Please use this identifier to cite or link to this item: http://dspace.iitrpr.ac.in:8080/xmlui/handle/123456789/2808
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhat, B. V. R.-
dc.contributor.authorChattopadhyay, A.-
dc.contributor.authorKosuru, G. S. R.-
dc.date.accessioned2021-09-28T20:05:37Z-
dc.date.available2021-09-28T20:05:37Z-
dc.date.issued2021-09-29-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2808-
dc.description.abstractLet Mn be the C∗ algebra of n × n complex matrices and let ϕ : Mn → Mn be a completely positive map. Suppose A ∈ Mn is a self-adoint matrix. We prove a submajorization result concerning positive and negative parts of the spectrum of ϕ(A). As a consequence, we obtain inequalities concerning the smallest and the largest eigenvalues of the Schur product of A and B, where A and B are self-adjoint.en_US
dc.language.isoen_USen_US
dc.subjectself-adjoint matrixen_US
dc.subjectpositive semidefinite matrixen_US
dc.subjectstochastic matrixen_US
dc.subjectsubmajorizationen_US
dc.subjecteigenvaluesen_US
dc.subjectsingular valuesen_US
dc.subjectSchur productsen_US
dc.titleOn submajorization and eigenvalue inequalitiesen_US
dc.typeArticleen_US
Appears in Collections:Year-2015

Files in This Item:
File Description SizeFormat 
Full Text.pdf408.82 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.