Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2654
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, H.-
dc.contributor.authorKumar, D.-
dc.contributor.authorSingh, H.-
dc.date.accessioned2021-09-15T21:22:43Z-
dc.date.available2021-09-15T21:22:43Z-
dc.date.issued2021-09-16-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2654-
dc.description.abstractPresent work aims at developing Magnesium based metal matrix composite (MMC) through in-situ reaction. In-situ generation of micro and nano particles in the Mg-melt is supposed to have a better bonding with the matrix. Ceric ammonium nitrate (CAN) is added to initial Magnesium melt (with an aim to generate CeO2 and MgO through in-situ reaction) at temperatures of 670 C and 870 C. The developed MMCs are solution treated to get rid of intermetallic. The nature of particles is explored with X-ray diffraction (XRD) and Energy dispersion spectroscopy (EDS). The morphology and sizes of particles are keenly jotted using scanning electron microscope (SEM). Mechanical responses of developed MMCs are recorded through Hardness, Compression and scratch tests. The compression fractured surfaces are analyzed with SEM and scratched samples are analyzed on 3 D optical profilometer to explore deformation behavior. The observations indicate the in-situ formation of CeO2, MgO and CeMg12 intermetallic phases in different types and sizes. Further, these particles are responsible for improved mechanical properties. The findings are supported by the contribution of different strengthening mechanisms.en_US
dc.language.isoen_USen_US
dc.subjectMagnesiumen_US
dc.subjectin situ hybrid compositeen_US
dc.subjectCeO2en_US
dc.subjectMgOen_US
dc.subjectstrengthening mechanismen_US
dc.titleDevelopment of magnesium-based hybrid metal matrix composite through in situ micro, nano reinforcementsen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Full Text.pdf2.92 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.