Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1776
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDash, S.-
dc.contributor.authorSodhi, R.-
dc.contributor.authorSodhi, B.-
dc.date.accessioned2021-06-08T20:22:09Z-
dc.date.available2021-06-08T20:22:09Z-
dc.date.issued2021-06-09-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1776-
dc.description.abstractReal-time appliance-usage recommendation (RTAUR) is an essential pre-requisite for various demand response (DR) programmes. This paper presents a simple yet effective integer programming (IP)-based model to solve the applianceusage scheduling problem in a dynamic pricing scenario. The proposed work further explores the viability of using a Serverless cloud-computing (SCC) framework for the actual implementation of RT-AUR algorithm. The efficacy of the overall proposal is demonstrated using a co-simulation architecture, combining a grid-simulation platform- MATLAB with a real-time cloudcomputing platform- Amazon Web Services (AWS). Various cosimulation results clearly reveal the effectiveness of the proposed SCC framework for RT-AUR.en_US
dc.language.isoen_USen_US
dc.subjectDemand Responseen_US
dc.subjectInteger Programmingen_US
dc.subjectServerless Cloud Computingen_US
dc.subjectAppliance-Usage Recommendationen_US
dc.subjectAmazon Web Servicesen_US
dc.titleA serverless cloud computing framework for real-time appliance-usage recommendationen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Fulltext.pdf156.72 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.