Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1399
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDhall, A.-
dc.contributor.authorGhosh, S.-
dc.contributor.authorGoecke, R.-
dc.contributor.authorGedeon, T.-
dc.date.accessioned2019-11-27T13:08:22Z-
dc.date.available2019-11-27T13:08:22Z-
dc.date.issued2019-11-27-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1399-
dc.description.abstractThis paper describes the Seventh Emotion Recognition in the Wild (EmotiW) Challenge. The EmotiW benchmarking platform provides researchers with an opportunity to evaluate their methods on affect labelled data. This year EmotiW 2019 encompasses three sub-challenges: a) Group-level cohesion prediction; b) Audio-Video emotion recognition; and c) Student engagement prediction. We discuss the databases used, the experimental protocols and the baselines.en_US
dc.language.isoen_USen_US
dc.subjectAffect recognitionen_US
dc.subjectMultimodal Analysisen_US
dc.subjectNeural networksen_US
dc.subjectEmotion Recognitionen_US
dc.titleEmotiW 2019: automatic emotion, engagement and cohesion prediction tasksen_US
dc.typeArticleen_US
Appears in Collections:Year-2019

Files in This Item:
File Description SizeFormat 
Full Text.pdf1.6 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.