Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1267
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSukhija, S.-
dc.date.accessioned2019-05-20T15:37:04Z-
dc.date.available2019-05-20T15:37:04Z-
dc.date.issued2019-05-20-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1267-
dc.description.abstractHeterogeneous Transfer Learning (HTL) algorithms leverage knowledge from a heterogeneous source domain to perform a task in a target domain. We present a novel HTL algorithm that works even where there are no shared features, instance correspondences and further, the two domains do not have identical labels. We utilize the label relationships via web-distance to align the data of the domains in the projected space, while preserving the structure of the original data.en_US
dc.language.isoen_USen_US
dc.titleLabel space driven heterogeneous transfer learning with web induced alignmenten_US
dc.typeArticleen_US
Appears in Collections:Year-2018

Files in This Item:
File Description SizeFormat 
Full Text.pdf439.26 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.