Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2441
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCHATTERJEE, T.-
dc.contributor.authorKHURANA, S. S.-
dc.date.accessioned2021-08-21T12:11:51Z-
dc.date.available2021-08-21T12:11:51Z-
dc.date.issued2021-08-21-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2441-
dc.description.abstractA famous identity of Gauss gives a closed form expression for the values of the digamma function ðxÞ at rational arguments x in terms of elementary functions. Linear combinations of such values are intimately connected with a conjecture of Erd}os which asserts non vanishing of an infinite series associated to a certain class of periodic arithmetic functions. In this note we give a different proof for the identity of Gauss using an orthogonality like relation satisfied by these functions. As a by product we are able to give a new interpretation for nth Catalan number in terms of these functionsen_US
dc.language.isoen_USen_US
dc.subjectDirichlet seriesen_US
dc.subjectErd}os conjectureen_US
dc.subjectGauss identityen_US
dc.subjectdigamma functionen_US
dc.titleErdo[double-acute]sian functions and an identity of Gaussen_US
dc.typeArticleen_US
Appears in Collections:Year-2019

Files in This Item:
File Description SizeFormat 
Full Text.pdf93.73 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.