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Lay Summary

Cross-polarization experiment is a routinely employed experimental technique for

sensitivity enhancement of the dilute/insensitive spins in the solid-state NMR

spectroscopy. This double resonance experiment is based on the polarization from the

abundant to less abundant nuclei mediated through heteronuclear dipolar couplings.

Understanding the mechanism of the cross-polarization transfer dynamics in quadrupolar

spins (I>1/2) has remained an open problem in the field of solid-state NMR spectroscopy.

This is primarily due to the complexity in the description of the analytic theory due

to the presence of multiple energy levels, a non-commuting set of operators in the

interaction Hamiltonian and the strength of the quadrupolar coupling constant. In this

thesis, an operator-based analytic theory is presented to describe the spin dynamics of

the cross-polarization experiment involving quadrupolar spins. Utilizing the concept of

the “Effective-field ” method an effective CP Hamiltonian is derived, which accurately

predicts the spin dynamics across all the quadrupolar coupling regimes. The effective-field

formalism is shown to converge faster with the requirement of a minimal number of unitary

transformations in contrast to conventional perturbative approaches. Results emerging

form the analytic theory are rigorously compared and validated with more exact numerical

simulations for a wide range of the experimental parameters. The CP signal expressions

derived in this thesis are capable of identifying all the possible modes of the polarization

transfer pathways and their interplay in deciphering the overall CP efficiency in isotropic

and anisotropic solids.
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Abstract

Cross-polarization (CP) method forms the building block in the design of

multi-dimensional experiments in solid-state nuclear magnetic resonance (NMR)

spectroscopy. CP between spin-1/2 systems is a routine experimental method for

sensitivity enhancement of insensitive spins in solid samples. It involves the transfer

of polarization from the highly abundant spins to the less abundant (insensitive) spins.

CP is mediated through heteronuclear dipolar coupling spin interactions by simultaneous

irradiation of radio-frequency (RF) fields on both spins. The polarization transfer

efficiency is maximized when the RF amplitudes on both nuclei are matched, a condition

that is referred to as the Hartmann-Hahn (HH) energy level matching condition for static

or non-rotating solids. While the mechanism of polarization transfer dynamics during CP

process is well understood through various theoretical frameworks for spin-1/2 systems, a

straightforward extension of the CP experiment involving quadrupolar spins (S > 1/2; 2D,
6Li, 14N, 23Na, 35Cl, etc.) remains elusive. This is primarily due to the magnitude of the

quadrupolar interaction (ranging from a few kHz to MHz), which in general is much higher

than the magnitude of other internal spin interactions and the amplitude of the available

RF fields that result in poor polarization transfer efficiency. This has acted as a roadblock

for the optimal implementation of CP-based experimental methods involving quadrupolar

spins and forms the motivation behind the thesis. From a theoretical perspective, the

presence of multiple energy-levels/transitions and non-commuting set of operators in the

interaction Hamiltonian along with the strength of quadrupolar coupling complicate the

unified description of the spin dynamics. Previously, the theoretical descriptions of the CP

were reported either using the average Hamiltonian theory (AHT) or Floquet theory. In

both approaches the doubly rotating frame Hamiltonian is described in the quadrupolar

interaction frame leading to time-dependent Hamiltonians. Depending on the strength of

quadrupolar interaction, the Hamiltonian in the quadrupolar interaction frame requires

perturbation corrections up to several orders of magnitude. Nevertheless, such descriptions

are of limited utility in describing the CP dynamics across all the quadrupolar coupling

regimes both for single crystal (single crystallite orientation with respect to the applied

Zeeman field) as well as powder samples wherein quadrupolar frequencies are distributed

over a wide range of crystallite orientations. In contrast to the existing theoretical

models, in this thesis we attempt to provide an alternate description of the CP dynamics

described using effective Hamiltonians that are derived from rotation operators based on

the “effective-field” approach. Our effective-field approach results in faster convergence

with improved accuracy in comparison to the existing theoretical frameworks. We have

identified all the CP matching conditions in terms of the single-transition operators and

also highlighted their role in deciphering the mechanism of CP transfer dynamics in

non-rotating solids. We have presented a unified description of the CP dynamics involving

quadrupolar spins through a single mathematical framework that is valid both for single

crystal as well as powder samples across all the quadrupolar coupling regimes. The results

emerging from the analytic theory are verified with numerical simulations over a wide
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range of experimental parameters. We believe that the analytic theory presented in this

thesis would provide necessary impetus for better understanding of the CP experiments

involving quadrupolar spins and could be a guiding tool for designing new experimental

strategies.

Keywords: Cross-polarization; quadrupolar spin; Hartmann-Hahn condition;

effective-field method; effective Hamiltonian; density matrix.
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Û(t) Unitary transformation function

ℏ h/2π

1H NMR active isotope of Proton (I=1/2)

AHT Average Hamiltonian theory

CP Cross-polarization

CT Central transition

CW Continuous-wave

DQ Double-quantum

EFG Electric-field gradient

FQ Four-quantum

FT Fourier Transform

h Planck constant

HH Hartmann-Hahn

LAB Laboratory axis frame

MAS Magic Angle Spinning

MolAS Molecular axis system



xvi List of Symbols

NMR Nuclear Magnetic Resonance

PAS Principal axis system

RF radio-frequency

SQ Single-quantum

ssNMR Solid-state nuclear magnetic resonance

ST Satellite transition

TLS Two-level system

TQ Triple-quantum

ZQ Zero-quantum



Chapter 1

Introduction

1.1 Introduction

Following the discovery by Felix Bloch and Edward Mills Purcell in 1946 [1, 2], Nuclear

Magnetic Resonance (NMR) spectroscopy has become an indispensable tool for structural

characterization of chemical compounds in solution and solid states. The heart of NMR

spectroscopy lies in the various internal (magnetic and electric) interactions present in

the system, which collectively rise as a source of structural constraints in the form of

chemical environment, internuclear distances, torsional angles, etc., and dynamics at an

atomic level. NMR spectroscopy has gained popularity among other types of spectroscopic

methods due to its ability to tailor these internal interactions through spin and/or space

manipulations, allowing determination of the structural constraints of interest. Despite

the presence of similar nuclear spin interactions in solution and solid-state samples, the

solid samples exhibit broad and featureless spectra due to the restricted mobility of

molecules. The rapid tumbling motion in the solution sample produces well-resolved

and sharp resonances rendered by the spatial averaging of the orientation-dependent

(anisotropic) interactions. The low resolution and sensitivity in solid-state NMR is caused

by anisotropic broadening. Additional challenges come from the poor signal-to-noise (S/N)

ratio of the NMR spectra [3, 4] due to lower gyromagnetic ratio and natural abundance.

Except 1H and 19F, all nuclear spins suffer from the poor S/N or sensitivity issue due to

their low natural abundance and/or gyromagnetic ratio; therefore, all NMR active nuclei

are classified as abundant spin (1H and 19F) and dilute or less-abundance spins (e.g., 2H,
13C, 15/14N, 23Na, etc.). Due to high natural abundance and widespread occurrence in the

majority of the organic and inorganic compounds, the 1H NMR has attracted a great deal

of attention in the NMR spectroscopy. However, the stronger 1H-1H homo-nuclear dipolar

coupling network coupled with its small chemical shift range, made one-dimensional (1D)
1H NMR analysis almost impossible for slightly larger molecules due to poor resolution

and sensitivity. Discoveries of the Magic Angle Spinning (MAS) by E. R. Andrew et.

al. [5] and Lowe et. al. [6] in 1953 and Fourier Transform (FT) NMR by R.R. Ernst [7]

had a significant influence on the hardware and technological advancements of the NMR

spectroscopy tailored towards improved resolution and sensitivity. These advancements

have increased flexibility in the design and development of new pulse sequences, therefore

opening the door to a wide range of samples to be studied through the solution and

solid-state NMR. The magic angle spinning (MAS) technique has been the major thrust

towards multisite resolution and sensitivity enhancement of solid-state NMR spectra by
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averaging the orientation-dependent interactions. The solid sample is rapidly spun in a

rotor inclined at the magic angle θm = 54.736◦, with respect to the Zeeman magnetic

field, which mimics the tumbling motion of solution samples, but at the cost of inducing

periodic time-dependence [8] to the interaction Hamiltonian. Improved resolution and

sensitivity rendered due to MAS has resulted in increased interest in observing dilute

spins like 13C and 15N, etc. Due to their large chemical shift dispersion and smaller

homo-nuclear dipolar coupling network, even at slow MAS (range) we may accomplish the

desired resolution by averaging anisotropic interactions. Nevertheless, the poor sensitivity

remained a major concern for observing such dilute spins, as MAS alone may not provide

the desired sensitivity [9]. Although isotopic enrichment can alleviate the problem of their

lower natural abundance, however only at a high cost and with the requirement of large

sample volume. To this end, most of the developments in the solid-state NMR spectroscopy

have been focused on improving the sensitivity without compromising the structural

information. The polarization transfer-based experiments, such as cross-polarization

(CP) [10], insensitive nuclei enhanced by polarization transfer (INEPT) [11], nuclear

Overhauser effects (NOE) [12], dynamic nuclear polarization transfer (DNP) [13,14], etc.

have been the best-suited choice for enhancing the sensitivity of the dilute spins. These

experiments are based on the fact that in solids, the dilute spins lie in close or spatial

proximity of the abundant spin (mostly 1H) and are connected via a heteronuclear dipolar

coupling interaction which is exploited to transfer the large polarization of abundant

spins to less abundant spin. One such experiment in solids is the double-resonance

cross-polarization (CP) experiment introduced in 1962 by Hartmann and Hahn, [10]

(also referred to as the Hartmann-Hahn CP). Since its inception, CP has become an

integral building block of solid-state nuclear magnetic resonance (ssNMR) experiments for

observing less sensitive nuclei. The CP [10, 15–17] between highly abundant nuclei I =

1/2 (e.g., 1H with high gyromagnetic ratio) and less abundant (insensitive) nuclei S =

1/2 (e.g., 13C, 15N, 29Si, etc., with low gyromagnetic ratio) spins is a routinely employed

experimental method for signal enhancement of insensitive nuclei in solid samples. The

polarization transfer is mediated through the heteronuclear dipolar coupling interaction

by simultaneous irradiation of radio-frequency (RF) fields (spin-locking) applied on both

nuclei [18]. The polarization transfer is maximized when the RF amplitudes on both

nuclei are matched, a condition that is referred to as the Hartmann-Hahn (HH) energy

level matching condition (ω1I = ±ω1S) for static (non-rotating) samples [10, 17]. For

spinning samples, the magic angle (MAS) averages the heteronuclear dipolar coupling,

which is the medium of polarization transfer. In this regard, Schaefer et. al. [19]

showed that simultaneous RF irradiation interfere with the spinning frequency at the

rotor period, and the heteronuclear dipolar coupling can be reintroduced. Under sample

spinning, the HH conditions are modified and the polarization transfer is maximized only

when the difference in the RF amplitudes on both spins is equal to the multiples of the

spinning frequency (ω1I = mωr ± ω1S) and the strength of the heteronuclear dipolar

coupling is much smaller than the spinning frequency [17,19–28]. Since then, the CPMAS
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experiment combined with heteronuclear decoupling has become a standard technique

for the excitation of dilute spins [29–31]. Apart from the sensitivity enhancement, the

CP-based transfer is also used to probe internuclear dipolar connectives, rigidity and

mobility of the sample dynamics and spectral editing in multi-dimensional experiments

[32–37]. Due to the wider applications of cross-polarization experiments, the technique

forms the building block of around 80-90% of the solid-state nuclear magnetic resonance

(NMR) experiments. In the literature, many variants of CP exist for spin-1/2 systems such

as continuous-wave (CW), amplitude-modulated RAMP-CP [22] and adiabatic CP [38],

frequency-modulated broadband BRAIN-CP [39], Lee-Goldberg (LG)-CP [40], etc. From

a theoretical perspective, the underlying spin dynamics of CP transfer between spin-1/2

nuclei is well understood and documented in the literature [25,26,41–43].

Although CP-based polarization transfer among spin-1/2 systems (between I = 1/2 and

S = 1/2) is a routinely employed experimental technique [17, 19, 23, 24], its applicability

to quadrupolar spins (S > 1/2) remains less straightforward and less intuitive [16,44–49].

From a practical aspect, the polarization transfer among spins in the CP experiment is

established through appropriate matching of the radio frequency (RF) fields employed on

the spins of interest. Since the amplitude of the RF fields employed in the CP experiments

are much higher (magnitude-wise) than the magnitude of the internal spin interactions

(such as chemical shift, dipolar coupling interactions, etc.), the optimal implementation

of the CP experiment is well-established and described within the existing theoretical

frameworks. Nevertheless, a straightforward extension of the theory of CP dynamics

involving quadrupolar spins (S > 1/2; 2D, 6Li, 14N, 23Na, 35Cl, etc.) is less straightforward

and less intuitive for both static as well as spinning samples [45, 47–50, 50–62]. The

quadrupolar nuclei (S > 1/2) constitute around 75% of all NMR active nuclei [16,63] and

are present in the majority of organic, biomolecular, and inorganic compounds [64–68].

Furthermore, due to their non-spherical nuclear charge distribution, the presence of

quadrupolar interaction provides an additional structural constraint, namely the electronic

environment. A detailed description of the quadrupolar coupling interaction is provided

in the next section. Quadrupolar nuclei suffer from poor sensitivity and resolution due

to their lower gyromagnetic ratio and/or natural abundance, and the presence of high

electric quadrupolar coupling strength (kHz to MHz range). With the currently available

RF irradiation strengths, the direct excitation of quadrupolar nuclei for getting structural

constraints and spectral assignments is always challenging. To overcome this issue, in the

last few decades, many different excitation schemes have been developed to improve their

excitation efficiency and sensitivity [69, 70]. Among quadrupolar nuclei, the half-integral

nuclei (S = 3/2, 5/2, 7/2, etc.) have the presence of single-quantum central transition (CT),

which is first-order quadrupolar coupling devoid, therefore have better excitation efficiency

and resolution [71–76]. Nevertheless, the central transitions (CT) are broadened by the

higher-order (kHz) quadrupolar effects [77]. These higher-order broadenings can be scaled

down by the MAS and high magnetic fields but cannot be completely averaged out [78]. In

contrast the integral spins (S = 1, 3, etc.) lack the first-order quadrupolar devoid central



4 Chapter 1. Introduction

transitions and therefore remained less explored nuclei [79–81]. Even after nearly seven

decades of NMR, poor sensitivity and resolution remained the main roadblock in the

quadrupolar NMR. Despite CP being an established technique of sensitivity enhancements

for spin-1/2 nuclei, its applicability to quadrupolar nuclei remains less straightforward

and less intuitive. In CP experiments involving quadrupolar nuclei, the magnitude

of the quadrupolar interaction (ranging from a few kHz to MHz) in general is much

higher than the magnitude of other internal spin interactions and the amplitude of the

available RF fields [16, 44, 71, 82, 83]. Consequently, identifying the exact HH matching

conditions essential for the optimal implementation of CP experiment is often fraught

with difficulty [84]. Besides, the presence of multiple energy levels/transitions lead to

inefficient spin-locking and therefore poor CP transfer efficiency [85–89]. Depending

on the strength of quadrupolar interaction, the Zeeman energy levels are modified to

different orders of magnitudes during the simultaneous RF irradiation and result in several

CP matching conditions that complicate the unified theoretical description of the CP

dynamics. The periodic modulation of the energy level matching caused by MAS further

complicates the spin-locking process. Although, on the theoretical front, a handful of

research work associated with the quadrupolar CP spin-dynamics is available in the

literature [45–49,54,81,90–94], a comprehensive description of the CP matching conditions

over a wide range of quadrupolar coupling constants has remained challenging. This

limitation has remained a major roadblock in the design and development of CP-based

experimental methods for quadrupolar spins [58,59,62,82,95–101] and forms the motivation

behind the thesis.

From a theoretical perspective, the presence of the dominant quadrupolar interactions

has often been the main hindrance in analytic descriptions [69, 83, 102] of the spin

dynamics in quadrupolar CP experiments. To this end, descriptions in the quadrupolar

interaction frames were proposed for describing the spin dynamics. In combination

with Average Hamiltonian theory (AHT) [3, 90, 103] and in some cases with Floquet

theory [93,104–109], semi-analytical methods have also emerged for describing experiments

involving quadrupolar spins, both in non-rotating (static) and rotating solids. In the initial

description proposed by Vega and coworkers [45, 47], the CP dynamics was described in

systems with larger quadrupolar interactions based on effective Hamiltonians derived using

the fictitious spin-1/2 operator formalism [17, 110–113]. Nevertheless, such descriptions

were of limited utility in quantifying the CP profiles in powder samples due to the

distribution of quadrupolar coupling frequencies. In a subsequent development, Ernst and

coworkers [90] presented an alternate description of the CP experiment that was specific

to cases where the quadrupolar coupling constant was on par with the amplitude of the

radio-frequency field employed on the quadrupolar spin. However, their approach was

restricted only to the special case mentioned above and was of limited utility in addressing

the dynamics in powder samples. In an alternate formulation, Pratum and Klein

[91] predicted the presence of additional matching conditions and derived approximate

Hamiltonians that could qualitatively explain the CP matching conditions observed in



Chapter 1. Introduction 5

experiments. Nevertheless, a comprehensive analytic description of the CP dynamics over

a wide range of experimentally relevant parameters has always been challenging, even for

static samples. To address this issue, in this thesis, we attempt an alternate approach

to describe the CP dynamics consistent with experimental observations. In contrast to

perturbative methods employed in the quadrupolar interaction frame, the CP dynamics

is described through effective Hamiltonians derived from rotation operators based on

the “effective-field” approach [70, 80, 109, 114, 115]. The proposed analytic framework

based on the effective-field approach offers faster convergence and presents an attractive

framework for describing the underlying spin dynamics in both isotropic and anisotropic

solids. Accordingly, the CP matching conditions observed are described in terms of the

transition operators associated with a given system [114,115]. With this objective in mind,

an analytic theory based on the concept of effective Hamiltonian is proposed to offer a

detailed description of the CP spin dynamic involving quadrupolar spins. A brief outline

of the thesis is given in the next section.

1.2 Objectives and scope of the thesis

In order to improve the efficiency of polarization transfer in quadrupolar spins, developing

an operator-based analytic theory is vital. The theoretical descriptions should be equally

valid in describing the CP dynamics in all the quadrupolar coupling regimes, both for single

crystal (single crystallite orientation with respect to the applied Zeeman field) as well as

powder samples wherein quadrupolar coupling frequencies are distributed over a wide

range of crystallite orientations. Besides, the analytic theory of CP dynamics described in

a coupled spin operator basis through a single mathematical framework is not available. In

contrast to the existing theoretical models, we attempt to provide an alternate description

of the CP dynamics using effective Hamiltonians derived from rotation operators based on

the “effective-field” approach [115–117]. We show that the effective-field approach adopted

in the thesis for describing the CP dynamics results in a faster convergence with improved

accuracy.

The thesis is based on the following three objectives:

• To present an operator-based analytic theory of CP dynamics between spin-1/2 (I )

and spin-1 (S ) systems using the effective-field method under S -spin on-resonance

irradiation and the first-order quadrupolar coupling Hamiltonian.

• To understand the role of the second-order quadrupolar coupling and the S -spin

off-resonance irradiation in the CP dynamics between spin-1/2 and spin-1 systems.

• To use the effective-field approach for describing the CP dynamics between spin-1/2

(I ) and spin-3/2 (S ) systems.

In the section below, we have provided a brief description of the nuclear spin interactions

and the density operator approach to study the time-evolution of the spin-system under

the effective NMR interaction Hamiltonian.
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1.3 Fundamentals of NMR

1.3.1 Nuclear spin interactions in NMR

NMR spectroscopy relies on non-zero spin angular momentum (represented as I ) property

of the nuclear spin. Like mass, size and charge, nuclear spin angular momentum is a

fundamental/intrinsic property of an atom/nucleus. However, unlike mass and size, spin

angular momentum has no classical analog and therefore requires quantum-mechanical

description of the nuclear spin interaction. The nuclear spin angular momentum can be

correlated with the nuclear magnetic moment µ as µ = ℏγI, where γ is the gyromagnetic

ratio. Therefore, the presence of nuclear spin angular momentum gives rise to a tiny

magnetic field/moment ( ≈ n Tesla) around the nucleus, which is directed along/opposite

to the direction of spin angular momentum depending on the sign of the gyromagnetic

ratio. Classically, when these tiny magnets are placed inside a strong static magnetic

field (B0) try to align themselves along the direction of the static magnetic field and start

precession around the static field due to torque with the frequency termed as Larmor

precession frequency (ω0 = −γB0) [16,44]. Under thermal equilibrium, this process results

in a minimum energy state and a net nuclear bulk magnetization is generated. In a

real system, the NMR sample consists of an ensemble/collection of nuclear spins, each

spin with its own tiny magnetic field interacting with other nuclear spins or with an

external magnetic field present around the nucleus. Therefore, the interaction in NMR

can be broadly classified as internal and external interactions, with a detailed explanation

provided in the following section.

A. External Interactions:

The external interactions are classified as the interactions between the

magnetic field of the nuclear spin and the externally applied magnetic fields

like the Zeeman field and electromagnetic wave (radio-frequency field).

AI. Zeeman Interaction:

Any nuclear spin with spin quantum number I possesses 2I+1 energy levels. In the

absence of an external magnetic field, these energy levels are equally populated, i.e., the

total energy difference will be zero under the effect of thermal processes. However, as

soon as the external field (B0) is switched on, the total energy of the system will undergo

a redistribution creating a net energy difference. This interaction between the magnetic

moment of the nuclear spin and magnetic field is termed as the Zeeman interaction [118,

119] and the Hamiltonian for this interaction is given as

Ĥz = −
∑
i

µi.B0 = −
∑
i

ℏγiÎiz.B0 =
∑
i

ℏω0iÎiz; (1.1)
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where the Zeeman field (B0) is applied along a fixed direction (z-axis). Here ω0i(= −γiB0)

and γi are the Larmor precession frequency and gyromagnetic ratio of nuclear spin i,

respectively. ℏ = h/2π, where h is the Planck’s constant. This is the strongest interaction

in NMR and all other interactions act as perturbations to the Zeeman interaction. It has a

timescale of (tc = 2π/ω0i) nanosecond. Therefore, any other process should have a longer

time scale than the Zeeman interaction to be observed. The Zeeman energy level for I =

1/2, 1 and 3/2 spin systems are shown in Figure 1.1.

Figure 1.1: Schematic representation of the Zeeman energy levels for the I = 1/2, 1 and
3/2 spin systems

AII. Radio-frequency (RF) field interaction:

The purpose of the Zeeman interaction is to generate a population difference between

the Zeeman energy levels. However, in order to observe this population difference, an

oscillatory/rotating radio-frequency field is applied in the perpendicular direction (x/y)

to the Zeeman field (z), which acts as a time-dependent perturbation and causes an

oscillatory population exchange between the ground and excited states [120]. Once the

radio-frequency field is turned off, the system tries to regain its original equilibrium state

by releasing this energy resulting in an NMR signal in terms of free induction decay (FID).

The interaction Hamiltonian for this interaction is given as

ĤRF = −µi.BRF (t)x̂

= −2ℏγiB1(t) cos(ωRF t+ ϕ)Îx
(1.2)

where BRF (t) = 2B1(t) cos(ωRF t+ ϕ).

ĤRF = 2ℏω1i(t) cos(ωRF t+ ϕ)Îx; ω1i(t) = −γiB1(t). (1.3)

Here B1(t) and ω1i(t) represent the amplitude and nutation frequency of the

radio-frequency field, respectively, which could be time-independent or dependent and

(ωRF , ϕ) represent the frequency and phase of the RF field, respectively. In NMR language,

the term ω1i(t) is referred to to as the amplitude of the radio-frequency field and this

terminology is used throughout this thesis. Îx is the spin-operator pointing in the direction
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of the applied B1 field. The direction of the applied RF field can be altered by changing

the phase of the RF pulse.

B. Internal Interactions:

Below a brief mathematical description of all the internal NMR interactions is given.

BI. Chemical shielding interaction:

It is the indirect interaction between the magnetic moment of the nucleus (µi) with the

Zeeman field (B0) mediated through the surrounding electron clouds. The electrons due

to their orbital and spin-angular momentum possess a magnetic field which due to their

negative sign of the gyromagnetic ratio generally opposes the magnetic field of the nuclear

spin (induced field); hence the nuclear spin gets shielded from the applied Zeeman field

and termed as chemical shielding interaction [3]. This difference in the local magnetic

field experienced by the nuclear spin is different from the actual magnetic field applied as

given below:

B̂ind = ˆ̂σ.B̂0. (1.4)

Here ˆ̂σ is the chemical shielding tensor, which contains the information about the electronic

environment like isotropy, anisotropy, degree of asymmetry and the orientation of electrons

with respect to the nucleus and the Zeeman field. The Hamiltonian for this induced

interaction is given as

Ĥind = −ℏ
∑
i

µi.ˆ̂σ.B̂0. (1.5)

The local magnetic field experienced by the nuclear spin in the presence of the surrounding

electrons is given by

B̂local = B̂0 − B̂ind

= B̂0 − ˆ̂σ.B̂0.
(1.6)

The Hamiltonian for the chemical shift is given as

Ĥchemicalshift = −ℏ
∑
i

µi.B̂loc,i = −ℏ
∑
i

γiÎiz.(I− ˆ̂σ).B̂0. (1.7)

This acts as a fingerprint of the local electronic environment in the NMR spectrum.

BII. J-coupling interaction:

Like chemical shielding interaction, the electronic clouds can establish indirect interaction

between two or more magnetically inequivalent nuclei, and this interaction is termed as

the scalar or J-coupling [121]. It arises due to the coupling of the angular momentum of

two individual nuclei. The Hamiltonian for this interaction is given as

ĤJ = h
∑
i,j

Îi.
ˆ̂
J.Îj . (1.8)
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Here
ˆ̂
J is the second-rank J-coupling tensor and (i, j) refer to the two nuclei involved in the

coupling. In this coupling, the angular momenta of two nuclei couples due to the presence

of electron clouds; it is independent of their orientation or internuclear distance and hence

is labeled as a scalar or J-coupling. This interaction occurs via bonding electrons; therefore,

its strength falls dramatically with an increase in bond distance and is usually studied to

understand the chemical bonding between the nuclei. The magnitude of this interaction

is smaller than any other internal interactions present, therefore, it is usually ignored in

solid-state NMR.

BIII. Dipolar coupling interaction:

A nuclear spin acts as a tiny magnetic dipole, therefore, it can interact with other magnetic

dipoles without any external mediation. This through-space interaction between nuclear

spins is termed as dipole-dipole interaction. Unlike J-coupling, this is a vector coupling

interaction that depends on the orientation of the involved spins with respect to the

magnetic field. The Hamiltonian for this interaction is given as

ĤD =
γiγjℏ2

r3ij

∑
i,j

Îi.
ˆ̂
D.Îj (1.9)

where
ˆ̂
D is the dipolar coupling tensor, which like any other NMR interaction, is a

second-rank tensor and rij is the internuclear distance between nuclear spins i and j.

This interaction could occur between any magnetically active nuclear spins; therefore,

it is classified as homo (like spin-pair) and heteronuclear (different spin-pair) dipolar

interactions.

BIV. Electric quadrupolar coupling interaction:

The structure of the nucleus is influenced by the distribution of nucleons within the nucleus,

which in turn affects the total spin angular momentum and is the central property of

interest in NMR spectroscopy. The charge distribution of the nucleus with total charge

“Ze” (Z is the atomic number or total number of protons and e is the charge on a single

proton) is described in terms of the nuclear charge density (ρ) per unit volume inside the

nucleus [16,122,123]. Classically, the electrostatic interaction energy of the nuclear charge

with the electric potential V around the nucleus is given by the following Eq.,

E =

∫
ρ(r)V (r)dτ (1.10)

where ρ(r) corresponds to the nuclear charge density per unit volume (see Figure 1.2 for

a pictorial representation) and the electric potential V (r) arises due to the non-uniform

distribution of electrons and surrounding nuclei. The electric potential around the nucleus

can be presented in terms of multipole expansion around the center of mass of the nucleus.
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E =

∫
ρ(r)

{
V (0) +

∑
i

xi

(∂V
∂xi

)
r=0

(r) +
1

2!

∑
i,j

xixj

( ∂2V

∂xixj

)
r=0

+ ...
}
dτ

= V (0)

∫
ρ(r)dτ +

∑
i

(∂V
∂xi

)
r=0

∫
xiρ(r)dτ +

1

2!

∑
i,j

( ∂2V

∂xixj

)
r=0

∫
xixjρ(r)dτ + ...

(1.11)

where∫
ρ(r)dτ = Ze is the electric monopole and corresponds to the total nuclear charge,∫
xiρ(r)dτ = Pi is the electric dipole moment and it is a vector quantity and∫
xixjρ(r)dτ = Qij is the electric quadrupole moment and is a second-rank tensor.

The above Eq. is re-written as

E = ZeV (0) +
∑
i

EiPi +
1

2!

∑
i,j

(∂Ei

∂xj

)
r=0

Qij + ... (1.12)

In the above Eq., Vi =
∂V
∂xi

= Ei and Vij =
∂2V
∂xixj

= ∂Ei
∂xj

correspond to the electric field and

electric field gradient (EFG) tensor components, respectively.

The first term in Eq. (1.12) represents pure electrostatic potential energy, which does not

result in any NMR energy level shift, while the second term represents the interaction

between the nuclear electric dipole moment and electric field around the nucleus, which

is usually parity forbidden because it moves the center of mass of the nucleus. However,

the third term in Eq. (1.12) can be finite and it is referred to as quadrupolar coupling

interaction. This interaction represents the coupling of the quadrupole moment (Q) of the

nucleus with the electric field gradient (EFG) present around the nucleus. Higher-order

multipole expansion terms are generally not finite in NMR spectroscopy.

EQ =
1

2

∑
i,j

VijQij . (1.13)

Figure 1.2: Electrostatic interaction between the nucleus and the electric potential V (due
to surrounding charges) in the center of mass (O) fixed Cartesian co-ordinate system. Here
dτ is the volume element inside the nucleus with the nuclear charge density ρ(r) at distance
r from the surrounding charge.
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It is always convenient to define a principal axis system (PAS) of the potential V where

all the off-diagonal terms of the EFG are zero, i.e.
∑

i,j Vij = 0 if i ̸= j; hence electric

quadrupolar interaction is traceless. For mathematical convenience, it will prove beneficial

to define Qij as:

Q′
ij =

∫
(3xixi − δijr

2)ρdτ. (1.14)

Substituting this in the Eq. (1.13) results

EQ =
1

6

∑
i,j

VijQ
′
ij . (1.15)

The above Eq. represents the quadrupolar interaction energy in terms of classical

moments, which needs to be transformed into its quantum-mechanical equivalent, i.e.,

the Hamiltonian and quadrupolar spin operators for infusing the spin-angular momentum

concept.

ĤQ =
1

6

∑
i,j

VijQ̂
′
ij . (1.16)

Here the quadrupolar moment operator seems to be a function of all the nucleon’s

positions, which becomes a tedious many-body problem. However, in NMR transitions,

we are only interested in the change in the nuclear spin angular momentum states. Using

the Wigner-Eckart theorem [16, 124, 125] and the Clebsch-Gordan coefficients [126, 127],

the matrix elements of the quadrupole operators can be represented as

⟨I,m| Q̂′
ij |I,m′⟩ = C ⟨I,m| 3

2
(ÎiÎj + Îj Îi)− δij Î

2
ij |I,m′⟩ (1.17)

where C =
eQ

6I(2I − 1)
and Q is the quadrupole moment of the nucleus. For nuclei

with spherical charge distribution, the spin angular momentum become I = 1/2 and

therefore, the higher-order expansion reduces to zero and the nuclei result in purely

magnetic interaction in NMR [Eq. (1.17)]. However, nuclei with non-spherical nuclear

charge distribution consists of non-zero higher-order terms in the multipole expansion

and possesses quadrupolar moment [Eq. (1.17)]. Employing Eqs. (1.16) and (1.17), the

quadrupolar coupling Hamiltonian is re-expressed as

ĤQ =
eQ

6I(2I − 1)

∑
i,j

Vij

{3
2
(ÎiÎj + Îj Îi)− δij Î

2
ij

}
. (1.18)

or

ĤQ =
eQ

4I(2I − 1)

[√
2

3
V0(3Î

2
z − Î2)− V+1(Î−Îz + Îz Î−) + V−1(Î+Îz + Îz Î+)

+ V+2Î
2
− + V−2Î

2
+

] (1.19)

where the components of the EFG tensor are given as
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V0 =
√

3/2Vzz;

V+1 = −Vzx − iVzy;

V−1 = Vzx − iVzy;

V+2 =
1
2(Vxx − Vyy) + iVxy;

V−2 =
1
2(Vxx − Vyy)− iVxy.

For a simplified representation, we consider the principal axis system (PAS) representation

(Vij = 0 ∀ i ̸= j) of the above Hamiltonian where the EFG tensor is traceless (Vxx+Vyy +

Vzz = 0); hence the above Hamiltonian is reduced to a much simpler form.

ĤQ(PAS) =
eQ

4I(2I − 1)

[
Vzz(3Î

2
z − Î2) + (Vxx − Vyy)(Î

2
x − Î2y )

]
. (1.20)

The above expression is re-expressed in terms of Vzz = eq (magnitude of the largest

components of the EFG tensor) and degree of asymmetry in the quadrupolar coupling

tensor ηQ =
Vxx − Vyy

Vzz
.

ĤQ(PAS) =
ℏωQ

6

[
(3Î2z − Î2) +

ηQ
2
(Î2+ − Î2−)

]
, (1.21)

where CQ =
e2Qq

ℏ
and ωQ =

3CQ

2I(2I − 1)
.

To achieve a more comprehensive mathematical description, the quadrupolar PAS

Hamiltonian is transformed in the laboratory (LAB) frame defined by the Zeeman

interaction. For simplified calculation, the quadrupolar PAS Hamiltonian is re-written

in the tensorial representation as given below:

ĤQ(PAS) =
2∑

l=0

l∑
m=−l, ̸=0

(−1)mRl
−m(PAS)T l

m (1.22)

where Rl
−m(PAS) and T l

m represent the spatial and spin parts of the quadrupolar

Hamiltonian in the PAS system. The PAS quadrupolar interaction Hamiltonian is

transformed into the LAB frame through a molecular axis system (MolAS) as given below:

ĤQ(LAB) =

2∑
l=0

l∑
m=−l,̸=0

(−1)mRl
−m(LAB)T l

m

=

2∑
l=0

l∑
m,m′,m′′=−l, ̸=0

(−1)mRl
−m(PAS)Dl

mm′(αPM , βPM , γPM )

×Dl
m′m′′(αML, βML, γML)T

l
m,

(1.23)

where Dl
mm′(αPM , βPM , γPM ) and Dl

m′m′′(αML, βML, γML) represent the Wigner matrices

[124] from PAS to MolAS and MolAS to LAB frame transformations, respectively. In the

case of single-crystal samples, the PAS and MolAS frames coincide.
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1.3.2 Secular approximation

In NMR, the total Hamiltonian is given by the sum of all interactions (external +

internal) acting in the spin system. Below, a representative Hamiltonian comprising all

the interactions mentioned in the previous section is given:

Ĥtotal = ĤZ + ĤRF︸ ︷︷ ︸
External

+ ĤCS + ĤJ + ĤD + ĤQ︸ ︷︷ ︸
Internal

(1.24)

The size of various interactions follows the order, ||ĤZ || >> ||ĤQ|| > ||ĤRF || > ||ĤD|| ≈
||ĤCS || > ||ĤJ ||. The magnitude of the Zeeman interaction surpasses all the interactions

present in the spin system, and all the remaining interactions act as perturbations to

the Zeeman Hamiltonian. Therefore, NMR spectrum calculation involves diagonalization

of the above Hamiltonian [Eq. (1.24 )] employing various perturbative methods. A

mathematically convenient method equivalent to a perturbative-based approach is to

transform the total Hamiltonian into the Zeeman interaction frame, which removes

the effect of Zeeman interaction, thereby facilitating the measurement of small internal

interactions. The resulting Hamiltonian after the Zeeman interaction frame transformation

is given below:

ĤI
total(t) = Û(t)ĤtotalÛ(t)† (1.25)

where Û(t) = exp
{

− i

ℏ
ĤZ t

}
= exp{−iω0tÎz} is the required transformation

operator/function. The above rotating frame transformation induces periodic

time-dependency into the overall Hamiltonian with periodicity τ0 = 2π/ω0. However,

considering the explicit form of the interaction Hamiltonian, it is evident that a portion

of the interaction Hamiltonians (except the quadrupolar interaction) commute with

the transformation function Û(t) or Îz operator and therefore remain time-independent

(secular) on the Zeeman time-scale as given below:

ĤI
total(t) = ĤI,secular

total (t) + ĤI,non−secular
total (t); [ĤI,secular

total (t), Îz] = 0. (1.26)

Under secular approximation, the non-secular terms of the interaction Hamiltonians are

ignored. This truncation of the Hamiltonian is equivalent to the first-order perturbation

approximation. All the non-secular terms will result in higher-order energy shifts,

which are generally insignificant in NMR. Under secular approximation, various internal

interaction Hamiltonians are presented below:

ĤCS =
∑
i

ℏωi,CS Îiz for chemical shift interaction, (1.27)

Ĥhetero
D =

∑
i,j

ℏωhetero
ij,D ÎizŜjz for heteronuclear dipolar interaction, (1.28)
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and

Ĥhomo
D =

∑
i,j

ℏωhomo
ij,D (3Îiz Îjz − Îi.Îj) for homonuclear dipolar interaction. (1.29)

Here the coefficients ωi,CS , ω
hetero
ij,D and ωhomo

ij,D are frequency components which include

Wigner function for principal axis frame to laboratory axis frame transformation.

However, the secular approximation does not always holds good for quadrupolar nuclei

due to the large magnitude of the associated quadrupolar interaction. As this thesis is

focused on the quadrupolar nuclei, therefore it is rational to give a detailed account of the

quadrupolar Hamiltonian in the Zeeman interaction frame. As described previously, the

transformation function Û(t) [Eq. (1.25)] transforms the laboratory frame quadrupolar

coupling Hamiltonian [Eq. (1.23)] into the Zeeman interaction frame as follows:

ĤI
Q(LAB; t) = exp(−iω0tÎz)ĤQ(LAB)exp(iω0tÎz)

= ℏ
2∑

l=0

l∑
m=−l,̸=0

(−1)mRl
−m(LAB)T l

mexp(−imω0t)
(1.30)

where the transformed Hamiltonian becomes time-dependent with the period τ0 = 2π/ω0.

Using Average Hamiltonian theory [3, 20, 103, 128] (AHT), the quadrupolar Hamiltonian

evaluated up to the second order of the perturbation correction is given as

ĤQ(LAB) ≈ Ĥ
(1)
Q (LAB) + Ĥ

(2)
Q (LAB), (1.31)

where

Ĥ
(1)
Q (LAB) =

1

τ0

∫ τ0

0
ĤI

Q(t
′)dt′ = ℏR2

0(LAB)T 2
0 , (1.32)

Ĥ
(2)
Q (LAB) =

− ℏ
2τ0

∫ τ0

0
dt′′
∫ t′′

0
[ĤI

Q(t
′′), ĤI

Q(t
′)]dt′

=
− ℏ
2ω0

[
R2

0(LAB)R2
1(LAB)[T 2

0 , T
2
1 ]−R2

0(LAB)R2
−1(LAB)[T 2

0 , T
2
−1]

+R2
1(LAB)R2

−1(LAB)[T 2
−1, T

2
1 ] +

1

2

{
R2

0(LAB)R2
−2(LAB)[T 2

0 , T
2
2 ]

−R2
0(LAB)R2

2(LAB)[T 2
0 , T

2
−2]−R2

2(LAB)R2
−2(LAB)[T 2

−2, T
2
2 ]
}]
.

(1.33)

The second-order quadrupolar coupling Hamiltonian for spin-1 systems may be simplified

to a more concise form:

Ĥ
(2)
Q (LAB) =

−1

2ω0

[
R2

1(LAB)R2
−1(LAB)[T 2

−1, T
2
1 ]−R2

2(LAB)R2
−2(LAB)[T 2

−2, T
2
2 ]
]
.

(1.34)

The aforementioned quadrupolar Hamiltonians are reformulated in the spin-operator

representation as

Ĥ
(1)
Q (LAB) =

ℏω(1)
Q

6
(3Ŝ2

z − Ŝ2), (1.35)
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and

Ĥ
(2)
Q (LAB) = ℏω(2)

Q Ŝz, (1.36)

where ω
(1)
Q =

√
6R2

0(LAB) and ω
(2)
Q =

−1

2ω0

[
R2

1(LAB)R2
−1(LAB)−R2

2(LAB)R2
−2(LAB)

]
are the first and second-order quadrupolar coupling frequencies, respectively.

1.3.3 Time-Evolution of the spin-system

The quantum mechanical description of any experimental phenomenon requires studying

or observing the change in the state of the system as a response to any external or internal

perturbations acting on the system. In particular, any spectroscopic measurements involve

studying either the emission or absorption of the energy by the system and consequently,

generating corresponding energy spectrum. Depending on the state and nature of the

system, the standard operational process involves the solution of the time-dependent

Schrödinger equation or the quantum-Liouville equation. The time-dependent Schrödinger

equation becomes a useful tool for describing the dynamics in systems with the pure state

(a single wave function for the whole system) and is given below:

iℏ
∂ |ψ(t)⟩
∂t

= Ĥ(t) |ψ(t)⟩ (1.37)

where |ψ(t)⟩ represents the state of the system at some instance t. The standard solution

of Eq. (1.37) is written as

|ψ(t)⟩ = T exp
{
− i

ℏ

∫ t

0
Ĥ(t′)dt′

}
︸ ︷︷ ︸

Evolution-operator: Û(t)

|ψ(0)⟩ . (1.38)

Here |ψ(0)⟩ is the initial state at t = 0 and T is the Dyson time-ordering operator. Given

that the state of any quantum-mechanical system is not known prior to the measurements,

it is a common practice to express the state as a linear combination of the complete set

of basis states, |ϕ⟩i.

|ψ(t)⟩ =
n∑

i=1

Ci(t) |ϕ⟩i (1.39)

where Ci(t) are complex coefficients. These coefficients are essential for calculating the

transition probability amplitudes for any time-dependent process. Subsequently, the

expectation value of any observable of the interest (Ô; mathematical equivalent of any

physical quantity) can be calculated using the expression given below:

< Ô(t) >=
⟨ψ(t)| Ô |ψ(t)⟩
⟨ψ(t)|ψ(t)⟩

. (1.40)

Although, the Schrödinger method is a standard approach for dealing with a quantum

mechanical process, however, its utility is limited for bulk measurements, as in case of

NMR spectroscopy. For the bulk sample, a single wave function cannot describe the
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state of the whole spin-system (the system is said to have mixed states). Consequently,

Eq. (1.38) necessitates handling the wave function for individual spins, followed by

summation over the entire sample volume/ensemble. From a theoretical perspective,

the Schrödinger method appears impractical and inadequate for bulk measurements. To

overcome the challenge, the concept of density operator was invoked. In the density

operator formulation, the state of individual spins is replaced by a more generalized state

of the entire ensemble, denoted by ρ(t) [129, 130]. Mathematically, ρ(t) is defined as an

average over the whole ensemble as given below:

ρ(t) = |ψj(t)⟩ ⟨ψj(t)| =
N∑
j=1

Pj |ψj(t)⟩ ⟨ψj(t)| . (1.41)

The density operator is constructed in the basis |ϕi⟩ as described below:

ρ(t) =

N∑
j=1

Pj

n∑
i=1

n∑
k=1

Ci(t)C
∗
k(t) |ϕi⟩ ⟨ϕk|

=
n∑

i=1

n∑
k=1

Ci(t)C∗
k(t) |ϕi⟩ ⟨ϕk|

=
n∑

i=1

n∑
k=1

ρik(t) |ϕi⟩ ⟨ϕk| .

(1.42)

In above Eq., ρik(t) = Ci(t)C∗
k(t) represents the matrix element of the density operator

between basis states |ϕi⟩ and |ϕk⟩. The diagonal elements ρii(t) = Ci(t)C∗
i (t) represent

the populations and the off-diagonal elements ρik(t) = Ci(t)C∗
k(t) represent the coherence

between involved basis states. The coherence order can be calculated by the difference

between the magnetic quantum number of the involved basis states, i.e., Mij = mi −mj ,

whereMij can be any positive or negative integer. Based on this expression a coherence or

transition matrix can be generated which will highlight the number and nature (quantum

of transition) of possible transitions in a spin-system.

Substituting, Eq. (1.42) into Eq. (1.37), we obtain the time-evolution of the density

matrix as described below:

iℏ
∂ρ̂(t)

∂t
= [Ĥ(t), ρ̂(t)]. (1.43)

The above equation is famously known as the quantum-Liouville equation or Liouville-von

Newmann equation. This equation is an operator equivalent of the time-dependent

Schrödinger equation shown in Eq. (1.37).

The formal solution to the above equation is given below:

ρ̂(t) = T exp
{
− i

ℏ

∫ t

0
Ĥ(t′)dt′

}
ρ̂(0) exp

{ i
ℏ

∫ t

0
Ĥ(t′)dt′

}
(1.44)

where ρ̂(0) is the initial density matrix at t = 0 and exp
{
− i

ℏ
∫ t
0 Ĥ(t′)dt′

}
represents the

time-evolution operator, Û(t). The explicit form of the density matrix at any instance t
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will depend on the Hamiltonian operator [Ĥ(t)] acting on the spin-system. In contrast

to Eq. (1.40), the expectation value of an observable for any physical quantity can be

calculated by following Eq.,

< Ô(t) >= Trace(Ô.ρ̂(t)). (1.45)

This standard operating procedure is utilized for evaluation of spin-dynamics of any NMR

experiments regardless of the numerical or theoretical methodology employed. In the

numerical methods, the exponential operator in Eq. (1.44) is solved by considering an

infinitesimally small time-step where the Hamiltonian is treated as time-independent.

For instance, SIMPSON [131, 132] (A General Simulation Program for Solid-State

NMR Spectroscopy) a numerical simulation software utilizes this method. A pictorial

representation of this process is shown in Figure 1.3. While numerical methods yield

accurate results, they are of lesser utility in offering detailed insights into the spin dynamics

of any quantum-mechanical process. In order to achieve a thorough understanding of the

role of various interactions and coherences in deciphering the spin-dynamics requires a

detailed analytic derivation of Eq. (1.44). The theoretical derivation of this equation

involves explicit calculation of the time-evolution operator [Û(t)] which gets complicated

when

• the Hamiltonian is time-dependent:
∫ t
0 Ĥ(t′)dt′ ̸= Ĥt.

• the Hamiltonian consists of the non-commuting set of operators: [Ĥ(t1), Ĥ(t2)] ̸= 0.

To overcome the above difficulties in the time-evolution of the spin-system, the effective

Hamiltonians are derived. By the connotation “effective Hamiltonian,” we mean an

approximate Hamiltonian which is time-independent, more diagonal, and contains all the

necessary information of the full Hamiltonian. Such an effective Hamiltonian simplifies

the study of the spin dynamics of any complex NMR experiments. A conventional way

to obtain the effective Hamiltonian is to use perturbation-based expansions, which may

Figure 1.3: Pictorial representation of the numerical method for computation of the
time-evolution operator.
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involve a number of perturbation corrections to get a convergent solution. However, such

methods lose their generality when it comes to the quadrupolar system. This is mainly due

to two factors: (a) The large size of the quadrupolar interaction necessitates quadrupolar

interaction frame transformation of the Hamiltonian, which renders time-dependency

into the system, and (b) it requires many-orders of the perturbation corrections, which

complicates the derivation of the effective Hamiltonian. In the following section, we

have emphasized the complexity associated with the quadrupolar spins using a single

spin-1 model system framework. An alternate approach known as the “effective-field ”

method is presented to obtain an effective Hamiltonian without invoking a large number

of perturbation corrections, as discussed in the literature.

1.4 Concept of the “Effective Hamiltonian ”

To clarify the notion of the effective Hamiltonian, we investigated the spin dynamics for

a simplified single-spin system S = 1 under on-resonance RF irradiation. The rotating

frame Hamiltonian for such a system is given as:

ĤS = ĤRF + Ĥ
(1)
Q

= ℏω1SŜx +
ℏω(1)

Q

6
(3Ŝ2

z − Ŝ2).

(1.46)

In the above equation, ω1S and ω
(1)
Q represent the RF amplitude and first-order

quadrupolar coupling frequency [Eq. (1.35)], respectively. As discussed previously, the

derivation of the spin dynamics requires a solution of the Liouville-von Newmann equation

as given below:

ρ̂(t) = exp
{
− i

ℏ
ĤSt

}
ρ̂(0) exp

{ i
ℏ
ĤSt

}
(1.47)

where ρ̂(0) is the initial density matrix (ρ̂(0) = Ŝz). Here the solution of the Eq.

(1.47) becomes complex due to the non-commuting RF and quadrupolar coupling terms

i.e., [Ŝx, (3Ŝ
2
z − Ŝ2)] ̸= 0. A brute-force method for finding the solution of Eq. (1.47)

through the Baker–Campbell–Hausdorff (BCH) expansion [133,134].

ρ̂(t) = Ŝz −
it

ℏ
[ĤS , Ŝz] +

1

2!

( it
ℏ

)2
[ĤS , [ĤS , Ŝz]] +

1

3!

( it
ℏ

)3
[ĤS , [ĤS , [ĤS , Ŝz]]] + ... (1.48)
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Substituting the Hamiltonian operator based on Eq. (1.46), the above Eq. becomes

ρ̂(t) = Ŝz − ω1StŜy︸ ︷︷ ︸
First commutator

− 1

2!

{
ω2
1St

2Ŝz −
ω
(1)
Q ω1S

2
t2(ŜzŜx + ŜxŜz)

}
︸ ︷︷ ︸

Second commutator

− 1

3!

{
ω3
1St

3Ŝy −
ω
(1)
Q ω2

1S

2
t3(ŜxŜy + ŜyŜx) +

(ω
(1)
Q )2ω1S

12
t3(Ŝ2

z Ŝy + 2ŜzŜyŜz + ŜyŜ
2
z )
}

︸ ︷︷ ︸
Third commutator

+ ...

(1.49)

Subsequent evaluation of the higher-order commutators is expected to become more

complicated. Given that ω
(1)
Q >> ω1S , it can be concluded that the approximated solution

(up to to the first few terms) will not converge. Thus, the theoretical method based on

the explicit calculation of the BCH expansion [Eq. (1.49)] using the exact Hamiltonian

[Eq. (1.46)] does not provide closed form solutions, is computationally less efficient, and

generally relies on numerical evaluation. While the numerical approaches yield accurate

results, their utility in elucidating the nuances of the spin dynamics is limited. To achieve a

deeper insight into the spin physics, the development of analytic theory becomes essential

which primarily relies on the diagonalization of the underlying Hamiltonian to produce a

more complete and computationally efficient “Effective Hamiltonian ” (Ĥeff ). Under the

effective Hamiltonian (Ĥeff ), the spin-dynamics of the NMR experiments is described by

the following Eq.,

ρ̂eff (t) = exp
{
− i

ℏ
Ĥeff t

}
ρ̂eff (0) exp

{ i
ℏ
Ĥeff t

}
(1.50)

where ρ̂eff (0) and ρ̂eff (t) represent the density matrices initial (t = 0) and final t times,

respectively, in the same frame of reference as effective Hamiltonian, Ĥeff . This equation

will be employed throughout this thesis to evaluate the CP spin-dynamics.

1.4.1 Derivation of the effective Hamiltonian: Perturbation-based

method

To facilitate the implementation of the perturbation procedure, the Hamiltonian in Eq.

(1.46) is re-expressed as zero-order (Ĥ0) and perturbing Hamiltonian (Ĥ1).

ĤS = ĤRF + Ĥ
(1)
Q = ℏω1SŜx︸ ︷︷ ︸

Ĥ0

+
ℏω(1)

Q

6
(3Ŝ2

z − Ŝ2)︸ ︷︷ ︸
Ĥ1

. (1.51)

Since we are interested primarily in studying the influence of the radio-frequency pulse (i.e.,

Ŝx) on the spin-system, the quadrupolar interaction (i.e., Ŝz) acts as a perturbation. As

shown in the previous section, due to the anisotropic nature of the first-order quadrupolar

coupling interaction, there will be a distribution of quadrupolar coupling frequencies
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ω
(1)
Q for the samples with multiple-crystallite orientations. For a simplified analogy, we

can consider PAS coincident with the MolAS. In this case the quadrupolar PAS angles

[ΩPR ≡ ΩMR = (αQ, βQ, γQ)] will define the crystallite orientations. Based on the relative

magnitudes of these interactions, the three different coupling regimes ω1S >> ω
(1)
Q (weak

coupling regime), ω1S ≈ ω
(1)
Q (intermediate coupling regime) and ω1S << ω

(1)
Q (strong

coupling regime) are possible.

Weak coupling regime: If the condition ω1S >> ω
(1)
Q is satisfied, the effective

Hamiltonian can be approximated to the RF irradiation term as shown below:

Ĥeff,S ≈ ĤRF = ω1SŜx . (1.52)

In this coupling regime, the spin system under RF irradiation behaves like a spin-1/2

system. The time-evolution of the spin system is solely determined by the RF irradiation

term as described below:

ρ̂(t) = exp
{
− i

ℏ
ω1SŜxt

}
ρ̂(0) exp

{ i
ℏ
ω1SŜxt

}
(1.53)

where ρ̂(0) = Ŝz in the present context.

In anisotropic solids, this condition is met for crystallite orientations near βQ = 54.736◦,

regardless of the value of CQ. In such cases we observe better excitation efficiencies,

similar to that seen in the spin-1/2 systems. In the case of powder samples, which is the

statistically weighted ensemble of all possible crystallite orientations. This weak coupling

condition will be satisfied for a smaller portion of crystallite orientations; however, in

general, we have ω1S ≈ ω
(1)
Q or ω1S << ω

(1)
Q .

Strong coupling regime: To address a stronger quadrupolar coupling system (ω1S <<

ω
(1)
Q ), a common approach is to utilize the quadrupolar interaction frame transformation

which involves the transformation function Û ′(t) = exp
{
− i

ℏ
Ĥ

(1)
Q t
}
:

˜̂
HS(t) = exp

{
− i

ℏ
Ĥ

(1)
Q t
}
(ĤRF + Ĥ

(1)
Q ) exp

{ i
ℏ
Ĥ

(1)
Q t
}

=
˜̂
HRF (t).

(1.54)

The time-evolution of the spin system in the quadrupolar interaction frame is given:

˜̂ρ(t) = exp
{
− i

ℏ

∫ t

0

˜̂
HRF (t

′)dt′
}
ρ̂eff (0) exp

{ i
ℏ

∫ t

0

˜̂
HRF (t

′)dt′
}

(1.55)

where the effect of the much stronger quadrupolar interaction is nullified. However,

as a consequence of this interaction frame transformation, the RF irradiation becomes

time-dependent with a period defined by the quadrupolar coupling strength. Conventional

ways to treat such time-dependent Hamiltonians are:

(1) Average Hamiltonian theory (AHT)

(2) Floquet theory and contact transformation method.

The AHT [3,20] provides a time-averaged Hamiltonian at a fixed cycle time (tc = 2π/ω
(1)
Q ;
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in this case), and as a result, it lacks description of the spin-dynamics in between

cycle times. Also in the regime ω1S ≈ ω
(1)
Q the convergent solution requires a large

number of perturbation corrections which are tedious to evaluate [70]. Such descriptions

are of lesser utility for powder samples described as statistical distribution of different

crystallite orientations. Since each crystallite is associated with a fixed ω
(1)
Q dependence

while performing interaction frame transformation, hence different crystallites cannot

be evaluated simultaneously at a single instant of time. This issue is addressed by

utilizing Floquet-based perturbative methods [104–109], which do not operate at the

cycle time, but only at the cost of evaluating many order perturbation corrections to

the zero-order Hamiltonian [69, 70]. Consequently, the process of obtaining the effective

Hamiltonian and the time evolution of the spin system becomes quite cumbersome.

Additionally, the effective Hamiltonians derived in different coupling regimes might not

provide accurate results in anisotropic samples. To overcome these challenges and achieve

a faster convergence, this thesis is based on an alternate method to derive effective

Hamiltonians by utilizing the concept of the “effective-field ”. In this approach through a

set of unitary transformations, magnetization associated with a particular interaction is

maximized along a suitable direction/axis. This process is computationally efficient and

provides more convergent solutions which are equally valid for isotropic and anisotropic

solids.

1.4.2 Derivation of the effective Hamiltonian : “Effective-field ” based

method

In this section we have shown the utility of the effective-field approach to evaluate the

efficiency of the double-quantum transition in the S = 1 spin-system. To simplify the

description, the Hamiltonian in Eq. (1.51) is re-expressed in terms of the single-transition

operators [45,110,112,113] as given below:

ĤS =
√
2ω1S [Ŝ

12
x + Ŝ23

x ] +
ω
(1)
Q

3
[Ŝ12

z − Ŝ23
z ]. (1.56)

The superscript (i, j) in the operators Ŝij
α (α = x, y, z) represents the the Zeeman basis

states the S = 1 system and are defined according to the energy level diagram depicted in

Figure 1.4(a). The populations and coherences in the S = 1 spin system are illustrated in

the transition matrix shown in Figure 1.4(b). The single-transition operators are defined

as follows:

Ŝij
x =

1

2
[|i⟩ ⟨j|+ |j⟩ ⟨i|], Ŝij

y =
1

2i
[|i⟩ ⟨j| − |j⟩ ⟨i|], Ŝij

z =
1

2
[|i⟩ ⟨i| − |j⟩ ⟨j|]. (1.57)

The matrix representations of the Cartesian and single-transition operators are given in

Table A.2 and A.3 in Appendix-A. In the effective-field method, each interaction (say,

λ) in the Hamiltonian is considered as a field that has a specific direction (interaction

operator, Ŝλ) and the strength of the field is indicated by the interaction frequency (ωλ).
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Figure 1.4: (a) Schematic depiction of the energy level diagram in the S = 1 spin system.
The spin states |1⟩, |2⟩ and |3⟩ are representative of the the Zeeman basis states (|mS⟩)
|1⟩, |0⟩ and |−1⟩, respectively. (b) Transition matrix representation of the populations
and coherences in the S = 1 spin system. The diagonal elements depict the populations
(of the states |mS⟩) and are represented through ‘Pii’. The off-diagonal elements depict
the coherences (between the states |mS⟩ , |m′

S⟩) and are represented as double-quantum
(DQ13: |+1⟩ ↔ |−1⟩), single-quantum (SQ12: |−1⟩ ↔ |0⟩ and SQ23: |1⟩ ↔ |0⟩).

The pictorial representation of the fields for the S -spin Hamiltonian [Eq. (1.46)] is given in

Figure 1.5(a). Through an initial unitary transformation Û1 = exp
{
− iθ1√

2

[
− Ŝ12

y + Ŝ23
y

]}
[115,116], the S -spin Hamiltonian is transformed and is given below:

˜̂
HS = Û1ĤSÛ

†
1

=
√
2
(
ω1S cos θ1 −

ω
(1)
Q

4
sin θ1

)
[Ŝ12

x + Ŝ23
x ] +

{
ω1S sin θ1 +

ω
(1)
Q

4

(1
3
+ cos θ1

)}
[Ŝ12

z − Ŝ23
z ]

+
{
ω1S sin θ1 + ω

(1)
Q

(cos θ1 − 1

4

)}
[Ŝ13

x ].

(1.58)

The angle θ1

(
tan θ1 =

4ω1S

ω
(1)
Q

)
is selected to ensure the compensation of the SQ operators

(Ŝ12
x + Ŝ23

x ) in ĤS . Accordingly, the Hamiltonian after the first transformation takes on

the following form:

˜̂
HS =

(ωe − ω
(1)
Q

4

)[
Ŝ13
x

]
+
(3ωe + ω

(1)
Q

12

)[
Ŝ12
z − Ŝ23

z

]
. (1.59)

The term ωe

(
=

√
(ω

(1)
Q )2 + 16ω2

1S

)
represents the effective-field experienced by

the S -spin i.e., it has contributions from the RF field as well as the quadrupolar

interaction (refer to Figure 1.5(b)). As described above, the Hamiltonian after the

first transformation comprises operators Ŝ13
x corresponding to the double-quantum

transitions
[
DQS (1 ↔ 3)

]
. To further simplify the description, the above Hamiltonian

is transformed using the unitary transformation Û2 = exp
{
i
π

2

[
Ŝ13
y

]}
such that the
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Figure 1.5: (a1) Pictorial representation of the fields due to the RF irradiation and the
first-order quadrupolar coupling interactions. In the field representation, the spin operator
and frequency terms define the direction and magnitude of the field, respectively. (a2)
Schematic depiction of the effective-field experienced by the S -spin due to contributions
from the RF irradiation and the first-order quadrupolar coupling interaction.

Hamiltonian is diagonal in the chosen coupled basis.

Ĥeff,S = Û2
˜̂
HSÛ

†
2

=
(ωe − ω

(1)
Q

4

)[
Ŝ13
z

]
+
(3ωe + ω

(1)
Q

12

)[
Ŝ12
z − Ŝ23

z

]
.

(1.60)

The time-evolution of the spin system is described as follows:

ρ̂eff (t) = exp
{
− i

ℏ
Ĥeff,St

}
ρ̂eff (0) exp

{ i
ℏ
Ĥeff,St

}†

= 2 cos θ1/2

[[
Ŝ13
z

]
cos
(ωe + ω

(1)
Q

4
t
)
+
[
Ŝ13
y

]
sin
(ωe + ω

(1)
Q

4
t
)]

−
√
2 sin θ1/2

[[
Ŝ12
x − Ŝ23

x

]
cos
(ωe

4
t
)
+
[
Ŝ12
y − Ŝ23

y

]
sin
(ωe

4
t
)]
.

(1.61)

For a consistent description, the detection operator for each observable is also transformed

with the same set of transformations Û1Û2. Accordingly, the excitation efficiency of the

DQ13 transition is the expectation value of the observable < Ŝ13
+ (t) > and is evaluated

using the standard procedure outlined below.

S(t)13 =< Ŝ13
+ (t) >= Trace{Ŝ13

eff,+ρ̂eff (t)} (1.62)

where

Ŝ13
eff,+ = 2Ŝ13

+ cos θ1/2 + (Ŝ12
z − Ŝ23

z )
(cos θ1 − 1)

4
−
√
2(Ŝ12

+ + Ŝ23
+ ) sin θ1/2. (1.63)
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The signal expression for double-quantum detection is given below:

S(t)13 =
i

2

[
(1 + cos θ1) sin

(ωe − ω
(1)
Q

4
t
)
+ (1− cos θ1) sin

(ωe + ω
(1)
Q

4
t
)]
. (1.64)

Figure 1.6: Comparison of the DQ excitation efficiencies from numerical (black thick line)
and analytic simulations (red solid dots) based on Eq. (1.64) for single-crystal (a1-a3) and
powder (b1-b3) samples. The following simulation parameters were used: CQ = 1.0 MHz
(a1-b1), 200 kHz (a2-b2) and 20 kHz (a3-b3), asymmetry ηQ = 0.1, quadrupolar coupling
PAS angles (αQ, βQ, γQ = 30◦, 40◦, 60◦) and RF parameters: ν1S = 50 kHz. The powder
simulations were performed using 4180 orientations (i.e., zcw4180) of α and β.

To substantiate the validity of the effective Hamiltonian [Eq. (1.60)] derived using

the concept of “effective-field ”, the analytic simulations based on the Eq. (1.64)

were compared with the more exact numerical simulations using SIMPSON software.

As depicted in Figure 1.6, the analytic simulations are in good agreement across

all quadrupolar coupling regimes for both isotropic (single-crystal) and anisotropic

(powder) solids. In contrast to the conventional Floquet and AHT-based methods, the

effective-field formalism provided a faster convergence with a minimal number of unitary

transformations. In this thesis, the proposed effective field-based analytic framework is

extended to describe the spin dynamics of the cross-polarization experiments between

spin-1/2 and quadrupolar spins (S = 1, 3/2). A brief outline of the thesis is presented in

the following section.
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1.5 Organization of the thesis

In this thesis, an operator-based analytic theory is presented to describe the mechanism

of the standard cross-polarization experiment in a more complex quadrupolar system. For

the development of an efficient CP pulse sequence, it is essential to have a quantitative

description of the underlying spin dynamics in CP experiments. With this objective, an

analytic framework based on the effective Hamiltonian is presented to provide a unified

description of the quadrupolar CP dynamics in both isotropic and anisotropic solids.

Chapter 2 will focus on basic theory and methodology adopted in the thesis to describe

the spin-dynamics of cross-polarization experiments in non-rotating single-crystal and

powder samples. In particular, this chapter will contain a description of the operator-based

analytic theory of CP experiments involving much simpler spin-1/2 systems (I = 1/2

and S = 1/2). A detailed description of the CP dynamics will be provided through

effective Hamiltonians derived using the rotation operators-based effective-field approach.

In Chapter 3, employing the effective-field based analytic framework, the spin-dynamics

of cross-polarization experiment will be outlined for I = 1/2 to a more complex S = 1

quadrupolar nuclei under on-resonance RF irradiation [116]. In contrast to other existing

theoretical studies, the polarization transfer among spins is quantified and individual

contributions emerging from all plausible CP matching conditions are evaluated. Chapter

4 will discuss the mechanism of cross-polarization between I = 1/2 to S = 1 in the presence

of second-order quadrupolar interaction and S -spin off-resonance RF irradiation [117].

Multiple insights emerging out from this study will be highlighted through a single

mathematical framework derived using the effective-field approach. In Chapter 5 the

proposed analytic framework will be extended to describe the CP transfer dynamics in

I = 1/2 to S = 3/2 under static condition [135]. All the results of the thesis will be

summarized and future directions will be provided in Chapter 6.



Chapter 2

Theory and Methodology:

An effective-field approach to

understand the mechanism

of cross-polarization dynamics

between spin-1/2 systems

In this chapter of the thesis, an alternate operator-based analytic theory utilizing the

concept of the “effective-field ” is introduced to describe the spin dynamics of the

cross-polarization experiment between spin-1/2 systems. A simpler spin-1/2 model

framework is used to develop the theoretical method that will serve as a test bud for

describing the CP dynamics in a more complex quadrupolar systems.

2.1 Theory and Methodology

The basic pulse sequence for the continuous-wave cross-polarization experiment is depicted

in Figure 2.1(a). We have considered an isolated two spin-1/2 (I = 1/2 and S = 1/2)

model system [Figure 2.1(b)] to describe the CP dynamics. The doubly rotating frame

CP Hamiltonian for such a system is given as

ĤCP = ω1I Îx +ΩSŜz + ω1SŜx + 2ωdÎzŜz, ℏ = 1. (2.1)

In the above equation, ω1I and ω1S represent the radio-frequency (RF) amplitudes for

I and S spins, respectively. The symbol ΩS represents the off-resonance irradiation on

the S -spin, while on-resonance irradiation is considered on theI -spin channel. The term

ωd

(
=
µo
4π

γIγS
r3IS

(3 cos2 βd − 1)

2

)
represents the dipolar coupling (I-S ) frequency, rIS the

internuclear distance between I and S -spin pair, and βd is the orientation of the dipolar

vector with respect to the applied Zeeman magnetic field. A detailed description of the

above CP Hamiltonian can be found in the literature [4, 16,44].
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Figure 2.1: Schematic representation of the (a) continuous-wave (cw) cross-polarization
pulse-sequence and (b) an isolated two spins (I and S ) model system.

2.1.1 Derivation of the effective CP Hamiltonian

For operational convenience during the diagonalization process, the above Hamiltonian

[Eq. (2.1)] is re-expressed in terms of the single-transition operators (incoupledbasis)

[110–112] as given below:

ĤCP = ω1I(Ŝ
13
x + Ŝ24

x ) + ΩS(Ŝ
12
z + Ŝ34

z ) + ω1S(Ŝ
12
x + Ŝ34

x ) + ωd(Ŝ
12
z − Ŝ34

z ). (2.2)

A schematic description of the populations and coherences observed in a coupled spin-pair

(I = 1/2 and S = 1/2) is given in Figure 2.2(b). The matrix representations of the

above spin-operators are provided in Table B.1 (refer to Appendix-B). In general, for an

efficient CP process, we have ω1I/1S > ωd. In order to reduce the off-diagonalities due to

stronger RF irradiation terms, we employed double-titled rotating frame transformation

Û1Û2 = exp
{
iθ1(Ŝ

13
y + Ŝ24

y )
}
exp

{
iθ2(Ŝ

12
y + Ŝ34

y )
}
and the resulting Hamiltonian is given

as,

˜̃
ĤCP = ω1I

[
Ŝ13
z +Ŝ24

z

]
+ωe,S

[
Ŝ12
z +Ŝ34

z

]
+ωd cos θ2

[
Ŝ14
x

]︸ ︷︷ ︸
DQ14

+ωd cos θ2
[
Ŝ23
x

]︸ ︷︷ ︸
ZQ23

−ωd sin θ2
[
Ŝ13
x − Ŝ24

x

]︸ ︷︷ ︸
SQd,I︸ ︷︷ ︸

Heteronuclear dipolar coupling Hamiltonian

(2.3)

where, ωeS =
√

Ω2
S + ω2

1S and angles θ1 and θ1 are given as θ1 =
π

2
and θ2 = tan−1 ΩS

ω1S
.

The dipolar transitions are categorized according to the total change in the S and I -spin

quantum numbers in transitions involved. For instance, {1, 4}/{2, 3} are labeled as double

and zero-quantum (DQ14 and ZQ23, respectively) dipolar transitions. The last term in the

dipolar coupling Hamiltonian i.e., SQd,I operator involves single-quantum I -spin dipolar

transitions which does not result in an independent CP transfer mode like DQ14/ZQ23

transitions but rather provides a pathway to account for the loss in the magnetization

of I -spin. In the existing literature reports, these SQd,I dipolar transitions are usually
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Figure 2.2: (a) Schematic depiction of the energy level diagram in a coupled two-spin (I
= 1/2 and S = 1/2) system. The spin states |1⟩, |2⟩, |3⟩ and |4⟩ are representative of
the product basis states (|mI ,mS⟩) |1/2, 1/2⟩, |1/2,−1/2⟩, |−1/2, 1/2⟩ and |−1/2,−1/2⟩,
respectively. (b) Transition matrix representation of the populations and coherences in the
coupled two-spin (I and S ) system. The diagonal elements depict the populations (of the
states |mI ,mS⟩) and are represented through ‘Pii’. The coherences wherein both spins
change their states are represented as the double-quantum (DQIS) and zero-quantum
(ZQIS). The coherences where only the state of S -spin changes are represented by SQS ,
while coherences where only the state of I -spin changes are represented by SQI .

ignored under the assumption ΩS << ω1S [29, 41, 136]. However, as shown later in this

chapter, such an approximation does not always hold good. To offer a consistent and

comprehensive analytic description that is valid across all the coupling regimes (ΩS <<

ω1S , ΩS ≈ ω1S and ΩS > ω1S), we decided to retain the SQd,I dipolar transitions as well

in further descriptions. For this purpose, the unitary transformation Û3 = exp
{
iθ3(Ŝ

13
y −

Ŝ24
y )
}
is utilized to evaluate the effective-field or nutation frequencies for I -spin transitions

(SQI (ω1I) and SQd,I) as follows:

˜̃̃
ĤCP = ωe,I

[
Ŝ13
z +Ŝ24

z

]
+ωe,S

[
Ŝ12
z +Ŝ34

z

]
+ωd cos θ2 sin θ3

[
Ŝ14
x

]︸ ︷︷ ︸
DQ14

+ωd cos θ2 sin θ3
[
Ŝ23
x

]︸ ︷︷ ︸
ZQ23

(2.4)

where, ωe,I =
√
ω2
1I + (2ωdΩS/ωe,S)2 and tan θ3 =

ω1Iωe,S

2ωdΩS
. To accomplish the dipolar

coupling mediated Hartmann-Hahn CP conditions, the S and I -spin Hamiltonians are

rearranged using the relation Ŝik
z = Ŝij

z + Ŝjk
z leading to the following equation

˜̃̃
ĤCP = Σ

[
Ŝ14
z

]
+ ω14,23

d

[
Ŝ14
x

]
+∆

[
Ŝ23
z

]
+ ω14,23

d

[
Ŝ23
x

]
(2.5)

where, Σ = ωe,I + ωe,S , ∆ = ωe,I − ωe,S and ω14,23
d = ωd cos θ2 sin θ3. In Eq. (2.5),

the CP Hamiltonian is the sum of longitudinal/diagonal (Ŝij
z ) and transverse/off-diagonal

(Ŝij
x ) components in two independent subspaces (DQ14 and ZQ23). The CP Hamiltonian

[Eq. (2.5)] is further diagonalized by employing the rotation operators Û4 = Û
(14)
4 Û

(23)
4 =

exp
{
i
(
π
2 − θ14

)
[Ŝ14

y ]
}
exp

{
i
(
π
2 − θ23

)
[Ŝ23

y ]
}
. The angles θ14 and θ23 are chosen such
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that the effective fields in individual subspaces are quantized along their respective

z-axes

(
tan θ14 =

Σ

ω14,23
d

, tan θ23 =
∆

ω14,23
d

)
. The pictorial representations of these

transformations are given in Figure 2.3. Subsequently, the resulting effective CP

Hamiltonian is given as

Ĥeff = ω14
eff

[
Ŝ14
z

]
+ ω23

eff

[
Ŝ23
z

]
(2.6)

where, ω14
eff =

√
Σ2 + (ω14,23

d )2 and ω23
eff =

√
∆2 + (ω14,23

d )2. In this analytic framework,

the effective CP Hamiltonian is a sum of two independent effective CP fields, namely DQ14

and ZQ23 effective-fields.

Figure 2.3: Pictorial representation of the unitary transformations Û
(14)
4 and Û

(23)
4

while diagonalization of the CP Hamiltonian in the double-quantum (DQ14) (a1) and
zero-quantum (ZQ23) (a2) subspaces, respectively.

2.1.2 Time-evolution of the spin-system

To describe the time evolution of the spin system during the CP mixing

(spin-locking/contact) period (t), the solution of the Liouville–von Neumann equation

[Eq. (1.44)] described in the previous chapter is employed.

ρ̂(t) = exp {− i

ℏ
ĤCP t}ρ̂(0) exp {

i

ℏ
ĤCP t} (2.7)

where, ρ̂(0) = Îx represents the initial density operator. For a consistent description, the

initial density operator is also transformed using the same set of unitary transformations

involved in the derivation of the effective CP Hamiltonian [Eq. (2.6)]. Employing the

unitary transformations Û1Û2Û3Û4, the initial density matrix is transformed as

ρ̂eff (0) = sin θ2
[
Ŝ14
z sin θ14 − Ŝ14

x cos θ14
]
+ sin θ2

[
Ŝ23
z sin θ23 − Ŝ23

x cos θ23
]

− cos θ2
[
(Ŝ13

x − Ŝ24
x ) sin

(θ14 + θ23
2

)
− (Ŝ12

x + Ŝ34
x ) cos

(θ14 + θ23
2

)]
.

(2.8)
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The time evolution of the spin-system under the effective CP Hamiltonian [Eq. (2.6)] is

given as

ρ̂eff (t) = exp {−iĤeff t/ℏ}ρ̂eff (0) exp {iĤeff t/ℏ}

= sin θ2

[
Ŝ14
z sin θ14 − cos θ14

{
Ŝ14
x cosω14

eff t+ Ŝ14
y sinω14

eff t
}

+ Ŝ23
z sin θ23 − cos θ23

{
Ŝ23
x cosω23

eff t+ Ŝ23
y sinω23

eff t
}]

− cos θ2 sin
(θ14 + θ23

2

)[
(Ŝ13

x − Ŝ24
x ) cos

(ω23
eff − ω14

eff

2
t
)
+ (Ŝ13

y − Ŝ24
y ) sin

(ω23
eff − ω14

eff

2
t
)]

+ cos θ2 cos
(θ14 + θ23

2

)[
(Ŝ12

x + Ŝ34
x ) cos

(ω23
eff + ω14

eff

2
t
)
− (Ŝ12

y + Ŝ34
y ) sin

(ω23
eff + ω14

eff

2
t
)]
.

(2.9)

2.1.3 Calculation of the CP Signal

To evaluate the polarization transfer from spin I to spin S, the expectation value of the

observable S -spin < Ŝx(t) > or the CP signal is derived using the following expression:

S(t) =< Ŝx(t) >= Trace[Ŝeff,x.ρ̂eff (t)] (2.10)

where, Ŝeff,x represents the detection operator in the same frame of reference as the

effective Hamiltonian [Eq. (2.6)]. Using the standard operation procedure, the final CP

signal expression is given as

S(t) =
ω1I

ωe,I

ω1S

ωe,S

[{ω1S

ωe,I

ωd

ωe,I
sin θ14 cos θ14 − cos2 θ14

}
sin2

ω14
eff

2
t︸ ︷︷ ︸

Double-quantum

+
{
− ω1S

ωe,I

ωd

ωe,I
sin θ23 cos θ23 + cos2 θ23

}
sin2

ω23
eff

2
t︸ ︷︷ ︸

Zero-quantum

− 2ω1SΩS

ωe,Iωe,S
cos

(
θ23 − θ14

2

)
sin

(
θ23 − θ14

2

){
cos

(
ω23
eff − ω14

eff

2
t

)
− cos

(
ω23
eff + ω14

eff

2
t

)}
︸ ︷︷ ︸

Interference term

]
.

(2.11)

Besides, the loss in the I -spin magnetization can be evaluated by the expectation value of

the Îx operator (< Îx(t) >) given below:

S(t)I =
1

2

[
2 sin2 θ3−2sin2θ3 cos

2 θ14 sin
2
ω14
eff

2
t︸ ︷︷ ︸

Double-quantum

− 2 sin2 θ3 cos
2 θ23 sin

2
ω23
eff

2
t︸ ︷︷ ︸

Zero-quantum

+ cos2 θ3 cos

(
ω23
eff − ω14

eff

2
t

)
︸ ︷︷ ︸

Interference term

]
.

(2.12)

The final CP signal expression [Eq. (2.11)] has contributions from the double-quantum
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(DQ14) and zero-quantum (ZQ23) CP transfer modes, along with an interference term

arising from the DQ14 and ZQ23 CP modes. The pure DQ14/ZQ23 CP transfer modes in

the CP signal have manifestation of the absorptive (cos2 θij) and dispersive (cos θij sin θij)

components. To the best of our knowledge, the interference and dispersion terms resulting

purely from the S -spin off-resonance irradiation in the description of CP spin dynamics

between spin-1/2 systems have not been discussed in the existing literature. The CP

transfer could be maximized through any of the possible CP modes by adjusting the RF

field amplitudes employed on I and S -spin channels; known as the Hartmann-Hahn (HH)

matching conditions as described below.

2.1.4 Evaluation of the Hartmann-Hahn (HH) CP matching conditions

• ZQ23 CP matching condition:

Setting ∆ = 0 =⇒ ωe,I = ωe,S .

Under the exact ZQ23 CP matching condition, the resulting signal expression is given

as

S(t) =
ω1Iω1S

ωe,Iωe,S

[
sin2

ω14,23
d

2
t︸ ︷︷ ︸

Zero-quantum

+
{ω1S

ωe,I

ωd

ωe,I
sin θ14 cos θ14 − cos2 θ14

}
sin2

ω14
eff

2
t︸ ︷︷ ︸

High-frequency DQ term

+High-frequency interference term

]
.

(2.13)

Exact setting of the ZQ23 HH CP matching condition will not only optimize the

polarization transfer through ZQ23 CP modes but also make other modes of CP

transfer high-frequency terms that are less relevant for the polarization transfer.

It is important to note that ωe,I

(
=
√
ω2
1I + (2ωdΩS/ωe,S)2

)
exhibits dipolar

coupling dependence under off-resonance S -spin irradiation. Consequently, the

HH CP matching condition will vary based on the strength and orientation of the

heteronuclear dipolar coupling. These effects become operationally significant while

extracting the dipolar coupling parameters from the CP lineshape with improved

accuracy.

• DQ14 CP matching condition:

Setting Σ = 0 =⇒ ωe,I = −ωe,S .

Under exact DQ14 CP matching condition, the CP signal expression is given as

follows:

S(t) =
ω1Iω1S

ωe,Iωe,S

[
− sin2

ω14,23
d

2
t︸ ︷︷ ︸

Double-quantum

+
{
− ω1S

ωe,I

ωd

ωe,I
sin θ23 cos θ23 + cos2 θ23

}
sin2

ω23
eff

2
t︸ ︷︷ ︸

High-frequency ZQ term

+ interference term

]
.

(2.14)
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The DQ14 signal expression is just the 180◦ phase-shifted version of the ZQ23 signal

expression. Therefore, both the CP matching conditions are expected to show similar

CP dynamics for static samples.

• Interference of the DQ14 and ZQ23 term:

ω14
eff = ±ω23

eff =⇒ ω1I = 0.

This condition is not like any normal HH CP matching condition. Still, it represents

a condition where only the I -spin loses the polarization without transferring to

the S -spin. Therefore, such conditions should be avoided while setting the CP

conditions.

Under on-resonance S -spin irradiation, i.e. ΩS = 0, the above CP signal reduces to a

much simpler form as given below:

S(t) =

[
− cos2 θ14 sin

2
ω14
eff

2
t︸ ︷︷ ︸

Double-quantum

+cos2 θ23 sin
2
ω23
eff

2
t︸ ︷︷ ︸

Zero-quantum

]
.

(2.15)

The final CP signal expression [Eq. (2.15)] has contributions from the double-quantum (14)

and zero-quantum (23) CP transfer modes which are individually optimized to evaluate

the HH CP matching conditions shown in Table 2.1.

Table 2.1: The expression and transitions associated with various HH CP matching
conditions for the CP transfer between I = 1/2 and S = 1/2 spin systems.

CP matching conditions
and associated transitions

off-resonance S-spin
irradiation

on-resonance S-spin
irradiation

Double-quantum (DQ14)
|1/2, 1/2⟩ ↔ |−1/2,−1/2⟩

ωe,I = −ωe,S ω1I = −ω1S

Zero-quantum (ZQ23)
|−1/2, 1/2⟩ ↔ |1/2,−1/2⟩

ωe,I = ωe,S ω1I = ω1S

2.2 Results and discussion

To test the validity of our proposed analytic theory of the CP dynamics in an isolated

two spin I = 1/2 and S = 1/2 model framework, we carried out a comparison between

the CP efficiency profiles generated using computer simulation based on Eq. (2.11) and

the more exact numerical simulation program, SIMPSON [131]. All the simulations were

generated considering the I = 1H and S = 15N model system; although the proposed

analytical framework is equally applicable for any I = 1/2 and S = 1/2 spin system.

The simulation parameters: internuclear distance (rIS = 1.05 Å ), contact time = 2.0

ms and RF irradiation amplitude ν1S (ωIS/2π = 50 kHz) on the S -spin channel, are

used unless specified. For a pedagogical description, we begin by discussing the CP

spin dynamics for on-resonance S -spin irradiation followed by off-resonance irradiations.
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The state-picture representation is offered in Section 2.3.3 as an alternative formalism to

describe the underlying CP spin dynamics in spin-1/2 systems.

2.2.1 Description of the CP dynamics under on-resonance S -spin

irradiation

In the simulations depicted in Figure 2.4, the CP efficiency is plotted as a function of 1H

RF amplitude at constant mixing/contact time (τc = 2.0ms) for single-crystal (panels

a1-a2) and powder (panels b1-b2) samples. As illustrated in Figure 2.4, the analytic

simulations based on Eq. (2.15) are in excellent agreement with those obtained from

numerical simulations for both single-crystal and powder samples. Therefore, validates

our theoretical model framework. To analyze the similarities and differences between the

ZQ23 and DQ14 CP conditions, the CP efficiency profiles are generated under each CP

condition (panels a1-b1: ZQ23 CP condition and panels a2-b2: DQ14 CP condition). The

CP efficiency profile for the DQ14 CP condition is generated by shifting the phase of the

Figure 2.4: In the CP simulations depicted, the polarization build-up on the S -spin
(due to transfer from the I -spin) is monitored as a function of the 1H RF amplitude
for single-crystal (a1-a2) and powder (b1-b2) samples. The following parameters were
employed in the simulations: Dipolar coupling parameters (internuclear distance rIS =
1.05 Å and dipolar PAS angle βd = 0◦ and dipolar PAS angle βd = 0◦), RF parameters
ν1S = 50 kHz (a1-b1) and ν1S = −50 kHz (by shifting the phase of the I -spin by 180◦)
(a2-b2) under on-resonance irradiation for both I and S -spins and the mixing time during
the CP experiment was held constant (2 ms). The SIMPSON simulations (black curve) are
fitted with the analytic signal expressions ZQ23+DQ14 (red solid circle) [Eq. (2.15)]. The
powder simulations were performed using 4180 orientations of α and β angles (zcw4180).
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Figure 2.5: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored as a function of the contact time under constant
RF amplitudes on both the spins for single-crystal (a1-a2) and powder (b1-b2) samples.
The following parameters were employed in the simulations: Dipolar coupling parameters
(internuclear distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦), RF parameters ZQ23

CP condition (ν1H = 50 kHz and ν1S = 50 kHz) in panels (a1-b1) and DQ14 CP condition
(ν1H = 50 kHz and ν1S = −50 kHz; shifting the phase of the I -spin by 180◦) in panels
(a2-b2) under on-resonance irradiation. The SIMPSON simulations (black curve) are
fitted with the analytic signal expressions ZQ23+DQ14 (red solid circle) [Eq. (2.15)]. The
powder simulations were performed by considering the zcw4180 crystallite orientations.

I -spin RF irradiation by 180◦. Due to the similarity in the DQ14 and ZQ23 CP efficiency

profiles, henceforth, we have plotted the CP efficiency profiles from the ZQ23 CP condition.

In the case of a single-crystal sample, the RF-domain CP efficiency profiles are

symmetrically placed around exact HH CP matching conditions (ν1H = ν1S = 50 kHz).

The exactness of the proposed analytic theory is also validated through the time-domain

simulations in Figure 2.5 (panels a1-a2). The powder averaging expression [4,137] for the

CP signal [Eq. (2.15)] is given as

S(t) =
1

8π2

∫ 2π

0
dαML

∫ π

0
dβML sinβML

∫ 2π

0
dγMLS(αML, βML, γML; t). (2.16)

Here (αML, βML, γML) represents the powder orientation, and sinβML is the weighting

factor which is maximum for the orientation in the plane perpendicular to the Zeeman

magnetic field. In the case of powder samples, the statistical distributions of crystallite

orientations (shown in Eq. (2.16), interfere to result in averaged CP behavior. Due to

this reason, the overall width of the CP resonance is reduced in Figure 2.4 (panels b1-b2),
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and the time-domain simulations show a slower polarization build-up [Figure 2.5 (panels

b1-b2)] in comparison with the single-crystal sample.

Figure 2.6: In the CP simulations depicted, the polarization build-up on the S -spin
(due to transfer from the I -spin) is monitored as a function of the 1H RF amplitude
for single-crystal and powder samples in panels (a1-a2) and (b1-b2), respectively. The
following parameters were employed in the simulations: Dipolar coupling parameters
(internuclear distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦), RF parameters
ν1S = 20 kHz under on-resonance irradiation for both I and S -spins and the mixing time
during the CP experiment was held constant (say tmix = 2 ms). The SIMPSON simulations
(black curve) are fitted with the analytic signal expressions ZQ23+DQ14 (red solid circle),
ZQ23 (green curve) and DQ14 (blue curve) [Eq. (2.15)]. The powder simulations were
performed by considering the zcw4180 crystallite orientations.

These simulations are carried out at fixed S -spin RF amplitude, which is in the weak

coupling regime i.e., ωd << ω1S [24, 138]. Figure 2.6 depicts the CP efficiency profiles

in the ωd ≈ ω1S coupling regimes for single-crystal and powder samples. Details

of the simulation parameters can be found in the figure caption. In this coupling

regime, the results emerging from the analytic theory match perfectly well with the

numerical simulations. In particular, the CP resonance becomes slightly unsymmetric

with a negative CP efficiency towards lower I -spin RF amplitudes. To understand the

origin of observations, we evaluated the individual signal contributions from the two CP

conditions [Eq. (2.15)] for both single-crystal and powder samples. For the ZQ23 CP

matching condition, the dominant contribution to the polarization transfer arises from

the contributions from the ZQ23 CP signal expression, while a finite contribution comes

from the otherwise high-frequency phase-shifted DQ14 signal component. This indicates
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Figure 2.7: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored as a function of the contact time under constant
RF amplitudes (ZQ23 CP condition) on both the spins single-crystal and powder samples
in panels (a1-a2) and (b1-b2), respectively. The following parameters were employed in
the simulations: Dipolar coupling parameters (internuclear distance rIS = 1.05 Å and
dipolar PAS angle βd = 0◦), RF parameters ν1H = 20 kHz and ν1S = 20 kHz under
on-resonance irradiation for both I and S -spins. The SIMPSON simulations (black curve)
are fitted with the analytic signal expressions ZQ23+DQ14 (red solid circle), ZQ23 (green
curve) and DQ14 (blue curve) [Eq. (2.15)]. The powder simulations were performed by
considering the zcw4180 crystallite orientations.

that the spin-locking is not perfectly unidirectional in the ZQ23 subspace as expected.

Rather, the polarization leaks in the high-frequency DQ14 subspace, in the strong coupling

regime. This behavior could be attributed to the competing nature of the ZQ23 and DQ14

matching conditions i.e., the prefactor

{
(ω14,23

d )2

Σ2 + (ω14,23
d )2

}
in the DQ14 condition becomes

comparable to the prefactor in

{
(ω14,23

d )2

∆2 + (ω14,23
d )2

}
in the ZQ23 matching condition [Eq.

(2.15)] at lower I -spin RF amplitudes. These observations are also well-corroborated

in the time-domain simulations, where the oscillations deviate from a perfect sinusoidal

behavior due to mixing of the DQ14 CP efficiency for both single-crystal as well as powder

samples (Figure 2.7).

From an experimental standpoint, it is advantageous to provide a concise analytic

description of the evaluation of the dipolar coupling parameter through CP lineshape

[137, 139]. To extract the dipolar coupling parameters from the CP experiment, the CP

efficiency is monitored as a function of the mixing time, and the resulting data is Fourier
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transformed (FT) to get the frequency-domain CP spectrum as shown below.

Depending on the nature of the CP matching conditions, the corresponding time-domain

signal, S(t)ij is Fourier transformed to obtain the frequency-domain CP signal expression

[S(ω)ij ],

S(ω)ij = Cij

∫ ∞

−∞
sin2

(ωij
eff

2
t
)
e−iωtdt

=
Cij

2

∫ ∞

−∞

(
1− cosωij

eff t
)
e−iωtdt

(2.17)

where (ij) refer to 14 (DQ) and 23 (ZQ) matching conditions, and the constants Cij are:

C14 = −

(
ω14,23
d

ω14
eff

)2

and C23 =

(
ω14,23
d

ω23
eff

)2

. Using the integral definition of the Dirac delta

function, the Fourier-transformed CP signal expression is given as

S(ω)ij = Cijπ
[
δ(ω)− 1

2

{
δ(ω − ωij

eff ) + δ(ω + ωij
eff )

}]
. (2.18)

Figure 2.8: The Fourier transform of the variable contact time CP signal for the exact
ZQ23 CP matching condition for a single-crystal sample in different coupling regimes.
The time-domain simulations were performed using a total contact time = 2.5 ms. The
following parameters were employed in the simulations: Dipolar coupling parameters
(internuclear distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦), RF parameters
ωd << ω1S (ν1H = 50 kHz and ν1S = 50 kHz) in panels (a1-a2) and ωd ≈ ω1S (ν1H = 20
kHz and ν1S = 20 kHz) in panels (b1-b2) under on-resonance irradiation for both I and
S -spins. The SIMPSON simulations (black curve) are fitted with the analytic signal
expressions ZQ23+DQ14 (red solid square), ZQ23 (green curve) and DQ14 (blue curve)
[Eq. (2.15)].
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Under the exact ZQ23/DQ14 CP matching condition, the above equation reduces to the

form given below:

S(ω)ij = Cijπ
[

δ(ω)︸︷︷︸
Zero-frequency

−1

2

{
δ(ω − ω14,23

d ) + δ(ω + ω14,23
d )︸ ︷︷ ︸

Purely dipolar splitting (2ωd)

}]
.

(2.19)

The ZQ23/DQ14 frequency-domain signal expressions [Eq. (2.19)] for the single-crystal

sample displays three distinct singularities. The zero frequency (ω = 0) peak appears

due to the non-oscillatory component of the time-domain signal expression and the

remaining two appear at the conjugate symmetric transition frequencies (ω = −ωij
eff and

ω = ωij
eff ; ij = 14/23) resulting from the oscillatory components of the time-domain

signal expression. On setting the exact HH matching conditions, the separation

between the two symmetric singularities provides information about the dipolar coupling

strength. The more intense central peak is inverse phase-related with the two conjugate

symmetric singularities. As a consequence, the central peak does not interfere with

the symmetric singularities, a feature that is essential for extracting dipolar coupling

strengths, particularly for weakly coupled systems. Figure 2.8 demonstrates the CP

spectrum generated using the Fourier transform of the time-domain simulations for a

single-crystal sample. These simulations are conducted in two different coupling regimes

(ωd < ω1S and ωd ≈ ω1S in panels a1-a2 and b1-b2, respectively) at fixed dipolar

coupling strength, and the radio frequency (RF) amplitudes are adjusted for the ZQ23

CP condition. Clearly, the separation between the CP singularities will be a characteristic

of the dipolar coupling constant and is similar for both CP lineshapes. However, the

CP lineshape in the strong coupling limit (ωd ≈ ω1S) [panels (b1-b2)] is associated with

the high-frequency components from the phase-shifted DQ14 CP condition. In the ideal

scenario presented in this thesis, these unwanted distortions will not interfere with the

dipolar coupling evaluation because of the inverse phase relations. The CP lineshapes in

the case powder sample are shown in Figure 2.9. For the powder sample, the interference

from various weighted powder orientations (sinβML; βML is the powder angle from MolAS

to Laboratory frame and sinβML represents the probability of that particular orientation)

leads to a CP lineshape with well-defined singularities (Pake-doublet). The key difference

from a regular peak doublet is the presence of central zero-frequency peaks. The distance

between the singularities will be a direct measure of the dipolar coupling strength (Figure

2.9). Contrary to the single-crystal sample, the magnitude of the DQ14 high-frequency

components are relatively smaller in the powder sample. This is attributed to the

orientation dependence heteronuclear dipolar coupling frequency (see Appendix Figure

B.1), the condition (ωd ≈ ω1S) is satisfied for a very small fraction of orientations which

have a very smaller statistical probability (sinβML) in the overall powdered behavior.

We feel such a contribution might have a significant impact while considering the CSA

contribution in the CP dynamics.
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2.2.2 Description of the CP dynamics under off-resonance S -spin

irradiation

The off-resonance irradiation effects are unavoidable considering the large spectral widths

of the dilute spins and are known to significantly alter the CP spin dynamics in spin-1/2

systems [140]. Figure 2.10 depicts the CP efficiency profiles with a variation of the 1H RF

field in different coupling regimes ΩS << ω1S , ΩS ≈ ω1S and ΩS > ω1S for single-crystal

as well as powder samples. The analytic simulations based on Eq. (2.11) are in excellent

agreement with those obtained from numerical simulation for both single-crystal as well

as powder samples across various coupling regimes. Therefore, it validates our theoretical

model framework. The off-resonance irradiation deteriorates the overall CP efficiency and

CP resonance becomes highly distorted and asymmetrical. To understand the origin of

these distortions, we evaluated the individual contributions from the ZQ23, DQ14 and

interference terms in Eq. (2.11) (panels a2-c2). Across all coupling regimes, the overall

CP transfer is dominated by the ZQ23 CP condition and finite contributions are observed

Figure 2.9: The Fourier transform of the variable contact time CP signal for the exact ZQ23

CP matching condition for powder sample in different coupling regimes. The time-domain
simulations were performed using a total contact time = 2.5 ms. The following parameters
were employed in the simulations: Dipolar coupling parameters (internuclear distance
rIS = 1.05 Å and dipolar PAS angle βd = 0◦), RF parameters ωd << ω1S (ν1H = 50 kHz
and ν1S = 50 kHz) in panels (a1-a2) and ωd ≈ ω1S (ν1H = 20 kHz and ν1S = 20 kHz)
in panels (b1-b2) under on-resonance irradiation for both I and S -spins. The SIMPSON
simulations (black curve) are fitted with the analytic signal expressions ZQ23+DQ14 (red
solid square), ZQ23 (green curve) and DQ14 (blue curve) [Eq. (2.15)]. The powder
simulations were performed by considering the zcw4180 crystallite orientations.
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from the otherwise high-frequency DQ14 CP condition and interference terms. Besides,

both ZQ23 and DQ23 CP conditions have absorptive (cos2 θij) and dispersive (sin θij cos θij)

polarization pathways [Eq. (2.11)] which introduce distortions in overall CP resonance.

These distortions (dispersive components) are purely based on the single-quantum I -spin

dipolar transitions (SQd,I). This argument is further supported by simulations carried

out with and without the inclusion of these SQd,I dipolar transitions (Figure 2.11).

Apart from the distortions, these SQd,I dipolar transitions induce a dipolar-dependent

shift in the position of the HH CP matching conditions, and the degree of shift is

prominent in the ΩS > ω1S coupling regime which decreases towards the weaker coupling

regime (ΩS << ω1S) (Figure 2.12). These factors, along with inefficient spin-locking(
scaling factor =

ω1Iω1S

ωe,Iωe,S

)
results in lowering of the CP intensity as well as the widths

of CP resonance in the strong coupling regime (ΩS > ω1S). As the overall CP resonance

narrows, the CP transfer will become less tolerant to any mismatch in the HH CP condition

and RF inhomogeneities. Therefore, stronger RF irradiations are required to compensate

Figure 2.10: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single-crystal sample as a function of the RF
field employed on the I -spin. The following parameters were employed in the simulations:
Dipolar coupling parameters (internuclear distance rIS = 1.05 Å and dipolar PAS angle
βd = 0◦), RF parameters ν1S = 20 kHz (a1-a2); ν1S = 50 kHz (b1-b2) and ν1S = 70
kHz (c1-c2) under the S -spin off-resonance irradiation ΩS = 30 kHz. The SIMPSON
simulations (black curve) are fitted with the analytic signal expressions ZQ23+DQ14 (red
solid circle), ZQ23 (green curve), DQ14 (blue curve) and interference term (magenta curve)
[Eq. (2.11)].
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for the off-resonance irradiations, which strongly affect the widths of CP resonances as

suggested by the plot of the effective dipolar coupling constant (ω14,23
d ) vs the S -spin

off-resonance irradiation in Figure 2.12. Similar CP dynamics are manifested for powder

samples (Figure 2.13). Due to powder interference from various crystallite orientations,

the degree of contribution from the high-frequency components in the CP signal decreases.

From these simulations, we conclude that CP transfer in spin-1/2 systems is not always

unidirectional for both single-crystal and powder samples, and experimentally it may not

always be possible to avoid such undesired conditions. The time-domain signal will always

be associated with multiple frequency modulations like that observed for on-resonance

irradiation in the regime of stronger dipolar couplings i.e., ωd ≈ ω1S . Such time-domain

simulations are shown in Figures 2.14 and 2.15 under various irradiation strengths.

As described in the previous section, these distortion and high-frequency components

will be clearly visible in the frequency domain CP spectrum. Hence, the FT spectrum

essential for dipolar coupling parameter estimation will be distorted and associated

Figure 2.11: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single-crystal sample sample as a function
of the RF field employed on the I -spin. The following parameters were employed in the
simulations: Dipolar coupling parameters (internuclear distance rIS = 1.05 Å and dipolar
PAS angle βd = 0◦), RF parameters ν1S = 20 kHz (a1-a2); ν1S = 50 kHz (b1-b2) and
ν1S = 70 kHz (c1-c2) under the S -spin off-resonance irradiation ΩS = 30 kHz. The
SIMPSON simulations (black curve) are fitted with the analytic signal expressions in
absence (orange curve) and in presence (red curve) of the SQd,I term in Eq. (2.11).
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Figure 2.12: (a1) The effect of dipolar coupling strength on the ZQ23 CP matching
condition under three different S -spin off-resonance irradiation strengths. (a2) Variation of
the effective dipolar coupling constant as a function of the S -spin off-resonance irradiation
strength.

with the extra frequency components. Moreover, the effective dipolar coupling constant

(ω14,23
d ) will also have RF amplitudes and off-resonance dependent scaling factor; thus,

the distance between the CP singularities will be different in different coupling regimes

[Figure 2.16]. The separation between the singularities will be minimum in ΩS < ω1S

(weaker coupling regime) (panels a1-a2) and maximum in ΩS > ω1S (stronger coupling

regime) (panels c1-c2). Additionally, to calculate the CP lineshape, we need to set the

exact HH CP matching condition and any mis-setting will alter the modulation frequency√
δ2 + (ω14,23

d )2 where δ is the degree of mis-setting. Another important error comes from

the effect of dipolar dependent shifts while setting HH CP matching conditions (Figure

2.12). Hence, the proposed analytic theory will be beneficial in the quantitative analysis of

the origin of various distortions and unwanted frequency components in the resulting CP

spectrum. Moreover, the effective-field based analytic theory has provided unique insights

into the CP spin dynamics, such as non-unidirectional spin-locking behavior, dipolar

dependent shifts, and the presence of interference terms for isotropic and anisotropic

solids. The proposed theory can be easily expanded to include the effects of chemical-shift

anisotropy (CSA) for both I and S -spins. This extension may allow a quantitative

understanding of the selective and non-selective excitation of the CSA orientations under

different RF and off-resonance irradiation strengths. However, any inference drawn based

on the above discussion will require a detailed experimental and theoretical study, which

is beyond the scope of the current work.

2.2.3 State-picture representation of the CP spin dynamics

The observed behavior of CP transfer in operator-based theory can also be correlated with

the energy eigen-level diagram obtained by analytic theory (section 2.1.1) and numerical

diagonalization of the CP Hamiltonian shown in Figures 2.17 and 2.18. In the energy-level
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Figure 2.13: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in the powder sample as a function of the RF
field employed on the I -spin. The following parameters were employed in the simulations:
Dipolar coupling parameters (internuclear distance rIS = 1.05 Å and dipolar PAS angle
βd = 0◦), RF parameters ν1S = 20 kHz (a1-a2); ν1S = 50 kHz (b1-b2) and ν1S = 70
kHz (c1-c2) under the S -spin off-resonance irradiation ΩS = 30 kHz. The SIMPSON
simulations (black curve) are fitted with the analytic signal expressions ZQ23+DQ14 (red
solid circle), ZQ23 (green curve), DQ14 (blue curve) and interference term (magenta
curve) [Eq. (2.11)]. The powder simulations were performed by considering the zcw4180
crystallite orientations.

diagram, the regions of various avoided crossings are referred to as the HH CP matching

conditions. In the presence and absence of S -spin off-resonance irradiations, we observed

two such avoided crossings, which are in line with the HH matching conditions expressions

given in Table 2.1 and corroborate extremely well with the CP resonances observed in

Figures 2.4, 2.6 and 2.10 for the single-crystal sample.

To understand the origin of these avoided crossings, it is important to consider the

CP Hamiltonian [Eq. (2.5)] presented in the previous theory section. The matrix

representation of the above Hamiltonian is given as

˜̃
ĤCP =

1

2


Σ 0 0 ω14,23

d

0 ∆ ω14,23
d 0

0 ω14,23
d −∆ 0

ω14,23
d 0 0 −Σ.

 (2.20)
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Figure 2.14: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in single-crystal as a function of the contact
time under constant RF amplitudes adjusted for the ZQ23 CP condition. The following
parameters were employed in the simulations: Dipolar coupling parameters (internuclear
distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦), RF parameters ν1H = 36.05 kHz
and ν1S = 20 kHz (a1-a2); ν1H = 56.3 kHz and ν1S = 50 kHz (b1-b2) and ν1H = 76.35
kHz and ν1S = 70 kHz (c1-c2) under the S -spin off-resonance irradiation ΩS = 30 kHz.
The SIMPSON simulations (black curve) are fitted with the analytic signal expressions
ZQ23+DQ14 (red solid circle), ZQ23 (green curve), DQ14 (blue curve) and interference
term (magenta curve) [Eq. (2.11)].

For better visualization, the above Hamiltonian is separately written in two coupled

subspaces in accordance with Figure 2.2.

˜̃
ĤCP =

˜̃
Ĥ

(14)
CP +

˜̃
Ĥ

(23)
CP

=
1

2

[
Σ ω14,23

d

ω14,23
d −Σ

]
|1⟩,|4⟩

+
1

2

[
∆ ω14,23

d

ω14,23
d −∆

]
|2⟩,|3⟩

.
(2.21)

As shown in above Eq. (2.21), the CP Hamiltonian in each subspace is independent of

each other and is associated with longitudinal (constituted by the RF and off-resonance

irradiation part) and transverse (effective dipolar coupling part) components, which

correspond to the energy (position of avoided crossing/HH CP matching condition) and

driving field/potential, respectively. In mathematical terms, the energy transfer in each

subspace is analogous to a two-level system (TLS). The pictorial mathematical depiction

of the CP Hamiltonian within each subspace during on or off-resonance S -spin irradiations
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Figure 2.15: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in powder sample as a function of the contact time
under constant RF amplitudes adjusted for ZQ23 CP condition. The following parameters
were employed in the simulations: Dipolar coupling parameters (internuclear distance
rIS = 1.05 Å and dipolar PAS angle βd = 0◦), RF parameters ν1H = 36.05 kHz and
ν1S = 20 kHz (a1-a2); ν1H = 56.3 kHz and ν1S = 50 kHz (b1-b2) and ν1H = 76.35 kHz
and ν1S = 70 kHz (c1-c2) under the off-resonance irradiation strength ΩS = 30 kHz.
The SIMPSON simulations (black curve) are fitted with the analytic signal expressions
ZQ23+DQ14 (red solid circle), ZQ23 (green curve), DQ14 (blue curve) and interference term
(magenta curve) [Eq. (2.11)]. The powder simulations were performed by considering the
zcw4180 crystallite orientations.

is presented below

Ĥij = EijŜ
ij
z︸ ︷︷ ︸

Ĥ0
ij

+ωij
d Ŝ

ij
x︸ ︷︷ ︸

D̂ij

(2.22)

where, Ĥ0
ij acts as diagonal term and D̂ij is the perturbation. Here the states |i⟩ and |j⟩

will be linear combinations of the Zeeman basis vectors which are defined by the unitary

transitions involved in the analytic theory section (Û1Û2Û3). The matrix representation

of the above Hamiltonian is given as

Ĥij =
1

2

[
Eii ωij

d

ωij
d −Ejj

]
(2.23)

where, Eii/jj is a linear function of the I -spin RF amplitude [for exact relation see coeffs.

for Σ and ∆ in Eq. (2.5)]. We define the energy difference between diabatic states ∆ij =

Eii−Ejj . The perturbative term (ωij
d ) is only effective when the energy difference between
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Figure 2.16: The Fourier transform of the variable contact time CP signal for the exact
ZQ23 CP matching condition for powder sample in different coupling regimes. The
time-domain simulations were performed using a total contact time = 2.5 ms. The
following parameters were employed in the simulations: Dipolar coupling parameters
(internuclear distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦), RF parameters
ν1H = 36.05 kHz and ν1S = 20 kHz (a1-a2); ν1H = 56.3 kHz and ν1S = 50 kHz (b1-b2)
and ν1H = 76.35 kHz and ν1S = 70 kHz (c1-c2) under the S -spin off-resonance irradiation
ΩS = 30 kHz. The SIMPSON simulations (black curve) are fitted with the analytic signal
expressions ZQ23+DQ14 (red solid square), ZQ23 (green curve) and DQ14 (blue curve) [Eq.
(2.15)]. The separation of between the CP singularities (2ν14,23d ) are given in panels a1-a2,
b1-b2 and c1-c2 are 18.6, 28.7 and 30.82 kHz. The powder simulations were performed by
considering the zcw4180 crystallite orientations.

involved states |i⟩ and |j⟩ (∆ij) becomes smaller or comparable to the strength of the

perturbation (∆ij ≈ ωij
d ). To solve this problem, it is necessary to perform the analytical

diagonalization of the Hamiltonian mentioned earlier, which is already demonstrated in

the theory section.

ĤE
ij =

1

2

[
Ei 0

0 −Ej

]
(2.24)

where, Ei/j = ±
√

∆2
ij + (ωij

d )
2. The transformation involved in this diagonalization

process simplifies the evaluation of the eigenbasis (adiabatic basis) states. The adiabatic

basis states are linear combinations of the involved Zeeman basis states (diabatic basis).

The adiabatic basis states are given as

|i′⟩ = sin θij |i⟩+ cos θij |j⟩ and |j′⟩ = − sin θij |i⟩+ cos θij |j⟩ (2.25)
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Figure 2.17: The eigenenergy level plot as a function of 1H RF amplitude for a
single-crystal sample. The following parameters were employed in the simulations:
Dipolar coupling parameters (internuclear distance rIS = 1.05 Å and dipolar PAS angle
βd = 0◦), RF parameters ν1S = 50 kHz (a1) and ν1S = 20 kHz (a2) under on-resonance
irradiation. The numerical diagonalized eigenvalues (dashed curve) are fitted with the
analytic diagonalized eigenvalues (solid curve) [Eq. (2.6)]. The region of avoided crossings
are referred to as the HH CP matching conditions and are labelled in accordance with the
CP efficiency profiles in Figures 2.4 and 2.6.

Figure 2.18: The eigen energy level plots as a function of 1H RF amplitude for a
single-crystal sample. The following parameters were employed in the simulations: Dipolar
coupling parameters (internuclear distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦),
RF parameters ν1S = 20 kHz (a1), ν1S = 50 kHz (a2) and ν1S = 70 kHz (a3) under the
S -spin off- resonance irradiation Ω1S = 30 kHz. The numerical diagonalized eigenvalues
(dashed curve) are fitted with the analytic diagonalized eigenvalues (solid curve) [Eq.
(2.6)]. The regions of avoided crossings are referred to as the HH CP matching conditions
and are labelled in accordance with the CP efficiency profiles in Figure 2.10. The avoided
crossing at zero 1H RF amplitude (ν1H = 0 kHz) are due to presence of single-quantum
I -spin dipolar transitions (SQd,I).

where, tan θij =
∆ij

ωij
d

acts as a mixing angle between the original diabatic basis. The

energy level representation in this TLS is shown in Figure 2.19 with variation in 1H RF

amplitude. In the absence of the perturbation ωij
d or (∆ij >> ωij

d ), the energies of the
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Figure 2.19: The eigen energy level plot as a function of ∆ij in a two-level system (TLS).

The simulations are performed using the perturbation strength ωij
d = 0 kHz (gray dashed

lines) and 10.52 kHz (black solid lines). The minimum in the region of avoided crossing is
the resonance condition, where the energy difference between two states becomes zero in
the absence of any external perturbation.

eigenstates exactly follow a linear variation with respect to 1H RF amplitude and become

equal at the condition ∆ij = 0; at this resonance condition we observe an exact level

crossing. On the other hand, when the perturbation is active, the energy states exhibit a

linear slope (ω1I) in the region ∆ij >> ωij
d . As soon as system enters in ∆ij ≈ ωij

d region,

the energy eigen states shifts from the linear to a quadratic trajectory as given by the Eq.

(2.24) Ei/j = ±
√

∆2
ij + (ωij

d )
2 ≈

{
∆ij +

1
∆ij

(2ωij
d )

2

}
. In this case, the adiabatic states

never cross, but rather acquire a minimum at a certain RF condition (∆ij = 0) and this

resonance condition is termed as Hartmann-Hahn matching condition in the CP process.

Exactly, near resonance i.e., ∆ij = 0, the energy of the system is given by 2ωij
d at the

mixing angle θij =
π
4 and we observe a level repulsion or avoided crossing (LAC). In other

words, at this condition two diabatic states perfectly mix and result in perfect adiabatic

states which can efficiently lead to CP transfer via maximum population exchange. This

population exchange can be calculated by the mixing coefficient in the adiabatic states

or with the density operator calculation shown through Eq. (2.9). However, the process

of coherent spin-mixing can be illustrated by plotting the time-evolution of the coherence

terms in the density matrix expressions under various LAC [Eq. (2.9)].

The population transfer in the TLS can occur via the adiabatic pathway, where the

population smoothly follows the energy eigen states without undergoing any transition

or can result in a sudden jump (non-adiabatic transition) across the energy difference.

The pathway of the population exchange is determined by the Landua-Zener expression

(LZ) [141, 142], which states that the rate of change of the energy difference and the
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Figure 2.20: The population exchange dynamics for different HH CP matching conditions
as a function of 1H RF amplitude for a single-crystal sample. The population coefficients
for different HH matching conditions are calculated based on the final density matrix
calculation as given in Eq. (2.9) and are given as DQ14 (ρ11, ρ44): (sin2 θ14, -sin

2 θ14)
and ZQ23 (ρ22, ρ33): (sin2 θ23, -sin

2 θ23). The area between each avoided crossings can
be correlated with the width of each CP resonance observed in Figures 2.4 and 2.6. All
simulation parameters are exactly the same as used in Figure 2.17.

strength of the perturbation acting in the system actively plays a role in deciding the

mixing pathways. In the above representation, the probability of the LZ transition is

given as

Pnad
i→j = exp

{
2(ωij

d )
2

d∆ij/dt

}
(2.26)

while the probability of adiabatic transition is given as

P ad
i→j = 1− exp

{
2(ωij

d )
2

d∆ij/dt

}
. (2.27)

The dynamics in the system is driven by the presence of perturbation (effective dipolar

coupling), therefore it acts as a natural/internal time-period of the system (τi =
2π

ωij
d

), while

the 1H RF amplitude acts as external tuning parameter (τe =
2π
ω1H

). In case τe >> τi, the

system evolves adiabatically through the energy gap (P ad
i→j ≈ 1), otherwise it can make

non-adiabatic transition. Hence, it is the energy difference across the LAC that determines

the nature of dynamics. In the case of a weaker coupled system (drive-frequency < Rabi

frequency, i.e., energy difference), the probability of the non-adiabatic transition increases,

however it decreases rapidly away from the resonance condition. In a strongly coupled

system, the probability of the non-adiabatic transitions decreases and we observe a broad

CP resonance.

Having established the mechanism of the LAC or HH-condition, we now focus on the

different avoided crossings observed in Figures 2.17 and 2.18 for a single-crystal sample.
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We observed that the ZQ23 and DQ14 HH CP matching conditions are just phase-shifted

versions of each other and the DQ14 transfer is experimentally achieved by setting the phase

of either I or S -spins RF-field by 180◦. The area under the avoided crossing is a direct

manifestation of the strength of the perturbation (effective dipolar coupling i.e., ω14,23
d )

acting between the states involved in CP transfer. Under on-resonance irradiation, the area

enclosed by the curves are constant in different coupling regimes (Figure 2.17). However,

the regions of the avoided crossings overlap for the ZQ23 and DQ14 HH CP conditions in

the stronger coupling regime (ωd ≈ ω1S). Hence, in the region of overlapping both the

CP conditions (ZQ23 and DQ14) are simultaneously satisfied and this effect is similar to

the effect of non-unidirectionality of the spin-locking field in Figure 2.6. The degree of

overlapping can be quantitatively evaluated using the population exchange diagram. The

population exchange at various LACs are shown in Figure 2.20 where the population is

plotted by selecting the coefficients of all Zeeman states in the final density matrix in

Eq. (2.9) (see Figure caption for more information). In the population diagram (panel

a1), clearly |1⟩ / |4⟩ and |2⟩ / |3⟩ exchange their populations (i.e., population difference

becomes zero ρ̂ii − ρ̂jj = 0) at exact HH CP matching condition which correlates well

with the Figures 2.4 and 2.6 and point towards an adiabatic transfer. The population

exchange trajectories for the DQ14 and ZQ23 CP conditions in the strong coupling regime

clearly demonstrates the effect of the overlapping CP resonances. From an operational

standpoint, it is important to mention that despite the overlapping of the CP resonances,

CP transfer in DQ14 and ZQ23 subspaces are independent process and still can be explained

using TLS problem. As the strength of the S -spin off-resonance irradiation increases,

the CP resonances shift towards increasing 1H RF amplitudes, and the area decreases

monotonically. The strength of the effective dipolar coupling constant (ω14,23
d ) is directly

correlated with the nature of transition at the exact HH CP matching condition (sudden

or adiabatic transfer). As the strength of the off-resonance irradiation increases, the

probability of the non-adiabatic (sudden jump) increases. Additionally, the avoided

crossings observed at ν1H = 0 kHz corresponds to the pure single-quantum I -spin dipolar

transitions (SQd,I). It should also be noted that a significant loss in the I -spin polarization

(refer to < Îx(t) > detection in Figure 2.21) is observed during the transfer process while

the gain in the S -spin polarization is minimal. This is primarily due to the involvement

of Îijx Ŝz transition operators in the polarization transfer process.

At zero-field avoided crossing (ν1H = 0 kHz), we don’t observe any significant population

exchange (Figure 2.22), again highlighting the presence of pure SQd,I I -spin dipolar

transitions. Nevertheless, the population exchange dynamics observed in panels a2-a3

for the stronger off-resonance irradiations demonstrate a behavioral shift from adiabatic

to sudden transitions. Besides, the area enclosed in between two population curves directly

signifies the width of the overall CP transfer as observed in Figures 2.20 and 2.22. It is

important to note that the aforementioned observations are based on the parameters used

while generating the simulations, and the nature of CP dynamics may change by selecting

other parameters set.
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Figure 2.21: In the CP simulations (SIMPSON) depicted, the polarization build-up on
the S -spin (black curve) and loss on the I -spin (red curve) is monitored simultaneously
in the powder sample as a function of the RF field employed on the I -spin. The following
parameters were employed in the simulations: Dipolar coupling parameters (internuclear
distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦), RF parameters ν1S = 20 kHz
under the S -spin off-resonance irradiation ΩS = 30 kHz. The powder simulations were
performed by considering the zcw4180 crystallite orientations.

Figure 2.22: The population exchange dynamics for different HH CP matching conditions
as a function of 1H RF amplitude for a single-crystal sample. The population coefficients
for different HH matching conditions are calculated based on the final density matrix
calculation as given in Eq. (2.9) and are given as DQ14 (ρ11, ρ44): (sin2 θ14, -sin

2 θ14)
and ZQ23 (ρ22, ρ33): (sin

2 θ23, -sin
2 θ23). The area between each avoided crossings can be

correlated with the width of each CP resonances observed in Figure 2.10. All simulation
parameters are exactly the same as used in Figure 2.18.

2.3 Conclusions

In summary, the effective-field approach presented in this chapter is well suited for

describing the CP spin dynamics between the I = 1/2 (1H) and S = 1/2 spin
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systems. The analytic theory perfectly reproduces the literature findings and offers

an in-depth understanding of CP dynamics behavior subjected to on and off-resonance

S -spin irradiations. Unlike previous studies, the proposed operator-based analytic theory

provides a unified description of the CP spin dynamics that is valid across all coupling

regimes. Moreover, the proposed effective field-based theory introduces the concept of a

non-unidirectional spin-locking field, dipolar-dependent shifts, dispersion, and interference

effects, which are unique to the proposed effective field-based theory. As an alternative to

the operator-based analytic framework, a thorough state-picture representation is provided

to describe the CP spin dynamics.



Chapter 3

Analytic theory of cross-polarization

(CP) dynamics between spin-1/2

and spin-1 nuclei

In the previous chapter, we discussed the usefulness of the effective-field approach in

the theoretical description of the CP experiment in spin-1/2 systems. We extend

the proposed operator-based analytic theory in a more complex quadrupolar sample

with spin-quantum number S = 1. The presence of dominant quadrupolar interaction

frequently poses significant challenges in the analytical description of spin dynamics

[69,83,102,143–147]. This led to the descriptions of spin-dynamics involving quadrupolar

spins in the quadrupolar interaction frame or more commonly known as the quadrupolar

jolting frame [148, 149]. This transformation rendered the time-dependency of the

interaction Hamiltonian, which further requires application of sophisticated analytic

treatments. Utilizing the Average Hamiltonian theory (AHT) [3, 90, 103] and in some

cases with the Floquet theory [93, 104–109], semi-analytical methods have also emerged

for describing experiments involving quadrupolar spins, both in non-rotating (static)

and rotating solids. In the initial description put forth by Vega and coworkers [45]

using the effective Hamiltonian approach the CP dynamics was described in systems

with larger quadrupolar interactions (i.e., ωQ >> ω1S). However, these descriptions are

not useful for quantifying the CP efficiency profiles in powder samples primarily due to

the distribution of quadrupolar coupling frequencies. Later, Ernst and coworkers [90]

provided an alternate description of the CP dynamics based on the AHT, however

the experimental validation of the proposed analytic treatment was provided only in

the intermediate coupling regime (i.e. ωQ ≈ ω1S). Pratum and Klein [91] proposed

an alternate formulation, which could quantitatively explain the origin of multiple CP

matching conditions observed in experiments. Nonetheless, a comprehensive analytic

description of the CP dynamics over a wide range of experimentally relevant parameters

has remained elusive. For the sake of clarity and completeness, a brief account of the results

obtained from the Hamiltonians proposed by Pratum and Klein is discussed in Appendix C

(refer to section C.2). To address this issue, we propose an alternate analytic formalism to

describe the CP dynamics which is consistent with experimental observations. Unlike

the conventional perturbative methods in the quadrupolar interaction frame, the CP

dynamics is described by the effective Hamiltonians derived using rotation operators based

53
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on the “effective-field” approach [70, 80, 109, 114, 115]. The proposed analytic framework

based on the effective-field approach offers faster convergence and presents an attractive

tool for describing the underlying spin dynamics in both isotropic and anisotropic solids.

Accordingly, the CP matching conditions observed are described in terms of the transition

operators associated with a given system [114,115].

3.1 Theory and Methodology

To outline the basic operational aspects of the CP experiment, we begin with a model

two-spin (say I = 1/2 and S = 1) Hamiltonian. In an appropriate interaction frame, the

Hamiltonian of such a system under on-resonance irradiation (on the spins I and S ) is

represented by the following equation:

Ĥ = ω1S(cosϕSŜx + sinϕSŜy)︸ ︷︷ ︸
ĤRF

S

+
ω
(1)
Q (αQ, βQ)

6
(3Ŝ2

z − Ŝ2)︸ ︷︷ ︸
ĤQ

S

+ω1I(cosϕI Îx + sinϕI Îy)︸ ︷︷ ︸
ĤRF

I

+ 2ωdÎzŜz︸ ︷︷ ︸
ĤD

IS

; ℏ = 1.

(3.1)

In the above equation, ω1I(ω1S) and ϕI(ϕS) represent the RF amplitude and phase

on I (S ) spin. ĤQ
S is the first-order quadrupolar Hamiltonian for the S -spin.

The quadrupolar interaction is often expressed in terms of quadrupolar coupling

frequency (ω
(1)
Q ) and quadrupolar coupling constant (CQ). A detailed description

of the quadrupolar Hamiltonian can be found in Chapter 1. The term ωd

(
=

µo
4π

ℏγIγS
r3IS

(3 cos2 βd − 1)

2
; γI and γS

)
represents the dipolar coupling (I-S ) frequency, rIS

is the internuclear distance between I and S -spin pair, and βd is the orientation of dipolar

vector with respect to the applied Zeeman magnetic field (z-direction). The matrix

representation of the various spin operators in Eq. (3.1) both I and S -spins) can be

found in Appendix C. When the phases of the RF fields employed on the two spins are

set to zero (i.e., ϕS = ϕI = 0◦), the above Hamiltonian [Eq. (3.1)] reduces to a compact

form given below:

ĤCP = ω1SŜx +
ω
(1)
Q (αQ, βQ)

6
(3Ŝ2

z − Ŝ2) + ω1I Îx + 2ωdÎzŜz.
(3.2)

The discussion that follows is equally valid in both single-crystal and powder samples.
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3.1.1 Derivation of the effective CP Hamiltonians via the effective-field

method

To simplify the description, the above Hamiltonian is re-expressed in terms of the

single-transition operators [17,110–113] as given below:

ĤCP =
√
2ω1S [Ŝ

12
x + Ŝ23

x + Ŝ45
x + Ŝ56

x ]︸ ︷︷ ︸
ĤRF

S

+
ω
(1)
Q

3
[Ŝ12

z − Ŝ23
z + Ŝ45

z − Ŝ56
z ]︸ ︷︷ ︸

ĤQ
S

+ω1I [Ŝ
14
x + Ŝ25

x + Ŝ36
x ]︸ ︷︷ ︸

ĤRF
I

+ 2ωd[Ŝ
13
z − Ŝ46

z ]︸ ︷︷ ︸
ĤD

IS

.

(3.3)

The superscript (i, j) in the operators Ŝij
α (α = x, y, z) represents the spin-states in a

coupled system and are defined according to the energy level diagram depicted in Figure

3.1(a). Accordingly, the operators have the following definitions:

Figure 3.1: (a) Schematic depiction of the energy level diagram in a coupled two-spin (I
= 1/2 and S = 1) system. The spin states |1⟩, |2⟩, |3⟩, |4⟩, |5⟩ and |6⟩ are representative
of the product basis states (|mI ,mS⟩) |1/2, 1⟩, |1/2, 0⟩, |1/2,−1⟩, |−1/2, 1⟩, |−1/2, 0⟩ and
|−1/2,−1⟩, respectively. (b) Matrix representation of the populations and coherences in
the coupled two-spin (I and S ) system. The diagonal elements depict the populations
(of the states |mI ,mS⟩) and are represented through ‘Pii’. The coherences wherein both
spins change their states are represented as the triple-quantum (TQIS), double-quantum
(DQIS), single-quantum (SQIS), and zero-quantum (ZQIS). The coherences where only
the state of S -spin changes are represented by DQS and SQS , while, coherences where
only the state of I -spin changes are represented by, SQI . The blue-colored (TQIS/SQIS)
coherences involve double-quantum transitions associated with the S -spin (|+1⟩ ↔
|−1⟩), while orange and green-colored (DQIS/ZQIS) coherences involve single-quantum
transitions associated with S -spin, SQS (|−1⟩ ↔ |0⟩) and (|0⟩ ↔ |+1⟩).
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Ŝij
x =

1

2
[|i⟩ ⟨j|+ |j⟩ ⟨i|], Ŝij

y =
1

2i
[|i⟩ ⟨j| − |j⟩ ⟨i|], Ŝij

z =
1

2
[|i⟩ ⟨i| − |j⟩ ⟨j|]. (3.4)

A schematic description of the populations and coherences observed in a coupled spin-pair

(I = 1/2 and S = 1) is given in Figure 3.1(b). The matrix representation of the various

spin-operator and their product Zeeman basis is given in Appendix C. To derive insights

into the CP spin dynamics and facilitate analytic description, the Hamiltonian [Eq. (3.3)]

is divided into three parts:

1. Hamiltonian for the S -spin system (ĤS = ĤRF
S + ĤQ

S )

2. Hamiltonian for the I -spin system (ĤRF
I )

3. Hamiltonian for the I-S spin pair (ĤD
IS)

Subsequently, employing unitary transformations, the Hamiltonians are diagonalized using

the procedure outlined below.

A: Derivation of effective Hamiltonian for the S -spin system

A detailed procedure of the derivation of the effective S -spin Hamiltonian in the single-spin

Zeeman basis is outlined in section 1.4 (Chapter 1). To avoid repetition, the complete

description of the diagonalization process is cautiously omitted. The diagonalization of

S -spin Hamiltonian is accomplished via two-step unitary transformations Û1 = exp
{
−

iθ1√
2

[
− Ŝ12

y + Ŝ23
y − Ŝ45

y + Ŝ56
y

]}
and Û2 = exp

{
iπ2
[
Ŝ13
y + Ŝ46

y

]}
. The resulting S -spin

effective Hamiltonian is given below:

˜̃
ĤS = Û2Û1ĤSÛ

†
1 Û

†
2 =

(ωe − ω
(1)
Q

4

)[
Ŝ13
z + Ŝ46

z

]
+
(3ωe + ω

(1)
Q

12

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
(3.5)

where, ωe =
√

(ω
(1)
Q )2 + 16ω2

1S and tan θ1 = 4ω1S/ω
(1)
Q . The effectiveness of the S -spin

effective Hamiltonian is evaluated in the preceding section 1.4 and is demonstrated to offer

the convergent solutions to the spin-dynamics for isotropic and anisotropic solids.

B: Derivation of effective Hamiltonian for the I -spin system

In a similar way, employing the unitary transformation Û3 = exp
{
iπ2
[
Ŝ14
y + Ŝ25

y + Ŝ36
y

]}
,

the Hamiltonian for the I -spin is transformed such that it is diagonal in the chosen basis.

˜̃̃
ĤRF

I = Û3Ĥ
RF
I Û †

3 = ω1I

[
Ŝ14
z + Ŝ25

z + Ŝ36
z

]
. (3.6)

As the operators involved in the unitary transformations, Û1 and Û2 commute with

the I -spin Hamiltonian, the above form of the Hamiltonian remains invariant under the

transformations employed on the S -spin.
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C: Derivation of effective Hamiltonian for the I-S spin pair

To have a consistent description, the dipolar coupling Hamiltonian (ĤIS) is also

transformed by the same set of unitary transformations employed on the S and I -spin

Hamiltonians.

˜̃̃
ĤD

IS = Û3Û2Û1Ĥ
D
ISÛ

†
1 Û

†
2 Û

†
3 = 2ωd

{[
Ŝ16
x + Ŝ34

x

]
cos θ1/2−

[
Ŝ26
x + Ŝ35

x

]
sin θ1/2

}
. (3.7)

As illustrated above, in contrast to the single spin Hamiltonians [(refer to Eqs. (3.5)

and (3.6)], the transformed dipolar coupling Hamiltonian is off-diagonal in the chosen

basis system. Combining the transformed Hamiltonians,
˜̃̃
ĤS ,

˜̃̃
ĤRF

I and
˜̃̃
ĤD

IS , the complete

Hamiltonian describing the CP dynamics is represented by the following equation:

˜̃̃
Ĥ =

˜̃̃
ĤS +

˜̃̃
ĤI +

˜̃̃
ĤD

IS

=
(ωe − ω

(1)
Q

4

)[
Ŝ13
z + Ŝ46

z

]
+
(3ωe + ω

(1)
Q

12

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
+ ω1I

[
Ŝ14
z + Ŝ25

z + Ŝ36
z

]
+ 2ωd cos θ1/2

[
Ŝ16
x + Ŝ34

x

]
− 2ωd sin θ1/2

[
Ŝ26
x + Ŝ35

x

]
.

(3.8)

As described above, the CP Hamiltonian in its present form is highly off-diagonal (mainly

due to the dipolar coupling) and is of lesser utility in further descriptions of the spin

dynamics. To address this issue, the transformed single spin Hamiltonians are re-expressed

in terms of the operators employed in the description of the dipolar coupling Hamiltonian

through the relation Ŝik
z = Ŝij

z + Ŝjk
z between the single-transition operators as given

below:

˜̃̃
Ĥ = Σ16

[
Ŝ16
z

]
+ ω16,34

d

[
Ŝ16
x

]︸ ︷︷ ︸
˜̃̃
Ĥ16

+∆34

[
Ŝ34
z

]
+ ω16,34

d

[
Ŝ34
x

]︸ ︷︷ ︸
˜̃̃
Ĥ34

+Σ35

[
Ŝ35
z

]
+ ω26,35

d

[
Ŝ35
x

]︸ ︷︷ ︸
˜̃̃
Ĥ35

+∆26

[
Ŝ26
z

]
+ ω26,35

d

[
Ŝ26
x

]︸ ︷︷ ︸
˜̃̃
Ĥ26

−ω1I

[
Ŝ36
z

]
−
ω
(1)
Q

6

[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
︸ ︷︷ ︸

residual terms

.

(3.9)

The coefficients in the above equation have the following definitions: Σ16 ={4ω1I + (ωe − ω
(1)
Q )

4

}
, ∆34 =

{4ω1I − (ωe − ω
(1)
Q )

4

}
, Σ35 =

{4ω1I + (ωe + ω
(1)
Q )

4

}
,

∆26 =
{4ω1I − (ωe + ω

(1)
Q )

4

}
, and the effective dipolar coupling constants are ω16,34

d =

2ωd cos θ1/2 and ω26,35
d = −2ωd sin θ1/2.

Accordingly, in the new representation, the CP Hamiltonian comprises contribution

emerging from the four transitions (that involve flipping of both spins) present in

the coupled system [refer to Figure 3.1(a)]. The term
˜̃̃
Ĥ16 is representative of the

triple-quantum (TQ16) transition
(
|1/2, 1⟩ ↔ |−1/2,−1⟩

)
, while

˜̃̃
Ĥ34 is representative of
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the single-quantum (SQ34) transition
(
|1/2,−1⟩ ↔ |−1/2, 1⟩

)
. In a similar vein, the term

˜̃̃
Ĥ35 is representative of the zero-quantum (ZQ35) transition

(
|−1/2,−1⟩ ↔ |1/2, 0⟩

)
, while

˜̃̃
Ĥ26 is representative of the double-quantum (DQ26) transition

(
|1/2,−1⟩ ↔ |−1/2, 0⟩

)
in a coupled spin basis. It is important to note that the magnitude of the effective dipolar

coupling is different in TQ16/SQ34 and ZQ35/DQ26 sets of transitions. Since polarization

transfer amongst spins entails simultaneous flipping of the spin states of both the spins

involved, the contribution from the residual terms in the above Hamiltonian [Eq. (3.9)]

are of lesser significance and are ignored in further calculations.

˜̃̃
Ĥ =

˜̃̃
Ĥ16 +

˜̃̃
Ĥ34 +

˜̃̃
Ĥ35 +

˜̃̃
Ĥ26

= Σ16

[
Ŝ16
z

]
+ ω16,34

d

[
Ŝ16
x

]︸ ︷︷ ︸
˜̃̃
Ĥ16

+∆34

[
Ŝ34
z

]
+ ω16,34

d

[
Ŝ34
x

]︸ ︷︷ ︸
˜̃̃
Ĥ34

+Σ35

[
Ŝ35
z

]
+ ω26,35

d

[
Ŝ35
x

]︸ ︷︷ ︸
˜̃̃
Ĥ35

+∆26

[
Ŝ26
z

]
+ ω26,35

d

[
Ŝ26
x

]︸ ︷︷ ︸
˜̃̃
Ĥ26

.

(3.10)

Unlike other existing reports in the literature [45, 91], it is important to note that the

Hamiltonian in Eq. (3.10) contains all the modes of CP transfer within a single framework.

This forms the major highlight of the present study and will be substantiated in the

following sections. For comparative purposes, the analytic description of the spin dynamics

emerging from previously reported Hamiltonians is summarized in Appendix C (refer to

section C.2). As illustrated in Eq. (3.10), the CP Hamiltonian in the effective-field

framework reduces to the sum of transverse (Ŝij
x ) and longitudinal (Ŝij

z ) operators in

each subspace (see Figure 3.2). Subsequently, employing the rotation operators, the

Hamiltonians in the respective sub-spaces are diagonalized through rotation operators

(analogous to the spin-1/2) defined below:

Û16
4 = exp

{
i
(π
2
− θ164

)[
Ŝ16
y

]}
, Û34

4 = exp
{
i
(π
2
− θ344

)[
Ŝ34
y

]}
, Û35

4 = exp
{
i
(π
2
− θ354

)[
Ŝ35
y

]}
,

and Û26
4 = exp

{
i
(π
2
− θ264

)[
Ŝ26
y

]}
.

(3.11)

The angles θ164 , θ344 , θ354 and θ264 are chosen such that the effective-fields in

individual subspaces are quantized along the z-axes: tan θ164 =
Σ16

ω16,34
d

, tan θ344 =
∆34

ω16,34
d

,

tan θ354 =
Σ35

ω26,35
d

, and tan θ264 =
∆26

ω26,35
d

. The pictorial representations of these

transformations are given in Figure 3.2(a1)-(a4). Subsequently, the effective Hamiltonian

depicting the CP dynamics is represented by the following equation.

Ĥeff = Ĥeff,16 + Ĥeff,34 + Ĥeff,35 + Ĥeff,26

= Û16
4 Ĥ16Û

16†
4 + Û34

4 Ĥ34Û
34†
4 + Û35

4 Ĥ35Û
35†
4 + Û26

4 Ĥ26Û
26†
4

= ω
(16)
eff

[
Ŝ16
z

]
+ ω

(34)
eff

[
Ŝ34
z

]
+ ω

(35)
eff

[
Ŝ35
z

]
+ ω

(26)
eff

[
Ŝ26
z

] (3.12)
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Figure 3.2: Schematic representation of the “effective-fields” experienced in the TQ16 (a1),
SQ34 (a2), ZQ35 (a3), and DQ26 (a4) sub-spaces.

where, ω
(16)
eff =

√
Σ2
16 + (ω16,34

d )2, ω
(34)
eff =

√
∆2

34 + (ω16,34
d )2, ω

(35)
eff =

√
Σ2
35 + (ω26,35

d )2 and

ω
(26)
eff =

√
∆2

26 + (ω26,35
d )2.

3.1.2 Time-evolution of the spin-system during the CP mixing period

The time-evolution of spin-system is described using the standard operational process [Eq.

(1.44)]. The initial density operator: ρ̂(0) = Îx. For a consistent description, the initial

density operator is transformed using the same set of unitary transformations on the S

and I -spins.
˜̃̃
ρ̂(0) = Û3Û2Û1ρ̂(0)Û

†
1 Û

†
2 Û

†
3

=
[
Ŝ16
z

]︸ ︷︷ ︸
ρ̂16(0)

+
[
Ŝ34
z

]︸ ︷︷ ︸
ρ̂34(0)

+
[
Ŝ35
z

]︸ ︷︷ ︸
ρ̂35(0)

+
[
Ŝ26
z

]︸ ︷︷ ︸
ρ̂26(0)

−
[
Ŝ36
z

]
. (3.13)

Subsequently, ignoring the residual contributions from the operator
[
Ŝ36
z

]
, the density

operator at time ‘t ’ is calculated using the effective Hamiltonians [Eq. (3.12)] in respective

sub-spaces as given below:

ρ̂
(16)
eff (t) = exp

{
−iĤeff,16t

}
Û16
4 ρ̂16(0)Û

16†
4 exp

{
iĤeff,16t

}
=
[
Ŝ16
z

]
sin θ164 −

{[
Ŝ16
x

]
cosω

(16)
eff t+

[
Ŝ16
y

]
sinω

(16)
eff t

}
cos θ164 ,

(3.14)
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ρ̂
(34)
eff (t) = exp

{
−iĤeff,34t

}
Û34
4 ρ̂34(0)Û

34†
4 exp

{
iĤeff,34t

}
=
[
Ŝ34
z

]
sin θ344 −

{[
Ŝ34
x

]
cosω

(34)
eff t+

[
Ŝ34
y

]
sinω

(34)
eff t

}
cos θ344 ,

(3.15)

ρ̂
(35)
eff (t) = exp

{
−iĤeff,35t

}
Û35
4 ρ̂35(0)Û

35†
4 exp

{
iĤeff,35t

}
=
[
Ŝ35
z

]
sin θ354 −

{[
Ŝ35
x

]
cosω

(35)
eff t+

[
Ŝ35
y

]
sinω

(35)
eff t

}
cos θ354 ,

(3.16)

ρ̂
(26)
eff (t) = exp

{
−iĤeff,26t

}
Û26
4 ρ̂26(0)Û

26†
4 exp

{
iĤeff,26t

}
=
[
Ŝ26
z

]
sin θ264 −

{[
Ŝ26
x

]
cosω

(26)
eff t+

[
Ŝ26
y

]
sinω

(26)
eff t

}
cos θ264 .

(3.17)

3.1.3 Detection of the S -spin polarization

For a consistent description, the detection operator is also transformed with the same set

of transformations. In the present context, polarization transfer from spin I to spin S

is calculated. Accordingly, the expectation value of the observable < Ŝx(t) > is derived

employing Eqs. (3.14)-(3.17),

S(t) =< Ŝx(t) >= Trace{Ŝeff,x.ρ̂eff (t)} (3.18)

where, ρ̂eff (t) = ρ̂
(16)
eff (t) + ρ̂

(34)
eff (t) + ρ̂

(35)
eff (t) + ρ̂

(26)
eff (t). Accordingly, the final signal

expression has separate contributions from the TQ16, SQ34, ZQ35, and DQ26 sub-spaces

as given below:

S(t) = ⟨Ŝeff,x(t)⟩16 + ⟨Ŝeff,x(t)⟩34 + ⟨Ŝeff,x(t)⟩35 + ⟨Ŝeff,x(t)⟩26

=
4ω1S

ωe

[
−

(ω16,34
d )2

Σ2
16 + (ω16,34

d )2
sin2

√
Σ2
16 + (ω16,34

d )2

2
t︸ ︷︷ ︸

TQ16

+
(ω16,34

d )2

∆2
34 + (ω16,34

d )2
sin2

√
∆2

34 + (ω16,34
d )2

2
t︸ ︷︷ ︸

SQ34

−
(ω26,35

d )2

Σ2
35 + (ω26,35

d )2
sin2

√
Σ2
35 + (ω26,35

d )2

2
t︸ ︷︷ ︸

ZQ35

+
(ω26,35

d )2

∆2
26 + (ω26,35

d )2
sin2

√
∆2

26 + (ω26,35
d )2

2
t︸ ︷︷ ︸

DQ26

]
.

(3.19)

As described above, the final signal expression has contributions from all the four possible

CP transfer modes and is significantly different from those derived based on existing

reports in the literature (refer to section C.2 in Appendix C).

3.1.4 Insights into the Hartmann-Hahn CP matching conditions

Based on the analytic expression [Eq. (3.19)], the CP signal could in principle be

maximized by optimizing one of the four matching conditions as discussed below. When

the amplitude of the RF field on I -spin is adjusted to one of the matching conditions the

corresponding signal expression gets maximized and results in simplified expressions as

follows:

• Single-quantum SQ34 CP matching condition:
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∆34 = 0 =⇒ ω1I =
1

4
(ωe − ω

(1)
Q ).

S(t) =
4ω1S

ωe
sin2

ω16,34
d

2
t︸ ︷︷ ︸

S(t)34

+S(t)16+S(t)26+S(t)35︸ ︷︷ ︸
high-frequency terms

.
(3.20)

In the scenario, where the high-frequency terms can be ignored, the overall signal

can be approximated to the SQ34 signal expression as given below:

S(t) ≈ 4ω1S

ωe
sin2

ω16,34
d

2
t︸ ︷︷ ︸

S(t)34

.
(3.21)

This behavior could also be displayed at other HH CP conditions as well.

• Triple-quantum TQ16 matching condition:

Σ16 = 0 =⇒ ω1I = −1

4
(ωe − ω

(1)
Q ).

S(t) = −4ω1S

ωe
sin2

ω16,34
d

2
t︸ ︷︷ ︸

S(t)16

+S(t)34+S(t)26+S(t)35︸ ︷︷ ︸
high-frequency terms

.
(3.22)

• Double-quantum DQ26 matching condition:

∆26 = 0 =⇒ ω1I =
1

4
(ωe + ω

(1)
Q ).

S(t) =
4ω1S

ωe
sin2

ω26,35
d

2
t︸ ︷︷ ︸

S(t)26

2t+ S(t)16+S(t)34+S(t)35︸ ︷︷ ︸
high-frequency terms

.
(3.23)

• Zero-quantum ZQ35 matching condition:

Σ35 = 0 =⇒ ω1I = −1

4
(ωe + ω

(1)
Q ).

S(t) =
−4ω1S

ωe
sin2

ω26,35
d

2
t︸ ︷︷ ︸

S(t)35

2t+ S(t)16+S(t)34+S(t)26︸ ︷︷ ︸
high-frequency terms

.
(3.24)

As illustrated, the signal expressions for the TQ16 (and ZQ35) are phase-shifted to those

obtained from the corresponding SQ34 (and DQ26) CP matching conditions and could play

an important role in the CP dynamics.

3.2 Results and discussion

To test the validity of the proposed analytic framework, polarization transfer from spin

I = 1/2 (say, 1H and γ1H = 26.752 × 107 rad s−1T−1) to S = 1 (say, 14N and γ14N =

1.9331×107 rad s−1T−1) at proton Larmor frequency 600 MHz was examined over a wide
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Table 3.1: The expression and transitions associated with various HH CP matching
conditions for the CP transfer between I = 1/2 and S = 1/2 spin systems

CP matching conditions
and associated transitions

ω
(1)
Q ̸= 0 ω

(1)
Q = 0

Single-quantum (SQ34)
|1/2,−1⟩ ↔ |−1/2, 1⟩

4ωI = (ωe − ω
(1)
Q ) ω1I = ω1S

Triple-quantum (TQ16)
|−1/2,−1⟩ ↔ |1/2, 1⟩

4ωI = −(ωe − ω
(1)
Q ) ω1I = −ω1S

Double-quantum (DQ26)
|1/2,−1⟩ ↔ |−1/2, 0⟩

4ωI = (ωe + ω
(1)
Q ) ω1I = ω1S

Zero-quantum (ZQ35)
|−1/2,−1⟩ ↔ |1/2, 0⟩

4ωI = −(ωe + ω
(1)
Q ) ω1I = −ω1S

range of experimentally relevant parameters. The discussion presented below is equally

valid for any set of spin-1/2 and spin-1 systems. For pedagogical purposes, the dynamics

of polarization transfer in single-crystal and powder samples are examined separately. To

explicate the interplay between the quadrupolar coupling constant and the amplitude of

the RF field employed on the I -spin, the discussion is split into three regimes in the

present study: Regime-I (CQ = 20 kHz, Weak), Regime-II (CQ = 200 kHz, Intermediate)

and Regime-III (CQ = 1.0 MHz, Strong).

3.2.1 Description of CP dynamics in a single-crystal (with specific

orientation αQ and βQ = 0◦)

3.2.1.1 Regime-I (CQ = 20 kHz, Weak)

In the simulations depicted in Figure 3.3, polarization transfer from I = 1/2 to S = 1 is

monitored as a function of the RF amplitude on the I -spin under constant mixing time

employing a constant RF field on the quadrupolar spin, S . The simulations in solid black

lines are derived from the numerical method based on SIMPSON (a software package for

simulating NMR experiments) [131] and are employed to test the validity of the analytic

theory. All other relevant simulation parameters are given in the Figure captions. To

explicate the contributions from the four CP matching conditions predicted by the analytic

theory, we begin with analytic simulations based on Eq. (3.19). As illustrated (refer to

panel a1 in Figure 3.3), the analytic simulations based on Eq. (3.19) are in excellent

agreement to those obtained from SIMPSON.

To explicate the role of the individual contributions emerging from the four CP

matching conditions, additional analytic simulations were also explored. Accordingly,

in the simulations illustrated along the second row, the contributions emerging from

the single-quantum (SQ34), triple-quantum (TQ16) matching conditions and their sum

(SQ34+TQ16) are depicted. In a similar vein, the contributions emerging from the

double-quantum (DQ26), zero-quantum (ZQ35) matching conditions and their sum

(DQ26+ZQ35) are depicted in the third row. As illustrated, the individual analytic
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Figure 3.3: In the CP simulations depicted, the polarization build-up on the S -spin
(due to transfer from the I -spin) is monitored in a single-crystal as a function of the
RF field employed on the I -spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Quadrupolar parameters (CQ = 20 kHz, ηQ = 0, quadrupolar coupling PAS
angles αQ and βQ = 0◦) and Dipolar parameters (internuclear distance rIS = 1.05 Å
and dipolar PAS angle βd = 0◦ and dipolar PAS angle βd = 0◦). A constant RF
amplitude of ν1S = 50 kHz was employed on the quadrupole, S -spin, and the mixing
time during the CP experiment was held constant (say tmix = 0.5 ms). In panel (a1)
the analytic simulations comprise contributions from all the four CP matching conditions
(SQ34+TQ16+DQ26+ZQ35) and is represented in orange color. In panel (a2) the analytic
simulations based on the contributions from the SQ34 (red dashed curve), TQ16 (green
color), and SQ34+TQ16 (indigo color square) CP conditions are depicted. In panel (a3)
the analytic simulations based on the contributions from the DQ26 (blue dashed curve),
ZQ35 (cyan color) and DQ26+ZQ35 (magenta color square) CP conditions are depicted.

simulations based on the two sets of CP matching conditions: SQ34+TQ16 (second

row) or DQ26+ZQ35 (third row) are inaccurate when compared to those obtained from

SIMPSON. Additionally, in the weak-coupling regime, the dominant contribution to the

polarization transfer arises from the contributions from the SQ34 and DQ26 matching

conditions that overlap to result in a single-broad CP resonance. These observations are

also well-corroborated through additional simulations depicted in Figure 3.4 wherein, the
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Figure 3.4: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single-crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I -spin were chosen based on the two CP maxima observed in Figure 3.3, i.e. panels
a1-a3 (ν1I = 44 kHz); panels b1-b3 (ν1I = 63 kHz). The numerical simulations (based on
SIMPSON) are represented by solid black lines. The following parameters were employed
in the simulations: Quadrupolar parameters (CQ = 20 kHz, ηQ = 0, PAS angles αQ and βQ
= 0◦) and Dipolar parameters (internuclear distance rIS = 1.05 Å and dipolar PAS angle
βd = 0◦). A constant RF amplitude of ν1S = 50 kHz was employed on the quadrupole,
S -spin. The remaining simulation parameters and descriptions are as given in the caption
of Figure 3.3.

polarization transfer is monitored as a function of the CP mixing time. Hence, in the

weak-coupling regime, contributions from both the SQ34 and DQ26 matching conditions

are essential to describe the spin dynamics. This is in stark contrast to the model proposed

by Pratum and Klein (discussed in section C.2 of Appendix C), wherein, only one of the

matching conditions (SQ34 or DQ26) was proposed to describe the CP dynamics. Hence, in

the weak coupling regime, the contributions from the SQ34 and DQ26 matching conditions

are essential to simulate the CP trajectories.
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Figure 3.5: In the CP simulations depicted, the polarization build-up on the S -spin
(due to transfer from the I -spin) is monitored in a single-crystal as a function of the
RF field employed on the I -spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Quadrupolar parameters (CQ = 200 kHz, ηQ = 0, quadrupolar coupling PAS
angles αQ and βQ = 0◦) and Dipolar parameters (internuclear distance rIS = 1.05 Å and
dipolar PAS angle βd = 0◦). A constant RF amplitude of ν1S = 50 kHz was employed on
the quadrupole, S -spin, and the mixing time during the CP experiment was held constant
(say tmix = 0.5 ms). In panel (a1) the analytic simulations comprise contributions from all
the four CP matching conditions (SQ34+TQ16+DQ26+ZQ35) and is represented in orange
color. In panel (a2) the analytic simulations based on the contributions from the SQ34 (red
dashed curve), TQ16 (green color), and SQ34+TQ16 (indigo color square) CP conditions
are depicted. In panel (a3) the analytic simulations based on the contributions from the
DQ26 (blue dashed curve), ZQ35 (cyan color), and DQ26+ZQ35 (magenta color square)
CP conditions are depicted.

3.2.1.2 Regime-II (CQ = 200 kHz, Intermediate)

To explicate the role of the quadrupolar coupling constant in the individual contributions

emerging from the four matching conditions, the CP transfer in the intermediate coupling

regime, say CQ = 200 kHz was employed in the simulations illustrated in Figure 3.5.

Analogous to the description in the previous section, the polarization transfer is monitored

as a function of the RF amplitude on the I -spin. In contrast to the CP profile in the
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Figure 3.6: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single-crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I -spin were chosen based on the two CP maxima observed in Figure 3.5 (in the main
text) i.e., panels a1-a3 (ν1H = 20 kHz); panels b1-b3 (ν1H = 167 kHz). The following
Quadrupolar parameters were employed in the simulations: (CQ = 200 kHz, ηQ = 0,
quadrupolar coupling PAS angles αQ and βQ = 0◦). The remaining simulation parameters
and descriptions are as given in the caption of Figure 3.5.

weak-coupling regime, the SQ34 and DQ26 matching conditions are well separated/resolved

in the intermediate coupling regime. As illustrated in Figure 3.5 (panel a1), the analytic

simulations based on Eq. (3.19) are in excellent agreement to those obtained from

SIMPSON.

From a practical viewpoint, the simulation results illustrated in the second and third

rows are relevant. As illustrated, at lower I -spin RF amplitudes, the CP profile has

significant contributions from both the SQ34 and TQ16 matching conditions. At lower

I -spin RF amplitudes, the magnitude of Σ16 (= 4ω1I + ωe − ω
(1)
Q ) term associated with

otherwise high-frequency TQ16 matching condition is reduced and therefore the prefactor(
(ω16,34

d )2

Σ2
16 + (ω16,34

d )2

)
becomes finite. In other words, the effective field during the mixing
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(spin-locking/contact) period is no longer unidirectional at lower I -spin RF amplitudes.

This is in stark contrast to the observations in the weak-coupling limit, wherein, the CP

profile had predominant contributions from the SQ34 and DQ26 matching conditions. At

higher I -spin RF amplitudes, the ZQ35 matching condition (Σ35 = 4ω1I + ωe + ω
(1)
Q )

retains its high-frequency behavior and therefore has a negligible contribution towards

the overall CP efficiency. This trend is also well replicated in the mixing (contact) time

profile illustrated in Figure 3.6. Hence in the intermediate coupling regime, contributions

from the SQ34, TQ16, and DQ26 matching conditions are essential to simulate the CP

trajectories. As illustrated in Figure 3.5, at lower I -spin RF amplitudes, the CP matching

conditions are broader when compared to those observed at higher I -spin RF amplitudes.

This important observation could also be inferred through the effective dipolar coupling

constants in the two regions (2ωd cos θ1/2 in SQ34/TQ16 and 2ωd sin θ1/2 in DQ26/ZQ35)

and is also reflected through the fast (observed at lower I -spin RF amplitudes) and slow

oscillations (observed at higher I -spin RF amplitudes) in the mixing time plots depicted

in Figure 3.6.

3.2.1.3 Regime-III (CQ = 1.0 MHz, Strong)

To further substantiate the analytic framework, additional simulations depicting the

polarization transfer in the strong-coupling regime were also examined (as depicted in

Figure 3.7). In contrast to the CP profiles in the weak and intermediate coupling regimes,

the separation between the two sets of matching conditions (TQ16/SQ34 and DQ26/ZQ35)

increases drastically. As illustrated, at lower I -spin RF amplitudes, both the SQ34 and

TQ16 matching conditions have nearly similar contributions, while at higher I -spin RF

amplitudes, the DQ26 matching condition plays a decisive role in the CP experiments. The

contributions from the ZQ35 matching condition remain insignificant and is very similar

to those observed in the weak and intermediate coupling regimes. These observations are

also manifested in the mixing time plots depicted in Figure 3.8. As depicted in Figures 3.3,

3.5 and 3.7, the efficiency of polarization transfer decreases with increasing quadrupolar

coupling strengths in accord with the factor 4ω1S/ωe in Eq. (3.19). The behavior of

the spin-locking efficiency is expected to be analogous for the SQ34 and TQ16 matching

conditions. An additional decrease in the CP efficiency observed at lower I -spin RF

amplitude could be attributed to the competing nature of the SQ34 and TQ16 matching

conditions i.e., the prefactor

(
(ω16,34

d )2

Σ2
16 + (ω16,34

d )2

)
in the TQ16 condition becomes similar to

the prefactor in

(
(ω16,34

d )2

∆2
34 + (ω16,34

d )2

)
in the SQ34 matching condition [refer to Eq. (3.19)].

The interplay between three CP matching conditions in the spin dynamics is significantly

different from those observed in the weak and intermediate quadrupolar coupling regimes.

The highly oscillatory behavior observed at lower I -spin RF amplitude results from the

interplay of various effective fields in spin dynamics. From an experimental perspective,

the decrease in the CP efficiency observed in the strong quadrupolar coupling regime could
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Figure 3.7: In the CP simulations depicted, the polarization build-up on the S -spin
(due to transfer from the I -spin) is monitored in a single-crystal as a function of the
RF field employed on the I -spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Quadrupolar parameters (CQ = 1.0 MHz, ηQ = 0, quadrupolar coupling PAS
angles αQ and βQ = 0◦) and Dipolar parameters (internuclear distance rIS = 1.05 Å and
dipolar PAS angle βd = 0◦). A constant RF amplitude of ν1S = 50 kHz was employed on
the quadrupole, S -spin and the mixing time during the CP experiment was held constant
(say tmix = 0.5 ms). In panel (a1) the analytic simulations comprise contributions from
all the four CP matching conditions (SQ34+TQ16+DQ26+ZQ35) and is represented in
orange color. In panel (a2) the analytic simulations based on the contributions from the
SQ34 (red dashed curve), TQ16 (green color), and SQ34+TQ16 (indigo color square) CP
conditions are depicted. In panel (a3) the analytic simulations based on the contributions
from the DQ26 (blue dashed curve), ZQ35 (cyan color), and DQ26+ZQ35 (magenta color
square) CP conditions are depicted. The insets in panels a1-a3 depict the CP efficiency
in the higher I -spin RF field range.

be improved by employing a higher RF field strength on the quadrupolar spin (S ) and is

in accord with the numerical factor 4ω1S/ωe in Eq. (3.19). This improvement in the CP

efficiency could also be explained based on the decreased interference from the TQ16 CP

condition at lower I -spin RF amplitudes with increasing S -spin RF field strengths (refer

to Figure C.1. in Appendix C).
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Figure 3.8: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single-crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I -spin were chosen based on the two CP maxima observed in Figure 3.7 i.e., panels a1-a3
(ν1H = 2 kHz); panels b1-b3 (ν1H = 753 kHz). The following Quadrupolar parameters
were employed in the simulations: (CQ = 1.0 MHz, ηQ = 0, quadrupolar coupling PAS
angles αQ and βQ = 0◦). The remaining simulation parameters and descriptions are as
given in the caption of Figure 3.4.

3.2.2 Description of CP dynamics in a single-crystal (with general

orientation αQ and βQ ̸= 0◦)

To outline the orientation dependence of the quadrupolar interactions in CP experiments,

additional simulations in single-crystal with general orientations were also carried out. As

illustrated in Eq. (3.19), the quadrupolar interaction depends on the Euler angles (αQ

and βQ). In the quadrupolar principal axis frame the angle βQ denotes the angle between

the static magnetic field and the z-axis of the quadrupolar PAS, while, αQ represents

its projection along the x-y plane. Considering the quadrupolar PAS coincides with the

Molecular-axis systems (MolAS), the angles (αQ, βQ) will represent different crystallites
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orientations. The graphical demonstration of this angular dependence is shown in the

Figure C.2 (refer to Appendix C). The magnitude and sign of the first-order quadrupolar

frequency are strongly influenced by the crystallite-orientations; therefore the overall CP

behaviour anticipated to vary considerably and is presented below.

Figure 3.9: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single-crystal (with general orientation) as
a function of the RF field employed on the I -spin. The numerical simulations (based on
SIMPSON) are represented by solid black lines. In the simulations depicted, the effects of
the variation of quadrupolar coupling PAS angle βQ: 0◦ (a1), 45◦ (a2), 54.736◦ (a3) 90◦

(a4), 110◦ (a5), 125.624◦ (a6), 135◦ (a7) and 180◦(a8) on the CP dynamics is illustrated.
The following parameters were employed in all the simulations: CQ = 500 kHz, ηQ = 0,
quadrupolar coupling PAS angle αQ = 0◦, contact time (tmix) = 0.5 ms, internuclear
distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦ and ν1S = 50 kHz. The analytic
simulations based on signal expressions corresponding to various CP matching conditions
are indicated: SQ34 (red), TQ16 (green), DQ26 (blue) and ZQ35 (cyan) [Eq. (3.19)]. The
insets in panels a1 and a8 show CP maxima in the higher I -spin RF field range.

In the simulation depicted in Figure 3.9, the relative contributions from the four matching

conditions are presented for a set of eight βQ angles in the range 0◦ ≤ βQ ≤ 180◦.
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As depicted in Figure 3.9, when βQ is less than 54.736 (0◦ ≤ βQ < 54.736◦), the

CP profile approaches the weak coupling regime and the CP efficiency improves. At

βQ = 54.736◦, the quadrupolar interaction reduces to zero (for a symmetric tensor, ηQ = 0)

and the trajectories emerging from the SQ34 and DQ26 matching conditions overlap. This

observation could also be substantiated through the analytic expression given in Eq. (3.19).

From an experimental perspective, the interesting observation emerges for cases where the

angle βQ in the range (54.736◦ < βQ < 125.624◦). As illustrated in the simulations (refer

to panels a4-a6), the CP profile approaches the intermediate coupling regimes along with

Figure 3.10: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single-crystal (with general orientation) as
a function of the RF field employed on the I -spin. The numerical simulations (based on
SIMPSON) are represented by solid black lines. In the simulations depicted, the effects
of the variation of quadrupolar coupling PAS angle αQ: 0◦ (a1), 30◦(a2), 60◦ (a3) and
90◦ (a4) on the CP dynamics are illustrated. The following parameters were employed
in all the simulations: CQ = 500 kHz, ηQ = 0.5, quadrupolar coupling PAS angle βQ =
90◦, contact time (tmix) = 0.5 ms, internuclear distance rIS = 1.05 Å and dipolar PAS
angle βd = 0◦ and ν1S = 50 kHz. The analytic simulations based on signal expressions
corresponding to various CP matching conditions are indicated, SQ34 (red), TQ16 (green),
DQ26 (blue) and ZQ35 (cyan) [Eq. (3.19)]
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Figure 3.11: The effect of the variation of quadrupolar PAS angle βQ on the spin-locking

efficiency (4ω1S/ω
(1)
Q ) for single-crystal sample. Considering the quadrupolar PAS

coincides with the MolAS, angles βQ will represents different crystallites orientations.
The following parameters were employed in all the simulations: CQ = 500 kHz (dashed
curve) and 2000 kHz (solid curve), ηQ = 0, quadrupolar coupling PAS angle αQ = 0◦ and
ν1S = 50 kHz.

swapping in the position of the CP matching conditions due to the negative sign of ωQ

in the above range of βQ. We observe a profound change in the relative contributions

from the four CP matching conditions. As depicted, at lower I -spin RF amplitudes, the

CP profile has a dominant contribution from the DQ26/ZQ35 CP matching condition,

while at higher I -spin RF amplitudes, the SQ34 matching condition contributes with

negligible contribution from the TQ16 condition. This trend is completely opposite to

those depicted in the weak (Figure 3.3), intermediate (Figure 3.5, and strong (Figure

3.7) coupling regimes in previous section. At βQ = 125.624◦, the quadrupolar interaction

reduces to zero for a symmetric tensor, and the CP profile is similar to the one observed at

βQ = 54.736◦. From 125.624◦ ≤ βQ ≤ 180◦, the CP profile resembles to the one obtained

for βQ in the range 54.736◦ ≥ βQ ≥ 0◦. Interestingly, the relative contributions from

the four matching conditions are reversed (in contrast to those observed in the range,

54.736◦ < βQ < 125.624◦) and is in accord with those depicted in the earlier simulations

(Figures 3.3, 3.5, and 3.7). Hence the value of βQ plays an important role in quantifying

the CP profile in terms of four matching conditions and highlights the non-uniformity of

the CP transfer among different quadrupolar tensor orientations. The shift in positions

of SQ34/TQ16 and DQ26/ZQ35 resonances with the variation of PAS βQ angle depends

strongly on the size of quadrupolar coupling strength CQ. For instance, the variation of

βQ angle for CQ = 20 kHz (refer to Figure C.3 in Appendix C) shows a similar pattern

as discussed above, however, the change in positions of these resonances are not huge in
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comparison to those depicted in Figure 3.9. The quadrupolar PAS angle αQ affects the

magnitude of the quadrupolar frequency (not sign for βQ = 90◦ ) in the case of asymmetric

tensor and is shown in Figure 3.10. However, the behaviour of the first-order quadrupolar

frequency with αQ angle variation is strongly ηQ and βQ dependent. From Eq. 3.19, it

is evident that unlike spin-1/2 systems, the polarization transfer efficiency (intensity) is

scaled by factor 4ω1S/ω
(1)
Q at exact HH CPmatching condition; hence this term will provide

an idea on the extent of spin-locking and hence maximum polarization transfer efficiency.

Figure 3.11 demonstrates the spin-locking efficiency (4ω1S/ω
(1)
Q ) as a function of crystallites

orientations (βQ) for a single-crystal sample. The crystallites which lie close to βQ =

54.736◦ of the first-order quadrupolar frequency will have better spin-locking efficiency;

hence better overall CP transfer efficiency. This behavior is consistently applicable across

all CQ values. Consequently, the CP excitation will not be uniform in the case of a sample

with multiple crystallite orientations. The powder sample represents a more generalized

system, characterized by statistically weighted random orientations of crystallites.

3.2.3 Description of the CP dynamics in a powder sample

In the simulations depicted in Figure 3.12, the CP dynamics in a powder sample is

examined. The decrease in polarization transfer efficiency in comparison to single-crystal

sample results from the interference effects between the different crystallites present

in a powder sample and could also be explained in terms of the interference among

the trigonometric terms in Eq. (3.19). Additionally, as depicted in the simulations,

the CP profile broadens and splits into two maxima of unequal intensities with

increasing quadrupolar strengths. This splitting pattern could be explained based on

the contributions from the different CP matching conditions and the discussion presented

in the previous subsections. As depicted in Figure 3.12, in the weak-coupling regime

(CQ = 20 kHz), the CP efficiencies resulting from the SQ34 and DQ26 matching conditions

overlap equally analogous to those obtained in the single-crystal studies (Figure 3.3) and

have negligible contributions from the TQ16 and ZQ35 CP matching conditions. As

illustrated, at lower I -spin RF amplitudes, the contribution from the DQ26 matching

condition dominates over those obtained from the SQ34 matching condition (refer to second

and third rows), while at higher I -spin RF amplitudes the contributions from the SQ34

matching condition are dominant.

This interesting observation however contradicts the discussion presented (in

single-crystal) in section 3.1 (refer to Figures 3.3, 3.5 and 3.7) and could be explained

based on the orientation (βQ) dependence of quadrupolar coupling frequency (refer to

Figure C.4 in Appendix C and Figure 3.9). Due to the high probability/weightage of

the orientations in the plane perpendicular to the static Zeeman field, the contribution

from the DQ26 matching condition is higher at the lower I -spin RF amplitudes (due to

the swapping of CP matching conditions). Similar behavior is also reflected at higher

I -spin RF amplitudes, wherein the relative contributions from the DQ26/ZQ35 matching

conditions decrease with increasing quadrupolar coupling strengths. At higher I -spin
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RF amplitudes, the lower CP efficiency is due to strong quadrupolar coupling dependent

polarization transfer
(
ω1I = 1

4(ωe + ω
(1)
Q )
)
. In a powder sample, different crystallites

undergo different HH-matching conditions at selected I -spin RF amplitude, therefore, the

SQ34/TQ16 and DQ26/ZQ35 CP matching conditions become indistinguishable. Hence,

the contributions from all the four CP matching conditions become essential to fit the

Figure 3.12: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a powder sample as a function of the RF field
employed on the I -spin. The numerical simulations (based on SIMPSON) are represented
by solid black lines. The following parameters were employed in the simulations: panels
a1-a3 (CQ = 20 kHz, ηQ = 0); panels b1-b3 (CQ = 200 kHz, ηQ = 0) and panels c1-c3
(CQ = 1.0 MHz, ηQ = 0). All other parameters such as the quadrupolar coupling PAS
angles αQ and βQ = 0◦), dipolar parameters (internuclear distance rIS = 1.05 Å and
dipolar PAS angle βd = 0◦), RF amplitude of S -spin ν1S = 50 kHz and mixing time
during the CP experiment (say tmix = 0.5 ms) were identical in all the simulations.
The analytic simulations in the panels have the following definitions: first row, the
analytic simulations comprise contributions from all the four CP matching conditions
(SQ34+TQ16+DQ26+ZQ35) and is represented in orange color. In the second row, the
analytic simulations are based on the contributions from the SQ34 (red dashed curve),
TQ16 (green color), and SQ34+TQ16 (indigo color square) CP conditions are depicted.
In the third row, the analytic simulations based on the contributions from the DQ26

(blue dashed curve), ZQ35 (cyan color), and DQ26+ZQ35 (magenta color square) CP
conditions are depicted. The powder simulations were performed using 4180 orientations
(i.e., zcw4180) of α and β. The insets in panels c1-c3 depict the CP efficiency in the higher
I -spin RF field range.
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trajectories observed in CP experiments for powder samples. This could also be verified

through the simulations depicted in Figure 3.12 (refer to the first row), wherein, all the

four CP matching conditions have been employed to fit the trajectories. This aspect

is further validated in the mixing time CP profiles illustrated in Figure 3.13. With

increasing quadrupolar coupling strength, the time-domain oscillations become wiggled

due to the interplay of various CP matching conditions therefore representing a complex

CP transfer mechanism. Hence, the proposed analytic model presents a uniform framework

for describing the CP dynamics in both single-crystal and powder samples across all

regimes.

Figure 3.13: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a powder sample as a function of the CP
mixing time under constant RF amplitudes on the spins. The RF amplitudes on the
I -spin were chosen based on the two CP maxima observed in Figure 3.12 i.e., panels a1-a3
(ν1H = 50 kHz); panels b1-b3 (ν1H = 23 kHz); panels c1-c3 (ν1H = 9 kHz). The following
parameters were employed in the simulations: panels a1-a3 (CQ = 20 kHz, ηQ = 0); panels
b1-b3 (CQ = 200 kHz, ηQ = 0) and panels c1-c3 (CQ = 1.0 MHz, ηQ = 0). The remaining
simulation parameters and descriptions are as given in the caption of Figure 3.12.
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3.2.4 Extraction of the dipolar coupling parameters from the CP

lineshapes

As discussed in the previous sections, the mechanism of polarization transfer in the CP

experiment is complex both in the case of single-crystal and powder samples. Depending

on the Euler angle βQ and the quadrupolar coupling constant, the contributions from the

four matching conditions vary. To further explore the utility of the proposed analytic

theory, the extraction of dipolar parameters from the lineshape of the quadrupolar spin

S (coupled to spin I = 1/2) is investigated in the present section. To this end, we

begin the present discussion with a single-crystal sample as an example. To extract the

dipolar coupling parameters from the CP experiment, the CP efficiency is monitored as a

function of the mixing time, and the resulting data is Fourier transformed (FT) to get the

frequency-domain CP spectrum. This may be inferred through the equations given below:

Depending on the matching conditions, the corresponding time-domain signal, S(t)ij is

Fourier transformed to obtain the frequency-domain CP signal expression [S(ω)ij ],

S(ω)ij = Cij

∫ ∞

−∞
sin2

(ωe,ij

2
t
)
e−iωtdt

=
Cij

2

∫ ∞

−∞

(
1− cosωe,ijt

)
e−iωtdt

(3.25)

where (ij) refers to 16 (TQ16), 34 (SQ34), 35 (ZQ35), and 26 (DQ26) matching

conditions, and the constants Cij are: C16 = −4ω1S

ωe

(ω16,34
d

ω
(16)
eff

)2
, C34 =

4ω1S

ωe

(ω16,34
d

ω
(34)
eff

)2
,

C35 = −4ω1S

ωe

(ω26,35
d

ω
(35)
eff

)2
and C26 =

4ω1S

ωe

(ω26,35
d

ω
(26)
eff

)2
. The Fourier-transformed CP signal

expression is derived using the integral definition of the Dirac-delta function and is given

below:

S(ω)ij = Cijπ
[
δ(ω)− 1

2

{
δ(ω − ω

(ij)
eff ) + δ(ω + ω

(ij)
eff )

}]
. (3.26)

Under the exact CP matching condition, the above equation reduces to the form given

below:

• SQ34/TQ16 CP matching condition:

S(ω)ij = Cijπ
[
δ(ω)− 1

2

{
δ(ω − ω16,34

d ) + δ(ω + ω16,34
d )︸ ︷︷ ︸

Purely dipolar splitting (2ω16,34
d )

}]
(3.27)

• DQ26/ZQ35 CP matching condition:

S(ω)ij = Cijπ
[
δ(ω)− 1

2

{
δ(ω − ω26,35

d ) + δ(ω + ω26,35
d )︸ ︷︷ ︸

Purely dipolar splitting (2ω26,35
d )

}]
.

(3.28)

In the simulations depicted in Figure 3.14, the RF amplitudes employed on the two spins
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(I and S ) are adjusted carefully to satisfy one of the CP matching conditions. The FT

CP spectra corresponding to the SQ34 matching conditions are depicted along the first

column, while, those corresponding to the DQ26 matching condition are plotted along

the second column under various quadrupolar coupling regimes. As illustrated in Figure

3.14(a1-a3), the FT spectra corresponding to the SQ34 CP matching conditions, comprise

frequency contributions from the SQ34 (dominant), TQ16 or DQ26 (high-frequency)

terms. Depending on the magnitude of the quadrupolar coupling constant, the relative

Figure 3.14: In the simulations depicted, the frequency-domain S -spin signal in a
single-crystal emerging from Fourier transformation of the mixing time domain signal
corresponding to the SQ34 (first column) and DQ26 CP matching conditions (second
column) is shown for different quadrupolar coupling constants (depicted along the row):
panels a1-b1 (CQ =20 kHz), panels a2-b2 (CQ =200 kHz) and panels a3-b3 (CQ = 1.0
MHz). All other parameters such as the quadrupolar coupling PAS angles αQ and βQ
= 0◦, dipolar parameters (internuclear distance r12 = 1.05 Å and dipolar PAS angle βd
= 0◦) and RF amplitude of S -spin ν1S = 50 kHz were identical in all the simulations.
Depending on the magnitude of the quadrupolar coupling constant, the RF amplitudes
employed on the I -spin (indicated in the Figure) were carefully adjusted to match the
SQ34 (first column) and DQ26 (second column) CP matching conditions. The solid black
lines correspond to those obtained from SIMPSON, while the analytic simulations are
indicated in orange color [based on Eq. (3.19)]. A line broadening of 50 Hz was used
before the Fourier transform of the time-domain CP signal.
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contributions emerging from the other two matching conditions (DQ26 and TQ16) vary. As

illustrated, in the weak-coupling regime, the FT spectrum comprises residual contributions

from the DQ26 matching condition. With an increase in the quadrupolar coupling

constant, the contributions from the TQ16 matching condition predominate (over the

DQ26 matching) and become equivalent to the SQ34 matching condition in the strong

coupling regime. As illustrated in Figure 3.14, the dominant peaks in the FT spectrum

are derived from the frequency factor associated with the SQ34 matching condition. The

central peak at zero frequency (ω = 0) corresponds to the non-oscillatory component of

the time-domain signal, while the remaining two peaks (at ω = −ω(16)
eff and ω = ω

(16)
eff )

symmetrically distributed about the central peak (at zero frequency) result from the

effective-field corresponding to the SQ34 matching condition. From a practical aspect,

the dipolar parameter in the FT spectrum is extracted by measuring the frequency

separation between the two symmetric peaks (2ω16,34
d or 2ω26,35

d ). As the central peak

is inverted or phase-shifted by 180◦, it does not interfere with the extraction of the dipolar

parameters. In a similar vein, the FT spectrum corresponding to the DQ26 matching

condition comprises contributions from the DQ26 term (dominant) and the SQ34 term.

As illustrated, the frequency contribution from the residual SQ34 CP matching condition

decreases with an increase in the quadrupolar coupling constant. This trend is in accord

with the earlier discussions on the CP dynamics presented in section 3.2.1. Analogous to

the FT spectrum derived from the SQ34 matching condition, the FT spectrum (second

column in Figure 3.14) comprises symmetric peaks (at ω = −ω(34)
eff and ω = ω

(34)
eff , where

ω
(34)
eff corresponds to the DQ26 matching condition) distributed about the central peak

(at ω = 0). In contrast to the SQ34 matching condition, the frequency separation

between the two symmetric peaks is equal to the 4ωd sin(θ1/2) and is in accord with

the predictions emerging from the analytic theory [refer to Eq. (3.19)]. Therefore, the CP

transfer in the spin-1 system introduces quadrupolar coupling dependent scaling factors as

2 cos θ1/2 and 2 sin θ1/2 under the SQ34/TQ16 and DQ26/ZQ35 HH matching conditions,

respectively. Consequently, the magnitude and the orientation of the quadrupolar coupling

tensor as well as the relative orientation of quadrupolar and dipolar coupling tensors will

affect the intensity as well as the position of peaks/singularities in the CP spectrum.

While the proposed analytic theory presents an accurate framework for describing the

CP dynamics in both single-crystal and powder samples, the extraction of the dipolar

parameters from the FT spectrum (derived from variable CP contact time experiment)

remains less straightforward in a powder sample. The coupled orientation dependence of

the quadrupolar and dipolar coupling frequencies results in an averaged CP behavior [150].

This is primarily because of the interference from various weighted powder orientations

that lead to CP lineshape with well-defined singularities. The separation between the CP

singularities will be a characteristic of the dipolar and quadrupolar coupling orientations

(4ωd cos θ1/2 and 4ωd sin θ1/2).

As illustrated in Figure 3.15, for CQ = 20 kHz case, the overall CP powder lineshape

generated by the overlapping of the SQ34 and DQ26 CP matching conditions resembles
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a Pake-like doublet with a noticeable foot signal (refer to Figure C.5 in Appendix C

for individual fitting of the CP lineshape.) With increasing magnitude of CQ, the CP

lineshapes get distorted due to appearance of additional singularities. Unlike CQ = 200

kHz case in the stronger quadrupolar coupling regime, as the CP dynamics is a result of an

interplay of all the four CP fields, and the CP spectrum suffers from additional distortions

resulting from the high-frequency TQ16 and ZQ35 components. This is in accord with the

results discussed in the previous sections (sections 3.2.1 and 3.2.2), wherein, the CP profiles

Figure 3.15: In the simulations depicted, the frequency-domain S -spin signal in powder
sample emerging from Fourier transformation of the mixing time domain signal is shown
for different quadrupolar coupling constants: panel a1 (CQ =20 kHz); panel a2 (CQ =200
kHz) and panel a3 (CQ =1 MHz). All other parameters such as the quadrupolar coupling
PAS angles αQ and βQ = 0◦, dipolar parameters (internuclear distance r12 = 1.05 Å and
dipolar PAS angle βd = 0◦) and RF amplitude of S -spin ν1S = 50 kHz were identical in all
the simulations. Depending on the magnitude of the quadrupolar coupling constant, the
RF amplitudes employed on the I -spin (indicated in the Figure) were carefully selected by
CP in maxima of the RF-domain simulation at the desired mixing time. The solid black
lines correspond to those obtained from SIMPSON, while the analytic simulations are
indicated in orange color [based on Eq. (3.19)]. The powder simulations were performed
using 4180 orientations (i.e., zcw4180) of α and β. A line broadening of 50 Hz was used
before the Fourier transform of the time-domain CP signal.
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were simulated employing analytic expressions based on the four matching conditions. In

such cases, the dipolar parameters are extracted through iterative fitting of the powder

lineshapes employing Eq. (3.19). As illustrated in Figure 3.15, the analytic simulations

based on Eq. (3.19) are in excellent agreement to those derived from numerical methods.

Hence, the description of the CP dynamics based on the effective-field approach presents

an attractive framework for describing the spin dynamics in non-rotating solids.

3.3 Conclusions

In summary, the proposed analytic theory presents an attractive framework for

understanding the nuances of polarization transfer from spin I = 1/2 to spin S = 1 in

static solids. As described, under on-resonance irradiation conditions (on both I and

S spins), the CP dynamics during the spin-lock period is governed by contributions

from the four Hartmann-Hahn CP matching conditions (namely, triple-quantum (TQ16),

single-quantum (SQ34), zero-quantum (ZQ35), and double-quantum (DQ26)). To present

a comprehensive description of the CP dynamics, rotation operators derived from the

concept of effective-fields were employed to derive effective CP Hamiltonians. In

contrast to the conventional operator-based perturbative methods, the effective-field

approach facilitates the derivation of closed-form solutions requiring a minimal set of

transformations. Employing the concept of effective-fields, the four possible matching

conditions responsible for polarization transfer are identified and described within a single

unified framework that is suitable for describing the exchange both in single-crystal

and powder samples. In contrast to other existing theoretical frameworks, the present

approach presents a unified description of the CP dynamics and facilitates in quantifying

the polarization transfer in terms of the four matching conditions. Depending on the

magnitude of the quadrupolar coupling constant and the orientation dependence of the

quadrupolar interactions (say βQ), the relative contributions emerging from the four

matching conditions are quantified using simple analytic expressions. As illustrated,

in the weak coupling regime, the SQ34 and DQ26 CP matching conditions overlap to

result in a broad CP profile in the single-crystal sample. With increasing quadrupolar

coupling strengths, these CP matching conditions separate resulting in lower transfer

efficiency. Interestingly, in the case of a powder sample such a clear distinction between

the contributions emerging from the four matching conditions is less plausible. In such

cases, the proposed unified framework [Eq. (3.19)] is essential to quantify the CP

dynamics. Additionally, as demonstrated, the proposed analytic theory presents an

attractive framework for extracting the dipolar parameters from the CP data in simple

systems.
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Understanding the role of

second-order quadrupolar coupling

and off-resonance effects in CP

dynamics

In the previous chapter of this thesis, the operator-based analytic theory of the CP

dynamics between I = 1/2 and S = 1 is introduced through the application of

the “effective-field method ” considering the first-order quadrupolar coupling under the

on-resonance RF irradiations [116]. As the quadrupolar coupling strength can be of the

order of a few kHz to several MHz, it is essential to understand the role higher-order

quadrupolar coupling [151] and the corresponding off-resonance effects [152, 153] in the

CP dynamics. Although the higher-order quadrupolar coupling effects can be reduced

with increasing static magnetic field strengths but only at the cost of increased size of the

chemical shift anisotropy (CSA) and off-resonance effects. For half-integer quadrupolar

nuclei, the presence of first-order quadrupolar coupling devoid single-quantum (SQ)

central transition provides a relatively smaller spectral bandwidth for their efficient

excitation with reduced off-resonance effects. Nonetheless, for integer nuclei wherein

the central transition is absent, the off-resonance effects in the polarization transfer

mechanism cannot be undermined even for spin systems with smaller quadrupolar coupling

constants. To design an efficient CP pulse sequence for achieving a uniform excitation

bandwidth, requires a careful manipulation of the pulse amplitude, phase, width and

offset concerning all the possible transitions. In the case of broadband CP excitation,

many variants of off-resonance irradiation schemes such as Lee-Goldberg CP (LGCP) [58]

and broadband adiabatic inversion-CP (BRAIN-CP) [100, 154, 155] were introduced in

the past for spin-1/2 as well as quadrupolar spins. However, a complete theoretical

description of the CP transfer mechanism under S -spin off-resonance irradiation and

higher-order quadrupolar coupling effects remain elusive [101,156]. During the polarization

transfer, the hetero-nuclear dipolar coupling induces all the possible spin coherences in the

S = 1 spin system (i.e., two fundamental single-quantum (SQ) transitions [(0 ↔ −1)

and (1 ↔ 0)] and one spin-forbidden double-quantum (DQ) transition (1 ↔ −1)).

These transitions have different nutation behaviour under various pulse parameters and

other internal spin-interactions [45, 90, 91, 111, 112], therefore, are expected to show
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different CP transfer dynamics. Nevertheless, the excitation efficiency of a particular

coherence depends on the strength of the effective dipolar coupling involved in a particular

coherence transfer mode [116]. Previously, Vega et. al. [45] highlighted the effect of the

S -spin off-resonant irradiation on the single-quantum CP while the double-quantum CP

was described as an on-resonance phenomenon. In the case of a single-crystal sample

involving quadrupolar spin, stronger off-resonant irradiation was shown to reduce the

excitation efficiency of the DQ transitions, while an increase in the excitation efficiency

was observed for the SQ transitions. Nevertheless, such a description may not be valid

for the powder sample wherein different crystallite orientations have different excitation

efficiencies due to variable quadrupolar frequency (magnitude and sign), and therefore, a

complex polarization transfer mechanism is expected. To this end, it becomes essential

to present a theoretical framework to understand the CP transfer mechanism valid both

for single-crystal and powder samples across all the quadrupolar coupling regimes. In

this chapter of the thesis, we attempt to derive an analytic signal expression to give a

comprehensive description of the CP dynamics considering S -spin off-resonance irradiation

and second-order quadrupolar coupling effects. In this study, we have evaluated individual

contributions of various dipolar coupling-based polarization transfers in single-crystal

and powder samples. We have correlated our operator-based analytic theory with

the energy-level diagram and highlighted the role of population exchange at various

Hartmann-Hahn matching conditions.

4.1 Theory

To gain insight into the mechanism of the CP dynamics under the S -spin off-resonance

irradiation and the second-order quadrupolar coupling interactions, we begin with a

simplified theoretical two-spin (say I = 1/2 and S = 1) model framework. In the doubly

rotating frame, the CP Hamiltonian for such a system is described by the following

equation:

ĤCP = ΩSŜz︸ ︷︷ ︸
Ĥoff

S

+ω1SŜx︸ ︷︷ ︸
ĤRF

S

+
ω
(1)
Q (αQ, βQ)

6
(3Ŝ2

z − Ŝ2) + ω
(2)
Q (αQ, βQ)Ŝz︸ ︷︷ ︸

ĤQ
S =Ĥ

(1)
Q +Ĥ

(2)
Q︸ ︷︷ ︸

ĤS

+ω1I Îx︸ ︷︷ ︸
ĤRF

I

+2ωdÎzŜz︸ ︷︷ ︸
ĤD

IS

; ℏ = 1.

(4.1)

In the above equation, ΩS represents the strength of the off-resonance irradiation on

S -spin, while on-resonance irradiation is considered on I -spin channel. ω1I(ω1S) represents

the RF amplitude on I (S ) spin. The term ωd represents the dipolar coupling (I-S )

frequency. HQ
S represents quadrupolar Hamiltonian (including first and second-order

quadrupolar effects) for the S -spin. The frequencies ω
(1)
Q (αQ, βQ) and ω

(2)
Q (αQ, βQ) denote

the strength of first and second-order quadrupolar interactions, respectively. A detailed

description of the first and second-order quadrupolar coupling Hamiltonians can be found

in Chapter 1.
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4.1.1 Derivation of the effective CP Hamiltonians via the effective-field

method

The above Hamiltonian [Eq. (4.1)] is expressed in terms of single-transition operators (in

coupled basis) as given below:

ĤCP = 2ΩS [Ŝ
13
z + Ŝ46

z ] +
√
2ω1S [Ŝ

12
x + Ŝ23

x + Ŝ45
x + Ŝ56

x ] +
ω
(1)
Q

3
[Ŝ12

z − Ŝ23
z + Ŝ45

z − Ŝ56
z ]

+ 2ω
(2)
Q [Ŝ13

z + Ŝ46
z ] + ω1I [Ŝ

14
x + Ŝ25

x + Ŝ36
x ] + 2ωd[Ŝ

13
z − Ŝ46

z ].

(4.2)

A detailed representation of the transition matrix connecting various Zeeman states and

the energy-level representation can be found in Figure 3.1 of Chapter 3. The evaluation of

Hartmann-Hahn (HH) cross-polarization matching conditions requires the diagonalization

of both the S and I -spin Hamiltonians. To present a simplified description of the

effective CP Hamiltonian derived using the “effective-field ” approach, we split the above

Hamiltonian [Eq. (4.2)] into three parts.

A: “Effective-field ” for S = 1 spin system

Considering a similar spin-operator dependence of the S=1 off-resonance irradiation and

second-order quadrupolar coupling Hamiltonians, we have combined these two interaction

fields together in our subsequent calculations [115].

ĤS = 2(ΩS + ω
(2)
Q )[Ŝ13

z + Ŝ46
z ] +

√
2ω1S [Ŝ

12
x + Ŝ23

x + Ŝ45
x + Ŝ56

x ] +
ω
(1)
Q

3
[Ŝ12

z − Ŝ23
z + Ŝ45

z − Ŝ56
z ].

(4.3)

Based on the magnitudes of various interactions, the unitary transformation Û1 = exp
{
−

iθ1√
2

[
− Ŝ12

y + Ŝ23
y − Ŝ45

y + Ŝ56
y

]}
[115,116] is used to calculate the effective field for RF and

first-order quadrupolar interaction fields. Selecting angle θ1 as

(
θ1 = tan−1 4ω1S

ω
(1)
Q

)
, the

above Hamiltonian reduces to the following form.

˜̂
HS = Û1HSÛ

†
1

= 2(ΩS + ω
(2)
Q ) cos θ1/2[Ŝ

13
z + Ŝ46

z ]− 2(ΩS + ω
(2)
Q ) sin θ1/2[Ŝ

12
x − Ŝ23

x + Ŝ45
x − Ŝ56

x ]

+
(ω(1)

e − ω
(1)
Q

4

)[
Ŝ13
x + Ŝ46

x

]
+
(3ω(1)

e + ω
(1)
Q

12

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
(4.4)

where, ω
(1)
e =

√
16ω2

1S +
(
ω
(1)
Q

)2
.

To further include the effect of off-resonance irradiation (second term), we employ the

unitary transformations Û2 = exp
{
− iθ2

[
Ŝ12
y + Ŝ23

y + Ŝ45
y + Ŝ56

y

]}
and choosing θ2 as
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√
2θ2 = tan−1

8(ΩS + ω
(2)
Q ) sin θ1/2

ω
(1)
e + ω

(1)
Q

)
, the Hamiltonian in Eq. (4.4) transformed as

˜̃
ĤS = Û2

˜̂
HSÛ

†
2

= 2(ΩS + ω
(2)
Q ) cos

θ1
2
cos

θ2√
2
[Ŝ13

z + Ŝ46
z ] +

(3ω(1)
e − ω

(2)
e − ω

(1)
Q

8

)[
Ŝ13
x + Ŝ46

x

]
+
(3ω(1)

e + 3ω
(2)
e − ω

(1)
Q

24

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
(4.5)

where, ω
(2)
e =

√{
8(ΩS + ω

(2)
Q ) sin θ1/2

}2
+
{
ω
(1)
e + ω

(1)
Q

}2
. Subsequently, the unitary

transformation Û3

(
= exp

{
−iθ3

[
Ŝ13
y + Ŝ46

y

]})
is performed to achieve the S -spin effective

Hamiltonian. The angle θ3 is selected to keep the effective-field along the z-axis: tan θ3 =

3ω
(1)
e − ω

(2)
e − ω

(1)
Q

16(ΩS + ω
(2)
Q ) cos θ1

2 cos θ2√
2

. This transformation leads to the effective S -spin Hamiltonian,

which is presented as follows:

Ĥeff
S = Û3

˜̃
ĤSÛ

†
3

=
ω
(3)
e

8

[
Ŝ13
z + Ŝ46

z

]
+
(3ω(1)

e + 3ω
(2)
e − ω

(1)
Q

24

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

] (4.6)

where, ω
(3)
e =

√{
16(ΩS + ω

(2)
Q ) cos θ1

2 cos θ2√
2

}2
+
{
3ω

(1)
e − ω

(2)
e − ω

(1)
Q

}2
.

B: “Effective-field ” for I = 1/2 spin system

As the I -spin Hamiltonian remains unaffected by the S -spin transformations (Û1Û2Û3) i.e.
˜̃̃
ĤRF

I = ĤRF
I . The unitary transformation Û4 = exp

{
iπ2
[
Ŝ14
y + Ŝ25

y + Ŝ36
y

]}
is employed

to diagonalized the I -spin Hamiltonian.

˜̃̃
˜̂
HRF

I = Û4

˜̃̃
ĤRF

I Û †
4

= ω1I

[
Ŝ14
z + Ŝ25

z + Ŝ36
z

]
.

(4.7)
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C: Hetero-nuclear dipolar coupling Hamiltonian for IS -spin pair

Employing Û1Û2Û3Û4 unitary transformations, the heteronuclear dipolar coupling

Hamiltonian in Eq. (4.2) has been transformed into the following form:

˜̃̃
˜̂
HD

IS = Û4Û3Û2Û1Ĥ
D
ISÛ

†
1 Û

†
2 Û

†
3 Û

†
4

= ωA
d

[
Ŝ14
x − Ŝ36

x

]
+ ωeff

d

[
Ŝ14
x − 2Ŝ25

x + Ŝ36
x

]︸ ︷︷ ︸
SQI,d

+2ωB
d

[
Ŝ16
x + Ŝ34

x

]︸ ︷︷ ︸
TQ16/SQ34

−2 (ωC
d + ωD

d )[Ŝ15
x + Ŝ24

x

]︸ ︷︷ ︸
DQ15/ZQ24

+ (−ωC
d + ωD

d )
[
Ŝ26
x + Ŝ35

x

]︸ ︷︷ ︸
DQ26/ZQ35

(4.8)

where,

ωA
d = −ωd

(
cos

θ1
2
cos

θ2√
2
cos θ3 +

1

2
sin

θ1
2
sin

√
2θ2 sin θ3

)
,

ωB
d = ωd

(
cos

θ1
2
cos

θ2√
2
sin θ3 −

1

2
sin

θ1
2
sin

√
2θ2 cos θ3

)
,

ωC
d =

ωd√
2

(
cos

θ1
2
sin

θ2√
2
cos

θ3
2

− sin
θ1
2
cos

√
2θ2 sin

θ3
2

)
,

ωD
d =

ωd√
2

(
cos

θ1
2
sin

θ2√
2
sin

θ3
2

− sin
θ1
2
cos

√
2θ2 cos

θ3
2

)
,

and ωeff
d = −ωd

2
sin

θ1
2
sin

√
2θ2.

Unlike in on-resonance S -spin irradiation [116] (Chapter 3), the transformed dipolar

coupling Hamiltonian [Eq. (4.8)] is comprised of four different sets of dipolar mediated

transitions, therefore, CP transfer under the S -spin off-resonance irradiation is anticipated

to display four modes/pathways of polarization transfer. The dipolar transitions are

categorized according to the total change in the S and I -spin quantum numbers of the

transitions involved i.e., {1, 6}/{3, 4} labeled as TQ16/SQ34; and both {1, 5}/{2, 4} and

{2, 6}/{3, 5} are labeled as DQij/ZQij dipolar transitions. However, the dipolar transitions

{1, 4}/{2, 5}/{3, 6} are purely induced by the I -spin flip, are referred to as single-quantum

I -spin dipolar transition (SQI,d). The dipolar coupling terms involving the flipping of both

S and I -spins are further quantified in terms of the S -spin involved dipolar transitions

as follows: TQ16/SQ34 involve double-quantum (DQS) : |1⟩ ↔ |−1⟩ S -spin transition;

DQ15/ZQ24 involve single-quantum (SQS) : |1⟩ ↔ |0⟩ S -spin transition; and DQ26/ZQ35

involve SQ (SQS) : |0⟩ ↔ |−1⟩ S -spin transition. All the dipolar coupling CP modes

in Eq. (4.8) occur through single-quantum (SQI) : |1/2⟩ ↔ |−1/2⟩ I -spin flip. Having

diagonalized the S and I -spin Hamiltonians and identifying the various dipolar transfer

modes, we are well equipped to derive the spin dynamics for the cross-polarization process

is presented in the section below. Combining the transformed Hamiltonians,
˜̃̃
˜̂
HS ,

˜̃̃
˜̂
HI and

˜̃̃
˜̂
HD

IS , the complete Hamiltonian describing the CP dynamics is represented by the following
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equation:

˜̃̃
˜̂
HCP = Û4Û3Û2Û1ĤÛ

†
1 Û

†
2 Û

†
3 Û

†
4

=
˜̃̃
˜̂
HS +

˜̃̃
˜̂
HI +

˜̃̃
˜̂
HD

IS

=
ω
(3)
e

8

[
Ŝ13
z + Ŝ46

z

]
+
(3ω(1)

e + 3ω
(2)
e − ω

(1)
Q

24

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
+ ω1I

[
Ŝ14
z + Ŝ25

z + Ŝ36
z

]
+ ωA

d

[
Ŝ14
x − Ŝ36

x

]
+ ωeff

d

[
Ŝ14
x − 2Ŝ25

x + Ŝ36
x

]︸ ︷︷ ︸
SQI,d

+ 2ωB
d

[
Ŝ16
x + Ŝ34

x

]︸ ︷︷ ︸
TQ16/SQ34

−2 (ωC
d + ωD

d )[Ŝ15
x + Ŝ24

x

]︸ ︷︷ ︸
DQ15/ZQ24

+(−ωC
d + ωD

d )
[
Ŝ26
x + Ŝ35

x

]︸ ︷︷ ︸
DQ26/ZQ35

.

(4.9)

Here, the first term in the dipolar coupling Hamiltonian i.e., SQI,d involves solely

I -spin dipolar transition, therefore, does not result in an independent CP transfer

process like TQij/SQij and DQij/ZQij transitions but rather represents a pathway

for the loss in magnetization of the I -spin. Therefore, it will prove beneficial to

evaluate the effective-fields or nutation frequencies for individual I -spin transitions.

This can be accomplished utilizing the unitary transformations Û5 = Û14
5 Û25

5 Û36
5 =

exp
{
i
(π
2
− θ

(5)
14

)[
Ŝ14
y

]}
exp

{
i
(π
2
− θ

(5)
25

)[
Ŝ25
y

]}
exp

{
i
(π
2
− θ

(5)
36

)[
Ŝ36
y

]}
. Subsequently,

the aforementioned CP Hamiltonian undergoes a transformation:

˜̃̃
˜̃
ĤCP = Û5

˜̃̃
˜̂
HCP Û

†
5

=
ω
(3)
e

8

[
Ŝ13
z + Ŝ46

z

]
+
(3ω(1)

e + 3ω
(2)
e − ω

(1)
Q

24

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
+ ω14

1I

[
Ŝ14
z

]
+ ω25

1I

[
Ŝ25
z

]
+ ω36

1I

[
Ŝ36
z

]
+ ω16,34

d

[
Ŝ16
x + Ŝ34

x

]︸ ︷︷ ︸
TQ16/SQ34

+ω15,24
d [Ŝ15

x + Ŝ24
x

]︸ ︷︷ ︸
DQ15/ZQ24

+ω26,35
d

[
Ŝ26
x + Ŝ35

x

]︸ ︷︷ ︸
DQ26/ZQ35

.

(4.10)

where, ω14
1I =

√
(ω1I)2 + 4(ωA

d + ωE
d )

2, ω25
1I =

√
(ω1I)2 + 16(ωE

d )
2 and ω36

1I =√
(ω1I)2 + 4(ωA

d − ωE
d )

2 represent the effective I -spin nutation frequencies for

{1, 4}/{2, 5}/{3, 6} transitions and ω16,34
d , ω15,24

d and ω26,35
d represent the effective dipolar

coupling coefficients for various IS-dipolar transitions and their expressions are given in

Table 4.1.

The single-spin terms in Hamiltonian in Eq. (4.10) are re-expressed in accordance with the

operators associated with the dipolar coupling terms utilizing the relation Ŝij
z + Ŝjk

z = Ŝik
z

between the single-transition operators.

˜̃̃
˜̃
ĤCP = Ĥ16,34︸ ︷︷ ︸

Ĥ16+Ĥ34

+ Ĥ15,24︸ ︷︷ ︸
Ĥ15+Ĥ24

+ Ĥ26,35︸ ︷︷ ︸
Ĥ26+Ĥ35

(4.11)
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Table 4.1: List of coefficients involved in the effective CP Hamiltonian [Eq. (4.10)]
calculations

Longitudinal coefficients Transverse (dipolar) coefficients

Σ16 = (4ω14
1I + 4ω36

1I + ω
(3)
e )/8

ω16,34
d = 2ωB

d sin
(θ14 + θ36

2

)
∆34 = (4ω14

1I + 4ω36
1I − ω

(3)
e )/8

Σ15 = (8ω14
1I +8ω25

1I +ω
(3)
e +3ω

(1)
e +3ω

(2)
e −ω(1)

Q )/16
ω15,24
d = −2(ωC

d + ωD
d ) sin

(θ14 + θ25
2

)
∆24 = (8ω14

1I +8ω25
1I −ω

(3)
e −3ω

(1)
e −3ω

(2)
e +ω

(1)
Q )/16

Σ35 = (8ω25
1I +8ω36

1I +ω
(3)
e −3ω

(1)
e −3ω

(2)
e +ω

(1)
Q )/16

ω26,35
d = 2(−ωC

d + ωD
d ) sin

(θ26 + θ35
2

)
∆26 = (8ω14

1I +8ω25
1I −ω

(3)
e +3ω

(1)
e +3ω

(2)
e −ω(1)

Q )/16

or

˜̃̃
˜̃
ĤCP = Σ16

[
Ŝ16
z

]
+ ω16,34

d

[
Ŝ16
x

]︸ ︷︷ ︸
Ĥ16

+∆34

[
Ŝ34
z

]
+ ω16,34

d

[
Ŝ34
x

]︸ ︷︷ ︸
Ĥ34

+Σ15

[
Ŝ15
z

]
+ ω15,24

d

[
Ŝ15
x

]︸ ︷︷ ︸
Ĥ15

+∆24

[
Ŝ24
z

]
+ ω15,24

d

[
Ŝ24
x

]︸ ︷︷ ︸
Ĥ24

+Σ35

[
Ŝ35
z

]
+ ω26,35

d

[
Ŝ35
x

]︸ ︷︷ ︸
Ĥ35

+∆26

[
Ŝ26
z

]
+ ω26,35

d

[
Ŝ26
x

]︸ ︷︷ ︸
Ĥ26

−3ω
(3)
e

16

[
Ŝ13
z + Ŝ46

z

]
−
(3ω(1)

e + 3ω
(2)
e − ω

(1)
Q

48

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
︸ ︷︷ ︸

residual terms

.

(4.12)

In Eq. (4.12), the CP Hamiltonian is rearranged in accordance with the CP matching

conditions requirement for these CP modes. The details of the coefficients can be found

in Table 4.1. The last two terms are not responsible for any CP transfer and, therefore,

can be ignored in the further calculation. As the different HH CP matching conditions

have different energies requirements and act in different dipolar subspaces, therefore, the

CP Hamiltonian [Eq. (4.12)] is considered independent in these subspaces which simplifies

the diagonalization process. A pictorial representation of this division is shown in Figure

4.1. The above CP Hamiltonian [Eq. (4.12)] comprises longitudinal (Ŝij
z ) and transverse

(Ŝij
x ) components in each subspace and, therefore, can be diagonalized through rotation

operators Û6 = Û
(16)
6 Û

(34)
6 Û

(15)
6 Û

(24)
6 Û

(35)
6 Û

(26)
6 (refer to Table 4.2). The above-mentioned

transformation results in the derivation of the effective CP Hamiltonian, which is presented

as follows:

Ĥeff
CP = Ĥeff

16 + Ĥeff
34 + Ĥeff

15 + Ĥeff
24 + Ĥeff

35 + Ĥeff
26

= ω
(16)
eff

[
Ŝ16
z

]
+ ω

(34)
eff

[
Ŝ34
z

]
+ ω

(15)
eff

[
Ŝ15
z

]
+ ω

(24)
eff

[
Ŝ24
z

]
+ ω

(35)
eff

[
Ŝ35
z

]
+ ω

(26)
eff

[
Ŝ26
z

]
(4.13)

where the effective-fields/frequencies ( ω
(ij)
eff ) in each subspace can be found in Table

4.2. A pictorial representation of this diagonalization process is shown in Figure 4.2.

In comparison with effective CP Hamiltonian [Eq. (3.12)] presented in previous chapter
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Table 4.2: List of all the unitary operators involved in diagonalization of the CP
Hamiltonian [Eq. (4.12)] and associated coefficients.

Unitary transformations and rotation angles Effective frequencies

Û16
6 = exp

{
i
(
π
2 − θ164

)[
Ŝ16
y

]}
; tan θ164 =

Σ16

ω16,34
d

ω
(16)
eff =

√
Σ2
16 + (ω16,34

d )2

Û34
6 = exp

{
i
(
π
2 − θ344

)[
Ŝ34
y

]}
; tan θ344 =

∆34

ω16,34
d

ω
(34)
eff =

√
∆2

34 + (ω16,34
d )2

Û15
6 = exp

{
i
(
π
2 − θ154

)[
Ŝ15
y

]}
; tan θ154 =

Σ15

ω15,24
d

ω
(15)
eff =

√
Σ2
15 + (ω15,24

d )2

Û24
6 = exp

{
i
(
π
2 − θ244

)[
Ŝ24
y

]}
; tan θ244 =

∆24

ω15,24
d

ω
(24)
eff =

√
∆2

24 + (ω15,24
d )2

Û35
6 = exp

{
i
(
π
2 − θ354

)[
Ŝ35
y

]}
; tan θ354 =

Σ35

ω26,35
d

ω
(35)
eff =

√
Σ2
35 + (ω26,35

d )2

Û26
6 = exp

{
i
(
π
2 − θ264

)[
Ŝ26
y

]}
; tan θ264 =

∆26

ω26,35
d

ω
(26)
eff =

√
∆2

26 + (ω26,35
d )2

under on-resonance irradiation where CP transfer is described by a sum of four modes of

Figure 4.1: Pictorial representation of splitting of the CP Hamiltonian into six subspaces
which are governed by the three S -spin transitions i.e. two subspaces shown in orange and
green-colors (DQIS/ZQIS) corresponds to two S -spin single-quantum (SQS) transitions
((−1 ↔ 0) and (0 ↔ +1) respectively) while two subspaces shown in blue-color
(TQIS/SQIS) correspond to S -spin double-quantum (DQS) transition (+1 ↔ −1).
Although these subspaces are not independent, they can be considered as such because
each HH-matching condition can effectively transfers polarization through a specific CP
mode only.
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Figure 4.2: Schematic representation of the “effective-fields” experienced in the TQ16 (a1),
SQ34 (a2), DQ15 (a3), ZQ24 (a4), ZQ35 (a5) and DQ26 (a6) sub-spaces.

the polarization transfer, the effective Hamiltonian in Eq. (4.13) contains all six modes of

the polarization transfer. This is in stark contrast to the theoretical description presented

by Vega et. al. [45] which lacks unified single framework for the effective CP Hamiltonian.

4.1.2 Time-evolution of the spin-system

As described in Chapter 1, the time-evolution of the spin system is evaluated by the

following expression.

ρ̂eff (t) = exp
{
− i

ℏ
Ĥeff

CP t
}
ρ̂eff (0) exp

{ i
ℏ
Ĥeff

CP t
}

(4.14)

where, ρ̂(0) = Îx represents the initial density operator. Employing the unitary

transformations involved in the calculation of the S and I -spin Hamiltonians

i.e. Û1Û2Û3Û4Û5, the initial density matrix is transformed as

˜̃̃
˜̃
ρ̂(0) = Û5Û4Û3Û2Û1ρ̂(0)Û

†
1 Û

†
2 Û

†
3 Û

†
4 Û

†
5

=
[
Ŝ14
z

]
sin θ14 −

[
Ŝ14
x

]
cos θ14 +

[
Ŝ25
z

]
sin θ25 −

[
Ŝ25
x

]
cos θ25 +

[
Ŝ36
z

]
sin θ36 −

[
Ŝ36
x

]
cos θ36.

(4.15)

In the following section, we describe the time-evolution of spin system in individual

subspaces.
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A: Time-evolution density matrix in TQ16+SQ34 subspace

Using Eq. (4.14), the time-evolution of spin-system under effective Hamiltonians Ĥeff
16 +

Ĥeff
34 is given as

ρ̂eff16,34(t) = exp
{
− i

ℏ
(Ĥeff

16 + Ĥeff
34 )t

}
Û16
6 Û34

6

˜̃̃
˜̃
ρ̂(0)Û34,†

6 Û16,†
6︸ ︷︷ ︸

ρ̂eff16,34(0)

exp
{ i
ℏ
(Ĥeff

16 + Ĥeff
34 )t

}

=
1

2
(sin θ14 + sin θ36)

{[
Ŝ16
z

]
sin θ16 − cos θ16

([
Ŝ16
x

]
cosω16

eff t+
[
Ŝ16
y

]
sinω16

eff t
)}

+
1

2
(sin θ14 + sin θ36)

{[
Ŝ34
z

]
sin θ34 − cos θ34

([
Ŝ34
x

]
cosω34

eff t+
[
Ŝ34
y

]
sinω34

eff t
)}

− 1

2
ρ16,3414

{[
Ŝ14
x

]
cos
(ω16

eff + ω34
eff

2
t
)
+
[
Ŝ14
y

]
sin
(ω16

eff + ω34
eff

2
t
)}

− 1

2
ρ16,3413

{[
Ŝ13
x

]
cos
(ω16

eff − ω34
eff

2
t
)
−
[
Ŝ13
y

]
sin
(ω16

eff − ω34
eff

2
t
)}

+
1

2
ρ16,3446

{[
Ŝ46
x

]
cos
(ω16

eff − ω34
eff

2
t
)
−
[
Ŝ46
y

]
sin
(ω16

eff − ω34
eff

2
t
)}

+
1

2
ρ16,3436

{[
Ŝ36
x

]
cos
(ω16

eff + ω34
eff

2
t
)
+
[
Ŝ36
y

]
sin
(ω16

eff + ω34
eff

2
t
)}

+
{[
Ŝ25
z

]
sin θ25 − cos θ25

[
Ŝ25
x

]}
+

1

2
(sin θ14 − sin θ36)

[
Ŝ14
z − Ŝ36

z

]
.

(4.16)

The coefficients ρ16,3414 , ρ16,3413 , ρ16,3446 and ρ16,3436 of the density matrix ρ̂eff16,34(t) can be found

in the Table D.1 in Appendix-D.
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B: Time-evolution density matrix in DQ15+ZQ24 subspace

The time-evolution of spin-system under the effective Hamiltonians Ĥeff
15 + Ĥeff

24 is given

as

ρ̂eff15,24(t) = exp
{
− i

ℏ
(Ĥeff

15 + Ĥeff
24 )t

}
Û15
6 Û24

6

˜̃̃
˜̃
ρ̂(0)Û24,†

6 Û15,†
6︸ ︷︷ ︸

ρ̂eff15,24(0)

exp
{ i
ℏ
(Ĥeff

15 + Ĥeff
24 )t

}

=
1

2
(sin θ14 + sin θ25)

{[
Ŝ15
z

]
sin θ15 − cos θ15

([
Ŝ15
x

]
cosω15

eff t+
[
Ŝ15
y

]
sinω15

eff t
)}

+
1

2
(sin θ14 + sin θ25)

{[
Ŝ24
z

]
sin θ24 − cos θ24

([
Ŝ24
x

]
cosω24

eff t+
[
Ŝ24
y

]
sinω24

eff t
)}

+
1

2
ρ15,2414

{[
Ŝ14
x

]
cos
(ω15

eff + ω24
eff

2
t
)
+
[
Ŝ14
y

]
sin
(ω15

eff + ω24
eff

2
t
)}

+
1

2
ρ15,2412

{[
Ŝ12
x

]
cos
(ω15

eff − ω24
eff

2
t
)
+
[
Ŝ12
y

]
sin
(ω15

eff − ω24
eff

2
t
)}

+
1

2
ρ15,2445

{[
Ŝ45
x

]
cos
(ω15

eff − ω24
eff

2
t
)
+
[
Ŝ45
y

]
sin
(ω15

eff − ω24
eff

2
t
)}

+
1

2
ρ15,2425

{[
Ŝ25
x

]
cos
(ω15

eff + ω24
eff

2
t
)
+
[
Ŝ25
y

]
sin
(ω15

eff + ω24
eff

2
t
)}

+
{[
Ŝ36
z

]
sin θ36 − cos θ36

[
Ŝ36
x

]}
+

1

2
(sin θ14 − sin θ25)

[
Ŝ14
z − Ŝ25

z

]
.

(4.17)

The coefficients ρ15,2414 , ρ15,2412 , ρ15,2445 and ρ15,2425 of the density matrix ρ̂eff15,24(t) can be found

in the Table D.1 in Appendix-D.

C: Time-evolution density matrix in DQ26+ZQ35 subspace

The time-evolution of spin-system under effective Hamiltonians Ĥeff
26 + Ĥeff

35 is given as

ρ̂eff26,35(t) = exp
{
− i

ℏ
(Ĥeff

26 + Ĥeff
35 )t

}
Û26
6 Û35

6

˜̃̃
˜̃
ρ̂(0)Û35,†

6 Û26,†
6︸ ︷︷ ︸

ρ̂eff26,35(0)

exp
{ i
ℏ
(Ĥeff

26 + Ĥeff
35 )t

}

=
1

2
(sin θ25 + sin θ36)

{[
Ŝ26
z

]
sin θ26 − cos θ26

([
Ŝ26
x

]
cosω26

eff t+
[
Ŝ26
y

]
sinω26

eff t
)}

+
1

2
(sin θ25 + sin θ36)

{[
Ŝ35
z

]
sin θ35 − cos θ35

([
Ŝ35
x

]
cosω35

eff t+
[
Ŝ35
y

]
sinω35

eff t
)}

+
1

2
ρ26,3525

{[
Ŝ25
x

]
cos
(ω26

eff + ω35
eff

2
t
)
+
[
Ŝ25
y

]
sin
(ω26

eff + ω35
eff

2
t
)}

+
1

2
ρ26,3523

{[
Ŝ23
x

]
cos
(ω35

eff − ω26
eff

2
t
)
+
[
Ŝ23
y

]
sin
(ω35

eff − ω26
eff

2
t
)}

+
1

2
ρ26,3556

{[
Ŝ56
x

]
cos
(ω35

eff − ω26
eff

2
t
)
+
[
Ŝ56
y

]
sin
(ω35

eff − ω26
eff

2
t
)}

+
1

2
ρ26,3536

{[
Ŝ36
x

]
cos
(ω26

eff + ω35
eff

2
t
)
+
[
Ŝ36
y

]
sin
(ω26

eff + ω35
eff

2
t
)}

+
{[
Ŝ14
z

]
sin θ14 − cos θ14

[
Ŝ14
x

]}
+

1

2
(sin θ25 − sin θ36)

[
Ŝ25
z − Ŝ36

z

]
.

(4.18)
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The coefficients ρ26,3525 , ρ26,3523 , ρ26,3556 and ρ26,3536 of the density matrix ρ̂eff26,35(t) can be found

in Table D.1 in Appendix-D.

4.1.3 Detection of the S -spin polarization: CP Signal calculation

Following the standard operational process, the expectation value of the observable <

Ŝx(t) > is derived employing Eqs. (4.16), (4.17) and (4.18) as follows

S(t) =< Ŝx(t) >= Trace{Ŝeff,x.ρ̂eff (t)} (4.19)

where, Ŝeff,x and ρ̂eff (t) represent the detection operator and final density matrix in the

same frame of reference as the effective CP Hamiltonians [Eq. (4.13)]. The final signal

expressions in the TQ16+SQ34, DQ15+ZQ24 and DQ26+ZQ35 sub-spaces are as given

below:

S(t) = S(t)16,34 + S(t)15,24 + S(t)26,35 (4.20)

where,

S(t)16,34 = (sin θ14 + sin θ36)
[{

−A4 cos2 θ16︸ ︷︷ ︸
absorptive

+A3 sin
(θ36 − θ14

2

)
cos θ16 sin θ16︸ ︷︷ ︸

dispersive

}
sin2

ω16
eff

2
t

−
{
−A4 cos2 θ34︸ ︷︷ ︸

absorptive

+A3 sin
(θ36 − θ14

2

)
cos θ34 sin θ34︸ ︷︷ ︸

dispersive

}
sin2

ω34
eff

2
t
]

+ 2A3 cos
(θ36 − θ14

2

)[
(ρ16,3413 + ρ16,3446 ) cos

(θ34 − θ16
2

)
︸ ︷︷ ︸

interference

cos
(ω16

eff − ω34
eff

2
t
)

+ (ρ16,3414 − ρ16,3436 ) sin
(θ34 − θ16

2

)
︸ ︷︷ ︸

interference

cos
(ω16

eff + ω34
eff

2
t
)]
,

(4.21)

S(t)15,24 = (sin θ14 + sin θ25)
[{

−A6 cos
2 θ15 +A7 cos θ15 sin θ15

}
sin2

ω15
eff

2
t

−
{
−A6 cos

2 θ24 +A7 cos θ24 sin θ24

}
sin2

ω24
eff

2
t
]

+ 2(A1 +A2) cos
(θ25 − θ14

2

)[
(ρ15,2412 + ρ15,2445 ) cos

(θ24 − θ15
2

)
cos
(ω15

eff − ω24
eff

2
t
)

+ (ρ15,2414 − ρ15,2425 ) sin
(θ24 − θ15

2

)
cos
(ω15

eff + ω24
eff

2
t
)]
,

(4.22)
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and

S(t)26,35 = (sin θ25 + sin θ36)
[{
A8 cos

2 θ26 −A9 cos θ26 sin θ26

}
sin2

ω26
eff

2
t

−
{
A8 cos

2 θ35 −A9 cos θ35 sin θ35

}
sin2

ω35
eff

2
t
]

− 2(A1 −A2) cos
(θ25 − θ14

2

)[
(ρ26,3525 − ρ26,3536 ) sin

(θ35 + θ26
2

)
cos
(ω26

eff + ω35
eff

2
t
)

− (ρ26,3523 + ρ26,3556 ) cos
(θ35 − θ26

2

)
cos
(ω35

eff − ω26
eff

2
t
)]
.

(4.23)

Here, A6 =
(A4 + 3A5

2

)
, A7 = (A1 + A2) sin

(θ25 − θ14
2

)
, A8 =

(A4 − 3A5

2

)
and

A9 = (A1 −A2) sin
(θ25 − θ36

2

)
.

The constants A1, A2, A3, A4 and A5 are given as

A1 =
1√
2

(
cos θ1 cos

θ2√
2
cos

θ3
2

+
1

2
sin θ1 sin

√
2θ2 sin

θ3
2

)
,

A2 =
1√
2

(
cos θ1 cos

θ2√
2
sin

θ3
2

− 1

2
sin θ1 sin

√
2θ2 cos

θ3
2

)
,

A3 =
(
− cos θ1 sin

θ2√
2
sin θ3 +

1

4
sin θ1(3− cos

√
2θ2) cos θ3

)
,

A4 =
(
cos θ1 sin

θ2√
2
cos θ3 +

1

4
sin θ1(3− cos

√
2θ2) sin θ3

)
,

and A5 =
1

4
sin θ1(1 + cos

√
2θ2).

As described above, the final signal expression has contribution of all the six possible CP

transfer modes. Unlike the on-resonance S -spin irradiation [Eq. (3.19)], the CP signal

expression in each subspace consists of sum of three different components: Absorptive

(cos2 θij), dispersive (cos θij sin θij), and interference term
(
cos

θij ± θkl
2

)
.

4.1.4 Insights into the Hartmann-Hahn CP matching conditions

Using Eq. (4.20), the polarization transfer through a specific mode can be maximized by

optimizing one to the six HH CP matching conditions as discussed below.

• Triple-quantum (TQ16) CP matching condition:

Setting Σ16 = 0 =⇒ 4ω14
1I + 4ω36

1I = −ω(3)
e .

Under the exact TQ16 CP matching condition, the resulting signal expression is

given as

S(t) = (sin θ14 + sin θ36)
[
−A4 cos

2 θ16 +A3 sin
(θ36 − θ14

2

)
cos θ16 sin θ16

]
sin2

ω16,34
d t

2

+ S(t)34 + S(t)15,24 + S(t)26,35︸ ︷︷ ︸
High-frequency components

.

(4.24)

Exactly setting the TQ16 HH CP condition will not only maximize the polarization
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transfer through TQ16 CP mode (i.e. S(t)16 component) but also increases the

modulation frequencies of other signal components, therefore, further rendering

them insignificant in the overall CP transfer. When the high-frequency terms are

insignificant, the overall CP signal is reduce to a simplified form as given below:

S(t) ≈ (sin θ14 + sin θ36)
[
−A4 cos

2 θ16 +A3 sin
(θ36 − θ14

2

)
cos θ16 sin θ16

]
sin2

ω16,34
d t

2
.

(4.25)

An important thing to note is that the effective nutation frequencies of the I -spin

(ω14
1I , ω

25
1I and ω36

1I see Eq. 4.10) have an explicit dipolar dependence. Therefore, the

position of the HH CP matching conditions will be associated with dipolar dependent

shifts. A similar behaviour is observed under off-resonance irradiations in spin-1/2

CP in Chapter 2.

• Single-quantum (SQ34) CP matching condition:

Setting ∆34 = 0 =⇒ 4ω14
1I + 4ω36

1I = ω
(3)
e .

The resulting signal expression is given as

S(t) = (sin θ14 + sin θ36)
[
A4 cos

2 θ34 −A3 sin
(θ36 − θ14

2

)
cos θ34 sin θ34

]
sin2

ω16,34
d t

2

+ S(t)16 + S(t)15,24 + S(t)26,35︸ ︷︷ ︸
High-frequency components

.

(4.26)

• Double-quantum (DQ15) CP matching condition:

Setting Σ15 = 0 =⇒ 8ω14
1I + 8ω25

1I = −(ω
(3)
e + 3ω

(1)
e + 3ω

(2)
e − ω

(1)
Q ).

The resulting CP signal expression is given as

S(t) = (sin θ14 + sin θ25)
[
−A5 +A7 sin θ15

]
sin2

ω15,24
d t

2︸ ︷︷ ︸
S(t)15

+S(t)16,34 + S(t)24 + S(t)26,35︸ ︷︷ ︸
High-frequency components

.

(4.27)

• Zero-quantum (ZQ24) CP matching condition:

Setting ∆24 = 0 =⇒ 8ω14
1I + 8ω25

1I = (ω
(3)
e + 3ω

(1)
e + 3ω

(2)
e − ω

(1)
Q ).

The resulting CP signal expression is given as

S(t) = (sin θ14 + sin θ25)
[
A5 −A7 sin θ15

]
sin2

ω15,24
d t

2︸ ︷︷ ︸
S(t)24

+S(t)16,34 + S(t)15 + S(t)26,35︸ ︷︷ ︸
High-frequency components

.

(4.28)

• Double-quantum (DQ26) CP matching condition:

Setting ∆26 = 0 =⇒ 8ω25
1I + 8ω36

1I = −(ω
(3)
e − 3ω

(1)
e − 3ω

(2)
e + ω

(1)
Q ).
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The resulting CP signal expression is given as

S(t) = (sin θ25 + sin θ36)
[
A8 −A9 sin θ26

]
sin2

ω26,35
d t

2︸ ︷︷ ︸
S(t)26

+S(t)16,34 + S(t)15,24 + S(t)35︸ ︷︷ ︸
High-frequency components

.

(4.29)

• Zero-quantum (ZQ35) CP matching condition:

Setting Σ35 = 0 =⇒ 8ω25
1I + 8ω36

1I = (ω
(3)
e − 3ω

(1)
e − 3ω

(2)
e + ω

(1)
Q ).

The resulting CP signal expression is given as

S(t) = (sin θ25 + sin θ36)
[
−A8 +A9 sin θ35

]
sin2

ω26,35
d t

2︸ ︷︷ ︸
S(t)35

+S(t)16,34 + S(t)15,24 + S(t)26︸ ︷︷ ︸
High-frequency components

.

(4.30)

The signal expression for the TQ16 (and ZQ35 and DQ15) and SQ34 (and DQ26 and

ZQ24) CP conditions are governed by similar effective dipolar coupling strengths

ω16,34
d (and ω26,35

d and ω15,24
d ) and are just phase-shifted versions of each other.

Therefore, these modes of the CP transfer are expected to display similar CP

dynamics. Experimentally, TQ16/ ZQ35/DQ15 transfer can be achieved by shifting

the phase of I -spin RF-field by 180◦. In addition to these normal modes of CP

transfer, the interference terms can also be maximized setting ωij
eff = ±ωjk

eff . This

is only possible at ω1I = 0. However, it is important to note that this condition is not

a typical resonance condition that involves two different nuclear spins (simultaneous

I and S -spin energy matching). Nevertheless, it is a pathway for the loss in the

I -spin polarization, but there is no gain in the S -spin polarization. Such losses

can be studied by simultaneously observing the loss in the I -spin polarization

via < Îx(t) > and build-up in the S -spin polarization via < Ŝx(t) >. The

occurrence of this condition is solely attributed to off-resonance irradiation and

second-order quadrupolar coupling effects. No such conditions were observed under

on-resonance irradiations for spin-1/2 as well as quadrupolar CP. Due to finite

I -spin RF-requirements for an efficient CP process, such zero-field condition are

not expected to have influence on the overall CP transfer. However, situations with

weaker S -spin RF-irradiations require additional caution.

4.2 Results and discussion

4.2.1 Description of CP spin-dynamics under the second-order

quadrupolar coupling interaction

4.2.1.1 CP dynamics in Single-crystal

For systems with larger electronic asymmetry (eq) and quadrupole moments (Q), the

higher-order quadrupolar effects can alter the spin dynamics of the cross-polarization
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Table 4.3: The expressions and transitions associated with various HH CP matching
conditions for the CP transfer between I = 1/2 and S = 1 spin systems.

CP matching conditions and
associated transitions

Expression

Triple-quantum (TQ16)
|−1/2,−1⟩ ↔ |1/2, 1⟩

4ω14
1I + 4ω36

1I = −ω(3)
e

Single-quantum (SQ34)
|1/2,−1⟩ ↔ |−1/2, 1⟩

4ω14
1I + 4ω36

1I = ω
(3)
e

Double-quantum (DQ15)
|1/2, 1⟩ ↔ |−1/2, 0⟩

8ω14
1I + 8ω25

1I = −(ω
(3)
e + 3ω

(1)
e + 3ω

(2)
e − ω

(1)
Q )

Zero-quantum (ZQ24)
|−1/2, 1⟩ ↔ |1/2, 0⟩

8ω14
1I + 8ω25

1I = (ω
(3)
e + 3ω

(1)
e + 3ω

(2)
e − ω

(1)
Q )

Double-quantum (DQ26)
|1/2,−1⟩ ↔ |−1/2, 0⟩

8ω25
1I + 8ω36

1I = −(ω
(3)
e − 3ω

(1)
e − 3ω

(2)
e + ω

(1)
Q )

Zero-quantum (ZQ35)
|−1/2,−1⟩ ↔ |1/2, 0⟩

8ω25
1I + 8ω36

1I = (ω
(3)
e − 3ω

(1)
e − 3ω

(2)
e + ω

(1)
Q )

experiment. To explicate the exact mechanism of the polarization transfer in the presence

of second-order quadrupolar interaction, we evaluated the RF-domain CP efficiency profile

for CQ = 1.5 MHz at 1H Larmor precession frequency 400 MHz (Figure 4.3) for a

single-crystal sample with and without S -spin off-resonance irradiation. In the simulation

depicted, the CP efficiency is plotted as a function of I -spin RF amplitude at constant

mixing/contact time (τc = 500 µs) and S -spin RF amplitude (ν1S = 80 kHz). All other

simulation parameters used in the simulations are listed in the caption of Figure 4.3. The

analytic simulations emerging from Eq. (4.20) (shown in indigo color in panels a1-a4) are

in good agreement with the numerically generated SIMPSON simulations (black curve)

which validates the exactness of the proposed analytic theory. To further explicate the

exact mechanism of polarization transfer, the individual signal contributions corresponding

to six dipolar coupling based transfer modes are evaluated in panels b1-b4. In the presence

of the first-order quadrupolar coupling and under on-resonance S -spin irradiation CP

dynamics (panels a1-b1) is described predominantly by the SQ34 (|1/2,−1⟩ ↔ |−1/2, 1⟩)
and DQ26 (|1/2,−1⟩ ↔ |−1/2, 0⟩) HH matching conditions [116]. A detailed theoretical

description of the CP dynamics can be found in previous Chapter. [116]. In the presence

of econd-order quadrupolar coupling (panels a2-b2), the overall CP efficiency profile varies

significantly with respect to the first-order quadrupolar coupling-driven CP dynamics

under on-resonance S -spin irradiation. More specifically, we observe the following striking

differences: (i) The appearance of an additional CP resonance at high I -spin RF amplitude,

(ii) a shift in the relative positions of the CP resonances, (iii) variation in the CP efficiencies

and resonance widths (iv) a minor dispersion in the CP resonance at lower I -spin RF

amplitude. Under the influence of the second-order quadrupolar coupling induced shift

(panels a2-b2) ( Ω1S = 0 ), the SQ34 and DQ26 CP matching conditions shift at higher and

lower I -spin RF amplitudes, respectively. Besides, the CP efficiency profile demonstrates
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Figure 4.3: The second-order quadrupolar coupling driven cross-polarization transfer
efficiency as a function of the 1H RF field for a single-crystal sample from the numerical
simulation (SIMPSON) and the analytic theory. These simulations demonstrate the effect
of S -spin off-resonance irradiations on the CP efficiency profile (a1-b1) Ω1S = 0 kHz and

ω
(2)
Q = 0 kHz, (a2-b2) Ω1S = 0 kHz and ω

(2)
Q ̸= 0 kHz, (a3-b3) Ω1S = ω

(2)
Q = −6.8921

kHz and (a4-b4) Ω1S = −ω(2)
Q = 6.8921 kHz . The parameters used for generating the CP

efficiency profiles are: CQ = 1.5 MHz, ηQ = 0, quadrupolar coupling PAS angles αQ and βQ
= 50◦, contact time = 0.5 ms, 1H Larmor precession frequency = 400 MHz, ν1S = 80 kHz
internuclear distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦. SIMPSON simulations
(black curve) are fitted with the total analytic signal expressions (indigo curve) [Eq. (4.20)]
in panels a1-a4; SQ34 (red curve) and TQ16 (green curve); DQ26 (blue curve) and ZQ35

(cyan curve); ZQ24 (magenta curve) and DQ15 (orange curve) in panels b1-b4.
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an additional sharp CP matching condition ZQ24 (|1/2, 1⟩ ↔ |−1/2, 0⟩) at higher I -spin RF

field in contrast to the first-order quadrupolar driven CP dynamics, wherein the transition

operator corresponding to the ZQ24 dipolar-based transfer was absent (panels a1-b1). This

observation is consistent with the argument that the second-order quadrupolar coupling

induces shift equivalent to the off-resonance irradiation [115]. The off-resonance irradiation

reduces the energy difference associated with the single quantum (SQS) transitions while

enhancing the energy difference for double quantum (DQS) transitions. Hence, the S -spin

off-resonance irradiation strengthens the CP signal corresponding to the DQ26 and ZQ24

conditions which transfer polarization into the SQS transitions while the quite opposite

behavior is observed for the SQ34 condition. At lower 1H RF amplitude, we observe a

minor contribution from the otherwise high-frequency TQ16 signal component. This could

be attributed to the decrease in the magnitude of Σ16 = (4ω14
1I +4ω36

1I +ω
(3)
e )/8 which make

the prefactor in the TQ16

{
(ω16,34

d )2/[Σ2
16 + (ω16,34

d )2]
}
signal component finite; hence it’s

contribution becomes significant. It should be noted that the overall CP efficiency from

the high-frequency term will vary according to the orientation of the quadrupolar coupling

tensor. Interestingly, a noticeable dispersion at the SQ34 matching condition at lower

I -spin RF amplitudes is also observed. The observed dispersion at the SQ34 matching

condition originates from the single-quantum I -spin dipolar transitions (SQd,I) (as shown

through the dispersive components of the signal expression i.e., sin θij cos θij). Therefore,

the SQ34 CP condition demonstrates a much more complex interplay of various CP signals

and exhibits a non-unidirectional polarization transfer behavior. Due to the high I -spin

RF requirements, the contributions from the high-frequency ZQ35 and DQ15 components

are absent in the DQ26 and ZQ24 CP matching conditions, respectively.

To achieve an efficient CP transfer, the width of the CP matching condition under

consideration is an important aspect to explore. The relative widths of the CP matching

conditions decrease with the decrease in the effective dipolar coupling strengths acting

between the states (refer to Eq. 4.8). For instance, the ZQ24 transition is associated

with the smallest effective dipolar coupling strength than the SQ34 and DQ26 transitions

(ω16,34
d > ω26,35

d > ω15,24
d ), and the CP resonance widths are manifested accordingly (Figure

4.3). This observation is also substantiated through the rate of CP buildup in the mixing

time profile under different CP matching conditions in Figure 4.4.

It is essential to highlight that the overall CP efficiency profile is unaffected by the change

in the sign of the quadrupolar coupling constant (CQ); however, the individual analytic

fittings of the CP efficiency profile reveal that the SQ34 and DQ26 CP conditions are

swapped with changing the sign of quadrupolar coupling constant (CQ = -1.5 MHz) while

the ZQ24 condition remains unaffected (Figure 4.5). This is because the CP dynamics

associated with ZQ24 transition is solely governed by the second-order quadrupolar

coupling, which is independent of the sign of the CQ. Whereas the SQ34 and DQ26

transitions are primarily governed by the first-order quadrupolar coupling frequency,

which is sensitive to the sign of CQ. In the current discussion, all the simulations have

been plotted by assuming a constant Zeeman magnetic field strength. The second-order
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Figure 4.4: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I -spin were chosen based on exact HH CP conditions (SQ34, DQ26 and ZQ24) expression
and are given as ν1H = 38.98 kHz (a1); ν1H = 171 kHz (a2) and ν1H = 210.22 kHz (a3)
under ΩS = 0 kHz. The remaining simulation parameters and descriptions are as given in
the caption of Figure 4.3(a2-b2). SIMPSON simulations (black curve) are fitted with the
total analytic signal expressions (indigo curve) [Eq. (4.20)] in panels a1-a2.

quadrupolar effects are scaled by the Zeeman field strength; therefore, working at the high

magnetic field strengths, these effects can be minimized (refer to Figure 4.6 at ω01H =

800 MHz and 200 MHz), respectively. With increasing strength of the second-order

quadrupolar coupling constant (Figure 4.6 at βQ = 45◦), the efficiency of the SQ34

CP condition decreases, while it increases for the DQ26 and ZQ24 CP conditions. This

observation could be explained based on the nature of S -spin transitions and their

respective offset dependence involved in each of the CP resonance. The double-quantum

S -spin transition (SQ34 CP condition) is devoid of the first-order quadrupolar coupling,

therefore, it is much more exposed to the second-order quadrupolar effects, while the

excitation efficiency of first-order quadrupolar dependent S -spin SQ transitions (DQ26

and ZQ24 conditions) improves. Additionally, it shifts the DQ26 CP condition at lower

I -spin RF field amplitude. The detrimental effects of the second-order quadrupolar
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Figure 4.5: Effect of the sign of the quadrupolar coupling constant on the cross-polarization
transfer efficiency as a function of the 1H RF field for a single-crystal sample from the
numerical simulation (SIMPSON) and the analytic theory. The following parameters were
used in the simulations: CQ = 1.5 MHz, ηQ = 0, quadrupolar coupling PAS angles (0◦,
45◦, 0◦), ω01H = 400 kHz, ν1S = 80 kHz and S -spin off-resonance irradiation strength
Ω1S = 0 kHz. SIMPSON simulations (black curve) are fitted with the analytic signal
expressions SQ34+TQ16 (red curve); DQ26+ZQ35 (blue curve); ZQ24 +DQ15 (magenta
curve) in panels a1-a2 [Eq. (4.20)].

coupling on the SQ34 CP condition can be minimized by working at the higher magnetic

field strengths. However, the obvious disadvantage of working at higher magnetic fields

is that it increases the size of offsets, which deteriorates the CP efficiency at lower

I -spin RF fields and induces undesired I -spin dipolar transitions (SQd,I). Therefore, it

becomes necessary to look for alternative methods to compensate for these second-order

quadrupolar effects. In the context of spin-1 nuclei, the second-order quadrupolar coupling

and S -spin off-resonance irradiation share a similar operator dependency (Ŝz), therefore,

are expected to have a similar effect on the CP spin-dynamics with an exception that

the second-order quadrupolar coupling has a complex orientation dependence in the LAB

frame. In this section, we are focusing on the single-crystal sample. Therefore, another

way to compensate for these second-order quadrupolar effects is to set the strength of

off-resonance irradiation exactly at the negative of the second-order quadrupolar frequency.

Panels a3-b3 and a4-b4 in Figure 4.3 demonstrate the effect of off-resonance irradiation

at ΩS = ω
(2)
Q and ΩS = −ω(2)

Q in presence of second-order quadrupolar effects. From the

above simulations, it is evident that the off-resonant irradiation exactly at the negative

of the second-order quadrupolar frequency (ΩS = −ω(2)
Q ) leads to compensation for its

deteriorating effect on CP spin-locking efficiency. In this case, the sharp resonance due
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Figure 4.6: The second-order quadrupolar driven cross-polarization transfer efficiency as
a function of the 1H RF field for a single-crystal sample from the numerical simulation
(SIMPSON) and the analytic theory. These simulations demonstrate the effect of Zeeman
field strengths (a1) ω01H = 200 kHz and (a2) ω01H = 800 kHz on the CP efficiency profile
for a single-crystal sample. The parameters used for generating the CP efficiency profiles
are: CQ = 1.5 MHz, ηQ = 0, quadrupolar coupling PAS angles αQ = 0◦ and βQ = 45◦,
contact time = 0.5 ms, ν1S = 80 kHz internuclear distance rIS = 1.05 Å and dipolar
PAS angle βd = 0◦. SIMPSON simulations (black curve) are fitted with the total analytic
signal expressions (indigo curve) [Eq. (4.20)] in panels a1-a2.

to ZQ24 CP transfer is absent, and the overall CP efficiency profile looks identical to

the first-order quadrupolar driving CP profiles (panels a1-b1) under on-resonance S -spin

irradiation. Therefore, the off-resonance irradiation for larger CQ systems (discussed

in Figure 4.3) could work in favor of improving the spin-locking efficiency for a larger

CQ sample by mitigating the second-order quadrupolar effects. On the other hand, the

S -spin irradiation at ΩS = ω
(2)
Q doubles the overall effect resulting due to the second-order

coupling effect.

From an experimental standpoint, it seems rationale to study the effect of the off-resonance

irradiation strengths other than ΩS = ±ω(2)
Q . Figure 4.7 shows the CP efficiency profiles

at ΩS = 0,−20 and 20 kHz under first-order (panels a1-c1) and first+second-order

(panels d1-f1) quadrupolar coupling effects for single-crystal sample. The position and

efficiency of HH CP matching conditions does not show any dependence on the sign

of the S -spin off-resonance irradiation (Figure 4.7 panels b1-c1), however, the effective

dipolar coupling constants derived from the analytic theory for the DQ26/ZQ35 and



102
Chapter 4. Understanding the role of second-order quadrupolar coupling and

off-resonance effects in CP dynamics

Figure 4.7: The cross-polarization transfer efficiency as a function of the 1H RF field for a
single-crystal sample from the numerical simulation (SIMPSON) and the analytic theory.
These simulations demonstrate the effect of S -spin off-resonance irradiations on the CP
efficiency profile Ω1S = 0 kHz (a1-a2; d1-d2), Ω1S = −20 kHz (b1-b2; e1-e2) and Ω1S = 20
kHz (c1-c2; f1-f2). The simulations are performed considering the quadrupolar coupling
effects upto the first and second-orders in panels (a1-c1 and a2-c2) and (d1-f1 and d2-f2),
respectively. The parameters used for generating the CP efficiency profiles are: CQ =
1500 kHz, ηQ = 0, quadrupolar coupling PAS angles αQ and βQ = 50◦, contact time =
0.5 ms, ν1S = 80 kHz internuclear distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦.
SIMPSON simulations (black curve) are fitted with the total analytic signal expressions
(indigo curve) [Eq. (4.20)] in panels a1-f1 and the individual contributions from the SQ34

(red curve) and TQ16 (green curve); DQ26 (blue curve) and ZQ35 (cyan curve); ZQ24

(magenta curve) and DQ15 (orange curve) CP conditions are depicted in panels a2-f2.

ZQ24/DQ15 CP conditions show such dependence (refer to Figure D.1 in Appendix D

for CQ = 200 kHz). However, at larger ω
(1)
Q values, no such dependence is observed. This
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sign dependence could be omitted by redefining the unitary transformation Û5, which

would add to the complexity in subsequent calculations. This sign dependence can be

disregarded as the off-resonant effects are only significant for the higher ω
(1)
Q systems.

From an experimental standpoint, Figures D.2-D.3 (refer to Appendix-D) demonstrates

that while setting CP in the presence of multiple quadrupolar spins, it is advisable to

employ on-resonance irradiation with the larger CQ nuclei. This is due to the dramatic

effect of the off-resonance for the SQ34 CP conditions, which occur at RF amplitudes

that are experimentally feasible for the I -spin. However, for smaller CQ nuclei, the

S -spin off-resonance irradiation (ΩS = ω
(1)
Q or −ω

(1)
Q ) is advisable while setting the DQ26

or ZQ24 CP matching conditions. The rationale behind this selective implementation

originates from the fact that the SQ34 CP conditions necessitate the conversion of DQS

coherence into observable SQS coherence, which generally leads to loss of coherence. In

the presence of second-order quadrupolar interaction, the sign of off-resonant irradiation

has either detrimental or favorable effects on spin-locking CP efficiency (panels e1-f1).

This further strengthens the argument that off-resonance irradiation works well for the

higher CQ systems. Nevertheless, the quadrupolar systems with smaller CQ values have

nearly negligible second-order quadrupolar coupling effects and therefore, work well under

on-resonance irradiation. Omitting the operator similarities between the second-order

quadrupolar interaction and S -spin-off-resonance irradiation, the CP dynamics in the

former case is altered by the second and forth-rank quadrupolar tensor. Therefore, the

orientation behavior of the CP efficiency profile will vary for the powder sample.

4.2.1.2 CP dynamics for Single-Crystal: Varying orientation

In our previous chapter, we have explicitly highlighted the role of the quadrupolar PAS

angles αQ and βQ in describing the CP dynamics for single-crystal samples when subjected

to on-resonance S -spin irradiation. The presence of additional quadrupolar-dependent HH

CP matching condition in the presence of second-order quadrupolar coupling interaction

leads to an escalated complexity in the polarization transfer behavior.

Figures 4.8 and D.4 (refer to Appendix-D) outline the mechanistic changes observed

in the CP efficiency with the variation of quadrupolar PAS angle βQ within the range

0◦ ≤ βQ ≤ 180◦ for an axially symmetric tensor. The simulations were carried out for

a single-crystal sample with quadrupolar coupling constant CQ = 1.5 MHz at 1H larmor

frequency 400 MHz. The orientation dependence of the ω
(1)
Q and ω

(2)
Q with βQ variation is

shown in Figure D.5 in Appendix-D. On varying the polar angle βQ from 0◦ ≤ βQ ≤ 180◦,

the first-order quadrupolar frequency ( ω
(1)
Q ) shows two zero-passages at angles βQ =

54.736◦ and 125.624◦ where the sign changes from positive/negative to negative/positive.

Therefore, we anticipate a change in the dynamics of various CP resonances while passing

through these conditions. Unlike ω
(1)
Q , the second-order quadrupolar coupling frequency

ω
(2)
Q shows a different behavior and does not change the sign on varying βQ angle in the

range 0◦ ≤ βQ ≤ 180◦. Consequently, CP behavior with quadrupolar PAS angles (βQ and

αQ) variation will follow characteristics of ω
(1)
Q , while ω

(2)
Q will simply induce a shift in
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Figure 4.8: Effect of the variation of quadrupolar coupling PAS angle βQ: 0
◦ (a1), 30.56◦

(a2), 45◦ (a3), 54.736◦ (a4), 70.12◦ (a5) and 90◦ (a6) on the second-order quadrupolar
interaction driven cross-polarization transfer efficiency for a single-crystal sample. The
parameters used for generating the CP efficiency profiles are: CQ = 1500 kHz, ηQ = 0,
and quadrupolar coupling PAS angle αQ = 0◦, ν1S = 80 kHz, contact time = 0.5 ms,
1H Larmor precession frequency = 400 MHz and rIS = 1.05 Åunder on-resonance S -spin
irradiation. SIMPSON simulations (black curve) are fitted with the SQ34+TQ16 (red
curve), DQ26+ZQ35 (blue curve) and DQ15+ZQ24 (magenta curve) in all panels.

positions of HH-CP matching conditions and the degree of shift will directly depend on

the orientation of quadrupolar PAS angles.

For βQ = 0◦ [Figure 4.8(a1)], the CP efficiency profiles resemble the CP behavior observed

in Figure 4.3(a1-b1); this is because in case of axially symmetric tensor the second-order
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quadrupolar coupling strength is zero for this particular orientation. Therefore, CP

transfer is predominantly governed by the SQ34 (|1/2,−1⟩ ↔ |−1/2, 1⟩) and DQ26

(|1/2,−1⟩ ↔ |−1/2, 0⟩) CP matching conditions and the CP resonances are labeled

accordingly. In the range 0◦ < βQ < 54.736◦ (panels a2-a3), it is evident that the

second-order quadrupolar coupling excites an additional ZQ24 dipolar transition, which

appears at quite high I -spin RF amplitude. Additionally, the magnitude of first-order

quadrupolar coupling frequency decreases, resulting in the CP resonances becoming closer.

At βQ = 54.736◦, the magnitude of first-order quadrupolar coupling frequency reduces

to zero, the SQ34 and DQ26 CP matching conditions become degenerate which overlap

to produce a single CP maxima as observed for spin-1/2 behavior and dipolar coupling

constant becomes zero for the ZQ24 CP condition; hence we don’t observe the ZQ24 CP

resonance. Unlike on-resonance irradiation, the SQ34 and DQ26 CP matching conditions

do not provide an equivalent contribution to the overall CP efficiency. This is due to the

favorable and detrimental effect of the second-order quadrupolar interaction on the DQ26

and SQ34 CP matching conditions, respectively. The interesting observations are made in

the range 54.736◦ < βQ ≤ 90◦, where the sign of quadrupolar coupling frequency (ω
(1)
Q )

becomes negative. Therefore, the relative positions of CP matching conditions undergo

swapping i.e., the SQ34 and DQ26 CP resonances swap their positions while the ZQ24 CP

matching condition still appearing at the higher I -spin RF amplitudes. In panel (a6), the

DQ26 CP condition displays a little dispersion due to additional single-quantum I -spin

dipolar-transition (SQd,I). Moreover, a significant contribution is also observed from the

high-frequency ZQ35 CP matching condition. In the range 90◦ < βQ < 125.624◦, the

magnitude of quadrupolar coupling frequency again decreases which leads to a transition

of the CP spin-dynamics from the regime of intermediate to weak quadrupolar coupling.

At βQ = 125.624◦, the quadrupolar coupling frequency again crosses zero and CP efficiency

profiles demonstrate behavior equivalent to βQ = 54.736◦. From 125.624◦ < βQ < 180◦,

the sign of the ω
(1)
Q becomes positive and magnitude increases. Consequently, the relative

positions of the CP matching conditions are again reversed, resulting in a resemblance of

the CP behavior to that observed in the range 54.736◦ > βQ > 0◦ where it transitions from

weak to stronger quadrupolar coupling regime. Based on the above observations, it is fair

to conclude that the CP dynamic shows swapping in nature of CP matching conditions at

each zero-crossing, and in between these zero-crossings, the CP dynamics show a transition

from strong to weak or weak to strong CP behaviors. The above conclusions have been

made CQ = 1.5 MHz; however, they can be generalized to include all quadrupolar coupling

strengths, where the scale of the behavioral shift may be relatively small, but CP dynamics

displays a similar pattern of βQ variation. Although, the second-order quadrupolar effects

get reduced at smaller CQ systems.

In the case of an axially symmetric quadrupolar tensor, azimuthal PAS angle αQ does not

affect the CP behavior. However, it’s the contribution of CP dynamics cannot be ignored

for highly asymmetric quadrupolar tensors, especially for βQ values around 50◦ to 90◦. The

orientation dependence with varying αQ is shown in Figure D.6 and D.7 in Appendix-D
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Figure 4.9: Effect of strength and orientation of heteronuclear dipolar coupling tensor on
the positions of various HH CP matching conditions (i.e. terms ∆34, ∆26 and ∆24 are
plotted). The following parameters were used in the simulations: CQ = 200 kHz, ηQ = 0,
quadrupolar coupling PAS angles (0◦, 0◦, 0◦), ν1S = 80 kHz and S -spin off-resonance
irradiation Ω1S = 40 kHz, considering the effect of the first-order quadrupolar driven
coupling only. The 1H RF field amplitudes mentioned in the various panels of the figure
correspond to exact HH matching under zero heteronuclear dipolar coupling strength.

at different βQ values. For βQ values 0◦ < βQ or π − βQ < 45◦, αQ dependence shows

only magnitude variation while at other βQ it changes magnitude as well as a sign of the

first-order quadrupolar frequency. We also observe dipolar coupling dependent shift of the

SQ34, DQ26 and ZQ24 CP conditions as shown in the Figure 4.9. The magnitude of these

shifts will depend on the internal (quadrupolar and dipolar couplings) and external (RF

irradiation) parameters for distance measurement.

4.2.1.3 CP dynamics for powder sample: Ensemble of orientation

The theoretical framework proposed is shown to explain the CP dynamics associated with

a single-crystal sample. In the single-crystal simulation, it is evident that different HH

conditions are affected by different degrees under the influence of second-order quadrupolar

coupling interaction. Furthermore, it is observed that different crystallite orientations

exhibit non-uniform CP behavior with and without second-order quadrupolar coupling

interaction. Based on results obtained from the single-crystal studies, we extended

our theory to describe the CP dynamics in a more complex powder sample under
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static conditions. Figure 4.10 illustrates the CP efficiency for powder samples in the

presence of second-order quadrupolar coupling interaction with and without off-resonance

irradiation. The analytical simulations based on Eq. (4.20) converge well with the

numerical simulations under the off-resonance S -spin irradiation conditions. To explicate

the underlying dynamics of CP transfer, we evaluated the individual signal contributions

emerging from various CP matching conditions. Under the influence of the second-order

quadrupolar coupling interaction ( ΩS = 0 , panels a1-a2), the CP efficiency profile shows

three well-defined CP maxima of unequal widths and intensities. It has been observed

that the CP maxima at lower I -spin RF amplitude is primarily governed by the overlaid

SQ34 and DQ26 matching conditions. Conversely, the CP maxima observed at high I -spin

RF amplitude solely manifests the ZQ24 matching condition. The relative and absolute

positions and intensities of all the CP matching conditions in deciphering the CP spin

dynamics for the powder sample can be explained based on the interplay of various

crystallite orientations in the single-crystal sample (Figure 4.8). The powder sample

comprises a statistical ensemble of various crystallite orientations, with the weighting

factor sinβQ serving as a probability distribution function. [4, 131, 137] The orientations

in the plane perpendicular to the static Zeeman field are most probable and probability

continuously decreases moving away from this orientation. Therefore, the overall CP

efficiency profile observed in the powder sample has a close resemblance to the CP efficiency

observed for the single-crystal sample in the βQ range from 54.736◦ to 90◦ (Figure 4.8).

With a full cycle variation in βQ (0◦ to 180◦) angle, the absolute position of ZQ24 matching

condition changes, relatively appear at the higher I -spin RF amplitudes. Consequently, in

the powder sample, the ZQ24 CP matching condition does not provide any contribution at

lower I -spin CP efficiency. The lower intensity and width of the CP matching conditions

can be attributed to the interference of various powder orientations. Moreover, at and

around βQ = 90◦ which is a case suitable for the DQ 26 CP matching condition, resulting

in its higher CP efficiency than the SQ34 condition in the lower I -spin RF amplitude

region. Whereas in the higher I -spin RF amplitude region, the SQ34 CP is more efficient

due to the change in the sign of ω
(1)
Q .

In stark contrast to the first-order quadrupolar coupling CP efficiency profile for powder

sample, in the presence of the second-order quadrupolar coupling interaction the overall

CP efficiency profiles shows a negative CP efficiency at lower I -spin RF amplitudes

and these observations are consistent with the single-crystal sample. The individual

signal contributions reveal that the CP maximum at the higher I -spin RF field is solely

governed by the ZQ 24 CP matching condition which is spread over a range of I -spin RF

field where the intensity is the product of the absorptive terms in the signal expression( (ω15,24
d )2

(ω15,24
d )2 +∆2

24

)
and sinβQ. The range of βQ variation for SQ34 and DQ26 CP matching

conditions overlap at the CP maxima at lower I -spin RF amplitudes while the middle

CP maxima is solely governed by the SQ34 CP matching condition. The negative CP

efficiency at the beginning of the I -spin variations is due to CP transfer mediated by the

SQd,I dipolar transitions, which results in CP transfer modes that independent I -spin RF
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Figure 4.10: The second-order quadrupolar coupling driven cross-polarization transfer
efficiency as a function of the 1H RF field for the powder sample from the numerical
simulation (SIMPSON) and the analytic theory. These simulations demonstrate the
combined effect of the second-order quadrupolar coupling and S -spin off-resonance
irradiations (a1-b1) Ω1S = −6.55 kHz, (a2-b2) Ω1S = 0 kHz and (a3-b3) Ω1S = 4.36
kHz on the CP efficiency profiles. The parameters used for generating the CP efficiency
profiles are: CQ = 1.5 MHz, ηQ = 0, quadrupolar coupling PAS angles αQ = 0◦ and βQ
= 0◦, 1H Larmor precession frequency = 400 MHz, contact time = 0.5 ms, ν1S = 80 kHz
internuclear distance rIS = 1.05 Å and dipolar PAS angle βd = 0◦. SIMPSON simulations
(black curve) are fitted with the total analytic signal expression (indigo dashed curve) [Eq.
(4.20)], SQ34+TQ16 (red curve), DQ26+ZQ35 (blue curve) and DQ15+ZQ24 (magenta
curve) in panels a1-a3. These simulations are generated with the zcw4180 crystal file.

amplitude, and in these signal expression these terms manifested by the dispersive terms( ω16,34
d ∆34

(ω16,34
d )2 +∆2

34

,
ω16,34
d Σ16

(ω16,34
d )2 +Σ2

16

,
ω26,35
d ∆26

(ω26,35
d )2 +∆2

26

and
ω26,35
d Σ35

(ω26,35
d )2 +Σ2

35

)
. As discussed in

the case of the single-crystal sample system, the second-order quadrupolar effects can be

minimized by working at higher Zeeman field strength. However, when working at higher

fields, spin dynamics become more prone to S -spin offsets and CSA effects. Therefore,

such compensatory methods are seldom useful. Besides, exactly setting the S -spin

off-resonance irradiation at ΩS = −ω(2)
Q is not possible due to anisotropic quadrupolar

orientation in powder, thus, complete compensation of second-order induced shifts is
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not possible. In panel b1-c1, an off-resonance irradiation strength equal/negative to the

second-order quadrupolar coupling frequency at βQ = 90◦ is employed to compensate for

the second-order effects in the powder sample. This off-resonance irradiation strength is

best suited to compensate for the second-order quadrupolar effects for powder samples.

4.2.2 State-picture representation of the CP dynamics a single-crystal

sample

In previous section, we have provided a detailed operator-based analytic treatment of the

observed CP transfer trajectories for single-crystal and powder samples. Given that the

CP process involves an exchange of the polarization (i.e., population) between the different

energy levels, we have provided an equivalent state picture representation to rationalize

the polarization transfer process. Figure 4.11 demonstrates the energy eigen-level diagram

obtained by numerical diagonalization of the CP Hamiltonian for a single-crystal sample

using the parameters given in the caption of Figure 4.3 (panels a2-b2). In the presence of

the second-order quadrupolar coupling (on-resonance S -spin irradiation), we observed a

total of six regions of various avoided crossings or level anti-crossings (LAC) at (ν1H ̸= 0)

and are referred to as the HH CP matching conditions. These positions of LAC are in line

with the HH matching conditions expression given in Table 4.3 and corroborate extremely

well with the CP resonances observed in Figure 4.3 (panels a2-b2).

To understand the origin of these avoided crossings, it is important to access the CP

Hamiltonian [Eq. (4.12)] presented in theory section. The transformed CP Hamiltonian

[Eq. (4.12)] is comprised of six dipolar-based subspaces (pictorial representation of the

splitting of CP Hamiltonian in Figure 4.1). The matrix representation of the above

Hamiltonian in the coupled Zeeman basis is given as

ĤCP =
1

2



Σ16 +Σ15 0 0 0 ω15,24
d ω16,34

d

0 ∆26 +∆24 0 ω15,24
d 0 ω26,35

d

0 0 Σ35 +∆34 ω16,34
d ω26,35

d 0

0 ω15,24
d ω16,34

d −∆24 −∆34 0 0

ω15,24
d 0 ω26,35

d 0 −Σ15 − Σ35 0

ω16,34
d ω26,35

d 0 0 0 −Σ16 −∆26


.

(4.31)

For better visualization and the effectiveness of the various dipolar transitions involved

in the CP process, the above Hamiltonian is separated in three coupled subspaces in

accordance with Figure 4.1.

˜̃̃
˜̃
ĤCP = Ĥ16,34︸ ︷︷ ︸

Ĥ16+Ĥ34

+ Ĥ15,24︸ ︷︷ ︸
Ĥ15+Ĥ24

+ Ĥ26,35︸ ︷︷ ︸
Ĥ26+Ĥ35

(4.32)
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Figure 4.11: The eigen energy level plot as a function of 1H RF amplitude for a
single-crystal sample. The following parameters are used for generating the plot: CQ

= 1.5 MHz, ηQ = 0, quadrupolar coupling PAS angles αQ = 0◦ and βQ = 50◦, 1H Larmor
precession frequency = 400 MHz, ν1S = 80 kHz internuclear distance rIS = 1.05 Å and
dipolar PAS angle βd = 0◦. The regions of avoided crossings are referred to as HH CP
matching conditions and are labeled in accordance with the CP efficiency profile in Figure
4.3 under on-resonance irradiation. The avoided crossing at zero 1H RF amplitude (ν1H
= 0 kHz) are due to presence of I -spin dipolar transitions.

where

Ĥ16,34 =
1

2


Σ16 0 0 ω16,34

d

0 ∆34 ω16,34
d 0

0 ω16,34
d −∆34 0

ω16,34
d 0 0 −Σ16


|1⟩,|3⟩,|4⟩,|6⟩

Ĥ(15,24) =
1

2


Σ15 0 0 ω15,24

d

0 ∆24 ω15,24
d 0

0 ω15,24
d −∆24 0

ω15,24
d 0 0 −Σ15


|1⟩,|2⟩,|4⟩,|5⟩

and

Ĥ(26,35) =
1

2


∆26 0 0 ω26,35

d

0 Σ35 ω26,35
d 0

0 ω26,35
d −Σ35 0

ω26,35
d 0 0 −Σ26


|2⟩,|3⟩,|5⟩,|6⟩

.

(4.33)
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In accordance with Eq. (4.33), the CP Hamiltonian in each subspace (4×4, coupled)

is equivalent to the matrix representation of a dipolar coupled two spin-1/2 systems

[see Eq. (2.20) in Chapter 2]. Therefore, the polarization transfer in each subspace is

expected to follow a similar mechanism. As shown in Eq. (4.12), each subspace of the

CP Hamiltonian is associated with longitudinal (composed of the RF irradiation and

quadrupolar coupling part) and transverse (effective dipolar coupling part) components,

which correspond to the energy (position of avoided crossing/HH CP matching condition)

and driving field/potential, respectively. From a mathematical perspective, the energy

transfer in each subspace is analogous to a two-level system (TLS). Consequently, the

polarization transfer mechanism in I = 1/2 and S = 1 spin systems will be a manifestation

of six independent TLS. Therefore, various HH CP conditions are anticipated (also shown

in previous section) to exhibit different spin-dynamics.

As shown in Figure 4.11, we observed a total of six LACs or resonance conditions at ν1H ̸=
0 kHz and these conditions are labeled in accordance with Figure 4.3. As shown previously,

it is evident that the TQ16/DQ15/ZQ35 HH CP conditions are just phase-shifted version

of the SQ34/ZQ24/DQ26 HH CP conditions. For single-crystal sample at CQ = 1.5 MHz,

we observed well-resolved LACs and the area beneath each LAC decrease continuously

with increase in the 1H RF field requirements for various LACs. The area under a LAC

is direct manifestation of the strength of the perturbation (effective dipolar coupling)

acting between the states involved in CP transfer. As the strength of the effective dipolar

coupling decreases for the CP resonances occurring at a higher 1H RF range, therefore, we

observed different area under LACs. As seen in Figure 4.11, the ZQ24 transition has the

weakest effective dipolar coupling constant indicating that the CP transfer occur through

a non-adiabatic (sudden jump; P ad
i→j decreases, for detail refer to Eq. 2.27 in Chapter 2),

which falls rapidly away from the exact resonance condition. Consequently, this result

in a sharp CP resonance as depicted in Figure 4.3 panels a2-b2. Whereas the SQ34 CP

resonance possess the strongest effective dipolar coupling constant ω16,34
d > ω26,35

d > ω15,24
d ;

this order is quadrupolar parameter dependent). At the specified quadrupolar coupling

parameters and RF-field amplitudes, at the SQ34 CP condition the adiabatic transitions

have the maximum probability (P ad
i→j ≈ 1) for these transitions while the DQ26 condition

has finite probability for both adiabatic and sudden transitions. In addition to these

normal modes of CP transfer, we also observe avoided crossings at ν1H = 0 kHz which

are governed by the I -spin dipolar transitions (SQd,I). This zero-field avoided crossing is

equivalent to the polarization pathway arising due to the interference terms (ω
(ij)
eff ±ω

(kl)
eff )

in the CP signal expression [Eq. (4.20)] (in operator-based analytic theory). It should

also be noted that at this zero-field condition a significant loss in the I -spin polarization

(refer to < Îx(t) > detection in Figure D.8 in Appendix-D) is observed during the transfer

process while the gain in the S -spin polarization (via < Ŝx(t) > detection) is minimal. This

is primarily due to the involvement of ÎxŜz (SQd,I) transition operators in the polarization

transfer process.

A quantitative measure of the degree of the polarization transfer in the state-picture
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Figure 4.12: The population exchange dynamics for different HH CP Matching conditions
as a function of 1H RF amplitude for a single-crystal sample. The population coefficients
for different HH matching conditions are calculated based on the final density matrix
calculation as given in Eqs. (4.16), (4.18), (4.17) and are given as (a1) SQ34 (ρ33, ρ44):
(sin2 θ34, -sin

2 θ34) and TQ16 (ρ11, ρ66): (sin
2 θ16, -sin

2 θ16); (a2) ZQ35 (ρ33, ρ55): (sin
2 θ35,

-sin2 θ35) and DQ26 (ρ22, ρ66): (sin2 θ26, -sin
2 θ26); and (a3) ZQ24 (ρ22, ρ44): (sin2 θ24,

-sin2 θ24) and DQ15 (ρ11, ρ55): (sin
2 θ15, -sin

2 θ15). The area between each avoided crossing
can be correlated with the width of each CP resonance observed in Figure 4.3. Remaining
simulation parameters are as given in the caption of Figure 4.11.

representation can be obtained by plotting the population exchange diagram at various

LACs. Although, the state-picture representation necessitate the evaluation of populations

of various Eigen-states by calculating degree of the overlaps between two Eigen-states

(⟨i′| I |i′⟩; I is the identity operator and |i′⟩ is the Eigen-states which is a superposition of

the Zeeman-states governed by the unitary transformations involved in the calculation of

the effective CP Hamiltonian). An analogous representation can be obtained by plotting

the population coefficients from the density matrix calculation. The population exchange

at various LACs are shown in Figure 4.12 where the population is plotted by selecting

the coefficients of all Zeeman states in the final density matrix in Eqs. (4.16)-(4.18)

(see Figure cation for more information). In the population diagram (panel a1), clearly

|1⟩ / |6⟩ and |3⟩ / |4⟩ exchange their populations (i.e. population difference becomes zero

ρ̂ii − ρ̂jj = 0) at exact HH CP matching condition which correlates well with the Figure

4.3 and point towards an adiabatic transfer. In this panel, we observe two additional

avoided crossing at ν1H = 0 kHz, where there is no significant population exchange, again

highlighting the presence of SQd,I I -spin dipolar transitions. Nevertheless, the population

exchange dynamics observed in the panels a2-a3 for the DQ26/ZQ35 and ZQ24/DQ15

CP matching conditions, respectively demonstrates a behavioural shift from adiabatic to

sudden transitions. Besides, the area in between two population curves directly signifies

the width of the overall CP transfer as observed in Figure 4.3. It is important to note

that the aforementioned observations are based on the parameter used while generating

the simulations and the nature of CP dynamics may change by selecting other parameters

set while the analytic description will hold good. In summary, a detailed account of all the

observations made by the analytic theory can be found in the energy level representation.
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4.3 Conclusions

In summary, the operator-based analytic theory provides a single-unified framework for

a detailed theoretical description of the CP dynamics between I = 1/2 and S = 1 spin

systems under second-order quadrupolar coupling and S -spin off-resonance irradiation.

The proposed analytic theory is rigorously compared with the numerical simulations under

all experimentally relevant simulation parameters. The spin-dynamics is manifestation

of six different HH CP matching conditions namely, SQ34, TQ16, ZQ24, DQ15, ZQ35 and

DQ26, ZQ24 and DQ15. We have derived a CP signal expression quantifying the individual

contribution from all possible CP conditions in the overall CP transfer. For single-crystal

sample, due to a similar operator dependencies the second-order quadrupolar coupling and

S -spin off-resonances display similar CP dynamics and it is demonstrated that off-resonant

irradiation at Ω1S = −ω(2)
Q can compensate the effect of the second-order quadrupolar

coupling. It is shown that various CP resonances displays different CP dynamics under

second-order quadrupolar coupling and S -spin off-resonance irradiations. For example, the

intensity of the CP resonance observed at lower RF-field amplitude will decrease while the

intensity of the CP resonance at higher RF-fields increases. We have explicitly shown the

role of the orientation of the quadrupolar coupling tensor in alerting the polarization

dynamics for the single-crystal sample, which simplified the understanding of more

complex powder sample. In the powder sample, the second-order quadrupolar coupling

and S -spin off-resonance irradiation does not displays similar dynamics due to complex

orientation dependence later. Due to the interplay of various HH CP matching conditions,

the overall CP transfer is an amalgamation of all six HH CP matching conditions, the

individual CP condition will have no significance in such systems. The proposed theory is

equally valid for single-crystal and powder samples across all regimes of the quadrupolar

coupling. It is not possible to exactly compensate for the second-order quadrupolar

coupling by off-resonance irradiations, however, by irradiating at Ω1S = −ω(2)
Q (90◦) a

compromise can be made. We have also provided a state-picture representation equivalent

to the operator-based analytic theory.



Chapter 5

Analytic theory of cross-polarization

(CP) dynamics between spin-1/2

and spin-3/2 nuclei

In this chapter of the thesis, a theoretical framework for understanding the CP

spin-dynamics involving nuclei with I = 1/2 and S = 3/2 is presented. The half-integer

quadrupolar nuclei account for approximately 70% of the total quadrupolar nuclei and

are prevalent in many inorganic and bio-organic importance compounds [71, 157–160].

Consequently, these nuclei serve as an attractive tool for structural constraints. The

presence of the first-order quadrupolar coupling devoid central transition (CTs) (|−1/2⟩ ↔
|1/2⟩) made half-integer nuclei a favourable choice for various structural investigations

compared to nuclei with integer spins [161–164]. Nonetheless, the poor S/N ratio is often

observed due to large quadrupolar coupling and their lower gyromagnetic ratio and/or

natural abundance. As a result, the direct observation of the half-integer quadrupolar

nuclei via the selective excitation of the CTs has not gained significant popularity in

quadrupolar NMR studies [53, 165]. Consequently, numerous experimental approaches

have been developed to achieve an efficient excitation of quadrupolar NMR spectra. A

widely accepted method for improving the sensitivity of spin-1/2 dilute spins involves

the implementation of cross-polarization (CP) experiments. Nevertheless, CP involving

quadrupolar spins is limited by the complicated mechanism of the polarization transfer due

to the presence of multiple-energy levels and poor spin-locking efficiency [106,156,166–168].

Despite notable advancements [101, 106, 169–175], our complete understanding of the

complex CP dynamics remained elusive. From a theoretical standpoint, Vega et. al. [47]

and Amoureux et. al. [82] laid the foundation of quantitative analysis of numerous

experimental studies based on CP. Using the fictitious spin-1/2 operator formalism, the

analytic theory presented by Vega et. al. suggested the existence of various HH CP

matching conditions; however, the major focus remained on the polarization transfer

involving central and triple-quantum quadrupolar spin transitions, namely CTS (SQ) and

TQS CP transfer processes. Under on-resonance S -spin irradiation, they presented the

analytical treatments in the extreme coupling regimes i.e. ω1S > ω
(1)
Q and ω1S << ω

(1)
Q for

the static single-crystal sample. For the single-quantum (SQ) CP, the HH CP matching

condition expressions were derived as ω1I = ω1S and ω1I = (S+1/2)ω1S in ω1S > ω
(1)
Q and

ω1S << ω
(1)
Q coupling regimes, respectively, which mainly transfer the I -spin polarization
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only to S -spin central transition. While for triple-quantum cross-polarization (TQCP),

they presented the HH CP matching condition expressions as ω1I = 3ω1S and ω1I = ωS,nut

[82] in ω1S > ω
(1)
Q and ω1S << ω

(1)
Q coupling regimes, respectively. Here, ωS,nut is the

nutation frequency for S=1 in the strong coupling regime ( ω1S << ω
(1)
Q ). Nevertheless, in

intermediate coupling regime i.e., ω1S ≈ ω
(1)
Q , due to complicated derivation no theoretical

description was presented. The lack of unified description across all the quadrupolar

coupling regimes, these description are of lesser utility in the single-crystal sample of

arbitrary quadrupolar coupling strengths and crystallite-orientations. Importantly, the

distribution of quadrupolar coupling frequencies limited the utility of these formulations

in quantifying the CP profiles in powder samples. Later, Amoureux et. al. extended

the analytical description provided by the Vega for spinning sample while the underlying

shortcoming remained. To overcome these challenges, alternate description based on the

quadrupolar interaction [109, 148, 149] were presented for describing the spin dynamics

involving quadrupolar spins. The application of perturbative approach based on the

Average Hamiltonian theory (AHT) and Floquet theory have led to the development

of semi-analytical approaches designed to elucidate experimental findings associated with

quadrupolar spins, relevant to both static and rotating solids. The theoretical limitation

of these methods have been already pointed out in Chapter 1. Therefore, a detailed

mathematical model framework based on the analytic theory described in the coupled spin

operator basis that is valid for all the quadrupolar coupling regimes is not available. This

forms the motivation behind this chapter. In this chapter of thesis, we have substantiated

the theory behind the spin dynamics of the cross-polarization between an isolated spin

pair I = 1/2 and S = 3/2 for static samples. We have used the effective field and density

operator formalism to derive the effective Hamiltonian represented in the coupled spin

operator basis.

5.1 Theory and Methodology

5.1.1 Derivation of the effective CP Hamiltonian

In order to describe the fundamental operational aspects of the CP experiment, we start

with a model two-spin (say, I = 1/2 and S = 3/2) Hamiltonian. In the doubly rotating

frame, the Hamiltonian of such a system under on-resonance irradiation (on the spins I

and S ) is represented by

ĤCP = ω1SŜx︸ ︷︷ ︸
ĤRF

S

+
ω
(1)
Q (αQ, βQ)

2
(3Ŝ2

z − Ŝ2)︸ ︷︷ ︸
ĤQ

S

+ω1I Îx︸ ︷︷ ︸
ĤRF

I

+2ωdÎzŜz︸ ︷︷ ︸
ĤD

IS

; ℏ = 1.
(5.1)

In the above equation, ω1I and ω1S represent the RF amplitudes on I and S spins,

respectively. ĤQ
S is the first-order quadrupolar Hamiltonian for the S -spin. A detailed

description of the quadrupolar Hamiltonian can be found in Chapter 1. The matrix
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representation of the various spin-operators [in Eq. (5.1)] for the both I and S -spins can

be found in Appendix-E.

To simplify the description, the above Hamiltonian is re-expressed in terms of the

single-transition operators [111,112] as given below:

ĤCP =
√
3ω1S(Ŝ

12
x + Ŝ34

x + Ŝ56
x + Ŝ78

x ) + 2ω1S(Ŝ
23
x + Ŝ67

x ) + ω
(1)
Q (Ŝ12

z − Ŝ34
z + Ŝ56

z − Ŝ78
z )︸ ︷︷ ︸

ĤS

+ ω1I(Ŝ
15
x + Ŝ26

x + Ŝ37
x + Ŝ48

x )︸ ︷︷ ︸
ĤRF

I

+ωd(3Ŝ
14
z + Ŝ23

z − 3Ŝ58
z − Ŝ67

z )︸ ︷︷ ︸
ĤD

IS

.

(5.2)

The superscript (i, j) in the operators Ŝij
α (α = x, y, z) represents the spin-states in a

coupled system and are defined according to the energy level diagram depicted in Figure

5.1(a). The definition of these single-transitions operators can be found in Chapter 1. A

schematic description of the populations and coherences observed in a coupled spin-pair

(I = 1/2 and S = 3/2) is given in Figure 5.1(b). While the matrix representation of

the various spin-operators and their product Zeeman basis is given in Appendix-D. In

order to gain insights into the CP spin dynamics and enable an analytical description, the

Hamiltonian [Eq. (5.2)] is divided into three parts:

1. Hamiltonian for the S -spin system (ĤS = ĤRF
S + ĤQ

S )

2. Hamiltonian for the I -spin system (ĤRF
I )

3. Hamiltonian for the I-S spin pair (ĤD
IS)

Subsequently, employing unitary transformations, the Hamiltonians are diagonalized using

the procedure outlined below.

A: Derivation of effective Hamiltonian for the S -spin system

To diagonalize the S -spin Hamiltonian, we employ the following transformation that has

been extensively discussed in literature [176].

Û1 = exp
{
ι
π

2
(Ŝ14

y −Ŝ23
y +Ŝ58

y −Ŝ67
y )
}
exp

{
2ιθ2(Ŝ

24
y +Ŝ68

y )
}
exp

{
2ιθ1(Ŝ

13
y +Ŝ57

y )
}
. (5.3)

The unitary transformation function Û1 is selected to ensure that the Hamiltonian is

diagonal in the chosen coupled basis representation depicted in Figure 5.1(b). This

is achieved by selecting the angles θ1 and θ2 as tan 2θ1 =

√
3ω1S

ω
(1)
Q − ω1S

and tan 2θ2 =

√
3ω1S

ω
(1)
Q + ω1S

. The S -spin Hamiltonian in Eq. (5.2) is transformed as

˜̂
HS =

ω13,57

2
(Ŝ13

z + Ŝ57
z )− ω24,68

2
(Ŝ24

z + Ŝ68
z ) + ω1S(Ŝ

12
z + Ŝ34

z + Ŝ56
z + Ŝ78

z ) (5.4)
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Figure 5.1: (a) Schematic depiction of the energy level diagram in a coupled two-spin
(I = 1/2 and S = 1) system. The spin states |1⟩, |2⟩, |3⟩, |4⟩, |5⟩, |6⟩, |7⟩ and |8⟩ are
representative of the product basis states (|mI ,mS⟩) |1/2, 3/2⟩, |1/2, 1/2⟩, |1/2,−1/2⟩,
|1/2,−3/2⟩ |−1/2, 3/2⟩, |−1/2, 1/2⟩, |−1/2,−1/2⟩ and |−1/2,−3/2⟩, respectively. (b)
Matrix representation of the populations and coherences in the coupled two-spin (I and
S ) system. The diagonal elements depict the populations (of the states |mI ,mS⟩) and
are represented through ‘Pii’. The coherences wherein both spins change their states
are represented as the four-quantum (FQIS), triple-quantum (TQIS), double-quantum
(DQIS), single-quantum (SQIS), and zero-quantum (ZQIS). The coherences where only
the state of S -spin changes are represented by TQS , DQS and SQS , while, coherences
where only the state of I -spin changes are represented by, SQI . The coherence/transitions
involving the S -spin are further categorized as single-quantum central transition (CTS :
|−1/2⟩ ↔ |1/2⟩), single-quantum satellite transitions ST1S and ST2S (|3/2⟩ ↔ |1/2⟩ and
|−3/2⟩ ↔ |−1/2⟩, respectively) and double-quantum transitions DQ1S and DQ2S (|3/2⟩ ↔
|−1/2⟩ and |−3/2⟩ ↔ |1/2⟩, respectively). The blue-colored (FQIS/DQIS) coherences
involve triple-quantum transitions associated with the S -spin (|+3/2⟩ ↔ |−3/2⟩), while
magenta, orange and green-colored (DQIS/ZQIS) coherences involve single-quantum
transitions associated with S -spin, CTS (|1/2⟩ ↔ |1/2⟩), ST1S (|3/2⟩ ↔ |1/2⟩) and
ST2S (|−3/2⟩ ↔ |−1/2⟩), respectively. The black-colored (TQIS/SQIS) coherences
involve double-quantum transition associated with the S -spin transitions (DQS |±3/2⟩ ↔
|±1/2⟩).

where, ω13,57 =
√
3ω2

1S +
(
ω
(1)
Q − ω1S

)2
and ω24,68 =

√
3ω2

1S +
(
ω
(1)
Q + ω1S

)2
.

Using the relation Ŝik
z = Ŝij

z + Ŝjk
z , the above Hamiltonian can be re-arranged as follows:

˜̂
HS =

{ω13,57 − ω24,68 + 2ω1S

4

}
(Ŝ14

z + Ŝ58
z ) +

{ω13,57 − ω24,68 − 2ω1S

4

}
(Ŝ23

z + Ŝ67
z )

+
{ω13,57 + ω24,68 + 2ω1S

4

}
(Ŝ12

z + Ŝ56
z ) +

{ω13,57 + ω24,68 − 2ω1S

4

}
(−Ŝ34

z − Ŝ78
z ).

(5.5)

The effectiveness of the Hamiltonian given in Eq. (5.5) has been evaluated in the existing

literature [176] and is demonstrated to offer the convergent solutions to the spin-dynamics
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across all quadrupolar coupling regimes.

B: Derivation of effective Hamiltonian for the I -spin system

Similarly, by utilising the unitary transformation Û2 = exp
{
iπ2 (Ŝ

15
y + Ŝ26

y + Ŝ37
y + Ŝ48

y )
}
,

the Hamiltonian for the I -spin is transformed such that it is diagonal in the chosen basis.

˜̃
ĤI = ω1I(Ŝ

15
z + Ŝ26

z + Ŝ37
z + Ŝ48

z ). (5.6)

C: Derivation of effective Hamiltonian for the IS -spin system

To have a consistent description, the dipolar coupling Hamiltonian (ĤIS) is also

transformed by the same set of unitary transformations employed on the S and I -spin

Hamiltonians.

˜̃
ĤD

IS = Û2Û1Ĥ
D
ISÛ

†
1 Û

†
2

= ω18,45
d (Ŝ18

x + Ŝ45
x ) + ω27,36

d (Ŝ27
x + Ŝ36

x ) + ω16,25
d (Ŝ16

x + Ŝ25
x ) + ω38,47

d (Ŝ38
x + Ŝ47

x )

(5.7)

where, ω18,45
d , ω27,36

d , ω16,25
d and ω38,47

d are the effective dipolar coupling constants in

various dipolar coupled subspaces as described below and are given in Table 5.1. As

demonstrated previously, unlike single spin Hamiltonians [refer to Eqs. (5.5) and (5.6)],

the transformed dipolar coupling Hamiltonian exhibits off-diagonalities in the chosen

basis system. The transformed dipolar coupling Hamiltonian [Eq. (5.7)] consists of

eight different sets of dipolar coupling mediated transitions, therefore, CP transfer under

on-resonance irradiation is anticipated to display eight modes/pathways of polarization

transfer. The dipolar transitions are classified based on the total change in the S

and I -spin quantum numbers of the transitions involved i.e. {1, 8}/{2, 5} labeled as

FQ18/DQ25; and {1, 6}/{2, 5}/, {2, 7}/{3, 6}/ and {3, 8}/{4, 7} are labeled as DQij/ZQij

dipolar transitions. The dipolar coupling terms involving the flipping of both S and

I -spins are further quantified in terms of the S -spin involved dipolar transitions as

follows: FQ18/DQ25 involves triple-quantum (TQS) : |3/2⟩ ↔ |−3/2⟩ S -spin transition;

DQ27/ZQ36 involves S -spin single-quantum central transition (CTS) : |1/2⟩ ↔ |−1/2⟩;
DQ16/ZQ25 involves S -spin single-quantum satellite transition (ST1S) : |3/2⟩ ↔ |1/2⟩; and
DQ38/ZQ47 involves S -spin single-quantum satellite transition (ST21S) : |−3/2⟩ ↔ |−1/2⟩.
The dipolar coupling transitions which involves double-quantum (DQS) : |−3/2⟩ ↔
|1/2⟩ and |3/2⟩ ↔ |−1/2⟩ S -spin transition were absent under on-resonance S -spin

irradiations. All the dipolar coupling CP modes in Eq. (4.8) occur through single-quantum

(SQI) : |1/2⟩ ↔ |−1/2⟩ I -spin flip.

Combining the transformed Hamiltonians
˜̃
ĤS ,

˜̃
ĤRF

I and
˜̃
ĤD

IS [Eqs. (5.5), (5.6) and (5.7)],

the complete Hamiltonian describing the CP dynamics is represented by the following
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equation:

˜̃
ĤCP =

˜̃
ĤS +

˜̃
ĤRF

I +
˜̃
ĤD

IS

=
{ω13,57 − ω24,68 + ω1S

2

}
(Ŝ14

z + Ŝ58
z ) +

{ω13,57 − ω24,68 − ω1S

2

}
(Ŝ23

z + Ŝ67
z )

+
{ω13,57 + ω24,68 + ω1S

2

}
(Ŝ12

z + Ŝ34
z + Ŝ56

z + Ŝ78
z ) + ω1I(Ŝ

15
z + Ŝ26

z + Ŝ37
z + Ŝ48

z )

+ ω18,45
d (Ŝ18

x + Ŝ45
x ) + ω27,36

d (Ŝ27
x + Ŝ36

x ) + ω16,25
d (Ŝ16

x + Ŝ25
x ) + ω38,47

d (Ŝ38
x + Ŝ47

x ).

(5.8)

The transformed CP Hamiltonian in Eq. (5.8) is highly off-diagonal and hence, is of

less utility in further descriptions of the spin dynamics. To overcome this issue, the

transformed single spin Hamiltonians are re-expressed in terms of the operators employed

in the description of the dipolar coupling Hamiltonian via the relation Ŝik
z = Ŝij

z + Ŝjk
z

between the single-transition operators as given below:

˜̃
ĤCP = Σ18Ŝ

18
z +∆45Ŝ

45
z +Σ27Ŝ

27
z +∆36Ŝ

36
z +Σ16Ŝ

16
z +∆25Ŝ

25
z +Σ47Ŝ

47
z +∆38Ŝ

38
z

+ ω18,45
d (Ŝ18

x + Ŝ45
x ) + ω27,36

d (Ŝ27
x + Ŝ36

x ) + ω16,25
d (Ŝ16

x + Ŝ25
x ) + ω38,47

d (Ŝ38
x + Ŝ47

x ).

(5.9)

The coefficients in the above equation are mentioned in Table 5.1.

˜̃
ĤCP =

˜̃
Ĥ18 +

˜̃
Ĥ45 +

˜̃
Ĥ27 +

˜̃
Ĥ36 +

˜̃
Ĥ16 +

˜̃
Ĥ25 +

˜̃
Ĥ47 +

˜̃
Ĥ38

= Σ18Ŝ
18
z + ω18,45

d Ŝ18
x︸ ︷︷ ︸

˜̃
Ĥ18

+∆45Ŝ
45
z + ω18,45

d Ŝ45
x︸ ︷︷ ︸

˜̃
Ĥ45

+Σ27Ŝ
27
z + ω27,36

d Ŝ27
x︸ ︷︷ ︸

˜̃
Ĥ27

+∆36Ŝ
36
z + ω27,36

d Ŝ36
x︸ ︷︷ ︸

˜̃
Ĥ36

+Σ16Ŝ
16
z + ω16,25

d Ŝ16
x︸ ︷︷ ︸

˜̃
Ĥ16

+∆25Ŝ
25
z + ω16,25

d Ŝ25
x︸ ︷︷ ︸

˜̃
Ĥ25

+Σ47Ŝ
47
z + ω47

d Ŝ
47
x︸ ︷︷ ︸

˜̃
Ĥ47

+∆38Ŝ
83
z + ω38,47

d Ŝ38
x︸ ︷︷ ︸

˜̃
Ĥ38

.

(5.10)

Thus, the new representation of the CP Hamiltonian include contributions emerging from

the eight transitions (that involve flipping of both spins) present in the coupled basis [refer

to Figure 5.1(a)]. The term
˜̃̃
Ĥ18 is representative of the four-quantum (FQ18) transition(

|1/2, 3/2⟩ ↔ |−1/2,−3/2⟩
)
, while

˜̃̃
Ĥ45 is representative of the double-quantum (DQ45)

transition
(
|1/2,−3/2⟩ ↔ |−1/2, 3/2⟩

)
. In a similar vein, the term

˜̃̃
Ĥ27 is representative

of the double-quantum (DQ27) transition
(
|−1/2,−1/2⟩ ↔ |1/2, 1/2⟩

)
, while

˜̃̃
Ĥ36 is

representative of the zero-quantum (ZQ36) transition
(
|1/2,−1/2⟩ ↔ |−1/2, 1/2⟩

)
in

a coupled spin basis. The term
˜̃̃
Ĥ16 is representative of the double-quantum (DQ16)

transition
(
|1/2, 3/2⟩ ↔ |−1/2, 1/2⟩

)
, while

˜̃̃
Ĥ25 is representative of the zero-quantum

(ZQ25) transition
(
|−1/2, 3/2⟩ ↔ |1/2, 1/2⟩

)
in a coupled spin basis. Similarly, the

term
˜̃̃
Ĥ47 is representative of the zero-quantum (ZQ47) transition

(
|1/2,−3/2⟩ ↔

|−1/2,−1/2⟩
)
, while

˜̃̃
Ĥ38 is representative of the double-quantum (DQ38) transition
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Table 5.1: List of coefficients involved in calculations of the CP Hamiltonian [Eq. (5.8)].

Longitudinal coefficients Transverse (dipolar) coefficients

Σ18 =

{
2ω1I + (ω13,57 − ω24,68 + 2ω1S)

4

}
ω18,45
d = ωd(sin θ1 sin θ2 + 3 cos θ1 cos θ2)

∆45 =

{
2ω1I − (ω13,57 − ω24,68 + 2ω1S)

4

}

Σ27 =

{
2ω1I + (ω13,57 − ω24,68 − 2ω1S)

4

}
ω27,36
d = ωd(−3 sin θ1 sin θ2 − cos θ1 cos θ2)

∆36 =

{
2ω1I − (ω13,57 − ω24,68 − 2ω1S)

4

}

Σ16 =

{
2ω1I + (ω13,57 + ω24,68 + 2ω1S)

4

}
ω16,25
d = ωd(− sin θ1 sin θ2 + 3 cos θ1 cos θ2)

∆25 =

{
2ω1I − (ω13,57 + ω24,68 + 2ω1S)

4

}

Σ38 =

{
2ω1I − (ω13,57 + ω24,68 − 2ω1S)

4

}
ω38,47
d = ωd(−3 sin θ1 sin θ2 + cos θ1 cos θ2)

∆47 =

{
2ω1I + (ω13,57 + ω24,68 − 2ω1S)

4

}

(
|−1/2,−3/2⟩ ↔ |1/2,−1/2⟩

)
in a coupled spin basis. It is important to note that the

magnitude of the effective dipolar couplings (ωij
d ) is different in DQ45/FQ18, ZQ36/DQ27,

ZQ25/DQ16 and ZQ47/DQ38 sets of transitions.

In contrast to previous literature reports [47, 82], it is important to note that the

Hamiltonian in Eq. (5.10) comprises all the modes of CP transfer in a single framework.

This serves as the main focus of the current study and will be substantiated in the following

sections. As shown in Eq. (5.10), the CP Hamiltonian within the effective-field framework

reduces to the sum of transverse (Ŝij
x ) and longitudinal (Ŝij

z ) operators in eight subspaces

(see Figure 5.2). Subsequently, employing the rotation operators, the Hamiltonians in

the respective sub-spaces are diagonalized through rotation operators (analogous to the

spin-1/2) Û3 = Û18
3 Û45

3 Û36
3 Û27

3 Û16
3 Û25

3 Û47
3 Û38

3 defined in Table 5.2. The angles θ183 , θ453 , θ273 ,

θ363 , θ163 , θ253 , θ383 and θ473 are chosen such that the effective-fields in individual subspaces

are quantized along the z-axis and are given in Table 5.2. Subsequently, the effective
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Figure 5.2: Schematic representation of the effective-fieldS in (a1) Four-quantum FQ18,
(a2) Double-quantum DQ45, (a3) Double-quantum DQ27, (a4) Zero-quantum ZQ36, (a5)
Double-quantum DQ16, (a6) Zero-quantum ZQ25, (a7) Double-quantum DQ38 and (a8)
Zero-quantum ZQ47 subspaces.

Hamiltonian depicting the CP dynamics is represented by the following Eq.

Ĥeff = Ĥ18
eff + Ĥ45

eff + Ĥ27
eff + Ĥ36

eff + Ĥ16
eff + Ĥ25

eff + Ĥ38
eff + Ĥ47

eff

= Û18
3 Ĥ18Û

18†
3 + Û45

3 Ĥ45Û
45†
3 + Û27

3 Ĥ27Û
27†
3 + Û36

3 Ĥ36Û
36†
3

+ Û16
3 Ĥ16Û

16†
3 + Û25

3 Ĥ25Û
25†
3 + Û38

3 Ĥ38Û
38†
3 + Û47

3 Ĥ47Û
47†
3

= ω18
eff Ŝ

18
z + ω45

eff Ŝ
45
z + ω27

eff Ŝ
27
z + ω36

eff Ŝ
36
z + ω16

eff Ŝ
16
z + ω25

eff Ŝ
25
z + ω38

eff Ŝ
38
z + ω47

eff Ŝ
47
z .

(5.11)

where the effective frequencies ( ωij
eff ) in above Eq. are given in Table 5.2. The pictorial

representation the effective fields in the effective CP Hamiltonian is presented in Figure

5.2.

5.1.2 Time-evolution of the spin-system during the CP mixing period

The time-evolution of spin-system is described using the standard operational process [Eq.

(1.44)] [130, 177]. For a consistent description, the initial density operator is transformed

using the same set of unitary transformations on the S and I -spins.

˜̃̃
ρ̂(0) = Û3Û2Û1ρ̂(0)Û

†
1 Û

†
2 Û

†
3

=
1

2

[
Ŝ18
z

]
︸ ︷︷ ︸
ρ̂18(0)

+
1

2

[
Ŝ45
z

]
︸ ︷︷ ︸
ρ̂45(0)

+
1

2

[
Ŝ27
z

]
︸ ︷︷ ︸
ρ̂27(0)

+
1

2

[
Ŝ36
z

]
︸ ︷︷ ︸
ρ̂36(0)

+
1

2

[
Ŝ16
z

]
︸ ︷︷ ︸
ρ̂16(0)

+
1

2

[
Ŝ25
z

]
︸ ︷︷ ︸
ρ̂25(0)

+
1

2

[
Ŝ38
z

]
︸ ︷︷ ︸
ρ̂38(0)

+
1

2

[
Ŝ47
z

]
︸ ︷︷ ︸
ρ̂47(0)

.

(5.12)



122
Chapter 5. Analytic theory of cross-polarization (CP) dynamics between spin-1/2 and

spin-3/2 nuclei

Table 5.2: List of all the unitary operators involved in diagonalization of the CP
Hamiltonian [Eq. (5.10)] and associated coefficients.

Unitary transformations and rotation angles Effective frequencies

Û18
3 = exp

{
i
(
π
2 − θ183

)
Ŝ18
y

}
; tan θ183 =

Σ18

ω18,45
d

ω18
eff =

√
Σ2
18 + (ω18,45

d )2

Û45
3 = exp

{
i
(
π
2 − θ453

)
Ŝ45
y

}
; tan θ453 =

∆45

ω18,45
d

ω45
eff =

√
∆2

45 + (ω18,45
d )2

Û27
3 = exp

{
i
(
π
2 − θ273

)
Ŝ27
y

}
; tan θ273 =

Σ27

ω27,36
d

ω27
eff =

√
Σ2
27 + (ω27,36

d )2

Û36
3 = exp

{
i
(
π
2 − θ363

)
Ŝ36
y

}
; tan θ363 =

∆36

ω27,36
d

ω36
eff =

√
∆2

36 + (ω27,36
d )2

Û16
3 = exp

{
i
(
π
2 − θ163

)
Ŝ16
y

}
; tan θ163 =

Σ16

ω16,25
d

ω16
eff =

√
Σ2
16 + (ω16,25

d )2

Û25
3 = exp

{
i
(
π
2 − θ253

)
Ŝ25
y

}
; tan θ253 =

∆25

ω16,25
d

ω25
eff =

√
∆2

25 + (ω16,25
d )2

Û38
3 = exp

{
i
(
π
2 − θ383

)
Ŝ38
y

}
; tan θ383 =

Σ38

ω38,47
d

ω38
eff =

√
Σ2
38 + (ω38,47

d )2

Û47
3 = exp

{
i
(
π
2 − θ473

)
Ŝ47
y

}
; tan θ473 =

∆47

ω38,47
d

ω47
eff =

√
∆2

47 + (ω38,47
d )2

The density operator at time ‘t ’ is calculated using the effective Hamiltonians [Eq. (5.11)]

in respective sub-spaces as given below:

ρ̂eff (t) = ρ̂18eff (t) + ρ̂45eff (t) + ρ̂27eff (t) + ρ̂36eff (t) + ρ̂16eff (t) + ρ̂25eff (t) + ρ̂38eff (t) + ρ̂47eff (t)

(5.13)

where,

ρ̂18eff (t) = exp
{
− i

ℏ
Ĥ18

eff t
}
Û18
3 ρ̂18(0)Û

18†
3 exp

{ i
ℏ
Ĥ18

eff t
}

=
1

2
Ŝ18
z sin 2θ183 − 1

2

{
Ŝ18
x cosω18

eff t+ Ŝ18
y sinω18

eff t
}
cos 2θ183 ,

(5.14)

ρ̂45eff (t) = exp
{
− i

ℏ
Ĥ45

eff t
}
Û45
3 ρ̂45(0)Û

45†
3 exp

{ i
ℏ
Ĥ45

eff t
}

= −1

2
Ŝ45
z sin 2θ453 − 1

2

{
Ŝ45
x cos 2ω45

eff t+ Ŝ45
y sin 2ω45

eff t
}
cos 2θ453 ,

(5.15)

ρ̂27eff (t) = exp
{
− i

ℏ
Ĥ27

eff t
}
Û27
3 ρ̂27(0)Û

27†
3 exp

{ i
ℏ
Ĥ27

eff t
}

=
1

2
Ŝ27
z sin 2θ273 − 1

2

{
Ŝ27
x cos 2ω27

eff t+ Ŝ27
y sin 2ω27

eff t
}
cos 2θ273 ,

(5.16)

ρ̂36eff (t) = exp
{
− i

ℏ
Ĥ36

eff t
}
Û36
3 ρ̂36(0)Û

36†
3 exp

{ i
ℏ
Ĥ36

eff t
}

= −1

2
Ŝ36
z sin 2θ363 − 1

2

{
Ŝ36
x cos 2ω36

eff t+ Ŝ36
y sin 2ω36

eff t
}
cos 2θ363 ,

(5.17)
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ρ̂16eff (t) = exp
{
− i

ℏ
Ĥ16

eff t
}
Û16
3 ρ̂16(0)Û

16†
3 exp

{ i
ℏ
Ĥ16

eff t
}

=
1

2

[
Ŝ16
z sin 2θ163 − 1

2

{
Ŝ16
x cos 2ω16

eff t+ Ŝ16
y sin 2ω16

eff t
}
cos 2θ163 ,

(5.18)

ρ̂25eff (t) = exp
{
− i

ℏ
Ĥ25

eff t
}
Û25
3 ρ̂25(0)Û

25†
3 exp

{ i
ℏ
Ĥ25

eff t
}

= −1

2
Ŝ25
z sin 2θ253 − 1

2

{
Ŝ25
x cos 2ω25

eff t+ Ŝ25
y sin 2ω25

eff t
}
cos 2θ253 ,

(5.19)

ρ̂38eff (t) = exp
{
− i

ℏ
Ĥ38

eff t
}
Û38
3 ρ̂38(0)Û

38†
3 exp

{ i
ℏ
Ĥ38

eff t
}

= −1

2

[
Ŝ38
z sin 2θ383 − 1

2

{
Ŝ38
x cos 2ω38

eff t+ Ŝ38
y sin 2ω38

eff t
}
cos 2θ383 ,

(5.20)

ρ̂47eff (t) = exp
{
− i

ℏ
Ĥ47

eff t
}
Û47
3 ρ̂47(0)Û

47†
3 exp

{ i
ℏ
Ĥ47

eff t
}

=
1

2
Ŝ47
z sin 2θ473 − 1

2

{
Ŝ47
x cos 2ω47

eff t+ Ŝ47
y sin 2ω47

eff t
}
cos 2θ473 .

(5.21)

5.1.3 Detection of the S -spin polarization

To ensure consistency in the description, the detection operator undergoes the same set

of transformations. In the present context, polarization transfer from spin I to spin S

is calculated. Accordingly, the expectation value of the observable < Ŝx(t) > is derived

employing Eq. (5.13).

S(t) =< Ŝx(t) >= Trace{Ŝeff,x.ρ̂eff (t)} (5.22)

where, ρ̂eff (t) = ρ̂18eff (t)+ ρ̂
45
eff (t)+ ρ̂

27
eff (t)+ ρ̂

36
eff (t)+ ρ̂

16
eff (t)+ ρ̂

25
eff (t)+ ρ̂

38
eff (t)+ ρ̂

47
eff (t).

Accordingly, the final signal expression has separate contributions from the FQ18, DQ45,

DQ27, ZQ36, DQ16, ZQ25, DQ38 and ZQ47 sub-spaces as given below:

S(t) = ⟨Ŝx,18⟩+ ⟨Ŝx,45⟩+ ⟨Ŝx,27⟩+ ⟨Ŝx,36⟩+ ⟨Ŝx,16⟩+ ⟨Ŝx,25⟩+ ⟨Ŝx,38⟩+ ⟨Ŝx,47⟩

=

{
B +D

4

}[
−

(
ω18,45
d

)2
Σ2
18 +

(
ω18,45
d

)2 sin2 2ω18
eff t+

(
ω18,45
d

)2
∆2

45 +
(
ω18,45
d

)2 sin2 2ω45
eff t

]

+

{
B +D + 2

4

}[
−

(
ω27,36
d

)2
Σ2
27 +

(
ω27,36
d

)2 sin2 2ω27
eff t+

(
ω27,36
d

)2
∆2

36 +
(
ω27,36
d

)2 sin2 2ω36
eff t

]

+

{
B −D + 1

4

}[
−

(
ω16,25
d

)2
Σ2
16 +

(
ω16,25
d

)2 sin2 2ω16
eff t+

(
ω16,25
d

)2
∆2

25 +
(
ω16,25
d

)2 sin2 2ω25
eff t

]

+

{
B −D − 1

4

}[
−

(
ω38,47
d

)2
Σ2
38 +

(
ω38,47
d

)2 sin2 2ω38
eff t+

(
ω38,47
d

)2
∆2

47 +
(
ω38,47
d

)2 sin2 2ω47
eff t

]
(5.23)

where, B =
1

2

(√
3 sin 2θ1 + (cos 2θ1 − 1)

)
and D =

1

2

(
−
√
3 sin 2θ2 − (cos 2θ2 − 1)

)
.

As described above, the final signal expression has contributions from all the eight possible

CP transfer modes and is significantly different from those derived based on existing

reports in the literature [47,82].
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5.1.4 Insights into the Hartmann-Hahn CP matching conditions

According to the analytic expression [Eq. (5.23)], the CP signal can theoretically be

maximised by optimising one of the eight matching conditions outlined below.

• FQ18 CP matching condition:

Setting Σ18 = 0 =⇒ 2ω1I = −(ω13,57 − ω24,68 + 2ω1S).

Under the exact FQ18 CP matching condition, the resulting signal expression is given

as

S(t) = −
{B +D

4

}
sin2 2ω18,45

d t

+ S(t)45 + S(t)27 + S(t)36 + S(t)16 + S(t)25 + S(t)38 + S(t)47︸ ︷︷ ︸
High-frequency components

.
(5.24)

Exactly setting the FQ18 HH CP condition will not only maximize the polarization

transfer through FQ18 CP modes (i.e., S(t)18 component) but also increases the

modulation frequencies of other signal components therefore further rendering

them insignificant in the overall CP transfer. When the high-frequency terms are

insignificant, the overall CP signal is reduce to a simplified form as given below:

S(t) = −
{B +D

4

}
sin2 2ω18,45

d t. (5.25)

This behavior could also be displayed at other HH CP conditions as well.

• DQ45 CP matching condition:

Setting ∆45 = 0 =⇒ 2ω1I = (ω13,57 − ω24,68 + 2ω1S).

The resulting signal expression is given as

S(t) =
{B +D

4

}
sin2 2ω18,45

d t

+ S(t)18 + S(t)27 + S(t)36 + S(t)16 + S(t)25 + S(t)38 + S(t)47︸ ︷︷ ︸
High-frequency components

.
(5.26)

• DQ27 CP matching condition:

Setting Σ27 = 0 =⇒ 2ω1I = −(ω13,57 − ω24,68 − 2ω1S).

The resulting signal expression is given as

S(t) = −
{B +D + 2

4

}
sin2 2ω27,36

d t

+ S(t)18 + S(t)45 + S(t)36 + S(t)16 + S(t)25 + S(t)38 + S(t)47︸ ︷︷ ︸
High-frequency components

.
(5.27)

• ZQ36 CP matching condition:

Setting ∆36 = 0 =⇒ 2ω1I = (ω13,57 − ω24,68 − 2ω1S).
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The resulting signal expression is given as

S(t) =
{B +D + 2

4

}
sin2 2ω27,36

d t

+ S(t)18 + S(t)45 + S(t)27 + S(t)16 + S(t)25 + S(t)38 + S(t)47︸ ︷︷ ︸
High-frequency components

.
(5.28)

• DQ16 CP matching condition:

Setting Σ16 = 0 =⇒ 2ω1I = −(ω13,57 + ω24,68 + 2ω1S).

The resulting signal expression is given as

S(t) = −
{B −D + 1

4

}
sin2 2ω16,25

d t

+ S(t)18 + S(t)45 + S(t)27 + S(t)36 + S(t)25 + S(t)38 + S(t)47︸ ︷︷ ︸
High-frequency components

.
(5.29)

• ZQ25 CP matching condition:

Setting ∆25 = 0 =⇒ 2ω1I = (ω13,57 + ω24,68 + 2ω1S).

The resulting signal expression is given as

S(t) =
{B −D + 1

4

}
sin2 2ω16,25

d t

+ S(t)18 + S(t)45 + S(t)27 + S(t)36 + S(t)16 + S(t)38 + S(t)47︸ ︷︷ ︸
High-frequency components

.
(5.30)

• DQ38 CP matching condition:

Setting Σ38 = 0 =⇒ 2ω1I = −(ω13,57 + ω24,68 − 2ω1S).

The resulting signal expression is given as

S(t) = −
{B −D − 1

4

}
sin2 2ω38,47

d t

+ S(t)18 + S(t)45 + S(t)27 + S(t)36 + S(t)16 + S(t)25 + S(t)47︸ ︷︷ ︸
High-frequency components

.
(5.31)

• ZQ47 CP matching condition:

Setting ∆47 = 0 =⇒ 2ω1I = (ω13,57 + ω24,68 − 2ω1S).

The resulting signal expression is given as

S(t) =
{B −D − 1

4

}
sin2 2ω38,47

d t

+ S(t)18 + S(t)45 + S(t)27 + S(t)36 + S(t)16 + S(t)25 + S(t)38︸ ︷︷ ︸
High-frequency components

.
(5.32)

The signal expression for the FQ18/ZQ36/DQ16/DQ38 and DQ45/DQ27/ZQ25/ZQ47

CP conditions are governed by similar effective dipolar coupling strengths

ω18,45
d /ω27,36

d /ω16,25
d /ω38,47

d and are just phase-shifted versions of each other. Therefore,
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these modes of the CP transfer are expected to display similar CP dynamics. The

various HH CP matching conditions are given in the Table 5.3. Experimentally,

FQ18/ZQ36/DQ16/DQ38 transfer can be achieved by shifting the phase of I -spin RF-field

by 180◦.

Table 5.3: The expression and transitions associated with various HH CP matching
conditions for the CP transfer between I = 1/2 and S = 3/2 spin systems.

CP matching conditions and
associated transitions

ω
(1)
Q ̸= 0 ω

(1)
Q = 0

Four-quantum (FQ18)
|−1/2,−3/2⟩ ↔ |1/2, 3/2⟩

2ω1I = −(ω13,57 − ω24,68 + 2ω1S) ω1I = −ω1S

Double-quantum (DQ45)
|1/2,−3/2⟩ ↔ |−1/2, 3/2⟩

2ω1I = (ω13,57 − ω24,68 + 2ω1S) ω1I = ω1S

Double-quantum (DQ27)
|1/2, 1/2⟩ ↔ |−1/2,−1/2⟩

2ω1I = −(ω13,57 − ω24,68 − 2ω1S) ω1I = ω1S

Zero-quantum (ZQ36)
|1/2,−1/2⟩ ↔ |−1/2, 1/2⟩

2ω1I = (ω13,57 − ω24,68 − 2ω1S) ω1I = −ω1S

Double-quantum (DQ16)
|1/2, 3/2⟩ ↔ |−1/2,−1/2⟩

2ω1I = −(ω13,57 + ω24,68 + 2ω1S) ω1I = −3ω1S

Zero-quantum (ZQ25)
|−1/2, 3/2⟩ ↔ |1/2,−1/2⟩

2ω1I = (ω13,57 + ω24,68 + 2ω1S) ω1I = 3ω1S

Double-quantum (DQ38)
|1/2,−3/2⟩ ↔ |−1/2,−1/2⟩

2ω1I = −(ω13,57 + ω24,68 − 2ω1S) ω1I = −ω1S

Zero-quantum (ZQ47)
|−1/2,−3/2⟩ ↔ |1/2,−1/2⟩

2ω1I = (ω13,57 + ω24,68 − 2ω1S) ω1I = ω1S

5.2 Results and discussion

Following the procedure described in previous chapters, the results emerging from the

analytic theory are rigorously compared with the SIMPSON simulations. For this purpose,

the polarization transfer from spin I = 1/2 (say, 1H and γ1H = 26.752× 107 rad s−1T−1)

to S = 3/2 (say, 23Na and γ23Na = 7.081× 107 rad s−1T−1) at proton Larmor frequency

600 MHz was examined over a wide range of experimentally relevant parameters. The

discussion presented below is equally valid for any set of spin-1/2 and spin-3/2 systems.

In order to conduct a systematic investigation of the role of quadrupolar coupling strength

(CQ) and orientation, the polarization transfer dynamics is separately examined for

single-crystal with specific orientation (αQ and βQ = 0◦) and single-crystal with varying

crystallite orientations (αQ and βQ ̸= 0◦), followed by the powder sample. To explicate the

interplay between the quadrupolar coupling constant and the amplitude of the RF field

employed on the S -spin, the discussion is split into three regimes in the present study:

Regime-I (CQ = 200 kHz, Weak), Regime-II (CQ = 500 kHz, Intermediate) and Regime-III

(CQ = 2.0 MHz, Strong). This division is based on the available quadrupolar coupling

strength for commonly found 23Na compounds (e.g. 0.5 to 5 MHz [178]).
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5.2.1 Description of CP dynamics in a single-crystal (with specific

orientation αQ and βQ = 0◦)

5.2.1.1 Regime-I (CQ = 200 kHz, Weak)

The CP efficiency profiles resulting from the numerical simulations (black curve) for a

single-crystal sample with CQ = 200 kHz are plotted in Figure 5.3. On scanning the 1H

RF field ranging from 0 to 300 kHz, we observe the following: (a) Two well-separated

CP resonances; (b) the CP resonance in the lower 1H RF field exhibits a significantly

broader profile compared to the higher 1H RF field region, (c) a finite CP efficiency

opposite to the positive/negative CP resonance is observed in the lower 1H RF field region

from the first CP resonance. The observed CP efficiency profiles exhibit a substantial

deviation from those of the S = 1 spin system (in Chapter 3). The overall intensity of

the polarization transfer is notably high, and the resonance spread is significantly large.

The presence of the first-order quadrupolar devoid central transition (CTS) is anticipated

to result in a more intense CP transfer due to perfect spin-locking like in spin-1/2

systems. To understand the above observations, we employed the signal expressions

derived for the eight HH CP conditions using the concept of the effective Hamiltonian

[Eq. (5.23)] and generated the corresponding CP profiles. As shown in Figure 5.3(a1), our

analytic theory matches well barring some minor deviations with the numerical simulation

profiles, and therefore is capable of explaining underlying CP dynamics. Interestingly,

the appearance of the two CP maxima in the lower and higher 1H RF field regions

are the direct manifestation of the presence of multiple CP resonance conditions in

multi-level systems. In order to understand the origin of multiple CP resonances, we

evaluated the individual contributions from all eight CP matching conditions using the

signal expression provided in Eq. (5.23). In the present case, the broad CP resonance

at lower 1H RF field is the amalgamation of various HH CP conditions where the DQ27,

DQ45 and ZQ47 CP conditions overlapped to produce a quite broad CP resonance. In

the range of high 1H RF field, this resonance is predominately described by the DQ27 CP

condition
(
|1/2,−1/2⟩ ↔ |−1/2, 1/2⟩

)
exactly centered at ω11 = 117 kHz and significant

contribution is provided by the ZQ47 CP condition
(
|1/2,−1/2⟩ ↔ |−1/2, 1/2⟩

)
(centered

at ω11 = 95.74 kHz). The unequal intensity is due to the different spin-locking efficiency of

the involved S -spin transitions. For example, the DQ27 and ZQ47 CP conditions transfer

the polarization to the CTS (|+1/2⟩ ↔ |−1/2⟩) and ST1S (|−3/2⟩ ↔ |−1/2⟩) of the

quadrupolar spin, respectively. The later is inefficiently spin-locked due to the presence

of much stronger quadrupolar coupling dependence, which deteriorates the spin-locking

process due to ω
(1)
Q > ω1S . Moreover, the ZQ36 and DQ38 CP conditions retained its

high-frequency behaviour and does not provide any significant contribution to the overall

CP efficiency at the selected high S -spin RF field strength. At lower 1H RF field, the CP

profile is dominated by the DQ45 CP condition
(
|1/2,−3/2⟩ ↔ |−1/2, 3/2⟩

)
centered at

ω11 = 42.83 kHz, which transfers the polarization into the triple-quantum (TQS) S -spin

transition (|+3/2⟩ ↔ |−3/2⟩). Unlike other CP resonances, the phase-shifted FQ18 signal
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Figure 5.3: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single-crystal as a function of the RF field
employed on the I -spin. The numerical simulations (based on SIMPSON) are represented
by solid black lines. The following parameters were employed in the simulations:
Quadrupolar parameters (CQ = 500 kHz, ηQ = 0, quadrupolar coupling PAS angles αQ and
βQ = 0◦) and dipolar coupling parameters (internuclear distance rIS = 1.23 Åand dipolar
PAS angle βd = 0◦). A constant RF amplitude of ν1S = 80 kHz was employed on the
quadrupole, S -spin and the mixing time during the CP experiment was held constant (say
tmix = 0.5 ms). In panel (a1) the analytic simulations comprise contributions from all the
eight CP matching conditions (FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25)
and is represented in violet color. In panel (a2) the analytic simulations based on the
contributions from the FQ18 (cyan curve) and DQ45 (magenta color) CP conditions are
depicted. In panel (a3) the analytic simulations based on the contributions from the DQ27

(red curve) and ZQ36 (green color) CP conditions are depicted. In panel (a4) the analytic
simulations based on the contributions from the DQ38 (blue curve) and ZQ47 (light green
color) CP conditions are depicted. In panel (a5) the analytic simulations based on the
contributions from the DQ16 (indigo curve) and ZQ25 (orange color) CP condition are
depicted.
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Figure 5.4: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I -spin were chosen based on the matching condition expression given in Table 5.3 i.e.,
(a1) ν1I = 42.95 kHz); (a2) ν1I = 95.74 kHz; (a3) ν1I = 117.167 kHz and (a1) ν1I =
255.74 kHz. The following parameters were employed in the simulations: Quadrupolar
parameters (CQ = 200 kHz, ηQ = 0, quadrupolar coupling PAS angles αQ and βQ = 0◦)
and dipolar coupling parameters (internuclear distance rIS = 1.23 Åand dipolar PAS angle
βd = 0◦). A constant RF amplitude of ν1S = 80 kHz was employed on the quadrupole,
S -spin. The numerical simulations (based on SIMPSON) are represented by solid black
lines and the analytic simulations comprise contributions from all the eight CP matching
conditions (FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25) and is represented in
violet color.

component does not retain the high-frequency behaviour as explained in Eq. (5.26) and

provides a significant contribution to the overall CP transfer. Therefore, the spin-locking

at lower 1H RF-field amplitudes is not uni-directional, a behaviour that is similar to

the CP involving S = 1. Nevertheless, the narrow CP resonance at high 1H RF-field is

solely described by the ZQ25 CP condition
(
|1/2, 3/2⟩ ↔ |−1/2, 1/2⟩

)
. Whereas, due

to the high RF-field requirements, the phase-shifted DQ16 signal component retains its

high-frequency behaviour and does not contribute to the overall CP transfer. Interestingly,

the CP efficiency of all the CP conditions is in the order as follows: DQ27 ≈ ZQ25 >

DQ45 > ZQ47. The observed behaviour can be explained based on the spin-locking

and excitation efficiencies of the involved S -spin transitions for various CP conditions.
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As the quadrupolar coupling directly affects the spin-locking process, therefore, the CP

conditions involving the CTs and TQs transitions will have better CP efficiencies than

the CP transitions involving the STs transition. However, the better CP efficiency of the

ZQ25 can be explained based on its high excitation efficiency. This polarization transfer

behaviour stands in stark contrast to S = 1 spin systems, where the multi-quantum (DQS)

transition dominates the polarization transfer at this crystallite orientation and coupling

strength.

Another important parameter for consideration during polarization transfer is the widths

of the various CP resonances. The widths is primarily decided by the magnitude of

effective dipolar coupling strengths of the CP resonances that decreases in the order:

ω18,45
d > ω27,36

d > ω38,47
d > ω16,25

d . These observations are manifested in the time-domain

CP efficiency profiles, where the rate of polarization buildup is shown to be dependent

on the strength of the effective dipolar coupling constant (Figure 5.4). The time-domain

simulations at each HH CP matching condition are consistent with all the observation of

the RF-domain CP efficiency profiles.

5.2.1.2 Regime-II (CQ = 500 kHz, Intermediate)

To further substantiate the above findings we studied the CP dynamics for a single-crystal

sample associated with CQ = 500 kHz (Figure 5.5). For a consistent description of the

CP dynamics, we retained all other simulation parameters. In this coupling regime,

the numerical simulation (black curves) shows three well-separated CP resonances of

unequal intensities and widths. Interestingly, in contrast to contribution from the negative

intensity a particular CP resonance, we observed a CP resonance with totally negative

intensity which appears at quite high 1H RF-field amplitudes. In order to comprehend

the observed CP behaviour, we evaluated the analytic simulations [Eq. (5.23)], which

converges well with the numerical simulations (panel a1). The individual analytic signal

contributions reveal the origin of all the observed CP resonances (panel a2-a5). Due to

strong quadrupolar coupling strength, the DQ45 and DQ27 CP resonances shift in the

lower RF-field regions while the ZQ25 CP resonance shift in the higher RF-fields region,

therefore the overall CP efficiency profile widens. However, unlike the weaker quadrupolar

coupling regime, the contribution from the DQ45 CP resonance is negligible as compared

to much stronger DQ27 polarization transfer. We observe almost zero CP efficiency from

the ZQ47 CP resonances. Moreover, the phase-shifted signal components ZQ36, DQ16 and

DQ38 retain their high-frequency behavior and does not contribute significantly to the

all overall CP transfer. However the phase-shifted FQ18 signal component is expected to

provide a significant contribution as compared to the ZQ36 signal component. However,

due to the intense DQ27 polarization transfer these smaller contribution becomes almost

irrelevant in the overall polarization transfer. The overall width of various CP resonances

increases with increasing the strength of the quadrupolar couplings, particularly for the

ZQ25 CP resonance. This is due to the quadrupolar coupling dependence of the effective

dipolar coupling constant. This behaviour is reflected in the time-domain simulations in
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Figure 5.5: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single-crystal as a function of the RF field
employed on the I -spin. The numerical simulations (based on SIMPSON) are represented
by solid black lines. The following parameters were employed in the simulations:
Quadrupolar parameters (CQ = 500 kHz, ηQ = 0, quadrupolar coupling PAS angles αQ and
βQ = 0◦) and dipolar coupling parameters (internuclear distance rIS = 1.23 Åand dipolar
PAS angle βd = 0◦). A constant RF amplitude of ν1S = 80 kHz was employed on the
quadrupole, S -spin and the mixing time during the CP experiment was held constant (say
tmix = 0.5 ms). In panel (a1) the analytic simulations comprise contributions from all the
eight CP matching conditions (FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25)
and is represented in violet color. In panel (a2) the analytic simulations based on the
contributions from the FQ18 (cyan curve) and DQ45 (magenta color) CP conditions are
depicted. In panel (a3) the analytic simulations based on the contributions from the DQ27

(red curve) and ZQ36 (green color) CP conditions are depicted. In panel (a4) the analytic
simulations based on the contributions from the DQ38 (blue curve) and ZQ47 (light green
color) CP conditions are depicted. In panel (a5) the analytic simulations based on the
contributions from the DQ16 (indigo curve) and ZQ25 (orange color) CP condition are
depicted.
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Figure 5.6: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I -spin were chosen based on the matching condition expression given in Table 5.3 i.e.,
(a1) ν1I = 14.95 kHz); (a2) ν1I = 145.04 kHz; (a3) ν1I = 171.07 kHz and (a1) ν1I =
331.07 kHz. The following parameters were employed in the simulations: Quadrupolar
parameters (CQ = 500 kHz, ηQ = 0, quadrupolar coupling PAS angles αQ and βQ = 0◦)
and dipolar coupling parameters (internuclear distance rIS = 1.23 Åand dipolar PAS angle
βd = 0◦). A constant RF amplitude of ν1S = 80 kHz was employed on the quadrupole,
S -spin. The numerical simulations (based on SIMPSON) are represented by solid black
lines and the analytic simulations comprise contributions from all the eight CP matching
conditions (FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25) and is represented in
violet color.

Figure 5.6.

5.2.1.3 Regime-III (CQ = 2.0 MHz, Strong)

In the case of larger CQ = 2.0 MHz (Figure 5.7), as expected the separation between the

outermost DQ45 and ZQ25 CP conditions becomes wider in comparison to CQ = 500 kHz

case and the overall efficiency of the polarization transfer is diminished. Results emerging

from our analytic theory rightly account for the appearance of CP resonances in the lower

and higher 1H RF regions corresponding to the DQ45, DQ27, ZQ47 and ZQ25 CP resonances

barring a minor deviation in the high 1H RF-field regions. In the region of lower 1H

RF-field, the DQ45 transition become insignificant in leading any significant polarization
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transfer and the overall CP transfer is dominated by the DQ27 CP condition. Interestingly,

we observe a negative CP efficiency for the ZQ47 CP condition at this quadrupolar coupling

strength. This quadrupolar coupling independence of this DQ27 CP condition has made

the half-integer quadrupolar spin an interesting choice for most of the quadrupolar spins.

5.2.2 Description of CP dynamics in a single-crystal (with general

orientation αQ and βQ ̸= 0◦)

The CP efficiency of a single-crystal sample is expected to vary depending on the

orientation of the quadrupolar coupling interaction tensor from the principal axis system

(PAS), (βQ and αQ) with respect to the lab axis frame. In order to manifest this aspect

we carried out the numerical simulations and generated the CP efficiency profiles with a

variation in the angle βQ for CQ = 1.0 MHz. As depicted in Figure 5.8 (0◦ ≤ βQ ≤ 180◦,

both the CP efficiency and position of CP resonances are highly orientation dependent. At

βQ = 0◦, the CP efficiency profile is described by the four (DQ45, DQ27, ZQ47 and ZQ25)

CP resonances and there is almost negligible contribution from the DQ45 CP condition

and the ZQ47 CP condition has negative intensity. From the analytic theory point of

view, when varying orientation from 0◦ < βQ ≤ 45◦, the CP dynamics is described

by the DQ45, DQ27, ZQ47 and ZQ25 CP resonances and the overall spread of the CP

efficiency profile decreases and the CP efficiency associated with the ZQ47 CP condition

become positive. This is due to the decrease in the magnitude of the quadrupolar

coupling frequency. At βQ = 45◦, the ZQ47 CP condition while the contribution from

the phase-related signal components DQ45 and FQ18 becomes finite in the region of lower
1H RF-field highlighting the non-unidirectional spin-locking behaviour. For βQ = 54.736◦,

the first–order quadrupolar coupling vanishes (Figure C.2 in Appendix-C) and the DQ45,

DQ27, ZQ47 CP conditions with equal CP efficiencies fully overlap to produce a single

intense CP maxima centered at ω1I = 80 kHz. While the ZQ25 CP resonances appear

at ω1I = 3ω1S (as mentioned in Table 5.3) and is relatively narrower. Although the

analytic theory shows slightly deviation at this CP resonance. As shown previously,

the signal contribution from the DQ45, DQ27, ZQ47 CP conditions should be added to

perfectly fit the numerical simulation profile at lower 1H RF-field. At βQ = 54.736◦,

there is no contribution to the overall CP efficiency from the FQ18 and ZQ36, DQ16 and

DQ38 CP conditions as the 1H RF field at the matching condition is sufficiently high

for any manifestation of these CP conditions. Furthermore, the first–order quadrupolar

coupling frequency changes it’s sign when 54.736◦ ≤ βQ < 125.264◦ [Eq. (4.1)]. As a

consequence, the DQ45 and ZQ36 CP conditions are swapped and hence, the CP efficiency

in the lower and higher 1H RF field regions are now governed by the ZQ36 and DQ45 CP

conditions, respectively, as shown in Figure 5.8 panels (a4-a6). Due to this swapping of

CP conditions, the DQ45 CP condition will have the behaviour of transferring polarization

into the central transitions CTs and therefore will have higher intensity of the polarization

transfer then rest of the CP conditions. Such behavior has not been presented in the
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Figure 5.7: In the CP simulations depicted, the polarization build-up on the S -spin
(due to transfer from the I -spin) is monitored in a single-crystal as a function of the
RF field employed on the I -spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in
the simulations: Quadrupolar parameters (CQ = 2.0 MHz, ηQ = 0, quadrupolar
coupling PAS angles αQ and βQ = 0◦) and dipolar coupling parameters (internuclear
distance rIS = 1.23 Åand dipolar PAS angle βd = 0◦). A constant RF amplitude
of ν1S = 80 kHz was employed on the quadrupole, S -spin and the mixing time
during the CP experiment was held constant (say tmix = 0.5 ms). In panel
(a1) the analytic simulations comprise contributions from all the eight CP matching
conditions (FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25) and is represented in
violet color.In panel (a2) the analytic simulations based on the contributions from the
FQ18 (cyan curve) and DQ45 (magenta color) CP conditions are depicted. In panel (a3)
the analytic simulations based on the contributions from the DQ27 (red curve) and ZQ36

(green color) CP conditions are depicted. In panel (a4) the analytic simulations based on
the contributions from the DQ38 (blue curve) and ZQ47 (light green color) CP conditions
are depicted. In panel (a5) the analytic simulations based on the contributions from the
DQ16 (indigo curve) and ZQ25 (orange color) CP condition are depicted.
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Figure 5.8: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single crystal (with general orientation)
as a function of the RF field employed on the I -spin. In the simulations depicted, the
effects of the variation of quadrupolar coupling PAS angle βQ: 0◦ (a1), 45◦ (a2), 54.736◦

(a3) 90◦ (a4), 110◦ (a5), 125.624◦ (a6), 135◦ (a7) and 180◦(a8) on the CP dynamics is
illustrated. The following parameters were employed in all the simulations: CQ = 500
kHz, ηQ = 0, quadrupolar coupling PAS angle αQ = 0◦, contact time (tmix) = 0.5 ms,
dipolar coupling parameters (internuclear distance rIS = 1.23 Åand dipolar PAS angle
βd = 0◦) and ν1S = 50 kHz. SIMPSON simulations (black curve) are fitted with the
total analytic signal expressions: FQ18 + DQ45 (green color), DQ27+ ZQ36 (red color),
DQ38 + ZQ47 (blue color) and DQ16 + ZQ25 (orange color) in panels a1-a8. The insets
in panels a1 and a8 show CP maxima in the higher I -spin RF field range.
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theoretical description presented by the Vega at. al. [47]. Meanwhile, the ZQ47 and ZQ25

CP conditions retain their original behaviour and do not undergo any swapping. In the

Figure 5.9: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single crystal (with general orientation) as
a function of the RF field employed on the I -spin. In the simulations depicted, the effects
of the variation of quadrupolar coupling PAS angle αQ: 0◦ (a1), 30◦(a2), 60◦ (a3) and
90◦ (a4) on the CP dynamics are illustrated. The following parameters were employed
in all the simulations: CQ = 1.0 MHz, ηQ = 1.0, quadrupolar coupling PAS angle βQ
= 90◦, contact time (tmix) = 0.5 ms, dipolar coupling parameters (internuclear distance
rIS = 1.23 Åand dipolar PAS angle βd = 0◦) and ν1S = 80 kHz. SIMPSON simulations
(black curve) are fitted with the total analytic signal expressions: FQ18 + DQ45 (green
color), DQ27+ ZQ36 (red color), DQ38 + ZQ47 (blue color) and DQ16 + ZQ25 (orange
color) in panels a1-a4.
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higher 1H RF field region, the CP efficiency profile is dominated by the ZQ47 and ZQ25

CP conditions, where the ZQ47 CP condition will have negative CP efficiency. The ZQ47

and ZQ25 resonances shift significantly in the range 0◦ ≤ βQ ≤ 180◦ in contrast to the

DQ45 and DQ27 CP resonances highlighting strong CQ dependence of the ZQ47 and ZQ25

resonances due to the involvement of the satellite transitions. At βQ = 125.264◦, the

first-order quadrupolar coupling frequency again pass through zero and the behaviour is

exactly similar to βQ = 54.736◦. In the range 125.264◦ < βQ ≤ 180◦, the CP efficiency

profile exactly display a similar CP dynamics as in 54.736◦ > βQ ≤ 0◦. Interestingly,

as the value of the quadrupolar coupling constant is scaled with the orientation of the

quadrupolar coupling tensor with respect to the lab frame at a fixed CQ, the CP efficiency

profiles observed at variable orientations may correspond to the different quadrupolar

coupling regimes as shown and discussed in the previous sections. For instance, βQ = 0◦

and 90◦ refer to CP efficiency profile corresponding to the larger quadrupolar coupling

case. Whereas βQ = 45◦ and βQ values in close proximity to 54.736◦ correspond to the CP

efficiency profiles in the intermediate and weak quadrupolar coupling regimes, respectively.

The quadrupolar PAS angle αQ affects the magnitude and sign of quadrupolar frequency,

therefore the position and efficiency of CP resonances vary with the variation of αQ angles

at a fixed βQ angle. Such simulations are presented in Figure 5.9.

5.2.3 Description of the CP dynamics in a powder sample

The theoretical framework proposed is shown to explain the CP dynamics associated with

a single-crystal sample. On the basis of results obtained from the single-crystal studies,

we extended our theory to describe the CP dynamics in a more complex powder sample

under static condition. Numerical simulations in Figures 5.10, 5.11 and 5.12 carried out

on a powder sample led to the following observations: With increasing CQ values (a) the

CP efficiency profile broadens and splits into three maxima of unequal intensities, (b) the

CP transfer efficiency decreases (c) one of the CP maxima shift towards the lower and

others at the higher 1H RF values with increasing CQ. In order to get deeper insights into

the above observations, we carried out analytic simulations using the signal expressions

derived on the concept of effective Hamiltonian in the previous section [Eq. (5.23)]. The

analytic simluations are in prefect convergence with the numerical simulation across all

the quadrupolar coupling regimes. Therefore, the validates the proposed analytic theory

in explaining the trajectory of the polarization in anistropic sample i.e., powder sample.

Analogous to the single-crystal study, for a smaller CQ (= 200 kHz) value (Figure 5.10),

the resulting CP efficiencies from the DQ45, DQ27 and ZQ47 CP conditions overlap and

when co-added manifest exactly the CP profile observed from the numerical simulation in

the lower 1H RF-field region. While, in the higher 1H RF-field region, the CP efficiency

profile is dominated by the ZQ25 CP condition. Under this condition the contributions

from the phase-shifted FQ18 and ZQ36, DQ16 and DQ38 CP conditions are negligible. The

reason for the splitting of the pure DQ45, DQ27 and ZQ25 CP resonances is due to the

unequal distribution of the various crystallite orientations. Interestingly, with increasing
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strength of the quadrupolar coupling constant, the broad CP resonance in the lower 1H

RF-field region splits into two maxima of unequal intensities. The individual analytic

Figure 5.10: In the CP simulations depicted, the polarization build-up on the S -spin
(due to transfer from the I -spin) is monitored in a powder sample as a function of
the RF field employed on the I -spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: CQ = 200 kHz, ηQ = 0 and quadrupolar coupling PAS angles αQ and βQ
= 0◦), dipolar coupling parameters (internuclear distance rIS = 1.23 Åand dipolar PAS
angle βd = 0◦), RF amplitude of S -spin ν1S = 80 kHz and mixing time during the CP
experiment (say tmix = 0.5 ms) were identical in all the simulations. In the first row,
the analytic simulations comprise contributions from all the eight CP matching conditions
(FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25) and is represented in violet color.
In the second row, the analytic simulations based on the contributions: FQ18 + DQ45

(green color), DQ27+ ZQ36 (red color), DQ38 + ZQ47 (blue color) and DQ16 + ZQ25

(orange color). The powder simulations were performed using 4180 orientations (i.e.,
zcw4180) of α and β.
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fittings reveal the contribution of the various CP conditions in leading to the overall CP

transfer. Interestingly, the DQ45 condition is seen to be more efficient than the ZQ36

condition. The higher efficiency of the DQ45 condition can be explained on the basis of

Figure 5.11: In the CP simulations depicted, the polarization build-up on the S -spin
(due to transfer from the I -spin) is monitored in a powder sample as a function of
the RF field employed on the I -spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: CQ = 500 kHz, ηQ = 0 and quadrupolar coupling PAS angles αQ and βQ
= 0◦), dipolar coupling parameters (internuclear distance rIS = 1.23 Åand dipolar PAS
angle βd = 0◦), RF amplitude of S -spin ν1S = 80 kHz and mixing time during the CP
experiment (say tmix = 0.5 ms) were identical in all the simulations. In first row, the
analytic simulations comprise contributions from all the eight CP matching conditions
(FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25) and is represented in violet color.
In the second row, the analytic simulations based on the contributions: FQ18 + DQ45

(green color), DQ27+ ZQ36 (red color), DQ38 + ZQ47 (blue color) and DQ16 + ZQ25

(orange color). The powder simulations were performed using 4180 orientations (i.e.,
zcw4180) of α and β.
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the probability of the crystallite orientations in the plane perpendicular to the applied

Zeeman magnetic field. The powder averaging expression described in Eq. (2.16). As

shown in the single-crystal case above (Figure 5.8), the first–order quadrupolar coupling

constant changes it’s sign when 54.736◦ ≤ βQ < 125.264◦ [Eq. (4.1)] resulting in the

Figure 5.12: In the CP simulations depicted, the polarization build-up on the S -spin
(due to transfer from the I -spin) is monitored in a powder sample as a function of
the RF field employed on the I -spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: CQ = 2.0 MHz, ηQ = 0 and quadrupolar coupling PAS angles αQ and βQ
= 0◦), dipolar coupling parameters (internuclear distance rIS = 1.23 Åand dipolar PAS
angle βd = 0◦), RF amplitude of S -spin ν1S = 80 kHz and mixing time during the CP
experiment (say tmix = 0.5 ms) were identical in all the simulations. In first row, the
analytic simulations comprise contributions from all the eight CP matching conditions
(FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25) and is represented in violet color.
In the second row, the analytic simulations based on the contributions: FQ18 + DQ45

(green color), DQ27+ ZQ36 (red color), DQ38 + ZQ47 (blue color) and DQ16 + ZQ25

(orange color). The powder simulations were performed using 4180 orientations (i.e.,
zcw4180) of α and β.
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Figure 5.13: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a powder sample as a function of the CP
mixing time under constant RF amplitudes on the spins. The RF amplitudes on the
I -spin were chosen based on the CP maxima observed in Figures 5.10, 5.11 and 5.12 i.e.,
panels a1-a2 (ν1H = 80 kHz); panels b1-b2 (ν1H = 132 kHz); panels c1-c2 (ν1H = 156
kHz). The following parameters were employed in the simulations: Panels a1-a3 (CQ =
200 kHz, ηQ = 0); panels b1-b3 (CQ = 500 kHz, ηQ = 0) and panels c1-c3 (CQ = 2.0
MHz, ηQ = 0). The remaining simulation parameters and descriptions are as given in the
caption of Figure 5.10.

swapped DQ45 and DQ27 CP conditions. As the crystallite orientations for the powder

sample are more probable in the plane perpendicular to the applied magnetic field which

is a case suitable for the DQ45 CP condition [Figure 5.8(a4), βQ = 90◦] resulting in the

DQ45 CP efficiency being higher than the DQ27 CP efficiency for the most intense CP

resonance. Whereas in the lower 1H RF field region, the DQ27 CP is more efficient for

the reason explained above. Notably, minor contributions from the phase-shifted ZQ36

CP condition to the overall CP conditions are also observed for the CQ = 2.0 MHz case

(Figure 5.12). However, for the simplified representation, we have not shown the individual

contribution for all CP conditions in these figures. With increasing quadrupolar coupling

strength the contributions to the CP efficiency from the phase-shifted components ZQ36

and FQ18 field increases further (Figure 5.12). With increasing CQ, the position of the

maximum CP transfer changes, while its intensity does not change significantly. This is

due to the existence of the first-order quadrupolar coupling transition (CTs), which under

the influence of the powder averaging exchange the character with the TQs transition, but
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retain its characteristic quadrupolar independent nature. While the CP efficiency of the

CP condition involved in the satellite transitions (ST1s and ST2s) dramatically deceases

with increasing CQ. Apart from that the powder sample CP efficiency profile at CQ = 500

kHz and 2 MHz, the overall CP transfer demonstrates the exchange behaviour (positive to

negative CP efficiency) of the ZQ47 CP condition which is solely governed by the magnitude

of the quadrupolar coupling strength. Due to distribution of the quadrupolar coupling

frequencies in case of powder sample, the ZQ47 condition is simultaneously satisfied for

different crystallite orientation, thus, we observe both positive and negative contribution

to the overall CP transfer. The time-domain simulations at CQ = 200 kHz (weak),

500 kHz (intermediate), and 2.0 MHz (strong) are shown in Figure 5.13 respectively,

supports the above findings. Unlike the single-crystal case wherein the time-domain profile

from the respective CP matching conditions resulted in perfect sinusoidal oscillations,

in the case of the powder sample the time-domain oscillations due to the interference

of signal contributions from the different crystallite-orientations overlap to result in a

non-sinusoidal behavior. Besides, with increasing quadrupolar coupling strength, the

time-domain oscillations become more wiggled representing a non-uniform CP transfer

due to the mixing of different CP fields. On the basis of the proposed analytic theory

of the CP for a powder sample we can summarize the results as follows: (a) Depending

on the strength of the quadrupolar coupling constant (CQ) all the eight Hartmann-Hahn

CP conditions are seen to contribute to the overall CP efficiencies when added together

match perfectly well with the numerical simulation result. In other words, all the eight

CP matching conditions become indistinguishable and mix together to result in the overall

CP efficiency profiles, (b) the contribution due to the mixing of CP condition becomes

more prominent with increasing CQ, (c) unlike the S = 1 system, the CP efficiency at

the lower 1H RF-field region (DQ45 and ZQ47) does not change much with increasing

quadrupolar coupling constant, (d) the decrease in the CP transfer efficiency for the ZQ47

and ZQ25 CP conditions for the powder sample is a direct manifestation of the strength

of the quadrupolar coupling and poor spin-lock efficiency. Hence, the presence of multiple

crystallite orientations coupled with the strength of quadrupolar coupling in a multi-level

system leads to a complex CP transfer mechanism. Unlike the spin-1/2 system, the concept

of a unidirectional field to describe the CP dynamics is not valid in the case of CP involving

the quadrupolar spins. The proposed analytic theory is capable of explaining the intricate

CP dynamics by the interplay of the various CP condition.

5.2.4 Extraction of the dipolar coupling parameters from the CP

lineshapes

The mathematical process of the dipolar coupling parameters estimation from the

time-domain CP signal is already discussed in Chapters 2 and 3. The dipolar coupling

parameters are extracted from the CP experiment by monitoring the CP efficiency as a

function of the mixing time, and the resulting data is Fourier transformed (FT) to get the

frequency-domain CP spectrum [165,179]. The Fourier-transformed CP signal expression
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[Eq. (5.23)] is given below:

S(ω) =
∑
ij

Cijπ
[
δ(ω)− 1

2

{
δ(ω − ωij

eff ) + δ(ω + ωij
eff )

}]
(5.33)

where ij = 18, 45, 27, 36, 38, 47, 16, and 25. The coefficients Cij can be found from Eq.

(5.23). From Eq. (5.33), it is evident that the overall CP spectrum will feature conjugate

symmetric peaks resulting from the effective frequencies of all possible HH CP matching

conditions, in addition to their zero-frequency peaks. The zero-frequency peak will always

be associated with opposite phase, thus does not hinder in the estimation of the dipolar

coupling parameter. The above expressions can be simplified by setting the exact HH CP

matching conditions as given below:

• DQ45/FQ18 CP matching condition:

S(ω)ij = Cijπ
[
δ(ω)− 1

2

{
δ(ω − ω18,45

d ) + δ(ω + ω18,45
d )︸ ︷︷ ︸

Purely dipolar splitting (2ω18,45
d )

}]
(5.34)

• DQ27/ZQ36 CP matching condition:

S(ω)ij = Cijπ
[
δ(ω)− 1

2

{
δ(ω − ω27,36

d ) + δ(ω + ω27,36
d )︸ ︷︷ ︸

Purely dipolar splitting (2ω27,36
d )

}]
.

(5.35)

• DQ38/ZQ47 CP matching condition:

S(ω)ij = Cijπ
[
δ(ω)− 1

2

{
δ(ω − ω38,47

d ) + δ(ω + ω38,47
d )︸ ︷︷ ︸

Purely dipolar splitting (2ω38,47
d )

}]
.

(5.36)

• DQ16/ZQ25 CP matching condition:

S(ω)ij = Cijπ
[
δ(ω)− 1

2

{
δ(ω − ω16,25

d ) + δ(ω + ω16,25
d )︸ ︷︷ ︸

Purely dipolar splitting (2ω16,25
d )

}]
.

(5.37)

where, Cij are the coefficients shown in Eqs. (5.25) and (5.32) under various HH CP

matching conditions. From a practical perspective, the dipolar parameter in the FT

spectrum is determined by measuring the frequency separation between the two symmetric

peaks (2ω18,45
d or 2ω27,36

d or 2ω38,47
d or 2ω16,25

d ). However, on deviating from the exact HH

CP condition, the frequency separation between the two symmetric peaks will be given

by the effective-field for the particular CP condition (i.e. ωij
eff ). Figure 5.14 illustrates

the CP spectra for a single-crystal sample at CQ = 200 kHz under the DQ45, DQ27 and

ZQ47 HH CP matching conditions in panels (a1-b1), (a2-b2) and (a3-b3), respectively.

We have disregarded the ZQ25 CP condition as it appear at RF-field amplitude beyond
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experimental capabilities. The separation between the conjugate symmetric peaks in the

resulting dipolar spectrum are inequivalent highlighting their unequal effective dipolar

coupling constant at CQ ̸= 0 kHz. These effective dipolar coupling constant (ω18,45
d ,

ω27,36
d , ω38,47

d and ω16,25
d ) are strongly dependent on the quadrupolar coupling constant,

therefore, the distance between the conjugate symmetric peak will vary with crystallite

Figure 5.14: In the simulations depicted, the frequency-domain S -spin signal in a
single-crystal emerging from Fourier transformation of the mixing time domain signal
corresponding to the DQ45 (first column), ZQ47 (second column) and DQ27 (third
column) CP matching conditions is shown at quadrupolar coupling constant CQ =200
kHz. All other parameters such as the quadrupolar coupling PAS angles αQ and
βQ = 0◦, dipolar parameters (internuclear distance r12 = 1.23 Å and dipolar PAS
angle βd = 0◦) and RF amplitude of S -spin ν1S = 80 kHz were identical in all the
simulations. Depending on the magnitude of the quadrupolar coupling constant, the
RF amplitudes employed on the I -spin were carefully adjusted to match the DQ45

(first column), ZQ47 (second column) and DQ27 (third column) CP matching conditions.
The analytic simulations in the panels have the following definitions: first row, the
analytic simulations comprise contributions from all the eight CP matching conditions
(FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25) and is represented in violet color.
In the second row, the analytic simulations based on the contributions: FQ18 + DQ45

(green color), DQ27+ ZQ36 (red color) and DQ38 + ZQ47 (blue color). The analytic
simulations based on DQ16 and ZQ25 CP signals are not shown due to their negligible
contributions at the specified RF conditions. A line broadening of 50 Hz was used before
the Fourier transform of the time-domain CP signal.
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Figure 5.15: Effect of strength and orientation of quadrupolar tensor on the effective
dipolar coupling constants. The following simulation parameters were employed:
Quadrupolar parameters CQ varied and PAS angles αQ and βQ = 0◦ (a1) and CQ =
200 kHz and PAS angles αQ and βQ = 0◦ (a2); dipolar parameters (internuclear distance
r12 = 1.23 Å and dipolar PAS angle βd = 0◦) and RF amplitude of S -spin ν1S = 80 kHz
were identical in all the simulations.

orientation orientations at a fixed internuclear distance and dipolar tensor orientation.

The dependence of the effective dipolar coupling constant (ω18,45
d , ω27,36

d , ω38,47
d and ω16,25

d )

with quadrupolar coupling magnitude and crystallite orientation is shown in Figure 5.15.

At CQ = 200 kHz, the resulting CP spectrum in the DQ45 CP condition (panel b1) is

predominately described by the DQ45 CP signal expression and the phase-shifted FQ18

components appear at higher-frequency (see the opposite phase). In addition, the CP

spectrum will also be associated with a significant contributions from the DQ27 and

ZQ47 CP conditions which appear in-phase with the DQ45 CP signal. Although, we

get minor deviations in the analytic theory in the weak coupling limit at lower 1H

RF-field amplitudes. Under the DQ27 and ZQ47 HH CP conditions, the resulting CP

spectrum is dominated by the DQ27 and ZQ47 frequencies along with the contributions

form the higher-frequency components (refer to figure caption for details). Due to

different magnitude of the effective dipolar coupling constants, the distance between

the conjugate symmetric peaks are different for the DQ45, DQ27 and ZQ47 CP spectra.

Apart form the quadrupolar dependence, the magnitude of the effective dipolar coupling

constants also dependent on the radio-frequency amplitude applied S -spin system (Figure

5.16). Therefore, the separations between the conjugate symmetric peaks are highly

system-specific and experimental parameter dependence at a fixed internuclear distance.

Hence, the dipolar coupling measurement in quadrupolar systems are complicated and

necessitates exact simulation of the experimental conditions. Figure 5.17 demonstrates

the CP spectrum at CQ = 500 kHz and 2.0 MHz under the DQ27 HH CP condition for
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Figure 5.16: Effect of strength S -spin RF amplitude on the effective dipolar coupling
constants. The following parameters were used in the simulations: CQ = 200 kHz, ηQ = 0,
quadrupolar coupling PAS angles (0◦, 0◦, 0◦), and ν1S = 80 kHz.

a single-crystal sample. Unlike the weaker coupling regimes, the resulting CP spectrum

consist of fewer high-frequency components and are dominantly described by the DQ27

conditions at the specified parameters.

The straightforward method presented for the single-crystal sample for estimation of the

dipolar coupling through the separation between the symmetric peaks, will not hold for

the powder sample. This is due to the coupled orientation dependence of the effective

dipolar constants (dipolar and quadrupolar tensor orientations) which become complex

in the powder sample. In addition, in powder sample various crystallite orientations will

undergo different HH CP matching conditions at a specified RF conditions. Therefore,

the resulting CP lineshape will not have pure pake like doublet observed in the spin-1/2

systems and will be highly distorted. Figure 5.18 illustrates the CP lineshape in various

quadrupolar coupling regimes for the power sample. For comparison, we have shown

the CP lineshape at CQ = 0 kHz for powder sample at ω1I = ω1S HH CP condition

(panel a1). Likewise, the single-crystal sample, the CP lineshape in this coupling regime

will have equivalent contributions from the DQ45, DQ27 and ZQ47 CP conditions and

the observed spectrum will have the characteristic shape of the heteronuclear dipolar

pattern for idealized S = 3/2 spin system coupled to a I = 1/2 spin system except for the

zero-frequency peak with negative intensity which is specific of the CP induced excitation

spectra. The distance between the CP singularities will provide estimation of the dipolar

coupling acting between the spin-system. At CQ = 200 kHz (panel a2), the CP lineshape is

distorted with multiple-singularities and no noticeable foot signal is observed. The overall

CP lineshape is determined by the DQ45, DQ27 and ZQ47 signal contributions and in this

coupling regime, we don’t observed any significant contributions from the high-frequency

phase-shifted components. As the strength of the quadrupolar coupling constant increase,

the overall CP lineshape become highly distorted and the degree of the contribution also



Chapter 5. Analytic theory of cross-polarization (CP) dynamics between spin-1/2 and
spin-3/2 nuclei 147

Figure 5.17: In the simulations depicted, the frequency-domain S -spin signal in a
single-crystal emerging from Fourier transformation of the mixing time domain signal
corresponding to the DQ27 CP matching condition is shown at quadrupolar coupling
constants CQ = 500 kHz (a1) and 2000 kHz (a2). All other parameters such as the
quadrupolar coupling PAS angles αQ and βQ = 0◦, dipolar parameters (internuclear
distance r12 = 1.23 Å and dipolar PAS angle βd = 0◦) and RF amplitude of
S -spin ν1S = 80 kHz were identical in all the simulations. Depending on the
magnitude of the quadrupolar coupling constant, the RF amplitudes employed on
the I -spin were carefully adjusted to match the DQ27 CP matching condition. The
analytic simulations comprise contributions from all the eight CP matching conditions
(FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25) and is represented in violet color.
A line broadening of 50 Hz was used before the Fourier transform of the time-domain CP
signal.

varies. At CQ = 2.0 MHz, the CP spectrum suffers from additional distortions resulting

from the high-frequency phase-shifted components. Theses observation are in accord with

the CP dynamics presented in the previous section which highlighted the interplay of all

possible CP conditions in deciphering the polarization transfer in powder sample across

all coupling regimes. The dipolar coupling estimation can be made by the iterative fittings

of the CP lineshape using the Eq. (5.23). Apart from the dipolar coupling measurements,

the frequency domain analysis will reveal the underlying spin-dynamics of the polarization

transfer in the quadrupolar systems. The detailed analytical description presented herein

provides account of the observation of the various distortion observed in single-crystal and

powder samples.
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Figure 5.18: In the simulations depicted, the frequency-domain S -spin signal in powder
sample emerging from Fourier transformation of the mixing time domain signal is shown
for different quadrupolar coupling constants: panel a1-b1 (CQ = 0 kHz); panel a2-b2
(CQ =200 kHz); panel a3-b3 (CQ = 500 kHz) and panel a4-b4 (CQ = 2.0 MHz). All
other parameters such as the quadrupolar coupling PAS angles αQ and βQ = 0◦, dipolar
parameters (internuclear distance r12 = 1.23 Å and dipolar PAS angle βd = 0◦ kHz were
identical in all the simulations. The RF amplitudes employed on the I -spin taken from
the Figure 5.13. The analytic simulations in the panels have the following definitions: first
column, the analytic simulations comprise contributions from all the eight CP matching
conditions (FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47+DQ16+ZQ25) and is represented in
violet color. In the second column, the analytic simulations based on the contributions:
FQ18 + DQ45 (green color), DQ27+ ZQ36 (red color) and DQ38 + ZQ47 (blue color). The
powder simulations were performed using 4180 orientations (i.e., zcw4180) of α and β. A
line broadening of 50 Hz was used before the Fourier transform of the time-domain CP
signal.

5.3 Conclusions

To summarize, we have presented a detailed analytic treatment for the CP experiment

between I = 1/2 and S = 3/2 spin systems under on-resonance irradiation. Using

the “effective-field ” approach, the proposed theory provided a single unified analytic

framework comprising all the eight possible HH CP matching conditions which is equally

valid for single-crystal and powder samples. Unlike the existing analytic framework, the

proposed theory provides a quantitative description of the individual contributions from

all the possible CP matching conditions. The quantitative treatments reveal the role of

quadrupolar coupling strength and crystallite orientation in deciphering the spin-dynamics
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of the quadrupolar CP. This simplified description simplified the understanding of the CP

dynamics in powder sample. From an experimental point of view, we have provided

analytic description of the CP lineshapes for the dipolar coupling measurements.



Chapter 6

Summary and Conclusions

In summary, the thesis presents a unified description of cross-polarization (CP) dynamics

in quadrupolar spins based on the concept of effective Hamiltonians derived using the

“effective-field ” approach. In the thesis, operator-based analytic theory of spin-dynamics

is presented in a two-spin model framework described in a coupled spin operator basis for

understanding the mechanism of polarization transfer between I = 1/2 to S = 1 and 3/2

spin systems in static/non-rotating solids. In contrast to the existing theoretical models

based on the AHT and the Floquet theory, the proposed approach is shown to be an

attractive option for describing the mechanism of the polarization transfer experiments

in multi-level systems. The effective-field approach facilitates the derivation of effective

CP Hamiltonians requiring a minimal set of unitary transformations, unlike existing

operator-based perturbative methods that require perturbation corrections up to several

orders of magnitude. Our theory is able to identify all the modes of polarization transfer

and their individual contributions to the overall CP efficiency within a single mathematical

framework suitable for both single crystal as well as powder samples. Below, we summarize

the key findings of the thesis as discussed in the previous chapters.

A Theory and Methodology: An effective-field approach to understand

the mechanism of cross-polarization dynamics between spin-1/2

systems

In order to test the validity of the effective-field based analytic theory in the description

of CP dynamics, we have used an isolated spin-1/2 pair as a model system. In the

coupled basis representation, the overall CP signal expression is shown to be the sum

of contributions from the two HH CP matching conditions, namely the zero-quantum

(ZQ23) and the double-quantum (DQ14) along with an additional term arising from the

interference of the two HH CP conditions. Contrary to the existing literature reports,

the proposed theory offers a closed form solution to the effective CP Hamiltonian capable

of describing the CP dynamics across all coupling regimes under on/and off-resonance

irradiations. Under on-resonance irradiation (ΩS = 0), the proposed analytic theory

demonstrates an interplay of the double and zero-quantum CP conditions in deciphering

the overall CP transfer efficiency in the strong coupling regime (ωd ≈ ω1S). While in the

weak coupling regime (ωd << ω1S), the CP dynamics is deciphered by either of the two

CP conditions. We concluded that the effective spin-locking field is not uni-directional in

the strong coupling regime. Nevertheless, under the S -spin off-resonance irradiation, the
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involvement of the interference term further complicates the polarization transfer process.

In the case of stronger off-resonant irradiation (ΩS ≈ ω1S), we observed a dipolar coupling

dependent shift in the position of the HH CP matching conditions along with dispersion

of both the ZQ23 and DQ14 CP conditions. In strong coupling regimes (ΩS ≈ ω1S and

ωd ≈ ω1S), the spin-locking process is described by the contributions from the ZQ23 and

DQ14 CP conditions and interference terms in the CP signal expression. The presence of

the interference effect gives rise to an additional pathway for the loss in I -spin polarization

near ω1I = 0 without S -spin gaining any polarization. The above findings encouraged the

expansion of the proposed analytic framework to explore the CP dynamics in more complex

quadrupolar nuclei.

B Analytic theory of cross-polarization (CP) dynamics between

spin-1/2 and spin-1 nuclei

In this chapter of the thesis, an operator-based analytic theory employing the concept

of the effective-field is presented to describe the mechanism of polarization transfer

between spin-1/2 and spin-1 nuclei. Under on-resonance irradiation (both I and

S -spins), the proposed theoretical framework that the CP dynamics is governed by

the contributions from the four Hartmann-Hahn CP conditions, namely, triple-quantum

(TQ16), single-quantum (SQ34), double-quantum (DQ26) and zero-quantum (ZQ35)

transitions. In contrast to the existing theoretical framework, the effective Hamiltonian

derived using the effective-field method requires a minimal set of unitary transformations.

The effective CP Hamiltonian is shown to be valid across all the quadrupolar coupling

regimes. This enabled a quantitative analysis of the CP efficiency profiles for the

single-crystal and powder samples across all the quadrupolar coupling regimes. Utilizing

the derived analytic CP signal expression, we were able to evaluate the individual

contributions emerging from all the possible CP conditions in deciphering the CP

efficiency profiles at variable quadrupolar coupling strengths (CQ), crystallite orientations

(αQ and βQ) and RF-field strengths (ω1S) for single-crystal and powder samples.

Nonetheless, for the powder sample, the interference of various crystallite orientations

makes it less feasible to differentiate between the four matching conditions and the overall

polarization trajectory is described by the full CP signal expression. From an experimental

perspective, we have also presented a quantitative description of the CP lineshape for the

extraction of the dipolar coupling parameter.

C Understanding the role of second-order quadrupolar coupling and

off-resonance effects in CP dynamics

This chapter of the thesis extends the analytic framework presented in the previous

chapter to include the effect of S -spin off-resonance irradiation and second-order

quadrupolar coupling interactions. The effective Hamiltonian derived in the presence

of second-order quadrupolar interaction results in additional modes of CP transfer in

comparison to the on-resonance case. The derived CP signal expression contains a
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sum of total six Hartmann-Hahn CP matching conditions, namely, triple-quantum TQ16,

single-quantum SQ34, double-quantumDQ15, zero-quantum ZQ24, double-quantumDQ26

and zero-quantum ZQ35. Besides, the single-quantum I –spin dipolar transitions (SQd,I)

are shown to interfere with the CP trajectories. To the best of our knowledge, such

predictions are unique to the current study. The results emerging from the analytic

theory are well-corroborated through rigorous comparisons with the more exact numerical

simulations in all the quadrupolar coupling regimes. Evaluation of the individual

contribution provides a quantitative picture of the polarization transfer dynamics at

variable quadrupolar coupling (CQ, αQ andβQ) and RF (ω1S , ΩS) parameters for both

single-crystal and powder samples. Due to a similar operator dependency, the second-order

quadrupolar coupling and off-resonance irradiation display exactly similar CP dynamics

for single-crystal samples, and irradiating at ΩS = −ω(2)
Q can compensate the effect from

the second-order quadrupolar coupling. In the case of the powder sample, due to the

complexity (second and fourth rank) of the second-order quadrupolar coupling, the exact

compensation is not possible. However, it is possible to reach a compromise by irradiating

in the range of the second-order quadrupolar coupling-driven broadening/shift. Likewise,

in the on-resonance case presented in the previous chapter, the overall polarization transfer

in powder sample display an interplay of various CP matching conditions. To provide

an alternate description of the CP dynamics, we have also presented a state-picture

description of the polarization transfer dynamics.

D Analytic theory of cross-polarization (CP) dynamics between

spin-1/2 and spin-3/2 nuclei

In this chapter, we proposed an analytic theory of the CP dynamics in half-integer

quadrupolar nuclei. We have provided a closed form solution to the CP signal efficiency

that is valid across all the quadrupolar coupling regimes. Under on-resonance irradiation

(for both I and S -spins), the polarization transfer is described by a total of eight

HH CP matching conditions, namely, four-quantum FQ18, double-quantum DQ45,

double-quantum DQ27, zero-quantum ZQ36, double-quantum DQ38, zero-quantum

ZQ47, double-quantum DQ16 and zero-quantum ZQ24. The results emerging from the

analytic theory are well-corroborated through rigorous comparisons with the more exact

numerical simulations in all the quadrupolar coupling regimes. Unlike spin-1 systems, we

observed a good polarization transfer efficiency even in the stronger quadrupolar coupling

regime for both single-crystal and powder samples. This is mainly attributed to the

existence of the first-order quadrupolar devoid central transition (CTS), which exhibits

good spin-locking efficiency. We have explicitly shown the role of the orientation of the

quadrupolar coupling tensor in alerting the polarization dynamics for the single-crystal

sample, which simplified the understanding of CP dynamics in a more complex powder

sample. As discussed in the previous chapters, the polarization transfer trajectory in

the powder sample will be an amalgamation of all the possible CP matching conditions.

Moreover, we have also provided a quantitative description of the CP lineshapes for
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distance estimation.

The analytic framework presented in this thesis can be further extended to enhance

our theoretical understanding of the CP dynamics in higher quantum numbers (S>3/2)

nuclei. The integration of the proposed operator-based analytic theory with the reduced

density matrix formalism, is anticipated to be a good choice for developing a theoretical

framework for describing the multi-spin effects in the polarization transfer. We believe

our theoretical framework will be a step forward in better understanding of the CP

experiments under magic angle spinning (CPMAS) involving quadrupolar spins. We also

hope that the present theory can be further extended to understand the mechanism of

spin dynamics of polarization transfer using phase and/or amplitude modulated pulse

sequences essential for optimal design and development of CP experiments involving

quadrupolar spins.
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Appendix A

A.1 Matrix representation of the basis states and

spin-operators for the S = 1 spin-system

Table A.1: Matrix representation of the Zeeman basis for the S = 1 spin system.

|1⟩ = |1⟩S =

10
0

; |2⟩ = |0⟩S =

01
0

; |3⟩ = |−1⟩S =

00
1



Table A.2: Matrix representation of the single-transition operators for the S = 1 spin
system.

Ŝx = 1√
2

0 1 0
1 0 1
0 1 0

; Ŝy = i√
2

0 −1 0
1 0 −1
0 1 0

; Ŝz =
1 0 0
0 0 0
0 0 −1



Table A.3: Matrix representation of the Cartesian spin-operators for the single S = 1 spin
system.

Ŝ12
x = 1

2

0 1 0
1 0 0
0 0 0

; Ŝ23
x = 1

2

0 0 0
0 0 1
0 1 0

; Ŝ13
x = 1

2

0 0 1
0 0 0
1 0 0



Ŝ12
y = i

2

0 −1 0
1 0 0
0 0 0

; Ŝ23
y = i

2

0 0 0
0 0 −1
0 1 0

; Ŝ13
y = i

2

0 0 −1
0 0 0
1 0 0



Ŝ12
z = 1

2

1 0 0
0 −1 0
0 0 0

; Ŝ23
z = 1

2

0 0 0
0 1 0
0 0 −1

; Ŝ13
z = 1

2

1 0 0
0 0 0
0 0 −1


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Table A.4: Single-transition operator representation of the spin-operators for the S = 1
spin system.

Ŝx =
√
2[Ŝ12

x + Ŝ23
x ]; Ŝy =

√
2[Ŝ12

y + Ŝ23
y ]; Ŝz = 2[Ŝ12

z + Ŝ23
z ]

Table A.5: Matrix representation of the projection operators for the S = 1 spin system.

P̂11 =

1 0 0
0 0 0
0 0 0

; P̂12 =

0 1 0
0 0 0
0 0 0

; P̂13 =

0 0 1
0 0 0
0 0 0



P̂21 =

0 0 0
1 0 0
0 0 0

; P̂22 =

0 0 0
0 1 0
0 0 0

; P̂23 =

0 0 0
0 0 1
0 0 0



P̂31 =

0 0 0
0 0 0
1 0 0

; P̂32 =

0 0 0
0 0 0
0 1 0

; P̂33 =

0 0 0
0 0 0
0 0 1



Table A.6: Projection operators representation of the spin-operators for the S = 1 spin
system.

Ŝx = 1√
2
[P̂12 + P̂21 + P̂23 + P̂32]

Ŝy = −i√
2
[−P̂12 + P̂21 − P̂23 + P̂32]

Ŝz = [P̂11 − P̂33]
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B.1 Matrix representation of the product basis states and

spin-operators for the I = 1/2 and S = 1/2 coupled

spin-system

Table B.1: Matrix representation of the product basis for the I = 1/2 and S = 1/2 spin
system.

|1⟩ = |1/2⟩I
⊗

|1/2⟩S ≡ |1/2, 1/2⟩ =


1
0
0
0



|2⟩ = |1/2⟩I
⊗

|−1/2⟩S ≡ |1/2,−1/2⟩ =


0
1
0
0



|3⟩ = |−1/2⟩I
⊗

|1/2⟩S ≡ |−1/2, 1/2⟩ =


0
0
1
0



|4⟩ = |−1/2⟩I
⊗

|−1/2⟩S ≡ |−1/2,−1/2⟩ =


0
0
0
1


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Table B.2: Matrix representation of six Cartesian operators for the I = 1/2 and S = 1/2
in product basis.

Îx = 1
2


0 0 1 0
0 0 0 1
0 1 0 0
0 1 0 0

 Îy = i
2


0 0 −1 0
0 0 0 −1
0 1 0 0
0 1 0 0

 Îz =
1
2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



Ŝx = 1
2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 Ŝy = i
2


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 Ŝz =
1
2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



Figure B.1: The effect of dipolar coupling PAS angle βd on the effective dipolar coupling
frequency for both on and off-resonance irradiations. The following parameters were
used in the simulations: Dipolar parameters (internuclear distance rIS = 1.05 Å), RF
parameters: ν1H = 20 kHz and ν1S = 20 kHz and under off-resonance irradiation strength
ΩS = 20 kHz. This diagram shows the various coupling regimes based on the dipolar
coupling magnitude and S -spin rf field strengths.
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C.1 Matrix representation of the product basis states and

spin-operators for the I = 1/2 and S = 1 coupled

spin-system.

Table C.1: Matrix representation of the product basis for the I = 1/2 and S = 1 spins in
product basis.

|1⟩ = |1/2⟩I
⊗

|1⟩S ≡ |1/2, 1⟩ =



1
0
0
0
0
0

 |2⟩ = |1/2⟩I
⊗

|0⟩S ≡ |1/2, 0⟩ =



0
1
0
0
0
0



|3⟩ = |1/2⟩I
⊗

|−1⟩S ≡ |1/2,−1⟩ =



0
0
1
0
0
0

 |4⟩ = |−1/2⟩I
⊗

|1⟩S ≡ |−1/2, 1⟩ =



0
0
0
1
0
0



|5⟩ = |−1/2⟩I
⊗

|0⟩S ≡ |−1/2, 0⟩ =



0
0
0
0
1
0

 |6⟩ = |−1/2⟩I
⊗

|−1⟩S ≡ |−1/2,−1⟩ =



0
0
0
0
0
1



C.2 Description of CP spin dynamics based on existing

reports

From equation (3.10) (in the main text), the CP Hamiltonian during the mixing

(spin-locking/contact) period under the on-resonance S -spin irradiation is given as

˜̃̃
Ĥ =

(ωe − ω
(1)
Q

4

)[
Ŝ13
z + Ŝ46

z

]
+
(3ωe + ω

(1)
Q

12

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
+ ω1I

[
Ŝ14
z + Ŝ25

z + Ŝ36
z

]
+ 2ωd cos θ1/2

[
Ŝ16
x + Ŝ34

x

]
− 2ωd sin θ1/2

[
Ŝ26
x + Ŝ35

x

]
.

(A1)
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Table C.2: Matrix representation of six Cartesian operators for the I = 1/2 and S = 1 in
product basis.

Îx = 1
2



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 Ŝx = 1√
2



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0



Îy = i
2



0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 Ŝy = i√
2



0 −1 0 0 0 0
1 0 −1 0 0 0
0 1 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 −1
0 0 0 0 1 0



Îz =
1
2



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 −1 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 Ŝz =



1 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1



To explain the experimental results obtained from CP experiments, Pratum and Klein

proposed an approach, wherein, the above Hamiltonian was re-expressed in two forms. In

the first approach, the Hamiltonian was expressed in the TQ16-SQ34 subspace ignoring

the dipolar contributions resulting from the ZQ35-DQ26 operators. Employing such

an approach, the CP dynamics corresponding to the SQ34 matching condition was

described qualitatively without any analytic expression. In the second approach, the

same Hamiltonian was re-expressed in the ZQ35-DQ26 subspace ignoring the dipolar

contributions emerging from the TQ16-SQ34 operators. While such an approach, presents

a qualitative description of the CP dynamics observed in experiments, the method is of

limited utility in quantifying the experimental data. Below, we present a brief description

of the signal expressions derived from the effective Hamiltonians using their approach.

Method I: Description of the CP dynamics in the triple and single-quantum

(TQ16+SQ34) sub-spaces

To describe the spin dynamics corresponding to the SQ34 and TQ16 matching conditions,

the Hamiltonian in Eq. (A1) is re-expressed in terms of the TQ16/SQ34 operators.

˜̃̃
Ĥ16,34 ≈ Σ16

[
Ŝ16
z

]
+ ω16,34

d

[
Ŝ16
x

]
+∆34

[
Ŝ34
z

]
+ ω16,34

d

[
Ŝ34
x

]
+ ω1I

[
Ŝ25
z

]
+
(3ωe + ω

(1)
Q

12

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

] (A2)
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where, Σ16 =
{4ω1I + (ωe − ω

(1)
Q )

4

}
, ∆34 =

{4ω1I − (ωe − ω
(1)
Q )

4

}
, and ω16,34

d =

2ωd cos θ1/2.

Employing the effective-field approach described in the main section, the above

Hamiltonian is diagonalized sequentially and the final form of the signal observed in CP

experiments is derived and summarized below:

Ĥeff,16,34 = ω16
eff

[
Ŝ16
z

]
+ ω34

eff

[
Ŝ34
z

]
+ ω1I

[
Ŝ25
z

]
+
(3ωe + ω

(1)
Q

12

)[
Ŝ12
z − Ŝ23

z + Ŝ45
z − Ŝ56

z

]
(A3)

where, ω16
eff =

√
Σ2
16 + (ω16,34

d )2 and ω34
eff =

√
∆2

34 + (ω16,34
d )2.

Using the density operator formalism, the signal expression in the TQ16+SQ34 space is

given as

S(t)16,34 = ⟨Ŝe,x(t)⟩

=
4ω1S

ωe

[
−

(ω16,34
d )2

Σ2
16 + (ω16,34

d )2
sin2

√
Σ2
16 + (ω16,34

d )2

2
t︸ ︷︷ ︸

TQ16

+
(ω16,34

d )2

∆2
34 + (ω16,34

d )2
sin2

√
∆2

34 + (ω16,34
d )2

2
t︸ ︷︷ ︸

SQ34

]
.

(A4)

Method II: Description of the CP dynamics in the zero and double-quantum

(ZQ35+DQ26) sub-spaces

In a similar vein, to describe the CP dynamics in the ZQ35-DQ26 subspace, Eq. (A1) is

re-expressed in terms of the ZQ35/DQ26 operators.

˜̃̃
Ĥ35,26 ≈ Σ35

[
Ŝ35
z

]
+ ω26,35

d

[
Ŝ35
x

]
+∆26

[
Ŝ26
z

]
+ ω26,35

d

[
Ŝ26
x

]
+ ω1I

[
Ŝ14
z

]
+
(3ωe − ω

(1)
Q

12

)[
Ŝ12
z + Ŝ13

z + Ŝ45
z + Ŝ46

z

] (A5)

where, Σ35 =
{4ω1I + (ωe + ω

(1)
Q )

4

}
, ∆26 =

{4ω1I − (ωe + ω
(1)
Q )

4

}
and ω26,35

d =

−2ωd sin θ1/2.

Employing the effective-field approach, the above Hamiltonian is diagonalized and the

final form of the signal expression observed in CP experiments is derived and summarized

below:

Ĥeff,35,26 = ω35
eff

[
Ŝ35
z

]
+ ω26

eff

[
Ŝ26
z

]
+ ω1I

[
Ŝ14
z

]
+
(3ωe − ω

(1)
Q

12

)[
Ŝ12
z + Ŝ13

z + Ŝ45
z + Ŝ46

z

]
(A6)

where ω35
eff =

√
Σ2
35 + (ω26,35

d )2 and ω26
eff =

√
∆2

35 + (ω26,35
d )2.

Utilizing the density operator formalism, the signal expression in the ZQ35+DQ26 space
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is given as

S(t)35,26 =
4ω1S

ωe

[
−

(ω26,35
d )2

Σ2
35 + (ω26,35

d )2
sin2

√
Σ2
35 + (ω26,35

d )2

2
t︸ ︷︷ ︸

ZQ35

+
(ω26,35

d )2

∆2
26 + (ω26,35

d )2
sin2

√
∆2

26 + (ω26,35
d )2

2
t︸ ︷︷ ︸

DQ26

]
.

(A7)
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Figure C.1: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single crystal as a function of the rf field
employed on the I -spin under different S -spin rf field strength ν1S : 10 kHz (a1,b1,c1), 50
kHz (a2,b2,c2) and 75 kHz (a3,b3,c3). The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Quadrupolar parameters (CQ = 20 kHz (a1-a3), 200 kHz (b1-b3), and
1.0 MHz (c1-c3), ηQ = 0, quadrupolar coupling PAS angle αQ and βQ = 0◦), Dipolar
parameters (internuclear distance rIS = 1.05 Å) and the mixing time during the CP
experiment was held constant (say tmix = 0.5 ms). The analytic simulations based on
signal expressions corresponding to various CP matching conditions are indicated: SQ34

(red), TQ16 (green), DQ26 (blue) and ZQ35 (cyan) [refer to Eq. (3.19) in the main text].
The insets in panels c1-c3 show CP maxima in the higher I -spin rf field range.
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Figure C.2: Effect of the variation of quadrupolar coupling PAS angle βQ on the
first-order quadrupolar coupling frequency. Considering the quadrupolar PAS coincides
with the Molecular-axis systems (MolAS), the angles βQ will represent different crystallites
orientations. The following simulation parameters were used: CQ = 2.0 MHz, ηQ = 0.0,
quadrupolar coupling PAS angle αQ=0◦. The orange lines at βQ = 54.736◦ and 125.264◦

show zero passage or zero-crossing of the quadrupolar frequency where the sign of
quadrupolar coupling frequency changes from positive to negative.
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Figure C.3: In the CP simulations depicted, the polarization build-up on the S -spin (due
to transfer from the I -spin) is monitored in a single crystal as a function of the rf field
employed on the I -spin. The numerical simulations (based on SIMPSON) are represented
by solid black lines. In the simulations depicted, the effects of the variation of quadrupolar
coupling PAS angle βQ: 0

◦ (a1), 45◦ (a2), 54.736◦ (a3) and 90◦ (a4) on the CP dynamics
are illustrated. The following parameters were employed in all the simulations: CQ = 20
kHz, ηQ = 0, quadrupolar coupling PAS angle αQ = 0◦, contact time (tmix) = 0.5 ms,
internuclear distance rIS = 1.05 Å and ν1S = 50 kHz. The analytic simulations based on
signal expressions corresponding to various CP matching conditions are indicated, SQ34

(red), TQ16 (green), DQ26 (blue) and ZQ35 (cyan) [Eq. (3.19)].
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Figure C.4: Effect of the variation of quadrupolar coupling PAS angle βQ on the weighted
first-order quadrupolar coupling frequency. Considering the quadrupolar PAS coincides
with the Molecular-axis systems (MolAS), the angles βQ will represent different crystallites
orientations. The following simulation parameters were used: CQ = 2.0 MHz, ηQ = 0,

quadrupolar coupling PAS angle αQ = 0◦. The solid and dashed lines represent ω
(1)
Q

and ω
(1)
Q × sinβQ, respectively. The weighted crystallite plots provide an account of the

probability of the particular crystallite in powder sample.
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Figure C.5: In the simulations depicted, the frequency-domain individual S -spin CP
signals in a powder sample emerging from the Fourier transformation of the mixing time
domain signal is depicted for different quadrupolar coupling constants: panel a1 (CQ = 20
kHz); panel a2 (CQ = 200 kHz) and panel a3 (CQ = 1.0 MHz). All other parameters such
as the quadrupolar coupling PAS angles αQ and βQ = 0◦, dipolar parameters (internuclear
distance r12 = 1.05 Åand dipolar PAS angle βd = 0◦) and rf amplitude of S -spin ν1S = 50
kHz were identical in all the simulations. Depending on the magnitude of the quadrupolar
coupling constant, the rf amplitudes employed on the I -spin were carefully selected by
CP in maxima of the rf-domain simulation at the desired contact time. The numerical
simulations (based on SIMPSON) are represented by solid black lines. The analytic
simulations in the panels have the following definitions: the analytic simulations comprise
contributions from all the four CP matching conditions (SQ34+TQ16+DQ26+ZQ35) and is
represented in orange color and the analytic simulations based on the contributions SQ34

(red), SQ34+TQ16 (green), DQ26 (blue) and DQ26+ZQ35 (magenta) are depicted [based
on Eq. (3.19) in the main text]. The powders simulations were performed using 4180
orientations (i.e., zcw4180) of α and β. A line broadening of 50 Hz was used before the
Fourier transform of the time-domain CP signal.
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Figure D.1: The first-order quadrupolar driven cross-polarization transfer efficiency as
a function of the 1H rf field for a single-crystal sample from the numerical simulation
(SIMPSON) and the analytic theory. These simulations demonstrate the effect of S -spin
off-resonance irradiations on the CP efficiency profile ΩS = −20 kHz (a1) and ΩS = 20
kHz (a2). The parameters used for generating the CP efficiency profiles are: CQ = 200
kHz, ηQ = 0, quadrupolar coupling PAS angles αQ and βQ = 0◦, contact time = 0.5 ms,
ν1S = 80 kHz and internuclear distance rIS = 1.05 Å. SIMPSON simulations (black curve)
are fitted with the total analytic signal expressions (indigo curve) [Eq. (4.20)] in panels
a1-a3.
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Figure D.2: The first-order quadrupolar driven cross-polarization transfer efficiency as
a function of the 1H rf field for a single-crystal sample from the numerical simulation
(SIMPSON) and the analytic theory. These simulations demonstrate the effect of S -spin
off-resonance irradiations on the CP efficiency profile ΩS = 0 kHz (a1), ΩS = −10 kHz
(a2) and ΩS = −20 kHz (a3). The parameters used for generating the CP efficiency
profiles are: CQ = 20 kHz, ηQ = 0, quadrupolar coupling PAS angles αQ and βQ = 0◦,
contact time = 0.5 ms, ν1S = 80 kHz and internuclear distance rIS = 1.05 Å. SIMPSON
simulations (black curve) are fitted with the total analytic signal expressions (indigo curve)
[Eq. (4.20)] in panels a1-a3.

D.1 Coefficients in the calculation of the density matrix in

TQ16, SQ34, DQ15, ZQ24, DQ26 and ZQ35 subspaces
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Figure D.3: The first-order quadrupolar driven cross-polarization transfer efficiency as
a function of the 1H rf field for a single-crystal sample from the numerical simulation
(SIMPSON) and the analytic theory. These simulations demonstrate the effect of S -spin
off-resonance irradiations on the CP efficiency profile ΩS = 0 kHz (a1), ΩS = −20 kHz
(a2) and ΩS = −50 kHz (a3). The parameters used for generating the CP efficiency
profiles are: CQ = 1000 kHz, ηQ = 0, quadrupolar coupling PAS angles αQ and βQ = 0◦,
contact time = 0.5 ms, ν1S = 80 kHz and internuclear distance rIS = 1.05 Å. SIMPSON
simulations (black curve) are fitted with the total analytic signal expressions (indigo curve)
[Eq. (4.20)] in panels a1-a3.
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Figure D.4: Effect of the variation of the quadrupolar coupling PAS angle β: 110◦ (a1),
125.624◦ (a2), 135◦ (a3) and 180◦ (a4) on the second-order quadrupolar interaction driven
cross-polarization transfer efficiency for a single-crystal sample. The parameters used for
generating the CP efficiency profiles are: CQ = 1500 kHz, η = 0, and quadrupolar coupling
PAS angle α = 0◦, ν1S = 80 kHz, contact time = 0.5 ms, 1H Larmor precession frequency =
400 MHz and rIS = 1.05 Åunder on-resonance S -spin irradiation. SIMPSON simulations
(black curve) are fitted with the SQ34+TQ16 (red curve), DQ26+ZQ35 (blue curve) and
DQ15+ZQ24 (magenta curve) in all panels.

Figure D.5: Effect of the variation of the quadrupolar coupling PAS angle βQ on first and
second-order quadrupolar coupling frequencies. The following simulation parameters were
used: CQ = 2.0 MHz, ηQ = 1.0, quadrupolar coupling PAS angle αQ: (a1) 0◦, (a2) 45◦

and (a3) 90◦. The exact expression for these frequencies can be found in Eqs. (1.32) and
(1.36).
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Figure D.6: Effect of the variation of the quadrupolar coupling PAS angle αQ on the first
and second-order quadrupolar coupling frequencies. The following simulation parameters
were used: CQ = 2.0 MHz, ηQ = 1.0, quadrupolar coupling PAS angle βQ: (a1) 0◦, (a2)
45◦ and (a3) 90◦. The exact expression for these frequencies can be found in Eqs. (1.32)
and (1.36).

Figure D.7: Effect of the variation of the quadrupolar coupling PAS angle αQ on the first
and second-order quadrupolar coupling frequencies. The following simulation parameters
were used: CQ = 2.0 MHz, ηQ = 1.0, quadrupolar coupling PAS angle βQ: (a1) 50

◦, (a2)
54.736◦ and (a3) 60◦. The exact expression for these frequencies can be found in Eqs.
(1.32) and (1.36).



186 APPENDIX

Figure D.8: The cross-polarization trajectories as a function of the 1H RF field
for a single-crystal sample from the numerical simulation (SIMPSON). The following
parameters were used in the simulations: CQ = 200 kHz, ηQ = 0, quadrupolar coupling
PAS angles (0◦, 0◦, 0◦), ν1S = 80 kHz and S -spin off-resonance irradiation strength
Ω1S = 40 kHz. Here the black and red curves correspond to the < Ix(t) > and < Sx(t) >
detection, respectively.
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Appendix E

E.1 Matrix representation of the basis states and

spin-operators for the S = 3/2 spin-system.

Table E.1: Matrix representation of Zeeman basis for the S = 3/2 spin system

|1⟩ = |3/2⟩S =


1
0
0
0

; |2⟩ = |1/2⟩S =


0
1
0
0

; |3⟩ = |−1/2⟩S =


0
0
1
0

; |4⟩ = |−3/2⟩S =


0
0
0
1



Table E.2: Matrix representation of the Cartesian spin-operators for the S = 3/2 spin
system.

Ŝx = 1
2


0

√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0

; Ŝy = i
2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√
3

0 0
√
3 0

; Ŝz = 1
2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3



E.2 Matrix representation of the product basis states and

spin-operators for the I = 1/2 and S = 3/2 coupled

spin-system
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Table E.3: Matrix representation of the single-transition operators for the S = 3/2 spin
system.

Ŝ12
x = 1

2


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

; Ŝ12
y = ı

2


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

; Ŝ12
z = 1

2


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0



Ŝ13
x = 1

2


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

; Ŝ13
y = i

2


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

; Ŝ13
z = 1

2


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0



Ŝ14
x = 1

2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

; Ŝ14
y = i

2


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

; Ŝ14
z = 1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1



Ŝ23
x = 1

2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

; Ŝ23
y = i

2


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

; Ŝ23
z = 1

2


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0



Ŝ24
x = 1

2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

; Ŝ24
y = i

2


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

; Ŝ24
z = 1

2


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1



Table E.4: Single-transition operator representation of the spin-operators for the S = 3/2
spin system.

Ŝx =
√
3(Ŝ12

x + Ŝ34
x ) + 2Ŝ23

x ; Ŝy =
√
3(Ŝ12

y + Ŝ34
y ) + 2Ŝ23

y ; Ŝz = (3Ŝ14
z + Ŝ23

z )



190 APPENDIX

Table E.5: Matrix representation of the product basis for the I = 1/2 and S = 3/2 spin
system.

|1⟩ = |1/2⟩I
⊗

|3/2⟩S ≡ |12 ,
3
2⟩ =



1
0
0
0
0
0
0
0


; |2⟩ = |1/2⟩I

⊗
|1/2⟩S ≡ |12 ,

1
2⟩ =



0
1
0
0
0
0
0
0



|3⟩ = |1/2⟩I
⊗

|−1/2⟩S ≡ |12 ,−
1
2⟩ =



0
0
1
0
0
0
0
0


; |4⟩ = |1/2⟩I

⊗
|−3/2⟩S ≡ |12 ,−

3
2⟩ =



0
0
0
1
0
0
0
0



|5⟩ = |−1/2⟩I
⊗

|3/2⟩S ≡ |−1
2 ,

3
2⟩ =



0
0
0
0
1
0
0
0


; |6⟩ = |−1/2⟩I

⊗
|1/2⟩S ≡ |−1

2 ,
1
2⟩ =



0
0
0
0
0
1
0
0



|7⟩ = |−1/2⟩I
⊗

|−1/2⟩S ≡ |−1
2 ,−

1
2⟩ =



0
0
0
0
0
0
1
0


; |8⟩ = |−1/2⟩I

⊗
|−3/2⟩S ≡ |−1

2 ,−
3
2⟩ =



0
0
0
0
0
0
0
1


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Table E.6: Matrix representation of the S -spin Cartesian operators in product basis.

Ŝx = 1
2



0
√
3 0 0 0 0 0 0√

3 0 2 0 0 0 0 0

0 2 0
√
3 0 0 0 0

0 0
√
3 0 0 0 0 0

0 0 0 0 0
√
3 0 0

0 0 0 0
√
3 0 2 0

0 0 0 0 0 2 0
√
3

0 0 0 0 0 0
√
3 0


=

√
3(Ŝ12

x + Ŝ34
x + Ŝ56

x + Ŝ78
x )

+2(Ŝ23
x + Ŝ67

x )

Ŝy = i
2



0 −
√
3 0 0 0 0 0 0√

3 0 −2 0 0 0 0 0

0 2 0 −
√
3 0 0 0 0

0 0
√
3 0 0 0 0 0

0 0 0 0 0 −
√
3 0 0

0 0 0 0
√
3 0 −2 0

0 0 0 0 0 2 0 −
√
3

0 0 0 0 0 0
√
3 0


=

√
3(Ŝ12

y + Ŝ34
y + Ŝ56

y + Ŝ78
y )

+2(Ŝ23
y + Ŝ67

y )

Ŝz =
1
2



3 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −3


= (3Ŝ14

z + Ŝ23
z + 3Ŝ58

z + Ŝ67
z )
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Table E.7: Matrix representation of the I -spin Cartesian operators in product basis.

Îx = 1
2



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


= (Ŝ15

x + Ŝ26
x + Ŝ37

x + Ŝ48
x )

Îy = i
2



0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


= (Ŝ15

y + Ŝ26
y + Ŝ37

y + Ŝ48
y )

Îz =
1
2



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1


= (Ŝ15

z + Ŝ26
z + Ŝ37

z + Ŝ48
z )
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