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Lay Summary

Cross-polarization experiment is a routinely employed experimental technique for
sensitivity enhancement of the dilute/insensitive spins in the solid-state NMR
spectroscopy. This double resonance experiment is based on the polarization from the
abundant to less abundant nuclei mediated through heteronuclear dipolar couplings.
Understanding the mechanism of the cross-polarization transfer dynamics in quadrupolar
spins (/>1/2) has remained an open problem in the field of solid-state NMR spectroscopy.
This is primarily due to the complexity in the description of the analytic theory due
to the presence of multiple energy levels, a non-commuting set of operators in the
interaction Hamiltonian and the strength of the quadrupolar coupling constant. In this
thesis, an operator-based analytic theory is presented to describe the spin dynamics of
the cross-polarization experiment involving quadrupolar spins. Utilizing the concept of
the “Effective-field” method an effective CP Hamiltonian is derived, which accurately
predicts the spin dynamics across all the quadrupolar coupling regimes. The effective-field
formalism is shown to converge faster with the requirement of a minimal number of unitary
transformations in contrast to conventional perturbative approaches. Results emerging
form the analytic theory are rigorously compared and validated with more exact numerical
simulations for a wide range of the experimental parameters. The CP signal expressions
derived in this thesis are capable of identifying all the possible modes of the polarization
transfer pathways and their interplay in deciphering the overall CP efficiency in isotropic

and anisotropic solids.
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Abstract

Cross-polarization (CP) method forms the building block in the design of
multi-dimensional experiments in solid-state nuclear magnetic resonance (NMR)
spectroscopy. CP between spin-1/2 systems is a routine experimental method for
sensitivity enhancement of insensitive spins in solid samples. It involves the transfer
of polarization from the highly abundant spins to the less abundant (insensitive) spins.
CP is mediated through heteronuclear dipolar coupling spin interactions by simultaneous
irradiation of radio-frequency (RF) fields on both spins. The polarization transfer
efficiency is maximized when the RF amplitudes on both nuclei are matched, a condition
that is referred to as the Hartmann-Hahn (HH) energy level matching condition for static
or non-rotating solids. While the mechanism of polarization transfer dynamics during CP
process is well understood through various theoretical frameworks for spin-1/2 systems, a
straightforward extension of the CP experiment involving quadrupolar spins (S > 1/2; 2D,
6Li, 1N, 23Na, 35Cl, etc.) remains elusive. This is primarily due to the magnitude of the
quadrupolar interaction (ranging from a few kHz to MHz), which in general is much higher
than the magnitude of other internal spin interactions and the amplitude of the available
RF fields that result in poor polarization transfer efficiency. This has acted as a roadblock
for the optimal implementation of CP-based experimental methods involving quadrupolar
spins and forms the motivation behind the thesis. From a theoretical perspective, the
presence of multiple energy-levels/transitions and non-commuting set of operators in the
interaction Hamiltonian along with the strength of quadrupolar coupling complicate the
unified description of the spin dynamics. Previously, the theoretical descriptions of the CP
were reported either using the average Hamiltonian theory (AHT) or Floquet theory. In
both approaches the doubly rotating frame Hamiltonian is described in the quadrupolar
interaction frame leading to time-dependent Hamiltonians. Depending on the strength of
quadrupolar interaction, the Hamiltonian in the quadrupolar interaction frame requires
perturbation corrections up to several orders of magnitude. Nevertheless, such descriptions
are of limited utility in describing the CP dynamics across all the quadrupolar coupling
regimes both for single crystal (single crystallite orientation with respect to the applied
Zeeman field) as well as powder samples wherein quadrupolar frequencies are distributed
over a wide range of crystallite orientations. In contrast to the existing theoretical
models, in this thesis we attempt to provide an alternate description of the CP dynamics
described using effective Hamiltonians that are derived from rotation operators based on
the “effective-field” approach. Our effective-field approach results in faster convergence
with improved accuracy in comparison to the existing theoretical frameworks. We have
identified all the CP matching conditions in terms of the single-transition operators and
also highlighted their role in deciphering the mechanism of CP transfer dynamics in
non-rotating solids. We have presented a unified description of the CP dynamics involving
quadrupolar spins through a single mathematical framework that is valid both for single
crystal as well as powder samples across all the quadrupolar coupling regimes. The results

emerging from the analytic theory are verified with numerical simulations over a wide
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range of experimental parameters. We believe that the analytic theory presented in this
thesis would provide necessary impetus for better understanding of the CP experiments
involving quadrupolar spins and could be a guiding tool for designing new experimental
strategies.

Keywords: Cross-polarization; quadrupolar spin; Hartmann-Hahn condition;

effective-field method; effective Hamiltonian; density matrix.
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Chapter 1

Introduction

1.1 Introduction

Following the discovery by Felix Bloch and Edward Mills Purcell in 1946 [1,2], Nuclear
Magnetic Resonance (NMR) spectroscopy has become an indispensable tool for structural
characterization of chemical compounds in solution and solid states. The heart of NMR
spectroscopy lies in the various internal (magnetic and electric) interactions present in
the system, which collectively rise as a source of structural constraints in the form of
chemical environment, internuclear distances, torsional angles, etc., and dynamics at an
atomic level. NMR spectroscopy has gained popularity among other types of spectroscopic
methods due to its ability to tailor these internal interactions through spin and/or space
manipulations, allowing determination of the structural constraints of interest. Despite
the presence of similar nuclear spin interactions in solution and solid-state samples, the
solid samples exhibit broad and featureless spectra due to the restricted mobility of
molecules. The rapid tumbling motion in the solution sample produces well-resolved
and sharp resonances rendered by the spatial averaging of the orientation-dependent
(anisotropic) interactions. The low resolution and sensitivity in solid-state NMR is caused
by anisotropic broadening. Additional challenges come from the poor signal-to-noise (S/N)
ratio of the NMR spectra [3,4] due to lower gyromagnetic ratio and natural abundance.
Except 'H and '°F, all nuclear spins suffer from the poor S/N or sensitivity issue due to
their low natural abundance and/or gyromagnetic ratio; therefore, all NMR active nuclei
are classified as abundant spin (*H and 1°F) and dilute or less-abundance spins (e.g., 2H,
13¢, 15/14N | 23Na, etc.). Due to high natural abundance and widespread occurrence in the
majority of the organic and inorganic compounds, the 'H NMR has attracted a great deal
of attention in the NMR spectroscopy. However, the stronger 'H-'H homo-nuclear dipolar
coupling network coupled with its small chemical shift range, made one-dimensional (1D)
'H NMR analysis almost impossible for slightly larger molecules due to poor resolution
and sensitivity. Discoveries of the Magic Angle Spinning (MAS) by E. R. Andrew et.
al. [5] and Lowe et. al. [6] in 1953 and Fourier Transform (FT) NMR by R.R. Ernst [7]
had a significant influence on the hardware and technological advancements of the NMR,
spectroscopy tailored towards improved resolution and sensitivity. These advancements
have increased flexibility in the design and development of new pulse sequences, therefore
opening the door to a wide range of samples to be studied through the solution and
solid-state NMR. The magic angle spinning (MAS) technique has been the major thrust

towards multisite resolution and sensitivity enhancement of solid-state NMR spectra by
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averaging the orientation-dependent interactions. The solid sample is rapidly spun in a
rotor inclined at the magic angle 6,, = 54.736°, with respect to the Zeeman magnetic
field, which mimics the tumbling motion of solution samples, but at the cost of inducing
periodic time-dependence [8] to the interaction Hamiltonian. Improved resolution and
sensitivity rendered due to MAS has resulted in increased interest in observing dilute
spins like 13C and N, etc. Due to their large chemical shift dispersion and smaller
homo-nuclear dipolar coupling network, even at slow MAS (range) we may accomplish the
desired resolution by averaging anisotropic interactions. Nevertheless, the poor sensitivity
remained a major concern for observing such dilute spins, as MAS alone may not provide
the desired sensitivity [9]. Although isotopic enrichment can alleviate the problem of their
lower natural abundance, however only at a high cost and with the requirement of large
sample volume. To this end, most of the developments in the solid-state NMR spectroscopy
have been focused on improving the sensitivity without compromising the structural
information. The polarization transfer-based experiments, such as cross-polarization
(CP) [10], insensitive nuclei enhanced by polarization transfer (INEPT) [11], nuclear
Overhauser effects (NOE) [12], dynamic nuclear polarization transfer (DNP) [13,14], etc.
have been the best-suited choice for enhancing the sensitivity of the dilute spins. These
experiments are based on the fact that in solids, the dilute spins lie in close or spatial
proximity of the abundant spin (mostly 'H) and are connected via a heteronuclear dipolar
coupling interaction which is exploited to transfer the large polarization of abundant
spins to less abundant spin. Omne such experiment in solids is the double-resonance
cross-polarization (CP) experiment introduced in 1962 by Hartmann and Hahn, [10]
(also referred to as the Hartmann-Hahn CP). Since its inception, CP has become an
integral building block of solid-state nuclear magnetic resonance (ssNMR) experiments for
observing less sensitive nuclei. The CP [10,15-17] between highly abundant nuclei I =
1/2 (e.g., 'H with high gyromagnetic ratio) and less abundant (insensitive) nuclei S =
1/2 (e.g., 13C, 15N, 29Si, etc., with low gyromagnetic ratio) spins is a routinely employed
experimental method for signal enhancement of insensitive nuclei in solid samples. The
polarization transfer is mediated through the heteronuclear dipolar coupling interaction
by simultaneous irradiation of radio-frequency (RF) fields (spin-locking) applied on both
nuclei [18]. The polarization transfer is maximized when the RF amplitudes on both
nuclei are matched, a condition that is referred to as the Hartmann-Hahn (HH) energy
level matching condition (wij; = fwg) for static (non-rotating) samples [10,17]. For
spinning samples, the magic angle (MAS) averages the heteronuclear dipolar coupling,
which is the medium of polarization transfer. In this regard, Schaefer et. al. [19]
showed that simultaneous RF irradiation interfere with the spinning frequency at the
rotor period, and the heteronuclear dipolar coupling can be reintroduced. Under sample
spinning, the HH conditions are modified and the polarization transfer is maximized only
when the difference in the RF amplitudes on both spins is equal to the multiples of the
spinning frequency (w17 = mw, £ wig) and the strength of the heteronuclear dipolar

coupling is much smaller than the spinning frequency [17,19-28]. Since then, the CPMAS
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experiment combined with heteronuclear decoupling has become a standard technique
for the excitation of dilute spins [29-31]. Apart from the sensitivity enhancement, the
CP-based transfer is also used to probe internuclear dipolar connectives, rigidity and
mobility of the sample dynamics and spectral editing in multi-dimensional experiments
[32-37]. Due to the wider applications of cross-polarization experiments, the technique
forms the building block of around 80-90% of the solid-state nuclear magnetic resonance
(NMR) experiments. In the literature, many variants of CP exist for spin-1/2 systems such
as continuous-wave (CW), amplitude-modulated RAMP-CP [22] and adiabatic CP [38],
frequency-modulated broadband BRAIN-CP [39], Lee-Goldberg (LG)-CP [40], etc. From
a theoretical perspective, the underlying spin dynamics of CP transfer between spin-1/2

nuclei is well understood and documented in the literature [25,26,41-43].

Although CP-based polarization transfer among spin-1/2 systems (between I = 1/2 and
S = 1/2) is a routinely employed experimental technique [17,19,23,24], its applicability
to quadrupolar spins (S > 1/2) remains less straightforward and less intuitive [16,44-49].
From a practical aspect, the polarization transfer among spins in the CP experiment is
established through appropriate matching of the radio frequency (RF) fields employed on
the spins of interest. Since the amplitude of the RF fields employed in the CP experiments
are much higher (magnitude-wise) than the magnitude of the internal spin interactions
(such as chemical shift, dipolar coupling interactions, etc.), the optimal implementation
of the CP experiment is well-established and described within the existing theoretical
frameworks. Nevertheless, a straightforward extension of the theory of CP dynamics
involving quadrupolar spins (S > 1/2; 2D, Li, N, 23Na, 35Cl, etc.) is less straightforward
and less intuitive for both static as well as spinning samples [45, 47-50, 50-62]. The
quadrupolar nuclei (S > 1/2) constitute around 75% of all NMR active nuclei [16,63] and
are present in the majority of organic, biomolecular, and inorganic compounds [64—68].
Furthermore, due to their non-spherical nuclear charge distribution, the presence of
quadrupolar interaction provides an additional structural constraint, namely the electronic
environment. A detailed description of the quadrupolar coupling interaction is provided
in the next section. Quadrupolar nuclei suffer from poor sensitivity and resolution due
to their lower gyromagnetic ratio and/or natural abundance, and the presence of high
electric quadrupolar coupling strength (kHz to MHz range). With the currently available
RF irradiation strengths, the direct excitation of quadrupolar nuclei for getting structural
constraints and spectral assignments is always challenging. To overcome this issue, in the
last few decades, many different excitation schemes have been developed to improve their
excitation efficiency and sensitivity [69,70]. Among quadrupolar nuclei, the half-integral
nuclei (S = 3/2,5/2,7/2, etc.) have the presence of single-quantum central transition (CT),
which is first-order quadrupolar coupling devoid, therefore have better excitation efficiency
and resolution [71-76]. Nevertheless, the central transitions (CT) are broadened by the
higher-order (kHz) quadrupolar effects [77]. These higher-order broadenings can be scaled
down by the MAS and high magnetic fields but cannot be completely averaged out [78]. In

contrast the integral spins (S = 1,3, etc.) lack the first-order quadrupolar devoid central
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transitions and therefore remained less explored nuclei [79-81]. Even after nearly seven
decades of NMR, poor sensitivity and resolution remained the main roadblock in the
quadrupolar NMR. Despite CP being an established technique of sensitivity enhancements
for spin-1/2 nuclei, its applicability to quadrupolar nuclei remains less straightforward
and less intuitive. In CP experiments involving quadrupolar nuclei, the magnitude
of the quadrupolar interaction (ranging from a few kHz to MHz) in general is much
higher than the magnitude of other internal spin interactions and the amplitude of the
available RF fields [16,44,71,82,83]. Consequently, identifying the exact HH matching
conditions essential for the optimal implementation of CP experiment is often fraught
with difficulty [84]. Besides, the presence of multiple energy levels/transitions lead to
inefficient spin-locking and therefore poor CP transfer efficiency [85-89]. Depending
on the strength of quadrupolar interaction, the Zeeman energy levels are modified to
different orders of magnitudes during the simultaneous RF irradiation and result in several
CP matching conditions that complicate the unified theoretical description of the CP
dynamics. The periodic modulation of the energy level matching caused by MAS further
complicates the spin-locking process. Although, on the theoretical front, a handful of
research work associated with the quadrupolar CP spin-dynamics is available in the
literature [45-49,54,81,90-94], a comprehensive description of the CP matching conditions
over a wide range of quadrupolar coupling constants has remained challenging. This
limitation has remained a major roadblock in the design and development of CP-based
experimental methods for quadrupolar spins [58,59,62,82,95-101] and forms the motivation
behind the thesis.

From a theoretical perspective, the presence of the dominant quadrupolar interactions
has often been the main hindrance in analytic descriptions [69, 83, 102] of the spin
dynamics in quadrupolar CP experiments. To this end, descriptions in the quadrupolar
interaction frames were proposed for describing the spin dynamics. In combination
with Average Hamiltonian theory (AHT) [3,90,103] and in some cases with Floquet
theory [93,104-109], semi-analytical methods have also emerged for describing experiments
involving quadrupolar spins, both in non-rotating (static) and rotating solids. In the initial
description proposed by Vega and coworkers [45,47], the CP dynamics was described in
systems with larger quadrupolar interactions based on effective Hamiltonians derived using
the fictitious spin-1/2 operator formalism [17,110-113]. Nevertheless, such descriptions
were of limited utility in quantifying the CP profiles in powder samples due to the
distribution of quadrupolar coupling frequencies. In a subsequent development, Ernst and
coworkers [90] presented an alternate description of the CP experiment that was specific
to cases where the quadrupolar coupling constant was on par with the amplitude of the
radio-frequency field employed on the quadrupolar spin. However, their approach was
restricted only to the special case mentioned above and was of limited utility in addressing
the dynamics in powder samples. In an alternate formulation, Pratum and Klein
[91] predicted the presence of additional matching conditions and derived approximate

Hamiltonians that could qualitatively explain the CP matching conditions observed in
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experiments. Nevertheless, a comprehensive analytic description of the CP dynamics over
a wide range of experimentally relevant parameters has always been challenging, even for
static samples. To address this issue, in this thesis, we attempt an alternate approach
to describe the CP dynamics consistent with experimental observations. In contrast to
perturbative methods employed in the quadrupolar interaction frame, the CP dynamics
is described through effective Hamiltonians derived from rotation operators based on
the “effective-field” approach [70, 80,109, 114, 115]. The proposed analytic framework
based on the effective-field approach offers faster convergence and presents an attractive
framework for describing the underlying spin dynamics in both isotropic and anisotropic
solids. Accordingly, the CP matching conditions observed are described in terms of the
transition operators associated with a given system [114,115]. With this objective in mind,
an analytic theory based on the concept of effective Hamiltonian is proposed to offer a
detailed description of the CP spin dynamic involving quadrupolar spins. A brief outline

of the thesis is given in the next section.

1.2 Objectives and scope of the thesis

In order to improve the efficiency of polarization transfer in quadrupolar spins, developing
an operator-based analytic theory is vital. The theoretical descriptions should be equally
valid in describing the CP dynamics in all the quadrupolar coupling regimes, both for single
crystal (single crystallite orientation with respect to the applied Zeeman field) as well as
powder samples wherein quadrupolar coupling frequencies are distributed over a wide
range of crystallite orientations. Besides, the analytic theory of CP dynamics described in
a coupled spin operator basis through a single mathematical framework is not available. In
contrast to the existing theoretical models, we attempt to provide an alternate description
of the CP dynamics using effective Hamiltonians derived from rotation operators based on
the “effective-field” approach [115-117]. We show that the effective-field approach adopted
in the thesis for describing the CP dynamics results in a faster convergence with improved
accuracy.

The thesis is based on the following three objectives:

e To present an operator-based analytic theory of CP dynamics between spin-1/2 (1)
and spin-1 (5) systems using the effective-field method under S-spin on-resonance

irradiation and the first-order quadrupolar coupling Hamiltonian.

e To understand the role of the second-order quadrupolar coupling and the S-spin

off-resonance irradiation in the CP dynamics between spin-1/2 and spin-1 systems.

e To use the effective-field approach for describing the CP dynamics between spin-1/2
(I) and spin-3/2 (S) systems.

In the section below, we have provided a brief description of the nuclear spin interactions
and the density operator approach to study the time-evolution of the spin-system under

the effective NMR interaction Hamiltonian.
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1.3 Fundamentals of NMR

1.3.1 Nuclear spin interactions in NMR

NMR spectroscopy relies on non-zero spin angular momentum (represented as I) property
of the nuclear spin. Like mass, size and charge, nuclear spin angular momentum is a
fundamental /intrinsic property of an atom/nucleus. However, unlike mass and size, spin
angular momentum has no classical analog and therefore requires quantum-mechanical
description of the nuclear spin interaction. The nuclear spin angular momentum can be
correlated with the nuclear magnetic moment p as p = hyI, where v is the gyromagnetic
ratio. Therefore, the presence of nuclear spin angular momentum gives rise to a tiny
magnetic field/moment ( &~ n Tesla) around the nucleus, which is directed along/opposite
to the direction of spin angular momentum depending on the sign of the gyromagnetic
ratio. Classically, when these tiny magnets are placed inside a strong static magnetic
field (By) try to align themselves along the direction of the static magnetic field and start
precession around the static field due to torque with the frequency termed as Larmor
precession frequency (wp = —yBjy) [16,44]. Under thermal equilibrium, this process results
in a minimum energy state and a net nuclear bulk magnetization is generated. In a
real system, the NMR sample consists of an ensemble/collection of nuclear spins, each
spin with its own tiny magnetic field interacting with other nuclear spins or with an
external magnetic field present around the nucleus. Therefore, the interaction in NMR
can be broadly classified as internal and external interactions, with a detailed explanation

provided in the following section.

A. External Interactions:

The external interactions are classified as the interactions between the
magnetic field of the nuclear spin and the externally applied magnetic fields

like the Zeeman field and electromagnetic wave (radio-frequency field).

Al. Zeeman Interaction:

Any nuclear spin with spin quantum number I possesses 2/+1 energy levels. In the
absence of an external magnetic field, these energy levels are equally populated, i.e., the
total energy difference will be zero under the effect of thermal processes. However, as
soon as the external field (By) is switched on, the total energy of the system will undergo
a redistribution creating a net energy difference. This interaction between the magnetic
moment of the nuclear spin and magnetic field is termed as the Zeeman interaction [118,

119] and the Hamiltonian for this interaction is given as

ﬁz = — ZluzB() = — Zh’yszBO = ZMOifiz§ (11)
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where the Zeeman field (By) is applied along a fixed direction (z-axis). Here wg;(= —v;Bo)
and 7; are the Larmor precession frequency and gyromagnetic ratio of nuclear spin i,
respectively. i = h/27, where h is the Planck’s constant. This is the strongest interaction
in NMR and all other interactions act as perturbations to the Zeeman interaction. It has a
timescale of (¢, = 27 /wp;) nanosecond. Therefore, any other process should have a longer
time scale than the Zeeman interaction to be observed. The Zeeman energy level for I =

1/2, 1 and 3/2 spin systems are shown in Figure 1.1.

| Zeeman field splitting for I = 1/2, 1 and 3/2 system

(al) I=1/2 (a2) I=1 @3) 1=3/2
—_—13/2)
— 1))
— 11/2) S ——1/2)
— 0 <
et l1y2) \\\ \:\‘—— [=1/2)
—s
A -3/2)

Figure 1.1: Schematic representation of the Zeeman energy levels for the I = 1/2, 1 and
3/2 spin systems

ATI. Radio-frequency (RF) field interaction:

The purpose of the Zeeman interaction is to generate a population difference between
the Zeeman energy levels. However, in order to observe this population difference, an
oscillatory/rotating radio-frequency field is applied in the perpendicular direction (x/y)
to the Zeeman field (z), which acts as a time-dependent perturbation and causes an
oscillatory population exchange between the ground and excited states [120]. Once the
radio-frequency field is turned off, the system tries to regain its original equilibrium state
by releasing this energy resulting in an NMR signal in terms of free induction decay (FID).

The interaction Hamiltonian for this interaction is given as

Hpp = —p;.Brp(t)i

A (1.2)
= —2h7; B1(t) cos(wrrt + @)1,

where Brp(t) = 2Bi(t) cos(wrpt + ¢).
Hpp = 2hwi;(t) cos(wrpt + @)Ly wii(t) = —yiBi(t). (1.3)

Here Bj(t) and wy;(t) represent the amplitude and nutation frequency of the
radio-frequency field, respectively, which could be time-independent or dependent and
(wrF, @) represent the frequency and phase of the RF field, respectively. In NMR language,
the term wy;(t) is referred to to as the amplitude of the radio-frequency field and this

terminology is used throughout this thesis. I, is the spin-operator pointing in the direction
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of the applied B; field. The direction of the applied RF field can be altered by changing
the phase of the RF pulse.

B. Internal Interactions:

Below a brief mathematical description of all the internal NMR interactions is given.

BI. Chemical shielding interaction:

It is the indirect interaction between the magnetic moment of the nucleus (u;) with the
Zeeman field (Bp) mediated through the surrounding electron clouds. The electrons due
to their orbital and spin-angular momentum possess a magnetic field which due to their
negative sign of the gyromagnetic ratio generally opposes the magnetic field of the nuclear
spin (induced field); hence the nuclear spin gets shielded from the applied Zeeman field
and termed as chemical shielding interaction [3]. This difference in the local magnetic
field experienced by the nuclear spin is different from the actual magnetic field applied as
given below:

Bina = 6.By. (1.4)
Here & is the chemical shielding tensor, which contains the information about the electronic
environment like isotropy, anisotropy, degree of asymmetry and the orientation of electrons
with respect to the nucleus and the Zeeman field. The Hamiltonian for this induced

interaction is given as

]flmd = —hz ui.é'.B(). (15)

(2
The local magnetic field experienced by the nuclear spin in the presence of the surrounding

electrons is given by
Biocal = Bo — Bina

. IR (1.6)
= By — 6.By.
The Hamiltonian for the chemical shift is given as
I:Ichemicalshift = _hz Ui-Bloc,i = _hzf)/zfzz(]l - é—)BO (17)
i i

This acts as a fingerprint of the local electronic environment in the NMR spectrum.

BII. J-coupling interaction:

Like chemical shielding interaction, the electronic clouds can establish indirect interaction
between two or more magnetically inequivalent nuclei, and this interaction is termed as
the scalar or J-coupling [121]. It arises due to the coupling of the angular momentum of

two individual nuclei. The Hamiltonian for this interaction is given as

Hy=h)Y I.JI;. (1.8)

,J
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Here j is the second-rank J-coupling tensor and (i, j) refer to the two nuclei involved in the
coupling. In this coupling, the angular momenta of two nuclei couples due to the presence
of electron clouds; it is independent of their orientation or internuclear distance and hence
is labeled as a scalar or J-coupling. This interaction occurs via bonding electrons; therefore,
its strength falls dramatically with an increase in bond distance and is usually studied to
understand the chemical bonding between the nuclei. The magnitude of this interaction
is smaller than any other internal interactions present, therefore, it is usually ignored in
solid-state NMR.

BIII. Dipolar coupling interaction:

A nuclear spin acts as a tiny magnetic dipole, therefore, it can interact with other magnetic
dipoles without any external mediation. This through-space interaction between nuclear
spins is termed as dipole-dipole interaction. Unlike J-coupling, this is a vector coupling
interaction that depends on the orientation of the involved spins with respect to the

magnetic field. The Hamiltonian for this interaction is given as

. B2 - 2 .
Hp = %Zg S LD (1.9)
Uiy

where 15 is the dipolar coupling tensor, which like any other NMR interaction, is a
second-rank tensor and r;; is the internuclear distance between nuclear spins 7 and j.
This interaction could occur between any magnetically active nuclear spins; therefore,
it is classified as homo (like spin-pair) and heteronuclear (different spin-pair) dipolar

interactions.

BIV. Electric quadrupolar coupling interaction:

The structure of the nucleus is influenced by the distribution of nucleons within the nucleus,
which in turn affects the total spin angular momentum and is the central property of
interest in NMR spectroscopy. The charge distribution of the nucleus with total charge
“Ze” (Z is the atomic number or total number of protons and e is the charge on a single
proton) is described in terms of the nuclear charge density (p) per unit volume inside the
nucleus [16,122,123]. Classically, the electrostatic interaction energy of the nuclear charge

with the electric potential V' around the nucleus is given by the following Eq.,

E:/p(r)V(r)dT (1.10)

where p(r) corresponds to the nuclear charge density per unit volume (see Figure 1.2 for
a pictorial representation) and the electric potential V (r) arises due to the non-uniform
distribution of electrons and surrounding nuclei. The electric potential around the nucleus

can be presented in terms of multipole expansion around the center of mass of the nucleus.
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E:/p(r) +le(8le)r 0 2'2%%(8@3:]) 0+"'}d7—
= V(0) / dT—i—Z (&Cl)T O/xzp( )dr + — 51 Z <3$Z‘:;)r O/wixjp(r)dv'—i-...

(1.11)

where

[ p(r)dr = Ze is the electric monopole and corresponds to the total nuclear charge,
[ zip(r)dr = P; is the electric dipole moment and it is a vector quantity and

[ mizjp(r)dr = Q;j is the electric quadrupole moment and is a second-rank tensor.

The above Eq. is re-written as

OE;
E=ZeV(0 +ZEP+2,Z( )T:0Q¢j+... (1.12)

In the above Eq., V; = g—;/i = F; and V}; = 2V _ gEl correspond to the electric field and

Dwiz;
electric field gradient (EFG) tensor componengs, respectively.
The first term in Eq. (1.12) represents pure electrostatic potential energy, which does not
result in any NMR energy level shift, while the second term represents the interaction
between the nuclear electric dipole moment and electric field around the nucleus, which
is usually parity forbidden because it moves the center of mass of the nucleus. However,
the third term in Eq. (1.12) can be finite and it is referred to as quadrupolar coupling
interaction. This interaction represents the coupling of the quadrupole moment (Q) of the
nucleus with the electric field gradient (EFG) present around the nucleus. Higher-order

multipole expansion terms are generally not finite in NMR, spectroscopy.

1
3 > ViiQije (1.13)
i

| p(r): Nuclear charge density

Surrounding charges

Nucleus

y

Figure 1.2: Electrostatic interaction between the nucleus and the electric potential V (due
to surrounding charges) in the center of mass (O) fixed Cartesian co-ordinate system. Here
dr is the volume element inside the nucleus with the nuclear charge density p(r) at distance
r from the surrounding charge.
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It is always convenient to define a principal axis system (PAS) of the potential V' where
all the off-diagonal terms of the EFG are zero, i.e. Z” Vij = 0if @ # j; hence electric
quadrupolar interaction is traceless. For mathematical convenience, it will prove beneficial
to define @);; as:

Qij = /(szxl — 8;7%) pdr. (1.14)

Substituting this in the Eq. (1.13) results
1 /
Eo=g > ViQlye (1.15)
1]

The above Eq. represents the quadrupolar interaction energy in terms of classical
moments, which needs to be transformed into its quantum-mechanical equivalent, i.e.,
the Hamiltonian and quadrupolar spin operators for infusing the spin-angular momentum

concept.
. 1 .
Ho =) VijQi; (1.16)
i,

Here the quadrupolar moment operator seems to be a function of all the nucleon’s
positions, which becomes a tedious many-body problem. However, in NMR transitions,
we are only interested in the change in the nuclear spin angular momentum states. Using
the Wigner-Eckart theorem [16,124,125] and the Clebsch-Gordan coefficients [126, 127],

the matrix elements of the quadrupole operators can be represented as

3

(I, m| Q; |I,m')y = C(I,m| 5(@@» + L) — 615 11,m/) (1.17)
eQ) : :
where C' = m and @ is the quadrupole moment of the nucleus. For nuclei

with spherical charge distribution, the spin angular momentum become I = 1/2 and
therefore, the higher-order expansion reduces to zero and the nuclei result in purely
magnetic interaction in NMR [Eq. (1.17)]. However, nuclei with non-spherical nuclear
charge distribution consists of non-zero higher-order terms in the multipole expansion
and possesses quadrupolar moment [Eq. (1.17)]. Employing Egs. (1.16) and (1.17), the

quadrupolar coupling Hamiltonian is re-expressed as

to= — LSy A3 Gh b hh - 62
Ho = 511 1) 2 Vi 5Bl + L) = 855 (1.18)
or
_ e@ 2 22 72 [ [+ 1.1 [ I, + 11
e =111 -1 \/;%(3Iz ) = Vil Lo + LL) + Vol L + L1y

(1.19)
+ V+2f3 + V_jS

where the components of the EFG tensor are given as
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Vo =/3/2V..;

Vit ==V — iV

Vo1 =V — iV

Vig = 5(Vae — Vi) + iVay;

Voz = 5(Vaa = Vi) — iVay.

For a simplified representation, we consider the principal axis system (PAS) representation
(Vij =0V i # j) of the above Hamiltonian where the EFG tensor is traceless (Vg + Vi +

V.. = 0); hence the above Hamiltonian is reduced to a much simpler form.

eQ 22 72 72
Ao(PAS) = 77—y (Ve (32 = 12) + (Vaw = Vi) (12 = 12)] (1.20)
The above expression is re-expressed in terms of V., = eq (magnitude of the largest
components of the EFG tensor) and degree of asymmetry in the quadrupolar coupling
tensor g = M
Ve
w A ~ A A
JﬂxPAS)ZA%Q(3@-<ﬂ)+g§ui—42), (1.21)
e2Qq 3Cq
h = —— = ———: —
where Cg N and wg 212l —1)

To achieve a more comprehensive mathematical description, the quadrupolar PAS
Hamiltonian is transformed in the laboratory (LAB) frame defined by the Zeeman
interaction. For simplified calculation, the quadrupolar PAS Hamiltonian is re-written

in the tensorial representation as given below:
2
Hq(PAS)=>" Z 1)™RL, (PAS)T!, (1.22)

where R m(PAS) and Tém represent the spatial and spin parts of the quadrupolar
Hamiltonian in the PAS system. The PAS quadrupolar interaction Hamiltonian is

transformed into the LAB frame through a molecular axis system (MolAS) as given below:

l
> (-1)"R.,,(LAB)T},
-1

2
o(LAB) Z
=0

l m=

2 I
= > (=1)™RL,,(PAS) D}, (s, Bears vpu) (1:23)

=0 m,m/ m"=—[,#0

1 [
X Dm’m” (aML7 /BMLa ’YML)Tm’

l l . .
where D, (apnr, Bpvs Ypa) and Dy, (oo, By, YvL) represent the Wigner matrices
[124] from PAS to MolAS and MolAS to LAB frame transformations, respectively. In the

case of single-crystal samples, the PAS and MolAS frames coincide.
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1.3.2 Secular approximation

In NMR, the total Hamiltonian is given by the sum of all interactions (external +
internal) acting in the spin system. Below, a representative Hamiltonian comprising all

the interactions mentioned in the previous section is given:

Hiptar = Hz + Hrp+ Hes + Hy+ Hp + fIQ
~—_———

External Internal

(1.24)

The size of various interactions follows the order, ||Hz|| >> ||Hgl|| > ||Hrr|| > ||Hp|| =~
|Hcs|| > ||Hy||. The magnitude of the Zeeman interaction surpasses all the interactions
present in the spin system, and all the remaining interactions act as perturbations to
the Zeeman Hamiltonian. Therefore, NMR spectrum calculation involves diagonalization
of the above Hamiltonian [Eq. (1.24 )] employing various perturbative methods. A
mathematically convenient method equivalent to a perturbative-based approach is to
transform the total Hamiltonian into the Zeeman interaction frame, which removes
the effect of Zeeman interaction, thereby facilitating the measurement of small internal
interactions. The resulting Hamiltonian after the Zeeman interaction frame transformation

is given below:

IA{tIotal(t) = ﬁ(t)ﬁtotalﬁ(tﬂ (125)
where U(t) = e:vp{ - % Hy t} = exp{—iwptl.} is the required transformation
operator/function. The above rotating frame transformation induces periodic

time-dependency into the overall Hamiltonian with periodicity 79 = 27/wg. However,
considering the explicit form of the interaction Hamiltonian, it is evident that a portion
of the interaction Hamiltonians (except the quadrupolar interaction) commute with
the transformation function U(t) or I, operator and therefore remain time-independent

(secular) on the Zeeman time-scale as given below:

~

ﬁtlotal(t) _ ﬁtIO,Z;:lcular(t) + Hféfa(}n—secular(t); [I;[tlo,:;lcular(t)’ IAZ} —0. (126)

Under secular approximation, the non-secular terms of the interaction Hamiltonians are
ignored. This truncation of the Hamiltonian is equivalent to the first-order perturbation
approximation. All the non-secular terms will result in higher-order energy shifts,
which are generally insignificant in NMR. Under secular approximation, various internal

interaction Hamiltonians are presented below:

I:ICS = Z hwi,cgfiz for chemical shift interaction, (1.27)

(2

H lh)etem = Z hw,fﬁjemfizgjz for heteronuclear dipolar interaction, (1.28)
'hj
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and

Hpmo — Z hwffmo 31, I —I;.1 ) for homonuclear dipolar interaction. (1.29)

Here the coefficients w; cs, w?j""gm and wg‘"ﬁo are frequency components which include

Wigner function for principal axis frame to laboratory axis frame transformation.
However, the secular approximation does not always holds good for quadrupolar nuclei
due to the large magnitude of the associated quadrupolar interaction. As this thesis is
focused on the quadrupolar nuclei, therefore it is rational to give a detailed account of the
quadrupolar Hamiltonian in the Zeeman interaction frame. As described previously, the
transformation function U(t) [Eq. (1.25)] transforms the laboratory frame quadrupolar

coupling Hamiltonian [Eq. (1.23)] into the Zeeman interaction frame as follows:

]fICIQ(LAB; t) = exp(—iwotl,) Hg(LAB)exp(iwotl,)

2 ! l (1.30)
hz Z ™R, (LAB)T., exp(—imwot)
=0 m=—
where the transformed Hamiltonian becomes time-dependent with the period 79 = 27 /wy.
Using Average Hamiltonian theory [3,20,103,128] (AHT), the quadrupolar Hamiltonian

evaluated up to the second order of the perturbation correction is given as

Aq(LAB) ~ HY (LAB) + A3 (LAB), (1.31)
where
(1) L[7 o
Hy'(LAB) = — / H,(t')dt' = hR§(LAB)Tg, (1.32)
70 Jo

h T0 tr R R
()(LAB) | at" [ AL, BL ()

70

_-h [RO(LAB)R2(LAB) (12,72 — RA(LAB)R%,(LAB)[T2, T2,

2w (1.33)

1
+ R2(LAB)R2,(LAB)[T?,,T? + i{R%(LAB)RQ_Q(LAB)[TOQ, 72

~ RY(LAB)R3(LAB)(T§, T2 — R3(LAB)R2,(LAB)[T2,, T3 }|.

The second-order quadrupolar coupling Hamiltonian for spin-1 systems may be simplified

to a more concise form:

~ (2 —1
A (LAB) = 5 [RY(LAB)R? ((LAB)T?\. 7] ~ RY(LAB)R®5(LAB)(T%,. T3],
(1.34)
The aforementioned quadrupolar Hamiltonians are reformulated in the spin-operator

representation as
. hold .
Hy (LAB) = — (352 - &), (1.35)



Chapter 1. Introduction 15

and

A 2 2 A
A5 (LAB) = W) 8., (1.36)

1 2 -1
where wl) = VBR3(LAB) and wl) = 2 [FH(LAB)R2 (LAB) - R%(LAB)RQ_Q(LAB)}

are the first and second-order quadrupolar coupling frequencies, respectively.

1.3.3 Time-Evolution of the spin-system

The quantum mechanical description of any experimental phenomenon requires studying
or observing the change in the state of the system as a response to any external or internal
perturbations acting on the system. In particular, any spectroscopic measurements involve
studying either the emission or absorption of the energy by the system and consequently,
generating corresponding energy spectrum. Depending on the state and nature of the
system, the standard operational process involves the solution of the time-dependent
Schrédinger equation or the quantum-Liouville equation. The time-dependent Schrodinger
equation becomes a useful tool for describing the dynamics in systems with the pure state
(a single wave function for the whole system) and is given below:

LO1Y() _ 2
th—— == H(t) [¥(1)) (1.37)

where [1(t)) represents the state of the system at some instance ¢. The standard solution

of Eq. (1.37) is written as

i) =Tesp{ ~ [ AWt} 1w(0). (1.35)

Evolution-operator: U (t)

Here [¢(0)) is the initial state at t = 0 and T is the Dyson time-ordering operator. Given
that the state of any quantum-mechanical system is not known prior to the measurements,
it is a common practice to express the state as a linear combination of the complete set
of basis states, |¢),.

(L) = Cilt) o), (1.39)
=1

where C;(t) are complex coefficients. These coefficients are essential for calculating the
transition probability amplitudes for any time-dependent process. Subsequently, the
expectation value of any observable of the interest (O, mathematical equivalent of any
physical quantity) can be calculated using the expression given below:

(Y(@)](t))
Although, the Schrodinger method is a standard approach for dealing with a quantum
mechanical process, however, its utility is limited for bulk measurements, as in case of

NMR spectroscopy. For the bulk sample, a single wave function cannot describe the
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state of the whole spin-system (the system is said to have mixed states). Consequently,
Eq. (1.38) necessitates handling the wave function for individual spins, followed by
summation over the entire sample volume/ensemble. From a theoretical perspective,
the Schrodinger method appears impractical and inadequate for bulk measurements. To
overcome the challenge, the concept of density operator was invoked. In the density
operator formulation, the state of individual spins is replaced by a more generalized state
of the entire ensemble, denoted by p(t) [129,130]. Mathematically, p(t) is defined as an

average over the whole ensemble as given below:
- N

p(t) = [5(0) (W3 ()] = D Pyl (1) (wi(1)]. (1.41)
j=1

The density operator is constructed in the basis |¢;) as described below:

ZP ZZC £) 1) (]

j=1 i=1 k=1

= ZZC t) |¢1) (ol (1.42)
=1 k=1

_Zzpzk ’¢z ¢k|
i=1 k=1

In above Eq., pir(t) = WC;;(t) represents the matrix element of the density operator
between basis states |¢;) and |¢). The diagonal elements p;(t) = C;i(t)C;(t) represent
the populations and the off-diagonal elements p;(t) = WC};@) represent the coherence
between involved basis states. The coherence order can be calculated by the difference
between the magnetic quantum number of the involved basis states, i.e., M;; = m; —m,,
where M;; can be any positive or negative integer. Based on this expression a coherence or
transition matrix can be generated which will highlight the number and nature (quantum

of transition) of possible transitions in a spin-system.

Substituting, Eq. (1.42) into Eq. (1.37), we obtain the time-evolution of the density

matrix as described below:

im0 _ (11(1), o). (1.43)

The above equation is famously known as the quantum-Liouville equation or Liouville-von
Newmann equation. This equation is an operator equivalent of the time-dependent

Schrodinger equation shown in Eq. (1.37).

The formal solution to the above equation is given below:
p(t) = Texp - / H(t dt 0) exp / H(t dt (1.44)

where 5(0) is the initial density matrix at ¢ = 0 and exp { £ 0 H(t")dt! } represents the

time-evolution operator, U (t). The explicit form of the density matrix at any instance ¢
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will depend on the Hamiltonian operator [fl (t)] acting on the spin-system. In contrast
to Eq. (1.40), the expectation value of an observable for any physical quantity can be
calculated by following Eq.,

< O(t) >= Trace(0.j(t)). (1.45)

This standard operating procedure is utilized for evaluation of spin-dynamics of any NMR
experiments regardless of the numerical or theoretical methodology employed. In the
numerical methods, the exponential operator in Eq. (1.44) is solved by considering an
infinitesimally small time-step where the Hamiltonian is treated as time-independent.
For instance, SIMPSON [131, 132] (A General Simulation Program for Solid-State
NMR Spectroscopy) a numerical simulation software utilizes this method. A pictorial
representation of this process is shown in Figure 1.3. While numerical methods yield
accurate results, they are of lesser utility in offering detailed insights into the spin dynamics
of any quantum-mechanical process. In order to achieve a thorough understanding of the
role of various interactions and coherences in deciphering the spin-dynamics requires a
detailed analytic derivation of Eq. (1.44). The theoretical derivation of this equation
involves explicit calculation of the time-evolution operator [U (t)] which gets complicated

when
e the Hamiltonian is time-dependent: fot H(t")dt' # Ht.
e the Hamiltonian consists of the non-commuting set of operators: [H(t1), H(t2)] # 0.

To overcome the above difficulties in the time-evolution of the spin-system, the effective
Hamiltonians are derived. By the connotation “effective Hamiltonian,” we mean an
approximate Hamiltonian which is time-independent, more diagonal, and contains all the
necessary information of the full Hamiltonian. Such an effective Hamiltonian simplifies
the study of the spin dynamics of any complex NMR, experiments. A conventional way

to obtain the effective Hamiltonian is to use perturbation-based expansions, which may

Numerical method:

; t
0(t) = exp {—% ﬁ(t’)dt’}
0

Time step:At = t/n

U;(t;) = exp {—%@Atf}

p(0)

|Total evolution: U(t) = U, (Aty,) ... Us(Aty) U, (At,) U, (Aty) |

Figure 1.3: Pictorial representation of the numerical method for computation of the
time-evolution operator.
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involve a number of perturbation corrections to get a convergent solution. However, such
methods lose their generality when it comes to the quadrupolar system. This is mainly due
to two factors: (a) The large size of the quadrupolar interaction necessitates quadrupolar
interaction frame transformation of the Hamiltonian, which renders time-dependency
into the system, and (b) it requires many-orders of the perturbation corrections, which
complicates the derivation of the effective Hamiltonian. In the following section, we
have emphasized the complexity associated with the quadrupolar spins using a single
spin-1 model system framework. An alternate approach known as the “effective-field”
method is presented to obtain an effective Hamiltonian without invoking a large number

of perturbation corrections, as discussed in the literature.

1.4 Concept of the “Effective Hamiltonian”

To clarify the notion of the effective Hamiltonian, we investigated the spin dynamics for
a simplified single-spin system S = 1 under on-resonance RF irradiation. The rotating

frame Hamiltonian for such a system is given as:

Hs = Hpp + I?S)
) h® ) (1.46)
= fwisSy + —-(352 — %),
In the above equation, wig and wS ) represent the RF amplitude and first-order
quadrupolar coupling frequency [Eq. (1.35)], respectively. As discussed previously, the
derivation of the spin dynamics requires a solution of the Liouville-von Newmann equation

as given below:

p(t) = exp{ - %ﬁst}ﬁ(O) exp {%ﬁst} (1.47)

where p(0) is the initial density matrix (p(0) = S.). Here the solution of the Eq.
(1.47) becomes complex due to the non-commuting RF and quadrupolar coupling terms
i.e., [Sz, (352 — 5%)] # 0. A brute-force method for finding the solution of Eq. (1.47)
through the Baker-Campbell-Hausdorff (BCH) expansion [133,134].

2 4 1 (it 3

p(0) = S — s, 5.1+ o () s, (s, 8.0+ () This, [, [As, S0 + . (1.49)
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Substituting the Hamiltonian operator based on Eq. (1.46), the above Eq. becomes

1)

. R R 1 ~ WH W18 A A A A
p(t) =5, - wlstsy — E{W%Sﬁsz _ @ t2(SzS;r + stz)}
First commutator Second commutator
1 1

L s g (0 s

12

~
Third commutator

(1.49)
Subsequent evaluation of the higher-order commutators is expected to become more
complicated. Given that wg SN w18, it can be concluded that the approximated solution
(up to to the first few terms) will not converge. Thus, the theoretical method based on
the explicit calculation of the BCH expansion [Eq. (1.49)] using the exact Hamiltonian
[Eq. (1.46)] does not provide closed form solutions, is computationally less efficient, and
generally relies on numerical evaluation. While the numerical approaches yield accurate
results, their utility in elucidating the nuances of the spin dynamics is limited. To achieve a
deeper insight into the spin physics, the development of analytic theory becomes essential
which primarily relies on the diagonalization of the underlying Hamiltonian to produce a
more complete and computationally efficient “Effective Hamiltonian” (ﬁe #f). Under the
effective Hamiltonian (ﬁe #f), the spin-dynamics of the NMR experiments is described by
the following Eq.,
pess() = exp{ = = Hepgt ppesr(0) exp { T Hopst | (1.50)
where perr(0) and pesy(t) represent the density matrices initial (t = 0) and final ¢ times,
respectively, in the same frame of reference as effective Hamiltonian, H, #f- This equation

will be employed throughout this thesis to evaluate the CP spin-dynamics.

1.4.1 Derivation of the effective Hamiltonian: Perturbation-based
method

To facilitate the implementation of the perturbation procedure, the Hamiltonian in Eq.
(1.46) is re-expressed as zero-order (Hp) and perturbing Hamiltonian (H).
N . N %)
Hs = Hpp + Hy) = JwisSy + (357 - §%).

H, N
0 n

(1.51)

Since we are interested primarily in studying the influence of the radio-frequency pulse (i.e.,
S’x) on the spin-system, the quadrupolar interaction (i.e., S'Z) acts as a perturbation. As
shown in the previous section, due to the anisotropic nature of the first-order quadrupolar

coupling interaction, there will be a distribution of quadrupolar coupling frequencies
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wg ) for the samples with multiple-crystallite orientations. For a simplified analogy, we

can consider PAS coincident with the MolAS. In this case the quadrupolar PAS angles
Qpr = Qur = (ag, B, vq)] will define the crystallite orientations. Based on the relative
magnitudes of these interactions, the three different coupling regimes wig >> w(Ql ) (weak
coupling regime), wig ~ wS) (intermediate coupling regime) and wyg << wg ) (strong
coupling regime) are possible.

Weak coupling regime: If the condition wig >> w(g ) is satisfied, the effective

Hamiltonian can be approximated to the RF irradiation term as shown below:
ﬁeff’g ~ EIRF = wlsgx . (1.52)

In this coupling regime, the spin system under RF irradiation behaves like a spin-1/2
system. The time-evolution of the spin system is solely determined by the RF irradiation

term as described below:
~ Z A ~ Z A
pt) = exp{ — —hwlngt}p(O) exp {—hwlssxt} (1.53)

where 5(0) = S, in the present context.

In anisotropic solids, this condition is met for crystallite orientations near 8g = 54.736°,
regardless of the value of Cg. In such cases we observe better excitation efficiencies,
similar to that seen in the spin-1/2 systems. In the case of powder samples, which is the
statistically weighted ensemble of all possible crystallite orientations. This weak coupling
condition will be satisfied for a smaller portion of crystallite orientations; however, in
general, we have wig ~ wg) or wig << wg).

Strong coupling regime: To address a stronger quadrupolar coupling system (w15 <<

wS )), a common approach is to utilize the quadrupolar interaction frame transformation

which involves the transformation function U’(t) = exp { - %fI(Ql)t}:

x i . X i
Hs(t) = exp{ - ﬁHS)t}(HRF +H8))exp{ﬁ S)t}

. (1.54)
= Hgrp(t).

The time-evolution of the spin system in the quadrupolar interaction frame is given:

po=eo{-1 [ e ()0t} g O) exp { / we)a) (L)

where the effect of the much stronger quadrupolar interaction is nullified. However,
as a consequence of this interaction frame transformation, the RF irradiation becomes
time-dependent with a period defined by the quadrupolar coupling strength. Conventional
ways to treat such time-dependent Hamiltonians are:
(1) Average Hamiltonian theory (AHT)
(2) Floquet theory and contact transformation method.

The AHT [3,20] provides a time-averaged Hamiltonian at a fixed cycle time (t. = 27/ wg );
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in this case), and as a result, it lacks description of the spin-dynamics in between
cycle times. Also in the regime wig =~ wS ) the convergent solution requires a large
number of perturbation corrections which are tedious to evaluate [70]. Such descriptions
are of lesser utility for powder samples described as statistical distribution of different
crystallite orientations. Since each crystallite is associated with a fixed wS ) dependence
while performing interaction frame transformation, hence different crystallites cannot
be evaluated simultaneously at a single instant of time. This issue is addressed by
utilizing Floquet-based perturbative methods [104-109], which do not operate at the
cycle time, but only at the cost of evaluating many order perturbation corrections to
the zero-order Hamiltonian [69,70]. Consequently, the process of obtaining the effective
Hamiltonian and the time evolution of the spin system becomes quite cumbersome.
Additionally, the effective Hamiltonians derived in different coupling regimes might not
provide accurate results in anisotropic samples. To overcome these challenges and achieve
a faster convergence, this thesis is based on an alternate method to derive effective
Hamiltonians by utilizing the concept of the “effective-field”. In this approach through a
set of unitary transformations, magnetization associated with a particular interaction is
maximized along a suitable direction/axis. This process is computationally efficient and
provides more convergent solutions which are equally valid for isotropic and anisotropic

solids.

1.4.2 Derivation of the effective Hamiltonian : “Effective-field” based

method

In this section we have shown the utility of the effective-field approach to evaluate the
efficiency of the double-quantum transition in the S = 1 spin-system. To simplify the
description, the Hamiltonian in Eq. (1.51) is re-expressed in terms of the single-transition

operators [45,110,112,113] as given below:

(1)
~ ~ N w N ~
Hs = V2wis[S;* + 57 + —-[51* - 579 (1.56)

The superscript (4,7) in the operators SY (o = z,y, z) represents the the Zeeman basis
states the § = 1 system and are defined according to the energy level diagram depicted in
Figure 1.4(a). The populations and coherences in the S = 1 spin system are illustrated in

the transition matrix shown in Figure 1.4(b). The single-transition operators are defined

as follows:
2 = 5l0 G+ Gl Sy = o 1la) Gl = 15) (], 52 = Slla) Gl = 13) G- (1.57)

The matrix representations of the Cartesian and single-transition operators are given in
Table A.2 and A.3 in Appendix-A. In the effective-field method, each interaction (say,
A) in the Hamiltonian is considered as a field that has a specific direction (interaction

operator, S)) and the strength of the field is indicated by the interaction frequency (wy).
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(a) Rotating frame energy-level representation for (b) Transition matrix highlighting all possible

§ = 1system transitions in a 8 = 1 system
m—> 1) [2) [3)
y Y |2) —|0> i,
_ri:~\‘\‘~ D
pON Q13 |1) :|1>
5Q,
13) =|-1>
SQ23

Figure 1.4: (a) Schematic depiction of the energy level diagram in the S = 1 spin system.
The spin states 1), |2) and |3) are representative of the the Zeeman basis states (Jmg))
|1), |0) and |—1), respectively. (b) Transition matrix representation of the populations
and coherences in the § = 1 spin system. The diagonal elements depict the populations
(of the states |mg)) and are represented through ‘P;;’. The off-diagonal elements depict
the coherences (between the states |mg),|m/)) and are represented as double-quantum
(DQus: |[+1) < |—1)), single-quantum (SQi2: |—1) <> |0) and SQa3: |1) <+ (0)).

The pictorial representation of the fields for the S-spin Hamiltonian [Eq. (1.46)] is given in
A .0 N A
Figure 1.5(a). Through an initial unitary transformation U; = exp { - [ — S;Q + S’Zg] }

V2

[115,116], the S-spin Hamiltonian is transformed and is given below:

Hs = Uy HsU}
e R R WO X X
= \/5(6015 cos B — % sin 91) [5’;2 + S§3] + {w1s sin 01 + % (§ + cos 01> }[5;2 - 523]
+ {w1s sin 6 + WS) (M> }[S’f’]

4
(1.58)

(1)
w
Q
S12 4§23y in Hg. Accordingly, the Hamiltonian after the first transformation takes on
x €T

4w
The angle 6, <tan 0, = 15) is selected to ensure the compensation of the SQ operators

the following form:

(1) (1)

o (Y% a3 Bwe +wWo \ra12 o3 (1.59)
HS_(TM%H( 12 >[SZ 51
The term we< = \/ (WS))2 + 16w%s) represents the effective-field experienced by

the S-spin i.e., it has contributions from the RF field as well as the quadrupolar
interaction (refer to Figure 1.5(b)). As described above, the Hamiltonian after the
first transformation comprises operators 5'3%3 corresponding to the double-quantum

transitions [DQS (1+3) ] To further simplify the description, the above Hamiltonian

is transformed using the unitary transformation U, = exp {z%[é’;?’]} such that the
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al Gl - s & a2 oL
(al) S, Hél): mg)[Szlz — 523] (a2) S, tan8; = 40)15/008)
Hpp = wys [ S:° + S7°]

@
HQ W, = fle%s + (wg))2
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Figure 1.5: (al) Pictorial representation of the fields due to the RF irradiation and the
first-order quadrupolar coupling interactions. In the field representation, the spin operator
and frequency terms define the direction and magnitude of the field, respectively. (a2)
Schematic depiction of the effective-field experienced by the S-spin due to contributions
from the RF irradiation and the first-order quadrupolar coupling interaction.

Hamiltonian is diagonal in the chosen coupled basis.

ﬁeffﬁ = UZﬁS{E

_ (YT W g, (3We W Y a1z gos
_< 1 )[SZ]+< 12 >[Sz Sz]'
The time-evolution of the spin system is described as follows:
A~ |~ A L 2 T
Pefs(t) = exp{ - % eff,st}peff(o) exp {%Heff,st}
(1) 1)
~ We + W A We +w
= 2cos /2 ![S;g] cos (TQt> + [9,°] sin (4Qt)] (1.61)

—V2sin6;/2 [[5&2 — S‘ig] Ccos (%t) + [5’;2 — 5’53] sin (ift)] .

For a consistent description, the detection operator for each observable is also transformed
with the same set of transformations U Us. Accordingly, the excitation efficiency of the
DQi3 transition is the expectation value of the observable < S’f’(t) > and is evaluated

using the standard procedure outlined below.
S(t)1s =< S13(t) >=Trace{S};  pess(t)} (1.62)

where

costh — 1)

S8, =251 costy /2 + (512 — 29! V25 + 5 sing1 /2. (1.63)
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The signal expression for double-quantum detection is given below:

(1)

1
We — W We +w
(1 + cos ;) sin (TQt) + (1 — cos b) sin (4Qt>] : (1.64)

1

S(t)l?) = 9

04 . I . I . I . I . I . I
0 50 100 O 50 100 O 50 100

Time (us)

Figure 1.6: Comparison of the DQ excitation efficiencies from numerical (black thick line)
and analytic simulations (red solid dots) based on Eq. (1.64) for single-crystal (al-a3) and
powder (b1-b3) samples. The following simulation parameters were used: Cg = 1.0 MHz
(al-bl), 200 kHz (a2-b2) and 20 kHz (a3-b3), asymmetry ng = 0.1, quadrupolar coupling
PAS angles (o, Bg, 7g = 30°, 40°, 60°) and RF parameters: v1g = 50 kHz. The powder
simulations were performed using 4180 orientations (i.e., zcw4180) of o and .

To substantiate the validity of the effective Hamiltonian [Eq. (1.60)] derived using
the concept of “effective-field”, the analytic simulations based on the Eq. (1.64)
were compared with the more exact numerical simulations using SIMPSON software.
As depicted in Figure 1.6, the analytic simulations are in good agreement across
all quadrupolar coupling regimes for both isotropic (single-crystal) and anisotropic
(powder) solids. In contrast to the conventional Floquet and AHT-based methods, the
effective-field formalism provided a faster convergence with a minimal number of unitary
transformations. In this thesis, the proposed effective field-based analytic framework is
extended to describe the spin dynamics of the cross-polarization experiments between
spin-1/2 and quadrupolar spins (S = 1, 3/2). A brief outline of the thesis is presented in

the following section.
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1.5 Organization of the thesis

In this thesis, an operator-based analytic theory is presented to describe the mechanism
of the standard cross-polarization experiment in a more complex quadrupolar system. For
the development of an efficient CP pulse sequence, it is essential to have a quantitative
description of the underlying spin dynamics in CP experiments. With this objective, an
analytic framework based on the effective Hamiltonian is presented to provide a unified
description of the quadrupolar CP dynamics in both isotropic and anisotropic solids.
Chapter 2 will focus on basic theory and methodology adopted in the thesis to describe
the spin-dynamics of cross-polarization experiments in non-rotating single-crystal and
powder samples. In particular, this chapter will contain a description of the operator-based
analytic theory of CP experiments involving much simpler spin-1/2 systems (I = 1/2
and S = 1/2). A detailed description of the CP dynamics will be provided through
effective Hamiltonians derived using the rotation operators-based effective-field approach.
In Chapter 3, employing the effective-field based analytic framework, the spin-dynamics
of cross-polarization experiment will be outlined for I = 1/2 to a more complex S = 1
quadrupolar nuclei under on-resonance RF irradiation [116]. In contrast to other existing
theoretical studies, the polarization transfer among spins is quantified and individual
contributions emerging from all plausible CP matching conditions are evaluated. Chapter
4 will discuss the mechanism of cross-polarization between I = 1/2 to S = 1 in the presence
of second-order quadrupolar interaction and S-spin off-resonance RF irradiation [117].
Multiple insights emerging out from this study will be highlighted through a single
mathematical framework derived using the effective-field approach. In Chapter 5 the
proposed analytic framework will be extended to describe the CP transfer dynamics in
I =1/2 to S = 3/2 under static condition [135]. All the results of the thesis will be

summarized and future directions will be provided in Chapter 6.



Chapter 2

Theory and Methodology:
An effective-field approach to
understand the mechanism
of cross-polarization dynamics

between spin-1/2 systems

In this chapter of the thesis, an alternate operator-based analytic theory utilizing the
concept of the “effective-field” is introduced to describe the spin dynamics of the
cross-polarization experiment between spin-1/2 systems. A simpler spin-1/2 model
framework is used to develop the theoretical method that will serve as a test bud for

describing the CP dynamics in a more complex quadrupolar systems.

2.1 Theory and Methodology

The basic pulse sequence for the continuous-wave cross-polarization experiment is depicted
in Figure 2.1(a). We have considered an isolated two spin-1/2 (I = 1/2 and S = 1/2)
model system [Figure 2.1(b)] to describe the CP dynamics. The doubly rotating frame

CP Hamiltonian for such a system is given as
I:ICP :wljfm+Qg§z+w155’x+2wdfzgz, h=1. (2.1)

In the above equation, wi; and w;g represent the radio-frequency (RF) amplitudes for
I and S spins, respectively. The symbol Qg represents the off-resonance irradiation on
the S-spin, while on-resonance irradiation is considered on thel-spin channel. The term

o <: @PYI’YS (3C082 Bd 71)
d 4 rig 2

) represents the dipolar coupling (I-S) frequency, r;g the

internuclear distance between I and S-spin pair, and Sy is the orientation of the dipolar
vector with respect to the applied Zeeman magnetic field. A detailed description of the

above CP Hamiltonian can be found in the literature [4,16,44].
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(a) Continuous-wave cross-polarization (cwCP) experiment (b) Model system: Isolated two spin (I and S)
|

Detection S
CP mixing time

Figure 2.1: Schematic representation of the (a) continuous-wave (cw) cross-polarization
pulse-sequence and (b) an isolated two spins (I and S) model system.

90°
I.'H

Polarization transfer fromIto S

S: 13C, 5N, etc

2.1.1 Derivation of the effective CP Hamiltonian

For operational convenience during the diagonalization process, the above Hamiltonian
[Eq. (2.1)] is re-expressed in terms of the single-transition operators (incoupledbasis)
[110-112] as given below:

Hep = wir(S5 + 824 + Qg(S12 + 534) + wi5(522 + 524) 4 wy(512 — §34). (2.2)

A schematic description of the populations and coherences observed in a coupled spin-pair
(I = 1/2 and S = 1/2) is given in Figure 2.2(b). The matrix representations of the
above spin-operators are provided in Table B.1 (refer to Appendix-B). In general, for an
efficient CP process, we have wi7/15 > wg. In order to reduce the off-diagonalities due to
stronger RF irradiation terms, we employed double-titled rotating frame transformation
U Uy = exp {z'01 (S'y13 + §§4)} exp {ieg(SyIQ + 5’34)} and the resulting Hamiltonian is given
as,

Hep = wig [§;3+5’§4] +We, 5 [§;2+5’§4] +wg cos O [5’;4] ~+ wq cos O [5”%3] — wg sin By [S’;g — 534]

DQ14 ZQ23 SQa,r1
Heteronuclear dipolar coupling Hamiltonian
(2.3)
2 2 : i _1 S
where, wes = /25 + wig and angles 61 and ¢, are given as 01 = 5 and 0y = tan™" ——.
w

The dipolar transitions are categorized according to the total change in the § and I —s%)in
quantum numbers in transitions involved. For instance, {1,4}/{2, 3} are labeled as double
and zero-quantum (DQ14 and ZQ23, respectively) dipolar transitions. The last term in the
dipolar coupling Hamiltonian i.e., SQg4 ; operator involves single-quantum /-spin dipolar
transitions which does not result in an independent CP transfer mode like DQ14/ZQ23
transitions but rather provides a pathway to account for the loss in the magnetization

of I-spin. In the existing literature reports, these SQ4 ; dipolar transitions are usually
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(a) S=1/2and I =1/2 coupled basis states and (b) Transition matrix highlighting all possible
two spin flip/flop (dipolar) transitions transitions in a coupled system
\ !
- ‘ \
— D) =I1/2.1/2> m—> |1/, |2/
7 I
iS=1/2: 7/ i / ‘ SO«
A \ S
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Figure 2.2: (a) Schematic depiction of the energy level diagram in a coupled two-spin (I
= 1/2 and S = 1/2) system. The spin states |1), |2), |3) and |4) are representative of
the product basis states (|my,mg)) [1/2,1/2), [1/2,-1/2), |-1/2,1/2) and |—1/2,—1/2),
respectively. (b) Transition matrix representation of the populations and coherences in the
coupled two-spin (I and S) system. The diagonal elements depict the populations (of the
states |my,mg)) and are represented through ‘P;;’. The coherences wherein both spins
change their states are represented as the double-quantum (DQjs) and zero-quantum
(ZQ1s). The coherences where only the state of S-spin changes are represented by SQg,
while coherences where only the state of I-spin changes are represented by S@Q;.

ignored under the assumption Qg << wig [29,41,136]. However, as shown later in this
chapter, such an approximation does not always hold good. To offer a consistent and
comprehensive analytic description that is valid across all the coupling regimes (Qg <<
wig, Qs ~ wig and Qg > wig), we decided to retain the SQq ; dipolar transitions as well

in further descriptions. For this purpose, the unitary transformation Us = exp {i@g(S’;?’ —

5’54)} is utilized to evaluate the effective-field or nutation frequencies for I-spin transitions
(SQr (wir) and SQq 1) as follows:

M

Heop = wer [§;3+§§4] +we 5 [5”;2—#5’34} +wg cos O3 sin O3 [S’;ﬂ + wg cos B sin O3 [5”33} (2.4)

~
DQ14 ZQ23

wiw
where, we; = \/wfl + (2wys/we.s)? and tanf3 = 1*e,S
’ ’ 2w4§2

coupling mediated Hartmann-Hahn CP conditions, the Sﬁ and I-spin Hamiltonians are

. To accomplish the dipolar

rearranged using the relation S’;k = §Y 4 giF leading to the following equation

T

cp = 2[SH] +w PP + A[S2] + w b 82 (2.5)
where, ¥ = wer + Wes, A = Wer — We,g and wcll4’23 = wgcosbysinfs;. In Eq. (2.5),
the CP Hamiltonian is the sum of longitudinal /diagonal (5¥) and transverse/off-diagonal
(5’;] ) components in two independent subspaces (DQq4 and ZQg3). The CP Hamiltonian
[Eq. (2.5)] is further diagonalized by employing the rotation operators Uy =U 414) U i23)
exp {z(% — 914> [5’;4]} exp {z(% — 923) [5’53]} The angles 014 and 63 are chosen such
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that the effective fields in individual subspaces are quantized along their respective

z-axes | tanfyy = tan o3 = The pictorial representations of these

14,23°
w
d
transformations are given in Figure 2.3. Subsequently, the resulting effective CP

14,23 |-
w

Hamiltonian is given as
Hepp = wifs[S21] + w2 [S7°] (2.6)

where, w;;‘;f =4/32+ (wcll4’23)2 and wgﬁf = /A2 + (w;4’23)2. In this analytic framework,
the effective CP Hamiltonian is a sum of two independent effective CP fields, namely DQ14

and ZQog3 effective-fields.

| Effective fields in the Double-quantum (DQ); ) and Zero-quantum (ZQs3) subspaces: ‘

@) (a2)
S

Figure 2.3: Pictorial representation of the unitary transformations 04(14) and (74523)

while diagonalization of the CP Hamiltonian in the double-quantum (DQ4) (al) and
zero-quantum (ZQz3) (a2) subspaces, respectively.

2.1.2 Time-evolution of the spin-system

To describe the time evolution of the spin system during the CP mixing
(spin-locking/contact) period (t), the solution of the Liouville-von Neumann equation

[Eq. (1.44)] described in the previous chapter is employed.
. T A . 1
p(t) = exp {—ﬁHCpt}p(O) exp {%Hcpt} (2.7)

where, p(0) = I, represents the initial density operator. For a consistent description, the
initial density operator is also transformed using the same set of unitary transformations
involved in the derivation of the effective CP Hamiltonian [Eq. (2.6)]. Employing the

unitary transformations (71(72[7304, the initial density matrix is transformed as

Pefr(0) = sin by [S’;‘l sinf14 — S’;‘l cos 914] + sin #5 [5’33 sin Aoz — 5’%3 cos 023]
014 + 923) y b14 + 923)] (2:8)
2 2 '

— cos by [(S’;g — §%)sin < S12 4 83%) cos (
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The time evolution of the spin-system under the effective CP Hamiltonian [Eq. (2.6)] is

given as
Peff(t) = exp {_iﬁefft/ﬁ}ﬁeff (0) exp {igefft/ﬁ}
= sin 65 [3;4 sin #14 — cos 914{§;4 cos w;?ft + 5’;4 sin w;fcft}

+ 523 5in fy3 — cos 6’23{5&3 cos wz;?ft + 5’;3 sin w??ftH

00140 A X W23l X R W23
— cos 02 sin <M> [(S;S — 821 cos (Mt> + (S;?’ — S§4) sin (Mt

2 2 2

0 0 ) R w23 4l R R w23 4l
+ cos 03 cos (%) [(512 + 534 cos (Mt> - (5’;2 + 524) sin (Mtﬂ

x T

2
(2.9)

2.1.3 Calculation of the CP Signal

To evaluate the polarization transfer from spin I to spin S, the expectation value of the

observable S-spin < S, (t) > or the CP signal is derived using the following expression:

A~ N

S(t) =< Sy(t) >=Trace[Setfz-Pefs(t)] (2.10)

where, S*eff,m represents the detection operator in the same frame of reference as the
effective Hamiltonian [Eq. (2.6)]. Using the standard operation procedure, the final CP

signal expression is given as

14

w1l wW1s w1s wWq . . g W

S(t) = { sin 614 cos 014 — cos? 914} sin? —<IL4
We, I We S We, T We, T 2

Double-quantum
23
w
sin B3 cos fa3 + cos? 923} sin? %t

w1s Wq
-
We, I We, T

Zero-quantum

%or <) _ . W23 4 w23, 4 w4
Bl Lk cos 7923 014 sin 7923 20 cos Zel] el t ] — cos Zelf el t .
We, [We, S 2 2 2 2

Interference term

(2.11)
Besides, the loss in the [-spin magnetization can be evaluated by the expectation value of
the I, operator (< I,(t) >) given below:
14 23
1 w w
S(t)r = 3 [2 sin? 3 —2sin?03 cos?® 014 sin® %t — 25in? 03 cos? Hag sin? %t

~~

Double-quantum Zero-quantum

23 14 (2.12)
W — W
+ cos? 05 cos (Mt) ] .

Vv
Interference term

The final CP signal expression [Eq. (2.11)] has contributions from the double-quantum

)
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(DQ14) and zero-quantum (ZQs23) CP transfer modes, along with an interference term
arising from the DQq4 and ZQa3 CP modes. The pure DQ14/ZQ3 CP transfer modes in
the CP signal have manifestation of the absorptive (cos? 6;;) and dispersive (cos 6;; sin 6;;)
components. To the best of our knowledge, the interference and dispersion terms resulting
purely from the S-spin off-resonance irradiation in the description of CP spin dynamics
between spin-1/2 systems have not been discussed in the existing literature. The CP
transfer could be maximized through any of the possible CP modes by adjusting the RF
field amplitudes employed on I and S-spin channels; known as the Hartmann-Hahn (HH)

matching conditions as described below.

2.1.4 Evaluation of the Hartmann-Hahn (HH) CP matching conditions

e ZQ93 CP matching condition:
Setting A = 0 = we,1 = We,s-

Under the exact ZQo3 CP matching condition, the resulting signal expression is given

as
WLwLs 1423 Wis w w14
17w . 1S Wd . .
S(t)=—= sin? =4 ¢ 4 { sin 014 cos 014 — cos® 014} sin? —</1 4
We, IWe,S | | 2 We, I We,T 2

Zero-quantum High-frequency DQ term

+ High-frequency interference term ] .

(2.13)
Exact setting of the ZQo3 HH CP matching condition will not only optimize the
polarization transfer through ZQ.3 CP modes but also make other modes of CP
transfer high-frequency terms that are less relevant for the polarization transfer.
It is important to note that we s ( = \/w%I—i— (2wdQS/we7S)2> exhibits dipolar

coupling dependence under off-resonance S-spin irradiation. Consequently, the

HH CP matching condition will vary based on the strength and orientation of the
heteronuclear dipolar coupling. These effects become operationally significant while
extracting the dipolar coupling parameters from the CP lineshape with improved

accuracy.

e DQ;; CP matching condition:
Setting ¥ = 0 = we 1 = —We,3.
Under exact DQjq CP matching condition, the CP signal expression is given as

follows:

1w 14,23 e w w23
S(t) = LAILS [— sin? 24 ¢ + { _ M5 ¥ n 0a3 cos fa3 + cos? 923} sin? %t

We, [We, S We, I We, T

Double-quantum High-frequency ZQ term

+ interference term ] .

(2.14)
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The DQ14 signal expression is just the 180° phase-shifted version of the ZQa3 signal
expression. Therefore, both the CP matching conditions are expected to show similar

CP dynamics for static samples.

e Interference of the DQ4 and ZQ>3 term:
eff :l:weff = wyr =0.
This condition is not like any normal HH CP matching condition. Still, it represents
a condition where only the I-spin loses the polarization without transferring to
the S-spin. Therefore, such conditions should be avoided while setting the CP

conditions.

Under on-resonance S-spin irradiation, i.e. g = 0, the above CP signal reduces to a

much simpler form as given below:

w4 w23
S(t) = | — cos? B4 sin? fft c0s? B3 sin? ff
( ) 14 9 + 23 2 (215)
Double?(;lantum Zero—c;;.ntum

The final CP signal expression [Eq. (2.15)] has contributions from the double-quantum (14)
and zero-quantum (23) CP transfer modes which are individually optimized to evaluate
the HH CP matching conditions shown in Table 2.1.

Table 2.1: The expression and transitions associated with various HH CP matching
conditions for the CP transfer between I = 1/2 and S = 1/2 spin systems.

CP matching conditions off-resonance S-spin on-resonance S-spin
and associated transitions irradiation irradiation
Double-quantum (DQ14) Wel = —We,§ Wi = —Wis
1/2,1/2) & |-1/2,-1/2)
Zero-quantum (ZQ23) We, ] = We,S Wil = Wis
~1/2,1/2) « [1/2,-1/2)

2.2 Results and discussion

To test the validity of our proposed analytic theory of the CP dynamics in an isolated
two spin I = 1/2 and S = 1/2 model framework, we carried out a comparison between
the CP efficiency profiles generated using computer simulation based on Eq. (2.11) and
the more exact numerical simulation program, SIMPSON [131]. All the simulations were
generated considering the I = 'H and S = N model system; although the proposed
analytical framework is equally applicable for any I = 1/2 and S = 1/2 spin system.
The simulation parameters: internuclear distance (r;g = 1.05 A), contact time = 2.0
ms and RF irradiation amplitude v1g (wrs/2m = 50 kHz) on the S-spin channel, are
used unless specified. For a pedagogical description, we begin by discussing the CP

spin dynamics for on-resonance S-spin irradiation followed by off-resonance irradiations.
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The state-picture representation is offered in Section 2.3.3 as an alternative formalism to

describe the underlying CP spin dynamics in spin-1/2 systems.

2.2.1 Description of the CP dynamics under on-resonance S-spin

irradiation

In the simulations depicted in Figure 2.4, the CP efficiency is plotted as a function of 'H
RF amplitude at constant mixing/contact time (7. = 2.0 ms) for single-crystal (panels
al-a2) and powder (panels bl-b2) samples. As illustrated in Figure 2.4, the analytic
simulations based on Eq. (2.15) are in excellent agreement with those obtained from
numerical simulations for both single-crystal and powder samples. Therefore, validates
our theoretical model framework. To analyze the similarities and differences between the
7ZQ23 and DQq4 CP conditions, the CP efficiency profiles are generated under each CP
condition (panels al-bl: ZQa3 CP condition and panels a2-b2: DQy4 CP condition). The
CP efficiency profile for the DQq4 CP condition is generated by shifting the phase of the

1 (a1) 1r- (b1)
05
A
~~ A R L 01 L 1 N I P |
Z 0 50 100 150 0 50 100 150
X
(7)) 0 (a2) (b2)
Vv
-05F -05F
-1 \ ] \ ] \ ] -1k \ 1 \ ] \ ]
0 50 100 150 0 50 100 150
v, (kH2)

Figure 2.4: In the CP simulations depicted, the polarization build-up on the S-spin
(due to transfer from the I-spin) is monitored as a function of the 'H RF amplitude
for single-crystal (al-a2) and powder (b1-b2) samples. The following parameters were
employed in the simulations: Dipolar coupling parameters (internuclear distance ryg =
1.05 A and dipolar PAS angle 8; = 0° and dipolar PAS angle 84 = 0°), RF parameters
v1s = 50 kHz (al-bl) and v = —50 kHz (by shifting the phase of the I-spin by 180°)
(a2-b2) under on-resonance irradiation for both I and S-spins and the mixing time during
the CP experiment was held constant (2 ms). The SIMPSON simulations (black curve) are
fitted with the analytic signal expressions ZQa3+DQ14 (red solid circle) [Eq. (2.15)]. The
powder simulations were performed using 4180 orientations of a and 8 angles (zcw4180).
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Figure 2.5: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored as a function of the contact time under constant
RF amplitudes on both the spins for single-crystal (al-a2) and powder (b1-b2) samples.
The following parameters were employed in the simulations: Dipolar coupling parameters
(internuclear distance 775 = 1.05 A and dipolar PAS angle 84 = 0°), RF parameters ZQos
CP condition (v = 50 kHz and v15 = 50 kHz) in panels (al-bl) and DQ4 CP condition
(r1g = 50 kHz and 115 = —50 kHz; shifting the phase of the I-spin by 180°) in panels
(a2-b2) under on-resonance irradiation. The SIMPSON simulations (black curve) are
fitted with the analytic signal expressions ZQa3+DQq4 (red solid circle) [Eq. (2.15)]. The
powder simulations were performed by considering the zcw4180 crystallite orientations.

I-spin RF irradiation by 180°. Due to the similarity in the DQq4 and ZQo3 CP efficiency
profiles, henceforth, we have plotted the CP efficiency profiles from the ZQs3 CP condition.
In the case of a single-crystal sample, the RF-domain CP efficiency profiles are
symmetrically placed around exact HH CP matching conditions (1 = v15 = 50 kHz).
The exactness of the proposed analytic theory is also validated through the time-domain
simulations in Figure 2.5 (panels al-a2). The powder averaging expression [4,137] for the

CP signal [Eq. (2.15)] is given as

1 2m 0 ) 27
B 87r2/ daML/ dBarr SIHBML/ dymrS(amr, By, ymL;t)- (2.16)
0 0 0

S(t)

Here (anr, Bavn, Yarr) represents the powder orientation, and sin fSys7, is the weighting
factor which is maximum for the orientation in the plane perpendicular to the Zeeman
magnetic field. In the case of powder samples, the statistical distributions of crystallite
orientations (shown in Eq. (2.16), interfere to result in averaged CP behavior. Due to

this reason, the overall width of the CP resonance is reduced in Figure 2.4 (panels b1-b2),
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and the time-domain simulations show a slower polarization build-up [Figure 2.5 (panels

b1-b2)] in comparison with the single-crystal sample.

Single-crystal Powder sample
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—— Numerical —— Numerical
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Figure 2.6: In the CP simulations depicted, the polarization build-up on the S-spin
(due to transfer from the I-spin) is monitored as a function of the 'H RF amplitude
for single-crystal and powder samples in panels (al-a2) and (b1-b2), respectively. The
following parameters were employed in the simulations: Dipolar coupling parameters
(internuclear distance rrg = 1.05 A and dipolar PAS angle 8; = 0°), RF parameters
15 = 20 kHz under on-resonance irradiation for both I and S-spins and the mixing time
during the CP experiment was held constant (say t,,;, = 2 ms). The SIMPSON simulations
(black curve) are fitted with the analytic signal expressions ZQa3+DQ14 (red solid circle),
ZQ23 (green curve) and DQ4 (blue curve) [Eq. (2.15)]. The powder simulations were
performed by considering the zcw4180 crystallite orientations.

These simulations are carried out at fixed S-spin RF amplitude, which is in the weak
coupling regime i.e., wy << wig [24,138]. Figure 2.6 depicts the CP efficiency profiles
in the wy = wig coupling regimes for single-crystal and powder samples. Details
of the simulation parameters can be found in the figure caption. In this coupling
regime, the results emerging from the analytic theory match perfectly well with the
numerical simulations. In particular, the CP resonance becomes slightly unsymmetric
with a negative CP efficiency towards lower [-spin RF amplitudes. To understand the
origin of observations, we evaluated the individual signal contributions from the two CP
conditions [Eq. (2.15)] for both single-crystal and powder samples. For the ZQ3 CP
matching condition, the dominant contribution to the polarization transfer arises from
the contributions from the ZQo3 CP signal expression, while a finite contribution comes

from the otherwise high-frequency phase-shifted DQ14 signal component. This indicates
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Figure 2.7: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored as a function of the contact time under constant
RF amplitudes (ZQa3 CP condition) on both the spins single-crystal and powder samples
in panels (al-a2) and (b1-b2), respectively. The following parameters were employed in
the simulations: Dipolar coupling parameters (internuclear distance rrg = 1.05 A and
dipolar PAS angle 5; = 0°), RF parameters vy = 20 kHz and 115 = 20 kHz under
on-resonance irradiation for both I and S-spins. The SIMPSON simulations (black curve)
are fitted with the analytic signal expressions ZQa3+DQ14 (red solid circle), ZQa3 (green
curve) and DQi4 (blue curve) [Eq. (2.15)]. The powder simulations were performed by
considering the zcw4180 crystallite orientations.

that the spin-locking is not perfectly unidirectional in the ZQo3 subspace as expected.
Rather, the polarization leaks in the high-frequency DQ14 subspace, in the strong coupling
regime. This behavior could be attributed to the competing nature of the ZQs3 and DQq4
4,2312
(wg ™)

d
14,23

X2 4 (w, )2

(w61l4,23)2

m in the ZQs3 matching condition [Eq.

(2.15)] at lower I-spin RF amplitudes. These observations are also well-corroborated

matching conditions i.e., the prefactor { } in the DQ14 condition becomes

comparable to the prefactor in {

in the time-domain simulations, where the oscillations deviate from a perfect sinusoidal
behavior due to mixing of the DQ14 CP efficiency for both single-crystal as well as powder
samples (Figure 2.7).

From an experimental standpoint, it is advantageous to provide a concise analytic
description of the evaluation of the dipolar coupling parameter through CP lineshape
[137,139]. To extract the dipolar coupling parameters from the CP experiment, the CP

efficiency is monitored as a function of the mixing time, and the resulting data is Fourier
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transformed (FT) to get the frequency-domain CP spectrum as shown below.
Depending on the nature of the CP matching conditions, the corresponding time-domain

signal, S(t);; is Fourier transformed to obtain the frequency-domain CP signal expression

[S(w)ijl, y
% 2 w?ff —iwt
S(w)ij = Cjj /_oo sin (Tt>e dt

= % - (1 — cosw” t)e_i“tdt
=5 eff

—00

(2.17)

where (ij) refer to 14 (DQ) and 23 (ZQ) matching conditions, and the constants Cj; are:

o423 2 1423 2
Cuy=— (‘h) and Cag = ‘123> . Using the integral definition of the Dirac delta
Werf Werf
function, the Fourier-transformed CP signal expression is given as
1 . .
S(w)y = Cigm|d(w) - 5{5(&; — W)+ o+l b (2.18)
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Figure 2.8: The Fourier transform of the variable contact time CP signal for the exact
ZQ23 CP matching condition for a single-crystal sample in different coupling regimes.
The time-domain simulations were performed using a total contact time = 2.5 ms. The
following parameters were employed in the simulations: Dipolar coupling parameters
(internuclear distance rrg = 1.05 A and dipolar PAS angle 3; = 0°), RF parameters
wg << wis (1 g = 50 kHz and 115 = 50 kHz) in panels (al-a2) and wy ~ wis (r1g = 20
kHz and v15 = 20 kHz) in panels (b1-b2) under on-resonance irradiation for both I and
S-spins. The SIMPSON simulations (black curve) are fitted with the analytic signal
expressions ZQ23+DQ14 (red solid square), ZQa3 (green curve) and DQqq (blue curve)
[Eq. (2.15)].
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Under the exact ZQ23/DQ14 CP matching condition, the above equation reduces to the

form given below:

(2.19)

1
Sy =Cyr| o) —5{ 0w —wi*®) + o(w+wp"?) 1],
~—~—~ 2
Zero-frequency Purely dipolar splitting (2wq)
The ZQ23/DQ14 frequency-domain signal expressions [Eq. (2.19)] for the single-crystal

sample displays three distinct singularities. The zero frequency (w = 0) peak appears

due to the non-oscillatory component of the time-domain signal expression and the

remaining two appear at the conjugate symmetric transition frequencies (w = —wi‘; 7 and
w = w?}f; ij = 14/23) resulting from the oscillatory components of the time-domain

signal expression. On setting the exact HH matching conditions, the separation
between the two symmetric singularities provides information about the dipolar coupling
strength. The more intense central peak is inverse phase-related with the two conjugate
symmetric singularities. As a consequence, the central peak does not interfere with
the symmetric singularities, a feature that is essential for extracting dipolar coupling
strengths, particularly for weakly coupled systems. Figure 2.8 demonstrates the CP
spectrum generated using the Fourier transform of the time-domain simulations for a
single-crystal sample. These simulations are conducted in two different coupling regimes
(wg < wis and wy =~ wig in panels al-a2 and bl-b2, respectively) at fixed dipolar
coupling strength, and the radio frequency (RF) amplitudes are adjusted for the ZQa3
CP condition. Clearly, the separation between the CP singularities will be a characteristic
of the dipolar coupling constant and is similar for both CP lineshapes. However, the
CP lineshape in the strong coupling limit (wg ~ wig) [panels (b1-b2)] is associated with
the high-frequency components from the phase-shifted DQ4 CP condition. In the ideal
scenario presented in this thesis, these unwanted distortions will not interfere with the
dipolar coupling evaluation because of the inverse phase relations. The CP lineshapes in
the case powder sample are shown in Figure 2.9. For the powder sample, the interference
from various weighted powder orientations (sin Sysr; Sarr is the powder angle from MolAS
to Laboratory frame and sin 8,1, represents the probability of that particular orientation)
leads to a CP lineshape with well-defined singularities (Pake-doublet). The key difference
from a regular peak doublet is the presence of central zero-frequency peaks. The distance
between the singularities will be a direct measure of the dipolar coupling strength (Figure
2.9). Contrary to the single-crystal sample, the magnitude of the DQ4 high-frequency
components are relatively smaller in the powder sample. This is attributed to the
orientation dependence heteronuclear dipolar coupling frequency (see Appendix Figure
B.1), the condition (wg =~ wig) is satisfied for a very small fraction of orientations which
have a very smaller statistical probability (sinyrz) in the overall powdered behavior.
We feel such a contribution might have a significant impact while considering the CSA

contribution in the CP dynamics.
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2.2.2 Description of the CP dynamics under off-resonance S-spin

irradiation

The off-resonance irradiation effects are unavoidable considering the large spectral widths
of the dilute spins and are known to significantly alter the CP spin dynamics in spin-1/2
systems [140]. Figure 2.10 depicts the CP efficiency profiles with a variation of the 'H RF
field in different coupling regimes Qg << wig, g ~ wig and Qg > wig for single-crystal
as well as powder samples. The analytic simulations based on Eq. (2.11) are in excellent
agreement with those obtained from numerical simulation for both single-crystal as well
as powder samples across various coupling regimes. Therefore, it validates our theoretical
model framework. The off-resonance irradiation deteriorates the overall CP efficiency and
CP resonance becomes highly distorted and asymmetrical. To understand the origin of
these distortions, we evaluated the individual contributions from the ZQa23, DQ14 and
interference terms in Eq. (2.11) (panels a2-c2). Across all coupling regimes, the overall

CP transfer is dominated by the ZQa3 CP condition and finite contributions are observed
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Figure 2.9: The Fourier transform of the variable contact time CP signal for the exact ZQas
CP matching condition for powder sample in different coupling regimes. The time-domain
simulations were performed using a total contact time = 2.5 ms. The following parameters
were employed in the simulations: Dipolar coupling parameters (internuclear distance
rrs = 1.05 A and dipolar PAS angle 8, = 0°), RF parameters wy << wis (r1g = 50 kHz
and 1 = 50 kHz) in panels (al-a2) and wy ~ wis (r1g = 20 kHz and v1g = 20 kHz)
in panels (b1-b2) under on-resonance irradiation for both I and S-spins. The SIMPSON
simulations (black curve) are fitted with the analytic signal expressions ZQa3+DQ14 (red
solid square), ZQa3 (green curve) and DQiy (blue curve) [Eq. (2.15)]. The powder
simulations were performed by considering the zcw4180 crystallite orientations.



Chapter 2. Theory and Methodology: An effective-field approach to understand the
40 mechanism of cross-polarization dynamics between spin-1/2 systems

from the otherwise high-frequency DQi4 CP condition and interference terms. Besides,
both ZQa23 and DQ23 CP conditions have absorptive (cos? 0;;) and dispersive (sin 0;; cos 6;;)
polarization pathways [Eq. (2.11)] which introduce distortions in overall CP resonance.
These distortions (dispersive components) are purely based on the single-quantum I-spin
dipolar transitions (SQgq,7). This argument is further supported by simulations carried
out with and without the inclusion of these SQg; dipolar transitions (Figure 2.11).
Apart from the distortions, these SQg ; dipolar transitions induce a dipolar-dependent
shift in the position of the HH CP matching conditions, and the degree of shift is
prominent in the (g > wig coupling regime which decreases towards the weaker coupling
regime (s << wig) (Figure 2.12). These factors, along with inefficient spin-locking
wW1IW18
We,IWe, S
of CP resonance in the strong coupling regime (g > wyg). As the overall CP resonance

scaling factor = results in lowering of the CP intensity as well as the widths

narrows, the CP transfer will become less tolerant to any mismatch in the HH CP condition

and RF inhomogeneities. Therefore, stronger RF irradiations are required to compensate
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Figure 2.10: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single-crystal sample as a function of the RF
field employed on the I-spin. The following parameters were employed in the simulations:
Dipolar coupling parameters (internuclear distance r;g = 1.05 A and dipolar PAS angle
Ba = 0°), RF parameters v1g = 20 kHz (al-a2); v1g = 50 kHz (b1-b2) and v;5 = 70
kHz (c1-c2) under the S-spin off-resonance irradiation g = 30 kHz. The SIMPSON
simulations (black curve) are fitted with the analytic signal expressions ZQa3+DQ14 (red
solid circle), ZQ2s (green curve), DQq4 (blue curve) and interference term (magenta curve)
[Eq. (2.11)].
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for the off-resonance irradiations, which strongly affect the widths of CP resonances as

suggested by the plot of the effective dipolar coupling constant (w(114’23

) vs the S-spin
off-resonance irradiation in Figure 2.12. Similar CP dynamics are manifested for powder
samples (Figure 2.13). Due to powder interference from various crystallite orientations,
the degree of contribution from the high-frequency components in the CP signal decreases.
From these simulations, we conclude that CP transfer in spin-1/2 systems is not always
unidirectional for both single-crystal and powder samples, and experimentally it may not
always be possible to avoid such undesired conditions. The time-domain signal will always
be associated with multiple frequency modulations like that observed for on-resonance
irradiation in the regime of stronger dipolar couplings i.e., wy ~ wig. Such time-domain
simulations are shown in Figures 2.14 and 2.15 under various irradiation strengths.

As described in the previous section, these distortion and high-frequency components
will be clearly visible in the frequency domain CP spectrum. Hence, the FT spectrum

essential for dipolar coupling parameter estimation will be distorted and associated

Ignoring SQq, dipolar coupling term
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Figure 2.11: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the /-spin) is monitored in a single-crystal sample sample as a function
of the RF field employed on the I-spin. The following parameters were employed in the
simulations: Dipolar coupling parameters (internuclear distance r;g = 1.05 A and dipolar
PAS angle 5; = 0°), RF parameters 115 = 20 kHz (al-a2); 115 = 50 kHz (b1-b2) and
vis = 70 kHz (cl-c2) under the S-spin off-resonance irradiation Qg = 30 kHz. The
SIMPSON simulations (black curve) are fitted with the analytic signal expressions in
absence (orange curve) and in presence (red curve) of the SQq ; term in Eq. (2.11).
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Figure 2.12: (al) The effect of dipolar coupling strength on the ZQg3 CP matching
condition under three different S-spin off-resonance irradiation strengths. (a2) Variation of
the effective dipolar coupling constant as a function of the S-spin off-resonance irradiation
strength.

with the extra frequency components. Moreover, the effective dipolar coupling constant
(wcll4’23) will also have RF amplitudes and off-resonance dependent scaling factor; thus,
the distance between the CP singularities will be different in different coupling regimes
[Figure 2.16]. The separation between the singularities will be minimum in Qg < wig
(weaker coupling regime) (panels al-a2) and maximum in Qg > wig (stronger coupling
regime) (panels cl-c¢2). Additionally, to calculate the CP lineshape, we need to set the
exact HH CP matching condition and any mis-setting will alter the modulation frequency

62 + (wé4’23)2 where ¢ is the degree of mis-setting. Another important error comes from
the effect of dipolar dependent shifts while setting HH CP matching conditions (Figure
2.12). Hence, the proposed analytic theory will be beneficial in the quantitative analysis of
the origin of various distortions and unwanted frequency components in the resulting CP
spectrum. Moreover, the effective-field based analytic theory has provided unique insights
into the CP spin dynamics, such as non-unidirectional spin-locking behavior, dipolar
dependent shifts, and the presence of interference terms for isotropic and anisotropic
solids. The proposed theory can be easily expanded to include the effects of chemical-shift
anisotropy (CSA) for both I and S-spins. This extension may allow a quantitative
understanding of the selective and non-selective excitation of the CSA orientations under
different RF and off-resonance irradiation strengths. However, any inference drawn based
on the above discussion will require a detailed experimental and theoretical study, which

is beyond the scope of the current work.

2.2.3 State-picture representation of the CP spin dynamics

The observed behavior of CP transfer in operator-based theory can also be correlated with
the energy eigen-level diagram obtained by analytic theory (section 2.1.1) and numerical

diagonalization of the CP Hamiltonian shown in Figures 2.17 and 2.18. In the energy-level
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Figure 2.13: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in the powder sample as a function of the RF
field employed on the I-spin. The following parameters were employed in the simulations:
Dipolar coupling parameters (internuclear distance r;g = 1.05 A and dipolar PAS angle
Ba = 0°), RF parameters v1g = 20 kHz (al-a2); v1g = 50 kHz (b1-b2) and 115 = 70
kHz (cl-c2) under the S-spin off-resonance irradiation Qg = 30 kHz. The SIMPSON
simulations (black curve) are fitted with the analytic signal expressions ZQa3+DQ14 (red
solid circle), ZQa3 (green curve), DQiq (blue curve) and interference term (magenta
curve) [Eq. (2.11)]. The powder simulations were performed by considering the zcw4180
crystallite orientations.

diagram, the regions of various avoided crossings are referred to as the HH CP matching
conditions. In the presence and absence of S-spin off-resonance irradiations, we observed
two such avoided crossings, which are in line with the HH matching conditions expressions
given in Table 2.1 and corroborate extremely well with the CP resonances observed in
Figures 2.4, 2.6 and 2.10 for the single-crystal sample.

To understand the origin of these avoided crossings, it is important to consider the
CP Hamiltonian [Eq.

representation of the above Hamiltonian is given as

(2.5)] presented in the previous theory section. The matrix

)y 0 0wt
fep =L Y A w0 (2.20)
92 0 c1l4 23 “A 0
w0 0 -3
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Figure 2.14: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in single-crystal as a function of the contact
time under constant RF amplitudes adjusted for the ZQo3 CP condition. The following
parameters were employed in the simulations: Dipolar coupling parameters (internuclear
distance r7g = 1.05 A and dipolar PAS angle 4 = 0°), RF parameters v1g = 36.05 kHz
and v1g = 20 kHz (al-a2); v1g = 56.3 kHz and v = 50 kHz (b1-b2) and 11y = 76.35
kHz and v1g = 70 kHz (cl-c2) under the S-spin off-resonance irradiation Qg = 30 kHz.
The SIMPSON simulations (black curve) are fitted with the analytic signal expressions
ZQ23+DQ4 (red solid circle), ZQa3 (green curve), DQqq (blue curve) and interference
term (magenta curve) [Eq. (2.11)].

For better visualization, the above Hamiltonian is separately written in two coupled

subspaces in accordance with Figure 2.2.

(19, 73

mnz

Hep =

cp T Hep
1|z W 1 a it (2.21)
5 14,23 -y + 5 14,23 _A :

Y 11),J4) ol 12),13)

As shown in above Eq. (2.21), the CP Hamiltonian in each subspace is independent of
each other and is associated with longitudinal (constituted by the RF and off-resonance
irradiation part) and transverse (effective dipolar coupling part) components, which
correspond to the energy (position of avoided crossing/HH CP matching condition) and
driving field /potential, respectively. In mathematical terms, the energy transfer in each
subspace is analogous to a two-level system (TLS). The pictorial mathematical depiction

of the CP Hamiltonian within each subspace during on or off-resonance S-spin irradiations
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Figure 2.15: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the /-spin) is monitored in powder sample as a function of the contact time
under constant RF amplitudes adjusted for ZQo3 CP condition. The following parameters
were employed in the simulations: Dipolar coupling parameters (internuclear distance
rrg = 1.05 A and dipolar PAS angle 5; = 0°), RF parameters v1y = 36.05 kHz and
s = 20 kHz (al-a2); v1g = 56.3 kHz and v = 50 kHz (b1-b2) and 11y = 76.35 kHz
and g = 70 kHz (cl-c2) under the off-resonance irradiation strength Qg = 30 kHz.
The SIMPSON simulations (black curve) are fitted with the analytic signal expressions
ZQ23+DQ14 (red solid circle), ZQ2s (green curve), DQq4 (blue curve) and interference term
(magenta curve) [Eq. (2.11)]. The powder simulations were performed by considering the
zcw4180 crystallite orientations.

is presented below

Hij = E;;89 + w4 SY (2.22)
—— N~

where, ﬁg acts as diagonal term and D is the perturbation. Here the states |i) and |5)
will be linear combinations of the Zeeman basis vectors which are defined by the unitary
transitions involved in the analytic theory section (Ulﬁgﬁg). The matrix representation

of the above Hamiltonian is given as

X 1By w9
Hy=| 0 (2.23)
2 |wi —Ej
where, Ej;/;; is a linear function of the /-spin RF amplitude [for exact relation see coeffs.

for ¥ and A in Eq. (2.5)]. We define the energy difference between diabatic states A;; =

E;; — Ej;. The perturbative term (wzlj ) is only effective when the energy difference between
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Figure 2.16: The Fourier transform of the variable contact time CP signal for the exact
7Q23 CP matching condition for powder sample in different coupling regimes. The
time-domain simulations were performed using a total contact time = 2.5 ms. The
following parameters were employed in the simulations: Dipolar coupling parameters
(internuclear distance rrg = 1.05 A and dipolar PAS angle 8; = 0°), RF parameters
vig = 36.05 kHz and 119 = 20 kHz (al-a2); v1g = 56.3 kHz and 115 = 50 kHz (b1-b2)
and v1g = 76.35 kHz and v1g = 70 kHz (c1-c2) under the S-spin off-resonance irradiation
Qg = 30 kHz. The SIMPSON simulations (black curve) are fitted with the analytic signal
expressions ZQ23+DQ14 (red solid square), ZQa3 (green curve) and DQy4 (blue curve) [Eq.
(2.15)]. The separation of between the CP singularities (21/;4’23) are given in panels al-a2,
b1-b2 and c1-c2 are 18.6, 28.7 and 30.82 kHz. The powder simulations were performed by
considering the zcw4180 crystallite orientations.

involved states |i) and |j) (A;j) becomes smaller or comparable to the strength of the
perturbation (A;; ~ wsj ). To solve this problem, it is necessary to perform the analytical
diagonalization of the Hamiltonian mentioned earlier, which is already demonstrated in

the theory section.

i =5 (2.24)

-n 1[E; 0
0 —E,

where, E;/; = :I:\/A?j + (wzj )2.  The transformation involved in this diagonalization
process simplifies the evaluation of the eigenbasis (adiabatic basis) states. The adiabatic
basis states are linear combinations of the involved Zeeman basis states (diabatic basis).

The adiabatic basis states are given as

|i') = sin6;; |i) 4+ cos ;5 |j) and |j') = —sinb;; |i) 4+ cos b, |7) (2.25)
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Figure 2.17: The eigenenergy level plot as a function of 'H RF amplitude for a
single-crystal sample. The following parameters were employed in the simulations:
Dipolar coupling parameters (internuclear distance r;g = 1.05 A and dipolar PAS angle
Ba = 0°), RF parameters v1g = 50 kHz (al) and v;5 = 20 kHz (a2) under on-resonance
irradiation. The numerical diagonalized eigenvalues (dashed curve) are fitted with the
analytic diagonalized eigenvalues (solid curve) [Eq. (2.6)]. The region of avoided crossings
are referred to as the HH CP matching conditions and are labelled in accordance with the
CP efficiency profiles in Figures 2.4 and 2.6.
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Figure 2.18: The eigen energy level plots as a function of 'H RF amplitude for a
single-crystal sample. The following parameters were employed in the simulations: Dipolar
coupling parameters (internuclear distance r;g = 1.05 A and dipolar PAS angle 8; = 0°),
RF parameters v1g = 20 kHz (al), v1g = 50 kHz (a2) and v = 70 kHz (a3) under the
S-spin off- resonance irradiation Q15 = 30 kHz. The numerical diagonalized eigenvalues
(dashed curve) are fitted with the analytic diagonalized eigenvalues (solid curve) [Eq.
(2.6)]. The regions of avoided crossings are referred to as the HH CP matching conditions
and are labelled in accordance with the CP efficiency profiles in Figure 2.10. The avoided
crossing at zero 'H RF amplitude (v1y = 0 kHz) are due to presence of single-quantum
I-spin dipolar transitions (SQq,s).

where, tanf;; = Afjf acts as a mixing angle between the original diabatic basis. The
W

energy level representation in this TLS is shown in Figure 2.19 with variation in 'H RF

amplitude. In the absence of the perturbation wsj or (Ay; >> wfij ), the energies of the
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Figure 2.19: The eigen energy level plot as a function of A;; in a two-level system (TLS).
The simulations are performed using the perturbation strength wfij = 0 kHz (gray dashed
lines) and 10.52 kHz (black solid lines). The minimum in the region of avoided crossing is
the resonance condition, where the energy difference between two states becomes zero in
the absence of any external perturbation.

eigenstates exactly follow a linear variation with respect to '"H RF amplitude and become
equal at the condition A;; = 0; at this resonance condition we observe an exact level
crossing. On the other hand, when the perturbation is active, the energy states exhibit a
linear slope (w1s) in the region Ajj >> wflj . As soon as system enters in A;; ~ wzlj region,

the energy eigen states shifts from the linear to a quadratic trajectory as given by the Eq.

(2.24) Ey); = £ /A?j + (cufij)2 ~ {Aij + A1U(2w2j)2}. In this case, the adiabatic states

never cross, but rather acquire a minimum at a certain RF condition (A;; = 0) and this
resonance condition is termed as Hartmann-Hahn matching condition in the CP process.
Exactly, near resonance i.e., A;; = 0, the energy of the system is given by Qw;j at the
mixing angle 6;; = 7 and we observe a level repulsion or avoided crossing (LAC). In other
words, at this condition two diabatic states perfectly mix and result in perfect adiabatic
states which can efficiently lead to CP transfer via maximum population exchange. This
population exchange can be calculated by the mixing coefficient in the adiabatic states
or with the density operator calculation shown through Eq. (2.9). However, the process
of coherent spin-mixing can be illustrated by plotting the time-evolution of the coherence
terms in the density matrix expressions under various LAC [Eq. (2.9)].

The population transfer in the TLS can occur via the adiabatic pathway, where the
population smoothly follows the energy eigen states without undergoing any transition
or can result in a sudden jump (non-adiabatic transition) across the energy difference.
The pathway of the population exchange is determined by the Landua-Zener expression
(LZ) [141,142], which states that the rate of change of the energy difference and the
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Figure 2.20: The population exchange dynamics for different HH CP matching conditions
as a function of 'H RF amplitude for a single-crystal sample. The population coefficients
for different HH matching conditions are calculated based on the final density matrix
calculation as given in Eq. (2.9) and are given as DQu4 (p11, paa): (sin? 614, -sin? 0y14)
and ZQa3 (p22, p33): (sin?fa3, -sin?fa3). The area between each avoided crossings can
be correlated with the width of each CP resonance observed in Figures 2.4 and 2.6. All
simulation parameters are exactly the same as used in Figure 2.17.

strength of the perturbation acting in the system actively plays a role in deciding the
mixing pathways. In the above representation, the probability of the LZ transition is

given as
Q(wij)Q
prad — Td/ 2.2

while the probability of adiabatic transition is given as

2(wf)?
ped =1 — d 2.27
= erp { dAg;/dt (2.27)

The dynamics in the system is driven by the presence of perturbation (effective dipolar

coupling), therefore it acts as a natural /internal time-period of the system (7; = jg ), while

d
the 'H RF amplitude acts as external tuning parameter (7, = Ui—“H) In case 7. >> 7;, the

system evolves adiabatically through the energy gap (Pfj i~ 1), otherwise it can make
non-adiabatic transition. Hence, it is the energy difference across the LAC that determines
the nature of dynamics. In the case of a weaker coupled system (drive-frequency < Rabi
frequency, i.e., energy difference), the probability of the non-adiabatic transition increases,
however it decreases rapidly away from the resonance condition. In a strongly coupled
system, the probability of the non-adiabatic transitions decreases and we observe a broad
CP resonance.

Having established the mechanism of the LAC or HH-condition, we now focus on the

different avoided crossings observed in Figures 2.17 and 2.18 for a single-crystal sample.
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We observed that the ZQ93 and DQ14 HH CP matching conditions are just phase-shifted
versions of each other and the DQ14 transfer is experimentally achieved by setting the phase
of either I or S-spins RF-field by 180°. The area under the avoided crossing is a direct
manifestation of the strength of the perturbation (effective dipolar coupling i.e.,wcll4’23)
acting between the states involved in CP transfer. Under on-resonance irradiation, the area
enclosed by the curves are constant in different coupling regimes (Figure 2.17). However,
the regions of the avoided crossings overlap for the ZQs3 and DQ14 HH CP conditions in
the stronger coupling regime (wy =~ wig). Hence, in the region of overlapping both the
CP conditions (ZQa3 and DQy4) are simultaneously satisfied and this effect is similar to
the effect of non-unidirectionality of the spin-locking field in Figure 2.6. The degree of
overlapping can be quantitatively evaluated using the population exchange diagram. The
population exchange at various LACs are shown in Figure 2.20 where the population is
plotted by selecting the coefficients of all Zeeman states in the final density matrix in
Eq. (2.9) (see Figure caption for more information). In the population diagram (panel
al), clearly |1) /|4) and |2) /|3) exchange their populations (i.e., population difference
becomes zero p;; — pj; = 0) at exact HH CP matching condition which correlates well
with the Figures 2.4 and 2.6 and point towards an adiabatic transfer. The population
exchange trajectories for the DQ4 and ZQ93 CP conditions in the strong coupling regime
clearly demonstrates the effect of the overlapping CP resonances. From an operational
standpoint, it is important to mention that despite the overlapping of the CP resonances,
CP transfer in DQ14 and ZQs3 subspaces are independent process and still can be explained
using TLS problem. As the strength of the S-spin off-resonance irradiation increases,
the CP resonances shift towards increasing 'H RF amplitudes, and the area decreases
monotonically. The strength of the effective dipolar coupling constant (wé4’23) is directly
correlated with the nature of transition at the exact HH CP matching condition (sudden
or adiabatic transfer). As the strength of the off-resonance irradiation increases, the
probability of the non-adiabatic (sudden jump) increases. Additionally, the avoided
crossings observed at vy = 0 kHz corresponds to the pure single-quantum I-spin dipolar
transitions (SQq,7). It should also be noted that a significant loss in the /-spin polarization
(refer to < I,(t) > detection in Figure 2.21) is observed during the transfer process while
the gain in the S-spin polarization is minimal. This is primarily due to the involvement
of f;] S, transition operators in the polarization transfer process.

At zero-field avoided crossing (17 = 0 kHz), we don’t observe any significant population
exchange (Figure 2.22), again highlighting the presence of pure SQg; I-spin dipolar
transitions. Nevertheless, the population exchange dynamics observed in panels a2-a3
for the stronger off-resonance irradiations demonstrate a behavioral shift from adiabatic
to sudden transitions. Besides, the area enclosed in between two population curves directly
signifies the width of the overall CP transfer as observed in Figures 2.20 and 2.22. It is
important to note that the aforementioned observations are based on the parameters used
while generating the simulations, and the nature of CP dynamics may change by selecting

other parameters set.
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Figure 2.21: In the CP simulations (SIMPSON) depicted, the polarization build-up on
the S-spin (black curve) and loss on the I-spin (red curve) is monitored simultaneously
in the powder sample as a function of the RF field employed on the I-spin. The following
parameters were employed in the simulations: Dipolar coupling parameters (internuclear
distance rrg = 1.05 A and dipolar PAS angle ; = 0°), RF parameters v;g = 20 kHz
under the S-spin off-resonance irradiation (g = 30 kHz. The powder simulations were
performed by considering the zcw4180 crystallite orientations.
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Figure 2.22: The population exchange dynamics for different HH CP matching conditions
as a function of 'H RF amplitude for a single-crystal sample. The population coefficients
for different HH matching conditions are calculated based on the final density matrix
calculation as given in Eq. (2.9) and are given as DQu4 (p11, paa): (sin? 614, -sin? 014)
and ZQo3 (pa2, p33): (sin®fa3, -sin? fa3). The area between each avoided crossings can be
correlated with the width of each CP resonances observed in Figure 2.10. All simulation
parameters are exactly the same as used in Figure 2.18.

2.3 Conclusions

In summary, the effective-field approach presented in this chapter is well suited for
describing the CP spin dynamics between the I = 1/2 (H) and S = 1/2 spin
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systems. The analytic theory perfectly reproduces the literature findings and offers
an in-depth understanding of CP dynamics behavior subjected to on and off-resonance
S-spin irradiations. Unlike previous studies, the proposed operator-based analytic theory
provides a unified description of the CP spin dynamics that is valid across all coupling
regimes. Moreover, the proposed effective field-based theory introduces the concept of a
non-unidirectional spin-locking field, dipolar-dependent shifts, dispersion, and interference
effects, which are unique to the proposed effective field-based theory. As an alternative to
the operator-based analytic framework, a thorough state-picture representation is provided

to describe the CP spin dynamics.



Chapter 3

Analytic theory of cross-polarization
(CP) dynamics between spin-1/2

and spin-1 nuclei

In the previous chapter, we discussed the usefulness of the effective-field approach in
the theoretical description of the CP experiment in spin-1/2 systems. We extend
the proposed operator-based analytic theory in a more complex quadrupolar sample
with spin-quantum number S = 1. The presence of dominant quadrupolar interaction
frequently poses significant challenges in the analytical description of spin dynamics
[69,83,102,143-147]. This led to the descriptions of spin-dynamics involving quadrupolar
spins in the quadrupolar interaction frame or more commonly known as the quadrupolar
jolting frame [148, 149]. This transformation rendered the time-dependency of the
interaction Hamiltonian, which further requires application of sophisticated analytic
treatments. Utilizing the Average Hamiltonian theory (AHT) [3,90,103] and in some
cases with the Floquet theory [93,104-109], semi-analytical methods have also emerged
for describing experiments involving quadrupolar spins, both in non-rotating (static)
and rotating solids. In the initial description put forth by Vega and coworkers [45]
using the effective Hamiltonian approach the CP dynamics was described in systems
with larger quadrupolar interactions (i.e., wg >> wig). However, these descriptions are
not useful for quantifying the CP efficiency profiles in powder samples primarily due to
the distribution of quadrupolar coupling frequencies. Later, Ernst and coworkers [90]
provided an alternate description of the CP dynamics based on the AHT, however
the experimental validation of the proposed analytic treatment was provided only in
the intermediate coupling regime (i.e.wg =~ wig). Pratum and Klein [91] proposed
an alternate formulation, which could quantitatively explain the origin of multiple CP
matching conditions observed in experiments. Nonetheless, a comprehensive analytic
description of the CP dynamics over a wide range of experimentally relevant parameters
has remained elusive. For the sake of clarity and completeness, a brief account of the results
obtained from the Hamiltonians proposed by Pratum and Klein is discussed in Appendix C
(refer to section C.2). To address this issue, we propose an alternate analytic formalism to
describe the CP dynamics which is consistent with experimental observations. Unlike
the conventional perturbative methods in the quadrupolar interaction frame, the CP

dynamics is described by the effective Hamiltonians derived using rotation operators based

93
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on the “effective-field” approach [70,80,109,114,115]. The proposed analytic framework
based on the effective-field approach offers faster convergence and presents an attractive
tool for describing the underlying spin dynamics in both isotropic and anisotropic solids.
Accordingly, the CP matching conditions observed are described in terms of the transition

operators associated with a given system [114,115].

3.1 Theory and Methodology

To outline the basic operational aspects of the CP experiment, we begin with a model
two-spin (say I = 1/2 and S = 1) Hamiltonian. In an appropriate interaction frame, the
Hamiltonian of such a system under on-resonance irradiation (on the spins I and §) is
represented by the following equation:

(1)
- v ay wo'(aQ,B) o 4 S
H = wi5(cos ¢Sy + sin pgSy) + Q7(3S§ — 8% +wir(cos g1l +sin¢rl,)

TRF ‘TRF
Hg ﬁg H;

+ 2wal,S,; h=1.
~——
Hfy

(3.1)
In the above equation, wij(wis) and ¢;(¢g) represent the RF amplitude and phase
on I(S) spin. ﬁg is the first-order quadrupolar Hamiltonian for the S-spin.
The quadrupolar interaction is often expressed in terms of quadrupolar coupling
frequency (wg)) and quadrupolar coupling constant (Cgp). A detailed description
of the quadrupolar Hamiltonian can be found in Chapter 1. The term wd( =

Ho hiyrys (3 cos® By — 1)
47 T%S 2
is the internuclear distance between I and S-spin pair, and [ is the orientation of dipolar

;1 and 75) represents the dipolar coupling (I-S) frequency, rrg

vector with respect to the applied Zeeman magnetic field (z-direction). The matrix
representation of the various spin operators in Eq. (3.1) both I and S-spins) can be
found in Appendix C. When the phases of the RF fields employed on the two spins are
set to zero (i.e., pg = ¢y = 0°), the above Hamiltonian [Eq. (3.1)] reduces to a compact

form given below:

wy) (ag, Q)

6 (35§ - 32) + wljfx + 2wdf25’z. (32)

Hop = wigSy +

The discussion that follows is equally valid in both single-crystal and powder samples.
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3.1.1 Derivation of the effective CP Hamiltonians via the effective-field
method

To simplify the description, the above Hamiltonian is re-expressed in terms of the

single-transition operators [17,110-113] as given below:

(1)
~ ~ ~ ~ ~ w ~ ~ ~ ~ ~ ~ ~
Hop = V2wis[8:" + 55 + 857 + S0 + —- 1527 = 527+ 52 = S + w85 + 577 + S

~

fEF pe fRF
+ 2wq[S;° — 57°].
HEy
(3.3)
The superscript (i,7) in the operators Sk (o = z,y,z) represents the spin-states in a
coupled system and are defined according to the energy level diagram depicted in Figure

3.1(a). Accordingly, the operators have the following definitions:

(a) S=1and I =1/2 coupled basis states and (b) Transition matrix highlighting all possible
two spin flip/flop (dipolar) transitions transitions in a coupled system

in—>|1) 12y [3) [4) |5) |6)

sQ, | DQJl s

13) (1]
(2] [°9 SQ, 50, |DQy
14) (3] [PQs| SQs ZQy| 50
12) @l | so Dipolar?u@.
S——— ) (5] sQ, [EQE SO, SQ.
(6| DO, SO, (DO, | SQ,

15}

Figure 3.1: (a) Schematic depiction of the energy level diagram in a coupled two-spin (/
=1/2 and S = 1) system. The spin states |1), |2), |3), |4), |5) and |6) are representative
of the product basis states (|mr,mg)) [1/2,1),1/2,0), [1/2,-1), |[-1/2,1), |—1/2,0) and
|—1/2,—1), respectively. (b) Matrix representation of the populations and coherences in
the coupled two-spin (I and S) system. The diagonal elements depict the populations
(of the states |my, mg)) and are represented through ‘P;;’. The coherences wherein both
spins change their states are represented as the triple-quantum (TQ;g), double-quantum
(DQrs), single-quantum (SQyg), and zero-quantum (ZQrs). The coherences where only
the state of S-spin changes are represented by DQg and SQg, while, coherences where
only the state of I-spin changes are represented by, SQ;. The blue-colored (TQs/SQrs)
coherences involve double-quantum transitions associated with the S-spin (|+1) <
|—1)), while orange and green-colored (DQ;s/ZQrg) coherences involve single-quantum
transitions associated with S-spin, SQg (|]—1) <+ |0)) and (]0) <> |[+1)).
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A schematic description of the populations and coherences observed in a coupled spin-pair
(I =1/2 and S = 1) is given in Figure 3.1(b). The matrix representation of the various
spin-operator and their product Zeeman basis is given in Appendix C. To derive insights
into the CP spin dynamics and facilitate analytic description, the Hamiltonian [Eq. (3.3)]

is divided into three parts:
1. Hamiltonian for the S-spin system (Hg = ﬁfg%F + ﬁg)
2. Hamiltonian for the I-spin system (H REY
3. Hamiltonian for the I-S spin pair (H D)

Subsequently, employing unitary transformations, the Hamiltonians are diagonalized using

the procedure outlined below.

A: Derivation of effective Hamiltonian for the S-spin system

A detailed procedure of the derivation of the effective S-spin Hamiltonian in the single-spin
Zeeman basis is outlined in section 1.4 (Chapter 1). To avoid repetition, the complete
description of the diagonalization process is cautiously omitted. The diagonalization of
S-spin Hamiltonian is accomplished via two-step unitary transformations U = exp{ —
i6 A e A A - PN A . .
7%[ — S’;Q + S;d — 5;15 + 526}} and Us = exp {zg [S;S + 536] } The resulting S-spin
effective Hamiltonian is given below:
- 1) (1)
x o a A aaa We — W . . Swe +w . . . .
(F ) [82 + 58] 4 (— 5 ) [82 - 52 + 52 — 5]
(3.5)
where, w, = \/(WS))2 + 16w?y and tan6; = 4w15/w8). The effectiveness of the S-spin

effective Hamiltonian is evaluated in the preceding section 1.4 and is demonstrated to offer

the convergent solutions to the spin-dynamics for isotropic and anisotropic solids.

B: Derivation of effective Hamiltonian for the I-spin system
In a similar way, employing the unitary transformation Us = exp {Zg [5’3}4 + 355 + 5’5’6] },
the Hamiltonian for the I-spin is transformed such that it is diagonal in the chosen basis.

HFF = Oy HFFO] = wy[SH + §2 + §%]. (3.6)

As the operators involved in the unitary transformations, Uy and U commute with
the [-spin Hamiltonian, the above form of the Hamiltonian remains invariant under the

transformations employed on the S-spin.
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C: Derivation of effective Hamiltonian for the I-S spin pair

To have a consistent description, the dipolar coupling Hamiltonian (IEI 7s) is also
transformed by the same set of unitary transformations employed on the S and I-spin

Hamiltonians.
IEI[% = Ugﬁgﬁlﬁ%ﬁfﬁgﬁg = 2wd{ [S’iG + 5’24] cosf1/2 — [5'26 + 5';39’5]8111 01/2}. (3.7)

As illustrated above, in contrast to the single spin Hamiltonians [(refer to Egs. (3.5)

and (3.6)], the transformed dipolar coupling Hamiltonian is off-diagonal in the chosen

basis system. Combining the transformed Hamiltonians, H S, H f’F and H I%, the complete

Hamiltonian describing the CP dynamics is represented by the following equation:

e

~

H=Hg+ H;+ HE

NN
N

(1) (1
— (B g 5] 4 (ZETEQ Y[t gy 5 G00) 4y [510 4 25 4 59
+ 2wg cos /2 [3;6 + 352’4] — 2wg sin 01 /2 [§§6 + 5’55]

(3.8)
As described above, the CP Hamiltonian in its present form is highly off-diagonal (mainly
due to the dipolar coupling) and is of lesser utility in further descriptions of the spin
dynamics. To address this issue, the transformed single spin Hamiltonians are re-expressed
in terms of the operators employed in the description of the dipolar coupling Hamiltonian
through the relation S';k = S9 4 S’;’“ between the single-transition operators as given

below:

T

= Y16 [5;16] + w;6’34 [5’;6] + Aszy [55’4] + w56’34 [S;ﬂ + X35 [335] + w36’35 [5'35]

muzz
mnzz

34 Hss
(1)
F Aap[52] 4 w200 820] o (6] - UL [g12 g2 4 g 3]

residual terms

16

(3.9)

THwe

26

The coefficients in the above equation have the following definitions: X154 =

{4w11+(we—w8))} Ay — {4w11—(we—”8))} S5 = {4WH+(%+“8))}

4 O 4 4

4w — (wWe +w
Aog = { (46 Q ) , and the effective dipolar coupling constants are %116,34 =
2wq cos B1 /2 and w§6’35 = —2wy sin 61 /2.

Accordingly, in the new representation, the CP Hamiltonian comprises contribution

emerging from the four transitions (that involve flipping of both spins) present in
the coupled system [refer to Figure 3.1(a)]. The term Hig is representative of the

triple-quantum (TQi¢) transition (|1/2, 1) <> |—1/2, —1)), while Hsy is representative of
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the single-quantum (SQs4) transition (|1/2, —1) < |-1/2, 1>> In a similar vein, the term

Hjs is representative of the zero-quantum (ZQss) transition (\—1/2, —1) < |1/2, 0)), while

Hyg is representative of the double-quantum (DQyg) transition (|1/2, —1) & |—1/2,0>)
in a coupled spin basis. It is important to note that the magnitude of the effective dipolar
coupling is different in TQ16/SQs4 and ZQs5/DQag sets of transitions. Since polarization
transfer amongst spins entails simultaneous flipping of the spin states of both the spins
involved, the contribution from the residual terms in the above Hamiltonian [Eq. (3.9)]

are of lesser significance and are ignored in further calculations.

+ f} + H35 + H26
16 Azlﬁ} + w01l6’34 [5;6} + Asy [Sﬁﬂ + woll6 34 [554] +Xa5 [325] + w§6’35 [5*;5]

mnn
™M mnn

—

o

(3.10)

m)lll
Thw
@

™S
mﬂll
&

16

+ A% [536] +w 26 35 [S%]

-~

b;‘)m

26

Unlike other existing reports in the literature [45,91], it is important to note that the
Hamiltonian in Eq. (3.10) contains all the modes of CP transfer within a single framework.
This forms the major highlight of the present study and will be substantiated in the
following sections. For comparative purposes, the analytic description of the spin dynamics
emerging from previously reported Hamiltonians is summarized in Appendix C (refer to
section C.2). As illustrated in Eq. (3.10), the CP Hamiltonian in the effective-field
framework reduces to the sum of transverse (S¥) and longitudinal (S¥) operators in
each subspace (see Figure 3.2). Subsequently, employing the rotation operators, the
Hamiltonians in the respective sub-spaces are diagonalized through rotation operators

(analogous to the spin-1/2) defined below:

01 = exp {i(5 - 04°) [5,°] }, 03 =exp {i(5 —03") (8347}, O = exp {3 (5 — 0°) [S
and UZ% = exp {Z(g - 926) [5’56] }

(3.11)
The angles 0%, 63* 603 and 62° are chosen such that the -effective-fields in
, 3 A
c e . . . 16 16 4 34
individual subspaces are quantized along the z-axes: tanf, = T631 tanfy” = T6a1
d d
fan 65 — 239 d tang? — 22 The pictorial tati f th
an g’ = et an an i’ = % e pictorial representations o ese
d

transformations are given in Figure 3.2(al)-(a4). Subsequently, the effective Hamiltonian

depicting the CP dynamics is represented by the following equation.

I:Ieff = ﬁeff,m + I:Ieff 34 + geff 35 + ﬁeff 26
= USSH 16U + UP Hy UM + U9 H3sUPT + U0 HogUZ® (3.12)

= w537 + WP (534 + Wi [5%] + Wi [526]
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tan0, = (1);6’34 tan®;’ = wiﬁﬁﬁ
wil('}) _ E%ﬁ + (w;634)2 ‘US;) — IZZ + (w2635)
Z z:35
16
816 625
4 Fa3 o
516 35
16,34 Sx 26,3 Sx
() Wq O Wq
516 G35
Sy Sy
@2) 53 - A, (ad) 57° . Ay
tan@; = o5t tan@;,” = TRES
d d
34 16,34 26 26,35
wiff) = 1'454 +(wg7)? Esz) = A% + (w2
Azy Aze
934 656
4 S‘.34 5‘26
16,34 x 26,35 *
ok o
“34 G26
55 Sy

Figure 3.2: Schematic representation of the “effective-fields” experienced in the TQi¢ (al),
SQs4 (a2), ZQss (a3), and DQgs (ad) sub-spaces.

16 16,342 B2 (3 26,35
where, wiff) = 2%6 (wy : eff = \/A )?, wiff) = /235 + (wy ™)? and
20 _ 25552
o3 = B

3.1.2 Time-evolution of the spin-system during the CP mixing period

The time-evolution of spin-system is described using the standard operational process [Eq.
(1.44)]. The initial density operator: (0) = I,. For a consistent description, the initial
density operator is transformed using the same set of unitary transformations on the S
and [I-spins.
(0) = UsUxU p(0) U U3 U
- (81 + (2] + [85] + [8] -5 @13
—— N S

p16(0)  p34(0)  p35(0)  p26(0)

o

Subsequently, ignoring the residual contributions from the operator [S‘SG], the density
operator at time ‘t’ is calculated using the effective Hamiltonians [Eq. (3.12)] in respective

sub-spaces as given below:

ﬁgf})( ) = exp{—zHeff 16t}U4 p16(0 )U Texp {zHeff 1675}

= [S’;G] sin 05 — {[5’;6] coswéff)t + [5'1}6] sinweff t} cos 0;°

(3.14)
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PSC?( ) = exp {—ilﬁfeff,sd}(75’4,634(O)ﬁj’4T exp {z‘f[eff 3475}

. . A (3.15)
= [524] sin 031 — {[5’34] cos wézﬁ)t + [534] sin weff t} cos O34
ﬁé‘j’cic)(t) = exp {—ZHeff 3575}U4 p35(0) U5 exp {ZHeff 35t} (3.16)
= [525] sin 030 — {[535] cos wéff)t + [555] sinwefft} cos 03 ‘
5(26) _ 7261
Pess(t) = exp{ zHeffzat}U4 p26(0)U;"" exp {%Heffzﬁt} (3.17)

= [SEG] sin 675 — {[S’iﬁ] cos wéff)t + [S’;G] sin weff t} cos 035,

3.1.3 Detection of the S-spin polarization

For a consistent description, the detection operator is also transformed with the same set
of transformations. In the present context, polarization transfer from spin I to spin §
is calculated. Accordingly, the expectation value of the observable < S’x(t) > is derived
employing Eqs. (3.14)-(3.17),

S(t) =< Su(t) >= Trace{Sestp-pers(t)} (3.18)

. (34 (3 26 . .
where, pesr(t) = piff)( ) + piff)( ) + pgf‘?( ) + piff) (t). Accordingly, the final signal
expression has separate contributions from the TQqg, SQs4, ZQs5, and DQsg sub-spaces

as given below:

S(t) = (Ser ()16 + (Serse(t))sa + (Sepra(t))ss + (Seppu(t))2s

16,34 16 34y
dwrg (withz B+ (W )? (wio3hy2 \/ A3
= " 16,349 o111 9 t+— 16,349 t
We e+ (wg 7)? Az + (wg )
TGro SQs4
26,3519 26 35)2
(w3092 . S35+ (wy )2 - (w3092 \/A%6 +( ]
B 26,35 26,35 :
Y35+ (wy )2 2 A% + (wy )2
ZQ35 D626
(3.19)

As described above, the final signal expression has contributions from all the four possible
CP transfer modes and is significantly different from those derived based on existing

reports in the literature (refer to section C.2 in Appendix C).

3.1.4 Insights into the Hartmann-Hahn CP matching conditions

Based on the analytic expression [Eq. (3.19)], the CP signal could in principle be
maximized by optimizing one of the four matching conditions as discussed below. When
the amplitude of the RF field on I-spin is adjusted to one of the matching conditions the
corresponding signal expression gets maximized and results in simplified expressions as

follows:

e Single-quantum SQj3; CP matching condition:
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1
A34 =0 = wir = Z(we — WS))
dwr g 16:34
t) = in? “L—¢ +S(t t t)35 .
S(t) o Sin 5 +S( )16+S(v)26+8( )35 (3.20)

e high-frequency terms
In the scenario, where the high-frequency terms can be ignored, the overall signal
can be approximated to the SQs4 signal expression as given below:
S(t) ~ 215 g2 wi
We 2 (3.21)

S(t)34

This behavior could also be displayed at other HH CP conditions as well.

e Triple-quantum TQs matching condition:

Y16 =0 = wir =~ (we — wg))-
S(t) = _dws o w56’34t+ S(t)34+S(t)26+S(t)35 -
o, 9 - (3.22)
e high-frequency terms
e Double-quantum DQss matching condition:
DAog =0 = wir = Z(We +W8))-
S(t) = dwrs sin? w§6735t2t + S(t)16+5(t)34+S(t)35 -
e 9 2 (3.23)
o high-frequency terms
o Zero-quantum ZQ3; matching condition:
Y35 =0 = wir = —Z(we —Hug)).
S(t) = —AWLS 2 w§6’35t2t + S(t)16+S(t)34+S(t)26 -
e 9 . (3.24)
e high-frequency terms

As illustrated, the signal expressions for the TQ (and ZQss) are phase-shifted to those
obtained from the corresponding SQs4 (and DQgs) CP matching conditions and could play

an important role in the CP dynamics.

3.2 Results and discussion

To test the validity of the proposed analytic framework, polarization transfer from spin
I = 1/2 (say, 'H and 115 = 26.752 x 107 rad s~ !T1) to S = 1 (say, N and vy =

1.9331 x 107 rad s7'T~1) at proton Larmor frequency 600 MHz was examined over a wide
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Table 3.1: The expression and transitions associated with various HH CP matching
conditions for the CP transfer between I = 1/2 and S = 1/2 spin systems

CP matching conditions

and associated transitions

Single-quantum (SQs4) dwr = (we —wg’) Wi = wig
1/2,-1) & [-1/2,1)

Triple-quantum (TQ16) dwr = —(we — w(Ql)) Wi = —Wi1s
|=1/2,-1) « [1/2,1)

Double-quantum (DQgg) dwr = (we + wg)) Wil = Wig
Zero-quantum (ZQs3s) dwr = —(we + wg)) Wi = —wig
|-1/2,-1) < [1/2,0)

range of experimentally relevant parameters. The discussion presented below is equally
valid for any set of spin-1/2 and spin-1 systems. For pedagogical purposes, the dynamics
of polarization transfer in single-crystal and powder samples are examined separately. To
explicate the interplay between the quadrupolar coupling constant and the amplitude of
the RF field employed on the I-spin, the discussion is split into three regimes in the
present study: Regime-I (Cq = 20 kHz, Weak), Regime-II (Cg = 200 kHz, Intermediate)
and Regime-IIT (Cg = 1.0 MHz, Strong).

3.2.1 Description of CP dynamics in a single-crystal (with specific

orientation ag and Sy = 0°)
3.2.1.1 Regime-I (Cqy = 20 kHz, Weak)

In the simulations depicted in Figure 3.3, polarization transfer from [ = 1/2 to S = 1 is
monitored as a function of the RF amplitude on the I-spin under constant mixing time
employing a constant RF field on the quadrupolar spin, S. The simulations in solid black
lines are derived from the numerical method based on SIMPSON (a software package for
simulating NMR experiments) [131] and are employed to test the validity of the analytic
theory. All other relevant simulation parameters are given in the Figure captions. To
explicate the contributions from the four CP matching conditions predicted by the analytic
theory, we begin with analytic simulations based on Eq. (3.19). As illustrated (refer to
panel al in Figure 3.3), the analytic simulations based on Eq. (3.19) are in excellent
agreement to those obtained from SIMPSON.

To explicate the role of the individual contributions emerging from the four CP
matching conditions, additional analytic simulations were also explored. Accordingly,
in the simulations illustrated along the second row, the contributions emerging from
the single-quantum (SQs4), triple-quantum (TQ;6) matching conditions and their sum
(SQ34+TQ16) are depicted. In a similar vein, the contributions emerging from the
double-quantum (DQgg), zero-quantum (ZQss) matching conditions and their sum
(DQ2s+7ZQ35) are depicted in the third row. As illustrated, the individual analytic
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Figure 3.3: In the CP simulations depicted, the polarization build-up on the S-spin
(due to transfer from the [-spin) is monitored in a single-crystal as a function of the
RF field employed on the I-spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Quadrupolar parameters (Cg = 20 kHz, ng = 0, quadrupolar coupling PAS
angles ag and g = 0°) and Dipolar parameters (internuclear distance r;g = 1.05 A
and dipolar PAS angle 8; = 0° and dipolar PAS angle 8; = 0°). A constant RF
amplitude of g = 50 kHz was employed on the quadrupole, S-spin, and the mixing
time during the CP experiment was held constant (say tmi; = 0.5 ms). In panel (al)
the analytic simulations comprise contributions from all the four CP matching conditions
(SQ34+TQ16+DQ2s+7ZQ35) and is represented in orange color. In panel (a2) the analytic
simulations based on the contributions from the SQs4 (red dashed curve), TQi¢ (green
color), and SQg4+TQi¢ (indigo color square) CP conditions are depicted. In panel (a3)
the analytic simulations based on the contributions from the DQgg (blue dashed curve),
ZQs35 (cyan color) and DQgg+ZQs5 (magenta color square) CP conditions are depicted.

simulations based on the two sets of CP matching conditions: SQs34+TQ6 (second
row) or DQgs+7ZQ35 (third row) are inaccurate when compared to those obtained from
SIMPSON. Additionally, in the weak-coupling regime, the dominant contribution to the
polarization transfer arises from the contributions from the SQsq4 and DQgg matching
conditions that overlap to result in a single-broad CP resonance. These observations are

also well-corroborated through additional simulations depicted in Figure 3.4 wherein, the
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Figure 3.4: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single-crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I-spin were chosen based on the two CP maxima observed in Figure 3.3, i.e. panels
al-a3 (v17 = 44 kHz); panels b1-b3 (v1; = 63 kHz). The numerical simulations (based on
SIMPSON) are represented by solid black lines. The following parameters were employed
in the simulations: Quadrupolar parameters (Cg = 20 kHz, ng = 0, PAS angles ag and (g
= 0°) and Dipolar parameters (internuclear distance r;¢ = 1.05 A and dipolar PAS angle
Ba = 0°). A constant RF amplitude of v1g = 50 kHz was employed on the quadrupole,
S-spin. The remaining simulation parameters and descriptions are as given in the caption
of Figure 3.3.

polarization transfer is monitored as a function of the CP mixing time. Hence, in the
weak-coupling regime, contributions from both the SQs4 and DQ2g matching conditions
are essential to describe the spin dynamics. This is in stark contrast to the model proposed
by Pratum and Klein (discussed in section C.2 of Appendix C), wherein, only one of the
matching conditions (SQs4 or DQgg) was proposed to describe the CP dynamics. Hence, in
the weak coupling regime, the contributions from the SQs4 and DQsg matching conditions

are essential to simulate the CP trajectories.
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Figure 3.5: In the CP simulations depicted, the polarization build-up on the S-spin
(due to transfer from the [-spin) is monitored in a single-crystal as a function of the
RF field employed on the I-spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Quadrupolar parameters (Cg = 200 kHz, ng = 0, quadrupolar coupling PAS
angles ag and g = 0°) and Dipolar parameters (internuclear distance r7g = 1.05 A and
dipolar PAS angle 3; = 0°). A constant RF amplitude of 115 = 50 kHz was employed on
the quadrupole, S-spin, and the mixing time during the CP experiment was held constant
(say tmiz = 0.5 ms). In panel (al) the analytic simulations comprise contributions from all
the four CP matching conditions (SQ34+TQ16+DQ2s+ZQ35) and is represented in orange
color. In panel (a2) the analytic simulations based on the contributions from the SQs4 (red
dashed curve), TQ6 (green color), and SQs34+TQ16 (indigo color square) CP conditions
are depicted. In panel (a3) the analytic simulations based on the contributions from the
DQgs (blue dashed curve), ZQss (cyan color), and DQas+ZQs5 (magenta color square)
CP conditions are depicted.

3.2.1.2 Regime-II (Cg = 200 kHz, Intermediate)

To explicate the role of the quadrupolar coupling constant in the individual contributions
emerging from the four matching conditions, the CP transfer in the intermediate coupling
regime, say Cg = 200 kHz was employed in the simulations illustrated in Figure 3.5.
Analogous to the description in the previous section, the polarization transfer is monitored

as a function of the RF amplitude on the I-spin. In contrast to the CP profile in the
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Figure 3.6: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single-crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I-spin were chosen based on the two CP maxima observed in Figure 3.5 (in the main
text) i.e., panels al-a3 (v1y = 20 kHz); panels bl-b3 (v1y = 167 kHz). The following
Quadrupolar parameters were employed in the simulations: (Cq = 200 kHz, ng = 0,
quadrupolar coupling PAS angles ag and g = 0°). The remaining simulation parameters
and descriptions are as given in the caption of Figure 3.5.

weak-coupling regime, the SQs4 and DQgg matching conditions are well separated /resolved
in the intermediate coupling regime. As illustrated in Figure 3.5 (panel al), the analytic
simulations based on Eq. (3.19) are in excellent agreement to those obtained from
SIMPSON.

From a practical viewpoint, the simulation results illustrated in the second and third
rows are relevant. As illustrated, at lower I-spin RF amplitudes, the CP profile has
significant contributions from both the SQss and TQ16 matching conditions. At lower
I-spin RF amplitudes, the magnitude of X1 (= 4wis + we — wg )) term associated with

otherwise high-frequency TQ1¢ matching condition is reduced and therefore the prefactor

16,3412

w

(d—)., becomes finite. In other words, the effective field during the mixing
oo+ (wg )2
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(spin-locking/contact) period is no longer unidirectional at lower I-spin RF amplitudes.
This is in stark contrast to the observations in the weak-coupling limit, wherein, the CP
profile had predominant contributions from the SQsz4 and DQgg matching conditions. At
higher I-spin RF amplitudes, the ZQs5 matching condition (X35 = 4wir + we + wg))
retains its high-frequency behavior and therefore has a negligible contribution towards
the overall CP efficiency. This trend is also well replicated in the mixing (contact) time
profile illustrated in Figure 3.6. Hence in the intermediate coupling regime, contributions
from the SQs4, TQ16, and DQos matching conditions are essential to simulate the CP
trajectories. As illustrated in Figure 3.5, at lower /-spin RF amplitudes, the CP matching
conditions are broader when compared to those observed at higher I-spin RF amplitudes.
This important observation could also be inferred through the effective dipolar coupling
constants in the two regions (2wg cos /2 in SQ34/TQ16 and 2wy sin by /2 in DQas/ZQ35)
and is also reflected through the fast (observed at lower I-spin RF amplitudes) and slow
oscillations (observed at higher I-spin RF amplitudes) in the mixing time plots depicted
in Figure 3.6.

3.2.1.3 Regime-III (Cy = 1.0 MHz, Strong)

To further substantiate the analytic framework, additional simulations depicting the
polarization transfer in the strong-coupling regime were also examined (as depicted in
Figure 3.7). In contrast to the CP profiles in the weak and intermediate coupling regimes,
the separation between the two sets of matching conditions (TQ16/SQs4 and DQas/ZQ35)
increases drastically. As illustrated, at lower I-spin RF amplitudes, both the SQs4 and
TQ16 matching conditions have nearly similar contributions, while at higher I-spin RF
amplitudes, the DQgg matching condition plays a decisive role in the CP experiments. The
contributions from the ZQss matching condition remain insignificant and is very similar
to those observed in the weak and intermediate coupling regimes. These observations are
also manifested in the mixing time plots depicted in Figure 3.8. As depicted in Figures 3.3,
3.5 and 3.7, the efficiency of polarization transfer decreases with increasing quadrupolar
coupling strengths in accord with the factor 4w;g/w. in Eq. (3.19). The behavior of
the spin-locking efficiency is expected to be analogous for the SQ34 and TQ¢ matching
conditions. An additional decrease in the CP efficiency observed at lower I-spin RF

amplitude could be attributed to the competing nature of the SQs4 and TQ14 matching

16,342
w
conditions i.e., the prefactor 5 (wq 12 E7Ie in the TQ14 condition becomes similar to
D i)
(w16,34)2
the prefactor in N +d( 16734)2 in the SQs4 matching condition [refer to Eq. (3.19)].
34 T Wy

The interplay between three CP matching conditions in the spin dynamics is significantly
different from those observed in the weak and intermediate quadrupolar coupling regimes.
The highly oscillatory behavior observed at lower I-spin RF amplitude results from the
interplay of various effective fields in spin dynamics. From an experimental perspective,

the decrease in the CP efficiency observed in the strong quadrupolar coupling regime could
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Figure 3.7: In the CP simulations depicted, the polarization build-up on the S-spin
(due to transfer from the I-spin) is monitored in a single-crystal as a function of the
RF field employed on the [-spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Quadrupolar parameters (Cg = 1.0 MHz, ng = 0, quadrupolar coupling PAS
angles ag and g = 0°) and Dipolar parameters (internuclear distance rrg = 1.05 A and
dipolar PAS angle 35 = 0°). A constant RF amplitude of 11 = 50 kHz was employed on
the quadrupole, S-spin and the mixing time during the CP experiment was held constant
(say tmiz = 0.5 ms). In panel (al) the analytic simulations comprise contributions from
all the four CP matching conditions (SQ34+TQ16+DQos+7ZQ35) and is represented in
orange color. In panel (a2) the analytic simulations based on the contributions from the
SQ34 (red dashed curve), TQg (green color), and SQ34+TQ16 (indigo color square) CP
conditions are depicted. In panel (a3) the analytic simulations based on the contributions
from the DQgg (blue dashed curve), ZQss (cyan color), and DQas+7ZQ35 (magenta color
square) CP conditions are depicted. The insets in panels al-a3 depict the CP efficiency
in the higher I-spin RF field range.

be improved by employing a higher RF field strength on the quadrupolar spin (S) and is
in accord with the numerical factor 4w;s/we in Eq. (3.19). This improvement in the CP
efficiency could also be explained based on the decreased interference from the TQ4 CP
condition at lower /-spin RF amplitudes with increasing S-spin RF field strengths (refer
to Figure C.1. in Appendix C).
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Figure 3.8: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single-crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I-spin were chosen based on the two CP maxima observed in Figure 3.7 i.e., panels al-a3
(1g = 2 kHz); panels bl-b3 (v1g = 753 kHz). The following Quadrupolar parameters
were employed in the simulations: (Cg = 1.0 MHz, ng = 0, quadrupolar coupling PAS
angles ag and g = 0°). The remaining simulation parameters and descriptions are as
given in the caption of Figure 3.4.

3.2.2 Description of CP dynamics in a single-crystal (with general

orientation ag and (g # 0°)

To outline the orientation dependence of the quadrupolar interactions in CP experiments,
additional simulations in single-crystal with general orientations were also carried out. As
illustrated in Eq. (3.19), the quadrupolar interaction depends on the Euler angles (ag
and fg). In the quadrupolar principal axis frame the angle g denotes the angle between
the static magnetic field and the z-axis of the quadrupolar PAS, while, ag represents
its projection along the x-y plane. Considering the quadrupolar PAS coincides with the
Molecular-axis systems (MolAS), the angles (aq, Bg) will represent different crystallites
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orientations. The graphical demonstration of this angular dependence is shown in the
Figure C.2 (refer to Appendix C). The magnitude and sign of the first-order quadrupolar
frequency are strongly influenced by the crystallite-orientations; therefore the overall CP

behaviour anticipated to vary considerably and is presented below.

Cq = 500 kHz
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Figure 3.9: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single-crystal (with general orientation) as
a function of the RF field employed on the /-spin. The numerical simulations (based on
SIMPSON) are represented by solid black lines. In the simulations depicted, the effects of
the variation of quadrupolar coupling PAS angle Sg: 0° (al), 45° (a2), 54.736° (a3) 90°
(ad), 110° (ab), 125.624° (a6), 135° (a7) and 180°(a8) on the CP dynamics is illustrated.
The following parameters were employed in all the simulations: Cg = 500 kHz, ng = 0,
quadrupolar coupling PAS angle ag = 0°, contact time (t;) = 0.5 ms, internuclear
distance r7g = 1.05 A and dipolar PAS angle 8; = 0° and 15 = 50 kHz. The analytic
simulations based on signal expressions corresponding to various CP matching conditions
are indicated: SQs4 (red), TQ1g (green), DQog (blue) and ZQss (cyan) [Eq. (3.19)]. The
insets in panels al and a8 show CP maxima in the higher I-spin RF field range.

In the simulation depicted in Figure 3.9, the relative contributions from the four matching

conditions are presented for a set of eight Bg angles in the range 0° < Bg < 180°.



Chapter 3. Analytic theory of cross-polarization (CP) dynamics between spin-1/2 and
spin-1 nuclei 71

As depicted in Figure 3.9, when g is less than 54.736 (0° < Bg < 54.736°), the
CP profile approaches the weak coupling regime and the CP efficiency improves. At
B = 54.736°, the quadrupolar interaction reduces to zero (for a symmetric tensor, 1o = 0)
and the trajectories emerging from the SQs4 and DQgg matching conditions overlap. This
observation could also be substantiated through the analytic expression given in Eq. (3.19).
From an experimental perspective, the interesting observation emerges for cases where the
angle B¢ in the range (54.736° < g < 125.624°). As illustrated in the simulations (refer

to panels a4-a6), the CP profile approaches the intermediate coupling regimes along with
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Figure 3.10: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single-crystal (with general orientation) as
a function of the RF field employed on the I-spin. The numerical simulations (based on
SIMPSON) are represented by solid black lines. In the simulations depicted, the effects
of the variation of quadrupolar coupling PAS angle ag: 0° (al), 30°(a2), 60° (a3) and
90° (a4) on the CP dynamics are illustrated. The following parameters were employed
in all the simulations: Cg = 500 kHz, ng = 0.5, quadrupolar coupling PAS angle 8o =
90°, contact time (tmi;) = 0.5 ms, internuclear distance rrg = 1.05 A and dipolar PAS
angle B3 = 0° and v1g = 50 kHz. The analytic simulations based on signal expressions
corresponding to various CP matching conditions are indicated, SQs4 (red), TQ16 (green),
DQgs (blue) and ZQgz5 (cyan) [Eq. (3.19)]
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Figure 3.11: The effect of the variation of quadrupolar PAS angle 8¢ on the spin-locking

efficiency (4wis /wé?1 )) for single-crystal sample. Considering the quadrupolar PAS
coincides with the MolAS, angles Sg will represents different crystallites orientations.
The following parameters were employed in all the simulations: Cg = 500 kHz (dashed
curve) and 2000 kHz (solid curve), ng = 0, quadrupolar coupling PAS angle ag = 0° and
nms = 50 kHz.

swapping in the position of the CP matching conditions due to the negative sign of wq
in the above range of 8g. We observe a profound change in the relative contributions
from the four CP matching conditions. As depicted, at lower I-spin RF amplitudes, the
CP profile has a dominant contribution from the DQgs/ZQ35; CP matching condition,
while at higher I-spin RF amplitudes, the SQs4 matching condition contributes with
negligible contribution from the TQ¢ condition. This trend is completely opposite to
those depicted in the weak (Figure 3.3), intermediate (Figure 3.5, and strong (Figure
3.7) coupling regimes in previous section. At g = 125.624°, the quadrupolar interaction
reduces to zero for a symmetric tensor, and the CP profile is similar to the one observed at
Bo = 54.736°. From 125.624° < Bo < 180°, the CP profile resembles to the one obtained
for Bg in the range 54.736° > Bg > 0°. Interestingly, the relative contributions from
the four matching conditions are reversed (in contrast to those observed in the range,
54.736° < [ < 125.624°) and is in accord with those depicted in the earlier simulations
(Figures 3.3, 3.5, and 3.7). Hence the value of g plays an important role in quantifying
the CP profile in terms of four matching conditions and highlights the non-uniformity of
the CP transfer among different quadrupolar tensor orientations. The shift in positions
of SQ34/TQi6 and DQas/ZQ35 resonances with the variation of PAS g angle depends
strongly on the size of quadrupolar coupling strength Cg. For instance, the variation of
Bq angle for Cg = 20 kHz (refer to Figure C.3 in Appendix C) shows a similar pattern

as discussed above, however, the change in positions of these resonances are not huge in



Chapter 3. Analytic theory of cross-polarization (CP) dynamics between spin-1/2 and
spin-1 nuclei 73

comparison to those depicted in Figure 3.9. The quadrupolar PAS angle ag affects the
magnitude of the quadrupolar frequency (not sign for g = 90° ) in the case of asymmetric
tensor and is shown in Figure 3.10. However, the behaviour of the first-order quadrupolar
frequency with g angle variation is strongly ng and g dependent. From Eq. 3.19, it
is evident that unlike spin-1/2 systems, the polarization transfer efficiency (intensity) is
scaled by factor 4wy g/ wS ) at exact HH CP matching condition; hence this term will provide
an idea on the extent of spin-locking and hence maximum polarization transfer efficiency.
Figure 3.11 demonstrates the spin-locking efficiency (4w g/ wg )) as a function of crystallites
orientations (f8g) for a single-crystal sample. The crystallites which lie close to g =
54.736° of the first-order quadrupolar frequency will have better spin-locking efficiency;
hence better overall CP transfer efficiency. This behavior is consistently applicable across
all Cg values. Consequently, the CP excitation will not be uniform in the case of a sample
with multiple crystallite orientations. The powder sample represents a more generalized

system, characterized by statistically weighted random orientations of crystallites.

3.2.3 Description of the CP dynamics in a powder sample

In the simulations depicted in Figure 3.12, the CP dynamics in a powder sample is
examined. The decrease in polarization transfer efficiency in comparison to single-crystal
sample results from the interference effects between the different crystallites present
in a powder sample and could also be explained in terms of the interference among
the trigonometric terms in Eq. (3.19). Additionally, as depicted in the simulations,
the CP profile broadens and splits into two maxima of unequal intensities with
increasing quadrupolar strengths. This splitting pattern could be explained based on
the contributions from the different CP matching conditions and the discussion presented
in the previous subsections. As depicted in Figure 3.12, in the weak-coupling regime
(Co = 20 kHz), the CP efficiencies resulting from the SQz4 and DQgs matching conditions
overlap equally analogous to those obtained in the single-crystal studies (Figure 3.3) and
have negligible contributions from the TQis and ZQss CP matching conditions. As
illustrated, at lower I-spin RF amplitudes, the contribution from the DQsg matching
condition dominates over those obtained from the SQs4 matching condition (refer to second
and third rows), while at higher /-spin RF amplitudes the contributions from the SQs4
matching condition are dominant.

This interesting observation however contradicts the discussion presented (in
single-crystal) in section 3.1 (refer to Figures 3.3, 3.5 and 3.7) and could be explained
based on the orientation (Sg) dependence of quadrupolar coupling frequency (refer to
Figure C.4 in Appendix C and Figure 3.9). Due to the high probability /weightage of
the orientations in the plane perpendicular to the static Zeeman field, the contribution
from the DQgg matching condition is higher at the lower I-spin RF amplitudes (due to
the swapping of CP matching conditions). Similar behavior is also reflected at higher
I-spin RF amplitudes, wherein the relative contributions from the DQ2/ZQ35 matching

conditions decrease with increasing quadrupolar coupling strengths. At higher I-spin
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RF amplitudes, the lower CP efficiency is due to strong quadrupolar coupling dependent
polarization transfer (w1 I = %(we + wg))) In a powder sample, different crystallites
undergo different HH-matching conditions at selected I-spin RF amplitude, therefore, the
SQ34/TQ16 and DQgs/ZQ35 CP matching conditions become indistinguishable. Hence,

the contributions from all the four CP matching conditions become essential to fit the
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Figure 3.12: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a powder sample as a function of the RF field
employed on the /-spin. The numerical simulations (based on SIMPSON) are represented
by solid black lines. The following parameters were employed in the simulations: panels
al-a3 (Cg = 20 kHz, ng = 0); panels bl-b3 (Cg = 200 kHz, ng = 0) and panels cl-c3
(Cg = 1.0 MHz, ng = 0). All other parameters such as the quadrupolar coupling PAS
angles ag and g = 0°), dipolar parameters (internuclear distance r;g = 1.05 A and
dipolar PAS angle 5; = 0°), RF amplitude of S-spin v;g = 50 kHz and mixing time
during the CP experiment (say tmn;, = 0.5 ms) were identical in all the simulations.
The analytic simulations in the panels have the following definitions: first row, the
analytic simulations comprise contributions from all the four CP matching conditions
(SQ34+TQ16+DQ2s+7ZQ35) and is represented in orange color. In the second row, the
analytic simulations are based on the contributions from the SQss4 (red dashed curve),
TQ6 (green color), and SQs34+TQi¢ (indigo color square) CP conditions are depicted.
In the third row, the analytic simulations based on the contributions from the DQag
(blue dashed curve), ZQss (cyan color), and DQos+ZQ35 (magenta color square) CP
conditions are depicted. The powder simulations were performed using 4180 orientations
(i.e., zcw4180) of a and 3. The insets in panels c1-c¢3 depict the CP efficiency in the higher
I-spin RF field range.
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trajectories observed in CP experiments for powder samples. This could also be verified
through the simulations depicted in Figure 3.12 (refer to the first row), wherein, all the
four CP matching conditions have been employed to fit the trajectories. This aspect
is further validated in the mixing time CP profiles illustrated in Figure 3.13. With
increasing quadrupolar coupling strength, the time-domain oscillations become wiggled
due to the interplay of various CP matching conditions therefore representing a complex
CP transfer mechanism. Hence, the proposed analytic model presents a uniform framework

for describing the CP dynamics in both single-crystal and powder samples across all

regimes.
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Figure 3.13: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the [-spin) is monitored in a powder sample as a function of the CP
mixing time under constant RF amplitudes on the spins. The RF amplitudes on the
I-spin were chosen based on the two CP maxima observed in Figure 3.12 i.e., panels al-a3
(v1m = 50 kHz); panels bl-b3 (v1 g = 23 kHz); panels c1-¢3 (vig = 9 kHz). The following
parameters were employed in the simulations: panels al-a3 (Cg = 20 kHz, ng = 0); panels
bl-b3 (Cg = 200 kHz, ng = 0) and panels c1-c3 (Cg = 1.0 MHz, ng = 0). The remaining
simulation parameters and descriptions are as given in the caption of Figure 3.12.
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3.2.4 Extraction of the dipolar coupling parameters from the CP

lineshapes

As discussed in the previous sections, the mechanism of polarization transfer in the CP
experiment is complex both in the case of single-crystal and powder samples. Depending
on the Euler angle 8o and the quadrupolar coupling constant, the contributions from the
four matching conditions vary. To further explore the utility of the proposed analytic
theory, the extraction of dipolar parameters from the lineshape of the quadrupolar spin
S (coupled to spin I = 1/2) is investigated in the present section. To this end, we
begin the present discussion with a single-crystal sample as an example. To extract the
dipolar coupling parameters from the CP experiment, the CP efficiency is monitored as a
function of the mixing time, and the resulting data is Fourier transformed (FT) to get the
frequency-domain CP spectrum. This may be inferred through the equations given below:
Depending on the matching conditions, the corresponding time-domain signal, S(t);; is

Fourier transformed to obtain the frequency-domain CP signal expression [S(w);;],
00 Iy ,
S(w)ij = Cyj / sin? (—e’” t) e it
- 2

C.i [ ,
= 2”/ <1 — coswe,ijt> et

— 00

(3.25)

where (ij) refers to 16 (TQis), 34 (SQs4), 35 (ZQss), and 26 (DQgs) matching

4 TN 2 4 TN 2
conditions, and the constants C;; are: Cig = _ﬁ(%) , U3y = ﬁ(dd ) ,
We w( 6) We w(34)
eff eff
oy w35\ 2 doys w35\ 2
Cs; = — ( d(35) ) and Cys = 7( d(%) ) . The Fourier-transformed CP signal
¢ Weyf Ve uw,
expression is derived using the integral definition of the Dirac-delta function and is given
below:
S(@)iy = Cym |3(w) = 3{0w — W) + 0w + D} . (3.26)

Under the exact CP matching condition, the above equation reduces to the form given

below:

e SQ34/TQi6 CP matching condition:

S(w)y = Cyr[5(w) - 1{ (0 — ) + 5w + %% ]

2 (3.27)
Purely dipolar splitting (20.1(116’34)
e DQy/ZQ35 CP matching condition:
o 1 26,35 26,35
S(w)ij —CZJ7T|:(S(£U)— 2{5(w—wd )+ 0(w + wj )H (3.28)

Purely dipolar splitting (2w36’35)

In the simulations depicted in Figure 3.14, the RF amplitudes employed on the two spins
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(I and S) are adjusted carefully to satisfy one of the CP matching conditions. The FT
CP spectra corresponding to the SQs4 matching conditions are depicted along the first
column, while, those corresponding to the DQog matching condition are plotted along
the second column under various quadrupolar coupling regimes. As illustrated in Figure
3.14(al-a3), the FT spectra corresponding to the SQs4 CP matching conditions, comprise
frequency contributions from the SQss (dominant), TQis or DQgs (high-frequency)

terms. Depending on the magnitude of the quadrupolar coupling constant, the relative
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Figure 3.14: In the simulations depicted, the frequency-domain S-spin signal in a
single-crystal emerging from Fourier transformation of the mixing time domain signal
corresponding to the SQss (first column) and DQg¢ CP matching conditions (second
column) is shown for different quadrupolar coupling constants (depicted along the row):
panels al-bl (Co =20 kHz), panels a2-b2 (Cg =200 kHz) and panels a3-b3 (Cg = 1.0
MHz). All other parameters such as the quadrupolar coupling PAS angles ag and Sg
= 0°, dipolar parameters (internuclear distance ris = 1.05 A and dipolar PAS angle 3,4
= 0°) and RF amplitude of S-spin 15 = 50 kHz were identical in all the simulations.
Depending on the magnitude of the quadrupolar coupling constant, the RF amplitudes
employed on the I-spin (indicated in the Figure) were carefully adjusted to match the
SQs4 (first column) and DQgg (second column) CP matching conditions. The solid black
lines correspond to those obtained from SIMPSON, while the analytic simulations are
indicated in orange color [based on Eq. (3.19)]. A line broadening of 50 Hz was used
before the Fourier transform of the time-domain CP signal.
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contributions emerging from the other two matching conditions (DQg¢ and TQq6) vary. As
illustrated, in the weak-coupling regime, the FT spectrum comprises residual contributions
from the DQog matching condition. With an increase in the quadrupolar coupling
constant, the contributions from the TQi¢ matching condition predominate (over the
DQg¢ matching) and become equivalent to the SQs4 matching condition in the strong
coupling regime. As illustrated in Figure 3.14, the dominant peaks in the FT spectrum
are derived from the frequency factor associated with the SQs4 matching condition. The
central peak at zero frequency (w = 0) corresponds to the non-oscillatory component of
the time-domain signal, while the remaining two peaks (at w = —wé}(}) and w = wé}(}))
symmetrically distributed about the central peak (at zero frequency) result from the
effective-field corresponding to the SQs4 matching condition. From a practical aspect,
the dipolar parameter in the FT spectrum is extracted by measuring the frequency

separation between the two symmetric peaks (2oucll6’34 or 2w§6’35).

As the central peak
is inverted or phase-shifted by 180°, it does not interfere with the extraction of the dipolar
parameters. In a similar vein, the FT spectrum corresponding to the DQgs matching
condition comprises contributions from the DQgs term (dominant) and the SQgq term.
As illustrated, the frequency contribution from the residual SQsz4s CP matching condition
decreases with an increase in the quadrupolar coupling constant. This trend is in accord
with the earlier discussions on the CP dynamics presented in section 3.2.1. Analogous to
the FT spectrum derived from the SQs4 matching condition, the FT spectrum (second

column in Figure 3.14) comprises symmetric peaks (at w = —wgf? and w = wi%‘c), where

wg’f? corresponds to the DQgg matching condition) distributed about the central peak
(at w = 0). In contrast to the SQs4 matching condition, the frequency separation
between the two symmetric peaks is equal to the 4wgsin(61/2) and is in accord with
the predictions emerging from the analytic theory [refer to Eq. (3.19)]. Therefore, the CP
transfer in the spin-1 system introduces quadrupolar coupling dependent scaling factors as
2cosf;/2 and 2sin6;/2 under the SQs4/TQ16 and DQgs/ZQ35 HH matching conditions,
respectively. Consequently, the magnitude and the orientation of the quadrupolar coupling
tensor as well as the relative orientation of quadrupolar and dipolar coupling tensors will
affect the intensity as well as the position of peaks/singularities in the CP spectrum.
While the proposed analytic theory presents an accurate framework for describing the
CP dynamics in both single-crystal and powder samples, the extraction of the dipolar
parameters from the FT spectrum (derived from variable CP contact time experiment)
remains less straightforward in a powder sample. The coupled orientation dependence of
the quadrupolar and dipolar coupling frequencies results in an averaged CP behavior [150].
This is primarily because of the interference from various weighted powder orientations
that lead to CP lineshape with well-defined singularities. The separation between the CP
singularities will be a characteristic of the dipolar and quadrupolar coupling orientations
(dwg cosBy/2 and 4w, sin by /2).

As illustrated in Figure 3.15, for Cg = 20 kHz case, the overall CP powder lineshape
generated by the overlapping of the SQ34 and DQg¢ CP matching conditions resembles
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a Pake-like doublet with a noticeable foot signal (refer to Figure C.5 in Appendix C
for individual fitting of the CP lineshape.) With increasing magnitude of Cg, the CP
lineshapes get distorted due to appearance of additional singularities. Unlike Cgp = 200
kHz case in the stronger quadrupolar coupling regime, as the CP dynamics is a result of an
interplay of all the four CP fields, and the CP spectrum suffers from additional distortions
resulting from the high-frequency TQ1¢ and ZQss components. This is in accord with the

results discussed in the previous sections (sections 3.2.1 and 3.2.2), wherein, the CP profiles

V. =50 kHz (a1)

V., =28 kHz (a2)

Cq = 1.0 MHz

V= 11kHz (@3)

1 . 1 . ¥ ., 1 . 1 . 1
-30 -20 -10 0 10 20 30

Frequency (kHz)

Figure 3.15: In the simulations depicted, the frequency-domain S-spin signal in powder
sample emerging from Fourier transformation of the mixing time domain signal is shown
for different quadrupolar coupling constants: panel al (Cg =20 kHz); panel a2 (Cg =200
kHz) and panel a3 (Cg =1 MHz). All other parameters such as the quadrupolar coupling
PAS angles ag and g = 0°, dipolar parameters (internuclear distance r12 = 1.05 A and
dipolar PAS angle 8; = 0°) and RF amplitude of S-spin 15 = 50 kHz were identical in all
the simulations. Depending on the magnitude of the quadrupolar coupling constant, the
RF amplitudes employed on the I-spin (indicated in the Figure) were carefully selected by
CP in maxima of the RF-domain simulation at the desired mixing time. The solid black
lines correspond to those obtained from SIMPSON, while the analytic simulations are
indicated in orange color [based on Eq. (3.19)]. The powder simulations were performed
using 4180 orientations (i.e., zcw4180) of a and . A line broadening of 50 Hz was used
before the Fourier transform of the time-domain CP signal.
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were simulated employing analytic expressions based on the four matching conditions. In
such cases, the dipolar parameters are extracted through iterative fitting of the powder
lineshapes employing Eq. (3.19). As illustrated in Figure 3.15, the analytic simulations
based on Eq. (3.19) are in excellent agreement to those derived from numerical methods.
Hence, the description of the CP dynamics based on the effective-field approach presents

an attractive framework for describing the spin dynamics in non-rotating solids.

3.3 Conclusions

In summary, the proposed analytic theory presents an attractive framework for
understanding the nuances of polarization transfer from spin I = 1/2 to spin § = 1 in
static solids. As described, under on-resonance irradiation conditions (on both I and
S spins), the CP dynamics during the spin-lock period is governed by contributions
from the four Hartmann-Hahn CP matching conditions (namely, triple-quantum (TQ¢),
single-quantum (SQs4), zero-quantum (ZQss), and double-quantum (DQgg)). To present
a comprehensive description of the CP dynamics, rotation operators derived from the
concept of effective-fields were employed to derive effective CP Hamiltonians. In
contrast to the conventional operator-based perturbative methods, the effective-field
approach facilitates the derivation of closed-form solutions requiring a minimal set of
transformations. Employing the concept of effective-fields, the four possible matching
conditions responsible for polarization transfer are identified and described within a single
unified framework that is suitable for describing the exchange both in single-crystal
and powder samples. In contrast to other existing theoretical frameworks, the present
approach presents a unified description of the CP dynamics and facilitates in quantifying
the polarization transfer in terms of the four matching conditions. Depending on the
magnitude of the quadrupolar coupling constant and the orientation dependence of the
quadrupolar interactions (say [g), the relative contributions emerging from the four
matching conditions are quantified using simple analytic expressions. As illustrated,
in the weak coupling regime, the SQs34 and DQos CP matching conditions overlap to
result in a broad CP profile in the single-crystal sample. With increasing quadrupolar
coupling strengths, these CP matching conditions separate resulting in lower transfer
efficiency. Interestingly, in the case of a powder sample such a clear distinction between
the contributions emerging from the four matching conditions is less plausible. In such
cases, the proposed unified framework [Eq. (3.19)] is essential to quantify the CP
dynamics. Additionally, as demonstrated, the proposed analytic theory presents an
attractive framework for extracting the dipolar parameters from the CP data in simple

Systems.



Chapter 4

Understanding the role of
second-order quadrupolar coupling
and off-resonance effects in CP

dynamics

In the previous chapter of this thesis, the operator-based analytic theory of the CP
dynamics between I = 1/2 and S = 1 is introduced through the application of
the “effective-field method” considering the first-order quadrupolar coupling under the
on-resonance RF irradiations [116]. As the quadrupolar coupling strength can be of the
order of a few kHz to several MHz, it is essential to understand the role higher-order
quadrupolar coupling [151] and the corresponding off-resonance effects [152,153] in the
CP dynamics. Although the higher-order quadrupolar coupling effects can be reduced
with increasing static magnetic field strengths but only at the cost of increased size of the
chemical shift anisotropy (CSA) and off-resonance effects. For half-integer quadrupolar
nuclei, the presence of first-order quadrupolar coupling devoid single-quantum (SQ)
central transition provides a relatively smaller spectral bandwidth for their efficient
excitation with reduced off-resonance effects. Nonetheless, for integer nuclei wherein
the central transition is absent, the off-resonance effects in the polarization transfer
mechanism cannot be undermined even for spin systems with smaller quadrupolar coupling
constants. To design an efficient CP pulse sequence for achieving a uniform excitation
bandwidth, requires a careful manipulation of the pulse amplitude, phase, width and
offset concerning all the possible transitions. In the case of broadband CP excitation,
many variants of off-resonance irradiation schemes such as Lee-Goldberg CP (LGCP) [58]
and broadband adiabatic inversion-CP (BRAIN-CP) [100, 154, 155] were introduced in
the past for spin-1/2 as well as quadrupolar spins. However, a complete theoretical
description of the CP transfer mechanism under S-spin off-resonance irradiation and
higher-order quadrupolar coupling effects remain elusive [101,156]. During the polarization
transfer, the hetero-nuclear dipolar coupling induces all the possible spin coherences in the
S =1 spin system (i.e., two fundamental single-quantum (SQ) transitions [(0 < —1)
and (1 <> 0)] and one spin-forbidden double-quantum (DQ) transition (1 < —1)).
These transitions have different nutation behaviour under various pulse parameters and

other internal spin-interactions [45,90, 91, 111, 112], therefore, are expected to show
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different CP transfer dynamics. Nevertheless, the excitation efficiency of a particular
coherence depends on the strength of the effective dipolar coupling involved in a particular
coherence transfer mode [116]. Previously, Vega et. al. [45] highlighted the effect of the
S-spin off-resonant irradiation on the single-quantum CP while the double-quantum CP
was described as an on-resonance phenomenon. In the case of a single-crystal sample
involving quadrupolar spin, stronger off-resonant irradiation was shown to reduce the
excitation efficiency of the DQ transitions, while an increase in the excitation efficiency
was observed for the SQ transitions. Nevertheless, such a description may not be valid
for the powder sample wherein different crystallite orientations have different excitation
efficiencies due to variable quadrupolar frequency (magnitude and sign), and therefore, a
complex polarization transfer mechanism is expected. To this end, it becomes essential
to present a theoretical framework to understand the CP transfer mechanism valid both
for single-crystal and powder samples across all the quadrupolar coupling regimes. In
this chapter of the thesis, we attempt to derive an analytic signal expression to give a
comprehensive description of the CP dynamics considering S-spin off-resonance irradiation
and second-order quadrupolar coupling effects. In this study, we have evaluated individual
contributions of various dipolar coupling-based polarization transfers in single-crystal
and powder samples. We have correlated our operator-based analytic theory with
the energy-level diagram and highlighted the role of population exchange at various

Hartmann-Hahn matching conditions.

4.1 Theory

To gain insight into the mechanism of the CP dynamics under the S-spin off-resonance
irradiation and the second-order quadrupolar coupling interactions, we begin with a
simplified theoretical two-spin (say I = 1/2 and S = 1) model framework. In the doubly
rotating frame, the CP Hamiltonian for such a system is described by the following
equation:

o (00, fo)

~ ~ ~ w N N ~ ~ A A
Hep = g8, +wisSy + (382 — 52) + W (aq, BQ)S: +wirhy + 2wal.S; i=1.
—— N~ —— N——

] TRF TRF 7D
astt i Al P,

7R _ i (2
HS=Hy +H

Hg
(4.1)

In the above equation, (g represents the strength of the off-resonance irradiation on
S-spin, while on-resonance irradiation is considered on I-spin channel. w;r(w1g) represents
the RF amplitude on I(S) spin. The term wy represents the dipolar coupling (I-5)
frequency. Hg represents quadrupolar Hamiltonian (including first and second-order
quadrupolar effects) for the S-spin. The frequencies w(Ql )(aQ, Bg) and wg ) (g, Bg) denote
the strength of first and second-order quadrupolar interactions, respectively. A detailed
description of the first and second-order quadrupolar coupling Hamiltonians can be found

in Chapter 1.
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4.1.1 Derivation of the effective CP Hamiltonians via the effective-field
method

The above Hamiltonian [Eq. (4.1)] is expressed in terms of single-transition operators (in

coupled basis) as given below:

(1)
Hep = 205823 + §49) + 2w, 5[S12 + 623 4+ §45 4 §56] 4 %[S;Q — 528 4 8% _ §%6]
+ 200 (81 + 82+ wrl St + 52 + 5] + 2wl 51 - 529
(4.2)
A detailed representation of the transition matrix connecting various Zeeman states and
the energy-level representation can be found in Figure 3.1 of Chapter 3. The evaluation of
Hartmann-Hahn (HH) cross-polarization matching conditions requires the diagonalization
of both the S and I-spin Hamiltonians. To present a simplified description of the
effective CP Hamiltonian derived using the “effective-field” approach, we split the above

Hamiltonian [Eq. (4.2)] into three parts.

A: “Effective-field” for S = 1 spin system

Considering a similar spin-operator dependence of the S=1 off-resonance irradiation and
second-order quadrupolar coupling Hamiltonians, we have combined these two interaction

fields together in our subsequent calculations [115].

1
A . . . . . . Wy . . .
Hs = 2(Qs +wp) )2 + 82+ vVawis[8) + 52 + 81 + 82 + =[S — 820 + 52 — 520,
(4.3)
Based on the magnitudes of various interactions, the unitary transformation Ui =expq —

7 A A ) A
oL [—- S;Q + 553 — 535 + SZ6] } [115,116] is used to calculate the effective field for RF and

V2

4
first-order quadrupolar interaction fields. Selecting angle 6 as (91 = tan~! uﬁf), the
w
Q

above Hamiltonian reduces to the following form.

f:IS = Ulﬂsﬁir
= 2(Q2s +wy))) cos 01 /2[SE + 82] — 2(Qg + w)) sin by /2[S12 — §2 + §15 — 8]
W _ W, 0
we ! —w R N Swe ' +w N N N N
() [SE 8]+ (T ) [812 - 52 4 8B - 579

4 12
(4.4)

where, wél) = \/16(4)%5 + (wg))Q.
To further include the effect of off-resonance irradiation (second term), we employ the
unitary transformations Uy = exp{ — il [S”;Q + S*;?’ + 5215 + Sg’(i]} and choosing 0y as
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8(Qs + wg)) sin /2
(1) 1)
we  + wo

(\/592 = tan~ !

), the Hamiltonian in Eq. (4.4) transformed as

(2) 02 raas | a6 3wt — Wl - WS) 3, a46
. v1 ~ A e [ A1 A
=2(Qs +w(’) cos - cos —\/i[SZ +S3°1+ ( 5 ) (S22 +52°]  (4.5)

(1) 4 3,2 _ O
3 e + 3 e - ~ ~ ~ ~
+( : ;4 i’ )[812 - 524 85 - 53

2 2
where, w? = \/{8(95 +w(Q2))sin01/2} + {wgl) +w8)} . Subsequently, the unitary

transformation [73( = exp {—ié?g [5'53 —1—5’;16] }) is performed to achieve the S-spin effective

Hamiltonian. The angle 03 is selected to keep the effective-field along the z-axis: tan 3 =
(1) (2) 1
Swe’ —

We —wg

. This transformation leads to the effective S-spin Hamiltonian,

16(Q2s + wg)) cos %1 cos %

which is presented as follows:

Ayl = U3 HU]

w(g3) 3w§1) + 3w£2) 1

- (4.6)
C (58 + 587 + ( @) [812 - 634 81 5

2 2
where, wég) = \/{16(95 + wg)) Cos %1 cos %} + {3w£1) — wg2) — w(Ql)} .

B: “Effective-field” for I = 1/2 spin system

As the I-spin Hamiltonian remains unaffected by the S-spin transformations (U;UsUs) i.e.

H FF =H ﬁF . The unitary transformation Uy = exp {z% [5‘;4 + 5’55 + 5’5’6]} is employed

to diagonalized the I-spin Hamiltonian.

= O]

= wiy [SH + 8%+ 53],

mﬂlll

(4.7)
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C: Hetero-nuclear dipolar coupling Hamiltonian for IS-spin pair

Employing 171(72173174 unitary transformations, the heteronuclear dipolar coupling

Hamiltonian in Eq. (4.2) has been transformed into the following form:

HE, = U,050,0, HRUTUS UL U]

= W [SM — 836] 4+ WIS — 282 1 §36] 1 2wP 816 4 §31] —2 (WG + wD)[SE + 5K
SQr.,4 TQ1JSQ34 DQ15/ZQ24
+ ( wd +wd )[526 + 535]
DQ26/ZQ35
(4.8)
where,
wi = —wq (COS — CoS 7 cos 03 + sin E sin f02 sin 03)

1 01
\/25 sin 63 — 3 sin — 2 sin v/265 cos 63)

Wq 01 . b 03
wg = (COS — S1I1 —— COS — — Sln —_— COS f@Q Sln 7)

N A RV A

wq 01 02 03
(.UdD = (COS —_— Sln E— Sln -_— — Sln —_— COS f@Q COS 7)

NG 2 V2 2
0
and weff = —% sin 51 sin v/26s.

Unlike in on-resonance S-spin irradiation [116] (Chapter 3), the transformed dipolar

B _ b1
W, = Wq| cos — cos
2

coupling Hamiltonian [Eq. (4.8)] is comprised of four different sets of dipolar mediated
transitions, therefore, CP transfer under the S-spin off-resonance irradiation is anticipated
to display four modes/pathways of polarization transfer. The dipolar transitions are
categorized according to the total change in the § and I-spin quantum numbers of the
transitions involved i.e., {1,6}/{3,4} labeled as TQi4/SQs4; and both {1,5}/{2,4} and
{2,6}/{3,5} are labeled as DQ;;/ZQ;; dipolar transitions. However, the dipolar transitions
{1,4}/{2,5}/{3, 6} are purely induced by the I-spin flip, are referred to as single-quantum
I-spin dipolar transition (SQ; 4). The dipolar coupling terms involving the flipping of both
S and [-spins are further quantified in terms of the S-spin involved dipolar transitions
as follows: TQi6/SQs4 involve double-quantum (DQg) : |1) <> |—1) S-spin transition;
DQ15/7ZQ24 involve single-quantum (SQg) : |1) <> |0) S-spin transition; and DQas/ZQ35
involve SQ (SQg) : |0) <> |—1) S-spin transition. All the dipolar coupling CP modes
in Eq. (4.8) occur through single-quantum (SQy) : |1/2) <> |—1/2) I-spin flip. Having
diagonalized the S and I-spin Hamiltonians and identifying the various dipolar transfer

modes, we are well equipped to derive the spin dynamics for the cross-polarization process

is presented in the section below. Combining the transformed Hamiltonians, H S, H; and

H %, the complete Hamiltonian describing the CP dynamics is represented by the following
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Hep = U, A3U2U1HU1TUQTU§UT
= f{ I:{] + IA{IDS
(3) 30V 4 3,@ _ M
_ We ro13  g46 ( € e Q ) G122 &23 | &45 456
o[ +82] + 51 [S1? — 52 4+ 575 — 57 (4.9)
Fwir[S2 4 82 4+ §36] 4 Wi 81 — 8] + Wi/ [S1t — 282 4 3]
SQr,d
+2wF [S16 + §34] —2 (W + wD)[S25 + S24] + (—wT + w] )[S26 +5%].
TQ16/SQ34 DQ15/ZQ24 DQ26/ZQ35

Here, the first term in the dipolar coupling Hamiltonian i.e., SQ 4 involves solely
I-spin dipolar transition, therefore, does not result in an independent CP transfer
process like TQ;;/SQ;; and DQ;;/ZQ;; transitions but rather represents a pathway
for the loss in magnetization of the I-spin. Therefore, it will prove beneficial to
evaluate the effective-fields or nutation frequencies for individual [-spin transitions.
This can be accomplished utilizing the unitary transformations Us = U§4U§5U§’6 =
exp {2(% — 6%‘?) [S;‘l] } exp{ ( 9%?) [525] } exp {z(% — Hé?) [5’36] } Subsequently,

the aforementioned CP Hamiltonian undergoes a transformation:

(3) Sw(1)+3w(2) _w(l) R R X R R
= S8 () [87 - 82  85 - 82wl [
+w1[ [525] _|_w36 [536] +wé6,34[§;6+5’§4] +w;5,24[§;5+5v34] +w§6’35 [Sie_i_ggf,]
TQ16/5Qs4 DQ15/2Qas DQa6/2Qss
(4.10)
where, wﬁl = \/(w11)2+4(w&4+w5)z, w%? = \/(w11)2—|—16(w5)2 and wi”? —

\/ (wir)? 4+ 4(w} —wkF)? represent the effective I-spin nutation frequencies for
{1,4}/{2,5}/{3,6} transitions and wlﬁ B4 well5 24 and wflﬁ 3 represent the effective dipolar
coupling coeflicients for various IS-dipolar transitions and their expressions are given in
Table 4.1.

The single-spin terms in Hamiltonian in Eq. (4.10) are re-expressed in accordance with the
operators associated with the dipolar coupling terms utilizing the relation S 4+ Sﬁk = 5‘;’“

between the single-transition operators.

PRRRR

Hop= Higss + Hisoa + Hogss (4.11)
~—— ~—— ~——

Hig+Hzys His+Hoy  Hog+Hzs
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Table 4.1: List of coefficients involved in the effective CP Hamiltonian [Eq. (4.10)]
calculations

Longitudinal coefficients Transverse (dipolar) coefficients
Y16 = (dwif + 4wif + wM)/8 16,34 5. 01+ 03
Wy 2wy sin ( > )
Aszy = (4wl + 4w — W )/8
215 = (8&)11 —I—Sw (3) +3W£ ) +3w<(32) _w(Ql))/IG 15.24 C Dy - 914 + 025
o M 3, ) ™ = =2 P sin ( )
Agy = (8w1,+8w —3we’ —3we” +we,’)/16 2
35 = (803 + 808 + ¥ —3wl) — 3wl W)Y /16 | . Sy
o 3 3@ _ oDy pg | C1 T 2T ) sin ( )
Agg = (8w};1+8w§§ +3we +3we” —wgy’) /16 2
or
Hep = Si6 [§;6} i w§6 34 [5;6} +Asy [324} 4 wc1l6’34 [Sgﬂ FYs [5‘;5] Tw 15 24 [515}
IA{16 H34 ﬁlS
T Ay [534} n w;5,24 [5’24} 4 Y [535} n wc216,35 [5125} + Agg [536] 4 w§6 35 [526] (11
ﬁ24 H35 HQG
3w£3) N 3w£1) + 3w§2) — oW

(519 4529 — ( ) [817 - 52 4 5% - 5]

48

v
residual terms

16

In Eq. (4.12), the CP Hamiltonian is rearranged in accordance with the CP matching
conditions requirement for these CP modes. The details of the coefficients can be found
in Table 4.1. The last two terms are not responsible for any CP transfer and, therefore,
can be ignored in the further calculation. As the different HH CP matching conditions
have different energies requirements and act in different dipolar subspaces, therefore, the
CP Hamiltonian [Eq. (4.12)] is considered independent in these subspaces which simplifies
the diagonalization process. A pictorial representation of this division is shown in Figure
4.1. The above CP Hamiltonian [Eq. (4.12)] comprises longitudinal (5¥) and transverse
(5‘2] ) components in each subspace and, therefore, can be diagonalized through rotation
operators Us = Uéw)Ué34)06(15)0é24)(76(35)Ué%) (refer to Table 4.2). The above-mentioned
transformation results in the derivation of the effective CP Hamiltonian, which is presented

as follows:

agdy = ail + agl! + g+ mgl v g+ agl
= Wiy [S1] + Wi (52 + Wi [S2] + wif [92] + Wi [$2) + wiF) [52°]
(4.13)
where the effective-fields/frequencies (wgf}) in each subspace can be found in Table
4.2. A pictorial representation of this diagonalization process is shown in Figure 4.2.

In comparison with effective CP Hamiltonian [Eq. (3.12)] presented in previous chapter
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Table 4.2:

Unitary transformations and rotation angles

List of all the unitary operators involved in diagonalization of the CP
Hamiltonian [Eq. (4.12)] and associated coefficients.

Effective frequencies

Ul6 = exp {z(% - 9i6> [5’;6] }; tan 016 = % wi}f}) =1/3% + (w;6’34)2
0t = e {i(5 - o) IS} rano = | = 00+ O
085 = exp {i(5 — 01°) [$2°] }: tan 0 = % Wl = [53 + (@i)2

2 =exp {z(% - 924) [5’54] }; tan 034 = % wgf;) = \/A%4 + (w;5’24)2
U3® = exp {z(% — 9;1’5) [5’5’5] }; tan 03° = % wf}? = /3% +( 36’35)2
UZ5 = exp {z(% - 926> [5’56] }; tan 026 = % wgf}) = \/Agﬁ + (w36’35)2

under on-resonance irradiation where CP transfer is described by a sum of four modes of

DQ and ZQ subspaces

m— |1) |2> |3> |4> |5) |6) CP transfer involves SQ (1« 0)
[ transition of the S-spin
(1 | SQ, Absent under the S-spin
] on-resonance irradiation
(2 | 5Q DQB TQ and SQ subspaces
P . .
7 S . CP transfer involves DQ (1 < -1)
(3 | QB Q‘ transition of the S-spin
Dipolar Block
(4] ] s0, -
L P
(Sl SQ ZQE DQ and ZQ subspaces
- CP transfer involves SQ (0 < -1)
(6| DQB SQ' Aﬁi transition of the S-spin

]

s

"

Figure 4.1: Pictorial representation of splitting of the CP Hamiltonian into six subspaces
which are governed by the three S-spin transitions i.e. two subspaces shown in orange and
green-colors (DQrs/ZQrs) corresponds to two S-spin single-quantum (SQg) transitions
(-1 « 0) and (0 <> +1) respectively) while two subspaces shown in blue-color
(TQrs/SQrs) correspond to S-spin double-quantum (DQg) transition (+1 <« —1).
Although these subspaces are not independent, they can be considered as such because
each HH-matching condition can effectively transfers polarization through a specific CP

mode only.
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Figure 4.2: Schematic representation of the “effective-fields” experienced in the TQig (al),
SQs4 (a2), DQ1s (a3), ZQa4 (ad), ZQ35 (ab) and DQgs (ab) sub-spaces.

the polarization transfer, the effective Hamiltonian in Eq. (4.13) contains all six modes of
the polarization transfer. This is in stark contrast to the theoretical description presented

by Vega et. al. [45] which lacks unified single framework for the effective CP Hamiltonian.

4.1.2 Time-evolution of the spin-system

As described in Chapter 1, the time-evolution of the spin system is evaluated by the

following expression.

. (% .
pes () = exp { = = Hft}pers (0) exp { hHeff } (4.14)
where, p(0) = I, represents the initial density operator. Employing the unitary

transformations involved in the calculation of the S and [I-spin Hamiltonians

i.e. Ul UQU304U5, the initial density matrix is transformed as

o

(0) = Us U4 U300 p(0) U U3 US UL U
= [5’;4] sin 014 — [5’; ] cos B4 + [S 5] sin Og5 — [5’%5] cos a5 + [5’26] sin O3 — [5’26] cos O3¢.
(4.15)
In the following section, we describe the time-evolution of spin system in individual

subspaces.
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A: Time-evolution density matrix in TQ4+SQ3, subspace

Using Eq. (4.14), the time-evolution of spin-system under effective Hamiltonians H leg 4

ﬁ;{f is given as

un

Fiha) = exp { = (AT + gl ) OO0 SO0 O3 exp { (il + 5t e}

/3%,];4(0)
1 N N N
= 5(sin 014 + sin 036){ [SZG] sin 01 — cos 916<[Si6] cos w;?ft + [S;G] sin wi%t) }
1 N N N
+ §(sin 014 + sin 036){ [5’24} sin O34 — cos O34 ( [524] cos wg’fcft + [5’34] sin wg’j?ft>}
16 34 16 34
1 A w —+ w ~ w +w
~3 %2’34{ [5'3134] coS <7eff ) eff t) + [554] sin <7eff 5 eff t>}
16,34 [ 1 a13 Yerf — Yers sy o (Yefs ~ Weir
3 ’ {[Sw]cos( 5 t)—[Sy}&n(ft)}
ot (e W6 W6 34
+ 5 4273 {[S;lﬁ] COS( eff . efft) _ [546] Sm( eff 5 efft>}
16,34 [ [ 636 wels T Wefs 436 wey Wiy
+§ 36 {[Sx]cos( t)+[5y]sin( 5 t)}
1
2

(4.16)
The coefficients p%i’%, pi§’34, p21£734 and pég’% of the density matrix ﬁ§££4(t) can be found

in the Table D.1 in Appendix-D.
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B: Time-evolution density matrix in DQ5+ZQ,, subspace

The time-evolution of spin-system under the effective Hamiltonians H leg U ﬁ;{ s given

as

un

§iha0) = exp { = (AT + 5]} OO SO0 O exp { (L + A5 )t}

P‘iffu(o)

= %(sin 014 + sin 925){ [5‘;5] sin f15 — cos 915([5’5’] cos w;?ft + [5‘; ] sin w;?f )}
+ %(sin 014 + sin 025){ [5’24] sin fog — cos oy ( [5':%4] cos wz;ft + [ 54} sin ngéft) }

15 24
1 N Wore +w + w?
+§PL51’24{ 5';4 COos eff 5 efft) —l— 514 sm eff eff
6
512
eff efft + 545 sm

)
)

[52"] (
n 1p15 24{[5;2} cos(
(5] cos (*

(s
efft> L8] ( eff efft
(e

1
+ 2,011155) 24{ Sﬁg’ coS

1 . + w2t + w2}
+ 5,0%?’24{ [5’55} cos ( eff t —I— sm ( e/t 5 /Ty
1 s
+ { [529) sin B — cos 5 [536]} + 5(sm 614 — sin B5)[S1 — 529].
(4.17)
15,24 15,24 15,24 15,24

The coefficients p;,*", p15°, psgs” and py2™ of the density matrix [ffgf;zl(t) can be found

in the Table D.1 in Appendix-D.

C: Time-evolution density matrix in DQys+7ZQ3; subspace

The time-evolution of spin-system under effective Hamiltonians flsg T+ H Eg T s given as

un

ita(t) = exp { = L5 + I} OFUP O U050 exp { - (a5 + A5 e

P58 (0)

1 . . N
= 5(Sin 025 + sin 936){ [520] sin B — cos fag ( [52°] cosw?f st + [S2°] sin w?%t) }
1 . .
+ i(sin f25 + sin 036){ [535] sin f35 — cos O35 ( [535] cos ng‘fift + [ 35} sin wg’?ft) }
+w? - +we
( eff i, {) + [$2] sin < eff )
1 9635 6291 eff wels G231 eff — Wiy
+ 5P23 { 52°] cos ( t) + [5;°] sin ( t

| 2
eff eff t) + sm < eff We t)
>1 “

1
+ 5 pgg 35{ cos

1 926,35 { ] cos

+ 2956

S
ff }

1 A +w —I—w
+§p§g’35{[5’36} COS( eff t sm( eff efft }

6]'

(4.18)
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The coefficients ,026 ) ng » ng 35 and ,026 % of the density matrix ﬁ%f% (t) can be found

in Table D.1 in Appendix-D.

4.1.3 Detection of the S-spin polarization: CP Signal calculation
Following the standard operational process, the expectation value of the observable <
S, (t) > is derived employing Egs. (4.16), (4.17) and (4.18) as follows

S(t) =< Su(t) >= Trace{Sestz-pers(t)} (4.19)

where, S, #f,2 and pesr(t) represent the detection operator and final density matrix in the
same frame of reference as the effective CP Hamiltonians [Eq. (4.13)]. The final signal
expressions in the TQ16+SQ34, DQ15+72Q24 and DQog+7ZQ35 sub-spaces are as given

below:

S(t) = S(t)ie,34 + S(t)15,24 + S(t)26.35 (4.20)

where,

Oar — 0O w16
S(t)l@ 34 = (Sin 914 + sin 936) |:{ - A4 COS2 916 +A3 sin (LM) COS 916 sin 016 } sin2 ﬂt
) ——’ 2 —_—— 2

absorptive dispersive
9 . (036 — 014 : ff
— { — Ay cos® 034 +Assin (7> cos 34 sin O34 } sin? —¢1
~— 2 —_——
absorptive dispersive
036 — 014 16,34 , 16,34 O34 — bhe wabr — Wiy
+ 2A3 cos <7> [(p + pge” ) COS (7) cos <7t)
2 2 2
inter ference
. Qs — O wlﬁ + w34
I RN (U P A
inter ference

(4.21)

w15
S(t)15724 = (sin 914 + sin 925) [{ — AG COS2 915 + A7 COS (915 sin 915} Sin2 %t
2 - ) We ff
— { — Ag cos® fag + A7 cos By sin 924} sin? —<L ]

b25 — 0 024 — 0 wl?e — w2
2(./41 + AQ) COS (25T14> |:(p15 24 -+ p}lg 24) CcoSs (%) cos (Ht>

+ (P14 — pas

d

00r — 0 Wb, 4 24
15,24 15’24)Sin< 24 15>COS< eff efftﬂ,

2
(4.22)
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and
w26
S(t)26735 = (sin 925 + sin 936) [{Ag COS2 026 — Ag COS 926 sin 926} sin2 %fft
w35
- {Ag cos? O35 — Ag cos f35 sin 935} sin? %t}

025 — 0 035 + 0 W2+ wip
— 2(A1 — AQ) CcOos (M) [(pgg’% — pgg"%) sin (%) cos (Mt>

5 2
O+ 3o () s <<>>}
Here, Ay — (%)7 A7 = (A1 + A)sin (w), Ay = (%) and

. (25— 0
Ag = (A1 —Ag) S1814 (%)

The constants A1, Ao, A3, Ay and A5 are given as
1 0 03 1 0
A = — ( cos 01 cos 22 cos 2 4 3 sin 61 sin v/2604 sin ;),

V2 V2 2
Ay = \}5 (cos 01 cos \0/25 sin %3 — % sin 6y sin v/204 cos 92—3>,
Az = ( — cos B sin \9/% sin 03 + % sin 01 (3 — cos \/592) COS 93),
Ay = (cos 01 sin \% cos 03 + i sin 01 (3 — cos \/592) sin 93),

1
and As = 2 sin 01 (1 + cos v/265).

As described above, the final signal expression has contribution of all the six possible CP
transfer modes. Unlike the on-resonance S-spin irradiation [Eq. (3.19)], the CP signal

expression in each subspace consists of sum of three different components: Absorptive
Hij + le>

(cos? 6;5), dispersive (cos 0;;sin6;;), and interference term (cos 5

4.1.4 Insights into the Hartmann-Hahn CP matching conditions

Using Eq. (4.20), the polarization transfer through a specific mode can be maximized by

optimizing one to the six HH CP matching conditions as discussed below.

e Triple-quantum (TQ5) CP matching condition:
Setting Y16 =0 = élcu%}L + 4w%§5 = —wf(js).

Under the exact TQi¢ CP matching condition, the resulting signal expression is

given as
936 o 914 w16,34
S(t) = (sinfy4 + sin f34) [ — Ay cos? 016 + Assin (T) cos 016 sin O1 | sin’ dT
+ S(t)34 + S(t)15,24 + S(t)26,35 -
High—frequenz; components
(4.24)

Exactly setting the TQ1 HH CP condition will not only maximize the polarization
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transfer through TQi¢ CP mode (i.e. S(t)16 component) but also increases the
modulation frequencies of other signal components, therefore, further rendering
them insignificant in the overall CP transfer. When the high-frequency terms are

insignificant, the overall CP signal is reduce to a simplified form as given below:

16,34

O3 — 0 w t

S(t) ~ (sin 614 + sin f36) [ — Ay cos? 0y + Azsin (%TM) cos 016 sin O | sin’ dT.
(4.25)
An important thing to note is that the effective nutation frequencies of the I-spin

(w%}l, w%? and w:f? see Eq. 4.10) have an explicit dipolar dependence. Therefore, the

position of the HH CP matching conditions will be associated with dipolar dependent
shifts. A similar behaviour is observed under off-resonance irradiations in spin-1/2
CP in Chapter 2.

Single-quantum (SQ34) CP matching condition:
Setting Agy =0 = dwld 4+ 4036 = ¥,

The resulting signal expression is given as

16,34

O3 — 6 t
S(t) = (sinfq4 + sinfs¢) | Ag cos® 034 — As sin (%) 08 B34 sin O34 | sin’ wdT
+ S(t)16 + S(t)15,24 + S(t)26,35 -
High-frequency components
(4.26)

Double-quantum (DQ;5) CP matching condition:
Setting ¥15 = 0 = 8wi} + 8w?? = _(w£3) + 3wt 4+ 30 — wS)).

The resulting CP signal expression is given as

15,24
. . . Lo w, T
S(t) = (Sln 014 + sin (925) [ — As + A7sin 915} sin? d2 + S(t)16734 + S(t)24 + S(t)26735 .

High-frequency components

(4.27)

S(t)15

Zero-quantum (ZQ24) CP matching condition:
Setting Agy =0 — 8w%}l + 8w%§’ = (wé?’) + 3w£1) + 3w<(32) — wg)).

The resulting CP signal expression is given as

15,24
w,; 7t
S(t) = (Sin 914 + sin 925) [Ag) — A7 sin (915 sin2 d2 + S(t)16734 + S(f)15 + S(t)26735 .

~~

High-frequency components

(4.28)

S(t)24

Double-quantum (DQg) CP matching condition:
Setting Agg =0 = 8w + 8w = —(w!¥ — 3w — 3w + WS))~
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The resulting CP signal expression is given as

26,35
S(t) = (sin fa5 + sin f34) [Ag — Ag sin fog | sin? wd2 + S(t)16,30 + S(t)15,24 + S()35 .

~~

High-frequency components

(4.29)

S(t)g(;

e Zero-quantum (ZQs5;) CP matching condition:
Setting X35 = 0 = 8w?? 4 8wl = (wg’) — 3w — 3w 4 w(g)).
The resulting CP signal expression is given as

26,35
w
S(t) = (sin 925 ~+ sin 936) |: — Ag =+ Ag sin 935 SiIl2 d2 + S(t)16’34 + S(t)15724 + S(t)26 .

High-frequency components

(4.30)

S(t)35

The signal expression for the TQ1¢ (and ZQss and DQ5) and SQs4 (and DQgg and
ZQ24) CP conditions are governed by similar effective dipolar coupling strengths
w;6’34 (and w36’35 and w;5’24) and are just phase-shifted versions of each other.
Therefore, these modes of the CP transfer are expected to display similar CP
dynamics. Experimentally, TQ16/ ZQ35/DQ15 transfer can be achieved by shifting
the phase of I-spin RF-field by 180°. In addition to these normal modes of CP
transfer, the interference terms can also be maximized setting wzjf = :l:wgl; s This
is only possible at wi; = 0. However, it is important to note that this condition is not
a typical resonance condition that involves two different nuclear spins (simultaneous
I and S-spin energy matching). Nevertheless, it is a pathway for the loss in the
I-spin polarization, but there is no gain in the S-spin polarization. Such losses
can be studied by simultaneously observing the loss in the I-spin polarization
via < I,(t) > and build-up in the S-spin polarization via < S,(t) >. The
occurrence of this condition is solely attributed to off-resonance irradiation and
second-order quadrupolar coupling effects. No such conditions were observed under
on-resonance irradiations for spin-1/2 as well as quadrupolar CP. Due to finite
I-spin RF-requirements for an efficient CP process, such zero-field condition are
not expected to have influence on the overall CP transfer. However, situations with

weaker S-spin RF-irradiations require additional caution.

4.2 Results and discussion

4.2.1 Description of CP spin-dynamics under the second-order
quadrupolar coupling interaction

4.2.1.1 CP dynamics in Single-crystal

For systems with larger electronic asymmetry (eq) and quadrupole moments (@), the

higher-order quadrupolar effects can alter the spin dynamics of the cross-polarization
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Table 4.3: The expressions and transitions associated with various HH CP matching
conditions for the CP transfer between I = 1/2 and S = 1 spin systems.

CP matching conditions and Expression
associated transitions

Triple-quantum (TQ¢) 4wit 4 4wl = —w§3)

Single-quantum (SQs4) dwit + 4wl = Wt

Double-quantum (DQ;5) 8wit + 8w = —(w§3) + 30l 4 308 — wS))
|1/2’ 1> <~ |_1/27 0)

Zero-quantum (ZQ24) 8wif + 8w?? = (wég) + 3w 4 300 — wS ))
Double-quantum (DQa2) 8wf§’ + Sw?? = —(w£3) — 3w£1) — 3w,g2) + wg ))
Zero-quantum (ZQss) 8w?? + 8uw3l = (wé‘g) — 3w — 3, + wg))

—=1/2,-1) « [1/2,0)

experiment. To explicate the exact mechanism of the polarization transfer in the presence
of second-order quadrupolar interaction, we evaluated the RF-domain CP efficiency profile
for Cg = 1.5 MHz at 'H Larmor precession frequency 400 MHz (Figure 4.3) for a
single-crystal sample with and without S-spin off-resonance irradiation. In the simulation
depicted, the CP efficiency is plotted as a function of I-spin RF amplitude at constant
mixing/contact time (7. = 500 us) and S-spin RF amplitude (v15 = 80 kHz). All other
simulation parameters used in the simulations are listed in the caption of Figure 4.3. The
analytic simulations emerging from Eq. (4.20) (shown in indigo color in panels al-a4) are
in good agreement with the numerically generated SIMPSON simulations (black curve)
which validates the exactness of the proposed analytic theory. To further explicate the
exact mechanism of polarization transfer, the individual signal contributions corresponding
to six dipolar coupling based transfer modes are evaluated in panels bl-b4. In the presence
of the first-order quadrupolar coupling and under on-resonance S-spin irradiation CP
dynamics (panels al-bl) is described predominantly by the SQs4 (|1/2,—1) <> |—1/2,1))
and DQgg (]1/2,—1) <> |—1/2,0)) HH matching conditions [116]. A detailed theoretical
description of the CP dynamics can be found in previous Chapter. [116]. In the presence
of econd-order quadrupolar coupling (panels a2-b2), the overall CP efficiency profile varies
significantly with respect to the first-order quadrupolar coupling-driven CP dynamics
under on-resonance S-spin irradiation. More specifically, we observe the following striking
differences: (i) The appearance of an additional CP resonance at high I-spin RF amplitude,
(ii) a shift in the relative positions of the CP resonances, (iii) variation in the CP efficiencies
and resonance widths (iv) a minor dispersion in the CP resonance at lower /-spin RF
amplitude. Under the influence of the second-order quadrupolar coupling induced shift
(panels a2-b2) ( Q15 = 0 ), the SQ34 and DQgg CP matching conditions shift at higher and

lower I-spin RF amplitudes, respectively. Besides, the CP efficiency profile demonstrates
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Figure 4.3: The second-order quadrupolar coupling driven cross-polarization transfer
efficiency as a function of the 'H RF field for a single-crystal sample from the numerical
simulation (SIMPSON) and the analytic theory. These simulations demonstrate the effect
of S-spin off-resonance irradiations on the CP efficiency profile (al-bl) ;5 = 0 kHz and

wy) = 0 kHz, (a2-b2) Qs = 0 kHz and wl’ # 0 kHz, (a3-b3) Qs = w = —6.8921

kHz and (a4-b4) Q15 = —wg) = 6.8921 kHz . The parameters used for generating the CP
efficiency profiles are: Cg = 1.5 MHz, ng = 0, quadrupolar coupling PAS angles ag and B¢
= 50°, contact time = 0.5 ms, 'H Larmor precession frequency = 400 MHz, v;g = 80 kHz
internuclear distance r7g = 1.05 A and dipolar PAS angle 34 = 0°. SIMPSON simulations
(black curve) are fitted with the total analytic signal expressions (indigo curve) [Eq. (4.20)]
in panels al-a4; SQs4 (red curve) and TQi¢ (green curve); DQgg (blue curve) and ZQss
(cyan curve); ZQa4 (magenta curve) and DQi5 (orange curve) in panels bl-b4.
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an additional sharp CP matching condition ZQa4 (|1/2,1) <> |—1/2,0)) at higher /-spin RF
field in contrast to the first-order quadrupolar driven CP dynamics, wherein the transition
operator corresponding to the ZQz4 dipolar-based transfer was absent (panels al-b1). This
observation is consistent with the argument that the second-order quadrupolar coupling
induces shift equivalent to the off-resonance irradiation [115]. The off-resonance irradiation
reduces the energy difference associated with the single quantum (SQg) transitions while
enhancing the energy difference for double quantum (DQg) transitions. Hence, the S-spin
off-resonance irradiation strengthens the CP signal corresponding to the DQgg and ZQoy
conditions which transfer polarization into the SQg transitions while the quite opposite
behavior is observed for the SQss4 condition. At lower 'H RF amplitude, we observe a
minor contribution from the otherwise high-frequency TQ1¢ signal component. This could
be attributed to the decrease in the magnitude of 16 = (4wl +4w3? +w,(33)) /8 which make
the prefactor in the TQ1g {(wé6’34)2/[2%6 + (w;6’34)2]} signal component finite; hence it’s
contribution becomes significant. It should be noted that the overall CP efficiency from
the high-frequency term will vary according to the orientation of the quadrupolar coupling
tensor. Interestingly, a noticeable dispersion at the SQs4 matching condition at lower
I-spin RF amplitudes is also observed. The observed dispersion at the SQsz4 matching
condition originates from the single-quantum /-spin dipolar transitions (SQg,r) (as shown
through the dispersive components of the signal expression i.e.,sin 6;; cos ;;). Therefore,
the SQs4 CP condition demonstrates a much more complex interplay of various CP signals
and exhibits a non-unidirectional polarization transfer behavior. Due to the high I-spin
RF requirements, the contributions from the high-frequency ZQss and DQ5 components
are absent in the DQgg and ZQs4 CP matching conditions, respectively.

To achieve an efficient CP transfer, the width of the CP matching condition under
consideration is an important aspect to explore. The relative widths of the CP matching
conditions decrease with the decrease in the effective dipolar coupling strengths acting
between the states (refer to Eq. 4.8). For instance, the ZQa4 transition is associated
with the smallest effective dipolar coupling strength than the SQs4 and DQog transitions

16,34 26,35 15,24
(W > w7 > wy

), and the CP resonance widths are manifested accordingly (Figure
4.3). This observation is also substantiated through the rate of CP buildup in the mixing
time profile under different CP matching conditions in Figure 4.4.

It is essential to highlight that the overall CP efficiency profile is unaffected by the change
in the sign of the quadrupolar coupling constant (Cgq); however, the individual analytic
fittings of the CP efficiency profile reveal that the SQs4 and DQgg CP conditions are
swapped with changing the sign of quadrupolar coupling constant (Cg = -1.5 MHz) while
the ZQa4 condition remains unaffected (Figure 4.5). This is because the CP dynamics
associated with ZQo4 transition is solely governed by the second-order quadrupolar
coupling, which is independent of the sign of the Cgp. Whereas the SQz4 and DQag
transitions are primarily governed by the first-order quadrupolar coupling frequency,
which is sensitive to the sign of Cp. In the current discussion, all the simulations have

been plotted by assuming a constant Zeeman magnetic field strength. The second-order
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Figure 4.4: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the /-spin) is monitored in a single crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I-spin were chosen based on exact HH CP conditions (SQs4, DQgs and ZQ24) expression
and are given as v1g = 38.98 kHz (al); vig = 171 kHz (a2) and 1y = 210.22 kHz (a3)
under 2¢ = 0 kHz. The remaining simulation parameters and descriptions are as given in
the caption of Figure 4.3(a2-b2). SIMPSON simulations (black curve) are fitted with the
total analytic signal expressions (indigo curve) [Eq. (4.20)] in panels al-a2.

quadrupolar effects are scaled by the Zeeman field strength; therefore, working at the high
magnetic field strengths, these effects can be minimized (refer to Figure 4.6 at woig =
800 MHz and 200 MHz), respectively. With increasing strength of the second-order
quadrupolar coupling constant (Figure 4.6 at fo = 45°), the efficiency of the SQs4
CP condition decreases, while it increases for the DQ9g and ZQo4 CP conditions. This
observation could be explained based on the nature of S-spin transitions and their
respective offset dependence involved in each of the CP resonance. The double-quantum
S-spin transition (SQs4 CP condition) is devoid of the first-order quadrupolar coupling,
therefore, it is much more exposed to the second-order quadrupolar effects, while the
excitation efficiency of first-order quadrupolar dependent S-spin SQ transitions (DQag
and ZQg4 conditions) improves. Additionally, it shifts the DQgg CP condition at lower
I-spin RF field amplitude. The detrimental effects of the second-order quadrupolar
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Figure 4.5: Effect of the sign of the quadrupolar coupling constant on the cross-polarization
transfer efficiency as a function of the 'H RF field for a single-crystal sample from the
numerical simulation (SIMPSON) and the analytic theory. The following parameters were
used in the simulations: Cg = 1.5 MHz, g = 0, quadrupolar coupling PAS angles (0°,
45°, 0°), worg = 400 kHz, 115 = 80 kHz and S-spin off-resonance irradiation strength
Q15 = 0 kHz. SIMPSON simulations (black curve) are fitted with the analytic signal
expressions SQz4+TQ16 (red curve); DQas+ZQ35 (blue curve); ZQas +DQ15 (magenta
curve) in panels al-a2 [Eq. (4.20)].

coupling on the SQs4 CP condition can be minimized by working at the higher magnetic
field strengths. However, the obvious disadvantage of working at higher magnetic fields
is that it increases the size of offsets, which deteriorates the CP efficiency at lower
I-spin RF fields and induces undesired I-spin dipolar transitions (SQg ). Therefore, it
becomes necessary to look for alternative methods to compensate for these second-order
quadrupolar effects. In the context of spin-1 nuclei, the second-order quadrupolar coupling
and S-spin off-resonance irradiation share a similar operator dependency (S’z), therefore,
are expected to have a similar effect on the CP spin-dynamics with an exception that
the second-order quadrupolar coupling has a complex orientation dependence in the LAB
frame. In this section, we are focusing on the single-crystal sample. Therefore, another
way to compensate for these second-order quadrupolar effects is to set the strength of
off-resonance irradiation exactly at the negative of the second-order quadrupolar frequency.
Panels a3-b3 and a4-b4 in Figure 4.3 demonstrate the effect of off-resonance irradiation

(2)

at Qg = wo and Qg = —wg ) in presence of second-order quadrupolar effects. From the

above simulations, it is evident that the off-resonant irradiation exactly at the negative

(2)

of the second-order quadrupolar frequency (Q2g = —wg ) leads to compensation for its

deteriorating effect on CP spin-locking efficiency. In this case, the sharp resonance due
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Figure 4.6: The second-order quadrupolar driven cross-polarization transfer efficiency as
a function of the 'H RF field for a single-crystal sample from the numerical simulation
(SIMPSON) and the analytic theory. These simulations demonstrate the effect of Zeeman
field strengths (al) woig = 200 kHz and (a2) w1z = 800 kHz on the CP efficiency profile
for a single-crystal sample. The parameters used for generating the CP efficiency profiles
are: Cg = 1.5 MHz, ng = 0, quadrupolar coupling PAS angles ag = 0° and o = 45°,
contact time = 0.5 ms, ;g = 80 kHz internuclear distance r;g = 1.05 A and dipolar
PAS angle 8; = 0°. SIMPSON simulations (black curve) are fitted with the total analytic
signal expressions (indigo curve) [Eq. (4.20)] in panels al-a2.

to ZQoq CP transfer is absent, and the overall CP efficiency profile looks identical to
the first-order quadrupolar driving CP profiles (panels al-bl) under on-resonance S-spin
irradiation. Therefore, the off-resonance irradiation for larger Cg systems (discussed
in Figure 4.3) could work in favor of improving the spin-locking efficiency for a larger
Cg sample by mitigating the second-order quadrupolar effects. On the other hand, the
S-spin irradiation at (g = w(QQ ) doubles the overall effect resulting due to the second-order
coupling effect.

From an experimental standpoint, it seems rationale to study the effect of the off-resonance
irradiation strengths other than g = iwg ), Figure 4.7 shows the CP efficiency profiles
at Qg = 0,—20 and 20 kHz under first-order (panels al-cl) and first+second-order
(panels d1-f1) quadrupolar coupling effects for single-crystal sample. The position and
efficiency of HH CP matching conditions does not show any dependence on the sign
of the S-spin off-resonance irradiation (Figure 4.7 panels bl-cl), however, the effective

dipolar coupling constants derived from the analytic theory for the DQas/ZQ35 and
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Figure 4.7: The cross-polarization transfer efficiency as a function of the 'H RF field for a
single-crystal sample from the numerical simulation (SIMPSON) and the analytic theory.
These simulations demonstrate the effect of S-spin off-resonance irradiations on the CP
efficiency profile Q;5 = 0 kHz (al-a2; d1-d2), Q35 = —20 kHz (b1-b2; el-€2) and ;5 = 20
kHz (c1-c2; f1-f2). The simulations are performed considering the quadrupolar coupling
effects upto the first and second-orders in panels (al-cl and a2-¢2) and (d1-f1 and d2-f2),
respectively. The parameters used for generating the CP efficiency profiles are: Cg =
1500 kHz, ng = 0, quadrupolar coupling PAS angles ag and Bg = 50°, contact time =
0.5 ms, v1g = 80 kHz internuclear distance r;g = 1.05 A and dipolar PAS angle 4 = 0°.
SIMPSON simulations (black curve) are fitted with the total analytic signal expressions
(indigo curve) [Eq. (4.20)] in panels al-fl and the individual contributions from the SQs4
(red curve) and TQie (green curve); DQgs (blue curve) and ZQss (cyan curve); ZQoq
(magenta curve) and DQ15 (orange curve) CP conditions are depicted in panels a2-2.

ZQ24/DQ15 CP conditions show such dependence (refer to Figure D.1 in Appendix D
(1)

for Cg = 200 kHz). However, at larger wo values, no such dependence is observed. This
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sign dependence could be omitted by redefining the unitary transformation Us, which
would add to the complexity in subsequent calculations. This sign dependence can be
disregarded as the off-resonant effects are only significant for the higher wS ) systems.
From an experimental standpoint, Figures D.2-D.3 (refer to Appendix-D) demonstrates
that while setting CP in the presence of multiple quadrupolar spins, it is advisable to
employ on-resonance irradiation with the larger Cg nuclei. This is due to the dramatic
effect of the off-resonance for the SQss CP conditions, which occur at RF amplitudes
that are experimentally feasible for the I-spin. However, for smaller Cg nuclei, the
S-spin off-resonance irradiation (Qg = wS or — wS )) is advisable while setting the DQag
or ZQss CP matching conditions. The rationale behind this selective implementation
originates from the fact that the SQs4 CP conditions necessitate the conversion of DQg
coherence into observable SQg coherence, which generally leads to loss of coherence. In
the presence of second-order quadrupolar interaction, the sign of off-resonant irradiation
has either detrimental or favorable effects on spin-locking CP efficiency (panels el-fl).
This further strengthens the argument that off-resonance irradiation works well for the
higher Cg systems. Nevertheless, the quadrupolar systems with smaller Cg values have
nearly negligible second-order quadrupolar coupling effects and therefore, work well under
on-resonance irradiation. Omitting the operator similarities between the second-order
quadrupolar interaction and S-spin-off-resonance irradiation, the CP dynamics in the
former case is altered by the second and forth-rank quadrupolar tensor. Therefore, the

orientation behavior of the CP efficiency profile will vary for the powder sample.

4.2.1.2 CP dynamics for Single-Crystal: Varying orientation

In our previous chapter, we have explicitly highlighted the role of the quadrupolar PAS
angles ag and B¢ in describing the CP dynamics for single-crystal samples when subjected
to on-resonance S-spin irradiation. The presence of additional quadrupolar-dependent HH
CP matching condition in the presence of second-order quadrupolar coupling interaction
leads to an escalated complexity in the polarization transfer behavior.

Figures 4.8 and D.4 (refer to Appendix-D) outline the mechanistic changes observed
in the CP efficiency with the variation of quadrupolar PAS angle 8g within the range
0° < Bp < 180° for an axially symmetric tensor. The simulations were carried out for
a single-crystal sample with quadrupolar coupling constant Cg = 1.5 MHz at 'H larmor
frequency 400 MHz. The orientation dependence of the wS ) and wg ) with Bg variation is
shown in Figure D.5 in Appendix-D. On varying the polar angle 8¢ from 0° < 3o < 180°,
the first-order quadrupolar frequency (wé?1 ) ) shows two zero-passages at angles g =
54.736° and 125.624° where the sign changes from positive/negative to negative/positive.
Therefore, we anticipate a change in the dynamics of various CP resonances while passing

through these conditions. Unlike wS ), the second-order quadrupolar coupling frequency

wg ) shows a different behavior and does not change the sign on varying 8o angle in the

range 0° < g < 180°. Consequently, CP behavior with quadrupolar PAS angles (8¢ and

(1) (2)

aq) variation will follow characteristics of wo's while wo will simply induce a shift in
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Figure 4.8: Effect of the variation of quadrupolar coupling PAS angle 8g: 0° (al), 30.56°
(a2), 45° (a3), 54.736° (ad), 70.12° (ab) and 90° (a6) on the second-order quadrupolar
interaction driven cross-polarization transfer efficiency for a single-crystal sample. The
parameters used for generating the CP efficiency profiles are: Cg = 1500 kHz, g = 0,
and quadrupolar coupling PAS angle ag = 0°, v15 = 80 kHz, contact time = 0.5 ms,
'H Larmor precession frequency = 400 MHz and r;g = 1.05 Aunder on-resonance S-spin
irradiation. SIMPSON simulations (black curve) are fitted with the SQs4+TQi¢ (red
curve), DQas+ZQs5 (blue curve) and DQq5+7ZQ24 (magenta curve) in all panels.

positions of HH-CP matching conditions and the degree of shift will directly depend on
the orientation of quadrupolar PAS angles.
For Bg = 0° [Figure 4.8(al)], the CP efficiency profiles resemble the CP behavior observed

in Figure 4.3(al-b1l); this is because in case of axially symmetric tensor the second-order
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quadrupolar coupling strength is zero for this particular orientation. Therefore, CP
transfer is predominantly governed by the SQss (]1/2,—1) < |—1/2,1)) and DQgs
(|11/2,-1) < |—1/2,0)) CP matching conditions and the CP resonances are labeled
accordingly. In the range 0° < f[g < 54.736° (panels a2-a3), it is evident that the
second-order quadrupolar coupling excites an additional ZQs4 dipolar transition, which
appears at quite high 7-spin RF amplitude. Additionally, the magnitude of first-order
quadrupolar coupling frequency decreases, resulting in the CP resonances becoming closer.
At o = 54.736°, the magnitude of first-order quadrupolar coupling frequency reduces
to zero, the SQs34 and DQ9¢ CP matching conditions become degenerate which overlap
to produce a single CP maxima as observed for spin-1/2 behavior and dipolar coupling
constant becomes zero for the ZQo4 CP condition; hence we don’t observe the ZQy4 CP
resonance. Unlike on-resonance irradiation, the SQss and DQsg CP matching conditions
do not provide an equivalent contribution to the overall CP efficiency. This is due to the
favorable and detrimental effect of the second-order quadrupolar interaction on the DQog
and SQs4 CP matching conditions, respectively. The interesting observations are made in
the range 54.736° < Bg < 90°, where the sign of quadrupolar coupling frequency (wg ))
becomes negative. Therefore, the relative positions of CP matching conditions undergo
swapping i.e., the SQs34 and DQog CP resonances swap their positions while the ZQs4 CP
matching condition still appearing at the higher I-spin RF amplitudes. In panel (a6), the
DQgys CP condition displays a little dispersion due to additional single-quantum [-spin
dipolar-transition (SQg,7). Moreover, a significant contribution is also observed from the
high-frequency ZQszs CP matching condition. In the range 90° < g < 125.624°, the
magnitude of quadrupolar coupling frequency again decreases which leads to a transition
of the CP spin-dynamics from the regime of intermediate to weak quadrupolar coupling.
At Bo = 125.624°, the quadrupolar coupling frequency again crosses zero and CP efficiency
profiles demonstrate behavior equivalent to Bg = 54.736°. From 125.624° < Bg < 180°,
the sign of the wS ) becomes positive and magnitude increases. Consequently, the relative
positions of the CP matching conditions are again reversed, resulting in a resemblance of
the CP behavior to that observed in the range 54.736° > Bg > 0° where it transitions from
weak to stronger quadrupolar coupling regime. Based on the above observations, it is fair
to conclude that the CP dynamic shows swapping in nature of CP matching conditions at
each zero-crossing, and in between these zero-crossings, the CP dynamics show a transition
from strong to weak or weak to strong CP behaviors. The above conclusions have been
made Cg = 1.5 MHz; however, they can be generalized to include all quadrupolar coupling
strengths, where the scale of the behavioral shift may be relatively small, but CP dynamics
displays a similar pattern of 3¢g variation. Although, the second-order quadrupolar effects
get reduced at smaller Cg systems.

In the case of an axially symmetric quadrupolar tensor, azimuthal PAS angle ag does not
affect the CP behavior. However, it’s the contribution of CP dynamics cannot be ignored
for highly asymmetric quadrupolar tensors, especially for 3g values around 50° to 90°. The

orientation dependence with varying aq is shown in Figure D.6 and D.7 in Appendix-D
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Figure 4.9: Effect of strength and orientation of heteronuclear dipolar coupling tensor on
the positions of various HH CP matching conditions (i.e. terms Agyq, Agg and Agy are
plotted). The following parameters were used in the simulations: Cg = 200 kHz, ng = 0,
quadrupolar coupling PAS angles (0°, 0°, 0°), v15 = 80 kHz and S-spin off-resonance
irradiation 215 = 40 kHz, considering the effect of the first-order quadrupolar driven
coupling only. The 'H RF field amplitudes mentioned in the various panels of the figure
correspond to exact HH matching under zero heteronuclear dipolar coupling strength.

at different B values. For Bg values 0° < Bg or m — Bg < 45°, ag dependence shows
only magnitude variation while at other B¢ it changes magnitude as well as a sign of the
first-order quadrupolar frequency. We also observe dipolar coupling dependent shift of the
SQs4, DQog and ZQo4 CP conditions as shown in the Figure 4.9. The magnitude of these
shifts will depend on the internal (quadrupolar and dipolar couplings) and external (RF

irradiation) parameters for distance measurement.

4.2.1.3 CP dynamics for powder sample: Ensemble of orientation

The theoretical framework proposed is shown to explain the CP dynamics associated with
a single-crystal sample. In the single-crystal simulation, it is evident that different HH
conditions are affected by different degrees under the influence of second-order quadrupolar
coupling interaction. Furthermore, it is observed that different crystallite orientations
exhibit non-uniform CP behavior with and without second-order quadrupolar coupling
interaction. Based on results obtained from the single-crystal studies, we extended

our theory to describe the CP dynamics in a more complex powder sample under
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static conditions. Figure 4.10 illustrates the CP efficiency for powder samples in the
presence of second-order quadrupolar coupling interaction with and without off-resonance
irradiation. The analytical simulations based on Eq. (4.20) converge well with the
numerical simulations under the off-resonance S-spin irradiation conditions. To explicate
the underlying dynamics of CP transfer, we evaluated the individual signal contributions
emerging from various CP matching conditions. Under the influence of the second-order
quadrupolar coupling interaction ( g = 0, panels al-a2), the CP efficiency profile shows
three well-defined CP maxima of unequal widths and intensities. It has been observed
that the CP maxima at lower I-spin RF amplitude is primarily governed by the overlaid
SQs4 and DQ9g matching conditions. Conversely, the CP maxima observed at high I-spin
RF amplitude solely manifests the ZQs4 matching condition. The relative and absolute
positions and intensities of all the CP matching conditions in deciphering the CP spin
dynamics for the powder sample can be explained based on the interplay of various
crystallite orientations in the single-crystal sample (Figure 4.8). The powder sample
comprises a statistical ensemble of various crystallite orientations, with the weighting
factor sinfg serving as a probability distribution function. [4,131,137] The orientations
in the plane perpendicular to the static Zeeman field are most probable and probability
continuously decreases moving away from this orientation. Therefore, the overall CP
efficiency profile observed in the powder sample has a close resemblance to the CP efficiency
observed for the single-crystal sample in the fg range from 54.736° to 90° (Figure 4.8).
With a full cycle variation in S¢g (0° to 180°) angle, the absolute position of ZQ4 matching
condition changes, relatively appear at the higher I-spin RF amplitudes. Consequently, in
the powder sample, the ZQo4 CP matching condition does not provide any contribution at
lower I-spin CP efficiency. The lower intensity and width of the CP matching conditions
can be attributed to the interference of various powder orientations. Moreover, at and
around g = 90° which is a case suitable for the DQ 26 CP matching condition, resulting
in its higher CP efficiency than the SQs4 condition in the lower [-spin RF amplitude
region. Whereas in the higher I-spin RF amplitude region, the SQs4 CP is more efficient
due to the change in the sign of w(Ql).

In stark contrast to the first-order quadrupolar coupling CP efficiency profile for powder
sample, in the presence of the second-order quadrupolar coupling interaction the overall
CP efficiency profiles shows a negative CP efficiency at lower I-spin RF amplitudes
and these observations are consistent with the single-crystal sample. The individual
signal contributions reveal that the CP maximum at the higher /-spin RF field is solely
governed by the ZQ 24 CP matching condition which is spread over a range of I-spin RF
field where the intensity is the product of the absorptive terms in the signal expression

15,24
(Wd )2

((“%524)2 +A3,
conditions overlap at the CP maxima at lower [-spin RF amplitudes while the middle

and sinfg. The range of S variation for SQ34 and DQog CP matching

CP maxima is solely governed by the SQszs CP matching condition. The negative CP
efficiency at the beginning of the I-spin variations is due to CP transfer mediated by the

SQq,r dipolar transitions, which results in CP transfer modes that independent /-spin RF



Chapter 4. Understanding the role of second-order quadrupolar coupling and

108 off-resonance effects in CP dynamics
Co= 1.5 MHz
0 = 0 kilz | %= @ (Bo=907 0= 0l (Bq = 90°)
0.1 (al) 01 (a2) 0.1 (a3)
Simpson
S(v) [Eq. 4.20]

0.05 0.05 0.05
Nl
E 0 1 1 1 1 1 1 0 1 1 1 1 1 1 or 1 1 1 1 1 1
< Deconvolution of the overall CP efficiency profiles
N oip (b1) 01 b2) 0.1 (b3)
V S(t)s + S(t)34
S(t)15+S(t)24
S(t)g(ﬁrs(t):qs
0.05F 0.05F 0.05

0,__.§=LLOFAIIIIJ=LO ok

0 200 400 600 0 200 400 600 0 200 400 600

v, (KHz)

Figure 4.10: The second-order quadrupolar coupling driven cross-polarization transfer
efficiency as a function of the 'H RF field for the powder sample from the numerical
simulation (SIMPSON) and the analytic theory. These simulations demonstrate the
combined effect of the second-order quadrupolar coupling and S-spin off-resonance
irradiations (al-bl) ;5 = —6.55 kHz, (a2-b2) Q15 = 0 kHz and (a3-b3) Q15 = 4.36
kHz on the CP efficiency profiles. The parameters used for generating the CP efficiency
profiles are: Cg = 1.5 MHz, ng = 0, quadrupolar coupling PAS angles ag = 0° and g
= 0°, 'H Larmor precession frequency = 400 MHz, contact time = 0.5 ms, 15 = 80 kHz
internuclear distance r7g = 1.05 A and dipolar PAS angle 84 = 0°. SIMPSON simulations
(black curve) are fitted with the total analytic signal expression (indigo dashed curve) [Eq.
(4.20)], SQ34+TQ16 (red curve), DQos+7ZQ35 (blue curve) and DQi5+ZQ24 (magenta
curve) in panels al-a3. These simulations are generated with the zcw4180 crystal file.

amplitude, and in these signal expression these terms manifested by the dispersive terms
16,34 16,34 26,35 26,35
Wy A34 Wy 216 Wy AQG Wy 235

and —-4———
16,34 16,34 » 26,35 26,35

(wg "2+ A (w7 + 53 (wy)? + Ag (wy ") + X3

the case of the single-crystal sample system, the second-order quadrupolar effects can be

). As discussed in

minimized by working at higher Zeeman field strength. However, when working at higher

fields, spin dynamics become more prone to S-spin offsets and CSA effects. Therefore,

such compensatory methods are seldom useful. Besides, exactly setting the S-spin
2

off-resonance irradiation at Qg = —wg* is not possible due to anisotropic quadrupolar

orientation in powder, thus, complete compensation of second-order induced shifts is
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not possible. In panel bl-cl, an off-resonance irradiation strength equal/negative to the
second-order quadrupolar coupling frequency at 3o = 90° is employed to compensate for
the second-order effects in the powder sample. This off-resonance irradiation strength is

best suited to compensate for the second-order quadrupolar effects for powder samples.

4.2.2 State-picture representation of the CP dynamics a single-crystal

sample

In previous section, we have provided a detailed operator-based analytic treatment of the
observed CP transfer trajectories for single-crystal and powder samples. Given that the
CP process involves an exchange of the polarization (i.e., population) between the different
energy levels, we have provided an equivalent state picture representation to rationalize
the polarization transfer process. Figure 4.11 demonstrates the energy eigen-level diagram
obtained by numerical diagonalization of the CP Hamiltonian for a single-crystal sample
using the parameters given in the caption of Figure 4.3 (panels a2-b2). In the presence of
the second-order quadrupolar coupling (on-resonance S-spin irradiation), we observed a
total of six regions of various avoided crossings or level anti-crossings (LAC) at (v1g # 0)
and are referred to as the HH CP matching conditions. These positions of LAC are in line
with the HH matching conditions expression given in Table 4.3 and corroborate extremely
well with the CP resonances observed in Figure 4.3 (panels a2-b2).

To understand the origin of these avoided crossings, it is important to access the CP
Hamiltonian [Eq. (4.12)] presented in theory section. The transformed CP Hamiltonian
[Eq. (4.12)] is comprised of six dipolar-based subspaces (pictorial representation of the
splitting of CP Hamiltonian in Figure 4.1). The matrix representation of the above

Hamiltonian in the coupled Zeeman basis is given as

[S16 + S1s 0 0 0 Wit L1637
0 Aog + Aoy 0 w;5,24 0 w§6’35
Hep = 1 0 0 i35 #A?A w;6’34 w§6’35 0
210 witt W Ay Ay 0 0
wi5’24 0 w§6,35 0 IS 0
%6’34 w§6,35 0 0 0 — Y16 — Agg|
(4.31)

For better visualization and the effectiveness of the various dipolar transitions involved
in the CP process, the above Hamiltonian is separated in three coupled subspaces in

accordance with Figure 4.1.

PRRRR

~

Hop = Higsa + Hisos + Hogss (4.32)
~—— N—— N——

H16+H34 H15+I:124 H26+I:135
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Figure 4.11: The eigen energy level plot as a function of 'H RF amplitude for a
single-crystal sample. The following parameters are used for generating the plot: Cg
= 1.5 MHz, g = 0, quadrupolar coupling PAS angles ag = 0° and g = 50°, 'H Larmor
precession frequency = 400 MHz, v1g = 80 kHz internuclear distance r;g = 1.05 A and
dipolar PAS angle 8; = 0°. The regions of avoided crossings are referred to as HH CP
matching conditions and are labeled in accordance with the CP efficiency profile in Figure
4.3 under on-resonance irradiation. The avoided crossing at zero 'H RF amplitude (vig
= 0 kHz) are due to presence of I-spin dipolar transitions.

where
Y16 0 0 wc1l6734
. 1 0 Ass wcll6,34 0
16,34 — &
’ 2 0 wéG’M —Asy 0
16,34
3 0 0 _E
Wy 16.111),13),14),l6)
o 0 0 ‘%115724
i 1 0 Aoy wé5’24 0
W20 791 0 W _Ay 0 (4.33)
15,24 _
|wg 0 0 2151 1) j29,1.15)
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In accordance with Eq. (4.33), the CP Hamiltonian in each subspace (4x4, coupled)
is equivalent to the matrix representation of a dipolar coupled two spin-1/2 systems
[see Eq. (2.20) in Chapter 2]. Therefore, the polarization transfer in each subspace is
expected to follow a similar mechanism. As shown in Eq. (4.12), each subspace of the
CP Hamiltonian is associated with longitudinal (composed of the RF irradiation and
quadrupolar coupling part) and transverse (effective dipolar coupling part) components,
which correspond to the energy (position of avoided crossing/HH CP matching condition)
and driving field/potential, respectively. From a mathematical perspective, the energy
transfer in each subspace is analogous to a two-level system (TLS). Consequently, the
polarization transfer mechanism in I = 1/2 and S = 1 spin systems will be a manifestation
of six independent TLS. Therefore, various HH CP conditions are anticipated (also shown
in previous section) to exhibit different spin-dynamics.

As shown in Figure 4.11, we observed a total of six LACs or resonance conditions at vy #
0 kHz and these conditions are labeled in accordance with Figure 4.3. As shown previously,
it is evident that the TQ16/DQ15/ZQ3s HH CP conditions are just phase-shifted version
of the SQ34/ZQ24/DQo¢ HH CP conditions. For single-crystal sample at Cg = 1.5 MHz,
we observed well-resolved LACs and the area beneath each LAC decrease continuously
with increase in the 'H RF field requirements for various LACs. The area under a LAC
is direct manifestation of the strength of the perturbation (effective dipolar coupling)
acting between the states involved in CP transfer. As the strength of the effective dipolar
coupling decreases for the CP resonances occurring at a higher 'H RF range, therefore, we
observed different area under LACs. As seen in Figure 4.11, the ZQa4 transition has the
weakest effective dipolar coupling constant indicating that the CP transfer occur through
a non-adiabatic (sudden jump; Piaij decreases, for detail refer to Eq. 2.27 in Chapter 2),
which falls rapidly away from the exact resonance condition. Consequently, this result
in a sharp CP resonance as depicted in Figure 4.3 panels a2-b2. Whereas the SQs4 CP
resonance possess the strongest effective dipolar coupling constant w(}l6’34 > w§6’35 > w§5’24;
this order is quadrupolar parameter dependent). At the specified quadrupolar coupling
parameters and RF-field amplitudes, at the SQs4 CP condition the adiabatic transitions
have the maximum probability (P ; ~ 1) for these transitions while the DQg¢ condition
has finite probability for both adiabatic and sudden transitions. In addition to these
normal modes of CP transfer, we also observe avoided crossings at v = 0 kHz which
are governed by the I-spin dipolar transitions (SQgq ;). This zero-field avoided crossing is
equivalent to the polarization pathway arising due to the interference terms (wé?} iwg;l})
in the CP signal expression [Eq. (4.20)] (in operator-based analytic theory). It should
also be noted that at this zero-field condition a significant loss in the I-spin polarization
(refer to < I,(t) > detection in Figure D.8 in Appendix-D) is observed during the transfer
process while the gain in the S-spin polarization (via < S, (t) > detection) is minimal. This
is primarily due to the involvement of IS, (SQg,r) transition operators in the polarization
transfer process.

A quantitative measure of the degree of the polarization transfer in the state-picture
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Population transfer under different HH CP matching condition as function of *H RF amplitude
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Figure 4.12: The population exchange dynamics for different HH CP Matching conditions
as a function of '"H RF amplitude for a single-crystal sample. The population coefficients
for different HH matching conditions are calculated based on the final density matrix
calculation as given in Eqgs. (4.16), (4.18), (4.17) and are given as (al) SQsa (p33, pa4a):
(Sin2 934, —sin2 934) and TQ16 (pu, p66): (sin2 9167 —sin2 916); (a2) ZQ35 <p33, p55): (Sil’l2 (935,
—Sin2 935) and DQ26 (pgg, p66): (sin2 926, —SiIl2 ‘926); and (a3) ZQ24 (pgg, p44)2 (sin2 924,
-sin? fa4) and DQy5 (p11, ps5): (sin? Oy5, -sin? 15). The area between each avoided crossing
can be correlated with the width of each CP resonance observed in Figure 4.3. Remaining
simulation parameters are as given in the caption of Figure 4.11.

representation can be obtained by plotting the population exchange diagram at various
LACs. Although, the state-picture representation necessitate the evaluation of populations
of various Eigen-states by calculating degree of the overlaps between two Eigen-states
((i'|I]#"); T is the identity operator and |i') is the Eigen-states which is a superposition of
the Zeeman-states governed by the unitary transformations involved in the calculation of
the effective CP Hamiltonian). An analogous representation can be obtained by plotting
the population coefficients from the density matrix calculation. The population exchange
at various LACs are shown in Figure 4.12 where the population is plotted by selecting
the coefficients of all Zeeman states in the final density matrix in Egs. (4.16)-(4.18)
(see Figure cation for more information). In the population diagram (panel al), clearly
1) /16) and |3) /|4) exchange their populations (i.e. population difference becomes zero
pii — pj; = 0) at exact HH CP matching condition which correlates well with the Figure
4.3 and point towards an adiabatic transfer. In this panel, we observe two additional
avoided crossing at v1 = 0 kHz, where there is no significant population exchange, again
highlighting the presence of SQq ; I-spin dipolar transitions. Nevertheless, the population
exchange dynamics observed in the panels a2-a3 for the DQas/ZQs5 and ZQ24/DQ15
CP matching conditions, respectively demonstrates a behavioural shift from adiabatic to
sudden transitions. Besides, the area in between two population curves directly signifies
the width of the overall CP transfer as observed in Figure 4.3. It is important to note
that the aforementioned observations are based on the parameter used while generating
the simulations and the nature of CP dynamics may change by selecting other parameters
set while the analytic description will hold good. In summary, a detailed account of all the

observations made by the analytic theory can be found in the energy level representation.
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4.3 Conclusions

In summary, the operator-based analytic theory provides a single-unified framework for
a detailed theoretical description of the CP dynamics between I = 1/2 and S = 1 spin
systems under second-order quadrupolar coupling and S-spin off-resonance irradiation.
The proposed analytic theory is rigorously compared with the numerical simulations under
all experimentally relevant simulation parameters. The spin-dynamics is manifestation
of six different HH CP matching conditions namely, SQs4, TQ16, ZQ24, DQ15, ZQ35 and
DQas, ZQ24 and DQ15. We have derived a CP signal expression quantifying the individual
contribution from all possible CP conditions in the overall CP transfer. For single-crystal
sample, due to a similar operator dependencies the second-order quadrupolar coupling and
S-spin off-resonances display similar CP dynamics and it is demonstrated that off-resonant
irradiation at Q19 = —wg ) can compensate the effect of the second-order quadrupolar
coupling. It is shown that various CP resonances displays different CP dynamics under
second-order quadrupolar coupling and S-spin off-resonance irradiations. For example, the
intensity of the CP resonance observed at lower RF-field amplitude will decrease while the
intensity of the CP resonance at higher RF-fields increases. We have explicitly shown the
role of the orientation of the quadrupolar coupling tensor in alerting the polarization
dynamics for the single-crystal sample, which simplified the understanding of more
complex powder sample. In the powder sample, the second-order quadrupolar coupling
and S-spin off-resonance irradiation does not displays similar dynamics due to complex
orientation dependence later. Due to the interplay of various HH CP matching conditions,
the overall CP transfer is an amalgamation of all six HH CP matching conditions, the
individual CP condition will have no significance in such systems. The proposed theory is
equally valid for single-crystal and powder samples across all regimes of the quadrupolar
coupling. It is not possible to exactly compensate for the second-order quadrupolar
coupling by off-resonance irradiations, however, by irradiating at Q15 = —wg )(900) a
compromise can be made. We have also provided a state-picture representation equivalent

to the operator-based analytic theory.



Chapter 5

Analytic theory of cross-polarization
(CP) dynamics between spin-1/2

and spin-3/2 nuclei

In this chapter of the thesis, a theoretical framework for understanding the CP
spin-dynamics involving nuclei with / = 1/2 and S = 3/2 is presented. The half-integer
quadrupolar nuclei account for approximately 70% of the total quadrupolar nuclei and
are prevalent in many inorganic and bio-organic importance compounds [71, 157-160].
Consequently, these nuclei serve as an attractive tool for structural constraints. The
presence of the first-order quadrupolar coupling devoid central transition (CTs) (|—1/2)
|1/2)) made half-integer nuclei a favourable choice for various structural investigations
compared to nuclei with integer spins [161-164]. Nonetheless, the poor S/N ratio is often
observed due to large quadrupolar coupling and their lower gyromagnetic ratio and/or
natural abundance. As a result, the direct observation of the half-integer quadrupolar
nuclei via the selective excitation of the CTs has not gained significant popularity in
quadrupolar NMR studies [53, 165]. Consequently, numerous experimental approaches
have been developed to achieve an efficient excitation of quadrupolar NMR spectra. A
widely accepted method for improving the sensitivity of spin-1/2 dilute spins involves
the implementation of cross-polarization (CP) experiments. Nevertheless, CP involving
quadrupolar spins is limited by the complicated mechanism of the polarization transfer due
to the presence of multiple-energy levels and poor spin-locking efficiency [106,156,166—168].
Despite notable advancements [101, 106, 169-175], our complete understanding of the
complex CP dynamics remained elusive. From a theoretical standpoint, Vega et. al. [47]
and Amoureux et. al. [82] laid the foundation of quantitative analysis of numerous
experimental studies based on CP. Using the fictitious spin-1/2 operator formalism, the
analytic theory presented by Vega et. al. suggested the existence of various HH CP
matching conditions; however, the major focus remained on the polarization transfer
involving central and triple-quantum quadrupolar spin transitions, namely CTg (SQ) and
TQg CP transfer processes. Under on-resonance S-spin irradiation, they presented the
analytical treatments in the extreme coupling regimes i.e. wig > wg) and wig << wg) for
the static single-crystal sample. For the single-quantum (SQ) CP, the HH CP matching
1

condition expressions were derived as w1y = wig and w1y = (S+1/2)wyg in wig > we and

(1)

wis << W coupling regimes, respectively, which mainly transfer the /-spin polarization
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only to S-spin central transition. While for triple-quantum cross-polarization (TQCP),
they presented the HH CP matching condition expressions as wir = 3wis and wir = ws nut
[82] in wig > wg) and wig << wg ) coupling regimes, respectively. Here, wg s is the

(1)

nutation frequency for S=1 in the strong coupling regime (w15 << wo ). Nevertheless, in

intermediate coupling regime i.e.,wig ~ wg ), due to complicated derivation no theoretical

description was presented. The lack of unified description across all the quadrupolar
coupling regimes, these description are of lesser utility in the single-crystal sample of
arbitrary quadrupolar coupling strengths and crystallite-orientations. Importantly, the
distribution of quadrupolar coupling frequencies limited the utility of these formulations
in quantifying the CP profiles in powder samples. Later, Amoureux et. al. extended
the analytical description provided by the Vega for spinning sample while the underlying
shortcoming remained. To overcome these challenges, alternate description based on the
quadrupolar interaction [109, 148, 149] were presented for describing the spin dynamics
involving quadrupolar spins. The application of perturbative approach based on the
Average Hamiltonian theory (AHT) and Floquet theory have led to the development
of semi-analytical approaches designed to elucidate experimental findings associated with
quadrupolar spins, relevant to both static and rotating solids. The theoretical limitation
of these methods have been already pointed out in Chapter 1. Therefore, a detailed
mathematical model framework based on the analytic theory described in the coupled spin
operator basis that is valid for all the quadrupolar coupling regimes is not available. This
forms the motivation behind this chapter. In this chapter of thesis, we have substantiated
the theory behind the spin dynamics of the cross-polarization between an isolated spin
pair I = 1/2 and S = 3/2 for static samples. We have used the effective field and density
operator formalism to derive the effective Hamiltonian represented in the coupled spin

operator basis.

5.1 Theory and Methodology

5.1.1 Derivation of the effective CP Hamiltonian

In order to describe the fundamental operational aspects of the CP experiment, we start
with a model two-spin (say, / = 1/2 and S = 3/2) Hamiltonian. In the doubly rotating
frame, the Hamiltonian of such a system under on-resonance irradiation (on the spins [

and 9) is represented by

(1)

. . wy (ag,B

HCP:MSSJCJFM
~——

TRF
HS

(3S§ - 32) t+wirly 4 2wl S.; h=1.
~——  N———

A HEF HD
o< I is
S

(5.1)

In the above equation, wi; and wyg represent the RF amplitudes on I and S spins,
respectively. ﬁg is the first-order quadrupolar Hamiltonian for the S-spin. A detailed

description of the quadrupolar Hamiltonian can be found in Chapter 1. The matrix
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representation of the various spin-operators [in Eq. (5.1)] for the both I and S-spins can
be found in Appendix-E.
To simplify the description, the above Hamiltonian is re-expressed in terms of the

single-transition operators [111,112] as given below:

Hop = Vaors(82 + 55 4 6% 1 §79) 1+ 2un5(52 + 87) + WD (812 - §3 1 536 — §79)

pe
b wnr (855 4 G20 1 G5 4 §1) 4y (38 4 G2 _ 385 _ §67)
g b,

(5.2)
The superscript (i,7) in the operators Sk (o = z,y,z) represents the spin-states in a
coupled system and are defined according to the energy level diagram depicted in Figure
5.1(a). The definition of these single-transitions operators can be found in Chapter 1. A
schematic description of the populations and coherences observed in a coupled spin-pair
(I =1/2 and S = 3/2) is given in Figure 5.1(b). While the matrix representation of
the various spin-operators and their product Zeeman basis is given in Appendix-D. In
order to gain insights into the CP spin dynamics and enable an analytical description, the

Hamiltonian [Eq. (5.2)] is divided into three parts:
1. Hamiltonian for the S-spin system (Hg = I—ii’gp + ﬁg)
2. Hamiltonian for the I-spin system (HFF)
3. Hamiltonian for the I-S spin pair (HF)
Subsequently, employing unitary transformations, the Hamiltonians are diagonalized using
the procedure outlined below.
A: Derivation of effective Hamiltonian for the S-spin system

To diagonalize the S-spin Hamiltonian, we employ the following transformation that has

been extensively discussed in literature [176].
~ T A N ~ ~ ~ N ~ ~
01 = exp {1 5(S5% = 824+ 53~ S57) f exp { 202(52 +55%) f exp { 201(5+571) . (5:3)

The unitary transformation function U, is selected to ensure that the Hamiltonian is

diagonal in the chosen coupled basis representation depicted in Figure 5.1(b). This
V3wis

is achieved by selecting the angles #; and 0, as tan26; = O and tan 260y =
wQ — W19
3
(\l)fwls. The S-spin Hamiltonian in Eq. (5.2) is transformed as
wo + wis
Hg = Ll;” (S1 4 857) — —wzg’“ (S21 4 8%%) 4 wi5(812 + §31 4 596 4+ T8 (5.4)
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(2) S=3/2and I =1/2 coupled basis states and two spin flip/flop (b) Transition matrix highlighting all possible transitions in a
(dipolar) transitions coupled system
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Figure 5.1: (a) Schematic depiction of the energy level diagram in a coupled two-spin
(I =1/2 and S = 1) system. The spin states |1), |2), |3), |4), |5), |6), |7) and |8) are
representative of the product basis states (|mr,mg)) |1/2,3/2), |1/2,1/2), |1/2,—1/2),
11/2,-3/2) |-1/2,3/2), |-1/2,1/2), |-1/2,-1/2) and |—1/2,—3/2), respectively. (b)
Matrix representation of the populations and coherences in the coupled two-spin (I and
S) system. The diagonal elements depict the populations (of the states |my,mg)) and
are represented through ‘P;;’. The coherences wherein both spins change their states
are represented as the four-quantum (FQjg), triple-quantum (TQzs), double-quantum
(DQrs), single-quantum (SQrg), and zero-quantum (ZQrs). The coherences where only
the state of S-spin changes are represented by TQg, DQg and SQg, while, coherences
where only the state of I-spin changes are represented by, SQ;. The coherence/transitions
involving the S-spin are further categorized as single-quantum central transition (CTg:
|—1/2) <> |1/2)), single-quantum satellite transitions ST1g and STag (|3/2) <+ [1/2) and
|—3/2) <» |—1/2), respectively) and double-quantum transitions DQ;s and DQag (|3/2) <
|—1/2) and |-3/2) < |1/2), respectively). The blue-colored (FQrs/DQrs) coherences
involve triple-quantum transitions associated with the S-spin (|4+3/2) <> |—3/2)), while
magenta, orange and green-colored (DQrs/ZQrs) coherences involve single-quantum
transitions associated with S-spin, CTs (|1/2) < [1/2)), STis (|3/2) <> |1/2)) and
SThs (|]—3/2) < |—1/2)), respectively. The black-colored (TQrs/SQrs) coherences
involve double-quantum transition associated with the S-spin transitions (DQg |£3/2) <>
£1/2).

where, w1357 = \/3w%5 + (wg) — w15)2 and woy 68 = \/3wa + (wg) + wlg)z.
Using the relation S';k =89 4 S’Z,k, the above Hamiltonian can be re-arranged as follows:

x w1357 — W24,68 + 2W1S Y\, 414 . a58 W13,57 — W24,68 — 2W1S Y, 423 . &67
s = { . b8it+ 53 + 4 . }(82 4+ 57)

w +w + 2w 5 A w +w — 2w - 5
n { 13,57 ZL,GS 1S }(Sig 1 Sg)ﬁ) I { 13,57 2:,68 15}(_534 _ SZS)'
(5.5)

The effectiveness of the Hamiltonian given in Eq. (5.5) has been evaluated in the existing

literature [176] and is demonstrated to offer the convergent solutions to the spin-dynamics
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across all quadrupolar coupling regimes.

B: Derivation of effective Hamiltonian for the I-spin system

Similarly, by utilising the unitary transformation Us = exp {z%(gf + 556 + 35’7 + 5”;18)},

the Hamiltonian for the I-spin is transformed such that it is diagonal in the chosen basis.

mﬂl

I = (.Ul[(gig) + 536 + 55)7 + 538) (5'6)

C: Derivation of effective Hamiltonian for the IS-spin system

To have a consistent description, the dipolar coupling Hamiltonian (IEI 1s) is also
transformed by the same set of unitary transformations employed on the S and I-spin

Hamiltonians.

HE = U0, AR U]
= w (81 8P) + WS 4 520) 4wy (80 + ST + WM (S + 8T)
(5.7)
where, wcllg’45, wfl?’%, wcllﬁ’% and w38’47 are the effective dipolar coupling constants in
various dipolar coupled subspaces as described below and are given in Table 5.1. As
demonstrated previously, unlike single spin Hamiltonians [refer to Egs. (5.5) and (5.6)],
the transformed dipolar coupling Hamiltonian exhibits off-diagonalities in the chosen
basis system. The transformed dipolar coupling Hamiltonian [Eq. (5.7)] consists of
eight different sets of dipolar coupling mediated transitions, therefore, CP transfer under
on-resonance irradiation is anticipated to display eight modes/pathways of polarization
transfer. The dipolar transitions are classified based on the total change in the S
and I-spin quantum numbers of the transitions involved i.e. {1,8}/{2,5} labeled as
FQig/DQas; and {1,6}/{2,5}/, {2,7}/{3,6}/ and {3,8}/{4,7} are labeled as DQ;;/ZQ;;
dipolar transitions. The dipolar coupling terms involving the flipping of both S and
I-spins are further quantified in terms of the S-spin involved dipolar transitions as
follows: FQis/DQas involves triple-quantum (TQg) : |3/2) <+ |—3/2) S-spin transition;
DQ27/ZQ36 involves S-spin single-quantum central transition (CTg) : [1/2) < |—1/2);
DQ16/ZQ25 involves S-spin single-quantum satellite transition (STyg) : |3/2) <> |1/2); and
DQss/ZQa7 involves S-spin single-quantum satellite transition (STa15) : |[—3/2) <> |—1/2).
The dipolar coupling transitions which involves double-quantum (DQg) : |-3/2) «
|1/2) and |3/2) < |—1/2) S-spin transition were absent under on-resonance S-spin
irradiations. All the dipolar coupling CP modes in Eq. (4.8) occur through single-quantum
(SQr) : |1/2) <> |—1/2) I-spin flip. o )
Combining the transformed Hamiltonians ﬁs, ﬁ[ﬁF and ﬁl% [Egs. (5.5), (5.6) and (5.7)],

the complete Hamiltonian describing the CP dynamics is represented by the following
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equation:

Hep = Hs + HEF + 0P,
w1357 — WM 68 + Wis }(3214 + 5”28) + {w13,57 — w;4,68 —w1is }(333 + gg7)

512 4 §34 4 G696 4 GT8) 4 1 (815 4+ 826 4 3T 4 §48)

-1
" {w1357+w2468 +w15}(
+wpP (818 4 §95) 1 WATH0(S27 4 636 4 PP (816 4 §) 4 BT (S8 4 §IT).
(5.8)
The transformed CP Hamiltonian in Eq. (5.8) is highly off-diagonal and hence, is of
less utility in further descriptions of the spin dynamics. To overcome this issue, the
transformed single spin Hamiltonians are re-expressed in terms of the operators employed
in the description of the dipolar coupling Hamiltonian via the relation 5’;’“‘ = G 4 GIF

between the single-transition operators as given below:

f{(jp = 218S18 + A45g§5 + 227§27 + A36;§36 + 216g16 + A255§5 + 2475’37 + A38§§8

P18 4 §5) 4 (ATI0(S2T 1 §36) 4 020(§16 4 §25) 4 (3BAT(38 4 GATy,
(5.9)

The coefficients in the above equation are mentioned in Table 5.1.

~

Hep = H8+H45+H27+H36+H16+H25+H47+H38
_ ¥, 5«18_|_ 1845318 4 A, 545+w18 545 | 5, 527+w27 36527 4 A, 536+w27 36 36
}1}18 I:{45 I;:[27 1:136

+2165’16+wd6 25816+A2 525 +wd6 25525+E S47+wd7547+A 583_‘_“}28,4751;8'

Hig ﬁgs ﬁ47 I:I38

(5.10)
Thus, the new representation of the CP Hamiltonian include contributions emerging from

the eight transitions (that involve flipping of both spins) present in the coupled basis [refer
to Figure 5.1(a)]. The term Hjg is representative of the four-quantum (FQug) transition

(|1/2,3/2) — |-1/2, —3/2)), while IEI45 is representative of the double-quantum (DQys)

transition (|1/2, —3/2) < |—1/2, 3/2)). In a similar vein, the term Hoy is representative

of the double-quantum (DQg27) transition <|—1/2,—1/2) “ |1/2,1/2>), while Hag is
representative of the zero-quantum (ZQsg) transition <|1/2,—1/2> ~ |—1/2, 1/2>> in

a coupled spin basis. The term Hig is representative of the double-quantum (DQ;¢)
transition (|1/2,3/2> — |-1/2, 1/2)), while Hos is representative of the zero-quantum
(ZQ25) transition (|—1/2,3/2> — [1/2, 1/2>> in a coupled spin basis. Similarly, the

NN

term Hy7 is representative of the zero-quantum (ZQg7) transition <\1/2, —3/2)

|—1/2,—1/2>), while Hsg is representative of the double-quantum (DQsg) transition
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Table 5.1: List of coefficients involved in calculations of the CP Hamiltonian [Eq. (5.8)].

Longitudinal coefficients Transverse (dipolar) coefficients

S = {2@11 + (w1357 — waa,68 + 2w1s) }
4 w;8’45 = wyq(sin Oy sin Oz + 3 cos 6 cos O3)
A — {2w11 — (w1357 — waa,68 + 2wW15) }
45 = 1
Sy — {2w11 + (w1357 — w2468 — 2w1S) }
4 w37’36 = wgy(—3sin by sin fy — cos O cos O3)
A — {26011 — (w1357 — waq,68 — 2wW1s) }
36 = 1
o= {2w11 + (w1357 + w468 + 2w1s) }
4 w;6’25 = wq(— sin Oy sin Oy + 3 cos 01 cos b2)
Ao — {2w11 — (w1357 + waq 68 + 2w1s) }
25 = 1
Sg = {26011 — (w1357 + w68 — 2wig) }
4 w38’47 = wy(—3sin by sin Oy + cos b1 cos O3)
A — {2w11 + (w1357 + w2468 — 2w1s) }
a7 = 1

(|—1/2, —3/2) < |1/2, —1/2>> in a coupled spin basis. It is important to note that the
magnitude of the effective dipolar couplings (wfij ) is different in DQy45/FQu1s, ZQ36/DQa7,
ZQ25/DQ1s and ZQa7/DQag sets of transitions.

In contrast to previous literature reports [47, 82], it is important to note that the
Hamiltonian in Eq. (5.10) comprises all the modes of CP transfer in a single framework.
This serves as the main focus of the current study and will be substantiated in the following
sections. As shown in Eq. (5.10), the CP Hamiltonian within the effective-field framework
reduces to the sum of transverse (S¥) and longitudinal (5¥) operators in eight subspaces
(see Figure 5.2). Subsequently, employing the rotation operators, the Hamiltonians in
the respective sub-spaces are diagonalized through rotation operators (analogous to the
spin-1/2) Us = U§80§5ﬁ§’60§70§6U§5U§7U§’8 defined in Table 5.2. The angles 38, 03°, 637,
036, 036, 025, 3% and 037 are chosen such that the effective-fields in individual subspaces

are quantized along the z-axis and are given in Table 5.2. Subsequently, the effective
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Figure 5.2: Schematic representation of the effective-fieldS in (al) Four-quantum FQ;g,
(a2) Double-quantum DQus, (a3) Double-quantum DQa7, (a4) Zero-quantum ZQsg, (ab)
Double-quantum DQ¢, (a6) Zero-quantum ZQgs, (a7) Double-quantum DQsg and (a8)
Zero-quantum ZQ47 subspaces.

Hamiltonian depicting the CP dynamics is represented by the following Eq.

Hepp = HS + HSp + H2p + HY + HY + HZ + H3, + HY,
= U3 H1sU3™ + U Hys U™ + U3 Hor U5 + U5 Hg U3
+ USS H6 UL + 025 Hos U + U Hag U + U7 Hyr U™
= Wi SI8 + Wi OB+ W2 52T+ w38, 830 + wi8 10 + W2P ST + Wi 83 4 Wil ST
(5.11)
where the effective frequencies ( wéjf f ) in above Eq. are given in Table 5.2. The pictorial

representation the effective fields in the effective CP Hamiltonian is presented in Figure
5.2.

5.1.2 Time-evolution of the spin-system during the CP mixing period

The time-evolution of spin-system is described using the standard operational process [Eq.
(1.44)] [130,177]. For a consistent description, the initial density operator is transformed

using the same set of unitary transformations on the S and [I-spins.

s

(0) = U300 p(0) U U UL
1 G118 1 G545 1 G27 1 G536 1 G516 25 1 38 1 4T
:§[Sz]+§[Sz]+§[Sz]+§[sz]+§[sz] 2[‘9 ] 2[SZ]+§[SZ].
[ 2 2 2 e G S
p18(0) pas(0) p27(0) p36(0) p16(0) p25(0) p38(0) pa7(0)

(5.12)
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Table 5.2: List of all the unitary operators involved in diagonalization of the CP
Hamiltonian [Eq. (5.10)] and associated coefficients.

Unitary transformations and rotation angles @ Effective frequencies

U8 = exp {@<72f 9%8) 518} tan G18 — w%:sl,iE) WS, =[5 + (w 15,455
d

U5 = exp {z(% 9§5) Af};tan 03° = wAléif) wﬁ?f = \/A4215 + (w§8’45)2
d

U327 = exp {z(% - 9%7) 37}; tan 037 = 4?72’;6 wf}f =1/2% + (w§7’36)2
d

U35 = exp {Z<§ _ 9::;)6) ASG};tan 636 — Cﬁ;ﬁg‘i wg?f _ \/A§6 + 27 36)2
d

U§6 = exp {z(% — 9%6) Aéﬁ};tan 016 = ¢L§61’625 w;?f = /22 + (w Cll6 25)
d

U§5 = exp {z(% — 9%5) Af};tan 9?2)5 _ 0%27525 w?f’vf \/A 16 25

A?:}S = exp {z(% — 9??;8) ASS};tan 0%8 = §§i7 wi’ﬁf _ 238 (wds 47)
d

U = exp {z(% _ g§7) A;”};tan 64T = % Wi, = \/A 2 4 (W22
d

The density operator at time ‘¢’ is calculated using the effective Hamiltonians [Eq. (5.11)]

in respective sub-spaces as given below:

Perr(t) = Pt p(t) + pags(t) + P2ip(t) + P25 p(8) + peg () + P27 p(t) + P23, (8) + pef (L)

(5.13)
where,
A Z A o
Pt = exp{~1 fft}UBIBPIS( 0)0;* exp { Hefft}
Lo h (5.14)
= 55;8 sin 2048 — 5{5;8 cos w;]é%ft + S;S sinw;?ft} cos 2018,
R % R A 7
p‘g’cf( ) —exp{—ﬁH4 }U45p45(0)U§5Texp{ﬁH45 t}
) (5.15)
= ——545 sin 2030 — 7{545 cos 2w4§’fft + 5’45 sin 2w6fft} cos 203°,
Pefs(t) :exp{ h fft}U27P27( 0)U;"! exp{hH fft}
1 (5.16)
= 5527 sin 2037 — 7{5’27 cos 2wefft + 5’27 sin 2wefft} cos 2037,
Py (t) Zexp{ 7 efft}U%A 6(0 )U§6Texp{hHefft} (517

1
= —5526 sin 2030 — 7{536 Ccos 2w3]§ t+ 5’36 sin 2wefft} cos 2036,
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R R i
pegr(t) = exp {— - }U16p16( 0)7;"" exp {ﬁfﬁ?ﬂ}

) (5.18)
=5 [S510sin 2655 — 5 {516 cos 2wl st + S10 sin 2wt} cos 2036,
. i - . ~95 i A
p5(0) = exp { =L 13 }U% SO0 exp { LAt} (5.19)
1. .
—5535 sin 263° — {525 cos 2wefft + 525 sin 2w€fft} cos 2605°,
. - 38
pesi) :eXp{_h fft}Ugsp?’s( Us TeXp{hH it} (5.20)
Lrass . A 538 '
—3 [5’5’8 sin 26038 — 3 {5’58 cos 2w2§ft + 538 sin 2wg’?ft} cos 2038,
piT,(0) = exp { o B fft}Ug pir (OO exp {111}
R g (5.21)

14
= 5537 sin 2037 — 7{5’47 cos 2wefft + 547 sin 2w8fft} cos 203"

5.1.3 Detection of the S-spin polarization

To ensure consistency in the description, the detection operator undergoes the same set
of transformations. In the present context, polarization transfer from spin I to spin §
is calculated. Accordingly, the expectation value of the observable < Sx(t) > is derived
employing Eq. (5.13).

S(t) =< Su(t) >= Trace{Sesfo-pess(t)} (5.22)
where, ﬁeff(t) = ﬁi?f(t)"‘ﬁi?f( )+ﬁ3]70f( )+ﬁ‘2?f( )“‘Pi?ff( )"‘/ﬁ?f( )+ﬁ§?§f( )+ﬁ§}f( )-

Accordingly, the final signal expression has separate contributions from the FQig, DQus,
DQa7, ZQss, DQ1g, ZQ25, DQ3g and ZQ47 sub-spaces as given below:

= (Sp18) + (Sua5) + (Sz27) + (Sz36) + (Se6) + (Sw25) + (Su38) + (Sz.a7)
4512
{B i D} 2%8 . )> ot Ai;fli b e o 2!
+ { 4D+ } - 257(}(7:;736) sin? 2wt + Agﬁ(?:;’%) sin? 2w ft_
s A
A ngﬁfjgzﬂ) %qwfw?j’gzﬂ)

(5.23)
where, B = é(\/gsin291 + (cos 26, — 1)) and D = %( — V/35sin 265 — (cos 265 — 1))
As described above, the final signal expression has contributions from all the eight possible
CP transfer modes and is significantly different from those derived based on existing

reports in the literature [47,82].
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5.1.4 Insights into the Hartmann-Hahn CP matching conditions

According to the analytic expression [Eq. (5.23)], the CP signal can theoretically be

maximised by optimising one of the eight matching conditions outlined below.

e FQ;3 CP matching condition:
Setting ¥18 = 0 = 2wir = —(wi13,57 — was,68 + 2w15).
Under the exact FQ3 CP matching condition, the resulting signal expression is given

as

B+ D
S(t) = —{ 1_ }Sin2 2w§8’45t

+ S(t)as + S(t)ar + S(t)s6 + S(t)16 + S(t)25 + S(t)ss + S(t)a7 -

High-frequency components

(5.24)

Exactly setting the FQi3 HH CP condition will not only maximize the polarization
transfer through FQis CP modes (i.e., S(t)1s component) but also increases the
modulation frequencies of other signal components therefore further rendering
them insignificant in the overall CP transfer. When the high-frequency terms are

insignificant, the overall CP signal is reduce to a simplified form as given below:

B+ D

S(t) = —{

} sin2 2845, (5.25)

This behavior could also be displayed at other HH CP conditions as well.

e DQy5 CP matching condition:
Setting A =0 = 2wy = (w13757 — w2468 + 20.)15).

The resulting signal expression is given as

B+D

S(t) = {

} sin? 2wclls’45t

5.26
-+ S(t)18 + S(t)27 + S(t)36 -+ S(t)lﬁ + S(t)25 + S(t)gg —+ S(t)47 . ( )
High-frequency components
e DQy; CP matching condition:
Setting Yor =0 = 2wir = —(W13757 — W24,68 — 2&)15).
The resulting signal expression is given as
B+D+2
S(t) = —{%} sin? 20.162!7’3615
(5.27)

+ S(t)1s + S(t)as + S(t)36 + S(t)16 + S(t)as + S(t)ss + S(t)a7 -

High-frequency components

e 7ZQs3s CP matching condition:
Setting A3 =0 = 2wy = (W13757 — W24,68 — 2(,015).
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The resulting signal expression is given as

B+D+2
S(t) = {%} sin? 2w§7’36t

+ S(t)1s + S(t)as + S(t)2r + S(t)16 + S(t)2s + S(t)3s + S(t)ar .

High-frequency components

(5.28)

e DQis CP matching condition:
Setting Y16 = 0 = 2w = —(w13,57 + was,68 + 2w1s).
The resulting signal expression is given as

. 16,25
sin? 2wt

B-D+1
e L

5@ = *{ 4
+ S(t)1s + S(t)as + S(t)2r + S(t)36 + S(t)2s + S(t)3s + S(t)ar -

High-frequency components

(5.29)

e ZQo5 CP matching condition:
Setting Ags =0 = 2wis = (w1357 + Waa,68 + 2w1s).

The resulting signal expression is given as

B-D+1
S(t) = {%} sin? 2w61l6’25t

S5 + SWa5 + SWar + SV + S(B)16 + SWas + SW)ag. O30

High-frequency components

e DQ33 CP matching condition:
Setting 238 = 0 —— 2&)1[ = —(w13,57 + w24768 — 2(,U15).

The resulting signal expression is given as

B-D-1
S(t) = _{f} sin? 2w38’47t

+ S(t)IS + S(t)45 + S(t)27 + S(t)36 + S(t)lﬁ + S(t)25 + S(t)47 ) (531)

High-frequency components

e ZQ,7 CP matching condition:
Setting Ay =0 = 2wy = (w13,57 + waq,68 — 2w15).

The resulting signal expression is given as

B-D-1
S(t) = {f} sin? 2w38’47t

+ S(t)1s + S(t)as + S(t)2r + S(t)36 + S(t)16 + S(t)25 + S(t)3s -

High-frequency components

(5.32)

The signal expression for the FQi5/ZQs6/DQ16/DQss and DQus5/DQa7/ZQ25/7ZQuz
CP conditions are governed by similar effective dipolar coupling strengths

w;8’45 /w§7’36 /wcllﬁ’25 /w28747 and are just phase-shifted versions of each other. Therefore,
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these modes of the CP transfer are expected to display similar CP dynamics. The
various HH CP matching conditions are given in the Table 5.3. Experimentally,
FQ1s/7ZQ36/DQ16/DQ3s transfer can be achieved by shifting the phase of I-spin RF-field
by 180°.

Table 5.3: The expression and transitions associated with various HH CP matching
conditions for the CP transfer between I = 1/2 and S = 3/2 spin systems.

CP matching conditions and

associated transitions

Four-quantum (FQug) 2wir = — (w1357 — wad 68 + 2wW1s) | wir = —wis
Double-quantum (DQg5) 2wir = (w1357 — Wa4,68 + 2w1s) wir = wis
1/2,-3/2) < [-1/2,3/2)

Double-quantum (DQz7) 2wy = —(w13,57 — W24,68 — 2W1s) Wi = wis
1/2,1/2) < |-1/2,-1/2)

Zero-quantum (ZQs) 2wir = (w1357 — Waa,68 — 2wW1s) | Wi = —wis
11/2,-1/2) <> [-1/2,1/2)

Double-quantum (DQ¢) 2wir = — (w1357 + waaes + 2wis) | wir = —3wis
11/2,3/2) <> |-1/2,-1/2)

Zero-quantum (ZQss) 2w = (w1357 + wWa4,68 + 2w1s) wir = 3wig
Double-quantum (DQsg) 2wir = —(w13 57 + wases — 2wWis) | wir = —wis

11/2,-3/2) < [-1/2,-1/2)

Zero-quantum (ZQqr) 2w = (w1357 + wWa4,68 — 2w1s) Wiy = wis

5.2 Results and discussion

Following the procedure described in previous chapters, the results emerging from the
analytic theory are rigorously compared with the SIMPSON simulations. For this purpose,
the polarization transfer from spin I = 1/2 (say, 'H and 1 = 26.752 x 10" rad s~ 'T~1)
to S = 3/2 (say, 2*Na and 723, = 7.081 x 107 rad s~ 'T~!) at proton Larmor frequency
600 MHz was examined over a wide range of experimentally relevant parameters. The
discussion presented below is equally valid for any set of spin-1/2 and spin-3/2 systems.
In order to conduct a systematic investigation of the role of quadrupolar coupling strength
(Cg) and orientation, the polarization transfer dynamics is separately examined for
single-crystal with specific orientation (ag and Bg = 0°) and single-crystal with varying
crystallite orientations (ag and fg # 0°), followed by the powder sample. To explicate the
interplay between the quadrupolar coupling constant and the amplitude of the RF field
employed on the S-spin, the discussion is split into three regimes in the present study:
Regime-I (Cg = 200 kHz, Weak), Regime-II (Cg = 500 kHz, Intermediate) and Regime-III
(Cg = 2.0 MHz, Strong). This division is based on the available quadrupolar coupling
strength for commonly found 2*Na compounds (e.g. 0.5 to 5 MHz [178]).
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5.2.1 Description of CP dynamics in a single-crystal (with specific

orientation ag and Sy = 0°)
5.2.1.1 Regime-I (Cp = 200 kHz, Weak)

The CP efficiency profiles resulting from the numerical simulations (black curve) for a
single-crystal sample with Cg = 200 kHz are plotted in Figure 5.3. On scanning the 'H
RF field ranging from 0 to 300 kHz, we observe the following: (a) Two well-separated
CP resonances; (b) the CP resonance in the lower 'H RF field exhibits a significantly
broader profile compared to the higher 'H RF field region, (c) a finite CP efficiency
opposite to the positive/negative CP resonance is observed in the lower 'H RF field region
from the first CP resonance. The observed CP efficiency profiles exhibit a substantial
deviation from those of the S = 1 spin system (in Chapter 3). The overall intensity of
the polarization transfer is notably high, and the resonance spread is significantly large.
The presence of the first-order quadrupolar devoid central transition (CTg) is anticipated
to result in a more intense CP transfer due to perfect spin-locking like in spin-1/2
systems. To understand the above observations, we employed the signal expressions
derived for the eight HH CP conditions using the concept of the effective Hamiltonian
[Eq. (5.23)] and generated the corresponding CP profiles. As shown in Figure 5.3(al), our
analytic theory matches well barring some minor deviations with the numerical simulation
profiles, and therefore is capable of explaining underlying CP dynamics. Interestingly,
the appearance of the two CP maxima in the lower and higher 'H RF field regions
are the direct manifestation of the presence of multiple CP resonance conditions in
multi-level systems. In order to understand the origin of multiple CP resonances, we
evaluated the individual contributions from all eight CP matching conditions using the
signal expression provided in Eq. (5.23). In the present case, the broad CP resonance
at lower 'H RF field is the amalgamation of various HH CP conditions where the DQa7,
DQys and ZQ47; CP conditions overlapped to produce a quite broad CP resonance. In
the range of high 'H RF field, this resonance is predominately described by the DQy7; CP
condition <\1/2, —1/2) <> |-1/2, 1/2>> exactly centered at wqy = 117 kHz and significant

contribution is provided by the ZQ47 CP condition <|1/2, —1/2) < |—1/2, 1/2)) (centered
at w11 = 95.74 kHz). The unequal intensity is due to the different spin-locking efficiency of
the involved S-spin transitions. For example, the DQo7 and ZQ47 CP conditions transfer
the polarization to the CTg (|4+1/2) < |—1/2)) and STig (|-3/2) <> |—1/2)) of the
quadrupolar spin, respectively. The later is inefficiently spin-locked due to the presence
of much stronger quadrupolar coupling dependence, which deteriorates the spin-locking
process due to wg) > wig. Moreover, the ZQgss and DQss CP conditions retained its
high-frequency behaviour and does not provide any significant contribution to the overall
CP efficiency at the selected high S-spin RF field strength. At lower 'H RF field, the CP
profile is dominated by the DQg5 CP condition (|1/2, —3/2) <> |—1/2, 3/2)) centered at
w11 = 42.83 kHz, which transfers the polarization into the triple-quantum (TQg) S-spin
transition (|+3/2) <» |—=3/2)). Unlike other CP resonances, the phase-shifted FQig signal
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Figure 5.3: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single-crystal as a function of the RF field
employed on the I-spin. The numerical simulations (based on SIMPSON) are represented
by solid black lines. The following parameters were employed in the simulations:
Quadrupolar parameters (Cg = 500 kHz, ng = 0, quadrupolar coupling PAS angles ag and
Bgo = 0°) and dipolar coupling parameters (internuclear distance r;g = 1.23 Aand dipolar
PAS angle 5; = 0°). A constant RF amplitude of 115 = 80 kHz was employed on the
quadrupole, S-spin and the mixing time during the CP experiment was held constant (say
tmiz = 0.5 ms). In panel (al) the analytic simulations comprise contributions from all the
eight CP matching conditions (FQ18+DQ45—|—DQ27+ZQ36+DQ38+ZQ47+DQ16—|—ZQ25)
and is represented in violet color. In panel (a2) the analytic simulations based on the
contributions from the FQ;g (cyan curve) and DQ45 (magenta color) CP conditions are
depicted. In panel (a3) the analytic simulations based on the contributions from the DQa7
(red curve) and ZQsp (green color) CP conditions are depicted. In panel (a4) the analytic
simulations based on the contributions from the DQsg (blue curve) and ZQ47 (light green
color) CP conditions are depicted. In panel (a5) the analytic simulations based on the
contributions from the DQi¢ (indigo curve) and ZQos (orange color) CP condition are
depicted.
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Figure 5.4: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the /-spin) is monitored in a single crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I-spin were chosen based on the matching condition expression given in Table 5.3 i.e.,
(al) vir = 42.95 kHz); (a2) vi; = 95.74 kHz; (a3) vy = 117.167 kHz and (al) vy =
255.74 kHz. The following parameters were employed in the simulations: Quadrupolar
parameters (Cg = 200 kHz, ng = 0, quadrupolar coupling PAS angles ag and g = 0°)
and dipolar coupling parameters (internuclear distance ryg = 1.23 Aand dipolar PAS angle
Ba = 0°). A constant RF amplitude of 115 = 80 kHz was employed on the quadrupole,
S-spin. The numerical simulations (based on SIMPSON) are represented by solid black
lines and the analytic simulations comprise contributions from all the eight CP matching

conditions (FQi8+DQ45+DQ27+ZQ36+DQ33+ZQ47+DQ16+ZQ25) and is represented in
violet color.

component does not retain the high-frequency behaviour as explained in Eq. (5.26) and
provides a significant contribution to the overall CP transfer. Therefore, the spin-locking
at lower 'H RF-field amplitudes is not uni-directional, a behaviour that is similar to
the CP involving S = 1. Nevertheless, the narrow CP resonance at high 'H RF-field is
solely described by the ZQgs CP condition (|1/2,3/2) > \—1/2,1/2)). Whereas, due
to the high RF-field requirements, the phase-shifted DQ1¢ signal component retains its
high-frequency behaviour and does not contribute to the overall CP transfer. Interestingly,
the CP efficiency of all the CP conditions is in the order as follows: DQar =~ ZQo5 >
DQ4s > ZQg7. The observed behaviour can be explained based on the spin-locking

and excitation efficiencies of the involved S-spin transitions for various CP conditions.
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As the quadrupolar coupling directly affects the spin-locking process, therefore, the CP
conditions involving the CT,; and TQ, transitions will have better CP efficiencies than
the CP transitions involving the ST transition. However, the better CP efficiency of the
7ZQo5 can be explained based on its high excitation efficiency. This polarization transfer
behaviour stands in stark contrast to S = 1 spin systems, where the multi-quantum (DQg)
transition dominates the polarization transfer at this crystallite orientation and coupling
strength.

Another important parameter for consideration during polarization transfer is the widths
of the various CP resonances. The widths is primarily decided by the magnitude of
effective dipolar coupling strengths of the CP resonances that decreases in the order:
w;8’45 > w§7’36 > w28’47 > wéﬁ’zs. These observations are manifested in the time-domain
CP efficiency profiles, where the rate of polarization buildup is shown to be dependent
on the strength of the effective dipolar coupling constant (Figure 5.4). The time-domain
simulations at each HH CP matching condition are consistent with all the observation of
the RF-domain CP efficiency profiles.

5.2.1.2 Regime-II (Cg = 500 kHz, Intermediate)

To further substantiate the above findings we studied the CP dynamics for a single-crystal
sample associated with Cg = 500 kHz (Figure 5.5). For a consistent description of the
CP dynamics, we retained all other simulation parameters. In this coupling regime,
the numerical simulation (black curves) shows three well-separated CP resonances of
unequal intensities and widths. Interestingly, in contrast to contribution from the negative
intensity a particular CP resonance, we observed a CP resonance with totally negative
intensity which appears at quite high 'H RF-field amplitudes. In order to comprehend
the observed CP behaviour, we evaluated the analytic simulations [Eq. (5.23)], which
converges well with the numerical simulations (panel al). The individual analytic signal
contributions reveal the origin of all the observed CP resonances (panel a2-a5). Due to
strong quadrupolar coupling strength, the DQqs and DQ27 CP resonances shift in the
lower RF-field regions while the ZQo5 CP resonance shift in the higher RF-fields region,
therefore the overall CP efficiency profile widens. However, unlike the weaker quadrupolar
coupling regime, the contribution from the DQ45 CP resonance is negligible as compared
to much stronger DQo7 polarization transfer. We observe almost zero CP efficiency from
the ZQ47 CP resonances. Moreover, the phase-shifted signal components ZQsg, DQ1¢ and
DQsg retain their high-frequency behavior and does not contribute significantly to the
all overall CP transfer. However the phase-shifted FQig signal component is expected to
provide a significant contribution as compared to the ZQsg signal component. However,
due to the intense DQ97 polarization transfer these smaller contribution becomes almost
irrelevant in the overall polarization transfer. The overall width of various CP resonances
increases with increasing the strength of the quadrupolar couplings, particularly for the
7Q25 CP resonance. This is due to the quadrupolar coupling dependence of the effective

dipolar coupling constant. This behaviour is reflected in the time-domain simulations in
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Figure 5.5: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the [-spin) is monitored in a single-crystal as a function of the RF field
employed on the /-spin. The numerical simulations (based on SIMPSON) are represented
by solid black lines. The following parameters were employed in the simulations:
Quadrupolar parameters (Cg = 500 kHz, ng = 0, quadrupolar coupling PAS angles ag and
Bgo = 0°) and dipolar coupling parameters (internuclear distance r7g = 1.23 Aand dipolar
PAS angle 5; = 0°). A constant RF amplitude of 115 = 80 kHz was employed on the
quadrupole, S-spin and the mixing time during the CP experiment was held constant (say
tmiz = 0.5 ms). In panel (al) the analytic simulations comprise contributions from all the
eight CP matching conditions (Fng+DQ45—|—DQ27—|—ZQ36+DQ38+ZQ47+DQ16+ZQ25)
and is represented in violet color. In panel (a2) the analytic simulations based on the
contributions from the FQ;g (cyan curve) and DQ45 (magenta color) CP conditions are
depicted. In panel (a3) the analytic simulations based on the contributions from the DQa7
(red curve) and ZQss (green color) CP conditions are depicted. In panel (a4) the analytic
simulations based on the contributions from the DQsg (blue curve) and ZQ47 (light green
color) CP conditions are depicted. In panel (a5) the analytic simulations based on the
contributions from the DQig (indigo curve) and ZQgs (orange color) CP condition are
depicted.
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Figure 5.6: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single crystal as a function of the CP mixing
time under constant RF field strengths on both the spins. The RF amplitudes on the
I-spin were chosen based on the matching condition expression given in Table 5.3 i.e.,
(al) v = 14.95 kHz); (a2) vi; = 145.04 kHz; (a3) vi; = 171.07 kHz and (al) vi =
331.07 kHz. The following parameters were employed in the simulations: Quadrupolar
parameters (Co = 500 kHz, ng = 0, quadrupolar coupling PAS angles o and Sg = 0°)
and dipolar coupling parameters (internuclear distance r;g = 1.23 Aand dipolar PAS angle
Ba = 0°). A constant RF amplitude of 115 = 80 kHz was employed on the quadrupole,
S-spin. The numerical simulations (based on SIMPSON) are represented by solid black
lines and the analytic simulations comprise contributions from all the eight CP matching
conditions (FQ18+DQu5+DQar+ZQ36+DQ3s+ZQ47+DQ16+7ZQ25) and is represented in
violet color.

Figure 5.6.

5.2.1.3 Regime-III (Cy = 2.0 MHz, Strong)

In the case of larger Cp = 2.0 MHz (Figure 5.7), as expected the separation between the
outermost DQy5 and ZQa5 CP conditions becomes wider in comparison to Cg = 500 kHz
case and the overall efficiency of the polarization transfer is diminished. Results emerging
from our analytic theory rightly account for the appearance of CP resonances in the lower
and higher 'H RF regions corresponding to the DQus, DQa7, ZQ47 and ZQa5 CP resonances
barring a minor deviation in the high 'H RF-field regions. In the region of lower 'H

RF-field, the DQy5 transition become insignificant in leading any significant polarization
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transfer and the overall CP transfer is dominated by the DQo7 CP condition. Interestingly,
we observe a negative CP efficiency for the ZQ47 CP condition at this quadrupolar coupling
strength. This quadrupolar coupling independence of this DQo7 CP condition has made

the half-integer quadrupolar spin an interesting choice for most of the quadrupolar spins.

5.2.2 Description of CP dynamics in a single-crystal (with general
orientation ag and [y # 0°)

The CP efficiency of a single-crystal sample is expected to vary depending on the
orientation of the quadrupolar coupling interaction tensor from the principal axis system
(PAS), (Bg and ag) with respect to the lab axis frame. In order to manifest this aspect
we carried out the numerical simulations and generated the CP efficiency profiles with a
variation in the angle g for Cg = 1.0 MHz. As depicted in Figure 5.8 (0° < g < 180°,
both the CP efficiency and position of CP resonances are highly orientation dependent. At
Bo = 0°, the CP efficiency profile is described by the four (DQus, DQa7, ZQu7 and ZQas)
CP resonances and there is almost negligible contribution from the DQ45 CP condition
and the ZQ7 CP condition has negative intensity. From the analytic theory point of
view, when varying orientation from 0° < Bg < 45°, the CP dynamics is described
by the DQus, DQo7, ZQ47 and ZQo5 CP resonances and the overall spread of the CP
efficiency profile decreases and the CP efficiency associated with the ZQ47 CP condition
become positive. This is due to the decrease in the magnitude of the quadrupolar
coupling frequency. At g = 45°, the ZQ47 CP condition while the contribution from
the phase-related signal components DQy5 and FQqg becomes finite in the region of lower
'H RF-field highlighting the non-unidirectional spin-locking behaviour. For Bo = 54.736°,
the first—order quadrupolar coupling vanishes (Figure C.2 in Appendix-C) and the DQgs,
DQa7, ZQ47 CP conditions with equal CP efficiencies fully overlap to produce a single
intense CP maxima centered at wiy = 80 kHz. While the ZQs5 CP resonances appear
at w1y = 3wis (as mentioned in Table 5.3) and is relatively narrower. Although the
analytic theory shows slightly deviation at this CP resonance. As shown previously,
the signal contribution from the DQ4s, DQ27, ZQ47 CP conditions should be added to
perfectly fit the numerical simulation profile at lower 'H RF-field. At Bgo = 54.736°,
there is no contribution to the overall CP efficiency from the FQig and ZQ3ss, DQ16 and
DQss CP conditions as the 'H RF field at the matching condition is sufficiently high
for any manifestation of these CP conditions. Furthermore, the first—order quadrupolar
coupling frequency changes it’s sign when 54.736° < g < 125.264° [Eq. (4.1)]. As a
consequence, the DQg5 and ZQsg CP conditions are swapped and hence, the CP efficiency
in the lower and higher 'H RF field regions are now governed by the ZQss and DQys CP
conditions, respectively, as shown in Figure 5.8 panels (a4-a6). Due to this swapping of
CP conditions, the DQg5 CP condition will have the behaviour of transferring polarization
into the central transitions CT; and therefore will have higher intensity of the polarization

transfer then rest of the CP conditions. Such behavior has not been presented in the
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Figure 5.7: In the CP simulations depicted, the polarization build-up on the S-spin
(due to transfer from the I-spin) is monitored in a single-crystal as a function of the
RF field employed on the [-spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in
the simulations: Quadrupolar parameters (Cg = 2.0 MHz, ng = 0, quadrupolar
coupling PAS angles ag and g = 0°) and dipolar coupling parameters (internuclear
distance rrg = 1.23 Aand dipolar PAS angle 8; = 0°). A constant RF amplitude
of g = 80 kHz was employed on the quadrupole, S-spin and the mixing time
during the CP experiment was held constant (say tpmi; = 0.5 ms). In panel
(al) the analytic simulations comprise contributions from all the eight CP matching
conditions (FQi8+DQ45+DQ27+ZQ36+DQ33+ZQ47+DQ16+ZQ25) and is represented in
violet color.In panel (a2) the analytic simulations based on the contributions from the
FQis (cyan curve) and DQy5 (magenta color) CP conditions are depicted. In panel (a3)
the analytic simulations based on the contributions from the DQa7 (red curve) and ZQsg
(green color) CP conditions are depicted. In panel (a4) the analytic simulations based on
the contributions from the DQgg (blue curve) and ZQ47 (light green color) CP conditions
are depicted. In panel (a5) the analytic simulations based on the contributions from the
DQi6 (indigo curve) and ZQas (orange color) CP condition are depicted.
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Figure 5.8: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single crystal (with general orientation)
as a function of the RF field employed on the I-spin. In the simulations depicted, the
effects of the variation of quadrupolar coupling PAS angle fg: 0° (al), 45° (a2), 54.736°
(a3) 90° (ad), 110° (ab), 125.624° (a6), 135° (a7) and 180°(a8) on the CP dynamics is
illustrated. The following parameters were employed in all the simulations: Cg = 500
kHz, ng = 0, quadrupolar coupling PAS angle ag = 0°, contact time (t;;) = 0.5 ms,
dipolar coupling parameters (internuclear distance r;g = 1.23 Aand dipolar PAS angle
Ba = 0°) and v1g = 50 kHz. SIMPSON simulations (black curve) are fitted with the
total analytic signal expressions: FQis + DQg5 (green color), DQa7+ ZQs6 (red color),
DQsg + ZQg47 (blue color) and DQig + ZQos (orange color) in panels al-a8. The insets
in panels al and a8 show CP maxima in the higher I-spin RF field range.
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theoretical description presented by the Vega at. al. [47]. Meanwhile, the ZQ7 and ZQas

CP conditions retain their original behaviour and do not undergo any swapping. In the
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Figure 5.9: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single crystal (with general orientation) as
a function of the RF field employed on the I-spin. In the simulations depicted, the effects
of the variation of quadrupolar coupling PAS angle ag: 0° (al), 30°(a2), 60° (a3) and
90° (a4) on the CP dynamics are illustrated. The following parameters were employed
in all the simulations: Cgp = 1.0 MHz, g = 1.0, quadrupolar coupling PAS angle B¢
= 90°, contact time (i) = 0.5 ms, dipolar coupling parameters (internuclear distance
rrs = 1.23 Aand dipolar PAS angle 8y = 0°) and 119 = 80 kHz. SIMPSON simulations
(black curve) are fitted with the total analytic signal expressions: FQs + DQys (green
color), DQao7+ ZQs6 (red color), DQss + ZQ47 (blue color) and DQig + ZQgs (orange
color) in panels al-a4.
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higher 'H RF field region, the CP efficiency profile is dominated by the ZQu7 and ZQas
CP conditions, where the ZQ47 CP condition will have negative CP efficiency. The ZQu7
and ZQa5 resonances shift significantly in the range 0° < g < 180° in contrast to the
DQ45 and DQ2o7 CP resonances highlighting strong Cg dependence of the ZQ47 and ZQ2s5
resonances due to the involvement of the satellite transitions. At Bg = 125.264°, the
first-order quadrupolar coupling frequency again pass through zero and the behaviour is
exactly similar to 8g = 54.736°. In the range 125.264° < B < 180°, the CP efficiency
profile exactly display a similar CP dynamics as in 54.736° > o < 0°. Interestingly,
as the value of the quadrupolar coupling constant is scaled with the orientation of the
quadrupolar coupling tensor with respect to the lab frame at a fixed C, the CP efficiency
profiles observed at variable orientations may correspond to the different quadrupolar
coupling regimes as shown and discussed in the previous sections. For instance, fg = 0°
and 90° refer to CP efficiency profile corresponding to the larger quadrupolar coupling
case. Whereas g = 45° and (g values in close proximity to 54.736° correspond to the CP
efficiency profiles in the intermediate and weak quadrupolar coupling regimes, respectively.
The quadrupolar PAS angle o affects the magnitude and sign of quadrupolar frequency,
therefore the position and efficiency of CP resonances vary with the variation of ag angles

at a fixed Bg angle. Such simulations are presented in Figure 5.9.

5.2.3 Description of the CP dynamics in a powder sample

The theoretical framework proposed is shown to explain the CP dynamics associated with
a single-crystal sample. On the basis of results obtained from the single-crystal studies,
we extended our theory to describe the CP dynamics in a more complex powder sample
under static condition. Numerical simulations in Figures 5.10, 5.11 and 5.12 carried out
on a powder sample led to the following observations: With increasing C¢q values (a) the
CP efficiency profile broadens and splits into three maxima of unequal intensities, (b) the
CP transfer efficiency decreases (c¢) one of the CP maxima shift towards the lower and
others at the higher 'H RF values with increasing Cq. In order to get deeper insights into
the above observations, we carried out analytic simulations using the signal expressions
derived on the concept of effective Hamiltonian in the previous section [Eq. (5.23)]. The
analytic simluations are in prefect convergence with the numerical simulation across all
the quadrupolar coupling regimes. Therefore, the validates the proposed analytic theory
in explaining the trajectory of the polarization in anistropic sample i.e., powder sample.
Analogous to the single-crystal study, for a smaller Cg (= 200 kHz) value (Figure 5.10),
the resulting CP efficiencies from the DQu5, DQ27 and ZQ47 CP conditions overlap and
when co-added manifest exactly the CP profile observed from the numerical simulation in
the lower 'H RF-field region. While, in the higher 'H RF-field region, the CP efficiency
profile is dominated by the ZQs5 CP condition. Under this condition the contributions
from the phase-shifted FQ1s and ZQsg, DQ1g and DQsg CP conditions are negligible. The
reason for the splitting of the pure DQy5, DQo7 and ZQss CP resonances is due to the

unequal distribution of the various crystallite orientations. Interestingly, with increasing
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strength of the quadrupolar coupling constant, the broad CP resonance in the lower 'H

RF-field region splits into two maxima of unequal intensities. The individual analytic
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Figure 5.10: In the CP simulations depicted, the polarization build-up on the S-spin
(due to transfer from the I-spin) is monitored in a powder sample as a function of
the RF field employed on the /-spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Cg = 200 kHz, ng = 0 and quadrupolar coupling PAS angles ag and g
= 0°), dipolar coupling parameters (internuclear distance r;s¢ = 1.23 Aand dipolar PAS
angle 5; = 0°), RF amplitude of S-spin 15 = 80 kHz and mixing time during the CP
experiment (say tmni; = 0.5 ms) were identical in all the simulations. In the first row,
the analytic simulations comprise contributions from all the eight CP matching conditions
(FQi18+DQus+DQ2r+ZQ36+DQ3s+ZQ47+DQ16+7ZQ25) and is represented in violet color.
In the second row, the analytic simulations based on the contributions: FQis + DQus
(green color), DQa7+ ZQse (red color), DQss + ZQa7 (blue color) and DQig + ZQo2s
(orange color). The powder simulations were performed using 4180 orientations (i.e.,
zcw4180) of o and .
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fittings reveal the contribution of the various CP conditions in leading to the overall CP
transfer. Interestingly, the DQy5 condition is seen to be more efficient than the ZQsg

condition. The higher efficiency of the DQq5 condition can be explained on the basis of
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Figure 5.11: In the CP simulations depicted, the polarization build-up on the S-spin
(due to transfer from the I-spin) is monitored in a powder sample as a function of
the RF field employed on the I-spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Cg = 500 kHz, ng = 0 and quadrupolar coupling PAS angles ag and Sg
= 0°), dipolar coupling parameters (internuclear distance r;g = 1.23 Aand dipolar PAS
angle 55 = 0°), RF amplitude of S-spin ;g = 80 kHz and mixing time during the CP
experiment (say tmn;,; = 0.5 ms) were identical in all the simulations. In first row, the
analytic simulations comprise contributions from all the eight CP matching conditions
(FQ18+DQ45—I—DQ27—|—ZQ36—|—DQ38—|—ZQ47—|—DQ16—|—ZQ25) and is represented in violet color.
In the second row, the analytic simulations based on the contributions: FQis + DQus
(green color), DQa7+ ZQse (red color), DQss + ZQu7 (blue color) and DQig + ZQa2s
(orange color). The powder simulations were performed using 4180 orientations (i.e.,
zcw4180) of a and .
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the probability of the crystallite orientations in the plane perpendicular to the applied
Zeeman magnetic field. The powder averaging expression described in Eq. (2.16). As
shown in the single-crystal case above (Figure 5.8), the first-order quadrupolar coupling
constant changes it’s sign when 54.736° < fg < 125.264° [Eq. (4.1)] resulting in the
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Figure 5.12: In the CP simulations depicted, the polarization build-up on the S-spin
(due to transfer from the I-spin) is monitored in a powder sample as a function of
the RF field employed on the I-spin. The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Cg = 2.0 MHz, ng = 0 and quadrupolar coupling PAS angles ag and Sg
= 0°), dipolar coupling parameters (internuclear distance r;g = 1.23 Aand dipolar PAS
angle 5; = 0°), RF amplitude of S-spin v1g = 80 kHz and mixing time during the CP
experiment (say tmi, = 0.5 ms) were identical in all the simulations. In first row, the
analytic simulations comprise contributions from all the eight CP matching conditions
(FQ18+DQ45+DQ27—|—ZQ36+DQ38+ZQ47+DQ16—I—ZQ25) and is represented in violet color.
In the second row, the analytic simulations based on the contributions: FQis + DQus
(green color), DQo7+ ZQsg (red color), DQss + ZQ47 (blue color) and DQis + ZQ2s
(orange color). The powder simulations were performed using 4180 orientations (i.e.,
zcw4180) of o and f3.
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Figure 5.13: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the [-spin) is monitored in a powder sample as a function of the CP
mixing time under constant RF amplitudes on the spins. The RF amplitudes on the
I-spin were chosen based on the CP maxima observed in Figures 5.10, 5.11 and 5.12 i.e.,
panels al-a2 (g = 80 kHz); panels bl-b2 (v = 132 kHz); panels cl-c¢2 (v1g = 156
kHz). The following parameters were employed in the simulations: Panels al-a3 (Cg =
200 kHz, ng = 0); panels bl-b3 (Cg = 500 kHz, ng = 0) and panels cl-c3 (Cg = 2.0
MHz, ng = 0). The remaining simulation parameters and descriptions are as given in the
caption of Figure 5.10.

swapped DQy5 and DQ27 CP conditions. As the crystallite orientations for the powder
sample are more probable in the plane perpendicular to the applied magnetic field which
is a case suitable for the DQys CP condition [Figure 5.8(a4), Sg = 90°] resulting in the
DQys CP efficiency being higher than the DQgy7 CP efficiency for the most intense CP
resonance. Whereas in the lower 'H RF field region, the DQy7 CP is more efficient for
the reason explained above. Notably, minor contributions from the phase-shifted ZQsg
CP condition to the overall CP conditions are also observed for the Cg = 2.0 MHz case
(Figure 5.12). However, for the simplified representation, we have not shown the individual
contribution for all CP conditions in these figures. With increasing quadrupolar coupling
strength the contributions to the CP efficiency from the phase-shifted components ZQsg
and FQg field increases further (Figure 5.12). With increasing Cg, the position of the
maximum CP transfer changes, while its intensity does not change significantly. This is
due to the existence of the first-order quadrupolar coupling transition (CTy), which under

the influence of the powder averaging exchange the character with the TQ, transition, but



Chapter 5. Analytic theory of cross-polarization (CP) dynamics between spin-1/2 and
142 spin-3/2 nuclei

retain its characteristic quadrupolar independent nature. While the CP efficiency of the
CP condition involved in the satellite transitions (ST;s and STss) dramatically deceases
with increasing Cp. Apart from that the powder sample CP efficiency profile at Cp = 500
kHz and 2 MHz, the overall CP transfer demonstrates the exchange behaviour (positive to
negative CP efficiency) of the ZQ47 CP condition which is solely governed by the magnitude
of the quadrupolar coupling strength. Due to distribution of the quadrupolar coupling
frequencies in case of powder sample, the ZQ47 condition is simultaneously satisfied for
different crystallite orientation, thus, we observe both positive and negative contribution
to the overall CP transfer. The time-domain simulations at Cg = 200 kHz (weak),
500 kHz (intermediate), and 2.0 MHz (strong) are shown in Figure 5.13 respectively,
supports the above findings. Unlike the single-crystal case wherein the time-domain profile
from the respective CP matching conditions resulted in perfect sinusoidal oscillations,
in the case of the powder sample the time-domain oscillations due to the interference
of signal contributions from the different crystallite-orientations overlap to result in a
non-sinusoidal behavior. Besides, with increasing quadrupolar coupling strength, the
time-domain oscillations become more wiggled representing a non-uniform CP transfer
due to the mixing of different CP fields. On the basis of the proposed analytic theory
of the CP for a powder sample we can summarize the results as follows: (a) Depending
on the strength of the quadrupolar coupling constant (Cg) all the eight Hartmann-Hahn
CP conditions are seen to contribute to the overall CP efficiencies when added together
match perfectly well with the numerical simulation result. In other words, all the eight
CP matching conditions become indistinguishable and mix together to result in the overall
CP efficiency profiles, (b) the contribution due to the mixing of CP condition becomes
more prominent with increasing Cg, (c) unlike the S = 1 system, the CP efficiency at
the lower 'H RF-field region (DQg5 and ZQ47) does not change much with increasing
quadrupolar coupling constant, (d) the decrease in the CP transfer efficiency for the ZQ47
and ZQas CP conditions for the powder sample is a direct manifestation of the strength
of the quadrupolar coupling and poor spin-lock efficiency. Hence, the presence of multiple
crystallite orientations coupled with the strength of quadrupolar coupling in a multi-level
system leads to a complex CP transfer mechanism. Unlike the spin-1/2 system, the concept
of a unidirectional field to describe the CP dynamics is not valid in the case of CP involving
the quadrupolar spins. The proposed analytic theory is capable of explaining the intricate

CP dynamics by the interplay of the various CP condition.

5.2.4 Extraction of the dipolar coupling parameters from the CP

lineshapes

The mathematical process of the dipolar coupling parameters estimation from the
time-domain CP signal is already discussed in Chapters 2 and 3. The dipolar coupling
parameters are extracted from the CP experiment by monitoring the CP efficiency as a
function of the mixing time, and the resulting data is Fourier transformed (FT) to get the

frequency-domain CP spectrum [165,179]. The Fourier-transformed CP signal expression
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[Eq. (5.23)] is given below:

Sw) = 3 Cum[5w) — 5 {600 — wih) + 8w + i)} (5.33)
ij

where 15 = 18,45,27,36,38,47,16, and 25. The coefficients C;; can be found from Eq.
(5.23). From Eq. (5.33), it is evident that the overall CP spectrum will feature conjugate
symmetric peaks resulting from the effective frequencies of all possible HH CP matching
conditions, in addition to their zero-frequency peaks. The zero-frequency peak will always
be associated with opposite phase, thus does not hinder in the estimation of the dipolar
coupling parameter. The above expressions can be simplified by setting the exact HH CP

matching conditions as given below:

DQ45/FQ1s CP matching condition:

S(w)y = Cig () - 1{ 6w — ;") + 8w + wy ) }]

? (5.34)
Purely dipolar splitting (29,;[118’45)
e DQ»7/ZQ3; CP matching condition:
L 27,36 27,36
S = Cunlae) ~ {8 ™) va e}
Purely dipolar splitting (2(,.)37736)
e DQ33/ZQ47 CP matching condition:
1 38,47 38.47
S(w)ij = Cym {(5(w) - 5{ 5w — W) 4 §(w + wW3T) H . s
Purely dipolar splitting (2(,,;38747)
e DQi6/ZQ25 CP matching condition:
1 16,25 16,25
Sw)iy = Caym|5(w) = 5{ 8w —wi™) + 3w +"*) }]. (5.37)

Purely dipolar splitting (2w}>%)

where, Cj; are the coefficients shown in Eqs. (5.25) and (5.32) under various HH CP
matching conditions. From a practical perspective, the dipolar parameter in the FT
spectrum is determined by measuring the frequency separation between the two symmetric
peaks (2%1[8745 or 2w§7’36 or 2w38’47 or 2w61l6’25). However, on deviating from the exact HH
CP condition, the frequency separation between the two symmetric peaks will be given
by the effective-field for the particular CP condition (i.e. wzjf ). Figure 5.14 illustrates
the CP spectra for a single-crystal sample at Cg = 200 kHz under the DQys5, DQ27 and
ZQ47 HH CP matching conditions in panels (al-bl), (a2-b2) and (a3-b3), respectively.
We have disregarded the ZQss CP condition as it appear at RF-field amplitude beyond
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experimental capabilities. The separation between the conjugate symmetric peaks in the

resulting dipolar spectrum are inequivalent highlighting their unequal effective dipolar

coupling constant at Cg # 0 kHz. These effective dipolar coupling constant (wcll&45,

w§7’36, w28’47 and wé6’25) are strongly dependent on the quadrupolar coupling constant,

therefore, the distance between the conjugate symmetric peak will vary with crystallite
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Figure 5.14: In the simulations depicted, the frequency-domain S-spin signal in a
single-crystal emerging from Fourier transformation of the mixing time domain signal
corresponding to the DQy5 (first column), ZQu7 (second column) and DQg7 (third
column) CP matching conditions is shown at quadrupolar coupling constant Cg =200
kHz. All other parameters such as the quadrupolar coupling PAS angles ag and
Bo = 0°, dipolar parameters (internuclear distance ri3 = 1.23 A and dipolar PAS
angle f; = 0°) and RF amplitude of S-spin 115 = 80 kHz were identical in all the
simulations. Depending on the magnitude of the quadrupolar coupling constant, the
RF amplitudes employed on the [I-spin were carefully adjusted to match the DQgs
(first column), ZQ47 (second column) and DQa7 (third column) CP matching conditions.
The analytic simulations in the panels have the following definitions: first row, the
analytic simulations comprise contributions from all the eight CP matching conditions
(FQ18+DQ45+DQ27+ZQ36+DQ38+ZQ47—|—DQ16+ZQ25) and is represented in violet color.
In the second row, the analytic simulations based on the contributions: FQis + DQus
(green color), DQao7r+ ZQse (red color) and DQsg + ZQa7 (blue color). The analytic
simulations based on DQqg and ZQo5 CP signals are not shown due to their negligible
contributions at the specified RF conditions. A line broadening of 50 Hz was used before
the Fourier transform of the time-domain CP signal.
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Figure 5.15: Effect of strength and orientation of quadrupolar tensor on the effective
dipolar coupling constants. = The following simulation parameters were employed:
Quadrupolar parameters Cg varied and PAS angles ag and g = 0° (al) and Cg =
200 kHz and PAS angles ag and g = 0° (a2); dipolar parameters (internuclear distance
r2 = 1.23 A and dipolar PAS angle 8; = 0°) and RF amplitude of S-spin 15 = 80 kHz
were identical in all the simulations.

orientation orientations at a fixed internuclear distance and dipolar tensor orientation.
The dependence of the effective dipolar coupling constant (wcll8745, w§7’36, w28’47 and w;6’25)
with quadrupolar coupling magnitude and crystallite orientation is shown in Figure 5.15.
At Cg = 200 kHz, the resulting CP spectrum in the DQ45 CP condition (panel bl) is
predominately described by the DQ45 CP signal expression and the phase-shifted FQg
components appear at higher-frequency (see the opposite phase). In addition, the CP
spectrum will also be associated with a significant contributions from the DQs; and
ZQ47 CP conditions which appear in-phase with the DQy5 CP signal. Although, we
get minor deviations in the analytic theory in the weak coupling limit at lower 'H
RF-field amplitudes. Under the DQo7 and ZQ4y HH CP conditions, the resulting CP
spectrum is dominated by the DQ97 and ZQ47 frequencies along with the contributions
form the higher-frequency components (refer to figure caption for details). Due to
different magnitude of the effective dipolar coupling constants, the distance between
the conjugate symmetric peaks are different for the DQy5, DQo7 and ZQ47; CP spectra.
Apart form the quadrupolar dependence, the magnitude of the effective dipolar coupling
constants also dependent on the radio-frequency amplitude applied S-spin system (Figure
5.16). Therefore, the separations between the conjugate symmetric peaks are highly
system-specific and experimental parameter dependence at a fixed internuclear distance.
Hence, the dipolar coupling measurement in quadrupolar systems are complicated and
necessitates exact simulation of the experimental conditions. Figure 5.17 demonstrates
the CP spectrum at Cg = 500 kHz and 2.0 MHz under the DQ27 HH CP condition for
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Figure 5.16: Effect of strength S-spin RF amplitude on the effective dipolar coupling
constants. The following parameters were used in the simulations: Cg = 200 kHz, ng = 0,
quadrupolar coupling PAS angles (0°, 0°, 0°), and v;5 = 80 kHz.

a single-crystal sample. Unlike the weaker coupling regimes, the resulting CP spectrum
consist of fewer high-frequency components and are dominantly described by the DQor
conditions at the specified parameters.

The straightforward method presented for the single-crystal sample for estimation of the
dipolar coupling through the separation between the symmetric peaks, will not hold for
the powder sample. This is due to the coupled orientation dependence of the effective
dipolar constants (dipolar and quadrupolar tensor orientations) which become complex
in the powder sample. In addition, in powder sample various crystallite orientations will
undergo different HH CP matching conditions at a specified RF conditions. Therefore,
the resulting CP lineshape will not have pure pake like doublet observed in the spin-1/2
systems and will be highly distorted. Figure 5.18 illustrates the CP lineshape in various
quadrupolar coupling regimes for the power sample. For comparison, we have shown
the CP lineshape at Cg = 0 kHz for powder sample at wi; = w;g HH CP condition
(panel al). Likewise, the single-crystal sample, the CP lineshape in this coupling regime
will have equivalent contributions from the DQg5, DQo; and ZQ47 CP conditions and
the observed spectrum will have the characteristic shape of the heteronuclear dipolar
pattern for idealized S = 3/2 spin system coupled to a I = 1/2 spin system except for the
zero-frequency peak with negative intensity which is specific of the CP induced excitation
spectra. The distance between the CP singularities will provide estimation of the dipolar
coupling acting between the spin-system. At Cg = 200 kHz (panel a2), the CP lineshape is
distorted with multiple-singularities and no noticeable foot signal is observed. The overall
CP lineshape is determined by the DQys5, DQa7 and ZQ47 signal contributions and in this
coupling regime, we don’t observed any significant contributions from the high-frequency
phase-shifted components. As the strength of the quadrupolar coupling constant increase,

the overall CP lineshape become highly distorted and the degree of the contribution also
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Figure 5.17: In the simulations depicted, the frequency-domain S-spin signal in a
single-crystal emerging from Fourier transformation of the mixing time domain signal
corresponding to the DQoy CP matching condition is shown at quadrupolar coupling
constants Cg = 500 kHz (al) and 2000 kHz (a2). All other parameters such as the
quadrupolar coupling PAS angles ag and g = 0°, dipolar parameters (internuclear
distance 719 = 1.23 A and dipolar PAS angle 8; = 0°) and RF amplitude of
S-spin 13 = 80 kHz were identical in all the simulations. Depending on the
magnitude of the quadrupolar coupling constant, the RF amplitudes employed on
the I-spin were carefully adjusted to match the DQg7; CP matching condition. The
analytic simulations comprise contributions from all the eight CP matching conditions

(FQ18+DQus+DQ2r+ZQ36+DQ3s+7ZQa7+DQ16+7ZQ25) and is represented in violet color.
A line broadening of 50 Hz was used before the Fourier transform of the time-domain CP
signal.

varies. At Cg = 2.0 MHz, the CP spectrum suffers from additional distortions resulting
from the high-frequency phase-shifted components. Theses observation are in accord with
the CP dynamics presented in the previous section which highlighted the interplay of all
possible CP conditions in deciphering the polarization transfer in powder sample across
all coupling regimes. The dipolar coupling estimation can be made by the iterative fittings
of the CP lineshape using the Eq. (5.23). Apart from the dipolar coupling measurements,
the frequency domain analysis will reveal the underlying spin-dynamics of the polarization
transfer in the quadrupolar systems. The detailed analytical description presented herein
provides account of the observation of the various distortion observed in single-crystal and

powder samples.
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Figure 5.18: In the simulations depicted, the frequency-domain S-spin signal in powder
sample emerging from Fourier transformation of the mixing time domain signal is shown
for different quadrupolar coupling constants: panel al-bl (Cg = 0 kHz); panel a2-b2
(Cg =200 kHz); panel a3-b3 (Cq = 500 kHz) and panel a4-b4 (Cg = 2.0 MHz). All
other parameters such as the quadrupolar coupling PAS angles ag and g = 0°, dipolar
parameters (internuclear distance 715 = 1.23 A and dipolar PAS angle 3; = 0° kHz were
identical in all the simulations. The RF amplitudes employed on the I-spin taken from
the Figure 5.13. The analytic simulations in the panels have the following definitions: first
column, the analytic simulations comprise contributions from all the eight CP matching
conditions (FQi8+DQus+DQa7+7ZQ36+DQ3s+2Qa7+DQ16+7ZQ25) and is represented in
violet color. In the second column, the analytic simulations based on the contributions:
FQis + DQus (green color), DQar+ ZQs6 (red color) and DQss + ZQ47 (blue color). The
powder simulations were performed using 4180 orientations (i.e., zcw4180) of @ and 8. A
line broadening of 50 Hz was used before the Fourier transform of the time-domain CP
signal.

5.3 Conclusions

To summarize, we have presented a detailed analytic treatment for the CP experiment
between I = 1/2 and S = 3/2 spin systems under on-resonance irradiation. Using
the “effective-field” approach, the proposed theory provided a single unified analytic
framework comprising all the eight possible HH CP matching conditions which is equally
valid for single-crystal and powder samples. Unlike the existing analytic framework, the
proposed theory provides a quantitative description of the individual contributions from
all the possible CP matching conditions. The quantitative treatments reveal the role of

quadrupolar coupling strength and crystallite orientation in deciphering the spin-dynamics
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of the quadrupolar CP. This simplified description simplified the understanding of the CP

dynamics in powder sample. From an experimental point of view, we have provided

analytic description of the CP lineshapes for the dipolar coupling measurements.



Chapter 6

Summary and Conclusions

In summary, the thesis presents a unified description of cross-polarization (CP) dynamics
in quadrupolar spins based on the concept of effective Hamiltonians derived using the
“effective-field ” approach. In the thesis, operator-based analytic theory of spin-dynamics
is presented in a two-spin model framework described in a coupled spin operator basis for
understanding the mechanism of polarization transfer between I = 1/2 to S = 1 and 3/2
spin systems in static/non-rotating solids. In contrast to the existing theoretical models
based on the AHT and the Floquet theory, the proposed approach is shown to be an
attractive option for describing the mechanism of the polarization transfer experiments
in multi-level systems. The effective-field approach facilitates the derivation of effective
CP Hamiltonians requiring a minimal set of unitary transformations, unlike existing
operator-based perturbative methods that require perturbation corrections up to several
orders of magnitude. Our theory is able to identify all the modes of polarization transfer
and their individual contributions to the overall CP efficiency within a single mathematical
framework suitable for both single crystal as well as powder samples. Below, we summarize

the key findings of the thesis as discussed in the previous chapters.

A Theory and Methodology: An effective-field approach to understand
the mechanism of cross-polarization dynamics between spin-1/2

systems

In order to test the validity of the effective-field based analytic theory in the description
of CP dynamics, we have used an isolated spin-1/2 pair as a model system. In the
coupled basis representation, the overall CP signal expression is shown to be the sum
of contributions from the two HH CP matching conditions, namely the zero-quantum
(ZQ23) and the double-quantum (DQ14) along with an additional term arising from the
interference of the two HH CP conditions. Contrary to the existing literature reports,
the proposed theory offers a closed form solution to the effective CP Hamiltonian capable
of describing the CP dynamics across all coupling regimes under on/and off-resonance
irradiations. Under on-resonance irradiation (g = 0), the proposed analytic theory
demonstrates an interplay of the double and zero-quantum CP conditions in deciphering
the overall CP transfer efficiency in the strong coupling regime (wq ~ wyg). While in the
weak coupling regime (wg << wig), the CP dynamics is deciphered by either of the two
CP conditions. We concluded that the effective spin-locking field is not uni-directional in

the strong coupling regime. Nevertheless, under the S-spin off-resonance irradiation, the
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involvement of the interference term further complicates the polarization transfer process.
In the case of stronger off-resonant irradiation (g ~ w;g), we observed a dipolar coupling
dependent shift in the position of the HH CP matching conditions along with dispersion
of both the ZQ23 and DQ14 CP conditions. In strong coupling regimes ({2g ~ w;g and
wq &~ w1g), the spin-locking process is described by the contributions from the ZQ23 and
D@14 CP conditions and interference terms in the CP signal expression. The presence of
the interference effect gives rise to an additional pathway for the loss in /-spin polarization
near wiy = 0 without S-spin gaining any polarization. The above findings encouraged the
expansion of the proposed analytic framework to explore the CP dynamics in more complex

quadrupolar nuclei.

B Analytic theory of cross-polarization (CP) dynamics between

spin-1/2 and spin-1 nuclei

In this chapter of the thesis, an operator-based analytic theory employing the concept
of the effective-field is presented to describe the mechanism of polarization transfer
between spin-1/2 and spin-1 nuclei. Under on-resonance irradiation (both I and
S-spins), the proposed theoretical framework that the CP dynamics is governed by
the contributions from the four Hartmann-Hahn CP conditions, namely, triple-quantum
(T'Q16), single-quantum (SQ34), double-quantum (DQ26) and zero-quantum (ZQ3s)
transitions. In contrast to the existing theoretical framework, the effective Hamiltonian
derived using the effective-field method requires a minimal set of unitary transformations.
The effective CP Hamiltonian is shown to be valid across all the quadrupolar coupling
regimes. This enabled a quantitative analysis of the CP efficiency profiles for the
single-crystal and powder samples across all the quadrupolar coupling regimes. Utilizing
the derived analytic CP signal expression, we were able to evaluate the individual
contributions emerging from all the possible CP conditions in deciphering the CP
efficiency profiles at variable quadrupolar coupling strengths (Cg), crystallite orientations
(ag and ) and RF-field strengths (w;g) for single-crystal and powder samples.
Nonetheless, for the powder sample, the interference of various crystallite orientations
makes it less feasible to differentiate between the four matching conditions and the overall
polarization trajectory is described by the full CP signal expression. From an experimental
perspective, we have also presented a quantitative description of the CP lineshape for the

extraction of the dipolar coupling parameter.

C Understanding the role of second-order quadrupolar coupling and

off-resonance effects in CP dynamics

This chapter of the thesis extends the analytic framework presented in the previous
chapter to include the effect of S-spin off-resonance irradiation and second-order
quadrupolar coupling interactions. The effective Hamiltonian derived in the presence
of second-order quadrupolar interaction results in additional modes of CP transfer in

comparison to the on-resonance case. The derived CP signal expression contains a
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sum of total six Hartmann-Hahn CP matching conditions, namely, triple-quantum 7'Q1g,
single-quantum SQ34, double-quantum D@15, zero-quantum ZQs4, double-quantum DQog
and zero-quantum Z@Q)3s. Besides, the single-quantum /-spin dipolar transitions (SQq,r)
are shown to interfere with the CP trajectories. To the best of our knowledge, such
predictions are unique to the current study. The results emerging from the analytic
theory are well-corroborated through rigorous comparisons with the more exact numerical
simulations in all the quadrupolar coupling regimes. Evaluation of the individual
contribution provides a quantitative picture of the polarization transfer dynamics at
variable quadrupolar coupling (Cq, ag andfg) and RF (wig, 2g) parameters for both
single-crystal and powder samples. Due to a similar operator dependency, the second-order
quadrupolar coupling and off-resonance irradiation display exactly similar CP dynamics
for single-crystal samples, and irradiating at Qg = —wg ) can compensate the effect from
the second-order quadrupolar coupling. In the case of the powder sample, due to the
complexity (second and fourth rank) of the second-order quadrupolar coupling, the exact
compensation is not possible. However, it is possible to reach a compromise by irradiating
in the range of the second-order quadrupolar coupling-driven broadening/shift. Likewise,
in the on-resonance case presented in the previous chapter, the overall polarization transfer
in powder sample display an interplay of various CP matching conditions. To provide
an alternate description of the CP dynamics, we have also presented a state-picture

description of the polarization transfer dynamics.

D Analytic theory of cross-polarization (CP) dynamics between

spin-1/2 and spin-3/2 nuclei

In this chapter, we proposed an analytic theory of the CP dynamics in half-integer
quadrupolar nuclei. We have provided a closed form solution to the CP signal efficiency
that is valid across all the quadrupolar coupling regimes. Under on-resonance irradiation
(for both I and S-spins), the polarization transfer is described by a total of eight
HH CP matching conditions, namely, four-quantum F@ig, double-quantum DQys,
double-quantum D@97, zero-quantum Z(@Q3g, double-quantum D(@3g, zero-quantum
ZQ47, double-quantum D@1 and zero-quantum Z()94. The results emerging from the
analytic theory are well-corroborated through rigorous comparisons with the more exact
numerical simulations in all the quadrupolar coupling regimes. Unlike spin-1 systems, we
observed a good polarization transfer efficiency even in the stronger quadrupolar coupling
regime for both single-crystal and powder samples. This is mainly attributed to the
existence of the first-order quadrupolar devoid central transition (CTg), which exhibits
good spin-locking efficiency. We have explicitly shown the role of the orientation of the
quadrupolar coupling tensor in alerting the polarization dynamics for the single-crystal
sample, which simplified the understanding of CP dynamics in a more complex powder
sample. As discussed in the previous chapters, the polarization transfer trajectory in
the powder sample will be an amalgamation of all the possible CP matching conditions.

Moreover, we have also provided a quantitative description of the CP lineshapes for
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distance estimation.

The analytic framework presented in this thesis can be further extended to enhance
our theoretical understanding of the CP dynamics in higher quantum numbers (5>3/2)
nuclei. The integration of the proposed operator-based analytic theory with the reduced
density matrix formalism, is anticipated to be a good choice for developing a theoretical
framework for describing the multi-spin effects in the polarization transfer. We believe
our theoretical framework will be a step forward in better understanding of the CP
experiments under magic angle spinning (CPMAS) involving quadrupolar spins. We also
hope that the present theory can be further extended to understand the mechanism of
spin dynamics of polarization transfer using phase and/or amplitude modulated pulse
sequences essential for optimal design and development of CP experiments involving

quadrupolar spins.
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Appendix A

A.1 DMatrix representation of the basis states and

spin-operators for the S = 1 spin-system

Table A.1: Matrix representation of the Zeeman basis for the S = 1 spin system.

1 0 0
1) =)s=101512) =10)g= [1];13) =|-1)s= |0
0 0 1

Table A.2: Matrix representation of the single-transition operators for the S = 1 spin
System.

S
O = O
—_ O =

Table A.3: Matrix representation of the Cartesian spin-operators for the single S = 1 spin
system.

010 000 001
S=1110 0[;88=3]0 0 1[;58=110 0 0
000 010 100
) [0 -1 0] 00 07 [0 0 —1]
SpE=411 0 0[;88=710 0 —1[;53=%410 0 0
0 0 0 0 1 0 1 0 0,
) 1 0 0] 00 07 10 0]
SE=310 =1 0388 =3101 0[;58=35100 0
0 0 0 0 0 —1] 0 0 -1
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Table A.4: Single-transition operator representation of the spin-operators for the S =1
spin system.

S, = V2ISE2 + 82; S, = V2ISL2 + §B; 8. = 2[812 + 5%

Table A.5: Matrix representation of the projection operators for the S = 1 spin system.

) 10 0] 01 0] 00 1
Pu=10 0 0[;Pa=10 0 0;P3=1{0 0 0
0 0 0 0 0 0] 0 0 0]
oo o]  [ooo]  [oo0 0
Pu=|1 0 0[;Po=1{0 1 0[;P3=10 0 1
0 0 0 0 0 0] 0 0 0]
0 0 0] 0 0 0] 0 0 0]
Poy=10 0 0|;P2=10 0 0[; P3=10 0
1 0 0 0 1 0 0 0 1)

Table A.6: Projection operators representation of the spin-operators for the S = 1 spin
system.

Sy = %[Pm + Pyy + Po3 + Py

gy = \_7%[—1512 + Py — 1523 + P32]

S, = [Py — Ps3)




Appendix B

B.1 Matrix representation of the product basis states and
spin-operators for the I = 1/2 and S = 1/2 coupled

spin-system

Table B.1: Matrix representation of the product basis for the I = 1/2 and S = 1/2 spin
system.

1) =11/2); ®@1/2)s = 1/2,1/2) =

o o o=

0
2) = 11/2), ® -1/2)5 = 11/2,-1/2) = |
0

3) = [-1/2); Q[1/2)s = [-1/2,1/2) =

4) = [-1/2); @ [-1/2)5 = |-1/2,-1/2) =

— o O O
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Table B.2: Matrix representation of six Cartesian operators for the I = 1/2 and S = 1/2
in product basis.

0010 00 -1 0 10 0 O
i1 0 0 01 Fo_i 00 0 -1 f_1 01 0 O
210100 Y2101 0 0 210 0 -1 0
0 1 0 0] 01 0 O 0 0 0 -1
[0 1 0 0 [0 -1 0 0 [1 0 0 O]
4 1 0 0 O 4 1 0 0 O 4 0 -1 0 O
-1 -1 =1
Se =3 0 0 01 Sy =3 0 0 0 -1 52 =2 0 0 -1 0
10 0 1 0] 0 0 1 0| 0 0 0 1

20 1 1 1 1 1 1 1 1
40 60 80 100 120

[3D (in degrees)

Figure B.1: The effect of dipolar coupling PAS angle 8, on the effective dipolar coupling
frequency for both on and off-resonance irradiations. The following parameters were
used in the simulations: Dipolar parameters (internuclear distance r;g = 1.05 A), RF
parameters: v1y = 20 kHz and v1g = 20 kHz and under off-resonance irradiation strength
Qs = 20 kHz. This diagram shows the various coupling regimes based on the dipolar
coupling magnitude and S-spin rf field strengths.
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C.1 Matrix representation of the product basis states and
spin-operators for the I = 1/2 and S = 1 coupled

spin-system.

Table C.1: Matrix representation of the product basis for the I = 1/2 and S = 1 spins in
product basis.

1 0
0 1
1) =12, @1 = [1/2.1) = | 2) = 1/2), @10)s = [1/2,0) = |,
0 0
0] [0
N N
0 0
B =1/2,@-Vs=1/2-1)= ;| W=1-1/2,®)s=|-1/21)= ||
0 0
0 0
N N
0 0
5) = 1-1/2, ®0)s = 1-1/2,0)= || 16)=|-1/2), @ |-1)g=|-1/2-1) = ||
1 0
o, 1]

C.2 Description of CP spin dynamics based on existing

reports

From equation (3.10) (in the main text), the CP Hamiltonian during the mixing

(spin-locking/contact) period under the on-resonance S-spin irradiation is given as

(1)

(Yo gy (Pt

+ 2wgcos /2 [5’;6 + 5’34] — 2wy sin by /2 [536 + 5’55]

T

) (512 — 823 4§85 — §56] 4wy [ St + S5 4 §36]

(A1)
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Table C.2: Matrix representation of six Cartesian operators for the I = 1/2 and S =1 in
product basis.

0007100 010000
0000710 101000
;_1]000001 G _ 1|01 0000
211000 0 0 *=V20 000 10
010000 000101
00100 0 0000 1 0
0 00 -1 0 0] 0 -1 0 0 0 0]
000 0 -1 0 1 0 =10 0 0
;_il000 0 0 -1 G _ 01 00 0 0
Y7211 00 0 0 0 yT=Valo 0 0 0 -1 0
010 0 0 0 00 0 1 0 -1
001 0 0 0 o 0 0 0 1 0]
10 0 0 0 0] 10 0 00 0]
01 0 0 0 0 00 0 00 O
;100 1 0 0 0 g _ (00100 0
2100 -1 0 0 0 *“ o0 0 00 0
00 0 0 -1 0 00 0 00 O
00 0 0 0 -1 00 0 00 —1]

To explain the experimental results obtained from CP experiments, Pratum and Klein
proposed an approach, wherein, the above Hamiltonian was re-expressed in two forms. In
the first approach, the Hamiltonian was expressed in the TQ16-SQs4 subspace ignoring
the dipolar contributions resulting from the ZQs5-DQog operators. Employing such
an approach, the CP dynamics corresponding to the SQsq4 matching condition was
described qualitatively without any analytic expression. In the second approach, the
same Hamiltonian was re-expressed in the ZQs35-DQag subspace ignoring the dipolar
contributions emerging from the TQ14-SQ34 operators. While such an approach, presents
a qualitative description of the CP dynamics observed in experiments, the method is of
limited utility in quantifying the experimental data. Below, we present a brief description

of the signal expressions derived from the effective Hamiltonians using their approach.

Method I: Description of the CP dynamics in the triple and single-quantum
(TQ16+SQ34) sub-spaces

To describe the spin dynamics corresponding to the SQs4 and TQ1¢ matching conditions,

the Hamiltonian in Eq. (A1) is re-expressed in terms of the TQ16/SQs4 operators.

NN

Hig s~ $16[S1°] +wq ™ [82°] + Aaa[SH] + g™ [S2] + wis [S2°] a2)
A2
(1)

SWe +Wo'\ ran ge3 | ads  as6
() [8 - 52 + 5 - 85
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16,34
, and wy =

Where, 216 =
2wq cos 01 /2.

Employing the effective-field approach described in the main section, the above

{4WII + (We

_w())
i =)

_wg))} Ay — {4(,01[—(4

Hamiltonian is diagonalized sequentially and the final form of the signal observed in CP

experiments is derived and summarized below:

(812 - 428 1 485 _ 5501
(A3)

Swe + w(Ql)
12 )

where, wl%; = /520 + (w632 and w3 B = \/A w1634)2

Using the density operator formalism, the signal expression in the TQ16+5SQ34 space is

ﬁeff’16734 = wé?f [Sg()‘] —l—weff [534] + w1y [525} (

given as

N

S(t)16,31 = (Sex(t))

2 16,34\ 9 2 1634
e e T e Jﬁw ’f]

4
=28 16,34\, S t+ 16,34
We i+ (wg 70)? 2 A3+ (wy )2

TQ16 SQ34

(A4)

Method II: Description of the CP dynamics in the zero and double-quantum
(ZQ35+DQsys) sub-spaces

In a similar vein, to describe the CP dynamics in the ZQ35-DQgg subspace, Eq. (Al) is
re-expressed in terms of the ZQs5/DQag operators.

i 20 ~ D[] + w25 53] + g [820] + 25 [629] 4 cn [S14

(A5)
3w —wg)
€ 512 &13 &45 546
+<712 )[SZ + 5%+ 57 + 57°]
4w11+(we+wg)) dwrr — (We'|‘w8)) 26,35
where, Y35 = { 1 }, Ao = { 1 } and w; =
—2wg sin 61 /2.

Employing the effective-field approach, the above Hamiltonian is diagonalized and the
final form of the signal expression observed in CP experiments is derived and summarized
below:
: 35 1435 A 14 Buwe _"JS) 612 | &13 . &45 | G46
Heyp5,20 = wig[SP] +wif [S2°] +wnr [S14] + ( 12 )[Sz + 8.7+ 527 + 527
(AG)

where w8, = /53, + W32 and w2, = /A%, + (W)
Utilizing the density operator formalism, the signal expression in the ZQs5+DQgs space
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is given as
26,35 26,35
dwis W32 T () (w2 \/A%G +(wg )2
S(t) = — d sin? t+ d sin? t
35,26 = 2 26,35\ 2 9 2 26,3512 9 :
We Y35+ (wy ) Age + (wg ™)
222?,5 DQ2¢

(A7)
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Figure C.1: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single crystal as a function of the rf field
employed on the [-spin under different S-spin rf field strength v15: 10 kHz (al,bl,cl), 50
kHz (a2,b2,c2) and 75 kHz (a3,b3,c3). The numerical simulations (based on SIMPSON)
are represented by solid black lines. The following parameters were employed in the
simulations: Quadrupolar parameters (Cg = 20 kHz (al-a3), 200 kHz (b1-b3), and
1.0 MHz (cl-¢3), ng = 0, quadrupolar coupling PAS angle ag and g = 0°), Dipolar
parameters (internuclear distance 77 = 1.05 A) and the mixing time during the CP
experiment was held constant (say tm, = 0.5 ms). The analytic simulations based on
signal expressions corresponding to various CP matching conditions are indicated: SQsq
(red), TQue (green), DQgg (blue) and ZQs35 (cyan) [refer to Eq. (3.19) in the main text].
The insets in panels c¢1-¢3 show CP maxima in the higher I-spin rf field range.
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Figure C.2: Effect of the variation of quadrupolar coupling PAS angle 3o on the
first-order quadrupolar coupling frequency. Considering the quadrupolar PAS coincides
with the Molecular-axis systems (MolAS), the angles g will represent different crystallites
orientations. The following simulation parameters were used: Cg = 2.0 MHz, ng = 0.0,
quadrupolar coupling PAS angle ag=0°. The orange lines at Bg = 54.736° and 125.264°
show zero passage or zero-crossing of the quadrupolar frequency where the sign of
quadrupolar coupling frequency changes from positive to negative.
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CQ =20 kHz

0 25 50 75 100

Figure C.3: In the CP simulations depicted, the polarization build-up on the S-spin (due
to transfer from the I-spin) is monitored in a single crystal as a function of the rf field
employed on the I-spin. The numerical simulations (based on SIMPSON) are represented
by solid black lines. In the simulations depicted, the effects of the variation of quadrupolar
coupling PAS angle fg: 0° (al), 45° (a2), 54.736° (a3) and 90° (a4) on the CP dynamics
are illustrated. The following parameters were employed in all the simulations: Cg = 20
kHz, ng = 0, quadrupolar coupling PAS angle ag = 0°, contact time (¢;;) = 0.5 ms,
internuclear distance r7g = 1.05 A and 115 = 50 kHz. The analytic simulations based on
signal expressions corresponding to various CP matching conditions are indicated, SQsq
(red), TQie (green), DQgg (blue) and ZQss (cyan) [Eq. (3.19)].
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Figure C.4: Effect of the variation of quadrupolar coupling PAS angle 8o on the weighted
first-order quadrupolar coupling frequency. Considering the quadrupolar PAS coincides
with the Molecular-axis systems (MolAS), the angles g will represent different crystallites
orientations. The following simulation parameters were used: Cg = 2.0 MHz, g = 0,

quadrupolar coupling PAS angle ag = 0°. The solid and dashed lines represent wg)

and wi x sin Bq, respectively. The weighted crystallite plots provide an account of the
probability of the particular crystallite in powder sample.
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Figure C.5: In the simulations depicted, the frequency-domain individual S-spin CP
signals in a powder sample emerging from the Fourier transformation of the mixing time
domain signal is depicted for different quadrupolar coupling constants: panel al (Cg = 20
kHz); panel a2 (Cqg = 200 kHz) and panel a3 (Cg = 1.0 MHz). All other parameters such
as the quadrupolar coupling PAS angles ag and g = 0°, dipolar parameters (internuclear
distance r15 = 1.05 Aand dipolar PAS angle 84 = 0°) and rf amplitude of S-spin 15 = 50
kHz were identical in all the simulations. Depending on the magnitude of the quadrupolar
coupling constant, the rf amplitudes employed on the I-spin were carefully selected by
CP in maxima of the rf-domain simulation at the desired contact time. The numerical
simulations (based on SIMPSON) are represented by solid black lines. The analytic
simulations in the panels have the following definitions: the analytic simulations comprise
contributions from all the four CP matching conditions (SQs4+TQ16+DQ26+7ZQ35) and is
represented in orange color and the analytic simulations based on the contributions SQsy
(red), SQ34+TQi6 (green), DQgg (blue) and DQo+ZQs5 (magenta) are depicted [based
on Eq. (3.19) in the main text]. The powders simulations were performed using 4180
orientations (i.e., zcw4180) of o and B. A line broadening of 50 Hz was used before the
Fourier transform of the time-domain CP signal.



Appendix D

Qg = —20 kHz

r (a1)
DQ;s
A 0) & |-1) 2Q,
- $Qs, 1) & |0)
=~ T 1) < 1-1)
>
wn
Y
0

Q¢ = 20 kHz

1.5 (a2)
A 1k
~
)
\/x i 5Qgq
v sl 1) = -1
V MM

0 L I L I
0 100 300

vV, (kHz)

Figure D.1: The first-order quadrupolar driven cross-polarization transfer efficiency as
a function of the 'H rf field for a single-crystal sample from the numerical simulation
(SIMPSON) and the analytic theory. These simulations demonstrate the effect of S-spin
off-resonance irradiations on the CP efficiency profile g = —20 kHz (al) and Qg = 20
kHz (a2). The parameters used for generating the CP efficiency profiles are: Cg = 200
kHz, ng = 0, quadrupolar coupling PAS angles ag and g = 0°, contact time = 0.5 ms,
115 = 80 kHz and internuclear distance r;¢ = 1.05 A. SIMPSON simulations (black curve)
are fitted with the total analytic signal expressions (indigo curve) [Eq. (4.20)] in panels
al-a3.
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Figure D.2: The first-order quadrupolar driven cross-polarization transfer efficiency as
a function of the 'H 1f field for a single-crystal sample from the numerical simulation
(SIMPSON) and the analytic theory. These simulations demonstrate the effect of S-spin
off-resonance irradiations on the CP efficiency profile Qg = 0 kHz (al), 2g = —10 kHz
(a2) and Qg = —20 kHz (a3). The parameters used for generating the CP efficiency
profiles are: Cp = 20 kHz, ng = 0, quadrupolar coupling PAS angles ag and g = 0°,
contact time = 0.5 ms, 115 = 80 kHz and internuclear distance r;g = 1.05 A. SIMPSON
simulations (black curve) are fitted with the total analytic signal expressions (indigo curve)
[Eq. (4.20)] in panels al-a3.

D.1 Coefficients in the calculation of the density matrix in
TQi6, SQs4, DQus, Z2Q2s, DQ2s and ZQ3; subspaces
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Figure D.3: The first-order quadrupolar driven cross-polarization transfer efficiency as
a function of the 'H rf field for a single-crystal sample from the numerical simulation
(SIMPSON) and the analytic theory. These simulations demonstrate the effect of S-spin
off-resonance irradiations on the CP efficiency profile Qg = 0 kHz (al), Qg = —20 kHz
(a2) and Qg = —50 kHz (a3). The parameters used for generating the CP efficiency
profiles are: Cg = 1000 kHz, g = 0, quadrupolar coupling PAS angles ag and 3o = 0°,
contact time = 0.5 ms, v1g = 80 kHz and internuclear distance r;g = 1.05 A. SIMPSON
simulations (black curve) are fitted with the total analytic signal expressions (indigo curve)
[Eq. (4.20)] in panels al-a3.
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Figure D.4: Effect of the variation of the quadrupolar coupling PAS angle 5: 110° (al),
125.624° (a2), 135° (a3) and 180° (a4) on the second-order quadrupolar interaction driven
cross-polarization transfer efficiency for a single-crystal sample. The parameters used for
generating the CP efficiency profiles are: Cg = 1500 kHz, » = 0, and quadrupolar coupling
PAS angle o = 0°, 15 = 80 kHz, contact time = 0.5 ms, 'H Larmor precession frequency =
400 MHz and 775 = 1.05 Aunder on-resonance S-spin irradiation. SIMPSON simulations
(black curve) are fitted with the SQ34+TQ16 (red curve), DQos+ZQss (blue curve) and
DQ15+ZQ24 (magenta curve) in all panels.
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Figure D.5: Effect of the variation of the quadrupolar coupling PAS angle ¢ on first and
second-order quadrupolar coupling frequencies. The following simulation parameters were
used: Cg = 2.0 MHz, ng = 1.0, quadrupolar coupling PAS angle ag: (al) 0°, (a2) 45°
and (a3) 90°. The exact expression for these frequencies can be found in Egs. (1.32) and
(1.36).
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Figure D.6: Effect of the variation of the quadrupolar coupling PAS angle a on the first
and second-order quadrupolar coupling frequencies. The following simulation parameters
were used: Cg = 2.0 MHz, ng = 1.0, quadrupolar coupling PAS angle 5g: (al) 0°, (a2)
45° and (a3) 90°. The exact expression for these frequencies can be found in Egs. (1.32)

and (1.36).
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Figure D.7: Effect of the variation of the quadrupolar coupling PAS angle ag on the first
and second-order quadrupolar coupling frequencies. The following simulation parameters
were used: Cg = 2.0 MHz, g = 1.0, quadrupolar coupling PAS angle Sg: (al) 50°, (a2)
54.736° and (a3) 60°. The exact expression for these frequencies can be found in Egs.

(1.32) and (1.36).
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Figure D.8: The cross-polarization trajectories as a function of the 'H RF field
for a single-crystal sample from the numerical simulation (SIMPSON). The following
parameters were used in the simulations: Cg = 200 kHz, ng = 0, quadrupolar coupling
PAS angles (0°, 0°, 0°), 115 = 80 kHz and S-spin off-resonance irradiation strength
Q15 = 40 kHz. Here the black and red curves correspond to the < I,(t) > and < S,(t) >
detection, respectively.
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Appendix E

E.1 Matrix representation of the basis states and

spin-operators for the § = 3/2 spin-system.

Table E.1: Matrix representation of Zeeman basis for the S = 3/2 spin system

D =18/2s= || 12 =11/20s= | |[; B =1-1/2)s = |{|; 4 =|-3/2)s =

O?OH
OO\.D—‘O
O = O O
o o o

Table E.2: Matrix representation of the Cartesian spin-operators for the S = 3/2 spin

system.

0 V3 0 0 0 —vV3 0 0 30 0 0
g_lx/ﬁo 2 0.5_1\/3 0 -2 0 | & _ 4|01 0 0
TT2H0 02 0 V3TV T 20 2 0 =3[’ 2|0 0 -1 0

0 0 V3 0 0 0 V3 0 00 0 -3

E.2 Matrix representation of the product basis states and
spin-operators for the I = 1/2 and S = 3/2 coupled

spin-system
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Table E.3: Matrix representation of the single-transition operators for the S = 3/2 spin

system.
[0 1 0 0 [0 —1 0 0] [1 0 0 0
A 1 0 0 0] 4 1 0 0 0f 4 0 -1 0 0
12 _ 1 812 _ 1 812 _ 1
52" =3 0 00O Sy 210 0 0 O S 210 0 0 0
0 0 00 0 0 0 0 0 0 00
[0 0 1 0 [0 0 —1 0] [1 0 0 O
4 0 0 0 0] 4 10 0 0 0| 4 00 0 O
13_1 . Q13 _ i Q13 _ 1
52" =2 1 0 00 Sy 2110 0 0 Sz 210 0 -1 0
0 0 00 00 0 0 00 0 0
(0 0 0 1 [0 0 0 —1] [1 0 0 0
v 210 0 0 0O Y 210 0 0 © z 210 0 0 0
1000 100 0] 00 0 —1
[0 0 0 O [0 0 0 0] [0 0 0 O
A 0 0 1 0] 4 ;[0 0 =1 0f 4 01 0 O
23 _ 1 . &23 _ 4 . 823 _ 1
Sz 210 1 0 0 Sy 2101 0 0 Sz 210 0 -1 0
0 0 00 00 0 O] 00 0 0
[0 0 0 O [0 0 0 0] [0 0 0 0
r 210 0 0 0 ¥ 210 0 0 0 o 210 0 0 0
0100 010 O 0 00 —1

Table E.4: Single-transition operator representation of the spin-operators for the S = 3/2

spin system.

~

Se = V(537 + 3 + 257,

S, = V3(SI2 + 53) 1 252

S. = (3514 + %)
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Table E.5: Matrix representation of the product basis for the I = 1/2 and S = 3/2 spin
System.

N N
0 1
0 0
1) =11/2,®@3/2s =158 = || 12 =11/2,®1/2s =133 = |
0 0
0 0
0] L0
o .
0 0
1 0
3) = 11/2, @ 1-1/25 = 15, -5 = |o| s [0 = [1/2, ®|-3/25 = 5,3 = |
0 0
0 0
0] 10}
o o
0 0
0 0
5) = 1-1/2, @ 3/2)s = -5, 3 = |} | s 16 = I-1/2, @ /25 = |-4. 1y = |
0 1
0 0
0] 10}
(0] [0
0 0
0 0
7) = 1-1/2), ®1-1/2)s = |-5, 3 = o] 1 18) =1-1/2), ® |-3/2)s = -4, - = |
0 0
1 0
10, |1
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Table E.6: Matrix representation of the S-spin Cartesian operators in product basis.
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Table E.7: Matrix representation of the I-spin Cartesian operators in product basis.
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