Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1653
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaur, S.-
dc.contributor.authorKhan, M.-
dc.date.accessioned2020-12-16T06:21:31Z-
dc.date.available2020-12-16T06:21:31Z-
dc.date.issued2020-12-16-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1653-
dc.description.abstractLet p be an odd prime and G be a finite split metabelian p-group of exponent p. In this article, we obtain a normal complement of G in VðFGÞ, where F is the field with p elements. Further, assume that G ¼ A3C3, where A is a finite abelian p-group and 3 j p 1: If F is any finite field of characteristic p, then we prove that G does not have a normal complement in VðFGÞ and obtain the structure of the unitary subgroup V ðFGÞ:en_US
dc.language.isoen_USen_US
dc.subjectConjugacy classen_US
dc.subjectGroup ringen_US
dc.subjectNormal complementen_US
dc.subjectUnit groupen_US
dc.titleThe normal complement problem and the structure of the unitary subgroupen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Full Text.pdf1.01 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.