Please use this identifier to cite or link to this item:
http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1079
Title: | Non-modal stability analysis of miscible viscous fingering with non-monotonic viscosity profiles |
Authors: | Hota, T.K. Mishra, M. |
Issue Date: | 27-Dec-2018 |
Abstract: | A non-modal linear stability analysis (NMA) of the miscible viscous fingering in a porous medium is studied for a toy model of non-monotonic viscosity variation. The onset of instability and its physical mechanism are captured in terms of the singular values of the propagator matrix corresponding to the non-autonomous linear equations. We discuss two types of non-monotonic viscosity profiles, namely, with unfavorable (when a less viscous fluid displaces a high viscous fluid) and with favorable (when a more viscous fluid displaces a less viscous fluid) end-point viscosities. A linear stability analysis yields instabilities for such viscosity variations. Using the optimal perturbation structure, we are able to show that an initially unconditional stable state becomes unstable corresponding to the most unstable initial disturbance. In addition, we also show that to understand the spatiotemporal evolution of the perturbations it is necessary to analyse the viscosity gradient with respect to the concentration and the location of the maximum concentration cm. For the favorable end-point viscosities, a weak transient instability is observed when the viscosity maximum moves close to the pure invading or defending fluid. This instability is attributed to an interplay between the sharp viscosity gradient and the favorable end-point viscosity contrast. Further, the usefulness of the non-modal analysis demonstrating the physical mechanism of the quadruple structure of the perturbations from the optimal concentration disturbances is discussed. We demonstrate the dissimilarity between the quasi-steady-state approach and NMA in finding the correct perturbation structure and the onset, for both the favorable and unfavorable viscosity profiles. The correctness of the linear perturbation structure obtained from the non-modal stability analysis is validated through nonlinear simulations. We have found that the nonlinear simulations and NMA results are in good agreement. In summary, a non-monotonic variation of the viscosity of a miscible fluid pair is seen to have a larger influence on the onset of fingering instabilities, than the corresponding Arrhenius type relationship. |
URI: | http://localhost:8080/xmlui/handle/123456789/1079 |
Appears in Collections: | Year-2018 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Full Text.pdf | 2.88 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.