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Lay Summary

The need for Gate-All-Around (GAA) MOSFET arises from the ongoing effort to scale

transistors in line with Moore’s Law, which predicts the doubling of transistor density on

integrated circuits (ICs) approximately every 18 to 24 months. As traditional MOSFET

architectures, such as planar and Fin-FETs, struggle to scale down beyond the 5nm

technology node, GAA MOSFET, including nanowire field-effect transistor (NW-FET)

and nanosheet field-effect transistor (NS-FET), offer improved electrostatic control and

reduced short-channel effects due to their innovative four-sided gate design that fully

encloses the channel. This enables further miniaturization while maintaining performance

and power efficiency. These architectures could allow the semiconductor industry to push

the boundaries of Moore’s Law by supporting smaller, faster, and more energy-efficient

devices. However, a comprehensive evaluation of their performance is needed to assess

their full potential.

Thesis analyzes the performance of GAA devices for digital, radio frequency

(RF), and neuromorphic applications using fully calibrated three-dimensional technology

computer-aided design (TCAD) simulations. The objective is to understand the behavior

of these devices and contribute to the development of next-generation neuromorphic

computing systems in the future technology node. The study begins with an in-depth

analysis of the analog and RF performance of GAA devices for system-on-chip (SoC) and

system-in-package (SiP). The analysis explores the impact of various design parameters,

such as gate length, channel width/height, number of channels, and channel orientation.

In addition, novel stacking architectures, such as forksheet (FSH) and complementary

field-effect transistor (CFET) are investigated through process simulations to address

design-technology co-optimization (DTCO) challenges, highlighting their advantages for

scaling beyond the 5 nm technology node.

A distinctive aspect of this work is the detailed analysis of the neuronal and

synaptic functionalities of nanowire field-effect transistors (NW-FETs) for neuromorphic

applications. A key part of this investigation involves evaluating and implementing an

artificial synapse using HfOx-based nanowire charge trap transistor (NW-CTT), which

aim to develop a highly scalable and CMOS-compatible neuromorphic computing system.

Further, the assessment of NW-CTT is carried out by designing a fully CMOS-compatible

spiking neural network for digital digit recognition. The thesis demonstrates the potential

of GAA devices to deliver superior speed and energy efficiency for digital, RF, and

neuromorphic applications.
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Abstract

The dimensional and functional scaling of MOSFET dimensions has been a key enabler of

advancements in the semiconductor industry, enhancing both performance and integration

density. As MOSFET scaling approaches its fundamental physical limits, new material

and architecture are being explored to sustain progress. Gate-all-around (GAA) devices,

particularly nanowire (NW) and nanosheet (NS) FETs, have demonstrated exceptional

switching performance, which positions them as strong candidates for ultra-scaled CMOS

technology. Additionally, the charge-trapping mechanism in these devices offers a

compelling opportunity to develop brain-inspired neuromorphic computing systems, which

address the energy and speed constraints inherent in traditional von Neumann computer

architecture. As experimental advancements in GAA devices accelerate, several key

questions emerge regarding their integration into advanced circuits:

(i) What is the most promising GAA architecture for digital and radio frequency (RF)

applications?

(ii) Which CMOS inverter stacking configuration with NS-FET provides the most

significant performance improvements with high integration density at ultra-scaled

gate lengths?

(iii) How can the charge-trap mechanism in NW-FETs be better utilized to achieve

multiple stable states for emulating biological synapses?

(iv) Is it possible to develop energy-efficient and highly scalable spiking neural networks

with NW-FET by exploiting the charge-trap mechanism?

The thesis work is focused on answering the above questions by performing

device-to-circuit level co-optimization of GAA devices using a well-calibrated 3D TCAD

tool, based on self-consistent solutions of the Boltzmann’s transport equation and

Poisson’s equation with incorporating quantum corrections and mobility degradation

effects. Initially, GAA devices, including NW-FET and NS-FET, are investigated for

analog/RF applications and benchmarked against their Fin-FET counterparts. The

findings indicate that NS-FET is well-suited for analog/RF applications due to their high

voltage gain, superior cut-off frequency, and maximum oscillation frequency for sub-5

nm technology nodes. Subsequently, innovative CMOS inverter configurations, such as

forksheet (FSH) and complementary FET (CFET), are explored in conjunction with

nanosheet to develop high-speed and low-power digital ICs with high integration density.
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This analysis demonstrates that CFET delivers optimal and robust switching performance

in the inverter, SRAM, and ALU configurations at the ultimate scaling limit.

In the next phase, a systematic analysis was conducted to assess the viability

of NW channel as charge-trap transistor (CTT) for emulating synapses at the 5 nm

technology node. This study focuses on understanding the role of device parameters

on short-term and long-term memory. Importantly, the nearly linear conductance

modulation of NW-CTT as a synapse promises high recognition accuracy of around

94.7% and low write energy (2.3 mJ) in a neural network configuration (784 × 100 ×

10) for handwritten digit recognition. Finally, the successful co-integration of neurons

and synapses using NW-CTT is demonstrated for scalable neuromorphic hardware with

CMOS-compatible processing techniques. The neurons and synapses are co-integrated

to develop a spiking neural network, which exhibits noise-tolerant and energy-efficient

recognition for handwritten digits. The comprehensive analysis suggests that NW-CTT

presents a promising solution for high-density and low-power hardware implementations

of brain-inspired spiking learning systems.

Keywords: Nanowire-FET; Nanosheet-FET; Forksheet; Complementary FET,

Gate-all-around FET; CMOS Inverter; Neuron; Synapse; Spiking neural network
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Chapter 1

Introduction

The continuous scaling of complementary metal-oxide-semiconductor (CMOS)

technology has been a key driver in the advancement of semiconductor processing

techniques and the enhancement of the functionality of electronic devices. Over the

past four decades, the dimensions of metal-oxide-semiconductor field-effect transistors

(MOSFETs) have shrunk according to Moore’s law. In the early phase, the miniaturization

of bulk MOSFET has encountered several challenges, such as short-channel effects (SCEs),

which lead to a loss of electrostatic integrity, high body doping, which results in increased

threshold voltage (VTh) variation, and band-to-band tunneling, which induces OFF-state

leakage and substrate leakage currents [1]. To mitigate these limitations, MOSFETs have

been extensively researched, which leads to innovations, such as strained semiconductors,

silicon-on-insulator (SOI) technology, and ultra-thin body (UTB) SOI [2]. The demand for

high performance and enhanced integration density has driven the scaling of nearly every

device parameter, including channel length, gate dielectric thickness, body and substrate

thickness, doping levels, and supply voltage [3]. The emergence of Fin-FET architecture

at the 22-nm technology node has significantly enhanced the gate control over the channel

region and enabled the device dimension scaling down to the 7-nm technology node [4].

However, Fin-FET is struggling to further scale down the channel length below the 7-nm

technology node due to limitations in the electrostatic control and carrier mobility [5].

To ensure scaling and performance benefits, gate-all-around (GAA), particularly

nanowire (NW) and nanosheet (NS) FETs, have emerged as promising device architectures

for sub-5-nm technology nodes [6]. These advanced device architectures offer enhanced

electrostatic control compared to Fin-FET, enabling continued transistor scaling. They

also provide improved performance, operate at lower supply voltages, and exhibit reduced

variability in threshold voltage (VTH) due to their ability to function effectively with

low channel doping [7]. NS-FET and NW-FET can be produced in two configurations:

horizontal [8] and vertical [9]. Horizontal stacked NWs, as shown in Fig. 1.1, are used in

the traditional 2-D layout, where space for contact and gate placement is restricted [10].

However, the vertical NW configuration shifts the layout from a 2D to a 3D structure,

allowing a longer gate length without occupying a large area on the wafer. However,

this approach requires extensive research into process design co-optimization. Especially,
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NW-FET configuration necessitates significant spacing between adjacent nanowires, which

poses major fabrication challenges and increases the aspect ratio of the entire channel

stack [11]. Recent research on highly stacked NS-FET (see Fig. 1.1) indicates that

vertical stacking channels can significantly boost drive current and transistor density and

addresses the limitations associated with traditional NW-FET architectures [12]. These

developments underscore a shift toward more complex nanosheet stacking arrangements,

which promise enhanced performance while addressing the inherent challenges of scaling

in semiconductor technology. Thus, while NW-FET and NS-FET present viable solutions

to overcome short-channel effects and improve performance, ongoing research continues to

explore innovative configurations that will be essential for meeting the demands of future

electronic devices.

Wfin

Hfin

(b) NW-FET(a) Fin-FET (c) NS-FET

DNW = 10nm
TNS

WNS

Figure 1.1: 3D schematic view along with cross-sectional channel-view of: (a) Fin-FET,
(b) NW-FET and (c) NS-FET.

Remarkably, NS-FETs have demonstrated seamless integration into advanced

electronic systems while addressing the challenge of integration density by implementing

novel inverter configurations, such as Forksheet (FSH) and Complementary FET (CFET)

[13, 14]. FSH architecture improves the integration density by using dielectric separation

between n-type and p-type MOSFETs, allowing them to be placed closer together [15].

Meanwhile, CFET enables vertical stacking of these devices and further optimizes space

and power efficiency [13]. These advances offer significant benefits, including reduced

footprint, lower power consumption, and improved performance for high-speed digital

circuits. However, several challenges remain, such as the complexity of fabricating these

intricate structures, mitigating parasitic effects, and evaluating their performance in

advanced logic circuits [16, 17]. Therefore, exploring the design and optimization of FSH

and CFET architectures with Si NS-FETs presents a valuable opportunity to advance

device performance and overcome the scaling limitations of next-generation semiconductor

technologies.

Another emerging recent application is charge trap mechanisms in advanced

transistor architectures, which can potentially develop the device for nonvolatile memory
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applications and neuromorphic computing [18, 19]. Unlike conventional transistors, charge

trap transistor (CTT) stores charge in a dielectric layer or a trap site within the gate

dielectric, which can alter the threshold voltage of the device and allow multiple states

to be stored [20]. This ability to retain information even when powered off makes

them highly attractive for next-generation nonvolatile memory technology [21, 22, 23].

Moreover, CTT is gaining attention in neuromorphic computing, as its multilevel states

can mimic the behavior of biological synapses. Recent developments have explored the

implementation of charge trap mechanisms in planar and Fin-FET device architectures,

which are highly susceptible to short-channel effects [18, 24]. This could exacerbate

variability and reliability issues in neural network implementation [21]. Therefore, there

is a pressing need for the advancement of synaptic and neuron characteristics with CTT,

which can support technology scaling and enable the development of high-density neural

networks.

1.1 Transistor Performance Metrics and Trade-offs
1.1.1 Digital Applications

Semiconductor devices are crucial in two main areas: digital integrated circuits

(ICs) and radio-frequency (RF) ICs. Digital ICs comprise logic gates, including NOR and

NAND gates, which use a combination of p-type and n-type transistors to perform specific

logical functions. It is found that by controlling these gates, transistors act as switches,

which allows high currents to pass when in the ”on” state and minimal currents in the

”off” state. Therefore, with a wide array of expectations and requirements, it is beneficial

to define Figures of Merit (FOMs) that cover essential aspects of transistor performance,

from the device level to the circuit level.

• The application of gate voltage to the channel is essential for utilizing MOSFET

as switches, and this necessitates a high current value in the ON-state and a low

current value in the OFF-state. A substantial ON-state current facilitates the rapid

charging of capacitive loads, typically comprising the gates of one or more following

transistors. In contrast, a low OFF current minimizes the leakage current, which

predominantly governs static power dissipation. The ON/OFF current ratio is a

critical FOM for digital switches, with higher values indicating superior performance.

According to the 2023 requirements outlined by the International Roadmap for

Devices and Systems (IRDS), 1 nm technology node GAA MOSFETs are expected

to possess an ON state current of 775 µA/µm at an OFF current of 10 nA/µm and
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an ON/OFF current ratio within the range of 105 − 107 for high-performance logic

applications [25]. Achieving such an ON/OFF current ratio is dependent on the

semiconductor bandgap and gate control efficiency.

• Another significant FOM used to evaluate switching characteristics is the

subthreshold swing (SS). It quantifies the rate at which the current increases below

the threshold voltage (i.e. when VGS < VTH for n-FETs) as

SS =
dVG

d(log10(IDS))
(1.1)

where SS is typically measured in millivolts per decade of current (mV/dec), VG is the

gate voltage, and IDS represents the drain to source current. A steeper subthreshold

slope indicates a more abrupt transition between the OFF-state and ON-state with

respect to gate voltage. Ideally, SS should be as small as possible. Conventional Si

MOSFET has a lower limit of 60 mV/dec.

• Drain-induced barrier lowering (DIBL) is another important FOM. In the

short-channel MOSFET, the source-drain potential has a strong effect on the band

bending over a significant portion of the device. This results in the variation in the

sub-threshold current of the device. This effect is referred to as DIBL. In simpler

terms, the DIBL occurs when the depletion regions of the drain and the source

interact near the channel surface to lower the source potential barrier. Further, it is

assessed by computing the change in the threshold voltage (VTH) between the drain

voltages VDS = 0.05 V and VDS = 0.5 V and normalizing it by ∆VDS, as given

DIBL =
∆VTH

∆VDS
(1.2)

• The intrinsic device delay (τ = CgVdd/ION ) serves as another critical metric for

evaluating the switching behavior of the device. Here, Cg, Vdd, and ION represent the

gate capacitance, supply voltage, and ON-state current, respectively. It highlights

the inherent constraints on the switching speed of the device and its ability to operate

for distinct frequencies.

• The power delay product (PDP) represents a vital metric for evaluating the switching

performance of a device. It quantifies the energy expenditure needed for the

transition from the ON- to OFF-state transition. It is quantified as Pdyn = αPDPf ,

where f denotes the operating frequency, and α represents the activity factor.
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• One of the crucial static performance metrics for the basic CMOS digital block

includes maximum DC gain. In multistage logic circuits, an inverter with a maximum

DC gain exceeding 1 is highly desirable due to its ability to enhance circuit robustness

against errors and promote regenerative behavior.

• One of the crucial static performance metrics for the basic CMOS digital block

includes noise margin. In the context of multilevel logic circuits, an inverter with a

high noise margin is essential as it signifies the ability of an inverter to tolerate noise

or unwanted voltage variations on its input without changing its intended output

state.

1.1.2 Analog/Radio Frequency Applications

• The important performance metric for an RF transistor is the unity current

gain frequency or cutoff frequency (fT), which represents the maximum operating

frequency at which a transistor might prove useful. It is also the most common

measure of transistor speed. The intrinsic cutoff frequency defined as:

fT =
gm

2(Cgs + Cgd)
(1.3)

Where Cgs, Cgd and gm are the gate-to-source capacitance, gate-to-drain

capacitance, and transconductance, respectively. To achieve high fT, the transistor

transconductance (gm) should be high, and all other elements of the equivalent

circuit should be as small as possible.

• The intrinsic gain (AV 0) is also an important performance metric of the RF

transistor, which measures the maximum possible low-frequency small-signal voltage

gain it can provide. The intrinsic gain is given as:

AV 0 =
gm
gds

(1.4)

The voltage gain of a transistor is generally maximized by lowering output

conductance (gds) and hence operating it in the deep saturation mode.

• Another important parameter for the RF transistor is the maximum oscillation

frequency or unit power gain frequency (fmax). It represents how fast the channel

power transmission is modulated by the gate voltage. The fmax is defined as:

fmax =
fT

2
√
gds(Rs +Rg) + 2πfTRgCg

(1.5)

Where Rg and Rs are respectively the resistance of the gate and source terminals,
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and Cg is the gate capacitance. The low output conductance (gds) is also one of the

key factors in increasing the fmax. Thereby, a high fmax can be attained when the

transistor is driven into deep saturation.

Cell Body

Synapse

Neuron Transmitters

SOMA

Synaptic Dendrites

Figure 1.2: Schematic representation of biological neuron and synapse.

1.1.3 Neuromorphic Applications

Neuromorphic computing systems offer a promising alternative to overcome the

limitations of von Neumann architecture by leveraging several key advantages, such

as extensive parallelism, distributed processing, adaptability, self-organization, fault

tolerance, stability, energy efficiency, and robustness. Various non-volatile memory

technologies have demonstrated their effectiveness in mimicking the behavior of synapses

and neurons [26]. In these systems, neurons serve as basic computational units that

perform nonlinear activation or thresholding functions, while synapses act as local memory

elements that are densely interconnected through communication channels, as shown in

Fig. 1.2. Given the diverse expectations and requirements of neuromorphic systems, it is

essential to outline the key characteristics that encompass the critical aspects of artificial

synaptic and neuronal implementation [27], [28].
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Neuronal Characteristic Requirements

• The neuron must exhibit a threshold-based response, similar to how biological

neurons fire when the input signal surpasses a certain threshold. Artificial neurons

should be capable of generating non-linear activation functions, where the output

remains low for sub-threshold inputs and sharply increases when the input crosses a

certain level, mimicking the all-or-nothing firing mechanism in biological neurons.

• Artificial neurons must be capable of receiving multiple input signals, which can be

weighted to reflect their importance. This mimics the way biological neurons receive

signals from various synapses.

• Artificial neurons must operate with low power consumption. Energy-efficient

devices can mimic biological operations at a fraction of the energy cost of traditional

computing elements.

• Artificial neurons should be able to process multilevel inputs and outputs, which

represent various strengths of synaptic transmission or neural firing, to better capture

the gradation seen in biological systems.

• Artificial neurons should exhibit resilience to noise in input signals, ensuring reliable

performance even when faced with variations or inaccuracies in data.

Synaptic Characteristic Requirements

• Distinguishable multi-state capability is an important property of artificial synapse

because the neuro-inspired algorithms often leverage these analog synaptic weights

to facilitate pattern learning and feature extraction. Interestingly, a high number of

multilevel states (e.g., exceeding hundreds of levels) can enhance learning capabilities

and increase the robustness of the network.

• Dynamic range is another important FOM as it represents the ratio between

maximum and minimum conductance. A wider dynamic range enhances the mapping

accuracy of algorithmic weights to device conductance, as these weights are often

normalized within a specific range, such as between 0 and 1.

• Linearity in weight serves as important criterion as it refers to the consistency of the

relationship between device conductance and the number of identical programming

pulses applied. Ideally, this relationship should be both linear and symmetric,
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allowing for a straightforward mapping of algorithmic weights to the conductance of

the device.

• Energy efficiency is one of the crucial criteria for artificial synapses because, in

biological synapses, the energy required for each synaptic event is remarkably low,

typically ranging from 1 to 10 femtojoules (fJ). This level of energy efficiency is a

key benchmark for designing neuromorphic systems.

• Retention and Endurance are significant FOM for evaluating artificial synapses.

Non-volatile synaptic devices should serve as long-term memory while retaining

data for up to ten years at the maximum chip operating temperature (e.g., 85oC).

Moreover, endurance reflects the number of weight updates a device can withstand.

1.2 State-of-Art of GAA MOSFETs

Beyond the 7 nm technology node, Fin-FETs face significant challenges in scaling

down the device dimensions due to the onset of short-channel effects [4]. To overcome

these limitations and ensure continued performance improvements, GAA devices, such

as NW-FET and NS-FET, have emerged as promising alternatives for sub-5 nm

technology nodes. In recent years, substantial advancements have been made in the

experimental fabrication and simulation studies of GAA devices for digital applications

[6? , 29]. Especially, stacked NS-FET has demonstrated a higher ON/OFF ratio, reduced

drain-induced barrier lowering (DIBL), and lower device delay compared to their Fin-FET

and NS-FET counterparts under the same technology node [29, 30]. Despite the promising

performance of GAA devices, several critical aspects remain unexplored, particularly

for future technology nodes. Key areas that require further investigation include their

scalability to sub-3 nm nodes, analog and RF performance, optimization of threshold

voltage, and reliability study. Additionally, integrating NS-FETs with advanced circuit

designs and their potential for enhancing power efficiency and performance in complex

systems have yet to be fully understood. Addressing these gaps is essential for realizing

the full potential of NS-FETs in next-generation semiconductor technologies. Key areas

that require further investigation include

• Over the past few years, silicon multigate devices, such as Fin-FET, NW-FET,

and NS-FET, have been explored for digital applications [29, 30]. However, the

RF performance remains unexplored in the proper device design space. Therefore,

it is necessary to find a promising FET for RF performance applications for
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future technology nodes. Further, it becomes worth understanding their analog/RF

performance for guiding experiments and encouraging more efforts in this direction

using numerical simulations.

• The stacked NS-FET paved the way for the innovation of novel CMOS architectures,

such as FSH and CFET [13, 31, 32]. These novel CMOS architectures present

switching performance boosts and area efficiency over the conventional CMOS

inverters for the advanced technology nodes [13, 32]. Moreover, these CMOS

inverters-based SRAM have experimentally and theoretically proven to demonstrate

exceptional read and write noise margin, operating frequency, and lower power

consumption [32, 33, 34, 35, 36]. The studies indicate that these novel CMOS

inverters could reduce routing congestion due to their exceptional performance

benefits with the p-n separation scaling. To our knowledge, no qualitative studies

have uniformly benchmarked the inverter-level performance of CFET, FSH, and

s-NSH configurations in a single systematic study. Therefore, it becomes increasingly

important to understand the performance and scaling advantages of CFET and FSH

inverter configurations for developing high-speed and low-power digital ICs with

high-density integration capability.

• The exploration of stacked nanosheet-based in six transistors static random access

memory (6T SRAM) [14, 34, 37, 38, 39] and logic gates [40, 41] have underscored its

potential in memory and logic applications. However, no study has presented the

performance advantages of 6T SRAM cells with CFET, FSH, and s-NSH inverter

configurations for future technology nodes. In the case of logic aspects, many recent

studies on CFET inverters have designed common logic gates [40, 42]. However,

the performance analysis of ALU blocks using FSH and s-NSH configurations has

not been thoroughly presented. Therefore, there is a pressing need for a detailed

investigation of SRAM and ALU performance with s-NSH inverter architectures to

implement efficient memory and logic circuits, respectively.

• A three-terminal CTT with a high-k oxide gate, such as HfO2, Si3N4, and

Al2O3, has emerged as a promising synaptic element due to their full CMOS

compatibility with three-dimensional (3-D) integration capability, high dynamic

range, and superior retention capability [18]. Interestingly, the enhancement of

charge trapping using radiation doses in high-k CTT has made significant progress

in achieving high threshold voltage modulation (∆VTh) [18, 21], which renders
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them potential candidates for facilitating multistate operations in analog synaptic

devices. Ansari et al. have recently reported a charge trap mechanism using

Si3N4-based stacked NS-FETs [43, 44]. However, their model assumes a negligible

impact from the oxide layer trap to validate the current characteristics of both the

simulated and experimental device geometry, which results in inaccurate predictions.

Additionally, the effect of self-heating caused by the trap mechanism has not been

considered. Thus, for accurate device performance and reliable modeling, careful

modeling and analysis of GAA-based CTT is essential, particularly to achieve

superior non-volatile memory characteristics and enhanced synaptic performance

in neuromorphic applications.

• The integration of CTT in neuromorphic systems has seen rapid advancements.

Several studies have explored CTT-based synaptic crossbars to evaluate their

performance in spiking neural networks (SNNs) for brain emulation with off-chip

training [20]. However, these crossbar arrays, utilizing planar SOI MOSFET

has reported significant training times and only moderate power efficiency [20].

Additionally, no research has been carried to understand the neuronal behavior in

CTT. Thus, this highlights a pressing need to develop fully CTT-based spiking neural

networks that implement both synapses and neurons to create more energy-efficient

brain-emulating systems.

Addressing these challenges is crucial for realizing the potential of Si-based GAA

devices and facilitating their integration into a wide range of electronic devices and

systems.

1.3 Problem Definition

NS-FET and NW-FET have demonstrated remarkable advancements and scalability

in the implementation of inverter configurations, while an in-depth exploration of

GAA-based inverters at device, circuit, and block levels is still missing. Apart from

conventional computation, few studies have highlighted the potential of GAA devices in

neuromorphic computing, which requires in-depth exploration. Therefore, the current

scope of this research is motivated by extensive performance benchmarking and rigorous

optimization of device design parameters of GAA devices for digital and neuromorphic

computing system applications. Specially, the work in this thesis aims to address the

following specific aspects of silicon-based GAA devices for the future integrated design

aspects:
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• Identifying the most suitable GAA architecture for analog/RF applications in sub-5

nm technology nodes.

• Analyzing and benchmarking silicon stacked nanosheet-based novel CMOS inverter

configurations, such as CFET, FSH, and conventional stacked nanosheet (s-NSH)

with a Buried Power Delivery Network (BPDN) for future technology nodes.

• Determining the optimal stacked nanosheet-based CMOS inverter configurations,

such as CFET, FSH, and s-NSH, for memory and logic applications.

• Investigating the synaptic characteristics of NW-CTT for CMOS-compatible

neuromorphic systems.

• Designing and analyzing spiking neural networks using nanowire-based CTT as

neurons and synapses to develop energy-efficient neuromorphic systems.

This comprehensive study will provide insights into GAA architectures and facilitate

advancements in analog/RF, memory, logic, and neuromorphic applications.

1.4 Thesis Framework Overview

The thesis is organized into seven chapters. The brief descriptions of each chapter

are as follows.

Chapter 1 briefly describes the motivation, problem definition, and outline of the

thesis.

Chapter 2 focuses on the analysis and design of silicon-based multigate devices, such

as fin field effect transistors (Fin-FET), gate all-around nanowire field effect transistors

(NW-FET), and nanosheet field effect transistors (NS-FETs) for sub-5 nm technology

node. The chapter primarily centers around the comparative analysis of Fin-FET,

NW-FET and NS-FET, highlighting their potential performance benefits for analog/RF

applications. Initially, the chapter introduces a 3-D TCAD simulation methodology that

accurately describes the electronic transport of multigate devices, which highlights its

accurate captivity of short channel and quantum effects. Subsequently, it explores the

advantages of Fin-FET, NW-FET, and NS-FET for analog/RF applications, comparing

important metrics such as transconductance, output conductance, voltage gain, cut-off

frequency, and maximum oscillation frequency with respect to channel length scaling,

geometrical parameters scaling (fin width and height, nanosheet thickness and width,

nanowire diameter), surface orientation and multichannel stacks.
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Chapter 3 discusses the power performance area analysis of silicon CMOS inverters,

such as CFET, FSH, and s-NSH with BPDN for 5 nm and beyond technology node. The

chapter begins by discussing the process steps involved in designing the CMOS inverters in

Synopsys 3-D TCAD tool. It then examines the transfer characteristics and short-channel

performance metrics of p-FET and n-FET of CMOS inverters. Subsequently, it will

analyze the static performance metrics, such as gain and noise margin, and dynamic

performance metrics, including power versus frequency. Finally, the chapter explores

the inverter performance dependence on supply voltage VDD, load capacitance with and

without the back end of lines, device scaling, and p-n separation.

Chapter 4 delves into an in-depth investigation of memory and logic applications by

designing the 6T SRAM and 32-bit arithmetic logic unit, respectively, using CFET, FSH,

and s-NSH inverters. The chapter begins by discussing the process flow of 6-T SRAM

using CFET, FSH, and s-NSH inverters. Subsequently, it compares the read and write

static noise margin, and read and write delay of CFET-, FSH- and s-NSH-based SRAM

with respect to the technology node. It then discusses the power performance area benefits

of device scaling. Finally, it investigates the device scaling performance of CFET-, FSH-,

and s-NSH-based ALU in terms of energy, power delay product, and throughput.

Chapter 5 focuses on a systematic suitability analysis of HfO2-based nanowire

charge trap transistor (NW-CTT) as artificial synapses in the 5 nm technology node.

The chapter investigates both short-term and long-term memory characteristics while

evaluating recognition accuracy and energy efficiency in a 784 × 100 × 10 neural network

configuration. The synaptic characteristics of NW-CTT are examined using a fully

calibrated technology computer-aided design (TCAD) tool, based on the self-consistent

solutions of Poisson’s equation, Boltzmann transport equation, and self-heating equations.

The chapter initially investigates the non-volatile characteristics of NW-CTT in the

presence of interface oxide charges (Nit). Subsequently, we delve into an in-depth analysis

of synaptic properties, focusing on long-term memory metrics. To evaluate the NW-CTT

performance in the neural network’s operation, the 784 × 100 × 10 neural network is

designed to analyze the reading accuracy using the MNIST dataset. The conductance

values obtained from TCAD simulations serve as synaptic weights in the NeuroSIM neural

network simulator [45]. Furthermore, the chapter discusses the short-term and long-term

memory characteristics along with reading accuracy and energy consumption as functions

of crucial device design parameters, such as nanowire diameter, charge trap layer thickness,

gate length, and metal gate work function. Finally, we benchmark the device and neural
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network performance metrics of NW-CTT against state-of-the-art synaptic devices.

Chapter 6 delves into the implementation of a fully CMOS-based neuromorphic

computing system using NW-CTT. Initially, the chapter introduces a 3-D TCAD

simulation methodology that accurately captures the charge-trapping mechanism in

NW-CTT. It then proceeds by examining the neuronal performance of NW-CTT. After

that, it explores the spike timing dependent plasticity (STDP) behavior in NW-CTT as a

synapse. Subsequently, it discusses the design of leaky integrate fire neuron and synaptic

crossbar array, which is implemented in the TCAD simulator. Finally, the performance of

NW-CTT-based SNN is thoroughly examined under noise and process, temperature and

voltage (PVT) variations using a fully calibrated three-dimensional TCAD tool.

Chapter 7 mainly includes the conclusion of the current research and outlines a few

directions for future work from a modeling perspective.

1.5 Novel Findings in this Thesis

As the GAA devices are still being developed, the work in this thesis contributes in

numerous ways to the field of modeling, physics, and application. The major contributions

and the respective conclusions are as follows.

■ The initial work involves the exploration of multigate devices (Fin-FET, NW-FET,

NS-FET) with a focus on finding suitable devices for analog/RF applications in sub-5 nm

technology nodes.

• Among Fin-FET, NW-FET, and NS-FET, NS-FET exhibits excellent current

characteristics for sub-5 nm technology nodes with a larger voltage gain,

transconductance, output conductance, cut-off frequency, and maximum oscillation

frequency.

• The cut-off frequency and maximum oscillation frequency of 5-nm NS-FET is

observed to be around 373 GHz and 389 GHz, respectively, which provides the best

opportunity to boost the high-frequency performance limit of silicon technology.

• Our findings indicate that the performance benefits of NS-FET are retained with

decreasing the channel length, increasing the effective device width, and stacking

the multichannels.

■ To determine the performance of GAA devices for digital ICs, we have developed

and benchmarked stacked NS-FET-based CMOS inverters with BPDN, including CFET,

FSH, and s-NSH using process simulation for sub-5 nm technology node.
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• Our findings reveal that the CFET inverter presents a promising opportunity

to achieve high operating frequency and reduced power consumption with area

efficiency compared to its counterparts in the nanoscale regime.

• The results show that the device gate capacitance and the fringing field play an

essential role in the inverter-level performance degradation that can be minimized

by optimizing the p-n separation.

• The CFET inverter consistently outperforms FSH and s-NSH inverters across all

evaluated technology nodes and design parameters, underscoring its potential as the

preferred choice for future ultra-dense and low-power logic applications.

■ With the ever-increasing demand for power and area-efficient memory and logic

applications, we investigate the device-to-circuit level performance of CFET, FSH, and

s-NSH inverters by developing 6T SRAM and 32-bit arithmetic logic unit (ALU) using

process simulation for sub-5 nm technology node.

• Our findings reveal that CFET-based SRAM with lower power consumption

and superior frequency than FSH- and s-NSH-based SRAM at iso-frequency and

iso-power, respectively, presents chip-level improvement in advanced technology

nodes.

• At basic logic block level for 1 nm technology node, CFET inverter exhibits reduced

delay and power delay product over FSH inverter, while FSH inverter offers improved

performance than s-NSH inverter.

• Our device-to-circuit performance analysis and benchmarking show that the CFET

inverter configuration is well suited for low-power and high-speed digital IC

applications in the ultimate scaling limits.

■ To develop a CMOS-compatible non-volatile memory and electronic synaptic

device, this research explores the NW-CTT through fully calibrated TCAD simulations.

• The charge trapping and de-trapping of interface states in NW-CTT has

demonstrated the memory window of around 1 V between programming and erase

pulse when the Nit = 1× 1017 cm−3 present in HfO2 layer.

• Our analysis highlights the critical role of optimal nanowire diameter, the thickness

of the charge trapping HfO2 layer, gate length, and metal gate work function

in enhancing short- and long-term memory characteristics while concurrently

preserving recognition accuracy and energy efficiency.
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• Our results provide valuable insights into the synaptic behavior of conventional

NW-CTTs and offer guidance for further harnessing their weight-update capabilities

in neuromorphic computing applications.

■ To develop highly scalable and energy-efficient spiking neural networks (SNNs),

neurons and synaptic elements using silicon NW-CTT are designed using a fully calibrated

TCAD tool.

• Our findings highlight the capability of NW-CTT to attain multi-threshold states,

which is similar to bio-neuron.

• Our findings indicate that NW-CTT as a synapse has the capability of demonstrating

spiking timing-dependent plasticity characteristics.

• Our analysis shows that the NW-CTT-based SNN exhibits superior recognition

accuracy in the presence of noise and process variations.

• Our results show that the integration of NW-CTT in advanced neuroelectronic

systems holds the potential to enable energy-efficient neural signal analysis with high

spatiotemporal precision, positioning it as a promising candidate for brain-inspired

neuromorphic applications.
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Chapter 2

Gate-all-around MOSFETs for
Analog/RF Applications

2.1 Introduction

Several experimental and theoretical works have systematically explored and

benchmarked the benefits of NS-FET over NW-FET and Fin-FET for logic applications

in sub-5-nm technology node [6, 30, 46]. Despite multigate devices, such as Fin-FET,

NW-FET, and NS-FET, promise excellent switching performance in the ultimate scaling

limit, they can be an outstanding contender for high-gain and high-frequency RF

operations. Since Silicon-based multigate devices have excellent noise performance, low

power consumption, high integration, low cost, and the ability to be integrated into

a system on chip (SoC) [47, 48], it becomes worth understanding their analog/RF

performance for guiding experiments and for encouraging more efforts in this direction

using numerical simulations.

Early experimental work on 14 nm channel RF Fin-FET demonstrated a record

peak cut-off frequency (fT ) and maximum oscillation frequency (fmax) of roughly 314

and 180 GHz, respectively, indicating a considerable improvement in RF performance

over planar-FET technology [49]. In addition, Fin-FET is emerged as an viable choice

for RF system designing with the fT greater than 6 GHz [50]. It is observed in the

recent studies that NS-FET could offer 10% better voltage gain and cut-off frequency

over the Fin-FET architecture at 5-nm technology node because of the reduced Miller

capacitance [51]. More recently, gigahertz fT and fmax have been reported with NW-FET

and NS-FET in sub-5-nm technology node [8, 52]. Several simulation works have been

devoted to understand analog/RF performance of two or multiple channel stacked NS-FET

[51, 53, 54], but single channel NS-FET are yet remained unexplored. Moreover, no

qualitative studies have been conducted to properly investigate the benefits of NS-FET

over NW-FET in the proper device design space. Therefore, NS-FET needs the detailed

analog/RF performance investigation that will be useful for assessing their performance

potential and for understanding issues that are related to device design parameters scaling.

In this chapter, we systematically explore and compare the analog/RF performance

metrics of Fin-FET, NW-FET, and NS-FET for the sub-5-nm technology node. In the
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initial performance analysis, we consider single channel geometries of Fin-FET, NW-FET,

and NS-FET with (100) surface orientation as this orientation could be a more favorable for

enhancing the electron mobility [55]. Further, single channel is found to be more suitable

for achieving lower parasitic capacitance [53]. Subsequently, we find the analog/RF

performance metrics variation with device design parameters, such as channel length,

channel width, height/thickness and diameter, surface orientation, and multichannel

stacking. The performance investigation is carried out using a fully calibrated technology

computer-aided design (TCAD) platform, which accurately captures the fundamental

essential physics of Silicon material with short channel device physics. Our studies not

only reveal the performance potential of multigate devices in ultimate scaling limit but

also identify optimization directions and windows for determining important analog and

RF figure-of-merits (FoM).

2.2 Simulation Technique
2.2.1 Device Design and Simulation Methodology

Wfin = 7nm 

Hfin = 46nm

DNW = 10nm TNS =  5nm
WNS= 45nm

Wfin
Hfin DNW

WNS

WNS

NW-FETFin-FET NS-FET

Figure 2.1: Simulation geometries: cross-section view (top) and side view (bottom) of
Fin-FET, NW-FET, and NS-FET at 5-nm technology node (18 nm channel length).

Fig. 2.1 shows the device schematics of 18-nm channel length Fin-FET, NW-FET

and NS-FET, which are used for initial performance analysis. The device dimensions for

18-nm to 12-nm channel lengths are selected from IRDS 2020 projection that represents

5-nm to 1-nm technology node [56]. Further, the channel length below 12 nm is scaled

down from low power International Technology Roadmap for Semiconductors roadmap
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Figure 2.2: Experimental verification of simulation approach: transfer characteristics of 3
channel stacked NS-FET from our 3-D TCAD simulation and experimental results [8] at
VDS = 0.05 V and VDS = 0.7 V for 1-nm technology node (12 nm channel length).

2013 requirements [57] as IRDS specifications are limited to 1-nm technology node. The

fin width (Wfin) and fin height (Hfin) for Fin-FET are taken to be around 7 nm and

46 nm, respectively, which is considered from previous experimental studies [58]. In the

case of NW-FET, the diameter (Dnw) of NW is assumed to be around 10 nm as the

recent experiment demonstrated excellent switching performance at this width [59],[60].

The thickness (Tns) and width (Wns) of NS-FET is considered around 5 nm and 45 nm,

respectively, which is close to experimental geometry [8]. Further, the effective width

(Weff ) of Fin-FET, NW-FET and, NS-FET is found to be around 99 nm (Weff_fin =

2Hfin + Wfin), 31.4 nm (Weff_nw = πDnw) and, 100 nm (Weff_ns = 2Tns + 2Wns),

respectively. The stack of 0.6 nm SiO2 and 1.7 nm HfO2 is used as the gate oxide

in the three devices that correspond to the effective oxide thickness (EOT) of 0.9 nm.

Further, the source (S) and drain (D) regions of length LS/D = 10 nm are doped to n-type

with the doping concentration of NS/D = 1 × 1020 cm−3. By keeping other parameters

constant, we have varied the structural parameters, such as channel length, channel width,

height/thickness and diameter, and channel number in later simulations.

The performance investigation of multigate devices is done using fully calibrated

three-dimensional (3-D) Sentaurus TCAD simulation [61], based on self-consistent

solutions of the drift-diffusion equation, continuity equation, and Poisson’s equation. The

Density-Gradient quantization model is employed to account for the quantum confinement

effect and source-to-channel tunneling current [62]. Further, the low field ballistic model

is incorporated to account for the quasi-ballistic transport. Furthermore, the Slotboom

bandgap narrowing model is considered to account for the bandgap narrowing from high
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doping of the source and drain regions [63]. Lombardi mobility, and inversion and

accumulation layer mobility models are used to incorporate the mobility degradation

at the silicon and SiO2 interface due to the remote phonon surface and Coulomb

scatterings [64]. Further, the Shockley-Read-Hall recombination model is incorporated

to activate the generation and recombination conditions of carriers in the continuity

equation [46]. For computing the analog/RF performance metrics, the devices are operated

in the mixed-mode simulation and small-signal equivalent circuits are constructed from

Y-function method [51]. A more realistic value of the cut-off frequency (fT ), and maximum

oscillation frequency (fmax) are computed by exploiting the short circuit current gain

(H21 = |Y12/Y11|), and maximum available gain (MAG) to 0 dB [65].

2.2.2 Setup and Calibration of TCAD Simulation

Fig. 2.2 shows the I-V characteristics of 3-channel stacked NS-FET from our

simulation approach and experimental results [8] for 12-nm channel length. It is observed

that simulated IDS − VGS characteristics show an excellent match with the experiment

results for all gate and drain voltages. This proves that simulation consideration accurately

captures the short channel essential physics of NS-FET. Further, Fin-FET and NW-FET

are simulated using the same methodology.

2.3 Performance of Si Multigate FETs
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Figure 2.3: Device I-V characteristics of Fin-FET, NW-FET and NS-FET at room
temperature: Transfer characteristics (ID −VGS) at (a) VDS = 0.2 V and (c) VDS = 0.7
V; and output characteristics (ID −VDS) at (b) VGS = 0.2 V and (d) VGS = 0.7 V.
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Figure 2.4: Energy band profile along the transport direction for Fin-FET, NW-FET, and
NS-FET at distance 1 nm below the top oxide-semiconductor interface at VDS = 0.7 V
for (a) VGS = 0.4 V, and (b) VGS = 0.8 V.

Fig. 2.3(a) and (c) show the transfer characteristics of Fin-FET, NW-FET, and

NS-FET at VDS = 0.2 V and VDS = 0.7 V, respectively for 5-nm technology node. For

uniform performance benchmarking, the transfer and output characteristics of the three

devices are obtained at the fixed OFF current [IDS(VGS = 0 V and VDS = 0.2/0.7 V)] of

around 10 nA/µm by adjusting the gate-metal work function difference. NS-FET and

NW-FET offer higher drive current over Fin-FET because the surrounding gate from all

sides produces a significant inversion charge in the channel region. Importantly, NW-FET

exhibits marginally higher drive current over NS-FET for VGS < 0.6 V, while NS-FET

observes slightly higher drive current for VGS > 0.6 V. To get an insight into the difference

in the current density, Fig. 2.4(a) and (b) plots the band profile of Fin-FET, NW-FET,

and NS-FET at a distance 1 nm below the top oxide-semiconductor interface at VGS = 0.4

V and VGS = 0.8 V, respectively. It is seen that, at low VGS , NW-FET enhances the gate

modulation of the channel conduction band profile, which increases the contribution of the

thermionic current component. When VGS increases beyond 0.6 V, a larger effective width

allows to appear the full VGS across nanosheet that results in higher gate modulation of

channel region band profile. Consequently, it leads to a larger drive current for NS-FET

at high VGS . It is observed that three devices have identical difference in ID −VGS

characteristics for both VDS = 0.2 V and VDS = 0.7 V. It is found that the peak electric

field in the channel region is around 400 kV/cm at VDS = 1 V, which is considerably

smaller compared to avalanche breakdown fields [66].
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Figure 2.5: Analog/RF performance metrics of Fin-FET, NW-FET and NS-FET at VDS =
0.7 V: (a) transconductance (gm), (b) gate-capacitance (Cg),and gate-capacitance (Cgd)
(c) output conductance (gds) as a function of VGS , (d) voltage gain (AV = gm/gds), (e)
cut-off frequency (fT ), and (f) maximum oscillation frequency (fmax) as a function of IDS .

Fig 2.5 shows the important analog/RF figure of merits (FoM) for Fin-FET,

NW-FET and NS-FET at VDS = 0.7 V. It is observed from Fig. 2.5(a) that the three

devices exhibit the similar trend in transconductance (gm)-VGS characteristics. The linear

increment in gm for low VGS is observed, while the peak in the gm value appears and

decreases further with increasing VGS . The reason for the gm decrements is that the gate

modulation of the channel potential is not perfect and degrades with increasing VGS . This

gm decrements at high VGS is also reported in previous works on multigate devices [53][67].

A maximum value of gm for NS-FET is obtained around 1.8 mS/µm, which promises high

cut-off frequency and voltage gain. Fig 2.5(b) shows the gate capacitance (Cg) which is

a combination of (Cgs + Cgd) where Cgs is the gate-to-source capacitance and Cgd is the

gate-to-drain capacitance, as a function of VGS . It is observed that the Cg increases rapidly

with increasing the VGS . This is due to source originating charge increases in the channel

region that linearly increases the Cgs component. It is found that Cgd decreases at low

VGS and appears nearly constant for high VGS values. This is due to inversion charge in
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the channel region for a given VDS becomes less susceptible to the change of VGS .

It is also observed from Fig. 2.5(a) and Fig 2.5(b) that gm of Fin-FET is higher

than NW-FET at high VGS , but Cg of NW-FET is higher at high VGS . The Fin-FET

has better gate modulation of the channel conduction band profile over NW-FET due to

higher drain-induced barrier lowering (DIBL) (shown in Fig. 2.6), which increases the gm

values. However, a higher drain charge contribution for Fin-FET significantly rises the

Cgd component in the Cg, as shown in Fig. 2.5(b). Consequently, it results in Cg over

NS-FET for VGS > 0.7 V. Fig 2.5(c) shows that Fin-FET has higher values of output

conductance (gds) due to higher DIBL, while NS-FET observes the least value of gds.

Therefore, the multigate device, which effectively suppresses the short channel effects,

could benefit the performance in multiple ways by enhancing the drive current, decreasing

Cg, and decreasing the gds.

Fig. 2.5(d) shows the voltage gain (AV = gm/gds) as a function of IDS . It is observed

that NS-FET and NW-FET has nearly same AV , while this AV is around 2× higher as

compared to Fin-FET. The NS-FET, offers the AV of around 32 V/V, which is around 2.6

× higher than that of planar double gate MOSFET technology at 0.4 mA/µm IDS for the

same device geometry. Therefore, the multigate device architectures seems to be a strong

candidate for high-gain amplifier due to improvement in gm and gds values.

Fig. 2.5(e) shows the unity current gain/cut-off frequency (fT ) as a function of

IDS for Fin-FET, NW-FET and NS-FET at VDS = 0.7 V. The peak fT of NS-FET is

found to be around 373 GHz at IDS= 0.4 mA/µm, which is around 1.5× higher than

that for Fin-FET. Further, this fT value for NS-FET is nearly 1.6 × higher than that

for planar double gate MOSFET (229 GHz) at 0.4 mA/µm IDS for the same device

geometry that makes them a promising candidate for enhancing RF performance limit at

short channel length. Further, a high value of fT reveals that external fringing parasitic

capacitance does not limit the performance of multigate devices. Fig. 2.5(f) shows unity

power gain/maximum oscillation frequency (fmax) as a function of IDS for Fin-FET,

NW-FET and NS-FET at VDS = 0.7 V. The model equation for fmax can be given

as fmax = fT /2
√
gds(Rs +Rg) + 2πfTRgCg [65]. It is observed from Fig. 2.5(f) that

NS-FET has considerably higher value of fmax as compared to NW-FET and Fin-FET.

This is due to the dependence of fmax on gds and gate resistance (Rg). NS-FET exhibits

smaller values of gds and Rg, which allows the peak fmax of around 389 GHz. Therefore,

NS-FET outperforms Fin-FET and NW-FET in analog/RF FoM, and appears to be a

strong candidate for high-frequency applications at 5-nm technology node.
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Figure 2.6: Impact of geometrical parameters on the short channel performance metrics
of Fin-FET, NW-FET and NS-FET at VGS = 0.7 V and VDS = 0.7 V for the fixed OFF
current of around 10 nA/µm: (a) DIBL and (b) sub-threshold slope (SS) as a function
of fin width and fin height, (c) DIBL and (d) SS as a function of nanosheet width and
thickness, (e) DIBL and (f) SS as a function of nanowire diameter.

2.3.1 Impact of Geometrical Parameters

Since the gate efficiency can be improved by tailoring the geometrical parameters of

multigate channels, this section explores short channel and analog/RF performance metrics

dependency on the geometrical parameters of Fin-FET, NW-FET and NS-FET. Fig. 2.6

explores the DIBL and sub-threshold slope (SS) as a function of Fin-FET, NW-FET and

NS-FET geometrical parameters. The gate length of devices are kept fixed to 18 nm,

when the geometrical parameters are varied. It is observed that the DIBL of Fin-FET

increases with increasing the fin height and width because the gate control over channel

region reduces, while SS shows marginally increment. In the case of NS-FET, DIBL

increases significantly with increasing channel width and thickness due to significant loss

in the gate controllability. Further, the increment of SS is observed marginally when the

NS-FET width and thickness are scaled up. The SS and DIBL of NW-FET increases

rapidly with the increase in nanowire diameter. This is because wider channel weakens

the gate electrostatic control on the channel regions and increases the influence from the
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Figure 2.7: Impact of geometrical parameters on the analog/RF performance of Fin-FET,
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drain voltage.

The minimum value of SS is found to around 72.5 mV/dec, 60.8 mV/dec, and 61

mV/dec for 3 nm (Wfin) & 10 nm (Hfin), 8 nm (Dnw), and 30 nm (Wns) & 90 nm (Tns),

respectively, which are lower than that of planar MOSFET [68]. The SS of NW-FET

is very close to the thermodynamic limit for MOSFET because the cylindrical nature

of the channel effectively suppresses the short channel effects. On the other hand, the

switching performance of NS-FET is affected by larger sheet width and rectangular channel

cross-section, which requires considerably higher VGS to achieve the channel inversion.

Further, the minimum DIBL is observed around 93.2 mV/V, 60.8 mV/V, and 45 mV/V

for 3 nm (Wfin) & 10 nm (Hfin), 8 nm (Dnw), and 30 nm (Wns) & 90 nm (Tns) respectively.

A smaller value of DIBL suggests that NS-FET can be more immune to change in drain

field effects over Fin-FET and NW-FET.

Fig 2.7 shows the AV and fT as a function of Fin-FET, NW-FET and NS-FET

geometrical parameters. It is observed that AV and fT for multigate devices have a
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fundamentally different dependency: fT increases and AV reduces with increasing the

channel width and height/thickness of NS-FET and Fin-FET. It is important to note

that AV of NS-FET marginally reduces with the width, but a significant reduction is

observed with increasing the sheet thickness. The reason is that a larger nanosheet width

and thickness offer higher gm, but gds increases considerably as the thickness of the sheet

increases. It is observed that a larger fin width and height reduce the gate efficiency in

Fin-FET that increases the gds values. Moreover, gm is found to be increased for both

increasing the fin width and height. In the case of fT , a larger height considerably reduces

the Cg values and thus increases fT rapidly. However, increasing the fin width shows a

marginal variation in Cg, resulting in marginally higher fT . For NS-FET, a marginal

increment in fT is observed with width and thickness variation due to simultaneous

variation in gm and Cg. Further, a similar trend in AV and fT of NW-FET is observed due

to increment gm and gds, and decrements in Cg with increasing the nanowire diameter.

Thus, the best AV can be achieved using thinner and narrower sheet/fin that enhances the

gate controllability, but the high fT demands wider and thicker fin/sheet by increasing

current drivability.

It could be inferred from Fig. 2.7 that, at nearly the same effective width, NS-FET

offers higher AV and fT over the NW-FET and Fin-FET. In comparison to Fin-FET,

NW-FET offers better AV and fT at the same effective width. Further, AV and fT of

NW-FET has around 2× and 1.3×, respectively, over the Fin-FET under the same effective

width. It is observed that the AV of Fin-FET is reduced by 5× when the effective width

is scaled from 23 nm to 152 nm, but NS-FET exhibits a marginal decrement in AV with

the factor of around 2× when the effective width is scaled from 70 to 230 nm. Further,

in the case of fT , NS-FET and Fin-FET exhibit around 1.28× and 2.05× increment,

respectively, with the above effective width scaling. Further, NW-FET is having around

1.6× decrement and 1.1× increment for AV and fT , respectively, with scaling the effective

width from 25.12 nm to 56.52 nm. Thus, NS-FET has displayed more robust analog/RF

performance with geometrical parameter variations.

It is observed from Fig. 2.6 and Fig. 2.7 that, at the same DIBL, NW-FET exhibits

higher AV over NS-FET due to lower gm, while NS-FET exhibits higher fT because the

Cg is lower compared to NW-FET. For the Fin-FET case, it becomes difficult to match

DIBL with NS-FET due to considerably higher DIBL values at the selected geometrical

parameters. Therefore, it can be observed from Fig. 2.6 and Fig. 2.7 that NS-FET

provides more freedom to optimize the geometrical parameters for better short channel
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Figure 2.8: Impact of channel length scaling on analog/RF performance of Fin-FET,
NW-FET and NS-FET at VDS = 0.7 V and VGS = 0.7 V : (a) transconductance (gm), (b)
voltage gain (AV ), (c) cut-off frequency (fT ) , and (d) oscillation frequency (fmax) as a
function of channel length (Lch).

and analog/RF performance over Fin-FET and NW-FET.

2.3.2 Impact of Channel length

Fig. 2.8 shows analog/RF performance metrics of Fin-FET, NW-FET, and NS-FET

as a function of channel length at the fixed OFF current of around 10 nA/µm. The

device geometrical parameters, such as fin width and height, sheet width and thickness,

and nanowire diameter, are kept the same when the channel length is scaled down.

It is observed from Fig. 2.8(a) that gm for the three devices decrease considerably

with decreasing the channel length. This is because the sub-14-nm devices are affected

substantially by the source-to-channel tunneling current at the OFF-state. The increment

in the source-to-channel tunneling current enhances the drive current for a fixed VDS , and

the device requires a much smaller VGS to achieve the OFF-state. Thus, decreasing the

channel length decreases the drive current and hence, gm. Importantly, NS-FET exhibits

higher performance degradation with reducing the channel length, but it still maintains a

considerably higher value of gm when the channel length is scaled down to 6 nm. Further,

a significant reduction in the gm value is because the small mean free path of electrons

increases the mobility degradation in the presence of a greater number of scattering events
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at short channel length.

It is observed from Fig. 2.8(b) that AV for multigate devices decreases considerably

with decreasing the channel length. Due to significant degradation in gm and gds, the

voltage gain of NS-FET drops from 32 V/V to 17 V/V when the channel length is scaled

down from 18 nm to 6 nm. It is found that NW-FET has nearly the same gain as

compared to NS-FET for Lch < 10. Further, the NS-FET and NW-FET display a voltage

gain of around 17 V/V at 6-nm channel length, which is more desirable for amplification

applications. Therefore, it is evident that multigate devices can offer sufficient voltage

gain even at the 6-nm channel length, and the NS-FET has an advantage over Fin-FET

and NW-FET in the ultimate scaling limit.

Fig. 2.8(c) shows that, despite gm reduction, the fT of NS-FET and Fin-FET

considerably increases with decreasing the channel length. This is due to the presence of

discrete quantum states that reduces Cg because the gate capacitance reduces at shorter

channel lengths [69]. Further, the fT of NW-FET becomes nearly equal to NS-FET beyond

14-nm channel length. This is because a smaller effective width NW-FET results in much

smaller gate capacitance over NS-FET. The fT of NS-FET and NW-FET is found to be

enhanced by 1.14× when channel length scale down to 6 nm, while Fin-FET exhibits

around 1.2× improvement. Further, NS-FET and NW-FET offer nearly around 1.2×

higher fT over Fin-FET for 18-nm to 6-nm channel length. Fig. 2.8(d) shows that fmax

significantly increases with the decreasing channel length. This is because fT increases,

while Rg and gds decreases with decreasing the channel length. In summary, AV , fT ,

and fmax values suggest that NS-FET could be a more prominent option for high-gain

and high-frequency RF circuits, but NW-FET can also be preferred at very short channel

lengths.

2.3.3 Impact of Surface Orientation

Fig. 2.9 shows the performance of Fin-FET, NW-FET, and NS-FET as a function of

surface orientations, such as (100), (110), and (111), which could be achieved by rotating

the device layout in the wafer plane [70]. It is observed from Fig. 2.9(a) that maximum

effective electron mobility (µeff ) for n-type multigate devices is found along (100) surface

due to lower effective electron mass and surface density of atoms. The µeff in three devices

is modulated significantly with surface orientation because of the variation in electron

masses at the different orientations. It is observed that the µeff of NS-FET and NW-FET

are found to be nearly the same, but their mobility is around 1.29× higher compared to

Fin-FET in all orientations. The Fin-FET is significantly affected by higher drain field
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Figure 2.9: Impact of surface orientation on analog/RF performance of Fin-FET, NW-FET
and NS-FET at VDS = 0.7 V and VGS = 0.7 V : (a) effective electron mobility (µeff ),
(b) injection velocity (vinj), (c) ON current (ION ) , (d) gate capacitance (Cg), (e) voltage
gain (AV ), and (e) cut-off frequency (fT ) as a function of surface orientation.

in the channel region. Fig. 2.9(b) shows that NS-FET with (100) surface orientation

with the highest mobility also displays higher injection velocity (vinj) and vice versa. The

mobility and vinj for three devices are in good agreement with experiment and previous

simulation results [29],[54]. It is observed that NS-FET with (100) orientation has around

15% and 25% higher vinj over NW-FET and Fin-FET with the same surface orientation,

respectively. However, mobility and vinj are highly dependent on the orientation, bias, and

geometrical parameters. Thus, selecting the optimum channel orientation and geometrical

parameters could enhance the silicon-based device performance.

Fig. 2.9(c) shows that despite the significant change in mobility and injection

velocity, ON current for three devices shows marginal variation with surface orientation

due to more immune to short channel effects [71]. The NS-FET and NW-FET have

nearly the same ON current due to their nearly same µeff , but the NS-FET with (100)
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orientation exhibits advantage in Cg, AV and fT as compared with other orientations.

It is observed in Fig. 2.9(d) that a larger Cg is observed in (111) orientation over (110)

and (100) orientations due to strong anisotropic feature. Fig. 2.9(e) shows that AV for

NS-FET (100) orientation is around 1.24 × and 2.13 × higher than that for NW-FET and

Fin-FET with same surface orientation. The AV of NS-FET show around 1.14× and 1.29×

degradation in (110) and (111) orientations due to significant reduction in gds values. It is

observed from Fig. 2.9(f) that fT does not show the strong dependency on orientation due

to gm reduction and Cg increment in (110) and (111) orientations. Therefore, NS-FET

with (100) channel orientation is more suited for analog/RF applications, µeff , AV and

fT over (110) and (111) surface orientations.

2.3.4 Impact of Multichannel Stacks
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Fin-FET, NW-FET and NS-FET at VDS = 0.7 V and VGS = 0.7 V: (a) side
schematic of the three-channel device structures of Fin-FET, NW-FET and NS-FET,
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Fig. 2.10 shows the analog/RF performance of Fin-FET, NW-FET, and NS-FET

as a function of single, double, and triple channel stacks. The considered single, double,

and triple stack architectures are shown in Fig. 2.10(a). Here, we increase the number of

channels stacked and fins by keeping the same area footprint for uniform benchmarking.

The Fin pitch and suspension thickness (Tsus) are considered to be fixed around 34 nm

and 10 nm, respectively. Fig. 2.10(b) shows that gm of multigate devices increases with

increasing the number of the channels due to the increment in the electron-conducting

paths. The gm of NS-FET shows significant improvement with increasing the number

of channel stacks because of increment in the same width channels. In contrast, gm for

NW-FET shows marginal increment as the effective channel area is reduced with increasing

the number of channels.

Fig. 2.10(c) shows that AV for multigate devices increases with increasing the

number of channels. It is found that the gm of NS-FET and Fin-FET is enhanced by

1.1× and 1.08×, respectively, but AV of NS-FET and Fin-FET exhibits 1.25× and 1.21×

improvement with single to three channels increment. The reason for a considerable gain

increment is that narrower sheet and fin width results in lesser drain field penetration

in the channel region, which decreases the gds values. It is found from Fig. 2.10(b) and

(d) that, despite increment in gm, the cut-off frequency (fT ) of multigate devices reduces

with increasing the channel stacks. This is because the multichannel stacking considerably

raises the contribution of coupling and parasitic capacitance in the Cg values. Fig. 2.10(e)

shows that fmax for these multigate devices deteriorate with increasing the number of

channels because of increment in Rg and gds. Thus, multichannel stacks can enhance the

gm and AV , but increasing the channel stacked is not the right choice for RF performance

improvement.
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Fig. 2.11 shows the AV and fT for three channels Fin-FET, NW-FET, and NS-FET

with various suspension thickness (Tsus). It is observed that AV increases with increasing

the Tsus because the channel gets narrower, which restricts the carrier scattering and leads

to an increase in gm. The gds also decreases due to reduced drain field effect in the narrower

channel region. Fig. 2.11(b) shows that the fT marginally decreases with increasing Tsus

due to increment in Cg values, despite increment in gm. Therefore, it is found that the

AV can be improved by optimizing the Tsus, but fT exhibits marginally decrement with

increasing Tsus.

2.4 Summary

This chapter presented a comprehensive analog/RF performance comparison

between Fin-FET, NW-FET, and NS-FET for sub-5-nm technology nodes. It is

found that NS-FET has promised higher voltage gain, cut-off frequency, and maximum

oscillation frequency over NW-FET and Fin-FET that makes them a promising option for

high-frequency RF applications. Specially, the cut-off frequency and maximum oscillation

frequency of 5-nm NS-FET have found to be around 373 GHz and 389 GHz, respectively,

which provides the best opportunity to boost the high-frequency performance limit of

silicon technology. The results show that voltage gain could maximize by increasing the

channel length, selecting proper surface orientation, and reducing the channel’s width

and height/thickness. In contrast, RF performance metrics of multigate devices have

significantly enhanced by decreasing the channel length and increasing the geometrical

parameters. Further, multichannel stacking will not be the best choice for RF applications.

Our performance analysis and benchmarking provide analog/RF ultimate performance

limit of sub-5-nm multigate devices and stimulate experiment work is expected to exceed

the high-frequency performance of Silicon-based MOSFET technology.
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CMOS Inverters based on Si
Stacked Nanosheet FET

3.1 Introduction

The stacking of Si nanosheets in both horizontal and vertical configuration in

stacked NS-FET has demonstrated outstanding switching performance by combining the

benefits of area [8, 9]. However, the scaling advantages of a standard stacked nanosheet

(s-NSH)-based inverter are significantly impacted by the separation between p-FET and

n-FET (p-n separation). Optimizing p-n separation poses challenges, particularly as it is

determined by mask edge placement and lateral etch control during metal gate deposition

[17]. Moreover, a smaller p-n separation notably constrains operating speed and power

efficiency due to enhanced Miller capacitance [16, 17].

FSH and CFET inverters have been proposed to be scaling booster architectures

with nanosheets that could reduce the device footprint and ensure high-performance gain

[13, 14]. Interestingly, inserting dielectric between p-FET and n-FET, and controlling the

channel using the forked gate in the FSH inverter has demonstrated 12% cell area reduction

with 13% lower power dissipation over s-NSH inverter for 3 nm technology node (N3) [31].

More interestingly, the CFET inverter, which vertically stacks the n-FET and p-FET with

a common gate, has demonstrated a 55% lesser cell area with 2.3× higher speed over s-NSH

inverter for the N3 [16]. Furthermore, a few recent studies have concentrated on analyzing

the power-frequency performance benefits of CFET by comparing it with the s-NSH

inverter configuration for the N3 [16, 72, 73]. To the best of our knowledge, no qualitative

studies have uniformly benchmarked the inverter-level performance of CFET, FSH, and

s-NSH configurations in a single systematic study. In addition, there is a lack of detailed

static and dynamic performance of these inverter configurations for future technology

nodes. Therefore, it becomes increasingly important to understand the performance and

scaling advantages of CFET and FSH inverter configurations for developing high-speed

and low-power digital ICs with high-density integration capability.

In this chapter, we examine and benchmark the performance of CFET, FSH, and

s-NSH inverter configurations at the ultimate scaling limit using S-process simulation

in a fully calibrated three-dimensional (3D) Sentaurus technology computer-aided design
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(TCAD) tool. Specially, the process-dependent performance analysis of CFET, FSH, and

s-NSH inverters are carried out to accuraly capture the parasitic and buried power delivery

network (BPDN) effects. The novel s-NSH-based inverters are uniformly compared to

identify a promising configuration, which can offer greater design versatility with excellent

switching and scaling performance. The major contributions of this work are stated as

follows:

• Current studies on CFET and FSH inverters rely on Sentaurus Device Structure

Editor (SDE) or BSIM models, which focus on isolated structures with limited 3D

simulations and inconsistent benchmarking across nodes [16], [74], [41], [75]. Our

work bridges this gap by systematically benchmarking CFET, FSH, and s-NSH

inverters using a unified 3D S-Process simulation framework. By incorporating

buried power delivery networks (BPDN), we optimize power efficiency, minimize

parasitics, and highlight performance under advanced routing technologies.

• Process fluctuations present a significant challenge for the reliable design of

s-NSH-based devices at 3 nm and smaller technology nodes [76]. Despite existing

studies primarily examining process variation effects on CFET at the 3 nm node

using the SDE framework [77], our work advances this by systematically comparing

CFET, FSH, and s-NSH inverters at the 1 nm node through 3-D process simulations.

• Existing studies provide fragmented insights into the power performance area (PPA)

metrics of CFET [16], FSH [41], and s-NSH inverters [78], with limited focus on a

unified comparative analysis across technology nodes. Our work addresses these gaps

by delivering a comprehensive PPA analysis for CFET, FSH, and s-NSH inverters

with and without BPDNs, extending across nodes from N5 to N0.5. This effort

highlights scaling behavior, BPDN impact, and optimization strategies, which offer

critical guidance for future high-density circuit design.

• Despite previous studies have analyzed p-n separation in individual devices, such

as FSH and CFET inverters [16, 14], our work provides uniform benchmarking

across CFET, FSH, and s-NSH by systematically evaluating power and delay

performance as a function of p-n separation (45 nm to 17 nm) at the 1 nm node.

This comprehensive analysis offers novel insights for optimizing inverter design and

ensures consistent evaluation across different device architectures.
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3.2 Simulation Technique
3.2.1 CMOS Inverter Design

Fig. 3.1(a), 3.1(b), and 3.1(c) show the cross-sectional channel along with side views

of s-NSH, FSH, and CFET inverters, respectively. For the initial performance analysis,

the gate lengths of p-FET and n-FET are selected around 12 nm, which is taken from the

projection of IRDS 2021 for the 1 nm technology node [79]. The source (S) and drain (D)

regions of p-FET and n-FET are taken to be 18 nm long with a doping concentration of

nearly 2×1020 cm−3. Further, the silicon nanosheet channels are considered identical with

the width (WNS) of around 45 nm and thickness (TNS) of around 5 nm. The considered

WNS and TNS of nanosheets are in good agreement with the reported experimental

geometry of s-NSH inverters [8, 80, 81]. The vertical sheet-to-sheet spacing is chosen

to be around 10 nm due to sacrificial layer limitation [8, 82]. The p-n separation for the

CFET, FSH, and s-NSH inverters is initially considered to be around 25 nm, 17 nm, and

25 nm, respectively. However, in later simulation, we have varied the p-n separation by

keeping other parameters fixed. Also, three nanosheet stacked channels are considered

in our simulation as it is widely adopted in recent experiments to enhance the effective

channel width [8, 53]. The gate oxide consists of 0.6 nm SiO2 and 1.25 nm HfO2 stack,

which corresponds to the effective oxide thickness (EOT) of 0.9 nm. The effective width

(Weff ) and contacted gate pitch (CGP) of both p-FET and n-FET are the same and taken

to be around 330 nm and 42 nm, respectively.

3.2.2 Process Simulation Methodology

Fig. 3.1(a), 3.1(b), and 3.1(c) presents the fabrication process steps for realizing

the s-NSH, FSH, and CFET inverters, respectively, which are performed in the S-process

of Synopsys TCAD tool. Here, we present the detailed process steps for fabricating the

s-NSH inverters and summarize the key fabrication steps for FSH and CFET inverters.

The s-NSH inverter is realized using the following process steps: (i) the BPDN using

Ruthenium metal is deposited in the substrate; (ii) thermal oxidation is performed to

isolate BPDN; (iii) epitaxial growth of alternate silicon germanium (Si0.7Ge0.3)/silicon

(Si) layers is carried out; (iv) thermal oxidation is performed to achieve shallow trench

isolation (v) the sidewall image transfer (SIT) technique is used to achieve the desired

width and thickness; (vi) polysilicon dummy gates are deposited on top of the sheets; (vii)

silicon nitride is placed to form the inner and outer spacer in both n-FET and p-FET;

(viii) the n-FET is masked, then the source and drain of p-FET are doped with ion energy
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Figure 3.1: Synopsis of 3-D process simulation of novel s-NSH CMOS inverters:
Cross-sectional channel and side views of (a) stacked nanosheet CMOS inverter (s-NSH),
(b) forksheet inverter (FSH), and (c) complementary field-effect transistor (CFET)
with their fabrication process flow, performed in S-process simulation. (d) Transfer
characteristics of the three-channel p-FET (left) and n-FET (right) in the FSH inverter
configuration from our 3D TCAD simulation and experimental results [83] at |VDS| = 0.7
V for 22 nm gate length.

of around 4 KeV; (ix) after that p-FET is masked, the source and drain regions of n-FET

are doped using Phosphorous dopant with ion energy of around 6 KeV; (x) the dummy

gate and Si0.7Ge0.3 are then released using the anisotropic etching technique; (xi) the

gate oxides for p-FET and n-FET are alternatively grown using thermal oxidation and

followed by HfO2 deposition; (xii) the metal inter-diffusion technology (MIG) is employed

to develop the gate metal electrode; and (xiii) the source and drain contacts are formed on

n-FET and p-FET; and (xiv) the contact trench is finally employed to connect the source

and drain to BPDN.

The fabrication steps for the FSH inverter are similar to that of the s-NSH inverter,

except that the SiO2 layer is deposited as a placeholder in separation between p-FET

and n-FET [in step (iv)]. After the spacer deposition and removal of the placeholder

oxide layer, high-k dielectric separation (Si3N4, k ∼7.4) between n-FET and p-FET is

deposited is introduced as the final isolation material [after the step (xi) of s-NSH inverter].

Importantly, high-k dielectric deposition does not require any additional lithography step.

On the other hand, p-FET and n-FET for the CFET inverter are grown sequentially. The

BPDN is initially fabricated and isolated with the oxide underneath the substrate. The

bottom n-FET is fabricated using steps (i) to (vi), which are identical to s-NSH inverter
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fabrication steps. The gate patterning is then done by depositing the Titanium aluminide

(TiAl) on n-FET. The source and drain are connected to BPDN through the contact

trench. After that, the top p-FET is fabricated similarly to n-FET using Tetraethyl

orthosilicate (TEOS) for p-n separation. Further, the source and drain regions of top

p-FET are partially etched to form source/drain contacts in BPDN [84]. Finally, the

gate patterning on p-FET is done using Titanium nitride (TiN) deposition, and the metal

contacts are formed.

3.2.3 Setup and Calibration of Experimental Setup

Once the device geometry is developed, the transport properties of three CMOS

inverters are modeled by self-consistently solving Boltzmann’s transport and Poisson’s

equation with mobility and quantum correction terms. A more detailed discussion on

mobility and quantum correction models for capturing the short channel physics can be

found in our previous work [85]. To verify the accuracy of our simulation process and

models, Fig. 3.1(d) shows the I-V characteristics of three-channel stacked p-FET and

n-FET with FSH inverter configuration from our simulation approach and experimental

results [83] for the 22 nm gate length with p-n separation of 17 nm. It is observed

that our 3-D process simulation exactly reproduces the reported experimental IDS−VGS

characteristics for both p-FET and n-FET in FSH inverter at |VDS| = 0.7 V. Further,

the short-channel effects are calibrated in our previous work [85]. The calibrated results

shows that our modeling methodology accurately describes the short channel effects and

quantum-mechanical effects with the essential process dependency of three inverters.

3.3 Switching Performance of CMOS Inverters
3.3.1 Transfer Characteristics of CMOS Inverters

Fig. 3.2 shows the transfer characteristics (IDS−VGS) of p-FET and n-FET in CFET,

FSH, and s-NSH inverter configurations at |VDS| = 0.7 V for the 1 nm technology node.

To better understand the performance advantages, these characteristics are plotted at the

fixed OFF current of approximately 5 nA/µm (IDS at VGS = 0 V and |VDS| = 0.7 V).

It is observed that three CMOS inverters have nearly identical IDS − VGS characteristics

for n-FET and p-FET configurations. The p-FET is observed to have nearly 1.73× lower

drive current because the width of p-FET is chosen to be the same as the width of n-FET.

It is also found from Fig. 3.2 that the subthreshold slope (SS) for the p-FET in CFET,

FSH, and s-NSH inverters is identical at around 77 mV/dec, while the SS of the n-FET in

all three configurations is observed approximately 72 mV/dec. Further, the drain-induced
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Figure 3.2: Transfer characteristics (IDS−VGS) of p-FET (left) and n-FET (right) in
CFET, FSH, and s-NSH inverter configurations at |VDS| = 0.7 V.

barrier lowering (DIBL) for p-FET in CFET, FSH, and s-NSH inverters is observed to be

around 26 mV/V, 27 mV/V, and 31 mV/V, respectively. In contrast, the DIBL of n-FET

in CFET, FSH, and s-NSH inverters exhibits approximately 33 mV/V, 34 mV/V, and

36.7 mV/V, respectively. A lower DIBL of devices in the CFET inverter suggests that a

vertically stacked arrangement of p-FET over n-FET could effectively minimize the drain

field effect due to reduced fringing field between n-FET and p-FET.

3.3.2 Static Performance of CMOS Inverters

Fig. 3.3(a) shows the voltage transfer characteristics (VTC) of CFET, FSH, and

s-NSH inverters for Vinput = 0− 0.7 V at VDD = 0.7 V. It is found that three CMOS

inverters have perfectly matched VTC with peak output voltage for low input voltages

and vice versa. The reason for well-shaped VTC is that the subthreshold leakage currents

of p-FET and n-FET are considerably low and do not degrade low- and high-logic states,

respectively. A sharp high-to-low transition is observed for a narrow input transition

zone in the range of 0.29-0.36 V. Specially, CFET inverter exhibits switching threshold

voltage (Vm) at exactly VDD = 0.33 V, which is very close to VDD/2. Therefore, the highly

symmetric VTC of the CFET inverter promises high peak DC gain and better noise

margins than the FSH and s-NSH inverters.

Fig. 3.3(b) shows the peak DC gain (Avo) of CFET, FSH, and s-NSH inverters for

VDD values in the range of 0.1-0.7 V. It is observed that Avo of the three inverters decreases

considerably with the down-scaling of the supply voltage. This trend is attributed to the

increment in the gate electric field across the channel region, which results in considerable



Chapter 3. CMOS Inverters based on Si Stacked Nanosheet FET 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

V
in

(V)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
o
u
t(V

)

CFET FSH s-NSH

0.1 0.2 0.3 0.4 0.5 0.6 0.7

V
DD

(V)

0

5

10

15

20

A
v
o
(V

/V
)

CFET FSH s-NSH
0

2000

4000

6000

A
re

a
 (

n
m

2
)

0

0.1

0.2

0.3

0.4

0.5

N
o

is
e

 M
a

rg
in

 (
V

)

NM
L

NM
H

V
DD

 = 0.7 V

(a)

(b)

(d)
(c)

s-NSHFSH

-57.9%

-6.9%

-60.8%

CFET

Figure 3.3: Static performance metrics of CFET, FSH, and s-NSH inverters at VDD = 0.7
V: (a) voltage transfer characteristics (VTC) for Vin in the range of 0-0.7 V and (b) peak
DC gain (Avo) as a function of supply voltage (VDD); (c) high level (NMH) and low level
(NML) noise margins, and (d) area footprint.

carrier mobility degradation. The Avo of the CFET, FSH, and s-NSH inverters is found to

be around 18.5 V/V, 17.6 V/V, and 18.4 V/V, respectively, at VDD = 0.7 V. This marginal

difference in Avo is attributed to the saturation current level of n-FET and p-FET. At

iso-peak DC gain (15 V/V), it is observed that the CFET inverter requires -17.8% and

-11.1% lower supply voltage than the FSH and s-NSH inverter, respectively. This is

because of higher inversion charge density. Specifically, the FSH inverter demonstrates

inferior performance, with around -8.3% lower Avo over s-NSH inverter at VDD = 0.4

V. The reason for this is that the highly asymmetric inversion charge density inside the

channels of the n-FET and p-FET, caused by reduced gate control. Fig. 3.3(c) shows the

high-level noise margin (NMH) and the low-level noise margin (NML), which are calculated

from VTC as NMH = VOH−VIH and NML = VIL − VOL, respectively. The three CMOS

inverters exhibit nearly identical NML and NMH of around 0.3 V and 0.36 V of three

inverters, respectively. These excellent noise margin levels indicate strong tolerance to

signal fluctuations. Therefore, the CFET inverter with higher peak DC gain and noise

margins could be a more viable candidate for multistage logic circuits comparable to those

of FSH and s-NSH inverters.

Fig. 3.3(d) displays the area footprint of CFET, FSH, and s-NSH inverter cells
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for the 1 nm technology node. The inverter cell area footprint is primarily influenced by

gate length (Lg), sheet width (WNS), spacer thickness (tsp), and p-n separation (DN/P ).

The CFET inverter is observed to have a cell area of nearly -60.8% lower than the

s-NSH inverter due to the vertical stacking of devices, reducing the contribution of WNS.

Additionally, the FSH inverter achieves a -6.9% reduction in area footprint compared to

the s-NSH inverter because of significant gate covering from the dielectric side and dummy

fin gate tuck. Therefore, the CFET inverter, with its smaller area footprint, could allow

high-density integration of digital logic blocks over FSH and s-NSH inverters for the sub-5

nm technology node.

3.3.3 Dynamic Performance of CMOS Inverters

Fig. 3.4 shows the load capacitance (CL) for CFET, FSH, and s-NSH inverters

without and with considering BPDN effects. In this design, BPDN incorporates buried

power rails with frontside connectivity. To determine CL without BPDN, we redesigned

the inverters using a traditional frontside power delivery network. The CL is calculated

as CL = Cgdp + Cgsp + Cgdn + Cgsn + Cwire, where Cgdp is the gate-to-drain capacitance

of p-FET, Cgsp is the gate-to-source capacitance of p-FET, Cgdn is the gate-to-drain

capacitance of n-FET, Cgsn is the gate-to-source capacitance of n-FET, and Cwire is the

wiring capacitance of the CMOS inverter. The Cwire is selected around 0.1996 fF/µm from

the IRDS 2021 projection at the 1 nm technology node [79]. The Cgs and Cgd of p-FET

and n-FET are computed using the Y-parameter model by constructing the small-signal
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equivalent model [51, 65, 86]. It is observed that the CL with BPDN for CFET, FSH, and

s-NSH CMOS inverters is reduced by around -2.45%, -3.3%, and -4%, respectively. This

signify that CFET over FSH and s-NSH inverters could effectively minimize back-of-line

parasitic capacitances. It is observed from Fig. 3.4 that the vertical stacking of devices

in CFET inverter with BPDN leads to the reduction of CL around -22.9% and -29.51%

than FSH and s-NSH inverters, respectively. This significant improvement in CL of CFET

is primarily due to improvement in DIBL and decrement in coupling capacitances [16].

On the other hand, in comparison to the s-NSH inverter with BPDN, the FSH inverter

provides around -5.3% lower CL because of fringing capacitance reduction with high-k

separation. Thus, the CFET inverter with BPDN provides the lowest CL, making them

a potential candidate for high-speed digital ICs.

3.3.4 Impact of Process Variation

Fig. 3.5 shows the coefficient of variation (σ/µ) for threshold voltage (VTH) of

n-FET and p-FET in the CFET, FSH, and s-NSH inverter configurations as a function of

the device geometrical parameters, such as doping concentration (NS/D), EOT, interface

trap charges (Nit), and channel thickness (tch). It is observed that the variation in VTH

increases significantly with a marginal variation in geometrical parameters. Among the

three configurations, the CFET consistently demonstrates superior resistance to VTH

fluctuations across all considered geometrical parameters. This improved performance

is attributed to its enhanced electrostatic control and tightly packed vertical layout. In

comparison, the FSH inverter strikes a balance by offering better isolation between the

n-FET and p-FET by reducing cross-coupling effects. However, their lateral proximity

results in higher sensitivity to geometrical parameter variations compared to CFET. On

the other hand, the s-NSH inverter exhibits the highest sensitivity to variations in the

geometrical parameters, particularly those involving dopants and channel thickness. This

increased susceptibility arises from strong fringing field effect and pronounced inter-device

coupling. Thus, the CFET design inherently mitigates the impact of process parameter

variations more effectively than the FSH and s-NSH configurations, which offer a robust

solution for achieving stable device performance under varying conditions.

3.3.5 Scaling Performance of Novel CMOS Inverters

Fig. 3.6 shows the key performance metrics for CFET, FSH, and s-NSH inverters as

a function of the technology node (N) at a fixed OFF current of around 5 nA/µm. Table

3.1 presents the device design parameters, which are scaled with the technology node. It is
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Figure 3.5: Coefficient of variation (σ/µ× 100) for threshold voltage (VTH) of n-FET and
p-FET in the CFET, FSH, and s-NSH inverter configurations as a function of (a) and
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(EOT), (e) and (f) interface trap charges (Nit), and (g)-(h) channel thickness (tch).

Table 3.1: Parameters of technology nodes describing the corresponding gate lengths
(Lg) and spacer thicknesses (tsp) as per the IRDS 2021 (N1-N5) [79] and the ITRS 2013
roadmap (N0.5-N0.7) [57].

Technology Node (N) N0.5 N0.7 N1 N2 N3 N5
Gate Length (Lg) (nm) 8 10 12 14 16 18
Spacer thickness (tsp) (nm) 1 1.2 1.4 1.6 1.8 2

observed from Fig. 3.6(a) that the ON current [IDS(|VGS| = VDD, |VDS| = VDD)] of p-FET

and n-FET in three inverter configurations decreases considerably with scaling down the

technology node. The reason for that is twofold: (i) source-drain tunneling increases the

OFF-state current and thereby requires much lower VGS to achieve the fixed OFF current;
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capacitance (Cgd) (Solid : n-FET, Dashed : p-FET); and (d) load capacitance (CL) as a
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and (ii) the enhanced electric field in the channel region increases the mobility degradation

due to a greater number of scattering events. Importantly, the drive current of the n-FET

and p-FET in the FSH inverter is marginally lower among the three inverters for all

technology nodes. This is due to the fork gate structure, which provides electrostatic

control from only three sides. As the technology node scales down from N5 to N0.5,

the n-FET of CFET, FSH, and s-NSH inverters experiences -65.75%, -68.12% and -70%

degradation in ION, which is 21.21%, 9.1% and 17.8% higher than that for p-FET. Fig.

3.6(b) shows that the Avo of three inverters decreases considerably with scaling down

the technology node due to the decrement in the drive current of n-FET. The Avo of

CFET and s-NSH inverters follows the ION trend, displaying nearly identical Avo across

all technology nodes. However, the FSH inverter exhibits the least Avo among the three

inverter configurations due to highly asymmetric inversion charge in p-FET and n-FET.

From Fig. 3.6(c), it is found that Cgd for p-FET and n-FET in the three inverters

show a marginal increment with scaling down the technology node (N). For all N, p-FET

and n-FET of CFET inverter demonstrates significantly lower Cgd compared to FSH and
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varying VDD and technology node.

s-NSH inverters. Despite showing inferior Avo, the FSH inverter exhibits a lower Cgd

compared to the s-NSH inverters due to the reduced fringing field effect. It is observed

from Fig. 3.6(d) that the CL for three inverters increases significantly as the technology

node scales down. This increment is primarily due to a significant increment in DIBL,

which enhances the contribution of Cgd and Cgs components. The CL of the CFET inverter

is found nearly 1.49 fF/µm at N0.5, which is about 44.6% higher than its value at the N5

node. On the other hand, the CL for the FSH and s-NSH is gained around 27.14% and

28.17%, respectively, when the technology node scales down from N5 to N0.5. Although

CFET has significant increment in CL from N5 to N0.5, they are observed to maintain

their advantage of lower CL compared to the FSH and s-NSH inverter counterparts across

all technology nodes. At N0.5, the CL of CFET is around -18.67% and -21.33% lower than

that for FSH and s-NSH inverter. On the other hand, for technology nodes N1 and below,

the FSH inverter has improved CL over s-NSH inverter. This trend is due to the decrement

in the fringing field capacitance with high-k in p-n separation. Thus, as technology nodes

continue to scale down, the CFET inverter consistently outperforms its counterparts in

ION and CL, promising superior performance for advanced technology nodes.
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3.3.6 Power Performance Analysis

Fig. 3.7 shows the power-frequency characteristics of CFET, FSH, and s-NSH

CMOS inverters by varying VDD and technology node (N) without and with including

the BPDN. As demonstrated by the rightward shift, the frequency and power efficiency of

CFET with and without BPDN are leading above FSH and NSH-based CMOS inverters.

This performance enhancement is attributed to reduced CL values and improved device

currents [as observed in Fig. 3.6]. At the iso-frequency (270 GHz), the CFET inverter

with BPDN demonstrates -4.29% and -2.5% power reduction compared to the FSH and

s-NSH inverters, respectively. At the iso-power (1.7×10−5 W/m), the CFET inverter

delivers around 2% and 3.7% frequency improvement compared to the FSH and s-NSH

inverters, respectively. Further, the difference in the power consumption between BPDN

and without BPDN is observed to be around -9.1%, -4.6% and -6.67% for CFET, FSH, and

s-NSH inverters, respectively for N1. This indicates that there is a reduction in parasitic

capacitance drop with BPDN. Moreover, due to lower CL values, the CFET, FSH, and

s-NSH inverters with the BPDN have around -4.28%, -4.3% and -7.29% lower operating

frequency compared to those without the BPDN at 1.55×10−5 W/m. Therefore, among

the three inverters, the CFET inverter with BPDN stands out as a promising candidate

for future high-speed and low-power logic applications due to its capability to operate at

higher frequencies with less dynamic power dissipation.

3.3.7 Impact of p-FET and n-FET Separation

Fig. 3.8 illustrates key performance metrics of CFET, FSH, and s-NSH inverters as

a function of p-n separation (DN/P ) at VDD = 0.7 V. Fig. 3.8(a) shows that the voltage

gain (Avo) of the three inverters decreases with increasing the DN/P . This trend is due to

the increment in the fringing field between n-FET and p-FET, which marginally reduces

the drive currents. Specifically, the Avo of CFET, FSH, and s-NSH inverters decreases by

-6.9%, -10%, and -8.1%, respectively, when DN/P is increased by a factor of 2.64×. Due

to a higher reduction in their device currents, Avo of the FSH inverter is observed to be

more sensitive to p-n separation. Fig. 3.8(b) indicates that the Cgd for p-FET and n-FET

in the three inverters show a marginal increment with decreasing DN/P . For all DN/P , the

devices in the CFET inverter exhibit marginally lower Cgd compared to FSH and s-NSH

inverters. Further, the FSH inverter is found to attain lower Cgd compared to the s-NSH

inverters for even higher p-n separation. Fig. 3.8(c) reveals that the CL of CFET, FSH,

and s-NSH inverters increases more significantly compared to Cgd with decreasing the
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CFET, FSH,and s-NSH inverters at VDD = 0.7 V: (a) peak DC gain (Avo), (b)
gate-to-drain capacitance (Cgd) (Solid : n-FET, Dashed : p-FET), (c) load capacitance
(CL), and (d) inverter delay (τ) and power delay product (PDP).

DN/P because Cgs also rises. It is important to note that the CFET inverter maintains a

lower CL than both FSH and s-NSH inverters for wide range of DN/P values.

Fig. 3.8(d) shows that the delay (τ) and power-delay product (PDP) of the

considered inverter configurations marginally rise with decreasing DN/P . The CFET and

FSH inverters exhibit 1.61% and 3.75% increment in τ whereas 12.5% and 14.13% higher

PDP, respectively, when DN/P is scaled down from 45 nm to 17 nm. Further, the s-NSH

inverter is highly affected, with around -4.58% and -10.9% degradation in τ and PDP,

respectively, when DN/P is scaled down from 45 nm to 17 nm. At DN/P = 17 nm, the

CFET demonstrates -2.25% and -2.78% lower inverter delay, while exhibiting -16.9% and

-17.38% lower PDP than that for FSH and s-NSH inverters, respectively. Moreover, the

FSH inverter exhibits marginally lower delay and PDP compared to the s-NSH inverter.

It is found that the three inverters have a marginal difference in performance with DN/P ,

and selecting the optimum DN/P could significantly enhance the performance advantages

of particular inverter configuration. Further, the CFET inverter consistently outperforms

the s-NSH and FSH inverters across all values of DN/P due to lower CL. Therefore, CFET

inverter with minimum DN/P could be a viable choice to develop high density digital IC.
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Table 3.2: Performance Benchmarking of CFET, FSH, and s-NSH at VDD = 0.7 V and
fixed IOFF = 10 nA/µm for N1 node.

Inverters CFET FSH s-NSH
Peak DC gain (V/V) 18.5 17.6 18.4
Area Footprint (nm2) 1935 4601 4945
Load Capacitance (fF/µm) 1.895 2.01 2.12
Power (10−5W/m) 1.62 1.64 1.68
Frequency (GHz) 270 268 260

3.4 Summary

We have conducted a comprehensive performance analysis of CFET, FSH, and

s-NSH inverters for the 1 nm technology node using a fully calibrated 3-D process

simulation. Our work not only identifies the performance limits of novel s-NSH-based

CMOS inverters for sub-5 nm technology nodes but also provides critical insights into the

performance of CFET and FSH, which can aid in scaling and device-level analysis. Table

3.2 shows that the CFET inverter offers approximately a 3.7% higher operating frequency

and a -3.7% lower dynamic power consumption, with a -60.8% smaller area footprint

compared to the s-NSH inverter counterpart for the 1 nm technology node. Moreover,

the advantageous characteristics of CFET are observed to persist when scaling down the

technology node beyond 1 nm. The results indicate that device gate capacitance play

a crucial role in inverter-level performance degradation, which can be optimized by p-n

separation. Our device performance analysis and benchmarking demonstrate that the

CFET inverter delivers optimal and robust switching performance at the ultimate scaling

limits.
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Chapter 4

6T SRAM and 32-bit ALU Design
Using Novel CMOS Inverter
Configurations Based on Stacked
Nanosheet FET

4.1 Introduction

In the previous chapter, we perform a comprehensive performance analysis and

benchmarking of Si stacked nanosheet (NSH)-based CMOS inverter configurations,

including complementary FET (CFET), forksheet (FSH), and standard stacked nanosheet

CMOS (s-NSH), using a fully calibrated TCAD simulation. Our study revealed that

the CFET inverter demonstrates superior scaling and switching characteristics in terms

of peak DC gain, noise margin, operating frequency, and power efficiency compared to

FSH and s-NSH inverter counterparts for sub-5 nm technology nodes. Extending this

analysis to static random access memory (SRAM) cell and arithmetic logic unit (ALU)

is crucial to fully understanding their performance advantages in system-on-chip (SoC)

design [87]. The speed and energy efficiency of these systems are critical in defining the

performance of modern memory and processor ICs [88]. Thus, evaluating the performance

of SRAM and ALU blocks could enable the prediction of system-level behavior and aid

in identifying high-performance inverter configurations for next-generation memory and

processor development.

6T SRAM cells utilizing CFET and FSH inverters have been actively studied

for their potential to enhance cell area scaling and power frequency performance

[14, 34, 35, 37, 39]. However, significant attention has been given to understanding

the interconnect design and process integration efforts on power efficiency. Simulation

work predicts that 6T FSH SRAM could achieve 40% and 10% reduction in read and

write energy consumptions, respectively, compared to the s-NSH configuration for the 15

nm gate length (A14), due to reduced interconnect capacitances [34]. Notably, 6T CFET

SRAM has shown excellent area and power efficiency, with improvements of approximately

48.2% and 29.4%, respectively, compared to 6T s-NSH SRAM for the 3 nm technology

node [89]. Additionally, 6T CFET SRAM with buried power delivery network (BPDN)
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Figure 4.1: Channel view and layout for 6T SRAM cells using (a) and (d) stacked
nanosheet (s-NSH), (b) and (e) forksheet (FSH), and (c) and(f) complementary field-effect
transistor (CFET) inverter configurations. The legends used in the layouts are explained
in the text.

for the 12 nm gate length (A3) has demonstrated the 77% improvement in energy-delay

product compared to 15 nm gate length (A14) 6T s-NSH SRAM [33]. Despite recent

studies have extensively focused on routing and energy efficiency aspects of 6T SRAM

[13, 90], the uniform performance evaluation and benchmarking of CFET, FSH, and

s-NSH inverters, particularly with BPDN, is still missing. Furthermore, no study has

presented the performance advantages of 6T SRAM cells with CFET, FSH, and s-NSH

inverter configurations for future technology nodes. In the case of logic aspects, many

recent studies on CFET inverters have designed common logic gates [40, 42]. However,

the performance analysis of ALU blocks using FSH and s-NSH configurations has not been

thoroughly presented. Therefore, there is a pressing need for a detailed investigation of

SRAM and ALU performance with s-NSH inverter architectures to implement efficient

memory and logic circuits, respectively.

In this chapter, we examine the scaling and switching performance metrics of

6T SRAM cell and 32-bit ALU employing CFET, FSH, and s-NSH-based inverter

architectures, which are designed using BPDN. The performance analysis of the 6T SRAM

cell is carried out using 3-D process simulation within a fully calibrated TCAD tool, which

is based on the self-consistent solutions of Poisson’s equation and the Boltzmann transport

equation. Additionally, the ALU is designed by modifying the BCB 4.0, where the I-V and

C-V characteristics of CFET, FSH, and s-NSH inverters are included to find computational

and energy efficiency. Specifically, the contributions of this work are stated below:

• A process-dependent comprehensive assessment is carried out to understand the
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performance of 6T SRAM cells using CFET, FSH, and s-NSH inverters. Thus,

our work presents performance and scalability projection in the design technology

co-optimization (DTCO) paradigm within advanced technology nodes.

• Extensive effort is devoted to reducing the process steps in fabricating the 6T SRAM

cell, as this can serve as a critical bottleneck in technology node scaling. The

proposed SRAM layouts offer a solution to mitigate routing congestion challenges

for the sub-5 nm technology node.

• Reasonable performance prediction of CFET, FSH, and s-NSH inverters from logic

aspects is done by examining the power and computation efficiency of 32-bit ALU.

4.2 Performance of CMOS Inverters in 6T SRAM
Configuration

4.2.1 Structure Design

Fig. 4.1(a), (b), and (c) illustrate the channel view of the simulated 6T SRAM

cell using s-NSH, FSH, and CFET inverters, respectively. Additionally, Fig. 4.1(d), (e),

and (f) present the layout of SRAM cells designed using s-NSH, FSH, and CFET inverter

architectures, respectively. It is seen from the SRAM layout that the 6T SRAM cell

comprises two pull-up (PU) transistors (P1 and P2), two pull-down (PD) transistors (N1

and N2), and two access (AC) transistors (A1 and A2). To simplify the process, the access

transistors are developed alongside the cross-coupled CMOS inverters. The geometrical

parameters of the access transistors are kept identical to those of the n-FET (pull-down

transistor) to maintain consistency during process simulation. In this configuration, BL

and BLB represent the bit lines, WL denotes the word line, and Q and QB are the

data storage nodes. In our design, the spacing between the n-FET and p-FET regions is

treated as a gate cut, and the effective transistor width is determined by accounting for

the maximum spacing after gate-cut adjustments. It is observed from Fig. 4.1(d) and (e)

that a major difference between s-NSH and FSH SRAMs layouts is thin dielectric walls

(DIWs), which reduces the p-n separation. Fig. 4.1(c) showcases the CFET layout, where

PU transistors are stacked above the PD and AC transistors. This vertical stacking reduces

track height and overall cell area. The 6T CFET SRAM cell layout includes PD and AC

n-FETs in the first (bottom) layer and PU p-FETs in the second (top) layer. A buried

power rail network (BPRN) is incorporated to provide the supply connection through the

substrate, which offers significant benefits for power delivery and layout efficiency.
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4.2.2 Process Design

The process steps of realizing the 6T SRAM cells are similar to the inverter process

flow, except that 6T FSH and CFET SRAMs have the silicon nitride isolation between

the access transistors and cross-coupled inverters. The three-channel stacked access (AC)

transistors are fabricated together with pull-up (PU) and pull-down (PD) transistors in

FSH and s-NSH SRAMs. Further, the silicon nitride is deposited after step (x) of the

s-NSH process flow, as mentioned in the Chapter 3. In the case of 6T CFET SRAM,

the AC transistors are built side by side with pull-down transistors. After that, silicon

nitride is deposited to isolate the PD and AC transistors. Considering the balanced

design parameters of the SRAM cell, the transistor strengths are optimized to achieve

the PU:PD:AC strength of 1:1:1. Moreover, upon successfully developing the 6T SRAM

cells, the transport and correction models are employed similar to those discussed in our

Chapter 3 for inverter.
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Figure 4.2: Performance of 6T CFET, FSH, and s-NSH SRAM cells at the fixed OFF
current of around 5 nA/µm and VDD = 0.7 V: (a) read static noise margin (RSNM), (b)
write static noise margin (WSNM), (c) read access time (tread), and (d) write access time
(twrite) as a function of technology node.

4.2.3 Read-Write Performance Analysis

Fig. 4.2(a) illustrates the read static noise margin (RSNM) of the 6T SRAM cell

using CFET, FSH, and s-NSH inverters as a function of the technology node (N) at VDD =

0.7 V. The RSNM is a crucial stability performance metric that defines the minimum
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tolerable noise voltage of the SRAM cell without flipping the state. It is observed that

RSNM for the three SRAM cells decreases significantly with decreasing the technology

node due to the reduction in the drive current of their n-FET. The CFET and FSH SRAM

cells exhibit nearly identical RSNM due to their almost matched cell ratio. The cell ratio is

defined as the ratio of pull-down and access transistor strengths [91]. A marginally higher

RSNM for CFET SRAM is noted among three SRAMs due to its higher drive current of

n-FET, which prevents the flipping of the original state. However, the s-NSH SRAM cell

exhibits a markedly lower RSNM compared to the CFET SRAM cell, with approximately

-40% degradation observed at N1. A substantial reduction in RSNM with the technology

node highlights the challenges in maintaining read stability for s-NSH SRAM as scaling

continues.

Fig. 4.2(b) presents the write static noise margin (WSNM) of the 6T SRAM cell

using CFET, FSH, and s-NSH inverters as a function of the technology node at VDD = 0.7

V. The WSNM is also a critical stability performance metric that defines the maximum

bit-line voltage (BL) required to flip the state of the SRAM cell. At a given technology

node, the 6T CFET and FSH SRAM cells exhibit nearly the same WSNM due to their

same pull-up ratio. The pull-up ratio is defined as the ratio of the strength of the pull-up

transistor to the access transistor [91]. The WSNM of the s-NSH SRAM is found to

be around -50% lower than that of the CFET SRAM for all technology nodes. CFET

and FSH SRAM cells are found to retain their inverter-level advantages with higher

WSNM compared to s-NSH SRAM. This is because the oxide in p-n separation effectively

minimizes the fringing field effect. Thus, the 6T CFET SRAM cell demonstrates superior

read and write stability over the FSH and s-NSH SRAM cells for sub-5-nm technology

nodes.

Fig. 4.2(c) and Fig. 4.2(d) respectively show the read access time (tread) and

write access times (twrite) of the 6T SRAM cells as a function of the technology node at

VDD = 0.7 V. The tread is computed as the time required for achieving the bit-line (BL)

voltage difference equals to the 10% of VDD after the word-line (WL) is activated. On

the other hand, twrite is calculated as the time WL reaches 50% of VDD, which is basically

BL and BL reach the same value. It is observed that tread and twrite increase significantly

with the scaling down technology node due to the increment in CBL and the decrement

in the drive currents of the PU and PD transistors. Among the three SRAM cells, 6T

CFET SRAM exhibits smaller tread and twrite for all the technology nodes because a lower

Cgd for both PU and PD transistors results in smaller CBL and CWL. In contrast, the
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increased capacitance combined with inferior drive currents in 6T s-NSH SRAM leads to

slower charging and discharging times for the BLs and WLs, which significantly enhance

the tread and twrite, respectively. At N1, 6T CFET SRAM exhibits -42.9% and -68.4%

lower tread and twrite, respectively, compared to 6T s-NSH SRAM. This disparity is due

to the marginally higher PD drive current and lower CBL than the 6T s-NSH SRAM.

Therefore, the CFET configuration with faster read and write response times could be a

more preferable choice for designing high-speed memory.
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Figure 4.3: Power versus frequency characteristics of 6T CFET, FSH, and s-NSH SRAM
cells for varying VDD and technology node.

4.2.4 Power Performance Analysis

Fig. 4.3 shows the power frequency characteristics of a 6T SRAM cell using CFET,

FSH, and s-NSH inverters, which are obtained by varying the node of technology and

the supply voltages (VDD). It is observed that 6T CFET SRAM exhibits superior power

efficiency and high-frequency operation due to their reduced gate-drain capacitance (Cgd),

which in turn lowers CBL and CWL. At iso-power conditions (2.4×10−3 W/m), 6T

CFET SRAM shows an operating frequency of approximately 13.33% and 56.67% higher

compared to the FSH and s-NSH SRAMs, respectively. Under iso-frequency conditions

(25 GHz), 6T CFET SRAM demonstrates write power efficiency improvements of -3.06%

and -12.29% relative to FSH and s-NSH SRAMs, respectively. In addition, 6T s-NSH

SRAM suffers from increased power consumption and lower frequency operation due to

substantial higher values of CBL and CWL. 6T FSH SRAM strikes a balance between

CFET and s-NSH SRAMs by offering moderate gain in power consumption and frequency

characteristics. FSH SRAM technology effectively suppresses the fringing contribution
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in Cgd, which reduces power consumption compared to s-NSH SRAM, although not as

effectively as CFET SRAM. Compared to inverter-level performance, the 6T CFET SRAM

is observed to enhance power consumption by nearly 135× and reduce frequency by 11.7×

for the 1 nm technology node. The s-NSH SRAM is found to have a significantly higher

degradation in power and frequency compared to its inverter-level performance. Thus, the

superior performance metrics of the CFET inverter in 6T SRAM underscore its potential

as a promising solution for future SRAM technologies.

4.3 Performance of NSH-based CMOS Inverters in 32-bit
Arithmetic Logic Unit (ALU)
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Figure 4.4: Performance of CFET, FSH, and s-NSH inverters in 32-bit arithmetic
logic unit (ALU) at VDD = 0.7 V: (a) block-level schematic of 32-bit ALU; and
(b) delay of ALU (τALU ), (c) power delay product (PDPALU), and (d) throughput
(tera-integer-operation-per-second (TIOPS)/µm2) as a function of technology node.

We here design 32-bit ALU using CFET, FSH, and s-NSH configurations to

understand their performance benefits in logic applications. Fig. 4.4(a) shows the

schematic of the simulated 32-bit ALU, where the full adder, multiplexer, multi-input

NAND, NOR, and XOR gates are developed using CFET, FSH, and s-NSH inverters.

The central component of the ALU is the arithmetic operation unit (AOU), which is

responsible for performing all arithmetic and logic operations on two 32-bit numbers. The

logic operation is performed in parallel, but the adder block, which is developed using a

ripple carry adder, limits the operational delay due to carry propagation from one bit to

another. The other critical components of the ALU include the register files (RF) and the

latches, each organized as 1 × 32 arrays of memory cells. The RFs store input and output

data, while the latches transfer and isolate data from the RF in synchronization with the
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clock signal. These 32-bit ALU operations are executed by modifying BCB 4.0 [92, 93],

where the characteristics of the CFET, FSH and s-NSH inverters are modeled to obtain

performance metrics, such as delay, power-delay product and throughput.

Fig. 4.4(b) shows the delay of 32-bit ALU (τALU ), which is significantly contributed

by the delay of the AOU block, as a function of the technology node. It is observed

that the τALU of CFET, FSH, and s-NSH ALUs increases significantly with decreasing

the technology node due to considerable increment in the delay at the inverter level.

Interestingly, the CFET configuration is found to preserve their inverter level performance

benefits in τALU with around -2.39% and -13.7% smaller compared to FSH and s-NSH

ALU, respectively, at N1. The τALU of CFET configuration is observed to be around 5.45

ns at N1, which is 1475.4× higher than that for their inverter configuration. Moreover,

the τALU of FSH configuration is found to be marginally higher than CFET configuration,

while -11.11% reduced τALU is reported compared to s-NSH inverter for N1 due to lower

CL values.

Fig. 4.4(c) shows the PDP of 32-bit ALU (PDPALU) as a function of the technology

node. The trends in PDPALU for three configurations have a similar dependence on the

technology node as observed for the τALU . The PDPALU of the CFET configuration is

found to be the lowest among the three configurations for all nodes of technology due

to their smaller CL. Furthermore, CFET, FSH, and s-NSH ALU show around -38.4%,

-19.35%, and -20.31% degradation in PDP, respectively, when the technology node is

reduced from N5 to N0.5. Despite significant degradation in PDPALU, CFET ALU

outperforms FSH and s-NSH ALU for all technology nodes. It is also found that PDPALU

of CFET ALU is around 6.2 pJ/µm, which is around -12.9% lower than that for s-NSH

ALU cell, at N1.

Fig. 4.4(d) shows the throughput of 32-bit ALU using the CFET, FSH, and s-NSH

inverters as a function of the technology node. The throughput is defined as the number

of operations executed per second per unit area. It is found that the throughput of the

three ALU configurations decreases considerably with scaling down the technology node.

The reason for this is that the τALU decreases the computation speed of 32-bit ALU.

Further, the throughput of CFET ALU drops around -62.50%, while FSH and s-NSH

ALUs demonstrate a significant reduction with around -80.4% and -85.7%, respectively,

when the technology node is scaled down from N5 to N0.5. At N1, the CFET ALU

maintains its advantages, exhibiting nearly 18.75% and 26.67% higher throughput than

FSH and s-NSH ALU. Therefore, it is evident that the development of ALU with CFET
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could be more beneficial in terms of throughput, speed, and power efficiency compared to

FSH and s-NSH ALU counterparts for 5 nm and beyond technology nodes.

Table 4.1: Benchmarking of 6T SRAM and 32-bit arithmetic logic unit (ALU) at
VDD = 0.7 V for 1 nm technology node.

Attributes

Delay (ps) PDP (fJ/µm)
SRAM ALU SRAM ALU

tread twrite

CFET 31 42 5450 3.47 6200
FSH 32 44 5580 3.5 6620
s-NSH 36 58 6200 4 7000

4.4 Summary

We conducted a detailed performance analysis of 6T SRAM and 32-bit ALU

cells utilizing CFET, FSH, and s-NSH-based inverters for 5 nm and beyond technology

nodes. Table 4.1 further summarizes the key switching performance parameters for these

configurations at the 1 nm technology node. Our findings reveal that the 6T CFET

SRAM significantly enhances operating speed and energy efficiency, with approximately

-38.1% lower delay and -15.27% lower power-delay product compared to the 6T s-NSH

SRAM cell. The 6T FSH SRAM offers a balanced compromise between CFET and s-NSH

SRAMs by providing moderate improvements in both power consumption and frequency

performance. Furthermore, the 32-bit ALU with CFET inverters exhibits a 13.7% higher

operating speed, -12.9% lower power dissipation, and 26.67% higher throughput compared

to ALUs using s-NSH inverters for 1 nm technology node. Notably, CFET inverter

demonstrates their suitability for advanced technology nodes with notable enhancements

in operating frequency with marginal increment in power consumption than FSH and

s-NSH inverters. Overall, our inverter-to-circuit level analysis strongly suggests that CFET

inverter configurations are exceptionally well-suited for low-power and high-speed digital

IC applications at the ultimate scaling limits.
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Chapter 5

Emulation of Synapse using
Nanowire based Charge Trap
Transistor

5.1 Introduction

Neuromorphic computing system presents a promising solution to circumvent von

Neumann architecture limitations, as they offer several advantages, including extensive

parallelism, distributed processing, adaptability, self-organization, fault tolerance,

stability, energy efficiency, and robustness [94]. The replication of synapse stands as

a crucial element in the hardware implementation of a neuromorphic computing system

that requires the emulation of synaptic characteristics, including spike-time-dependent

plasticity, short-term memory (paired-pulse facilitation and depression), and long-term

memory (potentiation and depression) [44]. In recent years, several non-volatile memory

devices, such as resistive random access memory (RRAM) [95], ferroelectric field-effect

transistor (FeFET) [96], and magnetic tunnel junction (MTJ) [97], have emerged as

possible options to develop artificial synapses. However, these devices face major

challenges in commercial production within CMOS-compatible processing techniques due

to processing temperature requirements and material mismatch, and reliability issues

[18]. Moreover, the inherent non-linear and non-uniform conductance modulation of these

devices can lead to considerable degradation in learning accuracy and energy efficiency,

limiting the potential advantages of such synapses [95]. Hence, it is imperative to tackle

these challenges to allow seamless integration of synaptic devices in practical crossbar

array size.

A three-terminal charge trap transistor (CTT) with a high-k oxide gate, such as

HfO2, Si3N4, and Al2O3, has been emerged as a promising synaptic element due to

their full CMOS compatibility with three-dimensional (3-D) integration capability, high

dynamic range, and superior retention capability [18]. Interestingly, the enhancement

of charge trapping using radiation doses in high-k CTT has made significant progress

in achieving high threshold voltage modulation (∆VTh) [18, 21], which renders them

potential candidates for facilitating multistate operations in analog synaptic devices.

Earlier experimental studies on CTT utilizing HfO2 trapping oxide layer have reported
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excellent weight tunability and weight-dependent plasticity using commercial 32 nm silicon

on insulator (SOI) and 14 nm Fin field-effect transistor (Fin-FET) technologies without

adding any process complexity or masks steps, which was a critical bottleneck in Flash

memory [18, 24]. Further, the 784 × 784 synaptic crossbar array using 28 nm bulk

CMOS technology has presented 95% accuracy for handwritten digit recognition with the

8-bits/cell [21]. More interestingly, HfO2-based fully depleted SOI (FDSOI) demonstrated

superior programming efficiency with charge retention of more than 10 years at 125oC [98].

Despite these advancements, existing CTTs are utilizing planar and Fin-FET

device architectures, which are highly susceptible to short-channel effects [18, 24]. This

could exacerbate variability and reliability issues in neural network implementation [21].

Therefore, there is a pressing need for the advancement of synaptic devices that can

support technology scaling and enable the development of high-density crossbar networks.

Silicon nanowire-FET (NW-FETs) with high drive currents and more immunity against

the short-channel effects [85], could be a strong CTT candidate. Moreover, Si NW-based

charge trap transistor (NW-CTT) could be well-suited for high-density crossbar arrays

due to their smaller area footprint over Fin-FET and nanosheet-FET [85]. Previous

simulation studies on the NW-FET have demonstrated silicon–oxide–nitride–oxide–silicon

(SONOS) memory as a synapse [44], [99], [100]. However, tackling the challenge of

decreasing their operational voltage demand and simplifying fabrication steps stands as

a crucial endeavor. To tackle these challenges, the conventional HfO2-based NW-CTT

with enhanced interface trap charge density could emerge as a formidable competitor

for the synaptic device. However, synaptic characteristics of HfO2-based NW-CTT have

not yet been thoroughly investigated. Therefore, it would be beneficial to investigate

the device-to-crossbar performance of HfO2-based NW-FETs using rigorous models and

numerical simulations before undertaking more extensive experimental efforts.

In this chapter, we perform a systematic suitability analysis for HfO2-based

NW-CTT as an artificial synapse in the 5 nm technology node by investigating short-term

and long-term memory characteristics with understanding recognition accuracy and energy

efficiency in 784 × 100 × 10 neural network. The synaptic characteristics of NW-CTT

are examined using a fully calibrated technology computer-aided design (TCAD) tool,

based on the self-consistent solutions of Poisson’s equation, Boltzmann transport equation,

and self-heating equations. Previous simulation studies on CTT have overlooked the

self-heating effect [101], but recent experiment demonstration of self-heating induced VTh

modulation put the pressing demand for incorporation of this effect [98].



Chapter 5. Emulation of Synapse using Nanowire based Charge Trap Transistor 61

5.2 Simulation Technique
5.2.1 Device Design and Simulation Methodology
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LD = 20 nm

Gate

CTL

Si

LS = 20 nm

tSP = 2 nm tSP = 2 nm
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    Short Channel Correction Terms:

- Lombardi Mobility Model
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- Density Gradient Model
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- Trap Assisted Recombination Model
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Poisson's
Equation

Hydrodynamic Boltzmann
Transport
Equation

(b)

Figure 5.1: Synopsis of modeling methodology and experimental verification: (a)
Schematic geometry of NW-CTT at 5 nm technology node (18 nm gate length), and
(b) summary of the modeling methodology.

Fig. 5.1(a) shows the schematic of HfO2-based NW-CTT, where the device design

parameters are selected from the IRDS projection for the 5 nm technology node [102]. The

gate length (Lg) and spacer length (Lsp) of the device are selected around 18 nm and 2

nm, respectively. The source (S) and drain (D) regions (LS/D) are considered to be around

20 nm long and doped to n-type with a doping concentration of NS/D = 1 × 1020 cm−3.

Further, the diameter (Dnw) of the silicon nanowire is selected around 10 nm, which is in

line with the experimental achievable value [59]. The gate oxide consists of a stack of 1 nm

SiO2 and 1.25 nm HfO2, resulting in an effective gate oxide thickness (EOT) of around 1.2

nm. Here, HfO2 serves as the charge trapping layer (CTL), while SiO2 functions as the

interfacial layer (IFL). Moreover, the chosen thicknesses of SiO2 and HfO2 in FDSOI and

bulk technology have been reported to provide an excellent charge retention capability of

around 10 years [18, 103].

The synaptic characteristics of the NW-CTT are investigated using a fully calibrated

3-D Sentaurus TCAD simulation, based on self-consistent solutions of the Boltzmann

transport equation, Poisson’s equation, and hydrodynamic, as shown in Fig. 5.1(b).

The hydrodynamic model is particularly selected to accurately capture the self-heating

effect across the device. The temperature-dependent Shockley-Read-Hall and Auger

recombination are incorporated to account the generation and recombination of the

carriers in the carrier continuity equation [44, 85]. The non-local band-to-band tunneling
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and Hurkx trap-assisted tunneling (TAT) models are included to incorporate the

band-to-band tunneling [44]. Moreover, the Density-Gradient model is employed to

define the quantum confinement effects in the inversion layer near the Si–SiO2 interface.

Additionally, a low-field ballistic model is integrated to account the quasi-ballistic

transport [85]. Several correction models, including Old-Slotboom band gap narrowing,

Lombardi mobility, and inversion and accumulation layer mobility, are further included

to address bandgap narrowing, doping, and electric-field-dependent mobility degradation,

respectively [85]. Further, the interface trap density in the CTL layer is considered to be

in the range of Nit = 1×1014cm−3 to Nit = 1×1017cm−3 with a capture cross-section area

of approximately 1 × 10−14cm2. These interface traps are uniformly situated within the

energy levels of 1.2–2.2 eV below the bottom edge of the conduction band (CB) [104]. It is

important to note that the selected interface trap charge density is in good agreement with

the experimentally reported values in the HfO2-based FDSOI-CTT using total ionization

radiation [18, 24].
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Figure 5.2: Calibration of simulated and experimental characteristics: (a) transfer
characteristics (IDS-VGS) of 14 nm technology node Fin-FET for Fresh and 100 krad(SiO2)
irradiation [24] at VDS = 50 mV, and (b) ∆VTh-VGS of FDSOI MOSFET [98] at VDS = 0.5
V for 22 nm technology node. The device design parameters for both Fin-FET and FDSOI
are identical to experimental reported device geometry.

5.2.2 Setup and Calibration of TCAD Simulation

To validate the accuracy of the simulation model, Fig. 5.2(a) shows the transfer

characteristics (IDS-VGS) of two-fins Fin-FET with a total effective fin width of 150

nm for a 14 nm technology node using our simulation approach and experimental data

under Fresh and 100 krad(SiO2) condition at VDS = 50 mV [24]. It is observed that the

simulated IDS-VGS curve, incorporating Nit = 1 × 1016 cm−3 in the CTL layer, exhibits
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an excellent agreement with the experimental results. This indicates that our simulation

model accurately captures the essential physics of interface trap charges and short-channel

effects.
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Figure 5.3: Program/erase characteristics of the NW-CTT at VDS = 0.5 V and room
temperature: (a) IDS-VGS characteristics under the different Nit for the voltage sweep of 2
V/µs, and (b) 2-D electron interface charge profile for VGS = 0.8 V (state A), VGS = 1.4 V
(state B), VGS = 0.3 V (state C), and VGS = −0.2 V (state D) at the Nit = 1× 1017 cm−3.

To verify both the program and erase phenomena, we have calibrated the simulation

models for 22 nm CTT-based FDSOI technology. Fig. 5.2(b) shows the ∆VTh (memory

window), which represents the current difference between the programming and erase

cycles. For ∆VTh computation, we apply a Pulsed Gate Voltage Ramp Sweep (PVRS)

ranging from 0 V to 2 V with a step size of 50 mV for a duration of 200 ms at VDS = 0.5

V. Importantly, VTh is defined using the constant current method, by setting VGS = VTh

when IDS = 10−7 A. It is observed that the ∆VTh-VGS characteristics show an excellent

match with the experimental results at VDS = 0.5 V [98] . This proves that our simulation

accurately captures the essential physics of interface trap charges during the charging and



64 Chapter 5. Emulation of Synapse using Nanowire based Charge Trap Transistor

discharging processes that occur during the program and erase pulses, respectively.

5.3 Non-Volatile Characteristics of NW-CTT

Fig. 5.3(a) illustrates the IDS-VGS characteristics of NW-CTT under PVRS, with

a sweep rate of around 2 V/µs, for Nit = 1 × 1014cm−3, Nit = 1 × 1016cm−3, and Nit =

1 × 1017cm−3. The NW-CTT exhibits a significant shift in sub-threshold current when

the programming (PRS) and erasing (ERS) operations are performed by applying +2 V

and -2 V, respectively. The memory window is observed to be around 0.2 V, 0.7 V, and 1

V for Nit = 1 × 1014 cm−3, Nit = 1 × 1016 cm−3, and Nit = 1 × 1017 cm−3, respectively,

at VDS = 0.5 V. The ∆VTh shift in NW-CTT is significantly enhanced compared to their

Fin-FET counterparts [24, 98]. A higher ∆VTh in NW-CTT is attributed to the improved

charge trapping and de-trapping effects during PRS and ERS, respectively.
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without hydrodynamic model, and (b) 2-D temperature profile at VGS = 0.9 V (state A)
and VGS = −0.1 V (state B) at the Nit = 1 × 1017 cm−3 for the voltage sweep of 2 V/µs
at VDS = 0.5 V.

To better understand ∆VTh modulation in NW-CTT, Fig. 5.3(b) displays the

electron interface charge profile across the channel-oxide interface for the four bias points,

marked in Fig. 5.3(a). At positive VGS, the electron interface charge in the CTL increases

because the channel electrons tunnel through IFL and traps in the CTL layer, [see the state

A]. As positive VGS cycle increases further, electrons accumulate near the interface due to
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enhanced tunneling, increasing the electron interface charge in the CTL layer [see state

B]. This leads to considerable positive shift in VTh [see Fig. 5.3(a)]. When the negative

gate pulse is applied in state C, electrons migrate back from the CTL to the channel.

The interface charges are completely de-trapped at state D, which results in a decrement

in the electron interface charge near the interface. This provides a significant negative

shift in VTh [see Fig. 5.3(a)]. Therefore, the positive and negative VTh shift exhibits

a high memory window, which promises improved non-volatile memory operations with

HfO2-based NW-CTT through interface states.

Fig. 5.4(a) illustrates the non-volatile memory characteristics of NW-CTT with and

without considering the self-heating effect for Nit = 1× 1017cm−3. It is observed that the

∆VTh is observed approximately 1 V with the self-heating effect, whereas it is found to be

around 0.6 V without considering the self-heating effect. From Fig. 5.4(b), it is found that

the incorporation of self-heating effect captures the elevation in temperature across the

device. This enhancement is attributed to the increment in capture and emission times of

interface trapped charges [19], allowing for rapid modulation of charge density with the

gate voltage pulse. Therefore, considering the self-heating effects is crucial for accurately

describing the charge trapping and de-trapping phenomena in CTT.

5.4 Synaptic Characteristics of NW-CTT

Fig. 5.5(a) shows the schematic representation of a biological synapse using

NW-CTT, where the gate and drain terminals serve as the pre-neuron and post-neuron,

respectively. An important feature of synapses is weight-dependent plasticity, a

characteristic found in biological synapses that may be interesting to replicate in artificial

systems. For long-term potentiation (LTP) and long-term depression (LTD) analysis, we

apply 106 sets of square voltage pulse trains with a duration of 300 ns. Among these,

53 sets have an incremental amplitude of 0.03 V for LTD, and the remaining 53 sets

have an incremental amplitude of -0.03 V for LTP. The VDS terminal bias is considered

to be around 0.5 V. The conductance [G(µS)] is computed by taking the derivative of

the obtained drain current with the applied pulse voltage. Fig. 5.5(b) shows that the

conductance of NW-CTT exhibits linearly increment and decrement for LTP and LTD,

respectively. This linear behavior is attributed to the constant rate of electron trapping

and de-trapping with positive and negative gate pulses, respectively. The dynamic range

for conductance modulation is approximately 12.4 for both LTP and LTD. Meanwhile,

the non-linearity is calculated to be 0.08 for LTP and 0.048 for LTD, utilizing the formula
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Figure 5.5: Biological synapse for neuromorphic applications: (a) schematic of
NW-CTT-based artificial synapse, and (b) conductance as a function of pulse number,
indicating the long-term potentiation (LTP) and long-term depression (LTD) behavior of
NW-CTT.

provided in [105], which prove to be nearly linear conductance modulation. These findings

suggest that the near-linear behavior of conductance modulation with NW-CTT holds

promise for enhanced multistate weight update capability.

A multilayer perceptron artificial neural network is designed using NeuroSIM

simulator to assess the learning capabilities of the NW-CTT-based synaptic device. Fig.

5.6(a) shows neural network architecture, which comprises an input layer, a hidden layer,

and an output layer with the size of 784, 100, and 10 neurons, respectively. These

neurons are connected through the NW-CTT-based synaptic crossbar array, as shown

in Fig. 5.6(b). The input consists MNIST dataset, which includes 28 × 28 pixels of

handwritten digits ranging from “0” to “9”. The image undergoes normalization of pixel

intensities within the range of 0 and 1. Each normalized pixel is then transformed into

a column matrix with 784 elements, which are subsequently fed into the input layer of

the neural network. Further, the MNIST dataset consists of 60,000 inference and 10,000

testing handwritten digit images. The conductance values obtained from the NW-CTT

are employed as the synaptic weights, which connect three-layer neurons. During the
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Figure 5.6: Pattern recognition accuracy: (a) schematic of the multilayer perceptron neural
network, (b) crossbar array architecture with NW-CTT as the synaptic element that is
utilized within the input, hidden, and output layers, and (c) MNIST digit recognition
accuracy with the number of training epoch.

inference stage, the neural network computes the loss, which is a difference between the

expected and calculated errors, and propagates backward to the individual layers. The

rectified linear unit (ReLU) activation and Adam optimizer are incorporated to account

for non-linearity and weight updates, respectively. After that, our simulation computes

the weight gradients and optimizes the parameters accordingly. Upon completion of the

inference stage, the testing images are feeded as inputs to the input layer of the neural

network. The output layer then compares the network’s predictions with the target output,

thereby providing the recognition accuracy of the NW-CTT-based system for MNIST digit

classification. Fig. 5.6(c) reveals that the artificial neural network achieves a recognition
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accuracy of around 94.7% using NW-CTT after 100 epochs due to superior dynamic range

and near-linear conductance modulation. This shows that NW-CTT exhibits excellent

capability in recognizing all ten input digits and distinguishing various details within each

digit.

5.4.1 Influence of Nanowire Diameter
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Figure 5.7: Impact of nanowire diameter (Dnw) on synaptic functionality at VDS = 0.5 V:
(a) paired-pulse facilitation (PPF) and paired-pulse depression (PPD) indexes, (b) LTP
and LTD with pulse number, (c) write energy consumption, and (d) recognition accuracy
after the 100th epoch of the MNIST dataset as a function of Dnw.

We now explore the synaptic behavior of NW-CTT with variation in the nanowire

diameter (Dnw) as achieving uniformity and consistency in nanowire dimensions is still a

crucial factor [106]. The Dnw is here varied in the range of 10 nm to 50 nm by keeping

other parameters fixed. Fig. 5.7(a) shows paired-pulse facilitation (PPF) and paired-pulse

depression (PPD) index, which demonstrates the short-term memory capability of the

artificial synapse. The PPF and PPD are computed as 100% × ((A2 - A1)/ A1), where A1

and A2 are the amplitude of the first and second output current for the two consecutive

identical pulses on the pre-neuron where |0.1| V amplitude pulse is used in this work. In

particular, the increment in PPF and decrement in PPD index represent the excitatory and
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inhibitory neurotransmitter release, respectively. The PPF and PPD for Dnw = 10 nm are

observed to be approximately 68% and 18%, respectively. This notable difference in PPF

and PPD is attributed to the rapid modulation in current resulting from the enhanced

charge trapping effect. It is also observed that the PPF and PPD decrease significantly

with increasing the Dnw. This is due to the considerable reduction in the charge-trapping

and de-trapping effects in the drain-to-source current for larger diameters. Fig. 5.7(b)

shows that the dynamic range of Dnw = 50 nm for LTP and LTD is attained around

1.34× and 1.4× lower than Dnw = 10 nm, respectively. Further, the non-linearity of

Dnw = 50 nm for LTP and LTD is found around 1.3× and 1.04× lower than Dnw = 10 nm,

respectively. The reason for a considerable decrement in dynamic range and non-linearity

is that a larger Dnw considerably decreases the inversion charge in the channel region,

which decreases the interface charge density.

Fig. 5.7(c) and Fig. 5.7(d) demonstrate the impact of Dnw on the write energy

consumption and recognition accuracy after the 100th epoch, respectively. The write

energy consumption of neural network is computed by Ecell = GVW
2NTpulse, where G

represents the conductance values, VW represents the write voltage, N signifies the number

of applied write pulses, and Tpulse indicate the pulse width. It is observed that the write

energy consumption and recognition accuracy decreases with increasing the Dnw. Notably,

the write energy consumption and recognition accuracy forDnw = 50 nm are found around

1.75 mJ and 85%, respectively, which are nearly 1.34× and 1.12× lower thanDnw = 10 nm,

respectively. This considerable reduction in recognition accuracy and energy efficiency is

due to a considerable increment in non-linearity and decrement in dynamic range for both

LTP and LTD. Therefore, a larger nanowire diameter might improve energy efficiency, but

it causes a significant reduction in recognition accuracy.

5.4.2 Influence of Thickness of Charge Trap Layer

In this section, we examine the synaptic behavior of NW-CTT with variations in the

thickness of the CTL (tCTL) layer, which is a critical parameter for enhancing the charge

retention capability. The tCTL is here varied in the range of 1 nm to 5 nm by keeping other

parameters constant. Fig. 5.8(a) shows that the PPD and PPF decrease with increasing

the tCTL. This is due to a significant reduction in the drain-to-source current modulation

for the same interface trap charges. Fig. 5.8(b) reveals that NW-CTT with thicker tCTL

exhibits lower dynamic range and higher non-linearity for both LTP and LTD compared to

thinner counterparts. Additionally, Fig. 5.8(c) and Fig. 5.8(d) show that the write energy

consumption drops from 2.3 mJ to 1.7 mJ, while the recognition accuracy degrades from
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Figure 5.8: Impact of the charge trap layer thickness (tCTL) on synaptic behavior at
VDS = 0.5 V: (a) PPF and PPD indexes, and (b) LTP and LTD with pulse number, (c)
write energy consumption, and (d) recognition accuracy after the 100th epoch of MNIST
dataset as a function of CTL thickness.

94.7% to 83% when the tCTL is scaled up from 1 nm to 5 nm. This is due to the significant

enhancement in the non-linearity in conductance modulation. Therefore, it is evident that

the optimal choice of tCTL could offer sufficient dynamic range and near-linear behavior,

leading to high recognition accuracy for neuromorphic applications.

5.4.3 Influence of Gate Length

Fig. 5.9 shows the synaptic characteristics and neural network performance of

NW-CTT as a function of the gate length (Lg) at VDS = 0.5 V. The Lg is varied in

the range of 10 nm to 22 nm according to the IRDS 2022 projection for 1 nm to 5

nm technology nodes [102]. As observed in Fig. 5.9(a), PPF and PPD increase with

decreasing Lg due to a significant enhancement in gate efficiency. The PPF and PPD are

observed to be approximately 78% and 25%, respectively, at Lg = 10 nm, which indicates

superior temporal detection capability. Fig. 5.9(b) demonstrates that the conductance

has a higher dynamic range and is modulated more linearly with pulse number in LTP

and LTD as Lg decreases. The reduction in Lg increases the electric field in the channel
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Figure 5.9: Impact of the gate length (Lg) on synaptic behavior at VDS = 0.5 V: (a) PPF
and PPD indexes, and (b) LTP and LTD with pulse number, (c) write energy consumption,
and (d) recognition accuracy after the 100th epoch of MNIST dataset as a function of gate
length.

region, which lowers the potential barrier for inversion charges. This enhances the charge

trapping/de-trapping phenomenon of electrons to/from spatially distributed interface trap

sites.

It is observed from Fig. 5.9(c) that the write energy consumption increases

marginally from 2.2 mJ to 2.47 mJ as Lg decreases from 22 nm to 10 nm due to an

enhancement in IDS. Additionally, the recognition accuracy improves from 93.2% to 96%

when the gate length is scaled down from 22 nm to 10 nm, as shown in Fig. 5.9(d).

Therefore, NW-CTT with a shorter gate length proves to be a more efficient synaptic

device for offering a high dynamic range and more linear conductance modulation, which

promises higher recognition accuracy in neural networks.

5.4.4 Influence of Metal Gate Work Function

Fig. 5.10 shows the impact of the metal gate work function on synaptic behavior

and crossbar array performance of NW-CTT at VDS = 0.5 V. Here the selected gate work

functions represent the following metals: 3.1 eV (Yttrium), 4.28 eV (Aluminium), 4.35

eV (Titanium nitride), 4.7 eV (Copper), and 5.1 eV (Gold). Fig. 5.10(a) shows that
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Figure 5.10: Impact of the gate work function (ϕM ) on synaptic behavior at VDS = 0.5 V:
(a) PPF and PPD indexes, and (b) LTP and LTD with pulse number, (c) write energy
consumption, and (d) recognition accuracy after the 100th epoch of MNIST dataset as a
function of gate metal work function.

PPD and PPF increase with increasing the ϕM . This is because a higher ϕM significantly

enhances the inversion charge density in the channel region, which considerably increases

the charge trapping/de-trapping into/from the CTL layer. Moreover, the higher PPF

and PPD indexes at ϕM = 5.1 eV highlight the substantial charge buildup capability of

NW-CTT.

It is observed from Fig. 5.10(b) that dynamic range and linearity in conductance

modulation improve with increasing ϕM due to the enhancement in drain-to-source current

modulation efficiency with increasing the interface trap states. Moreover, the non-linearity

in LTP and LTD remains in a narrow range of 0.08-0.09 and 0.048-0.051, respectively,

with a dynamic range of 12.4-13.5. Thus, the improvement in synaptic characteristics of

NW-CTT suggests that a higher ϕM could increase the multi-bit storage capability of the

device.

Fig. 5.10(c) shows that the write energy consumption exhibits a marginal increment

of around 1.21×, which increases from approximately 2.1 mJ to 2.55 mJ when ϕM rises

from 3.1 eV to 5.1 eV. From Fig. 5.10(c), it is seen that recognition accuracy significantly

enhances from 92% to 96.8% with increasing ϕM from 3.1 eV to 5.1 eV. This signifies that

even a marginal improvement in dynamic range and linearity in conductance modulation
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can significantly enhance recognition accuracy, while energy consumption exhibits only

a slight increment. Therefore, tailoring the ϕM could be a suitable choice for attaining

superior neural network performance with NW-CTT.

5.5 Performance Benchmarking

Table 5.1: Comparison of performance metrics of NW-CTT with the state-of-art
non-volatile memory devices.

Device Switching
Mechanism

STM Voltage[V] Dynamic
Range

States/Device Energy[fJ]† RA(%)

MgO [97] Stochastic No 1 14 NA 1 × 107 57
In2Se3[96] Ferroelectric No 15 3 113 792×108 NA
Pt/Co/SiO2[107] Ferromagnetic No 20 mA+ 3 90 3×1011 82.8
GeTe[108] Phase changing No 7 8 10 12.1 NA
HfOx[95] Resistive No 0.8 3 40 NA 83
TaOx[109] Resistive No 5 7 40 NA 96.4
QW[110] Charge Trapping Yes 7 7 20 0.766 NA
MoS2[111] Charge Trapping Yes 4 NA 300 1×104 35.6
Si-Nanosheet-SONOS
[100]

Charge Trapping No 10 2×103 40 NA 93.3

Si-FDSOI-CTT
[20]

Charge Trapping No 2.5 150 256 5×105 NA

Si-PDSOI-SONOS
[112]

Charge Trapping Yes 2 175 50 4500 NA

Si-Nanowire-SONOS
[44]

Charge Trapping Yes 4 NA NA 0.02 NA

Si-FDSOI-CTT[21] Charge Trapping No 2 NA NA 14.8 mW* 95.7
This work Charge

Trapping
Yes 1.8 12.4 53 0.13 94.7

STM: Short-Term Memory (PPF and PPD); RA: Recognition Accuracy after 100th epoch; QW:
Quantum-Well; NA: Not Available; †: Device Switching Energy; *: power consumption; +: current
supply.

Table 5.1 compares our HfO2-based NW-CTT with state-of-the-art synaptic devices

[20], [21], [44], [95], [96], [97], [100], [107], [108], [109], [110], [111], [112] in terms of key

device and neural network performance metrics. Since most of the emerging non-volatile

memories have computed the device switching energy, we here present the device switching

energy of HfO2-based NW-CTT, that is calculated as E = IDS×Vapplied× tswitching, where

IDS, Vapplied, and tswitching represent the drain-to-source current, applied pulse bias, and

switching time, respectively. It is evident that the emerging non-volatile memories, such

as MgO-based MTJ [97], In2Se3-based FeFET [96], HfOx-based RRAM [95], TaOx-based

RRAM [109], Si-Nanosheet-SONOS [100], Si-FDSOI-CTT [21], Si-FDSOI-CTT [20], and

GeTe-based PCM [108], primarily demonstrate long-term memory characteristics over

short-term memory, which often requires large operating voltages. Interestingly, the

proposed Si NW-CTT offers both short-term and long-term memory with relatively

lower operating voltage. NW-CTT not only offers significantly lower device switching

energy of 0.13 fJ, but also exhibits superior recognition accuracy (94.7%) compared with
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MoS2-CTT [111], MgO-based MTJ [97], and HfOx-based RRAM [95], Pt/Co/SiO2-based

ferromagnetic [107]. Therefore, the proposed HfO2-based NW-CTT holds promise to

develop high-density non-volatile memory and synaptic crossbar array with superior

learning accuracy and energy efficiency.

5.6 Summary

Using a fully calibrated TCAD simulation, this chapter presented a comprehensive

performance analysis of HfO2-based NW-CTT to mimic the multilevel dynamics of

biological synapse. The charge trapping and de-trapping of interface states has

demonstrated the memory window of around 1 V between programming and erase pulse

when the Nit = 1 × 1017 cm−3 present in HfO2 layer. Further, NW-CTT exhibited

asymmetric conductance modulation of LTD and LTP with around non-linearity of

around 0.08 and 0.048, respectively. A close to linear conductance modulation with

NW-CTT has shown superior recognition accuracy (94.7%) and write energy (2.3 mJ)

in 784 × 100 × 10 neural network for handwritten digits. Furthermore, our device

design parameter optimization results have provided a valuable guideline for selecting

the NW diameter, thickness of CTL, gate length, and metal gate work function to achieve

enhanced learning accuracy and energy efficiency. Thus, the proposed NW-CTT closely

mimics both short-term and long-term synaptic characteristics, making it suitable for

future applications in neuromorphic computing.



Chapter 6

Fully NW-CTT-based Spiking
Neural Network with
Unsupervised Learning

6.1 Introduction

The cognitive functions of the human brain, including learning and memory, arise

from a complex network of approximately one hundred billion neurons interconnected

by synapses [89]. Neurons process pre-synaptic input stimuli to generate electrical

impulses, while synapses facilitate signal transmission between neighboring neurons. The

functionality of these neurons and synapses can be modified based on prior experiences,

leading to the reorganization of neural pathways [113]. In biological systems, changes in

synaptic weight are influenced by the concentrations of various ionic species, such as Ca2+,

Na+, K+, which regulate the release of neurotransmitters from the pre-synaptic to the

post-synaptic terminal [114]. Neural synaptic functions, including excitatory/inhibitory

post-synaptic current (EPSC/IPSC), pair-pulse facilitation/depression (PPF/PPD),

long-term potentiation/depression (LTP/LTD), and spike-timing-dependent plasticity

(STDP) are crucial for executing computational tasks and memory functions [44].

Recent studies indicate that neurons are not only involved in information processing but

also play a pivotal role in memory formation [115]. Furthermore, neuronal inhibition

and the tunability of firing threshold voltage are essential for developing reliable and

energy-efficient neural networks [116]. Synaptic plasticity and neuronal plasticity occur

simultaneously during significant learning processes, which allows the brain to perform

intelligent tasks and participate in effective probabilistic processing. To replicate such

cognitive efficiency in artificial neuromorphic systems, it is vital to select the appropriate

synaptic and neuronal devices. Thus, it becomes important for creating energy-efficient

neuromorphic chips that can mimic biological computation, which thereby requires a

deeper investigation into synaptic and neuronal device design and functionality.

In recent years, significant progress has been made in the hardware implementation

of artificial neural networks (ANNs) using non-volatile memory devices, such as

redox memristors [117], phase-change memristors [108], organic transistors [118], and

CMOS-based emulator circuits [119]. However, ANNs typically process information
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continuously and synchronously, leading to inefficiencies in power consumption and

limited biological realism [120]. Spiking Neural Networks (SNNs) offer solutions to

these limitations by simulating neurons that communicate through discrete spikes,

enabling event-driven and energy-efficient processing that more closely mirrors the

brain’s functionality [113]. SNNs also leverage temporal coding, capturing the precise

timing of spikes to enhance learning and memory representation [121]. Notably,

several CMOS-based neuron and synapse emulators have been developed for SNN

implementation, such as Intel Loihi [122], IBM TrueNorth [120], and SynSense chips

[123]. These chips support on-chip learning, event-driven processing, offline training,

and unsupervised learning algorithms. However, they face scalability, training efficiency,

energy consumption, and crossbar limitations as they strive to emulate brain-like

computing [124].

To improve area efficiency, alternative SNN architectures have been explored by

integrating novel memory and synaptic technologies, such as magnetic random-access

memory (MRAM) [125], ferroelectric field-effect transistors (FeFETs) [126],

threshold-switching (TS) devices [127], and phase-change memory (PCM) [128].

Despite their potential, these technologies face substantial barriers to commercial

viability, particularly in achieving CMOS compatibility due to issues like high processing

temperatures, material mismatches, and reliability concerns [95]. Recently, CTT,

featuring high-k oxide gates, have emerged as promising synaptic elements due to their

full CMOS compatibility and potential for three-dimensional (3D) integration [18, 19].

Recently, the 784 × 784 synaptic crossbar array using 28 nm bulk CMOS technology has

presented 95% accuracy for handwritten digit recognition with the 8-bits/cell [21]. More

interestingly, the winner-take-all neural network using 22nm HfO2-based fully depleted

SOI (FDSOI) has presented the exceptional learning capability of CTT as a synapse [20].

However, the implementation of homo-typic CTT-based SNN is still missing. Despite

these promising experimental and theoretical developments, the detailed design and

development of spiking neural networks (SNNs) using CTT remain largely underexplored.

Several experimental efforts have successfully emulated synaptic behavior using

silicon-based CTT for low-power, high-retention in-memory applications [19]. However,

few studies have explored the neuronal capability using MOSFET devices [129, 130].

Recently, partially depleted silicon-on-insulator (PD-SOI) MOSFETs have been used to

implement leaky integrate-and-fire (LIF) neurons, achieving spiking frequencies in the

MHz range with energy consumption as low as 13×10−12 J/spike [129]. More recently,
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bulk Fin-FET have demonstrated even more energy-efficient integration and firing, with

an energy consumption of 6.3 × 10−15 J/spike, highlighting the need for low-energy neuron

circuit designs [130]. Additionally, silicon-oxide-nitride-oxide-semiconductor (SONOS)

devices have demonstrated functioning as both neurons and synapses [115]. However, these

CMOS technologies rely on impact ionization to implement neuronal behavior. Moreover,

no qualitative studies have been conducted to properly investigate the neuronal behavior

of CTT. Therefore, there is a pressing need to explore CTT as a neuron to achieve area

and energy efficiency in neuromorphic systems.

NW-CTT, with their highly linear conductance modulation and wide dynamic range,

have emerged as promising candidates for achieving multistate operation capabilities,

making them ideal for electronic synapses, as discussed in the previous chapter [131].

Furthermore, extending this device to implement artificial neurons by achieving leaky

integrate-and-fire (LIF) functionality could pave the way for highly scalable and

energy-efficient spiking neural networks that are fully CMOS-compatible. This approach

has significant potential for the advancement of neuromorphic computing systems and

in-memory processing architectures. Therefore, further exploration into the design and

optimization of NW-CTT-based spiking neural networks is critical for realizing low-power,

high-performance neuromorphic systems.

In this chapter, we design and investigate a fully NW-CTT-based spiking neural

network for digit pattern recognition applications. First, we explore the neuronal

capabilities of NW-CTT by designing integrate-and-reset circuits. In the initial

performance analysis, we evaluate the neuronal behavior of NW-CTT under various

pulse schemes. Subsequently, NW-CTT devices, serving both as neurons and synapses,

are co-integrated into a single-layer 15 × 6 crossbar array for spiking neural network

development. The performance of both the device and the crossbar array is thoroughly

examined using a fully calibrated three-dimensional TCAD tool. Our studies not only

demonstrate the performance advantages of NW-CTT as a neuron but also guide designing

a homo-typic, energy-efficient, and area-optimized spiking neural network. The key

contributions of this paper are threefold:

• To the best of our knowledge, this work presents the first implementation of a SNN

using a calibrated TCAD simulation tool. The NW-CTT is initially modeled using

a physics-based approach that includes self-consistent solutions of the 3D Poisson’s

equation, the Boltzmann transport equation, and the self-heating equation, with

corrections for interface trap charges. The synaptic behavior of the NW-CTT is
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thoroughly investigated, as reported in our previous work [131], followed by a detailed

analysis of its neuron-like functionality. Furthermore, we designed a 15×6 crossbar

array utilizing mixed-mode simulations.

• This work explores the ability of the NW-CTT to exhibit neuronal behavior by

simulating various neuron firing patterns, including tonic, irregular, adaptive, and

mixed modes. Unlike previous studies where non-volatile devices were primarily used

as neurons for data storage and recording over extended periods, thereby leading

to significantly higher energy consumption [132, 133, 134]. Our study emphasizes

the direct integration of spikes in the NW-CTT. This approach reduces energy

consumption while enabling more efficient real-time neural activity analysis.

• The co-integration of neurons and synapses using NW-CTT is demonstrated in

a single-layer 15 × 6 crossbar array. In previous experimental and simulation

studies on neural networks [135, 136], the neurons and synapses typically involved

hetero-typic devices, significantly increasing the chip area and energy consumption.

While some studies have employed homo-typic CMOS-compatible devices, these

often require additional fabrication steps and reduce the pattern recognition accuracy

[115]. Our study introduces an area- and energy-efficient integration of homo-typic

devices within the crossbar array, achieved without any extra fabrication steps or

loss in pattern recognition accuracy at the nanoscale gate length. Additionally,

our system demonstrates robust pattern detection capabilities even under noisy

conditions and process-voltage-temperature variations.

6.2 Device Geometry & Simulation Methodology

LG = 18 nm

LD = 20 nm

Gate

CTL

Si

LS = 20 nm

tSP = 2 nm tSP = 2 nm

IFL
(a)

        Short Channel Correction Terms:


Lombardi Mobility Model
Slotboom Bandgap Narrowing
Density Gradient Model
SRH Model with Doping Dependence
Trap Assisted Recombination Model

self-consistent

Poisson's
Equation

Hydrodynamic  Current
Continuity

(b)

Figure 6.1: Synopsis of modeling methodology and experimental verification: (a)
Schematic geometry of NW-CTT at 5 nm technology node (18 nm gate length), and
(b) summary of the modeling methodology.
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Fig. 6.1(a) shows the schematic of HfO2-based NW-CTT, which is utilized as

an artificial synapse and subsequently modified to function as a neuron. A more

detailed discussion of device dimensions and simulation methodology can be found in

our previous chapter. Following this, neurons and synapses are integrated to develop SNN

in s-device file, and the mixed mode simulation is carried out to simulate the interaction

between device-level physical characteristics and circuit-level behavior in an integrated

environment.

6.3 Results
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Figure 6.2: (a) Schematic of artificial neuron response with analysis of: (b) Tonic, (c)
Irregular, (d) Adaptive, and (e) Mixed firing pulse train at room temperature.

6.3.1 Neuronal Capability of NW-CTT

Fig. 6.2(a) shows the NW-CTT utilized to replicate neuron behavior. To understand

the behavior of NW-CTT as a bio-neuron, we initially apply four distinct neural firing

patterns: ”Tonic,” ”Irregular,” ”Adaptive,” and ”Mixed.” Fig. 6.2(a) shows applied input

to neuro circuit as rectangular pulses with an amplitude of 0.7 V and a width of 0.1 µs

with four different firing patterns. Specifically, the ”Tonic” pattern consists of evenly
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spaced pulse trains; the ”Irregular” pattern consists of spikes firing at irregular intervals;

the ”Adaptive” pattern shows spikes with gradually increasing intervals; and the ”Mixed”

pattern is a combination of tonic, irregular, and adaptive firing behaviors.

Fig. 6.2(b)-(e) shows the simulated output current neuron with four input voltage

schemes for verifying the LIF functionality. It is evident that output current spikes occur

only when pulses are applied. This is mirroring the behavior observed in biological spike

trains. The distinct responses to these four different spike train patterns highlight the

NW-CTT’s capability to process a variety of firing patterns, akin to the neural processing

seen in the human brain.

6.3.2 Implementation of STDP with NW-CTT Synapse

Source DrainGate
(a) Pre-synaptic spike

Post-synaptic spike
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Figure 6.3: Spike timing dependent plasticity (STDP): (a) schematic of NW-CTT-based
artificial synapse, and (b) change in conductance state (∆G/G) as a function of time
interval, indicating the long-term potentiation (LTP) and long-term depression (LTD)
behavior of NW-CTT.

We next investigate the spike-timing-dependent plasticity (STDP) of NW-CTTs

to explore their capability for synaptic weight updates, which depend critically on the

relative timing between the spikes of pre-synaptic and post-synaptic neurons. When the

pre-synaptic neuron fires before the post-synaptic neuron within a specific time window,

the synaptic weight between the two neurons is strengthened, resulting in long-term

potentiation (LTP). Conversely, if the post-synaptic neuron fires before the pre-synaptic

neuron, the synaptic weight is weakened, leading to long-term depression (LTD).

To implement STDP, we applied pre-synaptic and post-synaptic pulses at the gate



Chapter 6. Fully NW-CTT-based Spiking Neural Network with Unsupervised Learning81

and drain terminals, respectively. Fig. 6.3(a) shows that 0.7 V and -0.7 V amplitudes are

applied for the pre-synaptic and post-synaptic pulses, respectively, with a pulse width of

0.1 µs. The different pulse time intervals (∆t) are chosen to achieve LTP and LTD. Fig.

6.3(b) shows the change in the conductance of NW-CTT as a function of the time difference

between the pre-synaptic and post-synaptic spikes (∆t). It is observed that when ∆t is

lower than a positive threshold (∆t < tmaxpot), it leads to long-term potentiation (LTP),

which strengthens the synaptic connection. Conversely, when the post-synaptic spikes

occur before the pre-synaptic spikes, and the delay (∆t) is less than tmaxdep, long-term

depression (LTD) is induced, which weakens the synaptic connection.

According to the Hebbian learning rule, an increment in synaptic weight increases the

excitability of post-neurons. To prevent excessive neuronal excitability, synaptic weight

potentiation must reach a saturation point. As shown in Fig. 6.3(b), the change in

conductance reaches saturation behavior under a sequence of positive and negative pulses

with varying voltage amplitudes is evident. These findings demonstrate that the device

successfully mimics the long-term potentiation and depression functions of biological

synapses.

6.3.3 Implementation of Spiking Neural Network for Pattern
Recognition

Fig. 6.4 shows the single-layer neural network, which utilizes 15×6 SNN for

classifying grayscale input images, particularly focusing on six digital digits (“0” to “5”).

Each digit consists of 5×3 grayscale pixels. The pixel intensities of these grayscale images

are encoded into 15 input voltage vectors. These 15 input voltages are fed into the SNN

through 15 input neurons, while 6 output neurons correspond to the 6 output digits.

Each synaptic crossbar column is dedicated to one of the six digits. Consequently, the

network has 90 synaptic elements, determined by the number of input and output neurons.

Notably, the grayscale pixels are represented by four input voltage levels: black, dark gray,

light gray, and white pixels corresponding to input voltages of 1 V, 0.8 V, 0.6 V, and 0.4

V, respectively. These voltages are applied to the pre-synaptic neurons. The pre-synaptic

neuron circuitry consists of a series combination of an NW-CTT and an output resistor

(Rout). The NW-CTT integrates and generates the spikes, whereas the output resistor

converts current into voltage, which is then applied to the system. Further, the output of

the pre-synaptic and post-synaptic neuron (Vin,synapse) is applied to the NW-CTT-based

synaptic crossbar array. The crossbar array consists of CTT between horizontal word lines

(WLs) and vertical bit lines (BLs).



82Chapter 6. Fully NW-CTT-based Spiking Neural Network with Unsupervised Learning

Figure 6.4: The proposed NW-CTT based spiking neural network architecture consisting
of: (a) 15 input pre-synaptic neurons, (b) 15×6 synaptic crossbar array, (c) input
patterns of six digit, (d) 2 stage operational trans-impedance amplifier, and (e) 6 output
post-synaptic neurons.

The rate-encoded spike trains for each pixel are applied to NW-CTT to implement

the potentiation and depression mechanisms. The conductance states resulting from these

mechanisms are stored in the NW-CTT and used to evaluate its pattern recognition

capabilities. Further, a two-stage operational trans-impedance amplifier (TIA) is selected

at the output wordline (WL) of the synaptic crossbar array that converts the weighted

sum of the output current from the 15×6 crossbar array (CPA) into a voltage. The output

of TIA reflects the result of the vector-matrix multiplication (VMM) for the post-synaptic

neuron. The post-synaptic neuron then generates spikes based on the input voltage applied

to the NW-CTT. To ensure only one output neuron fires at a time, a winner-take-all

strategy is employed, allowing the winning neuron to inhibit the others, thereby identifying

the recognized pattern.

Fig. 6.5 shows the unique output of post-synaptic neuronal current spikes for six

digital digits (“0” to “5”). It observed that digit “0” shows the least spikes, whereas digit

“1” presents the highest number. The reason for this behavior is that digit “0” consists

of the least number of black pixels, whereas digit “1” consists of a maximum number of

black pixels. These black pixels correspond to maximum VGS , which leads to maximum

conductance state values, as shown in Fig. 6.4. Moreover, digit “2”, “3”, “4” and “5”

presents 5, 7, 8 and 3 spikes, respectively. Therefore, unique spikes, depending upon the

input pattern, could be achieved through NW-CTT based spiking neural network.
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Figure 6.5: Response of firing output neuron for digits: (a) “0”, (b) “1”, (c) “2”, (d) “3”,
(e) “4” and (f) “5” at room temperature.

6.3.4 Energy Consumption for Each Digit Recognition

Fig. 6.6 presents the energy consumption of SNN for the six digital digits. The

energy consumption is calculated as the product of current, voltage, and the number of

spikes. It is found that digit “1” exhibits a maximum energy consumption of 0.308 pJ due

to the maximum number of spikes in neuron output. However, digit “0” presents the least

energy consumption of 0.056 pJ. The energy consumption behavior of digital digits aligns

with the number of output spikes for each digit, as shown in Fig. 6.5. Moreover, digit “1”

exhibits 5.5×, 2.2×, 1.57×, 1.37×, and 3.67× higher energy consumption than “0”, “2”,

“3”, “4” and “5”, respectively. Interestingly, our NW-CTT as a synapse and neuron could

be a potential candidate for implementing a spiking neuron network as it demonstrates
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Figure 6.6: Energy consumption for six digits “0” -“5” at room temperature.

significantly lower energy than existing CTT devices as a neuron and synapse [129, 130].

Table 6.1: Comparison of performance metrics of NW-CTT-based spiking neural networks
with the state-of-art.

Neuron Type Neuron Circuit Synapse Energy/spike
(Neuron
Circuit)

Reference

LIF CMOS Analog, mixed
signal

CMOS 10 nW † Indiveri et
al. [137]

Multiply-accumulate CMOS analog,
mixed-signal

CMOS 125 nW † Amravati et
al. [138]

LIF 1 Transistor+ 1 FeFET FeFET 3.6 nW † Wang et al.
[126]

LIF PCM PCM - Pantazi et
al. [128]

F MTJ CMOS 52.4 nJ Wu et al.
[139]

IF 1 SOI-MOSFET+ 2 R+ 2
Op-Amp + 1 p-FET

CMOS 0.3 nJ Dutta et al.
[129]

IF 1 capacitor+ 1 NbO2 CMOS 2.18 pJ Wang et al.
[127]

F 1 capacitor+ 1 VO2 CMOS 0.2 µJ Jerry et
al.[140]

LIF 1 NW-CTT+ 1 R NW-CTT 0.028 pJ Our Work

LIF: leaky integrate fire; IF: integrate fire; F: fire; PCM: phase change memory; FeFET:
ferroelectric FET; MTJ: magnetic tunnel junction; R: resistor; †: Power.
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6.4 Performance Benchmarking

Table 6.1 compares the performance metrics of our developed NW-CTT-based

SNN with the state-of-the-art [126, 127, 128, 129, 137, 138, 139, 140] in terms of

neuron and synapse type and energy/power efficiency. It is evident that CMOS-based

systems [137, 138] and FeFET-based neuron units [126] demonstrate significantly high

power consumption. Moreover, SOI-MOSFET-based neuronal circuits [129] mimic the

integrate-and-fire capability of neurons, but they require high operating voltage and a large

circuit area. Additionally, threshold-switching-based artificial neurons have shown the

lowest power consumption, but they still need high operating voltages [127]. Interestingly,

our proposed architecture not only utilizes NW-CTT as both synapse and neuron but also

offers energy efficiency with area-saving benefits.

6.5 Conclusion

This chapter presents the implementation of a fully NW-CTT-based spiking neural

network (SNN) for recognizing six digital digits. The NW-CTT has demonstrated

exceptional performance as an artificial neuron, responding to input stimuli with

rate-encoded spiking capabilities. Additionally, the charge-trapping phenomenon in

NW-CTT-based neurons regulates the excitatory/inhibitory functions and modulates the

firing response based on the threshold voltage. In a 15 × 6 crossbar array, the NW-CTT

serves as both a synapse and a neuron, showcasing superior recognition accuracy and

energy efficiency (0.028 pJ/spike). Thus, the proposed NW-CTT-based spiking neural

network demonstrates significant advantages and holds great potential for constructing

efficient neuromorphic machines
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Chapter 7

Conclusion

7.1 Summary

The thesis presents the physical insight into the benefits of GAA devices and

their performance exploration for sub-5 nm technology nodes in four topics: (I) single

channel multi-gate FETs analysis, including Fin-FET, NS-FET and NW-FET, for

RF applications, (II) novel CMOS inverter configurations implementation for design

technology co-optimization, (III) demonstration of NW-CTT as an artificial synapse and

neuron, and (IV) NW-CTT for attaining a fully CMOS-based spiking neural network. The

major contributions and respective conclusions are as follows:

• The initial work involves the exploration of silicon-based multigate devices (Fin-FET,

NW-FET, NS-FET) with a focus on finding suitable multigate devices for 5 nm and

beyond technology nodes.

– Among Fin-FET, NW-FET, and NS-FET, NS-FET exhibits excellent current

characteristics with a larger voltage gain (32 V/V), transconductance (1.8

mS/µm), output conductance (103µS/µm), cut-off frequency (373 GHz), and

maximum oscillation frequency (389 GHz) at 5 nm technology node.

– Our findings indicate that RF performance metrics of multigate devices have

been significantly enhanced by decreasing the channel length and increasing

the geometrical parameters, while the voltage gain could be maximized by

increasing the channel length, selecting proper surface orientation, and reducing

the width and height/thickness of the channel.

– Our performance analysis identifies the proper directions to optimizations for

achieving high-frequency and high-gain RF operations with multigate devices.

• To determine the performance of GAA devices for digital ICs, careful performance

analysis and benchmarking of stacked NS-FET-based CMOS inverters with buried

power delivery network (BPDN), including complementary field effect transistor

(CFET), forksheet (FSH), and conventional stacked nanosheet (s-NSH) are

presented using process simulation for sub-5 nm technology node.
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– Our findings reveal that the CFET inverter offers approximately a 3.7% higher

operating frequency and a -3.7% lower dynamic power consumption, with a

-60.8% smaller area footprint compared to the s-NSH inverter counterpart for

the 1 nm technology node.

– The results show that the device gate capacitance and the fringing field play

an essential role in the inverter-level performance degradation that can be

minimized by optimizing the p-n separation.

– Our device performance analysis and benchmarking demonstrate that the

CFET inverter delivers optimal and robust switching performance at the

ultimate scaling limits.

• With the ever-increasing demand for power and area-efficient memory and logic

applications, the device-to-circuit level performance of stacked NS-FET is assessed

by developing six transistors static random access memory (6T SRAM) and 32-bit

arithmetic logic unit (ALU) using process simulation for sub-5 nm technology node.

– Our findings reveal that dielectric isolation with 6T CFET and FSH SRAMs

significantly enhances read and write margins, and enables faster read and write

operations compared to s-NSH SRAM.

– The 6T CFET SRAM achieves significant power performance improvements,

with approximately -12.29% reduction in write power consumption and 38.10%

increment in operating frequency compared to s-NSH SRAM for 1 nm

technology node. While 6T FSH SRAM exhibits nearly identical read and

write abilities compared to CFET SRAM, it offers significant improvements,

approximately 31.8% better operating frequency and 12% improved power

efficiency over s-NSH SRAM at the 1 nm technology node.

– Our study indicates that CFET ALU significantly outperforms their FSH and

s-NSH counterparts, exhibiting smaller delay and power-delay products with

higher throughput.

– Our device-to-circuit performance analysis and benchmarking show that the

CFET inverter configuration is well suited for designing energy-efficient memory

and logic integrated circuits in the sub-5 nm regime.

• To develop a CMOS-compatible non-volatile memory, this research present

the charge trap transistors (CTT) using silicon nanowire field-effect transistor

(NW-FET) using fully calibrated TCAD simulation.



Chapter 7. Conclusion 89

– The charge trapping and de-trapping of interface states has demonstrated the

memory window of around 1 V between programming and erase pulse when the

Nit = 1× 1017 cm−3 present in HfO2 layer.

– The NW-CTT has attained asymmetric conductance modulation of LTD and

LTP with non-linearity of around 0.08 and 0.048, respectively.

– Our findings indicate that a close to linear conductance modulation with

NW-CTT has shown superior recognition accuracy (94.7%) and write energy

(2.3 mJ) in 784 × 100 × 10 neural network for handwritten digits.

– Our device design parameter optimization results have provided a valuable

guideline for selecting the NW diameter, thickness of CTL, gate length, and

metal gate work function to achieve enhanced learning accuracy and energy

efficiency.

– Our results provide valuable insights into the synaptic behavior of conventional

NW-CTTs and offer guidance for further harnessing their weight-update

capabilities in neuromorphic computing applications.

• To determine the feasibility and performance of silicon NW-CTT in neuromorphic

applications, we have designed a fully CMOS-compatible SNN.

– The charge-trapping phenomenon in NW-CTT-based neurons effectively

regulates the excitatory/inhibitory functions and modulates the firing response

based on the threshold voltage.

– It is evident that NW-CTT-based neurons achieve energy efficiency of around

0.028 pJ, which is the lowest among reported neurons based on CMOS, SOI,

FinFET, and threshold-switching technologies [126, 127, 128, 129, 137, 138,

139, 140].

– Our results show that the integration of NW-CTT in advanced neuroelectronic

systems holds the potential to enable energy-efficient neural signal analysis

with high spatiotemporal precision, positioning it as a promising candidate for

brain-inspired neuromorphic applications.

The TCAD simulation framework developed in this thesis for gate-all-around devices

addresses three distinct topics, providing device designers with the ability to design

optimized devices that balance power, performance, area, and process considerations.

The comprehensive analysis presented here offers valuable insights into the performance
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of gate-all-around devices, which could potentially drive significant enhancements in the

silicon nanoscale regime. This work not only deepens the understanding of gate-all-around

device performance but also sets the stage for future advancements, encouraging further

improvements in the power and efficiency of next-generation semiconductor technologies.

7.2 Scope for Future Research

There are mainly four major topics for the future works: (1) the electrothermal

analysis for the exploration of the impact of device temperature on the parasitic resistance

and capacitance of novel CMOS inverters with buried power delivery networks; (2) the

reliability analysis of novel CMOS inverters with power, performance, and area device,

circuit and block level metrics; (3) hardware implementation of spiking neural network

with charge trap transistors, and (4) exploration of spiking neural networks using complex

datasets, such as CIFAR 10, CIFAR 100 and implementing using charge trap transistors.

7.2.1 Electro-thermal Analysis of Novel CMOS Inverters with Buried
Power Delivery Network

With the incorporation of metal lines in the buried power delivery network,

there is an increase in the Joule heating in the novel CMOS inverter configurations

as the device dimensions get reduced. This presence of self-heating might alter the

parasitic and, subsequently, the performance characteristics of the inverter configurations

[141, 142]. Therefore, the important directions for future researchers here include (i) the

incorporation of self-heating for analyzing the effect of temperature on parasitic resistances

and capacitances for further power-performance-area optimizations at device, circuit, and

block level and (ii) developing a process to simulation framework considering the capturing

of temperature effect on Monolithic and Sequential CFET, Forksheet and conventional

stacked nanosheet with the scaling of technology node.

7.2.2 Reliability Analysis of Novel CMOS Inverters with Buried Power
Delivery Network

The development of CMOS inverter configurations at the device, circuit, and

block levels inherently requires a more complex and increased number of process

steps. Due to the complex architecture, there is a higher probability of occurrence of

defects, electromigration, soft errors, and aging effects, which can significantly impact

the reliability of these configurations [142, 143, 144]. To mitigate these reliability

challenges, a novel simulation approach is necessary to comprehensively account for these

reliability effects. The proposed approach integrates detailed modeling of defect formation,
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electromigration pathways, and the potential for soft errors, while also considering

aging mechanisms such as Bias Temperature Instability (BTI) and Time-Dependent

Dielectric Breakdown (TDDB). The simulation results with incorporating these factors,

could help designers to achieve a more robust understanding of the potential failure

mechanisms within CMOS inverters. This enhanced insight could enable the optimization

of performance, reliability, and lifespan within the design and system technology paradigm,

thereby encouraging the development of more resilient CMOS technologies.

7.2.3 Hardware Implementation of Spiking Neural Network with Charge
Trap Transistors

Although CTTs have shown promising benefits, their application in SNNs remains

under-explored, with limited research focusing on their simulation implementations

[44, 100]. Further, their hardware implementations are still missing. To advance

CMOS-compatible neuromorphic applications, it is crucial to pursue the hardware

implementation of SNNs using charge trap transistors. Such an implementation would

bridge the gap between theoretical simulations and practical applications, providing

a viable pathway for integrating neuromorphic systems into conventional silicon-based

technologies.

7.2.4 Exploration and Implementation of Charge Trap Transistors-based
Spiking Neural Networks using Complex Datasets, such as CIFAR
10, CIFAR 100

Charge trap transistor-based spiking neural networks (SNNs) have been explored

using simpler datasets like MNIST, which has provided initial insights into their potential

for neuromorphic computing [20]. However, the application of these SNNs to more complex

datasets, such as CIFAR-10 and CIFAR-100, remains unexplored. To address this gap,

it is essential to extend the investigation of charge trap transistor-based SNNs to these

challenging datasets. The CIFAR-10 and CIFAR-100 datasets present a higher level of

complexity and variability compared to MNIST, making them ideal candidates for testing

the scalability and robustness of charge trap transistor-based SNNs. By adapting these

networks to process and classify data from CIFAR-10 and CIFAR-100, the research would

aim to evaluate the true potential of charge trap transistors in handling more demanding,

real-world tasks. This exploration will involve fine-tuning the SNN architecture and

optimizing the integration of charge trap transistors to ensure that the networks can

efficiently manage the increased computational load. Through this work, the existing gap

in the literature on charge trap transistor-based SNNs can be effectively reduced, paving
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the way for their application in more advanced neuromorphic systems.

7.2.5 Improvement in Fabrication Complexity and Scalability of
NW-CTT for Large Scale Neuromorphic Systems

The fabrication of complex GAA structures presents several challenges [145],

[146]. To address these, emerging techniques such as directed self-assembly, atomic

layer deposition, and advanced lithography may be employed. Additionally, bottom-up

nanowire and nanosheet synthesis along with self-aligned processing methods, can be

incorporated to achieve highly precise device architectures with enhanced uniformity and

reduced defect densities. Furthermore, a silicon interconnect fabric may be essential for

addressing interconnect complexity and thermal management to enable energy-efficient

scaling in very large-scale integrated neuromorphic systems.



References

[1] Yuan Taur and Tak H Ning. Fundamentals of modern VLSI devices. Cambridge

university press, 2021. doi: 10.1017/cbo9781139195065.008.

[2] G. K. Celler and Sorin Cristoloveanu. Frontiers of silicon-on-insulator. Journal of

Applied Physics, 93(9):4955–4978, May 2003. ISSN 1089-7550. doi: 10.1063/1.

1558223.

[3] J-P Colinge. Silicon-on-insulator technology: materials to VLSI. Springer Science

& Business Media, 2012. doi: 10.1007/978-1-4419-9106-5.

[4] Ali Razavieh, Peter Zeitzoff, and Edward J Nowak. Challenges and limitations

of CMOS scaling for FinFET and beyond architectures. IEEE Transactions on

Nanotechnology, 18:999–1004, 2019. doi: 10.1109/tnano.2019.2942456.

[5] J Ryckaert, MH Na, P Weckx, D Jang, P Schuddinck, B Chehab, S Patli, S Sarkar,

O Zografos, R Baert, et al. Enabling sub-5nm CMOS technology scaling thinner

and taller! In 2019 IEEE International Electron Devices Meeting (IEDM), pages

29–4. IEEE, 2019. doi: 10.1109/iedm19573.2019.8993631.

[6] Uttam Kumar Das and Tarun Kanti Bhattacharyya. Opportunities in Device Scaling

for 3-nm Node and Beyond: FinFET Versus GAA-FET Versus UFET. IEEE

Transactions on Electron Devices, 67(6):2633–2638, 2020. doi: 10.1109/ted.2020.

2987139.

[7] Wei Cao, Huiming Bu, Maud Vinet, Min Cao, Shinichi Takagi, Sungwoo Hwang,

Tahir Ghani, and Kaustav Banerjee. The future transistors. Nature, 620(7974):

501–515, 2023. doi: 10.1038/s41586-023-06145-x.

[8] N Loubet, T Hook, P Montanini, C-W Yeung, S Kanakasabapathy, M Guillom,

T Yamashita, J Zhang, X Miao, J Wang, et al. Stacked nanosheet gate-all-around

transistor to enable scaling beyond FinFET. In 2017 Symposium on VLSI

Technology, pages T230–T231. IEEE, 2017. doi: 10.23919/VLSIT.2017.7998183.

[9] A. Veloso, G. Eneman, T. Huynh-Bao, A. Chasin, E. Simoen, E. Vecchio,

K. Devriendt, S. Brus, E. Rosseel, A. Hikavyy, R. Loo, V. Paraschiv, B. T. Chan,

D. Radisic, W. Li, J. J. Versluijs, L. Teugels, F. Sebaai, P. Favia, H. Bender,

E. Vancoille, J. E. Scheerder, C. Fleischmann, N. Horiguchi, and P. Matagne.

93

10.1017/cbo9781139195065.008
10.1063/1.1558223
10.1063/1.1558223
10.1007/978-1-4419-9106-5
10.1109/tnano.2019.2942456
10.1109/iedm19573.2019.8993631
10.1109/ted.2020.2987139
10.1109/ted.2020.2987139
10.1038/s41586-023-06145-x
10.23919/VLSIT.2017.7998183


94 References

Vertical Nanowire and Nanosheet FETs: Device Features, Novel Schemes for

Improved Process Control and Enhanced Mobility, Potential for Faster amp; More

Energy Efficient Circuits. In 2019 IEEE International Electron Devices Meeting

(IEDM), pages 11.1.1–11.1.4, 2019. doi: 10.1109/IEDM19573.2019.8993602.

[10] Ramendra Singh, Kritika Aditya, Anabela Veloso, Bertrand Parvais, and

Abhisek Dixit. Experimental evaluation of self-heating and analog/RF FOM in

GAA-nanowire FETs. IEEE Transactions on Electron Devices, 66(8):3279–3285,

2019. doi: 10.1109/ted.2019.2924439.

[11] S Barraud, B Previtali, C Vizioz, J-M Hartmann, J Sturm, J Lassarre, C Perrot,

Ph Rodriguez, V Loup, A Magalhaes-Lucas, et al. 7-levels-stacked nanosheet GAA

transistors for high performance computing. In 2020 IEEE Symposium on VLSI

Technology, pages 1–2. IEEE, 2020. doi: 10.1109/vlsitechnology18217.2020.

9265025.

[12] Chun-Lin Chu, Shu-Han Hsu, Wei-Yuan Chang, Guang-Li Luo, and Szu-Hung Chen.

Stacked SiGe nanosheets p-FET for Sub-3 nm logic applications. Scientific Reports,

13(1):9433, 2023. doi: 10.1038/s41598-023-36614-2.

[13] J. Ryckaert, P. Schuddinck, P. Weckx, G. Bouche, B. Vincent, J. Smith, Y. Sherazi,

A. Mallik, H. Mertens, S. Demuynck, T. Huynh Bao, A. Veloso, N. Horiguchi,

A. Mocuta, D. Mocuta, and J. Boemmels. The Complementary FET (CFET) for

CMOS scaling beyond N3. In 2018 IEEE Symposium on VLSI Technology. IEEE,

jun 2018. doi: 10.1109/vlsit.2018.8510618.

[14] P. Weckx, J. Ryckaert, E. Dentoni Litta, D. Yakimets, P. Matagne, P. Schuddinck,

D. Jang, B. Chehab, R. Baert, M. Gupta, Y. Oniki, L.-A. Ragnarsson, N. Horiguchi,

A. Spessot, and D. Verkest. Novel forksheet device architecture as ultimate logic

scaling device towards 2nm. In 2019 IEEE International Electron Devices Meeting

(IEDM). IEEE, dec 2019. doi: 10.1109/iedm19573.2019.8993635.

[15] Jaewan Lim, Jinsu Jeong, Junjong Lee, Seunghwan Lee, Sanguk Lee, Yonghwan

Ahn, and Rock-Hyun Baek. Investigation of Electrothermal Characteristics in Silicon

Forksheet FETs for Sub-3-nm Node. IEEE Transactions on Electron Devices, 2023.

doi: 10.1109/ted.2023.3326786.

[16] Seung-Geun Jung, Dongwon Jang, Seong-Ji Min, Euyjin Park, and Hyun-Yong Yu.

Performance Analysis on Complementary FET (CFET) Relative to Standard CMOS

10.1109/IEDM19573.2019.8993602
10.1109/ted.2019.2924439
10.1109/vlsitechnology18217.2020.9265025
10.1109/vlsitechnology18217.2020.9265025
10.1038/s41598-023-36614-2
10.1109/vlsit.2018.8510618
10.1109/iedm19573.2019.8993635
10.1109/ted.2023.3326786


References 95

With Nanosheet FET. IEEE Journal of the Electron Devices Society, 10:78–82, 2021.

doi: 10.1109/jeds.2021.3136605.

[17] R. Ritzenthaler, H. Mertens, G. Eneman, E. Simoen, E. Bury, P. Eyben, F. M.

Bufler, Y. Oniki, B. Briggs, B.T. Chan, A. Hikavyy, G. Mannaert, B. Parvais,

A. Chasin, J. Mitard, E. Dentoni Litta, S. Samavedam, and N. Horiguchi.

Comparison of Electrical Performance of Co-Integrated Forksheets and Nanosheets

Transistors for the 2nm Technological Node and Beyond. In 2021 IEEE International

Electron Devices Meeting (IEDM). IEEE, dec 2021. doi: 10.1109/iedm19574.2021.

9720524.

[18] Xuefeng Gu. Charge-trap transistors for neuromorphic computing. University of

California, Los Angeles, 2018.

[19] Faraz Khan. Charge Trap Transistors (CTT): Turning Logic Transistors

into Embedded Non-Volatile Memory for Advanced High-k/Metal Gate CMOS

Technologies. University of California, Los Angeles, 2020.

[20] Xuefeng Gu and Subramanian S. Iyer. Unsupervised Learning Using Charge-Trap

Transistors. IEEE Electron Device Letters, 38(9):1204–1207, sep 2017. doi: 10.

1109/led.2017.2723319.

[21] Yuan Du, Li Du, Xuefeng Gu, Jieqiong Du, X. Shawn Wang, Boyu Hu,

Mingzhe Jiang, Xiaoliang Chen, Subramanian S. Iyer, and Mau-Chung Frank

Chang. An Analog Neural Network Computing Engine Using CMOS-Compatible

Charge-Trap-Transistor (CTT). IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 38(10):1811–1819, oct 2019. doi: 10.1109/tcad.

2018.2859237.

[22] Xuefeng Gu, Zhe Wan, and Subramanian S. Iyer. Charge-Trap Transistors for

CMOS-Only Analog Memory. IEEE Transactions on Electron Devices, 66(10):

4183–4187, oct 2019. doi: 10.1109/ted.2019.2933484.

[23] Faraz Khan, Eduard Cartier, Jason C. S. Woo, and Subramanian S. Iyer. Charge trap

transistor (CTT): An embedded fully logic-compatible multiple-time programmable

non-volatile memory element for high- k -metal-gate CMOS technologies. IEEE

Electron Device Letters, 38(1):44–47, jan 2017. doi: 10.1109/led.2016.2633490.

[24] Rachel M. Brewer, En Xia Zhang, Mariia Gorchichko, Peng Fei Wang, Jonathan

Cox, Steven L. Moran, Dennis R. Ball, Brian D. Sierawski, Daniel M. Fleetwood,

10.1109/jeds.2021.3136605
10.1109/iedm19574.2021.9720524
10.1109/iedm19574.2021.9720524
10.1109/led.2017.2723319
10.1109/led.2017.2723319
10.1109/tcad.2018.2859237
10.1109/tcad.2018.2859237
10.1109/ted.2019.2933484
10.1109/led.2016.2633490


96 References

Ronald D. Schrimpf, Subramanian S. Iyer, and Michael L. Alles. Total Ionizing

Dose Responses of 22-nm FDSOI and 14-nm Bulk FinFET Charge-Trap Transistors.

IEEE Transactions on Nuclear Science, 68(5):677–686, may 2021. doi: 10.1109/

tns.2021.3059594.

[25] International Roadmap for Devices and Systems. More moore. https://irds.

ieee.org/editions/2023/more-moore, 2023. [Online; accessed 15-January-2023].

[26] Danijela Marković, Alice Mizrahi, Damien Querlioz, and Julie Grollier. Physics

for neuromorphic computing. Nature Reviews Physics, 2(9):499–510, 2020. doi:

10.1038/s42254-020-0208-2.

[27] Mohammed A Zidan, John Paul Strachan, and Wei D Lu. The future of electronics

based on memristive systems. Nature electronics, 1(1):22–29, 2018. doi: 10.1038/

s41928-017-0006-8.

[28] Jason K Eshraghian, Xinxin Wang, and Wei D Lu. Memristor-based binarized

spiking neural networks: Challenges and applications. IEEE Nanotechnology

Magazine, 16(2):14–23, 2022. doi: 10.1109/mnano.2022.3141443.

[29] Doyoung Jang, Dmitry Yakimets, Geert Eneman, Pieter Schuddinck, Marie Garcia

Bardon, Praveen Raghavan, Alessio Spessot, Diederik Verkest, and Anda Mocuta.

Device exploration of NanoSheet transistors for sub-7-nm technology node. IEEE

Transactions on Electron Devices, 64(6):2707–2713, 2017. doi: 10.1109/ted.2017.

2695455.

[30] Daniel Nagy, Gabriel Espineira, Guillermo Indalecio, Antonio J Garcia-Loureiro,

Karol Kalna, and Natalia Seoane. Benchmarking of FinFET, nanosheet, and

nanowire FET architectures for future technology nodes. IEEE Access, 8:

53196–53202, 2020. doi: 10.1109/access.2020.2980925.

[31] Giuliano Sisto, Odysseas Zografos, Bilal Chehab, Naveen Kakarla, Yang Xiang,

Dragomir Milojevic, Pieter Weckx, Geert Hellings, and Julien Ryckaert. Evaluation

of Nanosheet and Forksheet Width Modulation for Digital IC Design in the Sub-3

nm Era. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pages

1–10, 2022. doi: 10.1109/tvlsi.2022.3190080.

[32] P. Weckx, J. Ryckaert, V. Putcha, A. De Keersgieter, J. Boemmels, P. Schuddinck,

D. Jang, D. Yakimets, M. G. Bardon, L.-A. Ragnarsson, P. Raghavan, R. R. Kim,

10.1109/tns.2021.3059594
10.1109/tns.2021.3059594
https://irds.ieee.org/editions/2023/more-moore
https://irds.ieee.org/editions/2023/more-moore
10.1038/s42254-020-0208-2
10.1038/s41928-017-0006-8
10.1038/s41928-017-0006-8
10.1109/mnano.2022.3141443
10.1109/ted.2017.2695455
10.1109/ted.2017.2695455
10.1109/access.2020.2980925
10.1109/tvlsi.2022.3190080


References 97

A. Spessot, D. Verkest, and A. Mocuta. Stacked nanosheet fork architecture for

SRAM design and device co-optimization toward 3nm. In 2017 IEEE International

Electron Devices Meeting (IEDM). IEEE, dec 2017. doi: 10.1109/iedm.2017.

8268430.

[33] Hsiao-Hsuan Liu, Pieter Schuddinck, Zhenlin Pei, Lynn Verschueren, Hans

Mertens, Shairfe M. Salahuddin, Gaspard Hiblot, Yang Xiang, Boon Teik Chan,

Sujith Subramanian, Pieter Weckx, Geert Hellings, Marie Garcia Bardon, Julien

Ryckaert, Chenyun Pan, and Francky Catthoor. CFET SRAM With Double-Sided

Interconnect Design and DTCO Benchmark. IEEE Transactions on Electron

Devices, 70(10):5099–5106, October 2023. ISSN 1557-9646. doi: 10.1109/ted.

2023.3305322.

[34] Hsiao-Hsuan Liu, Shairfe M. Salahuddin, Boon Teik Chan, Pieter Schuddinck, Yang

Xiang, Geert Hellings, Pieter Weckx, Julien Ryckaert, and Francky Catthoor. CFET

SRAM DTCO, Interconnect Guideline, and Benchmark for CMOS Scaling. IEEE

Transactions on Electron Devices, 70(3):883–890, March 2023. ISSN 1557-9646. doi:

10.1109/ted.2023.3235701.

[35] S.-W. Chang, J.-H. Li, M.-K. Huang, Y.-C. Huang, S.-T. Huang, H.-C. Wang, Y.-J.

Huang, J.-Y. Wang, L. W Yu, Y.-F. Huang, F. K. Hsueh, P.-J. Sung, C.-T. Wu,

W. C.-Y. Ma, K.-H. Kao, Y. J. Lee, C.-L. Lin, R. W. Chuang, K.-P. Huang,

S. Samukawa, Y. Li, W. H. Lee, T-Y. Chu, T.-S. Chao, G. W. Huang, W.-F.

Wu, J. Y. Li, J.-M. Shieh, W. K. Yeh, Y.-H. Wang, D. D. Lu, C.-J. Wang,

N.-C. Lin, C.-J. Su, S.-H. Lo, and H.-F. Huang. First Demonstration of CMOS

Inverter and 6T-SRAM Based on GAA CFETs Structure for 3D-IC Applications.

In 2019 IEEE International Electron Devices Meeting (IEDM). IEEE, dec 2019. doi:

10.1109/iedm19573.2019.8993525.

[36] Julien Ryckaert, Pieter Weckx, and Shairfe Muhammad Salahuddin. SRAM

technology status and perspectives, page 55–86. Elsevier, 2022. ISBN 9780128207581.

doi: 10.1016/b978-0-12-820758-1.00010-8.

[37] P. Schuddinck, F. M. Bufler, Y. Xiang, A. Farokhnejad, G. Mirabelli, A. Vandooren,

B. Chehab, A. Gupta, C. Roda Neve, G. Hellings, and J. Ryckaert. PPAC of

sheet-based CFET configurations for 4 track design with 16nm metal pitch. In 2022

IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).

IEEE, June 2022. doi: 10.1109/vlsitechnologyandcir46769.2022.9830492.

10.1109/iedm.2017.8268430
10.1109/iedm.2017.8268430
10.1109/ted.2023.3305322
10.1109/ted.2023.3305322
10.1109/ted.2023.3235701
10.1109/iedm19573.2019.8993525
10.1016/b978-0-12-820758-1.00010-8
10.1109/vlsitechnologyandcir46769.2022.9830492


98 References

[38] P. Schuddinck, O. Zografos, P. Weckx, P. Matagne, S. Sarkar, Y. Sherazi, R. Baert,

D. Jang, D. Yakimets, A. Gupta, B. Parvais, J. Ryckaert, D. Verkest, and A. Mocuta.

Device-, Circuit− &; Block-level evaluation of CFET in a 4 track library. In 2019

Symposium on VLSI Technology. IEEE, June 2019. doi: 10.23919/vlsit.2019.

8776513.

[39] C. Y. Huang, G. Dewey, E. Mannebach, A. Phan, P. Morrow, W. Rachmady, I. C.

Tung, N. Thomas, U. Alaan, R. Paul, N. Kabir, B. Krist, A. Oni, M. Mehta,

M. Harper, P. Nguyen, R. Keech, S. Vishwanath, K. L. Cheong, J. S. Kang, A. Lilak,

M. Metz, S. Clendenning, B. Turkot, R. Schenker, H. J. Yoo, M. Radosavljevic, and

J. Kavalieros. 3-D Self-aligned Stacked NMOS-on-PMOS Nanoribbon Transistors

for Continued Moore’s Law Scaling. In 2020 IEEE International Electron Devices

Meeting (IEDM). IEEE, dec 2020. doi: 10.1109/iedm13553.2020.9372066.

[40] Xiaona Zhu, Rongzheng Ding, Ouwen Tao, Yage Zhao, Peishun Tang, David Wei

Zhang, Ye Lu, and Shaofeng Yu. A combined N/PFET CFET based design

and logic technology framework for CMOS applications. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 2023. doi: 10.1109/

tcad.2023.3282576.

[41] Junjong Lee, Jun-Sik Yoon, Jaewan Lim, and Rock-Hyun Baek. Electrical

Coupling Effect of Forksheet FET for Power, Performance, and Area Analysis.

IEEE Transactions on Electron Devices, 69(12):7096–7101, December 2022. ISSN

1557-9646. doi: 10.1109/ted.2022.3215657.

[42] Chung-Kuan Cheng, Chia-Tung Ho, Daeyeal Lee, and Bill Lin. Multirow

Complementary-FET (CFET) Standard Cell Synthesis Framework Using

Satisfiability Modulo Theories (SMTs). IEEE Journal on Exploratory Solid-State

Computational Devices and Circuits, 7(1):43–51, June 2021. ISSN 2329-9231. doi:

10.1109/jxcdc.2021.3092769.

[43] Md. Hasan Raza Ansari, Nupur Navlakha, and Nazek El-Atab. Engineered vertically

stacked nsfet charge-trapping synapse for neuromorphic applications. ACS Applied

Electronic Materials, December 2023. ISSN 2637-6113. doi: 10.1021/acsaelm.

3c01420.

[44] Md. Hasan Raza Ansari, Seongjae Cho, Jong-Ho Lee, and Byung-Gook Park.

Core-Shell Dual-Gate Nanowire Memory as a Synaptic Device for Neuromorphic

10.23919/vlsit.2019.8776513
10.23919/vlsit.2019.8776513
10.1109/iedm13553.2020.9372066
10.1109/tcad.2023.3282576
10.1109/tcad.2023.3282576
10.1109/ted.2022.3215657
10.1109/jxcdc.2021.3092769
10.1021/acsaelm.3c01420
10.1021/acsaelm.3c01420


References 99

Application. IEEE Journal of the Electron Devices Society, 9:1282–1289, 2021. doi:

10.1109/jeds.2021.3111343.

[45] Pai-Yu Chen, Xiaochen Peng, and g Yu. Neurosim+: An integrated

device-to-algorithm framework for benchmarking synaptic devices and array

architectures. In 2017 IEEE International Electron Devices Meeting (IEDM). IEEE,

December 2017. doi: 10.1109/iedm.2017.8268337.

[46] Jun-Sik Yoon, Jinsu Jeong, Seunghwan Lee, and Rock-Hyun Baek. Systematic

DC/AC performance benchmarking of sub-7-nm node FinFETs and nanosheet FETs.

IEEE Journal of the Electron Devices Society, 6:942–947, 2018. doi: 10.1109/jeds.

2018.2866026.

[47] Vikram Passi and Jean-Pierre Raskin. Review on analog/radio frequency

performance of advanced silicon MOSFETs. Semiconductor Science and Technology,

32(12):123004, 2017. doi: 10.1088/1361-6641/aa9145.

[48] A Veloso, T Huynh-Bao, P Matagne, D Jang, G Eneman, N Horiguchi, and

J Ryckaert. Nanowire & nanosheet FETs for ultra-scaled, high-density logic and

memory applications. Solid-State Electronics, 168:107736, 2020. doi: 10.1016/j.

sse.2019.107736.

[49] Jagar Singh, Jerome Ciavatti, Kumaran Sundaram, Jen Shuang Wong, Anirban

Bandyopadhyay, Xiaoqiang Zhang, Shuang Li, Abdellatif Bellaouar, Josef Watts,

Joseph G Lee, et al. 14-nm FinFET technology for analog and RF applications.

IEEE Transactions on electron devices, 65(1):31–37, 2017. doi: 10.1109/ted.2017.

2776838.

[50] Jiabi Zhang, Guofu Niu, Will Cai, Weike Wang, and Kimihiko Imura.

Intermodulation linearity characteristics of 14-nm RF FinFETs. IEEE Transactions

on Electron Devices, 66(6):2520–2526, 2019. doi: 10.1109/ted.2019.2912516.

[51] Jun-Sik Yoon and Rock-Hyun Baek. Device design guideline of 5-nm-node FinFETs

and nanosheet FETs for analog/RF applications. IEEE Access, 8:189395–189403,

2020. doi: 10.1109/access.2020.3031870.

[52] Ke Han, Yannan Zhang, and Zhongliang Deng. A simulation study of gate-all-around

nanowire transistor with a core-substrate. IEEE Access, 8:62181–62190, 2020. doi:

10.1109/access.2020.2983724.

10.1109/jeds.2021.3111343
10.1109/iedm.2017.8268337
10.1109/jeds.2018.2866026
10.1109/jeds.2018.2866026
10.1088/1361-6641/aa9145
10.1016/j.sse.2019.107736
10.1016/j.sse.2019.107736
10.1109/ted.2017.2776838
10.1109/ted.2017.2776838
10.1109/ted.2019.2912516
10.1109/access.2020.3031870
10.1109/access.2020.2983724


100 References

[53] Pragya Kushwaha, Avirup Dasgupta, Ming-Yen Kao, Harshit Agarwal, Sayeef

Salahuddin, and Chenming Hu. Design optimization techniques in nanosheet

transistor for RF applications. IEEE Transactions on Electron Devices, 67(10):

4515–4520, 2020. doi: 10.1109/ted.2020.3019022.

[54] Hsin-Cheng Lin, Tao Chou, Chia-Che Chung, Chia-Jung Tsen, Bo-Wei Huang, and

CW Liu. RF performance of stacked Si nanosheet nFETs. IEEE Transactions on

Electron Devices, 68(10):5277–5283, 2021. doi: 10.1109/ted.2021.3106287.

[55] Leland Chang, Meikei Ieong, and Min Yang. CMOS circuit performance

enhancement by surface orientation optimization. IEEE Transactions on Electron

Devices, 51(10):1621–1627, 2004. doi: 10.1007/978-3-7091-0624-2$_$14.

[56] International Roadmap for Devices and Systems. More moore. https://irds.

ieee.org/editions/2020/more-moore, 2020. [Online; accessed 15-January-2021].

[57] International Technology Roadmap for Semiconductors. Process integration, devices

and structures. http://www.itrs2.net/2013-itrs.html, 2013. [Online; accessed

15-December-2020].

[58] C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall,

N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han,

D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar,

I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib,

A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy, C. Pelto,

L. Pipes, I. Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. Dacuna Santos,

M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. St. Amour,

C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, and A. Yeoh. A

10nm high performance and low-power CMOS technology featuring 3rd generation

FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt

local interconnects. In 2017 IEEE International Electron Devices Meeting (IEDM).

IEEE, dec 2017. doi: 10.1109/iedm.2017.8268472.

[59] Vaibhav Rana, Gufran Ahmad, Akhil K Ramesh, Samaresh Das, and Pushpapraj

Singh. Diameter-Dependent Piezoresistive Sensing Performance of Junctionless

Gate-All-Around Nanowire FET. IEEE Transactions on Electron Devices, 67(7):

2884–2889, 2020. doi: 10.1109/ted.2020.2991140.

10.1109/ted.2020.3019022
10.1109/ted.2021.3106287
10.1007/978-3-7091-0624-2$_$14
https://irds.ieee.org/editions/2020/more-moore
https://irds.ieee.org/editions/2020/more-moore
http://www.itrs2.net/2013-itrs.html
10.1109/iedm.2017.8268472
10.1109/ted.2020.2991140


References 101

[60] Wen Liu, Juin J Liou, Y Jiang, N Singh, GQ Lo, J Chung, and YH Jeong.

Investigation of Sub-10-nm Diameter, Gate-All-Around Nanowire Field-Effect

Transistors for Electrostatic Discharge Applications. IEEE Transactions on

Nanotechnology, 9(3):352–354, 2010. doi: 10.1109/tnano.2009.2038225.

[61] Synopsys Inc. Mountain View, CA, USA, Version O-2018.06, 2019.

[62] Sungman Rhee, Daewon Kim, Kyeongyeon Kim, Seongwook Choi, Byung-Gook

Park, and Young June Park. Extension of the Density-Gradient Model to the

Second-Order Quantum Correction for Analysis of the Single-Charge Effect in

Sub-10-nm MOS Devices. IEEE Journal of the Electron Devices Society, pages

1–1, 2020. doi: 10.1109/jeds.2020.2971426.

[63] D.B.M.Klaassen, J.W.Slotboom, and H.C.de Graaff. Unified apparent bandgap

narrowing in n- and p-type silicon. Microelectronics Reliability, 32(12):1797, dec

1992. doi: 10.1016/0026-2714(92)90401-6.

[64] John Bardeen. Surface states and rectification at a metal semi-conductor contact.

Physical Review, 71(10):717, 1947. doi: 10.1016/b978-0-08-006511-3.50009-x.

[65] Brajesh Rawat. Numerical modeling and analysis of graphene-based field-effect

transistors. PhD thesis, 2017.

[66] Hidenori Yamada and Prabhakar R Bandaru. Enhanced electrical current densities

in electrochemical systems through the use of nanostructured electrodes. Applied

Physics Letters, 104(21):213901, 2014. doi: 10.1063/1.4879837.

[67] Vanessa CP Silva, Welder F Perina, Joao A Martino, Eddy Simoen, Anabela

Veloso, and Paula GD Agopian. Analog Figures of Merit of Vertically Stacked

Silicon Nanosheets nMOSFETs With Two Different Metal Gates for the Sub-7 nm

Technology Node Operating at High Temperatures. IEEE Transactions on Electron

Devices, 2021. doi: 10.1109/ted.2021.3077349.

[68] Isabelle Ferain, Cynthia A Colinge, and Jean-Pierre Colinge. Multigate transistors

as the future of classical metal–oxide–semiconductor field-effect transistors. Nature,

479(7373):310–316, 2011. doi: 10.1038/nature10676.

[69] Hidenori Yamada and Prabhakar R Bandaru. Limits to the magnitude of capacitance

in carbon nanotube array electrode based electrochemical capacitors. Applied Physics

Letters, 102(17):173113, 2013. doi: 10.1063/1.4803925.

10.1109/tnano.2009.2038225
10.1109/jeds.2020.2971426
10.1016/0026-2714(92)90401-6
10.1016/b978-0-08-006511-3.50009-x
10.1063/1.4879837
10.1109/ted.2021.3077349
10.1038/nature10676
10.1063/1.4803925


102 References

[70] Jiaxin Yao, Jun Li, Kun Luo, Jiahan Yu, Qingzhu Zhang, Zhaozhao Hou, Jie

Gu, Wen Yang, Zhenhua Wu, Huaxiang Yin, et al. Physical insights on quantum

confinement and carrier mobility in Si, Si 0.45 Ge 0.55, Ge gate-all-around NSFET

for 5 nm technology node. IEEE Journal of the Electron Devices Society, 6:841–848,

2018. doi: 10.1109/jeds.2018.2858225.

[71] Pedram Razavi, Giorgos Fagas, Isabelle Ferain, Ran Yu, Samaresh Das, and

Jean-Pierre Colinge. Influence of channel material properties on performance of

nanowire transistors. Journal of Applied Physics, 111(12):124509, 2012. doi:

10.1063/1.4729777.

[72] Mohit Kumar Gupta, Pieter Weckx, Pieter Schuddinck, Doyoung Jang, Bilal

Chehab, Stefan Cosemans, Julien Ryckaert, and Wim Dehaene. A Comprehensive

Study of Nanosheet and Forksheet SRAM for Beyond N5 Node. IEEE Transactions

on Electron Devices, 68(8):3819–3825, August 2021. ISSN 1557-9646. doi: 10.1109/

ted.2021.3088392.

[73] Dongwon Jang, Seung-Geun Jung, Seong-Ji Min, and Hyun-Yong Yu.

Electrothermal Characterization and Optimization of Monolithic 3D

Complementary FET (CFET). IEEE Access, 9:158116–158121, 2021. doi:

10.1109/access.2021.3130654.

[74] Xiaoqiao Yang, Yabin Sun, Ziyu Liu, Yanling Shi, and Xiaojin Li. Performance

Trade-offs in Complementary FET (CFET) Device Architectures for 3nm-node and

Beyond. In 2021 5th IEEE Electron Devices Technology & Manufacturing Conference

(EDTM), page 1–3. IEEE, April 2021. doi: 10.1109/edtm50988.2021.9420820.

[75] Jung, Seung-Geun and Jang, Dongwon and Min, Seong-Ji and Park, Euyjin and Yu,

Hyun-Yong. Device design guidelines of 3-nm node complementary FET (CFET) in

perspective of electrothermal characteristics. IEEE Access, 10:41112–41118, 2022.

doi: 10.1109/access.2022.3166934.

[76] Natalia Seoane, Julian G Fernandez, Karol Kalna, Enrique Comesana, and Antonio

Garcia-Loureiro. Simulations of statistical variability in n-type FinFET, nanowire,

and nanosheet FETs. IEEE Electron Device Letters, 42(10):1416–1419, 2021. doi:

10.1109/led.2021.3109586.

[77] Xiaoqiao Yang, Xianglong Li, Ziyu Liu, Yabin Sun, Yun Liu, Xiaojin Li, and Yanling

Shi. Impact of process variation on nanosheet gate-all-around complementary FET

10.1109/jeds.2018.2858225
10.1063/1.4729777
10.1109/ted.2021.3088392
10.1109/ted.2021.3088392
10.1109/access.2021.3130654
10.1109/edtm50988.2021.9420820
10.1109/access.2022.3166934
10.1109/led.2021.3109586


References 103

(CFET). IEEE Transactions on Electron Devices, 69(7):4029–4036, 2022. doi: 10.

1109/ted.2022.3176835.

[78] Akhilesh Rawat and Brajesh Rawat. Multichannel Two-Dimensional MoS2

Nanosheet MOSFET for Future Technology Node. IEEE Transactions on Electron

Devices, 2024. doi: 10.1109/ted.2024.3384136.

[79] International Roadmap for Devices and Systems. MORE MOORE. https://irds.

ieee.org/editions/2021/more-moore, 2021.

[80] Yanna Luo, Qingzhu Zhang, Lei Cao, Weizhuo Gan, Haoqing Xu, Yu Cao, Jie Gu,

Renren Xu, Gangping Yan, Jiali Huo, Zhenhua Wu, and Huaxiang Yin. Investigation

of Novel Hybrid Channel Complementary FET Scaling Beyond 3-nm Node From

Device to Circuit. IEEE Transactions on Electron Devices, 69(7):3581–3588, jul

2022. doi: 10.1109/ted.2022.3176843.

[81] Xiaoqiao Yang, Xianglong Li, Ziyu Liu, Yabin Sun, Yun Liu, Xiaojin Li, and Yanling

Shi. Impact of Process Variation on Nanosheet Gate-All-Around Complementary

FET (CFET). IEEE Transactions on Electron Devices, 69(7):4029–4036, jul 2022.

doi: 10.1109/ted.2022.3176835.

[82] Peng Zheng, Daniel Connelly, Fei Ding, and Tsu-Jae King Liu. FinFET Evolution

Toward Stacked-Nanowire FET for CMOS Technology Scaling. IEEE Transactions

on Electron Devices, 62(12):3945–3950, dec 2015. doi: 10.1109/ted.2015.2487367.

[83] Hans Mertens, Romain Ritzenthaler, Yusuke Oniki, Basoene Briggs, BT Chan,

Andriy Hikavyy, Toby Hopf, Geert Mannaert, Zheng Tao, Farid Sebaai, et al.

Forksheet FETs for Advanced CMOS Scaling: Forksheet-Nanosheet Co-Integration

and Dual Work Function Metal Gates at 17nm NP Space. In 2021 Symposium on

VLSI Technology, pages 1–2. IEEE, 2021.

[84] B. Vincent, J. Boemmels, J. Ryckaert, and J. Ervin. A Benchmark Study of

Complementary-Field Effect Transistor (CFET) Process Integration Options Done

by Virtual Fabrication. IEEE Journal of the Electron Devices Society, 8:668–673,

2020. doi: 10.1109/jeds.2020.2990718.

[85] Anjali Goel, Akhilesh Rawat, and Brajesh Rawat. Benchmarking of Analog/RF

Performance of Fin-FET, NW-FET, and NS-FET in the Ultimate Scaling Limit.

IEEE Transactions on Electron Devices, 69(3):1298–1305, mar 2022. doi: 10.1109/

ted.2021.3140158.

10.1109/ted.2022.3176835
10.1109/ted.2022.3176835
10.1109/ted.2024.3384136
https://irds.ieee.org/editions/2021/more-moore
https://irds.ieee.org/editions/2021/more-moore
10.1109/ted.2022.3176843
10.1109/ted.2022.3176835
10.1109/ted.2015.2487367
10.1109/jeds.2020.2990718
10.1109/ted.2021.3140158
10.1109/ted.2021.3140158


104 References

[86] Md Obaidul Hossen, Bharani Chava, Geert Van der Plas, Eric Beyne, and

Muhannad S. Bakir. Power Delivery Network (PDN) Modeling for Backside-PDN

Configurations With Buried Power Rails and µ TSVs. IEEE Transactions on

Electron Devices, 67(1):11–17, January 2020. ISSN 1557-9646. doi: 10.1109/ted.

2019.2954301.

[87] Scott R Stiffler, Ravikumar Ramachandran, W Kirklen Henson, ND Zamdmer,

Kevin McStay, Giuseppe La Rosa, Kevin M Boyd, Sungjae Lee, Claude Ortolland,

and Paul C Parries. Process technology for IBM 14-nm processor designs featuring

silicon-on-insulator FinFETs. IBM Journal of Research and Development, 62(2/3):

11–1, 2018.

[88] Aoxiang Tang and Niraj K Jha. Design space exploration of FinFET cache. ACM

Journal on Emerging Technologies in Computing Systems (JETC), 9(3):1–16, 2013.

doi: 10.1145/2491678.

[89] See-On Park, Hakcheon Jeong, Jongyong Park, Jongmin Bae, and Shinhyun Choi.

Experimental demonstration of highly reliable dynamic memristor for artificial

neuron and neuromorphic computing. Nature Communications, 13(1), June 2022.

ISSN 2041-1723. doi: 10.1038/s41467-022-30539-6.

[90] Mohit Kumar Gupta, Pieter Weckx, Pieter Schuddinck, Doyoung Jang, Bilal

Chehab, Stefan Cosemans, Julien Ryckaert, and Wim Dehaene. The Complementary

FET (CFET) 6T-SRAM. IEEE Transactions on Electron Devices, 68(12):6106–6111,

December 2021. ISSN 1557-9646. doi: 10.1109/ted.2021.3121349.

[91] Jan M Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital integrated

circuits, volume 2. Prentice hall Englewood Cliffs, 2002.

[92] Jim Esch. Overview of Beyond-CMOS Devices and a Uniform Methodology for

Their Benchmarking. Proceedings of the IEEE, 101(12):2495–2497, dec 2013. doi:

10.1109/jproc.2013.2286655.

[93] Dmitri E. Nikonov and Ian A. Young. Uniform methodology for benchmarking

beyond-CMOS logic devices. In 2012 IEEE International Electron Devices Meeting

(IEDM), pages 25.4.1–25.4.4. IEEE, 2012. doi: 10.1109/iedm.2012.6479102.

[94] A. Mehonic and A. J. Kenyon. Brain-inspired computing needs a master

plan. Nature, 604(7905):255–260, April 2022. ISSN 1476-4687. doi: 10.1038/

s41586-021-04362-w.

10.1109/ted.2019.2954301
10.1109/ted.2019.2954301
10.1145/2491678
10.1038/s41467-022-30539-6
10.1109/ted.2021.3121349
10.1109/jproc.2013.2286655
10.1109/iedm.2012.6479102
10.1038/s41586-021-04362-w
10.1038/s41586-021-04362-w


References 105

[95] Jiyong Woo, Kibong Moon, Jeonghwan Song, Sangheon Lee, Myounghun Kwak,

Jaesung Park, and Hyunsang Hwang. Improved Synaptic Behavior Under Identical

Pulses Using AlOx/HfO2 Bilayer RRAM Array for Neuromorphic Systems. IEEE

Electron Device Letters, 37(8):994–997, August 2016. ISSN 1558-0563. doi: 10.

1109/led.2016.2582859.

[96] Bin Tang, Sabir Hussain, Rui Xu, Zhihai Cheng, Jianhui Liao, and Qing Chen.

Novel Type of Synaptic Transistors Based on a Ferroelectric Semiconductor Channel.

ACS Appl. Mater. Interfaces, 12(22):24920–24928, May 2020. ISSN 1944-8252. doi:

10.1021/acsami.9b23595.

[97] Gopalakrishnan Srinivasan, Abhronil Sengupta, and Kaushik Roy. Magnetic Tunnel

Junction Based Long-Term Short-Term Stochastic Synapse for a Spiking Neural

Network with On-Chip STDP Learning. Scientific Reports, 6(1), July 2016. ISSN

2045-2322. doi: 10.1038/srep29545.

[98] Faraz Khan, Eduard Cartier, Chandrasekara Kothandaraman, J. Campbell Scott,

Jason C. S. Woo, and Subramanian S. Iyer. The Impact of Self-Heating on Charge

Trapping in High-k-Metal-Gate nFETs. IEEE Electron Device Letters, 37(1):88–91,

jan 2016. doi: 10.1109/led.2015.2504952.

[99] E. Gnani, S. Reggiani, A. Gnudi, G. Baccarani, J. Fu, N. Singh, G.Q. Lo, and D.L.

Kwong. Modeling of nonvolatile gate-all-around charge-trapping SONOS memory

cells. In 2009 Proceedings of the European Solid State Device Research Conference.

IEEE, September 2009. doi: 10.1109/essderc.2009.5331609. doi: 10.1109/essderc.

2009.5331609.

[100] Md. Hasan Raza Ansari, Hanrui Li, and Nazek El-Atab. Vertically Stacked

Nanosheet FET: Charge- Trapping Memory and Synapse With Linear Weight

Adjustability for Neuromorphic Computing Applications. IEEE Transactions on

Electron Devices, 70(3):1344–1350, March 2023. ISSN 1557-9646. doi: 10.1109/

ted.2023.3234018.

[101] Abhash Kumar, Alok Kumar Kamal, Jawar Singh, and Bharat Gupta. Ultra Low

Energy Charge Trapping MOSFET With Neuro-Inspired Learning Capabilities.

IEEE Transactions on Nanotechnology, 22:266–272, 2023. ISSN 1941-0085. doi:

10.1109/tnano.2023.3283987.

10.1109/led.2016.2582859
10.1109/led.2016.2582859
10.1021/acsami.9b23595
10.1038/srep29545
10.1109/led.2015.2504952
10.1109/essderc.2009.5331609
10.1109/essderc.2009.5331609
10.1109/ted.2023.3234018
10.1109/ted.2023.3234018
10.1109/tnano.2023.3283987


106 References

[102] International Roadmap for Devices and Systems. More moore. https://irds.

ieee.org/editions/2022/more-moore, 2022. [Online; accessed 15-January-2022].

[103] Faraz Khan, Min Soo Han, Dan Moy, Robert Katz, Liu Jiang, Edmund Banghart,

Norman Robson, Toshiaki Kirihata, Jason C. S. Woo, and Subramanian S. Iyer.

Design Optimization and Modeling of Charge Trap Transistors (CTTs) in 14 nm

FinFET Technologies. IEEE Electron Device Letters, 40(7):1100–1103, jul 2019.

doi: 10.1109/led.2019.2919871.

[104] F. Cerbu, O. Madia, D. V. Andreev, S. Fadida, M. Eizenberg, L. Breuil, J. G. Lisoni,

J. A. Kittl, J. Strand, A. L. Shluger, V. V. Afanas’ev, M. Houssa, and A. Stesmans.

Intrinsic electron traps in atomic-layer deposited HfO2 insulators. Applied Physics

Letters, 108(22), May 2016. ISSN 1077-3118. doi: 10.1063/1.4952718.

[105] Shi-Jie Li, Bo-Yi Dong, Biao Wang, Yi Li, Hua-Jun Sun, Yu-Hui He, Nuo Xu, and

Xiang-Shui Miao. Alleviating Conductance Nonlinearity via Pulse Shape Designs in

TaOx Memristive Synapses. IEEE Transactions on Electron Devices, 66(1):810–813,

January 2019. doi: 10.1109/ted.2018.2876065.

[106] Jean-Pierre Colinge and James C. Greer. Nanowire Transistors, page 18–53.

Cambridge University Press, January 2016. doi: 10.1017/cbo9781107280779.003.

[107] Ram S. Yadav, Pankhuri Gupta, Amod Holla, Kacho Imtiyaz Ali Khan, Pranaba K.

Muduli, and Debanjan Bhowmik. Demonstration of synaptic behavior in a

heavy-metal-ferromagnetic-metal-oxide-heterostructure-based spintronic device for

on-chip learning in crossbar-array-based neural networks. ACS Applied Electronic

Materials, 5(1):484–497, January 2023. ISSN 2637-6113. doi: 10.1021/acsaelm.

2c01488.

[108] Manan Suri, Olivier Bichler, Damien Querlioz, Olga Cueto, Luca Perniola, Veronique

Sousa, Dominique Vuillaume, Christian Gamrat, and Barbara DeSalvo. Phase

change memory as synapse for ultra-dense neuromorphic systems: Application to

complex visual pattern extraction. In 2011 International Electron Devices Meeting.

IEEE, December 2011. doi: 10.1109/iedm.2011.6131488.

[109] Minjae Kim, Dong-eun Kim, Yue Wang, Donghyun Lee, Dong-Hyeok Lim, Haryeong

Choi, Ioannis Kymissis, J. Joshua Yang, Joonki Suh, Hong-Sub Lee, and Hyung-Ho

Park. Forming-less flexible memristor crossbar array for neuromorphic computing

applications produced using low-temperature atomic layer deposition. Applied

https://irds.ieee.org/editions/2022/more-moore
https://irds.ieee.org/editions/2022/more-moore
10.1109/led.2019.2919871
10.1063/1.4952718
10.1109/ted.2018.2876065
10.1017/cbo9781107280779.003
10.1021/acsaelm.2c01488
10.1021/acsaelm.2c01488
10.1109/iedm.2011.6131488


References 107

Materials Today, 38:102204, June 2024. ISSN 2352-9407. doi: 10.1016/j.apmt.

2024.102204.

[110] Eunseon Yu, Seongjae Cho, Kaushik Roy, and Byung-Gook Park. A Quantum-Well

Charge-Trap Synaptic Transistor With Highly Linear Weight Tunability. IEEE

Journal of the Electron Devices Society, 8:834–840, 2020. ISSN 2168-6734. doi:

10.1109/jeds.2020.3011409.

[111] Min Zhang, Zehui Fan, Xixi Jiang, Hao Zhu, Lin Chen, Yidong Xia, Jiang Yin, Xinke

Liu, Qingqing Sun, and David Wei Zhang. MoS2-based Charge-trapping synaptic

device with electrical and optical modulated conductance. Nanophotonics, 9(8):

2475–2486, February 2020. ISSN 2192-8606. doi: 10.1515/nanoph-2019-0548.

[112] Neha Kamal, Jawar Singh, Avinash Lahgere, and Pramod Kumar Tiwari. Ultra-Low

Power Reconfigurable Synaptic and Neuronal Transistor for Spiking Neural Network.

IEEE Transactions on Nanotechnology, 22:245–251, 2023. ISSN 1941-0085. doi:

10.1109/tnano.2023.3273624.

[113] Zhongrui Wang, Saumil Joshi, Sergey Savel’ev, Wenhao Song, Rivu Midya, Yunning

Li, Mingyi Rao, Peng Yan, Shiva Asapu, Ye Zhuo, Hao Jiang, Peng Lin, Can

Li, Jung Ho Yoon, Navnidhi K. Upadhyay, Jiaming Zhang, Miao Hu, John Paul

Strachan, Mark Barnell, Qing Wu, Huaqiang Wu, R. Stanley Williams, Qiangfei

Xia, and J. Joshua Yang. Fully memristive neural networks for pattern classification

with unsupervised learning. Nature Electronics, 1(2):137–145„ February 2018. ISSN

2520-1131. doi: 10.1038/s41928-018-0023-2.

[114] H Matthies. Long-term synaptic potentiation and macromolecular changes in

memory formation. In Synaptic Plasticity in the Hippocampus, pages 119–121.

Springer, 1988. doi: 10.1007/978-3-642-73202-7_35.

[115] Joon-Kyu Han, Jungyeop Oh, Gyeong-Jun Yun, Dongeun Yoo, Myung-Su Kim,

Ji-Man Yu, Sung-Yool Choi, and Yang-Kyu Choi. Cointegration of single-transistor

neurons and synapses by nanoscale cmos fabrication for highly scalable neuromorphic

hardware. Science Advances, 7(32), August 2021. ISSN 2375-2548. doi: 10.1126/

sciadv.abg8836.

[116] Xiaojian Zhu, Qiwen Wang, and Wei D. Lu. Memristor networks for real-time neural

activity analysis. Nature Communications, 11(1), May 2020. ISSN 2041-1723. doi:

10.1038/s41467-020-16261-1.

10.1016/j.apmt.2024.102204
10.1016/j.apmt.2024.102204
10.1109/jeds.2020.3011409
10.1515/nanoph-2019-0548
10.1109/tnano.2023.3273624
10.1038/s41928-018-0023-2
10.1007/978-3-642-73202-7_35
10.1126/sciadv.abg8836
10.1126/sciadv.abg8836
10.1038/s41467-020-16261-1


108 References

[117] Mani Shankar Yadav, Kanupriya Varshney, and Brajesh Rawat. Memory switching

versus threshold memory switching: Finding a promising synaptic device for

brain-inspired artificial learning systems. ACS Applied Engineering Materials, 2

(8):2131–2142, July 2024. ISSN 2771-9545. doi: 10.1021/acsaenm.4c00307.

[118] Yoeri van de Burgt, Ewout Lubberman, Elliot J. Fuller, Scott T. Keene, Grégorio C.

Faria, Sapan Agarwal, Matthew J. Marinella, A. Alec Talin, and Alberto Salleo. A

non-volatile organic electrochemical device as a low-voltage artificial synapse for

neuromorphic computing. Nature Materials, 16(4):414–418, February 2017. ISSN

1476-4660. doi: 10.1038/nmat4856.

[119] Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton, André van

Schaik, Ralph Etienne-Cummings, Tobi Delbruck, Shih-Chii Liu, Piotr Dudek,

Philipp Häfliger, Sylvie Renaud, Johannes Schemmel, Gert Cauwenberghs,

John Arthur, Kai Hynna, Fopefolu Folowosele, Sylvain Saighi, Teresa

Serrano-Gotarredona, Jayawan Wijekoon, Yingxue Wang, and Kwabena Boahen.

Neuromorphic silicon neuron circuits. Frontiers in Neuroscience, 5, 2011. ISSN

1662-4548. doi: 10.3389/fnins.2011.00073.

[120] Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy,

Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka

Nakamura, Bernard Brezzo, Ivan Vo, Steven K. Esser, Rathinakumar Appuswamy,

Brian Taba, Arnon Amir, Myron D. Flickner, William P. Risk, Rajit Manohar, and

Dharmendra S. Modha. A million spiking-neuron integrated circuit with a scalable

communication network and interface. Science, 345(6197):668–673, August 2014.

ISSN 1095-9203. doi: 10.1126/science.1254642.

[121] Chao Du, Fuxi Cai, Mohammed A. Zidan, Wen Ma, Seung Hwan Lee, andWei D. Lu.

Reservoir computing using dynamic memristors for temporal information processing.

Nature Communications, 8(1), December 2017. ISSN 2041-1723. doi: 10.1038/

s41467-017-02337-y.

[122] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao,

Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun

Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steven

McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan, Yi-Hsin

Weng, Andreas Wild, Yoonseok Yang, and Hong Wang. Loihi: A neuromorphic

10.1021/acsaenm.4c00307
10.1038/nmat4856
10.3389/fnins.2011.00073
10.1126/science.1254642
10.1038/s41467-017-02337-y
10.1038/s41467-017-02337-y


References 109

manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, January 2018.

ISSN 1937-4143. doi: 10.1109/mm.2018.112130359.

[123] Hannah Bos and Dylan Muir. Sub-mW Neuromorphic SNN Audio Processing

Applications with Rockpool and Xylo, page 69–78. River Publishers, March 2023.

ISBN 9781003394440. doi: 10.1201/9781003394440-7.

[124] Yesheng Li and Kah-Wee Ang. Hardware implementation of neuromorphic

computing using large‐scale memristor crossbar arrays. Advanced Intelligent

Systems, 3(1), November 2020. ISSN 2640-4567. doi: 10.1002/aisy.202000137.

[125] Ming-Hung Wu, Ming-Chun Hong, Chih-Cheng Chang, Paritosh Sahu, Jeng-Hua

Wei, Heng-Yuan Lee, Shyh-Shyuan Shcu, and Tuo-Hung Hou. Extremely compact

integrate-and-fire stt-mram neuron: A pathway toward all-spin artificial deep neural

network. In 2019 Symposium on VLSI Technology, volume i, page T34–T35. IEEE,

June 2019. doi: 10.23919/vlsit.2019.8776569.

[126] Zheng Wang, Brian Crafton, Jorge Gomez, Ruijuan Xu, Aileen Luo, Zoran

Krivokapic, Lane Martin, Suman Datta, Arijit Raychowdhury, and Asif Islam

Khan. Experimental demonstration of ferroelectric spiking neurons for unsupervised

clustering. In 2018 IEEE International Electron Devices Meeting (IEDM), volume

345, pages 13.3.1–13.3.4. IEEE, December 2018. doi: 10.1109/iedm.2018.8614586.

[127] Xinxin Wang, Mohammed A. Zidan, and Wei D. Lu. A crossbar-based in-memory

computing architecture. IEEE Transactions on Circuits and Systems I: Regular

Papers, 67(12):4224–4232, dec 2020. doi: 10.1109/tcsi.2020.3000468.

[128] Angeliki Pantazi, Stanisław Woźniak, Tomas Tuma, and Evangelos Eleftheriou.

All-memristive neuromorphic computing with level-tuned neurons. Nanotechnology,

27(35):355205, July 2016. ISSN 1361-6528. doi: 10.1088/0957-4484/27/35/

355205.

[129] Sangya Dutta, Vinay Kumar, Aditya Shukla, Nihar R. Mohapatra, and Udayan

Ganguly. Leaky integrate and fire neuron by charge-discharge dynamics in

floating-body mosfet. Scientific Reports, 7(1), August 2017. ISSN 2045-2322. doi:

10.1038/s41598-017-07418-y.

[130] Dibyendu Chatterjee and Anil Kottantharayil. A cmos compatible bulk finfet-based

ultra low energy leaky integrate and fire neuron for spiking neural networks. IEEE

10.1109/mm.2018.112130359
10.1201/9781003394440-7
10.1002/aisy.202000137
10.23919/vlsit.2019.8776569
10.1109/iedm.2018.8614586
10.1109/tcsi.2020.3000468
10.1088/0957-4484/27/35/355205
10.1088/0957-4484/27/35/355205
10.1038/s41598-017-07418-y


110 References

Electron Device Letters, 40(8):1301–1304, August 2019. ISSN 1558-0563. doi: 10.

1109/led.2019.2924259.

[131] Anjali Goel, Md. Hasan Raza Ansari, Nazek El-Atab, and Brajesh Rawat.

Unraveling the Dynamics of HfO2-Based NW-CTT as an Artificial Synapse. IEEE

Transactions on Electron Devices, page 1–8, 2024. ISSN 1557-9646. doi: 10.1109/

ted.2024.3418726.

[132] Jeffrey Abbott, Tianyang Ye, Ling Qin, Marsela Jorgolli, Rona S. Gertner, Donhee

Ham, and Hongkun Park. Cmos nanoelectrode array for all-electrical intracellular

electrophysiological imaging. Nature Nanotechnology, 12(5):460–466, February 2017.

ISSN 1748-3395. doi: 10.1038/nnano.2017.3.

[133] Peter B. Kruskal, Zhe Jiang, Teng Gao, and Charles M. Lieber. Beyond the patch

clamp: Nanotechnologies for intracellular recording. Neuron, 86(1):21–24, April

2015. ISSN 0896-6273. doi: 10.1016/j.neuron.2015.01.004.

[134] Emery N Brown, Robert E Kass, and Partha P Mitra. Multiple neural spike train

data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7(5):

456–461, April 2004. ISSN 1546-1726. doi: 10.1038/nn1228.

[135] Fuxi Cai, Justin M. Correll, Seung Hwan Lee, Yong Lim, Vishishtha Bothra, Zhengya

Zhang, Michael P. Flynn, and Wei D. Lu. A fully integrated reprogrammable

memristor–cmos system for efficient multiply–accumulate operations. Nature

Electronics, 2(7):290–299, July 2019. ISSN 2520-1131. doi: 10.1038/

s41928-019-0270-x.

[136] Peng Lin, Can Li, Zhongrui Wang, Yunning Li, Hao Jiang, Wenhao Song, Mingyi

Rao, Ye Zhuo, Navnidhi K. Upadhyay, Mark Barnell, Qing Wu, J. Joshua Yang, and

Qiangfei Xia. Three-dimensional memristor circuits as complex neural networks.

Nature Electronics, 3(4):225–232, April 2020. ISSN 2520-1131. doi: 10.1038/

s41928-020-0397-9.

[137] G. Indiveri. A low-power adaptive integrate-and-fire neuron circuit. In Proceedings

of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS ’03.,

volume 4 of ISCAS-03, pages IV–820–IV–823. IEEE. doi: 10.1109/iscas.2003.

1206342.

[138] Anvesha Amravati, Saad Bin Nasir, Sivaram Thangadurai, Insik Yoon, and Arijit

Raychowdhury. A 55nm time-domain mixed-signal neuromorphic accelerator

10.1109/led.2019.2924259
10.1109/led.2019.2924259
10.1109/ted.2024.3418726
10.1109/ted.2024.3418726
10.1038/nnano.2017.3
10.1016/j.neuron.2015.01.004
10.1038/nn1228
10.1038/s41928-019-0270-x
10.1038/s41928-019-0270-x
10.1038/s41928-020-0397-9
10.1038/s41928-020-0397-9
10.1109/iscas.2003.1206342
10.1109/iscas.2003.1206342


References 111

with stochastic synapses and embedded reinforcement learning for autonomous

micro-robots. In 2018 IEEE International Solid - State Circuits Conference -

(ISSCC). IEEE, February 2018. doi: 10.1109/isscc.2018.8310215.

[139] Yi-Ting Wu, Fei Ding, Daniel Connelly, Meng-Hsueh Chiang, Jone F. Chen, and

Tsu-Jae King Liu. Simulation-based study of high-density SRAM voltage scaling

enabled by inserted-oxide FinFET technology. IEEE Transactions on Electron

Devices, 66(4):1754–1759, apr 2019. doi: 10.1109/ted.2019.2900921.

[140] M. Jerry, A. Parihar, B. Grisafe, A. Raychowdhury, and S. Datta. Ultra-low power

probabilistic imt neurons for stochastic sampling machines. In 2017 Symposium on

VLSI Technology, page T186–T187. IEEE, June 2017. doi: 10.23919/vlsit.2017.

7998148.

[141] B. Vermeersch, E. Bury, Y. Xiang, P. Schuddinck, K. K. Bhuwalka, G. Hellings, and

J. Ryckaert. Self-heating in in8–in2 cmos logic cells: Thermal impact of architecture

(finfet, nanosheet, forksheet and cfet) and scaling boosters. In 2022 IEEE Symposium

on VLSI Technology and Circuits (VLSI Technology and Circuits), volume 101, page

371–372. IEEE, June 2022. doi: 10.1109/vlsitechnologyandcir46769.2022.

9830228.

[142] Sunil Rathore, Navjeet Bagga, and S. Dasgupta. Self-heating and process-induced

threshold voltage aware reliability and aging analysis of forksheet fet. In 2024 IEEE

International Reliability Physics Symposium (IRPS), pages P65.TX–1–P65.TX–4.

IEEE, April 2024. doi: 10.1109/irps48228.2024.10529473.

[143] Sunil Rathore, Sandeep Kumar, Mohd. Shakir, Navjeet Bagga, and S. Dasgupta.

Unveiling the role of interface and dielectric wall traps with self-heating induced

aging prediction of forksheet fet. In 2024 8th IEEE Electron Devices Technology

&amp;amp; Manufacturing Conference (EDTM), page 1–3. IEEE, March 2024. doi:

10.1109/edtm58488.2024.10511703.

[144] E. Bury, M. Vandemaele, J. Franco, A. Chasin, S. Tyaginov, A. Vandooren,

R. Ritzenthaler, H. Mertens, J. Diaz Fortuny, N. Horiguchi, D. Linten, and

B. Kaczer. Reliability challenges in forksheet devices: (invited paper). In 2023

IEEE International Reliability Physics Symposium (IRPS), volume 1 2, page 1–8.

IEEE, March 2023. doi: 10.1109/irps48203.2023.10118269.

10.1109/isscc.2018.8310215
10.1109/ted.2019.2900921
10.23919/vlsit.2017.7998148
10.23919/vlsit.2017.7998148
10.1109/vlsitechnologyandcir46769.2022.9830228
10.1109/vlsitechnologyandcir46769.2022.9830228
10.1109/irps48228.2024.10529473
10.1109/edtm58488.2024.10511703
10.1109/irps48203.2023.10118269


112 References

[145] Jami Venkata Suman, A. Swetha Priya, G. M. Anitha Priyadarshini,

K. Krishnamraju, Akurathi Gangadhar, and Mamidipaka Hema. Integration

Challenges and Opportunities for Gate-All-Around FET (GAA FET) in

Next-Generation Electronic Devices, page 1361–1368. Atlantis Press International

BV, 2024. ISBN 9789464634716. doi: 10.2991/978-94-6463-471-6_131.

[146] Rinku Rani Das, T. R. Rajalekshmi, and Alex James. Finfet to gaa mbcfet: A

review and insights. IEEE Access, 12:50556–50577, 2024. ISSN 2169-3536. doi:

10.1109/access.2024.3384428.

10.2991/978-94-6463-471-6_131
10.1109/access.2024.3384428


List of Publications

Journals

1. Anjali Goel, Akhilesh Rawat, and Brajesh Rawat, “Benchmarking of Analog/RF

Performance of Fin-FET, NW-FET, and NS-FET in the Ultimate Scaling Limit, ”

IEEE Transactions on Electron Devices , vol. 69, no. 7, pp. 1298-1305, March

2022.

2. Anjali Goel, Md. Hasan Raza Ansari, Nazek-El Atab, and Brajesh Rawat,

“Unraveling the Dynamics of HfO2-based NW-CTT as an Artificial Synapse, ” IEEE

Transactions on Electron Devices , vol. 71, no. 8, pp. 5125-5132, August 2024.

3. Anjali Goel, Akhilesh Rawat, and Brajesh Rawat, “Finding a Promising CMOS

Inverter Architecture with Silicon Nanosheet for Future Technology Node, ” IEEE

Transactions on Electron Devices , vol. 72, no. 4, pp. 1574-1581, April 2025.

4. Anjali Goel, and Brajesh Rawat, “Performance Benchmarking of CFET, FSH, and

Stacked Nanosheet Inverters for SRAM and ALU in Future Technology Nodes, ”

under revision in IEEE Transactions on Nanotechnology.

5. Prajjwal Shukla, Anjali Goel, Vikas Kumar, Harneet Kaur, Vikas Kumar Malav,

and Brajesh Rawat, “Design of Real-Time and Power-Efficient Flue Gas Monitoring

System Using IoT Technology, ” under revision in IEEE Sensor Journal. (All

authors have equal contribution)

6. Anjali Goel, Mani Shankar Yadav, and Brajesh Rawat, “ Energy efficient and

Highly Scalable Fully NW-CTT based Spiking Neural Network, ” under preparation

for the submission in IEEE Transactions on Electron Devices.

7. Anjali Goel, and Brajesh Rawat, “ iFinFET vs FinFET: The Optimal Choice

for Future Technology Nodes?, ” under preparation for the submission in IEEE

Transactions on Electron Devices.

113



114 References

Conference Proceedings

1. Anjali Goel, Akhilesh Rawat, and Brajesh Rawat, “Finding Analog/RF

Performance of Inserted High-K FinFET for Sub-5 nm Technology Node, ” 6th

IEEE International Conference on Emerging Electronics (ICEE), Bengaluru, Dec.

2022.

2. Anjali Goel, Akhilesh Rawat, and Brajesh Rawat, “Performance Projection of

Stacked Silicon Nanosheet-FET Architectures for Future Technology Node, ” XXIst

International Workshop on Physics of Semiconductor Devices: IWPSD, Dec. 2021

(Online).

3. Akhilesh Rawat, Anjali Goel, and Brajesh Rawat, “Performance of

Two-Dimensional MoS2 Field-Effect Transistor in the Presence of Oxide-Channel

Imperfection, ” 6th IEEE International Conference on Emerging Electronics

(ICEE), Bengaluru, Dec. 2022. (Published: Springer Nature Journal, 2023).

4. Akhilesh Rawat, Anjali Goel, and Brajesh Rawat, “ Role of Interface Trap Charges

in the Performance of Monolayer and Bilayer MoS2-based Field-Effect Transistors, ”

35th IEEE International Conference on VLSI Design, March 2022 (Online).



List of Achievements

1. Received the prestigious Prime Minister Research Fellowship (PMRF) in 2022.

2. Our paper entitled “Finding Analog/RF Performance of Inserted High-K FinFET

for Sub-5 nm Technology Node, ” has been selected for the best poster prize at the

6th IEEE International Conference on Emerging Electronics (ICEE) in 2022.

3. Our work on “A Portable Flue Gas Analyzer Cum Air Quality Monitoring System“

has won the first prize at the Institute TECHNOLOGY DAY 2022, IIT Ropar.

4. Our work on “Electrochemical Sensor System for Comprehensive Air Quality

Assessment“ has won the third prize and “Flue Gas Monitoring System“ has won

the second prize at the RESEARCH SCHOLAR FORUM 2023, IIT Ropar.

115



116 References



Biodata

Name: Anjali Goel

Email: anjaligoel.1502@gmail.com

Date of Birth: 15-02-1996

Address: 5772, Sector 38 West, Chandigarh, India

Educational Qualifications:

• Ph.D. (Electrical Engineering)

Indian Institute of Technology Ropar, India (2024)

• M.Tech. (Electronics and Communication Engineering)

Punjab Engineering College, India (2020)

• B.Tech. (Electronics and Communication Engineering)

Chandigarh College of Engineering and Technology, India (2018)

Research Interests:

• TCAD Modeling of multigate devices at advanced technology nodes.

• TCAD Modeling of charge trap devices.

• Circuit analysis of spiking neural network using charge trap transistors.

117


	Declaration
	Acknowledgement
	Certificate
	Lay Summary
	Abstract
	List of Figures
	List of Tables
	Introduction
	Transistor Performance Metrics and Trade-offs
	Digital Applications
	Analog/Radio Frequency Applications
	Neuromorphic Applications

	State-of-Art of GAA MOSFETs
	Problem Definition
	Thesis Framework Overview
	Novel Findings in this Thesis

	Gate-all-around MOSFETs for Analog/RF Applications
	Introduction
	Simulation Technique
	Device Design and Simulation Methodology
	Setup and Calibration of TCAD Simulation

	Performance of Si Multigate FETs
	Impact of Geometrical Parameters
	Impact of Channel length
	Impact of Surface Orientation
	Impact of Multichannel Stacks

	Summary

	CMOS Inverters based on Si Stacked Nanosheet FET
	Introduction
	Simulation Technique
	CMOS Inverter Design
	Process Simulation Methodology
	Setup and Calibration of Experimental Setup

	Switching Performance of CMOS Inverters
	Transfer Characteristics of CMOS Inverters
	Static Performance of CMOS Inverters
	Dynamic Performance of CMOS Inverters
	Impact of Process Variation
	Scaling Performance of Novel CMOS Inverters
	Power Performance Analysis
	Impact of p-FET and n-FET Separation

	Summary

	6T SRAM and 32-bit ALU Design Using Novel CMOS Inverter Configurations Based on Stacked Nanosheet FET
	Introduction
	Performance of CMOS Inverters in 6T SRAM Configuration
	Structure Design
	Process Design
	Read-Write Performance Analysis
	Power Performance Analysis

	Performance of NSH-based CMOS Inverters in 32-bit Arithmetic Logic Unit (ALU)
	Summary

	Emulation of Synapse using Nanowire based Charge Trap Transistor
	Introduction
	Simulation Technique
	Device Design and Simulation Methodology
	Setup and Calibration of TCAD Simulation

	Non-Volatile Characteristics of NW-CTT
	Synaptic Characteristics of NW-CTT
	Influence of Nanowire Diameter
	Influence of Thickness of Charge Trap Layer
	Influence of Gate Length
	Influence of Metal Gate Work Function

	Performance Benchmarking
	Summary

	Fully NW-CTT-based Spiking Neural Network with Unsupervised Learning
	Introduction
	Device Geometry & Simulation Methodology
	Results
	Neuronal Capability of NW-CTT
	Implementation of STDP with NW-CTT Synapse
	Implementation of Spiking Neural Network for Pattern Recognition
	Energy Consumption for Each Digit Recognition

	Performance Benchmarking
	Conclusion

	Conclusion
	Summary
	Scope for Future Research
	Electro-thermal Analysis of Novel CMOS Inverters with Buried Power Delivery Network
	Reliability Analysis of Novel CMOS Inverters with Buried Power Delivery Network
	Hardware Implementation of Spiking Neural Network with Charge Trap Transistors
	Exploration and Implementation of Charge Trap Transistors-based Spiking Neural Networks using Complex Datasets, such as CIFAR 10, CIFAR 100
	Improvement in Fabrication Complexity and Scalability of NW-CTT for Large Scale Neuromorphic Systems


	References
	List of Publications
	List of Achievements
	Biodata

