Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2080
Title: Intralayer synchronization in evolving multiplex hypernetworks: analytical approach
Authors: Rakshit, S.
Bera, B. K.
Bollt, E. M.
Ghosh, D.
Keywords: time-varying network
hypernetwork
multilayer network
synchronization
master stability function approach
Issue Date: 12-Jul-2021
Abstract: In this paper, we study intralayer synchronization of multiplex networks where nodes in each layer interact through diverse types of coupling functions associated with different time-varying network topologies, referred to as multiplex hypernetworks. Here, the intralayer connections are evolving with respect to time, and the interlayer connections are stagnant. In this context, an interesting and important problem is to analyze the stability of the intralayer synchronization in such temporal networks. We prove that if the dynamical multiplex hypernetwork for the time-average topology possesses intralayer synchronization, then each layer of the time-varying multiplex hypernetwork will also be synchronized for sufficiently fast switching. Then through master stability function formalism, we analytically derive necessary and sufficient stability conditions of intralayer synchronous states for such temporal architecture in terms of a time-average network. In this regard, we are able to decouple the transverse error component of the intralayer synchronization states for some special cases. Also, we extend our study for nonlinear intralayer coupling functions as well as multilayer hypernetwork architectures. Finally, the theoretical findings are verified numerically by taking the network of paradigmatic chaotic R\"ossler oscillators.
URI: http://localhost:8080/xmlui/handle/123456789/2080
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Full Text.pdf1.15 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.