Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2664
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, B.-
dc.contributor.authorPaul, B.-
dc.date.accessioned2021-09-15T22:57:44Z-
dc.date.available2021-09-15T22:57:44Z-
dc.date.issued2021-09-16-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2664-
dc.description.abstractLet F be a Siegel cusp form of weight k and degree n > 1 with Fourier-Jacobi coefficients {φm}m ∈ N. In this article, we investigate the Ramanujan–Petersson conjecture (formulated by Kohnen) for the Petersson norm of φm. In particular, we show that this conjecture is true when F is a Hecke eigenform and a Duke–Imamo˘glu–Ikeda lift. This generalizes a result of Kohnen and Sengupta. Further, we investigate an omega result and a lower bound for the Petersson norms of φm as m → ∞. Interestingly, these results are different depending on whether F is a Saito–Kurokawa lift or a Duke–Imamo˘glu–Ikeda lift of degree n 4.en_US
dc.language.isoen_USen_US
dc.titleRamanujan–Petersson conjecture for Fourier–Jacobi coefficients of siegel cusp formsen_US
dc.typeArticleen_US
Appears in Collections:Year-2020

Files in This Item:
File Description SizeFormat 
Full Text.pdf221.07 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.