Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1308
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaur, K.-
dc.contributor.authorPrabhakar, M.-
dc.contributor.authorVesnin, A.-
dc.date.accessioned2019-08-22T14:47:28Z-
dc.date.available2019-08-22T14:47:28Z-
dc.date.issued2019-08-22-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1308-
dc.description.abstractGiven a virtual link diagram D, we define its unknotting index U(D)to be minimum among (m, n)tuples, where mstands for the number of crossings virtualized and nstands for the number of classical crossing changes, to obtain a trivial link diagram. By using span of a diagram and linking number of a diagram we provide a lower bound for unknotting index of a virtual link. Then using warping degree of a diagram, we obtain an upper bound. Both these bounds are applied to find unknotting index for virtual links obtained from pretzel links by virtualizing some crossings.en_US
dc.language.isoen_USen_US
dc.subjectVirtual linken_US
dc.subjectUnknotting indexen_US
dc.subjectPretzel linken_US
dc.subjectSpan valueen_US
dc.titleAn unknotting index for virtual linksen_US
dc.typeArticleen_US
Appears in Collections:Year-2019

Files in This Item:
File Description SizeFormat 
Full Text.pdf489.55 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.