Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1468
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChatterjee, T.-
dc.contributor.authorKhurana, S.S.-
dc.date.accessioned2020-01-03T11:36:17Z-
dc.date.available2020-01-03T11:36:17Z-
dc.date.issued2020-01-03-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1468-
dc.description.abstractA famous identity of Gauss gives a closed form expression for the values of the digamma function ðxÞ at rational arguments x in terms of elementary functions. Linear combinations of such values are intimately connected with a conjecture of Erd}os which asserts non vanishing of an infinite series associated to a certain class of periodic arithmetic functions. In this note we give a different proof for the identity of Gauss using an orthogonality like relation satisfied by these functions. As a by product we are able to give a new interpretation for nth Catalan number in terms of these functions.en_US
dc.language.isoen_USen_US
dc.subjectDirichlet seriesen_US
dc.subjectErd}os conjectureen_US
dc.subjectGauss identityen_US
dc.subjectDigamma function.en_US
dc.titleErdosian functions and an identity of gaussen_US
dc.typeArticleen_US
Appears in Collections:Year-2019

Files in This Item:
File Description SizeFormat 
Full Text.pdf93.73 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.