Please use this identifier to cite or link to this item:
http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2364
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kaur, K. | - |
dc.contributor.author | Kamada, S. | - |
dc.contributor.author | Kawauchi, A. | - |
dc.contributor.author | Madeti, P. | - |
dc.date.accessioned | 2021-08-09T05:56:03Z | - |
dc.date.available | 2021-08-09T05:56:03Z | - |
dc.date.issued | 2021-08-09 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/2364 | - |
dc.description.abstract | In this paper we introduce the notion of an unknotting index for virtual knots. We give some examples of computation by using writhe invariants, and discuss a relationship between the unknotting index and the virtual knot module. In particular, we show that for any non-negative integer n there exists a virtual knot whose unknotting index is (1, n). | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Gauss diagram | en_US |
dc.subject | Unknotting index | en_US |
dc.subject | virtual knot | en_US |
dc.title | An unknotting index for virtual knots | en_US |
dc.type | Article | en_US |
Appears in Collections: | Year-2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Full Text.pdf | 1.32 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.