Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1871
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, R.
dc.contributor.authorNarayan, S. S. L.
dc.contributor.authorKumar, S.
dc.contributor.authorRoy, S.
dc.contributor.authorKaushik, B. K.
dc.contributor.authorAchar, R.
dc.contributor.authorSharma, R.
dc.date.accessioned2021-06-20T07:21:46Z
dc.date.available2021-06-20T07:21:46Z
dc.date.issued2021-06-20
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1871
dc.description.abstractIn this paper, an artificial neural network (ANN) is developed to model how the geometrical parameters of hybrid copper-graphene interconnects affect the per-unit-length resistance values. The proposed ANN is intelligently trained using large amounts of data representing the prior knowledge about the interconnects, extracted from an analytical model and sparse amount of data extracted from a rigorous full-wave electromagnetic solver. In this way, the training of the ANN model is accelerated without significant loss in accuracy.en_US
dc.language.isoen_USen_US
dc.subjectArtificial neural networks (ANN)en_US
dc.subjectcoppergraphene hybrid interconnectsen_US
dc.subjectper-unit-length resistanceen_US
dc.subjectvariability analysisen_US
dc.subjecttraining dataen_US
dc.titleEstimating per-unit-length resistance parameter in emerging Copper-Graphene hybrid interconnects via prior knowledge based accelerated neural networksen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Fulltext.pdf129.55 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.