Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1227
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMandal, M.-
dc.contributor.authorSaxena, P.-
dc.contributor.authorVipparthi, S.K.-
dc.contributor.authorMurala, S.-
dc.date.accessioned2019-05-14T13:45:59Z-
dc.date.available2019-05-14T13:45:59Z-
dc.date.issued2019-05-14-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1227-
dc.description.abstractBackground subtraction in video provides the preliminary information which is essential for many computer vision applications. In this paper, we propose a sequence of approaches named CANDID to handle the change detection problem in challenging video scenarios. The CANDID adaptively initializes the pixel-level distance threshold and update rate. These parameters are updated by computing the change dynamics at a location. Further, the background model is maintained by formulating a deterministic update policy. The performance of the proposed method is evaluated over various challenging scenarios such as dynamic background and extreme weather conditions. The qualitative and quantitative measures of the proposed method outperform the existing state-of-the-art approaches.en_US
dc.language.isoen_USen_US
dc.subjectBackground subtractionen_US
dc.subjectDeterministicen_US
dc.subjectDetectionen_US
dc.subjectAdaptive thresholden_US
dc.subjectBackground modellingen_US
dc.titleCANDID: robust change dynamics and deterministic update policy for dynamic background subtractionen_US
dc.typeArticleen_US
Appears in Collections:Year-2018

Files in This Item:
File Description SizeFormat 
Full Text.pdf725.8 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.