Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2013
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShukla, A.-
dc.contributor.authorGullapuram, S. S.-
dc.contributor.authorKatti, H.-
dc.contributor.authorKankanhalli, M.-
dc.contributor.authorWinkler, S.-
dc.contributor.authorSubramanian, R.-
dc.date.accessioned2021-07-04T11:46:08Z-
dc.date.available2021-07-04T11:46:08Z-
dc.date.issued2021-07-04-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2013-
dc.description.abstractAdvertisements (ads) often contain strong emotions to capture audience attention and convey an effective message. Still, little work has focused on affect recognition (AR) from ads employing audiovisual or user cues. This work (1) compiles an affective video ad dataset which evokes coherent emotions across users; (2) explores the efficacy of content-centric convolutional neural network (CNN) features for ad AR vis-a-vis handcrafted audio-visual descriptors; (3) examines user-centric ˜ ad AR from Electroencephalogram (EEG) signals, and (4) demonstrates how better affect predictions facilitate effective computational advertising via a study involving 18 users. Experiments reveal that (a) CNN features outperform handcrafted audiovisual descriptors for content-centric AR; (b) EEG features encode ad-induced emotions better than contentbased features; (c) Multi-task learning achieves optimal ad AR among a slew of classifiers and (d) Pursuant to (b), EEG features enable optimized ad insertion onto streamed video compared to content-based or manual insertion, maximizing ad recall and viewing experience.en_US
dc.language.isoen_USen_US
dc.subjectAffect Recognitionen_US
dc.subjectAdvertisementsen_US
dc.subjectPerceptionen_US
dc.subjectContent-centric Featuresen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectEEGen_US
dc.subjectMultimodalen_US
dc.subjectMulti-task Learningen_US
dc.subjectAd Insertionen_US
dc.titleRecognition of advertisement emotions with application to computational advertisingen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Fulltext.pdf942.87 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.