Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1527
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChatterjee, T.-
dc.contributor.authorDhillon, S.-
dc.date.accessioned2020-03-13T10:54:21Z-
dc.date.available2020-03-13T10:54:21Z-
dc.date.issued2020-03-13-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1527-
dc.description.abstractLet Hn = n k=1 1 k be the nth harmonic number. Euler extended it to complex arguments and defined Hr for any complex number r except for the negative integers. In this paper, we give a new proof of the transcendental nature of Hr for rational r. For some special values of q > 1, we give an upper bound for the number of linearly independent harmonic numbers Ha/q with 1 ≤ a ≤ q over the field of algebraic numbers. Also, for any finite set of odd primes J with |J | = n, define WJ = Q − span of H1, Ha j i /qi |1 ≤ a ji ≤ qi − 1, 1 ≤ ji ≤ qi − 1, ∀qi ∈ J . Finally, we show that dim Q WJ = n i=1 qi∈J φ(qi) 2en_US
dc.language.isoen_USen_US
dc.subjectBaker’s Theoryen_US
dc.subjectDigamma functionen_US
dc.subjectGalois theoryen_US
dc.subjectGauss formulaen_US
dc.subjectHarmonic Numbersen_US
dc.subjectLinear forms in logarithmen_US
dc.subjectLinear independenceen_US
dc.titleLinear independence of harmonic numbers over the field of algebraic numbersen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Full Text.pdf507.61 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.