Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1676
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGaur, D.R.-
dc.contributor.authorMudgal, A.-
dc.contributor.authorSingh, R.R.-
dc.date.accessioned2020-12-17T05:22:23Z-
dc.date.available2020-12-17T05:22:23Z-
dc.date.issued2020-12-17-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1676-
dc.description.abstractIn this paper, we give randomized approximation algorithms for stochastic cumulative VRPs for the split and unsplit deliveries. The approximation ratios are max{1+1.5α, 3} and 6, respectively, where α is the approximation ratio for the metric TSP. The approximation factor is further reduced for trees. These results extend the results in Anupam Gupta et al. (2012) and Daya Ram Gaur et al. (2013). The bounds reported here improve the bounds in Daya Ram Gaur et al. (2016).en_US
dc.language.isoen_USen_US
dc.subjectApproximation algorithmsen_US
dc.subjectCumulative VRPsen_US
dc.subjectStochastic demanden_US
dc.titleImproved approximation algorithms for cumulative VRP with stochastic demandsen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Full Text.pdf275.55 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.