Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2113
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharma, S. K.-
dc.contributor.authorBanerjee, A.-
dc.contributor.authorPaul, B.-
dc.contributor.authorPoddar, M. K.-
dc.contributor.authorSasaki, T.-
dc.contributor.authorSamanta, C.-
dc.contributor.authorBal, R.-
dc.date.accessioned2021-07-18T10:50:46Z-
dc.date.available2021-07-18T10:50:46Z-
dc.date.issued2021-07-18-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2113-
dc.description.abstractThe hydrogenation of CO2 to methanol over Cu-nanoparticles supported on TiO2 nanocrystals was studied at 30 bar pressure and 200− 300 ◦C. 5 wt% Cu-TiO2 catalyst was synthesized by a modified hydrothermal method (CuTiO2 HT) and by incipient wetness impregnation method (Cu-TiO2 IMP). TEM analysis of the Cu-TiO2 HT catalyst revealed the formation of Cu-nanoparticles (3-5 nm), while larger Cu particle sizes were observed on the CuTiO2 IMP catalyst. The Cu-TiO2 HT catalyst showed superior catalytic activity (CO2 conversion ~ 9.4 %) and methanol selectivity (~ 96 %) at 200 ◦C and 30 bar pressure. Low CO2 conversions (~6%) and high CO selectivity (~40 %) was obtained on the Cu-TiO2 IMP catalyst. Density functional theory (DFT) calculations indicated the CO2 activation to methanol to proceed via a reverse water gas shift pathway with a significantly lower (93 kJ/mol) CO2 activation barrier on the Cu-nanoparticles, relative to the larger Cu particles (127 kJ/mol). In addition, the higher selectivity towards methanol over the Cu-TiO2 HT catalyst was attributed to the higher CO and HCO stability on the Cu nanoparticles. Time of stream (TOS) study of the Cu-TiO2 catalysts showed no significant deactivation even after 150 h with molar feed ratio 1:3:1 (CO2:H2: N2) at 200 ◦C.en_US
dc.language.isoen_USen_US
dc.subjectCO2 hydrogenationen_US
dc.subjectMethanolen_US
dc.subjectIn-situ DRIFTen_US
dc.subjectDFTen_US
dc.subjectCu/TiO2en_US
dc.titleCombined experimental and computational study to unravel the factors of the Cu/TiO2 catalyst for CO2 hydrogenation to methanolen_US
dc.typeArticleen_US
Appears in Collections:Year-2021

Files in This Item:
File Description SizeFormat 
Full Text.pdf9.87 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.