Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/1935
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChatterjee, D.-
dc.contributor.authorPriyadarshini, P.-
dc.contributor.authorDas, D. K.-
dc.contributor.authorMushtaq, K.-
dc.contributor.authorSingh, S.-
dc.contributor.authorAgrewala, J. N.-
dc.date.accessioned2021-06-30T22:38:39Z-
dc.date.available2021-06-30T22:38:39Z-
dc.date.issued2021-07-01-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1935-
dc.description.abstractVaccines remain the most efficacious means to avoid and eliminate morbid diseases associated with high morbidity and mortality. Clinical trials indicate the gaining impetus of peptide vaccines against diseases for which an effective treatment still remains obscure. CD4 T-cell-based peptide vaccines involve immunization with antigenic determinants from pathogens or neoplastic cells that possess the ability to elicit a robust T helper cell response, which subsequently activates other arms of the immune system. The available in silico predictors of human leukocyte antigen II (HLA-II) binding peptides are sequence-based techniques, which ostensibly have balanced sensitivity and specificity. Structural analysis and understanding of the cognate peptide and HLA-II interactions are essential to empirically derive a successful peptide vaccine. However, the availability of structure-based epitope prediction algorithms is inadequate compared with sequence-based prediction methods. The present study is an attempt to understand the structural aspects of HLA-II binders by analyzing the Protein Data Bank (PDB) complexes of pHLA-II. Furthermore, we mimic the peptide exchange mechanism and demonstrate the structural implication of an acidic environment on HLA-II binders. Finally, we discuss a structure-guided approach to decipher potential HLA-II binders within an antigenic protein. This strategy may accurately predict the peptide epitopes and thus aid in designing successful peptide vaccinesen_US
dc.language.isoen_USen_US
dc.subjectHLA-II bindersen_US
dc.subjectpeptide HLA-II interactionen_US
dc.subjecttorsion anglesen_US
dc.subjectstructural immunologyen_US
dc.subjectmolecular dockingen_US
dc.subjectmolecular dynamics simulationen_US
dc.subjectpeptide vaccinesen_US
dc.subjectimmunoinformaticsen_US
dc.subjectstructure guided vaccine designingen_US
dc.titleDeciphering the structural enigma of HLA class-II binding peptides for enhanced immunoinformatics-based prediction of vaccine epitopesen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Fulltext.pdf12.4 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.