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Lay Summary

The need for Gate-All-Around (GAA) MOSFET arises from the ongoing effort to scale
transistors in line with Moore’s Law, which predicts the doubling of transistor density on
integrated circuits (ICs) approximately every 18 to 24 months. As traditional MOSFET
architectures, such as planar and Fin-FETs, struggle to scale down beyond the 5nm
technology node, GAA MOSFET, including nanowire field-effect transistor (NW-FET)
and nanosheet field-effect transistor (NS-FET), offer improved electrostatic control and
reduced short-channel effects due to their innovative four-sided gate design that fully
encloses the channel. This enables further miniaturization while maintaining performance
and power efficiency. These architectures could allow the semiconductor industry to push
the boundaries of Moore’s Law by supporting smaller, faster, and more energy-efficient
devices. However, a comprehensive evaluation of their performance is needed to assess
their full potential.

Thesis analyzes the performance of GAA devices for digital, radio frequency
(RF), and neuromorphic applications using fully calibrated three-dimensional technology
computer-aided design (TCAD) simulations. The objective is to understand the behavior
of these devices and contribute to the development of next-generation neuromorphic
computing systems in the future technology node. The study begins with an in-depth
analysis of the analog and RF performance of GAA devices for system-on-chip (SoC) and
system-in-package (SiP). The analysis explores the impact of various design parameters,
such as gate length, channel width/height, number of channels, and channel orientation.
In addition, novel stacking architectures, such as forksheet (FSH) and complementary
field-effect transistor (CFET) are investigated through process simulations to address
design-technology co-optimization (DTCO) challenges, highlighting their advantages for
scaling beyond the 5 nm technology node.

A distinctive aspect of this work is the detailed analysis of the neuronal and
synaptic functionalities of nanowire field-effect transistors (NW-FETS) for neuromorphic
applications. A key part of this investigation involves evaluating and implementing an
artificial synapse using HfOy-based nanowire charge trap transistor (NW-CTT), which
aim to develop a highly scalable and CMOS-compatible neuromorphic computing system.
Further, the assessment of NW-CT'T is carried out by designing a fully CMOS-compatible
spiking neural network for digital digit recognition. The thesis demonstrates the potential
of GAA devices to deliver superior speed and energy efficiency for digital, RF, and

neuromorphic applications.
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Abstract

The dimensional and functional scaling of MOSFET dimensions has been a key enabler of
advancements in the semiconductor industry, enhancing both performance and integration
density. As MOSFET scaling approaches its fundamental physical limits, new material
and architecture are being explored to sustain progress. Gate-all-around (GAA) devices,
particularly nanowire (NW) and nanosheet (NS) FETSs, have demonstrated exceptional
switching performance, which positions them as strong candidates for ultra-scaled CMOS
technology.  Additionally, the charge-trapping mechanism in these devices offers a
compelling opportunity to develop brain-inspired neuromorphic computing systems, which
address the energy and speed constraints inherent in traditional von Neumann computer
architecture. As experimental advancements in GAA devices accelerate, several key

questions emerge regarding their integration into advanced circuits:

(i) What is the most promising GAA architecture for digital and radio frequency (RF)

applications?

(ii) Which CMOS inverter stacking configuration with NS-FET provides the most
significant performance improvements with high integration density at ultra-scaled

gate lengths?

(iii) How can the charge-trap mechanism in NW-FETs be better utilized to achieve

multiple stable states for emulating biological synapses?

(iv) Is it possible to develop energy-efficient and highly scalable spiking neural networks

with NW-FET by exploiting the charge-trap mechanism?

The thesis work is focused on answering the above questions by performing
device-to-circuit level co-optimization of GAA devices using a well-calibrated 3D TCAD
tool, based on self-consistent solutions of the Boltzmann’s transport equation and
Poisson’s equation with incorporating quantum corrections and mobility degradation
effects. Initially, GAA devices, including NW-FET and NS-FET, are investigated for
analog/RF applications and benchmarked against their Fin-FET counterparts. The
findings indicate that NS-FET is well-suited for analog/RF applications due to their high
voltage gain, superior cut-off frequency, and maximum oscillation frequency for sub-5
nm technology nodes. Subsequently, innovative CMOS inverter configurations, such as
forksheet (FSH) and complementary FET (CFET), are explored in conjunction with

nanosheet to develop high-speed and low-power digital ICs with high integration density.
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This analysis demonstrates that CFET delivers optimal and robust switching performance
in the inverter, SRAM, and ALU configurations at the ultimate scaling limit.

In the next phase, a systematic analysis was conducted to assess the viability
of NW channel as charge-trap transistor (CTT) for emulating synapses at the 5 nm
technology node. This study focuses on understanding the role of device parameters
on short-term and long-term memory. Importantly, the nearly linear conductance
modulation of NW-CTT as a synapse promises high recognition accuracy of around
94.7% and low write energy (2.3 mJ) in a neural network configuration (784 x 100 X
10) for handwritten digit recognition. Finally, the successful co-integration of neurons
and synapses using NW-CTT is demonstrated for scalable neuromorphic hardware with
CMOS-compatible processing techniques. The neurons and synapses are co-integrated
to develop a spiking neural network, which exhibits noise-tolerant and energy-efficient
recognition for handwritten digits. The comprehensive analysis suggests that NW-CTT
presents a promising solution for high-density and low-power hardware implementations
of brain-inspired spiking learning systems.

Keywords: Nanowire-FET; Nanosheet-FET; Forksheet; Complementary FET,

Gate-all-around FET; CMOS Inverter; Neuron; Synapse; Spiking neural network
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Chapter 1

Introduction

The continuous scaling of complementary metal-oxide-semiconductor (CMOS)
technology has been a key driver in the advancement of semiconductor processing
techniques and the enhancement of the functionality of electronic devices. Over the
past four decades, the dimensions of metal-oxide-semiconductor field-effect transistors
(MOSFETSs) have shrunk according to Moore’s law. In the early phase, the miniaturization
of bulk MOSFET has encountered several challenges, such as short-channel effects (SCEs),
which lead to a loss of electrostatic integrity, high body doping, which results in increased
threshold voltage (Vpy,) variation, and band-to-band tunneling, which induces OFF-state
leakage and substrate leakage currents [1]. To mitigate these limitations, MOSFETs have
been extensively researched, which leads to innovations, such as strained semiconductors,
silicon-on-insulator (SOI) technology, and ultra-thin body (UTB) SOI [2]. The demand for
high performance and enhanced integration density has driven the scaling of nearly every
device parameter, including channel length, gate dielectric thickness, body and substrate
thickness, doping levels, and supply voltage [3]. The emergence of Fin-FET architecture
at the 22-nm technology node has significantly enhanced the gate control over the channel
region and enabled the device dimension scaling down to the 7-nm technology node [4].
However, Fin-FET is struggling to further scale down the channel length below the 7-nm
technology node due to limitations in the electrostatic control and carrier mobility [5].

To ensure scaling and performance benefits, gate-all-around (GAA), particularly
nanowire (NW) and nanosheet (NS) FETSs, have emerged as promising device architectures
for sub-5-nm technology nodes [6]. These advanced device architectures offer enhanced
electrostatic control compared to Fin-FET, enabling continued transistor scaling. They
also provide improved performance, operate at lower supply voltages, and exhibit reduced
variability in threshold voltage (Vrpg) due to their ability to function effectively with
low channel doping [7]. NS-FET and NW-FET can be produced in two configurations:
horizontal [8] and vertical [9]. Horizontal stacked NWs, as shown in Fig. 1.1, are used in
the traditional 2-D layout, where space for contact and gate placement is restricted [10].
However, the vertical NW configuration shifts the layout from a 2D to a 3D structure,
allowing a longer gate length without occupying a large area on the wafer. However,

this approach requires extensive research into process design co-optimization. Especially,
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NW-FET configuration necessitates significant spacing between adjacent nanowires, which
poses major fabrication challenges and increases the aspect ratio of the entire channel
stack [11]. Recent research on highly stacked NS-FET (see Fig. 1.1) indicates that
vertical stacking channels can significantly boost drive current and transistor density and
addresses the limitations associated with traditional NW-FET architectures [12]. These
developments underscore a shift toward more complex nanosheet stacking arrangements,
which promise enhanced performance while addressing the inherent challenges of scaling
in semiconductor technology. Thus, while NW-FET and NS-FET present viable solutions
to overcome short-channel effects and improve performance, ongoing research continues to
explore innovative configurations that will be essential for meeting the demands of future

electronic devices.

(a) Fin-FET (b) NW-FET (c) NS-FET

Figure 1.1: 3D schematic view along with cross-sectional channel-view of: (a) Fin-FET,
(b) NW-FET and (c¢) NS-FET.

Remarkably, NS-FETs have demonstrated seamless integration into advanced
electronic systems while addressing the challenge of integration density by implementing
novel inverter configurations, such as Forksheet (FSH) and Complementary FET (CFET)
[13, 14]. FSH architecture improves the integration density by using dielectric separation
between n-type and p-type MOSFETS, allowing them to be placed closer together [15].
Meanwhile, CFET enables vertical stacking of these devices and further optimizes space
and power efficiency [13]. These advances offer significant benefits, including reduced
footprint, lower power consumption, and improved performance for high-speed digital
circuits. However, several challenges remain, such as the complexity of fabricating these
intricate structures, mitigating parasitic effects, and evaluating their performance in
advanced logic circuits [16, 17]. Therefore, exploring the design and optimization of FSH
and CFET architectures with Si NS-FETs presents a valuable opportunity to advance
device performance and overcome the scaling limitations of next-generation semiconductor
technologies.

Another emerging recent application is charge trap mechanisms in advanced

transistor architectures, which can potentially develop the device for nonvolatile memory
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applications and neuromorphic computing [18, 19]. Unlike conventional transistors, charge
trap transistor (CTT) stores charge in a dielectric layer or a trap site within the gate
dielectric, which can alter the threshold voltage of the device and allow multiple states
to be stored [20]. This ability to retain information even when powered off makes
them highly attractive for next-generation nonvolatile memory technology [21, 22, 23].
Moreover, CTT is gaining attention in neuromorphic computing, as its multilevel states
can mimic the behavior of biological synapses. Recent developments have explored the
implementation of charge trap mechanisms in planar and Fin-FET device architectures,
which are highly susceptible to short-channel effects [18, 24]. This could exacerbate
variability and reliability issues in neural network implementation [21]. Therefore, there
is a pressing need for the advancement of synaptic and neuron characteristics with CTT,
which can support technology scaling and enable the development of high-density neural

networks.

1.1 Transistor Performance Metrics and Trade-offs

1.1.1 Digital Applications

Semiconductor devices are crucial in two main areas: digital integrated circuits
(ICs) and radio-frequency (RF) ICs. Digital ICs comprise logic gates, including NOR and
NAND gates, which use a combination of p-type and n-type transistors to perform specific
logical functions. It is found that by controlling these gates, transistors act as switches,
which allows high currents to pass when in the ”on” state and minimal currents in the
7off” state. Therefore, with a wide array of expectations and requirements, it is beneficial
to define Figures of Merit (FOMSs) that cover essential aspects of transistor performance,

from the device level to the circuit level.

e The application of gate voltage to the channel is essential for utilizing MOSFET
as switches, and this necessitates a high current value in the ON-state and a low
current value in the OFF-state. A substantial ON-state current facilitates the rapid
charging of capacitive loads, typically comprising the gates of one or more following
transistors. In contrast, a low OFF current minimizes the leakage current, which
predominantly governs static power dissipation. The ON/OFF current ratio is a
critical FOM for digital switches, with higher values indicating superior performance.
According to the 2023 requirements outlined by the International Roadmap for
Devices and Systems (IRDS), 1 nm technology node GAA MOSFETSs are expected

to possess an ON state current of 775 pA/pum at an OFF current of 10 nA/um and
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an ON/OFF current ratio within the range of 105 — 107 for high-performance logic
applications [25]. Achieving such an ON/OFF current ratio is dependent on the

semiconductor bandgap and gate control efficiency.

Another significant FOM used to evaluate switching characteristics is the
subthreshold swing (SS). It quantifies the rate at which the current increases below

the threshold voltage (i.e. when Vg < Vg for n-FETs) as

_dVe
d(logm(IDS))

where SS is typically measured in millivolts per decade of current (mV /dec), Vi is the

SS = (1.1)

gate voltage, and Ipg represents the drain to source current. A steeper subthreshold
slope indicates a more abrupt transition between the OFF-state and ON-state with
respect to gate voltage. Ideally, SS should be as small as possible. Conventional Si

MOSFET has a lower limit of 60 mV /dec.

Drain-induced barrier lowering (DIBL) is another important FOM. In the
short-channel MOSFET, the source-drain potential has a strong effect on the band
bending over a significant portion of the device. This results in the variation in the
sub-threshold current of the device. This effect is referred to as DIBL. In simpler
terms, the DIBL occurs when the depletion regions of the drain and the source
interact near the channel surface to lower the source potential barrier. Further, it is
assessed by computing the change in the threshold voltage (Vp) between the drain
voltages Vpg = 0.05 V and Vpg = 0.5 V and normalizing it by AVpg, as given

AVra

DIBL =

(1.2)

The intrinsic device delay (1 = C4Vga/Ion) serves as another critical metric for
evaluating the switching behavior of the device. Here, Cy, V4, and Ioy represent the
gate capacitance, supply voltage, and ON-state current, respectively. It highlights
the inherent constraints on the switching speed of the device and its ability to operate

for distinct frequencies.

The power delay product (PDP) represents a vital metric for evaluating the switching
performance of a device. It quantifies the energy expenditure needed for the
transition from the ON- to OFF-state transition. It is quantified as Py, = aPDPf,

where f denotes the operating frequency, and « represents the activity factor.
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e One of the crucial static performance metrics for the basic CMOS digital block
includes maximum DC gain. In multistage logic circuits, an inverter with a maximum
DC gain exceeding 1 is highly desirable due to its ability to enhance circuit robustness

against errors and promote regenerative behavior.

e One of the crucial static performance metrics for the basic CMOS digital block
includes noise margin. In the context of multilevel logic circuits, an inverter with a
high noise margin is essential as it signifies the ability of an inverter to tolerate noise
or unwanted voltage variations on its input without changing its intended output

state.
1.1.2 Analog/Radio Frequency Applications

e The important performance metric for an RF transistor is the unity current
gain frequency or cutoff frequency (fr), which represents the maximum operating
frequency at which a transistor might prove useful. It is also the most common

measure of transistor speed. The intrinsic cutoff frequency defined as:

_ gm
fr= 2Cs + Cpa) (1.3)

Where Cgy, Cyq and g, are the gate-to-source capacitance, gate-to-drain
capacitance, and transconductance, respectively. To achieve high fp, the transistor
transconductance (g,,) should be high, and all other elements of the equivalent

circuit should be as small as possible.

o The intrinsic gain (Ayg) is also an important performance metric of the RF
transistor, which measures the maximum possible low-frequency small-signal voltage
gain it can provide. The intrinsic gain is given as:

Ay = I (1.4)
9ds
The voltage gain of a transistor is generally maximized by lowering output

conductance (ggs) and hence operating it in the deep saturation mode.

e Another important parameter for the RF transistor is the maximum oscillation
frequency or unit power gain frequency (fqz). It represents how fast the channel

power transmission is modulated by the gate voltage. The f,,,,, is defined as:

Jr
2\/gds(Rs + Rg) + 271—fTRgCg

Where Ry and Ry are respectively the resistance of the gate and source terminals,

fmam = (1.5)
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and C, is the gate capacitance. The low output conductance (gg4s) is also one of the
key factors in increasing the f,,q,. Thereby, a high f,,.,; can be attained when the

transistor is driven into deep saturation.

Synaptic Dendrites

Neuron Transmitters

Figure 1.2: Schematic representation of biological neuron and synapse.

1.1.3 Neuromorphic Applications

Neuromorphic computing systems offer a promising alternative to overcome the
limitations of von Neumann architecture by leveraging several key advantages, such
as extensive parallelism, distributed processing, adaptability, self-organization, fault
tolerance, stability, energy efficiency, and robustness. Various non-volatile memory
technologies have demonstrated their effectiveness in mimicking the behavior of synapses
and neurons [26]. In these systems, neurons serve as basic computational units that
perform nonlinear activation or thresholding functions, while synapses act as local memory
elements that are densely interconnected through communication channels, as shown in
Fig. 1.2. Given the diverse expectations and requirements of neuromorphic systems, it is
essential to outline the key characteristics that encompass the critical aspects of artificial

synaptic and neuronal implementation [27], [28].
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Neuronal Characteristic Requirements

e The neuron must exhibit a threshold-based response, similar to how biological
neurons fire when the input signal surpasses a certain threshold. Artificial neurons
should be capable of generating non-linear activation functions, where the output
remains low for sub-threshold inputs and sharply increases when the input crosses a

certain level, mimicking the all-or-nothing firing mechanism in biological neurons.

o Artificial neurons must be capable of receiving multiple input signals, which can be
weighted to reflect their importance. This mimics the way biological neurons receive

signals from various synapses.

e Artificial neurons must operate with low power consumption. Energy-efficient
devices can mimic biological operations at a fraction of the energy cost of traditional

computing elements.

e Artificial neurons should be able to process multilevel inputs and outputs, which
represent various strengths of synaptic transmission or neural firing, to better capture

the gradation seen in biological systems.

o Artificial neurons should exhibit resilience to noise in input signals, ensuring reliable

performance even when faced with variations or inaccuracies in data.
Synaptic Characteristic Requirements

o Distinguishable multi-state capability is an important property of artificial synapse
because the neuro-inspired algorithms often leverage these analog synaptic weights
to facilitate pattern learning and feature extraction. Interestingly, a high number of
multilevel states (e.g., exceeding hundreds of levels) can enhance learning capabilities

and increase the robustness of the network.

e Dynamic range is another important FOM as it represents the ratio between
maximum and minimum conductance. A wider dynamic range enhances the mapping
accuracy of algorithmic weights to device conductance, as these weights are often

normalized within a specific range, such as between 0 and 1.

e Linearity in weight serves as important criterion as it refers to the consistency of the
relationship between device conductance and the number of identical programming

pulses applied. Ideally, this relationship should be both linear and symmetric,
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allowing for a straightforward mapping of algorithmic weights to the conductance of

the device.

e Energy efficiency is one of the crucial criteria for artificial synapses because, in
biological synapses, the energy required for each synaptic event is remarkably low,
typically ranging from 1 to 10 femtojoules (fJ). This level of energy efficiency is a

key benchmark for designing neuromorphic systems.

e Retention and Endurance are significant FOM for evaluating artificial synapses.
Non-volatile synaptic devices should serve as long-term memory while retaining
data for up to ten years at the maximum chip operating temperature (e.g., 85°C).

Moreover, endurance reflects the number of weight updates a device can withstand.
1.2 State-of-Art of GAA MOSFETs

Beyond the 7 nm technology node, Fin-FETs face significant challenges in scaling
down the device dimensions due to the onset of short-channel effects [4]. To overcome
these limitations and ensure continued performance improvements, GAA devices, such
as NW-FET and NS-FET, have emerged as promising alternatives for sub-5 nm
technology nodes. In recent years, substantial advancements have been made in the
experimental fabrication and simulation studies of GAA devices for digital applications
(67 , 29]. Especially, stacked NS-FET has demonstrated a higher ON/OFF ratio, reduced
drain-induced barrier lowering (DIBL), and lower device delay compared to their Fin-FET
and NS-FET counterparts under the same technology node [29, 30]. Despite the promising
performance of GAA devices, several critical aspects remain unexplored, particularly
for future technology nodes. Key areas that require further investigation include their
scalability to sub-3 nm nodes, analog and RF performance, optimization of threshold
voltage, and reliability study. Additionally, integrating NS-FETs with advanced circuit
designs and their potential for enhancing power efficiency and performance in complex
systems have yet to be fully understood. Addressing these gaps is essential for realizing
the full potential of NS-FETs in next-generation semiconductor technologies. Key areas

that require further investigation include

e Over the past few years, silicon multigate devices, such as Fin-FET, NW-FET,
and NS-FET, have been explored for digital applications [29, 30]. However, the
RF performance remains unexplored in the proper device design space. Therefore,

it is necessary to find a promising FET for RF performance applications for
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future technology nodes. Further, it becomes worth understanding their analog/RF
performance for guiding experiments and encouraging more efforts in this direction

using numerical simulations.

e The stacked NS-FET paved the way for the innovation of novel CMOS architectures,
such as FSH and CFET [13, 31, 32]. These novel CMOS architectures present
switching performance boosts and area efficiency over the conventional CMOS
inverters for the advanced technology nodes [13, 32]. Moreover, these CMOS
inverters-based SRAM have experimentally and theoretically proven to demonstrate
exceptional read and write noise margin, operating frequency, and lower power
consumption [32, 33, 34, 35, 36]. The studies indicate that these novel CMOS
inverters could reduce routing congestion due to their exceptional performance
benefits with the p-n separation scaling. To our knowledge, no qualitative studies
have uniformly benchmarked the inverter-level performance of CFET, FSH, and
s-NSH configurations in a single systematic study. Therefore, it becomes increasingly
important to understand the performance and scaling advantages of CFET and FSH
inverter configurations for developing high-speed and low-power digital ICs with

high-density integration capability.

e The exploration of stacked nanosheet-based in six transistors static random access
memory (6T SRAM) [14, 34, 37, 38, 39] and logic gates [40, 41] have underscored its
potential in memory and logic applications. However, no study has presented the
performance advantages of 6T SRAM cells with CFET, FSH, and s-NSH inverter
configurations for future technology nodes. In the case of logic aspects, many recent
studies on CFET inverters have designed common logic gates [40, 42]. However,
the performance analysis of ALU blocks using FSH and s-NSH configurations has
not been thoroughly presented. Therefore, there is a pressing need for a detailed
investigation of SRAM and ALU performance with s-NSH inverter architectures to

implement efficient memory and logic circuits, respectively.

e A three-terminal CTT with a high-k oxide gate, such as HfOs, SigNy, and
Al5,O3, has emerged as a promising synaptic element due to their full CMOS
compatibility with three-dimensional (3-D) integration capability, high dynamic
range, and superior retention capability [18]. Interestingly, the enhancement of
charge trapping using radiation doses in high-k CTT has made significant progress
in achieving high threshold voltage modulation (AVry) [18, 21], which renders
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them potential candidates for facilitating multistate operations in analog synaptic
devices. Ansari et al. have recently reported a charge trap mechanism using
SigNy-based stacked NS-FETs [43, 44]. However, their model assumes a negligible
impact from the oxide layer trap to validate the current characteristics of both the
simulated and experimental device geometry, which results in inaccurate predictions.
Additionally, the effect of self-heating caused by the trap mechanism has not been
considered. Thus, for accurate device performance and reliable modeling, careful
modeling and analysis of GAA-based CTT is essential, particularly to achieve
superior non-volatile memory characteristics and enhanced synaptic performance

in neuromorphic applications.

e The integration of CTT in neuromorphic systems has seen rapid advancements.
Several studies have explored CTT-based synaptic crossbars to evaluate their
performance in spiking neural networks (SNNs) for brain emulation with off-chip
training [20]. However, these crossbar arrays, utilizing planar SOI MOSFET
has reported significant training times and only moderate power efficiency [20].
Additionally, no research has been carried to understand the neuronal behavior in
CTT. Thus, this highlights a pressing need to develop fully CTT-based spiking neural
networks that implement both synapses and neurons to create more energy-efficient

brain-emulating systems.

Addressing these challenges is crucial for realizing the potential of Si-based GAA
devices and facilitating their integration into a wide range of electronic devices and

systems.
1.3 Problem Definition

NS-FET and NW-FET have demonstrated remarkable advancements and scalability
in the implementation of inverter configurations, while an in-depth exploration of
GAA-based inverters at device, circuit, and block levels is still missing. Apart from
conventional computation, few studies have highlighted the potential of GAA devices in
neuromorphic computing, which requires in-depth exploration. Therefore, the current
scope of this research is motivated by extensive performance benchmarking and rigorous
optimization of device design parameters of GAA devices for digital and neuromorphic
computing system applications. Specially, the work in this thesis aims to address the
following specific aspects of silicon-based GAA devices for the future integrated design

aspects:
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o Identifying the most suitable GAA architecture for analog/RF applications in sub-5

nm technology nodes.

e Analyzing and benchmarking silicon stacked nanosheet-based novel CMOS inverter
configurations, such as CFET, FSH, and conventional stacked nanosheet (s-NSH)
with a Buried Power Delivery Network (BPDN) for future technology nodes.

e Determining the optimal stacked nanosheet-based CMOS inverter configurations,

such as CFET, FSH, and s-NSH, for memory and logic applications.

o Investigating the synaptic characteristics of NW-CTT for CMOS-compatible

neuromorphic systems.

e Designing and analyzing spiking neural networks using nanowire-based CTT as

neurons and synapses to develop energy-efficient neuromorphic systems.

This comprehensive study will provide insights into GAA architectures and facilitate

advancements in analog/RF, memory, logic, and neuromorphic applications.
1.4 Thesis Framework Overview

The thesis is organized into seven chapters. The brief descriptions of each chapter
are as follows.

Chapter 1 briefly describes the motivation, problem definition, and outline of the
thesis.

Chapter 2 focuses on the analysis and design of silicon-based multigate devices, such
as fin field effect transistors (Fin-FET), gate all-around nanowire field effect transistors
(NW-FET), and nanosheet field effect transistors (NS-FETs) for sub-5 nm technology
node. The chapter primarily centers around the comparative analysis of Fin-FET,
NW-FET and NS-FET, highlighting their potential performance benefits for analog/RF
applications. Initially, the chapter introduces a 3-D TCAD simulation methodology that
accurately describes the electronic transport of multigate devices, which highlights its
accurate captivity of short channel and quantum effects. Subsequently, it explores the
advantages of Fin-FET, NW-FET, and NS-FET for analog/RF applications, comparing
important metrics such as transconductance, output conductance, voltage gain, cut-off
frequency, and maximum oscillation frequency with respect to channel length scaling,
geometrical parameters scaling (fin width and height, nanosheet thickness and width,

nanowire diameter), surface orientation and multichannel stacks.
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Chapter 3 discusses the power performance area analysis of silicon CMOS inverters,
such as CFET, FSH, and s-NSH with BPDN for 5 nm and beyond technology node. The
chapter begins by discussing the process steps involved in designing the CMOS inverters in
Synopsys 3-D TCAD tool. It then examines the transfer characteristics and short-channel
performance metrics of p-FET and n-FET of CMOS inverters. Subsequently, it will
analyze the static performance metrics, such as gain and noise margin, and dynamic
performance metrics, including power versus frequency. Finally, the chapter explores
the inverter performance dependence on supply voltage Vpp, load capacitance with and
without the back end of lines, device scaling, and p-n separation.

Chapter 4 delves into an in-depth investigation of memory and logic applications by
designing the 6T SRAM and 32-bit arithmetic logic unit, respectively, using CFET, FSH,
and s-NSH inverters. The chapter begins by discussing the process flow of 6-T SRAM
using CFET, FSH, and s-NSH inverters. Subsequently, it compares the read and write
static noise margin, and read and write delay of CFET-, FSH- and s-NSH-based SRAM
with respect to the technology node. It then discusses the power performance area benefits
of device scaling. Finally, it investigates the device scaling performance of CFET-, FSH-,
and s-NSH-based ALU in terms of energy, power delay product, and throughput.

Chapter 5 focuses on a systematic suitability analysis of HfOs-based nanowire
charge trap transistor (NW-CTT) as artificial synapses in the 5 nm technology node.
The chapter investigates both short-term and long-term memory characteristics while
evaluating recognition accuracy and energy efficiency in a 784 x 100 x 10 neural network
configuration. The synaptic characteristics of NW-CTT are examined using a fully
calibrated technology computer-aided design (TCAD) tool, based on the self-consistent
solutions of Poisson’s equation, Boltzmann transport equation, and self-heating equations.
The chapter initially investigates the non-volatile characteristics of NW-CTT in the
presence of interface oxide charges (Nj). Subsequently, we delve into an in-depth analysis
of synaptic properties, focusing on long-term memory metrics. To evaluate the NW-CTT
performance in the neural network’s operation, the 784 x 100 x 10 neural network is
designed to analyze the reading accuracy using the MNIST dataset. The conductance
values obtained from TCAD simulations serve as synaptic weights in the NeuroSIM neural
network simulator [45]. Furthermore, the chapter discusses the short-term and long-term
memory characteristics along with reading accuracy and energy consumption as functions
of crucial device design parameters, such as nanowire diameter, charge trap layer thickness,

gate length, and metal gate work function. Finally, we benchmark the device and neural
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network performance metrics of NW-CT'T against state-of-the-art synaptic devices.

Chapter 6 delves into the implementation of a fully CMOS-based neuromorphic
computing system using NW-CTT. Initially, the chapter introduces a 3-D TCAD
simulation methodology that accurately captures the charge-trapping mechanism in
NW-CTT. It then proceeds by examining the neuronal performance of NW-CTT. After
that, it explores the spike timing dependent plasticity (STDP) behavior in NW-CTT as a
synapse. Subsequently, it discusses the design of leaky integrate fire neuron and synaptic
crossbar array, which is implemented in the TCAD simulator. Finally, the performance of
NW-CTT-based SNN is thoroughly examined under noise and process, temperature and
voltage (PVT) variations using a fully calibrated three-dimensional TCAD tool.

Chapter 7 mainly includes the conclusion of the current research and outlines a few

directions for future work from a modeling perspective.
1.5 Novel Findings in this Thesis

As the GAA devices are still being developed, the work in this thesis contributes in
numerous ways to the field of modeling, physics, and application. The major contributions
and the respective conclusions are as follows.

B The initial work involves the exploration of multigate devices (Fin-FET, NW-FET,
NS-FET) with a focus on finding suitable devices for analog/RF applications in sub-5 nm

technology nodes.

e Among Fin-FET, NW-FET, and NS-FET, NS-FET exhibits excellent current
characteristics for sub-5 nm technology nodes with a larger voltage gain,
transconductance, output conductance, cut-off frequency, and maximum oscillation

frequency.

e The cut-off frequency and maximum oscillation frequency of 5-nm NS-FET is
observed to be around 373 GHz and 389 GHz, respectively, which provides the best

opportunity to boost the high-frequency performance limit of silicon technology.

e Our findings indicate that the performance benefits of NS-FET are retained with
decreasing the channel length, increasing the effective device width, and stacking

the multichannels.

B To determine the performance of GAA devices for digital ICs, we have developed
and benchmarked stacked NS-FET-based CMOS inverters with BPDN, including CFET,

FSH, and s-NSH using process simulation for sub-5 nm technology node.
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e Our findings reveal that the CFET inverter presents a promising opportunity

to achieve high operating frequency and reduced power consumption with area

efficiency compared to its counterparts in the nanoscale regime.

The results show that the device gate capacitance and the fringing field play an
essential role in the inverter-level performance degradation that can be minimized

by optimizing the p-n separation.

The CFET inverter consistently outperforms FSH and s-NSH inverters across all
evaluated technology nodes and design parameters, underscoring its potential as the

preferred choice for future ultra-dense and low-power logic applications.

B With the ever-increasing demand for power and area-efficient memory and logic

applications, we investigate the device-to-circuit level performance of CFET, FSH, and

s-NSH inverters by developing 6T SRAM and 32-bit arithmetic logic unit (ALU) using

process simulation for sub-5 nm technology node.

e Our findings reveal that CFET-based SRAM with lower power consumption

and superior frequency than FSH- and s-NSH-based SRAM at iso-frequency and
iso-power, respectively, presents chip-level improvement in advanced technology

nodes.

At basic logic block level for 1 nm technology node, CFET inverter exhibits reduced
delay and power delay product over FSH inverter, while FSH inverter offers improved

performance than s-NSH inverter.

Our device-to-circuit performance analysis and benchmarking show that the CFET
inverter configuration is well suited for low-power and high-speed digital IC

applications in the ultimate scaling limits.

B To develop a CMOS-compatible non-volatile memory and electronic synaptic

device, this research explores the NW-CTT through fully calibrated TCAD simulations.

e The charge trapping and de-trapping of interface states in NW-CTT has

demonstrated the memory window of around 1 V between programming and erase

pulse when the Nj; = 1 x 10’7 em ™ present in HfO, layer.

Our analysis highlights the critical role of optimal nanowire diameter, the thickness
of the charge trapping HfO, layer, gate length, and metal gate work function
in enhancing short- and long-term memory characteristics while concurrently

preserving recognition accuracy and energy efficiency.
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e Our results provide valuable insights into the synaptic behavior of conventional
NW-CTTs and offer guidance for further harnessing their weight-update capabilities

in neuromorphic computing applications.

B To develop highly scalable and energy-efficient spiking neural networks (SNNs),
neurons and synaptic elements using silicon NW-CTT are designed using a fully calibrated

TCAD tool.

e Our findings highlight the capability of NW-CTT to attain multi-threshold states,

which is similar to bio-neuron.

¢ Our findings indicate that NW-CTT as a synapse has the capability of demonstrating

spiking timing-dependent plasticity characteristics.

e Our analysis shows that the NW-CTT-based SNN exhibits superior recognition

accuracy in the presence of noise and process variations.

e Our results show that the integration of NW-CTT in advanced neuroelectronic
systems holds the potential to enable energy-efficient neural signal analysis with high
spatiotemporal precision, positioning it as a promising candidate for brain-inspired

neuromorphic applications.
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Introduction




Chapter 2

Gate-all-around MOSFETs for
Analog/RF Applications

2.1 Introduction

Several experimental and theoretical works have systematically explored and
benchmarked the benefits of NS-FET over NW-FET and Fin-FET for logic applications
in sub-5-nm technology node [6, 30, 46]. Despite multigate devices, such as Fin-FET,
NW-FET, and NS-FET, promise excellent switching performance in the ultimate scaling
limit, they can be an outstanding contender for high-gain and high-frequency RF
operations. Since Silicon-based multigate devices have excellent noise performance, low
power consumption, high integration, low cost, and the ability to be integrated into
a system on chip (SoC) [47, 48], it becomes worth understanding their analog/RF
performance for guiding experiments and for encouraging more efforts in this direction
using numerical simulations.

Early experimental work on 14 nm channel RF Fin-FET demonstrated a record
peak cut-off frequency (fr) and maximum oscillation frequency (fmax) of roughly 314
and 180 GHz, respectively, indicating a considerable improvement in RF performance
over planar-FET technology [49]. In addition, Fin-FET is emerged as an viable choice
for RF system designing with the fr greater than 6 GHz [50]. It is observed in the
recent studies that NS-FET could offer 10% better voltage gain and cut-off frequency
over the Fin-FET architecture at 5-nm technology node because of the reduced Miller
capacitance [51]. More recently, gigahertz fr and fmax have been reported with NW-FET
and NS-FET in sub-5-nm technology node [8, 52]. Several simulation works have been
devoted to understand analog/RF performance of two or multiple channel stacked NS-FET
[51, 53, 54], but single channel NS-FET are yet remained unexplored. Moreover, no
qualitative studies have been conducted to properly investigate the benefits of NS-FET
over NW-FET in the proper device design space. Therefore, NS-FET needs the detailed
analog/RF performance investigation that will be useful for assessing their performance
potential and for understanding issues that are related to device design parameters scaling.

In this chapter, we systematically explore and compare the analog/RF performance

metrics of Fin-FET, NW-FET, and NS-FET for the sub-5-nm technology node. In the
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initial performance analysis, we consider single channel geometries of Fin-FET, NW-FET,
and NS-FET with (100) surface orientation as this orientation could be a more favorable for
enhancing the electron mobility [55]. Further, single channel is found to be more suitable
for achieving lower parasitic capacitance [53]. Subsequently, we find the analog/RF
performance metrics variation with device design parameters, such as channel length,
channel width, height/thickness and diameter, surface orientation, and multichannel
stacking. The performance investigation is carried out using a fully calibrated technology
computer-aided design (TCAD) platform, which accurately captures the fundamental
essential physics of Silicon material with short channel device physics. Our studies not
only reveal the performance potential of multigate devices in ultimate scaling limit but
also identify optimization directions and windows for determining important analog and

RF figure-of-merits (FoM).

2.2 Simulation Technique

2.2.1 Device Design and Simulation Methodology

NS-FET

NW-FET

Figure 2.1: Simulation geometries: cross-section view (top) and side view (bottom) of
Fin-FET, NW-FET, and NS-FET at 5-nm technology node (18 nm channel length).

Fig. 2.1 shows the device schematics of 18-nm channel length Fin-FET, NW-FET
and NS-FET, which are used for initial performance analysis. The device dimensions for
18-nm to 12-nm channel lengths are selected from IRDS 2020 projection that represents
5-nm to 1-nm technology node [56]. Further, the channel length below 12 nm is scaled

down from low power International Technology Roadmap for Semiconductors roadmap
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Figure 2.2: Experimental verification of simulation approach: transfer characteristics of 3
channel stacked NS-FET from our 3-D TCAD simulation and experimental results [8] at
Vps = 0.05 V and Vpg = 0.7 V for 1-nm technology node (12 nm channel length).

2013 requirements [57] as IRDS specifications are limited to 1-nm technology node. The
fin width (Wy;,) and fin height (Hy;y,) for Fin-FET are taken to be around 7 nm and
46 nm, respectively, which is considered from previous experimental studies [58]. In the
case of NW-FET, the diameter (D) of NW is assumed to be around 10 nm as the
recent experiment demonstrated excellent switching performance at this width [59],[60].
The thickness (T,s) and width (W,s) of NS-FET is considered around 5 nm and 45 nm,
respectively, which is close to experimental geometry [8]. Further, the effective width
(Wegy) of Fin-FET, NW-FET and, NS-FET is found to be around 99 nm (Wers fin =
2Hfin, + Wiin), 31.4 nm (Wesf nw = mDpyw) and, 100 nm (Weps ps = 2T + 2Whs),
respectively. The stack of 0.6 nm SiOy and 1.7 nm HfOs is used as the gate oxide
in the three devices that correspond to the effective oxide thickness (EOT) of 0.9 nm.
Further, the source (S) and drain (D) regions of length Lg/p = 10 nm are doped to n-type
with the doping concentration of Ng;p = 1 X 10%° ecm™3. By keeping other parameters
constant, we have varied the structural parameters, such as channel length, channel width,
height/thickness and diameter, and channel number in later simulations.

The performance investigation of multigate devices is done using fully calibrated
three-dimensional (3-D) Sentaurus TCAD simulation [61], based on self-consistent
solutions of the drift-diffusion equation, continuity equation, and Poisson’s equation. The
Density-Gradient quantization model is employed to account for the quantum confinement
effect and source-to-channel tunneling current [62]. Further, the low field ballistic model
is incorporated to account for the quasi-ballistic transport. Furthermore, the Slotboom

bandgap narrowing model is considered to account for the bandgap narrowing from high
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doping of the source and drain regions [63]. Lombardi mobility, and inversion and
accumulation layer mobility models are used to incorporate the mobility degradation
at the silicon and SiOs interface due to the remote phonon surface and Coulomb
scatterings [64]. Further, the Shockley-Read-Hall recombination model is incorporated
to activate the generation and recombination conditions of carriers in the continuity
equation [46]. For computing the analog/RF performance metrics, the devices are operated
in the mixed-mode simulation and small-signal equivalent circuits are constructed from
Y-function method [51]. A more realistic value of the cut-off frequency (fr), and maximum
oscillation frequency (fmaz) are computed by exploiting the short circuit current gain

(H21 = |Y12/Y11]), and maximum available gain (MAG) to 0 dB [65].
2.2.2 Setup and Calibration of TCAD Simulation

Fig. 2.2 shows the I-V characteristics of 3-channel stacked NS-FET from our
simulation approach and experimental results [8] for 12-nm channel length. It is observed
that simulated Ipgs — Vgg characteristics show an excellent match with the experiment
results for all gate and drain voltages. This proves that simulation consideration accurately
captures the short channel essential physics of NS-FET. Further, Fin-FET and NW-FET

are simulated using the same methodology.

2.3 Performance of Si Multigate FETs
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Figure 2.3: Device I-V characteristics of Fin-FET, NW-FET and NS-FET at room
temperature: Transfer characteristics (Ip — Vgg) at (a) Vps = 0.2 V and (c¢) Vps = 0.7
V; and output characteristics (Ip — Vpg) at (b) Vg =0.2 V and (d) Vgg = 0.7 V.
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Figure 2.4: Energy band profile along the transport direction for Fin-FET, NW-FET, and
NS-FET at distance 1 nm below the top oxide-semiconductor interface at Vpg = 0.7 V
for (a) Vgs =0.4 V, and (b) Vgg =0.8 V.

Fig. 2.3(a) and (c) show the transfer characteristics of Fin-FET, NW-FET, and
NS-FET at Vpg = 0.2 V and Vpg = 0.7 V, respectively for 5-nm technology node. For
uniform performance benchmarking, the transfer and output characteristics of the three
devices are obtained at the fixed OFF current [Ipg(Vas =0V and Vpg = 0.2/0.7 V)] of
around 10 nA/pum by adjusting the gate-metal work function difference. NS-FET and
NW-FET offer higher drive current over Fin-FET because the surrounding gate from all
sides produces a significant inversion charge in the channel region. Importantly, NW-FET
exhibits marginally higher drive current over NS-FET for Vgs < 0.6 V, while NS-FET
observes slightly higher drive current for Vg > 0.6 V. To get an insight into the difference
in the current density, Fig. 2.4(a) and (b) plots the band profile of Fin-FET, NW-FET,
and NS-FET at a distance 1 nm below the top oxide-semiconductor interface at Vg = 0.4
V and Vg = 0.8 V, respectively. It is seen that, at low Vgg, NW-FET enhances the gate
modulation of the channel conduction band profile, which increases the contribution of the
thermionic current component. When Vg increases beyond 0.6 V, a larger effective width
allows to appear the full Vizg across nanosheet that results in higher gate modulation of
channel region band profile. Consequently, it leads to a larger drive current for NS-FET
at high Vigg. It is observed that three devices have identical difference in Ip — Vgg
characteristics for both Vpg = 0.2 V and Vpg = 0.7 V. It is found that the peak electric
field in the channel region is around 400 kV/cm at Vpg = 1 V, which is considerably

smaller compared to avalanche breakdown fields [66].
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Figure 2.5: Analog/RF performance metrics of Fin-FET, NW-FET and NS-FET at Vpg =
0.7 V: (a) transconductance (g,), (b) gate-capacitance (Cy),and gate-capacitance (Cyq)
(c) output conductance (gq4s) as a function of Vg, (d) voltage gain (Ay = gm/gds), (€)
cut-off frequency (fr), and (f) maximum oscillation frequency (fiqz) as a function of Ipg.

Fig 2.5 shows the important analog/RF figure of merits (FoM) for Fin-FET,
NW-FET and NS-FET at Vpg = 0.7 V. It is observed from Fig. 2.5(a) that the three
devices exhibit the similar trend in transconductance (g, )-Vas characteristics. The linear
increment in g,, for low Vgg is observed, while the peak in the g, value appears and
decreases further with increasing Vzg. The reason for the g,, decrements is that the gate
modulation of the channel potential is not perfect and degrades with increasing Vigg. This
gm decrements at high Vg is also reported in previous works on multigate devices [53][67].
A maximum value of g, for NS-FET is obtained around 1.8 m.S/um, which promises high
cut-off frequency and voltage gain. Fig 2.5(b) shows the gate capacitance (Cy) which is
a combination of (Cys + C,4q) where Cys is the gate-to-source capacitance and Cyq is the
gate-to-drain capacitance, as a function of Vizg. It is observed that the Cy increases rapidly
with increasing the Vizg. This is due to source originating charge increases in the channel
region that linearly increases the Cys component. It is found that Cyq decreases at low

Vies and appears nearly constant for high Vigg values. This is due to inversion charge in
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the channel region for a given Vpg becomes less susceptible to the change of Vig.

It is also observed from Fig. 2.5(a) and Fig 2.5(b) that g,, of Fin-FET is higher
than NW-FET at high Vg, but Cy of NW-FET is higher at high Vigg. The Fin-FET
has better gate modulation of the channel conduction band profile over NW-FET due to
higher drain-induced barrier lowering (DIBL) (shown in Fig. 2.6), which increases the gy,
values. However, a higher drain charge contribution for Fin-FET significantly rises the
Cyq component in the Cy, as shown in Fig. 2.5(b). Consequently, it results in C, over
NS-FET for Vs > 0.7 V. Fig 2.5(c) shows that Fin-FET has higher values of output
conductance (gqs) due to higher DIBL, while NS-FET observes the least value of ggs.
Therefore, the multigate device, which effectively suppresses the short channel effects,
could benefit the performance in multiple ways by enhancing the drive current, decreasing
Cy, and decreasing the gq;.

Fig. 2.5(d) shows the voltage gain (Ay = g/ g4s) as a function of Ipg. It is observed
that NS-FET and NW-FET has nearly same Ay, while this Ay is around 2x higher as
compared to Fin-FET. The NS-FET, offers the Ay of around 32 V/V, which is around 2.6
x higher than that of planar double gate MOSFET technology at 0.4 mA/um Ipg for the
same device geometry. Therefore, the multigate device architectures seems to be a strong
candidate for high-gain amplifier due to improvement in g,, and g4 values.

Fig. 2.5(e) shows the unity current gain/cut-off frequency (fr) as a function of
Ipg for Fin-FET, NW-FET and NS-FET at Vpg = 0.7 V. The peak fr of NS-FET is
found to be around 373 GHz at Ips= 0.4 mA/um, which is around 1.5x higher than
that for Fin-FET. Further, this fr value for NS-FET is nearly 1.6 x higher than that
for planar double gate MOSFET (229 GHz) at 0.4 mA/um Ipg for the same device
geometry that makes them a promising candidate for enhancing RF performance limit at
short channel length. Further, a high value of fr reveals that external fringing parasitic
capacitance does not limit the performance of multigate devices. Fig. 2.5(f) shows unity
power gain/maximum oscillation frequency (fpq.z) as a function of Ipg for Fin-FET,
NW-FET and NS-FET at Vpg = 0.7 V. The model equation for f,,; can be given
as fmax = f1/2\/gas(Rs + Rg) + 27 frRyCy [65]. It is observed from Fig. 2.5(f) that
NS-FET has considerably higher value of fi,.x as compared to NW-FET and Fin-FET.

This is due to the dependence of frax on ggqs and gate resistance (Ry). NS-FET exhibits
smaller values of g4, and Ry, which allows the peak fi,,q, of around 389 GHz. Therefore,
NS-FET outperforms Fin-FET and NW-FET in analog/RF FoM, and appears to be a

strong candidate for high-frequency applications at 5-nm technology node.
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Figure 2.6: Impact of geometrical parameters on the short channel performance metrics
of Fin-FET, NW-FET and NS-FET at Vgg = 0.7 V and Vpg = 0.7 V for the fixed OFF
current of around 10 nA/pm: (a) DIBL and (b) sub-threshold slope (SS) as a function
of fin width and fin height, (c¢) DIBL and (d) SS as a function of nanosheet width and
thickness, (e) DIBL and (f) SS as a function of nanowire diameter.

2.3.1 Impact of Geometrical Parameters

Since the gate efficiency can be improved by tailoring the geometrical parameters of
multigate channels, this section explores short channel and analog/RF performance metrics
dependency on the geometrical parameters of Fin-FET, NW-FET and NS-FET. Fig. 2.6
explores the DIBL and sub-threshold slope (SS) as a function of Fin-FET, NW-FET and
NS-FET geometrical parameters. The gate length of devices are kept fixed to 18 nm,
when the geometrical parameters are varied. It is observed that the DIBL of Fin-FET
increases with increasing the fin height and width because the gate control over channel
region reduces, while SS shows marginally increment. In the case of NS-FET, DIBL
increases significantly with increasing channel width and thickness due to significant loss
in the gate controllability. Further, the increment of SS is observed marginally when the
NS-FET width and thickness are scaled up. The SS and DIBL of NW-FET increases
rapidly with the increase in nanowire diameter. This is because wider channel weakens

the gate electrostatic control on the channel regions and increases the influence from the
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Figure 2.7: Impact of geometrical parameters on the analog/RF performance of Fin-FET,
NW-FET and NS-FET at Vgg = 0.7 V and Vpg = 0.7 V for the fixed OFF current of
around 10 nA/um: (a) Ay and (b) fr as a function of fin width and fin height, (c) Ay
and (d) fr as a function of nanosheet width and thickness, (e) Ay and (f) fr as a function
of nanowire diameter.

drain voltage.

The minimum value of SS is found to around 72.5 mV/dec, 60.8 mV /dec, and 61
mV /dec for 3 nm (Wy;y,) & 10 nm (Hyp,), 8 nm (Dyy), and 30 nm (Whs) & 90 nm (T},5),
respectively, which are lower than that of planar MOSFET [68]. The SS of NW-FET
is very close to the thermodynamic limit for MOSFET because the cylindrical nature
of the channel effectively suppresses the short channel effects. On the other hand, the
switching performance of NS-FET is affected by larger sheet width and rectangular channel
cross-section, which requires considerably higher Vg to achieve the channel inversion.
Further, the minimum DIBL is observed around 93.2 mV/V, 60.8 mV/V, and 45 mV/V
for 3 nm (W) & 10 nm (H i, ), 8 nm (Dy,y, ), and 30 nm (W) & 90 nm (7T),5) respectively.
A smaller value of DIBL suggests that NS-FET can be more immune to change in drain
field effects over Fin-FET and NW-FET.

Fig 2.7 shows the Ay and fr as a function of Fin-FET, NW-FET and NS-FET

geometrical parameters. It is observed that Ay and fr for multigate devices have a
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fundamentally different dependency: fr increases and Ay reduces with increasing the
channel width and height/thickness of NS-FET and Fin-FET. It is important to note
that Ay of NS-FET marginally reduces with the width, but a significant reduction is
observed with increasing the sheet thickness. The reason is that a larger nanosheet width
and thickness offer higher g,,, but g4s increases considerably as the thickness of the sheet
increases. It is observed that a larger fin width and height reduce the gate efficiency in
Fin-FET that increases the g4s values. Moreover, g,, is found to be increased for both
increasing the fin width and height. In the case of fr, a larger height considerably reduces
the Cy values and thus increases fr rapidly. However, increasing the fin width shows a
marginal variation in Cy, resulting in marginally higher fr. For NS-FET, a marginal
increment in fp is observed with width and thickness variation due to simultaneous
variation in g,, and Cy. Further, a similar trend in Ay and fr of NW-FET is observed due
to increment g,, and ggs, and decrements in C, with increasing the nanowire diameter.
Thus, the best Ay can be achieved using thinner and narrower sheet/fin that enhances the
gate controllability, but the high fr demands wider and thicker fin/sheet by increasing
current drivability.

It could be inferred from Fig. 2.7 that, at nearly the same effective width, NS-FET
offers higher Ay and fr over the NW-FET and Fin-FET. In comparison to Fin-FET,
NW-FET offers better Ay and fr at the same effective width. Further, Ay and fr of
NW-FET has around 2x and 1.3 X%, respectively, over the Fin-FET under the same effective
width. It is observed that the Ay of Fin-FET is reduced by 5x when the effective width
is scaled from 23 nm to 152 nm, but NS-FET exhibits a marginal decrement in Ay with
the factor of around 2x when the effective width is scaled from 70 to 230 nm. Further,
in the case of fr, NS-FET and Fin-FET exhibit around 1.28x and 2.05x increment,
respectively, with the above effective width scaling. Further, NW-FET is having around
1.6x decrement and 1.1x increment for Ay and fr, respectively, with scaling the effective
width from 25.12 nm to 56.52 nm. Thus, NS-FET has displayed more robust analog/RF
performance with geometrical parameter variations.

It is observed from Fig. 2.6 and Fig. 2.7 that, at the same DIBL, NW-FET exhibits
higher Ay over NS-FET due to lower g,,, while NS-FET exhibits higher fr because the
Cy is lower compared to NW-FET. For the Fin-FET case, it becomes difficult to match
DIBL with NS-FET due to considerably higher DIBL values at the selected geometrical
parameters. Therefore, it can be observed from Fig. 2.6 and Fig. 2.7 that NS-FET

provides more freedom to optimize the geometrical parameters for better short channel
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Figure 2.8: Impact of channel length scaling on analog/RF performance of Fin-FET,
NW-FET and NS-FET at Vps = 0.7 V and Vzg = 0.7 V : (a) transconductance (g.,), (b)
voltage gain (Ay ), (c¢) cut-off frequency (fr) , and (d) oscillation frequency (fimaz) as a
function of channel length (L.p,).

and analog/RF performance over Fin-FET and NW-FET.

2.3.2 Impact of Channel length

Fig. 2.8 shows analog/RF performance metrics of Fin-FET, NW-FET, and NS-FET
as a function of channel length at the fixed OFF current of around 10 nA/pum. The
device geometrical parameters, such as fin width and height, sheet width and thickness,
and nanowire diameter, are kept the same when the channel length is scaled down.
It is observed from Fig. 2.8(a) that g, for the three devices decrease considerably
with decreasing the channel length. This is because the sub-14-nm devices are affected
substantially by the source-to-channel tunneling current at the OFF-state. The increment
in the source-to-channel tunneling current enhances the drive current for a fixed Vpg, and
the device requires a much smaller Vzg to achieve the OFF-state. Thus, decreasing the
channel length decreases the drive current and hence, g,,. Importantly, NS-FET exhibits
higher performance degradation with reducing the channel length, but it still maintains a
considerably higher value of g, when the channel length is scaled down to 6 nm. Further,
a significant reduction in the g, value is because the small mean free path of electrons

increases the mobility degradation in the presence of a greater number of scattering events
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at short channel length.

It is observed from Fig. 2.8(b) that Ay for multigate devices decreases considerably
with decreasing the channel length. Due to significant degradation in g,, and g4s, the
voltage gain of NS-FET drops from 32 V/V to 17 V/V when the channel length is scaled
down from 18 nm to 6 nm. It is found that NW-FET has nearly the same gain as
compared to NS-FET for L., < 10. Further, the NS-FET and NW-FET display a voltage
gain of around 17 V/V at 6-nm channel length, which is more desirable for amplification
applications. Therefore, it is evident that multigate devices can offer sufficient voltage
gain even at the 6-nm channel length, and the NS-FET has an advantage over Fin-FET
and NW-FET in the ultimate scaling limit.

Fig. 2.8(c) shows that, despite g, reduction, the fr of NS-FET and Fin-FET
considerably increases with decreasing the channel length. This is due to the presence of
discrete quantum states that reduces C; because the gate capacitance reduces at shorter
channel lengths [69]. Further, the f7 of NW-FET becomes nearly equal to NS-FET beyond
14-nm channel length. This is because a smaller effective width NW-FET results in much
smaller gate capacitance over NS-FET. The fr of NS-FET and NW-FET is found to be
enhanced by 1.14x when channel length scale down to 6 nm, while Fin-FET exhibits
around 1.2x improvement. Further, NS-FET and NW-FET offer nearly around 1.2x
higher fr over Fin-FET for 18-nm to 6-nm channel length. Fig. 2.8(d) shows that fi4z
significantly increases with the decreasing channel length. This is because fr increases,
while R, and gqs decreases with decreasing the channel length. In summary, Ay, fr,
and [, values suggest that NS-FET could be a more prominent option for high-gain
and high-frequency RF circuits, but NW-FET can also be preferred at very short channel
lengths.

2.3.3 Impact of Surface Orientation

Fig. 2.9 shows the performance of Fin-FET, NW-FET, and NS-FET as a function of
surface orientations, such as (100), (110), and (111), which could be achieved by rotating
the device layout in the wafer plane [70]. It is observed from Fig. 2.9(a) that maximum
effective electron mobility (uers) for n-type multigate devices is found along (100) surface
due to lower effective electron mass and surface density of atoms. The p.f in three devices
is modulated significantly with surface orientation because of the variation in electron
masses at the different orientations. It is observed that the ji.ry of NS-FET and NW-FET
are found to be nearly the same, but their mobility is around 1.29x higher compared to

Fin-FET in all orientations. The Fin-FET is significantly affected by higher drain field



Chapter 2. Gate-all-around MOSFETs for Analog/RF Applications 29

|—e—Fin-FET —=— NW-FET ——NS-FET]

500 1.5
- —
(a) @
S 400 £
£ >
3 o
= 300 = 05/ (b
() c
3 ST
200 0
(100) (110) (111) (100) (110) (111)
Orientation Orientation
0.7 © 2
—_~ C
E —_
= 06 Eq5 @
<C ~
£ =
_% 0.59 8 1
0.4 0.5
(100) (110) (111) (100) (110) (111)
Orientation Orientation
40 400
_ CHES
> 30 N
< T
> S 300 ()
<> 20 ..._'_ @
[«
10 . 200
(100) (110) (111) (100) (110) (111)
Orientation Orientation

Figure 2.9: Impact of surface orientation on analog/RF performance of Fin-FET, NW-FET
and NS-FET at Vpg = 0.7 V and Vgg = 0.7 V : (a) effective electron mobility (fcs¢),
(b) injection velocity (vin;), (¢) ON current (Ipn) , (d) gate capacitance (Cy), (e) voltage
gain (Ay), and (e) cut-off frequency (fr) as a function of surface orientation.

in the channel region. Fig. 2.9(b) shows that NS-FET with (100) surface orientation
with the highest mobility also displays higher injection velocity (vin;) and vice versa. The
mobility and v;,; for three devices are in good agreement with experiment and previous
simulation results [29],[54]. It is observed that NS-FET with (100) orientation has around
15% and 25% higher vy,; over NW-FET and Fin-FET with the same surface orientation,
respectively. However, mobility and v;,; are highly dependent on the orientation, bias, and
geometrical parameters. Thus, selecting the optimum channel orientation and geometrical
parameters could enhance the silicon-based device performance.

Fig. 2.9(c) shows that despite the significant change in mobility and injection
velocity, ON current for three devices shows marginal variation with surface orientation
due to more immune to short channel effects [71]. The NS-FET and NW-FET have

nearly the same ON current due to their nearly same picf¢, but the NS-FET with (100)
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orientation exhibits advantage in Cy, Ay and fr as compared with other orientations.
It is observed in Fig. 2.9(d) that a larger Cy is observed in (111) orientation over (110)
and (100) orientations due to strong anisotropic feature. Fig. 2.9(e) shows that Ay for
NS-FET (100) orientation is around 1.24 x and 2.13 x higher than that for NW-FET and
Fin-FET with same surface orientation. The Ay of NS-FET show around 1.14x and 1.29x
degradation in (110) and (111) orientations due to significant reduction in g4s values. It is
observed from Fig. 2.9(f) that fr does not show the strong dependency on orientation due
to gm reduction and Cj increment in (110) and (111) orientations. Therefore, NS-FET
with (100) channel orientation is more suited for analog/RF applications, perr, Ay and

fr over (110) and (111) surface orientations.

2.3.4 Impact of Multichannel Stacks
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Figure 2.10: Analysis of multichannel structure on the analog/RF performance of
Fin-FET, NW-FET and NS-FET at Vps = 0.7 V and Vgg = 0.7 V: (a) side
schematic of the three-channel device structures of Fin-FET, NW-FET and NS-FET,
(b) transconductance (gn,), (c) voltage gain (Ay), (d) cut-off frequency (fr), and (e)
maximum oscillation frequency (fqaz) as a function of number of channels (N).
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Figure 2.11: (a) Voltage gain (Ay), and (b) cut-off frequency (fr) for three channels
Fin-FET, NW-FET, and NS-FET as a function of suspension thickness (Ts,s) at Vps = 0.7
V and Vgg = 0.7 V.

Fig. 2.10 shows the analog/RF performance of Fin-FET, NW-FET, and NS-FET
as a function of single, double, and triple channel stacks. The considered single, double,
and triple stack architectures are shown in Fig. 2.10(a). Here, we increase the number of
channels stacked and fins by keeping the same area footprint for uniform benchmarking.
The Fin pitch and suspension thickness (7s,s) are considered to be fixed around 34 nm
and 10 nm, respectively. Fig. 2.10(b) shows that g,, of multigate devices increases with
increasing the number of the channels due to the increment in the electron-conducting
paths. The g,, of NS-FET shows significant improvement with increasing the number
of channel stacks because of increment in the same width channels. In contrast, g,, for
NW-FET shows marginal increment as the effective channel area is reduced with increasing
the number of channels.

Fig. 2.10(c) shows that Ay for multigate devices increases with increasing the
number of channels. It is found that the g,, of NS-FET and Fin-FET is enhanced by
1.1x and 1.08x, respectively, but Ay of NS-FET and Fin-FET exhibits 1.25x and 1.21x
improvement with single to three channels increment. The reason for a considerable gain
increment is that narrower sheet and fin width results in lesser drain field penetration
in the channel region, which decreases the ggs values. It is found from Fig. 2.10(b) and
(d) that, despite increment in g,,, the cut-off frequency (fr) of multigate devices reduces
with increasing the channel stacks. This is because the multichannel stacking considerably
raises the contribution of coupling and parasitic capacitance in the Cy values. Fig. 2.10(e)
shows that fi,., for these multigate devices deteriorate with increasing the number of
channels because of increment in R, and g4,. Thus, multichannel stacks can enhance the
gm and Ay, but increasing the channel stacked is not the right choice for RF performance

improvement.
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Fig. 2.11 shows the Ay and fp for three channels Fin-FET, NW-FET, and NS-FET
with various suspension thickness (Tsys). It is observed that Ay increases with increasing
the T, s because the channel gets narrower, which restricts the carrier scattering and leads
to an increase in g,,. The g4 also decreases due to reduced drain field effect in the narrower
channel region. Fig. 2.11(b) shows that the fr marginally decreases with increasing Ty
due to increment in C, values, despite increment in g,,. Therefore, it is found that the
Ay can be improved by optimizing the Ty,s, but fr exhibits marginally decrement with

increasing Tgys-
2.4 Summary

This chapter presented a comprehensive analog/RF performance comparison
between Fin-FET, NW-FET, and NS-FET for sub-5-nm technology nodes. It is
found that NS-FET has promised higher voltage gain, cut-off frequency, and maximum
oscillation frequency over NW-FET and Fin-FET that makes them a promising option for
high-frequency RF applications. Specially, the cut-off frequency and maximum oscillation
frequency of 5-nm NS-FET have found to be around 373 GHz and 389 GHz, respectively,
which provides the best opportunity to boost the high-frequency performance limit of
silicon technology. The results show that voltage gain could maximize by increasing the
channel length, selecting proper surface orientation, and reducing the channel’s width
and height/thickness. In contrast, RF performance metrics of multigate devices have
significantly enhanced by decreasing the channel length and increasing the geometrical
parameters. Further, multichannel stacking will not be the best choice for RF applications.
Our performance analysis and benchmarking provide analog/RF ultimate performance
limit of sub-5-nm multigate devices and stimulate experiment work is expected to exceed

the high-frequency performance of Silicon-based MOSFET technology.



Chapter 3

CMOS Inverters based on Si
Stacked Nanosheet FET

3.1 Introduction

The stacking of Si nanosheets in both horizontal and vertical configuration in
stacked NS-FET has demonstrated outstanding switching performance by combining the
benefits of area [8, 9]. However, the scaling advantages of a standard stacked nanosheet
(s-NSH)-based inverter are significantly impacted by the separation between p-FET and
n-FET (p-n separation). Optimizing p-n separation poses challenges, particularly as it is
determined by mask edge placement and lateral etch control during metal gate deposition
[17]. Moreover, a smaller p-n separation notably constrains operating speed and power
efficiency due to enhanced Miller capacitance [16, 17].

FSH and CFET inverters have been proposed to be scaling booster architectures
with nanosheets that could reduce the device footprint and ensure high-performance gain
[13, 14]. Interestingly, inserting dielectric between p-FET and n-FET, and controlling the
channel using the forked gate in the FSH inverter has demonstrated 12% cell area reduction
with 13% lower power dissipation over s-NSH inverter for 3 nm technology node (N3) [31].
More interestingly, the CFET inverter, which vertically stacks the n-FET and p-FET with
a common gate, has demonstrated a 55% lesser cell area with 2.3 x higher speed over s-NSH
inverter for the N3 [16]. Furthermore, a few recent studies have concentrated on analyzing
the power-frequency performance benefits of CFET by comparing it with the s-NSH
inverter configuration for the N3 [16, 72, 73]. To the best of our knowledge, no qualitative
studies have uniformly benchmarked the inverter-level performance of CFET, FSH, and
s-NSH configurations in a single systematic study. In addition, there is a lack of detailed
static and dynamic performance of these inverter configurations for future technology
nodes. Therefore, it becomes increasingly important to understand the performance and
scaling advantages of CFET and FSH inverter configurations for developing high-speed
and low-power digital ICs with high-density integration capability.

In this chapter, we examine and benchmark the performance of CFET, FSH, and
s-NSH inverter configurations at the ultimate scaling limit using S-process simulation

in a fully calibrated three-dimensional (3D) Sentaurus technology computer-aided design
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(TCAD) tool. Specially, the process-dependent performance analysis of CFET, FSH, and
s-NSH inverters are carried out to accuraly capture the parasitic and buried power delivery
network (BPDN) effects. The novel s-NSH-based inverters are uniformly compared to
identify a promising configuration, which can offer greater design versatility with excellent
switching and scaling performance. The major contributions of this work are stated as

follows:

e Current studies on CFET and FSH inverters rely on Sentaurus Device Structure
Editor (SDE) or BSIM models, which focus on isolated structures with limited 3D
simulations and inconsistent benchmarking across nodes [16], [74], [41], [75]. Our
work bridges this gap by systematically benchmarking CFET, FSH, and s-NSH
inverters using a unified 3D S-Process simulation framework. By incorporating
buried power delivery networks (BPDN), we optimize power efficiency, minimize

parasitics, and highlight performance under advanced routing technologies.

e Process fluctuations present a significant challenge for the reliable design of
s-NSH-based devices at 3 nm and smaller technology nodes [76]. Despite existing
studies primarily examining process variation effects on CFET at the 3 nm node
using the SDE framework [77], our work advances this by systematically comparing

CFET, FSH, and s-NSH inverters at the 1 nm node through 3-D process simulations.

 Existing studies provide fragmented insights into the power performance area (PPA)
metrics of CFET [16], FSH [41], and s-NSH inverters [78], with limited focus on a
unified comparative analysis across technology nodes. Our work addresses these gaps
by delivering a comprehensive PPA analysis for CFET, FSH, and s-NSH inverters
with and without BPDNs, extending across nodes from N5 to NO0.5. This effort
highlights scaling behavior, BPDN impact, and optimization strategies, which offer

critical guidance for future high-density circuit design.

e Despite previous studies have analyzed p-n separation in individual devices, such
as FSH and CFET inverters [16, 14], our work provides uniform benchmarking
across CFET, FSH, and s-NSH by systematically evaluating power and delay
performance as a function of p-n separation (45 nm to 17 nm) at the 1 nm node.
This comprehensive analysis offers novel insights for optimizing inverter design and

ensures consistent evaluation across different device architectures.
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3.2 Simulation Technique

3.2.1 CMOS Inverter Design

Fig. 3.1(a), 3.1(b), and 3.1(c) show the cross-sectional channel along with side views
of s-NSH, FSH, and CFET inverters, respectively. For the initial performance analysis,
the gate lengths of p-FET and n-FET are selected around 12 nm, which is taken from the
projection of IRDS 2021 for the 1 nm technology node [79]. The source (S) and drain (D)
regions of p-FET and n-FET are taken to be 18 nm long with a doping concentration of
nearly 2 x 102° cm—3. Further, the silicon nanosheet channels are considered identical with
the width (Wyg) of around 45 nm and thickness (Tng) of around 5 nm. The considered
Wns and Tyg of nanosheets are in good agreement with the reported experimental
geometry of s-NSH inverters [8, 80, 81]. The vertical sheet-to-sheet spacing is chosen
to be around 10 nm due to sacrificial layer limitation [8, 82]. The p-n separation for the
CFET, FSH, and s-NSH inverters is initially considered to be around 25 nm, 17 nm, and
25 nm, respectively. However, in later simulation, we have varied the p-n separation by
keeping other parameters fixed. Also, three nanosheet stacked channels are considered
in our simulation as it is widely adopted in recent experiments to enhance the effective
channel width [8, 53]. The gate oxide consists of 0.6 nm SiOg and 1.25 nm HfO stack,
which corresponds to the effective oxide thickness (EOT) of 0.9 nm. The effective width
(Wesyr) and contacted gate pitch (CGP) of both p-FET and n-FET are the same and taken

to be around 330 nm and 42 nm, respectively.
3.2.2 Process Simulation Methodology

Fig. 3.1(a), 3.1(b), and 3.1(c) presents the fabrication process steps for realizing
the s-NSH, FSH, and CFET inverters, respectively, which are performed in the S-process
of Synopsys TCAD tool. Here, we present the detailed process steps for fabricating the
s-NSH inverters and summarize the key fabrication steps for FSH and CFET inverters.
The s-NSH inverter is realized using the following process steps: (i) the BPDN using
Ruthenium metal is deposited in the substrate; (ii) thermal oxidation is performed to
isolate BPDN; (iii) epitaxial growth of alternate silicon germanium (Sig7Geg 3)/silicon
(Si) layers is carried out; (iv) thermal oxidation is performed to achieve shallow trench
isolation (v) the sidewall image transfer (SIT) technique is used to achieve the desired
width and thickness; (vi) polysilicon dummy gates are deposited on top of the sheets; (vii)
silicon nitride is placed to form the inner and outer spacer in both n-FET and p-FET;

(viii) the n-FET is masked, then the source and drain of p-FET are doped with ion energy
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Figure 3.1: Synopsis of 3-D process simulation of novel s-NSH CMOS inverters:
Cross-sectional channel and side views of (a) stacked nanosheet CMOS inverter (s-NSH),
(b) forksheet inverter (FSH), and (c¢) complementary field-effect transistor (CFET)
with their fabrication process flow, performed in S-process simulation. (d) Transfer
characteristics of the three-channel p-FET (left) and n-FET (right) in the FSH inverter
configuration from our 3D TCAD simulation and experimental results [83] at |Vpg| = 0.7
V for 22 nm gate length.

of around 4 KeV; (ix) after that p-FET is masked, the source and drain regions of n-FET
are doped using Phosphorous dopant with ion energy of around 6 KeV; (x) the dummy
gate and Sip7Geg s are then released using the anisotropic etching technique; (xi) the
gate oxides for p-FET and n-FET are alternatively grown using thermal oxidation and
followed by HfOy deposition; (xii) the metal inter-diffusion technology (MIG) is employed
to develop the gate metal electrode; and (xiii) the source and drain contacts are formed on
n-FET and p-FET; and (xiv) the contact trench is finally employed to connect the source
and drain to BPDN.

The fabrication steps for the FSH inverter are similar to that of the s-NSH inverter,
except that the SiO, layer is deposited as a placeholder in separation between p-FET
and n-FET [in step (iv)]. After the spacer deposition and removal of the placeholder
oxide layer, high-k dielectric separation (SizNy, k ~7.4) between n-FET and p-FET is
deposited is introduced as the final isolation material [after the step (xi) of s-NSH inverter].
Importantly, high-k dielectric deposition does not require any additional lithography step.
On the other hand, p-FET and n-FET for the CFET inverter are grown sequentially. The
BPDN is initially fabricated and isolated with the oxide underneath the substrate. The

bottom n-FET is fabricated using steps (i) to (vi), which are identical to s-NSH inverter
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fabrication steps. The gate patterning is then done by depositing the Titanium aluminide
(TiAl) on n-FET. The source and drain are connected to BPDN through the contact
trench. After that, the top p-FET is fabricated similarly to n-FET using Tetraethyl
orthosilicate (TEOS) for p-n separation. Further, the source and drain regions of top
p-FET are partially etched to form source/drain contacts in BPDN [84]. Finally, the
gate patterning on p-FET is done using Titanium nitride (TiN) deposition, and the metal

contacts are formed.
3.2.3 Setup and Calibration of Experimental Setup

Once the device geometry is developed, the transport properties of three CMOS
inverters are modeled by self-consistently solving Boltzmann’s transport and Poisson’s
equation with mobility and quantum correction terms. A more detailed discussion on
mobility and quantum correction models for capturing the short channel physics can be
found in our previous work [85]. To verify the accuracy of our simulation process and
models, Fig. 3.1(d) shows the I-V characteristics of three-channel stacked p-FET and
n-FET with FSH inverter configuration from our simulation approach and experimental
results [83] for the 22 nm gate length with p-n separation of 17 nm. It is observed
that our 3-D process simulation exactly reproduces the reported experimental Ing—Vgs
characteristics for both p-FET and n-FET in FSH inverter at |Vpg| = 0.7 V. Further,
the short-channel effects are calibrated in our previous work [85]. The calibrated results
shows that our modeling methodology accurately describes the short channel effects and

quantum-mechanical effects with the essential process dependency of three inverters.

3.3 Switching Performance of CMOS Inverters

3.3.1 Transfer Characteristics of CMOS Inverters

Fig. 3.2 shows the transfer characteristics (Ips—Vgs) of p-FET and n-FET in CFET,
FSH, and s-NSH inverter configurations at |Vpg| = 0.7 V for the 1 nm technology node.
To better understand the performance advantages, these characteristics are plotted at the
fixed OFF current of approximately 5 nA/um (Ipg at Vgs = 0 V and |Vpg| = 0.7 V).
It is observed that three CMOS inverters have nearly identical Ipg — Vs characteristics
for n-FET and p-FET configurations. The p-FET is observed to have nearly 1.73x lower
drive current because the width of p-FET is chosen to be the same as the width of n-FET.
It is also found from Fig. 3.2 that the subthreshold slope (SS) for the p-FET in CFET,
FSH, and s-NSH inverters is identical at around 77 mV /dec, while the SS of the n-FET in

all three configurations is observed approximately 72 mV /dec. Further, the drain-induced
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Figure 3.2: Transfer characteristics (Ips—Vgs) of p-FET (left) and n-FET (right) in
CFET, FSH, and s-NSH inverter configurations at |Vpg| = 0.7 V.

barrier lowering (DIBL) for p-FET in CFET, FSH, and s-NSH inverters is observed to be
around 26 mV/V, 27 mV/V, and 31 mV/V, respectively. In contrast, the DIBL of n-FET
in CFET, FSH, and s-NSH inverters exhibits approximately 33 mV/V, 34 mV/V, and
36.7 mV/V, respectively. A lower DIBL of devices in the CFET inverter suggests that a
vertically stacked arrangement of p-FET over n-FET could effectively minimize the drain

field effect due to reduced fringing field between n-FET and p-FET.
3.3.2 Static Performance of CMOS Inverters

Fig. 3.3(a) shows the voltage transfer characteristics (VI'C) of CFET, FSH, and
s-NSH inverters for Viyput =0—0.7 V at Vpp = 0.7 V. It is found that three CMOS
inverters have perfectly matched VI'C with peak output voltage for low input voltages
and vice versa. The reason for well-shaped VTC is that the subthreshold leakage currents
of p-FET and n-FET are considerably low and do not degrade low- and high-logic states,
respectively. A sharp high-to-low transition is observed for a narrow input transition
zone in the range of 0.29-0.36 V. Specially, CFET inverter exhibits switching threshold
voltage (Vi) at exactly Vpp = 0.33 V, which is very close to Vpp/2. Therefore, the highly
symmetric VITC of the CFET inverter promises high peak DC gain and better noise
margins than the FSH and s-NSH inverters.

Fig. 3.3(b) shows the peak DC gain (A,,) of CFET, FSH, and s-NSH inverters for
Vbp values in the range of 0.1-0.7 V. It is observed that A,, of the three inverters decreases
considerably with the down-scaling of the supply voltage. This trend is attributed to the

increment in the gate electric field across the channel region, which results in considerable
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Figure 3.3: Static performance metrics of CFET, FSH, and s-NSH inverters at Vpp = 0.7
V: (a) voltage transfer characteristics (VTC) for Vi, in the range of 0-0.7 V and (b) peak
DC gain (A,,) as a function of supply voltage (Vpp); (c) high level (NMp) and low level
(NMy,) noise margins, and (d) area footprint.

carrier mobility degradation. The A,, of the CFET, FSH, and s-NSH inverters is found to
be around 18.5 V/V, 17.6 V/V, and 18.4 V/V, respectively, at Vpp = 0.7 V. This marginal
difference in A, is attributed to the saturation current level of n-FET and p-FET. At
iso-peak DC gain (15 V/V), it is observed that the CFET inverter requires -17.8% and
-11.1% lower supply voltage than the FSH and s-NSH inverter, respectively. This is
because of higher inversion charge density. Specifically, the FSH inverter demonstrates
inferior performance, with around -8.3% lower A,, over s-NSH inverter at Vpp = 0.4
V. The reason for this is that the highly asymmetric inversion charge density inside the
channels of the n-FET and p-FET, caused by reduced gate control. Fig. 3.3(c) shows the
high-level noise margin (NMy) and the low-level noise margin (NMy,), which are calculated
from VIC as NMy = Vog— Vg and NMy, = Vi, — Vor, respectively. The three CMOS
inverters exhibit nearly identical NMp, and NMpy of around 0.3 V and 0.36 V of three
inverters, respectively. These excellent noise margin levels indicate strong tolerance to
signal fluctuations. Therefore, the CFET inverter with higher peak DC gain and noise
margins could be a more viable candidate for multistage logic circuits comparable to those
of FSH and s-NSH inverters.

Fig. 3.3(d) displays the area footprint of CFET, FSH, and s-NSH inverter cells
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Figure 3.4: Load capacitance (Cf) of CFET, FSH, and s-NSH inverters with buried power
rails with frontside connectivity (BPDN) and traditional frontside power delivery network
(without BPDN) at |Vpg| = [Vag| = 0.7 V.

for the 1 nm technology node. The inverter cell area footprint is primarily influenced by
gate length (L), sheet width (Wys), spacer thickness (ts,), and p-n separation (Dy/p).
The CFET inverter is observed to have a cell area of nearly -60.8% lower than the
s-NSH inverter due to the vertical stacking of devices, reducing the contribution of Wysg.
Additionally, the FSH inverter achieves a -6.9% reduction in area footprint compared to
the s-NSH inverter because of significant gate covering from the dielectric side and dummy
fin gate tuck. Therefore, the CFET inverter, with its smaller area footprint, could allow
high-density integration of digital logic blocks over FSH and s-NSH inverters for the sub-5

nm technology node.
3.3.3 Dynamic Performance of CMOS Inverters

Fig. 3.4 shows the load capacitance (Cr) for CFET, FSH, and s-NSH inverters
without and with considering BPDN effects. In this design, BPDN incorporates buried
power rails with frontside connectivity. To determine Cp without BPDN, we redesigned
the inverters using a traditional frontside power delivery network. The Cp, is calculated
as Cp = Cyap + Cysp + Cyan + Cysn + Cuwire, where Cyqp is the gate-to-drain capacitance
of p-FET, Cys, is the gate-to-source capacitance of p-FET, Cy4, is the gate-to-drain
capacitance of n-FET, Cgs, is the gate-to-source capacitance of n-FET, and Cyre is the
wiring capacitance of the CMOS inverter. The Cyr is selected around 0.1996 fF'/pm from
the IRDS 2021 projection at the 1 nm technology node [79]. The Cys and Cyq of p-FET

and n-FET are computed using the Y-parameter model by constructing the small-signal
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equivalent model [51, 65, 86]. It is observed that the Cr, with BPDN for CFET, FSH, and
s-NSH CMOS inverters is reduced by around -2.45%, -3.3%, and -4%, respectively. This
signify that CFET over FSH and s-NSH inverters could effectively minimize back-of-line
parasitic capacitances. It is observed from Fig. 3.4 that the vertical stacking of devices
in CFET inverter with BPDN leads to the reduction of Cp, around -22.9% and -29.51%
than FSH and s-NSH inverters, respectively. This significant improvement in Cy, of CFET
is primarily due to improvement in DIBL and decrement in coupling capacitances [16].
On the other hand, in comparison to the s-NSH inverter with BPDN, the FSH inverter
provides around -5.3% lower C, because of fringing capacitance reduction with high-k
separation. Thus, the CFET inverter with BPDN provides the lowest Cf, making them

a potential candidate for high-speed digital ICs.
3.3.4 Impact of Process Variation

Fig. 3.5 shows the coefficient of variation (o/u) for threshold voltage (Vrg) of
n-FET and p-FET in the CFET, FSH, and s-NSH inverter configurations as a function of
the device geometrical parameters, such as doping concentration (Ng /D), EOT, interface
trap charges (Nj;), and channel thickness (tq,). It is observed that the variation in Vg
increases significantly with a marginal variation in geometrical parameters. Among the
three configurations, the CFET consistently demonstrates superior resistance to Vg
fluctuations across all considered geometrical parameters. This improved performance
is attributed to its enhanced electrostatic control and tightly packed vertical layout. In
comparison, the FSH inverter strikes a balance by offering better isolation between the
n-FET and p-FET by reducing cross-coupling effects. However, their lateral proximity
results in higher sensitivity to geometrical parameter variations compared to CFET. On
the other hand, the s-NSH inverter exhibits the highest sensitivity to variations in the
geometrical parameters, particularly those involving dopants and channel thickness. This
increased susceptibility arises from strong fringing field effect and pronounced inter-device
coupling. Thus, the CFET design inherently mitigates the impact of process parameter
variations more effectively than the FSH and s-NSH configurations, which offer a robust

solution for achieving stable device performance under varying conditions.
3.3.5 Scaling Performance of Novel CMOS Inverters

Fig. 3.6 shows the key performance metrics for CFET, FSH, and s-NSH inverters as
a function of the technology node (N) at a fixed OFF current of around 5 nA/um. Table

3.1 presents the device design parameters, which are scaled with the technology node. It is
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Figure 3.5: Coefficient of variation (o/p x 100) for threshold voltage (V) of n-FET and
p-FET in the CFET, FSH, and s-NSH inverter configurations as a function of (a) and
(b) source and drain doping concentration (Ng/p), (c) and (d) effective oxide thickness
(EOT), (e) and (f) interface trap charges (Nj;), and (g)-(h) channel thickness (tcn).

Table 3.1: Parameters of technology nodes describing the corresponding gate lengths
(Lgy) and spacer thicknesses (ts,) as per the IRDS 2021 (N1-N5) [79] and the ITRS 2013
roadmap (N0O.5-N0.7) [57].

Technology Node (N) N0.5 NO0.7 N1 N2 N3 N5
Gate Length (L,) (nm) 8 10 12 14 16 18
Spacer thickness (ts,) (nm) 1 1.2 1.4 1.6 1.8 2

observed from Fig. 3.6(a) that the ON current [Ips(|Vas| = Vbp, |Vbs| = Vop)] of p-FET
and n-FET in three inverter configurations decreases considerably with scaling down the
technology node. The reason for that is twofold: (i) source-drain tunneling increases the

OFF-state current and thereby requires much lower Vg to achieve the fixed OFF current;
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Figure 3.6: Key performance metrics of CFET, FSH, and s-NSH inverters dependency
on technology node at Vpp = 0.7 V: (a) ON current of p-FET (solid line) and n-FET
(dash line) [Ips(|Vas| = Vob, |[Vbs| = Vbop)], (b) peak DC gain (Ay), (c) gate-to-drain
capacitance (Cyq) (Solid : n-FET, Dashed : p-FET); and (d) load capacitance (Cf) as a
function of technology node.

and (ii) the enhanced electric field in the channel region increases the mobility degradation
due to a greater number of scattering events. Importantly, the drive current of the n-FET
and p-FET in the FSH inverter is marginally lower among the three inverters for all
technology nodes. This is due to the fork gate structure, which provides electrostatic
control from only three sides. As the technology node scales down from N5 to NO.5,
the n-FET of CFET, FSH, and s-NSH inverters experiences -65.75%, -68.12% and -70%
degradation in Ion, which is 21.21%, 9.1% and 17.8% higher than that for p-FET. Fig.
3.6(b) shows that the A,, of three inverters decreases considerably with scaling down
the technology node due to the decrement in the drive current of n-FET. The A,, of
CFET and s-NSH inverters follows the Ion trend, displaying nearly identical A,, across
all technology nodes. However, the FSH inverter exhibits the least A,, among the three
inverter configurations due to highly asymmetric inversion charge in p-FET and n-FET.
From Fig. 3.6(c), it is found that Cyq for p-FET and n-FET in the three inverters
show a marginal increment with scaling down the technology node (N). For all N, p-FET

and n-FET of CFET inverter demonstrates significantly lower Cyq compared to FSH and
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Figure 3.7: Power versus frequency characteristics of CFET, FSH and s-NSH inverters for
varying Vpp and technology node.

s-NSH inverters. Despite showing inferior A,,, the FSH inverter exhibits a lower Cyq
compared to the s-NSH inverters due to the reduced fringing field effect. It is observed
from Fig. 3.6(d) that the Cf, for three inverters increases significantly as the technology
node scales down. This increment is primarily due to a significant increment in DIBL,
which enhances the contribution of Cyq and Cys components. The C, of the CFET inverter
is found nearly 1.49 fF/um at NO.5, which is about 44.6% higher than its value at the N5
node. On the other hand, the Cp, for the FSH and s-NSH is gained around 27.14% and
28.17%, respectively, when the technology node scales down from N5 to N0.5. Although
CFET has significant increment in C7, from N5 to N0.5, they are observed to maintain
their advantage of lower C', compared to the FSH and s-NSH inverter counterparts across
all technology nodes. At N0.5, the C, of CFET is around -18.67% and -21.33% lower than
that for FSH and s-NSH inverter. On the other hand, for technology nodes N1 and below,
the FSH inverter has improved Cf, over s-NSH inverter. This trend is due to the decrement
in the fringing field capacitance with high-k in p-n separation. Thus, as technology nodes
continue to scale down, the CFET inverter consistently outperforms its counterparts in

Ion and C7, promising superior performance for advanced technology nodes.
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3.3.6 Power Performance Analysis

Fig. 3.7 shows the power-frequency characteristics of CFET, FSH, and s-NSH
CMOS inverters by varying Vpp and technology node (N) without and with including
the BPDN. As demonstrated by the rightward shift, the frequency and power efficiency of
CFET with and without BPDN are leading above FSH and NSH-based CMOS inverters.
This performance enhancement is attributed to reduced Cp, values and improved device
currents [as observed in Fig. 3.6]. At the iso-frequency (270 GHz), the CFET inverter
with BPDN demonstrates -4.29% and -2.5% power reduction compared to the FSH and
s-NSH inverters, respectively. At the iso-power (1.7x107> W/m), the CFET inverter
delivers around 2% and 3.7% frequency improvement compared to the FSH and s-NSH
inverters, respectively. Further, the difference in the power consumption between BPDN
and without BPDN is observed to be around -9.1%, -4.6% and -6.67% for CFET, FSH, and
s-NSH inverters, respectively for N1. This indicates that there is a reduction in parasitic
capacitance drop with BPDN. Moreover, due to lower C}, values, the CFET, FSH, and
s-NSH inverters with the BPDN have around -4.28%, -4.3% and -7.29% lower operating
frequency compared to those without the BPDN at 1.55x10~5 W/m. Therefore, among
the three inverters, the CFET inverter with BPDN stands out as a promising candidate
for future high-speed and low-power logic applications due to its capability to operate at

higher frequencies with less dynamic power dissipation.
3.3.7 Impact of p-FET and n-FET Separation

Fig. 3.8 illustrates key performance metrics of CFET, FSH, and s-NSH inverters as
a function of p-n separation (Dy/p) at Vpp = 0.7 V. Fig. 3.8(a) shows that the voltage
gain (Ay,) of the three inverters decreases with increasing the Dy/p. This trend is due to
the increment in the fringing field between n-FET and p-FET, which marginally reduces
the drive currents. Specifically, the A,, of CFET, FSH, and s-NSH inverters decreases by
-6.9%, -10%, and -8.1%, respectively, when Dyyp is increased by a factor of 2.64x. Due
to a higher reduction in their device currents, A,, of the FSH inverter is observed to be
more sensitive to p-n separation. Fig. 3.8(b) indicates that the Cyq for p-FET and n-FET
in the three inverters show a marginal increment with decreasing Dy, p. For all Dy p, the
devices in the CFET inverter exhibit marginally lower Cyq compared to FSH and s-NSH
inverters. Further, the FSH inverter is found to attain lower Cyq compared to the s-NSH
inverters for even higher p-n separation. Fig. 3.8(c) reveals that the Cf, of CFET, FSH,

and s-NSH inverters increases more significantly compared to Cyq with decreasing the
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Figure 3.8: Influence of p-n separation (DN/P) on important performance metrics of
CFET, FSH,and s-NSH inverters at Vpp = 0.7 V: (a) peak DC gain (Ay,), (b)
gate-to-drain capacitance (Cyq) (Solid : n-FET, Dashed : p-FET), (c) load capacitance
(CL), and (d) inverter delay (7) and power delay product (PDP).

Dy/p because Cys also rises. It is important to note that the CFET inverter maintains a
lower C', than both FSH and s-NSH inverters for wide range of Dy,/p values.

Fig. 3.8(d) shows that the delay (7) and power-delay product (PDP) of the
considered inverter configurations marginally rise with decreasing Dy/p. The CFET and
FSH inverters exhibit 1.61% and 3.75% increment in 7 whereas 12.5% and 14.13% higher
PDP, respectively, when Dy, p is scaled down from 45 nm to 17 nm. Further, the s-NSH
inverter is highly affected, with around -4.58% and -10.9% degradation in 7 and PDP,
respectively, when Dy/p is scaled down from 45 nm to 17 nm. At Dy/p = 17 nm, the
CFET demonstrates -2.25% and -2.78% lower inverter delay, while exhibiting -16.9% and
-17.38% lower PDP than that for FSH and s-NSH inverters, respectively. Moreover, the
FSH inverter exhibits marginally lower delay and PDP compared to the s-NSH inverter.
It is found that the three inverters have a marginal difference in performance with Dy, p,
and selecting the optimum Dy, p could significantly enhance the performance advantages
of particular inverter configuration. Further, the CFET inverter consistently outperforms
the s-NSH and FSH inverters across all values of Dy, p due to lower Cf,. Therefore, CFET

inverter with minimum Dy, p could be a viable choice to develop high density digital IC.
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Table 3.2: Performance Benchmarking of CFET, FSH, and s-NSH at Vpp = 0.7 V and
fixed Iorr = 10 nA/pm for N1 node.

Inverters CFET FSH s-NSH
Peak DC gain (V/V) 18.5 17.6 18.4
Area Footprint (nm?) 1935 4601 4945
Load Capacitance (fF/um) 1.895 2.01 2.12
Power (107°W /m) 1.62 1.64 1.68
Frequency (GHz) 270 268 260

3.4 Summary

We have conducted a comprehensive performance analysis of CFET, FSH, and
s-NSH inverters for the 1 nm technology node using a fully calibrated 3-D process
simulation. Our work not only identifies the performance limits of novel s-NSH-based
CMOS inverters for sub-5 nm technology nodes but also provides critical insights into the
performance of CFET and FSH, which can aid in scaling and device-level analysis. Table
3.2 shows that the CFET inverter offers approximately a 3.7% higher operating frequency
and a -3.7% lower dynamic power consumption, with a -60.8% smaller area footprint
compared to the s-NSH inverter counterpart for the 1 nm technology node. Moreover,
the advantageous characteristics of CFET are observed to persist when scaling down the
technology node beyond 1 nm. The results indicate that device gate capacitance play
a crucial role in inverter-level performance degradation, which can be optimized by p-n
separation. Our device performance analysis and benchmarking demonstrate that the
CFET inverter delivers optimal and robust switching performance at the ultimate scaling

limits.
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Chapter 4

6T SRAM and 32-bit ALU Design

Using Novel CMOS Inverter
Configurations Based on Stacked
Nanosheet FET

4.1 Introduction

In the previous chapter, we perform a comprehensive performance analysis and
benchmarking of Si stacked nanosheet (NSH)-based CMOS inverter configurations,
including complementary FET (CFET), forksheet (FSH), and standard stacked nanosheet
CMOS (s-NSH), using a fully calibrated TCAD simulation. Our study revealed that
the CFET inverter demonstrates superior scaling and switching characteristics in terms
of peak DC gain, noise margin, operating frequency, and power efficiency compared to
FSH and s-NSH inverter counterparts for sub-5 nm technology nodes. Extending this
analysis to static random access memory (SRAM) cell and arithmetic logic unit (ALU)
is crucial to fully understanding their performance advantages in system-on-chip (SoC)
design [87]. The speed and energy efficiency of these systems are critical in defining the
performance of modern memory and processor ICs [88]. Thus, evaluating the performance
of SRAM and ALU blocks could enable the prediction of system-level behavior and aid
in identifying high-performance inverter configurations for next-generation memory and
processor development.

6T SRAM cells utilizing CFET and FSH inverters have been actively studied
for their potential to enhance cell area scaling and power frequency performance
[14, 34, 35, 37, 39]. However, significant attention has been given to understanding
the interconnect design and process integration efforts on power efficiency. Simulation
work predicts that 6T FSH SRAM could achieve 40% and 10% reduction in read and
write energy consumptions, respectively, compared to the s-NSH configuration for the 15
nm gate length (A14), due to reduced interconnect capacitances [34]. Notably, 6T CFET
SRAM has shown excellent area and power efficiency, with improvements of approximately
48.2% and 29.4%, respectively, compared to 6T s-NSH SRAM for the 3 nm technology
node [89]. Additionally, 6T CFET SRAM with buried power delivery network (BPDN)
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Figure 4.1: Channel view and layout for 6T SRAM cells using (a) and (d) stacked
nanosheet (s-NSH), (b) and (e) forksheet (FSH), and (c) and(f) complementary field-effect
transistor (CFET) inverter configurations. The legends used in the layouts are explained
in the text.

for the 12 nm gate length (A3) has demonstrated the 77% improvement in energy-delay
product compared to 15 nm gate length (A14) 6T s-NSH SRAM [33]. Despite recent
studies have extensively focused on routing and energy efficiency aspects of 6T SRAM
[13, 90], the uniform performance evaluation and benchmarking of CFET, FSH, and
s-NSH inverters, particularly with BPDN, is still missing. Furthermore, no study has
presented the performance advantages of 6T SRAM cells with CFET, FSH, and s-NSH
inverter configurations for future technology nodes. In the case of logic aspects, many
recent studies on CFET inverters have designed common logic gates [40, 42]. However,
the performance analysis of ALU blocks using FSH and s-NSH configurations has not been
thoroughly presented. Therefore, there is a pressing need for a detailed investigation of
SRAM and ALU performance with s-NSH inverter architectures to implement efficient
memory and logic circuits, respectively.

In this chapter, we examine the scaling and switching performance metrics of
6T SRAM cell and 32-bit ALU employing CFET, FSH, and s-NSH-based inverter
architectures, which are designed using BPDN. The performance analysis of the 6T SRAM
cell is carried out using 3-D process simulation within a fully calibrated TCAD tool, which
is based on the self-consistent solutions of Poisson’s equation and the Boltzmann transport
equation. Additionally, the ALU is designed by modifying the BCB 4.0, where the I-V and
C-V characteristics of CFET, FSH, and s-NSH inverters are included to find computational

and energy efficiency. Specifically, the contributions of this work are stated below:

e A process-dependent comprehensive assessment is carried out to understand the
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performance of 6T SRAM cells using CFET, FSH, and s-NSH inverters. Thus,
our work presents performance and scalability projection in the design technology

co-optimization (DTCO) paradigm within advanced technology nodes.

o Extensive effort is devoted to reducing the process steps in fabricating the 6T SRAM
cell, as this can serve as a critical bottleneck in technology node scaling. The
proposed SRAM layouts offer a solution to mitigate routing congestion challenges

for the sub-5 nm technology node.

e Reasonable performance prediction of CFET, FSH, and s-NSH inverters from logic

aspects is done by examining the power and computation efficiency of 32-bit ALU.

4.2 Performance of CMOS Inverters in 6T SRAM
Configuration

4.2.1 Structure Design

Fig. 4.1(a), (b), and (c) illustrate the channel view of the simulated 6T SRAM
cell using s-NSH, FSH, and CFET inverters, respectively. Additionally, Fig. 4.1(d), (e),
and (f) present the layout of SRAM cells designed using s-NSH, FSH, and CFET inverter
architectures, respectively. It is seen from the SRAM layout that the 6T SRAM cell
comprises two pull-up (PU) transistors (P1 and P2), two pull-down (PD) transistors (N1
and N2), and two access (AC) transistors (Al and A2). To simplify the process, the access
transistors are developed alongside the cross-coupled CMOS inverters. The geometrical
parameters of the access transistors are kept identical to those of the n-FET (pull-down
transistor) to maintain consistency during process simulation. In this configuration, BL
and BLB represent the bit lines, WL denotes the word line, and Q and QB are the
data storage nodes. In our design, the spacing between the n-FET and p-FET regions is
treated as a gate cut, and the effective transistor width is determined by accounting for
the maximum spacing after gate-cut adjustments. It is observed from Fig. 4.1(d) and (e)
that a major difference between s-NSH and FSH SRAMs layouts is thin dielectric walls
(DIWs), which reduces the p-n separation. Fig. 4.1(c) showcases the CFET layout, where
PU transistors are stacked above the PD and AC transistors. This vertical stacking reduces
track height and overall cell area. The 6T CFET SRAM cell layout includes PD and AC
n-FETs in the first (bottom) layer and PU p-FETs in the second (top) layer. A buried
power rail network (BPRN) is incorporated to provide the supply connection through the

substrate, which offers significant benefits for power delivery and layout efficiency.
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4.2.2 Process Design

The process steps of realizing the 6T SRAM cells are similar to the inverter process
flow, except that 6T FSH and CFET SRAMSs have the silicon nitride isolation between
the access transistors and cross-coupled inverters. The three-channel stacked access (AC)
transistors are fabricated together with pull-up (PU) and pull-down (PD) transistors in
FSH and s-NSH SRAMs. Further, the silicon nitride is deposited after step (x) of the
s-NSH process flow, as mentioned in the Chapter 3. In the case of 6T CFET SRAM,
the AC transistors are built side by side with pull-down transistors. After that, silicon
nitride is deposited to isolate the PD and AC transistors. Considering the balanced
design parameters of the SRAM cell, the transistor strengths are optimized to achieve
the PU:PD:AC strength of 1:1:1. Moreover, upon successfully developing the 6T SRAM
cells, the transport and correction models are employed similar to those discussed in our

Chapter 3 for inverter.
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Figure 4.2: Performance of 6T CFET, FSH, and s-NSH SRAM cells at the fixed OFF
current of around 5 nA/pum and Vpp = 0.7 V: (a) read static noise margin (RSNM), (b)
write static noise margin (WSNM), (c) read access time (t,eqq), and (d) write access time
(twrite) as a function of technology node.

4.2.3 Read-Write Performance Analysis

Fig. 4.2(a) illustrates the read static noise margin (RSNM) of the 6T SRAM cell
using CFET, FSH, and s-NSH inverters as a function of the technology node (N) at Vpp =

0.7 V. The RSNM is a crucial stability performance metric that defines the minimum
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tolerable noise voltage of the SRAM cell without flipping the state. It is observed that
RSNM for the three SRAM cells decreases significantly with decreasing the technology
node due to the reduction in the drive current of their n-FET. The CFET and FSH SRAM
cells exhibit nearly identical RSNM due to their almost matched cell ratio. The cell ratio is
defined as the ratio of pull-down and access transistor strengths [91]. A marginally higher
RSNM for CFET SRAM is noted among three SRAMs due to its higher drive current of
n-FET, which prevents the flipping of the original state. However, the s-NSH SRAM cell
exhibits a markedly lower RSNM compared to the CFET SRAM cell, with approximately
-40% degradation observed at N1. A substantial reduction in RSNM with the technology
node highlights the challenges in maintaining read stability for s-NSH SRAM as scaling
continues.

Fig. 4.2(b) presents the write static noise margin (WSNM) of the 6T SRAM cell
using CFET, FSH, and s-NSH inverters as a function of the technology node at Vpp = 0.7
V. The WSNM is also a critical stability performance metric that defines the maximum
bit-line voltage (BL) required to flip the state of the SRAM cell. At a given technology
node, the 6T CFET and FSH SRAM cells exhibit nearly the same WSNM due to their
same pull-up ratio. The pull-up ratio is defined as the ratio of the strength of the pull-up
transistor to the access transistor [91]. The WSNM of the s-NSH SRAM is found to
be around -50% lower than that of the CFET SRAM for all technology nodes. CFET
and FSH SRAM cells are found to retain their inverter-level advantages with higher
WSNM compared to s-NSH SRAM. This is because the oxide in p-n separation effectively
minimizes the fringing field effect. Thus, the 6T CFET SRAM cell demonstrates superior
read and write stability over the FSH and s-NSH SRAM cells for sub-5-nm technology
nodes.

Fig. 4.2(c) and Fig. 4.2(d) respectively show the read access time (t;cqq) and
write access times (tyrite) of the 6T SRAM cells as a function of the technology node at
Vpp = 0.7 V. The t,e¢qq is computed as the time required for achieving the bit-line (BL)
voltage difference equals to the 10% of Vpp after the word-line (WL) is activated. On
the other hand, ¢, is calculated as the time WL reaches 50% of Vpp, which is basically
BL and BL reach the same value. It is observed that t,cqq and t.,ie increase significantly
with the scaling down technology node due to the increment in Cgr, and the decrement
in the drive currents of the PU and PD transistors. Among the three SRAM cells, 6T
CFET SRAM exhibits smaller t,..qq and t,rize for all the technology nodes because a lower

Cyq for both PU and PD transistors results in smaller Cgy, and Cy . In contrast, the
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increased capacitance combined with inferior drive currents in 6T s-NSH SRAM leads to
slower charging and discharging times for the BLs and WLs, which significantly enhance
the treqq and typrite, respectively. At N1, 6T CFET SRAM exhibits -42.9% and -68.4%
lower t,cqq and tyrite, respectively, compared to 6T s-NSH SRAM. This disparity is due
to the marginally higher PD drive current and lower C'p;, than the 6T s-NSH SRAM.
Therefore, the CFET configuration with faster read and write response times could be a

more preferable choice for designing high-speed memory.
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Figure 4.3: Power versus frequency characteristics of 6T CFET, FSH, and s-NSH SRAM
cells for varying Vpp and technology node.

4.2.4 Power Performance Analysis

Fig. 4.3 shows the power frequency characteristics of a 6T SRAM cell using CFET,
FSH, and s-NSH inverters, which are obtained by varying the node of technology and
the supply voltages (Vpp). It is observed that 6T CFET SRAM exhibits superior power
efficiency and high-frequency operation due to their reduced gate-drain capacitance (Cyq),
which in turn lowers Cpr and Cyyr. At iso-power conditions (2.4x1072 W/m), 6T
CFET SRAM shows an operating frequency of approximately 13.33% and 56.67% higher
compared to the FSH and s-NSH SRAMs, respectively. Under iso-frequency conditions
(25 GHz), 6T CFET SRAM demonstrates write power efficiency improvements of -3.06%
and -12.29% relative to FSH and s-NSH SRAMs, respectively. In addition, 6T s-NSH
SRAM suffers from increased power consumption and lower frequency operation due to
substantial higher values of Cpr and Cy . 6T FSH SRAM strikes a balance between
CFET and s-NSH SRAMs by offering moderate gain in power consumption and frequency
characteristics. FSH SRAM technology effectively suppresses the fringing contribution
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in Cyq, which reduces power consumption compared to s-NSH SRAM, although not as
effectively as CFET SRAM. Compared to inverter-level performance, the 6T CFET SRAM
is observed to enhance power consumption by nearly 135x and reduce frequency by 11.7x
for the 1 nm technology node. The s-NSH SRAM is found to have a significantly higher
degradation in power and frequency compared to its inverter-level performance. Thus, the
superior performance metrics of the CFET inverter in 6T SRAM underscore its potential

as a promising solution for future SRAM technologies.

4.3 Performance of NSH-based CMOS Inverters in 32-bit
Arithmetic Logic Unit (ALU)
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Figure 4.4: Performance of CFET, FSH, and s-NSH inverters in 32-bit arithmetic
logic unit (ALU) at Vpp = 0.7 V: (a) block-level schematic of 32-bit ALU; and
(b) delay of ALU (7arv), (c¢) power delay product (PDPary), and (d) throughput
(tera-integer-operation-per-second (TIOPS)/um?) as a function of technology node.

We here design 32-bit ALU using CFET, FSH, and s-NSH configurations to
understand their performance benefits in logic applications. Fig. 4.4(a) shows the
schematic of the simulated 32-bit ALU, where the full adder, multiplexer, multi-input
NAND, NOR, and XOR gates are developed using CFET, FSH, and s-NSH inverters.
The central component of the ALU is the arithmetic operation unit (AOU), which is
responsible for performing all arithmetic and logic operations on two 32-bit numbers. The
logic operation is performed in parallel, but the adder block, which is developed using a
ripple carry adder, limits the operational delay due to carry propagation from one bit to
another. The other critical components of the ALU include the register files (RF) and the
latches, each organized as 1 x 32 arrays of memory cells. The RFs store input and output

data, while the latches transfer and isolate data from the RF in synchronization with the
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clock signal. These 32-bit ALU operations are executed by modifying BCB 4.0 [92, 93],
where the characteristics of the CFET, FSH and s-NSH inverters are modeled to obtain
performance metrics, such as delay, power-delay product and throughput.

Fig. 4.4(b) shows the delay of 32-bit ALU (7arr), which is significantly contributed
by the delay of the AOU block, as a function of the technology node. It is observed
that the 747y of CFET, FSH, and s-NSH ALUs increases significantly with decreasing
the technology node due to considerable increment in the delay at the inverter level.
Interestingly, the CFET configuration is found to preserve their inverter level performance
benefits in 747y with around -2.39% and -13.7% smaller compared to FSH and s-NSH
ALU, respectively, at N1. The 747y of CFET configuration is observed to be around 5.45
ns at N1, which is 1475.4x higher than that for their inverter configuration. Moreover,
the Tary of FSH configuration is found to be marginally higher than CFET configuration,
while -11.11% reduced 74y is reported compared to s-NSH inverter for N1 due to lower
C, values.

Fig. 4.4(c) shows the PDP of 32-bit ALU (PDParu) as a function of the technology
node. The trends in PDPary for three configurations have a similar dependence on the
technology node as observed for the 7475y7. The PDPapy of the CFET configuration is
found to be the lowest among the three configurations for all nodes of technology due
to their smaller C7. Furthermore, CFET, FSH, and s-NSH ALU show around -38.4%,
-19.35%, and -20.31% degradation in PDP, respectively, when the technology node is
reduced from N5 to NO.5. Despite significant degradation in PDPapy, CFET ALU
outperforms FSH and s-NSH ALU for all technology nodes. It is also found that PDP a1y
of CFET ALU is around 6.2 pJ/um, which is around -12.9% lower than that for s-NSH
ALU cell, at N1.

Fig. 4.4(d) shows the throughput of 32-bit ALU using the CFET, FSH, and s-NSH
inverters as a function of the technology node. The throughput is defined as the number
of operations executed per second per unit area. It is found that the throughput of the
three ALU configurations decreases considerably with scaling down the technology node.
The reason for this is that the 747y decreases the computation speed of 32-bit ALU.
Further, the throughput of CFET ALU drops around -62.50%, while FSH and s-NSH
ALUs demonstrate a significant reduction with around -80.4% and -85.7%, respectively,
when the technology node is scaled down from N5 to N0.5. At N1, the CFET ALU
maintains its advantages, exhibiting nearly 18.75% and 26.67% higher throughput than
FSH and s-NSH ALU. Therefore, it is evident that the development of ALU with CFET
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could be more beneficial in terms of throughput, speed, and power efficiency compared to

FSH and s-NSH ALU counterparts for 5 nm and beyond technology nodes.

Table 4.1:  Benchmarking of 6T SRAM and 32-bit arithmetic logic unit (ALU) at
Vbp = 0.7V for 1 nm technology node.

Delay (ps) PDP (fJ/um)

Attributes . SRAEVI ALU | SRAM | ALU
read write

CFET 31 42 5450 3.47 6200

FSH 32 44 5580 3.5 6620

s-NSH 36 58 6200 4 7000

4.4 Summary

We conducted a detailed performance analysis of 6T SRAM and 32-bit ALU
cells utilizing CFET, FSH, and s-NSH-based inverters for 5 nm and beyond technology
nodes. Table 4.1 further summarizes the key switching performance parameters for these
configurations at the 1 nm technology node. Our findings reveal that the 6T CFET
SRAM significantly enhances operating speed and energy efficiency, with approximately
-38.1% lower delay and -15.27% lower power-delay product compared to the 6T s-NSH
SRAM cell. The 6T FSH SRAM offers a balanced compromise between CFET and s-NSH
SRAMs by providing moderate improvements in both power consumption and frequency
performance. Furthermore, the 32-bit ALU with CFET inverters exhibits a 13.7% higher
operating speed, -12.9% lower power dissipation, and 26.67% higher throughput compared
to ALUs using s-NSH inverters for 1 nm technology node. Notably, CFET inverter
demonstrates their suitability for advanced technology nodes with notable enhancements
in operating frequency with marginal increment in power consumption than FSH and
s-NSH inverters. Overall, our inverter-to-circuit level analysis strongly suggests that CFET
inverter configurations are exceptionally well-suited for low-power and high-speed digital

IC applications at the ultimate scaling limits.
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Chapter 5

Emulation of Synapse using

Nanowire based Charge Trap
Transistor

5.1 Introduction

Neuromorphic computing system presents a promising solution to circumvent von
Neumann architecture limitations, as they offer several advantages, including extensive
parallelism, distributed processing, adaptability, self-organization, fault tolerance,
stability, energy efficiency, and robustness [94]. The replication of synapse stands as
a crucial element in the hardware implementation of a neuromorphic computing system
that requires the emulation of synaptic characteristics, including spike-time-dependent
plasticity, short-term memory (paired-pulse facilitation and depression), and long-term
memory (potentiation and depression) [44]. In recent years, several non-volatile memory
devices, such as resistive random access memory (RRAM) [95], ferroelectric field-effect
transistor (FeFET) [96], and magnetic tunnel junction (MTJ) [97], have emerged as
possible options to develop artificial synapses. However, these devices face major
challenges in commercial production within CMOS-compatible processing techniques due
to processing temperature requirements and material mismatch, and reliability issues
[18]. Moreover, the inherent non-linear and non-uniform conductance modulation of these
devices can lead to considerable degradation in learning accuracy and energy efficiency,
limiting the potential advantages of such synapses [95]. Hence, it is imperative to tackle
these challenges to allow seamless integration of synaptic devices in practical crossbar
array size.

A three-terminal charge trap transistor (CTT) with a high-k oxide gate, such as
HfO9, SigN4, and Al;Os3, has been emerged as a promising synaptic element due to
their full CMOS compatibility with three-dimensional (3-D) integration capability, high
dynamic range, and superior retention capability [18]. Interestingly, the enhancement
of charge trapping using radiation doses in high-k CTT has made significant progress
in achieving high threshold voltage modulation (AVryy) [18, 21|, which renders them
potential candidates for facilitating multistate operations in analog synaptic devices.

Earlier experimental studies on CTT utilizing HfOs trapping oxide layer have reported
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excellent weight tunability and weight-dependent plasticity using commercial 32 nm silicon
on insulator (SOI) and 14 nm Fin field-effect transistor (Fin-FET) technologies without
adding any process complexity or masks steps, which was a critical bottleneck in Flash
memory [18, 24]. Further, the 784 x 784 synaptic crossbar array using 28 nm bulk
CMOS technology has presented 95% accuracy for handwritten digit recognition with the
8-bits/cell [21]. More interestingly, HfO9-based fully depleted SOI (FDSOI) demonstrated
superior programming efficiency with charge retention of more than 10 years at 125°C [98].

Despite these advancements, existing CTTs are utilizing planar and Fin-FET
device architectures, which are highly susceptible to short-channel effects [18, 24]. This
could exacerbate variability and reliability issues in neural network implementation [21].
Therefore, there is a pressing need for the advancement of synaptic devices that can
support technology scaling and enable the development of high-density crossbar networks.
Silicon nanowire-FET (NW-FETs) with high drive currents and more immunity against
the short-channel effects [85], could be a strong CTT candidate. Moreover, Si NW-based
charge trap transistor (NW-CTT) could be well-suited for high-density crossbar arrays
due to their smaller area footprint over Fin-FET and nanosheet-FET [85]. Previous
simulation studies on the NW-FET have demonstrated silicon—oxide—nitride—oxide—silicon
(SONOS) memory as a synapse [44], [99], [100]. However, tackling the challenge of
decreasing their operational voltage demand and simplifying fabrication steps stands as
a crucial endeavor. To tackle these challenges, the conventional HfOs-based NW-CTT
with enhanced interface trap charge density could emerge as a formidable competitor
for the synaptic device. However, synaptic characteristics of HfOs-based NW-CTT have
not yet been thoroughly investigated. Therefore, it would be beneficial to investigate
the device-to-crossbar performance of HfOs-based NW-FETs using rigorous models and
numerical simulations before undertaking more extensive experimental efforts.

In this chapter, we perform a systematic suitability analysis for HfOs-based
NW-CTT as an artificial synapse in the 5 nm technology node by investigating short-term
and long-term memory characteristics with understanding recognition accuracy and energy
efficiency in 784 x 100 x 10 neural network. The synaptic characteristics of NW-CTT
are examined using a fully calibrated technology computer-aided design (TCAD) tool,
based on the self-consistent solutions of Poisson’s equation, Boltzmann transport equation,
and self-heating equations. Previous simulation studies on CTT have overlooked the
self-heating effect [101], but recent experiment demonstration of self-heating induced Vry,

modulation put the pressing demand for incorporation of this effect [98].
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5.2 Simulation Technique

5.2.1 Device Design and Simulation Methodology

Poisson's
Equation

(b)

self-consistent

(a) e\ IFL Hydrodynamic ———— Boltzmann

Transport
Equation

Short Channel Correction Terms:
- Lombardi Mobility Model
- Slotboom Bandgap Narrowing
- Density Gradient Model
- SRH Model with Doping Dependence
- Trap Assisted Recombination Model

Lg =18 nm

Figure 5.1: Synopsis of modeling methodology and experimental verification: (a)
Schematic geometry of NW-CTT at 5 nm technology node (18 nm gate length), and
(b) summary of the modeling methodology.

Fig. 5.1(a) shows the schematic of HfOs-based NW-CTT, where the device design
parameters are selected from the IRDS projection for the 5 nm technology node [102]. The
gate length (Lg) and spacer length (Lgy) of the device are selected around 18 nm and 2
nm, respectively. The source (S) and drain (D) regions (Lg,p) are considered to be around
20 nm long and doped to n-type with a doping concentration of Ng/p =1 x 1020 cm 3.
Further, the diameter (D,,,) of the silicon nanowire is selected around 10 nm, which is in
line with the experimental achievable value [59]. The gate oxide consists of a stack of 1 nm
SiOg and 1.25 nm HfO», resulting in an effective gate oxide thickness (EOT) of around 1.2
nm. Here, HfOy serves as the charge trapping layer (CTL), while SiO2 functions as the
interfacial layer (IFL). Moreover, the chosen thicknesses of SiO2 and HfO9 in FDSOI and
bulk technology have been reported to provide an excellent charge retention capability of
around 10 years [18, 103].

The synaptic characteristics of the NW-CTT are investigated using a fully calibrated
3-D Sentaurus TCAD simulation, based on self-consistent solutions of the Boltzmann
transport equation, Poisson’s equation, and hydrodynamic, as shown in Fig. 5.1(b).
The hydrodynamic model is particularly selected to accurately capture the self-heating
effect across the device. The temperature-dependent Shockley-Read-Hall and Auger
recombination are incorporated to account the generation and recombination of the

carriers in the carrier continuity equation [44, 85]. The non-local band-to-band tunneling
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and Hurkx trap-assisted tunneling (TAT) models are included to incorporate the
band-to-band tunneling [44]. Moreover, the Density-Gradient model is employed to
define the quantum confinement effects in the inversion layer near the Si—SiO interface.
Additionally, a low-field ballistic model is integrated to account the quasi-ballistic
transport [85]. Several correction models, including Old-Slotboom band gap narrowing,
Lombardi mobility, and inversion and accumulation layer mobility, are further included
to address bandgap narrowing, doping, and electric-field-dependent mobility degradation,
respectively [85]. Further, the interface trap density in the CTL layer is considered to be
in the range of Nj; = 1 x 10 cem ™3 to Ny = 1 x 107 cm ™3 with a capture cross-section area
of approximately 1 x 10~*cm?. These interface traps are uniformly situated within the
energy levels of 1.2-2.2 eV below the bottom edge of the conduction band (CB) [104]. It is
important to note that the selected interface trap charge density is in good agreement with
the experimentally reported values in the HfOs-based FDSOI-CTT using total ionization
radiation [18, 24].
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Figure 5.2: Calibration of simulated and experimental characteristics: (a) transfer
characteristics (Ipg-Vgs) of 14 nm technology node Fin-FET for Fresh and 100 krad(SiO2)
irradiation [24] at Vpg = 50 mV, and (b) AVpy-Vigg of FDSOI MOSFET [98] at Vps = 0.5
V for 22 nm technology node. The device design parameters for both Fin-FET and FDSOI
are identical to experimental reported device geometry.

5.2.2 Setup and Calibration of TCAD Simulation

To validate the accuracy of the simulation model, Fig. 5.2(a) shows the transfer
characteristics (Ipg-Vgs) of two-fins Fin-FET with a total effective fin width of 150
nm for a 14 nm technology node using our simulation approach and experimental data
under Fresh and 100 krad(SiO2) condition at Vpg = 50 mV [24]. It is observed that the

simulated Ins-Vgs curve, incorporating Ny = 1 x 10'® cm™3 in the CTL layer, exhibits
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an excellent agreement with the experimental results. This indicates that our simulation
model accurately captures the essential physics of interface trap charges and short-channel

effects.
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Figure 5.3: Program/erase characteristics of the NW-CTT at Vpgs = 0.5 V and room
temperature: (a) Ips-Vgs characteristics under the different Ny, for the voltage sweep of 2
V/us, and (b) 2-D electron interface charge profile for Vgg = 0.8 V (state A), Vgg =14V
(state B), Vgs = 0.3 V (state C), and Vgg = —0.2 V (state D) at the Ny = 1 x 107 cm™3.

To verify both the program and erase phenomena, we have calibrated the simulation
models for 22 nm CTT-based FDSOI technology. Fig. 5.2(b) shows the AVyy, (memory
window), which represents the current difference between the programming and erase
cycles. For AVryy, computation, we apply a Pulsed Gate Voltage Ramp Sweep (PVRS)
ranging from 0 V to 2 V with a step size of 50 mV for a duration of 200 ms at Vpg = 0.5
V. Importantly, Vi, is defined using the constant current method, by setting Vas = Vy
when Ipg = 10~7 A. Tt is observed that the AViy,-Vig characteristics show an excellent
match with the experimental results at Vpg = 0.5 V [98] . This proves that our simulation

accurately captures the essential physics of interface trap charges during the charging and
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discharging processes that occur during the program and erase pulses, respectively.

5.3 Non-Volatile Characteristics of NW-CTT

Fig. 5.3(a) illustrates the Ips-Vig characteristics of NW-CTT under PVRS, with
a sweep rate of around 2 V/us, for Ny = 1 x 10Mem™3, Ny = 1 x 10%ecm ™3, and Ny, =
1 x 10"cm™3. The NW-CTT exhibits a significant shift in sub-threshold current when
the programming (PRS) and erasing (ERS) operations are performed by applying +2 V
and -2 V| respectively. The memory window is observed to be around 0.2 V, 0.7 V, and 1
V for Njy =1 x 10 em™3, Ny, = 1 x 10 cm™3, and Nj; = 1 x 107 ecm ™3, respectively,
at Vps = 0.5 V. The AVpy, shift in NW-CTT is significantly enhanced compared to their
Fin-FET counterparts [24, 98]. A higher AV, in NW-CTT is attributed to the improved

charge trapping and de-trapping effects during PRS and ERS, respectively.
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Figure 5.4: Effect of self-heating in non-volatile memory operation: (a) Ips-Vgg with and
without hydrodynamic model, and (b) 2-D temperature profile at Vgg = 0.9 V (state A)
and Vgs = —0.1 V (state B) at the Nz = 1 x 1017 em ™ for the voltage sweep of 2 V/us
at Vpg =0.5 V.

To better understand AVp, modulation in NW-CTT, Fig. 5.3(b) displays the
electron interface charge profile across the channel-oxide interface for the four bias points,
marked in Fig. 5.3(a). At positive Vgg, the electron interface charge in the CTL increases
because the channel electrons tunnel through IFL and traps in the CTL layer, [see the state

A]. As positive Vg cycle increases further, electrons accumulate near the interface due to
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enhanced tunneling, increasing the electron interface charge in the CTL layer [see state
BJ. This leads to considerable positive shift in Vi, [see Fig. 5.3(a)]. When the negative
gate pulse is applied in state C, electrons migrate back from the CTL to the channel.
The interface charges are completely de-trapped at state D, which results in a decrement
in the electron interface charge near the interface. This provides a significant negative
shift in Vpy, [see Fig. 5.3(a)]. Therefore, the positive and negative Vry shift exhibits
a high memory window, which promises improved non-volatile memory operations with
HfOs-based NW-CT'T through interface states.

Fig. 5.4(a) illustrates the non-volatile memory characteristics of NW-CTT with and
without considering the self-heating effect for Nj; = 1 x 107cm™3. It is observed that the
AVry, is observed approximately 1 V with the self-heating effect, whereas it is found to be
around 0.6 V without considering the self-heating effect. From Fig. 5.4(b), it is found that
the incorporation of self-heating effect captures the elevation in temperature across the
device. This enhancement is attributed to the increment in capture and emission times of
interface trapped charges [19], allowing for rapid modulation of charge density with the
gate voltage pulse. Therefore, considering the self-heating effects is crucial for accurately

describing the charge trapping and de-trapping phenomena in CTT.
5.4 Synaptic Characteristics of NW-CTT

Fig. 5.5(a) shows the schematic representation of a biological synapse using
NW-CTT, where the gate and drain terminals serve as the pre-neuron and post-neuron,
respectively.  An important feature of synapses is weight-dependent plasticity, a
characteristic found in biological synapses that may be interesting to replicate in artificial
systems. For long-term potentiation (LTP) and long-term depression (LTD) analysis, we
apply 106 sets of square voltage pulse trains with a duration of 300 ns. Among these,
53 sets have an incremental amplitude of 0.03 V for LTD, and the remaining 53 sets
have an incremental amplitude of -0.03 V for LTP. The Vpg terminal bias is considered
to be around 0.5 V. The conductance [G(uS)] is computed by taking the derivative of
the obtained drain current with the applied pulse voltage. Fig. 5.5(b) shows that the
conductance of NW-CTT exhibits linearly increment and decrement for LTP and LTD,
respectively. This linear behavior is attributed to the constant rate of electron trapping
and de-trapping with positive and negative gate pulses, respectively. The dynamic range
for conductance modulation is approximately 12.4 for both LTP and LTD. Meanwhile,
the non-linearity is calculated to be 0.08 for LTP and 0.048 for LTD, utilizing the formula
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Figure 5.5: Biological synapse for neuromorphic applications: (a) schematic of
NW-CTT-based artificial synapse, and (b) conductance as a function of pulse number,
indicating the long-term potentiation (LTP) and long-term depression (LTD) behavior of
NW-CTT.

provided in [105], which prove to be nearly linear conductance modulation. These findings
suggest that the near-linear behavior of conductance modulation with NW-CTT holds
promise for enhanced multistate weight update capability.

A multilayer perceptron artificial neural network is designed using NeuroSIM
simulator to assess the learning capabilities of the NW-CTT-based synaptic device. Fig.
5.6(a) shows neural network architecture, which comprises an input layer, a hidden layer,
and an output layer with the size of 784, 100, and 10 neurons, respectively. These
neurons are connected through the NW-CTT-based synaptic crossbar array, as shown
in Fig. 5.6(b). The input consists MNIST dataset, which includes 28 x 28 pixels of
handwritten digits ranging from “0” to “9”. The image undergoes normalization of pixel
intensities within the range of 0 and 1. Each normalized pixel is then transformed into
a column matrix with 784 elements, which are subsequently fed into the input layer of
the neural network. Further, the MNIST dataset consists of 60,000 inference and 10,000
testing handwritten digit images. The conductance values obtained from the NW-CTT

are employed as the synaptic weights, which connect three-layer neurons. During the
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Figure 5.6: Pattern recognition accuracy: (a) schematic of the multilayer perceptron neural
network, (b) crossbar array architecture with NW-CTT as the synaptic element that is
utilized within the input, hidden, and output layers, and (¢) MNIST digit recognition
accuracy with the number of training epoch.

inference stage, the neural network computes the loss, which is a difference between the
expected and calculated errors, and propagates backward to the individual layers. The
rectified linear unit (ReLU) activation and Adam optimizer are incorporated to account
for non-linearity and weight updates, respectively. After that, our simulation computes
the weight gradients and optimizes the parameters accordingly. Upon completion of the
inference stage, the testing images are feeded as inputs to the input layer of the neural
network. The output layer then compares the network’s predictions with the target output,
thereby providing the recognition accuracy of the NW-CTT-based system for MNIST digit

classification. Fig. 5.6(c) reveals that the artificial neural network achieves a recognition
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accuracy of around 94.7% using NW-CTT after 100 epochs due to superior dynamic range
and near-linear conductance modulation. This shows that NW-CTT exhibits excellent
capability in recognizing all ten input digits and distinguishing various details within each
digit.

5.4.1 Influence of Nanowire Diameter
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Figure 5.7: Impact of nanowire diameter (D,,,) on synaptic functionality at Vpg = 0.5 V:
(a) paired-pulse facilitation (PPF) and paired-pulse depression (PPD) indexes, (b) LTP
and LTD with pulse number, (c) write energy consumption, and (d) recognition accuracy
after the 100" epoch of the MNIST dataset as a function of Dj,,.

We now explore the synaptic behavior of NW-CTT with variation in the nanowire
diameter (D,,,) as achieving uniformity and consistency in nanowire dimensions is still a
crucial factor [106]. The D,,, is here varied in the range of 10 nm to 50 nm by keeping
other parameters fixed. Fig. 5.7(a) shows paired-pulse facilitation (PPF) and paired-pulse
depression (PPD) index, which demonstrates the short-term memory capability of the
artificial synapse. The PPF and PPD are computed as 100% x ((Az - A1)/ A1), where Ay
and As are the amplitude of the first and second output current for the two consecutive
identical pulses on the pre-neuron where |0.1| V amplitude pulse is used in this work. In

particular, the increment in PPF and decrement in PPD index represent the excitatory and
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inhibitory neurotransmitter release, respectively. The PPF and PPD for D,,,, = 10 nm are
observed to be approximately 68% and 18%, respectively. This notable difference in PPF
and PPD is attributed to the rapid modulation in current resulting from the enhanced
charge trapping effect. It is also observed that the PPF and PPD decrease significantly
with increasing the D,,,,. This is due to the considerable reduction in the charge-trapping
and de-trapping effects in the drain-to-source current for larger diameters. Fig. 5.7(b)
shows that the dynamic range of D,,, = 50 nm for LTP and LTD is attained around
1.34x and 1.4x lower than D,,, = 10 nm, respectively. Further, the non-linearity of
Dyy = 50 nm for LTP and LTD is found around 1.3x and 1.04x lower than D,,, = 10 nm,
respectively. The reason for a considerable decrement in dynamic range and non-linearity
is that a larger D,,, considerably decreases the inversion charge in the channel region,
which decreases the interface charge density.

Fig. 5.7(c) and Fig. 5.7(d) demonstrate the impact of D,, on the write energy
consumption and recognition accuracy after the 100*" epoch, respectively. The write
energy consumption of neural network is computed by E.q = GViy?N Touise, Where G
represents the conductance values, Viy represents the write voltage, N signifies the number
of applied write pulses, and T}, indicate the pulse width. It is observed that the write
energy consumption and recognition accuracy decreases with increasing the D,,,,. Notably,
the write energy consumption and recognition accuracy for D, = 50 nm are found around
1.75 mJ and 85%, respectively, which are nearly 1.34x and 1.12x lower than D,,,, = 10 nm,
respectively. This considerable reduction in recognition accuracy and energy efficiency is
due to a considerable increment in non-linearity and decrement in dynamic range for both
LTP and LTD. Therefore, a larger nanowire diameter might improve energy efficiency, but

it causes a significant reduction in recognition accuracy.
5.4.2 Influence of Thickness of Charge Trap Layer

In this section, we examine the synaptic behavior of NW-CTT with variations in the
thickness of the CTL (tcryr) layer, which is a critical parameter for enhancing the charge
retention capability. The tory is here varied in the range of 1 nm to 5 nm by keeping other
parameters constant. Fig. 5.8(a) shows that the PPD and PPF decrease with increasing
the torr. This is due to a significant reduction in the drain-to-source current modulation
for the same interface trap charges. Fig. 5.8(b) reveals that NW-CTT with thicker tory,
exhibits lower dynamic range and higher non-linearity for both LTP and LTD compared to
thinner counterparts. Additionally, Fig. 5.8(c) and Fig. 5.8(d) show that the write energy

consumption drops from 2.3 mJ to 1.7 mJ, while the recognition accuracy degrades from
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Figure 5.8: Impact of the charge trap layer thickness (tcrr) on synaptic behavior at
Vps = 0.5 V: (a) PPF and PPD indexes, and (b) LTP and LTD with pulse number, (c)
write energy consumption, and (d) recognition accuracy after the 100 epoch of MNIST
dataset as a function of CTL thickness.

94.7% to 83% when the tcry is scaled up from 1 nm to 5 nm. This is due to the significant
enhancement in the non-linearity in conductance modulation. Therefore, it is evident that
the optimal choice of torr could offer sufficient dynamic range and near-linear behavior,

leading to high recognition accuracy for neuromorphic applications.

5.4.3 Influence of Gate Length

Fig. 5.9 shows the synaptic characteristics and neural network performance of
NW-CTT as a function of the gate length (Lg) at Vpg = 0.5 V. The L, is varied in
the range of 10 nm to 22 nm according to the TRDS 2022 projection for 1 nm to 5
nm technology nodes [102]. As observed in Fig. 5.9(a), PPF and PPD increase with
decreasing L, due to a significant enhancement in gate efficiency. The PPF and PPD are
observed to be approximately 78% and 25%, respectively, at L, = 10 nm, which indicates
superior temporal detection capability. Fig. 5.9(b) demonstrates that the conductance
has a higher dynamic range and is modulated more linearly with pulse number in LTP

and LTD as L, decreases. The reduction in L, increases the electric field in the channel
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Figure 5.9: Impact of the gate length (L4) on synaptic behavior at Vpg = 0.5 V: (a) PPF
and PPD indexes, and (b) LTP and LTD with pulse number, (c) write energy consumption,
and (d) recognition accuracy after the 100"" epoch of MNIST dataset as a function of gate
length.

region, which lowers the potential barrier for inversion charges. This enhances the charge
trapping/de-trapping phenomenon of electrons to/from spatially distributed interface trap
sites.

It is observed from Fig. 5.9(c) that the write energy consumption increases
marginally from 2.2 mJ to 2.47 mJ as L, decreases from 22 nm to 10 nm due to an
enhancement in Ipg. Additionally, the recognition accuracy improves from 93.2% to 96%
when the gate length is scaled down from 22 nm to 10 nm, as shown in Fig. 5.9(d).
Therefore, NW-CTT with a shorter gate length proves to be a more efficient synaptic
device for offering a high dynamic range and more linear conductance modulation, which

promises higher recognition accuracy in neural networks.
5.4.4 Influence of Metal Gate Work Function

Fig. 5.10 shows the impact of the metal gate work function on synaptic behavior
and crossbar array performance of NW-CTT at Vpg = 0.5 V. Here the selected gate work
functions represent the following metals: 3.1 eV (Yttrium), 4.28 eV (Aluminium), 4.35
eV (Titanium nitride), 4.7 eV (Copper), and 5.1 eV (Gold). Fig. 5.10(a) shows that
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Figure 5.10: Impact of the gate work function (¢as) on synaptic behavior at Vpg = 0.5 V:
(a) PPF and PPD indexes, and (b) LTP and LTD with pulse number, (¢) write energy
consumption, and (d) recognition accuracy after the 100*" epoch of MNIST dataset as a
function of gate metal work function.

PPD and PPF increase with increasing the ¢,,. This is because a higher ¢, significantly
enhances the inversion charge density in the channel region, which considerably increases
the charge trapping/de-trapping into/from the CTL layer. Moreover, the higher PPF
and PPD indexes at ¢pr = 5.1 eV highlight the substantial charge buildup capability of
NW-CTT.

It is observed from Fig. 5.10(b) that dynamic range and linearity in conductance
modulation improve with increasing ¢,; due to the enhancement in drain-to-source current
modulation efficiency with increasing the interface trap states. Moreover, the non-linearity
in LTP and LTD remains in a narrow range of 0.08-0.09 and 0.048-0.051, respectively,
with a dynamic range of 12.4-13.5. Thus, the improvement in synaptic characteristics of
NW-CTT suggests that a higher ¢,; could increase the multi-bit storage capability of the
device.

Fig. 5.10(c) shows that the write energy consumption exhibits a marginal increment
of around 1.21x, which increases from approximately 2.1 mJ to 2.55 mJ when ¢, rises
from 3.1 €V to 5.1 eV. From Fig. 5.10(c), it is seen that recognition accuracy significantly
enhances from 92% to 96.8% with increasing ¢y from 3.1 €V to 5.1 eV. This signifies that

even a marginal improvement in dynamic range and linearity in conductance modulation
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can significantly enhance recognition accuracy, while energy consumption exhibits only
a slight increment. Therefore, tailoring the ¢,; could be a suitable choice for attaining

superior neural network performance with NW-CTT.

5.5 Performance Benchmarking

Table 5.1:  Comparison of performance metrics of NW-CTT with the state-of-art
non-volatile memory devices.

Device Switching STM Voltage[V] Dynamic States/Device Energy[fJ]t RA(%)
Mechanism Range

MgO [97] Stochastic No 1 14 NA 1 x 107 57

InySes[96] Ferroelectric No 15 3 113 792x10% NA

Pt/Co/Si0O2[107]  Ferromagnetic No 20 mA* 3 90 3x 10! 82.8

GeTe[108] Phase changing No 7 8 10 12.1 NA

HfO,[95] Resistive No 0.8 3 40 NA 83

TaO,[109] Resistive No 5 7 40 NA 96.4

QW/[110] Charge Trapping Yes 7 7 20 0.766 NA

MoS,[111] Charge Trapping Yes 4 NA 300 1x10% 35.6

Si-Nanosheet-SONOSCharge Trapping No 10 2x10% 40 NA 93.3

[100]

Si-FDSOI-CTT Charge Trapping No 2.5 150 256 5x10° NA

20]

Si-PDSOI-SONOS  Charge Trapping Yes 2 175 50 4500 NA

[112]

Si-Nanowire-SONOS Charge Trapping Yes 4 NA NA 0.02 NA

[44]

Si-FDSOI-CTT[21] Charge Trapping No 2 NA NA 14.8 mW* 95.7

This work Charge Yes 1.8 12.4 53 0.13 94.7
Trapping

STM: Short-Term Memory (PPF and PPD); RA: Recognition Accuracy after 100'" epoch; QW:
Quantum-Well; NA: Not Available; +: Device Switching Energy; *: power consumption; *: current
supply.
Table 5.1 compares our HfOg-based NW-CTT with state-of-the-art synaptic devices
[20], [21], [44], [95], [96], [97], [100], [107], [108], [109], [110], [111], [112] in terms of key
device and neural network performance metrics. Since most of the emerging non-volatile
memories have computed the device switching energy, we here present the device switching
energy of HfO2-based NW-CTT, that is calculated as E/ = Ips X Vipplied X tswitching, Where
Ins, Vapplied, and teyitching represent the drain-to-source current, applied pulse bias, and
switching time, respectively. It is evident that the emerging non-volatile memories, such
as MgO-based MTJ [97], InaSes-based FeFET [96], HfO,-based RRAM [95], TaO,-based
RRAM [109], Si-Nanosheet-SONOS [100], Si-FDSOI-CTT [21], Si-FDSOI-CTT [20], and
GeTe-based PCM [108], primarily demonstrate long-term memory characteristics over
short-term memory, which often requires large operating voltages. Interestingly, the
proposed Si NW-CTT offers both short-term and long-term memory with relatively
lower operating voltage. NW-CTT not only offers significantly lower device switching

energy of 0.13 fJ, but also exhibits superior recognition accuracy (94.7%) compared with
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MoS2-CTT [111], MgO-based MTJ [97], and HfO,-based RRAM [95], Pt/Co/SiO2-based
ferromagnetic [107]. Therefore, the proposed HfOs-based NW-CTT holds promise to
develop high-density non-volatile memory and synaptic crossbar array with superior

learning accuracy and energy efficiency.
5.6 Summary

Using a fully calibrated TCAD simulation, this chapter presented a comprehensive
performance analysis of HfOs-based NW-CTT to mimic the multilevel dynamics of
biological synapse. The charge trapping and de-trapping of interface states has
demonstrated the memory window of around 1 V between programming and erase pulse
when the Nj; = 1 x 107 ecm™3 present in HfO, layer. Further, NW-CTT exhibited
asymmetric conductance modulation of LTD and LTP with around non-linearity of
around 0.08 and 0.048, respectively. A close to linear conductance modulation with
NW-CTT has shown superior recognition accuracy (94.7%) and write energy (2.3 mJ)
in 784 x 100 x 10 neural network for handwritten digits. Furthermore, our device
design parameter optimization results have provided a valuable guideline for selecting
the NW diameter, thickness of CTL, gate length, and metal gate work function to achieve
enhanced learning accuracy and energy efficiency. Thus, the proposed NW-CTT closely
mimics both short-term and long-term synaptic characteristics, making it suitable for

future applications in neuromorphic computing.



Chapter 6

Fully NW-CTT-based Spiking
Neural Network with
Unsupervised Learning

6.1 Introduction

The cognitive functions of the human brain, including learning and memory, arise
from a complex network of approximately one hundred billion neurons interconnected
by synapses [89]. Neurons process pre-synaptic input stimuli to generate electrical
impulses, while synapses facilitate signal transmission between neighboring neurons. The
functionality of these neurons and synapses can be modified based on prior experiences,
leading to the reorganization of neural pathways [113]. In biological systems, changes in
synaptic weight are influenced by the concentrations of various ionic species, such as Ca?*,
Na™, KT, which regulate the release of neurotransmitters from the pre-synaptic to the
post-synaptic terminal [114]. Neural synaptic functions, including excitatory/inhibitory
post-synaptic current (EPSC/IPSC), pair-pulse facilitation/depression (PPF/PPD),
long-term potentiation/depression (LTP/LTD), and spike-timing-dependent plasticity
(STDP) are crucial for executing computational tasks and memory functions [44].
Recent studies indicate that neurons are not only involved in information processing but
also play a pivotal role in memory formation [115]. Furthermore, neuronal inhibition
and the tunability of firing threshold voltage are essential for developing reliable and
energy-efficient neural networks [116]. Synaptic plasticity and neuronal plasticity occur
simultaneously during significant learning processes, which allows the brain to perform
intelligent tasks and participate in effective probabilistic processing. To replicate such
cognitive efficiency in artificial neuromorphic systems, it is vital to select the appropriate
synaptic and neuronal devices. Thus, it becomes important for creating energy-efficient
neuromorphic chips that can mimic biological computation, which thereby requires a
deeper investigation into synaptic and neuronal device design and functionality.

In recent years, significant progress has been made in the hardware implementation
of artificial neural networks (ANNs) using non-volatile memory devices, such as
redox memristors [117], phase-change memristors [108], organic transistors [118], and

CMOS-based emulator circuits [119]. However, ANNs typically process information
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continuously and synchronously, leading to inefficiencies in power consumption and
limited biological realism [120]. Spiking Neural Networks (SNNs) offer solutions to
these limitations by simulating neurons that communicate through discrete spikes,
enabling event-driven and energy-efficient processing that more closely mirrors the
brain’s functionality [113]. SNNs also leverage temporal coding, capturing the precise
timing of spikes to enhance learning and memory representation [121].  Notably,
several CMOS-based neuron and synapse emulators have been developed for SNN
implementation, such as Intel Loihi [122], IBM TrueNorth [120], and SynSense chips
[123]. These chips support on-chip learning, event-driven processing, offline training,
and unsupervised learning algorithms. However, they face scalability, training efficiency,
energy consumption, and crossbar limitations as they strive to emulate brain-like
computing [124].

To improve area efficiency, alternative SNN architectures have been explored by
integrating novel memory and synaptic technologies, such as magnetic random-access
memory (MRAM) [125], ferroelectric field-effect transistors (FeFETs) [126],
threshold-switching (TS) devices [127], and phase-change memory (PCM) [128].
Despite their potential, these technologies face substantial barriers to commercial
viability, particularly in achieving CMOS compatibility due to issues like high processing
temperatures, material mismatches, and reliability concerns [95]. Recently, CTT,
featuring high-k oxide gates, have emerged as promising synaptic elements due to their
full CMOS compatibility and potential for three-dimensional (3D) integration [18, 19].
Recently, the 784 x 784 synaptic crossbar array using 28 nm bulk CMOS technology has
presented 95% accuracy for handwritten digit recognition with the 8-bits/cell [21]. More
interestingly, the winner-take-all neural network using 22nm HfOs-based fully depleted
SOI (FDSOI) has presented the exceptional learning capability of CTT as a synapse [20].
However, the implementation of homo-typic CTT-based SNN is still missing. Despite
these promising experimental and theoretical developments, the detailed design and
development of spiking neural networks (SNNs) using CTT remain largely underexplored.

Several experimental efforts have successfully emulated synaptic behavior using
silicon-based CTT for low-power, high-retention in-memory applications [19]. However,
few studies have explored the neuronal capability using MOSFET devices [129, 130].
Recently, partially depleted silicon-on-insulator (PD-SOI) MOSFETs have been used to
implement leaky integrate-and-fire (LIF) neurons, achieving spiking frequencies in the

MHz range with energy consumption as low as 13x107'2 J/spike [129]. More recently,
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bulk Fin-FET have demonstrated even more energy-efficient integration and firing, with
an energy consumption of 6.3 x 1071° J/spike, highlighting the need for low-energy neuron
circuit designs [130]. Additionally, silicon-oxide-nitride-oxide-semiconductor (SONOS)
devices have demonstrated functioning as both neurons and synapses [115]. However, these
CMOS technologies rely on impact ionization to implement neuronal behavior. Moreover,
no qualitative studies have been conducted to properly investigate the neuronal behavior
of CTT. Therefore, there is a pressing need to explore CTT as a neuron to achieve area
and energy efficiency in neuromorphic systems.

NW-CTT, with their highly linear conductance modulation and wide dynamic range,
have emerged as promising candidates for achieving multistate operation capabilities,
making them ideal for electronic synapses, as discussed in the previous chapter [131].
Furthermore, extending this device to implement artificial neurons by achieving leaky
integrate-and-fire (LIF) functionality could pave the way for highly scalable and
energy-efficient spiking neural networks that are fully CMOS-compatible. This approach
has significant potential for the advancement of neuromorphic computing systems and
in-memory processing architectures. Therefore, further exploration into the design and
optimization of NW-CTT-based spiking neural networks is critical for realizing low-power,
high-performance neuromorphic systems.

In this chapter, we design and investigate a fully NW-CTT-based spiking neural
network for digit pattern recognition applications. First, we explore the neuronal
capabilities of NW-CTT by designing integrate-and-reset circuits. In the initial
performance analysis, we evaluate the neuronal behavior of NW-CTT under various
pulse schemes. Subsequently, NW-CTT devices, serving both as neurons and synapses,
are co-integrated into a single-layer 15 x 6 crossbar array for spiking neural network
development. The performance of both the device and the crossbar array is thoroughly
examined using a fully calibrated three-dimensional TCAD tool. Our studies not only
demonstrate the performance advantages of NW-CTT as a neuron but also guide designing
a homo-typic, energy-efficient, and area-optimized spiking neural network. The key

contributions of this paper are threefold:

e To the best of our knowledge, this work presents the first implementation of a SNN
using a calibrated TCAD simulation tool. The NW-CTT is initially modeled using
a physics-based approach that includes self-consistent solutions of the 3D Poisson’s
equation, the Boltzmann transport equation, and the self-heating equation, with

corrections for interface trap charges. The synaptic behavior of the NW-CTT is
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thoroughly investigated, as reported in our previous work [131], followed by a detailed
analysis of its neuron-like functionality. Furthermore, we designed a 15x6 crossbar

array utilizing mixed-mode simulations.

e This work explores the ability of the NW-CTT to exhibit neuronal behavior by
simulating various neuron firing patterns, including tonic, irregular, adaptive, and
mixed modes. Unlike previous studies where non-volatile devices were primarily used
as neurons for data storage and recording over extended periods, thereby leading
to significantly higher energy consumption [132, 133, 134]. Our study emphasizes
the direct integration of spikes in the NW-CTT. This approach reduces energy

consumption while enabling more efficient real-time neural activity analysis.

e The co-integration of neurons and synapses using NW-CTT is demonstrated in
a single-layer 15 X 6 crossbar array. In previous experimental and simulation
studies on neural networks [135, 136], the neurons and synapses typically involved
hetero-typic devices, significantly increasing the chip area and energy consumption.
While some studies have employed homo-typic CMOS-compatible devices, these
often require additional fabrication steps and reduce the pattern recognition accuracy
[115]. Our study introduces an area- and energy-efficient integration of homo-typic
devices within the crossbar array, achieved without any extra fabrication steps or
loss in pattern recognition accuracy at the nanoscale gate length. Additionally,
our system demonstrates robust pattern detection capabilities even under noisy

conditions and process-voltage-temperature variations.

6.2 Device Geometry & Simulation Methodology
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Figure 6.1: Synopsis of modeling methodology and experimental verification: (a)
Schematic geometry of NW-CTT at 5 nm technology node (18 nm gate length), and
(b) summary of the modeling methodology.
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Fig. 6.1(a) shows the schematic of HfOs-based NW-CTT, which is utilized as
an artificial synapse and subsequently modified to function as a neuron. A more
detailed discussion of device dimensions and simulation methodology can be found in
our previous chapter. Following this, neurons and synapses are integrated to develop SNN
in s-device file, and the mixed mode simulation is carried out to simulate the interaction

between device-level physical characteristics and circuit-level behavior in an integrated

environment.

6.3 Results
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Figure 6.2: (a) Schematic of artificial neuron response with analysis of: (b) Tonic, (c)
Irregular, (d) Adaptive, and (e) Mixed firing pulse train at room temperature.

6.3.1 Neuronal Capability of NW-CTT

Fig. 6.2(a) shows the NW-CTT utilized to replicate neuron behavior. To understand
the behavior of NW-CTT as a bio-neuron, we initially apply four distinct neural firing
patterns: "Tonic,” "Irregular,” ”Adaptive,” and "Mixed.” Fig. 6.2(a) shows applied input
to neuro circuit as rectangular pulses with an amplitude of 0.7 V and a width of 0.1 us

with four different firing patterns. Specifically, the "Tonic” pattern consists of evenly
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spaced pulse trains; the ”Irregular” pattern consists of spikes firing at irregular intervals;
the ”Adaptive” pattern shows spikes with gradually increasing intervals; and the "Mixed”
pattern is a combination of tonic, irregular, and adaptive firing behaviors.

Fig. 6.2(b)-(e) shows the simulated output current neuron with four input voltage
schemes for verifying the LIF functionality. It is evident that output current spikes occur
only when pulses are applied. This is mirroring the behavior observed in biological spike
trains. The distinct responses to these four different spike train patterns highlight the
NW-CTT’s capability to process a variety of firing patterns, akin to the neural processing

seen in the human brain.

6.3.2 Implementation of STDP with NW-CTT Synapse
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Figure 6.3: Spike timing dependent plasticity (STDP): (a) schematic of NW-CTT-based
artificial synapse, and (b) change in conductance state (AG/G) as a function of time
interval, indicating the long-term potentiation (LTP) and long-term depression (LTD)
behavior of NW-CTT.

We next investigate the spike-timing-dependent plasticity (STDP) of NW-CTTs
to explore their capability for synaptic weight updates, which depend critically on the
relative timing between the spikes of pre-synaptic and post-synaptic neurons. When the
pre-synaptic neuron fires before the post-synaptic neuron within a specific time window,
the synaptic weight between the two neurons is strengthened, resulting in long-term
potentiation (LTP). Conversely, if the post-synaptic neuron fires before the pre-synaptic
neuron, the synaptic weight is weakened, leading to long-term depression (LTD).

To implement STDP, we applied pre-synaptic and post-synaptic pulses at the gate
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and drain terminals, respectively. Fig. 6.3(a) shows that 0.7 V and -0.7 V amplitudes are
applied for the pre-synaptic and post-synaptic pulses, respectively, with a pulse width of
0.1 ps. The different pulse time intervals (At) are chosen to achieve LTP and LTD. Fig.
6.3(b) shows the change in the conductance of NW-CTT as a function of the time difference
between the pre-synaptic and post-synaptic spikes (At). It is observed that when At is
lower than a positive threshold (At < tmaxpot), it leads to long-term potentiation (LTP),
which strengthens the synaptic connection. Conversely, when the post-synaptic spikes
occur before the pre-synaptic spikes, and the delay (At) is less than tmaxdep, long-term
depression (LTD) is induced, which weakens the synaptic connection.

According to the Hebbian learning rule, an increment in synaptic weight increases the
excitability of post-neurons. To prevent excessive neuronal excitability, synaptic weight
potentiation must reach a saturation point. As shown in Fig. 6.3(b), the change in
conductance reaches saturation behavior under a sequence of positive and negative pulses
with varying voltage amplitudes is evident. These findings demonstrate that the device
successfully mimics the long-term potentiation and depression functions of biological
synapses.

6.3.3 Implementation of Spiking Neural Network for Pattern
Recognition

Fig. 6.4 shows the single-layer neural network, which utilizes 15x6 SNN for
classifying grayscale input images, particularly focusing on six digital digits (“0” to “5”).
Each digit consists of 5x3 grayscale pixels. The pixel intensities of these grayscale images
are encoded into 15 input voltage vectors. These 15 input voltages are fed into the SNN
through 15 input neurons, while 6 output neurons correspond to the 6 output digits.
Each synaptic crossbar column is dedicated to one of the six digits. Consequently, the
network has 90 synaptic elements, determined by the number of input and output neurons.
Notably, the grayscale pixels are represented by four input voltage levels: black, dark gray,
light gray, and white pixels corresponding to input voltages of 1 V, 0.8 V, 0.6 V, and 0.4
V, respectively. These voltages are applied to the pre-synaptic neurons. The pre-synaptic
neuron circuitry consists of a series combination of an NW-CTT and an output resistor
(Rout)- The NW-CTT integrates and generates the spikes, whereas the output resistor
converts current into voltage, which is then applied to the system. Further, the output of
the pre-synaptic and post-synaptic neuron (Vi synapse) is applied to the NW-CTT-based
synaptic crossbar array. The crossbar array consists of CT'T between horizontal word lines

(WLs) and vertical bit lines (BLs).
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Figure 6.4: The proposed NW-CTT based spiking neural network architecture consisting
of: (a) 15 input pre-synaptic neurons, (b) 15x6 synaptic crossbar array, (c) input
patterns of six digit, (d) 2 stage operational trans-impedance amplifier, and (e) 6 output
post-synaptic neurons.

The rate-encoded spike trains for each pixel are applied to NW-CTT to implement
the potentiation and depression mechanisms. The conductance states resulting from these
mechanisms are stored in the NW-CTT and used to evaluate its pattern recognition
capabilities. Further, a two-stage operational trans-impedance amplifier (TTA) is selected
at the output wordline (WL) of the synaptic crossbar array that converts the weighted
sum of the output current from the 15x6 crossbar array (CPA) into a voltage. The output
of TTA reflects the result of the vector-matrix multiplication (VMM) for the post-synaptic
neuron. The post-synaptic neuron then generates spikes based on the input voltage applied
to the NW-CTT. To ensure only one output neuron fires at a time, a winner-take-all
strategy is employed, allowing the winning neuron to inhibit the others, thereby identifying
the recognized pattern.

Fig. 6.5 shows the unique output of post-synaptic neuronal current spikes for six
digital digits (“0” to “5”). It observed that digit “0” shows the least spikes, whereas digit
“1” presents the highest number. The reason for this behavior is that digit “0” consists
of the least number of black pixels, whereas digit “1” consists of a maximum number of
black pixels. These black pixels correspond to maximum Vgg, which leads to maximum
conductance state values, as shown in Fig. 6.4. Moreover, digit “2”7, “3”, “4” and “5”
presents 5, 7, 8 and 3 spikes, respectively. Therefore, unique spikes, depending upon the

input pattern, could be achieved through NW-CTT based spiking neural network.
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Figure 6.5: Response of firing output neuron for digits: (a) “0”, (b) “17, (c¢) “2”7, (d) “3”,
(e) “4” and (f) “5” at room temperature.

6.3.4 Emnergy Consumption for Each Digit Recognition

Fig. 6.6 presents the energy consumption of SNN for the six digital digits. The
energy consumption is calculated as the product of current, voltage, and the number of
spikes. It is found that digit “1” exhibits a maximum energy consumption of 0.308 pJ due
to the maximum number of spikes in neuron output. However, digit “0” presents the least
energy consumption of 0.056 pJ. The energy consumption behavior of digital digits aligns
with the number of output spikes for each digit, as shown in Fig. 6.5. Moreover, digit “1”
exhibits 5.5x, 2.2x, 1.57x, 1.37x, and 3.67x higher energy consumption than “0”, “2”,
“37, “4” and “5”, respectively. Interestingly, our NW-CTT as a synapse and neuron could

be a potential candidate for implementing a spiking neuron network as it demonstrates
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Figure 6.6: Energy consumption for six digits “0” -“5” at room temperature.
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significantly lower energy than existing CTT devices as a neuron and synapse [129, 130].

Table 6.1: Comparison of performance metrics of NW-CTT-based spiking neural networks
with the state-of-art.

Neuron Type Neuron Circuit Synapse Energy/spike  Reference
(Neuron
Circuit)
LIF CMOS Analog, mixed CMOS 10 nW § Indiveri et
signal al. [137]
Multiply-accumulate CMOS analog, CMOS 125 nW 7 Amravati et
mixed-signal al. [138]
LIF 1 Transistor+ 1 FeFET FeFET 3.6 nW 7 Wang et al.
[126]
LIF PCM PCM - Pantazi et
al. [128]
F MTJ CMOS 52.4 nJ Wu et al
[139]
IF 1 SOI-MOSFET+ 2R+ 2 CMOS 0.3 nJ Dutta et al.
Op-Amp + 1 p-FET [129]
IF 1 capacitor+ 1 NbOo CMOS 2.18 pJ Wang et al.
[127]
F 1 capacitor+ 1 VO, CMOS 0.2 pJ Jerry et
al.[140]
LIF 1 NW-CTT+ 1 R NW-CTT 0.028 pJ Our Work

LIF: leaky integrate fire; IF: integrate fire; F: fire; PCM: phase change memory; FeFET:
ferroelectric FET; MTJ: magnetic tunnel junction; R: resistor; {: Power.



Chapter 6. Fully NW-CTT-based Spiking Neural Network with Unsupervised Learning5

6.4 Performance Benchmarking

Table 6.1 compares the performance metrics of our developed NW-CTT-based
SNN with the state-of-the-art [126, 127, 128, 129, 137, 138, 139, 140] in terms of
neuron and synapse type and energy/power efficiency. It is evident that CMOS-based
systems [137, 138] and FeFET-based neuron units [126] demonstrate significantly high
power consumption. Moreover, SOI-MOSFET-based neuronal circuits [129] mimic the
integrate-and-fire capability of neurons, but they require high operating voltage and a large
circuit area. Additionally, threshold-switching-based artificial neurons have shown the
lowest power consumption, but they still need high operating voltages [127]. Interestingly,
our proposed architecture not only utilizes NW-CTT as both synapse and neuron but also

offers energy efficiency with area-saving benefits.
6.5 Conclusion

This chapter presents the implementation of a fully NW-CTT-based spiking neural
network (SNN) for recognizing six digital digits. The NW-CTT has demonstrated
exceptional performance as an artificial neuron, responding to input stimuli with
rate-encoded spiking capabilities. Additionally, the charge-trapping phenomenon in
NW-CTT-based neurons regulates the excitatory/inhibitory functions and modulates the
firing response based on the threshold voltage. In a 15 x 6 crossbar array, the NW-CTT
serves as both a synapse and a neuron, showcasing superior recognition accuracy and
energy efficiency (0.028 pJ/spike). Thus, the proposed NW-CTT-based spiking neural
network demonstrates significant advantages and holds great potential for constructing

efficient neuromorphic machines
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Chapter 7

Conclusion

7.1 Summary

The thesis presents the physical insight into the benefits of GAA devices and
their performance exploration for sub-5 nm technology nodes in four topics: (I) single
channel multi-gate FETs analysis, including Fin-FET, NS-FET and NW-FET, for
RF applications, (II) novel CMOS inverter configurations implementation for design
technology co-optimization, (III) demonstration of NW-CTT as an artificial synapse and
neuron, and (IV) NW-CTT for attaining a fully CMOS-based spiking neural network. The

major contributions and respective conclusions are as follows:

o The initial work involves the exploration of silicon-based multigate devices (Fin-FET,
NW-FET, NS-FET) with a focus on finding suitable multigate devices for 5 nm and

beyond technology nodes.

— Among Fin-FET, NW-FET, and NS-FET, NS-FET exhibits excellent current
characteristics with a larger voltage gain (32 V/V), transconductance (1.8
mS/pm), output conductance (1034S/um), cut-off frequency (373 GHz), and

maximum oscillation frequency (389 GHz) at 5 nm technology node.

— Our findings indicate that RF performance metrics of multigate devices have
been significantly enhanced by decreasing the channel length and increasing
the geometrical parameters, while the voltage gain could be maximized by
increasing the channel length, selecting proper surface orientation, and reducing

the width and height/thickness of the channel.

— Our performance analysis identifies the proper directions to optimizations for

achieving high-frequency and high-gain RF operations with multigate devices.

e To determine the performance of GAA devices for digital ICs, careful performance
analysis and benchmarking of stacked NS-FET-based CMOS inverters with buried
power delivery network (BPDN), including complementary field effect transistor
(CFET), forksheet (FSH), and conventional stacked nanosheet (s-NSH) are

presented using process simulation for sub-5 nm technology node.
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— Our findings reveal that the CFET inverter offers approximately a 3.7% higher
operating frequency and a -3.7% lower dynamic power consumption, with a
-60.8% smaller area footprint compared to the s-NSH inverter counterpart for

the 1 nm technology node.

— The results show that the device gate capacitance and the fringing field play
an essential role in the inverter-level performance degradation that can be
minimized by optimizing the p-n separation.

— Our device performance analysis and benchmarking demonstrate that the
CFET inverter delivers optimal and robust switching performance at the

ultimate scaling limits.

e With the ever-increasing demand for power and area-efficient memory and logic
applications, the device-to-circuit level performance of stacked NS-FET is assessed
by developing six transistors static random access memory (6T SRAM) and 32-bit

arithmetic logic unit (ALU) using process simulation for sub-5 nm technology node.

— Our findings reveal that dielectric isolation with 6T CFET and FSH SRAMs
significantly enhances read and write margins, and enables faster read and write

operations compared to s-NSH SRAM.

— The 6T CFET SRAM achieves significant power performance improvements,
with approximately -12.29% reduction in write power consumption and 38.10%
increment in operating frequency compared to s-NSH SRAM for 1 nm
technology node. While 6T FSH SRAM exhibits nearly identical read and
write abilities compared to CFET SRAM, it offers significant improvements,
approximately 31.8% better operating frequency and 12% improved power
efficiency over s-NSH SRAM at the 1 nm technology node.

— Our study indicates that CFET ALU significantly outperforms their FSH and
s-NSH counterparts, exhibiting smaller delay and power-delay products with

higher throughput.

— Our device-to-circuit performance analysis and benchmarking show that the
CFET inverter configuration is well suited for designing energy-efficient memory

and logic integrated circuits in the sub-5 nm regime.

e To develop a CMOS-compatible non-volatile memory, this research present
the charge trap transistors (CTT) using silicon nanowire field-effect transistor

(NW-FET) using fully calibrated TCAD simulation.
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— The charge trapping and de-trapping of interface states has demonstrated the
memory window of around 1 V between programming and erase pulse when the

Nit =1 x 107 cm ™3 present in HfOo layer.

— The NW-CTT has attained asymmetric conductance modulation of LTD and

LTP with non-linearity of around 0.08 and 0.048, respectively.

— Our findings indicate that a close to linear conductance modulation with
NW-CTT has shown superior recognition accuracy (94.7%) and write energy

(2.3 mJ) in 784 x 100 x 10 neural network for handwritten digits.

— Our device design parameter optimization results have provided a valuable
guideline for selecting the NW diameter, thickness of CTL, gate length, and
metal gate work function to achieve enhanced learning accuracy and energy

efficiency.

— Our results provide valuable insights into the synaptic behavior of conventional
NW-CTTs and offer guidance for further harnessing their weight-update

capabilities in neuromorphic computing applications.

e To determine the feasibility and performance of silicon NW-CTT in neuromorphic

applications, we have designed a fully CMOS-compatible SNN.

— The charge-trapping phenomenon in NW-CTT-based neurons effectively
regulates the excitatory/inhibitory functions and modulates the firing response

based on the threshold voltage.

— It is evident that NW-CTT-based neurons achieve energy efficiency of around
0.028 pJ, which is the lowest among reported neurons based on CMOS, SOI,
FinFET, and threshold-switching technologies [126, 127, 128, 129, 137, 138,
139, 140].

— Our results show that the integration of NW-CTT in advanced neuroelectronic
systems holds the potential to enable energy-efficient neural signal analysis
with high spatiotemporal precision, positioning it as a promising candidate for

brain-inspired neuromorphic applications.

The TCAD simulation framework developed in this thesis for gate-all-around devices
addresses three distinct topics, providing device designers with the ability to design
optimized devices that balance power, performance, area, and process considerations.

The comprehensive analysis presented here offers valuable insights into the performance
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of gate-all-around devices, which could potentially drive significant enhancements in the
silicon nanoscale regime. This work not only deepens the understanding of gate-all-around
device performance but also sets the stage for future advancements, encouraging further

improvements in the power and efficiency of next-generation semiconductor technologies.
7.2 Scope for Future Research

There are mainly four major topics for the future works: (1) the electrothermal
analysis for the exploration of the impact of device temperature on the parasitic resistance
and capacitance of novel CMOS inverters with buried power delivery networks; (2) the
reliability analysis of novel CMOS inverters with power, performance, and area device,
circuit and block level metrics; (3) hardware implementation of spiking neural network
with charge trap transistors, and (4) exploration of spiking neural networks using complex

datasets, such as CIFAR 10, CIFAR 100 and implementing using charge trap transistors.

7.2.1 Electro-thermal Analysis of Novel CMOS Inverters with Buried
Power Delivery Network

With the incorporation of metal lines in the buried power delivery network,
there is an increase in the Joule heating in the novel CMOS inverter configurations
as the device dimensions get reduced. This presence of self-heating might alter the
parasitic and, subsequently, the performance characteristics of the inverter configurations
[141, 142]. Therefore, the important directions for future researchers here include (i) the
incorporation of self-heating for analyzing the effect of temperature on parasitic resistances
and capacitances for further power-performance-area optimizations at device, circuit, and
block level and (ii) developing a process to simulation framework considering the capturing
of temperature effect on Monolithic and Sequential CFET, Forksheet and conventional

stacked nanosheet with the scaling of technology node.

7.2.2 Reliability Analysis of Novel CMOS Inverters with Buried Power
Delivery Network

The development of CMOS inverter configurations at the device, circuit, and
block levels inherently requires a more complex and increased number of process
steps. Due to the complex architecture, there is a higher probability of occurrence of
defects, electromigration, soft errors, and aging effects, which can significantly impact
the reliability of these configurations [142, 143, 144]. To mitigate these reliability
challenges, a novel simulation approach is necessary to comprehensively account for these

reliability effects. The proposed approach integrates detailed modeling of defect formation,
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electromigration pathways, and the potential for soft errors, while also considering
aging mechanisms such as Bias Temperature Instability (BTI) and Time-Dependent
Dielectric Breakdown (TDDB). The simulation results with incorporating these factors,
could help designers to achieve a more robust understanding of the potential failure
mechanisms within CMOS inverters. This enhanced insight could enable the optimization
of performance, reliability, and lifespan within the design and system technology paradigm,

thereby encouraging the development of more resilient CMOS technologies.

7.2.3 Hardware Implementation of Spiking Neural Network with Charge
Trap Transistors

Although CTTs have shown promising benefits, their application in SNNs remains
under-explored, with limited research focusing on their simulation implementations
[44, 100]. Further, their hardware implementations are still missing. To advance
CMOS-compatible neuromorphic applications, it is crucial to pursue the hardware
implementation of SNNs using charge trap transistors. Such an implementation would
bridge the gap between theoretical simulations and practical applications, providing
a viable pathway for integrating neuromorphic systems into conventional silicon-based

technologies.

7.2.4 Exploration and Implementation of Charge Trap Transistors-based

Spiking Neural Networks using Complex Datasets, such as CIFAR
10, CIFAR 100

Charge trap transistor-based spiking neural networks (SNNs) have been explored
using simpler datasets like MNIST, which has provided initial insights into their potential
for neuromorphic computing [20]. However, the application of these SNNs to more complex
datasets, such as CIFAR-10 and CIFAR-100, remains unexplored. To address this gap,
it is essential to extend the investigation of charge trap transistor-based SNNs to these
challenging datasets. The CIFAR-10 and CIFAR-100 datasets present a higher level of
complexity and variability compared to MNIST, making them ideal candidates for testing
the scalability and robustness of charge trap transistor-based SNNs. By adapting these
networks to process and classify data from CIFAR-10 and CIFAR-100, the research would
aim to evaluate the true potential of charge trap transistors in handling more demanding,
real-world tasks. This exploration will involve fine-tuning the SNN architecture and
optimizing the integration of charge trap transistors to ensure that the networks can
efficiently manage the increased computational load. Through this work, the existing gap

in the literature on charge trap transistor-based SNNs can be effectively reduced, paving
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the way for their application in more advanced neuromorphic systems.

7.2.5 Improvement in Fabrication Complexity and Scalability of
NW-CTT for Large Scale Neuromorphic Systems

The fabrication of complex GAA structures presents several challenges [145],
[146]. To address these, emerging techniques such as directed self-assembly, atomic
layer deposition, and advanced lithography may be employed. Additionally, bottom-up
nanowire and nanosheet synthesis along with self-aligned processing methods, can be
incorporated to achieve highly precise device architectures with enhanced uniformity and
reduced defect densities. Furthermore, a silicon interconnect fabric may be essential for
addressing interconnect complexity and thermal management to enable energy-efficient

scaling in very large-scale integrated neuromorphic systems.
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