Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1887
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgarwal, P.-
dc.contributor.authorSahani, A. K.-
dc.date.accessioned2021-06-21T19:58:47Z-
dc.date.available2021-06-21T19:58:47Z-
dc.date.issued2021-06-22-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1887-
dc.description.abstractThe paper incorporates a comparison between long short term memory (LSTM), simple recurrent neural networks (SRNN), and gated recurrent unit (GRU) to predict currency exchange rate for 22 countries-currencies against United States Dollar(USD) simultaneously. The models predict foreign currency exchange rates for 30 consecutive days by taking the last 365 days of data as input. The models work with the same number of neural network layers, input, targeted output, optimizer, and learning rate.en_US
dc.language.isoen_USen_US
dc.subjectLSTMen_US
dc.subjectSRNNen_US
dc.subjectGRUen_US
dc.subjectCurrency Exchange rate: Foreign exchange rateen_US
dc.titleComparison of neural networks for foreign exchange rate predictionen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Fulltext.pdf274.65 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.