Please use this identifier to cite or link to this item:
http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1021
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vellaisamy, P. | |
dc.contributor.author | Kumar, A. | |
dc.date.accessioned | 2018-12-20T06:36:07Z | |
dc.date.available | 2018-12-20T06:36:07Z | |
dc.date.issued | 2018-12-20 | |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/1021 | |
dc.description.abstract | The first-exit time process of an inverse Gaussian Lévy process is considered. The one-dimensional distribution functions of the process are obtained. They are not infinitely divisible and the tail probabilities decay exponentially. These distribution functions can also be viewed as distribution functions of supremum of the Brownian motion with drift. The density function is shown to solve a fractional PDE and the result is also generalized to tempered stable subordinators. The subordination of this process to the Brownian motion is considered and the underlying PDE of the subordinated process is obtained. The infinite divisibility of the first-exit time of a β-stable subordinator is also discussed. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | First-exit times | en_US |
dc.subject | Infinite divisibility | en_US |
dc.subject | Inverse Gaussian process | en_US |
dc.subject | Tail probability | en_US |
dc.subject | Subordinated process | en_US |
dc.title | First-exit times of an inverse gaussian process | en_US |
dc.type | Article | en_US |
Appears in Collections: | Year-2018 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Full Text.pdf | 1.92 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.