%SWAP is 5.445×, 7.657×, 9.103×, and 12.347× respectively. This is significantly

higher than the state-of-the-art, a trend similar to single-core runs.

Figure 4.12: Relative Lifetime Improvement in multi-core systems for Primal Approach.

Figure 4.13: Percentage reduction of IntraV in multi-core systems for Primal Approach.

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 73

Figure 4.14: Percentage reduction of InterV in multi-core systems for Primal Approach.

Figures 4.13 and 4.14 present a comparative analysis of various wear leveling techniques,

focusing on their effectiveness in reducing IntraV and InterV, respectively. The reduction

in IntraV for 30% SWAP of Primal Approach in the multi-core system is 53% which is

much lower than the reduction in the single-core system of 83% in 30% SWAP. This is

because of the frequently changing diverse data write patterns in multi-core systems. In

the case of InterV the reduction values are similar for single-core (83%) and multi-core

(79%) for 30% SWAP in the Primal Approach.

Figure 4.15: Normalized IPC in multi-core systems for Primal Approach.

The performance of multi-core systems follows similar trends as single-core systems as

depicted through Figure 4.15, but the different Mixes show varying degrees of responses

to different wear leveling techniques. For example, Mix1 is a mixture of both read-intensive

and write-intensive workloads and they show a reduced IPC as compared to other Mixes

due to wear leveled writes taking up read locations. The maximum normalized IPC

is observed in the case of 30% SWAP, which is an improvement over the state-of-the-art

techniques. A single trend runs through all these figures, showing that the higher % SWAP

configurations achieve better improvements as compared to others. This is because with

increasing levels of wear-leveling in write-intensive workloads the significant blocks stay in

the LLC longer and they can be serviced when any requests come for those blocks and it

need not incur the miss penalty.

Table 4.7 summarizes all the values that have been obtained for different configurations

of the Primal Approach compared to the state-of-the-art techniques. It shows that how

much more effective our Primal Approach is in improving the Lifetime of the STT-RAM

based LLC with minimal impact on the performance.

74 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

Table 4.7: Geomean Comparisons for Multi-core Systems with Primal Approach.

Technique RLI % red IntraV % red InterV NIPC

PoLF 10.47 21.96 0.7 0.83

WAD 10.31 20.7 1.17 0.87

SWS 15.93 0.93 63.56 0.86

G-OAS(GS-4) 14.79 1.08 72.39 0.83

i2WAP 21.37 21.96 63.5 0.81

Sequoia 22.49 20.7 74.42 0.79

SWWR 8.09 39.71 0.83 0.92

DWAWR 19.49 43.41 1.27 0.94

5%SWAP 25.83 39.21 75.20 0.94

10%SWAP 28.74 48.83 77.04 0.97

20%SWAP 30.14 48.9 78.12 0.98

30%SWAP 33.41 53.13 79.42 0.98

4.5.2 Hardware Efficient Approach

4.5.2.1 Single-core Analysis

Figure 4.16 shows us the increment in RLI as compared to the state-of-the-art techniques.

It can be seen that the configuration with 2BKT shows the highest RLI of 13.07× as

compared to a maximum of 9.14 times achieved by DWAWR. For 10BKT, 26BKT and

100BKT we observe RLI of 9.65×, 8.80×, and 6.008× respectively. Reduction in IntraV

and InterV is highlighted in Figures 4.17 and 4.18 respectively. It is evident that the

proposed technique achieves a very high reduction in IntraV of nearly 82% in the case

of 2BKT, while the other best technique DWAWR provides a reduction of 42%. For

InterV, there is a reduction of 88% in the case of 2BKT which is comparable to the best

state-of-the-art technique SWS that provides a reduction of 89%.

Figure 4.16: Relative Lifetime Improvement in single-core systems for Hardware Efficient
Approach.

Furthermore, the trend of increasing RLI and increased reduction in IntraV and InterV

with a decrease in the number of buckets is evident. This is because the lower the number

of buckets, the greater the size of the hot bucket and the more the number of redirections.

For example, if we have two buckets then half the LLC is considered as Write Hot Bucket,

which will lead to all writes to that section of the LLC to be redirected to the Write Cold

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 75

Figure 4.17: Percentage Reduction of IntraV in single-core systems for Hardware Efficient
Approach.

Figure 4.18: Percentage Reduction of InterV in single-core systems for Hardware Efficient
Approach.

Bucket, i.e. the other half of the LLC. Now increasing the number of buckets will lead

to a smaller Write Hot Bucket and therefore lower the number of redirections. This is

mainly because with the number of buckets decreasing, there is an increase in the number

of redirections, which causes empty locations to appear in the read-only write hot bucket

that are now labeled with dirty bits. Therefore, the lower the bucket count, the more the

number of redirections, and the lower the hit rate of the cache because of invalidations

as the amount of data stored in the LLC is lower, which in-turn is responsible for the

performance degradation.

Figure 4.19: Normalized IPC in single-core systems for Hardware Efficient Approach.

In Figure 4.19 we observe a small degradation in performance with the 2BKT configuration

76 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

having the lowest normalized IPC of 0.93 which is still better than all the proposed

state-of-the-art techniques. These results suggest that the Hardware Efficient Approach

successfully balances wear leveling with system performance, maintaining efficiency even in

the presence of significant redirection overhead that occurs mainly in 2BKT configuration.

Table 4.8 summarizes all the values that have been obtained for different configurations

of the Primal Approach compared to the state-of-the-art techniques. It shows that how

much more effective our Hardware Efficient Approach is in improving the Lifetime of the

STT-RAM based LLC with minimal impact on the performance.

Table 4.8: Geomean Comparisons for Single-core Systems with Hardware Efficient
Approach.

Technique RLI % red IntraV % red InterV NIPC

PoLF 11.93 14.98 2.04 0.89

WAD 11.23 29.34 0.42 0.92

SWS 12.18 1.82 86.57 0.88

G-OAS(GS-4) 11.94 0.39 78.07 0.91

i2WAP 17.14 14.98 86.57 0.87

Sequoia 17.76 29.34 78.07 0.91

SWWR 5.67 33.22 2.01 0.98

DWAWR 13.55 40.85 2.49 0.99

2BKT 42.36 82.63 88.09 0.93

10BKT 34.96 78.57 79.76 0.96

26BKT 31.57 74.95 73.93 0.97

100BKT 28.97 73.38 72.13 0.96

4.5.2.2 Multi-core Analysis

The multi-core setup reveals behavior similar to single-core experiments but with amplified

effects, highlighting increased complexity, challenges in wear leveling, and performance

management, while retaining core insights on scaling impacts. Figure 4.20 illustrates

the impact of wear leveling techniques on extending the multi-core system’s lifetime,

comparing state-of-the-art methods with the proposed Hardware Efficient Approach.

The 2BKT configuration achieved the highest relative lifetime improvement of 12.34×
, while the next best technique, DWAWR achieved only 7.61×. Figures 4.21 and 4.22

provide a comparative analysis of wear-leveling techniques, focusing on reducing IntraV

and InterV respectively. The 2BKT configuration of the proposed Hardware Efficient

Approach achieves a maximum IntraV reduction of 51%, outperforming DWAWR’s 43%,

though significantly lower than the 82% reduction seen in single-core systems. For InterV

reduction, the 2BKT configuration achieves a 75% reduction, slightly better than Sequoia’s

74% but lower than 88% obtained by 2BKT for single-core systems. The normalized IPC

values for the 2BKT is relatively lower than its counterparts because in case of 2BKT

we see a large number of redirections that will in turn effect the search time and the

performance of the system.

Table 4.9 summarizes all the values that have been obtained for different configurations

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 77

Figure 4.20: Relative Lifetime Improvement in multi-core systems for Hardware Efficient
Approach.

Figure 4.21: Percentage Reduction of IntraV in multi-core systems for Hardware Efficient
Approach.

Figure 4.22: Percentage Reduction of InterV in multi-core systems for Hardware Efficient
Approach.

Figure 4.23: Normalized IPC in multi-core systems for Hardware Efficient Approach.

of the Primal Approach compared to the state-of-the-art techniques. It shows that how

much more effective our Primal Approach is in improving the Lifetime of the STT-RAM

78 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

based LLC with minimal impact on the performance.

Table 4.9: Geomean Comparisons for Multi-core Systems with Hardware Efficient
Approach.

Technique RLI % red IntraV % red InterV NIPC

PoLF 10.47 21.96 0.7 0.83

WAD 10.31 20.7 1.17 0.87

SWS 15.93 0.93 63.56 0.86

G-OAS(GS-4) 14.79 1.08 72.39 0.83

i2WAP 21.37 21.96 63.5 0.81

Sequoia 22.49 20.7 74.42 0.79

SWWR 8.09 39.71 0.83 0.92

DWAWR 19.49 43.41 1.27 0.94

2BKT 32.54 51.09 75.20 0.84

10BKT 27.66 48.83 61.96 0.94

26BKT 24.36 40.61 53.47 0.95

100BKT 21.77 37.05 47.62 0.97

4.5.3 Sensitivity Analysis

4.5.3.1 Primal Approach vs Hardware Efficient Approach

All comparisons done in this section is with single core workloads of SPEC2006 and GAP

workloads. Figure 4.24 shows the trends in the reduction of IntraV and InterV in a

single-core system. It depicts that the reduction in IntraV and InterV increases with an

increase in the SWAP % in the case of the Primal Approach. In the case of Hardware

Efficient Approach both the IntraV and InterV decrease with an increase in bucket count.

In this section, all the other Figures 4.25, 4.26 and 4.27 depict the various configurations

of both: (a) Primal Approach presented in blue and (b) Hardware Efficient Approach

presented in red. In Figure 4.25 it can be observed that the lower the bucket count,

the larger the bucket size, therefore 2BKT configuration will have more number of write

redirection than the 100BKT configuration for the Hardware Efficient Approach. In the

case of the Primal Approach, it can be determined that the larger percentages of SWAP

has more redirection as more write hot blocks are selected for block swapping. Figure 4.26

compares the effect of the different configurations on the Relative Lifetime Improvement

of the two Approaches. It can be observed that the general trend of increase in RLI with

an increase in SWAP percentage in Primal Approach, while the RLI decreases with an

increase in the bucket count for Hardware Efficient Approach.

One observation we can see that in the case of 2BKT in Hardware Efficient Approach

even though it selects 50% of the cache for redirection having higher redirection count

it has lower RLI, lower reduction in InterV and IntraV than 30%SWAP. This is because

in 2BKT the redirection is not Primal but random, i.e., the wear leveling is not being

targeted always at the specific locations, whereas in 30%SWAP writes are redirected from

write hot blocks to cold blocks. Figure 4.27 highlights that random redirection in the

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 79

Hardware Efficient Approach can lead to a significant reduction in performance even more

than the Primal Approach.

Figure 4.24: Comparison of Reduction in IntraV and InterV in a Single-core System.

Figure 4.25: Comparison of Redirection/SWAP Count in a Single-core System.

Figure 4.26: Comparison of Relative Lifetime Improvement in a Single-core System.

Figure 4.27: Comparison of Normalized IPC in a Single-core System.

80 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

Table 4.10 provides insights into how our techniques behave with increasing LLC size. All

values are the geometric mean of the write-intensive workloads in a single-core system.

Some observable trends from the table are:

• The reduction in IntraV and InterV decreases with an increase in the LLC cache

size. This occurs because the larger the cache size the more the IntraV and InterV

as larger cache sizes have a greater chance of encountering complex write patterns

which are not always solvable by the Primal Approach.

• RLI increases with the increase in cache size. This occurs because the larger the

cache size the more distributed the writes will be and the lower the max write count.

• The number of SWAPS/redirection decreases with the increasing cache size because

the number of incoming write-backs to the buckets is also distributed.

• The NIPC values of the proposed approaches show higher degradation in Hardware

Efficient Approach due to random redirection within a whole bucket. In case of

2BKT it can land in any position in half of the cache.

Table 4.10: Comparisons of various configurations of the proposed technique with varying
cache sizes.

Configuration LLC Size % Reduction in % Reduction in Relative LI Normalized IPC No. of SWAPS/
IntraV InterV Redirection

5%SWAP 4MB 76.55 77.40 6.43 0.9977 22593.94

10%SWAP 4MB 78.88 79.76 10.81 0.9862 31549.39

20%SWAP 4MB 79.71 81.26 13.69 0.9946 37716.00

30%SWAP 4MB 80.13 83.45 14.45 0.9903 45868.52

2BKT 4MB 82.63 88.09 13.33 0.9385 57141.94

10BKT 4MB 78.88 79.76 9.65 0.9698 42242.31

26BKT 4MB 74.96 73.94 8.81 0.9747 27662.96

100BKT 4MB 73.20 72.20 6.01 0.9628 16115.26

5%SWAP 8MB 35.23 67.23 11.18 0.8745 7563.59

10%SWAP 8MB 40.02 73.29 13.21 0.8307 9346.62

20%SWAP 8MB 45.18 76.98 14.29 0.7891 11530.69

30%SWAP 8MB 48.02 85.11 15.50 0.7409 12928.29

2BKT 8MB 47.00 76.40 16.73 0.7292 16939.49

10BKT 8MB 42.72 72.05 13.66 0.7765 9346.62

26BKT 8MB 39.30 66.72 10.47 0.8268 5771.59

100BKT 8MB 37.87 58.11 7.91 0.8804 1797.31

5%SWAP 16MB 25.09 54.61 11.52 0.9005 2355.14

10%SWAP 16MB 28.51 59.54 16.65 0.8994 4288.09

20%SWAP 16MB 32.18 62.53 19.26 0.8549 9356.41

30%SWAP 16MB 34.21 69.14 24.99 0.7687 12930.85

2BKT 16MB 33.48 62.06 22.47 0.7125 17871.05

10BKT 16MB 30.43 58.53 14.70 0.8125 4288.09

26BKT 16MB 28.00 54.20 11.52 0.8592 2267.80

100BKT 16MB 26.98 47.21 8.31 0.9077 1038.63

4.5.3.2 SPEC2017 vs SPEC2006 vs GAP

This section presents a comparative analysis of benchmark outputs obtained from

our proposed techniques, the primal approach and the hardware-efficient approach,

under various configuration settings. The results are based on single-core systems

executing write-intensive workloads, with the geometric mean values used for graphical

representation.

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 81

Figure 4.28 illustrates the normalized IPC variations across different workloads. The

observed trends reveal strong similarities between SPEC2017 and SPEC2006 benchmarks,

while the GAP benchmarks, which involve more intensive write operations, exhibit

higher normalized IPC values than their SPEC counterparts. The maximum geomean

normalized IPC values recorded were 0.96 for SPEC2017, 0.97 for SPEC2006, and 1.07 for

GAP benchmarks, demonstrating the advantage of our proposed techniques in handling

write-heavy workloads.

Figure 4.29 provides a detailed comparison of percentage reduction in IntraV across

different workloads when executed on our proposed architectures. While SPEC2006 and

SPEC2017 follow similar trends, SPEC2017 exhibits more pronounced variations across

different configurations. In contrast, the GAP benchmarks display significantly higher

reductions in IntraV, a direct result of their greater write intensity compared to SPEC

benchmarks.

Figure 4.30 shows the percentage reduction in InterV across all three benchmark categories.

The results indicate that SPEC2017, SPEC2006, and GAP benchmarks follow similar

trends, with the GAP benchmarks exhibiting a more pronounced reduction. Notably,

SPEC2006 achieves a greater reduction in InterV than SPEC2017, underscoring the

efficiency of our proposed techniques in mitigating InterV across different workloads.

Figure 4.31 presents the relative lifetime improvement of various configurations compared

to the baseline LRU configuration. Once again, SPEC2006 and SPEC2017 display closely

matching trends and values, whereas the GAP benchmarks exhibit significantly higher

RLI values, reinforcing the advantages of our techniques in prolonging memory lifetime

under write-intensive conditions.

Based on these findings, we conclude that our proposed techniques demonstrate superior

performance on highly write-intensive GAP benchmarks compared to SPEC benchmarks.

The heightened impact of our optimizations on GAP workloads confirms that our approach

is particularly effective for environments with frequent write operations, further validating

its role in enhancing system performance and memory longevity.

Figure 4.28: Normalized IPC of various different benchmarks run on various configurations
of our proposed approaches.

82 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

Figure 4.29: Reduction in IntraV of various different benchmarks run on various
configurations of our proposed approaches.

Figure 4.30: Reduction in InterV of various different benchmarks run on various
configurations of our proposed approaches.

Figure 4.31: RLI of various different benchmarks run on various configurations of our
proposed approaches.

4.5.3.3 Analysis of AI Workloads

AI workloads are write intensive and can lead to a large number of writes into the LLC.

In order to show how AI workloads behave we have conducted an analysis of a few AI

workloads like deepsjeng, leela, and exchange2 for the various configurations of the Primal

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 83

and Hardware Efficient Approach. Figure 4.32 depicts the RLI brought about by the

various configurations on AI workloads. It can be clearly seen that the Primal Approach

with increasing SWAP% is more effective than the Hardware Efficient Approach which

decreases in efficiency with the increase in the number of buckets.

Figure 4.32: RLI of AI workloads on various configurations.

Figure 4.33 shows the varying degree of reduction in the InterV and IntraV when AI

workloads are run with various configurations of the Primal and Hardware Efficient

Approach. It shows that 30%SWAP is the most effective in reducing both the InterV

and IntraV in case of Primal Approach while 2BKT having least number of buckets is

most effective in case of Hardware Efficient Approach. The reduction in WV increases

with an increase in the SWAP% while it decreases with the increase in the number of

buckets.

Figure 4.33: % Reduction of InterV and IntraV of AI workloads on various configurations.

4.5.4 Overhead Analysis

In the case of the Primal Approach, we employ an extra 8-bit write counter per block in

the data array. Along with that, we have an additional valid bit and a log2B bit backward

pointer. There is also a log2B bit forward pointer and a valid bit for every SRAM tag

array entry. ‘B’ denotes the total number of blocks in the cache. In case a write counter

is saturated after a certain epoch then we will half that specific write counter of the data

84 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

array block. In case of Hardware Efficient Approach we try to minimize the number of

write counters and employ only one single counter per bucket. Different bucket sizes

have different write counter sizes as the larger the bucket we have to accommodate larger

counter size. We employ a FPTR and BPTR also for all the configurations of Hardware

Efficient Approach, and the size of the FPTR and BPTR are similar to the ones in the

Primal Approach.

Table 4.11 provides details of the overall storage overhead required with various

configurations of the proposed approaches as compared with other state-of-the-art

techniques. Table 4.11 details how different sizes of the LLC can change the size of

the FPTR and BPTR. It also details how the bucket counter size in the case of Hardware

Efficient Approach varies with the changing LLC size. Here, the value of P & S are

determined as:

P = ⌈log2(BS)⌉ (4.1)

S = ⌈log2
(
109

BS

)
⌉ (4.2)

P is indicative of the number of bits required to map all the blocks into a bucket in the

Hardware Efficient Approach and S denotes the varying write counter size of the Hardware

Efficient Approach. The term BS is the number of bits required to represent the Bucket

Size. It is used to compute ‘E’ which the total size of the write counters.

Table 4.11: Storage Overhead of Proposed Techniques.

Configuration LLC Size No. of Blocks FPTR&BPTR Bucket ID Total WCTR Valid Bit Total % Overhead
A B=A/64Bytes C=B*log2B D=BS*P E=B*8 / F=B*1bit Overhead over

(bits) (bits) E=BS*S (bits) (2*C+D+E+F) baseline
(bits) (KB)

Q%SWAP 4MB 65536 1048576 0 524288 65536 328 8

2BKT 4MB 65536 1048576 2 60 65536 264.007 6.4

10BKT 4MB 65536 1048576 40 270 65536 264.03 6.446

26BKT 4MB 65536 1048576 130 676 65536 264.09 6.447

100BKT 4MB 65536 1048576 700 2400 65536 264.378 6.45

Q%SWAP 8MB 131072 2228224 0 1048576 131072 688 8.39

2BKT 8MB 131072 2228224 2 60 131072 560 6.83

10BKT 8MB 131072 2228224 40 270 131072 560.037 6.836

26BKT 8MB 131072 2228224 130 676 131072 560.098 6.837

100BKT 8MB 131072 2228224 700 2400 131072 560.37 6.84

Q%SWAP 16MB 262144 4718592 0 2097152 262144 1440 8.789

2BKT 16MB 262144 4718592 2 60 262144 1184.007 7.22

10BKT 16MB 262144 4718592 40 270 262144 1184.0378 7.226

26BKT 16MB 262144 4718592 130 676 262144 1184.0983 7.227

100BKT 16MB 262144 4718592 700 2400 262144 76.0473 7.2288

Table 4.11 offers a detailed analysis of the storage/hardware overhead of our techniques as

the LLC size increases. The reported values are for different configurations of our proposed

approaches in a single-core system. Key trends observed in the table include:

• In case of Primal Approach the hardware overhead is the same for all configurations

having the same LLC size.

• In case of Hardware Efficient Approach we can clearly see a trend that with the

increase in the number of buckets the storage overhead increases. This is because

with the increase in the number of buckets, it employs more counters per buckets

which takes up more storage space.

Chapter 4. Decoupling the tag and data array for Lifetime Improvement 85

• In the case of Primal Approach we see that with increasing LLC size the overall

storage overhead was also increasing sizably, as each block needed to have its own

write counter.

• In case of Hardware Efficient Approach the increment in the total % overhead is

minimal and gradual as compared to Primal Approach, which occurs mainly due

to the increase in the number of valid bits and the bits required for addressing the

FPTR and BPTR.

Another overhead that exists is due to the extra energy required for the SWAP operations

in Primal Approach. Each SWAP operation always entails an extra write. The redirection

operation does not incur any extra writes and therefore it does not have any energy

overhead. As we can see the increase in SWAP operations with the increase in aggressiveness

of swapping. If we consider a very high retention time STT-RAM based LLC then the write

energy per STT-RAM cell is 1.916nJ [113]. Therefore, 30%SWAP configuration in a 4MB

shared cache will have an energy overhead of nearly 89902.29nJ per 1 Billion instructions,

which is equivalent to a 4.9% energy overhead over the baseline LRU configuration.

4.6 Conclusion

Through our research, we have emphasized the simple modifications that are needed for

adopting STT-RAM LLCs as a superior alternative to SRAM-based LLCs. Although

STT-RAM offers significant advantages, a full-scale implementation of STT-RAM LLCs is

not without its challenges. Issues such as potential performance degradation and concerns

about the technology’s limited lifetime must be carefully considered and addressed to fully

realize the benefits of this approach. Therefore, we introduce SmartDeCoup, an innovative

architecture that is not only power-efficient and cost-effective but also strategically

engineered to address the challenges associated with STT-RAM LLCs. SmartDeCoup

aims to significantly reduce IntraV and InterV, which are key factors in the wear and tear

of STT-RAM cells, thereby dramatically improving the overall lifetime of the STT-RAM

LLC. Importantly, this architecture achieves these enhancements without sacrificing much

system performance, ensuring that the benefits of STT-RAM technology can be fully

realized in a reliable and sustainable manner. This makes SmartDeCoup a compelling

solution for those looking to optimize the trade-offs between performance, longevity, and

cost in next-generation computing systems while providing a framework for security setups.

86 Chapter 4. Decoupling the tag and data array for Lifetime Improvement

Chapter 5

Endurance Attacks on STTRAM

LLCs

Malicious attacks in a multi-core setup need access to only a single core to perform repeated

attacks on specific memory locations that can lead to an accelerated lifetime degradation

of the STT-RAM LLC cells. To highlight this vulnerability of STT-RAM LLC we propose

four variations of TENDRA (Targeted Endurance Attack), namely, Recurring Location

Attack (RLA), Recurring Toggle Attack (RTA), Random Location Attack (RnLA) and

Random Toggle Attack (RnTA). Our work highlights the efficiency of these attacks on

modern counter based wear leveling techniques and also the effect of wear leveling on these

attacks.

Publications from this Chapter

• Prabuddha Sinha, Mangena Likhit Sai, Shirshendu Das and Venkata Tavva Kalyan,

“TENDRA: Targeted Endurance Attack in STT-RAM based LLCs”, in IEEE Embedded

Systems Letters. [DOI: 10.1109/LES.2024.3502297], also part of the SeHAS Workshop at

HiPEAC 2025.

5.1 Introduction

Uneven write distribution is a major factor aggravating the limited write endurance issue of

STT-RAM LLC. Modern multi-core processors typically have a shared LLC with different

private L1 and L2 caches. Write-backs from different applications from their respective

L2’s lead to diverse/complex write patterns at the LLC. Accordingly, in order to increase

the lifetime of the STT-RAM LLC, various counter based wear leveling techniques were

introduced [12, 13]. These wear leveling techniques try to remap the heavily written cache

lines to other memory locations. This work stands-apart and primarily presents a detailed

study of how existing counter wear leveling techniques are vulnerable to endurance attacks.

Endurance attacks, as the name suggests, aim to increase the writes to the STT-RAM,

leading to an accelerated wear-out of the cells. The accelerated wear-out occurs due

to repeated writes to specific locations in the STT-RAM. Endurance attacks not only

accelerate the degradation of STT-RAM, drastically shortening its lifetime, but also create

significant security vulnerabilities, potentially compromising the integrity and reliability

of the system.

88 Chapter 5. Endurance Attacks on STTRAM LLCs

5.2 Motivation

Most existing wear leveling techniques are proposed and tested only with standard

benchmark applications that are benign in nature [112]. These techniques can be bypassed

to launch an endurance attack. STT-RAM cells writes data by flipping the magnetic

orientation of layers within a magnetic tunnel junction using spin-polarized currents. The

high current densities required for writes lead to electron migration and degradation of

the tunnel barrier over time. Over many write (or erase) cycles, the incremental damages

accumulate, leading to increased error rates and eventually to cell failure. The physical

limits of the materials used determine the maximum number of reliable sustainable write

cycles, known as the write endurance limit. Non-uniform writes lead to accelerated

degradation of specific targeted STT-RAM cells. Without wear leveling, this uneven wear

can cause premature failure of certain regions of the memory, reducing the overall lifespan

of the device. For example, user can deliberately run a malicious program to hasten the

wear-out of the STT-RAM, particularly when the warranty period of the product is nearing

its end, with the intention of receiving a replacement system from the manufacturer under

the guise of legitimate failure. Consequently, the security challenges in STT-RAM based

LLCs extend beyond threats posed by malicious attackers for manipulating or retrieving

data to include opportunistic exploitation by users seeking to manipulate vulnerabilities

for personal gain, such as acquiring replacement machines at will. Until practical and

reliable secure wear-leveling algorithms are developed, it is improbable that industrial

manufacturers will risk designing main memory systems with STT-RAM components. As

LLC is also an on-chip memory any damage to the LLC will require the whole CPU to

be swapped out as a whole, making the system more vulnerable to attack. Various attack

techniques have been proposed for NVM based Main Memory specifically PCM based MM

[114, 115, 116]. These attack techniques develop a metric called LVF (Line Vulnerability

Factor) that show how vulnerable a line is after some attack on the system. They also

propose mitigation techniques like Start-Gap Wear Leveling and Region Based Start-Gap

Wear Leveling and its variations, that help in redistributing the writes evenly and reduce

the write variation thereby improving the lifetime. Rathi et al. [117] also proposed various

techniques to model attacks on NVM based LLCs and the challenges faced in implementing

NVM based LLCs.

Addressing non-uniform writes, various wear leveling techniques have been proposed for

STT-RAM LLC. The most common type of wear leveling techniques proposed are the

counter based techniques, a few recent techniques being i2WAP [12], SWWR, DWWR

and DWAWR [14]. These techniques monitor the regions of the LLC experiencing the

highest concentration of writes within a given time frame and mitigate wear by redirecting

writes from these hotspots to less active areas of the cache. However, malicious programs

can exploit these wear-leveling mechanisms if they acquire prior knowledge about the

locations of write-intensive regions, the destinations of redirected writes, or the timing of

redirection events. Armed with this insight, attackers can strategically time their writes

Chapter 5. Endurance Attacks on STTRAM LLCs 89

to target specific locations, bypassing these defenses and potentially accelerating cache

wear. Furthermore, in wear leveling techniques writes need to be redirected in order to

facilitate efficient wear leveling of the shared STT-RAM LLC, various malicious programs

can take advantage of these algebraic based remapping as they are not deterministic [115]

and are not remapped directly from a table.

5.3 TENDRA: Targeted Endurance Attack

5.3.1 Threat Model

This study explores the design and functionality of a multi-core architecture built around

a sophisticated three-level cache hierarchy. Within this system, each core is provisioned

with private SRAM-based L1 and L2 caches to ensure rapid access to frequently used data.

Complementing this is a shared STT-RAM Last-Level Cache (LLC), which serves as an

inclusive caching layer accessible by all cores. The research delves into a representative use

case where a multi-core system operates in a shared environment, accommodating multiple

users simultaneously. Each user executes tasks with distinct computational requirements,

leading to a dynamic interplay of workloads. As these tasks share processing resources,

the system must adapt to the diverse computational intensities and data access patterns

exhibited by applications running across different cores. This complex environment

provides a compelling context for examining the interplay between workload characteristics

and cache performance in multi-core systems.

The wide variety of workload and data access patterns contributes to a uniquely diverse

write distribution across the shared LLC, capturing the inherent heterogeneity of the

system’s operations. This intricate distribution significantly influences overall system

performance while simultaneously unveiling potential areas of vulnerability that could

be exploited or require optimization.

A malicious user could, for instance, exploit this architectural vulnerability through

meticulously orchestrated endurance attacks. By deliberately engineering workloads to

intensify stress on targeted regions of the cache, these attacks could hasten the degradation

of the STT-RAM LLC, progressively diminishing system performance and potentially

jeopardizing its long-term stability and reliability. This vulnerability underscores the

importance of robust cache management and security mechanisms to ensure the reliability

and integrity of such multi-core architectures. Any attacker can utilize their malicious

endurance attack application and be a nuisance to all the other applications, by targeting

writes specifically to a few predetermined regions in the LLC. Therefore, the attacker

needs to just get access to one single core to run malicious application in order for it to

be a threat to the whole system.

90 Chapter 5. Endurance Attacks on STTRAM LLCs

5.3.2 The Attack Idea

The four different TENDRA explored on top of existing wear leveling techniques, namely,

Recurring Location Attack (RLA), Recurring Toggle Attack (RTA), Random Location

Attack (RnLA) and Random Toggle Attack (RnTA) are explained next.

5.3.2.1 Recurring Location Attack (RLA)

RLA allocates a memory to an array (say large-array) that is larger than L2 cache (a

pseudo-code is shown below) and keeps updating the entries of large-array. Since the

array size is larger than the L2 capacity, the updates performed in line 3 of the RLA

result in write-backs from L2. Hence, for the internal loop (line 2), when the value of i

reaches N , only the last part of the array remains in the L2. The remaining parts must be

written-back to LLC as all the cache blocks must be dirty. When the whole process repeats

multiple times (line 1), it causes a lot of write-backs from L2 to LLC. Since all the writes

are happening to a fixed memory location allocated to the array, the writes target only

fixed LLC locations. Due to such targeted writes in an LLC, a drastic reduction in the

lifetime of the whole LLC is observed. If the data to be written into the L2 cache is not

present in the LLC, an additional write to the LLC occurs as in this case, the required data

block must first be fetched from the main memory to the LLC before it can be written into

the L2 cache. Furthermore, the write latency of an STT-RAM cell is quite high, nearly 100

cycles as compared to the read latency of 20 cycles [118]. Therefore, excessive write-backs

due to the malicious RLA can cause a drastic reduction in the performance of the system

as the write operations keep blocking (leading to contention) the read operations from

other applications running on different cores [13]. To examine the impacts of RLA, we

employ a compact yet effective program designed to generate traces through a repeated

L2 flushing strategy. This approach systematically produces recurring write-back patterns

within the LLC, offering a controlled and consistent mechanism to observe and analyze

the resulting effects.

// Allocate a memory for large_array.

// Size should be more than L2.

1. while(true){

2. for(i=0 to N) //N is array size.

3. large_array[i]+=1;

4. }

Since RLA only targets a particular LLC part to where the allocated array maps, counter

based wear leveling techniques can identify these hot-spots and redirect the write-backs to

other less written locations of LLC. The proposed attack can be partially handled by the

existing endurance enhancement techniques like DWAWR. Therefore, in order to make the

attack more effective against these counter based wear leveling techniques we introduce

another variation of attack.

Chapter 5. Endurance Attacks on STTRAM LLCs 91

5.3.2.2 Recurring Toggle Attack (RTA)

RTA targets two distinct memory locations by orchestrating repeated write-backs from the

L2 cache to the LLC. True to its name, RTA alternates these write-backs between the two

locations, toggling back and forth. After writing to one location, the process randomly

determines the delay before toggling back to the other, introducing unpredictability into

the pattern. Notably, the timing of these toggles is entirely random, generated dynamically

during trace creation, and remains beyond user control. This randomness adds complexity

to the behavior and analysis of such memory interactions.

// Allocate a memory for two large_arrays.

// Size should be more than L2.

1. while(true){

//Frist write on array1. Keep writing until randomly decided to stop.

2. while(true){

3. for(i=0 to N) //N is array size.

4. large_array1[i]+=1;

//randomly select true or false.

5. if (false) break;

6. }

//Once the write on array1 stops, start writing on array2.

// Writing on array 2 will also stop randomly.

7. while(true){

8. for(i=0 to N) //N is array size.

9. large_array2[i]+=1;

//randomly select true or false.

10. if (false) break;

11. }

//The same process will continue infinitely.

12.}

The randomization of switching time is a key factor in RTA’s effectiveness against wear

leveling techniques. Traditional wear leveling mechanisms rely on fixed time intervals to

monitor write activity in the Last-Level Cache (LLC) and identify hotspots. Once a region

is flagged as a write hotspot, it is temporarily closed off to further writes, redirecting new

write traffic to other parts of the cache to distribute wear more evenly.

RTA negates these counter-based wear leveling strategies by leveraging its random toggle

behavior. Instead of persisting with writes to the previously identified hotspot which

would trigger redirection by the wear leveling mechanism, RTA switches its repeated write

activity to another target location. This new target is likely not flagged as a hotspot at

that moment. Consequently, even as the wear leveling mechanism redirects writes from

the previously flagged region, RTA has already shifted its focus to a new area.

The random timing of these toggles ensures that RTA’s write patterns remain out of sync

92 Chapter 5. Endurance Attacks on STTRAM LLCs

with the fixed intervals used for hotspot detection. By the time wear leveling begins

redistributing writes from a region previously determined as write-intensive, RTA has

already moved its activity to a different location. As a result, the newly targeted region

becomes the focus of concentrated write activity, while the previously mitigated region

experiences minimal new writes. This strategic timing undermines the effectiveness of

wear leveling, allowing RTA to sustain its attack without significant interruption.

To maximize the write count, we focus on targeting only two predetermined memory

locations, with the attacks directed alternately between these two spots. This strategic

approach ensures a concentrated and controlled assault on the system. Additionally,

during the execution of the RTA, if any normal, non-malicious writes occur to the

identified hotspots, they inadvertently mislead the wear leveling mechanisms. These

writes, which do not pose any real threat, cause the wear leveling techniques to mistakenly

perceive increased write activity in those areas, thereby triggering unnecessary remapping

processes. As a result, the wear leveling mechanisms are forced to expend additional

resources managing these non-harmful writes, creating an unnecessary overhead that could

have been avoided had the writes been correctly ignored. This disruption amplifies the

inefficiency of the wear leveling process, further compromising the system’s ability to

handle the attack effectively.

5.3.2.3 Random Location Attack (RnLA)

The Random Location Attack (RnLA) is aptly named for its strategy of targeting

unpredictable locations within the LLC through repeated write operations. It selects

different locations at random and switches between them dynamically, with intervals that

are themselves unpredictable. This creates complete uncertainty regarding both the timing

and the location of each write operation. The intrinsic randomness of RnLA makes it

particularly disruptive to counter-based wear-leveling techniques, which typically depend

on identifying consistent “write-hot” spots to mitigate the wear of write-limited STT-RAM

cells. By constantly shifting its focus across various regions of the cache, RnLA effectively

circumvents these counter-based defenses, remaining undetected and elusive. As a result,

wear-leveling strategies that are designed to track and manage patterns of repeated writes

to fixed locations are unable to cope with the dynamic and randomized nature of RnLA.

This exposes a significant weakness in conventional wear-leveling algorithms, revealing

their struggle to adapt to attacks characterized by such high levels of unpredictability

in both location and timing. Repeated unpredictable write operations pose a significant

threat to the overall system reliability, as they can severely impact the lifespan of the

STT-RAM Last-Level Cache (LLC). The constant and unpredictable nature of these

writes accelerates the wear of the STT-RAM cells, shortening their operational lifetime.

Additionally, the continuous stream of write operations introduces performance issues.

Specifically, the time required for each write to execute in an STT-RAM LLC can lead to

congestion in the read/write queue. This congestion delays the servicing of critical read

requests, ultimately resulting in slower system performance and reduced efficiency in data

Chapter 5. Endurance Attacks on STTRAM LLCs 93

retrieval.

// Allocate multiple large_arrays with differnt base addresses.

// Size of arrays should be more than L2.

1. while(true){

2. switch(n){ //n is random number between 1 to n;

3. case 1: for(i=0 to N) //N is array size.

4. large_array1[i]+=1;

5. break;

6. case 2: for(i=0 to N) //N is array size.

7. large_array2[i]+=1;

8. break;

9. .

10. .

11. .

12. .

13. case n: for(i=0 to N) //N is array size.

14. large_arrayn[i]+=1;

15. break;

16. }

17. }

5.3.2.4 Random Toggle Attack (RnTA)

The Random Toggle Attack (RnTA), as its name suggests, is specifically designed to

alternate write operations between two randomly selected memory locations within the

Last-Level Cache (LLC). Unlike conventional attack methods, RnTA introduces a high

degree of unpredictability by making both the selection of target locations and the timing

of each switch entirely random. This randomness serves as a critical feature of the attack,

enhancing its ability to evade detection and mitigation efforts.

A fundamental distinction between RnTA and the Random Location Attack (RnLA) lies

in their operational behavior. While RnLA focuses its write operations on a single,

randomly chosen memory location, RnTA dynamically toggles between two separate

locations. This back-and-forth switching pattern significantly complicates the task of

counter-based wear-leveling techniques, which are designed to monitor and mitigate

excessive writes to specific regions by identifying so-called “write-hot” locations. By

unpredictably alternating between two memory regions, RnTA effectively circumvents

these defensive measures, making it exceedingly difficult for wear-leveling mechanisms to

determine which locations should be flagged and protected.

This ability to evade counter-based defenses highlights a crucial vulnerability in existing

security measures. Since wear-leveling systems rely on tracking repeated access patterns to

detect anomalies, an attack like RnTA, which disrupts conventional tracking methodologies

94 Chapter 5. Endurance Attacks on STTRAM LLCs

through random toggling, can successfully exploit this weakness. By continuously shifting

its focus in a randomized manner, RnTA not only undermines conventional detection

strategies but also exposes the limitations of current memory protection frameworks,

making it a potent and stealthy attack vector.

// Allocate multiple large_arrays with differnt base addresses.

// Size of arrays should be more than L2.

1. while(true){

2. switch(n){ //n is random number between 1 to n;

3. case 1: for(i=0 to N) //N is array size.

4. large_array1[i]+=1;

5. large_array2[i]+=1;

//randomly select true or false.

6. if (false) break;

7. case 2: for(i=0 to N) //N is array size.

8. large_array3[i]+=1;

9. large_array4[i]+=1;

//randomly select true or false.

10. if (false) break;

11. .

12. .

13. case n: for(i=0 to N) //N is array size.

14. large_arrayn-1[i]+=1;

15. large_arrayn[i]+=1;

//randomly select true or false.

16. if (false) break;

17. }

18.}

5.3.3 Comparison between Attacks

Table 5.1 provides a succinct overview of the four distinct targeted endurance attacks

proposed, emphasizing the differences in their target selection and the specific techniques

they are designed to exploit.

Table 5.1: Different TENDRA Comparisons.

Attack Type Target Effectiveness

RLA Endurance Fixed LRU

RTA Endurance Fixed Toggle LRU + WL Techniques

RnLA Endurance Random LRU + WL Techniques

RnTA Endurance Random Toggle LRU + WL Techniques

The figure demonstrates that all the described attacks are designed with the primary

objective of reducing the endurance of an STT-RAM-based Last-Level Cache (LLC). Each

Chapter 5. Endurance Attacks on STTRAM LLCs 95

attack type leverages a distinct strategy to exploit vulnerabilities in cache management

and wear-leveling mechanisms:

• RLA employs a fixed targeting strategy, focusing on a single memory location. It

is particularly effective against generic Least Recently Used (LRU) replacement

policies.

• RTA alternates writes between two fixed memory locations, making it effective

against both generic LRU policies and wear-leveling techniques.

• RnLA introduces randomness by dynamically selecting attack locations at

unpredictable intervals. This randomization makes it highly effective against

wear-leveling mechanisms, which struggle to adapt to its unpredictability.

• RnTA combines randomness with toggling behavior by alternating writes between

two randomly selected sets of memory locations. This approach further amplifies its

effectiveness against wear-leveling techniques, leveraging both location and timing

unpredictability to evade countermeasures.

The attacks collectively highlight critical weaknesses in existing endurance and

wear-management strategies, showcasing the need for more adaptive and robust

countermeasures.

L1 L1 L2

RLA RTA

La Lb

RnLA

Ln

RnTA

Lx

Ly

Lp

Lq

Figure 5.1: Visualization of the Different Types of Targeted Endurance Attacks.

Figure 5.1 provides a comprehensive visualization of how repetitive writes target various

addresses within the STT-RAM LLC, showcasing the distinct attack patterns and their

intensity across cache regions. It illustrates the specific behaviors of different attacks:

• RLA focuses on a single memory location, repeatedly directing writes to the same

address.

96 Chapter 5. Endurance Attacks on STTRAM LLCs

• RTA alternates between two fixed memory locations, toggling write operations back

and forth.

• RnLA employs a randomized approach, dynamically selecting different locations

(denoted as Lx) to attack at unpredictable intervals.

• RnTA demonstrates a more complex behavior, involving two random sets of

memory locations. Within each set, two locations are randomly chosen, and writes

toggle between them. The attack then switches to another random set after an

unpredictable duration.

This figure highlights the strategic variation in targeting methods used by these attacks,

illustrating how their unpredictability and toggling behaviors challenge conventional cache

management and wear-leveling mechanisms.

5.4 Experimental Evaluation

5.4.1 Simulator Setup

We use the trace-based ChampSim Simulator [97] to conduct experiments. Our “baseline”

(LRU) is a configuration where no wear leveling technique is implemented as shown in

Table 5.2. To understand the interaction of the proposed attacks and the wear leveling,

we consider i2WAP, SWWR and DWAWR techniques.

Table 5.2: Simulation parameters of the baseline multi-core system.

System Components Parameters

Core Out-of-order, bimodal branch predictor, 4 GHz
with 6-issue width, 4-retire width, 352-entry ROB

L1I 32 KB, 8-way, 4 cycles

L1D 32 KB, 8-way, 5 cycles

L2 2MB 8-way associative, 10 cycles, LRU

LLC 32MB Shared STT-RAM, 16-way, RL: 20 cycles,
WL: 100 cycles, LRU

MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC

DRAM controller 64-entry RQ and WQ, reads prioritized over writes,
Burst write: 6/8th of queue size

DRAM chip 4KB row-buffer per bank, open page, burst length
16, tRP: 12.5ns, tRCD: 12.5ns, tCAS: 12.5ns

5.4.2 Workloads

For the experiments, we use the write-intensive benchmarks from SPEC CPU 2017

benchmark suite [112] along with the proposed attacks in a four-core setup with each core

executing 250M instructions after a warm-up of 50M. Experiments with other workloads

follow similar trends as the mix of benchmarks provided in Table 5.3 hence we use them

Chapter 5. Endurance Attacks on STTRAM LLCs 97

alone. The attack traces were generated by a Pin tool [119] based tracer that is part of

ChampSim. Each instruction in the trace is of the 64B size.

Table 5.3: Workloads for Quad-Core System.

Mix Type Workloads
Mix0 mcf, lbm, xalancbmk and wrf
Mix1 RLA, mcf, lbm and xalancbmk
Mix2 RTA, mcf, lbm and xalancbmk
Mix3 RLA , RTA, mcf and lbm
Mix4 RnLA, mcf, lbm and xalancbmk
Mix5 RnTA, mcf, lbm and xalancbmk
Mix6 RnLA, RnTA, mcf and lbm
Mix7 RLA, RTA, RnLA and RnTA

5.5 Results and Analysis

5.5.1 Effects of RLA, RTA, RnLA and RnTA on different

State-of-the-art Wear Leveling Techniques

Figures 5.2 through 5.65 illustrate the write count distribution, represented as heat maps,

across the LLC for the workload mixes listed in Table 5.3 which include benign mixes like

Mix0 and various combinations of our proposed attack traces. These are run on a quad core

system. These mixes are evaluated using eight different techniques among them are the

state-of-the-art: baseline (LRU), i2WAP, SWWR, and DWAWR. We also evaluate against

our four different proposed wear leveling techniques: PROLONG and LiveWay proposed

in Chapter 3 along with Primal Approach and Hardware Efficient Approach proposed in

Chapter 4. In order to emphasize the variability in write patterns and to highlight the

increased write activity caused by attacks, the heat maps are scaled differently.

Figure 5.2 focuses on the write counts for LRU-Mix0, representing the baseline STT-RAM

LLC configuration where only benign, write-intensive applications are present. The

figure clearly reveals a lack of uniformity in write distribution within this baseline setup,

underscoring inherent imbalances in the system. The observed non-uniformity in write

distribution becomes significantly more pronounced under the baseline configuration when

executed with RLA, as shown in Figure 5.10 (LRU-Mix1). In contrast, Figure 5.3

demonstrates that i2WAP achieves a more uniform distribution of writes across the LLC

under benign conditions. However, this uniformity is disrupted when RLA is introduced,

as evident in Figure 5.11 (i2WAP-Mix1). The concentrated writes in specific regions

effectively negate the wear-leveling advantages initially provided by i2WAP.

A similar pattern emerges when considering the SWWR and DWAWR techniques under

RLA conditions, as shown in Figures 5.12 (SWWR-Mix1) and 5.13 (DWAWR-Mix1).

Although these wear-leveling techniques exhibit slight improvements in write distribution,

their effectiveness in achieving a uniform pattern under RLA remains limited. In contrast,

the proposed techniques like PROLONG and LiveWay in Figures 5.14 (PROLONG-Mix1)

and 5.15 (LiveWay-Mix1) show how effective these techniques are in evenly distributing

98 Chapter 5. Endurance Attacks on STTRAM LLCs

Figure 5.2: LRU-Mix0. Figure 5.3: i2WAP-Mix0.

Figure 5.4: SWWR-Mix0. Figure 5.5: DWAWR-Mix0.

Figure 5.6: PROLONG-Mix0. Figure 5.7: LiveWay-Mix0.

Figure 5.8: SDC:Primal-Mix0. Figure 5.9: SDC:HE-Mix0

Chapter 5. Endurance Attacks on STTRAM LLCs 99

Figure 5.10: LRU-Mix1. Figure 5.11: i2WAP-Mix1.

Figure 5.12: SWWR-Mix1. Figure 5.13: DWAWR-Mix1.

Figure 5.14: PROLONG-Mix1. Figure 5.15: LiveWay-Mix1.

Figure 5.16: SDC:Primal-Mix1. Figure 5.17: SDC:HE-Mix1.

100 Chapter 5. Endurance Attacks on STTRAM LLCs

Figure 5.18: LRU-Mix2. Figure 5.19: i2WAP-Mix2.

Figure 5.20: SWWR-Mix2. Figure 5.21: DWAWR-Mix2.

Figure 5.22: PROLONG-Mix2. Figure 5.23: LiveWay-Mix2.

Figure 5.24: SDC:Primal-Mix2. Figure 5.25: SDC:HE-Mix2.

Chapter 5. Endurance Attacks on STTRAM LLCs 101

Figure 5.26: LRU-Mix3. Figure 5.27: i2WAP-Mix3.

Figure 5.28: SWWR-Mix3. Figure 5.29: DWAWR-Mix3.

Figure 5.30: PROLONG-Mix3. Figure 5.31: LiveWay-Mix3.

Figure 5.32: SDC:Primal-Mix3. Figure 5.33: SDC:HE-Mix3.

102 Chapter 5. Endurance Attacks on STTRAM LLCs

Figure 5.34: LRU-Mix4. Figure 5.35: i2WAP-Mix4.

Figure 5.36: SWWR-Mix4. Figure 5.37: DWAWR-Mix4.

Figure 5.38: PROLONG-Mix4. Figure 5.39: LiveWay-Mix4.

Figure 5.40: SDC:Primal-Mix4. Figure 5.41: SDC:HE-Mix4.

Chapter 5. Endurance Attacks on STTRAM LLCs 103

Figure 5.42: LRU-Mix5. Figure 5.43: i2WAP-Mix5.

Figure 5.44: SWWR-Mix5. Figure 5.45: DWAWR-Mix5.

Figure 5.46: PROLONG-Mix5. Figure 5.47: LiveWay-Mix5.

Figure 5.48: SDC:Primal-Mix5. Figure 5.49: SDC:HE-Mix5.

104 Chapter 5. Endurance Attacks on STTRAM LLCs

Figure 5.50: LRU-Mix6. Figure 5.51: i2WAP-Mix6.

Figure 5.52: SWWR-Mix6. Figure 5.53: DWAWR-Mix6.

Figure 5.54: PROLONG-Mix6. Figure 5.55: LiveWay-Mix6.

Figure 5.56: SDC:Primal-Mix6. Figure 5.57: SDC:HE-Mix6.

Chapter 5. Endurance Attacks on STTRAM LLCs 105

Figure 5.58: LRU-Mix7. Figure 5.59: i2WAP-Mix7.

Figure 5.60: SWWR-Mix7. Figure 5.61: DWAWR-Mix7.

Figure 5.62: PROLONG-Mix7. Figure 5.63: LiveWay-Mix7.

Figure 5.64: SDC:Primal-Mix7. Figure 5.65: SDC:HE-Mix7.

106 Chapter 5. Endurance Attacks on STTRAM LLCs

the writes across the LLC to some extent. The Primal and Hardware Efficient that have

been proposed is also able to aptly mitigate the write patterns caused by RLA as shown

in Figures 5.16 (SDC:Primal-Mix1) and 5.9 (SDC:HE-Mix1).

Figures 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, 5.24, and 5.25 illustrate the impact of RTA

on various LLC configurations running on different wear leveling techniques. These

figures vividly demonstrate how RTA expands the attack surface by targeting a larger

number of locations and dynamically toggling between two sets of attack points. This

behavior introduces a heightened intensity of write activity, as the random toggling

mechanism effectively undermines traditional counter-based wear-leveling techniques. The

randomness and unpredictability of the toggles amplify the challenges faced by these

techniques, rendering them less effective in mitigating the wear imbalance caused by such

sophisticated attack patterns. The attack patterns are clearly visible with techniques not

having any kind of wear leveling. These attack patterns fizzle out with the increasing

effectiveness of the wear leveling techniques.

Figures 5.26, 5.27, 5.28, 5.29, 5.30, 5.31, 5.32, and 5.33 illustrate the impact of RLA and

RTA when executed concurrently on two cores. The results highlight how these attack

patterns diversify across the LLC, significantly amplifying their impact on endurance.

The figures further demonstrate how the distribution of attack patterns influences wear

across the cache, increasing the potential for early degradation. While counter-based

wear-leveling techniques show some effectiveness in mitigating the impacts of RLA and

RTA, their ability to fully counteract these attacks remains limited, leaving the system

vulnerable to endurance reduction under sustained assault.

To design an attack that is difficult to detect, we propose RnLA and RnTA, leveraging

their randomized and dynamic behaviors. Figures 5.34 through 5.41 depict the behavior

of the RnLA attack when it is introduced in a single core, while Figures 5.42 through 5.49

illustrate the behavior of the RnTA attack under baseline conditions and with various

wear-leveling techniques. For RnLA, the randomization of attack locations results in

a significantly uneven distribution of writes, with a notable increase in write intensity.

Traditional counter-based wear-leveling techniques are unable to effectively manage this

unpredictability. RnTA combines randomization with toggling, creating a highly dynamic

and volatile attack pattern that overwhelms these techniques, effectively rendering their

countermeasures ineffective in maintaining write balance across the LLC.

When RnLA and RnTA are deployed concurrently in two different cores, the resulting

write distribution is illustrated in the heatmaps of Figures 5.50 through 5.57. These

figures highlight how the interaction between these attacks leads to a chaotic and uneven

write pattern across the LLC. It shows how RnLA and RnTA perform individually and

as well as when attacking in tandem through different cores. Furthermore, when all four

attacking applications—RLA, RTA, RnLA, and RnTA are simultaneously deployed in

four separate cores, as in Mix7, the concentrated and aggressive nature of the attack is

vividly captured in Figures 5.58 through 5.65. These heat-maps underscore the significant

stress imposed on the STT-RAM LLC, revealing how it behaves under the combined

Chapter 5. Endurance Attacks on STTRAM LLCs 107

pressure of an all-out attack. Our analysis also reveals that, apart from a slightly higher

number of write operations in AI workloads, they do not introduce any notable ingenuity in

multi-core attack scenarios. Instead, they function merely as write-intensive benchmarks

without exhibiting distinct write patterns that significantly impact the endurance of an

STT-RAM cell. Consequently, we classify them as innocent AI applications, as they do

not behave like targeted endurance attacks.

5.5.1.1 Write Count

To further understand the impact of RLA, RTA, RnLA, and RnTA on STT-RAM LLC,

Table 5.4 provides the maximum write count recorded at a particular LLC location for

different mixes. It can be seen that under baseline Mix0, the maximum write count

is 182. This value is reduced to 64, 63, 63, 52, 56, 50, and 54 by the wear-leveling

techniques i2WAP, SWWR, DWAWR, PROLONG, LiveWay, SDC:Primal Approach, and

SDC:Hadware Efficient Approach respectively, showing their effectiveness. However, with

Mix1, the maximum write count significantly increases to 848, 340, 378, 268, 195, 216,

177, and 200 for LRU, i2WAP, SWWR, DWAWR, PROLONG, LiveWay, SDC:Primal

Approach, and SDC:Hardware Efficient Approach respectively. This demonstrates the

impact of RLA on STT-RAM LLC’s lifetime. Mix2 shows the impact of RTA the max

write counts. A simple RTA attack leads to a maximum write count of 612 in baseline,

which is further reduced respectively by wear eveling techniques. Mix3 shows how the

maximum write count is affected when RLA and RTA work in tandem. Mix3 shows a

maximum write count of 788 in baseline. The effects of RnLA and RnTA are depicted in

Mix4 and Mix5 respectively. In Mix6 when RnLA and RnTA work in tandem with each

other, i.e. attacking simultaneously from two different cores then the maximum write

count is shown as 625 in baseline. Mix7 shows if a system is completely under attack from

different configurations of the endurance attacks, i.e. all four cores are under attack of

RLA, RTA, RnLA, and RnTA. It shows that the maximum write count is shown as 864 in

baseline, which is further reduced to 694, 590, 344, 256, 27, 215, and 309 for i2WAP,

SWWR, DWAWR, PROLONG, LiveWay, SDC:Primal Approach, and SDC:Hardware

Efficient Approach respectively.

Table 5.4: The maximum write count of a LLC block.

Mix Variation LRU i2wap SWWR DWAWR PROLONG LiveWay SDC:Primal SDC:HE

Mix0 182 64 63 63 52 56 50 54

Mix1(RLA) 848 340 378 268 195 216 177 200

Mix2(RTA) 612 312 374 225 184 205 160 207

Mix3(RLA+RTA) 788 418 569 278 220 240 185 230

Mix4(RnLA) 573 371 291 274 210 232 180 240

Mix5(RnTA) 539 290 265 239 216 238 200 238

Mix6(RnLA+RnTA) 625 304 304 256 230 250 210 251

Mix7(RLA+RTA+RnLA+RnTA) 864 694 590 344 256 275 215 309

108 Chapter 5. Endurance Attacks on STTRAM LLCs

5.5.2 Effects on Lifetime and Performance

RTA and RLA contribute to increased write-backs at specific locations in the STT-RAM

LLC, whereas RnLA and RnTA target random blocks, leading to a gradual rise in

the maximum write count within an LLC block. This, in turn, accelerates wear,

significantly reducing the lifetime of the LLC. Lifetime is defined here as the inverse of

the maximum write count. Figure 5.66 illustrates the impact of RLA, RTA, RnLA, and

RnTA attacks on the LLC lifetime for Baseline (LRU), and other wear leveling techniques

like i2WAP, SWWR, DWAWR, PROLONG(10% with 512KB Buffer), LiveWay(128KB

Buffer with WindowSize 2), SDC:Primal Approach, and SDC:Hardware Efficent Approach

configurations, compared to their respective lifetimes under Mix0 conditions.

From Figure 5.66, it is evident that under the baseline configuration, RLA, RTA, RnLA,

and RnTA result in relative lifetime degradations of approximately 78.53%, 70.26%,

68.23%, and 66.23%, respectively. These significant reductions highlight the severe

impact of targeted and randomized attacks on the LLC’s durability, particularly when

wear-leveling techniques fail to mitigate the concentrated or dispersed write patterns

introduced by these adversarial workloads.

Existing wear leveling techniques are also severely effected by the RTA attack, with lifetime

degradation of 79.48%, 83.15%, 72%, 71.7%, 72.6%, 68.75%, and 73% for i2WAP, SWWR,

DWAWR, PROLONG, LiveWay, SDC:Primal Approach, and SDC:Hardware Efficient

Approach respectively. The impact of RLA is slightly more than RTA because of its

concentrated writes to a particular location(s). With time the effect of RLA will be

whittled down by wear leveling techniques as compared to RTA and even RTA will not

be highly effective therefore only RnLA and RnTA will be the viable attack options. The

increased write count also leads to a drop in the IPC of the system due to the long write

latency of STT-RAM [118] leading to congestion at the LLC [13]. Figure 5.67 shows that

all the configurations face significant performance degradation due to Mix1-Mix7. Please

note that the performance is compared w.r.t. the same configuration when run with Mix0.

Figure 5.66: Degradation in Lifetime.

IPC degradation ranging from 6% to 45% can be observed among the various

configurations needing to deal with RLA and RTA. This shows the effectiveness of both

the variations of the attacks in degrading the lifetime and performance of the system.

Chapter 5. Endurance Attacks on STTRAM LLCs 109

Figure 5.67: Degradation in IPC.

5.6 Conclusion and Future Work

Through this work we have shown the vulnerability of a shared STT-RAM LLC because

of targeted endurance attacks. Although wear leveling techniques are still impactful

in distributing the writes even with endurance attacks, the lifetime of LLC drops by

84.68%, 88.92%, and 77.33% for i2WAP, SWWR and DWAWR, respectively. Since limited

endurance is a significant challenge for STT-RAM LLCs; RLA, RTA, RnLA and RnTA

type endurance attacks pose a major concern. The current wear-leveling techniques are

not effective in preventing these attacks, highlighting the need for more sophisticated

approaches. Rather than relying solely on counter-based or invalidation-based methods,

an intelligent write-bypassing technique can be integrated with them. Exploring variations

of these attacks and developing advanced defense techniques are part of our future research.

110 Chapter 5. Endurance Attacks on STTRAM LLCs

Chapter 6

Conclusion and Future Scope

This chapter presents a comprehensive conclusion of the research detailed in various

chapters of this thesis. Section 6.1 offers a summary of the key findings and draws an

overall conclusion, followed by the scope of future work in Section 6.2.

6.1 Major Research Contributions

Figure 6.1 gives us a birds eye view of the thesis contributions and the effects they have

on STT-RAM LLCs.

Thesis
Contributions

Selective Write
Bypassing

 Block level
 Wear Leveling

 Targeted
 Endurance

Attack

 Performance Improvement

Lifetime Improvement

 Reduction in InterV

 Reduction in IntraV

Lifetime Improvement

 Reduction in InterV

 Reduction in IntraV

 Drastic Lifetime Reduction

 Effective against baseline LRU

 Effective against counter based
Wear leveling techniques

Platform for Secure LLCs

Figure 6.1: Graphical Overview of Thesis

The following are major research contributions discussed in this thesis:

− The first work exposes the write imbalance across the STT-RAM LLC that results in

heightened InterV and IntraV which is detrimental to the lifetime of the STT-RAM

LLC. In order to mitigate this problem of limited write endurance, without causing

too much performance overhead, we proposed two different techniques: PROLONG:

Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based

LLC that is aimed at reducing the InterV and increasing the Lifetime and LiveWay:

Dynamic Write Bypassing for Lifetime Enhancement in STT-RAM LLC that aims

at reducing the IntraV and increasing the lifetime without putting undue stress on

the performance of the system.

112 Chapter 6. Conclusion and Future Scope

− The second work highlights the write imbalance present among all the blocks of an

STT-RAM LLC which leads to lifetime degradation and the need for a block-level

wear leveling technique. It highlights that most of the wear-leveling techniques

proposed were either on the set-level granularity or way-level granularity. Therefore,

we propose a a novel decoupled tag and data array architecture with an Optimal

wear-leveling technique that distributes the writes across all the blocks in the

STT-RAM based LLC. Write hot blocks are identified, and then the redirection takes

place by exchanging the tag and data array blocks. A hardware efficient approach

is also proposed that limits the number of counters by assigning a single counter to

a bucket and each bucket consists of a group of blocks.

− The third work highlights the vulnerability of the STT-RAM based LLC to targeted

write attacks. To this end, we propose four different kinds of targeted endurance

attacks (TENDRA): RLA: It repeatedly writes a single location in the STT-RAM

LLC; RTA: It repeatedly toggles writes in between two different locations in the

LLC; RnLA: It randomly targets different location to write to random amount of

times; and RnTA: It randomly selects two different locations to target writes to

random amount of times.

6.2 Future Scope

Irrespective of the challenges in implementing STT-RAM as shared LLCs in a generic

computing system, the day is not far off when it can be implemented successfully. If

implemented it will prove to be a big advantage, especially with its high density and low

power consumption capabilities. Some future research directions are as follows:

− One of the major challenges in implementing STT-RAM LLCs is the different read

and write latencies. Servicing writes from the read-write queue causes congestion

and therefore leads to drastic performance degradation as compared to a generic

SRAM implementation. Furthermore, uneven writes can create heightened WV

in the STT-RAM LLCs which will lead to lifetime degradation. Therefore, there

is a need to propose techniques that aim to reduce both the lifetime degradation

and performance degradation through effective wear leveling and intelligent write

bypassing.

− In a multi-core system having a single endurance attack can compromise the integrity

and lifetime of the whole STT-RAM LLC as targeted endurance attacks make the

system vulnerable. The lifetime of the LLC is drastically effected. In order to

mitigate these attacks we need to propose proper attack identification and mitigation

techniques that are able to dead with these problems of attacks from a single

compromised core.

Chapter 6. Conclusion and Future Scope 113

6.2.1 Practical Lifetime Improvement for Industry-wide Adaptation

To replace SRAM as the dominant CMOS design for last-level caches (LLCs), STT-RAM

must match or surpass nearly all performance metrics of a standard SRAM-based

LLC. Although, STT-RAM offers numerous advantages as a potential replacement, its

drawbacks must not compromise the overall system functionality. In particular, endurance

remains a critical challenge, which requires strategies to maximize the longevity of

STT-RAM-based LLCs. Our state-of-the-art STT-RAM LLC designs have demonstrated

up to a 34× improvement in lifetime.

For STT-RAM to be a viable alternative, it must not only achieve endurance levels

comparable to those of SRAM but also mitigate performance degradation due to increased

write latency, which reduces IPC. Kargaokar et al. [13] highlight this issue, showing that

even with optimization techniques, an 8MB STT-RAM cache struggles to match the

performance of a 4MB SRAM cache. This underscores the need for significant advances in

both lifetime improvement and write latency reduction before STT-RAM can be seriously

considered as a replacement.

Our thesis contributes to this effort by enhancing the endurance of STT-RAM-based LLCs

while also exploring how endurance vulnerabilities can be exploited by attackers. This

work represents a step forward in making STT-RAM-based LLCs a feasible alternative to

SRAM-based designs.

114 Chapter 6. Conclusion and Future Scope

References

[1] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing

NUCA Organizations and Wiring Alternatives for Large Caches with CACTI

6.0. In Proceedings of the 40th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 40, pages 3–14, 2007. ISBN 0-7695-3047-8.

[2] Rajeev Balasubramonian, Norman P Jouppi, and Naveen Muralimanohar.

Multi-core cache hierarchies. Synthesis Lectures on Computer Architecture, 6(3):

1–153, 2011.

[3] Peter Kogge, S. Borkar, Dan Campbell, William Carlson, William Dally, Monty

Denneau, Paul Franzon, William Harrod, Jon Hiller, Stephen Keckler, Dean

Klein, and Robert Lucas. Exascale computing study: Technology challenges in

achieving exascale systems. Defense Advanced Research Projects Agency Information

Processing Techniques Office (DARPA IPTO), Techinal Representative, 15, 01 2008.

[4] Chris H. Kim, Jae-Joon Kim, Saibal Mukhopadhyay, and Kaushik Roy. A forward

body-biased low-leakage sram cache: device and architecture considerations. In

Proceedings of the 2003 International Symposium on Low Power Electronics and

Design, ISLPED ’03, page 6–9, New York, NY, USA, 2003. Association for

Computing Machinery. ISBN 158113682X. doi: 10.1145/871506.871511. URL

https://doi.org/10.1145/871506.871511.

[5] S. S. Iyer, J. E. Barth, P. C. Parries, J. P. Norum, J. P. Rice, L. R. Logan,

and D. Hoyniak. Embedded dram: Technology platform for the blue gene/l

chip. IBM Journal of Research and Development, 49(2.3):333–350, 2005. doi:

10.1147/rd.492.0333.

[6] Sadegh Yazdanshenas, Marzieh Ranjbar Pirbasti, Mahdi Fazeli, and Ahmad

Patooghy. Coding last level stt-ram cache for high endurance and low power. IEEE

Computer Architecture Letters, 13(2):73–76, 2014. doi: 10.1109/L-CA.2013.8.

[7] Young-Bae Kim, Seung Ryul Lee, Dongsoo Lee, Chang Bum Lee, Man Chang,

Ji Hyun Hur, Myoung-Jae Lee, Gyeong Su Park, Chang Jung Kim, U-In Chung,

In kyeong Yoo, and Kinam Kim. Bi-layered rram with unlimited endurance and

extremely uniform switching. 2011 Symposium on VLSI Technology - Digest of

Technical Papers, pages 52–53, 2011. URL https://api.semanticscholar.org/

CorpusID:44515793.

[8] Moinuddin Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. Phase Change

Memory: From Devices to Systems, volume 6. Morgan & Claypool Publishers, 11

2011. doi: 10.2200/S00381ED1V01Y201109CAC018.

115

https://doi.org/10.1145/871506.871511
https://api.semanticscholar.org/CorpusID:44515793
https://api.semanticscholar.org/CorpusID:44515793

116 References

[9] Rangharajan Venkatesan, Mrigank Sharad, Kaushik Roy, and Anand Raghunathan.

Dwm-tapestri - an energy efficient all-spin cache using domain wall shift based

writes. In Proceedings of the Conference on Design, Automation and Test in Europe,

DATE ’13, page 1825–1830, San Jose, CA, USA, 2013. EDA Consortium. ISBN

9781450321532.

[10] Sparsh Mittal, Jeffrey S. Vetter, and Dong Li. A survey of architectural

approaches for managing embedded dram and non-volatile on-chip caches. IEEE

Transactions on Parallel and Distributed Systems, 26(6):1524–1537, 2015. doi:

10.1109/TPDS.2014.2324563.

[11] Jimmy J. Kan, Chando Park, Chi Ching, Jaesoo Ahn, Yuan Xie, Mahendra

Pakala, and Seung H. Kang. A study on practically unlimited endurance of

stt-mram. IEEE Transactions on Electron Devices, 64(9):3639–3646, 2017. doi:

10.1109/TED.2017.2731959.

[12] Jue Wang, Xiangyu Dong, Yuan Xie, and Norman P. Jouppi. i2wap: Improving

non-volatile cache lifetime by reducing inter- and intra-set write variations. In 2013

IEEE 19th International Symposium on High Performance Computer Architecture

(HPCA), pages 234–245, 2013. doi: 10.1109/HPCA.2013.6522322.

[13] Kunal Korgaonkar, Ishwar Bhati, Huichu Liu, Jayesh Gaur, Sasikanth Manipatruni,

Sreenivas Subramoney, Tanay Karnik, Steven Swanson, Ian Young, and Hong Wang.

Density tradeoffs of non-volatile memory as a replacement for sram based last level

cache. In 2018 ACM/IEEE 45th Annual International Symposium on Computer

Architecture (ISCA), pages 315–327, 2018. doi: 10.1109/ISCA.2018.00035.

[14] Sukarn Agarwal and Hemangee K. Kapoor. Improving the lifetime of non-volatile

cache by write restriction. IEEE Transactions on Computers, 68(9):1297–1312, 2019.

doi: 10.1109/TC.2019.2892424.

[15] Mohammad Reza Jokar, Mohammad Arjomand, and Hamid Sarbazi-Azad. Sequoia:

A high-endurance nvm-based cache architecture. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 24(3):954–967, 2016. doi: 10.1109/

TVLSI.2015.2420954.

[16] Sparsh Mittal and Jeffrey S. Vetter. EqualChance: Addressing intra-set write

variation to increase lifetime of non-volatile caches. In 2nd Workshop on Interactions

of NVM/Flash with Operating Systems and Workloads (INFLOW 14), Broomfield,

CO, October 2014. USENIX Association. URL https://www.usenix.org/

conference/inflow14/workshop-program/presentation/mittal.

[17] Sparsh Mittal, Jeffrey S. Vetter, and Dong Li. Writesmoothing: improving lifetime of

non-volatile caches using intra-set wear-leveling. In Proceedings of the 24th Edition

of the Great Lakes Symposium on VLSI, GLSVLSI ’14, page 139–144, New York,

https://www.usenix.org/conference/inflow14/workshop-program/presentation/mittal
https://www.usenix.org/conference/inflow14/workshop-program/presentation/mittal

References 117

NY, USA, 2014. Association for Computing Machinery. ISBN 9781450328166. doi:

10.1145/2591513.2591525. URL https://doi.org/10.1145/2591513.2591525.

[18] Sparsh Mittal, Jeffrey S. Vetter, and Dong Li. Lastingnvcache: A technique for

improving the lifetime of non-volatile caches. In 2014 IEEE Computer Society

Annual Symposium on VLSI, pages 534–540, 2014. doi: 10.1109/ISVLSI.2014.69.

[19] Chao Zhang, Guangyu Sun, Peng Li, Tao Wang, Dimin Niu, and Yiran Chen.

Sbac: A statistics based cache bypassing method for asymmetric-access caches. In

2014 IEEE/ACM International Symposium on Low Power Electronics and Design

(ISLPED), pages 345–350, 2014. doi: 10.1145/2627369.2627611.

[20] Junwhan Ahn, Sungjoo Yoo, and Kiyoung Choi. Dasca: Dead write prediction

assisted stt-ram cache architecture. In 2014 IEEE 20th International Symposium on

High Performance Computer Architecture (HPCA), pages 25–36, 2014. doi: 10.1109/

HPCA.2014.6835944.

[21] Min Kyu Kim, Ju Hee Choi, JongWook Kwak, Seong Tae Jhang, and Chu Shik Jhon.

Bypassing method for stt-ram based inclusive last-level cache. In Proceedings of the

2015 Conference on Research in Adaptive and Convergent Systems, RACS ’15, page

424–429, New York, NY, USA, 2015. Association for Computing Machinery. ISBN

9781450337380. doi: 10.1145/2811411.2811512. URL https://doi.org/10.1145/

2811411.2811512.

[22] Aritra Bagchi, Dharamjeet, Ohm Rishabh, Manan Suri, and Preeti Ranjan Panda.

Poem: Performance optimization and endurance management for non-volatile

caches. ACM Trans. Des. Autom. Electron. Syst., 29(5), September 2024. ISSN

1084-4309. doi: 10.1145/3653452. URL https://doi.org/10.1145/3653452.

[23] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie.

Hybrid cache architecture with disparate memory technologies. In Proceedings of the

36th Annual International Symposium on Computer Architecture, ISCA ’09, page

34–45, New York, NY, USA, 2009. Association for Computing Machinery. ISBN

9781605585260. doi: 10.1145/1555754.1555761. URL https://doi.org/10.1145/

1555754.1555761.

[24] Adwait Jog, Asit K. Mishra, Cong Xu, Yuan Xie, Vijaykrishnan Narayanan,

Ravishankar Iyer, and Chita R. Das. Cache revive: Architecting volatile stt-ram

caches for enhanced performance in cmps. In DAC Design Automation Conference

2012, pages 243–252, 2012. doi: 10.1145/2228360.2228406.

[25] Baixing Quan, Tiefei Zhang, Tianzhou Chen, and Jianzhong Wu. Prediction

table based management policy for stt-ram and sram hybrid cache. In 2012 7th

International Conference on Computing and Convergence Technology (ICCCT),

pages 1092–1097, 2012.

https://doi.org/10.1145/2591513.2591525
https://doi.org/10.1145/2811411.2811512
https://doi.org/10.1145/2811411.2811512
https://doi.org/10.1145/3653452
https://doi.org/10.1145/1555754.1555761
https://doi.org/10.1145/1555754.1555761

118 References

[26] Sparsh Mittal and Jeffrey S. Vetter. Ayush: A technique for extending lifetime of

sram-nvm hybrid caches. IEEE Computer Architecture Letters, 14(2):115–118, 2015.

doi: 10.1109/LCA.2014.2355193.

[27] Ning Bao, Yun-Peng Chai, Xiao Qin, and Chuan-Wen Wang. Macrotrend: A

write-efficient cache algorithm for nvm-based read cache. Journal of Computer

Science and Technology, 37(1):207–230, 2022. doi: 10.1007/s11390-021-0178-6. URL

https://www.sciopen.com/article/10.1007/s11390-021-0178-6.

[28] Dhruv Gajaria, Kevin Antony Gomez, and Tosiron Adegbija. A study of

stt-ram-based in-memory computing across the memory hierarchy. In 2022 IEEE

40th International Conference on Computer Design (ICCD), pages 685–692, 2022.

doi: 10.1109/ICCD56317.2022.00105.

[29] Kyle Kuan and Tosiron Adegbija. Halls: An energy-efficient highly adaptable last

level stt-ram cache for multicore systems. IEEE Trans. Comput., 68(11):1623–1634,

nov 2019. ISSN 0018-9340. doi: 10.1109/TC.2019.2918153. URL https://doi.org/

10.1109/TC.2019.2918153.

[30] Puneet Saraf and Madhu Mutyam. Endurance enhancement of write-optimized

stt-ram caches. In Proceedings of the International Symposium on Memory Systems,

MEMSYS ’19, page 101–113, New York, NY, USA, 2019. Association for Computing

Machinery. ISBN 9781450372060. doi: 10.1145/3357526.3357538. URL https:

//doi.org/10.1145/3357526.3357538.

[31] Saeed Kargar and Faisal Nawab. Extending the lifetime of nvm: challenges

and opportunities. Proc. VLDB Endow., 14(12):3194–3197, July 2021. ISSN

2150-8097. doi: 10.14778/3476311.3476406. URL https://doi.org/10.14778/

3476311.3476406.

[32] Zhaoxia Deng, Lunkai Zhang, Nikita Mishra, Henry Hoffmann, and Frederic T.

Chong. Memory cocktail therapy: A general learning-based framework to optimize

dynamic tradeoffs in nvms. In 2017 50th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pages 232–244, 2017.

[33] Saeed Kargar and Faisal Nawab. Challenges and future directions for energy,

latency, and lifetime improvements in nvms. Distrib. Parallel Databases, 41(3):

163–189, September 2022. ISSN 0926-8782. doi: 10.1007/s10619-022-07421-x. URL

https://doi.org/10.1007/s10619-022-07421-x.

[34] Sparsh Mittal. Using cache-coloring to mitigate inter-set write variation in

non-volatile caches, 2013.

[35] Sparsh Mittal and Jeffrey S. Vetter. Equalwrites: Reducing intra-set write

variations for enhancing lifetime of non-volatile caches. IEEE Transactions on

https://www.sciopen.com/article/10.1007/s11390-021-0178-6
https://doi.org/10.1109/TC.2019.2918153
https://doi.org/10.1109/TC.2019.2918153
https://doi.org/10.1145/3357526.3357538
https://doi.org/10.1145/3357526.3357538
https://doi.org/10.14778/3476311.3476406
https://doi.org/10.14778/3476311.3476406
https://doi.org/10.1007/s10619-022-07421-x

References 119

Very Large Scale Integration (VLSI) Systems, 24(1):103–114, 2016. doi: 10.1109/

TVLSI.2015.2389113.

[36] Sukarn Agarwal and Hemangee K. Kapoor. Targeting inter set write variation to

improve the lifetime of non-volatile cache using fellow sets. In 2017 IFIP/IEEE

International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6,

2017. doi: 10.1109/VLSI-SoC.2017.8203453.

[37] Sukarn Agarwal and Hemangee K. Kapoor. Lifetime enhancement of non-volatile

caches by exploiting dynamic associativity management techniques. In Michail

Maniatakos, Ibrahim (Abe) M. Elfadel, Matteo Sonza Reorda, H. Fatih Ugurdag,

José Monteiro, and Ricardo Reis, editors, VLSI-SoC: Opportunities and Challenges

Beyond the Internet of Things, pages 46–71, Cham, 2019. Springer International

Publishing. ISBN 978-3-030-15663-3.

[38] Morteza Soltani, Mohammad Ebrahimi, and Zainalabedin Navabi. Prolonging

lifetime of non-volatile last level caches with cluster mapping. In 2016 International

Great Lakes Symposium on VLSI (GLSVLSI), pages 329–334, 2016. doi: 10.1145/

2902961.2902980.

[39] S. Sivakumar, T.M. Abdul Khader, and John Jose. Improving lifetime of non-volatile

memory caches by logical partitioning. In Proceedings of the 2021 Great Lakes

Symposium on VLSI, GLSVLSI ’21, page 123–128, New York, NY, USA, 2021.

Association for Computing Machinery. ISBN 9781450383936. doi: 10.1145/

3453688.3461488. URL https://doi.org/10.1145/3453688.3461488.

[40] S. Sivakumar and John Jose. Self adaptive logical split cache techniques for delayed

aging of nvm llc. ACM Trans. Des. Autom. Electron. Syst., 28(6), October 2023.

ISSN 1084-4309. doi: 10.1145/3616871. URL https://doi.org/10.1145/3616871.

[41] S. Sivakumar, Mani Mannampalli, and John Jose. Enhancing lifetime of non-volatile

memory caches by write-aware techniques. In Chandan Giri, Takahiro Iizuka, Hafizur

Rahaman, and Bhargab B. Bhattacharya, editors, Emerging Electronic Devices,

Circuits and Systems, pages 109–123, Singapore, 2023. Springer Nature Singapore.

ISBN 978-981-99-0055-8.

[42] Sparsh Mittal. A survey of cache bypassing techniques. Journal of Low Power

Electronics and Applications, 6(2), 2016. ISSN 2079-9268. doi: 10.3390/

jlpea6020005. URL https://www.mdpi.com/2079-9268/6/2/5.

[43] Haakon Dybdahl and Per Stenström. Enhancing last-level cache performance by

block bypassing and early miss determination. In Proceedings of the 11th Asia-Pacific

Conference on Advances in Computer Systems Architecture, ACSAC’06, page 52–66,

Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3540400567. doi: 10.1007/

11859802 6. URL https://doi.org/10.1007/11859802 6.

https://doi.org/10.1145/3453688.3461488
https://doi.org/10.1145/3616871
https://www.mdpi.com/2079-9268/6/2/5
https://doi.org/10.1007/11859802_6

120 References

[44] Jue Wang, Xiangyu Dong, and Yuan Xie. Oap: An obstruction-aware cache

management policy for stt-ram last-level caches. 2013 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pages 847–852, 2013. URL

https://api.semanticscholar.org/CorpusID:9961439.

[45] Ing-Chao Lin and Jeng-Nian Chiou. High-endurance hybrid cache design in cmp

architecture with cache partitioning and access-aware policies. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 23(10):2149–2161, 2015. doi: 10.1109/

TVLSI.2014.2361150.

[46] Zhe Wang, Daniel A. Jiménez, Cong Xu, Guangyu Sun, and Yuan Xie. Adaptive

placement and migration policy for an stt-ram-based hybrid cache. In 2014

IEEE 20th International Symposium on High Performance Computer Architecture

(HPCA), pages 13–24, 2014. doi: 10.1109/HPCA.2014.6835933.

[47] Swapnil Bhosale and Sudeep Pasricha. Slam: High performance and energy efficient

hybrid last level cache architecture for multicore embedded systems. In 2019 IEEE

International Conference on Embedded Software and Systems (ICESS), pages 1–7,

2019. doi: 10.1109/ICESS.2019.8782441.

[48] Sparsh Mittal and Jeffrey Vetter. A technique for improving lifetime of

non-volatile caches using write-minimization. Journal of Low Power Electronics

and Applications, 6(1), 2016. ISSN 2079-9268. doi: 10.3390/jlpea6010001. URL

https://www.mdpi.com/2079-9268/6/1/1.

[49] Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu Sun, Naehyuck Chang, and Yuan

Xie. Energy- and endurance-aware design of phase change memory caches. In 2010

Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), pages

136–141, 2010. doi: 10.1109/DATE.2010.5457221.

[50] Sina Asadi, Amir Mahdi Hosseini Monazzah, Hamed Farbeh, and Seyed Ghassem

Miremadi. Wipe: Wearout informed pattern elimination to improve the endurance

of nvm-based caches. In 2017 22nd Asia and South Pacific Design Automation

Conference (ASP-DAC), pages 188–193, 2017. doi: 10.1109/ASPDAC.2017.7858318.

[51] S. Sivakumar, John Jose, and Vijaykrishnan Narayanan. Enhancing lifetime and

performance of mlc nvm caches using embedded trace buffers. ACM Trans. Des.

Autom. Electron. Syst., 29(3), May 2024. ISSN 1084-4309. doi: 10.1145/3659102.

URL https://doi.org/10.1145/3659102.

[52] Bhukya Krishna Priya. Enhancing the lifetime of stt-ram using compression based

wear leveling technique. Microelectronics Reliability, 143:114939, 2023. ISSN

0026-2714. doi: https://doi.org/10.1016/j.microrel.2023.114939. URL https:

//www.sciencedirect.com/science/article/pii/S0026271423000392.

https://api.semanticscholar.org/CorpusID:9961439
https://www.mdpi.com/2079-9268/6/1/1
https://doi.org/10.1145/3659102
https://www.sciencedirect.com/science/article/pii/S0026271423000392
https://www.sciencedirect.com/science/article/pii/S0026271423000392

References 121

[53] Shuai Wang, Guangshan Duan, Yupeng Li, and Qianhao Dong. Word- and

partition-level write variation reduction for improving non-volatile cache lifetime.

ACM Trans. Des. Autom. Electron. Syst., 23(1), August 2017. ISSN 1084-4309. doi:

10.1145/3084690. URL https://doi.org/10.1145/3084690.

[54] Gorka Irazoqui Apecechea et al. S$A: A Shared Cache Attack That Works across

Cores and Defies VM Sandboxing – and Its Application to AES. IEEE Symp. on

Security and Privacy, pages 591–604, 2015.

[55] Ahmad Moghimi, Gorka Irazoqui Apecechea, and Thomas Eisenbarth. Cachezoom:

How sgx amplifies the power of cache attacks. ArXiv, abs/1703.06986, 2017. URL

https://api.semanticscholar.org/CorpusID:6116879.

[56] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-vm

side channels and their use to extract private keys. In Proceedings of the 2012

ACM Conference on Computer and Communications Security, CCS ’12, page

305–316, New York, NY, USA, 2012. Association for Computing Machinery. ISBN

9781450316514. doi: 10.1145/2382196.2382230. URL https://doi.org/10.1145/

2382196.2382230.

[57] Jaspinder Kaur and Shirshendu Das. Acpc: Covert channel attack on last

level cache using dynamic cache partitioning. In 2023 24th International

Symposium on Quality Electronic Design (ISQED), pages 1–8, 2023. doi: 10.1109/

ISQED57927.2023.10129363.

[58] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon.

C5: Cross-cores cache covert channel. In Magnus Almgren, Vincenzo Gulisano, and

Federico Maggi, editors, Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 46–64, Cham, 2015. Springer International Publishing. ISBN

978-3-319-20550-2.

[59] Fan Yao, Miloš Doroslovački, and Guru Venkataramani. Covert timing channels

exploiting cache coherence hardware: Characterization and defense. Int. J. Parallel

Program., 47(4):595–620, August 2019. ISSN 0885-7458. doi: 10.1007/s10766-018-

0608-4. URL https://doi.org/10.1007/s10766-018-0608-4.

[60] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. Prime+abort:

a timer-free high-precision l3 cache attack using intel tsx. In Proceedings of the

26th USENIX Conference on Security Symposium, SEC’17, page 51–67, USA, 2017.

USENIX Association. ISBN 9781931971409.

[61] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.

Keromytis. The spy in the sandbox: Practical cache attacks in javascript and

their implications. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, CCS ’15, page 1406–1418, New York,

https://doi.org/10.1145/3084690
https://api.semanticscholar.org/CorpusID:6116879
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1007/s10766-018-0608-4

122 References

NY, USA, 2015. Association for Computing Machinery. ISBN 9781450338325. doi:

10.1145/2810103.2813708. URL https://doi.org/10.1145/2810103.2813708.

[62] Anirban Chakraborty, Nimish Mishra, Sayandeep Saha, Sarani Bhattacharya, and

Debdeep Mukhopadhyay. On the amplification of cache occupancy attacks in

randomized cache architectures, 2023. URL https://arxiv.org/abs/2310.05172.

[63] Gururaj Saileshwar and Moinuddin Qureshi. MIRAGE: Mitigating Conflict-Based

cache attacks with a practical Fully-Associative design. In 30th USENIX Security

Symposium (USENIX Security 21), pages 1379–1396. USENIX Association, August

2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/conference/

usenixsecurity21/presentation/saileshwar.

[64] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek

Mittal, Yossi Oren, and Yuval Yarom. Robust website fingerprinting through

the cache occupancy channel. In 28th USENIX Security Symposium (USENIX

Security 19), pages 639–656, Santa Clara, CA, August 2019. USENIX

Association. ISBN 978-1-939133-06-9. URL https://www.usenix.org/conference/

usenixsecurity19/presentation/shusterman.

[65] Anatoly Shusterman, Zohar Avraham, Eliezer Croitoru, Yarden Haskal, Lachlan

Kang, Dvir Levi, Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom.

Website fingerprinting through the cache occupancy channel and its real world

practicality. IEEE Transactions on Dependable and Secure Computing, 18(5):

2042–2060, 2021. doi: 10.1109/TDSC.2020.2988369.

[66] Mohammad Nasim Imtiaz Khan and Swaroop Ghosh. Analysis of row hammer

attack on sttram. In 2018 IEEE 36th International Conference on Computer Design

(ICCD), pages 75–82, 2018. doi: 10.1109/ICCD.2018.00021.

[67] Felix Staudigl, Jan Philipp Thoma, Christian Niesler, Karl Sturm, Rebecca Pelke,

Dominik Germek, Jan Moritz Joseph, Tim Güneysu, Lucas Davi, and Rainer

Leupers. Nvm-flip: Non-volatile-memory bitflips on the system level. In Proceedings

of the 2024 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems,

SaT-CPS ’24, page 11–20, New York, NY, USA, 2024. Association for Computing

Machinery. ISBN 9798400705557. doi: 10.1145/3643650.3658606. URL https:

//doi.org/10.1145/3643650.3658606.

[68] Felix Staudigl, Hazem Al Indari, Daniel Schön, Dominik Sisejkovic, Farhad

Merchant, Jan Moritz Joseph, Vikas Rana, Stephan Menzel, and Rainer Leupers.

Neurohammer: inducing bit-flips in memristive crossbar memories. In Proceedings

of the 2022 Conference & Exhibition on Design, Automation & Test in Europe,

DATE ’22, page 1181–1184, Leuven, BEL, 2022. European Design and Automation

Association. ISBN 9783981926361.

https://doi.org/10.1145/2810103.2813708
https://arxiv.org/abs/2310.05172
https://www.usenix.org/conference/usenixsecurity21/presentation/saileshwar
https://www.usenix.org/conference/usenixsecurity21/presentation/saileshwar
https://www.usenix.org/conference/usenixsecurity19/presentation/shusterman
https://www.usenix.org/conference/usenixsecurity19/presentation/shusterman
https://doi.org/10.1145/3643650.3658606
https://doi.org/10.1145/3643650.3658606

References 123

[69] Moinuddin K. Qureshi. New attacks and defense for encrypted-address cache. In

2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture

(ISCA), pages 360–371, 2019.

[70] Moinuddin K. Qureshi. Ceaser: mitigating conflict-based cache attacks via

encrypted-address and remapping. In Proceedings of the 51st Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-51, page 775–787. IEEE

Press, 2018. ISBN 9781538662403. doi: 10.1109/MICRO.2018.00068. URL

https://doi.org/10.1109/MICRO.2018.00068.

[71] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks:

Automating attacks on inclusive Last-Level caches. In 24th USENIX Security

Symposium (USENIX Security 15), pages 897–912, Washington, D.C., August 2015.

USENIX Association. ISBN 978-1-939133-11-3. URL https://www.usenix.org/

conference/usenixsecurity15/technical-sessions/presentation/gruss.

[72] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks

are practical. In 11th USENIX Workshop on Offensive Technologies (WOOT 17),

Vancouver, BC, August 2017. USENIX Association. URL https://www.usenix.org/

conference/woot17/workshop-program/presentation/brasser.

[73] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan

Mangard. Malware guard extension: Using sgx to conceal cache attacks. In Michalis

Polychronakis and Michael Meier, editors, Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 3–24, Cham, 2017. Springer International

Publishing. ISBN 978-3-319-60876-1.

[74] Mehmet Sinan İnci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and

Berk Sunar. Cache attacks enable bulk key recovery on the cloud. In Benedikt

Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware and Embedded

Systems – CHES 2016, pages 368–388, Berlin, Heidelberg, 2016. Springer Berlin

Heidelberg. ISBN 978-3-662-53140-2.

[75] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache

attacks on intel sgx. In Proceedings of the 10th European Workshop on Systems

Security, EuroSec’17, New York, NY, USA, 2017. Association for Computing

Machinery. ISBN 9781450349352. doi: 10.1145/3065913.3065915. URL https:

//doi.org/10.1145/3065913.3065915.

[76] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games – bringing

access-based cache attacks on aes to practice. In 2011 IEEE Symposium on Security

and Privacy, pages 490–505, 2011. doi: 10.1109/SP.2011.22.

https://doi.org/10.1109/MICRO.2018.00068
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915

124 References

[77] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-Level

Cache Side-Channel Attacks are Practical. In Symp. on Security and Privacy, pages

605–622, 2015.

[78] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New results on

instruction cache attacks. In Stefan Mangard and François-Xavier Standaert, editors,

Cryptographic Hardware and Embedded Systems, CHES 2010, pages 110–124, Berlin,

Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-15031-9.

[79] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V. Krishnamurthy.

Papp: Prefetcher-aware prime and probe side-channel attack. In Proceedings of the

56th Annual Design Automation Conference 2019, DAC ’19, New York, NY, USA,

2019. Association for Computing Machinery. ISBN 9781450367257. doi: 10.1145/

3316781.3317877. URL https://doi.org/10.1145/3316781.3317877.

[80] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+

Flush: A Fast and Stealthy Cache Attack. In Intl. Conf. on Detection of Intrusions

and Malware, and Vulnerability Assessment, pages 279–299, 2016.

[81] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Wait

a minute! a fast, cross-vm attack on aes. In Angelos Stavrou, Herbert Bos, and

Georgios Portokalidis, editors, Research in Attacks, Intrusions and Defenses, pages

299–319, Cham, 2014. Springer International Publishing. ISBN 978-3-319-11379-1.

[82] Aditya S. Gangwar, Prathamesh N. Tanksale, Shirshendu Das, and Sudeepta Mishra.

F lush+ earlyRELOAD: Covert channels attack on shared llc using mshr merging.

In 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 1–6, 2024. doi: 10.23919/DATE58400.2024.10546609.

[83] Berk Gülmezoğlu, Mehmet Sinan undefinednci, Gorka Irazoqui, Thomas Eisenbarth,

and Berk Sunar. A faster and more realistic flush+reload attack on aes. In Revised

Selected Papers of the 6th International Workshop on Constructive Side-Channel

Analysis and Secure Design - Volume 9064, COSADE 2015, page 111–126, Berlin,

Heidelberg, 2015. Springer-Verlag. ISBN 9783319214757. doi: 10.1007/978-3-319-

21476-4 8. URL https://doi.org/10.1007/978-3-319-21476-4 8.

[84] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and Yuval

Yarom. Amplifying side channels through performance degradation. In Proceedings

of the 32nd Annual Conference on Computer Security Applications, ACSAC ’16,

page 422–435, New York, NY, USA, 2016. Association for Computing Machinery.

ISBN 9781450347716. doi: 10.1145/2991079.2991084. URL https://doi.org/

10.1145/2991079.2991084.

[85] T. George Hornby. Side-channel attacks on everyday applications: Distinguishing

inputs with f lush +r eload. 2016. URL https://api.semanticscholar.org/

CorpusID:211266849.

https://doi.org/10.1145/3316781.3317877
https://doi.org/10.1007/978-3-319-21476-4_8
https://doi.org/10.1145/2991079.2991084
https://doi.org/10.1145/2991079.2991084
https://api.semanticscholar.org/CorpusID:211266849
https://api.semanticscholar.org/CorpusID:211266849

References 125

[86] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy

Campbell, and Josep Torrellas. Attack directories, not caches: Side channel attacks

in a non-inclusive world. In 2019 IEEE Symposium on Security and Privacy (SP),

pages 888–904, 2019. doi: 10.1109/SP.2019.00004.

[87] Zhen Hang Jiang and Yunsi Fei. A novel cache bank timing attack. In 2017

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages

139–146, 2017. doi: 10.1109/ICCAD.2017.8203771.

[88] David Lilburn Watson. Hey – get off my cloud! In Hamid Jahankhani,

Ali G. Hessami, and Feng Hsu, editors, Global Security, Safety, and Sustainability,

pages 224–232, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN

978-3-642-04062-7.

[89] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy

Campbell, and Josep Torrellas. Attack directories, not caches: Side channel attacks

in a non-inclusive world. In 2019 IEEE Symposium on Security and Privacy (SP),

pages 888–904, 2019. doi: 10.1109/SP.2019.00004.

[90] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss,

Carlo Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the Other Side:

SSH over Robust Cache Covert Channels in the Cloud. In NDSS, volume 17, pages

8–11, 2017.

[91] Colin Percival. Cache missing for fun and profit. 2005. URL https://

api.semanticscholar.org/CorpusID:14403674.

[92] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen,

and Richard Schlichting. An exploration of l2 cache covert channels in virtualized

environments. In Proceedings of the 3rd ACM Workshop on Cloud Computing

Security Workshop, CCSW ’11, page 29–40, New York, NY, USA, 2011. Association

for Computing Machinery. ISBN 9781450310048. doi: 10.1145/2046660.2046670.

URL https://doi.org/10.1145/2046660.2046670.

[93] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space: high-speed

covert channel attacks in the cloud. In Proceedings of the 21st USENIX Conference

on Security Symposium, Security’12, page 9, USA, 2012. USENIX Association.

[94] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross processor cache

attacks. In Proceedings of the 11th ACM on Asia Conference on Computer

and Communications Security, ASIA CCS ’16, page 353–364, New York, NY,

USA, 2016. Association for Computing Machinery. ISBN 9781450342339. doi:

10.1145/2897845.2897867. URL https://doi.org/10.1145/2897845.2897867.

[95] Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. Sampling dead block

prediction for last-level caches. In Proceedings of the 2010 43rd Annual IEEE/ACM

https://api.semanticscholar.org/CorpusID:14403674
https://api.semanticscholar.org/CorpusID:14403674
https://doi.org/10.1145/2046660.2046670
https://doi.org/10.1145/2897845.2897867

126 References

International Symposium on Microarchitecture, MICRO ’43, page 175–186, USA,

2010. IEEE Computer Society. ISBN 9780769542997. doi: 10.1109/MICRO.2010.24.

URL https://doi.org/10.1109/MICRO.2010.24.

[96] Ishwar S. Bhati, Huichu Liu, Jayesh Gaur, Kunal Korgaonkar, Sasikanth

Manipatruni, Sreenivas Subramoney, Tanay Karnik, Hong Wang, and Ian A.

Young. Write congestion aware bypass for non-volatile memory, last level cache

(llc) dropping from write queue responsive to write queue being full and read queue

threshold wherein the threshold is derived from latency of write to llc and main

memory retrieval time, 2019.

[97] Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A. Jimenez, Elvira

Teran, Seth Pugsley, and Jinchun Kim. The championship simulator: Architectural

simulation for education and competition, 2022.

[98] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.

News, 34(4):1–17, sep 2006. ISSN 0163-5964. doi: 10.1145/1186736.1186737. URL

https://doi.org/10.1145/1186736.1186737.

[99] Scott Beamer, Krste Asanović, and David Patterson. The gap benchmark suite,

2017.

[100] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel

Gruss, and Stefan Mangard. Scattercache: Thwarting cache attacks via cache

set randomization. In USENIX Security Symposium, 2019. URL https://

api.semanticscholar.org/CorpusID:199568473.

[101] Mostafa Hadizadeh, Elham Cheshmikhani, and Hossein Asadi. Stair: High reliable

stt-mram aware multi-level i/o cache architecture by adaptive ecc allocation. In

2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages

1484–1489, 2020. doi: 10.23919/DATE48585.2020.9116550.

[102] Elham Cheshmikhani, Hamed Farbeh, and Hossein Asadi. 3rset: Read disturbance

rate reduction in stt-mram caches by selective tag comparison. IEEE Transactions

on Computers, 71(6):1305–1319, 2022. doi: 10.1109/TC.2021.3082004.

[103] Sukarn Agarwal, Shounak Chakraborty, and Magnus Själander. Architecting

selective refresh based multi-retention cache for heterogeneous system (armour). In

2023 60th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2023. doi:

10.1109/DAC56929.2023.10247878.

[104] M.K. Qureshi, D. Thompson, and Y.N. Patt. The v-way cache: demand-based

associativity via global replacement. In 32nd International Symposium on Computer

Architecture (ISCA’05), pages 544–555, 2005. doi: 10.1109/ISCA.2005.52.

https://doi.org/10.1109/MICRO.2010.24
https://doi.org/10.1145/1186736.1186737
https://api.semanticscholar.org/CorpusID:199568473
https://api.semanticscholar.org/CorpusID:199568473

References 127

[105] Daniel Sanchez and Christos Kozyrakis. The zcache: Decoupling ways and

associativity. In 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 187–198, 2010. doi: 10.1109/MICRO.2010.20.

[106] A. Bhatla, Navneet, and B. Panda. The maya cache: A storage-efficient and secure

fully-associative last-level cache. In 2024 ACM/IEEE 51st Annual International

Symposium on Computer Architecture (ISCA), pages 32–44, Los Alamitos, CA,

USA, jul 2024. IEEE Computer Society. doi: 10.1109/ISCA59077.2024.00013. URL

https://doi.ieeecomputersociety.org/10.1109/ISCA59077.2024.00013.

[107] Odilia Coi, Guillaume Patrigeon, Sophiane Senni, Lionel Torres, and Pascal Benoit.

A novel sram-stt-mram hybrid cache implementation improving cache performance.

In NANOARCH: Nanoscale Architectures, pages 39–44, July 2017. doi: 10.1109/

NANOARCH.2017.8053704.

[108] Mehmet Kayaalp, Dmitry Ponomarev, Nael Abu-Ghazaleh, and Aamer Jaleel.

A high-resolution side-channel attack on last-level cache. In 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, 2016. doi:

10.1145/2897937.2897962.

[109] Jaspinder Kaur and Shirshendu Das. Acpc: Covert channel attack on last

level cache using dynamic cache partitioning. In 2023 24th International

Symposium on Quality Electronic Design (ISQED), pages 1–8, 2023. doi: 10.1109/

ISQED57927.2023.10129363.

[110] Jaspinder Kaur and Shirshendu Das. Tppd: Targeted pseudo partitioning

based defence for cross-core covert channel attacks. Journal of Systems

Architecture, 135:102805, 2023. ISSN 1383-7621. doi: https://doi.org/10.1016/

j.sysarc.2022.102805. URL https://www.sciencedirect.com/science/article/

pii/S1383762122002909.

[111] Jaspinder Kaur and Shirshendu Das. Rspp: Restricted static pseudo-partitioning for

mitigation of cross-core covert channel attacks. ACM Trans. Des. Autom. Electron.

Syst., 29(2), jan 2024. ISSN 1084-4309. doi: 10.1145/3637222. URL https://

doi.org/10.1145/3637222.

[112] James Bucek et al. Spec cpu2017: Next-generation compute benchmark. In

Companion of the 2018 ACM/SPEC International Conference on Performance

Engineering, ICPE ’18, page 41–42, New York, NY, USA, 2018. Association for

Computing Machinery. ISBN 9781450356299.

[113] Zhenyu Sun, Xiuyuan Bi, Hai Li, Weng-Fai Wong, and Xiaochun Zhu. Stt-ram

cache hierarchy with multiretention mtj designs. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 22(6):1281–1293, 2014. doi: 10.1109/

TVLSI.2013.2267754.

https://doi.ieeecomputersociety.org/10.1109/ISCA59077.2024.00013
https://www.sciencedirect.com/science/article/pii/S1383762122002909
https://www.sciencedirect.com/science/article/pii/S1383762122002909
https://doi.org/10.1145/3637222
https://doi.org/10.1145/3637222

128 References

[114] Fangting Huang, Dan Feng, Wen Xia, Wen Zhou, Yucheng Zhang, Min Fu, Chuntao

Jiang, and Yukun Zhou. Security rbsg: Protecting phase change memory with

security-level adjustable dynamic mapping. In 2016 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), pages 1081–1090, 2016. doi: 10.1109/

IPDPS.2016.22.

[115] Fang ting Huang, Dan Feng, Wen Xia, Wen Zhou, Yu cheng Zhang, Min Fu,

Chun tao Jiang, and Yu kun Zhou. Enhancing security of nvm-based main

memory with dynamic feistel network mapping. Frontiers of Information Technology

Electronic Engineering, 19(7):847–863, July 2018. ISSN 2095-9230. doi: 10.1631/

FITEE.1601652. URL https://doi.org/10.1631/FITEE.1601652.

[116] Moinuddin K. Qureshi, Andre Seznec, Luis A. Lastras, and Michele M. Franceschini.

Practical and secure pcm systems by online detection of malicious write streams.

In 2011 IEEE 17th International Symposium on High Performance Computer

Architecture, pages 478–489, 2011. doi: 10.1109/HPCA.2011.5749753.

[117] Nitin Rathi, Swaroop Ghosh, Anirudh Iyengar, and Helia Naeimi. Data privacy in

non-volatile cache: Challenges, attack models and solutions. In 2016 21st Asia and

South Pacific Design Automation Conference (ASP-DAC), pages 348–353, 2016. doi:

10.1109/ASPDAC.2016.7428036.

[118] Mu-Tien Chang et al. Technology comparison for large last-level caches (l3cs):

Low-leakage sram, low write-energy stt-ram, and refresh-optimized edram. In IEEE

HPCA, pages 143–154, 2013.

[119] Chi-Keung Luk et al. Pin: building customized program analysis tools with dynamic

instrumentation. In ACM SIGPLAN PLDI, PLDI ’05, page 190–200, 2005. ISBN

1595930566.

https://doi.org/10.1631/FITEE.1601652

	Declaration
	Acknowledgement
	Certificate
	Lay Summary
	Abstract
	List of Publications
	List of Abbreviations and Notations
	List of Figures
	List of Tables
	Introduction
	Introduction
	STT-RAM LLCs
	Challenges and Solutions for implementing STT-RAM LLCs
	Write Variations
	Wear Leveling Techniques

	Motivation
	Summary and Organization of the Thesis

	Background and Literature Review
	Background
	Cache Memories
	STT-RAM Cell
	STT-RAM based LLC

	Write Variation and Lifetime
	Techniques to Improve Lifetime in STT-RAM based LLCs
	Wear Leveling Techniques
	Write Bypassing Techniques
	Hybrid Caches
	Miscellaneous Techniques
	Summary of this Section

	Attacks on STT-RAM LLCs
	Cache Timing Channel Attacks
	Cache Side Channel Attacks (SCA)
	Cache Covert Channel Attacks (CCA)

	Cache Contention Attacks
	Cache Occupancy Attacks
	Cache Rowhammer based Attacks
	Cache Miscellaneous Attacks
	Summary of this Section

	Summary of this Chapter

	Dynamic Write Bypassing for Lifetime Improvement in STT-RAM LLCs
	Introduction
	Motivation
	PartA (To reduce InterV): PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based LLC
	Proposed Architecture
	Writes set counter (WSC)
	SRAM Buffer
	Liveness Score Counter (LSC)

	Working of PROLONG
	PROLONG Algorithm

	PartB (To reduce IntraV): LiveWay: Dynamic Write Bypassing for Lifetime Enhancement in STT-RAM LLC
	Proposed Architecture
	Working of LiveWay

	Experimental Setup
	Simulator Setup
	Workloads

	PartA: Results and Analysis
	Single-core Analysis
	Multi-core Analysis
	Sensitivity Analysis
	Importance of SRAM buffer
	Comparison with other write bypassing techniques
	Lifetime Comparison Analysis
	SPEC2017 vs SPEC2006 vs GAP

	Hardware Overhead and Energy Consumption

	PartB: Results and Analysis
	Single-core Analysis
	Multi-core Analysis
	SPEC2017 vs SPEC2006 vs GAP
	Hardware Overhead and Energy Consumption

	Conclusion

	Decoupling the tag and data array for Lifetime Improvement
	Introduction
	Motivation
	SmartDeCoup
	LLC Organization
	Maintaining Coherence:

	Primal Approach
	Working Example
	Drawbacks of Primal Approach

	Hardware Efficient Approach
	Bucket formation
	Working Example

	Primal Approach vs Hardware Efficient Approach
	Importance of SmartDeCoup in Modern LLC
	Challenges in Implementing SmartDeCoup on Mirage and Maya-Cache:
	SmartDeCoup with non-decoupled secured LLC designs

	Experiments
	Simulator Setup
	Workloads

	Results and Analysis
	Primal Approach
	Single-core Analysis
	Multi-core Analysis

	Hardware Efficient Approach
	Single-core Analysis
	Multi-core Analysis

	Sensitivity Analysis
	Primal Approach vs Hardware Efficient Approach
	SPEC2017 vs SPEC2006 vs GAP
	Analysis of AI Workloads

	Overhead Analysis

	Conclusion

	Endurance Attacks on STTRAM LLCs
	Introduction
	Motivation
	TENDRA: Targeted Endurance Attack
	Threat Model
	The Attack Idea
	Recurring Location Attack (RLA)
	Recurring Toggle Attack (RTA)
	Random Location Attack (RnLA)
	Random Toggle Attack (RnTA)

	Comparison between Attacks

	Experimental Evaluation
	Simulator Setup
	Workloads

	Results and Analysis
	Effects of RLA, RTA, RnLA and RnTA on different State-of-the-art Wear Leveling Techniques
	Write Count

	Effects on Lifetime and Performance

	Conclusion and Future Work

	Conclusion and Future Scope
	Major Research Contributions
	Future Scope
	Practical Lifetime Improvement for Industry-wide Adaptation

	References

