Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1113
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeyersdorff, O.-
dc.contributor.authorChew, L.-
dc.contributor.authorMahajan, M.-
dc.contributor.authorShukla, A.-
dc.date.accessioned2018-12-28T09:31:54Z-
dc.date.available2018-12-28T09:31:54Z-
dc.date.issued2018-12-28-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1113-
dc.description.abstractWe study the cutting planes systemCP+∀redfor quantified Boolean formulas (QBF), obtained by augmenting propositionalCutting Planeswith a universal reduction rule, and analyse the proof-theoretic strength of this new calculus. While in the propositional case,Cutting Planesis of intermediate strength between resolution and Frege, our findings here show that the situation in QBF is slightly more complex: whileCP+∀redis again weaker than QBF Frege and stronger than the CDCL-based QBF resolution systemsQ-ResandQU-Res, it turns out to be incomparable to even the weakest expansion-based QBF resolution system ∀Exp+Res. A similar picture holds for a semantic versionsemCP+∀red. Technically, our results establish the effectiveness of two lower bound techniques forCP+∀red: via strategy extraction and via monotone feasible interpolation.en_US
dc.language.isoen_USen_US
dc.subjectProof complexityen_US
dc.subjectQuantified Boolean formulasen_US
dc.subjectCuttingen_US
dc.subjectPlanesen_US
dc.subjectResolutionen_US
dc.subjectFrege proofsen_US
dc.titleUnderstanding cutting planes for QBFsen_US
dc.typeArticleen_US
Appears in Collections:Year-2018

Files in This Item:
File Description SizeFormat 
Full Text.pdf568.16 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.