Please use this identifier to cite or link to this item:
http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2808
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bhat, B. V. R. | - |
dc.contributor.author | Chattopadhyay, A. | - |
dc.contributor.author | Kosuru, G. S. R. | - |
dc.date.accessioned | 2021-09-28T20:05:37Z | - |
dc.date.available | 2021-09-28T20:05:37Z | - |
dc.date.issued | 2021-09-29 | - |
dc.identifier.uri | http://localhost:8080/xmlui/handle/123456789/2808 | - |
dc.description.abstract | Let Mn be the C∗ algebra of n × n complex matrices and let ϕ : Mn → Mn be a completely positive map. Suppose A ∈ Mn is a self-adoint matrix. We prove a submajorization result concerning positive and negative parts of the spectrum of ϕ(A). As a consequence, we obtain inequalities concerning the smallest and the largest eigenvalues of the Schur product of A and B, where A and B are self-adjoint. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | self-adjoint matrix | en_US |
dc.subject | positive semidefinite matrix | en_US |
dc.subject | stochastic matrix | en_US |
dc.subject | submajorization | en_US |
dc.subject | eigenvalues | en_US |
dc.subject | singular values | en_US |
dc.subject | Schur products | en_US |
dc.title | On submajorization and eigenvalue inequalities | en_US |
dc.type | Article | en_US |
Appears in Collections: | Year-2015 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Full Text.pdf | 408.82 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.