Please use this identifier to cite or link to this item:
http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1399
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dhall, A. | - |
dc.contributor.author | Ghosh, S. | - |
dc.contributor.author | Goecke, R. | - |
dc.contributor.author | Gedeon, T. | - |
dc.date.accessioned | 2019-11-27T13:08:22Z | - |
dc.date.available | 2019-11-27T13:08:22Z | - |
dc.date.issued | 2019-11-27 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/1399 | - |
dc.description.abstract | This paper describes the Seventh Emotion Recognition in the Wild (EmotiW) Challenge. The EmotiW benchmarking platform provides researchers with an opportunity to evaluate their methods on affect labelled data. This year EmotiW 2019 encompasses three sub-challenges: a) Group-level cohesion prediction; b) Audio-Video emotion recognition; and c) Student engagement prediction. We discuss the databases used, the experimental protocols and the baselines. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Affect recognition | en_US |
dc.subject | Multimodal Analysis | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Emotion Recognition | en_US |
dc.title | EmotiW 2019: automatic emotion, engagement and cohesion prediction tasks | en_US |
dc.type | Article | en_US |
Appears in Collections: | Year-2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Full Text.pdf | 1.6 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.