Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1400
Title: Influence of Langmuir adsorption and viscous fingering on transport of finite size samples in porous media
Authors: Rana, C.
Pramanik, S.
Martin, M.
Wit, A.D.
Mishra, M.
Issue Date: 27-Nov-2019
Abstract: We examine the transport in a homogeneous porous medium of a finite slice of a solute which adsorbs on the porous matrix following a Langmuir adsorption isotherm and can influence the dynamic viscosity of the solution. In the absence of any viscosity variation, the Langmuir adsorption induces the formation of a shock layer wave at the frontal interface and of a rarefaction wave at the rear interface of the sample. For a finite width sample, these waves interact after a given time that varies nonlinearly with the adsorption properties to give a triangle-like concentration profile in which the mixing efficiency of the solute is larger in comparison to the linear or no-adsorption cases. In the presence of a viscosity contrast such that a less viscous carrier fluid displaces the more viscous finite slice, viscous fingers are formed at the rear rarefaction interface. The fingers propagate through the finite sample to preempt the shock layer at the viscously stable front. In the reverse case, i.e., when the shock layer front features viscous fingering, the fingers are unable to intrude through the rarefaction zone and the qualitative properties of the expanding rear wave are preserved. A nonmonotonic dependence with respect to the Langmuir adsorption parameter b is observed in the onset time of interaction between the nonlinear waves and viscous fingering. The coupled effect of viscous fingering at the rear interface and of Langmuir adsorption provides a powerful mechanism to enhance the mixing efficiency of the adsorbed solute.
URI: http://localhost:8080/xmlui/handle/123456789/1400
Appears in Collections:Year-2019

Files in This Item:
File Description SizeFormat 
Full Text.pdf3.1 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.