Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1018
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSukhija, S.-
dc.contributor.authorNarayanan, C.K.-
dc.date.accessioned2018-12-20T05:31:24Z-
dc.date.available2018-12-20T05:31:24Z-
dc.date.issued2018-12-20-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1018-
dc.description.abstractTransfer learning across heterogeneous feature spaces can, in general, be a very difficult problem in practice due to the heterogeneity of features and lack of correspondence between data points of different domains. In this paper, we present a novel supervised domain adaptation algorithm (SHDA-RF) that transfers knowledge from a data-rich source domain to a target domain with only few training instances. The proposed method makes use of random forests to identify pivot features that bridge the two domains. The key idea of the proposed feature transfer approach is that every path in a decision tree leading to a partition of the data is associated with a certain label distribution and the label distributions that appear both in the source and target random forest models can be used as pivots for bridging the two domains. This information is used to generate a sparse feature transformation matrix, which maps patterns from the source feature space to the target feature space. The target model is then retrained along with the projected source data. We conduct extensive experiments on diverse datasets of varying dimensions and sparsity to verify the superiority of the proposed approach over other baseline and state of the art transfer approaches.en_US
dc.language.isoen_USen_US
dc.subjectFeature transfer learningen_US
dc.subjectHeterogeneous domain adaptationen_US
dc.subjectRandom forestsen_US
dc.titleSupervised heterogeneous feature transfer via random forestsen_US
dc.typeArticleen_US
Appears in Collections:Year-2019

Files in This Item:
File Description SizeFormat 
Full Text.pdf1.38 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.