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Lay Summary

Modern deep neural networks (DNNs) achieve remarkable performance across various
domains such as healthcare, autonomous driving, and weather forecasting. However,
relying solely on performance metrics can sometimes lead to unsuitable outcomes because
performance alone does not capture the trustworthiness of the model. This highlights the
need for trustworthy deep learning, which emphasizes creating reliable, robust, transparent,
and fair algorithms to support better decision-making. In this context, this thesis focuses on
reducing the uncertainty in model outputs to improve trust in its predictions. Additionally,
as the predicted probabilities or confidence scores of DNNs can vary under different
conditions, an empirical study was conducted to analyze these variations. Building on
these insights, a novel approach was proposed to improve the reliability of the model’s
confidence scores. By exploring these aspects, this thesis aims to advance the development

of trustworthy models that are both robust and reliable for decision-making in healthcare.
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Abstract

Performance plays an important role when selecting a DNN for decision-making. However,
in healthcare, relying on a DNN’s decision without understanding its certainty or calibration
can be risky. This thesis focuses on addressing the challenges of analyzing uncertainty
and calibration in DNNs, specifically for medical imaging tasks such as segmentation and

classification.

Uncertainty in predictions arises from data noise (aleatoric) and flawed model inferences
(epistemic). While epistemic uncertainty can be mitigated with more data or larger models,
addressing aleatoric uncertainty is more challenging. This work aims to reduce aleatoric
uncertainty in a downstream segmentation task through a two-stage approach: (a) a
self-supervised task, specifically a reconstruction task, to estimate aleatoric uncertainty
with predictions, akin to learning the output distribution, and (b) leveraging additional
samples from the learned distribution to reduce aleatoric uncertainty in the segmentation
task. Sampling from high-uncertainty regions in the reconstruction highlights areas where
the model is less confident, and incorporating these samples improves predictions. The
proposed method, evaluated on the benchmark Brain Tumor Segmentation (BraTS) dataset,
demonstrated a significant reduction in aleatoric uncertainty for segmentation task while

achieving performance comparable to or better than standard augmentation techniques.

To investigate the calibration of DNNs, this thesis focused on two key aspects: first,
understanding how confidence calibration is affected under varying conditions, and second,
improving the calibration of DNNs so that their probability scores can be reliably used for
decision-making. To address the first aspect, a comprehensive empirical study was conducted
to evaluate performance and calibration across different scenarios. The experiments involved
combinations of three medical imaging datasets, four dataset sizes (ranging from small to
large), three architecture sizes (small to large), and three training regimes (fully supervised
and self-supervised, with and without pretraining). Additionally, the study examined
the factors within DNNs that influence changes in calibration. Key findings include: (a)
self-supervised learning improves calibration without compromising performance, (b) dataset
characteristics significantly impact both calibration and performance, and (c) employing
multiple calibration metrics is crucial for a comprehensive evaluation of calibration error,

as relying on a single metric can lead to misleading conclusions.

To improve the calibration of DNNs, various methods have been proposed, ranging from
post-hoc adjustments to train-time strategies. However, these approaches often come at the
cost of reduced performance. Moreover, many techniques focus on improving calibration
for the most confident predicted class rather than addressing calibration across all classes.
This thesis aims to improve class-wise calibration without compromising performance. To
achieve this, a novel method called Label Smoothing Plus (LS+) was introduced. LS+
incorporates class-wise priors, estimated from validation set accuracies, during training

to produce better-calibrated predictions. The proposed approach was evaluated on three
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benchmark medical imaging datasets, including one with significant class imbalance,
using multiple performance and calibration metrics across two architectures. The results
demonstrated a significant reduction in miscalibration, with the predicted confidence scores

proving highly suitable for clinical decision-making.

Keywords: Trustworthy deep learning; Uncertainty quantification; Confidence calibration.
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Introduction

1.1 Deep Learning in Medical Image Analysis

Deep neural networks (DNNs) have gained immense popularity in recent years due to their
remarkable ability to learn complex patterns and make accurate predictions [3, 4]. The
widespread adoption of deep learning is largely attributed to its successful applications
in various domains, including computer vision, natural language processing, agriculture,
finance, weather forecasting and healthcare. While DNNs aid in decision making, training
them requires large amount of labeled data. Advances in transfer learning and fine-tuning,
self-supervised learning, synthetic data generation, semi-supervised learning and active
learning have made DNNs more accessible and practical for a broader range of applications

when the data is scarce.

Medical image analysis (MedIA) plays a pivotal role in modern healthcare by facilitating
accurate diagnosis, treatment planning, and disease monitoring. In recent years, DNNs have
transformed this field by offering unprecedented accuracy and efficiency in analyzing complex
medical images. However, despite these advancements, the adoption of DNNs in real world
clinical settings is limited due to concerns about their trustworthiness [5, 6, 7]. Given the
criticality of medical decision-making, ensuring that DNNs are transparent, robust, fair,
and secure is of paramount importance. As systems become increasingly autonomous, it
is crucial not only to focus on making accurate predictions but also to understand the
associated risks. Assessing these risks helps determining trust in the predicted outcomes
[8]. In addition, DNNs face numerous limitations in healthcare applications such as data
scarcity, privacy, transparency, generalizability, robustness, and biases and fairness. To
mitigate these concerns, it is essential to develop trustworthy DNNs that clinicians and

patients can rely on with confidence [9, 10].

1.2 Trustworthy Deep Learning

Trustworthy deep learning is an emerging paradigm focused on evaluating and enhancing

the reliability of DNNs in safety-critical applications [10, 11]. This paradigm encompasses
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several subfields, a few of them are illustrated in Figure 1.1, each representing a distinct

area of research that has gained considerable attention recently.

Robustness: DNNs are sensitive to small changes in input data, which can lead to
significant alterations in their predictions. In Figure 1.1 (1st column) [12], examples
of pixel attacks on chest X-ray and skin images are illustrated. In the first example, a
single-pizel attack on the chest X-ray image altered the classification from effusion to
normal. Similarly, in the second example, a multi-pixel attack involving three pizels changed
the label from normal to pneumonia with 98.1% confidence. Additionally, for the skin
mmage, adding just a single pizel to the input was enough to shift the classification from
one class to another. Ensuring the robustness is crucial for maintaining reliability and
accuracy, particularly in sensitive fields like healthcare, where even minor inaccuracies
can have serious consequences. Additionally, DNNs are vulnerable to adversarial attacks
[13], where subtle modifications to input can result in incorrect predictions if the model
is not adequately resilient. Several methods have been proposed to improve robustness
when dealing with adversarial attacks [14, 15, 16|, pixel attacks [17, 18] and perturbations
[19]. In the context of medical imaging, inconsistencies in dataset collection can exacerbate
these vulnerabilities, potentially leading to dangerous outcomes. Therefore, it is essential

to develop robust models that are resistant to such attacks.

Out-of-Distribution (OOD) Generalization: When models encounter data that differ
significantly from their training dataset, they often face challenges in maintaining accuracy
and reliability. This issue, known as distribution shift, occurs when the characteristics of the
test data is not well-represented in the training data, which can result in a marked decline

in performance. In MedIA, several works are dedicated to improve OOD generalization
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by learning robust features across training datasets or harmonizing between domains
[20, 21, 22]. As illustrated in Figure 1.1 (2nd column), the training dataset comprises
retinal images collected from Site 1, while the test dataset is drawn from a different
location, Site 2. This figure demonstrates a scenario where the model is trained on data
from one site but is required to make predictions on data from another site, highlighting
the challenge of out-of-distribution (OOD) generalization. The disparities between the
training and testing datasets involve shifts in data characteristics due to the differing
environments. These variations might involve demographic factors such as the race of the
patients, as well as differences in the equipment and methods used for data acquisition —
ranging from the types of scanners and imaging protocols to the software used for processing
the images [23]. The figure underscores the difficulty the model faces in adapting to and
performing well on the test data from Site 2, given that it has been trained exclusively on
data from Site 1. As demonstrated in [2/], the model achieved high performance when
trained and tested on the same domain (site), such as ORIGA (D1) or Drishti-GS (D2)
fundus dataset, with dice scores of 0.95 and 0.87, respectively. However, when the model
was trained on D1 and tested on D2, its performance dropped significantly, yielding a dice
score of 0.62. Therefore, to enhance the robustness of DNNs; it is essential to improve
their generalizability when encountering dataset shifts by employing strategies such as
ensembling. [25], confidence scores [26], distance based methods [27], likelihood ratios

[28] and multi-task learning [29] that allow the model to adapt to varying data distributions.

Uncertainty: Beyond simply generating predictions, it is vital for models to assess and
communicate the uncertainty in the outputs. This capability allows practitioners to
trust the DNN predictions, offering an additional layer of insight that can be critical in
healthcare applications. In Figure 1.1 (3rd column), the task is to detect the boundary of a
skin lesion, where the DNN predicts for each pixel whether it is part of the boundary or
not; however, it lacks an indication of the certainty or confidence of these predictions. By
ntroducing an additional variable, uncertainty, alongside the predictions, we can better
assess the trustworthiness of the results. As illustrated in the figure (second column, bottom
figure of skin lesions), the model exhibits more uncertainty (darker shade) in the top right
region of the predicted lesion boundary stating the model is unsure about its predicted output.
However, in the other regions model exhibit less uncertainty [30]. This added layer of
iformation allows practitioners to exercise caution when interpreting the results, focusing
on these uncertain regions for further investigation and guide clinicians to take a closer
look or seek additional diagnostic tools before making critical decisions. It helps reduce
the risk of errors and improves the overall trustworthiness of the model. Several works
have been proposed to estimate and reduce uncertainties in DNNs [31, 32, 33, 34] and to

improve calibration [35, 36, 37, 38|.

Ezxplainability: The lack of transparency in DNNs decision making process is a widely

recognized challenge, often leading to their characterization as "black boxes". This opacity
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can significantly impede their adoption in clinical settings, where trust and accountability
are paramount. For example in Figure 1.1 (4th column), a doctor examines a brain MRI
alongside two key outputs from an DNN: the segmented mask and saliency maps (visual
explanation). The segmented mask highlights areas identified as potentially abnormal, such
as tumors, while the saliency maps visually indicate which parts of the input the DNN
focused on during its analysis. This combination allows the doctor to assess both the
DNN’s prediction and its reasoning, fostering trust and enabling informed decision-making
regarding the patient’s diagnosis and treatment. Regulatory bodies have responded to
this concern by requiring that Al systems, particularly those classified as high-risk,
provide transparent and understandable explanations of their outputs [39]. This is crucial
for ensuring that clinicians can confidently interpret and validate the results. Several
studies have examined how to enhance the explainability of DNNs in medical imaging
systems by using methods such as saliency maps [40], perturbations [41], counterfactual
explanations [42], and quality improvement [43]. Demystifying the reasoning behind a
model’s predictions, clinicians are not only more likely to trust the outcomes but also

better equipped to identify potential errors or biases.

Bias and Fairness: Bias can permeate into a DNN at multiple stages, including data
curation, model training, and evaluation. Addressing these biases is crucial to prevent
Al systems from perpetuating or even exacerbating existing disparities, thereby ensuring
that the outcomes are fair and equitable for all patient groups. As illustrated in Figure 1.1
(5th column), suppose there is a need for COVID-19 vaccination, and a sample dataset
s taken from the population, where a 90:10 male-to-female ratio is selected by chance.
After conducting research and clinical trials, a new treatment is formulated. This treatment
may not be fair when administered to the population, as the sampled dataset is biased
toward males, which could lead to reduced effectiveness and safety for females. When the
training data does not adequately represent the diversity within the patient population,
the model is likely to inherit and propagate these biases, resulting in skewed predictions
that disproportionately affect certain groups. This can lead to unjust healthcare outcomes,
where some patient demographics receive sub-optimal care due to the model’s biased
behavior. Mitigating bias involves careful consideration of data sources, rigorous validation
against diverse datasets, and ongoing monitoring to ensure that the Al system delivers
consistent and unbiased results. In light of that, several studies have been conducted on
sources [44], reduction [45, 46, 47| and assessment of bias [48, 49], which is essential for
building Al tools that not only perform well but also contribute positively to reducing

health disparities and promoting fairness in medical practice.

While these aspects of trustworthy deep learning have been well studied, this thesis narrows
its focus to the critical areas of uncertainty and calibration within medical imaging
applications. Specifically, it aims to explore methods for reducing uncertainty, understanding

the calibration of deep neural networks (DNNs), and mitigating the miscalibration in the
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predicted confidences of these models.
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Figure 1.2: Uncertainties in Deep Neural Network.

1.3.1 Uncertainty

Uncertainty in DNNs is one of the facets of trustworthy deep learning [32]. While accuracy
is a crucial metric, the reliability of DNNs is also a major concern, particularly in critical
areas such as medical imaging. This has driven the development of methods to estimate

and reduce prediction uncertainty [50, 51].

There are two primary sources of uncertainties: aleatoric and epistemic uncertainty
[52, 53, 34|. Aleatoric uncertainty arises from the data itself, including inherent noise and
lack of discriminative features. For example in Figure 1.2 (top), the input is an ambiguous
image, it is not clear whether it is a duck or rabbit. When presented to the neural network,
it predicts both the classes with a 50% probability indicating uncertainty in the prediction
due the input: as aleatoric or data uncertainty. Even if we add more samples which has the
same type of ambiguity the aleatoric uncertainty will still exist. This type of uncertainty
reflects the variations in model outputs due to changes in input and is generally irreducible
for a given dataset. However, improving the quality of existing features by making then
more distinctive or learning the data distribution can help reduce aleatoric uncertainty [54].
Epistemic uncertainty, on the other hand, is related to the limitations of the model and
its parameters i.e. lack of knowledge. In Figure 1.2 (middle), the input is a clear image
of a rabbit. The DNN outputs a 50% probability for both classes. This uncertainty in the

prediction arises from the lack of understanding within the neural network: epistemic or
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model uncertainty. It can be caused by the limited number of rabbit instances seen during
training or limited the capacity of the neural network; increasing them can reduce this

uncertainty.

Aleatoric uncertainty presents a unique challenge, particularly in medical imaging. This
type of uncertainty is intrinsic to the data generation process and persists regardless of the
amount of data collected. In the context of medical imaging, several factors contribute to
this uncertainty: patient movement — even slight movements during imaging can introduce
blur or artifacts; equipment variability — different scanners or imaging protocols may
produce slightly different results; partial volume effect — when a single voxel contains
multiple tissue types, leading to ambiguous intensity values. Developing robust models

that can account for and quantify this inherent uncertainty is crucial.

In recent years, significant efforts have been made for estimating aleatoric uncertainty by
developing probabilistic models that explicitly model noise in the data [31] and incorporating
uncertainty estimates into the decision-making process [34, 33, 55, 56|, and epistemic
uncertainty through strategies such as data augmentation (artificially increasing the size and
diversity of training datasets) [55], bayesian inference (incorporating probabilistic methods to
estimate model parameters) |56, 57, 33|, and ensembling techniques (combining predictions
from multiple models to improve overall accuracy) [36, 25]. Effectively estimating these
uncertainties is vital to enhancing the overall quality and dependability of the results [7, §].
Despite significant research efforts in estimating uncertainties, reducing aleatoric uncertainty

has not been explored yet due to the equivocal understanding of its "irreducibility."

Objective 1: To Reduce Aleatoric Uncertainty in DNN for Medical Image

Segmentation Task.

Aleatoric uncertainty arises from the inherent randomness or noise in the data
generation process, simply acquiring more data cannot mitigate it. However, the
thesis hypothesises that aleatoric uncertainty can be reduced if the data noise is
factored in during model training. Thus, two problems need to be solved to test this
hypothesis: 1) How to estimate the data noise? 2) How to incorporate the estimated

noise during model training to reduce aleatoric uncertainty?

This work proposes a novel approach that interprets data uncertainty estimated from
a self-supervised task as noise inherent to the data and utilizes it to reduce aleatoric
uncertainty in another task related to the same dataset via data augmentation. It is
validated on a medical image segmentation dataset, demonstrating a significant reduction
in aleatoric uncertainty while achieving comparable or superior performance to standard

augmentation techniques.
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1.3.2 Calibration

DNNs often output probabilities that are used to convey confidence or certainty in their
predictions. When a model predicts a particular class with a high probability, it suggests a
strong conviction in that prediction. For instance, in the context of medical diagnosis, a
high probability linked to a specific disease implies a greater chance of its presence based
on the given input data. However, it is crucial to recognize that the trustworthiness of such
interpretations hinges on the model’s calibration |58, 37, 59|. For ezample, when the task is
to distinguish between benign and malignant samples, if a model predicts a benign label
with 0.9 probability, it implies that the model is expected to be accurate 90% of the time.
Calibration ensures that the probabilities correspond to the actual likelihood of events,

which is essential for accurate/trustworthy interpretation.

Accurate probability estimates from well-calibrated models improve interpretability
methods like saliency maps [43], which help in understanding model decisions and associated
uncertainties. Miscalibration, where models may be overconfident or underconfident,
undermines these efforts, prompting a focus on improving calibration through techniques
such as post-hoc adjustments [60, 37|, data augmentation [61], and ensembling. While
research often centers on generic datasets and metrics like Expected Calibration Error
(ECE), which has its limitations like scale-dependent interpretation, lack of normalized
range, arbitrary choice of number of bins, etc. [62], ongoing advancements aim to develop
better methods for estimating predictive uncertainty and improving trustworthiness in

medical imaging contexts [63, 64].

Understanding Calibration in Medical Image Classification

Training DNNs for medical image analysis is particularly challenging due to the limited
availability of labeled datasets, which is exacerbated by the complexity and expertise
required for data collection and annotation |65, 2|. To address this issue, transfer learning
(TL) using pre-trained models from ImageNet is commonly employed to improve DNN
performance [66, 67]. While TL has demonstrated enhanced performance and robustness in
traditional computer vision tasks, similar improvements are less evident in medical imaging
applications [68]. Similarly, fully-supervised and self-supervised training methods have
proven effective in enhancing reliability, robustness, and uncertainty [69, 70, 71, 72|, their

impact on model calibration for medical imaging tasks remains under-explored.

Existing literature on DNNs primarily focuses on natural images and performance metrics,
often neglecting the crucial aspect of calibration. However, it is important to note that
natural image datasets typically have an abundance of data, unlike medical images, which
require expert-level annotation, making them more scarce. Assuming that DNNs behave
similarly across different dataset sizes is flawed, as model performance is directly tied

to dataset size [68]. Additionally, the nature of the data differs significantly; in medical



8 Chapter 1. Introduction

imaging, even small perturbations in the input image can drastically alter the underlying
issue. Consequently, the varying sizes of datasets in medical imaging make model capacity a
critical factor in ensuring proper generalization. This highlights the motivation to investigate

model performance and calibration across different training regimes and dataset sizes.

Objective 2: To Explore Model Calibration in Medical Imaging - Training Regimes,

Dataset Sizes, Architecture Impact and Calibration Metrics.

The thesis hypothesizes that model calibration in MedIA is affected when models are
pretrained on natural images. Additionally, factors such as dataset size, architecture,
and training strategies (both fully-supervised and self-supervised) influence model
calibration. This thesis proposes a dedicated experimental setup to investigate these

hypotheses.

\

The study aims to bridge the existing gap by investigating the calibration of medical
image classification systems under various scenarios. Specifically, it examines the effects of
different training regimes, including fully-supervised learning with random initialization and
pretrained models (ImageNet/RadlmageNet), as well as self-supervised learning approaches
such as rotation-based SSL and autoencoder-based SSL. Additionally, the study assesses
the impact of dataset and architecture scales on model calibration. By exploring these
factors, this research seeks to provide insights into how different training methodologies and
dataset characteristics influence both performance and calibration, ultimately contributing

to a better understanding of model reliability in medical imaging.

Improving Calibration for Medical Image Classification

As understanding calibration for medical imaging is crucial, improving calibration is also
essential when using predicted confidences (probability) for decision-making [35]. Several
methods have been proposed to improve calibration, including post-hoc — temperature scaling
(TS) [37], weight scaling [73]| and train-time — label smoothing [74, 75|, and entropy-based
regularization |76, 38|, difference between Confidence and Accuracy |77, 78]. Approaches
like label smoothing [75], focal loss [79], margin-based label smoothing [80] modifying
label distribution to achieve calibration. While these methods aim to improve calibration,
they can sometimes cause performance degradation if not carefully managed, as the

regularization involved in such approaches may compromise the model’s overall effectiveness.

Label smoothing (LS) is a method that involves modifying hard, one-hot encoded labels into
soft labels. It is widely adopted for training DNNs due to its simplicity and performance
benefits. LS not only enhances model performance but also improves calibration, making it
a popular choice. This can be achieved by using a weighted sum of the cross-entropy loss
between label distribution and predicted distribution, and the KL divergence loss between a
uniform prior and the predicted distribution. By encouraging the predicted distribution to

approach a uniform prior, the KL term helps regularize the loss, which improves calibration.
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However, this traditional label smoothing approach has notable limitations: (a) it does
not consider the current calibration level of the DNN, (b) all classes are treating uniformly

regardless of their calibration quality i.e. uniform prior is used.

Objective 3: To Improve Calibration using Informed Label Smoothing

Motivated by the shortcomings of conventional label smoothing and other calibration
approaches, this thesis hypothesizes that substituting the uniform prior with a
class-wise informed prior will improve model calibration. To test this hypothesis, a
few key questions need to be addressed: 1) How to estimate better prior compared
to uniform prior considering the current calibration of the DNN?7 2) How to ensure
the estimated prior considers class-wise calibration? 3) How to make prior estimates

unbiased i.e. should not be dependent on training data?

This work introduces a novel strategy called Label Smoothing Plus (LS+), which utilizes
class-specific priors estimated from validation set accuracies. The estimated priors are used
during DNN training replacing the uniform prior which benefits calibration. Its effectiveness
is validated across multiple medical imaging datasets and DNN architectures, focusing
on various performance and calibration metrics for classification tasks. Results showed
notable reduction in calibration error with nominal improvement in performance compared

to state-of-the-art approaches.

1.4 Thesis Organization

e Chapter 1: This chapter provides an overview of the trustworthy deep learning
paradigm and its subfields in medical image analysis, emphasizing the need for
reliable Al systems in healthcare. It outlines the central challenges of uncertainty and

calibration, along with the thesis’s goals and contributions.

e Chapter 2: A detailed review of the relevant literature on uncertainty quantification,
calibration techniques, and methods to improve model trustworthiness in medical

imaging.

e Chapter 3: This chapter investigates strategies for mitigating aleatoric uncertainty
in medical imaging, presenting method to reduce the impact of data variability and

enhance model robustness across diverse medical imaging tasks.

e Chapter 4: This chapter explores the various factors influencing calibration in DNNs

used for medical image classification.

e Chapter 5: This chapter introduces an informed label smoothing technique aimed
at improving confidence calibration by leveraging validation dataset accuracies to
estimate prior distributions for guiding the training of DNN-based medical imaging

systems.
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e Chapter 6: The final chapter summarizes the thesis’s contributions, highlighting the
findings and their implications for trustworthy deep learning in medical imaging. It
also outlines future research directions to further improve model trustworthiness and

calibration in healthcare applications.



Literature Review

2.1 Trustworthy Deep Learning

Many Al systems today are susceptible to subtle attacks, exhibit bias against
underrepresented groups, and fail to protect user privacy, undermining user trust and
experience. A systematic approach, involving collaboration across disciplines and throughout
the Al system lifecycle, is needed to improve trustworthiness. In this section, we review
studies on trustworthy deep learning that address critical factors such as robustness,
OOD generalization, explainability, transparency and fairness. The robustness of DNNs
refers to their sensitivity to variations in inputs or model parameters. Several approaches
have been proposed to enhance DNN robustness, such as making convolutional neural
networks (CNNs) more resilient to adversarial attacks by reducing noise in medical images
using a simple approach which involves applying Gaussian filtering to input data during
preprocessing [14]. Noisy input images can lead to noisy feature representations, which are
further distorted by adversarial perturbations, significantly degrading model accuracy. In
contrast, preprocessing reduces noise in the feature representations, mitigating the impact
of adversarial perturbations and improving accuracy. Moreover, this work introduces
a robust CNN architecture that integrates sparsity denoising operators into each layer,
effectively reducing noise in the features learned during training. These operators address
both inter-sample noise (i.e., noise within a batch) and intra-sample noise (i.e., noise within
individual inputs). Training this framework alongside adversarial training reduced noise in
the learned feature representations while enhancing robustness and accuracy against both
white-box and black-box attacks. White-box attacks involve scenarios where the attacker
has complete access to the model, including its architecture, parameters, and training
data, enabling them to create highly targeted adversarial examples [81, 82]. On the other
hand, black-box attacks are more challenging as they are conducted without any internal
knowledge of the model, forcing the attacker to rely solely on input-output interactions to
generate adversarial inputs [83, 84]. For malignant lung nodule prediction, a simple defense
strategy was proposed using ensembles of DNNs with adversarial images incorporated
during training [15]. This approach improved both classification accuracy and resilience
against Fast Gradient Sign Method (FGSM) [81] and 1-Pixel [17, 18] adversarial attacks.
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In MedIA, the widespread use of DNNs across various tasks poses significant security risks,
as these models are particularly vulnerable to adversarial attacks. A study was proposed to
investigate the susceptibility of medical imaging systems to such attacks [16]. It explored
several scenarios across three medical domains (ophthalmology, radiology, and pathology)
including: (a) the effect of different DNN weight initializations on the transferability of
adversarial attacks from a surrogate model to a target model, (b) the transferability of
adversarial examples when the surrogate model is trained on a dataset of a different size
compared to the target model, and (c) the transferability of adversarial examples between
different architectures. The results showed that pretraining (e.g., on ImageNet) increases
the transferability of adversarial attacks, making models more vulnerable to attacks by
pretrained surrogate models. Additionally, differences in data size and architecture reduce
the success of these attacks. Based on these findings, to minimize the transferability of
attacks in MedIA, it is recommended to avoid using standard architectures and publicly
available datasets. Furthermore, the disclosure of customized architectures and other model

specifications should be restricted.

The traditional machine learning paradigm assumes that training and testing datasets
are Independent and Identically Distributed (i.i.d.) samples from the same underlying
distribution. However, this assumption often breaks down in real-world applications,
particularly in healthcare, where data can come from diverse sources or involve unseen
samples during testing [23]. To address this issue, the Out-of-Distribution (OOD)
Generalization paradigm has emerged, tackling dataset drift by exploring various research
areas such as Domain Adaptation, Domain Generalization, Federated Learning, and OOD
Detection [85]. To tackle the challenge of generalizing DNNs to unseen (target) samples, a
standard transfer learning approach can be employed by fine-tuning the model on a small
annotated dataset from the target domain. While this method can be effective, acquiring
additional annotated samples from the target domain is often difficult and costly. To
address this issue, unsupervised domain adaptation methods [86, 87] have been proposed,
which do not require extra annotated samples. A novel unsupervised domain adaptation
framework was proposed that uses adversarial learning for segmentation tasks [86]. It
learned the mapping from source domain inputs to labels using a ConvNet Segmenter
architecture consisting of a CNN with dilated residual blocks. To generalize well on the
target domain, unlabelled data was leveraged, as annotating could be time-consuming and
expensive. The Domain Adaptation Module (DAM) mapped target domain (e.g., CT)
inputs to the source domain (e.g., MRI) feature space, with the lower layers of the ConvNet
Segmenter replaced by DAM during training. At inference, DAM layers could substitute the
ConvNet’s lower layers, and the feature output could be mapped to label space using the
established high-level layers. Additionally, a Domain Critic Model (DCM) aligned multiple
feature map levels between domains by jointly optimizing DAM and DCM via adversarial
loss, which improved cross-modality domain adaptation performance. However, this method
still necessitate some information about the target domain, such as unlabeled data or

domain-specific knowledge, to establish a robust mapping from the source to the target
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domain. Therefore, approaches that don’t require any information from the unseen domain
is ideal. In MedIA, test images could come from various sources like different hospitals,
scanners or race. This discrepancy in the test distribution can affect the DNN to overfit on
the training dataset reducing the generalizability. The Domain-oriented Feature Embedding
(DoFE) |88| framework improves generalization on unseen test data in segmentation tasks
by leveraging multi-source domain data without requiring target samples. It extracts more
discriminative semantic features from these diverse domains and uses a domain knowledge
pool containing the feature embeddings of each source. By combining the semantic features
and domain knowledge, an aggregate feature representation is obtained. Additionally, the
original image features are then augmented with these domain-oriented aggregated features,
where aggregation is based on the similarity between the input image and the multi-source
domain images. The proposed approach showed significant improvement in the dice score
on OOD fundus datasets.

Explainability is important for building trust in DNNs, which often work like black boxes.
The purpose of explainable AT (XAI) is to show how these models make decisions, making
them more understandable and trustworthy. Several categorizations are provided for
explainable Al techniques [89, 90] and this section distinguish XAI techniques based
on three criteria: model-based versus post hoc, model-specific versus model agnostic,
and global versus local adapted from [89]. These techniques generate saliency maps
that indicate which areas of an image contribute to a given prediction. [91] is a model
specific post-hoc technique that produces a map by calculating how the output changes
with respect to the input pixels, using partial derivatives of the output relative to the
input image. Furthermore, [92] employs a deconvnet to interpret feature activity in the
intermediate layers of DNNs. Class Activation Maps (CAM) [93] visualize which regions of
an image contribute most to predictions made by convolutional neural networks (CNNs).
CAM achieves this by applying global average pooling to the feature maps from the last
convolutional layer, generating a weighted sum based on the model’s learned class-specific
weights, and producing a heatmap that highlights the most relevant areas for a specific
class. Subsequently, Grad-CAM [94] and Grad-CAM++ [95] were introduced as an
improvement over CAM and do not require modification to the architecture or retraining.
Some perturbation based techniques have been proposed to observe the importance of
certain areas of the images by perturbing the input images like locally interpretable
explanations and occlusion sensitivity. Local Interpretable Model-Agnostic Fxplanations
(LIME) 96, 97| improves the interpretability of deep learning models by providing localized,
human-understandable explanations. For non-linear decision boundaries, it is challenging
for humans to comprehend how a model generates predictions, as summarizing the entire
decision boundary into a single explanation is often impractical. LIME addresses this by
focusing on the local area around an individual prediction, where it is possible to generate
a simple, interpretable explanation specific to that region. This approach bypasses the
need to understand the model’s entire decision boundary and instead provides insights

into the reasoning behind a specific prediction. Within the local region, interpretable
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models like linear regression or decision trees can be applied to understand the prediction
process. The occlusion sensitivity approach [92] systematically occludes parts of an image
and observes their effect on the model’s output, revealing how the classification process
depends on specific visual features. However, such perturbations, like replacing a region
of the input image with a constant value, may not be ideal since medical images are
inherently noisy and blurry. To address this, [41] proposed using a Variational Autoencoder
(VAE) to replace pathological regions with healthy tissue. This approach demonstrated
improved localization of pathological areas compared to earlier methods. Building on a
similar concept, an image in-painting approach [98| was proposed, demonstrating notable
improvements over earlier methods in identifying abnormalities in breast mammography
and tuberculosis in chest X-rays. Additional XAI methods have been developed that
incorporate textual explanations through image captioning, as well as image captioning
combined with visual explanations, across various modalities such as histology [99, 100],
X-ray [101, 102], and CT [103].

Bias in deep learning refers to a model’s tendency to produce skewed or unfair outcomes
due to prejudiced data or flawed assumptions during training. It has been reported in
various medical imaging domain like skin lesions [104], chest x-ray [105, 106] and brain
imaging [107|. Fairness in Al involves methods for evaluating and mitigating such biases
[108]. Several approaches have been proposed to mitigate bias at different stages of DNN
development: (a) during the preparation of training data (preprocessing), (b) during
model training (inprocessing), and (c) in the model’s predictions (postprocessing) [45].
In the preprocessing stage, data imbalance is a major contributor to bias, which can be
mitigated by adding more data from underperforming classes (or groups) [109], or by
reweighting /increasing the importance of underrepresented classes [45, 46]. Representation
Neutralization for Fairness (RNF) [110] is proposed to improve fairness even when input
representations are biased by debiasing the classification head of the DNN. In this method,
a biased teacher DNN is first trained using two inputs from the same class, producing
corresponding learned representations and predictions. The encoder is then frozen, and
only the weights of the classification head are updated by minimizing the mean square
error between the output of the classification head on the averaged representations and the
averaged predictions, a process referred to as representation neutralization. This reduces
undesirable correlations between fairness-sensitive information in the representation and
the class labels. Furthermore, the fair meta-learning segmentation strategy [45] is proposed
to improve segmentation fairness through multi-task learning. Here, the DNNs are trained
simultaneously for the segmentation task in cardiac MR images and the classification of
protected attribute(s), with both networks optimized jointly. The additional classification
network ensures that learning from a dominant group does not negatively impact the

learning of other groups.
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2.2 Uncertainty Quantification

The literature on uncertainty estimation in DNNs presents a broad range of techniques
aimed at improving model reliability and decision-making. Researchers have developed
both Bayesian and non-Bayesian methods to address and mitigate aleatoric and epistemic
uncertainty across various domains. This section reviews key contributions from these
approaches, tracing the evolution of strategies designed to estimate and reduce uncertainties,
ultimately enhancing model performance and trustworthiness.

A substantial amount of research on uncertainty estimation in neural networks is based on
the Bayesian principle [111]. Bayesian Neural Networks (BNNs) are a type of neural network
that incorporate Bayesian inference to model uncertainty in predictions by treating the
network’s weights as probability distributions rather than fixed values. Instead of learning
a single set of weights, BNNs learn a posterior distribution over the weights, combining
prior beliefs with observed data. This provides a natural framework to estimate uncertainty
in predictions, offering more robust and interpretable models. As exact Bayesian inference
is intractable for DNNs due to the large number of parameters, various approximation
methods have been developed, such as Laplacian approximation [112], Markov Chain Monte
Carlo (MCMC) methods [113], and variational Bayesian methods [114, 56]. The quality of
predictive uncertainty estimated by BNNs depends on the accuracy of the approximation,
which is influenced by computational constraints and the choice of the prior distribution. An
incorrectly chosen prior can lead to unreliable predictive uncertainties. One of the popular
Bayesian approaches, Bayes by Backprop [56], offers a practical solution for training BNNs
to overcome intractability and estimate predictive uncertainties. It employs variational
inference, which approximates the true posterior distribution of the weights with a simpler,
tractable distribution. This is achieved through the reparameterization trick, allowing
gradients to be back-propagated through stochastic nodes in the network. As a result, this
approach demonstrated performance comparable to other methods and provided better
uncertainty estimates when test examples came from unseen data distribution.

Although Bayesian methods offer a theoretically sound framework for estimating uncertainty,
they carry a high computational cost due to the need to estimate the full posterior
distribution over the model’s parameters. Monte Carlo Dropout (MCD) [57] proposed
an alternative to the Bayesian approach where variational inference is approximated with
dropout regularization. In practice, dropout is applied during both training and testing
[115]. The test samples are passed through the neural network multiple times with dropout
enabled, generating different predictions each time, as different sets of neurons are activated
in each iteration. The variance across these predictions reflects the uncertainty arising
from the different neural network configurations created by dropout. When assessing
dropout-based uncertainty, it showed significant improvements in predictive log-likelihood
compared to popular variational inference techniques, as well as better uncertainty estimates
for classification tasks when the model predictions were incorrect.

Bayesian deep learning approaches define a probability distribution over model weights

and model outputs for modeling epistemic and aleatoric uncertainty respectively [116].
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One study explored the understanding of different types of uncertainties, namely aleatoric
and epistemic, both individually and in combination [34]. It proposed a unified Bayesian
deep learning framework that enables learning mappings from input data to aleatoric
uncertainty, along with estimating epistemic uncertainty. Aleatoric uncertainty can be
categorized as either homoscedastic or heteroscedastic. Homoscedastic uncertainty refers to a
constant level of noise that remains uniform across the entire dataset, while heteroscedastic
uncertainty represents instance-specific noise that varies across individual data points.
Heteroscedastic uncertainty can be modeled using a probabilistic neural network known
as a heteroscedastic neural network (HNN) [117]|, which predicts the parameters of the
output distribution. For example, in a regression task where the output is modeled as a
Gaussian distribution, the HNN predicts the distribution parameters such as the mean
and variance. To capture epistemic uncertainty, the heteroscedastic neural network is
used with Monte Carlo (MC) dropout [57]. It allows the network to generate multiple
predictions, with the variance among them representing uncertainty. For classification
tasks, heteroscedastic uncertainty was modeled by modifying a standard classification model
to marginalize over the intermediate heteroscedastic regression uncertainty in the logit
space. It was observed that modeling both uncertainties together improved performance
in tasks such as semantic segmentation and monocular depth regression across various
datasets. The proposed method also provided better-quality uncertainty estimates in
scenarios like monocular depth regression, where high aleatoric uncertainty was noted
for distant objects and occlusion boundaries in images. Additionally, the study showed
that aleatoric uncertainty, being inherent to the data, cannot be reduced by adding more
data, whereas epistemic uncertainty, related to model knowledge, can be minimized with
additional data. Notably, epistemic uncertainty increased for out-of-distribution samples
(situations differing from the training set) while aleatoric uncertainty remained unchanged
in such cases. Modeling both uncertainties together was observed to enhance performance
in tasks such as semantic segmentation and monocular depth regression across various
datasets. This approach also produced higher-quality uncertainty estimates, particularly in
cases like monocular depth regression, where high aleatoric uncertainty was noted around

distant objects and occlusion boundaries.

The ensemble method [25] is another widely used non-Bayesian approach for estimating
predictive uncertainty, valued for its simplicity and scalability. It improves upon BNNs,
which require extensive modifications to the training process and are computationally
expensive. The method proposes to train an ensemble of heteroscedastic neural networks.
Epistemic uncertainty is captured by the variance between predictions in the ensemble,
while aleatoric (heteroscedastic) uncertainty is represented by the average of the variances
from each network in the ensemble. Experiments on regression and classification tasks
have shown that ensembles provide better uncertainty estimates than BNNs and is more
robust to domain shift, particularly in detecting out-of-distribution samples. A deeper
understanding of the advantages of ensembles over BNNs becomes evident when analyzing

the function space [118]. Ensemble methods have been shown to often outperform popular
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variational Bayesian approaches by exploring diverse modes within the function space,
rather than being limited to a single mode. By averaging the predictions of ensembles,
these methods navigate multiple minima and frequently converge on flatter, more stable
solutions (optimized functions). This characteristic enhances generalization and yields more
reliable uncertainty estimates. In contrast, while BNNs have a strong theoretical foundation,
they face challenges in effectively exploring the function space. This is primarily due to
the difficulties associated with accurately approximating the posterior distribution of the

weights, which can lead to sharper minima and less dependable uncertainty assessments.

The Bayesian decision-theoretic DNN framework [33] was introduced in MedIA, offering a
principled approach to uncertainty estimation along with improved calibration for image
segmentation tasks. In this framework, the label-probability distribution at each voxel is
modeled using a Dirichlet distribution, with its concentration parameters estimated during
training. The learned distribution is then used to generate new label-probability vectors,
which are subsequently converted into discrete labels to produce segmentation predictions
for each voxel. Per-voxel uncertainty is quantified by computing the square root of the
trace of the covariance matrix of the Dirichlet distribution. These uncertainty estimates are
analytically derived at test time, eliminating the need for approximate or computationally
expensive algorithms. The Bayesian DNN framework demonstrated superior segmentation
performance across brain, chest, and cell datasets, while significantly enhancing various
calibration metrics. Another study showed that incorporating uncertainty into the DNN
training improved anomaly detection in chest X-ray images [119]. It employs a probabilistic
autoencoder that generates both the reconstructed image and a pixel-wise uncertainty mask.
During training, the mean squared error is normalized by the predicted uncertainty map,
which is referred to as the abnormality score. The underlying idea is that in a normal image,
areas or pixels exhibiting higher reconstruction errors are typically associated with greater
uncertainties, which generally results in a lower overall abnormality score. Conversely,
when an image contains an anomaly, the presence of relatively high reconstruction errors in
regions of low uncertainty can contribute to a higher abnormality score. This distinction
helps in identifying anomalies effectively based on the characteristics of reconstruction

errors and associated uncertainties.

Furthermore, the DR/GRADUATE [120] approach was proposed to simultaneously provide
explanations for predictions (DR severity levels) along with the associated uncertainty. It
uses a custom DNN that models uncertainty alongside predictions, similar to a probabilistic
neural network. Additionally, it generates pixel-wise explainability maps for each DR grade,
where every lesion in the predicted lesion map is translated into the explainability map.
This approach delivers state-of-the-art performance while providing uncertainty estimates,
predictions and explanations, all at the same time. The explainability maps highlight key
regions in the images, enhancing trust and helping identify cases that would benefit from a
second evaluation. Another work proposed to leverage predicted uncertainty to reduce false
positives in liver lesion detection [121]. In the first phase, a custom DNN inspired by U-Net

[122] and Bayesian SegNet [123] is used to generate predictions along with an uncertainty
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map. In the second phase, 3D patches are extracted from the uncertainty map at detected
lesion sites for each patient. The analysis revealed that false positive predictions tend to
have a smaller volume compared to true positives. Based on this observation, the maximum
diameter of the detected lesion is used as a feature, alongside aggregated uncertainty from
the patches. Additionally, radiomics features [124] are also incorporated and fed into an
SVM classifier to differentiate between true and false positive lesions. Furthermore, the
model predicts higher uncertainty for incorrect predictions, validating the reliability of its

uncertainty estimates.

For brain lesion detection, quantile regression loss was introduced to estimate uncertainty
in variational autoencoders (VAE) [125]. Traditional VAEs often suffer from shrinkage
or underestimation of variance because, when predictions are nearly perfect (i.e., with
zero reconstruction error), maximizing the log-likelihood pushes the estimated variance
toward zero. This can lead to overfitting, where zero variance fails to reflect the true
model performance on test data. To address this, Quantile-Regression VAE (QR-VAE) was
proposed, predicting multiple quantiles of the output distribution at each pixel, rather than
estimating only the mean and variance. The reconstruction loss leverages these predicted
quantiles and minimizes the pinball loss for each quantile. This approach is straightforward
to implement and outperforms other VAE methods in brain lesion detection tasks. While
previous work has focused on estimating and incorporating uncertainty in segmentation
and classification tasks, bounding-box-based detection is under-explored. A single-scale
multi-level pyramid CNN [126] was introduced that incorporates bounding-box level
uncertainties using both Monte Carlo (MC) samples and predictive variance. Instance-level
uncertainty is measured by the variance of the Monte Carlo samples for a bounding
box, while predictive variance is estimated similar to a heteroscedastic neural network.
Integrating these uncertainties into DNN training improved performance and reduced false

positives in lung nodule detection tasks (LUNA16 dataset).

Test-time Augmentation (TTA) [55, 127] is an alternate, non-probabilistic approach for
estimating aleatoric uncertainty that is less expensive compared to Bayesian methods.
During testing, multiple variations of a single test instance are generated using augmentations
such as geometric and color transformations, which include random cropping and resizing,
adjustments to brightness, hue, saturation, and contrast, as well as random horizontal and
vertical flips and rotations. For each augmented input, the model generates a corresponding
output, and the variance among these predictions serves as a measure of aleatoric uncertainty.
This process helps assess how much the model’s output varies with the test input. By
exploring different perspectives of the test data, this approach effectively captures aleatoric
uncertainty. Furthermore, this method is easy to implement, requiring no modifications to
the model and no additional training data. Results from segmentation tasks on 2D and 3D
Magnetic Resonance Imaging (MRI) of fetal brains and brain tumors indicate that TTA
provides superior uncertainty estimates compared to Monte Carlo dropout [57] and reduces
overconfidence in incorrect predictions. Additionally, TTA demonstrated improvement in

segmentation accuracy over both single-prediction and dropout-based multiple prediction
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methods.

Other methods that offer a distinct perspective on uncertainty quantification include
Conformal Prediction (CP) and Evidential Deep Learning (EDL). CP [128] provides
statistically rigorous guarantees for estimating prediction intervals in regression tasks and
prediction sets in classification tasks. Both the prediction intervals and sets are designed to
encompass the true value with a specified confidence level. For a classification task, instead
of a single class label as the output, the model generates a set of possible predictions for a
given input. The size of this prediction set reflects the model’s uncertainty; a larger set
indicates greater difficulty in classifying the input sample, while a smaller set suggests
more confidence in the classification. CP guarantees that the true label will be included in
the predicted set of classes, providing a coverage assurance that is particularly valuable
when conveying the model’s confidence alongside its predictions. Recently, it has gained
popularity in the machine learning community for its ability to deliver valid and interpretable
uncertainty estimates without relying on specific assumptions about the underlying data
distribution or predictive model. Consequently, this framework is advantageous across
various fields, including medical diagnosis, anomaly detection, financial risk assessment,
and any domain where reliable uncertainty quantification is critical. Moreover, CP has
shown promise when integrated into human-in-the-loop systems, enhancing decision-making
processes by providing clearer insights into model predictions.

The Deep Evidential Regression |129] introduces an innovative framework that integrates
evidential reasoning into DNNs to estimate continuous targets while quantifying uncertainty.
The method allows the neural network to predict hyperparameters of a Normal
Inverse-Gamma (NIG) distribution, which captures both the mean and variance of the target
variable. During training, the model learns to align its predicted evidence with the true
outputs through a specially designed loss function that penalizes misalignment, promoting
well-calibrated uncertainty estimates. At inference, the network outputs parameters of the
evidential distribution, enabling it to generate predictions along with uncertainty estimates
efficiently, without the need for sampling. This approach has demonstrated robustness

across various tasks like depth estimation, OOD detection and adversarial attacks.

2.3 Calibration

Calibration in DNNs can be categorized into two main types: post-hoc and train-time
methods. Post-hoc calibration refers to adjusting a model’s predicted probabilities to better
align them with actual outcomes after the model has been trained. These methods are
computationally efficient since they do not require retraining the model. On the other hand,
train-time calibration involves incorporating strategies during the training phase, such as
modifying the loss function to encourage better-calibrated outputs directly during model
training. This approach can produce inherently better-calibrated models but may come
with additional training complexity.

Post-hoc methods: Platt Scaling [60] is a post-hoc calibration method (a parametric
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model) that utilizes a separate calibration or validation set to learn parameters that best
adjust the model’s output probabilities. For a binary classification task, Platt scaling
applies logistic regression to map the outputs to calibrated probabilities by minimizing
the negative log-loss on the calibration set. Alternatively, Isotonic Regression [130] is a
statistical technique that fits a non-decreasing (or non-increasing) function to a sequence
of observations. It is a variant of linear regression that allows for a piece-wise linear fit,
breaking the problem into linear segments and performing linear interpolation between them.
It provides a flexible, non-parametric approach to modeling monotonic relationships in
data. It is often preferred over Platt scaling when dealing with larger datasets, non-sigmoid
calibration curves, and situations where the relationship between predicted scores and
probabilities is complex. Another popular method, Temperature Scaling (TS) [37] is an
extension of Platt scaling, which is simple and effective for improving the calibration of
the model. Modern DNNs often suffer from miscalibration, particularly overconfidence,
which can stem from factors like large model capacity, batch normalization, and use of less
weight decay. TS adjusts the model’s output logits using a single scalar parameter, called
as temperature which is learned by minimizing the negative log-likelihood on a calibration
dataset. This adjustment helps refine the model’s probability estimates by flattening or
sharpening the predicted probability distribution, leading to more calibrated confidence

scores compared to Platt scaling and Isotonic regression.

When using a confidence-interval-based binning method, where each validation sample is
assigned to a bin based on its predicted confidence score, larger confidence intervals tend
to accumulate more samples, leaving other bins with very few. As a result, using a single
temperature or separate temperatures for low-confidence bins can be problematic, as these
are often derived from a very limited number of validation samples, making them less
reliable. Bin-wise Temperature Scaling (BTS) [131] extends TS by dividing the validation
samples into multiple bins and computing separate temperatures for each bin using a
sample-based binning method, which ensures an equal number of validation samples in
each bin, except for the high-confidence bins. While this approach resolves the issues of
confidence-interval-based binning, it expands the range within each bin. This can lead to
large differences between the minimum and maximum confidence values within the same
bin. To further improve BTS, Augmentation-based Bin-wise Temperature Scaling (ABTS)
was introduced, applying data augmentation to bins with fewer validation samples. This
augmentation helps identify more stable temperatures for low-confidence bins, enhancing

the overall performance of BTS.

Varying the temperature in TS induces a continuous path from the original class distribution
to a uniform distribution. Confidence-based Weights Scaling (CWS) |73] is a weight scaling
calibration method that computes a convex combination of the network’s output class
distribution and a uniform distribution. It uses the Adaptive Expected Calibration Error
(adaECE) to learn the optimal calibration procedure through weight scaling. Both TS and
CWS maintain the predicted class order and do not affect accuracy. Additionally, CWS

preserves consistency by maintaining the order of clinical decision-making across different
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patients based on the predicted confidence i.e., a more confident patient will remain more
confident after applying CWS, which is not always the case with TS. This method also

demonstrated improved calibration compared to state-of-the-art techniques.

Train-time methods: Label Smoothing (LS) |75] is a train-time regularization technique
to improve generalization and prevent overconfidence in DNN predictions. Instead of
assigning hard labels (0 or 1) for classification tasks, LS modifies the labels to create a
softer target distribution. For instance, it replaces the hard label of 1 for the correct class
with a value slightly less than 1, while distributing the remaining probability mass among
the incorrect classes. It is initially proposed as a technique to improve generalization, but
various studies have demonstrated its benefits in improving the calibration of the model
[74, 132,133, 134]. The study on understanding why label smoothing improves generalization
and calibration made a few key observations [74]: (a) representations learned with label
smoothing differ from those learned without it, (b) label smoothing implicitly calibrates the
model, making predicted confidences more aligned with actual accuracy, (c) in Knowledge
Distillation framework, using predictions from the teacher trained using LS to train the
student network, do not provide enough information thereby reducing its performance.
Subsequently, Ezplicit Confidence Penalty (ECP) [76] was proposed to regularize models
when their predictive output distributions exhibit low entropy. Overconfident models tend
to produce sharp distributions, placing nearly all the probability on a single class, which
often leads to overfitting. To counter this, the method adds an entropy-based regularization
to the cross-entropy loss, penalizing overly peaked distributions. It has been observed
that this regularization improves model generalization across various tasks, including
image classification, language modeling, machine translation, and speech recognition. It is
important to highlight that calibration methods like TS and ECP improve calibration by
reducing overconfidence, but this reduction can compromise valid high-confidence predictions.
To address this, Mazimum Mean Calibration Error (MMCE) [135] was introduced as a more
principled approach, minimizing calibration error during training. MMCE uses an auxiliary
loss term computed in a reproducing kernel in a Hilbert space (RKHS) [136], which can be
efficiently optimized alongside the negative log-likelihood loss without requiring extensive
hyperparameter tuning. This loss serves as a surrogate for calibration error, reaching zero

only when the model is perfectly calibrated.

Focal Loss (FL) [137], on the other hand, was introduced to improve model performance in
class-imbalanced scenarios. It modifies the standard cross-entropy loss by down-weighting
the loss contribution of correctly classified samples, thereby focusing more on hard-to-classify
instances. Additional study [79] showed that FL can be beneficial for improving calibration.
For a classification task, cross-entropy aims to minimize the the Kullback-Leibler divergence
(Dkr) between the predicted softmax distribution and the target distribution, however
focal loss minimizes a regularized version of Dgyp. It is shown that the miscalibration and
negative log-likelihood overfitting are linked to each other and are affected by the peaky
distribution of misclassified samples. Furthermore, this study provides both theoretical

and empirical evidence to support the improvement in calibration achieved through FL.
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During standard training, cross-entropy loss acts as a surrogate for minimizing the Dy,
between the target and predicted distributions, effectively providing an upper bound on
Dkr. In contrast, FL can be seen as an upper bound on a regularized KL divergence,
where a negative entropy term is added to Dgy. This regularization term is controlled by
a hyperparameter that encourages higher entropy in the predictive distribution, reducing
overconfidence in DNN outputs. Moreover, this study also provides a principled approach
for selecting the hyperparameter. The results demonstrate that models trained with FL not

only improve calibration under i.i.d. assumptions but also in out-of-distribution scenarios.

Previous state-of-the-art calibration losses, such as LS and FL/ECP, consist of two
components: a classification loss term and a second term, either Dy or the entropy
of the predicted distribution. It has been shown that these loss functions are closely related.
Each of these losses attempts to minimize the distance between class logits, driving the
predictions toward a uniform distribution. Margin-based Label Smoothing (MbLS) [80, 132]
introduces a constrained-optimization approach that unifies calibration losses proposed
earlier and provides a more informed way of regularizing the model. It penalizes logits
where the distance between the logits of classes exceeds a specified margin, guiding the
model toward a more informative objective (non-uniform distribution regularization). When
the margin is set to zero, this approach is equivalent to LS (which uses uniform distribution
to add regularization). Extensive evaluations have demonstrated that MbLS improves
calibration compared to other state-of-the-art methods without compromising discriminative

performance across various medical image segmentation tasks and natural image datasets.

Calibration metrics like Expected Calibration Error (ECE) [138] and Static Calibration
Error (SCE) [63] are used to assess the miscalibration of DNN predictions, and leveraging
this information during training can provide significant benefits. In a similar vein, the
Difference between Confidence and Accuracy (DCA) [77] has been introduced as an auxiliary
loss function aimed at reducing overconfidence in DNNs, particularly for medical image
classification tasks. Inspired by the ECE, DCA penalizes the model when the cross-entropy
loss decreases without a corresponding increase in accuracy. It measures the model’s
calibration by calculating the difference between the average predicted confidence and the
actual accuracy. A larger difference results in a greater penalty, and a smaller difference
incurs less. This approach is simple and can be easily integrated into any classification
task. Evaluation on various medical image classification datasets using multiple DNN
architectures showed significant improvement in calibration while maintaining the overall
classification accuracy. Despite its benefits in improving calibration, this approach has
limitations, such as its inability to capture class-wise calibration and its focus solely on
the top predicted class. Consequently, it fails to address miscalibration in other classes.
To address this issue, the Multi-class Difference in Confidence and Accuracy (MDCA)
method has been proposed [78]. MDCA is a class-wise calibration technique inspired by
SCE, which quantifies miscalibration across different classes. Similar to DCA, it serves
as an auxiliary loss function that measures the misalignment between the confidence

scores and the frequency of each class in the training dataset. The primary objective of
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this approach is to reduce this misalignment, thereby enhancing the model’s calibration.
MDCA has demonstrated improvements in calibration across various image classification
and segmentation tasks, and out-of-distribution scenarios. However, while it enhances
calibration, it may lead to a decrease in overall performance. Although these approaches
use the ECE/SCE calibration metrics during training to capture the current calibration of
the model, ECE is not differentiable. Differentiable Expected Calibration Error (DECE)
[139] addresses the non-differentiability of ECE computation by proposing differentiable
approximations for accuracy and binning. While ECE requires accuracy, confidence, and
binning for computation, only confidence is inherently differentiable. DECE overcomes this
limitation by introducing soft binning to avoid the non-differentiability associated with
hard binning and by exploiting meta-learning techniques to optimize the loss. However, the
reliance on approximations and meta-learning in DECE adds complexity and may limit its

broader applicability compared to direct optimization of the loss function.

For long-tailed datasets, DNN tends to produce overconfident predictions for high-frequency
classes. Calibration methods like TS and LS use a single scalar and a smoothing factor
for all classes, respectively. However, this may not be optimal for improving calibration,
as different classes contribute unequally to DNN training due to variations in sample
size. Class-Distribution-Aware Calibration [133] introduced Class-Distribution-Aware TS
(CDA-TS) and Class-Distribution-Aware LS (CDA-LS), where the vectors are computed
based on the frequency of samples in each class. In CDA-TS, the corresponding temperature
is used to scale the logits for each class to compensate for the over-confidence. CDA-LS
selects the appropriate smoothing factor value for each class and flattens the hard labels
according to their corresponding class distribution. Experiments demonstrated that
incorporating class distribution knowledge enhanced both calibration and performance
in class-imbalanced scenarios. Beyond improving calibration, it is also important to
understand when and how model calibration can enhance the reliability of DNNs. This is
investigated by focusing on the following points under various degrees of class imbalance [140]:
(a) selecting calibration methods for enhanced performance (b) determining an optimal
"calibration-guided" threshold for different levels of data imbalance and (c) evaluating
performance improvements when using thresholds derived from calibrated probabilities
compared to the default 0.5 threshold.

While prior works like LS, ECP, and FL penalize models for predicting low-entropy
distributions on every instance, Mazimum FEntropy on Erroneous Predictions (MEEP)
[38] introduced a more selective approach. In segmentation tasks, MEEP penalizes only
the misclassified, or harder, pixels, while high-confidence correctly classified pixels remain
unaffected (not considered during training). The overall loss consists of two terms: (a)
segmentation loss, which ensures high-quality predictions, and (b) the entropy of misclassified

pixels, which helps to identify uncertain regions.

In the literature, ensembles have been recognized as a state-of-the-art method for enhancing
calibration and uncertainty estimation due to the model diversity that it introduces.

However, this technique often incurs significant computational costs. Multi-Head Multi-Loss
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Model Calibration [141] presents a streamlined ensembling strategy that improves model
calibration without the need to train multiple DNNs. Instead of relying on a single linear
classifier, it proposes a multi-head architecture where each head is trained using distinct
weighted cross-entropy loss function. This multi-head setup induces ensemble diversity,
while the varying loss weights prevent the heads from making similar predictions. By
averaging the outputs from these multiple heads, the approach achieves better calibration
while maintaining accuracy. The method demonstrates the lowest ECE compared to deep
ensembles and other calibration techniques, while also achieving comparable improvements

in accuracy.

Calibration metrics: A calibration metric is a quantitative measure used to evaluate
how well a model’s predicted probabilities align with the actual outcomes, identifying
miscalibration. In the literature, numerous calibration metrics have been proposed,
identifying different aspects of calibration, such as overall calibration error, upper bound
calibration error, class-wise calibration error, and many others. This section discusses
several of these metrics and their combined use for a comprehensive evaluation of DNN
calibration. Ezxpected Calibration Error (ECE) [138] is one of the most widely used metrics
for measuring model calibration. It quantifies the difference between accuracy and average
predicted confidence by dividing predictions into fixed-size intervals (bins), computing
accuracy and average confidence for each bin, and then averaging the absolute differences
between the two. Despite its popularity, ECE has several limitations: (a) it was originally
designed for binary classification tasks, (b) it only considers the maximum predicted
probability, (c) it uses fixed-size binning, and (d) the number of bins (hyperparameter) can
affect the calibration error estimate. To address these issues, several alternative metrics
have been proposed. Adaptive Calibration Error (ACE) [142, 63| extends ECE by using
adaptive binning instead of fixed-size bins. As DNN predictions tend to be overconfident,
with high probabilities concentrated in a few intervals, adaptive binning focuses on these
densely predicted intervals and applies binning to ensure an equal number of predictions
in each bin. Furthermore, Static Calibration Error (SCE) or Class-wise ECE [63| extends
the concept of ECE for multi-class setting by assessing calibration error for each class
separately. This approach provides a more nuanced understanding of how well a model’s
predicted probabilities align with its true performance across different classes, helping
to identify potential miscalibrations that ECE may overlook, particularly in imbalanced
class distributions or when predictions beyond the top class are significant. Overall, SCE
serves as a valuable tool for improving model reliability in applications where accurate
probability estimates are crucial. Additionally, Mazimum Calibration Error (MCE) [138, 37|
measures the upper bound or worst-case error and is often analyzed alongside ECE or Root
Mean Square Calibration Error (RMSCE) [143, 144] for a comprehensive understanding of
calibration. These metrics assess miscalibration, which can manifest as either overconfidence
or underconfidence. Without specific information about the type of miscalibration, it is
challenging to develop targeted methodologies. Given that overconfidence is more prevalent
in the literature (modern DNNs characteristic), Overconfidence Error (OE) [145] explicitly
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measures the overconfidence in predicted outputs.

These metrics are primarily diagnostic tools that assess calibration but provide no insight
into overall model performance. A well-calibrated model does not necessarily indicate
strong performance, nor does high performance guarantee good calibration. This disconnect
between calibration and performance makes these metrics less reliable when used in isolation.
An alternative approach to measuring calibration is through Proper Scoring Rules (PSRs)
[146], which evaluate both the calibration and performance of a model. The Brier score
(BS) [147, 148] is a widely used PSR that calculates the mean squared difference between
predicted probabilities and actual outcomes for each prediction, with lower scores indicating
better calibration. In theory, the Brier score can be decomposed into distinct terms for
discrimination and calibration assessment, but in practice, separating these components
is challenging. Similarly, Negative Log-Likelihood (NLL) is another metric used to assess
calibration. When a model assigns a high probability to the correct class, the NLL is low,
whereas confident incorrect predictions result in a high NLL. This metric can be sensitive to
overconfidence, especially in complex models, as small deviations from perfect predictions
can lead to significant increases in the score.

In practice, there are three categories of calibration metrics based on variations in calibration
conditions [149, 150]: (a) Canonical calibration, (b) Class-wise calibration, and (c) Top-label
calibration. As the name suggests, Top-label calibration considers only the maximum
predicted class scores, ignoring all other values. It is the weakest form of calibration among
the three because, while the predicted class may be calibrated, miscalibration of the other
classes goes unnoticed, potentially resulting in a perfect calibration error (CE) despite
inaccuracies elsewhere. Class-wise calibration, which is stronger than Top-label, compares
predicted scores for each class individually, requiring the marginal distribution for each
class to align with the true distribution rather than just the joint distribution. Canonical
calibration is the strongest form, as it requires the entire probability distribution to align,
rather than focusing solely on the top label or marginal probabilities. For example, canonical
CE is often quantified using expected L1 or £2 errors, which can be further generalized to
L, CE (Ezpected Calibration Error Kernel Density Estimate [151]), serving as a distance
measure between the target distribution and the conditional distribution of the target given

the input.
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Towards Reducing Aleatoric Uncertainty for Medical

Imaging Tasks

3.1 Introduction

Deep neural networks have achieved state-of-the-art performance in a variety of machine
learning tasks. While prediction accuracy is an important measure characterizing the
model’s goodness, another critical factor contributing to the model’s trust in many safety
critical applications including medical imaging, is the prediction’s uncertainty [33, 50, 51].
This has motivated the development of many methods to estimate the prediction uncertainty.
Broadly, the uncertainty in the model’s output stems from two sources as showing in Figure
3.1 - the inherent limitation of the data such as the absence of rich features, presence of
noise, termed as aleatoric uncertainty, and the limitations in the learned model referred
to as epistemic uncertainty. Aleatoric uncertainty, also known as Data uncertainty is the
uncertainty caused due to errors in the measurement, i.e., uncertainty arising from the
intrinsic variability in the data. It measures the variation in the output of a model due
to changes in the input. The aleatoric uncertainty is supposed to be irreducible for a
specific dataset; however, incorporating additional features or improving the quality of the
existing features can assist in its reduction. Epistemic uncertainty, also known as Model
uncertainty captures uncertainty in the model parameters. This uncertainty can be reduced
by increasing the training data size or model capacity.

Recently, many efforts have been directed towards reducing model uncertainty using data
augmentation, bayesian inference, and ensembling [152, 34, 25, 123]. However, aleatoric
uncertainty has not received its due attention. As it originates from the data generation
process, it cannot be explained by acquiring more data. Several factors contribute to this
randomness/noise in medical images, including patient movement, different scanners, and
partial volume effect. Although challenging, it is crucial to address this uncertainty in
risk-sensitive applications like medical imaging to improve the robustness of the prediction
against data noise when making critical decisions.

We propose a novel approach to reducing aleatoric uncertainty in one task (like segmentation)
by leveraging the uncertainty estimates from another task (like reconstruction) performed

on the same dataset. As a self-supervised task, image reconstruction provides a unique
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opportunity to judiciously estimate aleatoric uncertainty and interpret it as noise associated

with the data.
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Figure 3.1: 1% and 2" row represent uncertainty in regression an classification tasks,
respectively whereas, 15 and 2"¢ column represent data and model uncertainty. Illustration
credits [1].

3.2 Motivation

Table 3.1 provides an example of aleatoric uncertainty. Consider a house price prediction
task where features such as house name, number of rooms, square footage, and garden
presence are given as inputs, and the goal is to predict the house price based on these
features. As shown in the table, houses H2 and H3 (in red) have identical input features
but different prices. Hence, it is impossible to predict the price of the test sample. This
variation represents noise in the data (i.e., the observed labels might be noisy) and is
referred to as aleatoric uncertainty. Since this type of uncertainty is inherent to the dataset
and cannot be removed, it is often considered irreducible in the literature. Consequently,
there has been limited focus on exploring methods to reduce aleatoric uncertainty:.

The key question to address here is whether aleatoric uncertainty in the given data can be
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] House ‘ Rooms ‘ Sq. Feet ‘ Garden H Price(Rs.) ‘

H1 3 2000 No 35 lakhs
H2 2 2500 Yes 50 lakhs
H3 2 2500 Yes 30 lakhs
H4 1 1500 No 15 lakhs
‘ Test* ‘ 2 2500 Yes H ? lakhs

Table 3.1: Example of aleatoric uncertainty using a House Price Prediction task. H2 and
H3 are noisy samples, making it impossible to predict the price of the Test sample.

reduced or eliminated. If we carefully introduce a new feature that differentiates the H2
and H3 samples, we can use the augmented dataset to predict the price of a test sample
more accurately. In Table 3.2, adding the City feature separates the noisy samples (H2
and H3) into distinct categories, making it possible to predict the price of the test sample

with greater confidence.

’ House ‘ Rooms ‘ Sq. Feet ‘ Garden ‘ City H Price(Rs.) ‘
H1 3 2000 No Chandigarh 35 lakhs
H2 2 2500 Yes Chandigarh 50 lakhs
H3 2 2500 Yes Ropar 30 lakhs
H4 1 1500 No Delhi 15 lakhs

’ Test* ‘ 2 2500 Yes Ropar H 30 lakhs ‘

Table 3.2: Example of aleatoric uncertainty using a House Price Prediction task. The City
feature is added to the existing dataset. The new feature removes the noise (aleatoric
uncertainty) in the dataset and allows the model to predict the price of the Test sample.

3.3 Methodology

Given a dataset D, of N paired training examples, D = {x;, yi}f\il, the goal is to learn a
function g (a segmentation task) to predict y; given x; along with reducing the aleatoric
uncertainty in the prediction. We achieve this by first defining an auxiliary self-supervision
task f on x; to estimate the inherent noise/variations in x;. We consider the vanilla
reconstruction task as the self-supervision task. The estimated noise is then integrated into

the learning process for task g to reduce the aleatoric uncertainty.

3.3.1 Modeling Uncertainty

The reconstruction based self-supervision task involves predicting x; given the input x;
through an autoencoder (f, parameterized by ). Note that in the following discussion, due
to the nature of the reconstruction task, y; = x;. We wish to capture both the aleatoric
and epistemic uncertainty in the output of the reconstruction task. We employ the dropout
variational inference [57] (also known as Monte Carlo dropout (MCD)) as an approximation
to the posterior over the Bayesian Neural Network (BNN) to estimate these uncertainties.

Drawing the model parameters 1& ~ q(¢) from the approximate posterior we obtain the
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output consisting of both ¢;; and the aleatoric uncertainty &(x;;). The illustration is shown

in Figure 3.2.

o i Reconstructed
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Yi Image
X; € ]RJXd
N e Uncertainty
\ ~ 4 o, €R Map
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iRepeat T timebi

Figure 3.2: Uncertainties in the reconstruction task. The input is processed by a
heteroscedastic NN with two output heads: (a)/top/ reconstruction, and (b)/bottom/
uncertainty head. The explicit uncertainty, denoted as &;, represents the aleatoric
uncertainty associated with the predictions, specifically every pixel of the reconstructed
image. The NN is used with MC Dropout and the input image is passed through the model
multiple times, resulting in multiple predictions and corresponding uncertainty maps. The
variance across these predictions represents the epistemic uncertainty, while the average of
the multiple uncertainty maps provides the mean aleatoric uncertainty (Eqn. 3.3).

Assuming a Gaussian likelihood to model the aleatoric uncertainty induces the following

minimization objective:

N;
1 ¢ c o2, 1 A 2
Lenn (¢ ﬁz Zl 2(} 2 ||sz yw|| + B log (T(-"Eij) (3.1)
]:
where, g;; is the regressed value of pixel j of image x;, & is the noise observation parameter

dependent on z;; for 1& and V; is the number of pixels in the image x;.

Intuitively — The heteroscedastic neural network is applied to predict the parameters of
the underlying Gaussian distribution. These parameters were optimized using the negative
log-likelihood (Eqn. 3.1), where the estimated mean and variance are substituted. A crucial
aspect to note is that the observation noise (o) varies with the input (z). In this approach,
we perform Maximum A Posteriori (MAP) inference to estimate a single value for the model
parameters (). This method captures only aleatoric uncertainty, as epistemic uncertainty

pertains to the model itself rather than the data.

The loss has two components - the residual error obtained through a stochastic sample, and
an uncertainty regularization term. The aleatoric uncertainty is learned implicitly from the
loss function. As suggested in [34] for achieving numerical stability, we train the network to

predict the log variance resulting in the following minimization function, s; := log 6 (;;)*:

k3

| &
Lenn(v) = >
7j=1

. 1
exp(—si)|lyij — Gi511* + o5 (3.2)

DN |

.
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Thus, the predictive uncertainty for pixel x;; can be approximated using:
1 & 1 N\ 1
Var(yij) = | & > @i)i - (T Z(Qqh) +r > (64)7 (3.3)

t=1 t=1 t=1

where, (Qij)thl and (&ij)?:l are the T sampled outputs for randomly masked weights

7713 ~ q(1). The first and the second terms of the summation correspond to the epistemic

and aleatoric uncertainties respectively.
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Visualizing Reconstruction Task Output

Figure 3.3 visualizes the reconstruction output of the model, which was trained to minimize
the L1 distance between the original and reconstructed images. The implementation details
are provided in Section 3.4.1. As observed in Figure 3.3b, the model effectively reconstructs
the original images with high fidelity. Furthermore, in Figure 3.3e, the aleatoric uncertainty
is notably higher in regions where the tumor is located, indicating that the model identifies
these areas as inherently noisy or ambiguous. This increased uncertainty aligns with the
complexity and variability of tumor regions, which are often challenging to reconstruct
accurately due to their heterogeneous nature and the inherent noise in the input data. Such
insights emphasize the relevance of quantifying uncertainty in critical regions to enhance

the reliability of downstream tasks, such as tumor segmentation.

(a) Original images.
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(b) Reconstructed images.

y.

(c) SSIM loss between test and reconstructed images.



34 Chapter 8. Towards Reducing Aleatoric Uncertainty for Medical Imaging Tasks

(e) Aleatoric uncertainty associated with reconstructed images.

Figure 3.3: Visualization of the reconstruction output of the images (slices)
from the test set. Reconstructed images show high fidelity, corroborated by Structural
Similarity Index Measure (SSIM) loss images. Aleatoric uncertainty is prominent where
the reconstruction model finds ambiguity.
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Modeling Segmentation Task Uncertainty

Segmentation is a pixel-level classification task. For each pixel j, we predict the class
label and the uncertainty in the prediction. We estimate the aleatoric uncertainty using
heteroscedastic classification neural network (NN) [34]. The heteroscedastic classification
NN, g (parametrized by W) predicts k-dimensional logit and uncertainty vectors for a
k-class segmentation task. Assuming a Gaussian distribution over the logits, a sample logit
vector can be obtained as shown in Eqn. 3.4. The sampled vector is squashed with the
softmax function to obtain the classification probabilities.

Viil W~ N(g, (0)%); pij = Softmax(¥;) (3.4)
i‘;V
probability vector p;; is summarized by measuring the entropy. p;; is approximated using

where, gi‘;v and (oYY )? are the model output and variance. Epistemic uncertainty of the

Monte Carlo integration, which averages the softmax predictions for a given input over
T sampled masked weights {W ~ q(W)}L, where, at any given step W := W. The

illustration is shown in Figure 3.4.
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Figure 3.4: Uncertainties in the segmentation task. The heteroscedastic regression
NN is used to estimate the distribution over the logit space. Here, gZW represents the raw
prediction (real values), and 6; denotes the aleatoric uncertainty associated with these
predictions (logits). From the learned distribution, a new logit is sampled and subsequently
passed through the softmax function to generate the segmentation mask. Here, both the
segmentation output and uncertainty map are computed channel-wise.

3.3.2 Interpreting Aleatoric Uncertainty from Reconstruction Task as a
Noise Model

By definition, aleatoric uncertainty captures variations in the output due to changes/noise
in the input. The choice of the reconstruction as the self-supervision task gives a unique
interpretation to the aleatoric uncertainty estimated at every pixel — models the noise at

the pixel location. The statistics of the pixel intensities at each location can also be used
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to model this noise. However, modeling dependencies between neighboring pixels becomes
a challenge. On the other hand, the reconstruction task inherently models the interaction
between adjacent locations and, therefore, can provide a richer model characterizing
the uncertainty of the pixel intensities at each location. More concretely, the aleatoric
uncertainty o(x;;) for the reconstruction task is interpreted as the variance in the pixel

intensities at the j** location for the image x;.

3.3.3 Using the Noise Model to Reduce Aleatoric Uncertainty in the

Segmentation Task

Our previous interpretation of the aleatoric uncertainty allows us to explicitly account for
the data noise when learning a different task using the same dataset. The heteroscedastic
aleatoric uncertainty quantification from the reconstruction task provides variance in the
pixel intensities at every location. We propose to augment the training data for the
segmentation task by sampling pixel intensities from the noise model. Specifically, for
every image, and at every pixel location, we sample the intensities from the Gaussian
distribution N (Z;j, 6(xi;)), where, ;5, 5(x;;) are the outputs of reconstruction model. The
image created through this sampling process is associated with the original image’s ground
truth. The augmented dataset is used to train the segmentation model. We hypothesize
that this process reduces the aleatoric uncertainty in the segmentation task. The same is

shown in Figure 3.5

3.4 Results and Discussion

3.4.1 Experimental Setting

The proposed aleatoric uncertainty reduction method is modeled as a data augmentation
technique. Therefore, we compare our method with other standard data augmentation
techniques, pixel-level augmentation (adding Gaussian noise) and structure-level
augmentation (Full Augmentation) [50]. We use [34] as the framework for uncertainty
estimation.

We evaluate our method, quantitatively and qualitatively, on brain tumor segmentation
(BraT$S 2018) with k = 2 classes (background versus whole tumor). We partitioned the
dataset into train (60%), validation (20%) and test set (20%). As a pre-processing step,
we applied intensity normalization to each MRI slice from each patient independently by
subtracting the mean and dividing by the standard deviation of the brain region computed
at the patient level. We cropped the input image from 240 x 240 to 188 x 188, removing
the background pixels as much as possible. We have used modified UNet architecture with
a dropout probability of 0.5 applied throughout the network for all the experiments. The
same architecture is used for both reconstruction and segmentation tasks. We used AdamW
optimizer with a learning rate of 1073 and weight decay of 1072. During training, the
learning rate is reduced by the factor of 0.1 with a patience of 20. In practice, we used

Laplacian prior, as opposed to the Gaussian prior. The resulting loss applies an L1 distance
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Figure 3.5: Proposed Approach. Stage 1: (a) Estimate aleatoric uncertainty in an
auxiliary self-supervised task (image reconstruction). (b) Aleatoric uncertainty is associated
with the prediction of the model. But in this task, prediction is the reconstructed input.
So, we interpret the aleatoric uncertainty as noise present in the input data. Stage 2: (a)
We leverage aleatoric uncertainty (interpreted as noise in the input) estimated from Stage
1 to generate new images. It can be viewed as a data augmentation process. (b) The
augmented dataset is used to train the segmentation model which reduces the aleatoric

uncertainty in the segmentation task.

on the residuals. Based on our experimentation, we found this to perform better than L2
loss for the reconstruction task [34]. We used dice loss for the segmentation task. NOTE:

Results of the reconstruction task are shown in Section 3.3.1.

3.4.2 Quantitative Results

By definition, the uncertainties are defined over the predictions, but instead of just evaluating
them in the tumor region, we also compare how different augmentations perform in the
non-tumor area of the brain. To evaluate the quality of the segmentation, we used six
performance metrics: dice, precision, recall, F1, Jaccard index, and specificity, each applied
to the brain region. To compare the calibration of the model, we used two calibration metrics:
expected calibration error (ECE) and Brier score (loss). The results are presented in Table
3.3. Since the proposed approach generates new samples from the estimated Gaussian
distribution (using reconstruction step), it can be regarded as a data augmentation technique.
To ensure a fair comparison, we used data augmentation methods like injecting Gaussian
noise into the input and full augmentation. We can see that our method shows significantly

less aleatoric uncertainty than all other augmentations and the baseline, although the full
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augmentation constitutes both pixel-level (elastic transform) and structure-level (vertical
flip, horizontal flip, scale, shear, rotation) augmentations [50]. Our method has also
outperformed the baseline and Gaussian noise augmentation on almost all the performance

and calibration metrics.
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3.4.3 Qualitative Results

In the aleatoric uncertainty maps, presented in Figure 3.6, we see higher uncertainty around
the tumor boundary for the baseline and Gaussian noise-based augmentation. Our method
shows minimum uncertainty compared to other augmentations (evident from the intensity
scale). Although the full-augmentation uncertainty is also very less (vs. baseline/Gaussian),
we see higher uncertainty in the region outside the tumor area.

We believe that the sampling process from the aleatoric uncertainty regions estimated by
the reconstruction task helped to generate features, which assisted the segmentation model

to reduce the aleatoric uncertainty significantly.

Ground Ground Ground
Input Truth Truth
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Figure 3.6: Comparison of prediction and aleatoric uncertainty maps. Row 1: Input
and Ground Truth Images; Row 2-5: Predicted mask and Uncertainty Map of Baseline,
Gaussian, Ours, Full Augmentation methods.
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3.4.4 Discussion

The proposed approach effectively mitigates aleatoric uncertainty in segmentation tasks,
thereby improving the reliability of model predictions. A notable advantage lies in
its reconstruction step, which estimates the underlying distribution, offering a richer
understanding of uncertainty by identifying the regions where the model is uncertain about
the reconstruction. Leveraging this information in the downstream task (segmentation) helps
generate new samples focusing on these specific areas, further reinforcing the robustness of
predictions. However, these benefits come at the cost of increased computational overhead,
as the additional reconstruction step adds to the framework’s complexity. Despite this
drawback, the method remains highly relevant for safety-critical applications, such as
medical image analysis, where precise uncertainty quantification is crucial for ensuring

reliable decision-making.

3.5 Conclusion

We propose a novel interpretation of aleatoric uncertainty estimated from an auxiliary
self-supervised task as the noise or randomness inherent to the data and utilize it to reduce
aleatoric uncertainty in other tasks performed on the same dataset. Experiments were
performed on the benchmark BraTS dataset with image reconstruction as the self-supervised
task and segmentation as the image analysis task. Data uncertainty estimated from
reconstruction was used for data augmentation in segmentation by sampling images
from the pixel predictive distribution. Our results show that the proposed approach
significantly reduces aleatoric uncertainty in tumor segmentation compared to other standard
augmentation methods. We further observe that the model’s performance across many
quantitative metrics is either better or on-par with other techniques, establishing it as a

potentially reliable mechanism for addressing aleatoric uncertainty.
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Understanding Calibration of Deep Neural Networks for

Medical Image Classification

4.1 Introduction

Recent advances in deep neural networks have shown remarkable improvement in
performance for many computer vision tasks like classification, segmentation, and object
detection |3, 4]. However, it is essential that model predictions are not only accurate
but also well calibrated [37]. Model calibration refers to the accurate estimation of the
probability of correctness or uncertainty of its predictions. As calibration directly relates to
the trustworthiness of a model’s predictions, it is an essential factor for evaluating models
in safety-critical applications like medical image analysis [153, 35, 67, 154].

Probabilities derived from deep learning models are often used as the basis for interpretation
because they provide a measure of confidence or certainty associated with the predictions.
When a deep learning model assigns a high probability to a particular class, it indicates a
stronger belief in that prediction. For example, in medical diagnosis, a high probability
assigned to a certain disease can indicate a higher likelihood of its presence based on the
observed input data. However, it is important to note that the reliability of interpretation
based on probabilities depends on the calibration of the model [58, 37, 59]. Calibration
ensures that the assigned probabilities reflect the true likelihood of events, allowing for
accurate interpretation. Without proper calibration, the interpretation based solely on
probabilities may be misleading or unreliable.

Apart from directly interpreting the probabilities as confidence for decision process, several
explainability methods [89] have been proposed that depend on the information extracted
from the model predictions like weighting random masks [155], perturbation [96, 41],
prediction difference analysis [156], contribution scores [157]. The contribution of calibration
to the model’s explainability lies in providing reliable probability estimates, which aid
in understanding the model’s decision-making process and associated uncertainties. It
is observed that the improved calibration has a positive impact on the saliency maps
obtained as interpretations, also improving their quality in terms of faithfulness and are
more human-friendly [43]. This interplay between explainability and calibrated predictions

emerges as a pivotal factor in establishing a trustworthy model for medical decision support
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systems.

In healthcare, even minor errors in model prediction can carry life-threatening consequences.
Therefore, incorporating uncertainty assessment into model predictions can lead to more
principled decision-making that safeguards patient well-being. For example, human expertise
can be sought in cases with high uncertainty. A model’s predictive uncertainty is influenced
by noise in data, incomplete coverage of the domain, and imperfect models. Effectively
estimating or minimizing these uncertainties can markedly enhance the overall quality and
reliability of the results |7, 8]. Considerable endeavors have been dedicated to mitigating
both data and model uncertainty through strategies like data augmentation [158, 55|,

Bayesian inference [56, 57, 33|, and ensembling [36, 25|

Modern neural networks are known to be miscalibrated [37] (overconfident, i.e., high
confidence but low accuracy, or underconfident, i.e., low confidence but high accuracy).
Hence, model calibration has drawn significant attention in recent years. Approaches
to improve the calibration of deep neural networks include post-hoc strategies [60, 37|,
data augmentation [159, 145, 61] and ensembling [25]. Similar strategies have also been
utilized in the domain of medical image analysis to explore calibration with the primary
goal of alleviating miscalibration [73, 38, 80, 160]. Furthermore, recent research has also
investigated the impact of different training approaches on the model’s performance and
calibration. These include the use of focal loss [79], self-supervised learning [69], and
fully-supervised networks with pretraining [144]. However, the scope of these studies has
been limited to exploring calibration in the context of generic computer vision datasets
like CIFAR10, CIFAR100, and ImageNet [161, 162]. Moreover, the majority of these
studies have only utilized Expected Calibration Error (ECE) as the calibration metric.
Unfortunately, ECE has several drawbacks, rendering it unfit for tasks like multi-class
classification and inefficient due to bias-variance trade-off [63|. Nevertheless, as reliable
and accurate estimation of predictive uncertainty is important, measuring calibration is an

ongoing active research area resulting in many new metrics [63, 64, 145, 37, 142].

Model calibration is tied to the training process that is inherently challenging for medical
image analysis applications. The scarcity of labeled training datasets is a major cause for
concern |65, 2. Gathering labeled data for the medical domain is a daunting task due to
the complex and intricate annotating process requiring domain expertise. Transfer learning
is a popular learning paradigm to circumvent the labeled training data scarcity |66, 67].
Although transfer learning improves model accuracy, especially for smaller datasets, it
also improves the quality of various complementary model components like adversarial
robustness, and uncertainty [144]. Remarkably, the literature suggests that the advantages
of popular methods such as transfer learning on classical computer vision datasets do not
extend to medical imaging applications [68]. Self-supervised learning (SSL) is another
promising training regime when learning from scarce labeled data in classical computer
vision applications [71, 72]. Though fully-supervised (pretrained) and self-supervised
approaches seem to improve various model performance measures like accuracy, robustness,

and uncertainty [69, 70|, the impact of the training regime(s) on model calibration is
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under-explored.
Our current work addresses these crucial gaps in the literature — understanding the
calibration of deep neural networks for medical image analysis in the context of different

training regimes and several calibration metrics. Accordingly, our main contributions are:

1. We study the effect of different training regimes on the performance and calibration
of models used for medical image analysis. Specifically, we compare three
different training paradigms: Fully-Supervised with random initialization (F'S,),
Fully-Supervised with pretraining (£'S,), and Rotation-based Self-Supervision with
pretraining (SSLy).

2. We leverage several complementary calibration metrics to provide an accurate,

unbiased, and comprehensive evaluation of the predictive uncertainty of models.

3. We assess the influence of varying dataset sizes, architecture capacities, and task

complexity on the performance and calibration of the models.

4. We identified some of the potential factors that are correlated with the observed
changes in the calibration of models. These include layer-wise learned representations

as well as the weight distribution of the model parameters.

In general, we observe that the rotation-based self-supervised pretrained training approach
provides better calibration for medical image analysis tasks than its fully supervised
counterpart, with on-par or better performance. Additionally, our findings contradict
recent literature 68| that remarked “transfer offers little benefit to performance” for medical
datasets. Furthermore, both the weight distribution and the learned representation analysis
indicate that self-supervised training provides implicit regularization that in-turn achieves

better calibration.

4.2 Methods

4.2.1 Training Regimes
Fully-Supervised and Transfer Learning

In a fully-supervised training regime, we use the given input data and the corresponding
target value to learn the task. We can train models using two different ways, learning from
scratch, i.e.; initializing model weights randomly, or pretraining, i.e., transferring knowledge
from one task to another by using the learned weights. In the transfer learning approach,
a model is first pretrained using supervised learning on a large labeled dataset [3, 163].
Then the learned generic representations are fine-tuned on the in-domain medical data
[68, 164]. Generally, fine-tuning a pretrained model achieves better generalized performance
and faster convergence than training a fully-supervised network from scratch [165, 166].

We have considered F'S; as a baseline in our experiments where the model is trained from
scratch. ImageNet pretraining is used as the default pretraining approach, which has shown

remarkable performance on medical imaging datasets [164].
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Figure 4.1: Self-Supervised Learning Framework

Self-Supervised Learning

In self-supervised training regime [69, 167], Figure 4.1, we train a classifier network with a
separate auxiliary head to predict the induced rotation in the image. The output of the
penultimate layer is given to both the classifier and the auxiliary module. The classifier
predicts a k-way softmax output vector based on the chosen task/dataset, whereas the
auxiliary module predicts a 4-way softmax output vector indicating the rotation degree (0°,
90°, 180°and 270°). Given a dataset D, of N training examples, D = {x;,y;},, the goal is
to learn representations using a self-supervised regime. The overall loss during training is

the weighted sum of vanilla classification and the auxiliary task loss

L(0) = L(y, p(y|Rr(2)); 0) + Aauz (r, p(r|Rr()); 0) (4.1)

where, R, (x) is a rotation transformation on input image = and r € {0°,90°,180°,270°} is
the ground truth label for the auxiliary task. Note that the auxiliary component does not
require ground truth training label y as input. L4, is the cross-entropy between r and the

predicted rotation.

4.2.2 Calibration Metrics

Perfect Calibration: In a multi-class classification problem, let the input be x and the label
y*€{l,---, K} and f the learned model. The model’s output is f(x) = (g, p) where g is a
class prediction and p is its associated confidence. If p is always the true probability, then

we call the model perfectly calibrated as defined in (4.2).

“|p=p)=p, VYpel0,1] (4.2)
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The difference between the true confidence (accuracy) and the predicted confidence
(output probability), |P(g =y* | p=p) — p| for a given p is known as calibration error
or miscalibration. Note that p is a continuous random variable, the probability in (4.2)
cannot be computed using finitely many samples resulting in different approximations for

the calibration error as discussed below.

Expected Calibration Error (ECE)

The most common miscalibration measure is the ECE [138, 37|, which computes the
difference in the expectation between confidence and accuracy. It is a scalar summary

statistic of calibration.
Es; [[P(g=y" | p=p) —pl] (4.3)

In practice, we cannot estimate ECE without quantization; therefore, the confidence scores
for the predicted class are divided into m equally spaced bins. For each bin, the average
confidence (conf) and accuracy (acc) are computed. The difference between the average
confidence and accuracy weighted by the number of samples summed over the bins gives us

the ECE measure. Formally,

M
ECE = Z nﬁm| acc(m) — conf(m)| (4.4)
m=1
where n,, is the number of predictions in bin m. While ECE is used extensively to measure

calibration, it has some major drawbacks [63]:

(i) Structured around binary classification, ECE only considers the class with maximum
predicted probability. As a result, it discounts the accuracy with which the model

predicts other class probabilities in a multi-class classification setting.

(ii) Deep neural network predictions are typically overconfident, causing skewness in
the output probabilities. Consequently, equal-interval binning metrics like ECE is

impacted by only a few bins.

(iii) The number of bins, as a hyperparameter, plays a crucial role in the quality of
calibration estimation. However, determining the optimal number of bins is challenging

due to the bias-variance tradeoff.

(iv) In a static binning scheme like ECE, overconfident and underconfident predictions
occurring in the same bin result in a reduction of calibration error. In such cases, it

is difficult to infer the true cause of improvement in model calibration.

These issues have resulted in the development of novel calibration metrics discussed in the

following subsections.
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Adaptive Calibration Error (ACE)

As ECFE suffers from skewness in the output predictions, ACE mainly focuses on the regions
where the predictions are made. It uses an adaptive binning scheme to ensure an equal

number of predictions in each bin [142, 63]. Formally,

K
1
ACE = %R ;; lacc(r, k) — conf(r, k)| (4.5)

where, acc(r, k) and conf(r, k) represent the accuracy and confidence for the adaptive
calibration range or bin r and class label k, respectively. Due to adaptive binning, the bin
spacing can be unequal; wide in the areas where the number of data points is less, and

narrow otherwise.

Maximum Calibration Error (MCE)

It refers to the upper-bound estimate of miscalibration useful in safety-critical applications.
MCE [138, 37| captures the worst-case deviation between confidence and accuracy by

measuring the maximum difference across all bins m, as shown below:

MCE = — f 4.6
omax | face(m) — conf(m)| (4.6)

Overconfidence Error (OE)

Modern deep neural networks provide high confident outputs despite being inaccurate.
Thus a metric that captures the model’s overconfidence provides better model insights. OE
[145] captures the overconfidence in the model prediction by penalizing the confidence score

only when the model confidence is greater than the accuracy.

N'm

OE = N [conf(m) X max (conf(m) — acc(m), O)} (4.7)

M=

Brier or Quadratic Score

It is a strictly proper scoring rule that measures the accuracy of the probabilistic predictions
[147, 148, 168]. It is the mean squared difference between one-hot encoded true label and
predicted probability. Formally,

K

Brier = > (Ljye_py — p(y" = k | 2))? (4.8)

k=1

Negative Log Likelihood (NLL)

For safety-critical applications, using a probabilistic classifier that predicts the correct class

and gives the probability distribution of the target classes is encouraged. Using NLL, we
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can evaluate models with the best predictive uncertainty by measuring the quality of the

probabilistic predictions [149, 169, 170]|. Formally,

K
NLL = — ) " 1y log[p(y* = k | z)] (4.9)

k=1

Additionally, Root Mean Square Calibration Error (RMSCE) [142, 144, 143] measures the
square root of the expected squared difference between confidence and accuracy. As it
defines the magnitude of miscalibration, it is highly correlated to ECE. Similar to ACE,
Static Calibration Error (SCE) |63], extends ECE by measuring calibration over all classes
in each bin for a multi-class setting but does not use an adaptive binning approach. As a
result, we exclude these metrics from our experimental analysis.

It can be observed from the above definitions that none of the individual metrics takes a
holistic approach. Hence, it is important to recognize that individual metrics are limited
in their ability to provide accurate estimates of calibration. Consequently, a collective
evaluation of these metrics is necessary for a better or unbiased understanding of calibration

performance.

4.2.3 Experimental Setup
Datasets

We used three different datasets to investigate the classification performance and calibration
of models trained under different regimes. The datasets have varying characteristics such

as different imaging modalities, and sizes.

e The Diabetic Retinopathy (DR) dataset contains 35K high-resolution (~ 5000 x 3000)
retinal fundus scans [171]. Each image is rated for the severity of diabetic retinopathy
on a scale of 0-4, which makes it a five-class classification problem. The images are

captured under varying imaging conditions, like different models and camera types.

e The Histopathologic Cancer dataset contains 220K images (patches of size 96 x
96) extracted from larger digital pathological scans [172, 173, 174]. Each image
is annotated with a binary label indicating the presence of tumor tissue in the

histopathologic scans of lymph node sections.

e The COVID-19 is a small dataset consisting of 317 high-resolution (~ 4000 x 3000)
chest X-rays images [175, 176, 177]. This dataset corresponds to a three-class

classification problem.

Both DR and Histopathology cancer datasets are segregated into four training datasets
of sizes: 500, 1000, 5000, and 10000; and a common test dataset of 2000 images. The
Covid-19 dataset is partitioned into 60/20 train/validation split and a separate 20% test
set for evaluation. The images in all the datasets are resized to 224 x 224, which is the

standard input resolution for ResNet architectures.
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Implementation Details

Architectures — Due to the popularity of ResNet architectures in medical imaging for
classification tasks [165, 164, 66|, we choose the standard ResNet18, ResNet50 [178], and
WideResNet [179] architectures as the network backbone to simulate small, medium, and
large architecture sizes, respectively. The details are mentioned in Table 4.1. For the
training regimes relying on a pretrained model, we initialize the backbone architectures
using ImageNet-pretrained weights, and the classifier and self-supervised modules using the
Kaiming uniform initialization [180] variant. WideResNet (WRN-d-k:) It is a variant of
residual networks to simulate large architecture size. The depth and width of WideResNet
are regulated by a deepening factor d and a widening factor k. We used WRN-50-2 for our

experiments, i.e., WideResNet with 50 convolutional layers and a widening factor of 2.

Table 4.1: Overview of the models used in this study.

Model Name Number of Layers Parameters

ResNet18 18 layers 11M
ResNet50 50 layers 23M
WideResNet ResNet50, 2xwidth 66M

Evaluation Metrics — We use two performance metrics - Accuracy and Area under the
Receiver Operating Characteristic curve (ROC AUC); and six calibration metrics - ECE,
MCE, ACE, OFE, Brier and NLL.

4.3 Results

4.3.1 Effect of Training Regimes on Calibration

In this study, we investigate the performance and calibration of three different
architectures - ResNet18, ResNet50 & WideResNet using three different training regimes -
Fully-Supervised with random initialization (F'S,), Fully-Supervised with pretraining (F'Sp)
and Rotation-based Self-Supervision with pretraining (SSLp).

For medical image analysis, both the accuracy and reliability of the models are crucial. In

this context, there are two key scenarios we need to consider:

1. High accuracy and high calibration error — When a model has high accuracy but
is miscalibrated, the model’s predictions may not be trustworthy. Both incorrect
predictions with high confidence and correct predictions with low confidence are

detrimental in healthcare applications. Reliance on accuracy alone is hazardous.

2. High accuracy and low calibration error — This is the ideal scenario, where a model
has high accuracy and well-calibrated confidence scores. Predictions from such a

model can be trusted in the decision-making process.
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Hyperparameter Details

We used the batch size=16, epochs=300, optimizer=SGD, learning rate, lr=0.001,
momentum=0.9, and weight decay—=0.0005 parameter values for F'S,, F'S,, and SSL,
training regimes across all datasets and architecture sizes for our experiments. For pretrained
setups, F'S, and SSL,, we trained the classifier and auxiliary module for the first 30 epochs
with a Ir=0.001 and then fine-tuned the complete network with lr=1e™. In SSL, training,
A €{0.1,0.3,0.5,0.7,0.9, 1.0} is empirically chosen based on the best validation accuracy.

4.3.2 Effect of Architecture and Dataset Size

In this section, we present the findings of our analysis of the DR dataset. The performance
and calibration scores of various architectures, as well as the effects of increasing training
dataset size, are depicted in Figure 4.2 for the three different training regimes. Similar
results and analysis on the Histopathology dataset is presented in Figure 4.3.

Owing to the difficulty of the task, the performance of all training regimes across all the
models is not very high (< 75%). However, we do see a clear improvement in performance
as the training dataset size increases across all architectures and regimes. Additionally, we
observe that initializing models with pretrained weights (with SSL,, having an edge over
F'S,) offer a significant advantage over random initialization, which contradicts existing
assumptions that transfer learning from ImageNet models is not beneficial. Both F'S, and
SSL, result in similar performance when using larger models [68].

Comparing the effect of 'S, and SSL, training regimes on calibration, we see that SSL,
significantly improves calibration across all metrics for all architectures and training dataset
sizes as illustrated in Figures 4.2(c)-(h). The gap in the calibration metrics for SSL,
and F'S,, is highest when using the largest architecture (WideResNet). While a randomly
initialized model (F'S,) results in marginally better calibration (sometimes even better
than SSL,), the performance is significantly poor. Overall, we observe that models trained
using self-supervision with pretrained weights show better or similar performance with
a significant improvement in calibration error compared to fully-supervised pretraining.
These results suggest that self-supervised training can help improve both performance and
calibration, leading to more robust and reliable models for medical image analysis.

We discuss the results on the Covid-19 dataset separately owing to its small size. Figure 4.4
depicts that all the models result in high performance on this dataset indicating the ease of
learning the task. The superior performance of 'S, and SSL,, indicate a definite advantage
of transfer through pretrained over random init, contradicting the recent findings [68]. It
is also evident that larger models result in better performance than shallow models. The
negative impact of training from a random init (F'S,) for over-parameterized models is also
evident from the drop in the performance and calibration with the increase in architecture
size. While we observe a significant difference in the performance, there is only a marginal
change in the calibration metrics. There is no definite trend in the calibration across the
three training regimes. Thus, while transfer seems to have a positive impact on performance,

calibration does not enjoy a commensurate impact.
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Figure 4.2: Joint evaluation for performance and calibration across different
dataset sizes (x-axis) and architectures for DR dataset. The shaded region
corresponds to p £ o, estimated over 3 trials. The underline shows the statistical significance
between F'S,, and SSL,. Black and Pink color signifies p < 0.05 and 0.05 < p < 0.1 level
of significance, respectively. 1: higher is better, |: lower is better.
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Figure 4.3: Joint evaluation for performance and calibration across different
dataset sizes (x-axis) and architectures for Histopathology Cancer dataset. The
shaded region corresponds to p £ o, estimated over 3 trials. The underline shows the
statistical significance between F'S, and SSL,. Black and Pink color signifies p < 0.05 and
0.05 < p < 0.1 level of significance, respectively.
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4.3.3 Issues with using Single Calibration Metric

In this section, we discuss the importance of collective evaluation of calibration metrics.
For this purpose, let’s consider the question - Does transfer learning improve calibration?
In the context of DR dataset, we analyze the results in Figure 4.2. Comparing F'S, and
F'S,, using only Brier for all architectures and dataset sizes, the general trend we observe
is that transfer learning improves calibration. However, this observation fails when we
chose ECFE metric, which gives us mixed results. Similarly, incorrect conclusions could

be drawn when using individual metrics like NLL and ACE. Likewise, we consider the
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Figure 4.4: Comparing performance and calibration across different architectures
and training regimes for Covid-19 dataset. The error bars correspond to u + o,
estimated over 3 trials. Relying on a single calibration error metric, such as ECE or
ACE, can lead to conflicting conclusions when it comes to model selection. By considering
a combination of metrics, we gain a more comprehensive understanding of the model’s
calibration performance. 1: higher is better, |: lower is better.

effect of architecture on performance and calibration in the context of the small Covid-19
dataset. From Figure 4.4, we observe that F'S, and SSL, have comparable performances
with nominal improvement with increasing architecture size. In this case, using only ECE
as the calibration metric would lead us to infer that F'S), provides better calibration than
SSL, for large capacity models. In contrast, ACE suggests the opposite. However, these
two training regimes are quite similar across most other metrics.

These examples further highlight that in scenarios where models provide mixed calibration
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results, selecting the best model is non-trivial /subjective. In section 4.4, we discuss some

potential model selection criteria to address this issue.

4.3.4 Factors affecting Performance and Calibration

In this section, we explore two potential factors linked to the enhanced calibration of the
self-supervised training regime. Firstly, we examine the standard deviation of weight
distributions and calibration metrics across different training regimes. Secondly, we

investigate the similarity of learned representations in the activations.

Weight Distribution

The weight distribution of a neural network can provide useful insights into the model’s
performance. Regularization schemes like £, Lo, dropout [181, 115] are often employed to
find optimal parameters of a model with low generalization error. By adding a parameter
norm penalty term to the objective function, the £ and L2 norms encourage sparse weights
with many zero values and small weight values respectively. Weighting the contribution
of the penalty term controls the regularization effect. For instance, with £ norm, the
histogram of weights tends to a zero-mean normal distribution with a high penalty that
causes the model to underestimate the weights and hence leads to underfitting. In contrast,
a low penalty yields a flatter histogram that causes the model to overfit the training data.
To strike the right balance, careful hyperparameter tuning is needed to determine the
data-dependent optimal penalty term contribution for better generalization. Based on this
intuition, we attempt to interpret the performance and calibration of networks trained
using different regimes using weight distribution analysis. To the best of our knowledge,
the calibration of a model has not been explained in the context of the weight distribution
of a network, especially for medical image analysis.

The comparison of weight distributions between the models trained using F'S,, F'S,, and,
SSL, for the DR dataset in Figure 4.5a-(1),(2) reveals some interesting observations. The
weight distribution of the model trained with F'S, exhibits a higher peak than SSL,,
indicating that most of the weights are small. Conversely, the F'S, model exhibits the
highest standard deviation, resembling a uniform distribution. Now, the question arises:
which distribution is preferable, and which scenario leads to better generalization with
improved calibration? To address this, we analyze the impact of weight distribution on
the performance and calibration of F'S, and SSL, models using Figure 4.2 and Figure
4.5. We observe that both models show similar AUC performance, with SSL,, displaying a
smaller peak in the weight distribution. This difference in weight distribution influences the
calibration metrics, where SSL, demonstrates significantly lower calibration error across
most metrics. In other words, the predicted probabilities align more closely with the true
probabilities using the SSL, model.

For Histopathology dataset, the weight distribution of the SSL, model is similar to that
of the F'Sy, as seen in Figure 4.5b-(1),(2). This similarity in weight distribution could

be attributed to an easier task, leading to higher test performance. However, despite the
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similarity in weight distribution, the SSL, model still provides better-calibrated outputs
compared to the F'Sp, but the difference in calibration error between these training regimes is
now smaller. Considering the standard deviation of the weight distributions, it is suggested
that a balance in the spread of weights is important for achieving good performance
and calibration. It is important to note that the F'S, model has the highest standard
deviation and comparable calibration error, it exhibits low AUC performance, making it
inconsequential among other training regimes.

In Figure 4.5-(3),(4), we analyze the layer-wise standard deviation and Frobenius norm
of the weights. In Figure 4.5a, we observe SSL, influence on the standard deviation and
weight magnitudes in every layer of the network. Additionally, we notice that the standard
deviation tends to be higher in the initial layers and decreases as we move towards higher
layers of the network. In Figure 4.5b, the standard deviation and magnitude of weights are
similar for both SSL, and F'S, training regimes. This suggests that the features extracted
by each layer of the network are similar, which could be attributed to the high performance
achieved by both training regimes. Despite the similarity, the SSL,, training regime still
produces a better-calibrated model than the F'S,, indicating the additional benefits of

self-supervised training.
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Figure 4.5: Comparing different aspects of WideResNet learned weights for
dataset size 10000 on DR-(a) and Histopathology Cancer-(b) datasets. (1) and
(2) the normalized histogram of weights of three training regimes. (3) Layer-wise comparison
of standard deviation (SD) between F'S, and SSL,,. (4) Layer-wise comparison of Frobenius
norm between F'S), and SSL,.
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For a more comprehensive analysis, Figure 4.6 further consolidates the trends between
performance, the standard deviation of the weights, and model calibration. The figure
highlights that achieving good performance and calibration in a model necessitates finding
a balance in the spread of weights, a balance which the SSL, training regime was able to
achieve successfully. Due to the different scales of the calibration metrics, we plot them on
multiple axes. The weight values and their standard deviation are very small; therefore,
we scaled them by 102. In Figure 4.6a, F'S, (top left, orange) has the highest standard
deviation (wide distribution) and gives us the best calibration error (x-axis) but the worst
performance compared to other training regimes. The standard deviation for 'S, (bottom
right, red) is the lowest, but the calibration error is still high, which is not ideal. On
the other hand, SSL, has a low standard deviation but yields the best performance and
calibration. So, when we encounter the gap in the standard deviation of weights between
different training regimes (SSL, and F'S)), we observe the calibration error metrics are
well separated (Figure 4.6a). Alternatively, when the gap is negligible, the calibration
error metrics overlap (Figure 4.6b). In summary, we observe that the SSLp training
regime consistently provides better calibration than the F'S, regime for both datasets. The
magnitude of improvement or change in calibration is directly related to the differences in

weight distributions.
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Figure 4.6: Comparing calibration metrics (x-axis) vs. standard deviation (SD,
y-axis) of WideResNet architecture for dataset size 10000 on DR and Histopathology
cancer datasets. Colors represent training regimes (orange for F'S,, blue for SSL,, and
red for F'Sy), and markers are the lowercase initials of each calibration metric; e — ECE, o
— OF, a — ACE, m — MCE, b — Brier, n — NLL. Alongside each calibration error cluster,
the performance is also reported. Ideally, the metrics should be at the bottom left with
comparable performance. (a) SSL, has less calibration error with on-par performance
than F'S), training regime, indicating it to be a suitable choice. Calibration error metrics
clusters of SSL, and F'S, are noticeably well separated, correlating with the gap in their
SD. (b) Here, SSL, seems to be the best in calibration and performance compared to
other training regimes. The noticeable difference we observed here is that the calibration
error metrics clusters of SSL, and F'S), are close (somewhat overlapping) when the SD of
their weight distributions are similar.
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Figure 4.7: Standard Deviation of Weights distribution vs. Calibration scores
analysis. (a), (b), (c), and (d) depict the relationship between the SD of weights distribution
and calibration metrics from the smallest dataset size to the largest one (500, 1000, 1000,
10000), respectively of the DR dataset. Additionally, the corresponding weight distribution
plots have been overlaid for convenience of reference. Considering the four plots, we can
observe the trend that the calibration metrics of different regimes are segregated when there
is a difference in the spread of their distributions (as shown in plots ¢ & d) and overlapping
when there is no difference in the SD of weights distribution (as shown in plots a & b).
Based on the characteristics of SSL,, (shown in blue), it can be remarked that a balance in
the spread of weights is necessary to achieve both good performance and calibration.
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Learned Representation

In addition to the diversity of the whole weight space, we explore the impact of layer-wise,
learned neural representations on performance and calibration. Towards this end, we use the
widely popular Centered Kernel Alignment (CKA) [182] metric that measures the similarity
between the activations of hidden layers in a neural network. Literature suggests that high
representational similarity across layers indicates redundancy in learned representations of
a network. Furthermore, redundant representations impact the generalizability due to the
influence of regularized training [183], which in turn improves the model calibration [37].

CKA analysis of WideResNet’s layer representations for different training regimes on
the DR dataset is shown in Figure 4.8. The CKA plots for F'S, and SSL, depict
comparatively similar patterns. However, the higher layers of F'S, show a significant
decrease in representational similarity (darker region shown in blue box) with increasing
dataset size. The relatively high CKA values of the deeper layers of SSL,, depict redundancy
of learned representations lighter regions) that provides implicit regularization. This in
turn explains the reduced calibration error of SSL, compared to F'S, as seen in Figure
4.2. A similar pattern is observed for ResNet18 and ResNet50 architectures as depicted
in Figure 4.9. For the Histopathology dataset, the CKA plots in Figure 4.10 for F'S,, and
SSL, show very similar patterns that explain comparable performance and calibration

afforded by these training regimes.
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Figure 4.8: CKA plots of trained WideResNet architecture using fully-supervised
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Figure 4.10: CKA plots of trained architectures using different regimes for Histopathology
Cancer dataset.



Chapter 4. Understanding Calibration of Deep Neural Networks for Medical Image
64 Classification

Quantitative Comparison CKA

Table 4.2 presents the quantitative results of the CKA analysis, using mean CKA values.
These findings align with the trends observed in Figure 4.8. In the case of the DR dataset,
the mean CKA values of SSL, rise as the dataset size increases. This supports our previous
findings, where the calibration of SSL, is superior to that of F'S,, and this distinction
grows more pronounced as the dataset size becomes larger (Figure 4.6a). In the context of
the Histopathology dataset, previous observations also indicated that SSL, outperforms
F'S), in terms of calibration, although the difference in calibration metrics values’ magnitude
is less (4.6b). Consequently, we notice that there is no significant difference in the mean
CKA values between the two training approaches indicating the representations learned are

quite similar.

Table 4.2: Mean CKA values of different training regimes across varying architectures,
datasets and their sizes.

Architecture T;"all'.llng Diabetic Retinopathy ‘ Histopathology Cancer
°8LME 500 1000 5000 10000 | 500 1000 5000 10000
FS, 0.86 0.84 0.85 0.85 | 0.76 0.76 0.75 0.75

ResNet18
SSL, 0.85 0.85 0.88 0.88 |0.76 0.75 0.74 0.75
ResNet5o FS, 0.84 0.84 0.84 0.84 |0.74 0.75 0.74 0.73
SSL, 0.85 0.85 0.86 0.87 |0.75 0.74 0.74 0.73
VideRosliot FS, 0.84 0.83 0.81 0.81 |0.70 0.69 0.69 0.71
SSL, 0.84 0.85 0.86 0.87 |0.69 0.70 0.69 0.71
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4.3.5 RadImageNet Pretraining

To investigate the effect of domain-specific transfer learning, we conducted experiments
using RadImageNet [66] a pretrained neural network (ResNet50) trained only on medical
imaging datasets shown in Figure 4.11. Overall, we notice consistent patterns in calibration,
where SSL, either outperforms or matches F'S,, in line with our observations from
other experiments. In this context, we observe that F'S, and SSL, exhibit comparable
performance in (a) and (b). However, in the MCE plot (e), SSL, demonstrates superior
calibration compared to F'S),. For the remaining metrics, SSL, tends to show marginal
improvement or comparable calibration. Taken together, these findings provide additional
evidence that SSL,, consistently delivers calibration models on par with, or sometimes even

superior to, those produced by F'Sy,.
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Figure 4.11: Joint evaluation for performance and calibration across different
dataset sizes (x-axis) of DR dataset using ResNet50 architecture with
RadImageNet pretraining. The shaded region corresponds to p & o, estimated over 3
trials. 1: higher is better, |: lower is better.
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4.3.6 Comparison of Fully-Supervised and Reconstruction-Based
Self-Supervised Task
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Figure 4.12: Comparison of fully supervised (F'S,, random initialization), fully
supervised (F'S),, pretraining), and reconstruction-based auxiliary SSL task
(SSL,, pretraining) on DR dataset. Notably, the calibration of models achieved through
the auxiliary task does not precisely align with that of the rotation task. Remarkably, the
plots reveal a notable contrast: very low OE (f) but high ECE (c). This discrepancy could
hint at potential underconfidence, stemming from substantial regularization induced by
the reconstruction-based auxiliary SSL task. However, drawing definitive conclusions is
premature, as further experiments, encompassing various architectures and hyperparameter
tuning, are necessary. Relying solely on the plots, we abstain from making a judgment
regarding the superiority of either F'S, or reconstruction-based SSL,.

4.4 Discussion and Conclusion

For safety-critical applications like medical image analysis, it is imperative to choose
models with high accuracy and low calibration errors. In this study, we investigate the
performance and calibration of three different architectures using three different training
regimes on medical imaging datasets of varying sizes and task complexities. Furthermore,
we use six complementary calibration metrics that collectively provide a comprehensive

evaluation of the predictive uncertainty of the models.

Model selection with mixed calibration results — While using multiple calibration
metrics provides a more comprehensive evaluation, deciding on the best model can still be
challenging as observed in Section 4.3.3. There are a few strategies that can be employed
to aid in the decision-making process. One approach is to use a voting-based scheme, where
each model is assigned a vote based on its performance across the calibration metrics. The

model with the maximum number of votes is then selected as the best choice. This approach
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treats all metrics equally and can be useful when there is no significant variation in the

importance of different metrics.

Domain specific metric relevance — However, it is important to consider that different
calibration metrics may have different objectives and importance in specific domains. For
example, metrics like OE (Overconfidence Error) explicitly measure the overconfidence
of the model predictions, while MCE (Maximum Calibration Error) provides an upper
bound on the mistakes made by the model. In such cases, it might be necessary to assign
more weightage to these important metrics during the voting process. The determination
of metric importance is subjective and can vary depending on the application. Expert
knowledge and domain expertise play a crucial role in assigning relative importance to
different metrics. By incorporating the opinions of experts, the voting process can be

tailored to reflect the specific requirements of the application.

Margin for model selection — In addition to assigning weights to metrics, introducing a
margin or threshold in the voting scheme can help refine the model selection process. This
threshold represents the minimum difference in calibration error between two training
regimes that must be surpassed for a metric to be considered in the model selection. By
setting a threshold, the metrics can be filtered out that do not exhibit significant differences

and focus on those that have a substantial impact on model calibration.

It is worth noting that the difficulty of choosing a model also arises when one model has
higher accuracy but poorer calibration while another model has lower accuracy but better
calibration. This dilemma has been discussed in the literature [184], highlighting the need
for careful consideration of calibration metrics during model selection. Selective prediction
is one scenario where we abstain the classifier that gives us low-confident predictions
based on some threshold or cost structure of the specific application [185]. In such cases,
low-confidence predictions are referred to an expert for further analysis or diagnosis. This
approach allows for cautious decision-making when the model’s confidence is not sufficient
for reliable predictions. Overall, the selection of the best model with mixed calibration
results requires a combination of objective evaluation, subjective judgment of metric

importance, and consideration of domain-specific requirements.

Calibration Metrics — While we have elaborated on the drawbacks of ECE, it provides
an intuitive and straightforward interpretation, is simple to implement, and captures pure
calibration. Additionally, ECE is associated with the reliability diagram - a powerful
tool to visualize model calibration. It’s also worth noting that alternative calibration
metrics have their own shortcomings. The majority of the existing metrics suffer from
challenges like scale-dependent interpretation, lack of normalized range, arbitrary choice
of number of bins, etc. [62]. Moreover, composite measures like NLL and Brier blend
calibration and refinement, making it challenging to isolate calibration effects. Multiclass
settings introduce additional complexity due to the multitude of classes, their diverse
interrelations, and the absence of a universally accepted metric for gauging refinement.

Moreover, the choice of calibration metric can also be domain or application-dependent. As
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there is no universally applicable or acceptable calibration metric, we proposed collective

evaluation of these metrics for a better or unbiased understanding of calibration performance.

Limitations — Our current study focused on medical image classification tasks across
three different benchmark datasets. However, due to limited computational resources, we
selected datasets with 2D images. Extending this work to 3D datasets as well as other tasks
like medical image segmentation and registration, can help broaden our understanding
of calibration in the general context of medical image analysis. Additionally, our study
highlights that using the rotation-based self-supervised learning (SSL) approach gives
better-calibrated results compared to the usual fully-supervised learning. A comparison of

other SSL techniques, such as contrastive SSL or generative SSL, would be interesting.

Conclusion — In general, for medical image classification tasks, we observe that training
regimes have a varying impact on model calibration. Overall, we observe that across
different architectures, training regimes, datasets, and sample sizes, (a) transfer learning
through pretraining helps improve performance over random-initialized models and (b)
pretrained self-supervised approach provides better calibration than its fully supervised
counterpart, with on-par or better performance. While we notice a sizeable increase in
performance with dataset sizes, only nominal improvement is realized with increasing model
capacity.

Furthermore, we identified weight distribution and learned representations of a neural
network as potential confounding factors that provide useful insights into model calibration,
in particular, to explain the superiority of a rotation-based self-supervised training regime

over fully supervised training.

Broader Impact — We anticipate that this analysis will offer significant insights into
calibration across datasets of varying sizes and models of different complexities. This work
raises a broader question regarding the search for a unified metric that can provide a
comprehensive understanding of model calibration, thereby reducing the need to evaluate
models based on multiple criteria. Ensuring accurate and reliable probabilistic predictions
is vital for effective risk management and decision-making. It is particularly important
when relying on the outputs of probabilistic models that require trust. Additionally,
developing well-calibrated models is essential for promoting the widespread acceptance of
machine learning methods, especially in fields like Al-driven medical diagnosis, as it directly

influences the level of trust in new technologies and improves their explainability.



LS+: Informed Label Smoothing for Improving Calibration

in Medical Image Classification

5.1 Introduction

Deep neural networks (DNNs) have demonstrated outstanding performance across various
medical image tasks, including classification, segmentation, and detection [3]. However,
modern DNNs are prone to miscalibration, compromising the reliability and trustworthiness
of their predictions — critical factors in healthcare applications [35]. Therefore, addressing
the issue of miscalibration and enhancing model calibration is of utmost importance.

Various approaches including data augmentation [145]|, ensemble [25], label smoothing
[74, 75], focal loss [79], entropy-based regularization and feedback calibration during
training [186, 38|, have been proposed to mitigate DNN miscalibration. While some of
these approaches involve varying the inputs to the DNN [145], others focus on changing the
true label distribution [134, 80]. Studies have demonstrated the effectiveness of smoothing
true labels during training for improving calibration [74]. Probabilities from DNNs serve as
confidence indicators for predictions; High probabilities signify stronger belief in a predicted
class, crucial in fields like medical diagnosis. However, interpreting the DNN results is
incomplete without taking into account the model calibration [8, 187|. Calibration ensures
that assigned probabilities accurately reflect the true likelihood of events. Without proper
calibration, interpretations based solely on probabilities may be misleading or unreliable.
Contribution. Miscalibration [37] is defined as the disparity between the true confidence
(accuracy) and the predicted confidence (output probability). Achieving perfect calibration
entails bringing the predicted confidence score close to accuracy. To address this, we
propose Label Smoothing plus (LS+) a novel and simple extension to label smoothing
that substitutes the hard labels with informed smoothened versions computed from the

validation set. The contributions of the paper are outlined as follows:

1. We introduce a simple yet effective approach to enhance model calibration by altering
the true label distribution with a surrogate distribution computed from the class-wise

accuracy on the validation set.

2. Our proposed method improves calibration with better or on par-performance when
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compared to other popular approaches on three medical imaging datasets.

3. Using retention curves and density plots of correct and incorrect predictions, we
observed that our method provides reliable and interpretable scores for model

reject /second opinion, which is essential for safety-critical applications.

5.2 Related Work

Post-hoc calibration — Use a hold-out data set (calibration/validation set) to calibrate
the confidence scores of a neural network. Several well-studied calibration methods include
Platt scaling [60], isotonic regression [130], and temperature scaling (TS) [37]. Weight
scaling [73] is an alternative version of T'S for medical imaging tasks that explicitly optimizes
the ECE measure to improve calibration. Additionally, class-distribution-aware vectors [133]
for TS and label smoothing are used to address class-wise overconfidence. Meta-calibration
[188] proposes differentiable ECE-driven calibration to obtain well-calibrated and highly
accurate models.

Train-time calibration — An alternative approach that directly generates calibrated
DNN models. Explicit confidence penalty (ECP) [76] leverages the entropy of the predicted
distribution to regularize the loss function. Both Label smoothing (LS) [75, 74] and
Focal loss (FL) [79] implicitly regulate the network output probabilities, encouraging their
distribution to closely resemble the uniform distribution. Furthermore, auxiliary loss
functions in conjunction with negative log-likelihood (NLL) are used to improve calibration.
The difference between Confidence and Accuracy (DCA) [77] serves as an auxiliary loss,
penalizing the model when the cross-entropy loss is reduced but the accuracy remains
unchanged. Multi-class Difference in Confidence and Accuracy [78| broadens the scope of
DCA by considering the calibration of every class, not solely the top-predicted class.

Our current work proposes a more informed strategy to enhance model calibration; the
alignment of predicted probabilities (confidence) with accuracy is achieved by incorporating
class specific priors derived from a separate validation set to account for current calibration

level of the model.

5.3 Methodology

5.3.1 Preliminaries

Consider a multi-class classification problem comprising of K classes. Let p = [p1,...,DKk]
and y = [y1,...,yx]| be the predicted class distribution (confidence scores) of a deep neural
network (DNN) and the ground truth one hot label encoding for an instance z respectively.
Calibration — A well-calibrated classifier generates confidence scores that align with
the actual frequency of correct predictions. Formally, we can define calibration for a
perfectly calibrated model for all classes as, P(y = y*|p[y] = p) = p, where, y € argmax;, yi,
y* € {l,---,K}, ply] is the confidence that sample = belongs to class y.|7§]
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Hard Labelling (HL) — DNN is conventionally trained using only the cross entropy
(CE) loss defined as CE(y,p) = — >, Yk log pr, which reduces to logpy if « is labeled
k. Minimizing CE loss is equivalent to maximizing the log-likelihood of the correct label.
Often, the optimization is continued until py is very close to yx. As a result the DNN may
suffer from over-fitting causing over confident predictions, leading to poor generalization
and miscalibration.

Label Smoothing (LS) — An approach to mitigate miscalibration is to replace the one-hot
encoded (hard) label vector with a smoothened (soft) label vector y’ = (1 — a)y + au,
where u is a fixed distribution (typically uniform). Thus, label smoothing strategy involves

minimizing L defined as

K
Lrs=H(y,p)=—- ylogpr = (1—a) CE(y,p) +a CE(u,p) (5.1)
k=1

As the CE(u,p) term penalizes the deviation between prediction (p) and prior (u)
distributions, it can be expressed using Kullback-Leibler (KL) divergence: CE(u,p) =
Dgr(u,p) + H(u). As H(u), the entropy of u, is a constant, the label smoothing cost

function simplifies to [75]:

L1s=(1—a) CE(y,p) +a Dxr(u,p) (5.2)

5.3.2 Label Smoothing Plus (LS+)

There are two drawbacks with vanilla label smoothing. Firstly, the approach does not
take into account the DNN’s current calibration level. As a result, forcible application of
label smoothing to an already well-calibrated DNN may worsen its calibration. Secondly,
the uniform prior does not take into account class-wise calibration levels (poorly and
well-calibrated classes are treated alike). We propose Label Smoothing Plus (LS+) that
addresses these two drawbacks in one go. LS+ replaces the uniform prior u, with an
informed class specific prior v¥ = [v¥,... vk ] for k = {1,..., K}, that is estimated on a
separate validation set. In particular, the element v}“ in the informed prior v¥ for class k is
defined as

Ve if j ==k
k=4 F J (5.3)

’ (1 —Vge) . 215 otherwise
where, V7 is validation set accuracy for class k using the pretrained (without label
smoothing) model M. Ezample (Illustrated in Figure 5.1): For a pre-trained, four-class
classification model with 76% validation accuracy for a specific class creates a label vector
[0.76,0.08,0.08,0.08], which coerces the model to generate class prediction probabilities to
match the validation accuracy.
Learning the priors on the validation set ensures unbiased estimates and takes into account

the current model calibration status. Furthermore, the smoothening of the prior is also

dependent on the class accuracy. Priors of classes that are already accurately predicted by
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Figure 5.1: Dy: Training Data, Dy: Validation Data, g(x): Pre-trained model using Hard
Labels, f(x): Model to be calibrated, v¥: class-specific prior, u: uniform prior. (Top) LS
uses the same prior for all classes. (Bottom) LS+ uses class-specific priors computed from
the validation set’s class-wise accuracy based on the pre-trained model.

the model are smoothened to lesser extent than those of classes that are not accurately

k corresponding to the ground truth class

predicted. During training, the informed prior v
label for the instance z is used in place for a fixed uniform prior u. In theory, v¥ may be
computed periodically after every few training iterations. However, we compute it only
once before LS+ is applied. The complete pseudo-code for LS+ is presented in Algorithm

1.

5.4 Experiments and Results

5.4.1 Experimental Setting

Datasets — We evaluate LS+ using three benchmark datasets curated for medical image
classification: (i) Chaoyang - Histopathological dataset [189] consists of colon slides with a
patch size of 512 x 512. It is a multiclass (K = 4) dataset that is divided into training and
testing sets consisting of 4021 and 2139 images respectively. Furthermore, we partitioned the
training set into train (90%) and validation (10%). (ii) A Minimalist Histopathology Image
Analysis (MHIST) dataset [190] comprises of 3,152 histopathological images of colorectal
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Algorithm 1 Pseudocode of LS+

1: Input: A training dataset Dy = {(xi, ;) }i=1,.. N, a validation dataset Dy, number of
classes K, number of training epochs T', pre-trained model M

2: Class-wise accuracy vector: V¢ = M(Dy), where V¢ ¢ RE and each component of
the vector corresponds to the accuracy associated with the class k € K

3: Compute new, class-specific label distribution set {v',..., v/} using Eqn (5.3)

4: Minimize L1 g4 over training data using the new distribution computed from Dy

5. fort=0to 71 —1do

6:  For each training instance i that belongs to class k, choose the corresponding informed
prior v¥

7 Lrs+ = (1—a)~CE(y,f))+a-DKL(Vk,f))

8: end for

polyps. It is a binary class (K = 2) dataset with images of size 224 x 224. The training and
test sets consist of 2175 and 977 samples, respectively. Here, we partitioned the training
dataset into train (80%) and validation (20%). (iii) International Skin Imaging Collaboration
(ISIC - 2018) [191, 192] is a multi-class dataset (K = 7; highly imbalanced) of dermoscopic
images of skin with a size of 600 x 450. It consists of separate train/validation/test sets
with 10015/193/1512 samples, respectively. The performance on the separate test set in all
the three datasets facilitates an unbiased evaluation of LS+ and other approaches.
Network Architectures and Implementation Details — We used two popular image
classification architectures: ResNet-34 and ResNet-50, implemented using Tensorflow 2.4.
These models are ImageNet pretrained and were specifically chosen for their effectiveness
on small biomedical datasets [165, 164]. During training, all images are resized to 224 x 224
dimension. We used Adam optimizer with a learning rate set to le — 3, batch size of 8 and
standard data augmentation techniques [193].

Baseline Methods — We compare LS+ with the following models: (a) Conventional
classification using cross-entropy loss with one-hot encoded labels (Hard Labels), (b)
cross-entropy loss with label smoothing (LS) [75], (c) focal loss (y = 3) (FL) [79] that
provides implicit regularization and two auxiliary loss methods - (d) difference between
confidence and accuracy (DCA) [77]|, and (e) multi-class difference in confidence and
accuracy (MDCA) [78].

Evaluation Metrics — We use several metrics to evaluate the models. Performance of
the models is measured using accuracy (ACC), area under receiver operating characteristic
(AUROC), precision, recall, Fl-score. Similarly, a comprehensive comparison of calibration
is achieved using expectation calibration error (ECE), adaptive calibration error (ACE),

static calibration error (SCE), cross-entropy error (CE) and brier loss (Brier) [187].

5.4.2 Calibration performance comparison with SOTA

Table 5.1 provides a quantitative comparison of our method with SOTA approaches on
Chaoyang, MHIST and ISIC-2018 datasets, respectively. These results demonstrate that
validation accuracy-based label smoothing provides significant and consistent reduction

across all calibration error metrics. Remarkably, this improvement in calibration was
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achieved without compromising performance. In fact, marginal improvement can be
observed in majority of the performance metrics across different architectures and datasets.
Even for the highly imbalanced ISIC dataset, our model provides notable enhancement
across all calibration metrics with minimal effect on performance, further solidifying the

effectiveness of our approach.

Table 5.1: Quantitative Results. Performance and Calibration results on the test set
of three benchmark datasets. The reported values are the average of 3 runs and given
as percentages (%) with SD (o) as subscript. 1: Higher is better, |: Lower is better.
Architectures: R34 (ResNet-34), R50 (ResNet-50); Datasets: D1 (Chaoyang), D2 (MHIST)
and D3 (ISIC).

D1 Method ACCt AUROC? Precision? Recallf F11 | ECE| ACE| SCE|l CE|  Brier|

HL 81.5012 94.0805 75.9111  74.5813 75.1013 | 11.3355 11.21o7 06.2610 74.21155 29.7495

LS [75] 819194  93.84¢ 76.9409 745905 75.5lp7 | 03.6709 03.80ps 03.700s 50.6525  26.4311

R34 FL [79] 81.891.1 94.07¢.5 76.582.2 75.681.1 75.6816 | 08.3462 083461 05.7833 52.5742 28.1623
DCA [77] 81.91p.7 93.860.3 76.630.6 734113 745711 | 09.2714  09.0616 04.94p8 60.3438 27.7513
MDCA [78] | 81.5215  93.131, 76.5515  T4.91,¢ 754514 | 107227 10.5839 05.9915 81.92509 29.4254

Ours 82.280_7 94.020,2 77.301_3 75.361,4 75.990_7 02.810_7 03.131_1 03~490_4 49.762_2 25.660_9

HL 80.79%5  93.2005 755104  73.9805 745602 | 09.2645 09.1646 05.711¢ 72.8ly27 29.9353

LS [75] 80.621.5 93.040.6 75.411 4 739214 744814 | 03.51p4 042796 03.6603 53.7722 279114

R50 FL [79] 80.523,0 93.4710 76.302.0 72.6026 73.7326 | 04.1606 042609 04.0616 53.9831 27.7035
: DCA [77] | 79.8204  92.7503 74.8210  72.3217 731811 | 13.8904 13.8804 074302 924231 33.3004
MDCA [78] | 79.882, 92.44¢.6 75.2295 71.0332 722630 | 11.8543 11.7045 06.7620 86.82279 32.8842

Ours 81.4417 93.56056 76.392¢ 74.7612 75.2019 | 03.33p5 03.45p7 04.26p8 53.0652 27.1727

D2  Method ACC 1T AUROC T Precision T Recall T F11 ECE|] ACE | SCE | CE | Brier |

HL 771456  84.3297 78.2Tss  T3.631s Tdldey | 174056 172457 179857 101.40246 38.976s
LS [75] 78.68,5  87.161, 784534  T6.313p T6.5114 | 06.501 06.7814 08.1355 459254 29711,
R3q  FLII 80.3210  87.1014 80.131,  76.6315 777015 | 12.01p9 121153 11.7605 48.2505  31.55.
DCA [77] | 778311  85.8310 771005 739417 T4.8616 | 085115 084619 09.015; 51.0255 3145
MDCA [78] | 80.25,7  87.45.4 79.3819  TT.4dos 781220 | 121024 11.9105 122825 63.28116 31.360s
Ours 81.4809 87.690;  80.77T,3 78.700¢ 79.470s | 05.6805 06.4205 06.75,, 44.78,s 28.430;
HL 772145 83.6345 757107 T4.2261  TA6555 | 121730 11.8935 12.3326 61.2411;  34.385s
LS [75] 80.7314  86.8415 804356  T7.9505 78.6207 | 04.57T19 05.3316 06.1714 45.3855  28.6022
rso  FL I 772515,  84.011, 776023  T2.8lys T3.6557 | 10.613g 10.7435 11.9355 51.6215  34.071,

DCA [77 79.403.0 85.503.1 78.9739 75.6137 76.6137 | 07.99;; 08.08;; 09.14;09 60.43115 30.9441
MDCA [78] | 77.622.4 84.229 5 76.225.7 74.9793 754424 | 099139 09.8233 10.0530 60.54105  33.0840
Ours 81.450 9 88.29( 4 80.571 5 79.04,5 79.60,( | 04.0395 04.2797 05.80;5 42.4009 26.875

D3 Method ACC 1T AUROC T Precision T Recall T F11 ECE| ACE | SCE | CE | Brier |

HL 74.2503  92.37p3 63.762.9 529199 55.8511 | 15.3847 153047 04.78;2 11251302 40.773;
LS [75] 73.191.1 88.6136 63.693.6 49.9429  52.6943 | 08.8430 09.5229 033705  85.9834  39.45138
R3q  FLITI 74.0115  90.691.4 64.9504  52.0259 559039 | 04.1997 04.44p4 03.0lgr  77.0354  37.0693
DCA [77] 74.3715 91.1313 65.643 3 53.2750 57.383g | 12.4233 12.2534 04.0808 90.67138  38.7040
MDCA [78] | 72.6215 90.152.9 61.784.4 53.4152 55.7432 | 134455 13.4554 04.5612 100.40204 41.7047
()u’r's 740308 9002[)4 612859 48362_1 50-231.6 03.720_5 03.360_6 02.04(],2 76.850_7 36.660_2
HL 72.840.3 89.14( g 61.7516 49.3817  52.925 15.4131 15.3630 04.9199 137.89188 43.1099
LS [75] 732815 88.2404 60.0855  49.5660 5l.41l53 | 05.8190 06.4509 02.8005 85.3511  38.44;,
R50 FL [79] 71.961 8 88.732.2 59.111 5 51.0736 534829 | 06.5441 06.7438 03.2807 105.18197 41.1135

DCA [77] 72.670.8 88.773.0 61.353.7 48.9728  52.1221 | 14.0267 13.81g5 04.3815 112.82360 42.4951
MDCA [78] | 73.681¢ 89.132.1 61.0936 50.5628  53.9529 | 17.6562 17.6262 05.4415 143.59433 43.3248
Ours 73.770,9 89011.5 63.121,4 51.041_,1 55.031,5 06.960‘5 06.951_0 02.630,2 83.613,5 37.3811
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5.4.3 Uncertainty-based Retention Curves

To assess the reliability of the models, we plot the accuracy of a model as a function of
its retention rate. As the fraction of predictions retained is increased, ground truth labels
are replaced with predicted labels in decreasing order of prediction scores, providing a
comprehensive view of error distribution across the dataset. For a zero retention fraction,
we opt for the predicted label vector () to be the same as the ground truth (G), resulting
in 100% accuracy. As we increase the retention fraction, we replace the label vector €2
with the fraction of the original predicted labels from samples having the highest predicted
probability. We continue the substitution process until the entire label vector is replaced with
the predicted labels. The area under this accuracy-retention curve (R-AUC) serves as a
metric for evaluating the quality of uncertainty estimates (predicted confidence scores) [194],
with a higher value indicating models with better predictions. Figure 5.2 exhibits superior
reliability of our proposed validation accuracy based label smoothing model, making it

more suitable for medical image analysis.

Chaoyang | ResNet34 MHIST | ResNet34 ISIC | ResNet34
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Figure 5.2: Retention Curves. Accuracy as a function of retention fraction along with
the Area Under the Retention Curve (R-AUC) values using ResNet-34/50 for all three
datasets. HL - Hard Labels, LS - Label Smoothing, FL - Focal Loss, DCA - Difference
between Confidence and Accuracy and MDCA - Multi-class Difference in Confidence and
Accuracy.
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5.4.4 Clinical Significance of Predicted Confidence Scores

To gain deeper insights into model calibration, we distinguish between the confidence scores
assigned to correct and incorrect classified samples in Figure 5.3. Ideally, the confidence
scores of the correctly predicted samples should be close to 1 (indicating high certainty),
while incorrect classified samples should move away (reflecting uncertainty). The density
plots associated with the majority of SOTA approaches (except FL) exhibit left-skewed
distributions for correct predictions (green), signifying high confidence levels of these models.
Undesirably, these models also express high confidence in their incorrect predictions (red).
FL exhibits contrasting behavior with right-skewed distributions for both correct and
incorrect predictions indicating overall low confidence levels. Our proposed approach strikes
the right balance by assigning relatively high scores for correctly classified samples while
adeptly conveying uncertainty associated with incorrectly classified samples with low scores.
This nuanced approach positions our model as a reliable and trustworthy solution that

increases the likelihood of expert medical intervention when the model lacks confidence.

5.4.5 Discussion

The proposed approach offers a simple and intuitive method for improving model calibration,
making it accessible and easy to integrate into existing deep learning pipelines. By
refining the confidence estimates of the model, it improves the alignment between predicted
probabilities and actual outcomes, leading to more reliable decisions. However, while
the method effectively improves both performance and calibration, it does not explicitly
evaluate model robustness, particularly in detecting out-of-distribution (OOD) samples.
This limitation is critical, as models deployed in real-world settings often encounter unseen
data distributions, where a lack of robustness could lead to erroneous predictions with high
confidence. Despite its simplicity, the framework remains effective for applications where
interpretability and calibration are prioritized over complex architectural modifications. Its
relevance is particularly pronounced in safety-critical domain such as medical image analysis,
where accurate confidence estimation is crucial for ensuring that decisions are made with a

well-calibrated level of certainty, reducing the risk of overconfident mispredictions.
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Figure 5.3: Comparison of density plots for correct (green) and incorrect (red)
classification confidences for ResNet-34 (top) and ResNet-50 (bottom) on
MHIST, Chaoyang and ISIC datasets. For incorrect predictions, LS, FL. and Ours
provide low confidence which is desirable. However, methods like HL, DCA and MDCA
exhibits higher confidence even when they are wrong making them unreliable. The area
under the histogram integrates to 1. We have clipped the y-axis in all the plots to better
visualize the trends.
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5.5 Ablation Studies

5.5.1 Comparison with Temperature Scaling

Table 5.2 shows the comparison of calibration metrics after applying temperature
scaling, evaluated on the Chaoyang and MHIST datasets using ResNet-34 and ResNet-50
architectures. Notably, LS+ consistently achieves superior calibration performance. NOTE:
Temperature scaling is a post-hoc method; therefore, the performance metrics for each

baseline remain unchanged, as reported in Table 5.1.
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5.5.2 Standard training (HL) followed by fine-tuning with LS approach

In Table 5.3, we showed the results of the experiments with the HL-trained model and then
fine-tuned using LS. We observed significantly degraded performance and calibration results
compared to our approach on both the Chaoyang & MHIST datasets using ResNet-34 and
ResNet-50 architectures.

5.5.3 Replacing validation set class-wise accuracy with constant value

In this study, we replaced V¢ with a constant value (0.4/0.6) for the correct class,
distributing the remaining mass equally among the other classes to create the soft ground
truth. The results, presented in Table 5.4, show a significant degradation in the model’s
calibration. Manually determining the optimal value is challenging and requires extensive
trial and error, whereas LS+ automatically identifies the appropriate value using the
validation set. Additionally, applying the same constant value to both poorly and

well-calibrated classes can result in suboptimal calibration.



81

Chapter 5. LS+: Informed Label Smoothing for Improving Calibration in Medical Image

Classification

0reggae 09¢p6¢q  OUlgeor 02Ty e 9T  OETogrgr | 0€€gg)) 00€ggg)  0VEEg ) 0oveggrog  OS€ZT6L | 10 09Y A
0L0zg'ze 0606z 1¢ 0071y g  090gg gy  OU'lgg'gT | O80pg'g),  08080'R), 080108 081G 98  0L0¢608 | 70 ‘T6Y ‘ed
0Lezgge  O00€Tp0g 08901 022,860 O0818Z'0T | 007rgcL 0S701°GL  0T¥gyH9L 0071658  OV'€RG°LL | 9°0 094 ‘Gd
0eegr'ge  99Cg96y  09T1L°80 08T9g L0 OVTeRp0L | V4PR9yL OEEgTRL  0%lggg), Oreeppg  090ge )L | 90 ‘T6Y ‘5d
00Tz, T  08e6Rg9  080pgoT  060gg .1  06069-) T | 080pT°g)  O0Tgyfp)  0S097°9) 09Tey g6 0908L° 18 | 770 09y ‘Td
08096'¢e  OU'Tp0'69 0208z'gT 0602867 04026°6T | 00Tggy, 060gTHL  OVIQpGL Ocozeee  O80p608 | 70 76y ‘Td
0Ly 0e  OUSTT'g9  08Tge L0 O6TTOTT  OLTLEIT | OLTpTEL  O0CTrgre) OTEGRG), 0829z'z6 061608 | 9°0 05y ‘Td
092¢9 g  009z0z9 001820 O%Tpg 0T OTC9G01 | iypeeL OTTogeL  00%geyL 09ezc6  O9TgH 08 | 90 ‘T6Y ‘Td

1 1oug (cte} Ta0S  TaOV  Ta0d | d1d beosy  Juwoswerd | pounv | DOV | POYIdIN

‘(LSIHIN) ¢ pue (buvfionyn) 1 :s19seye( ‘(05-12N524) 0S4 ‘(F6-12N52Y)
PEY 1S9IN)00YIDIY "10339q ST Jomor] 1 ‘10139q St IoySiy :] "jduosqns se (0) (IS Yam (%) seSejuediod se USAIS puR SUNI ¢ JO 9FRIOAR 1]} IR SIN[RA

pojrodar oy T, 'sjosejep JIRWIYOUSCQ OM]) JO 39S 1S9} 9} UO SINSOI UOIjRIqI[e)) PUR 20URULIOJS] *(9°0/%°0) Sen[eA juelsuod Ym +§r7 F'G o[qe],

97)¢°8% TLET'SGY T L0 Utgzo0  0€9090 | 9FQG'8L  LEpELL  €CERI8 YET0 L8 STHEIR | 0S¥ ‘ST ‘ed
eleyree 91607 9008 1T €06y TT  90pGIT | ¥O88'GL  TTOT'GL 8CQT']L UIgey8  T'119'8L | 764 ‘ST ‘6d
0€9g0¢ 999609 9790°60 72090 97'¢z o0 | €eeryL  8TL9EL  0CQ09L 679,16 7°09'6L | 064 ‘ST ‘Td
TTR6'6C £ELF6S  TOGRT0  606gL0 CIEFO0 | €PQLEL  VigreL o TTELVL £0z9'16 911908 | 764 ‘ST ‘I

toug  tAd  tHEDS  THOV  taEdd | L1d Loy Juwoswerd | pouav L DOV | dnjeg

(LSIHI) T pue (buvfiony)) 1 :sy0seye( {(0G-12NS2Y) 0SY (75-19N59Y)
PEY 1S9IN)00YIDIY "10139q ST Jomor] 1 ‘10139q ST IoySiy :] "jduosqns se (0) (IS Yam (%) seSejuediod se USAIS pUR SUNI ¢ JO 9FRIOAR 1]} IR SIN[RA

pojIoder oy, ‘SjoseIRp JIRWIPDUS] OM]) JO 19S 1S9} 97} UO S)NSOI UOIRIGI[R)) PUR 9OURULIONSJ ‘ST +———— [@POJN P2urei], TH :£'G 9[qRL

QUNI—3UL



Chapter 5. LS+: Informed Label Smoothing for Improving Calibration in Medical Image
82 Classification

5.6 Conclusion

We propose an informed label smoothing strategy (LS+) that addresses the shortcomings
of the traditional version by taking into consideration the model’s current calibration status
as well as class-wise calibration levels. This is achieved by replacing the uniform prior with
an informed class-specific prior estimated from the class accuracy on a separate validation
set. Experimental results from three benchmark medical image classification tasks show
that LS+ provides significant improvement in calibration. Consistent improvement across
multiple performance and calibration metrics using two different architectures as well as
higher R-AUC values along with density plots exhibit reliability and clinical readiness of
LS+. Our present study assumes that both the validation and test sets stem from the same
distribution. In medical imaging, heterogeneity of population, scanners and acquisition
protocols presents a shift in distribution. Hence, our future efforts will be directed towards

adapting LS+ to excel in out-of-distribution (OOD) scenarios.
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6.1 Thesis Summary

Trustworthy Deep Learning involves several subdomains aimed at improving the reliability
of DNNSs in medical imaging. This thesis emphasizes trustworthiness by addressing two key
aspects: uncertainty quantification and confidence calibration. Uncertainty quantification
fosters trust by explicitly indicating the level of certainty in predictions. Confidence
calibration, viewed as a form of uncertainty interpretation, further strengthens trust by
ensuring that the model’s predicted probabilities accurately reflect the likelihood of actual

outcomes. The thesis summary is illustrated in Figure 6.1.

Uncertainty in predictions can be attributed to noise or randomness in data (aleatoric) and
incorrect model inferences (epistemic). While model uncertainty can be reduced with more
data or bigger models, aleatoric uncertainty is more intricate. In this work, we proposed a

novel approach that interprets data uncertainty estimated from a self-supervised learning
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(SSL) task as noise inherent to the data. Since we used a reconstruction task as the
SSL task, where the input is reconstructed at the output, the nature of the task allows
the uncertainty in the predictions to be interpreted as the noise present in the input. A
heteroscedastic neural network (NN) was employed to model aleatoric uncertainty alongside
the predictions, effectively learning a distribution over the output. From this learned data
distribution, new data points were sampled, which can be considered a data augmentation
process. The augmented data (additional features), was then used for training to reduce
aleatoric uncertainty in the segmentation task. Evaluation on a Brain Tumor Segmentation
(BraTS) dataset, using image reconstruction as the self-supervised task and segmentation
as the image analysis task, demonstrated the effectiveness of the proposed approach. The
results showed a significant reduction in aleatoric uncertainty for the image segmentation
task while achieving performance that was either superior to or comparable with standard

augmentation techniques.

Another key aspect of trustworthiness is the confidence scores of a DNN, which play a
pivotal role in explainability by providing insights into the model’s certainty, identifying
cases that require attention, and establishing trust in its predictions. While there has been a
significant effort towards training modern DNN to achieve high accuracy on medical imaging
tasks, model calibration and factors that affect it remain under-explored. To address this,
a comprehensive empirical study was conducted that explores model performance and
calibration under different scenarios. Fully supervised training was considered, which is the
prevailing approach in the community, as well as rotation-based self-supervised method
with and without transfer learning, across various datasets and architecture sizes. Multiple
calibration metrics were employed to gain a holistic understanding of model calibration.

Our study revealed that:

a. Transfer learning helps improve performance and calibration over random-init models
and smaller datasets.

b. Comparing self-supervised pretrained model is better calibrated than fully-supervised
pretrained model, with on-par or better performance.

c. Dataset size has significant effect on calibration and performance. (Larger the better).

d. Increasing model capacity shows minimal improvement.

e. Factors such as weight distributions and the similarity of learned representations

correlate with the calibration trends observed in the models.

This work shed light on the importance of model calibration in medical image analysis
and highlights the advantages of incorporating self-supervised learning to improve both

performance and calibration.

Understanding calibration in different scenarios is crucial, but improving it is just as
important. While several train-time methods have been introduced to tackle this challenge,
they often come at the cost of performance. Label smoothing, a widely used technique

that uses soft targets during training, remains a popular strategy for improving calibration.
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However, it fails to consider the existing calibration of the DNN and applies a uniform prior
across all classes, which might not be ideal. To address this, Label Smoothing Plus (LS+)
strategy was proposed which uses a class-specific prior estimated from the validation set to
account for the model’s calibration level. The effectiveness of our approach was evaluated by
comparing it to state-of-the-art methods on various benchmark medical imaging datasets,
different architectures, and several performance and calibration metrics for the classification
task. Experimental results showed a notable reduction in calibration error metrics with a
nominal improvement in performance compared to other approaches. Uncertainty-based
retention curves and the analysis of confidence levels for correctly and incorrectly classified
examples revealed that the predicted probabilities from LS+ are better suited for clinical

decision-making, suggesting better reliability of the proposed method.

6.2 Impact and Applications

Uncertainty quantification and model calibration play a crucial role in ensuring the
reliability of Al-driven medical applications. Below are some real-life scenarios illustrating

their impact on medical interpretation and treatment refinement.

Aleatoric Uncertainty Estimation

e Tumor Segmentation for Radiation Therapy Planning
When a radiologist relies on an Al model to delineate tumor boundaries on an
MRI scan for radiation therapy planning, the model may identify regions of high
aleatoric uncertainty. High aleatoric uncertainty indicates that the image data itself
is ambiguous - perhaps due to motion artifacts, low contrast, or overlapping tissue
structures. The radiologist can then cross-reference these areas with additional
imaging modalities, such as PET scans or contrast-enhanced MRI, to improve the
delineation accuracy. This reduces the risk of either under-treating the tumor or

irradiating healthy tissues unnecessarily.

e Al-Assisted Pathology in Cancer Diagnosis
When a deep learning model is used to assist pathologists in identifying cancerous cells
in histopathology slides, it may highlight areas of high uncertainty in distinguishing
between low-grade and high-grade cancerous cells. It suggests that the sample has
ambiguous or borderline features. In this case, the pathologist might order additional
staining techniques (e.g., immunohistochemistry) or seek a second expert opinion
before finalizing the diagnosis. This helps reduce diagnostic errors and improves

patient outcomes.

Model Calibration

e AI-Guided Anesthesia Dosing

Suppose a deep learning model helps anesthesiologists determine the correct dosage
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of anesthesia based on a patient’s vitals, metabolism, and medical history. The
following scenarios may arise concerning model calibration - An over-confident model
that underestimates risk could lead to underdosing, potentially causing the patient
to regain consciousness during surgery; Conversely, an under-confident model may
overestimate risk, resulting in excessive anesthesia and increasing the likelihood of
complications such as respiratory depression or prolonged recovery; A well-calibrated
model, however, ensures precise, individualized dosage recommendations, improving

surgical safety.

AI-Driven Decision Support for Medical Device Failures

In a scenario where Al monitors pacemakers or insulin pumps to predict failures before
they occur, having a well-calibrated model is crucial to ensure timely and accurate
alerts. Overconfident predictions that indicate no issues could cause potential device
failures to go undetected, posing serious risks to patient safety. On the other hand,
underconfident predictions may trigger frequent, unnecessary device replacements,
leading to increased costs and patient inconvenience. A properly calibrated model
strikes a balance by providing accurate failure risk estimates, enabling effective

preventive maintenance while avoiding unnecessary interventions.

6.3 Future work

We addressed key challenges to improve the trustworthiness with a focus on uncertainty

quantification and confidence calibration. However, several unresolved questions and existing

gaps remain that warrant further investigation to drive meaningful progress in this domain.

6.3.1 Unexplored Questions/Existing Gaps

o Limited Research on Calibration of Large Pretrained Models, such as Foundation

Models — Vision foundation models have gained significant traction in the computer
vision community for their ability to improve performance across a range of
downstream tasks. Despite their widespread adoption, the calibration of these models
for medical image analysis tasks remains an underexplored area. Investigating how
pretraining on foundation models impacts calibration is essential to ensuring their

reliability in the healthcare domain.

Limited Understanding of Calibration Differences Between Pretraining on Natural
and Medical Images — As observed in Chapter 4 and supported by previous literature
[68], dataset size plays a significant role in calibration. Spurious relationships
learned during training can lead models to become overconfident in their predictions
[195]. In Section 4.3.5, we observed peculiar behavior when comparing medical
pretraining with ImageNet pretraining. The study revealed that the self-supervised
model pretrained on RadlmageNet exhibited very low overconfidence error but high

ECE. This discrepancy could hint at potential underconfidence, stemming from
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substantial regularization induced by the type of SSL task combined with medical
image-based pretraining. However, drawing definitive conclusions is premature, as
further experiments, encompassing various architectures and datasets, are necessary.
Hence, investigating pretraining based on various datasets with respect to calibration

is crucial for building well-calibrated models.

Owverconfidence-to- Underconfidence: Several methods have been developed to reduce
overconfidence in modern DNNs; however, combining multiple techniques can
sometimes result in an underconfident model [2, 196]. Therefore, it is essential
to examine this shift from overconfidence-to-underconfidence [197] in DNN predictions
and devise strategies that adjust the confidence dynamically — lowering it when

predictions are overly confident and boosting it when they are underconfident.
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As illustrated [2] in Figure 6.2, confidence
of predictions can be categorized as
under-confident, over-confident, or
Existing techniques
Chapter 5,

applied indiscriminately, may effectively

near-calibrated.

as discussed in when

address overconfidence but often fail in

underconfident or near-calibrated scenarios.

Future work should focus on developing

a dynamic approach capable of adapting

to the model’s current calibration state.

Building on the insights from Chapter
5, future methods are encouraged to
improve calibration while also maintaining
or boosting model performance relative
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Figure 6.3 highlights the anticipated advancements, demonstrating improvements across

three critical aspects: (1) performance, (2) calibration, and (3) OOD robustness.
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