Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1307
Full metadata record
DC FieldValueLanguage
dc.date.accessioned2019-08-22T14:42:20Z-
dc.date.available2019-08-22T14:42:20Z-
dc.date.issued2019-08-22-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1307-
dc.description.abstractIn this article, we discuss the normal complement problem for metacyclic groups in modular group algebras. If F is the field with p elements and G is a finite split metacyclic p-group of nilpotency class 2, then we prove that G has a normal complement in UðFGÞ: For a finite field F of characteristic p, where p is an odd prime, we prove that D2pm has a normal complement in UðFD2pm Þ if and only if p ¼ 3 and jFj ¼ 3:.en_US
dc.language.isoen_USen_US
dc.subjectKaur, S.en_US
dc.subjectKhan, M.en_US
dc.titleA note on normal complement problem for split metacyclic groupsen_US
dc.typeArticleen_US
Appears in Collections:Year-2019

Files in This Item:
File Description SizeFormat 
Full Text.pdf854.29 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.