Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2711
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFair, D. A.-
dc.contributor.authorNigg, J. T.-
dc.contributor.authorIyer, S.-
dc.contributor.authorBathula, D.-
dc.contributor.authorMills, K. L.-
dc.contributor.authorDosenbach, N. U. F.-
dc.contributor.authorSchlaggar, B. L.-
dc.contributor.authorMennes, M.-
dc.contributor.authorGutman, D.-
dc.contributor.authorBangaru, S.-
dc.contributor.authorBuitelaar, J. K.-
dc.contributor.authorDickstein, D. P.-
dc.contributor.authorMartino, A. D.-
dc.contributor.authorKennedy, D. N.-
dc.contributor.authorKelly, C.-
dc.contributor.authorLuna, B.-
dc.contributor.authorSchweitzer, J. B.-
dc.contributor.authorVelanova, K.-
dc.contributor.authorWang, Y.-F.-
dc.contributor.authorMostofsky, S.-
dc.contributor.authorCastellanos, F. X.-
dc.contributor.authorMilham, M. P.-
dc.date.accessioned2021-09-19T09:27:37Z-
dc.date.available2021-09-19T09:27:37Z-
dc.date.issued2021-09-19-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2711-
dc.description.abstractIn recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for "micro-movements," and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD.en_US
dc.language.isoen_USen_US
dc.subjectADHDen_US
dc.subjectFunctional connectivityen_US
dc.subjectRDoCen_US
dc.subjectResearch domain criteriaen_US
dc.subjectSupport vector machinesen_US
dc.titleDistinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI dataen_US
dc.typeArticleen_US
Appears in Collections:Year-2013

Files in This Item:
File Description SizeFormat 
Full Text.pdf3.67 MBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.