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Abstract This article presents a numerical study on oscillating peristaltic flow of gener-
alized Maxwell fluids through a porous medium. A sinusoidal model is employed for the
oscillating flow regime. A modified Darcy-Brinkman model is utilized to simulate the flow
of a generalized Maxwell fluid in a homogenous, isotropic porous medium. The governing
equations are simplified by assuming long wavelength and low Reynolds number approx-
imations. The numerical and approximate analytical solutions of the problem are obtained
by a semi-numerical technique, namely the homotopy perturbation method. The influence
of the dominating physical parameters such as fractional Maxwell parameter, relaxation
time, amplitude ratio, and permeability parameter on the flow characteristics are depicted
graphically. The size of the trapped bolus is slightly enhanced by increasing the magnitude of
permeability parameter whereas it is decreased with increasing amplitude ratio. Furthermore,
it is shown that in the entire pumping region and the free pumping region, both volumetric
flow rate and pressure decrease with increasing relaxation time, whereas in the co-pumping
region, the volumetric flow rate is elevated with rising magnitude of relaxation time.

Keywords Oscillating flow · Peristalsis · Trapping · Fractional Maxwell model ·
Porous medium · Homotopy perturbation method (HPM) · Pumping

1 Introduction

Non-Newtonian characteristics are exhibited by numerous fluids including physiological
liquids (blood, food bolus, chime, bile etc.), geological suspensions (drilling muds, sedimen-
tary liquids), industrial tribological liquids (oils and greases), and biotechnological liquids
(biodegradable polymers, gels, food stuffs etc.). It is difficult to propose a single model which
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can exhibit all the properties of non-Newtonian fluids. To describe the viscoelastic properties
of such fluids, recently, constitutive equations with ordinary and fractional time derivatives
have been introduced. Fractional calculus has proved to be very successful in the description
of constitutive relations of viscoelastic fluids. The starting point of the fractional derivative
model of viscoelastic fluids is usually a classical differential equation which is modified by
replacing the time derivative of an integer order with fractional order and may be formulated
both in the Riemann–Liouville or Caputo sense (see Mainardi and Spada 2011). This general-
ization allows one to define precisely non-integer order integrals or derivatives. Considering
the relevance of fractional models of viscoelastic fluids, a number of articles (Tan et al.
2003; Qi and Jin 2006; Vieru et al. 2008; Wang and Xu 2009; Khan et al. 2009a,b,c, 2010;
Khan 2009a,b; Qi and Xu 2009; Nadeem 2007; Liu et al. 2011) have addressed unsteady
flows of viscoelastic fluids in conduits with the fractional Maxwell model, fractional gener-
alized Maxwell model, fractional second grade fluid, fractional Oldroyd-B model, fractional
Burgers’ model, or fractional generalized Burgers’ model for a variety of different geome-
tries for the wall surface. Solutions for the velocity field and the associated shear stress in
such studies have frequently been obtained by using various transforms including the Laplace
transform, Fourier transform, Weber transform, Hankel transform, or discrete Laplace trans-
form methods.

Oscillating (or transient) flow of non-Newtonian fluids through a channel or tube is a
fundamental flow regime encountered in many biological and industrial transport processes.
The quasi-periodic blood flow in the cardiovascular system, movement of food bolus in the
gastrointestinal tract and urodynamic transport in the human ureter are just several examples
of oscillating flow in biological systems. Industrial applications of oscillating flows include
slurry and waste conveyance systems employing roller pumps and finger pumps. The low
Reynolds numbers characterizing such flows, and the fact that, the dimensions of the chan-
nels and macromolecules in the fluid can be of the same order of magnitude, can lead to
effects unseen in macroscopic systems. As such fractional models have been studied exten-
sively in recent years in biomedical transport problems. Tripathi et al. (2010) investigated
the peristaltic flow of a fractional Maxwell fluid through a channel. Further studies have uti-
lized the generalized fractional Maxwell model, fractional Oldroyd-B model, and fractional
Burgers’ model (Tripathi 2011a,b,c,d,e,f; Tripathi et al. 2011; Tripathi 2011g) in a variety
of peristaltic flow configurations. Some semi-numerical and analytical methods including
the homotopy perturbation method (HPM), homotopy analysis method (HAM), variational
iteration method (VIM), and Adomian decomposition method (ADM) have been employed
to obtain robust solutions of fractional partial differential equations (FPDE).

To the best knowledge of the authors, no studies thus far have examined analytically the
oscillating flow of generalized Maxwell fluids through a porous medium. In this study, we
therefore study this case and furthermore employ the HPM to derive approximate analyti-
cal solutions of this problem. Numerical results for different cases are depicted graphically.
Peristaltic flow patterns have been visualized with Mathematica software. The influences of
fractional parameter, relaxation time, and permeability parameter on the oscillating peristal-
tic flow pattern are discussed in detail. This study is relevant to transport in biomechanical
systems where porous media and oscillating flows often arise.

2 Mathematical Model

The constitutive equation for the shear stress–strain relationship of viscoelastic fluids obeying
the fractional Maxwell model (Mainardi and Spada 2011; Xue and Nie 2008) is given by:
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Fig. 1 Geometry of oscillating peristaltic flow through a uniform porous medium

(1 + λ̃α1
∂α

∂ t̃α
)τ̃ = μγ̇ , (1)

where λ̃1, t̃, τ̃ , μ, γ̇ are the relaxation time, time, shear stress, viscosity and rate of shear
strain, respectively, and α is a fractional parameter such that 0 ≤ α ≤ 1. If α = 0, this
model reduces to the classical Newtonian model and when α = 1, the model reduces to the
classical Maxwell model. The fractional parameter α characterizes the rheological behavior
of material that is intermediate between the Newtonian and Maxwell viscoelastic fluids. This
model is composed of a Hooke element connected in series with a Scott–Blair element. The
details are given in Mainardi and Spada (2011).

The well-known Darcy law states that, for the flow of a Newtonian fluid through a porous
medium, the pressure gradient caused by the friction drag is directly proportional to the veloc-
ity. Recently, based on the local volume averaging technique and the balance of forces acting
on a volume element of viscoelastic fluids in porous media, Tan and Masuoka (2005a,b,
2007) developed a modified Darcy-Brinkman model for flows of some models of viscoelastic
fluids in porous media. Darcy resistance quantifies the impedance to the flow in the bulk of
the porous space. For generalized Maxwell fluid flows in porous media, the Darcy resistance
(Xue and Nie 2008) can be expressed as follows:

(1 + λ̃α1
∂α

∂ t̃α
)R = −μϕ

K̃
ũ, (2)

where R, ϕ, K̃ , and ũ designate the Darcy resistance, porosity of the porous medium, per-
meability, and axial velocity, respectively. Figure 1 shows the geometry of oscillating flow
through a porous medium, for the present problem.

The constitutive equation for the geometry under consideration (cf. Fig. 1), i.e., oscillating
peristaltic flow through a uniform porous medium takes the form:

h̃(ξ̃ , t̃) = a − φ̃ cos2 π

λ
(ξ̃ − ct̃), (3)

where h̃, λ, a, c, φ̃ are the transverse oscillating displacement, wavelength, half-width of the
channel, wave velocity, and amplitude, respectively.

The governing equations of motion for generalized Maxwell fluid flow through a porous
medium using the above formulations can then be shown to take the form:
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ρ

(
∂

∂ t̃
+ ũ

∂

∂ξ̃
+ ṽ

∂

∂η̃

)
ũ = −∂ p̃

∂ξ̃
+ ∂τ̃ξ̃ ξ̃

∂ξ̃
+ ∂τ̃ξ̃ η̃

∂η̃
+ Rξ̃

ρ

(
∂

∂ t̃
+ ũ

∂

∂ξ̃
+ ṽ

∂

∂η̃

)
ṽ = −∂ p̃

∂η̃
+ ∂τ̃η̃ξ̃

∂ξ̃
+ ∂τ̃η̃η̃

∂η̃
+ Rη̃

⎫⎪⎪⎬
⎪⎪⎭
, (4)

where ρ, ξ̃ , ṽ, η̃, p̃, and Rξ̃ , Rη̃ are the fluid density, axial coordinate, transverse velocity,
transverse coordinate, pressure, and components of Darcy resistance, respectively.

It is pertinent to introduce the following non-dimensional parameters;

ξ = ξ̃

λ
, η = η̃

a
, t = ct̃

λ
, λ1 = cλ̃1

λ
, u = ũ

c
, v = ṽ

cδ
, φ = φ̃

a
, δ = a

λ

h = h̃

a
= 1 − φ cos2 π(ξ − t), p = p̃a2

μcλ
, τ = aτ̃

μc
, Re = ρcaδ

μ
, K = ϕ K̃

a2

⎫⎪⎪⎬
⎪⎪⎭
, (5)

where δ, Re and K are the wave number, Reynolds number, and permeability parameter,
respectively. Substituting the values of shear stress and Darcy resistance from Eqs. (1) and
(2) into Eq. (4), using the non-dimensional parameters from Eq. (5) and thereafter applying
the long wavelength and low Reynolds number approximations, Eq. (4) reduces to:

(1 + λα1
∂α

∂tα
)
∂p

∂ξ
= ∂2u

∂η2 − u

K
,

∂p

∂η
= 0

⎫⎪⎪⎬
⎪⎪⎭
. (6)

The following boundary and initial conditions are prescribed:

∂u(ξ, η, t)

∂η

∣∣∣∣
η=0

= 0, u(ξ, η, t)|η=h = 0,
∂p

∂ξ

∣∣∣∣
t=0

= 0. (7)

Integrating Eq. (6) with respect to η and using the first and second condition of Eq. (7), the
axial velocity is obtained as follows:

u = 1

k2

(
1 + λα1

∂α

∂tα

)
∂p

∂ξ

{
cosh(kη)

cosh(kh)
− 1

}
, (8)

where k2 = 1
K .

The volumetric flow rate is defined as Q = ∫ h
0 udη, which, by virtue of Eq. (8), reduces

to

Q = 1

k3

(
1 + λα1

∂α

∂tα

)
∂p

∂ξ
(tanh(kh)− kh). (9)

The transformations between the wave and the laboratory frames, in dimensionless form, are
given by :

x = ξ − t, y = η, U = u − 1, V = v, (10)

where the left hand side parameters are in the wave frame and the right hand side parameters
are in the laboratory frame.

Using the transformations defined in Eq. (10), it follows that Eq. (3) can be reduced to

h = 1 − φ cos2(πx). (11)
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The volumetric flow rate in the wave frame is given by

q =
h∫

0

Udy =
h∫

0

(u − 1)dη, (12)

which, on integration, yields

q = Q − h. (13)

Averaging the volumetric flow rate along one time period gives

Q̄ =
1∫

0

Qdt =
1∫

0

(q + h)dt, (14)

Subsequent integration, yields

Q̄ = q + 1 − φ

2
. (15)

Equation (9), in view of Eq. (15), gives

∂α

∂tα

(
∂p

∂x

)
+ 1

λα1

∂p

∂x
= 1

λα1

k3
(

Q̄ + h − 1 + φ
2

)
tanh(kh)− kh

. (16)

Using Eqs. (8) and (16), the stream function (ψ) in the wave frame (U = ∂ψ
∂y ) is obtained as

ψ =
[(

Q̄ − 1 + φ
2 + h

tanh(kh)− kh

) (
sinh(ky)

cosh(kh)
− ky

)
− y

]
. (17)

It is evident from Eq. (17) that the stream function is independent of fractional parameter
and relaxation time.

3 HPM Solutions

Equation (16) can be simplified to yield

Dα
t f + 1

λα1
f = − A

λα1
, (18)

where f (x, t) = ∂p

∂x
and A = −

k3
(

Q̄ + h − 1 + φ

2

)

tanh(kh)− kh
with the initial condition

f (x, 0) = 0. (19)

According to the HPM given by He (1999), we construct the following homotopy:

Dα
t f = −q̂

[
1

λα1
f + A

λα1

]
. (20)
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Furthermore following (He 1999), we use the homotopy parameter “q̂” to expand the solution:

f = f0 + q̂ f1 + q̂2 f2 + q̂3 f3 + q̂4 f4 + · · · (21)

When q̂ → 1, Equation (21) becomes the approximate solution of Eq. (18). Substituting
Eq. (21) in Eq. (20) and comparing the like powers of q̂, we obtain the following set of
fractional partial differential equations (FPDE):

q̂0 : Dα
t f0 = 0 (22)

q̂1 : Dα
t f1 = − 1

λα1
f0 − A

λα1
(23)

q̂2 : Dα
t f2 = − 1

λα1
f1 (24)

q̂3 : Dα
t f3 = − 1

λα1
f2 (25)

q̂4 : Dα
t f4 = − 1

λα1
f3 (26)

and so on.
The method is based on applying the operator Jαt (the inverse operator of the Caputo

derivativeDα
t ) on both sides of Eqs. (22–26), which leads to:

f0 = 0 (27)

f1 = − A

λα1

tα

�(α + 1)
(28)

f2 = A

λ2α
1

t2α

�(2α + 1)
(29)

f3 = − A

λ3α
1

t3α

�(3α + 1)
(30)

f4 = A

λ4α
1

t4α

�(4α + 1)
. (31)

Thus, the exact solution may be obtained as

f (x, t) =
∞∑

r=0

fr

=
∞∑

r=0

[ψ(α)]r trα

�(rα + 1)
, where [ψ(α)]r =

{
(−1)r A

λrα
1
, r ≥ 1

0, r = 0

= Eα(ψ(α)t
α), (32)

where Eα(t) = ∑∞
r=0

tr

�(rα+1) , (α > 0) is the Mittag-Leffler function in one parameter.
The pressure difference across one wavelength (�p) and the friction force across one

wavelength (F) are defined by the following integrals:
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Fig. 2 Pressure versus averaged flow rate for various values of λ1 at t = 1, α = 1/4, K = 0.1, φ = 0.5
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Fig. 3 Pressure versus averaged flow rate for various values of α at t = 1, K = 0.1, λ1 = 1, φ = 0.5

�p =
1∫

0

∂p

∂x
dx (33)

F =
1∫

0

h

(
−∂p

∂x

)
dx (34)

4 Numerical Results and Discussion

Numerical results have been presented in this section to study the effects of fractional visco-
elastic behavior on oscillating peristaltic flow through a uniform porous medium. Mathem-
atica software is used to plot all the figures and 100 terms of the Mittag-Leffler function have
been employed in the computations. All figures have been plotted based on Eqs. (33, 34)
and for the integrations, Simpson’s 1/3rd rule has been implemented. The graphical plots are
presented for the effects of relevant values of the control parameters, i.e., the relaxation time
(λ1), fractional parameter (α), and permeability parameter (K ) in Figs. 2, 3, 4, 5, 6, 7, and 8.

Figures 2, 3, and 4 illustrate the variation of the volumetric flow rate with pressure gradient
for different values of the relaxation time (λ1), fractional parameter (α), and permeability
parameter (K ) based on Eq. (33). Different regions on the basis of the values of pressure
gradient have been examined in this study. The region for �p > 0 is the entire pumping
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Fig. 4 Pressure versus averaged flow rate for various values of K at t = 1, α = 1/4, λ1 = 1, φ = 0.5
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Fig. 5 Frictional force versus averaged flow rate for various values of λ1 at t = 1, α = 1/4, K = 0.1, φ = 0.5
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Fig. 6 Frictional force versus averaged flow rate for various values of α at t = 1, K = 0.1, λ1 = 1, φ = 0.5

region, the region for �p = 0 is the free pumping region, and the region for �p < 0 is the
co-pumping region.

Figure2 shows that in the entire pumping region, the volumetric flow rate as well as
pressure decrease with an increase in magnitude of relaxation time; a similar response is
computed for the free pumping region. However, in the co-pumping region, both volumetric
flow rate and pressure increase with a rise in magnitude of relaxation time. Inspection of
Fig. 2 further reveals that for a Newtonian fluid (λ1 → 0), the magnitude of the pressure is
greater than that for the Maxwell fluid in the pumping region whereas it is markedly less
in the co-pumping region. Figure 3 indicates that both volumetric flow rate and pressure are
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Fig. 7 Frictional force versus averaged flow rate for various values of K at t = 1, λ1 = 1, φ = 0.5

enhanced, both in the pumping region and also in the free pumping region by increasing
the magnitude of the fractional parameter. However, the opposite effect is computed for the
co-pumping region where both volumetric flow rate and pressure are depressed with increas-
ing magnitude of the fractional parameter. It is further observed that for a viscoelastic fluid
based on the classical Maxwell model (α = 1), the pressure is greater than that for visco-
elastic fluids with the fractional Maxwell model in the pumping region; the reverse trend is
apparent in the co-pumping region. Figure 4 shows that the pressure diminishes in the pump-
ing region at a critical value of volumetric flow rate and thereafter it increases in the pumping,
free pumping, and co-pumping regions with increasing magnitude of permeability parameter.
Increasing permeability which corresponds to progressively lesser solid fibers in the porous
medium serves to reduce the Darcy resistance. This significantly influences pressures (Zueco
et al. 2009a; Rashidi et al. 2011, 2012; Tripathi 2012, 2011h).

Frictional force (F) in the case of the oscillating flow of generalized Maxwell fluids is
calculated over one wave period in terms of the averaged volumetric flow rate. Figures 5,
6, and 7 show the variation of frictional force with averaged flow rate for different values
of the pertinent parameters based on Eq. (34). Figure 5 illustrates that the frictional force is
enhanced with increasing relaxation time at a certain value of volumetric flow rate; follow-
ing this the opposite behavior is observed, i.e., there is a subsequent decrease in frictional
force with increasing relaxation time. From Fig. 6, it is observed that the impact of fractional
parameter on frictional force is similar in a quantitative sense to that for pressure but oppo-
site in a qualitative sense. The influence of the permeability parameter on frictional force
is shown in Fig. 7. This figure indicates that the magnitude of frictional force increases in a
very small interval of averaged flow rate and then reduces with increasing magnitude of the
permeability parameter. Permeability therefore significantly influences not only the pressure
distributions (as computed in Fig. 4) but also the frictional force in the conduit.

The streamlines on the center-line in the wave frame of reference are found to split to
enclose a bolus of fluid particles circulating along closed streamlines under certain con-
ditions. This phenomenon is referred to as trapping, which is a characteristic of peristaltic
motion. As this bolus appears to be trapped by the wave, the bolus moves with the same speed
as that of the wave. Figure 8a–g illustrates the streamline patterns and trapping for different
values of the permeability parameter and amplitude ratio corresponding to Q̄ = 0.8 based on
Eq. (17). From Fig. 8a–d, it is evident that the size of the trapped bolus increases slightly with
increasing magnitude of the permeability parameter (K ), i.e., higher permeability aids in the
growth of the bolus owing to a simultaneous decrease in Darcian impedance in the porous
medium. Increasing permeability is therefore assistive to bolus development and generally
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aids flow development also (Zueco et al. 2009b; Bég et al. 1998, 2011). It is further observed
that the size of trapped bolus diminishes with an increase in the magnitude of amplitude ratio
(φ) as illustrated in Fig. 8a, e–g.

5 Conclusions

The influence of viscoelastic behavior, fractional characteristics, and permeability on the flow
patterns in two-dimensional oscillating peristaltic non-Newtonian flow in a porous medium,
have been studied analytically and numerically. The effects of the key physical parameters
on volumetric flow rate, pressure, frictional force, and trapping have been examined. An
important observation of the present simulations is that the pressure in the conduit is reduced
by increasing the magnitude of relaxation time in the pumping region, whereas it is con-
stant in the free pumping region and enhanced in the co-pumping region. The effect of the
fractional parameter on the pressure is opposite to that for relaxation time, in all pumping
regions. The present results also reveal that pressure reduces in the pumping region at a
critical value of volumetric flow rate and subsequently increases in all three regions with a
rise in the permeability parameter. The study further shows that the effects of all pertinent
parameters on frictional force are quantitatively similar but qualitatively opposite to that
of pressure. Furthermore, the present computations show that trapping can be reduced by
increasing the amplitude ratio whereas it may be enhanced with increasing the magnitude of
the permeability parameter.
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