Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1858
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWadhawan, R.-
dc.contributor.authorGarg, M.-
dc.contributor.authorSahani, A. K.-
dc.date.accessioned2021-06-19T10:44:27Z-
dc.date.available2021-06-19T10:44:27Z-
dc.date.issued2021-06-19-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1858-
dc.description.abstractWith increase productivity and profit margins, it is imperative to control economic and yield losses of agricultural produce. Manual monitoring of crops is becoming challenging year after year and isn’t scalable for large scale cultivation. Hence, in this paper, we discuss various methods used or researched to detect crop diseases in Rice plant using traditional image processing techniques and neural networks. This paper explores possibility of using semantic segmentation to extract the affected area and calculating the affected area and estimate the severity. For easier usage, the model is deployed using ngrok and Twilio server to accept, process and return output on WhatsApp interface.en_US
dc.language.isoen_USen_US
dc.subjectsegmentationen_US
dc.subjectseverityen_US
dc.subjectclassificationen_US
dc.subjectriceen_US
dc.subjectleafen_US
dc.subjectneuralen_US
dc.titleRice plant leaf disease detection and severity estimationen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Fulltext.pdf138.94 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.